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SUMMARY

DNA methylation in mammals substantially contributes to regulation of gene expression

and thus defines cell fate and identity. Generation and stable inheritance of cell specific

methylation patterns are ensured by the activity of DNA methyltransferases (Dnmts),

while removal of DNA methylation is often linked to oxidised cytosine forms and the

activity of ten-eleven translocation di-oxygenases (Tets).

Within this cumulative work, the cooperation of Dnmts and Tets in sustaining, but also

altering an existing methylome has been investigated. For this, new hairpin sequencing

techniques for the simultaneous and strand specific detection of 5-methylcytosine (5mC)

and 5-hydroxymethylcytosine (5hmC) were designed: One local, sequence specific analysis

which permits the generation of ultra deep sequencing data, as well as one genome wide

hairpin sequencing approach, capturing about 4 million CpGs equally distributed across

the genome. In addition, distinct novel hidden Markov models have been developed,

which, based on hairpin sequencing data, conduct a series of stochastic analyses. The

first model estimates the enzyme efficiency of Dnmts in form of maintenance and de novo

activity, as well as the efficiency of hydroxylation by Tets and also the strand specific

distribution of 5mC and 5hmC. Furthermore, a second model determines the impact of

neighbouring CpG methylation on the activity of Dnmts. The pipelines were applied

to WT, as well as Dnmt and Tet knockout mouse embryonic stem cells under distinct

environmental conditions.

Altogether, the here presented studies demonstrate that Dnmts and Tets do not act

mutually exclusive on particular CpGs, but clearly in an opposed manner. In other words,

methylated regions display high methylation efficiency, while unmethylated domains ex-

hibit reduced methylation efficiency, but at the same time high hydroxylation efficiencies.

Furthermore, in contrast to previous observations, the here presented data suggest a no-

table reduction of the demethylation rate in the absence of Tet enzymes, as well as an

ectopic increase in both maintenance and de novo methylation. Finally, investigation of

spatial methylation patterns reveals that the activity of Dnmt3a and 3b at a given CpG

position is affected by the methylation state of its 5’ neighbouring CpG. In summary,

this work provides new strategies for the investigation of dynamic DNA methylation and

demethylation processes and, furthermore, insight into the underlying mechanisms of how

Dnmts and Tets balance the patterns and levels of DNA methylation.



ZUSAMMENFASSUNG

DNA-Methylierung in Säugern trägt maßgeblich zur Regulierung der Gen-Expression bei

und definiert somit auch das Schicksal und die Identität von Zellen. Die Generierung

und stabile Weitervererbung von zellspezifischen Methylierungsmustern werden durch die

Aktivität von DNA-Methyltransferasen (Dnmts) gewährleistet, wohingegen der Abbau

von DNA-Methylierung oft auf oxidative Cytosinformen und die Aktivität der Ten-Eleven

Tranlocation Enzyme (Tets) zurückgeführt wird.

Im Rahmen dieser kumulativen Arbeit wurde die Zusammenarbeit von Dnmts und

Tets in Bezug auf die Erhaltung, aber auch den Umbau eines bestehenden Methyloms un-

tersucht. Zu diesem Zweck wurden neue Hairpin-Sequenzierungs-Techniken, die der gle-

ichzeitigen und strangspezifischen Detektion von 5-Methylcytosin (5mC) und 5-Hydroxy-

methylcytosin (5hmC) dienen, etabliert: Eine lokale, sequenzspezifische Analyse, die

die Generierung von Ultra-Tiefensequenzierungs-Daten erlaubt, sowie eine genomweite

Hairpin-Sequenzierungs-Analyse, die rund vier Millionen CpGs, welche gleichmäßig über

das gesamte Genom verteilt sind, erfasst. Zusätzlich wurden einzelne neuartige hidden

Markov Modelle entwickelt, die, basierend auf den Hairpin-Sequenzierungs-Daten, eine

Reihe von stochastischen Analysen durchführen. Das erste Modell kalkuliert die Enzym-

Effizienz der Dnmts als Maintenance- oder de novo-Aktivität, die Hydroxylierungs- Ef-

fizienz der Tet-Enzyme, sowie die strangspezifische Ver- teilung von 5mC und 5hmC. Des

Weiteren bestimmt ein zweites Modell den Einfluss von benachbarter CpG-Methylierung

auf die Aktivität von Dnmts. Diese Herangehensweisen wurden auf embryonale Wildtyp-

, aber auch Dnmt und Tet Knockout Stammzelllinien aus der Maus angewandt, welche

unterschiedlichen Kultivierungsbedingungen ausgesetzt wurden.

Zusammenfassend zeigen die hier aufgeführten Studien, dass sich die Enzymaktivitäten

von Dnmts und Tets an bestimmten CpG-Positionen nicht ausschließen, aber klar gegenläu-

fig verhalten. Methylierte Regionen weisen starke Methylierungseffizienzen auf, wohinge-

gen unmethylierte Bereiche niedrige Methylierungs-, dafür jedoch hohe Hydroxylierungs-

Effizienzen aufweisen. Entgegen vorhergehender Beobachtungen zeigen die hier präsen-

tierten Daten in Abwesenheit der Tet Enzyme eine deutliche Reduktion der Demethylier-

ungsrate, sowie einen Anstieg von sowohl ektopischer Maintenance-, als auch de novo-

Methylierung. Darüber hinaus zeigt die Untersuchung von benachbarten CpGs, dass die

Enzym-Aktivität von Dnmt3a und 3b durch den Methylierungs-Zustand des jeweiligen

benachbarten 5’-CpG’s beeinflusst wird. Zusammenfassend beinhaltet die vorliegende
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Arbeit neue Strategien zur Untersuchung von dynamischen DNA-Methylierungs- und

Demethylierungs-Prozessen und gibt darüber hinaus Einblicke in die Mechanismen, mit

denen Dnmts und Tets die DNA- Methylierungsmuster beeinflussen und im Gleichgewicht

halten.



ABSTRACT

DNA methylation is an important epigenetic mark, which is set and maintained by DNA

methyltransferases (Dnmts) and removed via passive or active mechanisms involving Ten

eleven translocation enzyme (Tet) mediated oxidation. Stable cell type specific methyla-

tion patterns can only be achieved if methylation and demethylation events are in balance.

Yet, the genome wide regulation of Dnmt and Tet activity is still not fully understood.

The present studies use novel hairpin sequencing techniques coupled with oxidative

bisulfite sequencing, which permits the simultaneous and strand specific detection of 5-

methylcytosine and 5-hydroxymethylcytosine. Application of HMM models then facil-

itates the estimation of enzyme efficiencies for Dnmts and Tets. Furthermore, spatial

modelling of hairpin bisulfite data allows the investigation of how Dnmts interpret pre-

existing methylation patterns.

Taken together, the results of the presented studies show that methylation and hy-

droxylation are antagonistic, but not mutual exclusive events. In this context, the data

shows that Tet efficiency is highest at open and accessible chromatin. Furthermore, the

absence of Tets leads to a considerable misregulation of Dnmts, resulting in an increase

in both maintenance and de novo methylation efficiency. Lastly, the spatial analysis of

methylation patterns reveals that the de novo methyltransferases Dnmt3a and 3b depend

in their activity on pre-existing neighbouring CpG methylation.



KURZFASSUNG

DNA Methylierung is eine epigenetische Modifikation, welche durch DNA Methyltrans-

ferasen (Dnmts) gesetzt und beibehalten wird. Entfernt wird DNA Methylierung durch

aktive oder passive Mechanismen welche die Oxidation von DNA Methylierung durch Ten-

Eleven Translocation Enzyme (Tets) involviert. Stabile, Zelltyp-spezifische Methylierungs-

muster können nur erreicht werden, wenn Methylierungs- und Demethylierungsvorgänge

im Gleichgewicht sind. Dennoch ist die genomweite Regulation von Dnmts und Tets nicht

vollständig geklärt.

Die hier gezeigten Studien verwenden neue Hairpin-Sequenzierungs-Verfahren, gekop-

pelt mit oxidativer Bisulfit-Sequenzierung, was eine simultane und strangspezifische Anal-

yse von 5-Methylcytosin und 5-Hydroxymethylcytosin erlaubt. Die Anwendung von hid-

den Markov Modellen erlaubt im Anschluss die Berechnung von Enzymeffizienzen für Dn-

mts und Tets. Darüber hinaus erlaubt eine räumliche Modellierung von Methylierungs-

mustern die Untersuchung, wie Dnmts bereits bestehende Methylierung interpretieren.

Die Ergebnisse zeigen, dass Methylierung und Hydroxylierung antagonistische, aber

keinesfalls sich ausschließende Ereignisse sind. Dabei zeigen Tets ihre stärkste Aktivität

an offenem und zugänglichem Chromatin. Zudem führt der Verlust von Tets zu einer

deutlichen Missregulation von Dnmts, welche sich durch eine Zunahme der Maintenance

und de novo-Methylierungseffizienz äußert. Schließlich zeigt die räumliche Modellierung,

dass die de novo-Methyltransferasen bei ihrer Aktivität abhängig von bereits bestehender

DNA Methylierung sind.
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1. BACKGROUND

The construction of a multicellular organism from a single cell is a complex and astound-

ing process. Sperm and oocyte fuse to one primordial cell, the zygote, which after a

vast number of subsequent cell divisions gives rise to hundreds of distinct cell types. The

genetic information, the blueprint for the construction is provided in form of a nucleotide

sequence, the deoxyribonucleic acid (DNA). The DNA itself is organised in functional

groups, genes, which yield the design for proteins and functional ribonucleic acids (RNAs),

the basic components of each cell. Since all cells originate from the same cell, they all

share the same DNA sequence. However, each cell has its individual function and executes

its own distinct and highly specific program. Such cell type specific gene expression is

realised by epigenetic mechanisms.

1.1 Epigenetics

The prefix epi- (επι) originates from Greek and means ‘on top’ or ‘over’ and refers to

epigenetic mechanisms as a second layer of information alongside the DNA sequence.

Epigenetic information does not alter the genomic sequence of the DNA, but will also

be inherited from one cell generation to the next. These epigenetic mechanisms include

small regulatory RNAs, post translational modifications of histones, as well as covalent

DNA modifications.

1.2 Histones and Histone Modifications

Eukaryotic DNA does not simply exist as promiscuous linear molecules, instead, it is

organised in a tightly controlled structure, the chromatin [1]. The basic component of

chromatin is the ‘nucleosome’ which in turn consists of 145 to 147 base pairs (bp) of

DNA wrapped around a protein octamer complex. Each octamer is constructed by small

basic globular proteins, the histones. In mammals, a ‘typical’ nucleosome contains pairs

of the canonical histones H2A, H2B, H3 and H4, respectively [2, 3]. Histones themselves

are built by a highly organised globular part forming the octamers, as well as a sparsely

structured N-terminal tail. On average, nulceosomes occur every 200 ±40bp [4]. Nev-

ertheless, based on their actual density one distinguishes between transcriptional active,

loose ‘euchromatin’ and the inactive, dense ‘heterochromatin’.
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The chromatin state is defined by post-translational modifications (PTMs) of histones.

Various types of PTMs are known, including acetylation, methylation, phosphorylation,

ubiquitination, sumoylation, ADP ribosylation, deamination, as well as the more recently

discovered propionylation and butyrylation [5]. Until today, the most studied modifica-

tions are PTMs of the loosely organised histone tails, even though PTMs of the histone

central domain are not less versatile. PTMs can change the chromatin structure in two

ways. First, based on their chemical properties, they will increase or decrease either

the interaction with DNA and/or other nucleosomes [6, 7]. Secondly, PTMs are able

to recruit transcription factors and chromatin remodeller which de-condense or condense

chromatin resulting in activation or de-activation of transcription [8, 9]. Trimethylation

of lysine 4 and lysine 36 of the histone H3 (H3K4me3 and H3K36me3) for example causes

transcriptional activation, while trimethylation of lysine 9 and lysine 27 (H3K9me3 and

H3K27me3) results in transcriptional repression [10, 11, 12].

However, in mammals, a stable transcriptional control can only be achieved in coop-

eration with DNA methylation, which will be the main focus of the presented cumulative

work. Several studies show that DNA methylation can influence PTMs of histones and

vice versa [13, 14, 15, 16].

1.3 Regulatory RNAs

RNA is considered the first molecule of life, both, in form of genetic information and

in the context of catalytic reactivity [17]. However, a long pursued dogma in biology

pictured RNA as a transport molecule, shipping the genetic information from DNA to

the protein synthesising ribosome [18, 19]. During the last two decades, a vast amount of

RNA classes have been identified which display distinct characteristics and involvement

in almost all biological processes.

Growing evidence also suggests the participation of RNAs in epigenetic regulation

of gene transcription [20, 21]. Several small RNAs, such as siRNAs (short interfering

RNAs), piRNAs (PIWI associated RNAs) or tiRNAs (transcription initiation RNAs),

but also long non-coding RNAs (lncRNAs) have been suggested to regulate epigenetic

processes [20, 22, 23, 24]. Thus, small RNAs interact with Polycomb group proteins

and are involved in transcriptional silencing [25]. lncRNAs, for example, take part in

X-chromosome silencing and parental imprinting in mammals [26]. In addition, lncRNAs

have been found to interact with certain histone types, the Polycomb repressive complex

and also DNA methyltransferases [27, 28, 29].
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1.4 DNA Methylation

The concept of DNA methylation is shared by many organisms, from bacteria over plants

and insects up to mammals, concerning several modified bases such as N6-methyladenine,

N4-methylcytosine (in bacteria) or C5-methylcytosine (5mC). Irrespectively of the mod-

ified base, DNA methylation is generated by a conserved mechanism. Specific enzymes,

the DNA methyltransferases (Dnmts), catalyse the transfer of a methyl group from S-

adenosylmethionine to their target base. In bacteria, DNA methylation cooperates with

endo-nucleases as a protective mechanism against invading viral DNA, whereas eukaryotes

use methylated bases to silence retro-viral DNA already integrated into their genome and

also as a mechanism for gene regulation.

1.4.1 DNA Methylation in Mammals

The importance of DNA methylation in mammals has been shown in mice, where the ab-

sence of methylation marks leads to a developmental arrest in the early embryo [30, 31].

Basically, DNA methylation is essential in two ways. First, non-coding sequences such as

repetitive-, as well as transposable elements, which represent the majority of the genome,

are silenced to ensure genome integrity [32]. Secondly, DNA methylation regulates the

transcription of genes according to cell type specific methylation patterns. The most

abundant form of DNA methylation in mammals is 5-methylcytosine (5mC), which pre-

dominantly occurs in a 5’-CpG-3’ (Cytosine-phosphatidyl-Guanine) di-nucleotide context

[33, 34]. In somatic cells, between 70% to 80% of all CpGs are methylated [35, 36]. How-

ever, studies indicate that CpGs tend to be methylated according to their frequency in

appearance [37]. Low CpG density leads to high methylation level and vice versa. In-

terestingly, CpGs are underrepresented in the mammalian genome [37]. Studies showed

that highly methylated sequences include repetitive elements, satellite DNA, intergenic

DNA and exon sequences. However, across the genome there are regions with high CpG

density, so called CpG islands (CGIs) [38]. These CGIs are about 1kb in length and un-

methylated in most cell types. The majority of CGIs can be assigned to gene promoters.

Nevertheless, a smaller number of CGIs can also be found in intra- or intergenic regions.

1.4.2 DNA Methyltransferases

CpG methylation in mammals is set and maintained by a family of C5 DNA methyltrans-

ferases (Dnmts) which all share a highly conserved C-terminal domain [40]. In fact, after

identification of Dnmt1, other Dnmts were identified by sequence homology search, which

in total revealed the existence of five conserved Dnmts, namely Dnmt1, Dnmt2, Dnmt3a,

Dnmt3b and Dnmt3l [41, 42].

Dnmt1, 3a and 3b represent the canonical Dnmts with catalytic activity, responsible for

the setting and maintenance of stable methylation patterns [41, 31]. In contrast, Dnmt2
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and Dnmt3l do not posses any catalytic activity against DNA [43, 44]. Later studies

revealed Dnmt2 as RNA methyltransferase, which methylated the position 38 in tRNA,

whereas Dnmt3l functions as a cofactor for Dnmt3a and 3b [45, 46, 47, 32, 48]. Recently,

Dnmt3c has been identified as a sixth member of the cytosine-5-methyltransferase (C5-

MTase) family. However, Dnmt3c occurs only in mouse with a low catalytic activity, male

germ cells [49].

All canonical Dnmts methylate DNA via the same mechanism (Figure 1.1). Initially,

the targeted cytosine base is rotated into the catalytic pocket using base-flipping. Sub-

sequently, a conserved cysteine residue mediates a nucleophilic attack on the C6 position

followed by the transfer of the methyl group from S-adenosylmethionine (SAM) to the C5

atom in the cytosine ring (Figure 1.1).

With the exception of Dnmt2, all Dnmts contain a regulatory, N-terminal domain.

These domains are quite distinct in size and their composition of sub-domains, which

strongly influences the properties of the individual enzyme. Based on their structure and

biological function, the canonical Dnmts are categorised into the de novo methyltrans-

ferases Dnmt3a and 3b, and the maintenance methyltransferase Dnmt1 (Figure 1.3).

Maintenance Methyltransferase Dnmt1. The main function of Dnmt1 is the truthful in-

heritance of methylation patterns across replication and cell division (Figure 1.2). Exper-

iments in vitro revealed that Dnmt1 displays a much higher affinity towards DNA which

is only methylated on one DNA strand (hemimethylated) [50]. Depending on the condi-

tions, the activity is up to 50 times higher compared to completely unmethylated DNA. At

the same time, Dnmt1 is characterised by a high processivity, meaning that it methylates

CpGs in a consecutive manner [50]. Through interaction with PCNA and Uhrf1, Dnmt1 is

closely coupled with the replication machinery and Uhrf1 further enhances the affinity of
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Dnmt1 to hemimethylated CpGs [51, 52, 53, 54, 55]. After replication the Uhrf1/Dnmt1

complex determines the methylation status of the parental DNA strand and transfers the

information with high precision to the newly synthesised DNA strand. The literature

provides different information about the accuracy of Dnmt1. With a precision of 95%

to 96%, Vilkaitis et al. grant Dnmt1 a relatively high error rate, whereas Goyal et al.

determines a vast fidelity of Dnmt1 with 99.7% accuracy [56, 57]. Knock-Out (KO) of

Dnmt1 results in an almost complete loss of DNA methylation in ES cells and an early

embryonic lethality [30, 58].

Dnmt1 was the first Dnmt described in mammals and represents the largest member

of the MTase family (Figure 1.3). The complex N-terminal part of Dnmt1 can be divided

into multiple conserved sub-domains which facilitate protein interactions and modulates

DNA binding, as well as methylation activity. Amongst others, Dnmt1 contains a nuclear

localisation signal (NLS) as well as a PCNA interacting motif which guides Dnmt1 into the

nucleus and to replication foci, respectively. The Dnmt1-associated protein 1 (DMAP1)

binding domain facilitates, as the name suggests, the interaction with the transcriptional

repressor DMAP1, but also binding to HDAC2 and contributes to the stable localisation

of Dnmt1 to replication foci [59]. However, the actual recruitment to the replication fork is
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accomplished by the replication foci targeting sequence (RFTS) [60]. In addition, Dnmt1

contains a CXXC, a conserved zinc-finger domain. CXXC binds unmethylated CpG rich

DNA and in the case of Dnmt1, binding of the CXXC domain onto the DNA positions

an auto-inhibitory linker region between DNA and catalytical domain which prevents the

methylation of unmethylated CpGs [61]. However, other investigations indicate that this

mechanism does not apply for Dnmt1 protein [62]. Close to the C-terminal catalytic do-

main, there are two bromo-adjacent homology (BAH) domains, but their function remains

elusive.

To some extent, methylation of cytosine can also be found in a nonCpG i.e. CpH (H

= A, T, C) context. Particular abundance of nonCpG methylation has been described

in oocytes, ES cells and also neurons [63, 64, 65, 66]. NonCpG methylation is generated

by the de novo methylation and initially has been considered a side product of strong

Dnmt3a and 3b activity [63, 67]. Yet, increasing evidence suggest also a functional role of

nonCpG methylation in gene regulation [67, 68, 69, 70]. Thus, the presence of nonCpG

methylation is involved in transcriptional silencing by recruiting repressing factors such as

MeCP2 or REST [68, 69]. A schematic representation summarising location and relative

sizes of the functional domains of Dnmts is given in Figure 1.3.

De novo Methyltransferases Dnmt3a and Dnmt3b. During embryonic development the

inner cell mass gives rise to numerous cell types and subsequently forming a multicellular

organism. ES cells are epigenetically ‘naive’, which is reflected by almost complete absence

of DNA methylation. The new methylation patterns needed for creation of somatic cell

types are set by Dnmt3a and 3b, also referred to as de novo methyltransfearses. In contrast

to Dnmt1, these enzymes exhibit no preferences for hemi- or unmethylted substrates in

vitro and are consequently able to generate entirely new methylation patterns (Figure

1.2) [31, 71]. Dnmt3a and 3b deficient ESCs and embryos failed to de novo methylate

repetitive elements and retroviral sequences. In addition, it has been demonstrated that

the presence of Dnmt3a is necessary for the proper methylation of imprinted genes [72].

Both proteins are considerably smaller compared to Dnmt1 and contain distinct regula-

tory domains (Figure 1.3). The PWWP domain resembles a conserved ‘proline-trypthophan

- trypthophan-proline’ motif facilitating chromatin association by specific interaction with

histone 3 trimethylated at lysine 36 (H3K36me3) and is essential for targeting major satel-

lite repeats in pericentric heterochromatin [73, 74, 75]. The ADD or ATRX domain allows

protein interaction such as binding to histone deacetylase 1 (HDAC1). Among each other,

Dnmt3a and 3b share a highly conserved catalytical domain with 85% sequence homology.
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Fig. 1.3: Schematic protein domain representation of the canonical mammalian DNA methyl-
transferases Dnmt1 (1620 amino acids), Dnmt3a (908 aa) and Dnmt3b (859 aa). DMAP
= DMAP1 binding domain, PCNA = PCNA binding domain, NLS = nuclear locali-
sation sequence, RFTS = replication foci targeting sequence, CXXC = conserved zinc
finger DNA binding domain, nBAH = N-terminal bromo-adjacent homology domain,
cBAH = c-terminal bromo-adjacent homology domain, MTase = catalytic DNA methyl
transferase domain, PWWP = Proline-Tryptophan-Tryptophan-Proline domain, ADD
= ATRX-Dnmt3-Dnmt3L domain.

1.5 Detection of 5-Methylcytosine

Over the years, several techniques have been developed to measure levels and distribution

of 5mC. Methylation sensitive restriction enzymes coupled with quantitative real-time

PCR (qPCR), allow to determine the methylation level at certain CpGs [76, 77, 78, 79].

5mC specific antibodies are used in staining or enrichment based approaches, which are

either linked with qPCR or sequencing, revealing a relative abundance of 5mC across the

genome [80, 81, 82].

However, the gold standard in 5mC detection is bisulfite sequencing (BS) [83]. Bisul-

fite treatment of DNA basically converts the illegible methylation signal into a readable

genomic sequence and permits quantification of 5mC at single base resolution. Under

aqueous and mild acidic conditions (around pH 5) bisulfite anions react with the C6

position of unmethylated cytosine forming cytosinesulphonate, whereas 5mC remains un-

affected (Figure 1.4). Subsequently, the molecule undergoes hydrolysis and deamination

resulting in uracilsulphonate. Desulphonation under alkaline conditions eventually gen-

erates uracil (U).

As a result, subsequent PCR and sequencing results in a thymine (T) ‘signal’ for

unmethylated cytosines, whereas 5mC presents itself as cytosine. Alignment with the

genomic sequence of a reference sequence then allows quantification and pinpointing of

methylated cytosines. Nowadays, modern ‘next generation’ sequencing techniques facili-

tate high throughput applications of BS and furthermore provide ultra deep sequencing

depth or even genome wide detection of 5mC.
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1.6 Hairpin Bisulfite Sequenicng

Hairpin bisulfite sequencing (HBPS) presents the experimental basis of the here published

studies. This section will give an overview about the methods concept while Chapter 2

will discuss HPBS in detail. HPBS overcomes limitations of conventional BS approaches

and was developed by Laird et al. to study methylation fidelity or rather developmental

methylation changes at particular loci [84, 85].

During bisulfite treatment, successful conversion of C to U requires the denaturation

of both complementary DNA strands. As a consequence, subsequent sequencing recovers

only the information of one DNA strand. In HPBS, genomic DNA is first subjected to

enzymatic digestion using endonucleases. Next, a short hairpin oligonulceotide is attached

to each end of the DNA fragment which physically connects upper and lower strand.

Following bisulfite treatment, PCR and sequencing, the methylation patterns from both

complementary DNA strand of one individual chromosome i.e. DNA molecule, can be

derived. In other words, HPBS detects whether a given CpG dyad is methylated at only

one DNA strand (hemimethylated), at both strands (fully methylated) or completely

unmethylated. Recently, a first genome wide hairpin approach has been developed by

Zhao et al. [86] who investigated the methylation fidelity in mouse ES cells.

1.7 Tet Enzymes and Oxidation of 5mC

Ten-eleven translocation (Tet) enzymes were identified as iron-II and oxoglutarate de-

pendent di-oxygenases, which oxidise 5mC to 5-hydroxymethyl cytosine (5hmC) [87, 88].

The enzymes are named after the ten-eleven translocation, t(10;11)(q22;q23), sometimes

found in patients bearing a rare case of acute myeloid and lymphocytic leukaemia, in

which the first family member, Tet1, was first described [89, 90]. Indication for en-

zymatic activity of Tet enzymes arose from comparisons with J binding proteins from

Trypanosoma brucei which are involved in the generation of base ‘J’ by oxidizing the T

to 5-hydroxyuracil. Computational screens identified a large family of JBP homologue
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DNA modifying enzymes including the metazoan Tets [87, 91]. During evolution, the

mammalian Tet precursor gene went through triplication, giving rise to three catalytic

active Tet family members, namely Tet1, Tet2 and Tet3 (Figure 1.5).

All Tet enzymes share a catalytic C-terminal domain which comprises amino acid

motifs for the binding of iron-II (Fe2+) ions, as well as oxoglutarate (α-ketoglutaric acid)

[91, 88]. The catalytic domain is constructed by a double-stranded β-helix fold and

contains a cystein (Cys) rich region at its terminal part which is limited to metazoan Tet-

JBP families. Nine conserved Cys coordinate zinc ions (Zn2+) and putatively contribute

to DNA binding. Positioning of essential cofactors (Fe2+) and 2-oxogluterate within the

catalytical pocket is facilitated by two conserved histidines (His), one of which is present in

a His-Xaa-Arg/Glu motif , and an likewiseconserved Argenine (Arg), respectively [92, 93].

In addition, Tet1 and Tet3 contain a N-terminal located CXXC domain which inher-

ently facilitates DNA binding and is shared by many other DNA interacting proteins.

Tet1
CXXC Cys-rich DSBH

Tet2
Cys-rich DSBH

Tet3
CXXC Cys-rich DSBH

Fig. 1.5: Schematic protein domains representation of Ten-eleven translocation di-oxigenase en-
zymes Tet1 (2007 aa), Tet2 (1912 aa) and Tet3 (1668 aa). CXXC = conserved zinc
finger DNA binding domain, Cys-rich = cysteine, DSBH = double-stranded β-helix,
Cys-rich and DSBH form the catalytic domain.

Publications suggest that the CXXC domain of Tet1 displays substantial differences

compared to CXXC domains of other proteins. It has been proposed that the distinct

differences actually prevent Tet1 binding to DNA, whereas other studies suggest unique

features allowing the binding of unmodified, methylated and hydroxymethylated DNA

[94, 95, 96]. Moreover, Tet1 naturally locate at CGIs. Yet, mutation in the CXXC

domain abolishes recruitment to CGIs, demonstrating the role of the CXXC domain in

the context of Tet regulation.

Tet2 underwent evolutionary chromosomal inversion and as a result, became separated

from its CXXC domain [97]. Now, the CXXC domain is encoded by the gene Idax,

located in close proximity to Tet2. IDAX was shown to interact and recruit Tet2 to DNA

and consequently, Tet2 exhibits distinct binding patterns depending on the presence or

absence of IDAX [98]. Interestingly, recruitment of Tet2 by IDAX to DNA results in

caspase-dependent degradation of the protein complex [98].

In the case of Tet3, the characteristics of its CXXC domain directs the enzyme mainly

to unmethylated, CpG rich regions [99]. Additionally, in the absence of the CXXC domain,

Tet3 displays an increased activity, suggesting a negative regulation by the CXXC motif.
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Generally, all three Tet enzymes were shown to catalyse the oxidation of 5mC to

5hmC [88]. Pursuing studies then revealed that Tet enzymes subsequently oxidise 5hmC

in a consecutive manner to 5fC and eventually 5caC [100]. Figure 1.6 displays the set of

cytosine forms and the DNA modifying enzymes responsible for their generation.

Mammalian Tets are broadly expressed throughout the organism but nevertheless,

display distinct expression profiles. Tet1 for example represents the main oxygenase in

mouse ES cells and primordial germ cells (PGCs) [88, 101, 102, 103], while Tet2 and

Tet3 are expressed in hematopoietic stem cells, somatic cell types and neuronal cells,

respectively [104, 105]. Moreover, Tet3 is the sole family member present in oocytes and

early single cell zygotes [106, 107]. In accordance to the cell type specific expression

profiles of Tets, oxidative cytosine forms (oxCs) exist in various cell types, though far

less abundant compared to 5mC. Furthermore, whereas the overall 5mC levels are quite

constant throughout somatic tissues (4.3% of all Cs), amounts of oxCs are considerable

variable and cell type specific [108, 109]. The highest levels of 5hmC are found in brain

cells and ES cells with 0.3% to 0.7% of all Cs [88, 108].

1.8 DNA Demethylation

Even though DNA methylation is considered a rather stable epigenetic mark, developmen-

tal stages, as well as cellular differentiation, require the erasure of 5mC from the DNA.

Such demethylation events can occur genome wide but also in a local, sequence specific

manner. Global loss of 5mC, for example, can be found after fertilisation where both,

maternal and paternal nuclei undergo massive genome wide demethylation, building the

basis for the formation of pluripotent embryonic stem cells [110, 111]. Similarly, matura-

tion of PGCs in post-implantation embryos requires the genome wide erasure of parental

specific methylation imprints. Local demethylation are manifold and practically can be

found during any cellular differentiation process [112, 113, 114]. Promoters and enhancers

for example become demethylated prior to or as a consequence of gene activation to ensure

stable expression of developmental and cell type specific genes.

Based on the underlying mechanism, demethylation can be divided into passive and

active demethylation. While passive methylation is the result of replication dependent
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dilution of 5mC, active loss of DNA methylation involves enzymatic removal of the modi-

fied cytosine or even direct elimination of the methyl group itself. In either case, growing

evidence indicates an involvement of Tets and oxidative cytosine species in the controlled

removal of 5mC [107, 106, 115]. Figure 1.7 summarises several discussed active and passive

demethylation pathways.
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Fig. 1.7: Graphical display of active and passive demethylation pathways; DNA modification
events (methylation and oxidation) are highlighted in orange, passive demethylation
events in blue and active demethylation events in green.

1.8.1 Passive Demethylation

During passive demethylation, 5mC becomes depleted from the genome by successive

rounds of DNA replication and the concurrent absence of maintenance methylation ac-

tivity. The absence of maintenance can be the result either absence of Dnmts or func-

tional blockage of maintenance methylation ativity itself. Previous studies demonstrate

that in oocyte and early zygote, distinct Dnmt1 isoforms are actively retained from en-

tering the nucleus, subsequently preventing effective preservation of DNA methylation

[116, 117, 118, 119]. Moreover, 5hmC has been considered to block maintenance methyla-

tion by inhibition of the Dnmt1-Uhrf1 complex. Even though it is controversially discussed

whether Uhrf1 can recognise 5hmC, in vitro studies unanimously describe a strongly re-

duced Dnmt1 activity in the presence of hemihydroxylated DNA [120, 121]. One study
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indicates that not only 5hmC, but also 5fC and 5caC influence the activity of Dnmts even

at neighbouring CpGs [122].

1.8.2 Active Demethylation

Several mechanisms have been described in which enzymatic removal of modified cytosines

will restore unmethylated CpGs. In plants, particular DNA glycosylases recognise 5mC

directly and catalyse its removal from the DNA [123, 124]. However, in mammals, so far

no orthologs have been identified. Yet, some in vitro studies suggest that in the absence

of SAM, Dnmts might act as de-hydroxylases or de-carboxylases, converting 5hmC into

unmodifed cytosine [125, 126, 127]. Similarly, experiments with ES cell lysate guessed the

presence of 5caC specific decarboxylases, but a liable enzyme could not been identified

[128].

A more likely mechanism involves the deamination of 5mC or 5hmC by members

of the AID/APOBEC deaminase family. Indications come from experiments with over-

expression of AID/APOBECs. In neuronal cells, their enrichment leads to a reduction of

5hmC and a simultaneous artificial expression of Tet1 causes accumulation of the 5hmC

deamination product 5hmU [115]. Subsequently, thymine DNA glycosylase (TDG) or

single-strand selective monofunctional uracil glycosylase 1 (SMUG1) which show a high

activity against U:G and T:G mismatches, will cleave the base from the DNA before un-

modified cytosine is restored by the base excision repair machinery (BER) [129]. However,

APOBEC deaminases prefer single stranded substrates which might reduce the biologi-

cal relevance of this mechanism. Furthermore, a recent publication demonstrates that, in

vitro, one member of the AID family strongly discriminates against oxCs, including 5hmC

[130].

One of the most accepted active demethylation pathways includes the activity of TDG.

While the intrinsic substrates of the enzyme are T:G and U:G mismatches, it also recog-

nises 5fC:G and 5caC:G pairs in double stranded DNA [131, 132]. In fact, the activity

towards 5fC and 5caC is even higher compared the its ‘natural’ targets [132]. TDG

deficiency in mouse ES cells causes a strong increase in 5fC and 5caC levels while a

combined over expression of Tet1 and TDG leads to almost complete depletion of both

bases[131, 133]). Furthermore, TDG is the only member of uracil DNA glycosylases which

displays an activity against 5fC/5caC and the only glycosylase known to be essential for

early embryogenesis [134, 129].

1.9 Detection of Oxidised Cytosine Forms

In order to decipher the role of oxC forms, several methods for their detection have been

developed. Comparable to the analysis of 5mC, detection strategies for oxCs differ in

sensitivity and resolution, ranging from the global measurement of oxC levels by liquid
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chromatography or mass spectrometry to base resolution application using next generation

sequencing [100, 135, 136]. In most cases, the detection of oxC forms using sequencing is

coupled to BS treatment. However, as indicated in Figure 1.8, 5hmC, 5fC and 5caC all

display individual chemical properties which influence their conversion during incubation

with bisulfite. While 5hmC remains resistant to BS treatment, 5fC and 5caC both undergo

conversion to 5-formyluracil (5fU) and 5-carboxyluracil (5caU), respectively [137, 138,

139]. Hence, after PCR and sequencing, 5hmC will present itself as C, whereas 5fC

and 5caC will be detected as T. Consequently, a clear separation between 5mC and

5hmC, as well as C, 5fC and 5caC is not possible. Novel sequencing techniques overcome

this limitation by applying additional chemical or enzymatic treatments, which alter the

chemical properties of oxCs. In the following, the most common approaches will be shortly

presented.

1.9.1 Sequencing of 5hmC

Oxidative Bisulfite Sequencing: In order to separate the collective C signal from 5mC

and 5hmC after classical bisulfite sequencing, Booth et al. developed oxidative bisulfite

sequencing (oxBS) [140, 141]. The method uses potassium perruthenate (KRuO4) to

selectively oxidise 5hmC to 5fC prior to BS treatment. As a result, only 5mC will later be

detected as C. Parallel application of BS and oxBS of the same sample followed by data

comparison will then permit the estimation 5hmC amount and location. A schematic

overview about BS and oxBS conversion is given in Figure 1.8.

Bisulfite 

C 5mC 5hmC 5fC 5caC

U 5mC 5hmC 5fU 5caU

T C C T T

oxida�ve Bisulfite 

C 5mC 5hmC 5fC 5caC

U 5mC 5fU 5fU 5caU

T C T T T

Fig. 1.8: Conversion of cytosine and modified cytosines during BS and oxBS treatment. C, 5fC,
as well as 5caC are converted during bisulfite treatment, while 5mC and 5hmC remain
unchanged. In oxBS, 5hmC becomes first oxidised to 5fC and will later be converted
to U, consequently only 5mC is detectable as C during sequencing.

Tet Assisted Bisulfite Sequencing: In parallel, Yu et al. developed Tet assisted bisulfite

sequencing (TAB-Seq) [142]. Within this pipeline, 5hmC is initially glycosylated by T4-

β-glucosyltransferase (βGT). Next, the DNA is subjected to Tet oxidation, which will

convert all 5mC to 5fC or 5caC, while glycosylated 5hmC remains resistant to Tet activity.
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Eventually, after bisulfite treatment, PCR and sequencing the only 5hmC will be marked

as C while all other cytosine forms will appear as T.

APOBEC-Coupled Epigenetic Sequencing: Recently, a bisulfite-free localisation method

for 5hmC has been developed, APOBEC-coupled epigenetic sequencing (ACE-Seq). In

ACE-Seq, 5hmC is again shielded by glycosylation before the DNA is subjected to de-

naturation and enzymatic treatment with APOBEC (A3A). Except for 5hmC, all other

cytosine forms will be deaminated by A3A and thus, converted to T. During sequencing,

the presence of 5hmC in the genome will be indicated by a cytosine signal [143].

1.9.2 Sequencing of 5fC and 5caC

The low abundance of 5fC and 5caC makes an accurate detection of both cytosine forms

particular challenging. Nevertheless, several techniques have been developed, which allow

their detection.

CAB Sequencing: In chemically assisted bisulfite (CAB), 5fC (fCAB) or 5caC (caCAB)

are selectively labelled using O-ethylhydroxylamine (EtONH2) or 1-ethyl-3-[3-dimethyl-

aminopropyl]- carbodiimide hydrochloride (EDC), respectively [135, 144, 145]. Once la-

belled, both bases become resistant to downstream deamination during bisulfite treat-

ment. Localisation of 5fC or 5caC is then deduced by subtracting the traditional BS

signal from the fCAB/caCAB sequencing readout.

MAB Sequencing: Methylation or M.SssI assisted bisulfite sequencing (MAB-Seq) de-

tects the collective signal of 5fC and 5caC [138, 136]. Prior to the incubation with bisulfite,

the DNA is subjected to M.SssI catalysed methylation reaction, which converts all C in a

CpG context to 5mC. Once more, 5mC remains unaffected during bisulfite treatment and

any detection of T (unmethylated CpGs) after sequencing corresponds to 5fC or 5caC.

1.10 Novel Sequencing Techniques

New possibilities for the detection of oxCs, or rather, DNA modification in general, emerge

from novel sequencing techniques such as nanopore and single molecule real-time (SMRT)

sequencing [146, 147, 148]. Both techniques sequence native single DNA molecules without

the need of prior amplification and are also able to detect modified DNA bases and

furthermore, allow long read lengths of more than 20kb.

Nanopore Sequencing: In nanopore sequencing, single-stranded DNA slips through a

small pore within a electroconductive membrane. When passing through the pore, the
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DNA will alter the ionic current, which is applied to the membrane. Thus, base compo-

sition and chemical modifications e.g. 5mC/5hmC will result in unique changes of the

applied current, which can be used to identify DNA sequence and also DNA modifications.

SMRT Sequencing SMRT sequencing uses sequencing-by-synthesis. For this, the DNA

is first fragmented and processed into double stranded dumbbell-like structures. Next,

sequencing primer and polymerase are annealed before single molecules are loaded into

nanoscale observation chambers. The polymerases will then incorporate fluorescently

labelled nucleotides and the omitted signal will be recorded in real-time. Real-time detec-

tion allows to determine the duration between nucleotide incorporations. In this context,

epigenetic modifications will cause a delay, which is unique for distinct modification types

and hence, allows the characterisation of DNA modifications.

1.11 Embryonic Stem Cells - Cultivation and Epigenetic Constitution

After fusion of sperm and oocyte, subsequent cell division eventually gives rise to the

structure of the blastocyst which contains the inner cell mass comprised of cells. ES cells

resemble the basic building block for each arising multicellular organism. Applying the

appropriate conditions, ES cells can be isolated and cultivated under a proliferating state

in vitro, in such way that they retain their pluripotent capacity [149, 150]. In epigenetics,

ES cells are widely used for the investigation of mechanistic processes related to the early

embryonic development. In the present thesis, distinct mouse ES cell lines are used to

investigate the role of DNA modifying enzymes. Therefore, the following section will

provide an overview of common culture conditions for ES cells and the corresponding

epigenetic characteristics.

Dnmt3a + 3b + 3L

Tet1 + Tet2

Dnmt1 + Uhrf1
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Fig. 1.9: Schematic display of DNA demethylation and expression of Dnmts (Dnmt3a/3b = or-
ange, Dnmt1/Uhrf1 = red) and Tets (blue) during ES cell cultivation on Serum/LIF
and subsequent transfer into 2i medium; red line indicates the transition from
Serum/LIF to 2i medium.

Traditionally, ES cells were cultured on feeder cells, mitotically inactivated mouse fi-
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broblasts (MFs), together with fetal calf serum (FCS), still a commonly used strategy.

FCS and the excrete additives from MFs promote ES cell proliferation and sustain the

undifferentiated phenotype [151, 152]. A more recent protocol uses a combination of the

leukaemia inhibiting factor (LIF) and FCS for feeder cell free cultivation of ES cells on

gelatin coated plates and has emerged as the most commonly used cultivation system

[153, 154]. While the presence of LIF suppresses differentiation of ES cells, the multi-

factorial composition of FCS releases also some pro-differentiating signals [155]. Thus,

these cells are considered as developmentally ‘primed’ ES cells. Epigenetically, these cells

are described by a hypermethylated phenotype as a result of strong expression of the de

novo methyltransferases Dnmt3a and 3b, as well as their co-factor Dnmt3l [156, 157].

However, the cells also display a considerable level of Tet1 and Tet2. A recent publi-

cation suggests that this combination of Dnmt and Tet expression leads to a oscillation

methylation at particular genomic regions [158]. Likely as a consequence, primed ES cells

show a mosaic expression of pluripotency genes such as Nanog [159]. ES cells from the

inner cell mass posses a much lower level of DNA methylation, which shows that the

hypermethylation is a side effect of the applied cultivation protocol.

A novel protocol for the cultivation of ES cells avoids the use of FCS and instead ap-

plies two inhibitors (2i medium), PD0325901 and CHIR99021, which target the mitogen-

activated protein kinase (Mek) and the glycogen synthase kinase 3 (Gsk3) [160]. Inhibition

of both kinases shields the cells from differentiation signals and introduces a naive stem

cell state. Compared to Serum/LIF cultivated cells, naive ES cells show considerably

lower expression of Dnmt3a and 3b on transcriptional, as well as on the protein level

[156]. At least on the transcriptional level, this is also true for Dnmt3l. Moreover, a re-

cent publication suggests reduced targeting of the maintenance complex Uhrf1 and Dnmt1

due to reduction in H3K9me3 [161]Consequently, 2i cultivated ES cells display a much

lower genome wide methylation level, which matches more closely the one of ES cells

from inner cell mass and are furthermore defined by a much more uniform expression of

pluripotency factors [156, 157, 161].

ES cells can be transferred from Serum/LIF to 2i medium and vice versa. After

transfer, the cells will adapt their gene expression and methylation level based on the

environmental conditions. Figure 1.9 provides a schematic overview of the epigenetic

changes during the adjustment of ES cells towards 2i medium after long term cultivation

under Serum/LIF conditions. The Serum-to-2i shift is widely accepted as a model system

to study DNA demethylation and is also used in parts of the here presented studies

[156, 157, 161].
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1.12 Hidden Markov Models

Markov models represent probabilistic models describing a sequence of stochastic events,

in which the probability of a future event only depends on the previous realised states

[162]. Figure 1.10-A provides a simple example with two distinct states. Over time, a

series of events is imaginable, in which states might change with the probability (mX or

mY), or remain unchanged (1-mX or 1-mY). However, in a hidden Markov model (HMM),

states which are aimed to be described cannot be directly observed, i.e. remain hidden.

Instead, these ‘hidden states’ are indirectly determined by using events that are observable

(observable states) and are connected to the underlying hidden states (Figure 1.10-B).
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Fig. 1.10: (A) Example of a simple Markov model with two observable states and (B) hidden
Markov model with four observable (C, D, E, F) and two hidden states (X, Y). Arrows
indicate possible transitions between the distinct states, mX = probability to move
from state X to Y, 1-mX = probability to remain within state X, mY = probability
to move from state Y to X, 1-mY = probability to remain within state Y. Arrows
connecting hidden and observable states represent emission probabilities.

HMMs are used in many research areas and have also emerged as a powerful tool in

computational biology. Application of HMM to biological problems includes for example

gene prediction, pairwise and multiple alignment, prediction of protein secondary struc-

tures, as well as annotation of non-coding RNA [163, 164, 165, 166, 167]. In the present

studies, HMMs are used to describe the evolution of DNA methylation patterns over time.

The hidden states in this particular case correspond to the ‘real’ methylation state of a

given CpG position (e.g.: CpG or 5mCpG), while the observable states are given by se-

quencing of bisulfite converted DNA (TpG or CpG) Chapter 3, Figure 3.4. Moreover,

the transition probability between the hidden states are, amongst others, determined by

methylation events such as de novo or maintenance methylation. A detailed description

of the underlying HMMs used in presented studies can be found in Chapter 3 and Chapter

6.
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1.13 Aim

DNA methylation can be robustly inherited across many cell generations. Nevertheless,

removal of cytosine methylation during early development and cell differentiation is key

to the formation of pluripotent ES cells, as well as somatic cell types. While DNA methy-

lation is established and maintained by Dnmts, many proposed demethylation pathways

are defined by the involvement of Tets and oxidised cytosine forms such as 5hmC. How-

ever, many of the underlying mechanisms of DNA demethylation, as well as a potential

reciprocal influence of Dnmts and Tets,still remain elusive. The here summarised studies

aim to address mechanisms involved in the preservation and removal of DNA methylation.

One focus is placed on the contribution of 5hmC and Tet enzymes during genome wide

DNA methylation in mouse ES cells. Hence, this work investigates on the one hand, if or

rather to what extent the presence of 5hmC might facilitate a replication dependent loss of

5mC by blocking maintenance methylation activity. Secondly, by comparing WT and Tet

KO systems, a possible direct impact of Tets on Dnmt methylation activity is examined.

The second aspect of this work focuses on impact of existing methylation pattern on Dnmt

activity. More precisely, the study seeks to answer the question of how the methylation

status of neighbouring CpGs affect Dnmt activity at a given CpG position.

In order to address these questions, novel sequencing techniques have been extended

and newly developed, which allow to determine the strand specific distribution of 5mC,

as well as 5hmC from individual DNA molecules. This includes local deep sequencing

applications, but also genome wide strand specific sequencing. The obtained data was

then subjected to stochastic hidden Markov models, which have been developed by the

department of Modelling and Simulation from the Saarland Univiersity, to determine

enzymatic efficiency of Dnmts and Tets.
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[3] Karolin Luger, Armin W Mäder, Robin K Richmond, David F Sargent, and Timo-

thy J Richmond. Crystal structure of the nucleosome core particle at 2.8 å resolution.
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Abstract

The accurate and quantitative detection of 5-methylcytosine is of great importance in

the field of epigenetics. The method of choice is usually bisulfite sequencing because of

the high resolution and the possibility to combine it with next generation sequencing.

Nevertheless, also this method has its limitations. Following the bisulfite treatment DNA

strands are no longer complementary such that in a subsequent PCR amplification the

DNA methylation patterns information of only one of the two DNA strand is preserved.

Several years ago Hairpin Bisulfite sequencing was developed as a method to obtain the

pattern information of complementary DNA strands. The method requires fragmentation

(usually by enzymatic cleavage) of genomic DNA followed by a covalent linking of both

DNA strands through ligation of a short DNA hairpin oligonucleotide to both strands. The

�Department of Biological Sciences, Saarland University, D-66123 Saarbrücken, Germany
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ligated covalently linked dsDNA products are then subjected to a conventional bisulfite

treatment in which all unmodified cytosines are converted to uracil. During the treatment

the DNA is denatured forming non-complementary ssDNA circles. These circles serve

as a template for a locus specific PCR to amplify chromosomal patterns of the region of

interest. As a result one ends up with a linearized product, which contains the methylation

information of both complementary DNA strands.

2.1 Indroduction

Hairpin Bisulfite Sequencing (HBS) is a method to detect DNA methylation on both com-

plementary DNA strands in individual DNA molecules [1]. HBS allows to discriminate

if both strands are methylated or if a hemimethylation is present in only one of the two

complementary DNA strands (upper or lower strand) or if both strands are symmetri-

cally unmethylated. It also allows to discriminate a true non-CpG methylation from a

natural polymorphic (mutated) site. A major advantage of hairpin bisulfite sequencing

over conventional bisulfite sequencing is when one needs to detect the symmetry of DNA

methylation patterns on both DNA strands i.e. when analyzing active demethylation, de

novo methylation or maintenance methylation events during cell replication or stages of

reprogramming [2, 3, 4].

For the use of the HBS method the following general steps should be considered. A

standard HBS approach starts with the digestion of DNA by a defined restriction enzymes

(usually 4 base cutter) that is not sensitive to DNA methylation, followed by a covalent

linking of the DNA fragments (upper and lower DNA strand) to a short hairpin DNA

oligonucleotide using conventional ligation (Figure 2.1). Restriction enzymes generating

“sticky ends” should be preferred, since this will increase the efficiency of linker ligation.

However, in our experience also the use of enzymes creating non-overhanging “blunt ends”

is possible. The ligation is carried out using T4 DNA ligase. To ensure a high yield of

DNA hairpin constructs the hairpin oligonucleotide is provided in excess to minimize the

likelihood of re-ligation of DNA fragments. The overhang of the linker is designed to

having complementary overhangs. For example, the restriction enzyme MspI will leave

a 5’ CG overhang, accordantly the hairpin linker also has to have a 5’ “CG” overhang

(Figure 2.2). Because of the enzymatic steps we recommend to use high quality (non-

degraded) double stranded DNA (dsDNA). The circular constructs obtained after ligation

are then subject to bisulfite treatment in which all cytosines are converted to uracils. The

steric closeness (intertwined ssDNA rings) of the complementary DNA strands favors a

quicker renaturation to dsDNA. Hence the bisulfite conversion of hairpin constructs is

more challenging than that of normal DNA. To avoid a reannealing we recommend to

use cycling bisulfite protocols with additional denaturation steps or alternatively higher

incubation temperatures. After bisulfite treatment the DNA molecules are present in form
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RESTRICTION

LIGATION

restriction enzyme

hairpin linker

T4 ligase

5'

5'3'

3'

BISULFITE TREATMENT, PCR and SEQUENCING

Fig. 2.1: Workflow of the Hairpin Bisulfite Sequencing protocol; genomic DNA is cut using
a restriction enzyme, which is unaffected by DNA methylation. A complementary
hairpin oligonucleotide is ligated to link upper and lower strand covalently together.
The constructs are in the next step subject to bisulfite treatment resulting in single
stranded circular DNA. After treatment the converted DNA serves as a template for
a locus-specific PCR. PCR Products are then purified and sequenced. Straight and
dashed lines indicate DNA strands, red circles illustrate CpG positions.

of single-stranded circular DNAs that contain uracil instead of unmethylated cytosines

(Figure 2.2). They serve in the next step as a template in a site specific PCR to amplify

the region of interest. Here it is essential to utilize a polymerase that accepts uracils

as a template. The product of this PCR holds now the methylation information of the

upper as well as the lower strand. The generated amplicons can be treated like “normal”

PCR products and can be sequenced either by Sanger or next generation sequencing

(NGS). We have successfully combined hairpin bisulfite sequencing with the Roche FLX

pyrosequencing system and the Illumina MiSeq system.

For the subsequent analysis we use the trimmed and QC’ed FASTQ files and ap-

ply two bioinformatics tools develop in our lab. The first tool is the BiQ Analyzer

http://epigenetik.uni-saarland.de/de/software/ [5]. The program aligns the se-

quenced FASTQ reads to a reference HBS sequence (needs to be generated and provided).

BiQ will provide an overview of CpG methylation and non-CpG methylation in the se-

quences. As outputs BiQ generates a tab separated table and different graphical represen-

http://epigenetik.uni-saarland.de/de/software/
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upper DNA strand

lower DNA strand1. forward
primer

downstream
hairpin linker

1. PCR

2. PCR

2. forward primer

2. reverse primer

1. reverse
primer

upstream
hairpin linker

double stranded PCR product

Fig. 2.2: Workflow after bisulfite treatment; bisulfite treated circular hairpin constructs are am-
plified in two consecutive PCRs; the fusion primers used in the first amplification step
carry on the 5’ end parts of the sequencing adapters which will become part of the
PCR product. In the second PCR, the rest of the adapter sequence is introduced to
the amplicon. Lines indicate DNA strands, red circles illustrate CpG positions.

tations, such a CpG methylation pattern map and quantitative pearl-necklace diagrams.

The table output is then used in the next step by the Hairpinanalyzer script (available

at http://epigenetik.uni-saarland.de/de/software/) to back-fold the single strand

information into a double stranded format. A more detailed description of the workflow

is given in the Methods section.

The double stranded hairpin bisulfite sequencing output now allows to detect and

quantitate the symmetry of CpG and CpNpG DNA methylation patterns on both DNA

http://epigenetik.uni-saarland.de/de/software/
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strands of one individual chromosome and to unambiguously identify non-symmetrical

cytosine methylation. We have applied the method to identify the massive occurrence of

hemimethylated sites and general loss of methylation in Dnmt1KO ES-cells [2]. The hair-

pin bisulfite sequencing method provides a matched stranded information which directly

shows the hemimethylated pattern formation. The use of a hairpin linker also offers ad-

ditional technical advantages. Since the added linker contains unmodified cytosines, it is

possible to directly calculate the true conversion rate obtained during bisulfite treatment

and at the same time can estimate the true amount of methylated non-CpG positions

(Figure 2.3). Further, in the loop sequences of the linker indices of variable nucleotides

can be introduced creating a barcoding for each DNA molecule. This allows to identify

duplicated sequences generated during PCR and to exclude them from further analysis.

Despite of the many advantages of the Hairpin Bisulfite Sequencing method HBS also

has some experimental limitations. In a locus specific HBS analysis the obligate use of

a suitable restriction enzyme (absence of recognitions site, distance to the analyzed re-

gion) can become a limitation. Moreover, the restriction enzymes must not be affected

by DNA methylation, which would otherwise lead to a massive underrepresentation of

methylated sites. Further, the size of the region that can be analyzed is limited. Based

on the fact, that the PCR product contains the information of both upper and lower

strands the product will be double the size of the genomic region. However, this is only a

small disadvantage, since modern sequencing techniques allow to analyze sequences with

a size over 500 base pairs (bp) in length (particularly on a FLX or MiSeq sequencer).

2.2 Materials

2.2.1 Experimental Design

(1) Identify suitable restriction sites close to the region of interest using NEBcutter (http:

//tools.neb.com/NEBcutter2/) or WatCut restrictions analysis (http://watcut.

uwaterloo.ca/template.php).

(2) Design of the reference sequence (upper strand-linker-lower strand) for primer search

and for the BiQ subsequent methylation analysis. The precise outline will be de-

scribed in the method section.

(3) Primers for PCR are either designed “by eye” or with the help of online tools like

Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.

cgi/).

(4) Hairpin linkers are designed according to match the restriction enzyme ends and to

containing indices/bar codes.

http://tools.neb.com/NEBcutter2/
http://tools.neb.com/NEBcutter2/
http://watcut.uwaterloo.ca/template.php
http://watcut.uwaterloo.ca/template.php
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/
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2.2.2 Sample Preparation

(1) Qubit® BR assay kit for measurement of the DNA concentration (Thermo Fisher

Scientific).

(2) Restriction enzymes.

(3) T4 DNA Ligase (New England Biolabs).

(4) EZ DNA MethylationTM Kit; EZ DNA Methylation-GoldTM Kit (Zymo Research) or

manual protocol.

(5) HOT FIREPol® DNA Polymerase (Solis BioDyne) or HotStarTaq DNA polymerase

(Qiagen) or similar.

(6) Agencourt® AMPure® XP beads (Beckman Coulter).

(7) AveGene Gel purification kit.

(8) Primer and hairpin linker from a commercial primer supplier.

(9) 1xTE buffer; 10mM Tris HCL pH 7.4; 1mM EDTA pH8.0.

2.2.3 Sequencing and Data Analysis

(1) Genome Sequencer FLX 454 System (Roche) or MiSeq Desktop Sequencer (Illumina)

(2) For Methylation analysis BiQ Analyzer HT (http://biq-analyzer-ht.bioinf.mpi-inf.

mpg.de/) was used followed by the use of Hairpinanalyzer. The python script of the

hairpin analyzer can be received from http://epigenetik.uni-saarland.de/de/

software/

2.3 Methods

2.3.1 Experimental Design

A proper planning and design of the experiment for Hairpin Bisulfite Sequencing includes

three main steps.

Selecting Restriction Enzymes

The first step when designing the Hairpin Bisulfite experiment is the search for suitable

restriction enzymes within the region of interest. When selecting enzymes a few things

should be considered.

http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/
http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/
http://epigenetik.uni-saarland.de/de/software/
http://epigenetik.uni-saarland.de/de/software/
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(1) First, the restriction enzyme should not be affected by DNA methylation to ensure

that ummethylated, hemimethylated and fullmethylated regions are equally repre-

sented in the later results.

(2) The use of enzymes, which create sticky ends, should be preferred since the ligation

will work more efficient. Nevertheless, the use of blunt end creating enzymes is

possible.

(3) There are several online tools, which are suitable for the search of restriction enzymes

for example “NEBcutter” or “WatCut”. Both tools also provide the information on

methylation sensitivity and sometimes even other modifications like 5hmC, 5fC and

5caC.

Hairpin Linker and Reference Sequence Design

The hairpin linker itself can be divided into three sections.

(1) The first part is variable and depends on the used restriction enzyme (Figure 2.2). For

example MspI will create a 5’−CG overhang, therefore also the linker must contain

a 5’−CG overhang including a free phosphate group to allow later ligation to the

DNA.

(2) The second part always has the same sequence and facilitates the formation of the

hairpin structure (Figure 2.2). The use of unmodified cytosine within this linker

part allows later an exact und unbiased calculation of the conversion rate during the

bisulfite treatment and permits a more accurate detection of nonCpG methylation.

(3) The last part is forming the loop structure of the linker. It contains a unique sequence

that cannot form any double strand structures (Figure 2.2).

(4) As shown in Figure 2.2 the loop can obtain 6−8 variable nucleotide positions. This

will allow to create an individual barcode for each DNA molecule and to exclude du-

plicates of the PCR in further computational analysis. Using eight of these positions

it is theoretically possible to distinguish between 6,561 (38) sequences.

Reference Sequence and Primer Design

The next step in the experimental design is the construction of the reference sequence.

This sequence is needed in order to design primers and also for later sequencing and

methylation analysis. The reference sequence can easily be designed with any software

that can handle text files.
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5'-Pho
3'

A
C

B

5'-Pho 3'
A C

B B
5'-Pho-CGTGGCCTADDDDDDDDTAGGCCA-3'

DDD

DDD

D
D

5'-Pho-CGTGGCCTA
3'-ACCGGAT

B

C

A

A

C

Fig. 2.3: Schematic illustration of the hairpin linker; A, variable, restriction enzyme dependent
sequence; B, constant formation facilitating sequence; C, variable loop sequence; as an
example the structure and sequence of a hairpin oligo for MspI restriction is shown in
a denatured, single strand and annealed, folded state.

5'-...AATTCCGGTTAA...-3'

5'-...AAATTTC-3'

5'-...AAATTTC-Linker-3'

5'-...AAATTTC-Linker-CGGAATTT...-3'

Fig. 2.4: Example of the design of a hairpin construct. The left part next to the restriction site
is removed. The linker sequence is pasted followed by the reverse complement sequence
of the right part of the DNA sequence.

(1) Download the genomic sequence of the region, mark the restriction site used, delete

the sequence in front or after the restriction site, add the linker sequence and finally

paste the reverse complement of the remaining sequence on the other site of the

linker (Figure 2.3).

(1) Replace all cytosines outside a CpG context by T to obtain the bisulfite sequence of

the hairpin construct.

(1) 3. The Primers can then be designed either manually or using software- or online

tools Note 1.

2.3.2 Experimental Procedure

Restriction, ligation and bisulfite treatment are done in the same reaction tube without

any purification steps in between which minimizes the loss of DNA. The described protocol
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below is the standard protocol used in our lab, however depending on the amount of DNA

or the restriction enzyme used in the reaction an optimization or adjustments might

be necessary. For a starting material, genomic DNA from phenol/chloroform or Kit

extraction can be used. Due to the nature of the method it is important to work with

intact dsDNA. Therefore the concentration of the DNA should be determined using the

Qubit system that will only detect dsDNA.

Restriction

(1) Cleave 200 to 500 ng of genomic DNA with 20 units of a restriction enzyme in 1x

Reaction buffer in a total reaction volume of 17µl.

(2) Incubate the reaction for at least 3 hours at the recommended temperature, followed

by a heat inactivation Note 2.

Preparation of Hairpin Linker and Ligation

(1) Dissolve the oligonucleotide, which will later form the hairpin linker, in 1xTE, result-

ing in a 100 µM stock and store at -20°C.

(2) Before usage, form the oligo into the right structure. Heat 50 µl of the 100 µM

solution to 98°C for 15 min followed by cool down using the slowest cooling rate of

a thermocycler until 20°C is reached. In this form the hairpin linker is rather stable

but should be stored at -20°C.

(3) Add 1 µl of a 100 µM hairpin linker solution to the reaction together with 200U T4

DNA ligase and 2 µL of 10mM ATP.

(4) Incubate the reaction for at least 3 h at 16°C. The ligation can also be performed

overnight.

Bisulfite Treatment

As mentioned before, there are several bisulfite kits available which can be used for the

conversion of hairpin constructs. Since hairpin DNA molecules tend to fold back rather

fast and the conversion of cytosine can only occur only on single stranded DNA, we

recommend a protocol with higher incubation temperature or additional denaturation

steps. Kits successfully used in our lab are listed above in the material section. When using

a homemade protocol, the conversion rate can be verified by looking into the conversion

of cytosines included in the hairpin linker. A manual protocol used in our lab has been

described previously [2]. In addition, the hairpin protocol is also extendable to oxidative

bisulfite sequencing or other “chemical” forms of sequencing [6].
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PCR

Because of the bisulfite treatment it is essential to use a polymerase that recognizes uracil

in the template strand for the PCR. The best results in our lab were achieved using

the HotFirePol from SolisBioDyne or HotStarTaq from Qiagen. We recommend a total

reaction volume 30µl reaction and perform multiple PCRs in parallel to ensure a low

number of duplicated reads. Pipette the reaction mixture according to Table 2.1 using

either enzyme.

Tab. 2.1: Examples of PCR protocols to amplify Hairpin Bisulfite molecules

HotFirePol PCR HotStartTaq PCR
3 µl 10x Reaction Buffer 3 µl 10x Reaction Buffer
3 µl 25 mM MgCl2 1.2 µl 25mM MgCl2
2.4 µl 10mM dNTPs 2.4 µl 10mM dNTPs
0.5 µl 166nM Forward Primer 0.5 µl 166nM Forward Primer
0.5 µl 166nM Reverse Primer 0.5 µl 166nM Revere Primer
0.5 µl HotFirePol DNA polymerase 0.3 µl HotStartTaq DNA Polymerase
Ad 30 µl ddH2O Ad 30 µl ddH2O

Both enzymes share similar temperature characteristics during PCR. Purification of

the PCR products is performed using 27µl AMPureXP Beads (0.9x). A typical cycler

protocol for both enzymes is given in Table 2.2.

Tab. 2.2: Temperature profile of HotFire/HotStarTaq

95°C 15min
95°C 1min
50-62°C 1min 35-45x
72°C 1min
72°C 5min
4°C hold

Sequencing

Hairpin bisulfite is compatible with both Sanger and next generation sequencing (NGS).

To prepare the samples for NGS one has to introduce adapter on each side of the amplicon

which are compatible with the sequencing platform one once to use. These adapter bind

to the sequencing platform and are the start point of the sequencing process. In addition

each adapter carries a unique sequence ID which allows sequencing of multiple samples

at the same time. The adapter sequence is introduced by the use of fusion primers in two

consecutive PCRs (Figure 2.2).

In the first PCR, the primers consist 3’ of the target specific sequence complementary

to the bisulfite treated DNA and carry 5’ the first part of the adapter sequence resulting
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in an amplification of the target sequence and the introduction of the first part of the

adaptor (Table 2.1 and 2.2 for PCR conditions).

In the second PCR the primer will bind the adaptor part introduced during the first

PCR step. These primers carry the sequence which later binds to the sequencing platform

and in addition carry a sample specific sequence ID. Table 2.3 provides all primer and

adapter sequences needed for sequencing on the Illumina MiSeq platform.

Tab. 2.3: Illumina adapter and primer Sequences; i5/i7 = index; grey = flow cell binding se-
quence; Oligonucleotide sequences © 2016 Illumina, Inc. All rights reserved.

1. PCR Forward T C T T T C C C T A C A C G A C G C T
C T T C C G A T C T -AmpliconSpecific

1. PCR Reverse G T G A C T G G A G T T C A G A C
G T G T G C T C T T C C G A T C T
-AmpliconSpecific

2. PCR Forward
(i5, 6bp index e.g.: CGTGAT) A A T G A T A C G G C G A C C A C

C G A G A T C T A C A C [i5] A C A C
T C T T T C C C T A C A C G A C G
C T C T T C C G A T C T

2. PCR Forward
(i7, 6bp index e.g.: AAGCTA) G A T C G G A A G A G C A C A C G

T C T G A A C T C C A G T C A C [i7]
A T C T C G T A T G C C G T C T T
C T G C T T G

The second amplification can be performed as a multiplex PCR where several ampli-

cons of distinct genomic regions can be prepared for sequencing at the same time. For this

the concentration of each amplicons must be adjusted to 5nM and pooled into one reaction.

Table 2.4 lists chemicals and cycling conditions for the second PCR amplification Note 3.

Tab. 2.4: List of chemicals and cycler condition for the second PCR

Enrichment PCR Cycler conditions
25.0µl 5nM amplicon pool
5.0µl 10x Buffer HotStarTaq 95°C - 15min
2.0µl 25mM MgCl2 95°C - 30sec
4.0µl 10mM dNTPs 60°C - 30sec 5 cylces
2.5µl 10 µM Index primer 72°C - 30sec
2.5µl 10 µM Universal primer 72°C - 5min
0.6µl HotStarTaq 4°C - hold
8.4µl ddH2O

After incubation the reaction is again cleaned up using 55µl AMPureXP beads (1.1x)

and adjusted to a 10nM concentration. The final amplicon library is prepared by pooling
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all enrichment PCRs into one reaction. Following the MiSeq preparation protocol from

Illumina the library is diluted stepwise to a final concentration of 18pM.

2.3.3 Data Analysis

To obtain the information of the symmetric DNA methylation two separate steps are

necessary. First, the methylation information has to be obtained from the sequenced

PCR product. Second, the methylation information has to be translated back to the

DNA double strand. For this we developed in our lab two different bio informatics tools.

Methylation Analysis

The methylation analysis is performed using the BiQ HT Analyzer [5]. The BiQ HT

is a Java based program designed for locus-specific DNA methylation analysis of high-

throughput bisulfite sequencing data Note 4. The program aligns the sequenced reads

to a reference sequence. hereby comparing all positions where a cytosine is expected

it detects the methylation status of the sequenced loci. Both reference sequence and

sequencing data has to be provided in a FASTA file format. The program calculates

different quality scores including alignment score, sequence identity, bisulfite conversion

rate and number of missing sites. The different quality scores can also be used to filter

the data, for example against low quality reads or low sequence identity. BiQHT will

automatically use the default settings for filtering but each value can be adjusted manually

by the user. Besides the analysis of CpGs, BiQ is also able to detect methylation in a

non-CpG context (CpHpG; CpHpH). After analysis the data is presented and can be

stored in different ways. A typical output consist of a tab stop separated table which

includes all quality and methylation values and different types of methylation diagrams

such as pattern maps and pearl-necklace diagram.

For the Hairpin analysis three independent analyzing steps with BiQ HT are necessary.

The first step is the detection of CpG methylation. The reference sequence used in this

step consists of the sequence of both DNA strands and the linker sequence in between.

(1) Replace in the linker sequence all cytosines by thymine because the linker will be

analyzed later in an independent step.

(2) Depending on the type of loci, adjust the filter sequence identity. When analyzing

repetitive elements for example a lower sequence identity (80%) should be chosen

because of the variability of the sequence of those elements.

(2) Calculate the nonCpG methylation. Here it can be advantageous to replace all CpGs

in the sequencing data by NpN to avoid confounding by possible mutations or se-

quencing failures, which create new CpG positions and lead to wrong estimations of

nonCpG methylation. Again this is especially important when analyzing repetitive
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elements, due to their sequence variability. Note that also all CpGs in the reference

should be replaced by NpN to allow an accurate alignment of the sequenced reads.

(2) Estimate the conversion rate using the unconverted linker sequence as the reference

sequence. Like in the non-CpG analysis the method to analyze Cs has to be chosen.

When using wobble-position, within the linker loop, lower the sequence identity to

70 or even 60% otherwise most of the sequences will be filtered out.

For each of the three analysis steps a separate folder has to be created where the

results are stored. The information in the different folders is then used to reconstruct the

double strand information. In principle only the CpG folder is needed to reconstruct the

double strand, but then conversion rate and non CpG position will not be analyzed (see

Note 5).

M 1 2 3 4 5

1 2 3 4 5

Fig. 2.5: Example of an methylation pattern map created by the Hairpinanalyzer; each column
represents one CpG dyad (1-5) and one row a sequenced read; read = fully methylated
CpG dyads; light and dark green = hemimethylated CpG dyads; blue = unmethylated
CpG dyads; white bars indicate mutated or not analyzable CpGs; the bar on the left
site shows a summary of the methylation over all CpG positions analyzed (M)

Reconstructing the Double Strand

The four folders containing the information about CpG methylation, non-CpG methyla-

tion, conversion rate and optionally SNPs are then used to reconstruct the double strand

and calculating the amount of both strands methylated, only upper strand methylated,

only lower strand methylated or both strands unmethylated.
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For this purpose we have developed in our group a script, the so-called Hairpinanalyzer.

The program is based on python and is able to translate the single strand information,

created by the BQ HT, into a double strand output. The Hairpinanalyzer has no graph-

ical interface and has to be run via command line and configuration of the source code.

Like the BiQ the Hairpinanalzer creates an output in form of a tab separated table and

a methylation pattern map. An example of a pattern map is given in Figure 2.5. Each

column of the map represents a CpG position whereas each row indicates one sequenced

read. The different methylation statistics, both strands methylated, left (of the linker)

strand methylated, right strand methylated both strands methylated and mutated or not

detectable. The colors can be chosen manually. The tab separated table contains infor-

mation about number of reads, number of analysed CpGs, methylation status, mutations

or sequencing errors as well as the information about SNPs and nonCpG methylation (see

Note 6).

2.4 Notes

(1) Even though both strands are no longer perfectly complementary after bisulfite treat-

ment due to the conversion of cytosine; there are still regions that are complementary

to some extent. This makes the primer design sometimes difficult because of dimer

formations. To avoid this, it is sometimes necessary to use relatively short primers.

This on the other hand will result in relatively low annealing temperatures. In

our experience primers with a size of 23 bases and an annealing temperature over

50°C are working fine. However, if possible a higher temperature should always be

preferred, since it will increase the specificity of the PCR

(2) The restrictions conditions described in this protocol were suitable for all restric-

tion enzymes used in our lab so far (BsaWI, DdeI, Eco47I, MspI, TaqI). However,

depending on the amount of DNA and the used restriction enzyme it might be

necessary to change the parameters to obtain optimal reaction conditions.

(3) When using next generation sequencing, the fusion primers of the PCR have to be

adjusted to the sequencing system. In our lab we have successfully used FLX as

well as Illumina systems for the sequencing of Hairpin Bisulfite amplicons.

(4) The BQ Analyzer HT can be downloaded from http://biq-analyzer-ht.bioinf.

mpi-inf.mpg.de. There is also a Java Web Start version available as well as detailed

documentation.

(5) It is also possible to include a fourth folder that contains the information about

SNPs and the barcode of the linker. For that a fourth analysis with BiQ has to be

http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de
http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de
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performed. By repeating mainly the analysis for CpG and this time also using the

option output SNPs.

(6) The Hairpinanalyzer was programmed by Mathias Bader in our lab. Unfortunately

this script is not available online but can be transmitted upon request from the

authors.
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Abstract

DNA methylation and demethylation are opposing processes that when in balance create

stable patterns of epigenetic memory. The control of DNA methylation pattern formation

by replication dependent and independent demethylation processes has been suggested to

be influenced by Tet mediated oxidation of 5mC. Several alternative mechanisms have

been proposed suggesting that 5hmC influences either replication dependent maintenance

of DNA methylation or replication independent processes of active demethylation. Us-

ing high resolution hairpin oxidative bisulfite sequencing data, we precisely determine the

amount of 5mC and 5hmC and model the contribution of 5hmC to processes of demethyla-

tion in mouse ESCs. We develop an extended hidden Markov model capable of accurately

describing the regional contribution of 5hmC to demethylation dynamics. Our analysis

shows that 5hmC has a strong impact on replication dependent demethylation, mainly

by impairing methylation maintenance.

Author Summary

Oxidation of 5mC by Ten-eleven translocation (Tet) enzymes leads to the formation of

5hmC and other higher oxidized forms in the DNA. Several findings indicate that oxidation

induces demethylation processes, but the mechanistic contribution of 5hmC to this process

remains unclear. Using an innovative combination of 5hmC detection chemistry and high

resolution sequencing, we generate data that can be used for a novel hidden Markov

modeling approach. This new model for the first time incorporates 5hmC dynamics and

allows to test certain scenarios of demethylation mechanisms. Our findings support the

conclusion that 5mC oxidation compromises the copying of DNA methylation patterns

across generations in ES-cells.
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3.1 Introduction

DNA methylation is an epigenetic modification essential for the regulation of genome sta-

bility and genome function [1, 2]. During development the distribution of DNA methy-

lation is under strict control to maintain a temporal and cell type specific persistence of

epigenetic information [3]. The methylation of DNA in mammals is restricted to the C-5

position of cytosine and is predominantly found in a CpG sequence context [4, 5].

Our current knowledge suggests that DNA methylation patterns (5mC) are mainly es-

tablished by DNA methyltransferases Dnmt3a and Dnmt3b [3, 6]. The palindromic nature

of a CpG sequence in which 5mC occurs allows a recognition of the 5mC hemimethylated

state after semi-conservative replication and a copying of the parental methylation pat-

tern to the newly synthesized DNA strand (see Fig 3.1). A series of experiments revealed

that Dnmt1 in conjunction with Uhrf1 are responsible for this copying also referred to

as maintenance methylation. Dnmt1 and Uhrf1 have a high preference for binding to

hemimethylated CpG substrates [7, 8, 9]. Together they assure the maintenance symmet-

ric CpG methylation patterns after each round of replication.

S t a b le  M e t h y la t io n

P a t t e r n

D e  N o v o

M a in t e n a n c e M a in t e n a n c e

D e  N o v o

R e p l ic a t io n

=  C y t o s in e

=  5 m C

=  5 h m C

H y d r o x y la t io n

N e w  P a t t e r n

F o r m a t io n

R e p l ic a t io n

M a in t e n a n c e

D e  N o v o

R e p l ic a t io n

M a in t e n a n c e

R e p l ic a t io n

Fig. 3.1: Maintenance and de novo methylation are usually cooperating to maintain a stable
methylation pattern (inner circle). The oxidation of 5mC to 5hmC may interfere with
the maintenance machinery causing a (partial) loss of CpG methylation after DNA
replication. DNA strands are indicated by lines whereas the CpG are shown as colored
circles.

In contrast to Dnmt1, Dnmt3a and Dnmt3b act on hemi- as well as unmethylated
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CpGs and their activity is not coupled to DNA replication. Both enzymes are highly

regulated and regarded as the main enzymes to establish new methylation patterns and are

therefore classified as de novo DNA methyltransferases. However, recent data shows that

Dnmt1 may also de novo methylate unmethylated dyads and that Dnmt3a and Dnmt3b

are also involved in reestablishing (thus “maintaining”) complete methylation patterns at

certain loci [10]. In summary, the persistence of methylation patterns is controlled by a

coordinated action of de novo and maintenance functions of all three enzymes.

Besides the establishment and the persistence of methylation its removal is also of

great biological importance. Demethylation events can occur on a local scale in case of

individual gene activation but also on a global genome wide level like in the early zygote

and the germ line, where genomes are reprogrammed for new developmental functions

[11, 12]. In both cases demethylation can be achieved either by an active mechanism

(direct removal), a passive replication-dependent loss or a combination of both.

Recent findings suggest that the oxidation of 5mC modulates active and passive

demethylation processes. 5-hydroxymethyl cytosine (5hmC) is generated by oxidation

of 5mC in an enzymatic reaction catalyzed by the oxoglutarate- and Fe(ii)-dependent

ten-eleven trans-location dioxygenases (Tet1, Tet2, and Tet3) [13]. Tet enzymes also cat-

alyze further oxidations to 5-formylcytosine (5fC) and to 5-carboxycytosine (5caC), which

have been shown to promote processes of active demethylation [14, 15, 16]. Still 5hmC is

the most prevalent oxidation type and widely discussed to having an influence on DNA

methylation pattern stability in dividing cells. 5hmC not only alters the chemical prop-

erties but also the biological recognition of the base. Dnmt1 binds to 5hmC with a much

lower efficiency than to 5mC. This may impair the replication dependent copying of 5mC

[17].

In mouse ES cells (mESCs), in the early mouse embryo and in the early germ cells

DNA demethylation stability is influenced by the conversion of 5mC into 5hmC. Distur-

bances or depletion of Tet enzymes in these phases result in massive changes of 5hmC

and lead to developmental consequences [18, 19, 20]. These findings indicate that the

controlled alteration of DNA methylation patterns across DNA replications is dependent

on 5hmC. However, the underlying mechanisms are still under debate. Mouse ESCs are

a well established system to study these effects as they rapidly lose DNA methylation on

a genome wide scale when the cells are transferred from conventional serum medium con-

taining LIF (primed state) to a synthetic 2i medium [21, 22]. This loss of 5mC is coupled

to a temporary gain of 5hmC. In our study we follow the dynamic of DNA demethylation

in mESCs over time and DNA replications using a novel combination of hairpin sequenc-

ing with bisulfite sequencing (BS) and oxidative bisulfite sequencing (oxBS). This method

allows us to determine the methylation status of both complementary DNA strands at

individual chromosomes and the status of 5hmC levels at given time points [23, 10, 24].

We propose a stochastic model that describes the evolution of both methylation and
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hydroxylation patterns over time. Our model allows that methylation can be lost due

to cell replication and methyl groups can be added due to either maintenance or de

novo enzyme activity [10, 25]. In addition, we assume that all methylated sites can be

hydroxylated.

Based on these assumptions we define a hidden Markov model (HMM) for each data set

and construct likelihood functions on the basis of the two sequencing methods. The com-

bination of the two likelihoods allows us to derive estimations for the levels of (hydroxy-

)methylation based on observations at four different time points. Finally, we determine

unknown parameters of the model, i.e., methylation and hydroxylation efficiencies as well

as the initial distribution of the hidden states. Despite its simplicity, the model accu-

rately predicts the evolution of the (hydroxy-)methylation patterns and allows us to test

different assumptions about the activities of the involved enzymes.

3.2 Methods

3.2.1 Hairpin Oxidative Bisulfite Sequencing

Currently no comprehensive data are available allowing to model the fate of 5hmC at

a single base resolution level. Therefore, extending the method described in Fitz et al.

2014 and Arand et al. [10, 21] we established a workflow enabling us to produce such

data. To obtain base resolution information of the modification status we apply hairpin

bisulfite sequencing on DNA samples split into oxidative (oxBS-Seq) and non oxidative

standard bisulfite reaction (BS-Seq) data sets. The use of the hairpin linker strategy

allows us then to determine the levels of 5hmC and 5mC on both DNA strands [23] and

to determine the methylation status (hemimethylated, unmethylated or fully methylated)

at each individual CpG dyad within the sequenced loci at single molecule resolution. To

obtain a sufficient coverage (>1000x) per CpG we use very deep NGS based sequencing of

selected loci. The deep sequencing enables us to determine accurate rates and error rates

for each modification. To cover larger parts in the genome we included the analysis of

mobile elements which occur in multiple identical copies across the genome and to which

we refer as “repetitive elements”. In fact our analysis covers about 91% of all annotated

IAP(IAPLTR1a mM) (N = 1635), 20% of L1md A (N = 3287), 12% for L1md T (N =

2784) and 30% of MuERVL (N = 725). In this case the >1000x coverage has to be seen as

the aggregate of about a 5x coverage of each individual copy of a given repetitive element.

Figure 3.2 outlines the main experimental steps of the procedure.

In the first step genomic DNA is digested using restriction enzymes which generate cuts

close to the gene/locus selected for methylation analysis. In a following reaction both DNA

strands are ligated to a back-folding ‘hairpin’-oligonucleotide. Next the DNA is unfolded

and subjected to a bisulfite or oxidative bisulfite treatment followed by a locus specific

PCR amplification. PCR primers contain Mi-Seq (Illumina) compatible extensions to
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perform deep (paired end 2x300bp) sequencing (up to 10K/product). Sequencing data

are processed using our in house software BiQ-HT and a python script. In the bisulfite

only reaction 5mC and 5hmC remain as cytosines, while in the oxidative bisulfite reaction

5hmC is converted to uracil/thymine. Each individual sequence covers the hairpin linker

which contains modified and unmodified cytosines at known positions. This allows us

to monitor the efficacy of bisulfite and oxidative bisulfite reactions per molecule (note

that all unmodified cytosines are converted to thymines) and calculate exact error rates

by dividing the number of unconverted bases by the total number of analyzed cytosines.

Additional information about the protocol is given in S1 Text together with reference-,

primer- and linker-sequences.

Digestion

Ligation

BS or oxBS Treatment

PCR

Sequencing

and 

Data Analysis

Hairpin Linker

= Cytosine converted

 to Uracil

= Cytosine

= 5mC

= 5hmC

Fig. 3.2: Schematic outline of hairpin bisulfite (BS) and oxidative bisulfite sequencing (oxBS):
The method is based on enzymatic digestions of genomic DNA and the covalent con-
nection of upper and lower DNA strands by ligating a hairpin oligonucleotide. PCR
enrichment of BS/oxBS treated sample is used for amplicon generation followed by
sequencing and data analysis.

3.2.2 Hidden Markov model

Our model considers a CpG site (alternatively dyad) over time and describes its state

as a (discrete time) Markov chain {X (t), t ∈ N} taking values in S = {u,m, h}2. Each

state (s1, s2) (for s1, s2 ∈ {u,m, h}) encodes whether the upper strand (lower strand) is

unmethylated (u), methylated (m) or hydroxylated (h)*. For instance, (s1, s2) = (u, h) the

*We use u,m, h instead of C, 5mC and 5hmC to shorten the description and avoid confusion with
the observable states.
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upper strand is unmethylated and the lower strand is hydroxylated. We will often simply

write (s1s2) instead of (s1, s2).

The time parameter t corresponds to the number of cell divisions and the state tran-

sitions are triggered by three consecutive events: cell division, methylation and hydrox-

ylation. The corresponding transition probability matrices are D(t), M(t), and H(t),

respectively. Thus, the combined transition probability matrix of X is defined as

P(t) = D(t) ·M(t) ·H(t),

with entries Pij(t) that equal the probabilities that given X (t) = i = (s1s2), the next state

is X(t + 1) = j = (s′1s
′
2) for all i, j ∈ S. Note here we assume that hydroxylation occurs

after methylation to ensure that between two cell divisions a transition from u to m and

then to h is possible. Moreover, note that we allow P(t) to change over time, so that we

capture the case that the (hydroxy-)methylation efficiencies do not remain constant over

time. In the sequel we give a detailed description of D(t), M(t), and H(t). For a formal

definition of the matrices, we refer to Supplement, Section 3.6.2.

Demethylation through Cell Division.

With each cell division and DNA replication one new DNA strand is synthesized resulting

in a temporary situation where only unmodified cytosines are present in the new strand.

Since the epigenetic pattern of the parental strand remains unchanged a previously methy-

lated CpG site keeps half of the (hydroxy-)methylated state in the two daughter cells. By

averaging over the daughter cells, if the current state is (mm) then after cell division the

new state is (um) or (mu) each with probability 0.5 (depending on whether the newly

synthesized strand is the upper or the lower strand). Similarly, with probability 0.5 the

process enters (uh) or (hu) from (hh). Thus, DNA replication/cell division may result in

a direct loss of methyl or hydroxyl groups. The transition probabilities of the remaining

states are defined in a similar way and we illustrate the corresponding matrixD(t) in

Fig 3.3a).

Methylation

The loss of methylation by DNA replication is counteracted by a restored methylation due

to the combined activity of the three methyltransferases Dnmt1, Dnmt3a and Dnmt3b.

We distinguish between maintenance methylation catalyzed by Dnmt1 and de novo methy-

lation catalyzed by Dnmt3a and Dnmt3b. We assume that a cytosine of an unmethylated

dyad can only be methylated by a de novo event, while both maintenance and de novo

methylation are possible on a hemimethylated dyad. Based on related in vitro experiments

[3] and our recently published work [10], we assume that Dnmt3a/b act on hemimethy-

lated sites with the same efficiency as on unmethylated sites.
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Fig. 3.3: Possible transitions of the 9 different states of a CpG site. Methyl groups are a)
removed after cell division, b) added due to maintenance (µm) or de novo methylation
(µd) and c) are hydroxylated (η) by Tet enzymes.

We define µm(t) and µd(t) as the probabilities of maintenance and de novo methyla-

tion of a cytosine, respectively, where the corresponding methylation event occurs within

the t-th cell division cycle (t ∈ {1, 2, . . .}). In addition, we define λ(t) to be the total

methylation efficiency on a hemimethylated site. It holds that

λ(t) = µm(t) + µd(t)− µm(t) · µd(t),

because maintenance is associated with the replication machinery and happens immedi-

ately after replication with efficiency µm(t). In case maintenance methylation by Dnmt1

is not successful the site can still be methylated with de novo methylation efficiency

µd(t) which then gives λ(t) = µm(t) + (1 − µm(t)) · µd(t). We write µ̄m(t) = 1 − µm(t),

µ̄d(t) = 1− µd(t) and λ̄(t) = 1− λ(t) for the complements of the above probabilities and

we omit the time parameter t whenever it is not relevant.

Note that if a CpG site has two unmethylated cytosines then two de novo methylation

events are possible. Assuming independence between them, all transition probabilities

of the corresponding state (uu) are the product of two event probabilities. We illustrate

the corresponding methylation matrixM(t) in Fig 3.3 b). Here p is the probability that

maintenance methylation is not applied to the states (hu) and (uh), i.e., the hydroxyl

group prevents the maintenance process, i.e., the methylation of the unmodified cytosine

on the opposite strand. As a result, from these states the states (hm) and (mh) can only

be entered via de novo methylation. In the opposite case, with probability p̄ = 1 − p,

states (hu) and (uh) are seen as hemimethylated during maintenance and can enter states

(hm) and (mh) with probability λ for both maintenance and de novo methylation (see

Fig 3.3b). Besides, the states (mh), (hm), and (hh) have only self-loops since the Dnmts

do not modify hydroxyl groups.
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Hydroxylation

Let η(t) be the probability that before the (t + 1)-th cell division a methylated posi-

tion becomes hydroxylated, i.e, the probability of a transition from m to h. Similarly as

above, we write η̄(t) for 1− η(t) and omit t whenever convenient. Assuming again inde-

pendence between two hydroxylation events, the corresponding matrix H(t) is illustrated

in Fig 3.3c). Note that without an active hydroxylation mechanism (η > 0) the level of

5hmC would half after each replication since newly synthesized strands do not inherit the

hydroxyl groups of the mother strand.

Hydroxylation is the last modification that we consider before the next cell division.

Thus, between two cell divisions an unmethylated position may transition from u to m

and then to h.

Observable states and conversion errors.

In order to define the observable states and the corresponding emission probabilities, we

first describe the details of hairpin sequencing and (oxidative) bisulfite sequencing. First

the DNA is cut by a restriction enzyme. The DNA fragments are then linked covalent to a

Hairpin linker resulting in the connection of upper and lower strand. The resulting hairpin

fragments are divided into two halves, one is treated with a standard bisulfite reaction

and the other is subjected to an oxidation followed by bisulfite treatment. Both 5mC

and 5hmC are not affected by the (non-oxidative) bisulfite treatment and appear after

sequencing as cytosines. In the oxidative case 5hmC is oxidized to 5fC which is converted

during bisulfite treatment to 5fU and represents itself after sequencing as thymine (see

Fig 3.4).

Fig. 3.4: Schematic outline of the conversion of Cytosine, 5mC and 5hmC during BS and oxBS
treatment and after sequencing: In the bisulfite reaction a cytosine (C) is converted
to uracil (U), whereas 5mC and 5hmC remain untouched. In the oxidative bisulfite
sequencing only 5mC remains untouched and cytosine as well as 5hmC is converted to
uracil (U). The conversion errors are illustrated as dashed red arrows and c, d, e, f are
the conversion probabilities.
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We incorporated unmodified cytosine as well as 5mC and 5hmC into the hairpin linker

to precisely estimate the conversion errors (see also Supplement, Table 3.14) that influence

the transition probabilities between the hidden and the observable states. These controls

allow us to correct for technical errors in individual measurements.

In Fig 3.4 the transitions from a site’s possible hidden states to the observable ones

are shown. Each base will eventually transform into a thymine (T) or a cytosine (C).

Thus, the set of the observable states for a CpG site with two cytosines is Sobs = {T,C}2..

The red dashed arrows correspond to conversion errors and assuming all errors are zero,

i.e., the probabilities c = d = e = f of a correct conversion are all one, a C will eventually

transform to T and a 5mC will transform to C in both bisulfite and oxidative bisulfite

setups. However, a hydroxylated cytosine (5hmC) is ideally mapped to a C during BS

and to a T during oxBS. The entries of the corresponding emission matrices Ebs(t) and

Eox(t) for the transitions from hidden to all observable states can be found in Supplement,

Section 3.6.1, Table 3.1 - 3.9 and the values of the conversion errors from all analyzed

loci for each of the experimental setups are listed in. Note that the values of c and d can

differ between the two treatments and that the conversion probabilities can also differ

over time.

Estimation of Model Parameters.

Given the number of times nbs(j, t) and nox(j, t) that state j ∈ Sobs = {T,C}2 has been

observed during independent BS and oxidative BS measurements at time t we use a

maximum likelihood approach to estimate the unknown parameters of the HMMs, that

is, the initial distribution of the hidden states,S = {u,m, h}2 , the unknown functions

µd(t), µm(t) and η(t), as well as the probability p at which CpG sites with one hydroxyl

group are not considered during maintenance.

Formally, let π(t) be the row vector of the state probabilities of the hidden states

after t cell divisions, i.e., π(0) is the initial distribution of the hidden states. For i ∈ S let

π(i, t) = P (X (t) = i) denote the entry of π(t) that corresponds to state i. The probability

of observing state j ∈ Sobs at time t is given by

P (O(t) = j) =
∑
i∈S

P (O(t) = j | X (t) = i) · π(i, t),

where O(t) is the random variable for the state observed at time t and P (O(t) = j |
X (t) = i) is the emission probability. In matrix-vector form this yields

πbs(t) = π(t) · Ebs(t) and πox(t) = π(t) · Eox(t)

for the two sequencing experiments (BS and oxBS, respectively). Here, πbs(t) and

πox(t) are the vectors with the distribution over the observable states at time t. Note
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that both HMMs have the same distribution π(t) for the hidden states (as for both ex-

periments the same cell population is used) but different emission probabilities and that

π(t) is given by

π(t) = π(0) ·
∏t

k=1 P(k).

First, we estimate the initial distribution π(0) based on the initial independent BS

and oxidative BS measurements under conventional serum conditions by considering the

combined likelihood

L1(π(0)) =
∏
j∈Sobs

πbs(j, 0)nbs(j,0) · πox(j, 0)nox(j,0). (3.1)

The above likelihood depends only on the unknown vector π(0) and the emission matri-

ces and allows us to determine the initial distribution of the hidden states. We maximize

the likelihood subject to the constraint
∑

i π(i, 0) = 1, i.e.

π(0)∗ = arg maxπ(0) L1(π(0)),

where π(0) ranges over all vectors that sum to one. Then, given an estimate for π(0),

we compute for t ∈ {1, 2, . . .} the state probabilities π(t) of the hidden states and consider

the common likelihood

L2(v) =
∏

t∈Tobs\{0}

∏
j

πbs(j, t)
nbs(j,t) · πox(j, t)nox(j,t) (3.2)

for the observations at all remaining observation time points t ∈ Tobs. Note that

here we assume that the cells divide every 24 hours, hence t ranges over all days at

which measurements were made (see also Supplement, Section 3.6.2). In addition, we can

assume independence between the observations because during the measurement only a

small fraction of cells is taken out of a large pool and thus it is unlikely that we pick two

cells with a common descendant.

The likelihood L2(v) depends on the matrices P(t) and thus on the unknown func-

tions µd(t), µm(t), η(t) and the probability p. We assume that the enzymes’ efficiencies

are linear in t, i.e., each function is of the form β0 + β1 · t,, which yields a vector v of

seven unknown parameters in total. For estimating v we use again a maximum likelihood

approach, i.e., we determine

v∗ = arg maxv L2(v),

under the appropriate constraints (see Supplement, Section 3.6.2). The maximization
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of the likelihoods in Eq. (3.1) and (3.2) is a (global) optimization problem for which it

is convenient to minimize the negative logarithm of the likelihood. Deriving expressions

for the first and second derivatives of the log-likelihood is straightforward and yields fast

convergence of the gradient descent optimization routine with multiple starting values.

Due to the large number of samples we expect our maximum likelihood estimators (MLEs)

to be approximately unbiased and normally distributed. Moreover, we can compute the

observed Fisher information matrix (FIM) and thus derive confidence intervals for all

parameters (for details see Supplement, Section 3.6.2).

3.3 Results

Previous genome wide analyses showed a high or moderate decrease of DNA methylation

in ESCs transferred from serum into 2i medium [21, 22]. Furthermore, it was shown

that the oxidation of 5mC to 5hmC is likely to contribute to this DNA demethylation

[21]. The goal of our work was to develop a model which describes the 5hmC dependent

molecular mechanisms that cause this loss of DNA methylation upon consecutive rounds

of replication. For the modeling we generated an ultra deep DNA methylation data set

of selected loci in mouse ES cells (ESCs) collected at defined time points after cultivation

in 2i.

For our analysis we chose five multicopy, repetitive elements, IAPs (intracisternal

A particle), L1mdA and L1mdT (both Long interspersed nuclear elements), MuERVL

(Murine endogenous retrovirus) and mSat (major satellite), as well as four single copy

loci in the genes Afp, Snrpn, Ttc25 and Zim3. It was already known that some of these

repetitive elements are subject to demethylation. Ttc25 and Zim3 where previously shown

to exhibit a less pronounced loss of methylation in the absence of Tet1/Tet2 in 2i medium

[21]. Imprinted genes such as Snrpn were shown to be “resistant” to demethylation in 2i.

Deep locus specific DNA methylation profiles were generated from mESCs grown in

conventional serum/LIF medium (day0) and after their transfer and cultivation into 2i

medium for 24h (day1), 72h (day3) and 144h (day6), respectively. During this period the

ESCs undergo a maximum of six cell divisions (as inferred from cell densities). For each

time point and locus we performed consecutive bisulfite and oxidative hairpin bisulfite

reactions using high coverage Mi-Seq sequencing (see Methods section). Following se-

quence processing (alignment, trimming, QC filtering) we obtained two data sets for each

locus: one describing the combined 5mC+5hmC status (BS-Seq) and one describing the

5mC status alone (oxBs-Seq). The hairpin refolding of sequences then let us determine

the accurate double stranded CpG methylation status at a given locus (hemi-, fully- or

unmethylated).

With this data we used our HMMs (described in the Methods section) to estimate

the amount of 5mC and 5hmC in these loci and to predict the efficiencies of maintenance
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methylation, de novo methylation and hydroxylation over time. In our modeling we

analyzed both aggregated and single CpG behavior for each locus. Both average and

single CpG modeling gave similar results. The single CpG data, summarized in the

supplementary information (see Supplement, Figure 3.10 and 3.11), gave slightly increased

confidence intervals compared to averaged data. In our further analysis we use averaged

data for model interpretation.

Using the estimated values of the model’s unknown parameters we could predict the

probabilities of the observable states and compare them to the measured data at various

time points. The model accurately describes the dynamics for all loci except for some

underestimations of two states CC and TT for oxBs in Ttc25 and Zim3, respectively

(Fig 3.5 and Supplement, Figure 3.8).
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Fig. 3.5: Comparison of predicted modification levels and the obtained sequencing data for BS
and oxBS for the loci L1mdT (top-left), mSat (top-right), Afp (bottom-left), Zim3
(bottom-right); TT (blue), TC (light green), CT (dark green), CC (red). The solid lines
show the experimentally measured frequencies states and the dashed lines correspond
to the values predicted by the two HMMs.

Fig 3.6 shows the probabilities of the hidden states in L1mdT, mSat, Afp, and Zim3,

where the parameters are chosen according to the results of the maximum likelihood

estimation. The left bar diagram shows the probabilities of all fully methylated (mm),

hemimethylated (um and mu) and unmethylated (uu) sites, as well as the total amount

of the hydroxylated CpG dyads, i.e., those containing at least one 5hmC. The detailed

level of all hydroxylated sites is depicted in the right diagram.

From previous experiments it was known that 5hmC levels initially increase during

cultivation in 2i [21, 22]. However, precise levels had not been determined per locus.
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Fig. 3.6: Probabilities of the hidden states for L1mdT (top-left), mSat (top-right), Afp (bottom-
left) and Zim3 (bottom-right): The left diagram depicts the amount of fully methylated
(mm) hemimethylated (um and mu)
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gives the total amount of CpG sites with at least one 5hmC(hidden states),
while the detailed distribution of the hydroxylated states is given by the diagram on
the right.

Our analysis provides the first accurate locus specific determination of 5hmC changes.

Our estimation of 5hmC confirms an initial increase of hydroxylated cytosines over time

for most loci besides L1mdA and Snrpn. L1mdA shows a low level of 5mC and 5hmC,

which only slightly decreases in 2i. Snrpn also shows a relatively low level of 5mC and

a non significant amount of 5hmC, which do not change in 2i over time (Supplement,

Figure 3.9). The highest hydroxylation levels are found in the single copy genes Zim3

and Afp with a maximum level of 0.30 and 0.20. For Afp, mSat, IAP and MuERVL

(see Fig 3.6 and Supplement, Figure 3.9), the maximum hydroxylation level is seen at

day6, while for L1mdT, Ttc25 and Zim3 at day3. The latter can be explained by the

particularly low 5mC levels between day3 and day6 in these loci which naturally reduces

the potential substrates for the Tet enzymes. However, the level of 5hmC (orange bar in

Fig 3.6 and Supplement, Figure 3.9, left) relative to the total modification level (5hmC

+ 5mC) (red, orange and green bars), becomes maximal on the sixth day for all loci that

show a loss of 5mC. This points towards an increasingly important role of 5hmC in the

loss of methylation over time.

Indeed, the probability p (see HMM subsection) that a 5hmC site is not recognized

by Dnmt1 (or the Dnmt1/Uhrf1 complex), which corresponds to states (hu) and (uh) in

the model, is estimated to be 1 with very small standard deviations for all the loci that

show significant 5hmC levels. We estimated smaller values for p only for those loci where

hydroxylation is nearly absent (mSat, MuERVL, Snrpn).

In Fig 3.7 we plot the functions µm(t), µd(t), η(t) and λ(t) over time together with
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their estimated standard deviations. Note that the estimated standard deviations of all

the efficiencies are very small (maximum half width of all confidence intervals is 0.031). For

the exact estimates and their standard deviations see Supplement, Table 3.11 and 3.12.

From the above efficiencies we can deduce the impact of de novo methylation activity

on the hemimethylated dyads as the difference between the total methylation efficiency

and maintenance methylation, i.e., λ(t) − µm(t) = µ̄m(t) · µd(t) (see Fig 3.7). Our data

indicates that persistence of DNA methylation at Afp, mSat, IAP and MuERVL elements

clearly depends also on de novo enzymes acting on hemimethylated CpGs
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Fig. 3.7: The diagrams show the enzymatic efficiencies and their standard deviations for mainte-
nance (red), de novo (blue), hydroxylation (yellow) and total efficiency on a hemimethy-
lated CpG (dark red). Results are given for L1mdT (top-left), mSat (top-right), Afp
(bottom-left) and Zim3 (bottom-right) over time.

For each efficiency, we performed a statistical test with a confidence level of 1% for the

null hypothesis that the slope of the corresponding linear function is zero, i.e., that the

efficiencies are constant over time (see in addition Supplement, Section 3.6.2). Further-

more, to eliminate the possibility of overfitting due to the linear assumption, we performed

leave-one-out cross-validation (LOOCV) to estimate the test error of our model with con-
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stant efficiencies against a linear model. Results in Supplement, Table 3.13 show that

the linear assumption improves the prediction up to 38.3%. Further tests concerning the

sensitivity of the model w.r.t. the parameters showed that the model is also sufficiently

robust (see Supplement, Section 3.6.2).

Overall, the estimation of the efficiency functions reveals some common and some

locus specific features that accompany the DNA demethylation dynamics over time in

2i. As a common feature we observe that the total methylation on hemimethylated sites,

λ(t), decreases over time in all examined loci but at different rates. Along with this

decrease we observe also a drop of de novo methylation activity at all loci besides Ttc25

and Zim3. In contrast, hydroxylation activity increases for most loci over time (except

for Snrpn). Interestingly, the largest increase of η(t) occurs in L1mdT and the two DMRs

in the genes Ttc25 and Zim3, where we also observe low or even total absence of de

novo activity. On the other hand, a weaker hydroxylation activity in mSat, as well as

IAP and MuERVL (Supplement, Figure 3.9), is accompanied by a strong decrease of

µd(t) in the same loci, while in Afp both de novo methylation and hydroxylation show a

moderate decrease and increase, respectively. At last, maintenance methylation seems to

differ among loci. For all repetitive multicopy loci and Afp maintenance activity remains

nearly constant while for Ttc25 and Zim3 it shows a significant decrease. For the imprinted

Snrpn locus, where the methylation level remains constant, our model accurately predicts

the apparently constantly high maintenance efficiency of 1.0. Altogether, these findings

point towards a major impairment of maintenance methylation by 5hmC. Additionally,

for each locus this impairment is modulated by a distinct combination of decreasing (e.g.

Dnmt3a,b) or increasing (e.g. Tet) activities in a locus specific manner. Some of the

locus specific differences may also have their origin in the particular methylation and

(hydroxy-)methylation status present in serum/LIF before the shift into 2i.

3.4 Discussion

The goal of our study was to investigate the role of 5hmC in the process of progressive

DNA demethylation at single copy and mulitcopy loci across the genome. As a model

system we used the DNA of ES cells grown under conditions where the cells experience a

genome wide reduction of DNA methylation [22, 21].

Using time dependent comparative bisulfite and oxidative bisulfite hairpin sequencing

data we generated two HMMs: one that represents the dynamics of total modifications

(5mC and 5hmC in BS) and the other only representing the 5mC levels (in oxBS). The

comparison allowed us to accurately determine the amount and changes of 5hmC at certain

genomic loci, to estimate the transient distribution of both 5mC and 5hmC in the DNA

and to compute statistically reliable estimates for the efficiencies of maintenance and de

novo methylation, as well as for hydroxylation over time.
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Our first finding is that 5hmC changes over time and can be modeled along with

the overall changes in symmetric DNA methylation at CpGs. Our estimates give us an

exact knowledge of 5hmC dynamics, which is congruent with the finding that several

Tet enzymes are up-regulated in 2i medium [21, 22]. The calculation of the hidden state

probabilities and the efficiencies of the different enzyme-driven processes show that the

5hmC dependent demethylation rates differ considerably However, the dynamics of the

(hydroxy-)methylation levels for the CpGs of the same locus show a certain homogeneity

(see Supplement, Figure 3.10 and 3.11).

The second major finding is that loci with an enrichment of 5hmC such as Afp, L1mdT

and IAP show higher demethylation rates compared to mSat or Snrpn. Hence, 5hmC

containing DNA strands are indeed more likely to lose DNA methylation over time. Our

modeling strongly supports the hypothesis that 5hmC is less well recognized by the main-

tenance methylation machinery (Dnmt1/Uhrf1 complex) as indicated by the estimation of

the corresponding non-recognition probability p. The accumulation of 5hmC then causes

a passive dilution mechanism of CpG methylation with each DNA replication/cell cycle,

despite of the fact that the model predicts a constant behaviour of maintenance activity

in most of the analyzed loci. In ES cells maintained in 2i medium this mechanism appears

to be the main driving force for a rapid and linear DNA demethylation.

Interestingly, in contrast to the previously shown unchanged mRNA expression of

Dnmt1 and Uhrf1 in 2i [21, 22] we observe a strong decrease of maintenance function for

the single copy genes Ttc25 and Zim3 (see Figure 3.7 and Supplement, Figure 3.9, red line).

Since the influence of 5hmC on the maintenance mechanism is reflected by the recognition

probability p, the observed decrease is independent of the high 5hmC levels at these loci.

This indicates an additional impairment or absence of the maintenance machinery at

these loci. However, we cannot exclude the possibility that with the strong decrease

in maintenance efficiency our model, at least to some extent, compensates for active

demethylation which we cannot capture with our current experimental/model design.

Being able to estimate the de novo methylation impact of Dnmt3a/b on hemimethy-

lated sites, the third observation of our model is that all analyzed elements show a com-

promised de novo methylation activity as an additional factor contributing to an enhanced

local DNA demethylation. The predicted behavior for the involved enzymes’ activities ap-

pears to follow their relative expression in 2i medium, in which both Dnmt3a and Dnmt3b

are clearly down regulated [21, 22]. Our observations, thus, suggest that the down regu-

lation of Dnmt3a and Dnmt3b activities appears to enhance the 5hmC dependent CpG

demethylation. This may be either directly due to a decreased methylation efficiency on

hemimethylated sites or due to a lower abundance of the enzymes.

In summary, we present a novel HMM method that allows to precisely measure and

describe effects related to the influence of 5hmC on the persistence of DNA methylation in

the mammalian genome. The modeling allows us to decipher complex DNA methylation
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patterns and enables us to accurately infer enzymatic activities. In its current form the

model already captures a fraction of possible demethylation dynamics and scenarios most

likely reflecting many loci in the genome. A genome wide application of our modeling is

possible. It comes, though, at the expense of locus specific accuracy since with the existing

whole genome hairpin sequencing methods data is difficult to generate and will not reach a

sufficient sequencing depth. However, our approach can also be used to accurately model

5hmC dependent methylation dynamics in diseases, e.g. certain cancers and in aging

processes of long lived cells. By integrating novel precise sequencing methods, which

detect other oxidized modifications the model can be enhanced to additionally capture

active demethylation and describe the involved processes.
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3.6 Supporting Information

3.6.1 BS and oxBS Data

In Tables 3.1-3.9 we show the data for the DNA loci L1mdA, L1mdT, IAP, mSat,

MuERVL, Afp, Ttc25, Zim3 and Snrpn taken from bisulfite and oxidative bisulfite se-

quencing together with the measured conversion errors c̄, d̄, ē and f̄ for each locus. The

conversion errors are calculated using the hairpin linker which is ligated onto the DNA.

A more detailed description of the conversion errors’ calculation is given in Section 4.1.

The measurement times are: 24h after incubation on Serum (day0), and 24h (day1), 72h

(day3) and 144h (day6) on 2i. Each table shows the total number of CpGs of the corre-

sponding locus that have been observed in each of the four observable states (TT, TC,

CT and CC) for every day of measurement.

Tab. 3.1: IAP

BS oxBS
day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 39 84 116 890 0.003 0.0709 0.0774 35 70 77 605 0.002 0.0935 0.0701
1 17 89 99 831 0.002 0.0685 0.0411 57 131 115 943 0.002 0.0813 0.0939
3 68 87 111 513 0.001 0.0628 0.0721 77 112 112 449 0.001 0.09 0.0905
6 283 152 178 703 0.003 0.0829 0.0455 210 68 81 365 0.002 0.0737 0.0942

Tab. 3.2: L1mdA

BS oxBS
day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 41088 3479 4106 8092 0.006 0.0795 0.0734 36286 1968 2203 5094 0.004 0.0853 0.0016
1 30095 2607 2697 5118 0.006 0.078 0.0645 32774 1555 1715 4026 0.004 0.0845 0.0015
3 44382 2819 2953 4769 0.005 0.084 0.0736 35886 1175 1293 2486 0.004 0.0795 0.0913
6 75920 2627 2762 3731 0.005 0.0841 0.0685 54132 965 979 1699 0.004 0.0897 0.083

Tab. 3.3: L1mdT

BS oxBS
day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 37715 9668 9192 25857 0.007 0.0802 0.0739 30511 6368 5713 19208 0.005 0.0784 0.0729
1 41882 11690 10300 25648 0.008 0.0887 0.0743 43459 6807 5923 17638 0.004 0.0780 0.0738
3 44766 7868 6875 10804 0.007 0.0880 0.0703 31379 2470 2125 4419 0.006 0.0758 0.0683
6 44687 2154 2023 2758 0.006 0.0807 0.0758 56830 1363 1263 2352 0.005 0.0856 0.0714

Tab. 3.4: mSat

BS oxBS
day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 492 1676 1738 14403 0.004 0.0718 0.0567 315 1170 1221 9804 0.004 0.0663 0.0772
1 448 1337 1495 9029 0.005 0.073 0.0666 568 1678 1748 10654 0.004 0.0727 0.0698
3 1288 1926 2043 10540 0.004 0.0685 0.0642 1171 1602 1697 8746 0.003 0.0685 0.0631
6 3625 2248 2570 11757 0.004 0.0738 0.0605 2618 1619 1604 7471 0.003 0.0725 0.0722
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Tab. 3.5: MuERVL

BS oxBS
day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 111 307 293 1516 0.007 0.0801 0.0695 108 309 295 1381 0.005 0.0646 0.0800
1 149 553 452 1978 0.007 0.0745 0.0632 238 689 597 2607 0.003 0.0492 0.0649
3 448 735 746 2276 0.007 0.1123 0.0740 345 471 420 1262 0.003 0.1321 0.0687
6 798 356 321 702 0.009 0.0606 0.0582 1458 584 470 927 0.003 0.0772 0.0951

Tab. 3.6: Afp

BS oxBS
day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 1401 5233 4235 31088 0.004 0.0854 0.0852 1208 3652 4307 26568 0.005 0.0982 0.0728
1 2022 6718 4946 25945 0.007 0.0636 0.0646 2821 4367 5366 20886 0.004 0.0836 0.0616
3 4917 4884 5453 14311 0.004 0.0674 0.0765 11285 5443 4739 14034 0.004 0.0636 0.0800
6 29537 6220 6222 14733 0.005 0.0888 0.0523 22516 2989 2182 7421 0.004 0.0638 0.0593

Tab. 3.7: Ttc25

BS oxBS
day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 16873 5945 6297 22363 0.07 0.0726 0.0751 19490 4338 3926 20641 0.005 0.077 0.1023
1 17013 6342 5340 15431 0.07 0.0625 0.0341 20389 4448 4042 16499 0.006 0.0725 0.0577
3 26107 4950 5705 7472 0.06 0.0813 0.0785 34016 2630 2501 6059 0.004 0.1078 0.058
6 19121 538 627 595 0.06 0.0762 0.059 44122 570 619 1310 0.005 0.0686 0.0933

Tab. 3.8: Zim3

BS oxBS
day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 14479 11308 13448 63716 0.005 0.065 0.0755 1777 1695 1285 7754 0.007 0.1388 0.1047
1 14295 11947 11222 43046 0.003 0.0717 0.0575 11829 8157 6249 33002 0.007 0.0958 0.0835
3 31291 10020 10965 13864 0.005 0.0666 0.0647 38515 4875 2983 5202 0.008 0.0807 0.0663
6 112883 4761 4100 2434 0.005 0.076 0.0707 1132054 503 457 345 0.006 0.0616 0.0871

Tab. 3.9: Snrpn

BS oxBS
day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 3092 83 109 742 0.0133 0.0757 0.0733 2620 86 125 599 0.0044 0.0785 0.0690
1 3183 100 67 709 0.0135 0.0725 0.0582 3497 48 49 250 0.0038 0.0742 0.0601
3 2571 92 91 557 0.0116 0.0789 0.0717 3357 136 84 503 0.0038 0.0855 0.0731
6 3098 82 98 768 0.0121 0.0779 0.06131 2377 77 127 943 0.0039 0.0759 0.0799
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3.6.2 Estimation of Model Parameters

Initial Distribution of the Hidden States

Let π(0) be the unknown initial distribution of the hidden states and let π(i, t) =

P (X (t) = i) represent the entry of π(t) that corresponds to state i ∈ S. In addition,

denote by nbs(j, t) and nox(j, t) the number of times that state j ∈ Sobs has been observed

during independent BS and oxidative BS measurements at time t.

We want to solve the problem: π(0)∗ = arg maxπ(0) L1(π(0)), subject to the constraint∑
i∈S π(i, 0) = 1, where

L1(π(0)) =
∏
j∈Sobs

πbs(j, 0)nbs(j,0) · πox(j, 0)nox(j,0).

We consider the log-likelihood

logL1(π(0)) =
∑
j∈Sobs

nbs(j, 0) · log πbs(j, 0) + nox(j, 0) · log πox(j, 0)).

For a gradient descent optimization procedure we need its derivative w.r.t. π(0) given

by

d

dπ(0)
logL1(π(0)) =

∑
j∈Sobs

nbs(j, 0) ·
d

dπ(0)
πbs(j, 0)

πbs(j, 0)
+ nox(j, 0) ·

d
dπ(0)

πox(j, 0)

πox(j, 0)
.

Let πbs(t), πox(t) be the vectors with entries πbs(j, t), πox(j, t), ∀j ∈ Sobs, ∀t ∈ Tobs. Writing

the derivatives d
dπ(0)

πbs(j, 0) and d
dπ(0)

πox(j, 0) in vector-matrix notation we get

d

dπ(0)
πbs(0) =

d

dπ(0)
π(0) ·Ebs(0) = Ebs(0),

d

dπ(0)
πox(0) =

d

dπ(0)
π(0) ·Eox(0) = Eox(0),

which gives us the gradient of the log-likelihood function w.r.t. the initial distribution

of the hidden states after insertion into the above equation.

Estimation of the Efficiencies

Let v = (βµm0 , βµm1 , βµd0 , βµd1 , βη0 , β
η
1 , p), be the vector of the seven unknown parameters

where µm stands for maintenance, µd for de novo and η for hydroxylation efficiency, while

p is the probability that 5hmC is not considered during maintenance. Recall that we

assume that the efficiencies are linear functions of time and so v contains the coefficients

of these functions. E.g. µm(t) = βµm0 + t · βµm1 . The transition matrix of the discrete
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Markov chain at time unit t is P(t) = D(t) ·M(t) ·H(t), where

D(t) =



uu um mu uh hu hm mh mm hh

uu 1 0 0 0 0 0 0 0 0

um 1/2 1/2 0 0 0 0 0 0 0

mu 1/2 0 1/2 0 0 0 0 0 0

uh 1/2 0 0 1/2 0 0 0 0 0

hu 1/2 0 0 0 1/2 0 0 0 0

hm 0 1/2 0 0 1/2 0 0 0 0

mh 0 0 1/2 1/2 0 0 0 0 0

mm 0 1/2 1/2 0 0 0 0 0 0

hh 0 0 0 1/2 1/2 0 0 0 0


,

M(t)



uu um mu uh hu hm mh mm hh

uu µ̄2
d µd ·µ̄d µd ·µ̄d 0 0 0 0 µ2

d 0

um 0 λ̄ 0 0 0 0 0 λ 0

mu 0 0 λ̄ 0 0 0 0 λ 0

uh 0 0 0 p ·µ̄d+p̄·λ̄ 0 0 p·µd+p̄·λ 0 0

hu 0 0 0 0 p·µ̄d+p̄·λ̄ p·µd+p̄·λ 0 0 0

hm 0 0 0 0 0 1 0 0 0

mh 0 0 0 0 0 0 1 0 0

mm 0 0 0 0 0 0 0 1 0

hh 0 0 0 0 0 0 0 0 1


and

H(t) =



uu um mu uh hu hm mh mm hh

uu 1 0 0 0 0 0 0 0 0

um 0 η̄ 0 η 0 0 0 0 0

mu 0 0 η̄ 0 η 0 0 0 0

uh 0 0 0 1 0 0 0 0 0

hu 0 0 0 0 1 0 0 0 0

hm 0 0 0 0 0 η̄ 0 0 η

mh 0 0 0 0 0 0 η̄ 0 η

mm 0 0 0 0 0 η · η̄ η · η̄ η̄2 η2

hh 0 0 0 0 0 0 0 0 1


.

Note that for D(t) we can omit the time parameter t since it is time-independent.

Given, now, π(0), we want to compute the maximum likelihood estimator (MLE)

v∗ = argmaxv logL2(v), where

L2(v) =
∏

t∈Tobs\{0}

∏
j∈Sobs

πbs(j, t)
nbs(j,t) · πox(j, t)nox(j,t).

The only constraint for the above problem is that the efficiencies should be probabilities

for all the considered time points, i.e., 0 ≤ β0+β1 ·t ≤ 1, ∀t ∈ {0, 6} for all the efficiencies,

and the same constraint holds for p, i.e., 0 ≤ p ≤ 1.
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bisulfite sequencing ox. bisulfite sequencing

TT TC CT CC TT TC CT CC

uu c2 c · c̄ c · c̄ c̄2 c2 c · c̄ c · c̄ c̄2

um c · d̄ c · d c̄ · d̄ c̄ · d̄ c2 c · c̄ c · c̄ c̄2

mu c · d c̄ · d̄ c · d c̄ · d c · d̄ c̄ · d̄ c · d c̄ · d
uh c · ē c · e c̄ · ē c̄ · e c · f c · f̄ c̄ · f c̄ · f̄
hu c · ē c̄ · ē c · e c̄ · e c · f c̄ · f c · f̄ c̄ · f̄
hm d̄ · ē d · ē d̄ · e d · e d̄ · f d · f d̄ · f̄ d̄ · f
mh d̄ · ē d̄ · e d · ē d · e d̄ · f d̄ · f̄ d · f d̄ · f
mm d̄2 d̄ · d d · d̄ d2 d̄2 d̄ · d d · d̄ d2

hh ē2 ē · e e · ē e2 f 2 f · f̄ f · f̄ f̄ 2

Tab. 3.10: Transition probabilities from hidden to the observable states in BS and in oxBS.

It holds

logL2(v) =
∑

t∈Tobs\{0}

∑
j∈Sobs

nbs(j, t) · log πbs(j, t) + nox(j, t) · log πox(j, t)

and we get the score vector of the log-likelihood function as

d

dv
logL2(v) =

∑
t∈Tobs\{0}

∑
j∈Sobs

nbs(j, t) ·
d
dv
πbs(j, t)

πbs(j, t)
+ nox(j, t) ·

d
dv
πox(j, t)

πox(j, t)
.

Then the matrix-vector form of the derivatives d
dv
πbs(j, t) and d

dv
πox(j, t) can be written

as
d

dv
πbs(t) =

d

dv
π(t) · Ebs(t) and

d

dv
πox(t) =

d

dv
π(t) · Eox(t), ∀t ∈ Tobs,

where the entries of the emission matrices Ebs(t) and Eox(t) are given in Table 5.3.

Considering, now, the forward Kolmogorov equation for the discrete Markov chain

and its derivative w.r.t. the parameters it suffices to simultaneously solve the following

two equation systems.

π(t) = π(t− 1) ·P(t)

d

dv
π(t) =

d

dv
π(t− 1) ·P(t) + π(t− 1)

d

dv
P(t), ∀t ≥ 1 (3.3)

with d
dv
π(0) = 0 and π(0) = π(0)∗. The derivative of the transition matrix is

d

dv
P(t) =

d

dv
(D ·M(t) ·H(t)) = D ·

( d

dv
M(t) ·H(t) + M(t) · d

dv
H(t)

)
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E.g. applying the chain rule and writing µm instead of µm(βµm0 , βµm1 , t) we get

d

dβµm0

M(µm) =
d

dµm
M(µm) · d

dβµm0

µm =
d

dµm
M(µm)

and
d

dβµm1

M(µm) =
d

dµm
M(µm) · d

dβµm1

µm =
d

dµm
M(µm) · t.

In the same way we get the first derivatives w.r.t. all the other components of pa-

rameter vector v. Applying once more the product rule in Eq. (5.3), and using similar

arguments as above we can also compute the second partial derivatives d
dvidvj

logL2(v)

which will give us the (i, j)-th entry of the Hessian matrix H = ∇∇T logL2(v).

Standard Deviations and Confidence Intervals

The observed Fisher information is defined as J (v∗) = −H(v∗), where v∗ is the maximum

likelihood estimator. The expected Fisher information is I(v) = E[J (v)] and its inverse

is a lower bound for the covariance matrix of the MLE. Thus, here we approximate the

standard deviations of the estimates as σ(v∗) =
√

Var(v∗) =
√

diag(−H−1(v∗)). In order

to approximate the standard deviations of the efficiencies over time, i.e. σ(µm(t)), σ(µd(t))

and σ(η(t)), we exploit the fact that if f(t) = β0 +β1 · t then Var(f(t)) = Var(β0 +β1 · t) =

Var(β0) + t2Var(β1) + 2tCov(β0, β1).

Given, now, the variances of the estimated efficiencies we can compute the variance

λ(t), for any t as

Var(λ) = Var(µm)+Var(µd)+2Cov(µm, µd)+Var(µmµd)−2Cov(µm, µmµd)−2Cov(µm, µmµd),

where the last four terms are computed as follows:

Cov(µm, µd) = Cov(βµm0 , βµd0 ) + tCov(βµm0 , βµd1 ) + tCov(βµm1 , βµd0 ) + t2Cov(βµm1 , βµd1 ),

and

Var(µmµd) = E[µ2
mµ

2
d]− E[µmµd]2 (3.4)

Cov(µm, µmµd) = E[µ2
mµd]− E[µm]E[µmµd], (3.5)

Cov(µd, µmµd) = E[µ2
dµm]− E[µd]E[µmµd] (3.6)

Since the MLEs are approximately normally distributed and for any two random variables

X, Y , E[XY ] = Cov(X,Y) + E[X]E[Y], we get

E[µ2
mµd] = E[µm]2E[µd] + Var(µm)E[µd] + 2Cov(µm, µd)E[µm]

E[µ2
dµm] = E[µd]

2E[µm] + Var(µd)E[µm] + 2Cov(µm, µd)E[µd]
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E[µ2
mµ

2
d] = E[µm]2E[µd]

2 + Var(µm)Var(µd) + Var(µd)µ2
m + Var(µm)E[µd]2

+2Cov(µm, µd)2 + 4Cov(µm, µd)E[µm]E[µd],

where the expectations and thus all terms in Eq. (3.4) - (3.6) are now known. Obtaining

this way the standard deviations of all the efficiencies over time one can create the corre-

sponding confidence intervals for a fixed confidence level, here β = 95% was chosen. For

instance the confidence interval for the total methylation on hemimethylated sites will be

λ± z · σ(λ) = λ± z ·
√

Var(λ),

where z = F−1
(
β+1

2

)
and F is the cummulative distribution function (cdf) of the standard

normal distribution. Similarly we get the confidence intervals for all remaining parameters.

3.6.3 Hypothesis Test

We carried out a number of hypotheses tests related to the estimated parameters (see

Section S.3). Here we briefly describe the details of the Wald statistic that we used to

conduct these tests.

Given a maximum likelihood estimate v∗ of an unknown parameter vector v0 ∈ V ⊆
Rp we want to test the null hypothesis H0 that g(v0) = 0, where g : Rp → Rr is a vector

valued function with r ≤ p. We define the Wald statistic for this estimate as

w = g(v∗)ᵀ
[
Jg(v

∗) · Σ̂ · Jg(v∗)ᵀ
]−1

g(v∗),

where Jg(v
∗) is the Jacobian of g, i.e., the r × p matrix of the partial derivatives of

the entries of g with respect to the entries of v, and Σ̂ is a consistent estimate of the

assymptotic covariance matrix, here equal to the negative Hessian, of v∗. Note that w

here is a realization of a random variable Wv∗ as it is a function of v∗ which is a random

variable itself depending on the observed data.

Under the regularity assumptions that for all v ∈ V, the entries of g are continuously

differentiable w.r.t. all entries of v and that Jg(v) has rank r, the following holds. If

the null hypothesis is true, i.e. g(v0) = 0, then the Wald statistic Wv∗ converges to a

Chi-square distribution with r degrees of freedom [26].

Thus, conducting the Wald test consists of comparing the Wald statistic with a critical

threshold z = F−1(1 − a), where F is the cdf of a Chi-square random variable with r

degrees of freedom and a is a predefined confidence level, e.g. a = 1%. If w > z then

we can safely reject the null hypothesis. The p-value of the test is the probability p

= P (Wv∗ > w) = 1 − P (Wv∗ ≤ w) ≈ 1 − F (w) and so equivalently one also rejects the

null hypothesis if p ≤ a.

For estimates taken from maximum likelihood alternative tests, such as likelihood
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ratio or score test, are also possible. The Wald statistic, however, is convenient in case of

testing multiple hypotheses in parallel. In addition, the use of all tests mentioned before

for our estimates returned similar p-values and did not lead to a different result regarding

the cases that one rejects H0.

3.6.4 Results

In Table 3.11 we present the MLEs returned by our global optimization routine for the

parameter vector v and the corresponding vector of standard deviations σ(v), given the

data of section S.1 for each of the five genome regions. The p-value of the efficiencies

µm, µd and η corresponds to the null hypothesis H0 : β1 = 0, where β1 is the gradient of

the corresponding efficiency, and for the total methylation λ it takes the form H0 : βλ1 =

0 ∧ βλ2 = 0. On the other hand, the null hypothesis for the probability p, that 5hmC is

not considered during maintenance, is H0 : p = 1. The confidence level α has been set to

1% for deciding H0 for each of the above parameters.

In Table 3.12 we show the computed coefficients of the quadratic total methylation

λ(t), which can be implicitly taken from the maintenance and de novo estimated coeffi-

cients.

In Figure 3.8 we see the predicted probabilities of the observable states that have been

taken using the estimated values of Table 3.11 for each region. We compare them to the

measured data (frequency) at the various days. Figure 3.9 shows the predicted probabil-

ities of the hidden states and the detailed hydroxylation levels, as well as the estimated

(hydroxy-)methylation efficiencies over time for the regions IAP, L1mdA, MuERVL, Zim3

and Snrpn that do not appear in the manuscript.

In order to measure the test error of the model we performed leave one out cross

validation (LOOCV) and tested two competing assumptions: “1) The enzyme efficiencies

are constant” and “2) The enzyme efficiencies can also be linear”. For each region we

tested the prediction of the model for each single CpG, having trained it on the data of

the other CpGs and we averaged at the end the test error. For comparing the prediction

ability of the model for each of the two cases 1) and 2) we used two different distribution

distance measures (Kullback-Leibler divergence and Bhattacharyya distance) between the

output distribution and the data. Our results in Table 3.13 show that for all regions the

test error (i.e. the above distance) becomes evidently smaller for the case where we allow

efficiencies to be linear over time. In the two columns where we report the improvement

(”gain”) KL-const - KL-linear
KL-const of the test error, we see that the decrease of the test error

using the linear model over the constant varies from 0.6% (in mSat) to 38.3% (in Zim3) for

the Kullback-Leibler distance. The predictive potential of the model, and consequently

the above gain ratio, depends on the available number of CpGs for the training data and

on how much the efficiencies deviate from constant behavior over time.

In Figures 3.10, 3.11 we show the (hydroxy-)methylation efficiencies and the (hydroxy-
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)methylation levels for all CpGs of all the examined loci, in case the data of each locus

is not aggregated and separate estimations are taken for each of the single CpG dyads.

Although, the absolute (hydroxy-)methylation levels at distinct CpGs can be slightly

different, one observes that the tendency of the demethylation process has clearly homo-

geneous characteristics between CpGs of the same locus. Particularly, the increase of the

hydroxylation level in relation to the methylated substrates is always present. Also, the

day with the highest absolute 5hmC level is, in the majority of the cases, the same for the

CpGs of a locus. Similarly, the predicted behavior of the enzymes’ efficiencies within a

locus is in principle homogeneous with some differences in the absolute estimated values

that come with larger confidence intervals due to the smaller number of samples.

Finally, to validate the robustness of the model sensitivity analysis of the parameters

has been examined. Perturbing one parameter at a time (OAT) by ±1% we get a max-

imum (over all regions, time points and parameters) absolute change of 0.0053 for the

total hydroxylation level and 0.0198 for the total methylation level.
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Fig. 3.8: Comparison of prediction and data for IAP, L1mdA, MuERVL, Ttc25 and Snrpn:
probabilities of the observable states TT (blue), TC (light green), CT (dark green),
CC (red) in BS and oxidative BS. The solid lines show the experimentally measured
frequencies states and the dashed lines correspond to the values predicted by the two
HMMs.
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Fig. 3.9: Results for regions IAP, L1mdA, MuERVL, Ttc25 and Snrpn: Left: Probabilities of
the hidden states. The amount of fully methylated (mm)

day0 day1 day3 day6

le
ve

l p
er

 s
ta

te
s 

(m
Sa

t)

0

0.2

0.4

0.6

0.8

1

fullymethylated
hydroxylated
hemimethylated
unmethylated

day0 day1 day3 day6

hy
dr

ox
yla

tio
n 

le
ve

l

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

hm-mh
uh-hu
hh

, hemimethylated (um
and mu)

day0 day1 day3 day6

le
ve

l p
er

 s
ta

te
s 

(m
Sa

t)

0

0.2

0.4

0.6

0.8

1

fullymethylated
hydroxylated
hemimethylated
unmethylated

day0 day1 day3 day6

hy
dr

ox
yla

tio
n 

le
ve

l

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

hm-mh
uh-hu
hh

, and unmethylated (uu)

day0 day1 day3 day6

le
ve

l p
er

 s
ta

te
s 

(m
Sa

t)

0

0.2

0.4

0.6

0.8

1

fullymethylated
hydroxylated
hemimethylated
unmethylated

day0 day1 day3 day6

hy
dr

ox
yla

tio
n 

le
ve

l

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

hm-mh
uh-hu
hhsites. The orange block

day0 day1 day3 day6

le
ve

l p
er

 s
ta

te
s 

(m
Sa

t)

0

0.2

0.4

0.6

0.8

1

fullymethylated
hydroxylated
hemimethylated
unmethylated

day0 day1 day3 day6

hy
dr

ox
yla

tio
n 

le
ve

l

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

hm-mh
uh-hu
hh

gives the total
amount of CpG sites with at least one 5hmC, while the detailed distribution of the
hydroxylated states is given by the diagram on the right. Right: Estimated efficiencies
and standard deviations over time. Maintenance (red), de novo (blue), hydroxylation
(yellow) and total efficiency on a hemimethylated CpG (dark red).
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Tab. 3.11: Estimated coefficients of the functions µd(t), µm(t) and η(t) and their approximate
standard deviations. The p-values have been taken conducting a hypothesis test
H0 : β1 = 0 using the Wald statistic.

IAP: (hydroxy)
methylation prob. β0 σ(β0) β1 σ(β1) p-value

µm 0.9155 0.0256 -0.0097 0.0072 0.180
µd 0.3977 0.0545 -0.0624 0.0106 < 10−5

η 0.0134 0.0132 0.0055 0.0045 0.226
p 1.0000 0.2577 - - 1

L1mdA: (hydroxy)
methylation prob. β0 σ(β0) β1 σ(β1) p-value

µm 0.8682 0.0104 -0.0052 0.0040 0.190
µd 0.0168 0.0007 -0.0027 0.0002 < 10−5

η 0.1249 0.0074 0.0149 0.0023 < 10−5

p 1 0.0238 - - 1

L1mdT: (hydroxy)
methylation prob. β0 σ(β0) β1 σ(β1) p-value

µm 0.7317 0.0040 -0.0102 0.0044 0.020
µd 0.0229 0.0010 -0.0038 0.0002 < 10−5

η 0.1013 0.0046 0.0220 0.0015 < 10−5

p 1 0.0468 - - 1

mSat: (hydroxy)
methylation prob. β0 σ(β0) β1 σ(β1) p-value

µm 0.8304 0.0080 0.0026 0.0019 0.186
µd 0.3879 0.0133 -0.0478 0.0025 < 10−5

η 0.0002 0.0038 0.0026 0.0011 0.024
p 0.8025 0.1966 - - 0.315

MuERVL: (hydroxy)
methylation prob. β0 σ(β0) β1 σ(β1) p-value

µm 0.7106 0.0300 -0.0177 0.0076 0.019
µd 0.6006 0.0221 -0.0955 0.0039 < 10−5

η 0.0172 0.0119 0.0044 0.0045 0.336
p 0.5428 0.2858 - - 0.11

Afp: (hydroxy)
methylation prob. β0 σ(β0) β1 σ(β1) p-value

µm 0.7817 0.0041 0.0006 0.0015 0.717
µd 0.1772 0.0058 -0.0295 0.0011 < 10−5

η 0.0473 0.0028 0.0160 0.0010 < 10−5

p 1.000 0.0208 - - 1

Ttc25: (hydroxy)
methylation prob. β0 σ(β0) β1 σ(β1) p-value

µm 0.7440 0.0064 -0.0435 0.0003 < 10−5

µd 0.0000 0.0018 -0.0000 0.0003 1
η 0.0000 0.0072 0.0544 0.0023 < 10−5

p 1.000 0.0670 - - 1

Zim3: (hydroxy)
methylation prob. β0 σ(β0) β1 σ(β1) p-value

µm 0.8530 0.0027 -0.0965 0.0014 < 10−5

µd 0.0000 0.0022 -0.0000 0.0005 1
η 0.0000 0.0087 0.0922 0.0047 < 10−5

p 1.000 0.0255 - - 1

Snrpn: (hydroxy)
methylation prob. β0 σ(β0) β1 σ(β1) p-value

µm 1.0000 0.0253 0.0000 0.0076 1
µd 0.0000 0.0029 0.0016 0.0008 0.047
η 0.0517 0.0170 -0.0086 0.0038 0.030
p 0.5 0.0807 - - 1
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Tab. 3.12: Estimated coefficients of the function λ(t) and their approximate standard deviations.
The p-values have been taken conducting a hypothesis test H0 : βλ1 = 0 ∧ βλ2 = 0
using the Wald statistic.

DNA region βλ0 βλ1 βλ2 p-value
IAP 0.9491 -0.0111 6.05 · 10−4 < 10−5

L1mdA 0.8705 -0.0055 1.40 · 10−5 0.187
L1mdT 0.7378 -0.0011 3.89 · 10−5 0.005
mSat 0.8962 -0.0065 1.21 · 10−4 < 10−5

MuERVL 0.8440 -0.0347 1.69 · 10−3 < 10−5

Afp 0.8203 0.0059 1.68 · 10−5 < 10−5

Ttc25 0.7440 -0.0435 −2.95 · 10−14 < 10−5

Zim3 0.8530 -0.0965 −1.16 · 10−14 < 10−5

Snrpn 1.0000 −2.89 · 10−11 −4.44 · 10−14 1.000

Tab. 3.13: Computed Kullback-Leibler divergence and Bhattacharya distance values given by
LOOCV data to compare the test error for assuming linear vs constant efficiencies.

DNA region KL-const KL-linear KL gain BC-const BC-linear BC gain
IAP 0.164 0.131 20.1 % 5.33e-03 4.38e-03 17.8 %

L1mdA 0.026 0.023 11.5 % 8.10e-04 7.18e-04 11.4 %
L1mdT 0.101 0.099 1.9 % 3.18e-03 3.17e-03 0.3 %
mSat 0.163 0.162 0.6 % 5.09e-03 5.00e-03 1.8 %

MuERVL 0.497 0.321 35.4 % 1.62e-02 1.02e-02 37.0 %
Afp 0.149 0.114 23.5 % 4.79e-03 3.66e-03 23.6 %

Ttc25 0.209 0.171 18.2 % 7.03e-3 6.07e-3 13.7 %
Zim3 0.342 0.211 38.3 % 1.13e-2 7.00e-3 38.1 %
Snrpn 0.194 0.192 1 % 1.13e-2 7.00e-3 1 %
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Fig. 3.10: Estimated efficiencies and standard deviations for each single CpG dyad of regions
IAP, L1mdA, L1mdT, mSat, MuERVL and the single copy genes Afp, Ttc25, Zim3,
Snrpn over time. In the case of IAP we cover six CpG positions. However, during
evolution CpG one and five underwent a transition resulting in a loss of the CpG
positions in this particular IAP class. Furthermore, due to the lack of space we only
show the first 6 CpGs out of 13 CpGs analyzed in L1mdA and out of 8 CpGs analyzed
in Zim3. The colors are the same as in Fig. 3.9 (right)
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Fig. 3.11: Prediction of the (hydroxy-)methylation levels for each single CpG dyad of regions
IAP, L1mdA, L1mdT, mSat, MuERVL and the single copy genes Afp, Ttc25, Zim3,
Snrpn over time. The colors are the same as in Fig. 3.9 (left)
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3.6.5 Hairpin Oxidative Bisulfite Sequencing

500 ng of mESC DNA was cleaved with 10 units of restriction enzymes for 5h in a 30µl

reaction. For IAP L1mdA the DNA was cut with DdeI (New England Biolabs; NEB), for

mSat and MuERVL with Eco47I (Thermo Fisher Scientific), Afp, Ttc25, Zim3 with TaqI

(Thermo Fisher Scientific) and in case of Snrpn with NlaIII (NEB). The restriction was

stopped by a 20 min heat inactivation at 80◦C. The restricted DNA was then subjected

to a 16 h or overnight ligation with T4-DNA Ligase (New England Biolabs). 200 units

of T4-DNA Ligase, 4 µl 10mM ATP and 1µl 100 µM hairpin linker was added directly

into the restriction reaction and the volume was adjusted to 40 µl using ddH2O. During

ligation the hairpin linker becomes covalent attached to the restriction site of the DNA.

Purification and oxidative BS treatment was carried out using the chemicals and protocols

provided by Cambridge Epigenetix. Amplicons were generated by PCR using Hotfire Taq

polymerase from Solis Biodyne. Sequencing was carried out using the MiSeq Illumina

system (paired end sequencing 2x250bp reads). After Sequecning in a first informatics

step the adapter sequence is removed from the reads (Trimming). The resulting read

information is then analyzed analyzed using the BiQAnalyzerHT and a python script.

For the repeats the sequences were ltered by sequence identity score, meaning that only

reads which matched the reference sequence to at least 80% were used for the analysis.

For single copy genes this score was set to 90% and in addition only reads with maximum

10% missing CpG sites were analyzed.

Primer- and Reference sequences

Table 3.14 shows the sequence of the nine different hairpin linkers used to covalent link

both DNA strands. We included unmodified cytosine, 5mC(X) and 5hmC(y) into the

hairpin linker to follow the conversion of these modifications during BS and oxBS treat-

ment. Mapping the sequencing information to this reference sequences we determine the

states of each cytosine which allows us to calculate all possible measurement errors for

each time point and each genomic region. For example: 5hmC should be converted after

oxBS treatment to 5fU and will after sequencing seen as T. We check for each sequenced

hairpin molecule the state of the 5hmC position which can be either C or T. We divide

then the number of T by the total number of T and C at this position to get the conver-

sion error of 5hmC during oxBS treatment. The conversion error for cytosine and 5mC

is calculated in the same way. For Snrpn we had to use a hairpin linker without 5mC or

5hmC and could therefore not calculate the conversion errors for this sample probably.

However, to correct for more general errors we used the mean conversion error of all other

loci. In addition table C and table D give the primer sequences and the corresponding

reference sequence for each regions respectively.
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Tab. 3.14: Sequence of the hairpin linker for Afp, L1mdT, L1mdA, mSat, IAP; M indicates the
localization of 5mC, H the position of 5hmC in the sequence. All hairpin linker carry
a 5’-phosphorylation.

Hairpin Linker Sequence
IAP-HP Pho-TNAGGGM CCATDDDDDDDDATGGGH CC
L1mdA-HP Pho-TNAGGGM CCATDDDDDDDDATGGGH CC
L1mdT-HP Pho-CCGGAGGGM CCATDDDDDDDDATGGGH CCT
mSat-HP Pho-GNCGGGM CCATDDDDDDDDATGGGH CC
MuERVL-HP Pho-GNCGGGM CCATDDDDDDDDATGGGH CC
Afp-HP Pho-CGGGGM CCATDDDDDDDDATGGGH CC
Ttc25-HP Pho-CGGGGM CCATDDDDDDDDATGGGH CC
Zim3-HP Pho-CGGGGM CCATDDDDDDDDATGGGH CC
Snrpn-HP Pho-GGGCCTADDDDDDDDTAGGCCCCATG

Tab. 3.15: Primer for amplification of the analyzed regions after bisulfite and oxidative bisulfite
treatment.

Primer Sequence
IAP-HP-Forward TTTTTTTTTTAGGAGAGTTATATTT
IAP-HP-Revers ATCACTCCCTAATTAACTACAAC
L1mdA-HP-Forward GTGAGTGGATTATAGTGTTTGTTTTAA
L1mdA-HP-Revers AAATAAATCACAATACCTACCCCAAT
L1mdT-HP-Forward TGGTAGTTTTTAGGTGGTATAGAT
L1mdT-HP-Revers TCAAACACTATATTACTTTAACAATTCCCA
mSat-HP-Forward GGAAAATTTAGAAATGTTTAATGTAG
mSat-HP-Revers AACAAAAAAACTAAAAATCATAAAAA
MuERVL-HP-Forward TAAGGGTTAGGTGGTAGTATTGAAT
MuERVL-HP-Revers CAAAAACCAAATAACAACATTAAAT
Afp-HP-Forward TTTTGTTATAGGAAAATAGTTTTTAAGTTA
Afp-HP-Revers AAATCACAAAACATCTTACCTATCC
Ttc25-HP-Forward TGAAAGAGAATTGATAGTTTTTAGG
Ttc25-HP-Revers AAAACAAAAATCTATTCCATCACTC
Zim3-HP-Forward TTTATTTATTTGTGTGTGGTTTTTG
Zim3-HP-Revers CACATATCAAAATCCACTCACCTAT
Snrpn-HP-Forward AGAATTTATAAGTTTAGTTGATTTTTT
Snrpn-HP-Revers TAATCAAATAAAATACACTTTCACTACT
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TGTCACTCCCTGATTGGCTGCAGCCCATCGGCCGAGTTGACGTCACGGGGAAGGCAGAGCACATGGAGTAGAGAACCACCCTC

GGCATATGCGCAGATTATTTGTTTACCACTNAGGGMCCATDDDDDDDDATGGGHCCTAAGTGGTAAACAAATAATCTGCGCAT

ATGCCGAGGGTGGTTCTCTACTCCATGTGCTCTGCCTTCCCCGTGACGTCAACTCGGCCGATGGGCTGCAGCCAATCAGGGAG

TGACA

Fig. 3.12: Reference Sequence used for 5mC and 5hmC analysis of IAP; M = 5mC, H = 5hmC

TCCAATCGCGCGGAACTTGAGACTGCGGTACATAGGGAAGCAGGCTACCCGGGCCTGATCTGGGGCACAAGTCCCTTCCGCTC

GACTCGAGACTCGAGCCCCGGGCTACCTTGCCAGCAGAGTCTTGCCCAACACCCGCAAGGGCCCACACGGGACTCCCCACGGG

ACCCTNAGGGMCCATDDDDDDDDATGGGHCCTNAGGGTCCCGTGGGGAGTCCCGTGTGGGCCCTTGCGGGTGTTGGGCAAGAC

TCTGCTGGCAAGGTAGCCCGGGGCTCGAGTCTCGAGTCGAGCGGAAGGGACTTGTGCCCCAGATCAGGCCCGGGTAGCCTGCT

TCCCTATGTACCGCAGTCTCAAGTTCCGCGCGATTGGATTGGGGCAGGCACTGTGATCCACTC

Fig. 3.13: Reference Sequence used for 5mC and 5hmC analysis of L1mdA; M = 5mC, H =
5hmC

CCCGGGACCAAGATGGCGACCGCTGCTGCTGTGGCTTAGGCCGCCTCCCCAGCCGGGTGGGCACCTGT

CCTCCGGAGGGMCCATDDDDDDDDATGGGHCCTCCGGAGGACAGGTGCCCACCCGGCTGGGGAGGCGG

CCTAAGCCACAGCAGCAGCGGTCGCCATCTTGGTCCCGGG

Fig. 3.14: Reference Sequence used for 5mC and 5hmC analysis of L1mdT; M = 5mC, H =
5hmC

GGAAAATTTAGAAATGTTTAATGTAGGACGTGGAATATGGCAAGAAAACTGAAAATCATGGGAAATGA

GAAACATCCACTTGTCGACTTGAAAAATGACGAAATCACTAAAAAACGTGAAAAATGAGAAATGCACA

CTGAAGGWCGGGMCCATDDDDDDDDATGGGHCCGWCCTTCAGTGTGCATTTCTCATTTTTCACGTTTT

TTAGTGATTTCGTCATTTTTCAAGTCGACAAGTGGATGTTTCTCATTTTTTATGATTTTTAGTTTTTT

TGTT 

Fig. 3.15: Reference Sequence used for 5mC and 5hmC analysis of mSat; M = 5mC, H = 5hmC

CGCCCGAGACAAGGTGATTCTAGTTATTATAATGGACAGCGTAGACAAAAGAATGTTTATAATAACAT

ACCCAGTAATGGTCAGCACAGGAGAGGTGAAATTTATAATGGCATGACTCGGTTGGWCGGGMCCATDD

DDDDDDATGGGHCCGWTTCAACCGAGTCATGCCATTATAAATTTCACCTCTCCTGTGCTGACCATTAC

TGGGTATGTTATTATAAACATTCTTTTGTCTACGCTGTCCATTATAATAACTAGAATCACCTTGTCTC

GGGCG 

Fig. 3.16: Reference Sequence used for 5mC and 5hmC analysis of MuERVL; M = 5mC, H =
5hmC
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TTTTGTTATAGGAAAATAGTTTTTAAGTTACAAAGCATCTTACCTATCCCAAACTCATTTTCGTGCAA

TGCTTTGGACGCAGCGAAATGTAGCAGGAGGATGAGGGAAGCGGGTGTGATCCACTTCATGGCTGCTG

GTTCCTTCACCGCAGGCAGTGCTGGAAGTGGGATGTTTCGGGGMCCATDDDDDDDDATGGGHCCCGAA

ACATCCCACTTCCAGCACTGCCTGCGGTGAAGGAACCAGCAGCCATGAAGTGGATCACACCCGCTTCC

CTCATCCTCCTGCTACATTTCGCTGCGTCCAAAGCATTGCACGAAAATGAGTTTGGGATAGGTAAGAT

GtTTTGTGATTT

Fig. 3.17: Reference Sequence used for 5mC and 5hmC analysis of Afp; M = 5mC, H = 5hmC

CCAGTAGATCCTCAGCTGGGGGCAGGGATCTATTCCATCACTCCCCTTCCGTGTCGGGATTTCGTGCA

GCTCAGACGGGTCCAAGTCTTACACAAGCTGTCCTAACTGCTGTGCGTTTATATAACAACTACCCGGT

TGTGTTTAGAAAACACTGTTTTCGGGGMCCATDDDDDDDDATGGGHCCCGAAAACAGTGTTTTCTAAA

CACAACCGGGTAGTTGTTATATAAACGCACAGCAGTTAGGACAGCTTGTGTAAGACTTGGACCCGTCT

GAGCTGCACGAAATCCCGACACGGAAGGGGAGTGATGGAATAGATCCCTGCCCC 

Fig. 3.18: Reference Sequence used for 5mC and 5hmC analysis of Ttc25; M = 5mC, H = 5hmC

CCCGGCCACCATAGTCGGATTATCCGTGGGCGGGGTGAGATGGACGGAGCGCCTTGCAGACCTCAGGA

AAACCTCCCCACGCCTGTCCGGCCTTGGCTTGGTGACAGGGAAACTGGCTGGACTCGGGGMCCATDDD

DDDDDATGGGHCCCGAGTCCAGCCAGTTTCCCTGTCACCAAGCCAAGGCCGGACAGGCGTGGGGAGGT

TTTCCTGAGGTCTGCAAGGCGCTCCGTCCATCTCACCCCGCCCACGGATAATCCGACTATGGTGGCCG

GGCAAGGACCACAC 

Fig. 3.19: Reference Sequence used for 5mC and 5hmC analysis of Zim3; M = 5mC, H = 5hmC

AGAATTTACAAGTTTAGTTGATTTTTTTCGCTCCATTGCGTTGCAAATCACTCCTCAGAACCAAGCGT

CTGGCATCTCCGGCTCCCTCTCCTCTCTGCGCTAGTCTTGCCGCAATGGCTCAGGTTTGTCGCGCGGC

TCCCTACGCATGGGGCCTADDDDDDDDTAGGCCCCATGCGTAGGGAGCCGCGCGACAAACCTGAGCCA

TTGCGGCAAGACTAGCGCAGAGAGGAGAGGGAGCCGGAGATGCCAGACGCTTGGTTCTGAGGAGTGAT

TTGCAACGCAATGGAGCGAGGAAGGTCAGCTGGGCTTGTGGATTCTAGTAGTGAAAGTGTATTTTATT

TGATTA

Fig. 3.20: Reference Sequence used for 5mC and 5hmC analysis of Snrpn; M = 5mC, H = 5hmC
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Abstract

The controlled and stepwise oxidation of 5mC to 5hmC, 5fC and 5caC by Tet enzymes

is influencing the chemical and biological properties of cyto- sine. Besides direct ef-

fects on gene regulation, oxidised forms influence the dynamics of demethylation and

re-methylation processes. So far, no combined methods exist which allow to precisely

determine the strand specific localisation of cytosine modifications along with their CpG

symmetric distribution. Here we describe a comprehensive protocol combining conven-

tional hairpin bisulfite with oxidative bisulfite sequencing (HPoxBS) to determine the

strand specific distribution of 5mC and 5hmC at base resolution. We apply this method

to analyse the contribution of local oxidative effects on DNA demethylation in mouse ES

cells. Our method includes the HPoxBS workflow and subsequent data analysis using our

developed software tools. Besides a precise estimation and display of strand specific 5mC

and 5hmC levels at base resolution we apply the data to predict region specific activities

of Dnmt and Tet enzymes. Our experimental and computational workflow provides a

precise double strand display of 5mC and 5hmC modifications at single base resolution.

Based on our data we predict region specific Tet and Dnmt enzyme efficiencies shaping

the distinct locus levels and patterns of 5hmC and 5mC.

4.1 Introduction

In mammals, DNA methylation is restricted to the C5 position of cytosine and is pre-

dominantly found in a CpGcontext [1, 2, 3]. The precise control of its establishment

and maintenance is tightly controlled by the DNA methyltransferases Dnmt1, Dnmt3a

and Dnmt3b. All three enzymes catalyse the transfer of a methyl group from s-adenosyl

methionine to cytosine.

Dnmt1 is associated with the replication machinery by directly interacting with Uhrf1

and PCNA [4, 5, 6, 7]. The protein complex modulates the preferred recognition of

Dnmt1 for hemimethylated CpGs, such that Dnmt1 acts as a copying enzyme for existing

methylation patterns from the old to the newly synthesised DNA strand, maintaining

original methylation patterns across cell divisions [8, 9]. This process is one of the key

mechanisms of epigenetic inheritance.

On the other hand, Dnmt3a and Dnmt3b are the key enzymes to methylate CpG

dinucleotides in the first place. They are called “de novo” methyltransferases and mainly

act on unmethylated DNA during epigenetic programming phases of development and

differentiation [10, 11]. However, there are numerous indications that the strict separation

of de novo and maintenance methylation functions between Dnmt1 and Dnmt3a/Dnmt3b

is not definite. Instead, under certain conditions, these enzymes exhibit overlapping

functions [12, 13, 14].
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Moreover, 5-methyl cytosine (5mC) can be oxidised by a group of oxigenases called

ten-eleven translocation enzymes (Tets) [15, 16]. Under consumption of oxygen and 2-

oxoglutarate, these Fe(II) dependent dioxigenases oxidise 5mC in a first reaction to 5-

hydroxymethyl cytosine (5hmC), followed by 5-formyl cytosine (5fC) and finally 5-carboxy

cytosine (5caC) [17, 18]. The most abundant form of these oxidised cytosine variants is

5hmC. Recent publications show that 5hmC can be found in numerous cell types such as

embryonic stem cells (ESC), neurons or liver cells [19, 20, 21, 22]. The current knowledge

suggests that 5hmC, like 5mC, imposes an epigenetic regulatory function through the

recognition of specific reader proteins.

In zygotes 5mC is extensively converted into 5hmC mainly on the paternal (sperm de-

rived) chromosomes [23, 24]. Furthermore, in subsequent cell divisions, DNA methylation

decreases, suggesting that 5hmC under certain conditions promotes genome wide DNA

methylation reprogramming [25, 26]. Based on this, and other observations, several mech-

anisms have been proposed how 5hmC contributes to a passive (replication dependent)

and active (non-replicative) loss of DNA methylation [26, 27, 28, 29, 30, 31].

In order to better understand and comprehensively follow such processes over cell

divisions, accurate base resolution detection methods discriminating 5mC and 5hmC are

essential.

One such method is the oxidative bisulfite conversion (oxBS). In addition to a standard

bisulfite treatment, where both 5mC and 5hmC remain unconverted and indistinguishable

as cytosine after sequencing, a pre-bisulfite oxidation reaction converts 5hmC to 5fC,

which will be converted by bisulfite to 5f-uracil and to thymine in the subsequent PCR

[32, 33]. By comparing the readout of standard bisulfite sequencing (BS) and oxBS, one

can determine the amount of 5mC and 5hmC for each modified cytosine within the DNA.

Confirm DNA concentration 

and quality

Digest genomic DNA with 

restriction enzyme

Ligate hairpin linker

Split Reaction; perform 

Bisulfite and oxidative 

bisulfite treatment

Amplification, ID 

tagging and Deep paired-

end sequencing

Alignment and bisulfite 

analysis using BiQHT

Create hairpin 

information using the  

HairpinAnazyler

Predict  5hmC level and 

enzyme efficiencies using 

H(O)TA

Fig. 4.1: HPoxBS pipeline. Individual steps of HPoxBS starting from DNA quality assessment
to 5hmC prediction and enzyme efficiency estimation.

Since bisulfite modification based methods only work efficiently on single stranded
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DNA, the subsequent sequencing information only covers the methylation status of one

DNA strand. It is therefore impossible to deduce the symmetry of modifications at CpG

dyads in double stranded (ds) DNA. To overcome this limitation, Laird et al. developed

a method of bisulfite sequencing which physically links DNA strands by the addition of a

hairpin linker, in other words a short hairpin oligo nucleotide is attached onto the DNA

to prevent a physical separation of the upper (Wat- son) and lower (Crick) strand during

bisulfite treatment [34, 35, 36].

In order to monitor the distribution of 5mC and 5hmC in ds-DNA, we here describe

a protocol which combines conventional hairpin bisulfite sequencing (HPBS) with oxBS

[30].

4.2 Materials and Methods

Hairpin oxidative bisulfite sequencing (HPoxBS) comprises a series of biochemical reac-

tion and purification steps. First, fragmented genomic DNA is ligated to a synthetic

hairpin linker [37]. The ligated DNA is then used for BS and oxBS treatment, sequence

specific PCR amplification and finally next generation based sequencing (NGS). Figure

4.1 provides a general outline of the individual steps of the method.

4.2.1 Digestion of Genomic DNA

The first step of the experimental procedure is the digestion of genomic DNA (Figure

4.2). The optimal restriction enzyme (RE) used for HPoxBS should fulfil the following

conditions: The restriction site should be in close proximity to the CpGs of interest, as it

provides the anchor for the hairpin linker ligation. The distance between restriction site

and region of interest should be ≥250bp when using a 2x300bp paired sequencing mode

on an Illumina MiSeq platform.

We recommend the usage of type II REs generating 3’ or 5’ overhangs to increase the

ligation efficiency of the hairpin linker. Alternatively, blunt end DNA can be A-tailed

using Klenow Fragment (3′ → 5′ exo-). The RE should not be sensitive against both

5mC and 5hmC, thereby avoiding a bias of the analysis by blocked restriction. Ideally, no

CpG should be present within the restriction site. We have successfully used the enzymes

R.BsaWI, R.DdeI and R.TaqI.

Following DNA preparation and hairpin linker ligation, the oxBS treatment includes

two harsh chemical modifications, which strongly increase the risk of damaging the input

DNA. It is recommended to use sufficient amounts of high quality (desalted, pure) DNA to

compensate for the loss of amplifiable DNA, inevitably caused by chemical fragmentation

and depurination.

We recommend to start with 300 - 500 ng genomic DNA digested in a buffered 20µl

reaction using a 5-10x excess of RE (units/µg). To ensure complete digestion of the DNA,
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(1) Digestion of genomic 

DNA e.g. with R.TaqI

(2) Ligation of Hairpin 

Linker 

Hairpin Linker

(3) Bisulfite Treatment (3) oxidative 

      Bisulfite Treatment

(4) Gene specific 

PCR

Split Reaction

hmCC mC

C mC C

hmCC mC

C mC C

hmCT mC

T mC T

fUT mC

T mC T

(4) Gene specific 

PCR

Sequencing

T C C

A G G

T C T

A G A

T C C

A G G

T C T

A G A

(5) Enrichment PCR

Sequencing

T C T

A G A

T C T

A G A

T C T

A G A

T C T

A G A

(5) Enrichment PCR

Fig. 4.2: Experimental workflow of HPoxBS. (1) Genomic DNA is enzymatically digested; (2)
DNA strands are linked covalently by ligation of a hairpin linker; (3) after ligation
the reaction is split and treated with BS or oxBS; (4) region of interest is amplified
and sequencing adapters are introduced; (5) multiplexed enrichment PCR including
ID tagging

the incubation should be performed overnight (12 h). After digestion is complete, the

enzyme must be inactivated. We only use temperature and no chemical inactivation, as

in our experience this negatively affected the ligation of the hairpin linker. The amount of

DNA might be reduced in case the DNA has sufficient quality and integrity. Alternatively,

when operating with very low cell numbers, HPoxBS can be applied using a ‘one tube’

reaction without prior DNA isolation. We demonstrate this application for the analysis of

primordial germ cells (see Supplement, Sections S4.6.3). However, if possible, we advice

the use of sufficient amount of isolated high quality DNA to obtain optimal results.

4.2.2 Hairpin Linker Design and Ligation

The hairpin linker contains a single stranded overhang complementary to the genomic

DNA overhangs generated by the RE. Figure 4.3 shows an example with a two base

5’-CpG overhang generated by the RE R.TaqI.

The hairpin linker comprises the following features: (i) A unique sequence (molecu-
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5'-CGGGGMCCATDDDDDDDDATGGGHCC-3'

 

 

 

ATGGGHCC-3'

TACCMGGGGC-5'
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(2)

(3)

(2)
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Fig. 4.3: Hairpin linker structure. Example of a hairpin linker in unfolded (left) and annealed
(right) conformation matching a 5’-overhang created by the restriction enzyme R.TaqI.
(1) green = restriction enzyme complementary 5’-CG overhang; (2) = stem structure
facilitating the folding; (3) = loop structure with unique molecular identifier sequence;
M = 5mC, H = 5hmC, D = A, T or G.

lar) identifier (UMI) which allows to identify individual original ligation events and to

bioinformatically remove clonal PCR amplificates from the pool of sequences [35]. (ii)

Unmodified cytosines at defined positions allowing to determine the overall C to T (G

to A) bisulfite conversion rates. (iii) 5mC and 5hmC to deduce the rates of unwanted

conversion of both modified bases due to either BS or oxBS treatment. Note that this

could be expanded by including 5fC and 5caC modified bases for e.g. fCAB or MAB-Seq

analysis [38, 39, 40].

C 5meC 5hmC 5fC 5caC

U 5meC 5hmC 5fU 5caU

T C C T T

Bisulfite oxidative Bisulfite 

C 5meC 5hmC 5fC 5caC

U 5meC 5fU 5fU 5caU

T C T T T

Fig. 4.4: Conversion during BS and oxBS. Conversions of cytosine and its modified derivatives
(upper row) during BS and oxBS (middle row) as well as their appearance after se-
quencing (lower row). Black straight arrows indicate the intended conversion reaction;
red dashed arrows indicate possible conversion errors.

Ligation of the hairpin linker, will generate closed DNA fragments (Figure 4.2). To

minimise self-ligation of DNA fragments, hairpin linker is given in excess.

The ligation reaction occurs for >4h (or overnight) at 16°C.

4.2.3 Bisulfite and Oxidative Bisulfite Treatment

The oxBS conversion includes an oxidation step prior to the bisulfite treatment. For

this oxidation (which we perform according to the manufacturer’s manual (Cambridge

Epigenetix (CEGX)) the purity of the sample is of great importance as traces of salt or

ethanol will cause the reaction to fail. For this reason, it is essential to purify (and desalt)

the sample after the ligation reaction. We then continue with a bisulfite reaction using
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Tab. 4.1: Typical ligation reaction for HPoxBS.

20µl digested chromosomal DNA (15-25ng/µl)

2.5µl 10mM ATP

1.0µl 100pmol/µl hairpin linker

0.5µl 400U/µl T4 DNA ligase (New England Biolabs)

1.0µl ddH2O

the TrueMethyl Kit provided by Cambridge Epigenetix (CEGX). We usually perform the

following protocol:

(1) After ligation, transfer the solution into a 1.5 ml reaction tube and adjust the volume

to 50µl using ddH2O.

(2) Add 100µl(2x) AMPure XP beads and incubate for 15min at room temperature (RT).

(3) Place the tube onto a magnetic stand and incubate for 10min at RT.

(4) Carefully discard the supernatant without disturbing the beads.

(5) Keep on the magnetic stand and add 1 ml freshly prepared 80% acetonitrile and wait

for 30 s. Then carefully remove and discard the supernatant.

(6) Repeat the wash step from (5) three more times for a total of four wash steps.

(7) Let the beads dry for 5min on the magnetic stand.

(8) Without removing the tube from the magnet, add 20µl 0.05M NaOH.

(9) Remove the reaction from the magnetic stand and resuspend the beads completely

by pipetting. Incubate for 10min at RT to elute the DNA.

(10) lace the tube back onto the magnetic stand and incu bate for 5min until the suspen-

sion becomes clear.

(11) Without disturbing the beads, remove 9µl of the supernatant for BS and 9µl for oxBS

and put each into a new reaction tube. Proceed with the oxBS workflow according

to Booth et al.

Note, for the preparation of 80% Acetonitrile and 0.05M NaOH ensure high purity of

the used ddH2O.

For each purified DNA we then perform two separate conversion reactions: (i) a con-

ventional bisulfite conversion reaction and (ii) a combined oxidation and bisulfite reaction
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(Figure 4.2 and Figure 4.4). The single treatment with sodium bisulfite allows to simul-

taneously detect 5mC and 5hmC. All unmodified cytosines (as well as 5fC and 5caC, see

below) are converted into uracils, while 5mC and 5hmC are not converted. In the sub-

sequent PCR amplification and sequencing, converted cytosines will be read as thymine

instead of cytosine. In the case of oxBS, 5fC will be oxidised to 5fU and converted to

5fU during bisulfite treatment. Following subsequent PCR, 5hmC will appear as thymine

after sequencing. We recommend to use the TrueMethyl Kit (CEGX) to perform the

bisulfite treatment. Note, when using other bisulfite protocols, ensure that the method

achieves a complete conversion of 5fC and 5caC.

4.2.4 Amplification of Target Genes

After BS and oxBS treatment, the targeted regions are amplified by PCR in which also

the first part of the sequencing adapters are introduced (Table 4.2 and Figure 4.2 The

PCR uses gene specific primers to amplify a specific target region ligated to the hairpin

linker. For PCR we use the HOT FIREPol® DNA Polymerase from Solis BioDyne, which

performs well on uracil containing bisulfite templates.

After incubation, the amplified product needs to be purified to remove PCR residues,

such as nucleotides, salt and primers which would interfere with downstream processes.

Routinely, we perform purification using AMPure XP beads in a ratio of 1:1 (µl PCR:µl

beads) or agarose gel purification using Geneaid “Gel/PCR DNA Fragments Kit” follow-

ing manufacturer’s instructions.

Tab. 4.2: Typical PCR protocol for HPoxBS using HOT FIREPol®

PCR Protocol PCR Conditions

2.0µl BS/oxBS hairpin sample

3.0µl 10x Buffer BD 95� - 15min

3.0µl 25mM MgCl2 95� - 1min

2.4µl 10mM dNTPs X� - Xmin 40x

0.5µl Forward Primer 72� - 1min

0.5µl Reverse Primer 72� - 7min

0.7µl HOT FIREPol®

19.1µl ddH2O

4.2.5 Amplicon Preparation and Sequencing

Amplicon preparation for sequencing is finalised by subjecting the purified product to a

second PCR Table 4.3 Figure 4.2. In this amplification, primers are not gene specific,

but bind to the adapter part introduced during the first PCR. The second primer pair
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provides the adapter sequence which facilitates the binding to the sequencing platform

and in addition carries a sample specific ID. The Reaction can be performed as a multiplex

PCR, where several distinct amplicons can be flagged with the same ID.

Tab. 4.3: Multiplex-PCR protocol for sequencing preparation

PCR Protocol PCR Conditions

25.0µl BS/oxBS hairpin sample

5.0µl 10x Buffer HotStarTaq 95� - 15min

2.0µl 25mM MgCl2 95� - 30sec

4.0µl 10mM dNTPs 60� - 30sec 5x

2.5µl Forward Primer 72� - 30sec

2.5µl Reverse Primer 72� - 5min

0.6µl HotStarTaq®

8.4µl ddH2O

In our case, subsequent sequencing is performed on an Illumina MiSeq platform using

a multiplexed 2x300 bp paired-end sequencing. For this, the products of the second PCR

are again purified using AMPure XP beads with a ratio of 1:1.1 (µlPCR:µl beads). All

amplicon pools are then adjusted to a concentration of 5 nM and joined for multiplexed

sequencing. Following manufacture’s instructions, the pooled library is further diluted to

a final concentration of 18 pM.

4.2.6 Sequence Alignment and Methylation Calling

Following demultiplexing and quality control, sequence alignment and extraction of methy-

lation information is performed using BiQAnalyzer HT (BiQHT) (http://biq-analyzer-ht.

bioinf.mpi-inf.mpg.de/). BiQHT is a Java based tool with graphical user interface

which has been developed for locus specific DNA methylation analysis [41]. The pro-

gram aligns the sequencing reads against a given reference sequence and determines the

methylation state for each cytosine.

To exploit all the information contained in the hairpin amplicon, four individual anal-

ysis steps have to be performed:

CpG Methylation Analysis. CpG methylation is analysed by providing a genomic refer-

ence sequence without for each locus, consisting of the unconverted DNA sequence from

top and bottom strand with the converted (C replaced by T) hairpin linker sequence in

between (Supplement, Section S4.6.6). Cytosines of the hairpin linker will be analysed

independently and therefore have to be replaced by Ts. The analysed methylation con-

text has to be set to ‘CpG’. BiQHT provides several filter options to dispose unwanted

sequencing reads. Routinely, we use a sequence identity of ≥0.9 for single copy genes and

http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/
http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/
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≥0.8 for repetitive elements due to their sequence variability. However, filtering might be

optimised for individual amplicons by including additional parameters such as conversion

rate, alignment score or fraction of unrecognized sites.

nonCpG Methylation Analysis. For an unbiased detection of nonCpG methylation, all

CpGs in the reference file and also in the sequencing read file must be replaced by NpNs.

Furthermore, to allow nonCpG methylation detection, the analysed methylation context

has to be changed to ‘C’. Usually, the filter conditions from the CpG methylation analysis

can be applied.

Linker Conversion Rate. The unmodified cytosines in the hairpin linker allow the de-

termination of cytosine conversion, unbiased by nonCpG methylation. To extract the

information, sequencing reads are aligned to the genomic sequence of the hairpin linker

(Supplement, Section S4.6.6). The variable loop sequence creates UMIs which cannot

be described by one reference sequence alone. Therefore, the sequencing identity filter

must be reduced to ≥ 0.6 in order to prevent the loss of sequencing reads. Analysed

methylation context has to be set to ‘C’.

SNP Detection. BiQHT annotates single nucleotide polymorphisms (SNPs), if specified

in the reference sequence. This function can also be used to determine the state of 5mC

and 5hmC within the hairpin linker. Both cytosines have to be replaced by ‘N’ in the

reference sequence for the analysis. BiQHT then annotates the occurring base (C or T)

for both cyotsines in each read. The output can be used to calculate the conversion rate

of 5mC and 5hmC during BS and oxBS Figure 4.4. Applied are the same settings as

in the CpG methylation analysis but in addition the option “output results of the SNP

analysis” must be selected.

4.2.7 Restoration of Double Strand Information

Subsequently to BiQHT, we use Hairpinanalyzer to restore the ds information. The

Hairpinanalyzer is a python based script which accepts the output of BiQHT, restores

the ds information and generates the following output:

(1) A map of methylation pattern in form of a portable network graphic (png).

(2) A text file for each sample containing the CpG methylation information of each read

and in addition, position specific nonCpG methylation, conversion rates and SNPs

(3) A text summary file for all samples related to the same reference sequence.

Note that the results of BS and oxBS are stored as individual files and the level of

5hmC must be calculated by comparing both outputs. The most simple calculation is
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the subtraction of the mean methylation level of oxBS from BS results. Additionally, to

also gain the distribution of 5hmC, this calculation has to be done for fully methylated

CpGs, hemimethylated CpG on the top- and hemimethylated CpGs on the bottom strand,

respectively. The script of the Hairpinanalyzer is available on GitHub https://github.

com.

4.2.8 Estimation of 5hmC and Enzyme Efficiency

The conversion scheme in Figure 4.4 suggests that 5hmC levels are simply determined by

subtracting mean methylation levels of BS reactions from those of oxBS reactions. We

observe that this may lead to inaccurate estimates due to random sampling of different

cells and the omission of conversion errors. Therefore, we propose a more accurate ap-

proach by combining two Hidden Markov Models(HMMs), one for BS and one for oxBS,

that take into account all possible conversions as outlined in Figure 4.4. We then link the

two HMMs and calibrate the model’s parameters, such that they simultaneously fit the

results of BS and oxBS. By this, we can accurately estimate 5hmC levels. For this pur-

pose we developed H(O)TA, a MAT-LAB based tool which uses ds information for such

calculations https://mosi.uni-saarland.de/HOTA [42]. H(O)TA works with classical

HPBS data, but also with data from HPoxBS experiments. Based on the information

provided, H(O)TA considers the ds information and conversion rates to estimate accurate

5mC and 5hmC level as well as their ds distribution. In addition, it predicts the efficien-

cies of Dnmts and Tets. Furthermore, based on the ds information, H(O)TA provides a

more accurate discrimination of maintenance and de novo methylation compared to single

strand based models.

All tools come with detailed instruction for easy use. In addition, we included a test

data set to the supplement information, which includes raw data from MiSeq sequencing,

BiQHT and Hairpinanalyzer output as well as the input files and the results of the H(O)TA

analysis.

4.3 Results

In this section, we outline the complete HPoxBS workflow (including a H(O)TA analysis)

for the analysis of demethylation dynamics in mouse embryonic stem cells (ESCs). This

section is followed by a brief summary of use cases on mouse primordial germ cells and

human monocytes, respectively. A full description for the additional data can be found

in supplement sections S4.6.3 and S4.6.4

Mouse ESCs have a high genome wide methylation status when cultivated on serum/LIF,

while loosing DNA-methylation in a replication dependent manner under 2i conditional

medium [43, 44, 45, 46]. We analysed ESCs under Serum/LIF (day0) conditions as well as

after their transition into 2i after 24h (day1), 72h (day3) and 144h (day6). Our goal was

https://github.com
https://github.com
https://mosi.uni-saarland.de/HOTA


4. Two are Better than One: HPoxBS - Hairpin Oxidative Bisulfite Sequencing 117

to monitor the progressive changes in DNA-methylation and DNA-hydroxymethylation

levels at three single- (Afp, Ttc25 and Zim3) and five multi copy loci (IAP, L1mdA,

L1mdT, mSat and MuERVL) using HPoxBS. Following the method outlined in Figure

4.2 we sequenced PCR products on an Illumina MiSeq platform obtaining a mean read

coverage of 5188 per locus. Figure 4.5 shows the CpG methylation maps for ESCs, gen-

erated after BiQHT alignment and Hairpinanalyzer refolding for BS and oxBS samples

separately. Each column represents one CpG position and each row one unique sequence

read, which corresponds to the region specific pattern of one chromosome. CpG positions

modified on both DNA strands are shown in red, hemimethylated CpGs in green and

unmodified CpG positions in blue. The Hairpinanalyzer script also generates a text file

for each sample, containing the read ID, CpG methylation pattern, nonCpG Methylation

and, if provided in the BiQHT reference sequence, information on SNPs.

day0 day1 day3 day6

Bisulfite oxidative Bisulfite

day0 day1 day3 day6
Afp

IAP

L1mdA

L1mdT

mSat

MuERVL

Ttc25

Zim3

day0 day1 day3 day6day0 day1 day3 day6

Bisulfite oxidative Bisulfite

= CpG/CpG = mCpG/mCpG= mCpG/CpG= CpG/mCpG

Fig. 4.5: Hairpin Methylation Pattern Maps. Methylation patterns for the single copy genes
Afp, Ttc25 and Zim3, as well as the retrotransposable elements IAP, L1mdT, L1mdA,
mSat and MuERVL for BS and oxBS of ECS cultivated under Serum/LIF (d0) and
2i medium (d1 = 24h 2i, d3 =72h 2i, d6 = 144h 2i). Each column represents one
CpG dyad, each row one sequenced chromosome. The very left column gives the mean
methylation pattern over all analysed CpGs. Red = CpG dyad is modified on both
DNA strands (BS = 5mC or 5hmC; oxBS = 5mC only); Dark green = CpG dyad is
only modified on the plus strand (BS = 5mC or 5hmC; oxBS = 5mC only); Light green
= CpG dyad is only modified on the lower strand (BS = 5mC or 5hmC; oxBS = 5mC
only); Blue = CpG dyad is unmodified on both strands (BS = C only; oxBS = C or
5hmC); White = CpG dyad was not analysable.

In line with our previous findings, we observe that the overall level of 5mC/5hmC

decreases with region specific dynamics upon prolonged culturing of ESCs in 2i medium.

This decrease occurs at retrotransposable (repetitive) elements (IAP, L1MdA, LmdT,

mSat, MuERVL), as well as at single copy genes (Afp, Tct25, Zim3) (Figure 4.5). Using

H(O)TA, we find considerable levels of 5hmC at CpG positions in most of these regions

(Figure 4.6).

Concerning conversion quality of the oxBS reactions, we determined the conversion
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Fig. 4.6: Average modification level. Mean methylation level of BS (upper panel) and oxBS
(middle panel) samples as well as the predicted 5hmC amount and distribution (lower
panel). x-axis = days; y-axis = 5mC/5hmC level; red = CpG dyad is modified on both
DNA strands (BS = 5mC or 5hmC; oxBS = 5mC only); dark green = CpG dyad is
only modified on the plus strand (BS = 5mC or 5hmC; oxBS = 5mC only); light green
= CpG dyad is only modified on the lower strand(BS = 5mC or 5hmC; oxBS = 5mC
only); blue = CpG dyad is unmodified on both strands (BS = C only; oxBS = C or
5hmC).

rate of the known C, 5mC and 5hmC positions within the hairpin linker (Figure 4.3). The

conversion rates were calculated by dividing the number of sequenced thymines at given

cytosine positions by the total number of obtained reads (Table 4.4 and Table 4.5).

Conversion Rate =
Number of T at C Positions

Number of Reads at C Positions

Conversion of C during BS and oxBS was found to be highly efficient with a conversion

rate of ≥ 99% (Table 4.4 Table 4.5). However, this almost complete conversion comes at

the expense of an unwanted conversion of 5mC/5hmC in the range of 5-10% due to the

harsh bisulfite reaction conditions. Conversion of 5hmC after oxBS was 93%.

Based on the rates, individual conversion erros for BS and oxBS were calculated. A

scheme of all possible conversions and conversion errors are given in Figure 4.4. The
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Tab. 4.4: Conversion rates of C, 5mC and 5hmC of BS samples

Afp IAP L1mdA L1mdT mSat MuERVL Ttc25 Zim3

C 0.996 0.999 0.995 0.993 0.996 0.993 0.994 0.995

5mC 0.0674 0.0628 0.084 0.088 0.0685 0.0819 0.0813 0.0763

5hmC 0.0765 0.0721 0.0736 0.0703 0.0642 0.0662 0.0785 0.0696

Tab. 4.5: Conversion rates of C, 5mC and 5hmC of oxBS samples

Afp IAP L1mdA L1mdT mSat MuERVL Ttc25 Zim3

C 0.996 0.999 0.996 0.994 0.997 0.997 0.996 0.996

5mC 0.0636 0.0900 0.0795 0.0758 0.0685 0.0808 0.1078 0.0773

5hmC 0.920 0.9095 0.909 0.9323 0.93693 0.922 0.942 0.9315

precise BS/oxBS values including conversion errors were then used for HMM as described

in our H(O)TA tool to predict the level and distribution of 5hmC, as well as the enzyme

efficiencies. H(O)TA allows to perform these predictions for individual CpGs. However,

for simplicity, we here predicted the mean levels over all CpGs across one amplicon.

Figure 4.6 shows the mean methylation level of BS and oxBS together with the pre-

dicted 5hmC levels. The ds information demonstrates that 5hmC in most cases occurs in

an asymmetric pattern paired either with C (Figure 4.6, lower diagram, light green) or

5mC (Figure 4.6, lower diagram, dark green). Only the minority of CpGs contain 5hmC

in a symmetrical state (Figure 4.6, lower diagram, yellow).
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Fig. 4.7: Enzyme efficiencies. Predicted enzyme efficiencies for Dnmts and Tets. Dark red =
total methylation activity of Dnmts at hemimethylated CpG dyads (maintenance plus
de novo); red = maintenance methylation of Dnmts at hemimethylated CpG dyads;
blue = de novo activity of Dnmts at CpG dyads; yellow = hydroxylation efficiency of
Tet enzymes at methylated CpG dyads. X-axis = days; Y-axis = efficiency.

In addition to the 5hmC distribution, H(O)TA calculates the enzyme efficiencies for

Dnmts (maintenance and de novo methylation) and Tets (hydroxylation) for each time

point. Our analysis shows that the efficiencies differ clearly between the distinct re-

gions. In general, we can observe a loss in maintenance and de novo methylation activity



4. Two are Better than One: HPoxBS - Hairpin Oxidative Bisulfite Sequencing 120

together with an increase in hydroxylation activity. For some regions de novo methyla-

tion/hydroxylation efficiency is almost zero.

As a second use case we present our HPoxBS analysis of rare PGCs and nonPGC

control cells, isolated from embryos at E10.5 and E11.5 of development. At this time

point, PGCs are known to undergo a rapid replication dependent demethylation, probably

supported by Tet mediated oxidation [47]. We performed HPoxBS on repeat regions and

indeed find indications for the presence of 5hmC in PGCs albeit at low levels. Our analysis

demonstrates that it is possible to downscale the amount of sample material (in our case

50-80 cells/sample).

Finally, as a third application we demonstrate the anal- ysis of human monocytes /

macrophages following the dynamics of 5hmC during an “active” demethylation process.

In previous work we identified several deferentially methylated regions (DMRs) derived

from such active demethylation and showed that the loss of 5mC is likely to be caused by

Tet mediated oxidation [48]. Here, we show HPoxBS results for two DMRs along a time

course of 24 h (0, 12 and after 24 h) following an established differentiation protocol [49]

(Supplement, Section S4.6.4). We indeed detect a region specific presence and dynamic

change of 5hmC during this time course (Supplement, Section S4.6.4).

4.4 Discussion

The understanding of dynamic changes of DNA methylation during development and dis-

ease is a major research area in the field of epigenetics. Such a task can only be realised

if DNA modifications can be measured accurately. This is especially challenging for ox-

idative derivatives of 5mC considering their low abundance and unequal distribution in

the genome. Furthermore there is a clear lack of reproducible and easy-to-handle assays

for determination of their distribution at single base resolution. The precise knowledge

however would allow to model their presumed influence on epigenetic inheritance and tem-

poral stability. In addition, most chemical assays only allow measuring DNA methylation

on one DNA strand, making it impossible to determine the precise rates of symmetric

methylation and its consequences. HPoxBS is the first method to combine HPBS and

oxBS for the simultaneous detection of 5mC and 5hmC levels and their distribution at

both complementary DNA strands.

Our workflow not only describes the generation of sequencing data, but also bioinfor-

matic tools applicable for data analysis and modelling. A key element in our method is the

ligation of a hairpin linker to “fix Watson and Crick” strands to be able to simultaneously

monitor modifications in CpG dyads. In addition, we combine this approach with a dou-

ble bisulfite chemistry, allowing the discrimination between 5mC and 5hmC in the DNA

[32, 33]. We also introduce the novel concept to incorporate 5mC and 5hmC nucleotides

into the hairpin linker. This allows us to directly measure their conversion rates following
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BS and oxBS treatment, respectively. Typically, conversion rates are determined using

spike ins, i.e. small ds oligos. Such oligos are difficult to titrate and frequently perform

with a different conversion efficiency. As an integrated part of the analysed DNA region,

the ligated hairpin linker improves the sample specific conversion rate detection and at

the same time serves as a UMI.

Demonstrating the strength of HPoxBS, we analysed the DNA methylation of several

multi- and single copy sequences in embryonic stem cells (ESCs) under growth conditions

in which the ESCs strongly demethylate their genome [43, 45, 46].

We show that HPoxBS represents a unique novel method to determine the distribution

of 5mC and 5hmC as fully or hemimethylated CpG dyads. Such ds data provide a new

resource for mathematic modelling of proposed DNA methylation maintenance and de

novo methylation activities as well as active processes of DNA demethylation. More

importantly, ds information allows a more accurate discrimination of maintenance and de

novo methylation compared to singe strand data.

Using our recently developed HMM based H(O)TA tool we predict the enzyme effi-

ciencies in discrete regions of the genome. We observe that indeed individual loci display

individual combinations of enzyme efficiencies and DNA demethylation dynamics. Dur-

ing the ESC culturing, i.e. the transition from serum to 2i medium, we detect a general

reduction of de novo methylation, accompanied by an increase in hydroxylation activity

(Figure 4.7). This observation is in concordance with the loss of Dnmt3a/3b protein and

the simultaneous increase in the expression of Tet enzymes in the presence of 2i [43].

In addition, the analysis of PGCs evidences that HPoxBS can be used in experiments,

where only limited amounts of cells or DNA is available, e.g. when analysing repro-

gramming events during early embryonic or germ cell development (Supplement, Section

S4.6.3). Here, both active and passive demethylation processes are known to take place

but the exact involvement of oxidation processes is still debated [47, 49].

Rapid locus specific demethylation can also be found in somatic cells and are like-

wise thought to be Tet mediated. One such example is the generation of region specific

demethylation during monocyte-to-macrophage maturation. Our analysis shows that in-

deed the active loss of 5mC clearly relies on a strong increase of 5hmC level (Supplement,

Section S4.6.4).

All three examples show the broad application possibilities for HPoxBS. Moreover,

these three examples demonstrate possible variations in design (DNA vs cells), molecular

performance (high or low amount of material) and data analysis (and modeling).

4.5 Conclusion

Taken together, we present a step by step protocol of HPoxBS which allows the detection

and distribution of both 5mC and 5hmC. Overall, the outlined procedures can be modified
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and implemented for a number of biological questions, e.g. to understand and model the

dynamic loss and gain of DNA methylation in non dividing aging cells, to characterise the

heterogeneity of epihaplotypes (epigenetic chromosomal patterns) and most importantly

to understand changes occurring during development and differentiation with and without

DNA replication. Ultimately, in combination with new detection methods, our pipeline

could easily be adjusted to likewise, describe the distribution and the behavior 5fC or

5caC [38, 39, 40, 40, 50, 51].
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4.6 Supplementary Data

4.6.1 S.1 Hairpin Oxidative Bisulfite Sequencing

500 ng of mESC DNA was cleaved with 5-10 units of restriction enzyme for 5h or overnight

in a 30µl reaction at the enzyme specific incubation temperature. For Afp, Ttc2, Zim3 the

enzyme TaqI (ThermoScientific) was used. For L1MdT, DNA was digested with BsaWI

(New England Biolabs), for mSat with Eco47I (Thermo Scientific). For L1MdA and IAP,

DdeI (New England Biolabs) was used. The restriction was stopped by a 20 min heat

inactivation at 80°C. The restricted DNA was then subjected to ligation with T4-DNA

Ligase (New England Biolabs) for 16h or overnight. We used 200 units of T4-DNA Lig-

ase, 4µl 10mM ATP and 1µl 100µM hairpin linker. All chemicals were added directly

into the restriction reaction. Finally, the volume was adjusted to 40µl using ddH2O. BS

and oxidative BS treatment was carried out using the TrueMethyl Kit from Cambridge

Epigenetix (now provided by NuGEN) following manufacture’s instructions. The target

genes were amplified using HOTFIREPol® polymerase from Solis BioDyne. Sequencing

was performed on a MiSeq Illumina system (using 2x300bp paired end sequencing). The

computational analysis was done as described in the main manuscript using BiQAnalyz-

erHT, python script (HairpinAnalyzer) and H(O)TA.

4.6.2 S.2 Hairpin Oxidative Bisulfite Sequencing for Low Cell Numbers

Primordial germ cells (PGCs) were collected in 2µl M2 medium. The amount of PGCs

or nonPGCs for each experiment is provided in Table 4.6. Cells were solubilised by

adding 1µl lysis buffer (10mM TrisHCl, 5mM EDTA), 1µl salmon sperm DNA (100 ng)

and 1µl Proteinase K (1mg/ml). The reaction was incubated at 55°C overnight. Pro-

teinase K was inactivated by adding 0.7µl 8.14mM Pefabloc®SC and incubation for 1h

at room temperature. Subsequently, DNA was digested in a 8µl reaction using 5U Eco47I

(ThermoFisher), 0.8µl digestion buffer and 1µl 5mM MgCl2. Digestion was performed

overnight at 37°C and inactivated at 65°C for 20min. The hairpin linker was ligated by

adding 250U T4 DNA ligase (New England Biolabs), 1µl 10mM ATP and 0.5 °l 100µM

Eco47I specific hairpin linker in an overnight reaction at 16°C. Purification, oxidation and

bisulfite treatment were performed using the TrueMethyl Kit from Cambride Epigenetix.

Again, amplification was performed with HOTFIREPol® polymerase from Solis BioDyne.

4.6.3 S.3 HPoxBS on Primordial Germ Cells

PGCs show a global loss of methylation during their development. The demethylation

seems mostly driven by passive, replication dependent mechanisms, but with a possible

influence of 5hmC. To test wherever HPoxBS could also be used for low cell numbers, we
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Tab. 4.6: Cell numbers of nonPGCs and PGCs

Sample Number of Cells

nonPGCs 50

PGCs E10.5 60

PGCs E11.5 -1 70

PGCs E11.5 -2 80

collected PGCs at different developmental stages (E10.5 and E11.5). We successfully gen-

erated hairpin constructs for major satellites (Figure 4.8). Applying our analysis pipeline,

we find considerable levels of 5hmC at both time points (Figure 4.8). We used about 60

cells in case of nonPGCs, approximate 70 cells from E10.5 and between 80 and 90 cells

for PGCs from E11.5.

E E E E E E

E E E E E E

Fig. 4.8: HPoxBS results for PGCs. Methylation pattern maps for BS samples, generated by
the Hairpinanalyzer (A); methylation pattern maps for oxBS samples, generatd by the
Hairpinanalyzer (B); average 5mC level and distribution estimated by H(O)TA (C);
average 5hmC level and distribution calculated by H(O)TA (D); enzyme efficiencies
for maintenance methylation, de novo methylation and hydroxylation predicted by
H(O)TA.

4.6.4 S.4 Active Demethylation in Monocytes

The differentiation of monocytes to macrophages requires the activation of several cell

type specific genes. Demethylation of the corresponding gene promoter accompany the

stable activation of transcription. Interestingly, the differentiation occurs without cell di-

vision or replication which means, that the observed loss of DNA methylation corresponds

to active removal of 5mC. We analysed two previously identified DMRs at the beginning

(0h), in the middle (12h) and the end (24h) of monocyte-to-macrophage differentiation.

Figure 4.9 displays methylation pattern maps created by the Hairpinanalyser as well as
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the average methylation level of BS and oxBS. So far, the process of active demethylation

cannot be described by H(O)TA, but will be soon implemented.

Fig. 4.9: Demethylation of Monocyte DMR2 and DMR10. A: methylation pattern of hairpin
BS; B: methylation pattern of hairpin oxBS; each column represents one CpG dyad,
each row one sequence read i.e. one analysed DNA strand (chromosome); C: average
methylation levels of DMR2 and DMR10 for BS (5mC+5hmC) and oxBS (5mC only).
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4.6.5 S.5 BS and oxBS Data

S.5.1 BS and oxBS Data for mESCs

Tab. 4.7: Obtained reads and methylation calls for Afp

sample # of obtained reads # of analysed CpG 5mC/5mC 5mC/C C/5mC C/C

Serum (d0)-BS 8459 41898 31049 5225 4230 1394

Serum (d0)-oxBS 7200 35683 26537 3646 4300 1200

24h 2i (d1)-BS 8004 39541 25901 6693 4928 2019

24h 2i (d1)-oxBS 6732 33393 20851 4362 5363 2817

72h 2i (d3)-BS 5961 29525 14294 4879 5448 4904

72h 2i (d3)-oxBS 7163 35420 13988 5438 4736 11258

144h 2i (d6)-BS 11406 56386 14537 6203 6210 29436

144h 2i (d6)-oxBS 7024 34696 7339 2986 2177 22194

Tab. 4.8: Obtained reads and methylation calls for IAP

sample # of obtained reads # of analysed CpG 5mC/5mC 5mC/C C/5mC C/C

Serum (d0)-BS 205 874 553 148 130 43

Serum (d0)-oxBS 130 536 338 82 79 37

24h 2i (d1)-BS 254 1091 665 185 180 61

24h 2i (d1)-oxBS 144 586 368 69 107 42

72h 2i (d3)-BS 233 994 553 174 156 111

72h 2i (d3)-oxBS 159 673 367 95 109 102

144h 2i (d6)-BS 356 1561 604 259 282 416

144h 2i (d6)-oxBS 209 876 391 153 128 204
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Tab. 4.9: Obtained reads and methylation calls for L1MdA

Sample # of obtained reads # of analysed CpG 5mC/5mC 5mC/C C/5mC C/C

Serum (d0)-BS 4673 55024 7833 3376 3963 39852

Serum (d0)-oxBS 3774 44457 4955 1916 2135 35451

24h 2i (d1)-BS 3334 39390 4968 2561 2571 29290

24h 2i (d1)-oxBS 3314 39237 3935 1515 1671 32116

72h 2i (d3)-BS 4528 53522 4568 2749 2869 43336

72h 2i (d3)-oxBS 3385 39909 2420 1150 1276 35063

144h 2i (d6)-BS 7033 82765 3646 2555 2697 73867

144h 2i (d6)-oxBS 4824 56647 1643 954 961 53089

Tab. 4.10: Obtained reads and methylation calls for L1MdT

Sample # of obtained reads # of analysed CpG 5mC/5mC 5mC/C C/5mC C/C

Serum (d0)-BS 6214 29632 9570 3497 3274 13291

Serum (d0)-BS 5708 27314 8720 2823 2426 13345

24h 2i (d1)-BS 8969 42648 12289 5589 4837 19933

24h 2i (d1)-oxBS 13697 64778 15498 5917 5237 38126

72h 2i (d3)-BS 7203 34411 5404 3889 3399 21719

72h 2i (d3)-oxBS 3105 14873 1678 906 774 11515

144h 2i (d6)-BS 4560 21775 1138 880 898 18859

144h 2i (d6)-oxBS 5406 25748 1000 590 515 23643

Tab. 4.11: Obtained reads and methylation calls for mSat

Sample # of obtained reads # of analysed CpG 5mC/5mC 5mC/C C/5mC C/C

Serum (d0)-BS 6845 18268 14372 1673 1732 491

Serum (d0)-oxBS 4662 12477 9776 1168 1220 313

24h 2i (d1)-BS 4618 12267 8998 1332 1492 445

24h 2i (d1)-oxBS 5489 14598 10625 1666 1741 566

72h 2i (d3)-BS 5878 15757 10513 1924 2036 1284

72h 2i (d3)-oxBS 4931 13195 8734 1597 1694 1170

144h 2i (d6)-BS 7563 20150 11724 2240 2562 3624

144h 2i (d6)-oxBS 4985 13265 7449 1613 1593 2610
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Tab. 4.12: Obtained reads and methylation calls for MuERVL

Sample # of obtained reads # of analysed CpG 5mC/5mC 5mC/C C/5mC C/C

Serum (d0)-BS 767 2227 1516 293 307 111

Serum (d0)-oxBS 732 2093 1381 295 309 108

24h 2i (d1)-BS 1068 3132 1978 452 553 149

24h 2i (d1)-oxBS 1391 4131 2607 597 689 238

72h 2i (d3)-BS 847 2498 1262 420 471 345

72h 2i (d3)-oxBS 1411 4205 2276 746 735 448

144h 2i (d6)-BS 743 2186 702 321 365 798

144h 2i (d6)-oxBS 1182 3439 927 470 584 1458

Tab. 4.13: Obtained reads and methylation calls for Ttc25

Sample # of obtained reads # of analysed CpG 5mC/5mC 5mC/C C/5mC C/C

Serum (d0)-BS 8702 51478 22363 6297 5945 16873

Serum (d0)-oxBS 8180 48395 20641 3926 4338 19490

24h 2i (d1)-BS 7473 44126 15431 5340 6342 17013

24h 2i (d1)-oxBS 7679 45378 16499 4042 4448 20389

72h 2i (d3)-BS 7481 44234 7472 5705 4950 26107

72h 2i (d3)-oxBS 7669 45206 6059 2630 2501 34016

144h 2i (d6)-BS 3541 20881 595 627 538 19121

144h 2i (d6)-oxBS 7925 46621 1310 619 570 44122

Tab. 4.14: Obtained reads and methylation calls for Zim3

Sample # of obtained reads # of analysed CpG 5mC/5mC 5mC/C C/5mC C/C

Serum (d0)-BS 1574 12484 7754 1258 1695 1777

Serum (d0)-oxBS 12986 102951 63716 13448 11308 14479

24h 2i (d1)-BS 7467 59235 33002 6249 8157 11827

24h 2i (d1)-oxBS 10156 80510 43046 11222 11947 14295

72h 2i (d3)-BS 6507 51557 5202 2983 4875 38497

72h 2i (d3)-oxBS 8345 66140 13864 10965 10020 31291

144h 2i (d6)-BS 4203 33359 345 457 503 32054

144h 2i (d6)-oxBS 15675 124178 2434 4100 4761 112883
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S.5.2 BS and oxBS Data for Monocytes

Tab. 4.15: Obtained reads and methylation calls for DMR2

Sample # of obtained reads # of analysed CpG 5mC/5mC 5mC/C C/5mC C/C

0h-BS 6467 44577 32911 2589 3035 6042

0h-oxBS 5423 37282 26198 2109 3249 5726

12h-BS 5710 39094 12315 4091 4070 18618

12h-oxBS 163 1115 204 90 87 734

24h-BS 4171 28480 3523 1893 1492 21572

24h-oxBS 2459 16734 556 359 441 15378

Tab. 4.16: Obtained reads and methylation calls for DMR10

Sample # of obtained reads # of analysed CpG 5mC/5mC 5mC/C C/5mC C/C

0h-BS 12612 37464 32993 1805 1077 1589

0h-oxBS 19022 56570 40167 6293 5007 5103

12h-BS 16604 49431 24057 7936 5210 12228

12h-oxBS 15623 46510 16607 5427 4019 20457

24h-BS 16330 48658 11901 6786 4264 25707

24h-oxBS 17878 53324 397 795 1470 50662

S.5.3 BS and oxBS Data for PGCs

Tab. 4.17: Obtained reads and methylation calls for mSat

Sample # of obtained reads # of analysed CpG 5mC/5mC 5mC/C C/5mC C/C

nonPGCs-BS 12401 32721 26745 1348 1397 3231

nonPGCs-oxBS 8113 21430 17603 880 884 2063

PGCs-E10.5-BS 11964 31610 8253 5556 4796 13005

PGCs-E10.5-oxBS 9824 26035 6324 4781 4092 10838

PGCs-E11.5-BS 11658 30722 7767 2635 2441 17879

PGCs-E11.5-oxBS 7828 20661 4946 1842 1527 12346

PGCs-E11.5-BS 11300 29901 5824 2916 2396 18765

PGCs-E11.5-oxBS 11362 30000 5449 2924 2426 19201
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4.6.6 S.6 Linker Sequences

Tab. 4.18: Sequences of the used hairpin linker for Afp, IAP, L1mdA, L1mdT, mSat, MuERVL,
Ttc25 and Zim3; M indicates 5mC, H 5hmC. All hairpin linker carry a 5’-
phosphorylation.

Hairpin Linker Sequnce

Afp-HP Pho-CGGGGM CCATDDDDDDDDATGGGH CC

IAP-HP Pho-TNAGGGM CCATDDDDDDDDATGGGH CC

L1mdA-HP Pho-TNAGGGM CCATDDDDDDDDATGGGH CC

L1mdT-HP Pho-CCGGAGGGM CCATDDDDDDDDATGGGH CCT

mSat-HP Pho-GNCGGGM CCATDDDDDDDDATGGGH CC

MuERVL-HP Pho-GNCGGGM CCATDDDDDDDDATGGGH CC

Ttc25-HP Pho-CGGGGM CCATDDDDDDDDATGGGH CC

Zim3-HP Pho-CGGGGM CCATDDDDDDDDATGGGH CC

DMR2-HP Pho-TNAGGGM CCATDDDDDDDDATGGGH CC

DMR10-HP Pho-TNAGGGM CCATDDDDDDDDATGGGH CC
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4.6.7 S.7 Primer Sequences

Tab. 4.19: Primer for amplification of the analysed regions after BS or oxBS treatment.

Primer Sequnce

Afp-HP-Forward TTTTGTTATAGGAAAATAGTTTTTAAGTTA

Afp-HP-Reverse AAATCACAAAACATCTTACCTATCC

IAP-HP-Forward TTTTTTTTTTAGGAGAGTTATATTT

IAP-HP-Reverse ATCACTCCCTAATTAACTACAAC

L1mdT-HP-Forward TGGTAGTTTTTAGGTGGTATAGAT

L1mdT-HP-Reverse TCAAACACTATATTACTTTAACAATTCCCA

L1mdA-HP-Forward GTGAGTGGATTATAGTGTTTGTTTTAA

L1mdA-HP-Reverse AAATAAATCACAATACCTACCCCAAT

mSat-HP-Forward GGAAAATTTAGAAATGTTTAATGTAG

mSat-HP-Reverse AACAAAAAAACTAAAAATCATAAAAA

MuERVL-HP-Forward TAAGGGTTAGGTGGTAGTATTGAAT

MuERVL-HP-Reverse CAAAAACCAAATAACAACATTAAAT

Ttc25-HP-Forward TGAAAGAGAATTGATAGTTTTTAGG

Ttc25-HP-Reverse AAAACAAAAATCTATTCCATCACTC

Zim3-HP-Forward TTTATTTATTTGTGTGTGGTTTTTG

Zim3-HP-Reverse CACATATCAAAATCCACTCACCTAT

DMR2-HP-Forward TGAGTAATTGGGTTATAGGGAATAAAAAATTTT

DMR2-HP-Reverse CTTCCTATATAAACAACTAAATCACAAAAAACA

DMR10-HP-Forward GTTAGTATTGGTTTTGGGGTGGATTTT

DMR10-HP-Reverse ATCTAAACTAACCTAAACCCTTACCCT

4.6.8 S.8 Hairpin Reference Sequence

TTTTGTTATAGGAAAATAGtTTTTAAGTTACAAAGCATCTTACCTATCCCAAACTCATTTTCG
TGCAATGCTTTGGACGCAGCGAAATGTAGCAGGAGGATGAGGGAAGCGGGTGTGATCCACTTC
ATGGCTGCTGGTTCCTTCACCGCAGGCAGTGCTGGAAGTGGGATGTTTCGGGGMCCTADDDDD
DDDTAGGGHCCCGAAACATCCCACTTCCAGCACTGCCTGCGGTGAAGGAACCAGCAGCCATGA
AGTGGATCACACCCGCTTCCCTCATCCTCCTGCTACATTTCGCTGCGTCCAAAGCATTGCACG
AAAATGAGTTTGGGATAGGTAAGATGtTTTGTGATTT

Fig. 4.10: Reference Sequence for Afp
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TGTCACTCCCTGATTGGCTGCAGCCCATCGGCCGAGTTGACGTCACGGGGAAGGCAGAGCACA
TGGAGTAGAGAACCACCCTCGGCATATGCGCAGATTATTTGTTTACCACCTAGGGMCCATNNN
NNNNNATGGGHCCTAAGTGGTAAACAAATAATCTGCGCATATGCCGAGGGTGGTTCTCTACTC
CATGTGCTCTGCCTTCCCCGTGACGTCAACTCGGCCGATGGGCTGCAGCCAATCAGGGAGTGA
CA

Fig. 4.11: Reference Sequence for IAP

TCCAATCGCGCGGAACTTGAGACTGCGGTACATAGGGAAGCAGGCTACCCGGGCCTGATCTGG
GGCACAAGTCCCTTCCGCTCGACTCGAGACTCGAGCCCCGGGCTACCTTGCCAGCAGAGTCTT
GCCCAACACCCGCAAGGGCCCACACGGGACTCCCCACGGGACCCTNAGGGMTTATDDDDDDDD
ATGGGHCCTNAGGGTCCCGTGGGGAGTCCCGTGTGGGCCCTTGCGGGTGTTGGGCAAGACTCT
GCTGGCAAGGTAGCCCGGGGCTCGAGTCTCGAGTCGAGCGGAAGGGACTTGTGCCCCAGATCA
GGCCCGGGTAGCCTGCTTCCCTATGTACCGCAGTCTCAAGTTCCGCGCGATTGGATTGGGGCA
GGCACTGTGATCCACTC

Fig. 4.12: Reference Sequence for L1mdA

CCCGGGACCAAGATGGCGACCGCTGCTGCTGTGGCTTAGGCCGCCTCCCCAGCCGGGTGGGCA
CCTGTCCTCCGGAGGGMCCATDDDDDDDDATGGGHCCCCGGAGGACAGGTGCCCACCCGGCTG
GGGAGGCGGCCTAAGCCACAGCAGCAGCGGTCGCCATCTTGGTCCCGGG

Fig. 4.13: Reference Sequence for L1mdT

GGAAAATTTAGAAATGTTTAATGTAGGACGTGGAATATGGCAAGAAAACTGAAAATCATGGGA
AATGAGAAACATCCACTTGTCGACTTGAAAAATGACGAAATCACTAAAAAACGTGAAAAATGA
GAAATGCACACTGAAGGNCGGGMCCATDDDDDDDDATGGGHCCGNCCTTCAGTGTGCATTTCT
CATTTTTCACGTTTTTTAGTGATTTCGTCATTTTTCAAGTCGACAAGTGGATGTTTCTCATTT
TTTATGATTTTTAGTTTTTTTGTT

Fig. 4.14: Reference Sequence for mSat

CGCCCGAGACAAGGTGATTCTAGTTATTATAATGGACAGCGTAGACAAAAGAATGTTTATAAT
AACATACCCAGTAATGGTCAGCACAGGAGAGGTGAAATTTATAATGGCATGACTCGGTTGGNC
GGGMCCATDDDDDDDATGGGHCCGNTTCAACCGAGTCATGCCATTATAAATTTCACCTCTCCT
GTGCTGACCATTACTGGGTATGTTATTATAAACATTCTTTTGTCTACGCTGTCCATTATAATA
ACTAGAATCACCTTGTCTCGGGCG

Fig. 4.15: Reference Sequence for MuERVL

CCAGTAGATCCTCAGCTGGGGGCAGGGATCTATTCCATCACTCCCCTTCCGTGTCGGGATTTC
GTGCAGCTCAGACGGGTCCAAGTCTTACACAAGCTGTCCTAACTGCTGTGCGTTTATATAACA
ACTACCCGGTTGTGTTTAGAAAACACTGTTTTCGGGGMCCTADDDDDDDDATGGGHCCCGAAA
ACAGTGTTTTCTAAACACAACCGGGTAGTTGTTATATAAACGCACAGCAGTTAGGACAGCTTG
TGTAAGACTTGGACCCGTCTGAGCTGCACGAAATCCCGACACGGAAGGGGAGTGATGGAATAG
ATCCCTGCCCC

Fig. 4.16: Reference Sequence for Ttc25
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CCCGGCCACCATAGTCGGATTATCCGTGGGCGGGGTGAGATGGACGGAGCGCCTTGCAGACCT
CAGGAAAACCTCCCCACGCCTGTCCGGCCTTGGCTTGGTGACAGGGAAACTGGCTGGACTCGG
GGMCCATDDDDDDDDATGGGHCCCGAGTCCAGCCAGTTTCCCTGTCACCAAGCCAAGGCCGGA
CAGGCGTGGGGAGGTTTTCCTGAGGTCTGCAAGGCGCTCCGTCCATCTCACCCCGCCCACGGA
TAATCCGACTATGGTGGCCGGGCAAGGACCACAC

Fig. 4.17: Reference Sequence for Zim3

AGTATACACAGCGGACGTCAGCAGAGGTGGGCGGCAGGCGAGCCTCCTGCAGGAGCAGGCGGTCCCCTGAAGAAACTCCTTTC
GGAGTTGGCTCCTCCCCGACTTTTCAGGGAGGGATGTGGAGCAGACTCTGTGCCACCTGCCCTNAGGGMTTATDDDDDDDDAT
GGGHTTCTNAGGGCAGGTGGCACAGAGTCTGCTCCACATCCCTCCCTGAAAAGTCGGGGAGGAGCCAACTCCGAAAGGAGTTT
CTTCAGGGGACCGCCTGCTCCTGCAGGAGGCTCGCCTGCCGCCCACCTCTGCTGACGTCCGCTGTGTATACTGA 

Fig. 4.18: Reference Sequence for DMR2

TGTGAGGCTGTGTGGTTGCCAGGGAAGCCAGAAGAAATGACTTACTCCTGCCCCTGCCTCTAATGTCATGCGGTCACAAGTCC
CCAGAAGGTCTGGGCTGGCCTGGGCCCTTGCCCTCCCCACGGTGGGGGCTCACCCAGCCTGGGCGCGCTGGTCACACTNAGGG
MCCATDDDDDDDDATGGGHCCNTGAGTGTGACCAGCGCGCCCAGGCTGGGTGAGCCCCCACCGTGGGG 

Fig. 4.19: Reference Sequence for DMR10

4.6.9 S.9 R-script Hairpinizer V2

The Hairpinizer V2 is a small R script which builds hairpin reference sequences of a

region of interest. For this, the user has to provide the genomic sequence of the region

of interest, possible restriction enzymes, including their cutting sequence, as well as the

sequence of the corresponding hairpin linker. Hairpinizer V2 screens the upper strand for

restriction sites, cuts the DNA, attaches the hairpin linker to the restriction site and adds

the lower DNA strand sequence to the other side of the hairpin linker. Subsequently, this

hairpin construct can then be used for primer design and building of reference sequences

for BiQHT. The complete code of the Hairpinizer V2 is provided on the following pages:

The underlying code of the Hairpinizer V2 can be found in the supplement of the

original publication [52]
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�Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charter-

house Square, London EC1M 6BQ
**Epigenetics Program, The Babraham Institute, Cambridge, CB22 AT, UK



5. Genome Wide Efficiency Profiling of Single CpGs 141

Authoring of Methods section 5.2.3 “Modeling” and 5.2.4 “Clustering of Single CpG

Efficiencies”, results concerning spatial clustering, including generation of figure 5.9. Au-

thoring of supplement, section 5.6.2 “Hidden Markov Model” including figures 5.13 - 5.22,

section 5.6.3 “Maximum Likelihood Estimation (MLE)”, as well as part of section 5.6.5,

“Additional Results” concerning “ES Cell Chromosomes Results” (Figure 5.26 - 5.33).

Dr. Karl Nordström: Processing of sequencing data and generation of primary hairpin

sequencing output, meta data analysis in form of genetic annotation of CpGs. Contribut-

ing in authoring of Methods concerning the processing of sequencing data.

Abdulrahman Salhab: Reprocessing of chromatin immuno precipitation sequencing data,

preparation of methylation segmentation data. Contributing in authoring of Methods

concerning the application of MethylSeekR.

Dr. Fabian Müller: Conduction of LOLA enrichment analysis. Revision of the manuscript,

commenting and advising on data analysis and formulations within the manuscript.

Prof. Dr. Ferdinand von Mayenn: Cultivation of embryonic stem cells and isolation of

genomic DNA. Revision of the manuscript, commenting and advising on data analysis

and formulations within the manuscript.

Dr. Gabriella Ficz: Providing relevant DNA samples to analyse. Revision of the manuscript,

commenting and advising on data analysis and formulations within the manuscript.

Prof. Dr. Wolf Reik: Supervision. Consulting. Revision of the manuscript, commenting

and advising on data analysis and formulations within the manuscript.

Prof. Dr. Verena Wolf: Supervision of Hidden Markov Modelling, clustering and spatial

correlation. Financing. Revision of the manuscript i.e. changes in formulation/wording

and structure of the text.

Prof. Dr. Jörn Walter: Supervision of experimental work. Financing. Revision of the

manuscript i.e. changes in formulation/wording and structure of the text.



5. Genome Wide Efficiency Profiling of Single CpGs 142

Abstract

Background DNA methylation is an essential epigenetic modification, which is set and

maintained by DNA methyl transferases (Dnmts) and removed via active and passive

mechanisms involving Tet mediated oxidation. Yet, activity profiles of Dnmts and Tets

at base resolution have not been achieved so far. Here we present a novel combination of

precise genome wide mapping of 5mC and 5hmC and a HMM based analysis to determine

the enzymatic contributions during developmental changes at CpG resolution.

Results We describe a novel reduced representation hairpin oxidative bisulfite sequenc-

ing (RRHPoxBS) approach, which allows to measure and compare 5mC and 5hmC at

single CpGs in DNA double strands. We apply this method to follow the genome wide

5mC/5hmC changes during a Serum-to-2i shift in ES cells comparing the progressive

demethylation of WT and Tet Triple KO ES cells over time. On these data we apply

an extended genome-wide version of our previously presented Hidden Markov Model to

calculate the efficiencies of Dnmts and Tets along the genome at CpG resolution. We

find that Dnmts and Tets exhibit antagonistic effects on methylation stability in a very

contextual manner with strong links to gene structure and other genetic and epigenetic

control factors.

Conclusions Our data show a very strong dynamic and contextual control of complemen-

tary and antagonistic Dnmt and Tet activities. De novo and maintenance methylation

activities are most pronounced across gene bodies and promoters of inactive genes, while

Tets exhibit their highest activity around unmethylated regulatory elements, i.e. at active

promoters and enhancers. The absence of Tets leads to a misregulation of Dnmts resulting

in a more persistent de novo methylation activity and an ectopic maintenance efficiency.

5.1 Background

Transcriptional access to genetic information encoded in the DNA is regulated by epige-

netic mechanisms, such as DNA methylation [1, 2, 3, 4]. In mammals, the methylation

of DNA is restricted to cytosine and is almost exclusively found in a palindromic CpG

di-nucleotide context [5, 6, 7]. Generation of 5-methylcytosine (5mC) is controlled by

the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. These enzymes catalyse the

transfer of a methyl group from s-adenosyl methionine to the fifth carbon atom of cytosine.

Dnmt1 is responsible for maintaining an existing methylation pattern after replication.

Via interaction with Uhrf1 and PCNA, Dnmt1 is tightly associated with the replication

machinery [8, 9]. Furthermore, the cooperation with Uhrf1 modulates Dnmt1 to be re-

ceptive for hemimethylated DNA generated after replication [10, 11]. Thus, the protein

complex post-replicatively copies the methylation pattern from the inherited to the newly



5. Genome Wide Efficiency Profiling of Single CpGs 143

synthesised DNA strand [12, 13]. Dnmt3a and Dnmt3b methylate DNA independently of

its methylation status (hemimethylated or unmethylated) and are mainly responsible for

the establishment of new methylation patterns during development [14, 15].

However, several studies indicate that the strict separation of Dnmt1 and Dnmt3a/b

activity is not coherent and that under certain conditions, these enzymes exhibit overlap-

ping functions [16, 17, 18].

Once established, 5mC can be further processed by a family of di-oxigenases, the

ten-eleven translocation enzymes Tet1, Tet2 and Tet3 [19, 20, 21]. These Fe(II) and

oxo-glutarate-dependent enzymes consecutively oxidise 5mC to 5-hydroxymethyl cytosine

(5hmC), 5-formyl cytosine (5fC) and ultimately to 5-carboxy cytosine (5caC) [22, 23].

5hmC is the most abundant oxidative variant and can be found in numerous cell types

[24, 25, 26]. Each oxidation step changes the chemical properties of the base and with

it its biological function [27, 28, 29]. Several mechanisms have been proposed in which

oxidative cytosine derivatives (oxC) serve as an intermediate during the course of active

or passive demethylation [30, 31, 32, 33, 34]. Such removal of 5mC occurs locally during

cell differentiation, but also on a genome wide scale in the zygote, as well as during the

maturation of primordial germ cells (PGCs) [35, 36, 37].

Global loss of 5mC can also be observed in cultivated mouse embryonic stem cells

(ES cells) during their transition from Serum to 2i medium. Under classical Serum/LIF

conditions, ES cells exhibit DNA hypermethylation, whereas upon transition to GSK3β

and Erk1/2 inhibitors (2i) containing medium, the cells experience a gradual genome wide

loss of 5mC [38, 39, 40]. Even though the enzymatic mechanisms of oxCs generation are

well characterised, the question how oxCs affect the maintenance of DNA methylation or

to which extent they contribute in changing methylation patterns remains still elusive.

In order to address this question we developed Reduced Representation Hairpin

oxidative Bisulfite Sequencing (RRHPoxBS). Our method combines three essential fea-

tures: (i) a genome wide detection of a defined number of CpGs using restriction enzymes

(REs), (ii) a strand-specific detection of 5mC based on covalent bonding of top and bottom

strand by ligating a short hairpin oligo (HP) and lastly, (iii) the simultaneous detection

of 5mC and 5hmC using oxidative bisulfite sequencing (oxBS) [41, 42, 43, 44, 45]. We

applied RRHPoxBS to the above mentioned Serum-to-2i-shift of wild type (WT) and Tet

triple knock-out (Tet TKO) mouse ES cells to investigate the role of Tets and 5hmC in

the progress of demethylation.

Using an extended version of a Hidden Markov Model (HMM), first presented in

[46, 47], we predict the levels and the strand specific distribution of 5mC and 5hmC.

In addition, we estimate efficiencies for maintenance methylation, de novo methylation,

and hydroxylation of Dnmts and Tets over time in 2i. We perform a combined HMM

analysis of the observations of oxidative and non-oxidative bisulfite sequencing to obtain

a very accurate estimation of methylation and hydroxylation activities. We then develop
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a sophisticated clustering approach for the corresponding methylation and hydroxylation

efficiencies in order to identify the main profiles of enzymatic activity.

We find that Tet activity is highest at unmethylated regions such as promoters and

transcription factor binding sites(TFBS). By computing spatial cross-correlations, we

show that the methylation and hydroxylation efficiencies are negatively correlated through-

out the genome. Finally, we observe that the absence of Tet enzymes in TKO cells leads to

a change in the activity profile of maintenance methylation, which is further pronounced

at regions originally protected by Tet enzymes in WT ES cells.

5.2 Methods

5.2.1 Reduced Representation Hairpin Oxidative Bisulfite Sequencing (RRHPoxBS)

1.2µg DNA is divided equally into three 0.5ml reaction tubes and digested in a 20µl re-

action using 20U of either HaeIII (NEB), AluI (NEB) or HpyCH4V (NEB), respectively.

The reactions are incubated over night for a minimum of 12h at 37�. Restriction enzymes

are inactivated at 80� for 30min. The reactions are pooled and subjected to a ligation

step. During this process, hairpin linker and sequencing adapter are introduced to the

opposing ends of each restriction fragment. For this, 200mM biotin labeled hairpin linker

and 100mM sequencing adapter are added to the digested DNA, incubated with 1mM

ATP and 4000U T4 DNA Ligase (NEB) for 16h at 16�. The reaction is purified using

AMPureXP beads followed by enrichment for hairpin containing fragments with strep-

tavidin beads. The library is then subjected to BS/oxBS work-flow of the TrueMethyl

kit from CEGX according to manufacturer’s instructions. Amplification of the library

was done with HotStarTaq® polymerase (QIAGEN) and sequencing was performed on

an Illumina HiSeq2500 platform in a 150bp paired-end sequencing mode. (see Figure 5.12

for schematic overview)

5.2.2 Read Mapping and Methylation Calling

The sequences are aligned as suggested by Porter et al. [48]. In detail; reads are trimmed

for adapter, hairpin-linker and 3’ quality (Q≥20) with TrimGalore! [49] and cutadapt

[50]. Trimmed read pairs are aligned with the Smith-Waterman algorithm allowing for

bisulfite induced mismatches. The two bisulfite converted strands are used to deduce the

original genomic sequence. Mismatches other than G-to-A and T-to-C are replaced with

N. The resulting sequences are aligned to the mouse genome (mm10) with GEM-mapper

(beta build 1.376) [51], after which the methylation information is reintroduced with a

custom pileup function based on HTSJDK [52] and ratios for the four methylation states

are calculated for each cytosine. The pipeline was implemented with the Ruffus pipeline

framework [53].
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5.2.3 Modeling

Estimation of (Hydroxy-)Methylation Levels

For CpGs with observations at up to two time points, we combined information from

BS and oxBS experiments to arrive at maximum likelihood estimates (MLEs) for strand

specific (hydroxy-)methylation levels for each observation time point. The derived MLEs

take into account the conversion errors of each experiment and we estimate their accuracy

by approximating the corresponding standard deviations. For details see Section S5.6.2

Estimation of Enzyme Efficiencies

For those CpGs, for which the maximal number of three observation time points is avail-

able, we defined an underlying discrete time Markov process that shapes the demethy-

lation dynamics. The state space of the process is the set of possible CpG site’s state

s ∈ S = {u,m, h}2, where state s encodes whether the upper and the lower strand of

the site is unmethylated (u), methylated (m) or hydroxylated (h). E.g. in state (h, u)* the

upper strand is hydroxylated and the lower strand is unmethylated. The model’s time

parameter corresponds to the number of cell divisions and the transitions of a state are

being triggered by consecutive division or (hydroxy-) methylation events. Getting mea-

surements along with the conversion errors from two different experiments (BS and oxBS)

allows us to define one HMM for each experiment and get estimates for the model’s pa-

rameters. The last are linear functions that represent the enzymes’ efficiencies over time.

In addition, a parameter related to the recognition of 5hmC by Dnmts (passive demethy-

lation) is being estimated for each CpG. For a detailed presentation of the above model

we refer the reader to Giehr et al. 2016, and Kyriakopoulos et al., 2017 [47, 46], as well

as to Section S5.6.2.

In case of an adequate number of samples per time point, when a very deep sequenc-

ing is possible, the MLE provides accurate estimates with narrow confidence intervals

[47]. On the other hand, MLE is known to give imprecise results for a smaller number of

samples [54, 55] and in particular in cases where the true values are close to the bound-

ary constraints [56]. Since a consistently deep sequencing (≥100x) is under the current

methods impossible on a genome wide level, we develop here a combination of MLE and

Bayesian Inference (BI) methods in order to get accurate estimates even in genome re-

gions with less deeper sequencing. In particular, we use a MLE step as initial information

to be given to a Metropolis-Hastings MCMC sampler, from which we get the posterior

distribution of the parameters. We do verify that a BI method is indeed necessary here

to get meaningful results. The approach is being described in detail in Section S5.6.4

*For simplicity we will often write hu etc. instead.



5. Genome Wide Efficiency Profiling of Single CpGs 146

5.2.4 Clustering of Single CpG Efficiencies

We cluster the genome wide output of our model, meaning the efficiencies of the enzymes

responsible for maintenance, de novo and hydroxylation over time for 1.5 · 106 CpGs,

uniformly located over the entire genome. Since we aim to cluster parameter estimates,

we consider a sophisticated clustering approach that takes into account the uncertainty,

i.e, posterior’s covariance matrix, around the BI estimators, i.e., posterior’s mean. The

clustering approach we apply here gives a different and an evidently more natural ‘optimal’

number of clusters than a typical k-means clustering algorithm would return.

5.2.5 Segmentation

The whole genome bisulfite data of primed mouse ES cells (Ficz et al. 2013) was seg-

mented into low methylation regions (LMRs), unmethylated regions (UMRs) and partially

methylated domains (PMDs) [38], using MethylSeekR [57]. The rest of the genome, after

filtering gaps annotated by UCSC, was called highly methylated regions (HMRs) [58].

The aggregated strand information per CpG was used as an input for MethylSeekR. The

used parameters were the following; coverage of ≥5x, ≤50% methylation and FDR <0.05

for calling hypomethylation regions and consequently a cutoff of ≥ 4 CpGs per LMR.

5.2.6 LOLA Analysis

We performed a standard LOLA analysis against the regular LOLA universe, extended

by ChIP-Seq profiles from von Meyenn et al., 2016 (GSE70724, GSE77420) and Walter

et al., 2016 (GSE71593) [40, 59, 60].

5.3 Results

Previous studies showed a dynamic loss of DNA methylation in mouse ES cells during

their transition from Serum/LIF to 2i containing medium and only partially address the

contribution of Dnmt and Tet efficiencies [38, 39, 60]. In this context, the estimation

of enzyme efficiencies relies on aggregated methylation data and almost exclusively on

classical single strand information [60]. The aim of this study was to model the methy-

lation changes of single CpGs during Serum-to-2i transition using precise strand specific

information, obtained by genome wide hairpin sequencing under conventional BS and ox-

idative bisulfite (oxBS) conditions. To achieve this, we here describe the first application

of a combined hairpin BS and oxBS sequencing pipeline at a reduced representation level.

Following our approach we reach in total around 3 million CpGs in both WT and Tet

TKO cells across the mouse genome with a sequencing depth sufficient for comparative

modeling. After modelling, we obtain enzymatic efficiencies for individual CpGs, which

permits a more detailed investigation of Dnmt and Tet activities.
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We sequenced six hairpin libraries of WT ES cells at three different time points:

Serum/LIF (d0), 72h 2i (d3) and 144h 2i (d6), and four Tet triple KO cells (Serum/LIF,

24h 2i, 48h 2i and 96h 2i). For WT we sequenced one BS and one oxBS library for each

sample, respectively. In the case of Tet TKO ES cells, four HPBS libraries were sequenced:

Serum/LIF (d0), 48h 2i (d1), 96h 2i (d4) and 168h (d7). Using an extended version of our

previously described HMM [47], we calculate the (hydroxy-) methylation levels and the

detailed distribution of 5hmC, and in addition, we estimate the efficiencies of Dnmt and

Tet enzymes for each individual CpG. Taking advantage of the strand specific informa-

tion, we distinguish in the case of Dnmts between maintenance and de novo methylation

events. At last, the comparison of WT and TKO cells allows us to determine any changes

in maintenance and de novo methylation efficiency in the absence of Tet enzymes and

oxidised cytosine derivatives.

5.3.1 Tet TKO Cells Display Reduced Demethylation Rates

First, we determined the level and distribution of 5mC within the obtained RRHPoxBS

data. In line with previous reports [38, 39, 60] we observe an overall level of 65% CpG

methylation in primed ES cells (Serum/LIF) and a consecutive loss of methylation upon

cultivation in 2i to 20% (Figure 5.1A). The majority of methylated CpGs is present in a

symmetric methylation state under both cultivation conditions. Furthermore, hemimethy-

lation of CpGs seems to be equally distributed among both DNA strands. However, the

level of hemimethylated CpGs is always lower in oxBS samples, indicating that a consid-

erable amount of 5hmC is present in a hemi(hydroxy)methylated (5hmC/C or C/5hmC)

state.

Tet TKO cells present a higher methylation level under both, primed (Serum/LIF)

(75%) and naive (2i) (40%) conditions. Hemimethylation in Tet TKO cells at d0 is

strongly reduced compared to WT cells. In addition, we observe that Tet TKO cells

exhibit a reduced demethylation rate in comparison to WT ES cells. In order to determine

the difference in the demethylation kinetics, we calculated the increase of unmethylated

CpGs per day (Supplement Section S5.6.5, Figure S5.35).WT ES cells show an increase of

unmethylated CpGs of more than 8%, where as Tet TKO cells exhibit demethylation rates

of 4.2%. Hence, demethylation in the absence of Tet enzymes is reduced by around 50%,

indicating that Tet oxidation notably contributes to DNA demethylation in the present

system.

We observe a similar behavior for nonCpG methylation. WT ES cells show approx-

imately 1% nonCpG methylation at d0, which quickly declines in 2i (Figure 5.1B). In

contrast, Tet TKO cells exhibit twice as much nonCpG methylation under Serum/LIF

conditions and furthermore, nonCpG methylation seems to be more stable during 2i cul-

tivation under naive conditions (5.1 C). Even at day7, we still detect considerable levels

of methylated CpGs in a nonCpG context (Figure 5.1D). In accordance with previous ob-
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Fig. 5.1: Average CpG and nonCpG Methylation. (A) Genome wide average CpG methylation
level of wild type ES cells cultivated under Serum/LIF conditions (d0), and their shift
to 2i after 72h (d3), 144h (d6). (B) Average nonCpG methylation level of WT cells.
(C) Average CpG methylation pattern of Tet triple knockout ES cells. (D) Average
nonCpG methylation level of Tet triple knockout ES cells.

servations, the majority of nonCpG methylation is present in a CpA context and mostly

located in regions with high CpG methylation levels (Supplement, Section S5.6.5, Figure

S5.43-S5.45).

5.3.2 Tets are More Active at Accessible Chromatin

Using Bayesian Inference (BI) on the HMM parameters (Section S5.6.4), we predicted the

efficiencies of maintenance methylation, de novo methylation and hydroxylation activity

based on BS and oxBS data for WT ES cells. The efficiencies describe the enzymatic

activities of Dnmts and Tets in 2i, which facilitate the continuous methylation loss under

these conditions. First, we investigated the efficiency profiles of Dnmts and Tets across

genes. Both, maintenance and de novo methylation activity show initially high efficien-

cies at the gene body (≥ 0.6 for maintenance, and ≥ 0.2 for de novo), whereas at the

transcription start site, efficiencies are strongly reduced (Figure 5.2A). In the case of de

novo methylation, efficiency drops almost to zero. The maintenance efficiency of 0.6 is

relatively low compared to previous estimations under Serum/LIF conditions (minimum

0.9), indicating a notable reduction of maintenance methylation in 2i medium [60]. Hy-

droxylation on the other hand shows an inverse behaviour: Reduced activity at the gene

body and high efficiency at the transcription start site (TSS). Over time we observe an

increase of Tet activity at the gene body, whereas de novo activity shows a strong reduc-
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Fig. 5.3: Spatial correlation of enzyme efficiencies in WT and Tet TKO cells. (A) Auto- and
cross correlation of maintenance, de novo and hydroxylation efficiency at day0. Y-axis
displays correlation, x-axis distance of CpGs in base pairs. Red lines indicate confident
intervals. grey bars = correlation with p-value ≤ 0.01, green = correlation with p-value
> 0.01. Correlation in WT cell, (B) correlation in Tet TKO cells.

tion. The temporal profile of maintenance activity suggests no further changes at the gene

body, which suggests that the physiological changes affecting maintenance methylation

represent early events and are completed within the first 24h.

Concerning their profiles, 5mC and 5hmC level resemble those of de novo and main-

tenance methylation efficiencies. Both modifications are enriched at the gene body and
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reduced at the TSS. The reduced levels of 5hmC at already d0 across the TSS, despite

the strong Tet activity is on the one hand the consequence of missing substrate, but may

also suggest a further processing and constant turnover of 5mC and 5hmC (Figure 5.2B).

To further investigate the observed enzymatic antagonism, we calculated the spatial

auto and cross-correlations of methylation and hydroxylation efficiencies. In line with the

efficiency profiles (Figure 5.2), we consistently see a positive correlation between main-

tenance and de novo efficiency and, in addition, a negative correlation of hydroxylation

with both methylation efficiencies. With increasing distance of CpGs, correlations get

closer to zero (Figure 5.3a, and Supplement Section S5.6.4, Figure 5.23). Maintenance

autocorrelation drops rather quickly and becomes almost zero at around 1500bp. After

this point, correlation is also no longer significant (p-value > 0.01). In contrast, autocor-

relation of de novo and hydroxylation efficiency show initially higher values but also seem

to smoothen out after around 2000bp on average. The Pearson correlation between the

(hydroxy-)methylation levels and the enzyme activities hints towards a causal relation-

ship of hydroxylation and unmethylated CpGs (C/C), indicating that Tet activity might

maintain the unmethylated state (Section S5.6.4, Figure 5.24).

Interestingly, in Tet TKO cells, autocorrelation of maintenance methylation efficiency

is initially strongly reduced (≈ 0.25), shows a strong spatial decrease and a loss of statisti-

cal significance (p > 0.01) much earlier, at around 500bp, whereas de novo autocorrelation

seems to remain unaffected, suggesting a misregulation of maintenance methylation in the

absence of Tets (Figure 5.3b).

The inverse behaviour of methylation and hydroxylation activity can also be observed

at protein binding sites and selected histone marks (Figure 5.4). In case of H3K9me2,

known to recruit Dnmt1, we see higher maintenance and de novo methylation efficiency

together with a strongly reduced hydroxylation activity [61, 60]. Similar profiles were also

observed for H3K9me3 and H3K36me3. In case of the open chromatin mark H3K4me3,

the model reveals a high hydroxylation and reduced methylation activity, which is in

agreement with the observation, that Tet1 preferentially binds to H3K4me3 rich regions

[62, 63]. In addition, we observe a high hydroxylation efficiency for binding sites of Tet1,

Sox2, Nanog and Oct4, accompanied by a reduction of maintenance and de novo methy-

lation efficiency. Again, de novo methylation is almost zero at the centre of these binding

sites. Taken together, the efficiency profiles indicate a higher activity for Tet enzymes at

open and accessible chromatin.

In Tet TKO cells, the methylation efficiencies show similar tendencies across genes,

histone modifications and protein binding sites. However, compared to WT data, there

are distinct differences in maintenance and de novo methylation activity in the absence of

Tet enzymes. For instance, maintenance methylation activity in Tet TKO is elevated at

the TSS compared to WT ES cells (Figure 5.5). This increase of efficiency becomes even
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more pronounced over time. Initially, de novo methylation in Tet TKO cells shows no

visible increase either at the TSS or the gene body. It is particularly compelling, that it

seems to decrease much slower over time than it does in WT ES cells. At d6 of the WT,

de novo efficiency is almost zero, whereas in the Tet TKO cells, there is a considerable

amount of de novo activity at d7.

The seemingly very accurate prediction of remaining de novo activity of our model can

be independently verified by the observed elevated nonCpG methylation in Tet TKO ES

cells (see Figure 5.1D). Consequently, the observed increase in maintenance and de novo
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methylation efficiencies in Tet TKO ES cells indicate an inhibiting effect of Tet enzymes

towards maintenance and de novo methylation events.
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Fig. 5.6: Efficiencies in WT and TKO ES cells. Comparison of maintenance and de novo methy-
lation efficiencies in WT and TKO ES cells. Red = maintenance WT, light red =
maintenance TKO, blue = de novo WT, light blue = de novo TKO.

The most pronounced increase in maintenance methylation efficiency can be observed

at the binding sites of Tet1 and the pluripotency factors Nanog, Sox2 and Oct4. In

addition, we see a strong increase in regions which display H3K4me1 and H3K4me3 in

WT ES cells (Figure 5.6).

5.3.3 Distinct Profiles at Highly and Lowly Expressed Genes

Methylation at promoters and TSS is known to correlate with gene expression [64, 65, 66].

We investigated whether the enzyme efficiencies show similar relations. For our analysis,

we used a previous published transcriptome of mouse ES cells under Serum/LIF conditions

[38]. Calculating the median of transcripts per million reads (TPM), we considered genes

with a TPM ≥ 0.065 as highly expressed and genes with a TPM < 0.065 as none/lowly

expressed.

Profiles of highly expressed genes (Figure 5.7) match nicely those of the averaged

efficiency profiles across all genes (Figure 5.2). However, none/lowly transcribed genes

show a diverse pattern, particularly at the TSS. Compared to the expressed genes, we
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observe higher maintenance and de novo activity, but reduced efficiency of Tet enzymes,

which nicely agrees with the higher methylation state of ‘inactive’ gene promoters (Figure

5.7). In addition, we capture an increase in de novo efficiency across the gene body.

In Tet TKO cells, we observe again compared to WT an increase of maintenance

efficiency at the TSS for expressed, but only a mild change for none/lowly expressed

genes. However, none/lowly expressed genes show a reduced de novo activity across the

gene body.

5.3.4 Enzyme Efficiencies Shape the Large-Scale Methylome

Based on the methylation frequency of CpGs, the genome can be segmented into large

scale methylated domains and small regulatory regions with low methylation levels [7,

67]. Thus, we used MethylSeekR, a computational method published by Burger et al.

2013, to subset the genome into four distinct segment classes: Highly methylated regions

(HMRs), partially methylated domains (PMDs), low methylated regions (LMRs) as well

as unmethylated regions (UMRs)[57]. For optimal segmentation, we used a whole genome
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bisulfite sequencing data set of primed mES cells, published by Ficz et al. in 2013 and

subsequently compared the segmentation to RRHPoxBS data set.

Considering the number and the size of the individual segments, we find that under

primed conditions the majority of the genome is assigned to HMRs. This is expected, since

ES cells kept under Serum/LIF exhibit a hypermethylated phenotype (HMRs: 85.5%,

PMDs: 12.6%, LMRs: 0.4%, UMRs: 1.5%) (Figure 5.8A, 5.8B). Next, we assigned the

methylation level derived from double strand information, as well as the distribution of

5hmC and the enzyme efficiencies to each segment type. Consistent with the genome wide

methylation data, we see high levels of 5mC at HMRs and PMDs, whereas LMRs and

UMRs exhibit low methylation levels (Fig. 5.8E). Despite their low methylation levels,

LMRs exhibit relatively high levels of 5hmC, which also occurs more frequently as a fully

hydroxylated CpG dyad (5hmC/5hmC state) (Figure 5.8E, 5.8G).

In terms of enzymatic activity, we observe high maintenance and de novo methylation

efficiencies together with moderate hydroxylation activity in HMRs and PMDs, while

LMRs and UMRs display high hydroxylation activity and strongly reduced methylation

efficiencies.

5.3.5 Late Replication Accompanies High Methylation

The truthful inheritance of DNA methylation patterns can only be ensured by correct

maintenance activity. Potentially, the timing of DNA replication might influence the

efficiency of maintenance methylation. Therefore, we compared the replication timing of

the distinct segments using the replication information of three ES cell lines published by

Hiratani et al. [68]. In this context, we observe that HMRs tend to replicate late, whereas

PMDs, LMRs and UMRs are replicating earlier (Figure 5.8D).

5.3.6 Individual Efficiency Profiles of CpGs

The gene wide profiles suggest that CpGs display distinct combinations of efficiencies

depending on their genomic location. Therefore, we clustered individual CpGs based on

their efficiencies and temporal changes in order to identify distinct enzyme kinetics during

the Serum-to-2i transition. We consider a clustering method [69] that takes into account

the uncertainty, the covariance matrix of the posterior distribution, around the estimated

parameters in our case. While a typical k-means clustering algorithm would return four

as the optimal number of clusters, our approach clearly decides for two clusters suggesting

that the remaining clusters are probably the result of noise on the estimation due to the

insufficient depth of the sequencing (see Figure 5.9). For details on the clustering method,

taking into account the estimation uncertainty, we refer the reader to Supplement, Section

S5.6.4.

Cluster 1 contains 855201 CpGs and it is characteried by high maintenance (about
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Fig. 5.8: Methylome Segmentation. (A) Outcome of the segmentation using MethylSeekR of
mouse ES cells under Serum/LIF conditions. (B) Number of HMRs, PMDs, LMRs
and UMRs after segmentation. Size distribution of the individual segments. (C)
Methylation level of segments according to Ficz et al. 2013. (D) Replication timing
based on the data from Hiratani et al. 2008. (E) Methylation distribution based
on RRHPoxBS. (F) maintenance (red), de novo (blue) and hydroxylation (yellow)
efficiency. (G) 5hmC distribution in HMRs, PMDs, LMRs and UMRs.

0.6%) and de novo activity at d0, whereas the activity of Tet enzymes is rather low (Fig-

ure 5.10B). At the same time, we observe high methylation levels at day0 (Figure 5.10A).

Over time, we observe a strong decrease in de novo methylation together with a nearly

stable maintenance and an increasing hydroxylation efficiency. This observation again

indicates that the change in maintenance methylation appears to be an early event, while

the reduction in de novo methylation is a gradual process. In terms of methylation, these

changes in efficiency are accompanied by transient increase of 5hmC and hemimethylated

CpGs and result in a hypomethylated phenotype at day6 (Figure 5.10A).

Cluster 2, containing 702901 CpGs, is mainly characterised by a high hydroxylation

activity, which further increases over time (Figure 5.10B). Maintenance efficiency (about

0.5%) is considerably lower compared to cluster 1 and appears to slightly decrease during

the transition to 2i. Additionally, we here observe a very low de novo activity of Dnmts,

which decreases over time as well. The initial methylation level of cluster 2 is lower

compared to cluster 1, but also displays a transient increase in hemimethylated CpGs

and 5hmC and a general loss of methylation over time. Interestingly and despite the

difference in the absolute hydroxylation efficiency in the two clusters, their demethylation

rates appear to be equal (Figure 5.10A).

In addition to the shared temporal increase of 5hmC from d0 to d3, we observe com-
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Fig. 5.9: Optimal number of clusters for k-means and k-error algorithms according to three
clustering validity metrics. Calinski-Harabasz criterion for (A) k-means and (B) k-
error . Davies-Bouldin criterion for (C) k-means and (D) k-error . Elbow method
(WSS) for (F) k-means and (E) k-error .

parable average 5hmC levels in both clusters. In both clusters, 5hmC is symmetrically

distributed between both DNA strands, meaning that the individual 5hmC states appear

with the same frequency at Watson and Crick strands. Nevertheless, the distribution of

5hmC is distinct for each cluster. Whereas most CpGs in cluster1 exhibit a 5hmC/5mC or

5mC/5hmC state, the majority of 5hmC in cluster 2 is paired with unmethylated cytosine

on the opposite strand (5hmC/C or C/5hmC).

LOLA enrichment analysis of both clusters revealed for cluster 2 an enrichment of

TFBS, euchromatic histone modifications and CpG islands [59]. The list of TFBS includes

typical stem cell markers such as Oct4, Nanog and Sox2, as well as transcription activatiors

involved in stem cell self-renewal, e.g. Stat3, Stat5a/b and Taf3 [70, 71]. Yet, the strongest

enrichment can be observed for Dpy30. Being a subunit of the Set1/MLL complex,

Dpy30 is involved in the methylation of lysine 4 of histone 3, particularly trimethylation

(H3K4me3) at bivalent enhancers [72]. Overall, these observations suggest a function for

Tets in maintaining a stem cell phenotype and, furthermore, in predefining promoters of

important developmental genes.
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Fig. 5.10: Single CpG clustering premised on enzyme efficiency. (A) Methylation profile of
identified efficiency clusters. (B) Efficiency profiles of identified clusters. (C) Mean
5hmC level and distribution. (D) LOLA enrichment analysis of clustered CpGs. (E)
Methylation and efficiency profiles of annotated genomic features.

In Tet TKO cells both clusters show higher methylation levels, and retain a notably

amount of 5mC even at d7 in 2i containing medium. This is particularly evident for cluster

2 (Figure 5.11A). Additionally, we observe a reduced de novo efficiency for d0 compared to

WT cells, which however stays rather stable over time. Maintenance methylation efficiency

of cluster 1 seems to be unchanged in Tet TKOs, which indicates that misregulation of

maintenance in the absence of Tets remains restricted to un/low methylated CpGs.

Cluster 2, on the other hand, exhibits a notable increase in both maintenance and

de novo methylation activity for all time points. Again, de novo methylation efficiency

persists even for late time points.
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Grouping the CpGs based on their genomic context reveals conserved methylation and

efficiency patterns. In particular, maintenance methylation, which appears to be stable

over time, exhibits the same behavior for almost all genetic features (Figure 5.10E). Small

differences between the individual features can be observed in de novo and hydroxylation

efficiency. However, tendencies and temporal profiles are shared between all attributes.

The only exception are promoter regions. Here, we observe high hydroxylation efficiency,

moderate maintenance and only marginal de novo methylation efficiencies. This observa-

tion is in agreement with the profile plots across genes, which unveiled similar dynamics

at the TSS (Figure 5.2).

In TKO cells, de novo efficiency is more equally distributed between the distinct ge-

nomic features and CpGs in promoters exhibit a small increase in de novo methylation

activity (Fig. 5.11D). In addition promoters display a clear increase in maintenance methy-

lation. Again, this demonstrates a considerable misregulation of methylation efficiencies

in the absence of Tets.

5.4 Discussion

In our study, we investigated how Dnmts and Tets contribute to a stable methylome con-

structed by alternating unmethylated and methylated domains and, furthermore, examine

how changes in the enzyme activity shape new methylation patterns.

To address these questions, we developed RRHPoxBS, a method that comprises three

features: (i) genome wide analysis of a subset of about 3 million CpGs with an adequate

coverage, (ii) simultaneous analysis of 5mC and 5hmC, as well as (iii) the combined

detection of both strands of one individual DNA molecule. This unique data set is best

suited to investigate the relationship between Dnmts and Tets. In combination with our

HMM analysis, we are able to calculate the detailed distribution of 5hmC states and the

enzymatic activity for each individual CpG.

5.4.1 RRHPoxBS - A Robust Method for 5mC/5hmC Detection

The first genome wide hairpin approach developed by Zhao et al. in 2014 presents a pow-

erful technique for the detection of double strand methylation information [44]. However,

this method comes with high sequencing costs and demands large amounts of DNA. In

case of RRHPoxBS we restrict our analysis to 3 million CpGs equally distributed across

the genome, which reduces the sequencing costs and provides high coverage of informative

CpGs. In addition, our pipeline only uses about one tenth of the DNA amounts formerly

needed and can probably be scaled down further.

Our first observation is that the methylation levels of RRHPoxBS for Serum/LIF (60%)

and 2i (20%) conditions are in line with previous described methylation levels from RRBS

and WGBS [38, 60]. Furthermore, we observe a reduction of nonCpG methylation after
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Fig. 5.11: Comparison of clustered CpGs in WT and TKO ES cells. (A) Methylation profile of
clustered CpGs. (B) Efficiency profile of clustered CpGs. C Methylation profile of
annotated genomic features. (D) Efficiency profile of annotated genmoic features.

the incubation in 2i, which is in agreement with the previous reported loss of Dnmt3a and

3b under naive conditions [38]. In addition, the readout of the used spike-in oligos shows

a good conversion of C, 5fC in BS and C, 5hmC, 5fC in oxBS libraries, demonstrating

that RRHPoxBS presents a reliable method for the detection of 5mC.

5.4.2 Asymmetric CpG Methylation - Intention or Accident

Potentially, hemimethylated CpGs can present a selective, strand specific epigenetic in-

formation. For example, the orientation of hemimethylated CpGs could mark the coding

strand of RNA and enforce the transcription of either Watson or Crick strand. However,

evaluation of the double strand information obtained from RRHPoxBS does not reveal

any strand specific distribution of hemimethylated CpGs in relation to transcription (Sup-

plement, Section 5.6.5, Figure S5.34). Instead, hemimethylation is equally distributed be-

tween both strands and follows the behaviour of symmetric CpG methylation, suggesting
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that hemimethylation is more likely the result of de novo methylation or active and passive

demethylation events. In this context, we observe a temporary increase of hemimethylated

CpGs during demethylation in 2i. Interestingly, we observe more hemimethylation in WT

compared to Tet TKO cells, which indicates that Tet enzymes enhance the passive loss

of 5mC. Indeed, our model predicts that 5hmC is very likely not recognised by Dnmt1

after replication (on average with a probability of 65%) and by that enhances passive

demethylation.

5.4.3 Reduction of Maintenance Efficiency is an Early 2i Event

The combination of Dnmt and Tet enzyme activity defines the methylation status of each

CpG. Thus, we calculated the enzyme efficiencies of Dnmts and Tets for individual CpGs.

Our first observation is that our model in general agrees with previous findings from us

and others, which on average suggest a reduced but stable maintenance activity (≈0.6)

in 2i, a continuous decline of de novo- and a slightly increasing hydroxylation efficiency

[47, 60]. The reduction of maintenance efficiency was recently related to the reduction of

H3K9me2 under 2i conditions [60]. Since we do not observe major changes in maintenance

methylation over time, we reasoned that the reduction of H3K9me2 and, consequently,

maintenance methylation efficiency, are early events and completed within the first 24h

upon the transition to 2i medium. In contrast, de novo methylation activity progressively

decreases, which fits to a gradual degradation and transcriptional halt of Dnmt3a and 3b

[38].

5.4.4 Dnmts and Tet Act Opposed, but not Mutually Exclusive

The model clearly suggests that methylation and hydroxylation efficiencies are not exclu-

sive for a given CpG, but show an antagonistic behaviour. The spatial cross-correlation

verifies that a low methylation efficiency is usually accompanied by a high hydroxylation

efficiency and vice versa, defining alternating domains of low and high methylation lev-

els, respectively. In general, we observe high maintenance and de novo efficiency at the

majority of the genome. The activity of Tet enzymes, on the other hand, is highest at

UMRs and LMRs, i.e. promoters, TFBS (Sox2, Pou5f1) and particularly at the TSS.

Very recent studies based on chromatin immunoprecipitation support our findings reveal-

ing that binding of Dnmt3s is higher at the gene body and HMRs, whereas Tet1 binding

was predominantly observed across methylation valleys (LMRs and UMRs) [73, 74].

5.4.5 Local Control of Tets - Creation of Stable 5hmC

In general, we observe that 5hmC always represents a fraction of 5mC. However, in LMRs,

which represent mostly enhancers [67], the level of 5hmC exceeds those of 5mC. Our find-

ings are in accordance with previous observations, which link enhancer functions to the
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presence of 5hmC [75, 76, 77]. Our model reveals, that a specific combination of main-

tenance and hydroxylation efficiency is sufficient to maintain constantly a high amount

of 5hmC at these locations. Overall, the distinct hydroxylation efficiencies observed at

HMRs, PMDs, LMRs and UMRs suggest a tight regulation of Tet enzymes. In this con-

text, several mechanisms are possible, histone modifications, which attract (H3K4me3)

or repel Tets, the expression of Tet isoforms, but also post-translational modifications or

the interaction with cofactors.

5.4.6 Active Tet Enzymes Promote ES cell Self-Renewal and Differentiation

Comparison of CpGs with high hydroxylation efficiency and ChIP profiles using LOLA,

identifies two roles for active Tet enzymes in mouse ES cells (Figure 5.10 D). Firstly,

CpGs with high Tet efficiency are located at TFBS, known to be involved in stem cell

self-renewal, such as Oct4 (Pou5fI) and Sox2. Secondly, a strong overlap of CpGs with

high hydroxylation efficiency and with binding sites of Dpy30 can be observed. Dpy30

is not involved in ES cell self-renewal but appears to be essential for differentiation of

ES cells. As part of the SET1/MLL complex, Dpy30 is involved in the generation of

H3K4me3 particularly at bivalent promoters.

These observations indicate, that active Tets might not be essential, but clearly con-

tribute to both self renewal and the generation of bivalent promoters, probably by prevent-

ing the creation of DNA methylation. Previous studies already proposed a dual function

of Tet enzymes in mouse ES cells. KD experiments show that the absence of Tet enzymes

can lead to partial loss of the ES cell phenotype, while depletion of Tets from outlived

KO ES cells prevent proper differentiation.

5.4.7 Tets - Guardians Against Methylation Spreading

In the absence of Tet we observe a clear misregulation in both, maintenance and de novo

methylation efficiency. In particular, with the exception of day0, we see a strong increase

of de novo activity for the entire genome and an increase of maintenance activity limited

to regions exhibiting a high hydroxylation efficiency in WT ES cells. A misregulation of

Dnmt1 is further supported by the spatial autocorrelation of maintenance efficiency in

Tet TKO cells (Figure 5.3b and Section S5.6.4, Figure 5.23).

The almost stable estimated de novo efficiency under 2i conditions in Tet TKO is

surprising, considering the downregulation of Dnmt3a/3b in WT ES cells. However, the

apparent presence of Dnmt3a/3b under 2i condition in Tet TKO cells is strongly supported

by the persistent nonCpG methylation in these cells. Moreover, we observe a strongly

reduced demethylation rate in Tet TKO cells compared to WT ES cells, showing the

importance of Tet enzymes in the demethylation kinetics.

Taken together, we hypothesise that Tet enzymes work against methylation in three
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ways. A high hydroxylation efficiency (i) guarantees an instant conversion of 5mC and acts

against its establishment during a cell replication either via passive or active demethyla-

tion, (ii) inhibits the effectiveness of the maintenance machinery over regions that should

remain unmethylated. At last, it seems that Tet enzymes (iii) ensure an efficient down-

regulation of the de novo enzymes, which can not be observed in their absence.

5.5 Conclusion

We developed RRHPoxBS, a method which allows simultaneous detection of 5mC and

5hmC, as well as their strand specific distribution. In combination with an extended

version of our hidden Markov model we present a robust and powerful method for the

investigation of enzyme efficiencies across the genome. We find, that Dnmts and Tets

act cooperatively on CpGs and generate distinct methylation domains with clear bound-

aries across the genome. In this context, Tet enzymes shield unmethylated CpGs from

accidental methylation and, in addition, prevent the inheritance of ectopic 5mC by an-

tagonising maintenance methylation. Furthermore, modulation of Tet activity leads to

the generation of stable 5hmC rather than unmethylated CpGs. As future prospects, one

could consider the analysis of single KO systems to decrypt distinct roles of Tet1 and Tet2

in these processes. Additionally, integration of further oxidised cytosine variants would

allow a clear separation of passive and active demethylation [78, 79].
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5.6 Supplementary Data

5.6.1 Reduced Representation Hairpin Oxidative Biuslfite Sequencing (RRHPoxBS)
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Fig. 5.12: Schematic representation of RRHPoxBS. (1) Digestion of genomic DNA using en-
donucleases generates blunt-end DNA fragments, (2) generation of single 3’ Adenine
overhangs(A-Tailing), (3) ligation of hairpin linker and Illumina® sequencing adapter,
(4) enrichment of HP fragments by biotin-streptavidin-purification, (5) BS and oxBS
treatment of HP library followed by PCR amplification, sequencing and data analysis.

First, DNA (1.2 µg) is split equally into three reaction tubes (400ng each). Each DNA

sample is subjected to enzymatic digestion using one of the three restriction enzymes,

HaeIII(NEB), AluI(NEB) or HpyCH4V (NEB). Each reaction is performed in 20 µl with

20U restriction enzyme and 2 µl buffer CutSmart®(NEB) and incubated at 37°C over
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night. Restriction enzymes are inactivated by subsequent incubation at 80°C for 30min.

Following inactivation, the reactions are pooled and subjected to ligation step. 200mM

biotin labelled hairpin linkers (Biomers), 100mM sequencing adapters (Biomers), 1mM

ATP (NEB) and 4000U T4 DNA ligase (NEB) are added to the pooled sample. Liga-

tion is then performed overnight at 16°C. The ligation of hairpin linkers and sequencing

adapters are undirected processes and will generate three distinct types of fragments:

(i) non-hairpin fragments, with sequencing adapter on both ends, (ii) hairpin fragments,

with hairpin linker on both ends, as well as (iii) hairpin fragments with hairpin linker on

one side and sequencing adapter on the other side. In order to deplete unwanted non-

hairpin fragments from the library, the ligation is first subjected to a purification using

AmpureXP® beads with a ratio of 1:2 (library:beads), followed by a purification using

streptavidin coated magnetic beads (Dynabeads� M-280 Streptavidin; ThermoFisher Sci-

entific). Only hairpin fragments carrying the biotinylated hairpin linker will bind to the

M280 beads, while non-hairpin fragments remain in the supernatant. After removal of the

supernatant and three subsequent wash steps (1xBW buffer according to manufacturer’s

specifications), the beads are incubated in 20µl 1xTE buffer containing 1% SDS and in-

cubated at 100Â°°C for 15min, to release hairpin fragments from M280 beads. Next, the

hairpin library is subjected to BS and oxBS treatment using the TruMethyl Kit from

CEGX accroding to manufacturer’s instructions, followed by PCR amplification (Table

5.1) and paired end sequencing on an Illumina HiSeq2500 system.

Tab. 5.1: Typical PCR protocol for RRHPoxBS using HOTStarTaq® from QIAGEN

PCR Protocol PCR Conditions

10.0µl RRHPoxBS sample

5.0µl 10x Buffer HotSarTaq® 95� - 15min

2.0µl 25mM MgCl2 95� - 1min

4µl 10mM dNTPs 60� - 1min 12-15x

0.8µl Forward Primer 72� - 1min

0.8µl Reverse Primer 72� - 7min

0.8µl HOT FIREPol®

26.6µl ddH2O
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Tab. 5.2: HP-Linker, Adapter and Enrichment-Primer Sequence. All oligonucleotides were pur-
chased from Biomers.

Primer Sequnce

HP-Linker phoGGGCCTADDDBDDDTAGGCCCT B = biotinylated Thymine

Upper-Adpter AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

Lower-Adpter GTTCGTCTTCTGCCGTATGCTCTAGCACTACACTGACCTCAAGTCTGCACACGAGAAGGCTAG

Forward-Primer CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Reverse-Primer AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

5.6.2 Hidden Markov Model (HMM)

We use the hidden Markov model (HMM) presented in [47] to describe the temporal evo-

lution of a single CpG dyad over time for each experiment (bisulfite or ox. bisulfite). The

hidden states of the model correspond to the different modifications, e.g. the cytosines

(C) on both strands are unmethylated or the C on the upper strand is methylated while

the C on the lower strand is unmethylated, etc. The observable states are those that we

measure after bisulfite (BS) or oxidative bisulfite (oxBS) hairpin sequencing. Hence, we

include the conversion errors of the measurement process and we link two HMMs that

describe oxidative and non-oxidative hairpin bisulfite sequencing to accurately determine

hydroxymethylation levels and the efficiencies of the involved enzymes over time. For-

mally, we define the sets of hidden states S = {u,m, h}2 and the set of observable states

Sobs = {T,C}2. A state s ∈ S describes whether the upper and the lower strand of the

site is unmethylated (u), methylated (m) or hydroxylated (h). E.g. in state (h, u) the

upper strand is hydroxylated and the lower strand is unmethylated. Similarly, a state

j ∈ Sobs encodes whether the upper strand and the lower strand of the site has been

transformed after the BS or the oxBS treatment to a thymine (T) or a cytosine (C). We

use the abbreviation hu for state (h, u) and similar for all other states.

Distribution of Hidden and Observable States

Let the vector π(t) be the hidden states distribution at time t and let π(i, t) = P (X (t) = i)

represent the entry of π(t) that corresponds to state i ∈ S.

The transition matrix of the hidden states is defined as P(t) = D(t) ·M(t) · H(t),

where D(t) describes the modifications due to cell division, M(t) the modifications due

to methylation, and H(t) the modifications due to hydroxymethylation. As in [47], we
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define

D(t) =



uu um mu uh hu hm mh mm hh

uu 1 0 0 0 0 0 0 0 0

um 1/2 1/2 0 0 0 0 0 0 0

mu 1/2 0 1/2 0 0 0 0 0 0

uh 1/2 0 0 1/2 0 0 0 0 0

hu 1/2 0 0 0 1/2 0 0 0 0

hm 0 1/2 0 0 1/2 0 0 0 0

mh 0 0 1/2 1/2 0 0 0 0 0

mm 0 1/2 1/2 0 0 0 0 0 0

hh 0 0 0 1/2 1/2 0 0 0 0


,

M(t) =



uu um mu uh hu hm mh mm hh

uu µ̄2
d µd ·µ̄d µd ·µ̄d 0 0 0 0 µ2

d 0

um 0 λ̄ 0 0 0 0 0 λ 0

mu 0 0 λ̄ 0 0 0 0 λ 0

uh 0 0 0 p ·µ̄d+p̄·λ̄ 0 0 p·µd+p̄·λ 0 0

hu 0 0 0 0 p·µ̄d+p̄·λ̄ p·µd+p̄·λ 0 0 0

hm 0 0 0 0 0 1 0 0 0

mh 0 0 0 0 0 0 1 0 0

mm 0 0 0 0 0 0 0 1 0

hh 0 0 0 0 0 0 0 0 1


,

and

H(t) =



uu um mu uh hu hm mh mm hh

uu 1 0 0 0 0 0 0 0 0

um 0 η̄ 0 η 0 0 0 0 0

mu 0 0 η̄ 0 η 0 0 0 0

uh 0 0 0 1 0 0 0 0 0

hu 0 0 0 0 1 0 0 0 0

hm 0 0 0 0 0 η̄ 0 0 η

mh 0 0 0 0 0 0 η̄ 0 η

mm 0 0 0 0 0 η · η̄ η · η̄ η̄2 η2

hh 0 0 0 0 0 0 0 0 1


.

Here, µm stands for the maintenance efficiency, µd for de novo and η for the hydroxylation

efficiency, while p is the probability that 5hmC is not considered during maintenance (see

[47] for details).

Note, that for D(t) we can omit the time parameter t since it is time-independent,

while the other two matrices depend on t as explained later. Note also, that the HMMs of

BS and oxBS experiments have both the same distribution π(t) for the hidden states (as

for both experiments the same cell population is used) but different emission probabilities

and that π(t) is given by

π(t) = π(0) ·
t∏

k=1

P(k).
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BS oxBS

TT TC CT CC TT TC CT CC

uu c2 c · c̄ c · c̄ c̄2 c2 c · c̄ c · c̄ c̄2

um c · d̄ c · d c̄ · d̄ c̄ · d c2 c · c̄ c · c̄ c̄2

mu c · d̄ c̄ · d̄ c · d c̄ · d c · d̄ c̄ · d̄ c · d c̄ · d
uh c · ē c · e c̄ · ē c̄ · e c · f c · f̄ c̄ · f c̄ · f̄
hu c · ē c̄ · ē c · e c̄ · e c · f c̄ · f c · f̄ c̄ · f̄
hm d̄ · ē d · ē d̄ · e d · e d̄ · f d · f d̄ · f̄ d̄ · f
mh d̄ · ē d̄ · e d · ē d · e d̄ · f d̄ · f̄ d · f d̄ · f
mm d̄2 d̄ · d d · d̄ d2 d̄2 d̄ · d d · d̄ d2

hh ē2 ē · e e · ē e2 f 2 f · f̄ f · f̄ f̄ 2

Tab. 5.3: Transition probabilities from hidden to the observable states in bisulfite sequencing
(BS) and in ox. bisulfite sequencing (oxBS).

Let the vectors πbs(t), πox(t) be the observable states distribution at time t, with entries

πbs(j, t) and πox(j, t), j ∈ Sobs, for the BS and oxBS experiments, respectively. We then

get:

πbs(t) = π(t) · Ebs(t) and πox(t) = π(t) · Eox(t),

where the entries of the emission matrices Ebs(t) and Eox(t) are given in Table 5.3.

5.6.3 Maximum Likelihood Estimation (MLE)

Initial Distribution of the Hidden States

Let nbs(j, t) and nox(j, t) be the number of times that state j ∈ Sobs has been observed

during independent hairpin bisulfite (BS) and oxidative hairpin bisulfite (oxBS) measure-

ments out of a certain number of reads (mean coverage of all samples ≈ 20x) at time

t.

Since we assume that t = 0 is the time of the first measurement, we have observa-

tions at t = 0 and can estimate the unknown initial distribution over the hidden states

using maximum likelihood estimation (MLE). For this, we have to solve the optimization

problem: π(0)∗ = arg maxπ(0) L1(π(0)), subject to the constraint
∑

i∈S π(i, 0) = 1, where

L1(π(0)) =
∏
j∈Sobs

πbs(j, 0)nbs(j,0) · πox(j, 0)nox(j,0).

During the optimization procedure, we use the log-likelihood

lnL1(π(0)) =
∑
j∈Sobs

nbs(j, 0) · ln πbs(j, 0) + nox(j, 0) · lnπox(j, 0)).

Moreover, to allow gradient descent optimization we also compute the derivative w.r.t.
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π(0) given by

d

dπ(0)
lnL1(π(0)) =

∑
j∈Sobs

nbs(j, 0) ·
d

dπ(0)
πbs(j, 0)

πbs(j, 0)
+ nox(j, 0) ·

d
dπ(0)

πox(j, 0)

πox(j, 0)
. (5.1)

Writing the vectors of partial derivatives d
dπ(0)

πbs(j, 0) and d
dπ(0)

πox(j, 0) in a vector-

matrix notation including all j ∈ Sobs we get

d

dπ(0)
πbs(0) =

d

dπ(0)
π(0) ·Ebs(0) = Ebs(0),

d

dπ(0)
πox(0) =

d

dπ(0)
π(0) ·Eox(0) = Eox(0),

which after insertion into Eq. 5.1 gives us the gradient of the log-likelihood function w.r.t.

the initial distribution of the hidden states.

Estimation of the Efficiencies

Let v = (βµm0 , βµm1 , βµd0 , βµd1 , βη0 , β
η
1 , p) ∈ Rv, be the vector of seven, i.e., v = 7, unknown

parameters. We assume here that the efficiencies are linear functions of time (except for

p) and so v contains the coefficients of these functions, e.g., µm(t) = βµm0 + t · βµm1 .

Now, after determining π(0), (see section 5.6.3) we want to compute the MLE v∗ =

argmaxv logL2(v), where

L2(v) =
∏

t∈Tobs\{0}

∏
j∈Sobs

πbs(j, t)
nbs(j,t) · πox(j, t)nox(j,t). (5.2)

Note here we assume that the cells divide every 24 hours, hence t ranges over all days at

which measurements were made after day0. In addition to derive the likelihood of Eq. 5.2

we assume that all observations made at time points t ∈ Tobs \ {0} are independent. The

independence assumption is well justified since during the measurement only a very small

fraction of cells is taken out of a large pool and hence it is unlikely that we pick two cells

with a common descendant.

Since the efficiencies are probabilities we have the constraint that for all time points

in Tobs and all efficiencies we have 0 ≤ β0 + β1 · t ≤ 1. In addition, 0 ≤ p ≤ 1.

It holds

lnL2(v) =
∑

t∈Tobs\{0}

∑
j∈Sobs

nbs(j, t) · ln πbs(j, t) + nox(j, t) · lnπox(j, t)

and we get the score vector of the log-likelihood function as

d

dv
lnL2(v) =

∑
t∈Tobs\{0}

∑
j∈Sobs

nbs(j, t) ·
d
dv
πbs(j, t)

πbs(j, t)
+ nox(j, t) ·

d
dv
πox(j, t)

πox(j, t)
.
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Then the matrix-vector form of the derivatives d
dv
πbs(j, t) and d

dv
πox(j, t) can be written

as
d

dv
πbs(t) =

d

dv
π(t) · Ebs(t) and

d

dv
πox(t) =

d

dv
π(t) · Eox(t), ∀t ∈ Tobs.

Considering now, the forward Kolmogorov equation for the HMM and its derivative

w.r.t. the parameters it suffices to simultaneously solve the following two equation sys-

tems.

π(t) = π(t− 1) ·P(t)

d

dv
π(t) =

d

dv
π(t− 1) ·P(t) + π(t− 1)

d

dv
P(t), ∀t ≥ 1 (5.3)

with d
dv
π(0) = 0 and π(0) = π(0)∗. The derivative of the transition matrix is

d

dv
P(t) =

d

dv
(D ·M(t) ·H(t)) = D ·

( d

dv
M(t) ·H(t) + M(t) · d

dv
H(t)

)
.

Now, applying the chain rule and taking into account that µm = βµm0 + βµm1 t we get for

the entry that corresponds to βµm0

d

dβµm0

M(µm) =
d

dµm
M(µm) · d

dβµm0

µm =
d

dµm
M(µm)

and
d

dβµm1

M(µm) =
d

dµm
M(µm) · d

dβµm1

µm =
d

dµm
M(µm) · t.

In a similar fashion we get the first derivatives w.r.t. all the other components of pa-

rameter vector v. Applying once more the product rule in Eq. (5.3), and using similar argu-

ments as above we can additionally compute the second partial derivatives d
dvidvj

lnL2(v),

which will give us the (i, j)-th entry of the Hessian matrix H = ∇∇T lnL2(v).

Standard Deviations and Confidence Intervals

The observed Fisher information is defined as J (v∗) = −H(v∗), where v∗ is the maxi-

mum likelihood estimator. We use the inverse of the expected Fisher information I(v) =

E[J (v)] to estimate the covariance matrix of the MLE. Hence, we approximate the co-

variance of our ML estimator as Σv∗ = −H−1(v∗)). Then, in order to approximate the

standard deviations of the efficiencies’ functions over time, i.e., σ(µm(t)), σ(µd(t)) and

σ(η(t)), we exploit the identity that if f(t) = β0 + β1 · t then

σ(f(t)) =
√

Var(β0 + β1 · t) =
√

Var(β0) + t2Var(β1) + 2tCov(β0, β1).
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We then determine the confidence intervals for a fixed confidence level β = 95%. For

instance the confidence interval for the maintenance methylation function will be

µm(t)± z · σ(µm(t))

where z = F−1
(
β+1

2

)
and F is the cumulative distribution function (cdf) of the standard

normal distribution. Similarly, we get the confidence intervals for all remaining parame-

ters.

5.6.4 Running the Whole Genome Using Bayesian Inference
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Fig. 5.13: Number of CpGs with observations at one, two, or three days in WT (a) and Tet
TKO (c). Average number of independent single CpG samples (sequencing depth)
per day for BS and oxBS of WT (b) and for BS of Tet TKO (d) data.

We have double stranded single base pair resolution data from bisulfite (BS) and

oxidative bisulfite sequencing (oxBS) for 3,022,903 CpGs in wild type (WT) cells and for

3,151,985 from BS data in Tet triple TKO (Tet TKO) cells. In case of each of 1,464,801

CpGs in WT and of 1,352,297 in Tet TKO with only one or two observation time points

available we predict for every measurement time point only the levels of the hidden states

by performing a MLE for the (hydroxy-)methylation levels as described in Section 5.6.3

for estimating the initial distribution. In case of a CpG with three observation time points

(1,558,102 in WT and 1,799,688 in Tet TKO, see purple column in Figure 5.13a, 5.13c) we

assume a linear behavior of the efficiencies over time and we analyse the HMM as described
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in Section 5.6.2 for estimating both the values of (hydroxy-)methylation efficiencies and

levels over time. Using a computer cluster consisting of 32 machines with 16 physical

kernels each, we are able to efficiently parallelize the computations for large bunches of

all available CpGs.

Due to the low depth sequencing per time point and experiment (40 for BS, 29 for

oxBS in WT, and 14 for BS in Tet TKO on average, see Figure 5.13b) we assume that the

asymptotic properties of the MLE around the true parameter value do not hold [54, 55],

especially in cases where the true parameter values are close to boundary constraints [56].

For that reason, we additionally use a Bayesian Inference (BI) approach to get the

posterior distribution of the model parameters, i.e, the efficiencies over time. For all CpGs

we choose as prior distribution the multivariate normal distribution N (µ,Σ), where the

mean µ is the average of the estimated efficiencies in [47]. Similarly, Σ is the average of the

corresponding covariance matrices. Note that in [47] MLE was sufficient due to the better

coverage. Finally, we make a comparison between the MLE and the BI methods and we

confirm that a BI method that incorporates an informative prior distribution should be

preferable for epigenome-wide analysis especially for the regions where the coverage is low

[80, 81].

Metropolis-Hastings

We apply BI by sampling from the multi-dimensional posterior P (v|data) = L2(data|v)P (v)∫
v P (data,v)

and avoid to approximate the normalizing factor
∫
v
P (data,v). Hence, we apply a

Metropolis-Hastings MCMC approach using an asymmetric and truncated proposal distri-

bution. The bounds of the truncation are determined s.t. the constraints for the efficiencies

constantly hold for the time span of the observations, i.e., efficiencies are in [0, 1] for all

t ∈ [0, tmax]. Hence, in every state x ∈ Rv (with v = 7) of the MCMC we generate the next

sample from a product of truncated univariate normals N (y) =
∏

i f(yi|xi, σ2
i /c, ai, bi),

around the current MCMC point x, where xi refers to the i−th entry of the parameter

vector for i = 1, . . . , 7, σ2
i /c is the univariate normal variance and ai, bi are the trunca-

tion bounds for parameter xi. Consider position i where yi refers to the gradient of an

efficiency and yi−1 to the corresponding intercept. We sample the next value for each ef-

ficiency by sampling first the intercept yi−1 value from the truncated normal distribution

within the interval [ai−1, bi−1] = [0, 1] and based on this realization we sample the gradient

yi value from the truncated normal in [ai, bi], where ai = −yi−1/tmax, bi = (1−yi−1)/tmax

as it is being illustrated in Figure 5.14. The bounds of probability p are set as those of

an intercept, i.e., [ai, bi] = [0, 1].

Note that the variance of parameter xi we used for the proposal distribution is the same

as the variance of the prior distribution σ2
i = Σi,i normalized by a scale factor c. Since it is

well known that the efficiency of Metropolis-Hastings algorithm crucially depends on the

scaling of the proposal density, we empirically choose a c = 50 to normalize the standard
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0 1

(a) (b)

Fig. 5.14: Metropolis Hasting’s update step: We sample a new efficiency vector using two trun-
cated normal distributions in two steps: (a) Step 1: We sample the intercept yi−1

from the truncated normal with mean xi−1 and bounds [0, 1]. (b) Step 2: We sample
the gradient yi from the truncated normal distribution with mean xi and bounds
[ai, bi], which depend on the sampled intercept yi−1 of Step 1.

deviation of the proposal distribution� s.t. the average MCMC acceptance ratio is around

25% of the total number of generated samples [82]. As final estimators of the BI method

we get the sample mean of the posterior distribution and we build credible intervals using

the corresponding sample covariance.

Fit of Whole Genome Data vs the Model

Using box plots, we compare the levels of CC, TT and CT-TC CpG dyads for the whole

genome present in the data of BS and oxBS in WT (Figure 5.15a, 5.15b) and of BS in Tet

TKO (Figure 5.15c, 5.15d) and the probabilities of the observable states predicted by the

two HMMs using MLE or BI for estimating the model’s parameters. The circles inside

the plots correspond the the mean value of each box plot and the horizontal lines to the

medians. The bottom and the top of the boxes are the first and the third quartiles. The

values for the whiskers correspond to the ±2.7 ·sdata interval from the sample mean, where

sdata is the sample standard deviation of the data. To quantify the goodness of the fit for

each estimation method we report in Table 5.4 the average Kullback-Leibler divergence

DKL(P ||Q) =
∑

i P (i) ln P (i)
Q(i)

between the data distribution P and the distribution Q

predicted by the model. Note that the model fit to the data reported by the average

Kullback-Leibler divergence metric is better for the MLE than for BI for both WT and

Tet TKO data. This is to be expected since MLE always tries to maximize the likelihood

of the data no matter how well the data samples represent the true underlying distribution.

In Figure 5.16 we plot the average efficiencies computed by the two estimation methods

(MLE vs BI) at days 0,3,6 for WT and days 0,4,7 for Tet TKO. We average over all CpGs

along the DNA for which we sampled at all three measurement time points. We observe

�A low acceptance ratio indicates a wide proposal, while a high acceptance ratio indicates a narrow
proposal and in both extreme cases the convergence is slow.
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Fig. 5.15: Comparison between data and prediction of observable states after fitting the HMMs
based on MLE (a), (c) and BI (b), (d). Dark box plots show the experimentally
measured frequencies states and light box plots correspond to the values predicted by
the two HMMs.

that there are some major differences between the MLE and the BI estimates. First in WT

the ML estimates show an evident decrease of maintenance over time while BI estimates

show maintenance to be almost constant. In addition, the hydroxylation activity seems to

slightly drop using MLE while BI estimates that it increases. In the Tet TKO experiment,

the ML estimates give a completely unexpected increase of maintenance activity, while

de novo seems to be not affected compared with its WT behavior. On the contrary, BI

estimators for maintenance in Tet TKO remain almost unchanged comparing with their

WT - BI behavior, while interestingly de novo seems to drop in a much slighter rate in

the absence of Tet enzymes. Looking carefully at the prediction of the enzymatic activity

we have several reasons to trust more the results of the BI method than those of MLE. In

the WT data we observe that the BI estimates are in line with the genome wide behavior

being described in the literature for the vast majority of the examined regions [60, 47].

Furthermore, the prediction of the remaining de novo activity being present mainly in
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the BI and not in the ML estimates for the Tet TKO data is in line with the detection of

remaining nonCpG methylation in our RRHPoxBS data set which is not part of the model

and therefore presents an independent readout of Dnmt3a and 3b activity. In addition,

looking at the box plots we note that the dispersion of the efficiencies values is evidently

smaller for the BI estimates. This shows the higher precision of the BI estimates for the

efficiencies comparing with the MLE estimates.

To quantify the improvement of BI compared to MLE regarding the decrease in the

uncertainty of the parameter estimators we computed the average hypervolume corre-

sponding to the covariance matrices of the estimators in each case. The volume of the

hyper-ellipse of a multivariate-normal distribution is proportional to the square root of

the generalized variance, i.e., the square root of the determinant of the covariance matrix,

and it is given by the function

V =
2πv/2

vΓ(v/2)
(χ2

crit)
v/2|Σv∗|1/2,

where v is the number of parameters, |Σv∗| is the determinant of the estimators’ covariance

matrix, χ2
crit is the critical value for χ2(v) and Γ(x) is the gamma function (see Figure 5.17

for details). In WT the average volume of the hyper-ellipse in case of MLE is 0.0024 while

the average hyper-ellipse volume in BI is 3.5162 · 10−5. In Tet TKO the average volume

of the hyper-ellipse for ML estimates is 0.0480 while in case of BI only 9.6 · 10−4. In

Figure 5.18 we plot the levels of the hidden states of the HMM for each combination of

statistical estimation method (MLE vs BI) and cell type (WT vs Tet TKO). Overall we

see small differences on the prediction of the hidden states even though there is some

evident difference in the enzyme’s efficiency estimators in particular for the Tet TKO

case. This indicates again how critical an ML estimation bias can be for an accurate

estimation of the efficiencies. For all the aforementioned reasons we use the BI estimates

as the output of our model for all the analysis we present in the main manuscript as well

as for the clustering that we describe in the sequel.

Tab. 5.4: Computed Kullback-Leibler divergence between the data and the model distribution
for MLE and BI, where Pbs and Pox is the data distribution for BS and oxBS experi-
ment respectively.

experiment - method D̂KL(Pbs||πbs) D̂KL(Pox||πox)
WT - MLE 0.1802 0.2369

WT - BI 0.2904 0.3941
Tet TKO - MLE 0.154 -

Tet TKO - BI 0.277 -
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(a) WT - MLE (b) WT - BI

(c) Tet TKO - MLE (d) Tet TKO - BI

Fig. 5.16: Bar plots for maintenance, de novo and hydroxylation efficiencies over time taken by
MLE (a), (c) and BI (b), (d) methods. Red = maintenance methylation efficiency
(µm), blue = de novo methylation efficiency (µd), yellow = hydroxylation efficiency
(η).

Fig. 5.17: The ellipse has axes pointing in the directions of the eigenvectors X1, X2, ..., Xp of
the covariance matrix Σ. Here, for the bivariate normal, the longest axis of the ellipse
points in the direction of the first eigenvector X1 and the shorter axis is perpendicular
to the first, pointing in the direction of the second eigenvector X2. The half length of

the axis corresponding to eigenvector Xi is given by the formula li =
√
λiχ2

crit.

Clustering the Enzymatic Activity of Different CpGs

k-Means Clustering

We use a modification of the k-means algorithm called k-error clustering [69] that takes

into account the uncertainties of each data point, i.e, the covariance matrix Σv of the
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(a) WT - MLE (b) WT - BI

(c) Tet TKO - MLE (d) Tet TKO - BI

Fig. 5.18: Bar plots for the hidden states levels for all CpGs in the genome estimating the
parameters with MLE (a), (c) and BI (b), (d). Red = symmetric methylated CpG
(mm - 5mC/5mC), yellow = 5hmC in all possible combinations (toth - 5hmC/C,
C/5hmC, 5hmC/5mC, 5mC/5hmC, 5hmC/5hmC), green = hemi methylated CpGs
(hemi - 5mC/C or C/5mC), blue = unmethylated CpGs (C/C).
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Fig. 5.19: The optimal clustering of enzymatic efficiencies over time based on the k-means algo-
rithm and the squared euclidean distance. Red = maintenance methylation efficiency
(µm), blue = de novo methylation efficiency (µd), yellow = hydroxylation efficiency
(η).
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parameter vector of the efficiencies v.

If v1, . . . ,vN ∈ Rv are the estimated parameter vectors and Σ1, . . . ,ΣN ∈ Rv×v the

associated covariance matrices for all input CpGs. If we assume that the estimated

parameter vectors are independent and each arises from a v−variate normal distribution

with one of k possible means θ1, . . . , θk, that is vi ∼ Np(µi,Σi), where µi ∈ {θ1, . . . , θk}
for i = 1, . . . , N. We seek to find the clusters C1, . . . , Ck such that the parameter vectors

that have the same mean µi = θj all belong to the same cluster Cj, for j = 1 . . . , k.

Let Sj = {i | vi ∈ Cj}, hence µi = θj for j = 1 . . . k and ∀i ∈ Sj. Given N parameter

vectors v = (v1, . . . ,vN) and their error matrices Σ1, . . . ,ΣN we search for a partition

S = (S1, . . . , Sk) and θ = (θ1, . . . , θN) that maximizes the following likelihood:

Lc(v) =
k∏
j=1

∏
i∈Sj

1

2π

p/2

|Σi|−1/2e−1/2(vi−θj)Σ−1
i (vi−θj)ᵀ , (5.4)

where |Σi| is the determinant of matrix Σi for i = 1, . . . , N. Maximizing the likelihood of

Eq. 5.4 is equivalent as minimizing the total squared Mahalanobis distance of the points

that belong to a cluster from the cluster centroid [69], i.e.,

min
S

k∑
j=1

∑
i∈Sj

(vi − θ̂j)Σ−1
i (vi − θ̂j),

where θ̂j is the ML estimate of θj given by

θ̂j =
(∑
i∈Sj

Σ−1
i

)−1(∑
i∈Sj

viΣ
−1
i

)
(5.5)

for j = 1, . . . , k. Notice that the estimated centroid θ̂j is a weighted mean of the point in

cluster Cj. We refer to it as the Mahalanobis mean of Cj.

In addition, by using simple matrix algebra we can compute that the covariance matrix

Ψj associated with the centroid θ̂j equals

Ψj = Cov(θ̂j) = Cov

((∑
i∈Sj

Σ−1
i

)−1(∑
i∈Sj

viΣ
−1
i

))
=

(∑
i∈Sj

Σ−1
i

)−1

.

Hence, after randomly choosing an initial set of k centroids (Forgy method) the k-error

method follows as an iteration over the next two steps until no change happens to the

assignment of the points.

a. Assign each data point xi to the cluster whose centroid is the closest using the
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squared Mahalanobis distance, i.e,

arg min
j

di,j = arg min
j

(xi − θ̂j)Σ−1
i (xi − θj)ᵀ. (5.6)

b. For clusters C1, . . . , Ck compute the new cluster centroids θ̂1, . . . , θ̂k as the Maha-

lanobis means of the clusters (Eq. 5.5).

The choice of the distance function used in Eq. 5.6 guarantees the decrease in the objective

function in each iteration of k-error as it is shown in [69].
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Fig. 5.20: Illustration of the clustering of an estimated enzymatic efficiency (with intercept β0

and gradient β1) for CpGs A, B, C, D using k-means clustering (Left) vs k-error
clustering (Right).
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Fig. 5.21: The optimal clustering of the enzymatic efficiencies over time based on the k-error
algorithm and the squared Mahalanobis distance. Cluster 1 contains 855201 CpGs
while Cluster 2 contains 702901 CpGs.

Metrics for Deciding the Number of Clusters

In order to identify the “optimal” number of clusters we use Davies-Bouldin and Calinski-

Harabasz criteria. These metrics evaluate the overall within-to-between cluster variability,
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each in a slightly different fashion. In addition, we use the simple but commonly used

elbow method that considers the sum of squared errors (SSE) of a certain clustering. The

goal of this method is to identify the number of clusters after which adding more clusters

results only to a minor decrease of the SSE.

Davies-Bouldin Criterion

Let Ri,j be the within-to-between cluster distance ratio for clusters i and j defined as

Ri,j =
Si + Sj
Mi,j

,

where Si is a measure of within cluster i variance, i.e.,

Si =
1

|Ci|
∑
x∈Ci

d(x,mi)

and Mi,j = d(mi,mj) is a measure of separation between clusters i and j defined as the

distance between the clusters’ centroids mi,mj. We define Di = maxj 6=iRi,j, i.e., the Ri,j

of the most similar cluster to cluster i, and we get Davies-Bouldin index as the average

over all Di indices,

DB =
1

N

N∑
i=1

Di.

Since the value of DB represents the (worst-case) average within-to-between cluster

distance ratio we decide the optimal number of clusters to be the one that provides the

smallest DB.

Calinski-Harabasz Criterion

The Calinski-Harabasz criterion, alternatively called Variance Ratio Criterion (VRC), is

defined as

CHk =
SSB
SSW

(N − k)

k − 1
,

where SSB is the overall between-cluster variance, SSW is the overall within-cluster vari-

ance, k is the number of clusters and N is the total number of observations. The overall

between-cluster variance is defined as

SSB =
k∑
i=1

|Ci| d(mi,m)
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where mi is the centroid of cluster i and m is the overall sample mean. The overall

within-cluster variance is defined as

SSW =
k∑
i=1

∑
x∈Ci

d(x,mi),

where the second sum goes over all points x that belong to cluster Ci. Intuitively, clus-

terings with well defined clusters have a large SSB and a small SSW . Hence, the larger

the CHk for varying k, the better the clustering. Consequently, to determine the optimal

number of clusters we target to maximize CHk w.r.t. k.

Elbow Method

We compute the sum of squared errors (SSE) for a range of number of clusters k. We

choose the optimal k to be the point where the graph starts to flatten significantly. In

Figure 5.22 the optimal number of clusters is clearly two.
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Fig. 5.22: Elbow method: The “optimal” number of clusters is the point where the graph starts
to smooth out, i.e., the “elbow” of the graph.

Choice of Distance Function of the Metrics

For the evaluation of the clusterings we plug in as the distance function of the above

criteria the same distance function that we used for performing the clustering. Hence, in

case of k-means we use the square euclidean distance d(x, y) = ‖x− y‖2 while for k-error

we use the squared Mahalanobis distance d(x, y) = (x − y)ᵀΣ−1
x (x − y), where Σx is the

covariance matrix of point x.

Spatial Correlations

Let Xs be the discrete space random process describing the dispersion of an enzymatic

activity over the whole genome at a certain time point. For a space interval τ its spatial
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autocorrelation is defined as

R(τ) =
E[(Xs − µXs)(Xs+τ − µXs+τ )]

σXsσXs+τ
.

Similarly the spatial cross-correlation between two random processes X, Y that describe

the dispersion of two different enzymatic activities over the genome is defined as

ρX,Y =
E[(Xs − µXs)(Ys+τ − µYs+τ )]

σXsσYs+τ
.

We compute the sample spatial autocorrelation R̂ and the cross-correlations ρ̂ for all

enzymatic processes in both WT and Tet TKO experiments as follows. Let genome

position s ∈ S(τ) when both CpGs of positions s and s + τ are included in our data.

Then

R̂(τ) =
1

|S(τ)− 1|σ̂Xsσ̂Xs+τ

∑
s∈S(τ)

(Xs − X̄s)(Xs+τ − X̄s+τ )].

In the above sample estimator X̄s and ˆσXs are the sample mean and the sample standard

deviation respectively of all measurements Xs for which s ∈ S(τ). The same way we

compute

ρ̂(τ) =
1

|S(τ)− 1|σ̂Xsσ̂Ys+τ

∑
s∈S(τ)

(Xs − X̄s)(Ys+τ − Ȳs+τ )].

Fixing τ = 5 we plot in Figure 5.23 the sample autocorrelations and sample cross-

correlations between all efficiencies at all time points in WT (Figure 5.23a, 5.23c, 5.23e)

and Tet TKO (Figure 5.23b, 5.23d, 5.23f) experiments. Together with the sample corre-

lations we report 95% confidence intervals following the approach of [83] and p-values for

the null hypothesis that the auto or the cross-correlation is zero.

We observe a negative correlation of methylation and hydroxylation efficiencies across

the entire genome and a positive correlation between de novo and maintenance efficiencies.

Furthermore, we observe for all efficiencies a positive autocorrelation which constantly

declines as the distance between CpGs increases. In WT maintenance autocorrelation

flattens out at about 1500bp distance between CpGs and at the same time it starts

losing its significance (p>0.01). Both de novo and hydroxylation activity show a high

autocorrelation in the beginning (more than 0.5) and seem to influence windows of larger

sizes, around 2000 bp.

In Tet TKO cells maintenance methylation activity seems to flatten out earlier than in

WT, around 300 bp, which is in agreement with the observation that maintenance activity

appears misregulated in Tet TKOs, in particular showing an increase at the TSS. On the

contrary, the activity area of de novo enzymes seems to be stable compared to WT cells

(around 2000 bp). Overall the spatial autocorrelations do not indicate any change of the

activity window size of the enzymes over time.
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(a) WT - day 0
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(b) Tet TKO - day 0
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(c) WT - day 3
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(d) Tet TKO - day 4
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(e) WT - day 6
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(f) Tet TKO - day 7

Fig. 5.23: Spatial auto- and cross correlation of maintenance, de novo- and hydroxylation ef-
ficiency across the genome. Grey bars indicate correlations with a p value < 0.01,
green bars correlations with p values > 0.01, red line shows the confidence bounds.
Y-axis displays correlation, x-axis gives the distance of CpG in base pairs.

Pearson Correlation

In addition to the spatial correlation, we calculated a simple pearson correlation for av-

erage efficiency and estimated modification levels.

In WT ES cells, we observe a positive correlation of fully methylated CpGs with de

novo and maintenance efficiency at day 0. For later time points, this correlation increases.

In addition, there is a positive correlation between the two methylation efficiencies and
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hemimethylated CpGs for day 3 and day 6, which is not present at day 0. This is likely

due to an increase in hemimethylated CpGs which temporally overlap with the remaining

Dnmt activity in 2i.

Interestingly, we observe no correlation between hydroxylated CpGs and hydroxylation

efficiency. Instead, hydroxylation activity correlates with unmethylated CpGs. Thus, we

conclude that high hydroxylation activity is not sufficient to generate stable 5hmC but

will rather result in methylation free CpGs.

In Tet TKO, the correlation between maintenance methylation efficiency and fully

methylated CpG dyads are reduced and in case of day 0 only comes to 0.13. However,

we observe a stronger correlation of fully methylated CpGs with de novo methylation

efficiency which points towards a misregulated methylation activity in the absence of Tet

enzymes.

Fig. 5.24: Pearson correlation of enzyme efficiencies and methylation level in WT ES cells for
d0, d3 and d6. mm = fully methylated (5mC/5mC), toth = hydroxylated CpG of
all possible states, um = hemimethylated (5mC/C or C/5mC), uu = unmethylated
(C/C), maint = maintenance methylation efficiency, deNovo = de novo methylation
efficiency, hydroxy = hydroxylation efficiency

Fig. 5.25: Pearson correlation of enzyme efficiencies and methylation level in Tet TKO ES cell for
d0, d4 and d7. mm = fully methylated (5mC/5mC), um = hemimethylated (5mC/C
or C/5mC), uu = unmethylated (C/C), maint = maintenance methylation efficiency,
deNovo = de novo methylation efficiency.
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5.6.5 Additional Results

ES Cell Chromosomes Results

In this section we provide the input-data information plots as well as the output of our

model for each of the 21 main chromosomes of the ESCs. In Figure 5.26, 5.27 we plot the

number of CpGs for each chromosome with one, two or three observation days in WT and

Tet TKO cells, respectively. We plot the average number of samples (depth sequencing)

for each chromosome in WT (Figure 5.28) and Tet TKO (Figure 5.29). In Figure 5.30, 5.31

we show the efficiencies over time computed by BI and in Figure 5.32, 5.33 we report the

prediction of the model for the hidden states probabilities in each chromosome in WT

and Tet TKO cells.
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Fig. 5.26: Number of CpGs (y-axis) with one, two or three observation days (x-axis) for each
chromosome in WT data.
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Fig. 5.27: Number of CpGs (y-axis) with one, two or three observation days (x-axis) for each
chromosome in Tet TKO data.
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Fig. 5.28: Average number of single CpG independent samples, i.e, depth sequencing, (y-axis)
per day (x-axis) for each chromosome in WT data.

Fig. 5.29: Average number of single CpG independent samples, i.e, depth sequencing, (y-axis)
per day (x-axis) for each chromosome in Tet TKO data.
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Fig. 5.30: Bar plots for the maintenance (red), de novo (blue) and hydroxylation (yellow) effi-
ciencies over time taken by BI method for each individual chromosome in WT cells.

Fig. 5.31: Bar plots for the maintenance (red) and de novo (blue) efficiencies over time taken
by BI method for each individual chromosome in Tet TKO cells.
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Fig. 5.32: Bar plots for the hidden states levels over time of each individual chromosome in WT.
Red = symmetric methylated CpG (mm - 5mC/5mC), yellow = 5hmC in all possible
combinations (toth - 5hmC/C, C/5hmC, 5hmC/5mC, 5mC/5hmC, 5hmC/5hmC),
green = hemi methylated CpGs (hemi - 5mC/C or C/5mC), blue = unmethylated
CpGs (C/C).

Fig. 5.33: Bar plots for the hidden states levels over time of each individual chromosome in
TET TKO. Red = symmetric methylated CpG (mm - 5mC/5mC), yellow = 5hmC
in all possible combinations (toth - 5hmC/C, C/5hmC, 5hmC/5mC, 5mC/5hmC,
5hmC/5hmC), green = hemi methylated CpGs (hemi - 5mC/C or C/5mC), blue =
unmethylated CpGs (C/C).
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Spike-In Analysis

To determine the conversion rate of BS and oxBS we included short oligonucleotides into

our RRHPoxBS libraries. The oligo mix is part of the TrueMethyl kit from Cambridge

Epigenetix and includes C, 5mC, 5hmC and 5fC at known positions. After sequencing,

we calculated the conversion rates for each cytosine variant, which were than included

into our model to compensate for conversion errors.

Tab. 5.5: Conversion rate of cytosine variants included in the TruMethyl Spike in after BS
treatment

C 5mC 5hmC 5fC

Serum 0.996332 0.0699681 0.0673588 0.75626

72h 0.996165 0.0725858 0.0715434 0.762992

144h 0.995809 0.0696952 0.0682802 0.739254

Tab. 5.6: Conversion rate of cytosine variants included in the TruMethyl Spike in after oxBS
treatment

C 5mC 5hmC 5fC

Serum 0.99687 0.0662679 0.964215 0.968836

72h 0.99656 0.0670022 0.967298 0.9663

144h 0.996901 0.0534113 0.949588 0.932044

Hemimethylated CpGs

Hemimethylated CpGs are the result of de novo methylation events and/or active and

passive demethylation. Theoretically, selective methylation of a DNA strand could pro-

vide a strand specific gene regulation mechanism. Thus, we analysed the strand specific

methylation of genes transcribed from plus- and minus strand. Results are displayed in

Figure 5.34.

We cannot observe any methylation differences between genes expressed from upper

or lower DNA strands. In both cases we observe the same amount of hemimethylation at

both strands. The same holds true for low/not expressed genes.
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Fig. 5.34: Average hemimethylated CpGs detected by RRHPoxBS across expressed and not/low
expressed genes. Dark green = 5mC/C, light green = C/5mC

Demethylation Kinetics

Previous studies indicated that Tet TKO cells exhibit the same demethylation kinetics as

WT ES cells during their transition from Serum to 2i [60]. However, our RRHPoxBS data

shows a noticeable difference in the methylation levels of WT and Tet TKO cells. Thus, we

calculated the demethylation rate rdem for each cell type to further investigate the distinct

demethylation kinetics. For this, we calculated the increase of unmethylated cytosines for

time points and for WT t = {3, 6} and Tet TKO cells for time points t = {4, 7} using the

equation:

rdem(t) =
TT(t)− TT(0)

t
.

Results are displayed in Figure 5.35.
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Fig. 5.35: (a) Demethylation rate in WT and Tet TKO cells (b) Relative difference in demethy-
lation rate between WT and Tet TKO cells.

In contrast to the previous observations, we observe distinct demethylation rates for

WT and Tet TKO cells. WT cells exhibit a demethylation rate between 6 and 8%, whereas

Tet TKO ES cells show a reduced demethylation rate of around 4% (Fig. 5.35 (a)). Con-

sequently, the demethylation rate in Tet TKO cells w.r.t. to WT cells is reduced by 30 to
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50%, demonstrating the considerable contribution of Tet enzymes to DNA demethylation

(Fig. 5.35 (b)).

Repetitive Elements

The majority of the mammalian genome is composed of repetitive elements (REs). Thus,

we examined whether a subset of REs would reflect the average behavior of the genome.

For this, we assign CpGs to individual REs. Figures 5.36 to 5.40 show methylation level

and efficiencies for the 25 most frequent repetitive elements in our data set for WT and Tet

triple TKO ES cells. Indeed, we observe that the majority of REs resemble closely the level

and efficiency profile of individual chromosomes as well as the average genome profiles.

However, we also observe some exceptions. Intracisternal A particle and major satellites

exhibit considerable higher methylation level and methylation efficiency compared to the

mean genome profile. In addition, GC rich elements show almost no 5mC/5hmC, low

methylation efficiency but high hydroxylation activity of Tets. Thus, they resemble more

the behavior of promoters and TSS.

In case of the Tet TKO cells, we observe, that the maintenance efficiency in the distinct

repetitive elements converge. In addition, de novo methylation appears again reduced

for the first time point, but remains present even after continuous incubation in 2i media

(Fig.5.40).
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Fig. 5.36: Methylation level at the 25 most frequent repetitive elements in our analysis for WT
ES cells. Elements are presented in decreasing order, most frequent left top, least fre-
quent right bottom. Annotation according to UCSC. y-axis = methylation frequency,
x-axis = time in days (d0, d3, d6). Red = fully methylated CpGs (5mC/5mC), green
= hemimethylated CpGs (5mC/C or C/5mC), yellow = 5hmC, blue = unmethylated
CpGs (C/C).
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Fig. 5.37: Level and distribution of 5hmC within the 25 most frequent repetitive elements in our
data set for WT ES cells. Elements are presented in decreasing order, most frequent
left top, least frequent right bottom. Annotation according to UCSC. y-axis = mean
5hmC level, x-axis = time in days (d0, d3, d6).
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Fig. 5.38: Efficiency profiles of the 25 most frequent repetitive elements in our analysis for WT
ES cells. Elements are presented in decreasing order, most frequent left top, least
frequent right bottom. Annotation according to UCSC. y-axis = efficiency; x-axis =
time in days (d0, d3, d6), red = maintenance efficiency, blue = de novo efficiency,
yellow = hydroxylation efficiency.
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Fig. 5.39: Methylation level at the 25 most frequent repetitive elements in our analysis for Tet
TKO cells. Elements are presented in decreasing order, most frequent left top, least
frequent right bottom. Annotation according to UCSC. y-axis = methylation fre-
quency, x-axis = time in days (d0, d4, d7). Red = fully methylated CpGs (5mC/5mC),
green = hemimethylated CpGs (5mC/C or C/5mC), blue = unmethylated CpGs
(C/C).
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Fig. 5.40: Efficiency profiles of the 25 most frequent repetitive elements in our analysis for Tet
TKO cells. Elements are presented in decreasing order, most frequent left top, least
frequent right bottom. Annotation according to UCSC. y-axis = efficiency; x-axis =
time in days (d0, d4, d7), red = maintenance efficiency, blue = de novo efficiency.
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Efficiency and Binding Profiles of DNA Modifiers

In Figure 5.41 and 5.42 we compared the binding profile (ChIP-Seq) of DNA modifiers

from previous publications to maintenance, de novo and hydroxylation efficiencies esti-

mated by our model(GSM659799, GSE57413, GSE100957) [62, 73, 74]. ChIP profiles for

Dnmt3 iso-forms reveal a reduced binding around the TSS, which is in concordance with

our models prediction in reduced de novo efficiency. Interestingly, when comparing the

ChIP profiles of Dnmt3s to transcriptome sequencing from Ficz et al. we observe distict

profiles for expressed and non-expressed genes 5.41. In case of expressed genes, we ob-

serve a strong enrichment across the gene body and reduced binding around the TSS, in

particular for Dnmt3a1, while non-expressed genes display the strongest binding precisely

at the TSS.
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Fig. 5.41: Estimated Efficiencies of Dnmts and Tets in form of maintenance methylation(red),
de novo methylation and hydroxylation as well as binding of Dnmt3a and 3b isoforms.

Additionally, we compared the efficiencies to ChIP binging profiles of Tet1 and Uhrf1,

as one essential subunit of the maintenance machinery. Again, the ChIP profiles corre-

spond nicely to our efficiencies of Dnmts and Tets 5.42. While Uhrf1 is less frequent at

TSS similar to maintenance and de novo methylation, Tet1 in contrast displays a high
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Fig. 5.42: Estimated Efficiencies of Dnmts and Tets in form of maintenance methylation(red),
de novo methylation and hydroxylation as well as binding of Tet1 and Uhrf1.

enrichment at TSS matching the strongly increased hyroxylation efficiency observed by

our model.

nonCpG Methylation

Frequently, DNA methylation occurs outside of a CpG context [5, 6]. Hence, we de-

termined the sequence occurrence of nonCpG methylation in our WT samples. For our

analysis, we considered only nonCpG positions which are (i) methylated above the con-

version error, (ii) show at least three methylated reads and (iii) a coverage of ≥ 10. In

accordance with literature, we find that CpA is the most common methylated sequence

after CpG on both DNA strands (Figure 5.43 and Figure 5.44). Furthermore, we see that

the majority of all nonCpG in our data set correspond to FMRs and PMDs, whereas only

a small fraction can be found in LMRs and UMRs (Figure 5.45). This observation nicely

matches our model’s prediction according to which FMRs and PMDs exhibit higher de

novo methylation activity (main manuscript figure 9) mainly caused by Dnmt3a and 3b.
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Fig. 5.43: Occurrences of nonCpG methylation in Serum and 2i cultivated WT ES cells. Size
of bases indicate the probability at a given position. nonCpG with 4 bases up- and
downstream are shown.
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Fig. 5.44: Occurrences of nonCpG methylation in Serum and 2i cultivated WT ES cells. Size
of bases indicate the probability at a given position. nonCpG with 4 bases up- and
downstream are shown.
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Stöger. Hairpin-bisulfite pcr: assessing epigenetic methylation patterns on comple-

mentary strands of individual dna molecules. Proceedings of the National Academy

of Sciences, 101(1):204–209, 2004.

[43] Pascal Giehr and Jörn Walter. Hairpin bisulfite sequencing: Synchronous methy-

lation analysis on complementary dna strands of individual chromosomes. In DNA

Methylation Protocols, pages 573–586. Springer, 2018.

[44] Lei Zhao, Ming-an Sun, Zejuan Li, Xue Bai, Miao Yu, Min Wang, Liji Liang, Xiaojian

Shao, Stephen Arnovitz, Qianfei Wang, et al. The dynamics of dna methylation

fidelity during mouse embryonic stem cell self-renewal and differentiation. Genome

research, 24(8):1296–1307, 2014.

[45] Michael J Booth, Miguel R Branco, Gabriella Ficz, David Oxley, Felix Krueger, Wolf

Reik, and Shankar Balasubramanian. Quantitative sequencing of 5-methylcytosine

and 5-hydroxymethylcytosine at single-base resolution. Science, 336(6083):934–937,

2012.

[46] Charalampos Kyriakopoulos, Pascal Giehr, and Verena Wolf. H (o) ta: estimation

of dna methylation and hydroxylation levels and efficiencies from time course data.

Bioinformatics, 33(11):1733–1734, 2017.

[47] Pascal Giehr, Charalampos Kyriakopoulos, Gabriella Ficz, Verena Wolf, and Jörn

Walter. The influence of hydroxylation on maintaining cpg methylation patterns: a

hidden markov model approach. PLoS computational biology, 12(5):e1004905, 2016.

[48] Jacob Porter, Ming-an Sun, Hehuang Xie, and Liqing Zhang. Investigating bisulfite

short-read mapping failure with hairpin bisulfite sequencing data. BMC genomics,

16(11):S2, 2015.

[49] Babraham Bioinformatics - Trim Galore!

[50] Marcel Martin. Cutadapt removes adapter sequences from high-throughput sequenc-

ing reads. EMBnet. journal, 17(1):pp–10, 2011.

[51] Santiago Marco-Sola, Michael Sammeth, Roderic Guigó, and Paolo Ribeca. The
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Abstract

DNA methylation is an epigenetic mechanism whose important role in development has

been widely recognized. This epigenetic modification results in heritable changes in gene

expression not encoded by the DNA sequence. The underlying mechanisms controlling

DNA methylation are only partly understood and recently different mechanistic models

of enzyme activities responsible for DNA methylation have been proposed. Here we ex-

tend existing Hidden Markov Models (HMMs) for DNA methylation by describing the

occurrence of spatial methylation patterns over time and propose several models with dif-

ferent neighborhood dependencies. We perform numerical analysis of the HMMs applied

to bisulfite sequencing measurements and accurately predict wild type data. In addition,

we find evidence that the enzymes’ activities depend on the left 5’ neighborhood but not

on the right 3’ neighborhood.

6.1 Introduction

The DNA code of an organism determines its appearance and behavior by encoding

protein sequences. In addition, there is a multitude of additional mechanisms to control

and regulate the ways in which the DNA is packed and processed in the cell and thus

determine the fate of a cell. One of these mechanisms in cells is DNA methylation, which

is an epigenetic modification that occurs at the cytosine (C) bases of eukaryotic DNA.

Cytosines are converted to 5-methylcytosine (5mC) by DNA methyltransferase (Dnmt)

enzymes. The neighboring nucleotide of a methylated cytosine is usually guanine (G)

and together with the GC-pair on the opposite strand, a common pattern is that two

methylated cytosines are located diagonally to each other on opposing DNA strands. DNA

methylation at CpG dinucleotides is known to control and mediate gene expression and is

therefore essential for cell differentiation and embryonic development. In human somatic

cells, approximately 70-80% of the cytosine nucleotides in CpG dyads are methylated on

both strands and methylation near gene promoters varies considerably depending on the

cell type. Methylation of promoters often correlates with low or no transcription [1] and

can be used as a predictor of gene expression [2]. Also significant differences in overall

and specific methylation levels exist between different tissue types and between normal

cells and cancer cells from the same tissue. However, the exact mechanism which leads

to a methylation of a specific CpG and the formation of distinct methylation patterns

at certain genomic regions is still not fully understood. Recently proposed measurement

techniques based on hairpin bisulfite sequencing (BS-seq) allow to determine on both DNA

strands the level of 5mC at individual CpGs dyads [3]. Based on a small hidden Markov

model, the probabilities of the different states of a CpG can be accurately estimated

(assuming that enough samples per CpG are provided) [4, 5].
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Mechanistic models for the activity of the different Dnmts usually distinguish de novo

activities, i.e., adding methyl groups at cytosines independent of the methylation state of

the opposite strand, and maintenance activities, which refers to the copying of methylation

from an existing DNA strand to its newly synthesized partner (containing no methylation)

after replication [6, 7]. Hence, maintenance methylation is responsible for re-establishment

of the same DNA methylation pattern before and after cell replication. A common hy-

pothesis is that the copying of DNA methylation patterns after replication is performed

by Dnmt1, an enzyme that shows a preference for hemimethylated CpG sites (only one

strand is methylated) as they appear after DNA replication. Moreover, studies have shown

that Dnmt1 is highly processive and able to methylate long sequences of hemimethylated

CpGs without dissociation from the target DNA strand [6]. However, an exact trans-

mission of the methylation information to the next cellular generation is not guaranteed.

The enzymes Dnmt3a and Dnmt3b show equal activities on hemi- and unmethylated DNA

and are mainly responsible for de novo methylation, i.e., methylation without any specific

preference for the current state of the CpG (hemi- or unmethylated) [7]. However, by

now evidence exists that the activity of the different enzymes is not that exclusive, i.e.,

Dnmt1 shows to a certain degree also de novo and Dnmt3a/b maintenance methylation

activity [8]. The way how methyltransferases interact with the DNA and introduce CpG

methylation was investigated in many in vitro studies. Basically, one can distinguish

between two mechanisms. A distributive one, where the enzyme periodically binds and

dissociates from the DNA, leaping more or less randomly from one CpG to another and

a processive one in which the enzyme migrates along the DNA without detachment from

the DNA [9, 10, 11], as illustrated in Fig. 6.1. Note that for Dnmt1, for instance, it is

reasonable to assume that it is processive in 5’ to 3’ direction since it is linked to the

DNA replication machinery. In particular for the Dnmt3’s different hypotheses about the

processivity and neighborhood dependence exist [12, 13], but the detailed mechanisms

remain elusive.

Several models that describe the dynamics of the formation of methylation patterns

have been proposed. In the seminal paper of Otto and Walbot, a dynamical model was

proposed that assumed independent methylation events for a single CpG. The main idea

was to track the frequencies of fully, hemi- and unmethylated CpGs during several cell

generations [14]. Later, refined models allowed to distinguish between maintenance and

de novo methylation on the parent and daughter strands [15, 16]. More sophisticated

extensions of the original model of Otto and Walbot models have been successfully used

to predict in vivo data still assuming a neighbor-independent methylation process for

a single CpG site [8, 17]. However, measurements indicate that methylation events at

a single CpG may depend on the methylation state of neighboring CpGs, which is not

captured by these models.

Here, we follow the dynamical HMM approach proposed in [8] where knockout data
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Fig. 6.1: Dnmts can methylate DNA in a distributive manner, “jumping” randomly from one
CpG to another or in a processive way where the enzyme starts at one CpG and slides
in 5’ to 3’ direction over the DNA.

was used to train a model that accurately predicts wild-type methylation levels for BS-seq

data of repetitive elements from mouse embryonic stem cells. We extend this model by

describing the methylation state of several CpGs instead of a single CpG and use similar

dependency parameters as introduced in [18]. More specifically, we design different models

by combining the activities of the two types of Dnmts and test for both, maintenance and

de novo methylation the hypotheses illustrated in Fig 6.1. The models vary according to

the order in which the enzymes act, whether they perform methylation in a processive

manner or not, and how much their action depends on the left/right CpG neighbor. We

use the same BS-seq data as in [8], i.e. data where Dnmt1 or Dnmt3a/b was knocked out

(KO) and learn the parameters of the different models. Then, similar as in [8], we predict

the behavior of the measured wild-type (WT), in which both types of enzymes are active,

by designing a combined model that describes the activity of both enzymes and compare

the results to the WT data.

We found that all proposed models show a similar behavior in terms of prediction

quality such that no model can be declared as the best fit. However, our results indicate

that Dnmt1 works independently of the methylation state of its neighborhood, which is

in accordance to the current hypothesis that Dnmt1 is linked to the replication machinery

and copies the methylation state on the opposite strand. On the other hand, Dnmt3a/b

shows a dependency to the left but no dependency to the right, which supports hypotheses

of processive or cooperative behavior.

6.2 Preliminaries

Consider a sequence of L neighboring CpG dyads*, which is represented as a lattice of

length L and width two (for the two strands). Each cytosine in the lattice can either be

methylated or not, leading to four possible states at each position l:

*The exact nucleotide distance between two neighboring dyads is not considered here, but we assume
that this distance is small. For the BS-seq data that we consider, the average distance between two CpGs
is 14 bp and the maximal distance is 46 bp.
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• State 0 : Both sites are not methylated.

• State 1 : The cytosine on the upper strand is methylated, the lower one not.

• State 2 : The cytosine on the lower strand is methylated, the upper one not.

• State 3 : Both cytosines are methylated.

A sequence of four CpGs, each of which is in one of the four possible states, is shown

in Fig. 6.2.

Fig. 6.2: A lattice of length L = 4 containing all possible states 0, 1, 2 and 3, forming the
pattern 0123.

For a system of length L there are in total 4L possibilities to combine the states of

individual CpGs. These combinations are called patterns in the following. A pattern is

denoted by a concatenation of states, e.g. 321, 0123 or 33221.

In order to represent the pattern distribution as a vector it is necessary to uniquely

assign a reference number to each pattern. A pattern can be perceived as a number in

the tetral system, such that converting to the decimal system leads to a unique reference

number. After the conversion an additional 1 is added in order to start the referencing at

1 instead of 0.

Examples for L = 3:

000 −→ 1 (= 0 + 1)

123 −→ 28 (= 27 + 1)

333 −→ 64 (= 63 + 1)

This reference number then corresponds to the position of the pattern in the respective

distribution vector.

6.3 Model

We describe the state of a sequence of L CpGs by a discrete-time Markov chain with pat-

tern distribution π(t), i.e., the probability of each of the 4L patterns after t cell divisions.

For the initial distribution π(0), we use the distribution measured in the wild-type when

the cells are in equilibrium. Note that other initial conditions gave very similar results,
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i.e., the choice of the initial distribution does not significantly affect the results. The rea-

son is that also the KO data is measured after a relatively high number of cell divisions

where the cells are almost in equilibrium. Transitions between patterns are triggered by

different processes: First due to cell division the methylation on one strand is kept as it

is (e.g. the upper strand), whereas the newly synthesized strand (the new lower strand)

does not contain any methyl group. Afterwards, methylation is added due to different

mechanisms. On the newly synthesized strand a site can be methylated if the cytosine

at the opposite strand is already methylated (maintenance). It is widely accepted that

maintenance in form of Dnmt1 is linked to the replication machinery and thus occurs dur-

ing/directly after the synthesis of the new strand. Furthermore, CpGs on both strands

can be methylated independent of the methylation state of the opposite site (de novo).

The transition matrix P is defined by composition of matrices for cell division, main-

tenance and de novo methylation of each site.

6.3.1 Cell Division

Depending on which daughter cell is considered after cell replication, the upper (s = 1)

or lower (s = 2) strand is the parental one after cell division. Then, the new pattern can

be obtained by applying the following state replacements:

s = 1 :



0 −→ 0

1 −→ 1

2 −→ 0

3 −→ 1

s = 2 :



0 −→ 0

1 −→ 0

2 −→ 2

3 −→ 2

(6.1)

Given some initial pattern with reference number i, applying the transformation (6.1) to

each of the L positions leads to a new pattern with reference number j (notation: i
(6.1)
 j).

The corresponding transition matrix Ds ∈ {0, 1}4L×4L has the form

Ds(i, j) =

1, if i
(6.1)
 j,

0, else.
(6.2)

6.3.2 Maintenance and De Novo Methylation

For maintenance and de novo methylation, the single site transition matrices are built

according to the following rules:

Consider at first the (non-boundary) site l = 2, . . . , L− 1 and its left and right neighbor

l − 1 and l + 1 respectively. The remaining sites do not change and do not affect the

transition. The probabilities of the different types of transitions in Fig. 6.3 have the form
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p2

p3

p4

 Maintenance                       De Novo

Fig. 6.3: Possible maintenance and de novo transitions depicted for the lower strand, where ◦
denotes an unmethylated, • a methylated site and ? a site where the methylation state
does not matter. Note that the same transitions can occur on the upper strand.

p1 =0.5·(ψL + ψR)x, (6.3)

p2 =0.5·(ψL + ψR)x+ 0.5·(1− ψL), (6.4)

p3 =0.5·(ψL + ψR)x+ 0.5·(1− ψR), (6.5)

p4 =1− 0.5·(ψL + ψR)(1− x), (6.6)

where x = µ is the maintenance probability, x = τ is the de novo probability and

ψL, ψR ∈ [0, 1] the dependency parameters for the left and right neighbor.

A dependency value of ψi = 1 corresponds to a total independence on the neighbor

whereas ψi = 0 leads to a total dependence. Hence, µ and τ can be interpreted as the

probability of maintenance and de novo methylation of a single cytosine between two cell

divisions assuming independence from neighboring CpGs. Moreover, all CpGs that are

part of the considered window of the DNA have the same value for the parameters µ,

τ , ψL, and ψR, since in earlier experiments only very small differences have been found

between the methylation efficiencies of nearby CpGs [8].

In order to understand the form of the transition probabilities consider at first a case

with only one neighbor. The probabilities then have the form ψx if the neighbor is un-

methylated and 1−ψ(1−x) if the neighbor is methylated. Note that both forms evaluate

to x for ψ = 1, meaning that a site is methylated with probability x, independent of

its neighbor. For ψ = 0 the probabilities become 0 and 1, meaning that if there is no

methylated neighbor the site cannot be methylated or will be methylated for sure if there

is a methylated neighbor respectively.

The probabilities for two neighbors are obtained by a linear combination of the one neigh-

bor cases, with ψL for the left and ψR for the right neighbor, and an additional weight of

0.5 to normalize the probability.

The same considerations also apply to the boundary sites however there is no way of

knowing the methylation states outside the boundaries (denoted by ?). Therefore instead
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of a concrete methylation state (◦ for unmethylated, • for methylated site) the average

methylation density ρ is used to compute the transition probabilities at the boundaries

(depicted here for de novo):

? ◦ ◦ → ? • ◦ p̃1 = (1− ρ)·p1 + ρ·p2, (6.7)

? ◦ • → ? • • p̃2 = (1− ρ)·p3 + ρ·p4, (6.8)

◦ ◦ ?→ ◦ • ? p̃3 = (1− ρ)·p1 + ρ·p3, (6.9)

• ◦ ?→ • • ? p̃4 = (1− ρ)·p2 + ρ·p4. (6.10)

Note that the same considerations hold for maintenance at the boundaries if the op-

posite site of the boundary site is already methylated.

For each position l, there are four transition matrices: two for maintenance and two for de

novo, namely one for the upper and one for the lower strand in each process. In order to

construct these matrices consider the three positions l−1, l and l+1, where the transition

happens at position l. Only the transitions depicted in Fig. 6.3 can occur. Furthermore

the transitions are unique, i.e. for a given reference number i the new reference number

j is uniquely determined. For patterns not depicted in Fig. 6.3 no transition can occur,

i.e. the reference number does not change.

The matrix describing a maintenance event at position l and strand s has the form

M (l)
s (i, j) =



1, if i = j and 6 ∃j′ : i j′,

1− p, if i = j and ∃j′ : i j′,

p, if i 6= j and i j,

0, else,

(6.11)

where the probability p is given by one of the Eqs. (6.3)-(6.10) that describes the

corresponding case and x = µ. Note that M
(l)
s depends on s and l since it describes a

single transition from pattern i to pattern j, which occurs on a particular strand and at

a particular location with probability p. We define matrices T
(l)
s for de novo methylation

according to the same rules except that x = τ and the possible transitions are as in

Fig. 6.3, right.

The advantage of defining the matrices position- and process-wise is that different models

can be realized by changing the order of multiplication of these matrices.

It is important to note that 5mC can be further modified by oxidation to 5-hydroxymethyl-

(5hmC), 5-formyl- (5fC) and 5-carboxyl cytosine(5caC) by Tet enzymes. These modifi-

cations are involved in the removal of 5mC from the DNA and can potentially interfere

with methylation events. However, our data does not capture these modifications and
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therefore we are not able to consider these modifications in our model.

6.3.3 Combination of Transition Matrices

For all subsequent models it is assumed that first of all cell division happens and main-

tenance methylation only occurs on the newly synthesized strand given by s, whereas de

novo methylation happens on both strands. Given the mechanisms in Fig. 6.1, the two

different kinds of methylation events, and the two types of enzymes, there are several pos-

sibilities to combine the transition matrices. We consider the following four models, which

we found most reasonable based on the current state of research in DNA methylation:

a. first processive maintenance and then processive de novo methylation

Ps =
L∏

l1=1

M (l1)
s

L∏
l2=1

T
(l2)
1

L∏
l3=1

T
(l3)
2 , (6.12)

b. first processive maintenance and then de novo in arbitrary order

Ps =
1

(L!)2

L∏
l1=1

M (l1)
s

( ∑
σ1∈SL

L∏
l2=1

T
(σ1(l2))
1

)( ∑
σ2∈SL

L∏
l3=1

T
(σ2(l3))
2

)
, (6.13)

c. maintenance and de novo at one position, processive

Ps =
L∏
l=1

M (l)
s T

(l)
1 T

(l)
2 , (6.14)

d. maintenance and de novo at one position, arbitrary order

Ps =
1

L!

∑
σ∈SL

L∏
l=1

M (σ(l))
s T

(σ(l))
1 T

(σ(l))
2 , (6.15)

where SL is the set of all possible permutations for the numbers 1, . . . , L.

Note that the de novo events on both strands are independent, i.e. the de novo events

on the upper strand do not influence the de novo events on the lower strand and vice

versa, such that [T
(l)
1 , T

(l′)
2 ] = 0 independent of ψi

�. Obviously it is important whether

maintenance or de novo happens first, since the transition probabilities and the transi-

tions themselves depend on the actual pattern. Furthermore in the case ψi < 1 (depen-

dency on right and/or left neighbor) the order of the transitions on a strand matters, i.e.

[M
(l)
s ,M

(l′)
s ] 6= 0 and [T

(l)
s , T

(l′)
s ] 6= 0 for l 6= l′. The total transition matrix is then given

by a combination of the cell division and maintenance/de novo matrices.

�[A,B] = AB −BA is the commutator of the matrices A and B.
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Recall that we consider two different types of Dnmts, i.e., Dnmt1 and Dnmt3a/b. If only

one type of Dnmt is active (KO data) the matrix has the form

P = 0.5·(D1 ·P1 +D2 ·P2) (6.16)

and if all Dnmts are active (WT data)

P = 0.5·(D1 ·P1 ·P̃1 +D2 ·P2 ·P̃2), (6.17)

where Ps and P̃s have one of the forms (6.12)-(6.15). This leads to four different models for

one active enzyme or 16 models for all active enzymes respectively. In the second case Ps

represents the transitions caused by Dnmt1 and P̃s the transitions caused by Dnmt3a/b.

Note that if ψL = ψR = 1 all models are the same within each case.

6.3.4 Conversion Errors

u m

T C

c 1− c d1− d

Fig. 6.4: Conversions of the unobservable states u,m to observable states T,C with respective
rates.

The actual methylation state of a C cannot be directly observed. During BS-seq, with

high probability every unmethylated C (denoted by u) is converted into Thymine (T) and

every 5mC (denoted by m) into C. However, conversion errors may occur and we define

their probability as 1−c and 1−d, respectively, as shown by the dashed arrows in Fig. 6.4.

It is reasonable that these conversion errors occur independently and with approximately

identical probability at each site and thus the error matrix for a single CpG takes the

form

∆1 =


c2 c(1− c) c(1− c) (1− c)2

c(1− d) cd (1− c)(1− d) d(1− c)
c(1− d) (1− c)(1− d) cd d(1− c)
(1− d)2 d(1− d) d(1− d) d2

 . (6.18)

Due to the independency of the events this matrix can easily be generalized for systems

with L > 1 by recursively using the Kronecker-product

∆L = ∆1 ⊗∆L−1 for L ≥ 2. (6.19)
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Hence, ∆L gives the probability of observing a certain sequence of C and T nucleotides

for each given unobservable methylation pattern. In order to compute the likelihood π̂

of the observed BS-seq data, we therefore first compute the transient distribution π(t) of

the underlying Markov chain at the corresponding time instant� t by solving

π(t) = π(0) · P t (6.20)

and then multiply the distribution of the unobservable patterns with the error matrix.

π̂ = π(t) ·∆L. (6.21)

Note that this yields a hidden Markov model with emission probabilities ∆L. In the

following the values for c were chosen according to [8]. Since the value for d was not

determined in [8], we measured the conversion rate d = 0.94 in an independent experiment

under comparable conditions (data not shown).

6.3.5 Maximum Likelihood Estimator

In order to estimate the parameters θ = (µ, ψL, ψR, τ), we employ a Maximum (Log)Likelihood

Estimator (MLE)

θ̂ = arg max
θ
`(θ), `(θ) =

4L∑
j=1

log(π̂j(θ))·Nj, (6.22)

where π̂ is the pattern distribution obtained from the numerical solution of (6.20) and

(6.21) for a given time t and Nj is the number of occurrences of pattern j in the measured

data. The parameters θ = θ̂ are chosen in such a way that ` is maximized. Visual

inspection of all two dimensional cuts of the likelihood landscapes showed only a single

local maximum.

We employ the MLE twice in order to estimate the parameter vector θ̂1 for Dnmt1 from the

3a/b DKO (double knockout) data and the vector θ̂3a/b for Dnmt3a/b from the Dnmt1

KO data, where transition matrix (6.16) is used. The corresponding time instants are

t = 26 for the 3a/b DKO data and t = 41 for the 1KO data.

We approximate the standard deviations of the estimated parameters θ̂ as follows: Let

I(θ̂) = E[−H(θ̂)] be the expected Fisher information, with the Hessian H(θ̂) = ∇∇ᵀ`(θ̂).
The inverse of the expected Fisher information is a lower bound for the covariance matrix

of the MLE such that we can use the approximation σ(θ̂) ≈
√

diag(−H(θ̂)).

A prediction for the wild-type can be computed by combining the estimated vectors such

that in the model both types of enzymes are active. For this, we insert θ̂1 in Ps and θ̂3a/b

�The number of cell divisions is estimated from the time of the measurement since these cells divide
once every 24 hours.
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in P̃s in (6.17) to obtain the transition matrix for the wild-type.

6.4 Results

For our analysis we focused at the single copy genes Afp (5 CpGs) and Tex13 (10 CpGs)

as well as the repetitive elements IAP (intracisternal A particle) (6 CpGs), L1 (Long

interspersed nuclear elements) (7 CpGs) and mSat (major satellite) (3 CpGs). Repetitive

elements occur in multiple copies and are dispersed over the entire genome. Therefore

they allow capturing an averaged, more general behavior of methylation dynamics. If a

locus contains more than three CpGs, the analysis is done for all sets of three adjacent

sites independently, in order to keep computation times short and memory requirements

low. In the sequel, we mainly focus on the estimated dependency parameters ψL and ψR

and on the prediction quality of the different models.

The estimates for all the available KO data and all suggested models obtained using

the transition matrix in Eq. (6.16) are summarized as histograms in Fig. 6.5. Because

of the different possibilities to combine the four different models in Eq. (6.12)-(6.15) and

because of the different loci considered, in total there are 84 estimates for each KO data

set. We plot the number of occurrences N of ψL (left) and ψR (right) in different ranges

for both sorts of KO data (Dnmt1KO and Dnmt3a/b DKO).

The estimates of ψL spread over the whole interval [0, 1] while in the case of ψR, nearly

all estimates are larger than 0.99 and only in a few cases the dependency parameter is

significantly smaller than 1. Hence, in most cases the methylation probabilities are in-

dependent of the right neighbor for both Dnmt1KO and Dnmt3a/b DKO. For ψL the

dependency parameter in the Dnmt3a/b DKO case occurs more often close to 1, meaning

that the transitions induced by Dnmt1 have little to no dependency on the left neighbor.

On the other hand for Dnmt1KO the dependency parameter occurs more often at smaller

values giving evidence that there is a dependency on the left neighbor for the activity

of Dnmt3a/b. Note that all models show a similar behavior in terms of the dependency

parameters for a given locus or position within a locus respectively, i.e. either ψi ≈ 1 or

ψi < 1 for all models. The difference between the behaviors at different loci and positions

may be explained by explicitly including the distances between the CpGs and is planned

as future work.

Since ψR is usually close to 1 a smaller model with only three parameters θ = (µ, ψ, τ)

can be proposed, where ψ is a dependency parameter for the left neighbor. This model

can either be obtained by fixing ψR = 1 in the original model and setting ψ = ψL or

by redefining the transition probabilities to ψx if the left neighbor is unmethylated and

1 − ψ(1 − x) if the left neighbor is methylated. In that case ψ and ψL are related via

ψ = 0.5(ψL + 1). Note that both versions yield the same results.

In order to check whether there is a significant difference in the original and the smaller
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model, we performed a Likelihood-ratio test with the null hypothesis that the smaller

model is a special case of the original model. Since the original model with more param-

eters is always as least as good as the smaller model, our goal is to check in which cases

the smaller model is sufficient. Indeed if ψR was estimated to be approximately 1 the

Likelihood-ratio test indicates that the smaller model is sufficient (p-value ≈ 1). On the

other hand, for the few cases where ψR differs significantly from 1 the original model has

to be used (p-value < 0.01).
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Fig. 6.5: Histograms for the estimated dependency parameters ψL and ψR for all sets of three
adjacent CpGs in all loci and for all suggested models.

As a next step we used the estimated parameters from the KO data to predict the

WT data. The models from Eqs.(6.12) - (6.15) are referred to as Models 1-4. For the

prediction, the notation (x, y) is used to refer to Model x for the Dnmt3a/b DKO (only

Dnmt1 active) and Model y for the Dnmt1KO case (only Dnmt3a/b active). One instance

of the prediction, for which Model 1 was used for both Dnmt1KO and Dnmt3a/b DKO,

i.e. (1,1), are shown in Fig. 6.6. Note that all wild-type predictions yielded a very similar

accuracy (see also Appendix). We list the corresponding estimations for the parameters

for an example of a single copy gene (Afp) and a repetitive element (L1) in Tab. 6.1.

While the standard deviation of the estimated parameters for µis always of the order

10−2 and for τ of order 10−3, it is usually of oder 10−2 for ψi. Depending on the model,

locus and position, standard deviations up to order 10−1 may occur for the dependency

parameters in a few cases.

In Fig. 6.6 the predictions for the pattern distribution together with the WT pattern

distribution and a prediction from the neighborhood independent model (ψL = ψR = 1)

for all loci are shown in the main plot. As an inset the distributions are shown on a

smaller scale to display small deviations. With the exception of patterns 0 and 64 (which

corresponds to no methylation/full methylation of all sites) in L1 and pattern 64 in all loci,
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where the difference between WT and the numerical solution is about 10%, the difference

is always small (< 5%) as seen in the insets.

Tab. 6.1: Estimated parameters for the KO data and model based on Eq. (6.12) for the loci L1
and Afp with sample size n.

KO µ ψL ψR τ n Locus

Dnmt1 0.334± 0.051 0.576± 0.067 1.000± 0.122 0.038± 0.004 1047 L1

Dnmt3a/b 0.789± 0.037 1.000± 0.038 0.984± 0.045 10−10 ± 0.002 805 L1

Dnmt1 0.452± 0.062 0.383± 0.076 1.000± 0.094 0.091± 0.016 134 Afp

Dnmt3a/b 0.990± 0.003 0.984± 0.011 1.000± 0.006 10−10 ± 0.011 186 Afp

In general all 16 models show a similar performance for all loci and positions in terms

of accuracy of the prediction. On the large scale the differences are not visible and even

for the smaller scale the differences are small, as shown for mSat in Fig. 6.7. This is in

accordance to the corresponding Kullback-Leibler divergences

KL =
4L∑
j=1

πj(WT) log

(
πj(WT)

πj(pred)

)
that we list in Table 6.2. The difference in KL between the “best” and the “worst” case

is about 0.01. The mean and standard deviation for KL was obtained via bootstrapping

of the wild-type data (10.000 bootstrap samples for each model). Since no confidence

intervals of the parameters are included, this standard deviation can be regarded as a

lower bound. However, even with these lower bounds the intervals of KL overlap for all

models, such that no model can be favorized.

Tab. 6.2: Kullback-Leibler divergence KL for the 16 models.

Model (1, 1) (1, 2) (1, 3) (1, 4)

KL 0.1398± 0.0134 0.1398± 0.0134 0.1398± 0.0134 0.1337± 0.0127

Model (2, 1) (2, 2) (2, 3) (2, 4)

KL 0.1438± 0.0137 0.1439± 0.0136 0.1439± 0.0137 0.1374± 0.0133

Model (3, 1) (3, 2) (3, 3) (3, 4)

KL 0.1399± 0.0134 0.1399± 0.0134 0.1398± 0.0133 0.1337± 0.0127

Model (4, 1) (4, 2) (4, 3) (4, 4)

KL 0.1410± 0.0137 0.1411± 0.0136 0.1409± 0.0135 0.1349± 0.0130

6.5 Related Work

In [18] location- and neighbor-dependent models are proposed for single-stranded DNA

methylation data in blood and tumor cells. The (de-)methylation rates depend on the
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Fig. 6.6: The figures show an example for the predicted (neighbor dependent and neighbor
independent) and the measured pattern distribution for each locus. The inset shows a
zoomed in version of the distribution.
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position of the CpG relative to the 3’ or 5’ end and/or on the methylation state of the left

neighbor only. The dependency is realized by the introduction of an additional parame-

ter. In our proposed models we use double-stranded DNA and can therefore include hemi-

methylated sites and even distinguish on which strand the site is methylated. Furthermore

we allow dependencies on both neighbors by introducing two different dependency param-

eters. In contrast [19] copes with the neighborhood dependency indirectly by allowing

different parameter values for different sites. In order to reduce the dimensionality of the

parameter vector, a hierarchical model based on beta distributions is proposed. Another

difference to our model is the distinction between de novo rates for parent and daughter

strand. However, this can easily be included in future work. A density-dependent Markov

model was proposed [20]. In this model, the probabilities of (de-)methylation events may

depend on the methylation density in the CpG neighborhood. In addition, a neighboring

sites model has been developed, in which the probabilities for a given site are directly

influenced by the states of neighboring sites to the left and right [20]. When these models

were tested on double-stranded methylation patterns from two distinct tandem repeat

regions in a collection of ovarian carcinomas, the density-dependent and neighboring sites

models were superior to independent models in generating statistically similar samples.

Although this model also includes the dependence on the methylation state on the left and

right neighbor for double-stranded DNA the approach is different. The transition prob-

abilities of the neighbor-independent model are transformed into a transition probability

of a neighbor-dependent model by introducing only one additional parameter. The state

of the left and right neighbor are taken into account by exponentiating this parameter by

some norm. In addition, this approach does not allow the intuitive interpretation of the

dependency parameter.

6.6 Conclusion

We proposed a set of stochastic models for the formation and modification of methyla-

tion patterns over time. These models take into account the state of the CpG sites in

the spatial neighborhood and allow to describe different hypotheses about the underlying

mechanisms of methyltransferases adding methyl groups at CpG sites. We used knock-

out data from bisulfite sequencing at several loci to learn the efficiencies at which these

enzymes perform methylation. By combining these efficiencies, we accurately predicted

the probability distribution of the patterns in the wild-type. Moreover, we found that in

all cases the models predict values for the dependency parameters ψL and ψR close to 1

and therefore independence of methylation for the Dnmt3a/b DKO meaning that Dnmt1

methylates CpGs independent of the methylation of neighboring CpGs. For Dnmt3a/b

on the other hand we could identify dependencies on the neighboring CpGs. Both find-

ings are in accordance with current existing mechanistic models: Dnmt1 reliably copies
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the methylation from the template strand to maintain the distinct methylation patterns,

whereas Dnmt3a/b try to establish and keep a certain amount of CpG methylation at a

given loci. Interestingly, our models only suggest dependencies of de novo methylation ac-

tivity on the CpGs in the 5’ neighborhood. This indicates that Dnmt3a and Dnmt3b show

a preference to methylate CpGs in a 5’ to 3’ direction and could point towards a processive

or cooperative behavior of these enzymes like recently described in in vitro experiments

[13, 10]. Compared to a neighborhood independent model with ψL = ψR = 1, a neigh-

borhood dependent model shows better predictions and furthermore allows to investigate

(possible) connections of adjacent CpGs and their methylation states.

As future work, we plan to investigate models in which we distinguish between the

actions of Dnmt3a and Dnmt3b and in which we allow a diagonal dependency for de novo

methylation, i.e., a dependency on the state of neighboring CpGs on the opposite strand.

Moreover, we will design models that take into account the number of base pairs between

adjacent CpG sites. To investigate a potential impact of oxidized cytosine forms on the

methylation at neighboring CpG sites we further plan to include the CpG states 5hmC,

5fC and 5caC in our model.
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Fig. 6.7: The figures show the predicted and the measured pattern distribution for all 16 models
for mSat. The inset shows a zoomed in version of the distribution.
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Fig. 6.7: (continued)
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Abstract

DNA methylation is an epigenetic mark whose important role in development has been

widely recognized. This epigenetic modification results in heritable information not en-

coded by the DNA sequence. The underlying mechanisms controlling DNA methylation

are only partly understood. Several mechanistic models of enzyme activities responsible

for DNA methylation have been proposed. Here we extend existing Hidden Markov Mod-

els (HMMs) for DNA methylation by describing the occurrence of spatial methylation

patterns over time and propose several models with different neighborhood dependencies.

Furthermore we investigate correlations between the neighborhood dependence and other

genomic information. We perform numerical analysis of the HMMs applied to compre-

hensive hairpin and non-hairpin bisulfite sequencing measurements and accurately predict

wild-type data. We find evidence that the activities of Dnmt3a and Dnmt3b responsible

for de novo methylation depend on 5’ (left) but not on 3’ (right) neighboring CpGs in a

sequencing string.

7.1 Introduction

The DNA code of an organism determines its appearance and behavior by encoding

protein sequences. In addition, there is a multitude of additional mechanisms to control

and regulate the ways in which the DNA is packed and processed in the cell and thus

determine the fate of a cell. One of these mechanisms in cells is DNA methylation,

which is an epigenetic modification that occurs at cytosine (C) bases of eukaryotic DNA.

Cytosines are converted to 5-methylcytosine (5mC) by DNA methyltransferase (Dnmt)

enzymes. The neighboring nucleotide of a methylated cytosine is usually guanine (G)

and together with the CG-pair on the opposite strand, a common pattern is that two

methylated cytosines are located diagonally to each other on opposing DNA strands. DNA

methylation at CpG dinucleotides is known to control and mediate gene expression and is

therefore essential for cell differentiation and embryonic development. In human somatic

cells, approximately 70-80% of the cytosine nucleotides in CpG dyads are methylated on

both strands and methylation near gene promoters varies considerably depending on the

cell type. Methylation of promoters often correlates with low or no transcription [1] and

can be used as a predictor of gene expression [2]. Also, significant differences in overall
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and specific methylation levels exist between different tissue types and between normal

cells and cancer cells from the same tissue. However, the exact mechanism which leads

to a methylation of a specific CpG and the formation of distinct methylation patterns

at certain genomic regions is still not fully understood. Recently proposed measurement

techniques based on hairpin bisulfite sequencing (BS-seq) allow to determine the level of

5mC at individual CpGs dyads on both DNA strands [3]. Based on a small hidden Markov

model, the probabilities of the different states of a CpG can be accurately estimated

(assuming that enough samples per CpG are provided) [4, 5, 6].

Mechanistic models for the activity of the different Dnmts usually distinguish de novo

activities, i.e., adding methyl groups at cytosines independent of the methylation state of

the opposite strand, and maintenance activities, which refers to the copying of methylation

from an existing DNA strand to its newly synthesized partner (containing no methylation)

after replication [7, 8]. Hence, maintenance methylation is responsible for re-establishment

of the same DNA methylation pattern before and after cell replication. A common hy-

pothesis is that the copying of DNA methylation patterns after replication is performed by

Dnmt1, an enzyme that shows a preference for hemimethylated CpG sites (only one strand

is methylated) as they appear after DNA replication. Moreover, studies have shown that

Dnmt1 is highly processive and able to methylate long sequences of hemimethylated CpGs

without dissociation from the target DNA strand [7]. However, an exact transmission of

the methylation information to the next cellular generation is not guaranteed. The en-

zymes Dnmt3a and Dnmt3b show equal activities on hemi- and unmethylated DNA and

are mainly responsible for de novo methylation, i.e., methylation without any specific

preference for the current state of the CpG (hemi- or unmethylated) [8]. However, by

now evidence exists that the activity of the different enzymes is not that exclusive, i.e.,

Dnmt1 shows to a certain degree also de novo and Dnmt3a/b maintenance methylation

activity [9]. The way how methyltransferases interact with the DNA and introduce CpG

methylation was investigated in many in vitro studies. Basically, one can distinguish

between two mechanisms. A distributive one, where the enzyme periodically binds and

dissociates from the DNA, leaping more or less randomly from one CpG to another and

a processive one in which the enzyme migrates along the DNA without detachment from

the DNA [10, 11, 12], as illustrated in Fig. 7.1. Note that for Dnmt1, for instance, it is

reasonable to assume that it is processive in 5’ to 3’ direction since it is linked to the

DNA replication machinery. In particular for the Dnmt3’s different hypotheses about the

processivity and neighborhood dependence exist [13, 14], but the detailed mechanisms

remain elusive.

Several models that describe the dynamics of the formation of methylation patterns

have been proposed. In the seminal paper of Otto and Walbot, a dynamical model was

proposed that assumed independent methylation events for a single CpG. The main idea

was to track the frequencies of fully, hemi- and unmethylated CpGs during several cell
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Fig. 7.1: Dnmts can methylate DNA in a processive way where the enzyme starts at one CpG
and slides in 5’ to 3’ direction over the DNA or in a distributive manner, “jumping”
randomly from one CpG to another.

generations [15]. Later, refined models allowed to distinguish between maintenance and

de novo methylation on the parent and daughter strands [16, 17]. More sophisticated

extensions of the original model of Otto and Walbot models have been successfully used

to predict in vivo data still assuming a neighbor-independent methylation process for a

single CpG site [9, 5]. However, measurements indicate that methylation events at a single

CpG may depend on the methylation state of neighboring CpGs, which is not captured

by these models.

Here, we follow the dynamical HMM approach proposed in [9] where knockout data

was used to train a model that accurately predicts wild-type methylation levels for BS-seq

data of repetitive elements from mouse embryonic stem cells. We extend this model by

describing the methylation state of several CpGs instead of a single CpG and use similar

dependency parameters as introduced in Bonello et al. [18]. More specifically, we design

different models by combining the activities of the two types of Dnmts and test for both,

maintenance and de novo methylation the hypotheses illustrated in Fig 7.1. The models

vary according to the order in which the enzymes act, whether they perform methylation

in a processive manner or not, and how much their action depends on the left/right CpG

neighbor. We use the same BS-seq hairpin data as in [9], i.e. data where Dnmt1 or

Dnmt3a/b was knocked out (KO) and learn the parameters of the different models. We

also relate the estimated dependency parameters to the distance between the respective

adjacent CpGs in order to investigate their possible influence. Then, similar as in [9], we

predict the behavior of the measured wild-type (WT), in which both types of enzymes are

active, by designing a combined model that describes the activity of both enzymes and

compare the results to the WT data. Finally, we apply our model to non-hairpin data.

We found that all proposed models show a similar behavior in terms of prediction
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quality such that no model can be declared as the best fit. However, our results indicate

that Dnmt1 works independently of the methylation state of its neighborhood, which is

in accordance to the current hypothesis that Dnmt1 is linked to the replication machinery

and copies the methylation state on the opposite strand. On the other hand, Dnmt3a/b

shows a dependency to the left but no dependency to the right, which supports hypothe-

ses of processive or cooperative behavior. Furthermore, we find evidence that at least for

small distances rather the genetic region than the distance determines the dependence on

the neighbors. Applying our model to a genome-wide data set we find three distinct clus-

ters based on the dependency parameters and distances between adjacent CpGs. These

clusters also show different methylation levels and reveal that hypomethylated CpGs in

promoter regions behave independent of their neighborhood. Finally our results show

that our model can also be used for non-hairpin data as long as no information from the

opposite strand is needed as for example in Dnmt1KO data.

This paper is organized is as follows: Our model is introduced in section II and the

results are presented in section III. In section IV we discuss the related work. We conclude

the paper in section V and give a brief outline on future work.

7.2 Model

7.2.1 Notation

Consider a sequence of L neighboring CpG dyads*, which is represented as a lattice of

length L and width two (for the two strands). Each cytosine in the lattice can either be

methylated or not, leading to four possible states at each position l:

• State 0 : Both cytosines are not methylated.

• State 1 : The cytosine on the upper strand is methylated, the lower one not.

• State 2 : The cytosine on the lower strand is methylated, the upper one not.

• State 3 : Both cytosines are methylated.

A sequence of four CpGs, each of which is in one of the four possible states, is shown in

Fig. 7.2.

For a system of length L there are in total 4L possibilities to combine the states of

individual CpGs. These combinations are called patterns in the following. A pattern is

denoted by a concatenation of states, e.g. 321, 0123 or 33221.

In order to represent the pattern distribution as a vector it is necessary to uniquely assign

*The exact nucleotide distance between two neighboring dyads is not considered here explicitly, but
we assume that this distance is small. For the BS-seq data that we consider, the average distance between
two CpGs is 14 bps (base pairs) and the maximal distance is 46 bps.
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Fig. 7.2: A lattice of length L = 4 containing all possible states 0, 1, 2 and 3, forming the
pattern 0123.

a reference number to each pattern. A pattern can be perceived as a number in the tetral

system, such that converting to the decimal system leads to a unique reference number.

After the conversion an additional 1 is added in order to start the referencing at 1 instead

of 0.

Examples for L = 3:

000 −→ 1 (= 0 + 1)

123 −→ 28 (= 27 + 1)

333 −→ 64 (= 63 + 1)

This reference number then corresponds to the position of the pattern in the respective

distribution vector.

We describe the state of a sequence of L CpGs by a discrete-time Markov chain

with pattern distribution π(t), i.e., the probability of each of the 4L patterns after t

cell divisions. For the initial distribution π(0), we use the distribution measured in the

wild-type when the cells are in equilibrium. Note, that other initial conditions gave very

similar results, i.e., the choice of the initial distribution does not significantly affect the

results. The reason is that also the KO data is measured after a relatively high number

of cell divisions where the cells are almost in equilibrium. Transitions between patterns

are triggered by different processes: First due to cell division the methylation on one

strand is kept as it is (e.g. the upper strand), whereas the newly synthesized strand (the

new lower strand) does not contain any methyl group. Afterwards, methylation is added

due to different mechanisms. On the newly synthesized strand a site can be methylated

if the cytosine at the opposite strand is already methylated (maintenance). It is widely

accepted that maintenance in form of Dnmt1 is linked to the replication machinery and

thus occurs during/directly after the synthesis of the new strand. Furthermore, CpGs on

both strands can be methylated independent of the methylation state of the opposite site

(de novo). The transition matrix P is defined by composition of matrices for cell division,

maintenance and de novo methylation of each site.

7.2.2 Cell Division

Depending on which daughter cell is considered after cell replication, the upper (s = 1)

or lower (s = 2) strand is the parental one after cell division. Then, the new pattern can



7. Hidden Markov Modelling Reveals Neighborhood Dependence of Dnmt3a and 3b Activity 236

? ? ? ?

? ? ? ?

? ?

? ?

? ?

? ?

? ??

? ??

? ??

? ?? ? ??

? ??

? ??

? ??p1

p2

p3

p4

 Maintenance                       De Novo

Fig. 7.3: Possible maintenance and de novo transitions depicted for the lower strand, where ◦
denotes an unmethylated, • a methylated site and ? a site where the methylation state
does not matter. Note that the same transitions can occur on the upper strand.

be obtained by applying the following state replacements:

s = 1 :



0 −→ 0

1 −→ 1

2 −→ 0

3 −→ 1

s = 2 :



0 −→ 0

1 −→ 0

2 −→ 2

3 −→ 2

(7.1)

Given some initial pattern with reference number i, applying the transformation (7.1) to

each of the L positions leads to a new pattern with reference number j (notation: i
(7.1)
 j).

The corresponding transition matrix Ds ∈ {0, 1}4L×4L has the form

Ds(i, j) =

1, if i
(7.1)
 j,

0, else.
(7.2)

7.2.3 Maintenance and De Novo Methylation

For maintenance and de novo methylation, the single site transition matrices are built

according to the following rules:

Consider at first the (non-boundary) site l = 2, . . . , L− 1 and its left and right neighbor

l − 1 and l + 1 respectively. The remaining sites do not change and do not affect the

transition. The probabilities of the different types of transitions in Fig. 7.3 have the form

p1 =0.5·(ψL + ψR)x, (7.3)

p2 =0.5·(ψL + ψR)x+ 0.5·(1− ψL), (7.4)

p3 =0.5·(ψL + ψR)x+ 0.5·(1− ψR), (7.5)

p4 =1− 0.5·(ψL + ψR)(1− x), (7.6)

where we set the probability x to x = µ in case of maintenance and to x = τ in case of de

novo methylation. ψL, ψR ∈ [0, 1] are the dependency parameters for the left and right
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neighbor.

A dependency value of ψi = 1 corresponds to a total independence on the neighbor

whereas ψi = 0 leads to a total dependence. Hence, µ and τ can be interpreted as the

probability of maintenance and de novo methylation of a single cytosine between two cell

divisions assuming independence from neighboring CpGs. Moreover, all CpGs that are

part of the considered window of the DNA have the same value for the parameters µ,

τ , ψL, and ψR, since in earlier experiments only very small differences have been found

between the methylation efficiencies of nearby CpGs [9].

In order to understand the form of the transition probabilities consider at first a case

with only one neighbor. The probabilities then have the form ψx if the neighbor is un-

methylated and 1−ψ(1−x) if the neighbor is methylated. Note that both forms evaluate

to x for ψ = 1, meaning that a site is methylated with probability x, independent of

its neighbor. For ψ = 0 the probabilities become 0 and 1, meaning that if there is no

methylated neighbor the site cannot be methylated or will be methylated for sure if there

is a methylated neighbor respectively.

The probabilities for two neighbors are obtained by a linear combination of the one neigh-

bor cases, with ψL for the left and ψR for the right neighbor, and an additional weight of

0.5 to normalize the probability.

The same considerations also apply to the boundary sites however there is no way of

knowing the methylation states outside the boundaries (denoted by ?). Therefore instead

of a concrete methylation state (◦ for unmethylated, • for methylated site) the average

methylation density ρ is used to compute the transition probabilities at the boundaries

(depicted here for de novo):

? ◦ ◦ → ? • ◦ p̃1 = (1− ρ)·p1 + ρ·p2, (7.7)

? ◦ • → ? • • p̃2 = (1− ρ)·p3 + ρ·p4, (7.8)

◦ ◦ ?→ ◦ • ? p̃3 = (1− ρ)·p1 + ρ·p3, (7.9)

• ◦ ?→ • • ? p̃4 = (1− ρ)·p2 + ρ·p4. (7.10)

Note that the same considerations hold for maintenance at the boundaries if the opposite

site of the boundary site is already methylated.

For each position l, there are four transition matrices: two for maintenance and two for de

novo, namely one for the upper and one for the lower strand in each process. In order to

construct these matrices consider the three positions l−1, l and l+1, where the transition

happens at position l. Only the transitions depicted in Fig. 7.3 can occur. Furthermore

the transitions are unique, i.e. for a given reference number i the new reference number

j is uniquely determined. For patterns not depicted in Fig. 7.3 no transition can occur,

i.e. the reference number does not change.



7. Hidden Markov Modelling Reveals Neighborhood Dependence of Dnmt3a and 3b Activity 238

The matrix describing a maintenance event at position l and strand s has the form

M (l)
s (i, j) =



1, if i = j and 6 ∃j′ : i j′,

1− p, if i = j and ∃j′ : i j′,

p, if i 6= j and i j,

0, else,

(7.11)

where the probability p is given by one of the Eqs. (7.3)-(7.10) that describes the cor-

responding case and x = µ. Note that M
(l)
s depends on s and l since it describes a

single transition from pattern i to pattern j, which occurs on a particular strand and at

a particular location with probability p. We define matrices T
(l)
s for de novo methylation

according to the same rules except that x = τ and the possible transitions are as in

Fig. 7.3, right. All matrices are of size 4L × 4L.

The advantage of defining the matrices position- and process-wise is that different models

can be realized by changing the order of multiplication of these matrices.

It is important to note that 5mC can be further modified by oxidation to 5-hydroxymethyl-

(5hmC), 5-formyl- (5fC) and 5-carboxyl cytosine(5caC) by Tet enzymes. These modifi-

cations are involved in the removal of 5mC from the DNA and can potentially interfere

with methylation events. However, our data does not capture these modifications and

therefore we are not able to consider these modifications in our model.

7.2.4 Combination of Transition Matrices

For all subsequent models it is assumed that first of all cell division happens and main-

tenance methylation only occurs on the newly synthesized strand given by s, whereas de

novo methylation happens on both strands. Given the mechanisms in Fig. 7.1, the two

different kinds of methylation events, and the two types of enzymes, there are several pos-

sibilities to combine the transition matrices. We consider the following four models, which

we found most reasonable based on the current state of research in DNA methylation:

a. first processive maintenance and then processive de novo methylation

Ps =
L∏

l1=1

M (l1)
s

L∏
l2=1

T
(l2)
1

L∏
l3=1

T
(l3)
2 , (7.12)
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b. first processive maintenance and then de novo in arbitrary order

Ps =
1

(L!)2

L∏
l1=1

M (l1)
s

( ∑
σ1∈SL

L∏
l2=1

T
(σ1(l2))
1

)

·

( ∑
σ2∈SL

L∏
l3=1

T
(σ2(l3))
2

)
,

(7.13)

c. maintenance and de novo at one position, processive

Ps =
L∏
l=1

M (l)
s T

(l)
1 T

(l)
2 , (7.14)

d. maintenance and de novo at one position, arbitrary order

Ps =
1

L!

∑
σ∈SL

L∏
l=1

M (σ(l))
s T

(σ(l))
1 T

(σ(l))
2 , (7.15)

where SL is the set of all possible permutations for the numbers 1, . . . , L.

Note that the de novo events on both strands are independent, i.e. the de novo events

on the upper strand do not influence the de novo events on the lower strand and vice

versa, such that [T
(l)
1 , T

(l′)
2 ] = 0 independent of ψi

�. Obviously it is important whether

maintenance or de novo happens first, since the transition probabilities and the transi-

tions themselves depend on the actual pattern. Furthermore in the case ψi < 1 (depen-

dency on right and/or left neighbor) the order of the transitions on a strand matters, i.e.

[M
(l)
s ,M

(l′)
s ] 6= 0 and [T

(l)
s , T

(l′)
s ] 6= 0 for l 6= l′. Note that this definition of models in

principle allows to consider an arbitrary number of CpGs. However, at least three CpGs

are needed to properly include the influence of the left and right neighbor in the transi-

tions. It is also important to note that independent of the number of considered CpGs the

window size of the influential CpGs for the transition rates is always kept at size three.

However, treating more than three CpGs at once has two major drawbacks: First of all

the number of possible patterns grows rapidly (recall 4L possible patterns for L CpGs)

and hence the transition matrices become very large as well (4L × 4L). This may lead to

memory issues while calculating the distributions, which can however be circumvented by

sampling approaches, i.e. stochastic simulation of the underlying Markov chain. Another

problem with the large number of possible patterns is that more data is required in order

to ensure a good coverage, i.e. the number of measurements should be larger than the

number of patterns.

The second main problem is that using the same dependency parameters for all pairs of

�[A,B] = AB −BA is the commutator of the matrices A and B.
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u m

T C

c 1− c d1− d

Fig. 7.4: Conversions of the unobservable states u,m to observable states T,C with respective
rates.

adjacent CpGs is a rather strong assumption. Note that this assumption becomes more

problematic for larger windows, due to e.g. different distances between the CpGs. One

solution would be to introduce extra dependency parameters for each pair, however this

may lead to difficulties in the parameter identification.

The total transition matrix is then given by a combination of the cell division and

maintenance/de novo matrices. Recall that we consider two different types of Dnmts,

i.e., Dnmt1 and Dnmt3a/b. If only one type of Dnmt is active (KO data) the matrix has

the form

P = 0.5·(D1 ·P1 +D2 ·P2) (7.16)

and if all Dnmts are active (WT data)

P = 0.5·(D1 ·P1 ·P̃1 +D2 ·P2 ·P̃2), (7.17)

where Ps and P̃s have one of the forms (7.12)-(7.15). This leads to four different models

for one active enzyme or 16 models for all active enzymes respectively. In the second

case Ps represents the transitions caused by Dnmt1 and P̃s the transitions caused by

Dnmt3a/b. Note that if ψL = ψR = 1 all models are the same within each case since they

reduce to the neighborhood independent model from [9]. Furthermore, the cell division,

maintenance, and de novo transition matrices for a single CpG at a given position are

sparse. However, upon combining them to the full transition matrices in Eqs. (7.16) or

(7.17), the final matrices become dense and therefore have higher memory requirements.

7.2.5 Conversion Errors

The actual methylation state of a C cannot be directly observed. During BS-seq, with

high probability every unmethylated C (denoted by u) is converted into Thymine (T) and

every 5mC (denoted by m) into C. However, conversion errors may occur and we define

their probability as 1−c and 1−d, respectively, as shown by the dashed arrows in Fig. 7.4.

It is reasonable that these conversion errors occur independently and with approximately

identical probability at each site and thus the error matrix for a single CpG takes the
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form

∆1 =


c2 cc̄ cc̄ c̄2

cd̄ cd c̄d̄ dc̄

cd̄ c̄d̄ cd dc̄

d̄2 dd̄ dd̄ d2

 , (7.18)

with c̄ = 1 − c and d̄ = 1 − d. Due to the independency of the events this matrix can

easily be generalized for systems with L > 1 by recursively using the Kronecker-product

∆L = ∆1 ⊗∆L−1 for L ≥ 2. (7.19)

Hence, ∆L gives the probability of observing a certain sequence of C and T nucleotides

for each given unobservable methylation pattern. In order to compute the likelihood π̂

of the observed BS-seq data, we therefore first compute the transient distribution π(t) of

the underlying Markov chain at the corresponding time instant� t by solving

π(t) = π(0) · P t (7.20)

and then multiply the distribution of the unobservable patterns with the error matrix.

π̂ = π(t) ·∆L. (7.21)

Note that this yields a hidden Markov model with emission probabilities ∆L. In the

following the values for c were chosen according to [9]. Since the value for d was not

determined in [9], we measured the conversion rate d = 0.94 in an independent experiment

under comparable conditions (data not shown).

7.2.6 Maximum Likelihood Estimator

In order to estimate the parameters θ = (µ, ψL, ψR, τ)∈ [0, 1]4, we employ a Maximum

(Log)Likelihood Estimator (MLE)

θ̂ = arg max
θ
`(θ), `(θ) =

4L∑
j=1

log(π̂j(θ))·Nj, (7.22)

where π̂ is the pattern distribution obtained from the numerical solution of (7.20) and

(7.21) for a given time t and Nj is the number of occurrences of pattern j in the measured

data. The parameters θ = θ̂ are chosen in such a way that ` is maximized. In order to

ensure that the global maximum in [0, 1]4 is found during the optimization, we ran the

estimation several times with different random starting points. In all cases the estimation

�The number of cell divisions is estimated from the time of the measurement since these cells divide
once every 24 hours.
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yielded the same results, such that we can conclude that indeed the global optimum was

found.

We employ the MLE twice in order to estimate the parameter vector θ̂1 for Dnmt1 from the

3a/b DKO (double knockout) data and the vector θ̂3a/b for Dnmt3a/b from the Dnmt1

KO data, where transition matrix (7.16) is used. The corresponding time instants are

t = 26 for the 3a/b DKO data and t = 41 for the 1KO data.

We approximate the standard deviations of the estimated parameters θ̂ as follows: Let

I(θ̂) = E[−H(θ̂)] be the expected Fisher information, with the Hessian H(θ̂) = ∇∇ᵀ`(θ̂).
The inverse of the expected Fisher information is a lower bound for the covariance matrix

of the MLE such that we can use the approximation σ(θ̂) ≈
√

diag(−H(θ̂)).

A prediction for the wild-type can be computed by combining the estimated vectors such

that in the model both types of enzymes are active. For this, we insert θ̂1 in Ps and θ̂3a/b

in P̃s in (7.17) to obtain the transition matrix for the wild-type.

7.2.7 Data

For our analysis we focused on hairpin data of the single copy genes Afp (5 CpGs) and

Tex13 (10 CpGs) as well as the repetitive elements IAP (intracisternal A particle) (6

CpGs), L1 (Long interspersed nuclear elements) (7 CpGs) and mSat (major satellite) (3

CpGs). During the workflow of hairpin bisulfite sequencing, the two DNA strands are

linked together covalently, i.e. the methylation status of both strands from an individual

chromosome (DNA molecule) is known. Repetitive elements occur in multiple copies and

are dispersed over the entire genome. Therefore they allow capturing an averaged, more

general behavior of methylation dynamics. Typical data sets are shown in Fig. 7.5. Note

that the WT data is almost always fully methylated, while the Dnmt1KO data is mostly

un- or hemimethylated. The Dnmt3ab DKO data is somewhat in between.

7.3 Results

7.3.1 Parameter Estimation

In the following we focus on the hairpin data for the single copy genes and repetitive

elements as introduced in the previous section. If a locus contains more than three CpGs,

the analysis is done for all sets of three adjacent sites independently, in order to keep

computation times short and memory requirements low. In the sequel, we mainly focus

on the estimated dependency parameters ψL and ψR and on the prediction quality of the

different models.

The estimates for all the available KO data and all suggested models obtained using

the transition matrix in Eq. (7.16) are summarized as histograms in Fig. 7.6. Because

of the different possibilities to combine the four different models in Eq. (7.12)-(7.15) and
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Fig. 7.5: Representations of WT (left), Dnmt1KO (middle) and Dnmt3a/b DKO (right) data
for mSat. On the X axis the CpGs and on the Y axis the measured cells are shown.
The different colors encode the states as follows: Red: 0, green: 1, yellow: 2, blue:3,
and white: “no measurement”.

because of the different loci considered, in total there are 84 estimates for each KO data

set. We plot the number of occurrences N of ψL (top) and ψR (bottom) in different ranges

for both sorts of KO data (Dnmt1KO and Dnmt3a/b DKO).

The estimates of ψL spread over the whole interval [0, 1] while in the case of ψR, nearly

all estimates are larger than 0.99 and only in a few cases the dependency parameter

is significantly smaller than 1. Hence, in most cases the methylation probabilities are

independent of the right neighbor for both Dnmt1KO and Dnmt3a/b DKO. For ψL the

dependency parameter in the Dnmt3a/b DKO case occurs more often close to 1, meaning

that the transitions induced by Dnmt1 have little to no dependency on the left neighbor.

On the other hand for Dnmt1KO the dependency parameter occurs more often at smaller

values giving evidence that there is a dependency on the left neighbor for the activity

of Dnmt3a/b. Note that all models show a similar behavior in terms of the dependency

parameters for a given locus or position within a locus respectively, i.e. either ψi ≈ 1

or ψi < 1 for all models. Since the histograms for Dnmt3a/b DKO look very similar

for ψL and ψR, we used a two-sample Kolmogorov-Smirnov test to assess if they differ

significantly. The resulting p-value of 1 indicates that there is no significant difference

in this case. Note that we also get quite high p-values (0.786 and 0.433) when applying

the test to the Dnmt1KO histogram for ψR and the two Dnmt3a/b DKO histograms. On

the other hand, the p-values are significantly smaller for Dnmt1KO ψL histogram, with a

minimum of 0.019, indicating a different behavior for the dependency on the left neighbor

for Dnmt3a/b.

Since ψR is usually close to 1 a smaller model with only three parameters θ = (µ, ψ, τ)

can be proposed, where ψ is a dependency parameter for the left neighbor. This model

can either be obtained by fixing ψR = 1 in the original model and setting ψ = ψL or

by redefining the transition probabilities to ψx if the left neighbor is unmethylated and
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1 − ψ(1 − x) if the left neighbor is methylated. In that case ψ and ψL are related via

ψ = 0.5(ψL+1). Note that both versions yield the same results. In order to check whether

there is a significant difference in the original and the smaller model, we performed a

Likelihood-ratio test with the null hypothesis that the smaller model is a special case

of the original model. Since the original model with more parameters is always as least

as good as the smaller model, our goal is to check in which cases the smaller model is

sufficient. Indeed, if ψR was estimated to be approximately 1 the Likelihood-ratio test

indicates that the smaller model is sufficient (p-value ≈ 1). On the other hand, for the

few cases where ψR differs significantly from 1 the original model has to be used (p-value

< 0.01).

Fig. 7.6: Histograms for the estimated dependency parameters ψL and ψR for all sets of three
adjacent CpGs in all loci and for all suggested models.

7.3.2 CpG Distances

We now take a closer look at the estimated dependency parameters shown in the his-

tograms in Fig. 7.6 and link the parameters to their respective loci and distances between

adjacent CpGs. The results for the estimation of the left and right dependency parameter

for both Dnmt3a/b DKO and Dnmt1KO data, based on the transition matrix in Eq. (7.12)

are shown in Fig. 7.7. The results based on the other transition matrices yielded similar

results and are therefore not presented here. The coloring of the symbols for the different

loci is as follows: mSat (red), Afp (blue), IAP (green), L1 (pink) and Tex13 (black). As

already seen before, in all cases, except for the dependency of the activity of Dnmt3a/b

on the left neighbor, the dependency parameter is always close to 1, independent of the

distance between the CpGs, i.e. the majority of the estimates for the dependency param-

eters fall into the interval 0.9 < ψ < 1. Only Dnmt3a/b shows a stronger dependency

on the left neighbor, i.e. in most cases ψ < 0.9, but no simple relation to the distance

is visible. Another observation from Fig. 7.7 (c) is that the depencency parameters show

very similar behaviors within the same locus. However, it is impossible to draw reliable

conclusions due to the small sample size within each loci.
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Fig. 7.7: Dependency parameter versus distance between CpGs measured in bps. The top row
shows the results for the Dnmt3a/b DKO data, the bottom row for Dnmt1KO. The
left (right) column shows results for the dependency parameter to the left (right). The
right column shows results for the dependency parameter to the right. The different
colors of the symbols represent the different loci and are explained in the main text.
Note the different ranges on the Y axes. Red dots = mSat, blue dots = Afp, green
dots = IAP, pink dots = L1 and black dots = Tex13.

7.3.3 Wild-Type Prediction

As a next step we used the estimated parameters from the KO data to predict the WT

data. The models from Eq.(7.12)-(7.15) are referred to as Models 1-4. For the prediction,

the notation (x, y) is used to refer to Model x for the Dnmt3a/b DKO (only Dnmt1

active) and Model y for the Dnmt1KO case (only Dnmt3a/b active). One instance of

the prediction, for which Model 1 was used for both Dnmt1KO and Dnmt3a/b DKO, i.e.

(1, 1), are shown in Fig. 7.8. Note that all wild-type predictions yielded a very similar

accuracy. We list the corresponding estimations for the parameters for an example of a

single copy gene (Afp) and a repetitive element (L1) in Tab. 7.1. While the standard

deviation of the estimated parameters for µ is always of the order 10−2 and for τ of order

10−3, it is usually of order 10−2 for ψi. Depending on the model, locus and position,

standard deviations up to order 10−1 may occur for the dependency parameters in a few
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Tab. 7.1: Estimated parameters for the KO data and model (1, 1) based on Eq. (7.12) for the
loci Afp and L1 with sample size n.

KO µ ψL ψR τ n Locus

Dnmt1 0.452± 0.062 0.383± 0.076 1.000± 0.094 0.091± 0.016 134 Afp

Dnmt3a/b 0.990± 0.003 0.984± 0.011 1.000± 0.006 10−10 ± 0.011 186 Afp

Dnmt1 0.334± 0.051 0.576± 0.067 1.000± 0.122 0.038± 0.004 1047 L1

Dnmt3a/b 0.789± 0.037 1.000± 0.038 0.984± 0.045 10−10 ± 0.002 805 L1

cases.

In Fig. 7.8 the predictions for the pattern distribution together with the WT pattern

distribution and a prediction from the neighborhood independent model (ψL = ψR = 1)

for all loci are shown in the main plot. As an inset the distributions are shown on a

smaller scale to display small deviations. With the exception of patterns 1 and 64 (which

corresponds to no methylation/full methylation of all sites) in L1 and pattern 64 in all loci,

where the difference between WT and the numerical solution is about 10%, the difference

is always small (< 5%) as seen in the insets. In order to compare the performance of the

neighborhood dependent and neighborhood independent model, we compute Kullback-

Leibler divergence

KL =
4L∑
j=1

πj(WT) log

(
πj(WT)

πj(pred)

)
(7.23)

for both cases and each locus and list the results in Tab. 7.2. The mean and standard

deviation were obtained via bootstrapping of the wild-type data (10.000 bootstrap sam-

ples). The results show that the mean of KL as well as its standard deviation are always

smaller for the neighborhood dependent model, i.e. the neighborhood dependent model

yields the more accurate predictions.

For the 16 proposed models from Eq. (7.17) we observe a similar performance for all

loci and positions in terms of accuracy of the prediction. On the large scale the differences

are not visible and even for the smaller scale the differences are small. We therefore only

show two examples for mSat in Fig. 7.9. By comparing KL that we list in Tab. 7.3, the

similar performance of all 16 models can clearly be seen. The difference in KL between the

“best” and the “worst” case is about 0.01. Again, the mean and standard deviation for

KL were obtained via bootstrapping of the wild-type data (10.000 bootstrap samples for

each model). Since no confidence intervals of the parameters are included, this standard

deviation can be regarded as a lower bound. However, even with these lower bounds the

intervals of KL overlap for all models, such that no model can be favorized.
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Fig. 7.8: The figures show an example for the predicted (neighborhood dependent and neigh-
borhood independent) and the measured pattern distribution for each locus. The inset
shows a zoomed in version of the distribution.

7.3.4 Non-Hairpin Data

So far we restricted the usage of the model to hairpin data, i.e. for one DNA molecule

the methylation state of both strands is measured. For non-hairpin data there is only

knowledge available for each strand independently. The information which strands stem
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Fig. 7.9: The figures show the predicted and the measured pattern distribution for two, (1,1)
and (4,4), of the 16 models for mSat. The inset shows a zoomed in version of the
distribution. The red WT distribution is the same in both plots. Note the slight
differences in both predictions for example in pattern 16, 62 and 63.

Tab. 7.2: Kullback-Leibler divergence KL for the neighborhood dependent and independent pre-
dictions at all loci.

Locus Afp L1 IAP Tex13 mSat

KLdep 0.6820± 0.0914 0.5342± 0.0638 0.3615± 0.0482 1.3364± 0.3235 0.1398± 0.0134

KLind 3.3557± 0.0979 0.5639± 0.0771 0.5390± 0.0602 2.0120± 0.3637 0.2582± 0.0286

from the same chromosome is not known. However, it is possible to compute the product

of the likelihood of the individual strand patterns, which resembles the likelihood of real

hairpin data (assuming independence). Our results show that this approach works well

as long as the states of the opposite strand do not determine the transition probabilities,

which is the case for Dnmt1KO data, since Dnmt3a/b shows only little maintenance

activity. Since Dnmt1’s main activity is maintenance, we indeed found that the WT and

Dnmt3a/b DKO data does not yield good results (results not shown).

To compare the performance of the model for hairpin and non-hairpin data, we split the

original hairpin data in upper and lower strand and computed the product of likelihoods

for the patterns using the independence assumption. We then estimated the parameters

via MLE with our model and the computed distributions. We found that for Dnmt3a/b

the results are very close to the original hairpin data in terms of dependency parameter

ψL and ψR, since in the model definition these parameters rely only on information on

the same strand. No information from the opposite strand influences the dependency

parameters. The ratio R = µ/τ is usually smaller, i.e. the maintenance is under- and the

de novo activity overestimated, for the non-hairpin data as shown in Fig. 7.10. However,

this does not lead to contradictory results since maintenance and de novo methylation

can not be distinguished by the model if the CpG on the opposite strand is methylated.
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Tab. 7.3: Kullback-Leibler divergence KL for all 16 models.

Model (1, 1) (1, 2) (1, 3) (1, 4)

KL 0.1398± 0.0134 0.1398± 0.0134 0.1398± 0.0134 0.1337± 0.0127

Model (2, 1) (2, 2) (2, 3) (2, 4)

KL 0.1438± 0.0137 0.1439± 0.0136 0.1439± 0.0137 0.1374± 0.0133

Model (3, 1) (3, 2) (3, 3) (3, 4)

KL 0.1399± 0.0134 0.1399± 0.0134 0.1398± 0.0133 0.1337± 0.0127

Model (4, 1) (4, 2) (4, 3) (4, 4)

KL 0.1410± 0.0137 0.1411± 0.0136 0.1409± 0.0135 0.1349± 0.0130
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Fig. 7.10: Ratio R = µ/τ between maintenance and de novo rate for hairpin (blue) and non-
hairpin data (red) for all loci. The loci are mapped to the indices as follows: mSat:1,
Afp:2–4, IAP:5–8, L1:9–13, Tex13:14–21.

7.3.5 Genome-wide Data

Due to the limited amount of CpGs for the experiments in the previous sections, we

also considered genome-wide hairpin data obtained from mouse embryonic stem cells to

substantially increase the number of measured CpGs and hence also the number of possible

distances between adjacent CpGs. In the genome-wide data the methylation state of the

CpGs were recorded in windows of approximately 150 bps for a subset of CpGs, such that

there is information available for about 4 million CpGs of the entire genome. The data

contains the methylation state of each CpG and the position on the DNA, from which

the distance between adjacent CpGs can be derived. For our analysis, we only consider

CpGs within the sames read i.e. in the 150 bp window. This last information is of

great importance since we want to investigate the neighborhood dependency and have to

ensure that the three adjacent CpGs stem from the same DNA molecule. Therefore the

data is filtered such that we omit all CpGs which do not form a sequence of at least three

consecutive CpGs within one read. Note that we do not consider all cases where either

only one or two CpGs were covered in the measurement window or because of missing

CpGs the consecutive sequence is split in chunks of two CpGs or smaller. Furthermore we
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only considered CpG triples for which at least 64 (i.e. the number of possible patterns)

measurements were taken. After applying these constrains there are 3,489 CpG triples

left.

Since only WT data (and no KO data) was available for the whole genome, we had to

use a modified version of the parameter estimation based on Eq. (7.17), which contains

eight parameters (four for each enzyme). In order to reduce the model complexity we

use the observations from the previous experiments, namely that only Dnmt3a/b shows a

dependency to the left, and we therefore set the remaining dependency parameters ψ
(1)
L ,

ψ
(1)
R and ψ

(3a/b)
R to 1. The conversion errors for the data set are c = 0.996 and d = 0.93.

The conversion rates are derived from short synthetic DNA fragments containing different

cytosine forms at definite positions. These oligos become part of the hairpin bisulfite

library and therefore undergo the same treatment as the stem cell DNA. Thus, after

sequencing, we can determine the conversion rate of C and 5mC independently of our

biological sample.

Despite considering only CpG triples with a coverage of at least 64, in general the

coverage is pretty low compared to the hairpin data used for the parameter estimation in

the previous section. We therefore employ Bayesian inference rather than MLE for the

parameter estimation in the genome-wide data. We use a Metropolis Hastings algorithm

with the estimations from ML as starting points and a Gaussian proposal distribution with

mean 0 and a standard deviation of 0.01 such that on average 40% of the 5000 total trials

per CpG triplet are accepted for the posterior distribution. Afterwards a variant of the

k-means algorithm is applied, which also considers standard deviations of the quantities

that should be clustered [19]. Note that in order to avoid a domination by the much larger

distances in the clustering, the distance is normalized before the algorithm is applied. The

ideal number of clusters is chosen by minimizing the Davis-Bouldin index [20], which is

defined as the ratio between cluster separation and similarity within the clusters. The

results of the parameter estimation and the clustering is shown in Fig. 7.11. Note that the

clustering is based on dependency parameter and distance only. The methylation state is

not an input of the clustering algorithm.

In our results the methylation state of a CpG shows a strong dependency on the methy-

lation state of the left neighbor even for distances up to 70 bps. We therefore conclude

that the independence starts at much larger distances. Note that due to the restriction

that the three CpGs have to be within the same 150 bps window during the measurement,

even for the genome-wide data the distances between the CpGs are rather short. It is

therefore not possible with the current data and measurement techniques to check hy-

potheses such as the independency of neighboring CpGs for large distances. Nevertheless,

we see distinct methylation profiles for the three individual clusters as shown in Fig. 7.12.

First, we analysed the frequencies of the four methylation states of each cluster as dis-

played in Fig 7.12 (a). CpGs in cluster 0 show low frequencies of fully- or hemimethylated
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Fig. 7.11: Dependency parameter versus distance between CpGs for the genome-wide data. The
three colors represent three clusters. Cluster 0: blue, cluster 1: orange, cluster 2:
green.

states and in general appear to be unmethylated. Cluster 2 exhibits an inverse behavior

compared to cluster 0, meaning that CpGs are more often found in a fully methylated

state. Lastly, cluster 1 displays a bimodal distribution of fully- and unmethylated states

but similar frequencies in 5mC/C and C/5mC. In other words, unmethylated CpGs seem

to show less dependency compared to methylated ones. Furthermore, the CpG of these

three individual clusters differ also in their genomic localization. Whereas most of the

CpGs in cluster 2 are located in introns or intergenic regions, the majority of CpGs in

cluster 0 and cluster 1 are found at promoters (Fig. 7.12 (b)). In addition, we conducted

an enrichment analysis of transcription factors using the recently developed R package

LOLA (Fig. 7.12 (c)) [21]. We found strong enrichment of cluster 2 CpGs at transcrip-

tion factor binding sites (TFBS) including Pol2 and Polr2a pointing towards a relation

of active transcription. Taken together, our findings suggest that hypomethylated CpGs

at promoters and TFBS behave more independently. One possible explanation would

be the constant setting (most likely by Dnmt3a/b) and removal of CpG methylation at

these regions, which would point towards a constant turn over of 5mC. However, a more

detailed analysis is needed to address this question.

7.4 Related Work

In [18] location- and neighbor-dependent models are proposed for single-stranded DNA

methylation data in blood and tumor cells. The (de-)methylation rates depend on the

position of the CpG relative to the 3’ or 5’ end and/or on the methylation state of the left

neighbor only. The dependency is realized by the introduction of an additional parame-

ter. In our proposed models we use double-stranded DNA and can therefore include hemi-

methylated sites and even distinguish on which strand the site is methylated. Furthermore

we allow dependencies on both neighbors by introducing two different dependency param-
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Fig. 7.12: Biological context of CpG clustering. (a) Frequency CpG methylation state; states
are indicated as follows: state 0 = C/C - red, state 1 = 5mC/C - yellow, state 2 =
c/5mC - green, state 3 = 5mC/5mC - blue. (b) Frequency of annotated genomic fea-
tures within the individual clusters. (c) Result of LOLA enrichment analysis against
transcription factors from CODEX or ENCODE and UCSC features. All depicted
enrichments possess a q-value above 0.05.

eters. In contrast [22] copes with the neighborhood dependency indirectly by allowing

different parameter values for different sites. In order to reduce the dimensionality of the

parameter vector, a hierarchical model based on beta distributions is proposed. Another

difference to our model is the distinction between de novo rates for parent and daughter

strand. However, this can easily be included in future work. A density-dependent Markov

model was proposed [23]. In this model, the probabilities of (de-)methylation events may

depend on the methylation density in the CpG neighborhood. In addition, a neighboring

sites model has been developed, in which the probabilities for a given site are directly

influenced by the states of neighboring sites to the left and right [23]. When these models

were tested on double-stranded methylation patterns from two distinct tandem repeat

regions in a collection of ovarian carcinomas, the density-dependent and neighboring sites

models were superior to independent models in generating statistically similar samples.

Although this model also includes the dependence on the methylation state on the left and

right neighbor for double-stranded DNA the approach is different. The transition prob-

abilities of the neighbor-independent model are transformed into a transition probability

of a neighbor-dependent model by introducing only one additional parameter. The state

of the left and right neighbor are taken into account by exponentiating this parameter by

some norm. In addition, this approach does not allow the intuitive interpretation of the
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dependency parameter. Recently the model from [23] was extended to include the influ-

ence of different distances between the CpGs [24]. However this model is still restricted

to single-stranded methylation data. In [25] it has been shown that the collaboration

between CpG sites is required to obtain stable fractions of methylation states over time

in CpG islands. In this model another nearby CpG serves as a mediator such that its

state influences the possible reactions. In a more recent version of this model the distance

to the mediator CpG is taken into account [26]. However, both models feature active

demethylation, have no explicit dependency parameter and do not distinguish between

the two different hemimethylated states.

7.5 Conclusion

We proposed a set of stochastic models for the formation and modification of methyla-

tion patterns over time. These models take into account the state of the CpG sites in

the spatial neighborhood and allow to describe different hypotheses about the underlying

mechanisms of methyltransferases adding methyl groups at CpG sites. We used knock-

out data from bisulfite sequencing at several loci to learn the efficiencies at which these

enzymes perform methylation. By combining these efficiencies, we accurately predicted

the probability distribution of the patterns in the wild-type. Moreover, we found that in

all cases the models predict values for the dependency parameters ψL and ψR close to 1

and therefore independence of methylation for the Dnmt3a/b DKO meaning that Dnmt1

methylates CpGs independent of the methylation of neighboring CpGs. For Dnmt3a/b

on the other hand we could identify dependencies on the neighboring CpGs. Both find-

ings are in accordance with current existing mechanistic models: Dnmt1 reliably copies

the methylation from the template strand to maintain the distinct methylation patterns,

whereas Dnmt3a/b try to establish and keep a certain amount of CpG methylation at a

given loci. Interestingly, our models only suggest dependencies of de novo methylation

activity on the CpGs in the 5’ neighborhood. This indicates that Dnmt3a and Dnmt3b

show a preference to methylate CpGs in a 5’ to 3’ direction and could point towards a

processive or cooperative behavior of these enzymes like recently described in in vitro

experiments [14, 11]. Our results indicate that, at least for small distances, rather the ge-

netic region than the distance determines the dependence on the neighbors. Compared to

a neighborhood independent model with ψL = ψR = 1, a neighborhood dependent model

shows better predictions and furthermore allows to investigate (possible) connections of

adjacent CpGs and their methylation states. As long as no information from the opposite

strand is needed, i.e. if maintenance activity is not too high, as in the Dnmt1KO data,

our model can also be used for non-hairpin data. Applying our model at genome-wide

data reveals distinct dependency clusters with individual methylation patterns. We finde,

that hypomethylated CpGs at promoter and TFBS are more likely to behave independent
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of their neighborhood compared to hypermethylated CpGs.

As future work, we plan to investigate models in which we distinguish between the

actions of Dnmt3a and Dnmt3b and in which we allow a diagonal dependency for de

novo methylation, i.e., a dependency on the state of neighboring CpGs on the opposite

strand. Furthermore, we intend to explicitely include the actual distance of neighboring

CpGs in our model by making the dependency parameters distance dependent. This

also eases the modelling of more than three CpGs since we then do not longer assume the

same dependency parameters for all CpGs and therefore make the model more flexible. To

investigate a potential impact of oxidized cytosine forms on the methylation at neighboring

CpG sites we further plan to include the CpG states 5hmC, 5fC and 5caC in our model.
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8. DISCUSSION

The here summarised studies approach the activity and cooperation of Dnmts and Tets

in generating, sustaining and changing distinct DNA methylation patterns. Hence, these

studies include experimental and computational strategies to match the requirements in

addressing complex mechanistic questions. Generally, this thesis can be divided into

two main parts. First, the assessment of Tet and 5hmC influence on Dnmt methylation

processes and second, the investigation of how existing methylation patterns modulate

Dnmt activity. The following chapter will highlight the essential aspects of this cumulative

work, discuss biological findings and eventually provide an outlook for possible follow-up

studies.

8.1 Combining Hairpin Sequencing and Hidden Markov Models

The presented studies are based on HPBS and the subsequent application of HMMs, which

allows to estimate the efficiency of DNA modifying enzymes [1, 2, 3, 4]. Previously, this

combinatorial approach has been used by Arand et al. to determine the contribution of

distinct Dnmts in generating and sustaining stable methylation patterns [3]. Compared to

classical sequencing strategies, the advantage of HPBS is the detection of double strand

DNA methylation patterns of individual DNA molecules, which is used to distinguish

between de novo and maintenance methylation events in stochastic modelling.

8.1.1 Detecting 5hmC and Tet Hydroxylation Efficiency

Following the protocols described in Arand et al. and Ficz et al., HPBS was combined

with oxBS for the simultaneous, strand specific detection of 5mC and 5hmC (see Chapter

3 and Chapter 4) [5, 6]. The usage of particular hairpin linker containing C, 5mC and

5hmC provides a per molecule control sequence and permits the accurate estimation of

conversion rates after BS and oxBS. Accordingly, two linked HMMs were constructed

describing the evolution of BS and oxBS methylation patterns in the context DNA repli-

cation (cell division), DNA methylation and hydroxylation, respectively. Several studies,

applied oxBS or TAB-Seq for the investigation of 5hmC, however, none provides a strand

specific detection of 5hmC. Furthermore, even though these studies determine the conver-

sion rates during the chemical treatment, these rates were not used in later estimation of

5mC and 5hmC levels [7, 8, 9, 10]. Thus, the pipeline presented in Chapter 3 and Chap-
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ter 4, provides a much more accurate estimation of methylation, or hydroxymethylation

patterns.

Next, in order to capture 5mC and 5hmC patterns in a more global context, a genome

wide hairpin sequencing protocol was developed (Chapter 5). A first genome wide ap-

proach has been published by Zhao et al. [11]. However, the pipeline published by Zhao et

al. demands large amounts of DNA (10µg), which in general makes the application chal-

lenging, particularly in the case of primary biological or clinical samples. Furthermore,

the method covers the entire genome, which raises the sequencing costs substantially and,

furthermore, reduces the coverage for each CpG position obtained after sequencing and

lastly, is not able to capture 5hmC. Thus, as part of this thesis, ‘reduced representation

hairpin oxidaive bisulfite sequencing’ (RRHPoxBS) has been developed Chapter 5. RRH-

PoxBS requires only 1.2µg input material and covers a subset of about 4 million CpGs

equally distributed across the genome. Hence, the method provides the possibility for

global detection of 5mC and 5hmC with reduced sequencing costs and a higher coverage

compared to the previously described protocol, suited for stochastic modelling.

8.1.2 A Pipeline for the Analysis of Spatial Methylation Patterns

In a second approach, presented in Chapter 6 and 7, this thesis investigates the forma-

tion of spatial methylation patterns. Compared to the previously described model, the

spatial HMM makes use of the methylation patterns derived from HPBS and describes

the modification state of three neighbouring CpG positions instead of just only one CpG.

The additional information is used to determine a possible dependency of adjacent CpGs

in relation to their methylation state.

Previous investigations of spatial methylation patterns were performed on very few

genomic regions and often rely on single strand methylation patterns derived from classical

BS [12, 13, 14]. In contrast, the here presented studies in Chapter 6 and 7 are based

solely on complementary methylation patterns obtained from HPBS. Therefore, the model

can distinguish more accurately between maintenance and de novo methylation events

compared to previous published models. Moreover, in a first instance, the model is applied

to data derived from WT, Dnmt1 KO, as well as Dnmt3a/3b DKO ES cells published by

Arand et al., which allows for the first time the prediction of enzyme specific dependencies

for distinct Dnmts [3]. The genome wide HPBS data is then used to investigate the

dependency of neighbouring CpG methylation in a global manner and provides more

diversity in terms of sequence context, including CpG density, distance of CpGs and

methylation state. Lastly, the use of two dependency parameters permits to distinguish

between dependency towards the ‘left’ and ‘right’ neighbouring CpG (Chapter 6).
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8.2 Further Applications of RRHPBS

Classical BS approaches identify DNA methylation of CpGs and nonCpGs by aligning the

obtained sequencing read to a reference sequence. Hence, the comparison of C positions

within the reference sequence and the corresponding read position will determine the

methylation state of each read. A methylated C will be displayed as a C, also in the read

sequence, while an unmethylated C will be seen as T (Figure 8.1 A).

In contrast, HPBS does not require a reference sequence for methylation calling. After

sequencing, the obtained sequence of the lower DNA strand is aligned against the sequence

of the upper strand. The comparison of both sequences can be used to reconstruct the

genomic sequence, as well as for direct identification of the methylation state (8.1 B).

BS

Upper DNA Strand Lower DNA Strand
B

RRHPBS

Upper DNA Strand Lower DNA Strand

T-A-G-G-T-G-A-T-T-G-G

T-A-G-G-T-G-A-T-T-G-G

T-C-A-A-T-T-A-T-T-T-A

T-C-A-A-T-T-G-T-T-T-A

T-A-G-G-T-G-A-T-T-G-G

T-A-G-G-T-G-A-T-T-G-G

T-C-A-A-T-T-G-T-T-T-A

T-C-A-A-T-T-G-T-T-T-A

T-A-G-G-T-G-A-T-T-G-G

T-A-G-G-C-G-A-T-T-G-GReference Sequence

T-A-G-G-C-G-A-T-T-G-G

T-A-G-G-T-G-A-T-T-G-G

Read 1

Read 2

Read 3

A

= de novo Mutation of CpG site

= unmethylated CpG site

= methylated CpG/nonCpG site

= hairpin linker

Read 1

Read 2

Fig. 8.1: Schematic representation of DNA methylation calling of common BS, as well as HPBS
pipelines. (A) BS approach, methylation state of CpGs are identified by aligning the
sequencing reads against the reference sequence. (B) RRHPoxBS, upper and lower
DNA strand are first aligned against each other, which permits to derive the genomic
sequence as well as the methylation state of CpGs and nonCpG without the use of
a reference sequence. Read 1, identification of an unmethylated CpG site (blue), as
well as a methylated nonCpG position (orange). Read 2, identification of SNP or de
novo mutation at a former CpG site (red), as well as a methylated nonCpG position
(orange).

The reference sequence free methylation calling of RRHPBS represents a clear advan-

tages compared to common BS techniques. First, an impact of genetic variation due to

distinct genetic backgrounds of reference genome and sample DNA are minimised, which

permits a more precise estimation of DNA methylation and, furthermore, an explicit

discrimination between CpG and nonCpG positions. Second, having the sequence infor-

mation of both complementary DNA strands permits a more secure identification of SNPs

at a given position. Moreover, deriving the genomic sequence directly from the sample

DNA prevents the impact of genetic variations within the reference sequence and permits

the identification of rare de novo mutation events.
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8.3 Opposed Efficiencies of Dnmts and Tets form the Methylome

A cell’s methylome consists of alternating methylated and un (UMRs) or lowly (LMRs)

methylated domains [15, 16, 17]. In this context, the methylation state often corresponds

to the binding of Dnmts and Tets, i.e. unmethylated domains are occupied by Tets, while

methylated domains are bound by Dnmts [18, 19] (Chapter 5, Figure 5.4 and Chapter 5,

Supplement, Figure S5.41 and S5.42). Yet, the here presented studies describe the first

approach to accurately estimate the activity of Dnmts and Tets for single CpGs also in a

genome wide manner.

Generally, the estimated efficiencies show that binding and activity of Dnmts and Tets

are not exclusive. In other words, Dnmts, as well as Tets bind and act notably at both

unmethylated and methylated regions. Nevertheless, Dnmts and Tets display opposed

efficiency profiles (Chapter 5 Figure 5.2 and Figure 5.6). UMRs and LMRs exhibit high

hydroxylation paired with low maintenance and de novo methylation efficiencies, while

PMDs and HMRs display a reversed behaviour (Chapter 5 Figure 5.8 and 5.10). Hence,

these observations correspond essentially to previously described ChIP profiles of Dnmts

and Tets and demonstrate the accuracy of our approach in estimating enzyme efficiencies

(Chapter Figure 5-5.2 and Chapter 5, Supplement, S5.41 and S5.42).

8.4 Tets Enhance DNA Demethylation During the Serum-to-2i Shift

The epigenetic adaptation of mouse ES cells to 2i containing medium after long term culti-

vation under Serum/LIF conditions has been the subject of several studies [20, 21, 22, 23].

In this context, the impairment of maintenance methylation, due to the reduction of Uhrf1,

as well as H3K9 di-methylation, has been identified as the main cause of DNA demethy-

lation [23]. Additionally, Dnmt3a and 3b undergo gradual reduction in ES cells after

incubation in 2i medium, which further reduces the methylation activity [20]. Besides,

contribution of Tet enzymes in DNA demethylation appears to be restricted to particular

genomic regions [20, 23].

The data presented in Chapters 3 - 5 mostly agree with the previous observations.

Upon cultivation of ES cells in 2i medium, the model estimates a reduced maintenance

activity comparable to the description by von Meyenn et al. [23]. Furthermore, the

reduced maintenance efficiency shows no further decrease and remains stable in 2i. This

indicates that the reduction of Uhrf1 and H3K9me2 is an early event and in addition

suggests that the level of Uhrf1 and H3K4me3 attain a new steady state within the first

24 hours. Moreover, the pipeline also identifies a gradual decrease of de novo methylation

efficiency which is in agreement with the successive loss of Dnmt3a and 3b [20]. Thus, these

observations indicate once more the accuracy of the pipeline in describing the complex

underlying molecular changes.
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However, the presented data indicate a notable contribution of Tet enzymes in DNA

demethylation. The sequence specific analysis suggest that regions with high 5hmC levels

are more likely to lose 5mC. More evidence comes from the parameter p, which determines

if 5hmC will be recognised by the maintenance machinery (Chapter 3, Section 3.3). In

both cases, local and genome wide estimations, the model clearly favours a scenario in

which 5hmC leads to an inhibition of maintenance methylation. Furthermore, compar-

ison of DNA demethylation rates of WT and Tet TKO ES cells show strongly reduced

demethyltion rates in the absence of Tets, demonstrating the importance of 5hmC and

Tets for efficient demethylation Chapter 5, Supplement Figure S5.35.

8.5 Tet Hydroxylation Supports ES Cell Self Renewal and

Differentiation

Based on their enzyme efficiency signature, CpGs can be divided into two main categories

(Chapter 5, Figure 5.10): CpGs with high methylation efficiency (both maintenance and

de novo) and low hydroxylation efficiency, as well as CpGs displaying low methylation

efficiency and high hydroxylation efficiency. The latter show considerably lower levels of

DNA methylation and are predominately located at promoters and transcription factor

binding sites (TFBS) (Chapter 5, Figure 5.10 D). Identified TFBS include binding sites

of known pluripotency markers, such as Nanog, Oct4 (Pou5f1), as well as Sox2 and fur-

thermore, regions of proteins involved in ES cell self renewal, e.g. Stat3 or Stat5b. The

strongest enrichment of CpGs exhibiting high hydroxylation efficiency can be found at

Dpy30 binding sites. As a subunit of the SET1/MLL histone methyltransferase complex,

Dpy30 is involved in the generation of H3K4me3 [24, 25]. Dpy30 is not involved in stem

cell self renewal, instead it appears to promote ES cell differentiation by regulation of

bivalent promoters [26]. Previous studies already express a dual role of Tet enzymes in

ES cells. Tet1, for example, binds to active as well as bivalent promoters and its knock

down results in partial loss of stem cell identity [27, 28, 29]. In contrast, KO of multiple

Tet enzymes prevents ES cell differentiation [30, 31]. The above discussed results support

a dual function of Tet enzymes in ES cells and demonstrate that catalytic active Tet

enzymes on the one hand, support stem cell self renewal and on the other hand prepare

stem cell differentiation by modulating bivalent promoters.

8.6 Tet Enzymes Protect from DNA Methylation Spreading

Comparison of WT and Tet TKO efficiency profiles demonstrates a notable misregulation

of both maintenance and de novo methylation efficiency in the absence of Tets. Explicitly,

the model describes an increase of maintenance efficiency across UMRs and LMRs, as well

as, a global increase of de novo methylation efficiency at late 2i stages (Chapter 5, Figure
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5.11, Figure 5.6 and Figure 5.5).

The increased maintenance efficiency can not simply be explained by the absence of

5hmC. Any inhibitory effect of 5hmC towards maintenance efficiency is captured by the

parameter p. Moreover, notable levels of 5hmC in WT ES cells are not only detected

at promoters and enhancers, but also across the gene body. Accordingly, loss of 5hmC

would rather cause a global increase in maintenance methylation efficiency. Hence, the

observed increase in Tet TKO cells must be a result of missing Tet proteins. One possible

explanation is that in WT ES cells, the high occupancy of Tets at UMRs/LMRs shields

the DNA from binding of the maintenance machinery, while the absence of Tet provides

more accessibility for Dnmts and proteins involved in maintenance methylation.

The almost stable de novo methylation efficiency is surprising, considering the down

regulation of Dnmt3a and 3b in WT ES cells cultivated in 2i containing medium. However,

the increased nonCpG methylation levels in Tet TKO cells further support the concept of

remaining Dnmt3a/3b activity. Once again, this increase in de novo methylation could

be the result of higher DNA accessibility for Dnmt3a and 3b due to the absence of Tets.

However, it is not intuitive that the absence of Tet proteins would cause a global increase in

DNA accessibility for Dnmt3a and 3b, while in the case of proteins involved in maintenance

methylation this effect remains restricted to UMRS/LMRs.

The global increase in de novo methylation efficiency in Tet TKO ES cells could also

be explained by an elevated expression of Dnmt3a or 3b. A study by Freudenberg et

al. describes an increased expression of Dnmt3b in ES cells after knock down of Tet1

[29]. Yet, RNA or protein measurements would be required to confirm up-regulation of

Dnmt3a or 3b in Tet TKO cells.

Tet1 protection against DNA methylation events, in particular at CpG islands, has

been previously described [32]. However, the underlying mechanisms remained elusive.

Taken together, the results obtained from RRBS of WT and Tet TKO ES cells in Chapter

5 suggest that Tet enzymes protect UMRs/LMRs against methylation spreading in ES

cells in three ways. Firstly, the high hydroxylation efficiency at UMRs/LMRs ensures an

instant conversion of 5mC, resulting in passive or active removal DNA methylation. Sec-

ondly, Tets inhibit the effectiveness of maintenance methylation across UMRs/LMRs and

prevents the inheritance of ectopic methylation. Lastly, Tet enzymes ensure an efficient

downregulation of de novo methyltransferases, at least in naive ES cells.

8.7 The Activity of Dnmt3a and 3b Depends on Neighbouring CpG

Methylation

Novel epigenetic studies show that depending on the genomic location, the stable inheri-

tance of methylation patterns relies on the combined activity of Dnmt1, as well as Dnmt3a

and 3b [3, 33, 34]. In this context, the activity of Dnmts often relies on pre-existing DNA
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methylation. Dnmt1 for example is driven by the presence of hemi-methylated DNA after

replication. However, there is evidence that the methylation state of CpGs influences the

activity of Dnmts also at later stages [13, 14].

The application of a spatial HMM on HPBS data presented in Chapter 6 and 7 in-

deed identifies a dependence of CpGs in relation to their methylation state. However,

the analysis of methylation patterns derived from Dnmt KO ES cells reveals that this

dependency is enzyme specific. In the case of Dnmt1, the model finds no dependence of

the methylation activity towards neighbouring CpGs. This observation can be explained

by the biological function of Dnmt1 to reproduce methylation patterns after replication

at the newly synthesised DNA strand. The influence of neighbouring CpGs would cause

changes in methylation patterns with each replications. In contrast, Dnmt3a and 3b dis-

play a dependency towards CpG methylation states, however, the activity is only affected

by the left (5’) CpG position. In other words, Dnmt3a and 3b tend to methylate CpGs

with higher efficiency when the previous CpG is methylated.

The application of the spatial HMM on genome wide HPBS data shows that un-

methylated CpG positions exhibit less dependency on the neighbouring CpGs compared

to methylated once. Moreover, genomic annotations of CpGs reveal that CpGs, which

behave independent of each other, are located mainly at promoters. Note, that the model

considers dependency in the case of both, a sequence of methylated, but also unmethy-

lated CpGs. Such independence of unmethylated CpGs could for instance be explained by

an infrequent de novo activity of Dnmt3a or 3b. In this context, the sporadic generation

of 5mC might point towards a distributive, rather than a processive activity of Dnmt3a

and 3b. A second possible scenario is a constant setting and removal of CpG methylation.

Indeed, a recent publication by Rulands et al. describe oscillations of DNA methylation

at promoters of mouse ES cells [35] The high hydroxylation efficiency at unmethylated

regions observed in Chapter 5 further supports a constant turnover of generated DNA

methylation. From the biological point of view, such a dynamic system can quickly re-

spond to extracellular signals and switch from active to repressed gene expression or vice

versa.

The dependency of CpGs might also be influenced by the distance of adjacent CpG

sites. However, neither local HPBS nor RRHPBS provide enough variability to address

this question. Detected distances between CpGs in RRHPBS lie within a range of 1 to

70bp. Within this range, no definite impact on the dependence of CpG position in relation

to their methylation state can be identified.

8.8 Conclusion

The studies presented in this thesis provide robust experimental and computational strate-

gies for the investigation of methylation patterns, as well as the underlying enzymatic
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activities of Dnmts and Tets.

Examination of complementary DNA methylation patterns from WT and Tet TKO

ES cells demonstrate that Dnmts and Tets cooperatively create alternating methylated

and unmethylated domains with clear boundaries across the genome. In this context, Tet

enzymes protect unmethylated domains due to efficient conversion of 5mC to 5hmC, the

inhibition of maintenance methylation, as well as the effective downregulation of de novo

methylation. Moreover, regions exhibiting high Tet activity mainly present enhancer and

gene promoters, which are essential for maintaining the stem cell phenotype.

The application of a spatial HMM on methylation patterns reveals that the de novo

methylation efficiency of Dnmt3a and 3b is affected by the methylation state of the

5’ neighbouring CpG position. However, a dependency of CpGs with respect to their

methylation state is mainly restricted to highly methylated domains, while CpGs at un-

methylated regions, particularly at promoters, behave independently of each other. This

behaviour suggests either sporadic de novo methylation events at promoters or processive

methylation followed by Tet oxidation and potential removal of 5mC.

8.9 Outlook

Besides the demethylating effect of 5hmC due to inhibition of maintenance methylation

efficiency, higher oxidised cytosine forms, i.e. 5fC and 5caC, may also contribute to

either active or passive DNA demethylation. In the present studies, 5fC and 5caC will be

detected as T in BS and oxBS and are therefore not considered by the HMMs. However,

several methods have been described, which permit the selective identification of oxCs,

such as MAB-Seq, fCAB, CLEVER-Seq and combination of these methods with HPBS

is straightforward [36, 37]. First experiments combining HPBS and MAB-Seq, as well as

the expansion of the HMMs have already been performed (data not shown) and in the

future will allow to determine the impact of oxCs towards methylation pattern formation.

In this respect, three distinct di-oxygenases, Tet1, Tet2 and Tet3 are responsible for

the generation of oxCs and in ES cells, mainly Tet1 and Tet2 are expressed [38, 20, 23].

Similarly to the study by Arand et al., in which Dnmt KO systems were analysed, the

investigation of individual Tet KO ES cell lines would allow to separate the contribution

of Tet1 and Tet2 in 5mC oxidation, as well as their impact on Dnmt methylation activity.

Recently, Xu & Corces published a computational pipeline, which reconstructs comple-

mentary DNA methylation patterns based on common whole genome bisulfite sequencing

[39]. A combinatorial approach of this pipeline and the presented HMM in Chapter 5,

would permit the usability on non hairpin approaches for the investigation of Dnmt and

Tet efficiencies. During the last years, several consortia generated reference methylomes

for multiple mouse and human cell types based on whole genome bisulfite sequencing

(WGBS). Similarly, several WGBS data sets of Dnmt and Tet KO ES cells lines have
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been published in the past. Re-analysis of such existing data sets using a synergistic

approach of the method by Xu & Corces and the HMM from Chapter 5 presents a great

opportunity for large scale mechanistic studies regarding Dnmt and Tet activity [39]. Fur-

thermore, common genome wide approaches often require less amounts of DNA and have

even been applied to single cells. Thus, a synergistic approach of the method by Xu &

Corces and the HMM in Chapter 5 would also permit the analysis of demanding samples

with limited amount of DNA.

Lastly, novel sequencing techniques such as Nanopore or SMRT sequencing, provide

the opportunity of bisulfite free detection of oxidised cytosine forms. Both technologies

process single native DNA molecules without the need of prior amplification and are able

to directly detect modified bases [40, 41, 42]. In addition, both methods provide much

larger reads of more than 20kb. Such long reads are best suited for spatial methylation

analysis and would provide the needed diversity to investigate the impact of CpG distance

towards methylation dependencies of neighbouring CpGs. SMRT sequencing relies on the

analysis of large circular DNA fragments, i.e. hairpin molecules and therefore naturally

provides the methylation patterns of complementary DNA equally to RRHPBS. Exploit-

ing this technique in the future will greatly benefit the investigation of oxidised cytosine

variants and the understanding of molecular enzymatic mechanisms of Dnmts and Tets.
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Matthew Stephens. Statistical inference of transmission fidelity of dna methylation

patterns over somatic cell divisions in mammals. The annals of applied statistics,

4(2):871, 2010.

[14] Nicolas Bonello, James Sampson, John Burn, Ian J Wilson, Gail McGrown, Geoff P

Margison, Mary Thorncroft, Philip Crossbie, Andrew C Povey, Mauro Santibanez-

Koref, et al. Bayesian inference supports a location and neighbour-dependent model

of dna methylation propagation at the mgmt gene promoter in lung tumours. Journal

of theoretical biology, 336:87–95, 2013.

[15] Michael B Stadler, Rabih Murr, Lukas Burger, Robert Ivanek, Florian Lienert, Anne
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of dna methyltransferases reveals a role for dnmt3b in genic methylation. Nature,

520(7546):243, 2015.



BIBLIOGRAPHY 269

[19] Tianpeng Gu, Xueqiu Lin, Sean M Cullen, Min Luo, Mira Jeong, Marcos Estecio,

Jianjun Shen, Swanand Hardikar, Deqiang Sun, Jianzhong Su, et al. Dnmt3a and

tet1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem

cells. Genome biology, 19(1):88, 2018.

[20] Gabriella Ficz, Timothy A Hore, Fatima Santos, Heather J Lee, Wendy Dean, Julia

Arand, Felix Krueger, David Oxley, Yu-Lee Paul, Jörn Walter, et al. Fgf signaling

inhibition in escs drives rapid genome-wide demethylation to the epigenetic ground

state of pluripotency. Cell stem cell, 13(3):351–359, 2013.

[21] Ehsan Habibi, Arie B Brinkman, Julia Arand, Leonie I Kroeze, Hindrik HD Kerstens,

Filomena Matarese, Konstantin Lepikhov, Marta Gut, Isabelle Brun-Heath, Nina C

Hubner, et al. Whole-genome bisulfite sequencing of two distinct interconvertible

dna methylomes of mouse embryonic stem cells. Cell stem cell, 13(3):360–369, 2013.

[22] Marius Walter, Aurelie Teissandier, Raquel Perez-Palacios, and Deborah Bourc’his.

An epigenetic switch ensures transposon repression upon dynamic loss of dna methy-

lation in embryonic stem cells. Elife, 5:e11418, 2016.

[23] Ferdinand von Meyenn, Mario Iurlaro, Ehsan Habibi, Ning Qing Liu, Ali Salehzadeh-

Yazdi, Fátima Santos, Edoardo Petrini, Inês Milagre, Miao Yu, Zhenqing Xie, et al.

Impairment of dna methylation maintenance is the main cause of global demethyla-

tion in naive embryonic stem cells. Molecular cell, 62(6):848–861, 2016.

[24] Pengfei Wang, Chengqi Lin, Edwin R Smith, Hong Guo, Brian W Sanderson, Min

Wu, Madelaine Gogol, Tara Alexander, Christopher Seidel, Leanne M Wiedemann,

et al. Global analysis of h3k4 methylation defines mll family member targets and

points to a role for mll1-mediated h3k4 methylation in the regulation of transcrip-

tional initiation by rna polymerase ii. Molecular and cellular biology, 29(22):6074–

6085, 2009.

[25] Yali Dou, Thomas A Milne, Alexander J Ruthenburg, Seunghee Lee, Jae Woon Lee,

Gregory L Verdine, C David Allis, and Robert G Roeder. Regulation of mll1 h3k4

methyltransferase activity by its core components. Nature Structural and Molecular

Biology, 13(8):713, 2006.

[26] Hao Jiang, Abhijit Shukla, Xiaoling Wang, Wei-yi Chen, Bradley E Bernstein, and

Robert G Roeder. Role for dpy-30 in es cell-fate specification by regulation of h3k4

methylation within bivalent domains. Cell, 144(4):513–525, 2011.

[27] Hao Wu, Ana C D’alessio, Shinsuke Ito, Kai Xia, Zhibin Wang, Kairong Cui, Keji

Zhao, Yi Eve Sun, and Yi Zhang. Dual functions of tet1 in transcriptional regulation

in mouse embryonic stem cells. Nature, 473(7347):389, 2011.



BIBLIOGRAPHY 270

[28] Shinsuke Ito, Ana C D’alessio, Olena V Taranova, Kwonho Hong, Lawrence C Sowers,

and Yi Zhang. Role of tet proteins in 5mc to 5hmc conversion, es-cell self-renewal

and inner cell mass specification. nature, 466(7310):1129, 2010.

[29] Johannes M Freudenberg, Swati Ghosh, Brad L Lackford, Sailu Yellaboina, Xiaofeng

Zheng, Ruifang Li, Suresh Cuddapah, Paul A Wade, Guang Hu, and Raja Jothi.

Acute depletion of tet1-dependent 5-hydroxymethylcytosine levels impairs lif/stat3

signaling and results in loss of embryonic stem cell identity. Nucleic acids research,

40(8):3364–3377, 2011.

[30] Meelad M Dawlaty, Achim Breiling, Thuc Le, Günter Raddatz, M Inmaculada Bar-

rasa, Albert W Cheng, Qing Gao, Benjamin E Powell, Zhe Li, Mingjiang Xu, et al.

Combined deficiency of tet1 and tet2 causes epigenetic abnormalities but is compat-

ible with postnatal development. Developmental cell, 24(3):310–323, 2013.

[31] Meelad M Dawlaty, Achim Breiling, Thuc Le, M Inmaculada Barrasa, Günter Rad-

datz, Qing Gao, Benjamin E Powell, Albert W Cheng, Kym F Faull, Frank Lyko,

et al. Loss of tet enzymes compromises proper differentiation of embryonic stem cells.

Developmental cell, 29(1):102–111, 2014.

[32] Chunlei Jin, Yue Lu, Jaroslav Jelinek, Shoudan Liang, Marcos RH Estecio,

Michelle Craig Barton, and Jean-Pierre J Issa. Tet1 is a maintenance dna demethylase

that prevents methylation spreading in differentiated cells. Nucleic acids research,

42(11):6956–6971, 2014.

[33] Taiping Chen, Yoshihide Ueda, Jonathan E Dodge, Zhenjuan Wang, and En Li.

Establishment and maintenance of genomic methylation patterns in mouse embryonic

stem cells by dnmt3a and dnmt3b. Molecular and cellular biology, 23(16):5594–5605,

2003.

[34] Jian Feng, Yu Zhou, Susan L Campbell, Thuc Le, En Li, J David Sweatt, Alcino J

Silva, and Guoping Fan. Dnmt1 and dnmt3a maintain dna methylation and regulate

synaptic function in adult forebrain neurons. Nature neuroscience, 13(4):423, 2010.

[35] Steffen Rulands, Heather J Lee, Stephen J Clark, Christof Angermueller, Sebastien A

Smallwood, Felix Krueger, Hisham Mohammed, Wendy Dean, Jennifer Nichols, Peter

Rugg-Gunn, et al. Genome-scale oscillations in dna methylation during exit from

pluripotency. bioRxiv, page 338822, 2018.

[36] Hao Wu, Xiaoji Wu, and Yi Zhang. Base-resolution profiling of active dna demethy-

lation using mab-seq and camab-seq. nature protocols, 11(6):1081, 2016.



BIBLIOGRAPHY 271

[37] Chenxu Zhu, Yun Gao, Hongshan Guo, Bo Xia, Jinghui Song, Xinglong Wu, Hu Zeng,

Kehkooi Kee, Fuchou Tang, and Chengqi Yi. Single-cell 5-formylcytosine landscapes

of mammalian early embryos and escs at single-base resolution. Cell Stem Cell,

20(5):720–731, 2017.

[38] Kian Peng Koh, Akiko Yabuuchi, Sridhar Rao, Yun Huang, Kerrianne Cunniff, Julie

Nardone, Asta Laiho, Mamta Tahiliani, Cesar A Sommer, Gustavo Mostoslavsky,

et al. Tet1 and tet2 regulate 5-hydroxymethylcytosine production and cell lineage

specification in mouse embryonic stem cells. Cell stem cell, 8(2):200–213, 2011.

[39] Chenhuan Xu and Victor G Corces. Resolution of the dna methylation state of single

cpg dyads using in silico strand annealing and wgbs data. Nature protocols, 14(1):202,

2019.

[40] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul

Peluso, David Rank, Primo Baybayan, Brad Bettman, et al. Real-time dna sequenc-

ing from single polymerase molecules. Science, 323(5910):133–138, 2009.

[41] Jonas Korlach, Keith P Bjornson, Bidhan P Chaudhuri, Ronald L Cicero, Ben-

jamin A Flusberg, Jeremy J Gray, David Holden, Ravi Saxena, Jeffrey Wegener, and

Stephen W Turner. Real-time dna sequencing from single polymerase molecules. In

Methods in enzymology, volume 472, pages 431–455. Elsevier, 2010.

[42] James Clarke, Hai-Chen Wu, Lakmal Jayasinghe, Alpesh Patel, Stuart Reid, and

Hagan Bayley. Continuous base identification for single-molecule nanopore dna se-

quencing. Nature nanotechnology, 4(4):265, 2009.



LIST OF ABBREVIATIONS

°C Degree Celsius

% Percent

µg Microgram

µl Microlitre

2i Two inhibitors (PD0325901, CHIR99021)

5caC 5-carboxyluracil

5fC 5-formylcytosine

5fU 5-formyluracil

5hmC 5-hydroxymethylcytosine

5hmU 5-hydroxymethyluracil

5mC 5-methylcytosine

A Adenine

Afp Alpha fetoprotein

AID Activation Induced Deaminase

APOBEC Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like

ATP Adenosine triphosphate

BER Base excision repair

BI Bayesian inference

bp Base pair

bps Base pairs

BS Bisulfite treatment or bisulfite sequencing

C Cytosine

CEGX Cambridge Epigenetix

CGI CpG island

CpG Cytosine-phosphatidyl-Guanine

CpH Cytosine-phosphatidyl-H (H = A,C,T)

Cys Cysteine

d Day

ddH2O Double-distilled water

DKO Double knockout

DMR Differentially methylated region

DNA Deoxyribonucleic acid



BIBLIOGRAPHY 273

Dnmt DNA methyltransferase

Dpy30 Protein dpy-30 homolog

ds-DNA Double strand DNA

e.g. lat. exempli gratia, eng. ‘for example’

E10.5 Embryonic day 10.5

E10.5 Embryonic day 11.5

ENCODE Encyclopaedia of DNA elements

EQ Equation

ES cell Embryonic stem cell

fCAB-Seq 5fC chemically assisted bisulfite sequencing

FCS Foetal calf serum

Fig Figure

G Guanine

Gsk3 Glycogen synthase kinase 3

h Hour

H(O)TA Hairpin (Oxidative) bisulfite sequencing Time course Analyzer

HDAC Histone deacetylase

HEK Human embryonic kidney

HMM Hidden Markov model

HMR Highly methylated regions

HP hairpin

HPBS Hairpin bisulfite sequencing

HPoxBS Hairpin oxidative bisulfite sequencing

i.e. lat. id est, eng. ‘that is’

IAP Intracisternal A particle

KD Knockdown

KO Knockout

L1 Long interspersed nuclear elements 1

LIF leukemia inhibiting factor

LMR Low methylated regions

lncRNA Long non coding RNA

M Molar

MAB-Seq M.SssI assisted bisulfte sequencing

MeCP2 Methyl-CpG-binding protein 2

Mek Mitogen activated protein kinase

min Minutes

ml Millilitre

MLE Maximum likelihood estimation

mM Millimolar



BIBLIOGRAPHY 274

mSat Major satellite

MuERVL Murine endogenous retrovirus

Nanog Homeobox protein NANOG

NaOH Sodium hydroxide

NEB New England Biolabs

ng Nanogram

NGS Next generation sequencing

oxBS Oxidative bisulfite treatment or oxidative bisulfite sequencing

PCR Polymerase chain reaction

PGC Primordial germ cell

Pho Phosphate

piRNA PIWI associated RNAs

PIWI P-element Induced WImpy testis in Drosophila

PMD Partially methylated domains

pmol Picomol

Pou5f1 POU domain, class 5, transcription factor 1 (Oct4)

PTM Post-translation modification

qPCR Quantitative real-time PCR

RE Restriction enzyme

REST RE1-Silencing Transcription factor

RNA Ribonucleic acid

RRBS Reduced representation bisulfite sequencing

RRHPBS Reduced representation hairpin bisulfite sequencing

RRHPoxBS Reduced representation hairpin oxidative bisulfite sequencing

RT Room temperature

s Seconds

SAH S-adenosyl-homocysteine

SAM S-adenosyl methionine

SDS Sodium dodecyl sulfate

SMRT-Seq Single molecule real-time sequencing

SMUG1 Single-strand selective monofunctional uracil DNA glycosylase

SNP Single nucleotide polymorphism

Sox2 Transcription factor SOX-2

T Thymine

TDG Thymine DNA glycosylase

TE buffer Tris EDTA buffer

Tet Ten-eleven translocation

Tex13 Testis exprimiertes Gen 13

TFBS Transcription factor binding site



BIBLIOGRAPHY 275

tiRNA Transcription initiation RNA

TKO Triple knockout

TpG Thymine-phosphatidyl-Guanine

Ttc25 Tetratricopeptide Repeat Domain 25

U Uracil or Units

UCSC University of California, Santa Cruz (UCSC genome browser)

Uhrf1 Ubiquitin-Like PHD And RING Finger Domain-Containing Protein 1

UMI Unique molecular identifier

UMR Unmethylated region

WT Wild type

Zim3 Zinc Finger Imprinted 3



LIST OF FIGURES

1.1 Methylation mechanism of cytosine by Dnmts according to Lyko, 2018

[39]. (1) Nucleophilic attack on the C6 position of the cytosine ring by

a conserved cysteine residue facilitated by a similarly conserved glutamic

acid residue. (2) Transfer of a methyl group from S-adenosyl-methionine

to C5. (3) Deprotonation of C5. (4) Generated 5-methylcytosine. . . . . . 18

1.2 Schematic display of maintenance and de novo methylation. After replica-

tion, Dnmt1 detects hemimethylated CpGs and restores the methylation

pattern on the newly synthesised DNA strand, i.e. maintenance methyla-

tion. Dnmt3a and 3b methylate DNA independently of methylation status

or replication and can create new methylation pattern, i.e. de novo. . . . . 19

1.3 Schematic protein domain representation of the canonical mammalian DNA

methyltransferases Dnmt1 (1620 amino acids), Dnmt3a (908 aa) and Dnmt3b

(859 aa). DMAP = DMAP1 binding domain, PCNA = PCNA bind-

ing domain, NLS = nuclear localisation sequence, RFTS = replication

foci targeting sequence, CXXC = conserved zinc finger DNA binding do-

main, nBAH = N-terminal bromo-adjacent homology domain, cBAH =

c-terminal bromo-adjacent homology domain, MTase = catalytic DNA

methyl transferase domain, PWWP = Proline-Tryptophan-Tryptophan-

Proline domain, ADD = ATRX-Dnmt3-Dnmt3L domain. . . . . . . . . . . 21

1.4 Bisulfite conversion of unmethylated cytosine. Under mild acidic con-

ditions, cytosine reacts with bisulfite anions forming cytosinesulphonate.

Subsequent hydrolysis and deamination result in the generation of uracil-

sulphonate. Lastly, desulfonation under alkaline conditions results in the

formation of uracil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Schematic protein domains representation of Ten-eleven translocation di-

oxigenase enzymes Tet1 (2007 aa), Tet2 (1912 aa) and Tet3 (1668 aa).

CXXC = conserved zinc finger DNA binding domain, Cys-rich = cysteine,

DSBH = double-stranded β-helix, Cys-rich and DSBH form the catalytic

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Stepwise modification of cytosine by Dnmts and Tets to 5mC (5-methylcytosine),

5hmC (5-hydroxymethylcytosine), 5fC (5-formylcytosine) and 5caC (5-carboxylcytosine). 24



List of Figures 277

1.7 Graphical display of active and passive demethylation pathways; DNA

modification events (methylation and oxidation) are highlighted in orange,

passive demethylation events in blue and active demethylation events in

green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8 Conversion of cytosine and modified cytosines during BS and oxBS treat-

ment. C, 5fC, as well as 5caC are converted during bisulfite treatment,

while 5mC and 5hmC remain unchanged. In oxBS, 5hmC becomes first

oxidised to 5fC and will later be converted to U, consequently only 5mC is

detectable as C during sequencing. . . . . . . . . . . . . . . . . . . . . . . 27

1.9 Schematic display of DNA demethylation and expression of Dnmts (Dnmt3a/3b

= orange, Dnmt1/Uhrf1 = red) and Tets (blue) during ES cell cultivation

on Serum/LIF and subsequent transfer into 2i medium; red line indicates

the transition from Serum/LIF to 2i medium. . . . . . . . . . . . . . . . . 29

1.10 (A) Example of a simple Markov model with two observable states and (B)

hidden Markov model with four observable (C, D, E, F) and two hidden

states (X, Y). Arrows indicate possible transitions between the distinct

states, mX = probability to move from state X to Y, 1-mX = probability

to remain within state X, mY = probability to move from state Y to X,

1-mY = probability to remain within state Y. Arrows connecting hidden

and observable states represent emission probabilities. . . . . . . . . . . . . 31

2.1 Workflow of the Hairpin Bisulfite Sequencing protocol; genomic DNA is

cut using a restriction enzyme, which is unaffected by DNA methylation.

A complementary hairpin oligonucleotide is ligated to link upper and lower

strand covalently together. The constructs are in the next step subject to

bisulfite treatment resulting in single stranded circular DNA. After treat-

ment the converted DNA serves as a template for a locus-specific PCR.

PCR Products are then purified and sequenced. Straight and dashed lines

indicate DNA strands, red circles illustrate CpG positions. . . . . . . . . . 53

2.2 Workflow after bisulfite treatment; bisulfite treated circular hairpin con-

structs are amplified in two consecutive PCRs; the fusion primers used

in the first amplification step carry on the 5’ end parts of the sequenc-

ing adapters which will become part of the PCR product. In the second

PCR, the rest of the adapter sequence is introduced to the amplicon. Lines

indicate DNA strands, red circles illustrate CpG positions. . . . . . . . . . 54



List of Figures 278

2.3 Schematic illustration of the hairpin linker; A, variable, restriction enzyme

dependent sequence; B, constant formation facilitating sequence; C, vari-

able loop sequence; as an example the structure and sequence of a hairpin

oligo for MspI restriction is shown in a denatured, single strand and an-

nealed, folded state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Example of the design of a hairpin construct. The left part next to the

restriction site is removed. The linker sequence is pasted followed by the

reverse complement sequence of the right part of the DNA sequence. . . . . 58

2.5 Example of an methylation pattern map created by the Hairpinanalyzer;

each column represents one CpG dyad (1-5) and one row a sequenced read;

read = fully methylated CpG dyads; light and dark green = hemimethy-

lated CpG dyads; blue = unmethylated CpG dyads; white bars indicate

mutated or not analyzable CpGs; the bar on the left site shows a summary

of the methylation over all CpG positions analyzed (M) . . . . . . . . . . . 63

3.1 Maintenance and de novo methylation are usually cooperating to maintain

a stable methylation pattern (inner circle). The oxidation of 5mC to 5hmC

may interfere with the maintenance machinery causing a (partial) loss of

CpG methylation after DNA replication. DNA strands are indicated by

lines whereas the CpG are shown as colored circles. . . . . . . . . . . . . . 69

3.2 Schematic outline of hairpin bisulfite (BS) and oxidative bisulfite sequenc-

ing (oxBS): The method is based on enzymatic digestions of genomic DNA

and the covalent connection of upper and lower DNA strands by ligating

a hairpin oligonucleotide. PCR enrichment of BS/oxBS treated sample is

used for amplicon generation followed by sequencing and data analysis. . . 72

3.3 Possible transitions of the 9 different states of a CpG site. Methyl groups

are a) removed after cell division, b) added due to maintenance (µm) or de

novo methylation (µd) and c) are hydroxylated (η) by Tet enzymes. . . . . 74

3.4 Schematic outline of the conversion of Cytosine, 5mC and 5hmC during

BS and oxBS treatment and after sequencing: In the bisulfite reaction a

cytosine (C) is converted to uracil (U), whereas 5mC and 5hmC remain un-

touched. In the oxidative bisulfite sequencing only 5mC remains untouched

and cytosine as well as 5hmC is converted to uracil (U). The conversion

errors are illustrated as dashed red arrows and c, d, e, f are the conversion

probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



List of Figures 279

3.5 Comparison of predicted modification levels and the obtained sequencing

data for BS and oxBS for the loci L1mdT (top-left), mSat (top-right),

Afp (bottom-left), Zim3 (bottom-right); TT (blue), TC (light green), CT

(dark green), CC (red). The solid lines show the experimentally measured

frequencies states and the dashed lines correspond to the values predicted

by the two HMMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Probabilities of the hidden states for L1mdT (top-left), mSat (top-right),

Afp (bottom-left) and Zim3 (bottom-right): The left diagram depicts the

amount of fully methylated (mm) hemimethylated (um and mu)

day0 day1 day3 day6

le
ve

l p
er

 s
ta

te
s 

(m
Sa

t)

0

0.2

0.4

0.6

0.8

1

fullymethylated
hydroxylated
hemimethylated
unmethylated

day0 day1 day3 day6

hy
dr

ox
yla

tio
n 

le
ve

l

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

hm-mh
uh-hu
hh

, and

unmethylated (uu)

day0 day1 day3 day6

le
ve

l p
er

 s
ta

te
s 

(m
Sa

t)

0

0.2

0.4

0.6

0.8

1

fullymethylated
hydroxylated
hemimethylated
unmethylated

day0 day1 day3 day6

hy
dr

ox
yla

tio
n 

le
ve

l

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

hm-mh
uh-hu
hhsites. The orange block

day0 day1 day3 day6

le
ve

l p
er

 s
ta

te
s 

(m
Sa

t)

0

0.2

0.4

0.6

0.8

1

fullymethylated
hydroxylated
hemimethylated
unmethylated

day0 day1 day3 day6

hy
dr

ox
yla

tio
n 

le
ve

l

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

hm-mh
uh-hu
hh

gives the total amount

of CpG sites with at least one 5hmC(hidden states), while the detailed

distribution of the hydroxylated states is given by the diagram on the right. 80

3.7 The diagrams show the enzymatic efficiencies and their standard deviations

for maintenance (red), de novo (blue), hydroxylation (yellow) and total

efficiency on a hemimethylated CpG (dark red). Results are given for

L1mdT (top-left), mSat (top-right), Afp (bottom-left) and Zim3 (bottom-

right) over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.8 Comparison of prediction and data for IAP, L1mdA, MuERVL, Ttc25 and

Snrpn: probabilities of the observable states TT (blue), TC (light green),

CT (dark green), CC (red) in BS and oxidative BS. The solid lines show the

experimentally measured frequencies states and the dashed lines correspond

to the values predicted by the two HMMs. . . . . . . . . . . . . . . . . . . 93

3.9 Results for regions IAP, L1mdA, MuERVL, Ttc25 and Snrpn: Left: Prob-

abilities of the hidden states. The amount of fully methylated (mm)

day0 day1 day3 day6

le
ve

l p
er

 s
ta

te
s 

(m
Sa

t)

0

0.2

0.4

0.6

0.8

1

fullymethylated
hydroxylated
hemimethylated
unmethylated

day0 day1 day3 day6

hy
dr

ox
yla

tio
n 

le
ve

l

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

hm-mh
uh-hu
hh

,

hemimethylated (um and mu)

day0 day1 day3 day6

le
ve

l p
er

 s
ta

te
s 

(m
Sa

t)

0

0.2

0.4

0.6

0.8

1

fullymethylated
hydroxylated
hemimethylated
unmethylated

day0 day1 day3 day6

hy
dr

ox
yla

tio
n 

le
ve

l

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

hm-mh
uh-hu
hh

, and unmethylated (uu)

day0 day1 day3 day6

le
ve

l p
er

 s
ta

te
s 

(m
Sa

t)

0

0.2

0.4

0.6

0.8

1

fullymethylated
hydroxylated
hemimethylated
unmethylated

day0 day1 day3 day6

hy
dr

ox
yla

tio
n 

le
ve

l
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

hm-mh
uh-hu
hhsites. The

orange block

day0 day1 day3 day6

le
ve

l p
er

 s
ta

te
s 

(m
Sa

t)

0

0.2

0.4

0.6

0.8

1

fullymethylated
hydroxylated
hemimethylated
unmethylated

day0 day1 day3 day6

hy
dr

ox
yla

tio
n 

le
ve

l

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

hm-mh
uh-hu
hh

gives the total amount of CpG sites with at least one

5hmC, while the detailed distribution of the hydroxylated states is given

by the diagram on the right. Right: Estimated efficiencies and standard

deviations over time. Maintenance (red), de novo (blue), hydroxylation

(yellow) and total efficiency on a hemimethylated CpG (dark red). . . . . 94

3.10 Estimated efficiencies and standard deviations for each single CpG dyad of

regions IAP, L1mdA, L1mdT, mSat, MuERVL and the single copy genes

Afp, Ttc25, Zim3, Snrpn over time. In the case of IAP we cover six CpG

positions. However, during evolution CpG one and five underwent a tran-

sition resulting in a loss of the CpG positions in this particular IAP class.

Furthermore, due to the lack of space we only show the first 6 CpGs out

of 13 CpGs analyzed in L1mdA and out of 8 CpGs analyzed in Zim3. The

colors are the same as in Fig. 3.9 (right) . . . . . . . . . . . . . . . . . . . 97



List of Figures 280

3.11 Prediction of the (hydroxy-)methylation levels for each single CpG dyad of

regions IAP, L1mdA, L1mdT, mSat, MuERVL and the single copy genes

Afp, Ttc25, Zim3, Snrpn over time. The colors are the same as in Fig. 3.9

(left) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.12 Reference Sequence used for 5mC and 5hmC analysis of IAP; M = 5mC,

H = 5hmC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.13 Reference Sequence used for 5mC and 5hmC analysis of L1mdA; M = 5mC,

H = 5hmC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.14 Reference Sequence used for 5mC and 5hmC analysis of L1mdT; M = 5mC,

H = 5hmC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.15 Reference Sequence used for 5mC and 5hmC analysis of mSat; M = 5mC,

H = 5hmC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.16 Reference Sequence used for 5mC and 5hmC analysis of MuERVL; M =

5mC, H = 5hmC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.17 Reference Sequence used for 5mC and 5hmC analysis of Afp; M = 5mC, H

= 5hmC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.18 Reference Sequence used for 5mC and 5hmC analysis of Ttc25; M = 5mC,

H = 5hmC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.19 Reference Sequence used for 5mC and 5hmC analysis of Zim3; M = 5mC,

H = 5hmC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.20 Reference Sequence used for 5mC and 5hmC analysis of Snrpn; M = 5mC,

H = 5hmC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1 HPoxBS pipeline. Individual steps of HPoxBS starting from DNA quality

assessment to 5hmC prediction and enzyme efficiency estimation. . . . . . 108

4.2 Experimental workflow of HPoxBS. (1) Genomic DNA is enzymatically

digested; (2) DNA strands are linked covalently by ligation of a hairpin

linker; (3) after ligation the reaction is split and treated with BS or oxBS;

(4) region of interest is amplified and sequencing adapters are introduced;

(5) multiplexed enrichment PCR including ID tagging . . . . . . . . . . . . 110

4.3 Hairpin linker structure. Example of a hairpin linker in unfolded (left)

and annealed (right) conformation matching a 5’-overhang created by the

restriction enzyme R.TaqI. (1) green = restriction enzyme complementary

5’-CG overhang; (2) = stem structure facilitating the folding; (3) = loop

structure with unique molecular identifier sequence; M = 5mC, H = 5hmC,

D = A, T or G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



List of Figures 281

4.4 Conversion during BS and oxBS. Conversions of cytosine and its modi-

fied derivatives (upper row) during BS and oxBS (middle row) as well as

their appearance after sequencing (lower row). Black straight arrows indi-

cate the intended conversion reaction; red dashed arrows indicate possible

conversion errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Hairpin Methylation Pattern Maps. Methylation patterns for the single

copy genes Afp, Ttc25 and Zim3, as well as the retrotransposable elements

IAP, L1mdT, L1mdA, mSat and MuERVL for BS and oxBS of ECS cul-

tivated under Serum/LIF (d0) and 2i medium (d1 = 24h 2i, d3 =72h 2i,

d6 = 144h 2i). Each column represents one CpG dyad, each row one se-

quenced chromosome. The very left column gives the mean methylation

pattern over all analysed CpGs. Red = CpG dyad is modified on both DNA

strands (BS = 5mC or 5hmC; oxBS = 5mC only); Dark green = CpG dyad

is only modified on the plus strand (BS = 5mC or 5hmC; oxBS = 5mC

only); Light green = CpG dyad is only modified on the lower strand (BS

= 5mC or 5hmC; oxBS = 5mC only); Blue = CpG dyad is unmodified on

both strands (BS = C only; oxBS = C or 5hmC); White = CpG dyad was

not analysable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Average modification level. Mean methylation level of BS (upper panel)

and oxBS (middle panel) samples as well as the predicted 5hmC amount

and distribution (lower panel). x-axis = days; y-axis = 5mC/5hmC level;

red = CpG dyad is modified on both DNA strands (BS = 5mC or 5hmC;

oxBS = 5mC only); dark green = CpG dyad is only modified on the plus

strand (BS = 5mC or 5hmC; oxBS = 5mC only); light green = CpG dyad

is only modified on the lower strand(BS = 5mC or 5hmC; oxBS = 5mC

only); blue = CpG dyad is unmodified on both strands (BS = C only; oxBS

= C or 5hmC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 Enzyme efficiencies. Predicted enzyme efficiencies for Dnmts and Tets.

Dark red = total methylation activity of Dnmts at hemimethylated CpG

dyads (maintenance plus de novo); red = maintenance methylation of Dn-

mts at hemimethylated CpG dyads; blue = de novo activity of Dnmts at

CpG dyads; yellow = hydroxylation efficiency of Tet enzymes at methylated

CpG dyads. X-axis = days; Y-axis = efficiency. . . . . . . . . . . . . . . . 119

4.8 HPoxBS results for PGCs. Methylation pattern maps for BS samples, gen-

erated by the Hairpinanalyzer (A); methylation pattern maps for oxBS

samples, generatd by the Hairpinanalyzer (B); average 5mC level and dis-

tribution estimated by H(O)TA (C); average 5hmC level and distribution

calculated by H(O)TA (D); enzyme efficiencies for maintenance methyla-

tion, de novo methylation and hydroxylation predicted by H(O)TA. . . . . 124



List of Figures 282

4.9 Demethylation of Monocyte DMR2 and DMR10. A: methylation pattern of

hairpin BS; B: methylation pattern of hairpin oxBS; each column represents

one CpG dyad, each row one sequence read i.e. one analysed DNA strand

(chromosome); C: average methylation levels of DMR2 and DMR10 for BS

(5mC+5hmC) and oxBS (5mC only). . . . . . . . . . . . . . . . . . . . . . 125

4.10 Reference Sequence for Afp . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.11 Reference Sequence for IAP . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.12 Reference Sequence for L1mdA . . . . . . . . . . . . . . . . . . . . . . . . 132

4.13 Reference Sequence for L1mdT . . . . . . . . . . . . . . . . . . . . . . . . 132

4.14 Reference Sequence for mSat . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.15 Reference Sequence for MuERVL . . . . . . . . . . . . . . . . . . . . . . . 132

4.16 Reference Sequence for Ttc25 . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.17 Reference Sequence for Zim3 . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.18 Reference Sequence for DMR2 . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.19 Reference Sequence for DMR10 . . . . . . . . . . . . . . . . . . . . . . . . 133

5.1 Average CpG and nonCpG Methylation. (A) Genome wide average CpG

methylation level of wild type ES cells cultivated under Serum/LIF con-

ditions (d0), and their shift to 2i after 72h (d3), 144h (d6). (B) Average

nonCpG methylation level of WT cells. (C) Average CpG methylation

pattern of Tet triple knockout ES cells. (D) Average nonCpG methylation

level of Tet triple knockout ES cells. . . . . . . . . . . . . . . . . . . . . . . 148

5.2 Average enzyme efficiencies and CpG methylation level of WT ES cells.

Red = Average enzyme maintenance, blue = de novo and yellow = hy-

droxylation activity across genes during Serum-to-2i transition (upper

panel). Average CpG methylation level across genes during Serum-to-2i

shift (lower panel). Red = Symmetric methylated CpG dyads (mCpG/mCpG);

Dark green asymmetric CpG methylation (mCpG/CpG), Light green (CpG/mCpG),

Blue = unmethylated CpG dyads (CpG/CpG). TSS = transcription start

site, TES = transcription end site . . . . . . . . . . . . . . . . . . . . . . . 149

5.3 Spatial correlation of enzyme efficiencies in WT and Tet TKO cells. (A)

Auto- and cross correlation of maintenance, de novo and hydroxylation

efficiency at day0. Y-axis displays correlation, x-axis distance of CpGs in

base pairs. Red lines indicate confident intervals. grey bars = correlation

with p-value ≤ 0.01, green = correlation with p-value > 0.01. Correlation

in WT cell, (B) correlation in Tet TKO cells. . . . . . . . . . . . . . . . . 149



List of Figures 283

5.4 Enzyme efficiencies at TFBS and across histone marks. Average efficiency

profiles for Dnmts and Tets at TFBS and across histone modification in

WT ES cells. red = maintenance methylation, blue = de novo methylation,

yellow = hydroxylation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Efficiencies in WT and TKO ES cells. Comparison of maintenance and de

novo methylation efficiencies in WT and TKO ES cells. red = maintenance

WT, light red = maintenance TKO, blue = de novo WT, light blue = de

novo TKO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6 Efficiencies in WT and TKO ES cells. Comparison of maintenance and de

novo methylation efficiencies in WT and TKO ES cells. Red = maintenance

WT, light red = maintenance TKO, blue = de novo WT, light blue = de

novo TKO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7 Methylation and enzyme efficiency of expressed and non-expressed genes.

Methylation level across expressed and none/lowly expressed genes under

Serum/LIF conditions; red = 5mC/5mC, yellow = 5hmC, green = 5mC/C

or C/5hmC, blue = C/C (A). Average efficiency profile across expressed

and non/lowly expressed genes (B). Comparison of WT and TKO cell

efficiency across expressed and none/lowly expressed genes (C). Red =

maintenance WT, light red = maintenance TKO, blue = de novo WT,

light blue = de novo TKO, yellow = hydroxylation. . . . . . . . . . . . . . 153

5.8 Methylome Segmentation. (A) Outcome of the segmentation using MethylSeekR

of mouse ES cells under Serum/LIF conditions. (B) Number of HMRs,

PMDs, LMRs and UMRs after segmentation. Size distribution of the in-

dividual segments. (C) Methylation level of segments according to Ficz

et al. 2013. (D) Replication timing based on the data from Hiratani et

al. 2008. (E) Methylation distribution based on RRHPoxBS. (F) main-

tenance (red), de novo (blue) and hydroxylation (yellow) efficiency. (G)

5hmC distribution in HMRs, PMDs, LMRs and UMRs. . . . . . . . . . . . 155

5.9 Optimal number of clusters for k-means and k-error algorithms according

to three clustering validity metrics. Calinski-Harabasz criterion for (A)

k-means and (B) k-error . Davies-Bouldin criterion for (C) k-means and

(D) k-error . Elbow method (WSS) for (F) k-means and (E) k-error . . . 156

5.10 Single CpG clustering premised on enzyme efficiency. (A) Methylation

profile of identified efficiency clusters. (B) Efficiency profiles of identified

clusters. (C) Mean 5hmC level and distribution. (D) LOLA enrichment

analysis of clustered CpGs. (E) Methylation and efficiency profiles of an-

notated genomic features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



List of Figures 284

5.11 Comparison of clustered CpGs in WT and TKO ES cells. (A) Methylation

profile of clustered CpGs. (B) Efficiency profile of clustered CpGs. C

Methylation profile of annotated genomic features. (D) Efficiency profile

of annotated genmoic features. . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.12 Schematic representation of RRHPoxBS. (1) Digestion of genomic DNA

using endonucleases generates blunt-end DNA fragments, (2) generation of

single 3’ Adenine overhangs(A-Tailing), (3) ligation of hairpin linker and

Illumina® sequencing adapter, (4) enrichment of HP fragments by biotin-

streptavidin-purification, (5) BS and oxBS treatment of HP library followed

by PCR amplification, sequencing and data analysis. . . . . . . . . . . . . 163

5.13 Number of CpGs with observations at one, two, or three days in WT (a)

and Tet TKO (c). Average number of independent single CpG samples

(sequencing depth) per day for BS and oxBS of WT (b) and for BS of Tet

TKO (d) data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.14 Metropolis Hasting’s update step: We sample a new efficiency vector using

two truncated normal distributions in two steps: (a) Step 1: We sample

the intercept yi−1 from the truncated normal with mean xi−1 and bounds

[0, 1]. (b) Step 2: We sample the gradient yi from the truncated normal

distribution with mean xi and bounds [ai, bi], which depend on the sampled

intercept yi−1 of Step 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.15 Comparison between data and prediction of observable states after fitting

the HMMs based on MLE (a), (c) and BI (b), (d). Dark box plots show the

experimentally measured frequencies states and light box plots correspond

to the values predicted by the two HMMs. . . . . . . . . . . . . . . . . . . 173

5.16 Bar plots for maintenance, de novo and hydroxylation efficiencies over time

taken by MLE (a), (c) and BI (b), (d) methods. Red = maintenance

methylation efficiency (µm), blue = de novo methylation efficiency (µd),

yellow = hydroxylation efficiency (η). . . . . . . . . . . . . . . . . . . . . . 175

5.17 The ellipse has axes pointing in the directions of the eigenvectorsX1, X2, ..., Xp

of the covariance matrix Σ. Here, for the bivariate normal, the longest axis

of the ellipse points in the direction of the first eigenvector X1 and the

shorter axis is perpendicular to the first, pointing in the direction of the

second eigenvector X2. The half length of the axis corresponding to eigen-

vector Xi is given by the formula li =
√
λiχ2

crit. . . . . . . . . . . . . . . . 175



List of Figures 285

5.18 Bar plots for the hidden states levels for all CpGs in the genome estimating

the parameters with MLE (a), (c) and BI (b), (d). Red = symmetric methy-

lated CpG (mm - 5mC/5mC), yellow = 5hmC in all possible combinations

(toth - 5hmC/C, C/5hmC, 5hmC/5mC, 5mC/5hmC, 5hmC/5hmC), green

= hemi methylated CpGs (hemi - 5mC/C or C/5mC), blue = unmethylated

CpGs (C/C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.19 The optimal clustering of enzymatic efficiencies over time based on the k-

means algorithm and the squared euclidean distance. Red = maintenance

methylation efficiency (µm), blue = de novo methylation efficiency (µd),

yellow = hydroxylation efficiency (η). . . . . . . . . . . . . . . . . . . . . . 176

5.20 Illustration of the clustering of an estimated enzymatic efficiency (with

intercept β0 and gradient β1) for CpGs A, B, C, D using k-means clustering

(Left) vs k-error clustering (Right). . . . . . . . . . . . . . . . . . . . . . . 178

5.21 The optimal clustering of the enzymatic efficiencies over time based on

the k-error algorithm and the squared Mahalanobis distance. Cluster 1

contains 855201 CpGs while Cluster 2 contains 702901 CpGs. . . . . . . . 178

5.22 Elbow method: The “optimal” number of clusters is the point where the

graph starts to smooth out, i.e., the “elbow” of the graph. . . . . . . . . . 180

5.23 Spatial auto- and cross correlation of maintenance, de novo- and hydrox-

ylation efficiency across the genome. Grey bars indicate correlations with

a p value < 0.01, green bars correlations with p values > 0.01, red line

shows the confidence bounds. Y-axis displays correlation, x-axis gives the

distance of CpG in base pairs. . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.24 Pearson correlation of enzyme efficiencies and methylation level in WT ES

cells for d0, d3 and d6. mm = fully methylated (5mC/5mC), toth = hy-

droxylated CpG of all possible states, um = hemimethylated (5mC/C or

C/5mC), uu = unmethylated (C/C), maint = maintenance methylation

efficiency, deNovo = de novo methylation efficiency, hydroxy = hydroxyla-

tion efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.25 Pearson correlation of enzyme efficiencies and methylation level in Tet TKO

ES cell for d0, d4 and d7. mm = fully methylated (5mC/5mC), um =

hemimethylated (5mC/C or C/5mC), uu = unmethylated (C/C), maint =

maintenance methylation efficiency, deNovo = de novo methylation efficiency.183

5.26 Number of CpGs (y-axis) with one, two or three observation days (x-axis)

for each chromosome in WT data. . . . . . . . . . . . . . . . . . . . . . . . 185

5.27 Number of CpGs (y-axis) with one, two or three observation days (x-axis)

for each chromosome in Tet TKO data. . . . . . . . . . . . . . . . . . . . . 185

5.28 Average number of single CpG independent samples, i.e, depth sequencing,

(y-axis) per day (x-axis) for each chromosome in WT data. . . . . . . . . . 186



List of Figures 286

5.29 Average number of single CpG independent samples, i.e, depth sequencing,

(y-axis) per day (x-axis) for each chromosome in Tet TKO data. . . . . . . 186

5.30 Bar plots for the maintenance (red), de novo (blue) and hydroxylation

(yellow) efficiencies over time taken by BI method for each individual chro-

mosome in WT cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.31 Bar plots for the maintenance (red) and de novo (blue) efficiencies over

time taken by BI method for each individual chromosome in Tet TKO cells. 187

5.32 Bar plots for the hidden states levels over time of each individual chro-

mosome in WT. Red = symmetric methylated CpG (mm - 5mC/5mC),

yellow = 5hmC in all possible combinations (toth - 5hmC/C, C/5hmC,

5hmC/5mC, 5mC/5hmC, 5hmC/5hmC), green = hemi methylated CpGs

(hemi - 5mC/C or C/5mC), blue = unmethylated CpGs (C/C). . . . . . . 188

5.33 Bar plots for the hidden states levels over time of each individual chromo-

some in TET TKO. Red = symmetric methylated CpG (mm - 5mC/5mC),

yellow = 5hmC in all possible combinations (toth - 5hmC/C, C/5hmC,

5hmC/5mC, 5mC/5hmC, 5hmC/5hmC), green = hemi methylated CpGs

(hemi - 5mC/C or C/5mC), blue = unmethylated CpGs (C/C). . . . . . . 188

5.34 Average hemimethylated CpGs detected by RRHPoxBS across expressed

and not/low expressed genes. Dark green = 5mC/C, light green = C/5mC 190

5.35 (a) Demethylation rate in WT and Tet TKO cells (b) Relative difference

in demethylation rate between WT and Tet TKO cells. . . . . . . . . . . . 190

5.36 Methylation level at the 25 most frequent repetitive elements in our analysis

for WT ES cells. Elements are presented in decreasing order, most frequent

left top, least frequent right bottom. Annotation according to UCSC. y-axis

= methylation frequency, x-axis = time in days (d0, d3, d6). Red = fully

methylated CpGs (5mC/5mC), green = hemimethylated CpGs (5mC/C or

C/5mC), yellow = 5hmC, blue = unmethylated CpGs (C/C). . . . . . . . 192

5.37 Level and distribution of 5hmC within the 25 most frequent repetitive ele-

ments in our data set for WT ES cells. Elements are presented in decreasing

order, most frequent left top, least frequent right bottom. Annotation ac-

cording to UCSC. y-axis = mean 5hmC level, x-axis = time in days (d0,

d3, d6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.38 Efficiency profiles of the 25 most frequent repetitive elements in our analysis

for WT ES cells. Elements are presented in decreasing order, most frequent

left top, least frequent right bottom. Annotation according to UCSC. y-

axis = efficiency; x-axis = time in days (d0, d3, d6), red = maintenance

efficiency, blue = de novo efficiency, yellow = hydroxylation efficiency. . . . 194



List of Figures 287

5.39 Methylation level at the 25 most frequent repetitive elements in our anal-

ysis for Tet TKO cells. Elements are presented in decreasing order, most

frequent left top, least frequent right bottom. Annotation according to

UCSC. y-axis = methylation frequency, x-axis = time in days (d0, d4, d7).

Red = fully methylated CpGs (5mC/5mC), green = hemimethylated CpGs

(5mC/C or C/5mC), blue = unmethylated CpGs (C/C). . . . . . . . . . . 195

5.40 Efficiency profiles of the 25 most frequent repetitive elements in our anal-

ysis for Tet TKO cells. Elements are presented in decreasing order, most

frequent left top, least frequent right bottom. Annotation according to

UCSC. y-axis = efficiency; x-axis = time in days (d0, d4, d7), red = main-

tenance efficiency, blue = de novo efficiency. . . . . . . . . . . . . . . . . . 196

5.41 Estimated Efficiencies of Dnmts and Tets in form of maintenance methy-

lation(red), de novo methylation and hydroxylation as well as binding of

Dnmt3a and 3b isoforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.42 Estimated Efficiencies of Dnmts and Tets in form of maintenance methy-

lation(red), de novo methylation and hydroxylation as well as binding of

Tet1 and Uhrf1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.43 Occurrences of nonCpG methylation in Serum and 2i cultivated WT ES

cells. Size of bases indicate the probability at a given position. nonCpG

with 4 bases up- and downstream are shown. . . . . . . . . . . . . . . . . . 199

5.44 Occurrences of nonCpG methylation in Serum and 2i cultivated WT ES

cells. Size of bases indicate the probability at a given position. nonCpG

with 4 bases up- and downstream are shown. . . . . . . . . . . . . . . . . . 199

5.45 Methylation level and distribution of methylated nonCpG in FMRs, PMDs

LMRs and UMRs. Methylation level (A). nonCpG methylation distribution

in FMRs, PMDs, LMRs and UMRs (B) . . . . . . . . . . . . . . . . . . . . 199

6.1 Dnmts can methylate DNA in a distributive manner, “jumping” randomly

from one CpG to another or in a processive way where the enzyme starts

at one CpG and slides in 5’ to 3’ direction over the DNA. . . . . . . . . . . 211

6.2 A lattice of length L = 4 containing all possible states 0, 1, 2 and 3, forming

the pattern 0123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.3 Possible maintenance and de novo transitions depicted for the lower strand,

where ◦ denotes an unmethylated, • a methylated site and ? a site where

the methylation state does not matter. Note that the same transitions can

occur on the upper strand. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.4 Conversions of the unobservable states u,m to observable states T,C with

respective rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217



List of Figures 288

6.5 Histograms for the estimated dependency parameters ψL and ψR for all

sets of three adjacent CpGs in all loci and for all suggested models. . . . . 220

6.6 The figures show an example for the predicted (neighbor dependent and

neighbor independent) and the measured pattern distribution for each lo-

cus. The inset shows a zoomed in version of the distribution. . . . . . . . . 222

6.7 The figures show the predicted and the measured pattern distribution for

all 16 models for mSat. The inset shows a zoomed in version of the distri-

bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.7 (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

7.1 Dnmts can methylate DNA in a processive way where the enzyme starts at

one CpG and slides in 5’ to 3’ direction over the DNA or in a distributive

manner, “jumping” randomly from one CpG to another. . . . . . . . . . . 233

7.2 A lattice of length L = 4 containing all possible states 0, 1, 2 and 3, forming

the pattern 0123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.3 Possible maintenance and de novo transitions depicted for the lower strand,

where ◦ denotes an unmethylated, • a methylated site and ? a site where

the methylation state does not matter. Note that the same transitions can

occur on the upper strand. . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

7.4 Conversions of the unobservable states u,m to observable states T,C with

respective rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

7.5 Representations of WT (left), Dnmt1KO (middle) and Dnmt3a/b DKO

(right) data for mSat. On the X axis the CpGs and on the Y axis the

measured cells are shown. The different colors encode the states as follows:

Red: 0, green: 1, yellow: 2, blue:3, and white: “no measurement”. . . . . . 243

7.6 Histograms for the estimated dependency parameters ψL and ψR for all

sets of three adjacent CpGs in all loci and for all suggested models. . . . . 244

7.7 Dependency parameter versus distance between CpGs measured in bps.

The top row shows the results for the Dnmt3a/b DKO data, the bottom

row for Dnmt1KO. The left (right) column shows results for the depen-

dency parameter to the left (right). The right column shows results for

the dependency parameter to the right. The different colors of the symbols

represent the different loci and are explained in the main text. Note the

different ranges on the Y axes. Red dots = mSat, blue dots = Afp, green

dots = IAP, pink dots = L1 and black dots = Tex13. . . . . . . . . . . . . 245

7.8 The figures show an example for the predicted (neighborhood dependent

and neighborhood independent) and the measured pattern distribution for

each locus. The inset shows a zoomed in version of the distribution. . . . . 247



List of Figures 289

7.9 The figures show the predicted and the measured pattern distribution for

two, (1,1) and (4,4), of the 16 models for mSat. The inset shows a zoomed

in version of the distribution. The red WT distribution is the same in both

plots. Note the slight differences in both predictions for example in pattern

16, 62 and 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

7.10 Ratio R = µ/τ between maintenance and de novo rate for hairpin (blue)

and non-hairpin data (red) for all loci. The loci are mapped to the indices

as follows: mSat:1, Afp:2–4, IAP:5–8, L1:9–13, Tex13:14–21. . . . . . . . . 249

7.11 Dependency parameter versus distance between CpGs for the genome-wide

data. The three colors represent three clusters. Cluster 0: blue, cluster 1:

orange, cluster 2: green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

7.12 Biological context of CpG clustering. (a) Frequency CpG methylation

state; states are indicated as follows: state 0 = C/C - red, state 1 =

5mC/C - yellow, state 2 = c/5mC - green, state 3 = 5mC/5mC - blue.

(b) Frequency of annotated genomic features within the individual clus-

ters. (c) Result of LOLA enrichment analysis against transcription factors

from CODEX or ENCODE and UCSC features. All depicted enrichments

possess a q-value above 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . 252

8.1 Schematic representation of DNA methylation calling of common BS, as

well as HPBS pipelines. (A) BS approach, methylation state of CpGs are

identified by aligning the sequencing reads against the reference sequence.

(B) RRHPoxBS, upper and lower DNA strand are first aligned against

each other, which permits to derive the genomic sequence as well as the

methylation state of CpGs and nonCpG without the use of a reference

sequence. Read 1, identification of an unmethylated CpG site (blue), as

well as a methylated nonCpG position (orange). Read 2, identification

of SNP or de novo mutation at a former CpG site (red), as well as a

methylated nonCpG position (orange). . . . . . . . . . . . . . . . . . . . . 260



LIST OF TABLES

2.1 Examples of PCR protocols to amplify Hairpin Bisulfite molecules . . . . . 60

2.2 Temperature profile of HotFire/HotStarTaq . . . . . . . . . . . . . . . . . 60

2.3 Illumina adapter and primer Sequences; i5/i7 = index; grey = flow cell

binding sequence; Oligonucleotide sequences © 2016 Illumina, Inc. All

rights reserved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 List of chemicals and cycler condition for the second PCR . . . . . . . . . 61

3.1 IAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 L1mdA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 L1mdT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 mSat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 MuERVL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 Afp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.7 Ttc25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.8 Zim3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.9 Snrpn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.10 Transition probabilities from hidden to the observable states in BS and in

oxBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.11 Estimated coefficients of the functions µd(t), µm(t) and η(t) and their ap-

proximate standard deviations. The p-values have been taken conducting

a hypothesis test H0 : β1 = 0 using the Wald statistic. . . . . . . . . . . . . 95

3.12 Estimated coefficients of the function λ(t) and their approximate standard

deviations. The p-values have been taken conducting a hypothesis test

H0 : βλ1 = 0 ∧ βλ2 = 0 using the Wald statistic. . . . . . . . . . . . . . . . . 96

3.13 Computed Kullback-Leibler divergence and Bhattacharya distance values

given by LOOCV data to compare the test error for assuming linear vs

constant efficiencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.14 Sequence of the hairpin linker for Afp, L1mdT, L1mdA, mSat, IAP; M

indicates the localization of 5mC, H the position of 5hmC in the sequence.

All hairpin linker carry a 5’-phosphorylation. . . . . . . . . . . . . . . . . . 100

3.15 Primer for amplification of the analyzed regions after bisulfite and oxidative

bisulfite treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



List of Tables 291

4.1 Typical ligation reaction for HPoxBS. . . . . . . . . . . . . . . . . . . . . . 112

4.2 Typical PCR protocol for HPoxBS using HOT FIREPol® . . . . . . . . . 113

4.3 Multiplex-PCR protocol for sequencing preparation . . . . . . . . . . . . . 114

4.4 Conversion rates of C, 5mC and 5hmC of BS samples . . . . . . . . . . . . 119

4.5 Conversion rates of C, 5mC and 5hmC of oxBS samples . . . . . . . . . . . 119

4.6 Cell numbers of nonPGCs and PGCs . . . . . . . . . . . . . . . . . . . . . 124

4.7 Obtained reads and methylation calls for Afp . . . . . . . . . . . . . . . . 126

4.8 Obtained reads and methylation calls for IAP . . . . . . . . . . . . . . . . 126

4.9 Obtained reads and methylation calls for L1MdA . . . . . . . . . . . . . . 127

4.10 Obtained reads and methylation calls for L1MdT . . . . . . . . . . . . . . 127

4.11 Obtained reads and methylation calls for mSat . . . . . . . . . . . . . . . . 127

4.12 Obtained reads and methylation calls for MuERVL . . . . . . . . . . . . . 128

4.13 Obtained reads and methylation calls for Ttc25 . . . . . . . . . . . . . . . 128

4.14 Obtained reads and methylation calls for Zim3 . . . . . . . . . . . . . . . . 128

4.15 Obtained reads and methylation calls for DMR2 . . . . . . . . . . . . . . . 129

4.16 Obtained reads and methylation calls for DMR10 . . . . . . . . . . . . . . 129

4.17 Obtained reads and methylation calls for mSat . . . . . . . . . . . . . . . . 129

4.18 Sequences of the used hairpin linker for Afp, IAP, L1mdA, L1mdT, mSat,

MuERVL, Ttc25 and Zim3; M indicates 5mC, H 5hmC. All hairpin linker

carry a 5’-phosphorylation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.19 Primer for amplification of the analysed regions after BS or oxBS treatment.131

5.1 Typical PCR protocol for RRHPoxBS using HOTStarTaq® from QIAGEN 164

5.2 HP-Linker, Adapter and Enrichment-Primer Sequence. All oligonucleotides

were purchased from Biomers. . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3 Transition probabilities from hidden to the observable states in bisulfite

sequencing (BS) and in ox. bisulfite sequencing (oxBS). . . . . . . . . . . . 167

5.4 Computed Kullback-Leibler divergence between the data and the model

distribution for MLE and BI, where Pbs and Pox is the data distribution

for BS and oxBS experiment respectively. . . . . . . . . . . . . . . . . . . . 174

5.5 Conversion rate of cytosine variants included in the TruMethyl Spike in

after BS treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.6 Conversion rate of cytosine variants included in the TruMethyl Spike in

after oxBS treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.1 Estimated parameters for the KO data and model based on Eq. (6.12) for

the loci L1 and Afp with sample size n. . . . . . . . . . . . . . . . . . . . . 221

6.2 Kullback-Leibler divergence KL for the 16 models. . . . . . . . . . . . . . 221



List of Tables 292

7.1 Estimated parameters for the KO data and model (1, 1) based on Eq. (7.12)

for the loci Afp and L1 with sample size n. . . . . . . . . . . . . . . . . . . 246

7.2 Kullback-Leibler divergence KL for the neighborhood dependent and inde-

pendent predictions at all loci. . . . . . . . . . . . . . . . . . . . . . . . . . 248

7.3 Kullback-Leibler divergence KL for all 16 models. . . . . . . . . . . . . . . 249



EIDESSTATTLICHE VERSICHERUNG

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und
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