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ABSTRACT

Computer graphics research strives to synthesize images of a high visual realism that are
indistinguishable from real visual experiences. While modern image synthesis approaches
enable to create digital images of astonishing complexity and beauty, processing resources
remain a limiting factor. Here, rendering efficiency is a central challenge involving a trade-off
between visual fidelity and interactivity. For that reason, there is still a fundamental difference
between the perception of the physical world and computer-generated imagery.

At the same time, advances in display technologies drive the development of novel display
devices. The dynamic range, the pixel densities, and refresh rates are constantly increasing.
Display systems enable a larger visual field to be addressed by covering a wider field-of-view,
due to either their size or in the form of head-mounted devices. Currently, research proto-
types are ranging from stereo and multi-view systems, head-mounted devices with adaptable
lenses, up to retinal projection, and lightfield/holographic displays. Computer graphics has to
keep step with, as driving these devices presents us with immense challenges, most of which
are currently unsolved. Fortunately, the human visual system has certain limitations, which
means that providing the highest possible visual quality is not always necessary. Visual input
passes through the eye’s optics, is filtered, and is processed at higher level structures in the
brain. Knowledge of these processes helps to design novel rendering approaches that allow
the creation of images at a higher quality and within a reduced time-frame.

This thesis presents the state-of-the-art research and models that exploit the limitations
of perception in order to increase visual quality but also to reduce workload alike - a con-
cept we call perception-driven rendering. This research results in several practical rendering
approaches that allow some of the fundamental challenges of computer graphics to be tack-
led. By using different tracking hardware, display systems, and head-mounted devices, we
show the potential of each of the presented systems. The capturing of specific processes of
the human visual system can be improved by combining multiple measurements using ma-
chine learning techniques. Different sampling, filtering, and reconstruction techniques aid the
visual quality of the synthesized images. An in-depth evaluation of the presented systems
including benchmarks, comparative examination with image metrics as well as user studies
and experiments demonstrated that the methods introduced are visually superior or on the
same qualitative level as ground truth, whilst having a significantly reduced computational
complexity.
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KURZFASSUNG

Ein wesentliches Ziel der Computergrafik ist es Bilder zu synthetisieren, die sich nicht von
den realen visuellen Erfahrungen unterscheiden. Während moderne Ansätze der Bildsynthese
die Erstellung digitaler Bilder von erstaunlicher Komplexität und Realismus ermöglichen,
sind die Verarbeitungsressourcen ein limitierender Faktor. Dabei ist eine Effizienzsteigerung
die zentrale Herausforderung. Das Erzeugen qualitiativ hochwertiger Bilder bei gleichzeitiger
Interaktivität unterliegt fortwährender Komprommisse. Aus diesem Grund gibt es immer
noch einen grundlegenden Unterschied zwischen der Wahrnehmung der physischen Welt und
der von computergenerierten Bildern.

Gleichzeitig treiben die Fortschritte in den Display-Technologien die Entwicklung neuar-
tiger Anzeigegeräte voran. Der Dynamikumfang, die Pixeldichten und die Bildwiederholraten
nehmen ständig zu. Anzeigesysteme ermöglichen die Adressierung eines größeren Sichtfeldes,
entweder aufgrund ihrer Größe oder in Form von Head-mounted Displays. Derzeit beobachten
wir Forschungsprototypen von Stereo und Multiview-Systemen, Head-mounted Displays mit
adaptierbaren Linsen bis hin zur Netzhautprojektion und Lightfield-/Holografie-Displays.
Dabei stellt uns das Betreiben dieser Geräte von der Seite der Computergrafik vor große,
bislang ungelöste Herausforderungen. Glücklicherweise hat das menschliche Sehsystem bes-
timmte Limitationen, so dass eine höchstmögliche visuelle Qualität nicht immer erforderlich
ist. Visuelle Reize werden durch die Optik gefiltert, durch die Netzhaut erfasst und auf
höheren Strukturen im Gehirn verarbeitet. Die Kenntnis dieser Prozesse hilft bei der Ent-
wicklung neuartiger Rendering-Ansätze, die es ermöglichen, Bilder in höherer Qualität und
in kürzerer Zeit zu synthetisieren.

Diese Arbeit diskutiert den neuesten Stand der Forschung und präsentiert die Modelle,
die die Grenzen der Wahrnehmung ausnutzen, um eine verbesserte visuelle Qualität und
eine ressourcenoptimiertere Synthese von Bildern zu ermöglichen – ein Bereich bekannt als
Perception-driven Rendering. Aus dieser Forschung resultieren mehrere praktische Rendering-
Ansätze, die es ermöglichen, sich einigen der grundlegenden Herausforderungen der Compu-
tergrafik zu stellen. Durch den Einsatz unterschiedlicher Tracking-Hardware, Anzeigesysteme
und Head-Mounted Devices wird das Potenzial der vorgestellten Systeme aufgezeigt. Die
Erfassung spezifischer Prozesse des menschlichen visuellen Systems kann durch die Kombi-
nation mehrerer Messungen mit maschinellen Lerntechniken verbessert werden. Verschiedene
Abtast-, Filter- und Rekonstruktionsverfahren unterstützen die visuelle Qualität der syn-
thetisierten Bilder. Eine eingehende Bewertung der vorgestellten Systeme einschließlich Bench-
marks, vergleichender Untersuchungen mit Bildmetriken sowie Anwenderstudien und Expe-
rimenten zeigt, dass die vorgestellten Methoden bei deutlich reduziertem Rechenaufwand
oftmals visuell überlegen oder auf Augenhöhe im Vergleich zur Referenz sind.
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Part I

F IRST THINGS F IRST

Und jedem Anfang wohnt ein

Zauber inne

In the core of every beginning

there is some magic

Stufen

Hermann Hesse (b1877 - d1962)





1INTRODUCTION

The rise of modern computing systems in the second half of the twentieth century and the
ability to transform electrical signals into images was the beginning of computer graphics.
From its early approaches using line drawings of 3D objects on random scan displays up to
present day graphics on raster screens with ever-increasing resolutions, gamut and refresh
rates, computer graphics has certainly come a long way. Nowadays, rendering methodologies
allow images to be synthesized with astonishing visual realism and beauty. Still, achieving
the goal of presenting a computer-generated scene in a convincing and compelling way that
cannot be distinguished from the real world and potentially in real-time remains one of the
most central challenges for computer graphics. While processing power is steadily increasing,
researchers continue to push the boundaries by developing methods that can account for
more and more phenomena of the real world. Examples include real-time global illumination,
accurate depth-of-field, motion blur, or spectral effects. Likewise, as technology progresses,
high-fidelity graphics demands for scenes with increasing complexity, and images need to
be generated at higher refresh rates, lower latencies, and increasing resolutions. Researchers
frequently discuss the efficiency of methods, either if they result in a higher number of Frames-
per-Second (FPS) or if the visual quality is increased in comparison to the state-of-the-art
in a shorter time frame. Increasing rendering efficiency is, therefore, an essential research
goal. There still is a fundamental difference between the perception of the physical world and
computer-generated imagery.

At the core of most graphics rendering systems lies the question of how to turn a description
of an n-dimensional model into a representation that can be presented to an observer. Herbey,
the target is the most essential perceptual channel, the human’s sight. However, the visual
system has some limitations and the highest possible visual quality is not always necessary.
The knowledge of those limitations can be used to develop better and more efficient render-
ing systems, a field known as perception-driven rendering. Note that central to the field of
perception-driven rendering is not the question of whether a method is targeting perception:
Rendering systems commonly target one perceptual channel or the other, when for example
rendering in color. Rather more, the central question is how to exploit the limitations or use

the potentials of perception to enhance the quality of a method whilst maintaining its perfor-

mance and vice versa. Perception-driven rendering is based on a close understanding of the
Human Visual System (HVS) in order to improve the quality, the speed of generation, and
comprehensibility of images.

In the last two decades, with the rise of flat-screen technology, display sizes and resolutions
have continuously increased. Nowadays, 4k displays with up to 80 inches are able to increase
the observer’s Field of View (FoV) at typical viewing distances whilst still maintaining a high
pixel density. Wall-size displays with 8k resolution and more are entering the markets. Large,
high-resolution, projection-based displays and high-resolution tiled display walls have become
well-established installations. At the same time, higher pixel densities are available on devices

3
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with smaller form-factors, e.g. on tablets and smartphones. In the last few years, another
resurgent trend, driven by the advances in displays is Virtual Reality (VR) and Augmented
Reality (AR) technology. With the introduction of mass production, a range of high-quality
Head-Mounted Displays (HMDs) with a wide FoV have become available on a commodity
level. Novel technologies such as displays with a growing number of displayed views per pixel
(ranging from stereo, multi-view, to holographic or lightfield displays) are advancing beyond
the prototype stage. Multi-layered displays and adaptable lenses are integrated into HMDs
to provide a better VR experience. AR headsets allow covering a wider part of the FoV.
Prototypes for retinal displays and bionic contact lenses have begun to emerge. Additionally,
the display’s dynamic range and refresh rates are ever increasing and display latencies are
continually reduced. All these advances in display technologies will increase the requirements
on image synthesis techniques. Today, displaying seemingly photorealistic graphics at high
refresh rates already is computationally demanding, especially for high pixel densities, a wide
FoV, and when rendering in stereo. The achieved realism is greatly limited by hardware ca-
pabilities and many desirable but costly aspects of reality cannot be taken into consideration.
The demand for high-fidelity graphics targeting ever-increasing display systems will cause
significant issues, especially due to limited compute power and constrained bandwidth.

Although the HVS seems to allow high-quality images to be perceived which are not bound
to a fixed frame rate, it does have several limitations. Visual input passes through optics, is
filtered and (down-)sampled on the retina before it is transmitted over the optical nerves
to enable high-level processing in the visual cortex. Here, processing can also rely on other
perceptual channels and the brain’s ability to access memory. Computer graphics greatly
benefits from of a close understanding of the potentials and limitations of how images are
processed and perceived in order to thereupon optimize rendering techniques.

Currently, several strong trends in the graphics community can be observed. Hardware
supported ray tracing is becoming available. Yet resources must be spent wisely, this allows
for more efficient and flexible sampling processes [Sti18; Bar19]. Besides this, techniques from
the field of machine learning are entering the rendering pipelines and already allow for guid-
ing computational resources and sampling processes more efficiently [Bem+19]. Convolutional
neural networks make it possible to simulate the entire visual pipeline, e.g. to blindly estimate
image quality without considering reference images [RW17] as well as to model attentional
processes [Wol+19]. At the same time eye-tracking hardware to perform active measurement
of the gaze is becoming available at a consumer level [Tra17; Cor19]. Important in this con-
text are gaze-contingent methods that adapt their behavior, based on measurements of where
a person is looking. Also, head-mounted devices and displays help to target the perceptual
channels more directly. Knowledge about perceptual processes is gaining increasing impor-
tance.

The goal of the work presented in this thesis is to develop methods that exploit the limita-
tions of the HVS to visualize complex models either in a time-constraint setting or potentially
improving the quality of the rendering while still maintaining performance. These models are
otherwise challenging due to either their geometric complexity or a high visual fidelity needs
to be achieved - especially if low-latency real-time rendering is required. To this end, the
central parts of the HVS that are involved when an image is turned into a percept are dis-
cussed. This understanding allows the limitations of the HVS to be defined and introduce
the models used to describe them. A framework is developed from these theoretical consid-
erations, showing various state-of-the-art techniques that can be used to increase rendering
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efficiency. Often these approaches try to adapt the 3D scene (i.e., the sampled function) or
the sampling process itself in order to provide more “visually-pleasing” results in a shorter
timeframe. In addition, a great number of methods is dedicated to developing systems that
attempt to reuse information across time and space, either by reusing samples temporally,
or by means of post-processing techniques that filter otherwise disturbing visual artifacts.
As the sampling of a higher dimensional signal with a limited sampling frequency is likely
to cause spatial and temporal artifacts, a closer look is taken on the question why certain
artifacts (such as noise or temporal instabilities) are perceptually distracting. This knowledge
enables different sampling and rendering techniques to be discussed that are an integral part
of modern computer graphic pipelines. Finally, this thesis showcases how these theoretical
insights can be applied to real-world use cases. An evaluation of these methods is carried out
either by performing and evaluating user studies or by using perception-driven image metrics
demonstrating the validity of the method.

1.1 summary of contributions

This thesis builds on the research carried out in a number of prior works. The major contri-
butions and results are listed below:

• An overview of the building blocks, potentials, and limitations of the HVS (Chapter 2)
with a discussion on their implications for image synthesis approaches (Chapter 3).

• An in-depth discussion of the state-of-the-art in perception-driven rendering covering
gaze- and non-gaze-contingent methods to increase rendering efficiency (Chapter 4).

• A hybrid acceleration structure using voxel and polygonal information along with a
perception-driven Level-of-Detail (LoD) selection scheme for view-directed rendering
(Chapter 5).

• A gaze-contingent rendering framework exploiting the limitations of the retinal acuity
of the HVS (Chapter 6).

• A machine learning approach to support gaze-depths measurements in HMDs using
off-the-shelf eye tracking hardware (Chapter 7).

• A gaze-contingent rendering framework exploiting the limitations of the optical system
using Depth-of-Field (DoF) to filter rendering artifacts (Chapter 7).

• User studies and experiments evaluating the quality of the approaches presented (Sec-
tion 5.5, Section 6.3, Section 7.3, and Section 7.4).

1.2 outline of the thesis

The thesis is organized into four parts and eight chapters. While the first part, including this
introductory chapter, provides a brief introduction to the field of efficient and perception-
driven rendering, the second part of the thesis describes the most relevant theoretical founda-
tions to this work. Initially, an overview of the HVS is provided in Chapter 2. This chapter
details the physiological parts that are involved in the vision process, giving the relevant per-
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ceptual foundation and showing limitations that can be exploited in the context of perception-
driven accelerated rendering methods. Chapter 3 introduces the (mathematical) models that
are used to describe these limitations. Most important here are the discussions of different
visual acuity and contrast sensitivity models as well as the presentation of eye models that
make it possible to describe the HVS as an optical system. Following the models of the
HVS, Chapter 4 looks at perception-driven rendering from a different perspective, consider-
ing sampling and image synthesis techniques. The chapter shows the fundamental problems
of rendering and the necessity for more efficient methodologies. Finally, a general model of effi-
cient rendering techniques is derived that allows efficient rendering methods to be structured.
This model determines the systematic literature review of the state-of-the-art for efficient and
perception-driven rendering in the corresponding sections.

The core contributions of this work are set out in part three. To begin with, Chapter 5
presents our LoD framework using hybrid polygonal and voxel data in a mixed scene repre-
sentation. A gaze-contingent selection scheme is employed to adapt the LoD to the viewer’s
gaze. This enables to adapt the rendering quality based on the FoV and acuity limits of
the HVS. Besides developing the rendering system, I performed benchmarks, a metric-driven
evaluation and a user study to provide insights into this system. Later, Chapter 6 discusses
our efforts to adapt the visual quality based on the retinal capabilities of the HVS using eye
tracking. Besides developing the rendering and reprojection pipeline as well as benchmarking
the system, I designed and executed the user study. Finally, our work presented in Chapter 7
exploits the optical limitations of the HVS by hiding artifacts using a DoF filter. Here, I
developed both, the rendering and DoF filtering framework as well as the machine learning
approach to derive more accurate gaze depths. I was also in charge for the execution, design,
and evaluation of the user study.

The final part of the thesis in Chapter 8 comprises a discussion of the main contributions
made by this research. Some interesting developments and trends, as well as possible avenues
for future developments are contemplated here.



Part II

THEORETICAL FOUNDATION

This part constitutes the theoretical foundations for this thesis. To this end, Chap-

ter 2 gives an overview of the physiological components of the human visual system.

This is used to approach the processes of vision from a perspective that allows for

focusing on the perceptual implications and findings. Continuing, Chapter 3 does

present the models for these processes that are commonly used in the graphics com-

munity to aid rendering systems. We divide these in low-level models that describe

individual properties and high-level models that try to derive representations of a

more complete visual processing. Finally, Chapter 4 discusses related work, i.e.,

methods that try to enable more efficient rendering systems, especially those that

explicitly exploit the limitations of vision and perception.





2THE HUMAN VISUAL SYSTEM

Limitations and Potentials

Wär nicht das Auge sonnenhaft,

die Sonne könnt es nie erblicken.

Läg nicht in uns des Gottes eigne Kraft,

wie könnt uns Göttliches entzücken?

Were not our eye the sun’s own kin

the sun behold our eye would never.

If not the Lord’s own power dwelled within

could things divine delight us ever.

Zahme Xenien III
Johann Wolfgang von Goethe (b1749 - d1832)

In this chapter, the main parts and mechanisms of the Human Visual System (HVS) are
described. First, the visual system is discussed from a physiological perspective. Here the
components are described that are responsible for turning light into a percept. Following
that, from the physiological view, a simplified model of the HVS is used to describe the
process of vision from a perceptual perspective. In line with the main goals of this thesis, the
limitations are highlighted that can be applied to optimize rendering techniques.

We argue that modulating . . . an object based on its perceptual content first re-

quires a principled perceptual model. The first step in developing such a model is

to understand the fundamentals of the human visual system, including how it is

designed and how it is believed to function.

David Luebke et al. [Lue+03, p. 239]

contributions by the author This chapter is based on our state-of-the-art report:

Martin Weier et al. “Perception-driven Accelerated Rendering.” In: Computer Graphics

Forum (Proceedings of Eurographics) 36.2 (Apr. 2017).

In contrast to the previously published report, I complemented this thesis with a description
of the physiological components and processes that constitute the HVS. This description is
provided in Section 2.1. The high-level model of the basic components responsible for human
perception, which is found in Section 2.2 (Figure 16), was developed by Michael Stengel,
Thorsten Roth, Steve Grogorick, and myself. This model was also used to provide a structure
for the state-of-the-art report. I made major contributions to all relevant sections following
this abstraction in the report and I substantially extended and revised these when writing
Section 2.2 for this thesis. In this context, I would particularly like to highlight my additional
explanations on visual acuity and hyperacuity phenomena as well as on ocular motility.

9



10 the human visual system

2.1 physiologic view

The HVS involves numerous physiological components which acquire, transmit, and process
visual information. For that reason, the structures, cells, and pathways of the visual system
are briefly described here. A more comprehensive overview of the HVS can be found in the
works by Adler et al. [Adl+11], Goldstein et al. [Gol01], and Snowden et al. [STT12], that
built the foundation for the following overview.

2.1.1 The Eye

The eye transforms incoming light into electric signals that are transmitted to a higher level
of neural processing. An overview of the eye from a physiological point-of-view is illustrated
in Figure 1.

(a) (b)

Figure 1: Schematics of the human eye. Illustrations after Goldstein [Gol01, p. 54]

The cornea and sclera constitute the outermost layers of the eye. Both tissues provide
the structural integrity and protect the eyeball from physical injury. First, light entering
the eye passes the transparent cornea. It covers 1/6th of the total surface’s front of the
globe. The whiter opaque sclera covers the remaining 5/6th. [Adl+11, p. 71] Interestingly,
the cornea is the main lens of the eye. Three-quarters of the eye’s focusing power come
from the cornea (approx. 43 diopters), and only a quarter from the lens itself [STT12, p.
21]. The total optical power of the human eye is about 60 diopters [Gol01, p. 58]. Besides
the refractive power, the transparency is a critical optical property of these structures. The
cornea is the only transparent tissue in the human body. As such, corneal transparency has
occupied scientists for over half a century. Nowadays, this feature is widely attributed to both
the general transparency of the cornea’s cells as well as the special lattice-like arrangement
of collagen fibrils that support its structure [Adl+11, p. 79].

The spaces between the cornea, the iris, and the lens, namely the anterior (front) and
posterior (rear) chambers are filled with an aqueous humor. This humor maintains the in-
traocular pressure, inflates the globe of the eye and supplies nutrients (and oxygen) to the
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tissues that lack a direct blood supply [Sci10, pp. 39-40]. Moreover, its refractive power is
another factor that contributes to the eye’s focusing abilities.

In order to control the amount of light that can enter, the eye is equipped with an adaptable
shutter, the iris. It consists of three main layers [Sci10, pp. 52-53]. The anterior layer of
endothelium maintains a hydrated state of the tissues through the aqueous humor. The two

stroma layers contain the blood vessels and sphincter and dilator muscles, that control the
contraction and expansion of the iris. While the anterior stroma layer additionally contains the
pigment cells that determine the color of the eye, the posterior layer is also heavily pigmented.
Here, this pigmentation (by the pigment melanin) serves to prevent light from passing through
the iris tissue in order to reduce the amount of light scattering in the eye [Sci10, p. 53].

Iris
Pupil

Sphincter Muscle
Dilator Muscle

Figure 2: The iris and its muscular structures. The
sphincter and dilator muscles control the
amount of light that can fall into the eye.

The iris is controlled by a dilator mus-
cle that is located circumferentially, in the
mid-periphery of the iris and by a sphinc-
ter muscle around the opening of the pupil-
lary border. The dilator is attached to the
pupillary border (Figure 2) and made up
of approximately 20 motor segments, con-
nected together but innervated individually
by branches of the ciliary nerve. Nonetheless,
in a normal iris, these segments receive nerve
excitation in a roughly simultaneous fashion
to open and close the iris. [Adl+11, pp. 509-
510] Besides, the different components of the
posterior and anterior iris undergo structural
alterations in order to accommodate changes in pupil diameter during contraction and dila-
tion [Adl+11, p. 510]. The mechanical non-linearities are important because they impose
limitations [Loe99]. The average pupil can be adjusted from a minimum diameter of 2mm
up to its maximum at 8mm [Gol10].

The lens itself is a transparent body that is made out of fibrous cells, the lens fibers, that
are enclosed in an elastic collagenous capsule. The lens’s anterior surfaces is generally more
flat than its posterior surface. It is held in place by a suspensory ligament; a series of fibers
that connect the lens to the ciliary body of the eye also referred to as zonules. The ciliary

body contains the ciliary muscles to control the shape of the lens. Besides the ciliary body

produces the aqueous and vitreous humor.

This flexible suspension of the lens with the zonules and the ciliary muscles plays an
important role when adapting the focus by changing the shape of the lens. This mechanical
ability to compress and relax the lens is called accommodation [How12]. The accommodation
may be as great as 12–16 diopters in a person under 20 but decreases with age. A person over
the age of 55 is restricted to a range of less than one diopter, mainly due to a reduction in the
elasticity of the lens and the capsule that holds the lens [Gol01, p. 59]. Although more recent
investigations contributed to the understanding of the process of accommodation, its basics
are still congruous with the original description by Helmholtz [Hel67][Adl+11, ch. 3]. This
process is illustrated in Figure 3. When the eye is unaccommodated and focused for distance,
the ciliary muscle is relaxed. Here, the zonular ligament fibers apply an outward-directed
tension around the lens equator to hold the lens in a relatively flattened state.
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Figure 3: The process of accommodation. When the eye
is focused at a distance, the zonular ligament
applies a tension and flattens the lens. When
the eye is accommodating, the forward force of
the ciliary muscles relax the zonular ligament
and the lens capsule becomes more round. Fig-
ure adapted from Adler et al. [Adl+11, p. 49]

If the eye needs to focus on near ob-
jects, the ciliary muscle contracts and
the inner apex of the ciliary body moves
forward. This movement of the apex
stretches the posterior attachment of
the ciliary muscles but releases the ten-
sion on the zonular fibers. This allows
the lens to become more round through
the force exerted by the lens capsule
[Adl+11, p. 49]. This process shapes the
lens anterior and posterior surface cur-
vatures. This increases the lens’s axial
thickness and decreases the lens’s equa-
torial diameter. Likewise, the anterior
chamber depth and vitreous body depth
decrease with accommodation. As a re-
sult of this process, the lens increases
its optical power, thus refracting the in-
coming light rays stronger.

Behind the lens, the eye is filled with the vitreous humor and a semisolid structure forming
the vitreous body. The solid structure is a collagen fiber scaffold. Embedded in the structure
is the vitreous humor, a clear gel that provides nutrients to the structure and the retina. The
vitreous body provides further structural support and serves to keep the underlying retina
pressed against the choroid. The retina is the photosensitive nervous tissue that transmits
the incoming light into chemical energy. The choroid is a vascular layer that supplies the
retina with nutrients and oxygen. Essentially, the choroid is a layer of blood vessels and
connective tissue sandwiched between the sclera and the retina. A dark layer of pigmented
epithelium on the choroid helps to limit intraocular reflections that would otherwise disturb
the perception [Sci10, p. 56].

Light rays eventually reach the retina. Here light passes through the different transparent
layers to reach the light-sensitive outer segments of the photoreceptors. There are two types
of photoreceptors, 6 ·106 cones and approximately 20 times as many rods [Gol13, p. 28]. Rods
and cones contain large proteins called opsin and Vitamin A derivatives called retinal. These

Figure 4: Scotopic, mesopic and photopic ranges for the macaque retina. Illustration from Goldstein

[Gol01, p. 64]
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Figure 5: Retinal photoreceptor distribution. Illustration adapted from Goldstein [Gol13, p. 51] The
fovea (a) contains only cones where the visual peripheral (b) contains rods and cones. These
cell types are laid out in a Poisson-disc fashion. Retinal microscopic recordings (a) and (b)

from Curcio et al. [Cur+90]

proteins form larger molecules, the photopigments. When light strikes such a photopigment,
it initiates a reaction (<1ms). This reaction results in the molecule splitting and subsequently
generating an electric current.

Rods consist of only one type of photopigment, rhodopsin, and are responsible for the
brightness sensation in lower-light conditions (scotopic vision) by providing monochromatic
feedback. Cones are divided into three types for different wavelengths, namely L-cones (long
wavelengths), M-cones (medium wavelengths) and S-cones (short wavelengths). Their respon-
siveness to different wavelengths is based on another form of light-sensitive pigments, pho-
topsins, that differ in a few amino acids, depending on the sensitivity to the respective
wavelengths [Gol01, p. 93ff]. As such, the cones are responsible for detailed color sensation
(photopic vision). “This duplex arrangement enables humans to see in a wide range of lighting

conditions.” [Lue+03, p. 242] At scotopic levels, absolute sensitivity is high but since rods
provide achromatic signals only, colors cannot be perceived [Fer+96]. In contrast, at photopic
levels, sensitivity is dramatically lower but colors can be perceived due to the trichromatic
nature of the cone cells. The region where both receptor types play a role is denoted as
mesopic vision. The different levels and photopic ranges are illustrated in Figure 4.

The photoreceptors of different types follow the distribution pattern shown in Figure 5.
The highest density of rods and cones is found in the macula. The central area of the macula
is the fovea (approx. 5.2◦ around the central optical axis). It consists entirely of cones. The
center of the fovea, the foveola, is the relative origin of our vision. It only consists of M and
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Figure 6: The regions of the macula around the
foveola.

L cones and represents the central 1◦20′ of
our visual field [Hen05]. Starting the fovea,
the cone density drops significantly with in-
creasing eccentricities (the angular distance
to the optical axis) past the parafovea (ap-
prox. 5.2◦ to 9◦) and perifovea (approx. 9◦
to 17◦) [Cur+90]. A schematic overview is
illustrated in Figure 6. These inner parts of
the macula constitute central vision, while
areas further away are referred to as periph-
eral vision.

Also, the density of the L-, M- and S-cone types differ. There are less S-cones than M
and L cones. S-cones represent only about 7% of the cone population [Gol13, p. 69]. Thus,
humans are much less sensitive to short ’blueish’ wavelengths than to the ’reddish’ and
’greenish’: the medium and long wavelength of the spectrum. However, the S-cones are more
spread out outside of the fovea and the ratio between the cone types varies greatly among
different subjects [RW99]. The highest density of rods is approximately 15− 20◦ around the
fovea, this then decreases almost linearly. Just as the rods and cones have different densities
across the retina, they have different spatial sampling distributions and follow a Poisson-Disc
Distribution pattern [Wan95, ch. 3][Yel83].

Besides the rods and cones, the retina is a layered tissue composed of other cell types. A
cross-section of the nervous structure of the retina is illustrated in Figure 7. Although there are
very few dedicated pathways from the fovea for signals from individual foveal photoreceptors
to the higher level neural structures, it is far more frequently the case that there are no
true one-to-one connections for retinal photoreceptors. The rods and cones are connected
to bipolar cells and horizontal cells. The bipolar cells are crucial retinal interneurons that
transmit signals from the outer retina to the amacrine and ganglion cells (and less common
interplexiform cells) [Gol01, p. 61]. There are various types of bipolar cells with distinctly
different functions, they can for example:

• provide input to the high-resolution parvocellular stream that preserves specific infor-
mation such as the type of photoreceptor input

• pool photoreceptor inputs for the lower-resolution, higher-gain magnocellular stream

• distinguish whether the light has increased or decreased [Gol01, p. 61]

The horizontal and amacrine cells participate in lateral interactions. They integrate potentials
over (large) areas and provide feedback to the photoreceptors, adjusting the gain of the
retinal circuits. Ganglion and amacrine cells form the ganglion cell layer. These cells further
aggregate the output of the various classes of bipolar cells. Ultimately, they transmit parallel
streams and amplify the local potentials from the bipolar cells to action potentials that can
travel a longer distance through the visual pathways. [Gol01, p. 61]

There are also different types of ganglion cells [Gol01, p. 76]. The parasol cells (M ganglion
cells) are mostly connected to rods and thus have little to no color information [HT00].
However, they have a fast response/refresh time. This way they contribute to the perception
of movements, depth of objects, and small differences in brightness and contrasts.
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Figure 7: Cross section of the retina. Light passes
through different layers of interconnect-
ing neurons before it reaches the pho-
tosensitive rods and cones. Illustration

adapted from Adler et al. [Adl+11, p. 49]

The midget cells (P ganglion cells) are gen-
erally connected to the L- and M-cones and
the bistratified cell (K ganglion cell) are con-
nected mostly to the S-Cones. The P and
K ganglion cells are much slower than the
M ganglion cells. However, both are vital
for the sensation of colors and structures.
As presented in the next chapter the out-
put of those ganglion cells directly map to
higher level structures. In addition, there are
less common ganglion types, for example to
drive reflex-like movements of the eye (Sec-
tion 2.1.2).

Another less frequent cell type is the
intrinsically photosensitive retinal ganglion

cell. As the name suggests, these cells are
also responsive to photonic input. Thus they
form a less-known third type of photore-
ceptor. However, their response to lighting
changes is magnitudes slower compared to
the other cell types. They adapt to the am-
bient lighting. Research has discovered that these cells have a vital role in controlling the
circadian rhythm. Moreover, they take part in slow behavioral responses, also contributing
to the regulation of the pupil size [WDB05; Eck+10]. Rods and cones are connected laterally
by horizontal and amacrine cells and aggregated by ganglion cells. It is most unlikely that a
given optic nerve fiber carries messages from only a single photoreceptor [Sci10, p. 92]. Hence,
both visual acuity and contrast sensitivity cannot be described by the cone spacing alone but
rather the density of the neural cells (Section 2.2.2). However, the ratio of ganglion cells to
photoreceptors is highest in the fovea and decreases in a similar fashion to the decreasing
density of rods and cones (Figure 8).

Ganglion cells have very distinct functions. This is one reason why their density, spacing,
and overlap does not fully explain the visual acuity over the entire visual field [WR80]. One

Figure 8: The retinal cell density of rods, cones and ganglion cells. Nasal, Temp., Sup. and Inf. indicate
the directions moving away from the fovea. Plotted data from Curcio et al. [Cur+90]
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Figure 9: Receptive fields of ganglion cells and
their inhibitory and excitatory behav-
ior. Illustration adapted from Snowden

et al. [STT12, p. 50]
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Figure 10: A series of ganglion cells and their
inhibitory and excitatory behavior
when sensing a brightness discontinu-
ity. Illustration from Snowden et al.

[STT12, p. 54]

of these functions of the ganglion cells becomes apparent when looking at the receptive fields.
“The receptive field of a [photosensitive] cell is the area on the retina over which the behavior of

that cell can be directly influenced.” [STT12, p. 49] The receptive field of each neuron is roughly
circular, with a small central and a larger surround region. There are two types of receptive
fields that can be measured at ganglion-cell level: ’ON-center’ and ’OFF-center’ neurons. ’ON-
center’ neurons increase the firing rate when the light hits their center, and decrease when
the light hits the surround. ’OFF-center’ cells function in the opposite way. This is illustrated
in Figure 9. Ganglion cells continually emit a background current. Consider now that both
the excitatory and inhibitory part are equally stimulated: both stimuli would cancel each
other out. Hence, even though the total intensity of light may greatly vary, these receptive
fields only respond to relative ratios of intensity [STT12, p. 54]. “So, the crucial message is

that ganglion cells only signal the ‘edges’ or ‘changes’ in the pattern.” [STT12, p. 55] At the
cellular level, this process generally happens in the horizontal cells that disable the spreading
of potentials from excited neurons to neighboring neurons. This property is responsible for
lateral inhibition. A series of receptive fields produces a high neural output for the edge as
an excited neuron reduces the activity of its neighbors, as illustrated in Figure 10. In the
last decade, researchers also discovered an additional active feedback mechanism between
the horizontal cells and the cones that enable the HVS to actively boost contrasts along
brightness discontinuities [Jac+11]. These mechanisms and lateral inhibition are one first
form of processing in order to provide the sensation of a sharper image. In addition, these
mechanisms are not only highly important for pattern recognition but also lead to our high
responsiveness to image noise and jagged edges (Chapter 4).

Another factor that influences image quality on the retina is the Stiles-Crawford effect. As
cones are less responsive to photons that touch them at an angle, light that is entering at the
pupil’s margin is perceived half as bright as the light entering the center of the pupil. As a
result, light that passes through the edge of the pupil contributes less to image quality than
light entering through the center [Adl+11, pp. 30-31].

The HVS can operate over an enormously wide range of intensities, from around 10−4 cdm−2

under starlight conditions to around 105 cdm−2 under intense sunlight [Adl+11, ch. 20]. The
adaptation to differences in brightness sensation mostly takes place on the retina. Only a very
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minor part of about 1 log unit of this 9 log unit range is controlled by adapting the pupil’s di-
ameter [Adl+11, ch. 20]. The rest is achieved by adapting and switching between the rod-based
and the cone-based pathways. This switching and the adaptation of the biochemical processes
enable our photoreceptor systems to operate over a range of 5 log units (100,000-fold) or more.
One aspect here is that photosensitive pigments need some time to recover and to adapt to
different levels of illumination [Ade82; Bak49]. Likewise important in this process is that the
electrical potentials generated by the photoreceptors can also be controlled by adapting the
influx of calcium into the neural apparatus constituting the retina [NY88][Adl+11, p. 436ff].
This controls the action potentials of the neurons. Adaptation influences both visual acuity
and color vision. A more in-depth discussion of the perceptual implications of adaptation
take place in Section 2.2.2.

Finally, the already pre-processed electric signals are transmitted over the optical nerve to
higher-level visual pathways. It carries the impulses from the ganglion cells of the retina to
the visual centers in the brain. The nerve begins at the optic disc of the eye. As there are no
photoreceptors in the optic disc, this region, which is approximately 1.5mm across, is blind
[Gol01, p. 55]. From here the optical nerve convergences the ganglion cells and then passes
the signals out of the eye [Sci10, p. 71].

2.1.2 The Visual Pathways and the Ocular Motility

As the signal leaves the eye, the optic nerve enters the cranium, i.e. the skull. An overview
of the visual pathways is presented in Figure 11. The neural fibers from the nasal of one
eye and the temporal portion of the other eye, cross to the opposite side of the brain in
the optic chiasm. However, the neural fibers from the other temporal or nasal portion of the
optical fibers remain in the same hemisphere. The fibers forming the optic tracts now carry
information, past the optical chiasm, into each brain hemisphere about the opposite hemifield
of vision. When studying Figure 11, note, that a few fibers of the optical nerve project directly
to the suprachiasmatic nucleus, which is located in the hypothalamus. The suprachiasmatic
nucleus mainly acts as a master clock as it is highly involved in the circadian rhythm [Gol01,
p. 56].

Around 10% of the optical fibers carry information to the prectectum, superior colliculus,
and to the pregeniculate that are both closely located to the Lateral Geniculate Nucleus

(LGN). The remaining 90% of the axons in the optical tracts terminate in the LGN [Gol01, p.
56]. These are the critical ones for visual perception. However, before describing the details of
the LGN, it is worthwhile looking at the other structures. The prectum is the structure that
is responsible for the reflex-like controls of the lens and the pupil. The superior colliculus

is responsible for the orienting movements of the head and the eye towards the Object of
Interest (OoI). Signals from the superior colliculus also pass onwards to a structure called
pulvinar towards the posterior parietal cortex. This structure is known to play a vital part
in planned movements, spatial reasoning, and attention processes [STT12, p. 337-338]. The
function of the pregeniculate that is directly located at the LGN remained unknown for a
long time [Gol01, p. 56]. More recent research suggests that this structure plays a vital part
in saccadic eye movements – a quick movement of the eye brought about by a brief but
powerful activation of the eye muscles. The eye is subjected to a new orientation according to
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the magnitude of this brief activation. Current research also suggests that the pregeniculate
plays a role in the visual-ocular motor integration of the perceived scene [LF03].

The LGN receives the majority of the visual input. It is arranged in multiple layers that are
segregated according to the origin of the retinal signal emerging from the retinal ganglion cells.
These umbrella-like layers are illustrated in the inset in Figure 11. The magnocellular cells

(M) located in the first and second layer are connected to the M ganglion cells, aggregating
rods. Likewise, the parvocellular cells (P) are connected to the P ganglion cells, in turn,
aggregating L- and M-cones, and the koniocellular cell (K) to K ganglion cells, aggregating
S-cones (Section 2.1.1). Moreover, the different layers have different responsibilities based on
the visual field and the eye from which the input emerges. “Inputs from the nasal retina of

the contralateral eye, which had crossed in the (optic) chiasm, synapse with cells in layers 1,

4, and 6, while inputs from the temporal retina of the ipsilateral eye contact cells in layers 2,

3, and 5. Each LGN layer contains an orderly, retinotopic map of the contralateral hemifield

of vision, and the maps in the six layers are aligned.” [Gol01, p. 56] As such, the LGN mainly
acts as a relay center that structures and distributes the visual inputs to a higher level of
processing. From here, the split signals are distributed to the optic radiations and onward to
the primary visual cortex. Before detailing the function and structure of the visual cortex in
the next chapter, it is interesting to look at the ocular motility, i.e., the muscles and neural
pathways which accommodate, adapt, and direct our vision.
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Figure 11: The visual pathways to the visual cortex. Signals travel through the optic nerve to the lateral
geniculate nucleus (LGN) and from there to the optic radiations and on to the primary visual
cortex. Illustration adapted and extended from Goldstein [Gol01, p. 55]. Illustration of the

LGN is adapted from Hendry and Calkins [HC98].



2.1 physiologic view 19

(a) side (b) top

Figure 12: Schematics of the ocular muscles. Illustrations after Rodieck [Rod98, p. 299]

The accommodation is driven by the accommodation reflex to adapt the focus from a near
object to a distant object and vice versa. While one of the main goals of accommodation is to
focus the incoming light rays in order to maximize the retinal image contrast, current research
suggests that focus changes also occur without such a monocular cue [Mar+17]. Influences of
the optical vergence and measures based on the Stiles-Crawford effect may be other processes
that help to sense the defocus. However, focus cues are generally interpreted behind the LGN
in the visual cortex as only here the percept is interpreted as an image. While the signals that
control the orientation of the eyeball also emerge from the hypothalamus (superior colliculus,
prectum), the new accommodative state is generally driven by those higher level structures.
Only reflex-like responses are triggered by the prectum.

The pupillary light reflex adjusts the pupil. This reflex is controlled by the retinal illumi-
nation that is signaled by the ganglion cells [Gol01, p. 59]. The prectum in the midbrain
processes this information and sends signals to the ciliary nerve in order to contract or relax
the iris’ sphincter and dilator muscles. As the pupil size also affects image quality, the accom-
modation and pupillary light reflex are tightly entangled. An example is a small pupil which
improves the image’s focus on the retina when the retinal illumination is sufficiently high.

The eyeball itself is rotated by six external muscles (extraocular muscles). Each muscle is
attached to the eyeball and the skull structure forming the eye’s orbit. The anatomical struc-
ture of the muscular system is illustrated in Figure 12. The lateral muscles connect straight
to the eye, while the oblique muscles are looped around and run obliquely [Rod98, p. 299].
The medial and lateral as well as the superior and inferior muscles are complementary pairs
of flexors and extensor muscles. The lateral and medial rectus rotate the eyeball horizontally,
while superior and inferior rectus rotate the eyeball vertically. The superior oblique and in-

ferior oblique form a third complementary pair of muscles, the purpose of which is to rotate
the eye around its direction of gaze. However, these torsional movements are very limited.
Their main purpose is to maintain the visual horizon on the retinas based on the orientation
of the head and the direction of gaze – an important process to locate objects in space and
stabilize the eye movements [Rod98, p. 302]. Besides the state of the muscles of the eye,
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image stabilization and locating objects also requires knowledge about the head rotation and
the vestibular apparatus. An introduction to these processes and movements can be found in
Rodieck’s work [Rod98, p. 303pp]. However, in order to direct the gaze towards an OoI, at
least the eyeball must be moved. If the eye is resting in a relaxed state, the complementary
muscles are equally activated at a constant rest level. In case of neural activation of a comple-
mentary pair of muscles, it is always reciprocal. When the eyeball is moved, the reciprocity
increases the rated of activation in one muscle, whilst decreasing the rate of activation of
the complementary one. Besides voluntary movements, the eye also performs somewhat in-
voluntary movements, such as saccades. A more detailed introduction to such movements is
given in Section 2.2.3. Having directed the gaze to the OoI and the action potentials from
the retina have passed the LGN via the optic radiations, the information can be interpreted
using higher-level processing in the visual cortex.

2.1.3 The Visual Cortex

Finally, a visual signal passes from the optic radiations onward to the primary visual cortex,
an area in the brain often referred to as V1 or striate cortex due to its stripy look. As
illustrated in Figure 13 this area is directly located in the occipital lobe on the back of
the head. Similar to the LGN the V1 area contains a retina-optic map of the contralateral
hemifield. This means that things close together on the retina will trigger neighboring bits of
the visual cortex. Moreover, the left V1 maps the right visual field and the right V1 maps the

Figure 13: Approximate positions of different areas of the brain that are responsible for vision. Sig-
nals from the LGN reach V1 (striate cortex) and are in turn processed by the remaining
extrastriate visual areas in the human brain. Image redrawn from Snowden et al. [STT12,

p. 89]
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left visual field with minimal overlap. However, within the map, the central area of the visual
field is represented by a greater amount of neural cells so that it receives a disproportionately
large representation [Gol01, p. 56]. This property is often modeled as magnification factor
(Section 3.1.2) and directly relates to the higher density of ganglion axons on the retina.
Unlike the retinal cells and the cells in the LGN, the neurons in visual cortex are selective
on the orientation and the direction of a moving stimulus [BC69]. Hubel and Wiesel [Hub88]
significantly improved our understanding of these cells and their functions. They distinct
three basic types:

1. Simple Cells are tuned to inputs from different orientations. According to Hubel and
Wiesel these cells can be thought of as bar or edge detectors. They aggregate the center-
surround cells from the LGN to be responsive to a pattern in a distinct direction. These
aggregates then have discrete ON and OFF regions.

2. Complex Cells, such as simple cells, are also most responsive to bars and edges.
Complex cells mostly are aggregates of simple cells. This way, the receptive fields of
a complex cell is larger and the cells do no longer have discrete ON and OFF regions.
This makes their receptive fields phase invariant, i.e. it gives more robust responses to
moving stimuli. Complex cells respond regardless of the exact location in the receptive
field. Also, several complex cells respond optimally only to movement in a certain
direction.

3. Hypercomplex Cells, or end-stop cells, in turn, aggregate complex cells. The hyper-
complex cells are also selective for the specific orientation, motion, and direction of
stimuli. However, they also decrease in firing strength when the length of a stimulus,
such as a colored bar or line, does change.

While simple and complex cells respond to patterns and structure in still and moving im-
ages, hypercomplex cells enable to better perceive corners and curves in the environment by
identifying the ends of a given stimulus [HW04]. All these responses to discontinuities in the
visual input already explain a great portion of the eyes’ responsiveness to (temporal) noise.
Thus, methods that reduce noise and jagged edges are highly important in computer graph-
ics (Chapter 4). The responses to different directions also build the basis for processes such
as the evaluation of the contrast sensitivity and the cortex transform used in image metrics
(Section 3.2.1). However, all this does likely not give the complete picture of the processes in
V1 and this area is only the first of more than 30 cortical areas in the brain that process vi-
sual information [Gol01, p. 56][CHF92]. Moreover, the percept is influenced by other sensory
channels such as sound, taste, and smell. Not least, memory plays a critical role in pattern
and object recognition. Every area that is directly involved in vision following V1, is part of
the extrastriate cortex.

An overview of some components of the process of vision is illustrated in Figure 14. This
structure has tempted researchers into the seductive notion that each area is specialized for
a particular aspect of vision. Commonly, models assume that V1 and V2 might be involved
in processing basic visual features, V3 and MT/V5 are involved in motion detection, spatial
localization, and hand and eye movements, V3/VP is involved in shape perception, V4 is re-
sponsible for color vision and V9 for eye movements etc. [STT12, pp. 90-91, p. 86]. Although
there might be some truth to these ideas, generally, vision processes are more involved and in-
clude the interplay between various areas in the brain. A precise description of their structure
and responsibilities is not only beyond the scope of this thesis but generally highly complex
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Figure 14: A map of the visual areas in the primate brain. The brain has been flattened so that both
the areas on the surface of the brain (sulci) and those hidden in the folds (fissures) are
visible. Illustration based on Van Essen [CHF92] redrawn from Snowden et al. [STT12, p.

90]
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from a physiological view and to a great extent not understood in all its details. A commonly
used generalization on how streams of visual input are processed has been introduced by
Van Essen et al. [CHF92], Merigan and Maunsell [MM93], and Mishkin et al. [MUM83]. A
version of this model is illustrated in Figure 15. Here, visual information is processed in two
streams: a dorsal and a ventral stream [Gol01, pp. 60ff]. The dorsal streams get the input
mainly from the magnocellular layer of the LGN, and projects from V1 to V2 over to V3 and
onward to MT and MST, as well as directly from V1 to MT. The ventral stream, receiving
inputs mainly from the parvocellular but also magnocellular layers of the LGN, projects from
V1 to V2, onward to V3, and V4 to reach IT as well as TEO [Gol01, p. 58]. Investigations and
lesions of macaque brains led to the assumptions that the dorsal stream is concerned with
the location in space and motion. Therefore, it has been described as the “where” stream. In
contrast, the ventral stream was found to be concerned with object identification, form, and
color, and has been called the “what” stream. [Gol01, p. 58] However, at this point the image
information is a percept that is reconsidered from a perceptual view in the next section.
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2.2 perceptual view

Based on the physiological structure of the HVS a simplified model of its basic functions is
illustrated in Figure 16. The model was developed in the previously published state-of-the-
art report [Wei+17] in order to provide an overview of the visual perception system. The
model conglomerates different physiological components of the HVS and is used to highlight
the stages a visual stimulus passes through before it is turned into a percept. Following the
model, this chapter discusses the findings related to the perceptual implications of the HVS.
As humans are equipped with two eyes, light constitutes two data streams that enable stereo
vision. The optical system projects the stimuli onto the retina (the “sensor”). Human ocular
motility allows our focus of attention to be on an OoI. The sensor turns light into electric
potentials that are transmitted along the visual pathways from the eye to the LGN and the
visual cortex. Here, different parts of the brain are involved in processing and interpreting
the signals until a final mental representation, the percept of the environment is produced.
These processes have access to our memory. Likewise, attentional mechanisms may (re-)direct
our movement or impair our visual sense. In the following, the components of Figure 16 are
discussed in greater detail.

2.2.1 Optics

The HVS is characterized by several unique optical qualities that are a result of both the
position and shape of the eyes. With binocular vision and both eyes looking straight ahead,
humans have a horizontal Field of View (FoV) of almost 190◦. The FoV of a single human eye
is approximately 95◦ away from the nose and 60◦ towards the nose horizontally. Vertically it
is about 60◦ upward and 75◦ downward. If eyeball rotation is included, the horizontal FoV
extends to 290◦ [HR95, p. 32]. While the human eye will receive visual stimuli over the
full extent of the FoV, the way stimuli are processed in different parts of the visual field is
highly affected by the spatially varying properties of the retina. However, a first influence
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Memory & Attention

Processor

Motor

Figure 16: A high-level model of the basic components responsible for human perception. Adapted
from Weier et al. [Wei+17]
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that is affecting the spatial acuity of the HVS are the eye’s optics. As discussed in Chapter 4
aliasing occurs if a signal contains frequencies higher than the observer’s Nyquist rate [Sha49].
In human vision, undersampling effects occurs for spatial frequencies higher than approx.
60Cycle per Degree (cpd) [Wan95, p. 24]. A cpd is a unit to describe spatial frequency. It is
defined as one period in the alternating pattern of black and white spaces (sinusoidal grating
pattern) at the projected size of 1◦. However, the eye’s optics in the cornea and lens act as a
low pass filter with a cutoff frequency between 60 cpd and 80 cpd. At this spatial frequency
the optics do not transmit the sinusoidal variations in the luminance of the object [Adl+11, p.
632]. This way, the signal that cannot be properly sampled and reconstructed is effectively
removed through optical prefiltering, which is one efficient way to combat aliasing. The pupil
is an additional important factor and serves as an aperture. This adjustment mostly affects the
sharpness of the image, as the pupil can control only about one magnitudes of light intensity
difference. This adjustment is largely triggered by a pupillary light reflex [Adl+11, ch. 25].
However, as discussed in Section 2.1.1, eye’s adaptation to differences in brightness sensation
(dark and light adaptation) mostly takes place on the retina. In addition, the size of the pupil
does affect image quality. As all optical systems, the image quality is limited by the Rayleigh
criterion [Adl+11, pp. 630-632]. When all factors of the optical and retinal capabilities are
considered, a pupil with a diameter of 2–3mm provides the best image quality [Gol01, p.
59]. However, in order to increase the amount of incoming light, the pupil can be as large as
8mm, leading to a reduced focal range and non-optimal optical distortion.

Moreover, a healthy human being has two eyes. The distance between the eyes, the Interoc-
ular Distance (IOD), results in two streams of visual stimuli from slightly different viewpoints,
which are combined in the brain by a process called stereopsis and enable perception of depth
also referred to as stereo vision [Pal99, Chapter 5.3]. Usually, a gender-dependent mean IOD
ranges between 62mm to 65mm [Dod04]. Depth perception is additionally enabled by visual
cues such as parallax, occlusion, color saturation, and object size [CV95; Hel+10].

2.2.2 Sensor

The light is projected onto the retina, the photosensitive layer of the eye. As presented in
the previous Section 2.1.1, the photosensitive and interconnection cells on the retina are not
evenly distributed. Their density decreases at increasing eccentricities and is directly related
to visual acuity, the “keenness of sight”. As the density of the photoreceptors, visual acuity
of the eye decreases significantly outside the small foveal region, where humans are able to
generate a sharp image (acuity is already reduced by 75% at an eccentricity of 6◦).

Visual acuity can be expressed as Minimum Angle of Resolution (MAR). Normal vision
corresponds to 1MAR, i.e. the eye is considered to have a minimum angular resolution of
1 minute of arc (≈ 0.017◦). This minimal feature size relates to a spatial frequency of a
sinusoidal grating pattern of alternating black and white spaces at 60 cpd, roughly the same as
the eye’s optical cut-off frequency (Section 2.2.1). Also, these upper limits of visual acuity can
be calculated from the foveal cone spacing [Gol01, p. 69]. The entire relationship is illustrated
in Figure 17. Under ideal conditions with a sharp bright white line in front of a uniform dark
background, a feature can be detected with a limit of about 0.5 arc minutes [Adl+11, p. 627].
However, there is more to visual acuity than the visibility of a feature. According to Adler et al.
[Adl+11, ch. 33] it can be distilled down to four widely accepted criteria, presented in Table 1.
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Figure 17: Spatial sampling of the cones with a frequency lower 60 cpd (left) at the Nyquist limit of
60 cpd and exceeding 60 cpd (right). For the latter case, the sampling is limited by the
cone spacing for the grating patterns as the input signal cannot be reconstructed properly.
Image adapted from Adler et al. [Adl+11, p. 628]

The acuity limits are usually measured using high contrast grating patterns, images, or letters
under photopic luminance conditions, which corresponds to typical daylight or display use
cases. Models to describe the spatial acuity of the eye can be found in Section 3.1.2.

Type of

acuity Measured Acuity (deg.)

Minimum

visible

Detection of a

feature
0.00014◦

Minimum

resolvable

Resolution of two

features
0.017◦

Minimum

recognizable

Identification of a

feature
0.017◦

Minimum

discriminable

Discrimination of a

change in a feature
0.00024◦

Table 1: Different types of visual acuity and their limits. Table
after Adler et al. [Adl+11, p. 628]

Interestingly, besides the mea-
sured and modeled spatial acu-
ity, phenomena such as hyperacu-

ity transcend the intuitively given
limits of the visual acuity. Judging
relative positions of objects can be
performed with a precision that is
finer than what can be explained
by the size and spacing of the cones
alone. This becomes apparent when
looking at the minimum discrim-

inable acuity in Table 1. The mis-
alignment of two lines can be de-
tected with remarkably high precision (Vernier acuity), magnitudes higher than what can be
explained by visual acuity. First experiments using two lines in order to improve the precision
of scales date back to Pierre Vernier (b1580 - d1637), whose scale was used to aid ship’s nav-
igators in determining lengths and angles [Adl+11, p. 629]. The Vernier acuity plays a major
role in the visibility of aliasing artifacts in digital images [Lue+03, p. 258]. Nowadays, pixel
densities are available on smartphones that can easily exceed the visual acuity of the eye in
their everyday use. However, humans usually prefer displays with a high number of pixels-per-
inch (PPI). Images appear “crisper” and the text readability is increased. The reason for this
is the eye’s performance with hyperacuity. Although a model developed by Geisler [Gei84]
showed that such and even higher acuities are theoretically possible by considering photon
effects and the cone spacing alone, in general hyperacuity is only explainable when the pat-
tern of the photoreceptors, and as a result, a pattern of the absorbed photons, is known
to the HVS. Hence, the hyperacuity phenomena are most probably only happening due to
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Figure 18: Adaptation-dependent acuity. Spatial
acuity increases non-linearly from
scotopic to photopic vision. Image

adapted from Ferwerda et al. [Fer+96]

Figure 19: Dark adaptation curve. Cones recover
rapidly if they are bleached, gaining
their maximum sensitivity after about
10 min. in the dark. Rods recover at
a much slower rate, only gaining full
sensitivity after 30–40 min. Plot from
Snowden et al. [STT12, p. 33]

sophisticated information processing in the visual cortex and possible because the cortex has
an idea of the positional information of the photoreceptors [Adl+11, p. 630]. Note, that as
the visual acuity, the hyperacuity performance degrades rapidly with eccentricity [LKA85;
SB85]. Also, there is a fundamental difference between resolution and localization. The hy-
peracuity localization of individual peaks of intensities or sharp borders is accomplished with
a “sub-pixel precision” by an operation utilizing output differences – not between individual
contiguous photoreceptor elements within the distribution of cells activated by a single target
feature, but from parameters derived from all the photosensitive elements of the activated
distribution [Wes12]. When a feature is spread across several photosensitive cells, each with a
gradient in the response but outputting only a single spatial value, the position of the image
center can be located more exactly than what is given by the spacing of the photoreceptors
alone. Likewise, a temporal change in intensities does further support localization.

Visual acuity is not only determined by the density of photoreceptors, but also by the
presence of bipolar and retinal ganglion cells in sufficient numbers. Hence, further factors
such as the overall lighting and contrast of the stimuli are greatly influencing acuity [BSA91].
The reduction of perceivable spatial detail under various lighting conditions is visualized in
Figure 18. The highest perceivable spatial frequency of a sinusoidal grating pattern reduces
from approx. 60 cpd at photopic levels down to 2 cpd for scotopic vision, illustrated in Fig-
ure 18. The eye’s sensitivity to contrast can be described by a Contrast Sensitivity Function
(CSF) for the spatial and temporal domain [Wan95, p. 33]. One common variant to measure
perceivable contrast are sine wave patterns of changing black and white stripes whereby spa-
tial frequency increases from left to right and contrast increases from top to bottom. The
CSF is defined as the reciprocal of the smallest visible contrast expressed as a function of
temporal and spatial frequencies (Figure 20). The region under the curve is commonly called
the window of visibility [Adl+11, pp. 613–621]. The resolvable acuity limit of 60 cpd corre-
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Figure 20: Spatial contrast sensitivity function (CSF). The CSF denotes the threshold contrast re-
quired for a given spatial frequency of sinusoidal pattern to be perceivable (visually de-
tectable). All sinusoidal patterns with a contrast higher than the threshold are placed in
the window of visibility under the CSF curve. Image adapted from Snowden et al. [STT12,

p. 115]

sponds to the lowest contrast sensitivity value. Very high (>60 cpd) and very low frequencies
(<0.1 cpd) cannot be perceived at all. As illustrated in Figure 17, cone spacing and optical
filtering can explain the upper limit. However, the lower limit cannot be directly derived
from the eye’s physiology [Adl+11, pp. 613–621]. Contrast sensitivity depends on the number
of neural cells responding to the respective grating pattern [RVN78]. From the fovea to the
periphery, sensitivity decreases significantly at all frequencies. The decrease is fastest for high
frequencies [RVN78]. Commonly used models for the CSF are presented in Section 3.1.3.

A property commonly exploited in graphics to increase the perceived quality of images is
based on the spatial arrangement of the photosensitive cells and the resulting spectral prop-
erties. These properties suggest turning regular patterns into less perceivable high-frequency
noise [Yel83; PC85; WC83]. The varying distributions of rods and cones also affect the sen-

sitivity to colors in different parts of the visual field [Noo+83]. While the fovea is tuned to
chromatic red/green stimuli, those stimuli are significantly less salient in the periphery. Here,
the S-cones sensitive to ’blueish’ wavelength dominate (Section 2.1.1). Hence, contrast sensi-
tivity also depends on the chromaticity of the stimulus. Blue-yellow and achromatic stimuli
result in a less-pronounced decrease in terms of contrast threshold [Mul85]. The sensitivity to
red-green color variations decreases more steeply toward the periphery than the sensitivity to
luminance or blue-yellow colors. Besides the different densities of the cones, neural processes
are also of importance in this context [HPG09]. Information on perceptually-driven color
models is given in Section 3.1.4.

Retinal photoreceptors can adapt to stark changes in light intensity. It enables humans to
perceive visual information robustly over seven orders of magnitude of brightness intensities.
Dark adaptation describes the change of vision from brightness to darkness. Being exposed
to a very bright light, the eye can see gradually dimmer objects over time. This process
is illustrated in the dark adaptation curve plotted in Figure 19. The brightness required to
trigger a neural response falls for a few minutes but appears to stay constant, before it rapidly
falls more. Whiles cones can respond to lighting changes rather quickly, rods take a much
longer time to adapt. Highest responsiveness is reached after 30 minutes. After our eye has
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been exposed to very intense illumination, the visual threshold is greatly elevated and may
take tens of minutes to recover fully. Quite noticeable are afterimages that appear to be
”imprinted” on the retina fainting over time. Conversely to dark adaptation, light adaptation
describes the process of reducing the sensitivity of the HVS as light intensity increases. Light
adaptation occurs when moving from a dark into a bright environment. At first, bright light
dazzles us because the rods are set to be highly sensitive to dim lighting conditions. Now, as
the eyes are stimulated by intense lighting, the rods and cones are stimulated. The currently
prevailing high levels of the photopigment (rhodopsin and photopsin) are now broken down,
leading to a saturation of the neural signals. This results in the glare and dazzle. Adaptation
influences the performance of the HVS, such as color perception, spatio-temporal contrast
sensitivity and the amount of perceivable detail [LSC04].

As the sensitivity of the retina decreases, the retinal neurons undergo rapid adaptation,
inhibiting rod function in favor of the cone system. Within one minute the cones are suffi-
ciently excited by the bright light to take over fully. Both visual accuracy and color vision
continue to improve over a range of five to ten minutes. Adaptation comes at the expense
of a reduced acuity at lower light levels. During daytime, contrast sensitivity is lower but
visual acuity and color vision excels. However, besides counteracting the stimuli saturation,
light adaptation must also be considered as a way to provide the best possible performance
at a particular level of illumination [Adl+11, p. 429]. Commonly used models to describe
adaptation and Tone Mapping Operators (TMOs) that implement these for High Dynamic
Range (HDR) imaging, are presented in Section 3.1.5.

Similar to the drop in acuity with the eccentricity that can be observed in stereopsis, depth
perception is significantly reduced in the periphery [PR98]. Lastly, acuity is greatly influenced
by the motion of a stimulus. Objects appear to blur if they move quickly along the visual field.
While this loss in acuity can to some degree be attributed to precision issues caused by our
limited ocular motility precision [Mur78], studies by Tyler and Nakayama [Tyl85; K90] give
strong evidence that the photoreceptors themselves limit our sensitivity to temporal details.

2.2.3 Motor

In order to explore and scan the environment by shifting attention from one OoI to another,
our eyes are constantly moving. Likewise, accommodation does adapt the eye’s lens in order
to adjust and to set the OoI into focus. The primary goal of moving the eyes is to stabilize and
move the projection of the OoI onto the macula so that the focused object is perceived with
high detail. The most important types of motion are the vestibular-ocular reflex, saccades,
Smooth Pursuit Eye Motion (SPEM), and coupled vergence-accommodation motion. A survey
on the properties and implications of human eye motion is provided by Kowler [Kow11]. An
overview of the angular velocities and durations of the various types of movements is presented
in Table 2.

The vestibular-ocular reflex uses acceleration information from the vestibular system, the
orientation of the head and the retinal velocity (optic flow) in order to keep the orientation
of the eyes aligned with the OoI. This process is fairly robust even for fast head movements
and is quick with a latency of 7-15ms [Adl+11, p. 222]. Saccades denote the motion when
rapidly jumping from one OoI to another. A saccade can reach peak angular velocities of
up to 900◦/s and can last for several milliseconds. However, even at lower angular velocities
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there is a dramatic decline in visual acuity during the movement. This is known as saccadic
suppression [Vol+78; WDW99; Ros+01]. Generally, increasing the retinal velocity does limit
the visual acuity (Section 3.1.2). When viewing a typical natural scene, the HVS triggers
around 2 to 3 saccades per second. The spacing between fixations is, on average, 7◦ viewing
angle. Fixating objects at larger eccentricities (> 30◦) is highly uncomfortable and humans
will likely start turning the head to doing so. While freely moving the head, saccades and
the vestibular-ocular reflex are reported to commonly result in motions less than 15◦ around
the normal line of sight [BAS75; Bar79]. Hence, a Comfortable Viewing Angle (CVA) is
considered to be identical (approx. 15◦) [Def99, p. 17].

Type
Duration

(ms)

Amplitude

(1◦ = 60′)
Velocity

Fixation 200-300 - -

Saccade 30-80 4− 20◦
30− 500◦/s

(Peak 900◦/s)

Smooth

Pursuit
variable variable

10− 30◦/s
(Peak 100◦/s)

Vergence 300-600 - -

Microsaccade 10-30 10− 40′ 15− 50◦/s

Tremor 10 < 1′ 20′/s

Drift 200-1000 10− 60′ 6− 25′/s

Table 2: Velocities and durations of typical eye motions.

In contrast to saccades, fixation de-
scribes the process in which visual in-
formation is perceived while our gaze
is mostly at rest, fixated, and focused
on an OoI. Fixation durations typically
vary between 100ms and 200ms (Ta-
ble 2) but are seldom reported to be as
long as 1.5 seconds [WDW99, p. 72].
The duration is assumed to correspond
directly to the complexity of the visual
input. Also, during fixations, the eyes
are not completely motionless. They
perform tiny but important movements
known as tremor motion. If tremor mo-
tion is inhibited, the perceived image fades away [Adl+11]. Hence, this unconscious motion
is highly important to refresh the retinal image.

SPEM is the unconsciously triggered tracking reflex when a moving object attracts our
attention. This motion enables humans to track slow-moving targets in order to fixate the
object onto the macula. Interestingly, small eye movements up to 2.5◦/s have hardly any
effect on visual acuity [Adl+11, p. 9]. Researchers have found that the peak velocity for
SPEM is 100◦/s [WDW99, p. 148]. However, the success rate depends on the speed of the
target and decreases significantly for angular velocities > 30◦/s. The increased visual acuity
when objects are moving does provide an explanation for the results of the user experiments
presented in Chapter 6.

Creating a clear and focused image on the retina is driven by two main processes: Firstly,
the vergence movement, which is the rotation of the eyeballs in opposite directions in order
to fuse a focused object into a single percept and secondly, the accommodation, adjusting
the power of the eye’s lens to create a sharp retinal image of the fixated object. This way,
accommodation describes the natural counterpart of adjusting a camera lens so that an
object in the scene is set into focus. Importantly this process happens unconsciously and
without any effort in less than a second at photopic illumination levels [Gol10, p. 289]. The
maximally allowed change a user can still keep focus on an object is reported to be approx.
0.7m/sec and the range of accommodation is considered to be approx. 0.2m - 6m for a
healthy adult [TM89]. However, the speed and range of accommodation are dependent on
a variety of influences including age, visual acuity, and a wide range of physiological factors
[TM89; GPB80; LS10]. Results and measurements widely vary. This constitutes a challenge
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that needs to be addressed when computing Depth-of-Field (DoF) in order to filter images
as presented in Chapter 7.

Vergence and accommodation are highly entangled in the process of stereopsis. Typically,
stereoscopic displays affect vergence by providing binocular disparity cues as a separate image
for each eye. As the images are shown on the screen, the eyes focus on the screen’s distance.
This results in a conflict, known as the vergence-accommodation conflict [Gol10, p. 1040].
Accommodation and vergence motions are coupled with the fixation process for binocular
vision so that both eyes’ gaze aims at the same point in the distance. However, due to their
IOD, both eyes perceive an OoI from slightly different viewpoints. The difference of the per-
eye gaze directions can be quite large when looking at an object close-by. Vergence moves the
point of intersection of both gaze lines to the point of focus and enables humans to optimize
the FoV overlap for a wide range of distances. As presented in Chapter 7, measuring vergence
movements can be used to compute gaze points in the 3D space.

2.2.4 Processor

Retinal stimuli processing is followed by neural information processing in the visual cortex of
the brain. Analogous to the decrease in the density of rods and cones, over 30% of the primary
visual cortex is responsible for the central 5◦ of the visual field, while the periphery is under-
represented [HH91]. Perception research has targeted cognitive processing of images and
perceptual differences between central and peripheral vision. A common approach to neural
processing that corresponds with the neural design of the visual cortex is the multi-channel
model. It was inspired by work from Entroth-Cugell as well as Campbell and Robson [ER66;
CR68]. When walking through a forest, for example, the silhouettes of the trees provide coarse
information. From here, we can focus on individual trees or single leaves. The multichannel
model suggests that the visual system extracts all of these different scales of information from
a scene simultaneously, but analyses each stream independently and in parallel. Later these
streams are combined using the higher vision processes in order to assemble the final percept
for the particular scene [Lue+03, p. 247-248]. However, experts disagree on the exact number
of channels, as can be seen in work by Caelli and Moraglia [CM85] and Heeley [Hee91], and
visual acuity is eccentricity-dependent. Hence, other authors have pointed out the importance
of features in the peripheral vision for perception and scene understanding.

Thorpe et al. [Tho+01] have shown that peripheral vision provides a rich source of infor-
mation, crucial to the perception and recognition of features, objects, and animals. Gilchrist
et al. [To+11] point out that the influence of color changes in the periphery is greater than
that of orientation changes. Furthermore, the HVS makes extensive use of contextual informa-
tion from peripheral vision, facilitating object search in natural scenes [Kis+14]. During this
process, preprocessing of visual stimuli probably occurs. There is evidence that basic visual
features, such as object size, color, and orientation, are pre-processed before actual attention
is placed on the object by moving it into central vision [WB97]. Hence, humans may be aware
of certain aspects of the scene content (shapeless bundles of basic features) in the periphery
but have to pay attention to the shape in order to recognize its form and all its features.

Besides the process of stereopsis, the ability to interpret depth cues in the visual input to
improve stereo vision and the sense of spatial localization is deeply rooted in the visual cortex.
Depth cues can be static (e.g., occlusion, perspective foreshortening, texture and shading
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gradients, shadows, and aerial perspective) or dynamic (e.g. motion parallax). Cues can also
be obtained from memory, such as for relative sizes of familiar objects [Gol13, ch. 10][Pal99,
ch. 5.5] (Section 2.2.5). Moreover, depth cues are dependent on the object’s distance to the
eye and dominant cues may prevail or compromise 3D scene interpretation [Did+11]. Some
considerations on the question of if DoF does influence depth perception is presented in
Chapter 7.

A phenomenon that can only be observed with peripheral vision is known as crowding.
Objects become more problematic to recognize (rather than to detect) when distracting
stimuli surround them. Crowding is studied by using well-defined stimuli such as letters or
sine wave patterns [Bou70; To+11]. The effect of crowding can also be observed for more
complex content such as faces [MMP05] and complex stimuli in natural images [RLN07;
PT08; BNR09].

Finally, vision is affected by cross-modal effects. In particular, Virtual Reality (VR) sys-
tems often provide non-visual cues such as audio, vibration, or even smell. These effects
have been studied in psychological experiments on various interplays between cues [SS01;
Pai05; SS03; WP04]. When sensory channels are substituted or combined, several implica-
tions occur: These channels are no longer seen as separate but may affect each other through
integration of sensory signals inside multimodal association areas in the brain [Sut02, p.
36–64][Pai05][LN07]. As yet, cross-modal effects are not fully understood. The research on
multisensory factors still needs to be continued in order to fully understand its importance,
but various cross-modal effects can already be identified. Vision plays an important role for
the bias of stimuli, since it predominantly alters other modalities [LTJ86; Nar+10]. Sound,
on the other hand, alters the temporal, but also other aspects of vision, like those that affect
disambiguation [SSL97]. Finally, tactility may alter vision, but may also be influenced itself
by audio [BSJ04; Bre+05]. Hence, theoretically, other modalities could be used to further
alter perception and as a consequence optimize visual representation. [Wei+17]

2.2.5 Memory and Attention

The processing of visual information is highly dependent on knowledge and patterns, stored
in the memory. How this knowledge is stored, is still being discussed. According to Smith
and Kosslyn [SK13b], a representation is a physical state that stands for an object, event or
concept, and must be constructed intentionally to carry information. Representations may
encode information in different forms, including those similar to images or feature records, but
also amodal symbols, and statistical patterns in neural networks. These representations are
connected: Different formats here work together to represent and simulate objects [SK13b].
Moreover, the brain preserves certain features of the retinal image over time, despite their
motion and potentially varying occlusions [Yan95; LE13]. As previously noted, there is also
evidence that basic visual features such as color, size, and orientation are parsed and pre-
processed before the central gaze is directed in that direction.

While attention is still not fully understood, research indicates that it has three components:
orienting to sensory events, detecting signals for focused processing as well as maintaining a
vigilant or alert state [PB71]. Attention is essential for processing visual stimuli and search
behavior [TG80]. It can occur in information-processing tasks in various ways [WC97]: se-
lective attention is the choice of which events or stimuli to process; focused attention is the
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effort to maintain processing of these elements whilst avoiding distraction from other events
or stimuli; divided attention is the ability to process more than one event or stimulus at a
given point in time.

The focus of attention also affects perception on a cognitive level. A critical perceptual effect
for certain tasks is the effect of cognitive tunneling (or visual tunneling) and inattentional

blindness [Miu86]. Observers tend to focus attention on information from specific areas or
objects. However, a strong cognitive focus on specific objects leads to an exclusion/loss of
information for areas in the periphery of highly-attended regions. Several studies conducted
by Thomas et al. [TW01] are concerned with the detection of perceptual differences and
show the effects of visual tunneling during terrain rendering. Further studies show the same
effects as a dramatic decrease in the size of the visual field and the loss of information in the
user’s peripheral vision [TW06; WA09; LMS10]. A user study for this thesis, presented in
Chapter 6, provides evidence of the presence of visual tunneling under certain experimental
conditions.
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A Review for Computer Graphics

. . . all models are approximations. Essentially, all models are wrong, but some are

useful. However, the approximate nature of the model must always be borne in

mind. . .

George E.P. Box and Norman R. Draper [BD07, p. 414]

Perceptual models are commonly used in computer graphics to approximate functions and
properties of the Human Visual System (HVS) using mathematical descriptions. These models
steer perceptual rendering algorithms and are able to judge the perceptual quality of images.
In this chapter, a selection of models for the HVS and perceptual processes are presented
that are relevant for computer-graphics applications. These models can be either low-level:
only describing certain aspects of the HVS including early processes, or high-level: describing
an entire system. For the latter, a focus is placed on perception-driven image metrics that
model the entire visual pipeline to judge image and video quality in order to detect visual
artifacts. Lastly, attentional processes have been modeled to explain which parts of the scene
trigger our attention and how this is carried out.

contributions by the author This chapter is a reproduction of our state-of-the-
art report

Martin Weier et al. “Perception-driven Accelerated Rendering.” In: Computer Graphics

Forum (Proceedings of Eurographics) 36.2 (Apr. 2017).

and follows this reports general structure. As in the state-of-the-art report, I made major
contributions in Section 3.1 and Section 3.2. However, especially the latter section was sig-
nificantly revised by various co-authors of the report. In this thesis, I updated Section 3.2
again in order to include the most relevant related work and broaden the basis of the dis-
cussion by providing more insights into the most important approaches. Section 3.1 has
been extensively updated. The subsection on “Optical Properties and Aperture” is new. The
subsections “Spatial Acuity” and “Brightness and Contrast Sensitivity” have been largely
extended and rewritten. The explanations in Section 3.3 must be acknowledged to Michael
Stengel, a co-author of the state-of-the-art report. Hence, only an abstract of the section
in the state-of-the-art report is found in this thesis. Also, I gave credit to Michael in this
abstract.
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3.1 low-level models

Low-level models target particular aspects of the HVS. The following sections present the
most commonly used low-level models to describe the optical apparatus, the spatial acuity and
temporal resolution along with models for brightness, contrast, color sensitivities, adaptation
as well as visual masking.

3.1.1 Optical Properties and Aperture

Various researchers have modeled the eye as an optical system. Although, concrete numbers
differ, it can be assumed that an average healthy young adult has a focal range from roughly
+56D to +70D with a near point of 0.2m [MC04] [LS10] [Ed17, ch. 16]. Usually the distance
from the lens to the retina is assumed to be between 170mm and 230mm. The first know
sources that discussed the optical properties of the eyes date back to the Greek physicist
Galen (b130 - d210 a.D.) [KK95]. Much later, Johannes Kepler (b1571 - d1630) was one of
the first to detail the role of the crystalline lens and cornea. Points in space were imaged
onto the retina to form an inverted version. Two centuries later Listing (b1808 - d1882)
developed a first schematic eye model. This model was later refined by Gullstrand (b1862 -
d1930) based on the known works on the eye and optical instruments by Helmholtz (b1821 -
d1894) [Hel24]. This model became known as Gullstrand’s schematic eye and is still widely
used for education and in academia. A description of this eye model and its parameters can
be found in the book by Katz and Kruger [KK95]. In the subsequent years, numerous more
modern versions have been developed in order to better account for various conditions such
as spectacle wear, contact lenses and refractive surgical procedures [LB97]. Unfortunately,
these eye models are rather complex. Gullstrand and the other modern schematic eye models
often contain six or more refracting surfaces. However, calculations can be greatly simplified
by treating the eye as a black box. Donders (b1818 - d1889) made an early attempt on such a
simple model [Khu08, p. 34]. His reduced eye model replaces the several refracting bodies of
the eye with an ideal single lens. However, Donders took great libertine in rounding numbers.
A bit more advanced version of his model for simple calculations, e.g. to determine the object-
image relationships, can be derived by adapting the cardinal points [KK95]. This reduced eye
has an optical power of 58.2D with a nodal point of 17.2mm (Figure 21). Using this model,
the retinal image size i can then be computed by i = 17.2mm ·φ, with φ being the height of
the object in radians of the visual angle.

Unfortunately, all, even the complex eye models, mostly fail to describe the processes
that are involved when accommodating the lens. Often, these models assume the eye to be
relaxed. A highly complex model that can be used to describe accommodation processes is
the Arizona eye model [Sch04]. Other popular modern models are the Navarro and the Liou-
Brennan model. A comparison of these can be found in the work by Zoulinakis et al. [Zou+17]
and the book by Artal [Ed17, ch. 16]. However, their amount of different surfaces, media with
different refracting indices and complex lens shapes are too computationally complex to be
evaluated inside performance critical graphics pipelines. They are still successfully used to
describe and develop optical systems using ray or wavefront-based optical evaluation. More
on schematic eye models can be found in the work by Katz and Kruger [KK95] and the book
by Artal [Ed17, ch. 16]
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Figure 22: Plot of Le Grand’s model
(Equation (1)) to estimate the
pupil size based on the inci-
dent luminance.

Another approach to model the optical properties of the eye is by determining an optical
Modulation Transfer Function (MTF). These functions are usually developed by using psy-
chophysical experiments. Here, linear systems theory provides analytical tools for assessing
transformations that systems make between inputs and outputs [Gol01, p. 59]. Often the
experiments make use of studies showing varying sinusoidal grating patterns to human sub-
jects. These patterns can be used as fundamental frequencies to derive higher level harmonics
by applying Fourier theory. “Thus, for lenses, the MTF can be determined by measuring the

transfer of contrast at each spatial frequency.” [Gol01, p. 59] While these models commonly
describe the entire HVS and not only the pre-retinal optics, they can be derived from here.
Early models of the pre-retinal optics were introduced by Campbell and Green [CG65]. They
measured the MTF of the entire HVS with gratings patterns on a CRT. A pre-retinal MTF
was then derived by comparing results with measurements when the optics were bypassed
by using interference fringes [Gol01, p. 60]. Other models, such as the one by Williams et
al. [Wil+94], implement various improvements and use two-pass measurements in order to re-
duce errors. Barten [Bar99, pp. 27-29] presents an MTF using a simple Gaussian description.
This model is used to represent the eye’s sensitivity to contrasts, introduced in Section 3.1.3.
Although denoted as optical MTF, Barten states, that it does not only include the optical
influences but also takes the effects of the stray light in the ocular media, the diffusion in
the retina, and the discrete structure of the photoreceptors on the retina into consideration.
More on MTF models can be found in the book by Artal [Ed17, pp. 182, 319].

Another part that can be modeled is the aperture, i.e. the pupil. A commonly used model
to determine the pupil size was introduced by Le Grand [Gra69, p. 99]. Given the average
luminance of the image in cd/m2, the pupil diameter d in mm can be estimated with

d = 5− 3 tanh(0.4 logL) (1)

A plot of this function is shown in Figure 22. However, if eye trackers are available, the pupil
size can often be measured directly.
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Figure 23: Cortical magnification. The cortical magnification maps the small area of the fovea to a
much larger area on the visual cortex. Image adapted from Goldstein [Gol10, p. 82]

3.1.2 Spatial Acuity

One important aspect of vision is the acuity of the eye. Acuity models are often used to
adapt image resolution, sampling patterns and rendering quality based on the user’s gaze.
Strasburger et al. [SRJ11] provide a historical summary and survey describing how the visual
acuity drops for peripheral vision. Green [Gre70] shows that acuity differs from what may
be expected from physical cone spacing at eccentricities > 2◦. Weymouth et al. [Wey58]
determine that visual acuity decreases roughly linearly with eccentricity for the first 20◦−30◦.
Visual performance decreases more rapidly for higher eccentricities [FWK63]. According to
Weymouth [Wey58] and Strasburger et al. [SRJ11, ch. 3], when measured in terms of a
Minimum Angle of Resolution (MAR) rather than acuity (its reciprocal), a linear model
matches both anatomical data (such as receptor density) and performance results on many
low-level vision tasks. Nonetheless, the slope of the MAR function is user-dependent and
cannot be precisely predicted [SRJ11, p. 19]. Acuity is also affected by eye adaptation in very
bright and dark areas, by eye motion as well as cognitive factors [Gol10, p. 60]. Thus, any
linear model remains an approximation.

The model by Guenter et al. [Gue+12] describes the MAR ω in degrees per cycle as

ω(e) = me+ ω0

The factor m is the slope of the MAR, e the eccentricity, and ω0 the smallest resolvable
angle in the fovea. Given 60Cycle per Degree (cpd) as the upper limit for resolvable details,
ω0 can be computed as ω0 = 1/60. Finally, the visual acuity in cpd can be expressed by
M(e) = ω(e)−1. A plot of the function is illustrated in Figure 24a. Generally, the foveal
visual acuity in healthy, non-elderly adults (with corrected-to-normal vision) substantially
exceeds 20/20 on a Snellen chart, which equals 30 cpd.

The Snellen chart, developed by Hermann Snellen (b1834 - d1908), is used to determine
the visual acuity using letters on a grid. Visual acuity was quantified by Snellen comparing
the vision of a patient with that of his assistant, who had good vision [Adl+11, p. 9]. Patients
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Figure 24: Different models of the retinal visual acuity. The model described by Guenter et al.
[Gue+12], (a) is a hyperbolic function of the visual acuity. When considering its recip-
rocal, the Minimum Angle of Resolution (MAR), it becomes a linear function. The model
by Rovamo and Virsu [RV79] (b) uses additional quadratic terms to express the MAR.
Hence, the hyperbolic visual acuity is a bit flatter/less bulbous. Reddy (c) discusses a
simplified model in the context of computer graphics. We often rely on an even simpler
but better parameterizable linear approximation (d). All of these plots assume a maximal
baseline acuity of 60 cpd.

.
must identify the differently scaled letters on the chart. This makes it possible to determine
the Snellen fraction S [Sch04, p. 19]:

S = Greatest distance subject can just read a given line on the chart
Greatest distance a "normal" observer can just read the same line

“. . . 20/200 (6/60) vision meant that the patient could see at 20 feet (6 m) what Snellen’s

assistant could see at 200 feet (60 m). . . . The essence of correct identification of the letters

on the Snellen chart is to see the clear spaces between the black elements of the letter. The

spacing between the bars of the letter “E” should be 1 minute for the 20/20 (6/6) letter.

[Adl+11, p. 9]” The other letters for the different Snellen fraction can be computed using
simple trigonometric functions. However, the size change of the letters between two rows
for different Snellen fractions might not be constant. Also, the original chart has a different
number of letters on each line for each Snellen score. In order to overcome these drawbacks,
more elaborate eye charts such as the Bailey-Lovie [BL13] and ETDRS chart [Kai09] are used
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in practice today. Both have a logarithmic reduction in letter size per row and a constant
number of letters on each line [Sch04, p. 19]. Still, all are used to determine a Snellen fraction.

Generally, acuity does not exceed a Snellen score of 20/10 [Gue+12; Col01]. Guenter et al.
assume an average acuity for ω0 in between the 20/20 and 20/10 foveal acuities. They found
48 cpd, i.e. a 20/12.5 on the Snellen chart, to be a good estimate of the foveal acuity for
adults below 50. Hence, for practical uses they assume ω0 = 1/48. According to Guenter et
al. [Gue+12] such a simple linear model works well for “central” vision (angular radius < 8◦).
For peripheral vision, the MAR rises more steeply. Hence, models with additional quadratic
terms have been used. Rovamo and Virsu [RV79] model the fall-off as

Nasal: MN (e) = (1 + 0.33e+ 0.00007e3)−1 (0 ≤ e ≤ 60◦)
Superior: MS(e) = (1 + 0.42e+ 0.00012e3)−1 (0 ≤ e ≤ 45◦)
Temporal: MT (e) = (1 + 0.29e+ 0.000012e3)−1 (0 ≤ e ≤ 80◦)
Inferior: MI(e) = (1 + 0.42e+ 0.000055e3)−1 (0 ≤ e ≤ 60◦)

This model is plotted in Figure 24b. For the plot these functions were scaled using a base
acuity of 60 cpd. The model has later been adapted by Reddy [Red01] to better suit rendering
needs.

M(e) =

1 e ≤ 5.79◦

7.49/(0.3e+ 1)2 e > 5.79◦

The model is illustrated in Figure 24c. It has likewise been scaled using 60 cpd as maximal
acuity. This model assumes a symmetrical radial fall-off, ignoring differences between principal
half meridians in the visual field (Nasal, Superior, Temporal, and Inferior). Moreover, it
explicitly creates a region where visual acuity is assumed to be maximal. Most recently, this
model has been transformed into a Probability Density Function (PDF) to guide sample
generation in stochastic rendering processes [Kos+17] (Section 4.2.3). However, all of the
aforementioned models do not consider higher-level influences to acuity such as the retinal
velocities. A simple method to incorporate velocities has been introduced by Reddy [Red97;
Red01]. The velocity-dependent maximum acuity is given by:

G(v) =


60.0 where v ≤ 0.825◦/s

57.69− 27.78 log10(v) where 118.3 ≥ v > 0.825◦/s

0.1 where v > 118.3◦/s

Finally, visual acuity at a velocity v and eccentricity e can be computed by H(v, e) =
G(v)M(e). A plot of Reddy’s model at various retinal velocities is presented in Figure 25.

In this thesis often an even more straightforward linear model is assumed for peripheral
vision, entirely without a hyperbolic fall-off, for two main reasons: First, reconstruction and
the reduction of temporal artifacts in the periphery is critical for perception. Improving
reconstruction and counteracting artifacts works better at slightly increased sampling rates.
Secondly, a linear model can be parameterized more efficiently, and sampling rates and quality
can be controlled more intuitively. Figure 24d shows an illustration of this model as it is used
for the systems presented in Chapter 6 and Chapter 7.
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Figure 25: Reddy’s acuity model extended with a model for retinal velocity.

A motivation for the often-used linear model has been provided through the concept of
cortical magnification by Whitteridge and Daniel [DW61], and Cowey and Rolls [CR74]. Ac-
cording to them, a magnification factor M can represent a mapping from the visual angle
to a cortical diameter in millimeters (Figure 23). The Cortical Magnification Factor (CMF)
M is largest for those areas corresponding to the fovea and decreases with eccentricity for
peripheral areas.

Resulting in the linear CMF, theM -scaling hypothesis claims that performance degradation
with eccentricity can be canceled out by applying spatial scaling to stimuli. For example, in
order to compensate for the loss in acuity when attempting to read letters in the periphery,
these letters have to be enlarged by scaling them with the linear CMF to be equally readable
again. This method has been successfully demonstrated by Cowey and Rolls [CR74] and
motivated researchers to unify fovea and periphery [SRJ11, ch. 3.1]. Moreover, prior studies
indicate a strong relationship between the CMF and the eye’s contrast sensitivity, as discussed
in the next section. Horton et al. [HH91] calculate the CMF factor for any given eccentricity:

M(e) = A

e+ e2
(2)

A is the cortical scaling factor, and e2 is the eccentricity at which a stimulus subtends half
the cortical distance that it subtends in the fovea [Swa+16]. Horton et al. [HH91] found
the values A = 17.3mm, e2 = 0.75◦ to be a good fit. Dougherty et al. [Dou+03] found
A = 29.2mm and e2 = 3.67◦. Such strong supporters of the M -scaling concept claim that
“...a picture can be made equally visible at any eccentricity by scaling its size by the magni-

fication factor.” [RVN78, p. 56] However, other researchers have pointed out difficulties of
the M -scaling concept [WM78; BKM05]. First, the linear CMF model only approximates
the complexity of the HVS, as peripheral vision is not a scaled-down version of foveal vi-
sion [BKM05]. Second, several studies exist in which the CMF concept is less convincing or
fails, such as stereo acuity, two-point separation in the far periphery or contrast sensitivity for
scotopic vision [SRJ11, ch. 3.4]. Besides, due to variations in the measurements for different
visual tasks and to inter-individual differences, it is still an open question whether M -scaling
is also applicable to near-foveal regions [SRJ11, p. 10].
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Figure 26: Simple CSF models by (a) Movshon and Kiorpes [MK88] (b) and Mannos and Sakrison
[MS74].

3.1.3 Brightness and Contrast Sensitivity

Visual acuity usually is assessed under optimal lighting conditions. It is a measure of size
and does not consider the contrast of a target. Sensitivity to the spatial contrast of the
HVS is expressed by a Contrast Sensitivity Function (CSF) [Sch56; AL73; AET96]. An early
approach to model the CSF was presented by Movshon and Kiorpes [MK88]. They design
an empirical function that can be fitted to different measured CSF models.

csfmovshon(f) = a · f b · e−c·f

Here f is the spatial frequency of the visual stimulus in cpd. A plot of this function employing
widely used empirically determined values for a = 75, b = 0.2, and c = 0.8 is presented
in Figure 26a. Mannos and Sakrison [MS74] propose a practical model that works well to
describe achromatic and chromatic contrast sensitivity.

csfmannos(f) = 2.6 · (0.0192 + 0.144f) e−(0.114f)1.1

Again f is the spatial frequency of the visual stimulus in cpd. A plot of the function is
presented in Figure 26b. Although the above approaches have been successfully used in
various fields, they often over-estimate the actual contrast sensitivity. A complete model of
the CSF also depends on influences such as eccentricity, temporal effects, and retinal velocity,
making it a function of a higher order.

Hence, various CSF models with various degrees of freedom exist in the literature. One
approach to develop a model is to fit functions to measurements. Gervais et al. [GHR84], for
example fit splines to psychophysical data. Daly et al. [Dal98] use precomputed CSF data
for a specific illumination level and support spatial frequency and retinal velocities. However,
closed form solutions such as mathematical models can be evaluated more efficiently and
require less data at runtime.

A renowned elaborate mathematical model was developed by Barten [Bar99]. This model
allows accounting for various influence such as eccentricity and retinal illumination. Therefore,



3.1 low-level models 41

Figure 27: A model of Barten’s CSF [Bar99] at
a luminance level of 150 cd/m2 at var-
ious eccentricities.
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Figure 28: A plot of the CSF introduced by Man-
tiuk et al.[Man+11] at a luminance
level of 150 cd/m2 at various eccentric-
ities.

it uses various other mathematical models, such as for the pupil’s diameter (Section 3.1.1), an
optical MTF (Section 3.1.1) and model for photon and neural noise as well as lateral inhibition.
Barten also extends the model to the temporal domain. Although a complete description of
the model is beyond the scope of this thesis, a plot of this CSF for different eccentricities is
shown in Figure 27.

Barten’s model has shown its potential to match the results of several measurements of
the CSF from literature. Unfortunately, the model does not appear to work well for graphics
applications – at least for inspecting static images [Man+11]. Mantiuk et al. [Man+11] tested
Daly’s [Dal98] and Barten’s [Bar99] model in their visual difference metric HDR-VDP2
(Section 3.2.1). Unfortunately, they could not fit these models against their experimental
data. Daly and Barten are not likely less accurate – both have shown their validity matching
many CSF measurements from experiments – but rather that their functions may capture
conditions that are different from visual inspection of static images [Man+11]. Similarly, an
attempt to fit Barten’s model to the model of Mantiuk was made in this thesis in order to get
an idea of how the CSF would behave when adapting to eccentricity. Initially, the idea was to
get a parameter set for Barten, based on the model by Mantiuk et al., that can than in turn
be used to vary the eccentricity parameter in Barten’s model. However, even with optimizing
parameters not respecting their physical and physiological constraints, the fit remains poor.
Mantiuk’s model is given as:

csfmantiuk(f) = p4Sa(l)
MTF(f)√

(1 + (p1f)p2) · (1− e−(f/7)2)p3

Here, MTF (f) is a fit to an experimentally determined MTF of the eye, Sa is the joint
luminance-sensitivity curve for cone and rod photo-receptors and p1 - p4 are experimentally
determined parameters. These parameters were fitted separately for each adaptation lumi-
nance L level. Values in between luminance levels are linearly interpolated. A plot of the
model by Mantiuk et al. at a luminance level of 150 cd/m2 is shown in Figure 28. Please note
the difference to Barten’s model as illustrated in Figure 27 at an approximately equal lumi-
nance level. It becomes apparent that more contrast for high spatial frequencies is detectable
according to the model by Mantiuk et al.
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Figure 29: A plot of the CSF introduced by Swafford et al. [Swa+16] at a luminance level of 150 cd/m2

with α = 0.5 at various eccentricities.

It can be argued, that an explanation for the behavior of the model by Mantiuk et al.
is deeply rooted in perception. Contrast sensitivity is commonly measured using sine-wave
patterns. While those contain several complete periodic cycles of contrast, computer graphics
is generating images with aperiodic regions of detail. However, the aperiodicity and the shown
number of cycles does substantially influence contrast sensitivity. For single cycle-patterns
and low spatial frequencies, this can yield a reduction of sensitivity by up to 60% [Lue+03,
p. 254].

Besides its original use in the image metric HDR-VDP2 (Section 3.2.1), Mantiuk’s model is
broadly used for other image quality assessment tasks [Val+14; ASG15] and Tone Mapping
Operators (TMOs) [Yan+12; Her+12; PM13; EMU15]. Unfortunately, Mantiuk’s model can-
not predict the CSF at different eccentricities. Therefore, a simple adaptation of the model
that can be parameterized with eccentricity was developed by Swafford et al. [Swa+16]. As
there is a strong relationship between the M -scaling concept and the degradation of contrast
sensitivity, the idea is to scale Mantiuk’s model by the CMF. The model can be described as
follows:

csfeswafford(f) = csfmantiuk(f)− csfmantiuk(f) ·
(

1− M(e)
M(0)

)1+α

The contrast at an eccentricity e is given by down-scaling the CSF by Mantiuk et al. This
is expressed using the CMF at the center M(0) and at the eccentricity in question M(e)
(Equation (2), previous section). The parameter α is a tunable parameter to attenuate the
influence of the eccentricity. Looking at the plot in Figure 29 makes apparent, that, though
contrast sensitivity is decreased overall, it probably does not capture the loss of high-level
contrasts at high eccentricities. While Swafford et al. report that this model is also adapted
to support HDR-VDP2 multi-scale decomposition, Swafford et al. did not perform a user
study, as such its validity is hardly determinable. Hence, it is probably worthwhile to develop
other models for image assessment tasks.

The eye’s sensitivity of contrast is tightly linked to visual acuity and both are impor-
tant for many graphical applications. The HVS is highly sensitive to regular structures and
patterns [Wan95, ch. 7], and contrast builds the basis for perceptual pattern recognition
tasks in images. A general discussion on the pattern sensitivity of the HVS can be found in
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works by Wandell [Wan95, ch. 7] and Shapley et al. [Sha+90]. However, evaluating elaborate
CSF-models in performance critical rendering pipelines is computationally demanding as this
requires orientation-tuned channels (cortex transform), Fourier or wavelet transforms of the
rendered images. Nonetheless, CSF models build the basis for numerous high-level vision
models in image and video metrics (Section 3.2). More details on CSFs are presented in the
work by Johnson and Fairchild [JF02] and by Lukac [Luk12, p. 17].

3.1.4 Color Sensitivity

The different sensitivities, distribution, and densities of cone types highly affect human color
perception – the sensation of visible light with wavelengths λ ranging from 390 to 750 nanome-
ters. A visible stimulus S depends on wavelength-dependent illumination I(λ) and object re-
flectance R(λ) [Luk12]. When a stimulus is observed, the cones respond by integrating energy
over all wavelengths:

(L,M,S) =
∫ 750

390
l(λ),m(λ), s(λ))I(λ)R(λ)dλ,

where l(λ),m(λ), and s(λ) describe the spectral sensitivities of the L-, M-, and S-cones.

The most commonly used color model in computer graphics is the RGB model. This model
additively combines the three primary colors red, green and blue (r,g,b). However, this model
is not considering perceptual implications. The color space depends on the underlying device
and the primaries for r, g, and b. A later standardization by the Commission Internationale
de l’Eclairage (CIE) has targeted this matter. CIE-RGB [Bod+07, p. 29-30] uses special
reference colors for r, g, and b. Assigning these references became possible by determining
CIE-XYZ [Bod+07, chp. 3], a device independent and non-negative color space [Win12, p.
24-26]. This was the first attempt to encompass the retinal response of the HVS with the goal
to cover all perceivable colors with positive coordinates. CIE-XYZ is often used in practice,
but the color space is perceptually irregular, as is RGB, HSV or many of the standard color
spaces, and does not consider the different sensitivities of the L, M and S cones. In these
spaces, e.g., the distance for perceptually equally-different green colors are smaller than for
red or blue. Perceptual color spaces, such as CIE-LAB [Bod+07, pp. 61ff], CIE-LUV [Bod+07,
pp. 64ff], CIEDE2000 [Bod+07, pp. 91ff], are almost linear and can be converted from CIE-
XYZ values [Win12, p. 28-29]. Within these color spaces, perceptual differences between any
two colors are directly related to the Euclidean distance. As the response of the cones cannot
be readily measured, the LMS color space [Bod+07, p. 233] was designed to relate to the
spectral responses of the LMS-cone types directly.

Several linear transformations from CIE-XYZ to LMS space have been proposed based on
empirical measurements. A transformation is performed by multiplying the XYZ values with
an empirically derived matrix to account for the different spectral responses of the cones.
Common models for the LMS space are the Hunt model [Hun91; Hun94], LLAB [LLK96],
CIECAM97 [Bod+07, pp. 269-270], and CIECAM02 [Bod+07, pp. 270-271]. A detailed
presentation of perceptual color models is given by Fairchild [Fai05], Gonzales et al. [GW07],
and Lukac et al. [Luk12]. Hering [Her20] developed the idea of color opponency in 1892. He
found that certain colors cannot be mixed, e.g., there is no reddish green. This was later
empirically validated [HJ57] and proved beneficial in several image processing tasks [BBS09].
Interestingly, both CIE-LAB and CIE-LUV provide color opponency in their color channels.
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Colors, in addition, highly affects the ability of the HVS to perceive contrast. An early
approach to account for the eye’s sensitivity to different contrasts per wavelength and color
used in computer graphics was introduced by Mitchell [Mit87]. Contrast is detected using
separate, perceptually inspired thresholds for the RGB colors. Other approaches in computer
graphics such as the one presented by Bolin et al. [BM95; BM98] use a conversion to transform
the CIE-XYZ color space to an LMS space. The LMS values are used to detect the regions
that have strong perceivable contrasts. More information on these approaches can be found
in Section 4.2.1.

3.1.5 Adaptation Models

Adaptation allows for perceiving the environment over a High Dynamic Range (HDR) ex-
ceeding 24 f-stops [MMS15], where the illuminance reaching the sensor (retina) is doubled
between two f-stops. This adaptation means that the HVS can perceive visual stimuli with
an illuminance of more than the 224-fold of the minimum perceivable illuminance. The actual
perceivable dynamic range depends, however, on the peak brightness of a scene, which is
very limited on common Low Dynamic Range (LDR) displays. A TMO provides models to
approximate the appearance of High Dynamic Range (HDR) images on low-dynamic-range
display devices or prints. Detailed information can be found in the survey papers by Reinhard
et al. [Rei+10], Eilertsen et al. [Eil+13], Fairchild [Fai15], and Mantiuk et al. [MMS15]. An
evaluation on TMOs from a perceptual perspective has been carried out by Michael Stengel
in our previously published state-of-the-art report [Wei+17].

In addition to those general considerations of adaptation, different areas on the retina need
varying times to adapt to new lighting situations due to previous visual stimuli (simultane-
ous and successive contrast) [ARH78]. When viewed simultaneously or in quick succession,
different objects having the same color appear to have different colors when viewed, for ex-
ample in front of a different colored background. Retinal photoreceptors need time to refresh,
which leads to bleaching processes [Gut+05]. Hence, the image stays locally “imprinted” in
the visual system for some time, resulting in perceivable afterimages. Ritschel and Eisemann
provide a model for this process for real-time applications [RE12]. It also has been refined
to model color transitions when the afterimage disappears [Mik+13]. After-image-like effects
can also be used to increase the perceived brightness of a light [ZC01]. Similarly, perceived
brightness, as well as perceived color can be altered by flickering; an effect called apparent

brightness. This has been used to improve perceived color saturation of images beyond the
display capabilities [MFN16].

3.1.6 Visual Masking

Another phenomenon affecting sensitivity is visual masking, which happens when the percep-
tion of one stimulus, the target, is affected by the presentation of another stimulus, called
a mask. A profound overview and survey on physiological findings for visual masking can
be found in the work by Legge and Foley [LF80], Breitmeyer and Ogmen [BO00] as well as
Enns and Lollo [ED00]. The effects of visual masking occur spatially and temporally (back-
ward masking). Several methods attempt to model visual masking. Spatial visual masking
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is typically considered by determining a background over which potential target patterns
are superimposed. A survey on image processing with information on visual masking can be
found in the work of Beghdadi et al. [Beg+13]. Often, a transducer function captures the
non-linearity of visual masking as a function of the contrast level. Effectively this function
models a hypothetical response of the HVS to the input contrast, which is scaled in percep-
tually uniform Just Noticeable Difference (JND) units. By computing a difference between
the original and distorted signals expressed by means of the transducer in the JND units, the
visibility of distortion (the difference over 1 JND) as well as its magnitude can immediately
be derived. A more straightforward approach is to directly scale the input contrast by the
corresponding threshold value that can be derived from the CSF that in turn is elevated
proportionally to the masking’s signal contrast.

Visual masking is widely used for image [Wat93; HK97; ZDL02] and video compres-
sion [AKF13]. In addition, visual masking is commonly modeled in image and video quality
metrics. For example, the Daly’s Visible Differences Predictor (VDP) [Dal93] employs the
simpler threshold elevation approach, while the Sarnoff Visual Discrimination Metric (VDM)
[Lub95] is based on a transducer. Both approaches are discussed in more detail in Section 3.2.1
and are used from methods in Section 4.1.2 and Section 4.2.2. Employing transducers is also
common in computer graphics applications in the image contrast [Fer+97] as well as stereo
disparity [Did+11] domains.

3.1.7 Temporal Resolution

In addition to spatial contrast sensitivity models, temporal changes may have a strong ef-
fect on the visibility of a pattern. “The critical flicker frequency (CFF, also flicker fusion
frequency) describes the fastest rate that a stimulus can flicker and just be perceived as a
flickering rather than stable” [Adl+11, p. 700]. Figure 30 shows the estimated adaptation-
dependent temporal sensitivity for different retinal illuminance values at photopic levels with
an achromatic flickering stimulus. The retinal adaptation levels are measured in Troland

T = L cd
m2 · pamm2, taking the size of the pupil area pa and the luminance L into account.

In Figure 30, temporal frequency along the x-axis is plotted against the modulation ratio
of the flickering stimulus. The modulation ratio represents the extent that the sinusoidally
modulated light deviates from its average direct current component [Adl+11, p. 705]. It can
be seen that at low frequencies the modulation sensitivity is approximately equal for all
adaptation levels. For higher flicker frequencies, modulation sensitivity strongly depends on
the retinal illuminance values. However, the temporal CSF plotted in Figure 30 does not
show the complete picture. Many other properties result in deviation from the presented CSF
behavior.

Kelly [Kel61] compared chromatic flickering with achromatic stimuli and explored spatial
contrast sensitivity in combination with temporal contrast sensitivity resulting in a spatio-
temporal CSF [Kel79]. The mathematical model can be used to describe how a feature moving
across the visual field also affects the perception of detail, which leads to motion blur. As
the visual acuity, the CSF is also a function of the retinal velocity. The surface produced by
evaluating the CSF over a range of velocities and cpds is called the spatiotemporal threshold

surface. Kelly’s [Kel79] measurements showed that the CSF remains essentially constant for
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Figure 30: Temporal contrast sensitivity function (CSF) for different retinal adaptation levels. Each
curve represents the threshold modulation ratio (percentage deviation of the average value)
of a just-detectable flicker stimulus for a given adaptation level (in Trolands) plotted against
flicker frequency (in cycles per second, cps). Low levels of retinal illuminance result in a
low-pass CSF, whereas higher levels reshape the CSF into a more band-pass curve. Image

adapted from Adler et al. [Adl+11, p. 705]

the first 0.1◦/s before it is the target to fall-off. These properties later led to the development
of the retinal-dependent visual acuity model by Reddy (Section 3.1.3).

If a light flickers faster than the speed the HVS can resolve, the flashing light is perceived
as stable rather than seeing a sequence of flashes. The CFF is dependent on different features.
For photopic lighting conditions, the CFF increases linearly with the logarithm of luminance
of the flickering light over a dark background. This is known as the Ferry-Porter law [Por02].
The Granit-Harper law states that the CFF increases linearly with the size of the stimulus
area [GA30]. Rovamo and Raninen [RR88] have shown that for constant stimulus size and
luminance, the CFF increases with eccentricities up to 55◦. Towards the far periphery, the
CFF decreases again. Hence, the mid-peripheral vision has better temporal resolution than
foveal vision and far-peripheral vision. If the CFF is plotted against the number of stimulated
retinal ganglion cells, the resulting function is linear across all eccentricities [RR88]. This
directly relates to the number of Frames-per-Second (FPS) needed to be rendered in order
to perceive an animation rather than a sequence of individual images. A high number of
frames combats the flickering and decreases the motion-induced blur. Therefore, temporal
upsampling is often used to increase the frame rate artificially [Did+10b] (Section 4.3).

One can ask if there is a dependency between the HVS’ ability to detect motion and cer-
tain eccentricities. McKee [MN84] conducted several experiments showing that the peripheral
visual field has no special ability to detect motion; the threshold to detect motion and accel-
erations are not better in the periphery than in the fovea. However, they are not worse either.
Interestingly the threshold to detect motion is much smaller than the MAR. This means the
peripheral visual field is as good as the fovea when it comes to motion detection. A fact
that must be regarded when designing gaze-contingent rendering systems, where temporal
artifacts must be avoided in the peripheral visual field.
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3.2 high-level models

High-level models integrate low-level components and methodologies to find a perceptual
measure for image and video quality and to detect perceptual differences. These perceptual
measures and models can be rather generic and have the potential to be directly embed-
ded into rendering software. Perceptual image metrics can be categorized into full-reference

metrics and No-reference quality metrics.

Full-reference metrics require ground truth, the reference. These metrics usually results
in a single value describing the overall perceptual difference of two images or frames. This
way, they are sufficient for comparing different rendering algorithms. Often these metrics
also enable to compute a map that provides localized information about the strength of
the perceptual differences. However, it is challenging to use such a map to guide rendering
algorithms, for example to put more rendering effort in certain image regions. The reason
for this is that no reference is available. One option here is to compare frames from the
subsequent rendering stages to gain insight and adapt rendering convergence. However, this
is a computationally demanding process.

No-reference quality metrics can directly judge the quality of single images or videos with-
out any reference. While usually less reliable, they are often better suited for rendering appli-
cations. Being able to ”blindly” estimate image quality allows for guiding image synthesize
approaches in a more flexible (progressive) manner.

In the following sections, representative full- and no-reference quality metrics are described
in greater detail.

3.2.1 Full-Reference Metrics

Image metrics generally attempt to derive an abstract measure for judging image quality.
Prominent examples include computing a Mean Squared Error (MSE) of pixel differences
and the associated Peak Signal-to-Noise Ratio (PSNR). Because MSE and PSNR do not take
the limitations of HVS into account [HG08], they perform poorly when estimating the image
quality as perceived by a human observer. Therefore, more elaborated versions have been
developed. For example, simple contrast sensitivity can be evaluated using single-channel

measures [Lue+03, p. 287-288]. To this end, an image is transformed by computing a local
contrast image that is followed by a transformation of this contrast image to the frequency
domain, and an application of the respective CSF model. However, multi-channel measures

are required if factors such as eccentricity, retinal velocity, or visual masking are to be in-
cluded. A multi-channel processing splits image input into numerous different (potentially
orientation-tuned) channels [Lue+03, p. 288-289]. While this increases computation and
storage requirements immensely, it is a common approach of elaborate perceptual metrics.
Also, based on these methodologies more sophisticated PSNR methods are in existence that
employ contrast sensitivity models, such as PSNR-HVS [Egi+06], and account for visual
masking, for example PSNR-HVS-M [Pon+11].

In contrast to the aforementioned approaches, the Structural Similarity (SSIM) index
[Wan+04] has become one of the most popular and influential quality metrics in recent
years. It emphasizes less on the precise perceptual scaling but is still sensitive to the differ-
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ences in the image brightness, contrast, and structure. In particular, the structure modeling
component plays an important role in achieving a high accuracy [Čad+12]. SSIM is based on
a top-down assumption that the HVS is highly adapted for extracting structural information
from the scene. Therefore, it can be expected that a measure of structural similarity is a good
approximation of perceived image quality [WSB03]. Approaches such as the Multi-Scale SSIM
(MSSSIM) [WSB03] compute these structural similarities of the image at various scales. This
multi-level processing mimics vision processing on the retina, the Lateral Geniculate Nucleus
(LGN) and the early stages in the visual cortex (Section 2.1). Other modern video quality
metrics, such as the Visual Information Fidelity (VIF) index [SB05], rely on natural-scene
statistics and employ an information-theoretic approach in order to measure the amount of
information that is shared between pairs of frames. A survey on video quality metrics can be
found in work by Wang [Wan06].

Currently, meta-models such as the Video Multi-Method Assessment Fusion (VMAF) by
Netflix [VMA17] are gaining increasing popularity. Here, some of the aforementioned metrics
are fused using machine learning in order to compute a single abstract value which is rep-
resenting the video quality with respect to ground truth. The model was trained to provide
quality scores for 1080p images at natural viewing conditions. VMAF also includes the com-
putation of a Mean Co-Located Pixel Difference (MCPD) that enables to capture motion
and image inconsistencies more accurately. However, all of the above metrics do not model
the entire visual pipeline but rather make assumptions about the most influential features, or
only use simple models of the HVS such as contrast sensitivity. They often fail in capturing
just visible (near-threshold) differences. Likewise measuring the magnitude of supra-threshold
differences as well as scaling them in more meaningful JND units is highly challenging.

A more complete model of the HVS is implemented in Daly’s Visible Differences Predictor
(VDP) [Dal93]. VDP allows to compare two input images and derive a difference map. To this
end, each input image undergoes identical processing. First, the retinal response and lumi-
nance adaptation are simulated. Then, the images are converted into the frequency domain,
where CSF (Section 3.1.6) filtering is performed. This step scales pixel values into perceptually
meaningful detection threshold units. Such perceptually-scaled input images are decomposed
into spatial and orientation channels (cortex transform) to account for per-channel visual
masking (Section 3.1.6). VDP is a prime example for a multi-channel measure. Its basic pro-
cessing steps mimic the processes in the LGN and in visual cortex region V1. As discussed in
Section 2.1.3 neighboring parts of the retina trigger neighboring parts in the LGN and in V1.
Here, the output of the photosensitive cells is aggregated. As the different cell types discussed
in Section 2.1.3 are tuned to subdivide the input in streams that are orientation sensitive to
input, the cortex transform used in VDP results in numerous different channels representing
different spatial frequencies and in channels that represent the input captured from different
orientations. Finally, per-channel differences of the two image in questions are transformed
into the probability of perceiving the differences by means of a psychometric function and
then accumulated in an aggregated difference map. VDP is particularly sensitive in detect-
ing image differences near the visibility thresholds (Section 4.2.2). Since rendering artifacts,
such as Monte-Carlo noise, typically cannot be tolerated, VDP is a useful tool for guiding
such artifact suppression below the visibility level. If the goal is to measure the magnitude
of clearly visible (supra-threshold) artifacts, the precision of VDP is limited.

Various researchers have extended Daly’s original VDP. Jin et al. [JFN98] and Tolhurst et
al. [Tol+05] extend the model to consider the eye’s color sensitivities (Section 3.1.4). To this
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end, they follow the color-opponent theory by Hering [HJ57] and use chromatic CSFs [Mul85;
MS99] in order to account for color information in separate channels. In practice, input images
are transformed into luminance, red-green, and blue-yellow channels, and then VDP processes
those separately using a corresponding CSF. Eventually, the results from all channels are
combined to compute the final difference.

Mantiuk et al. [Man+05] improve the prediction of perceivable differences in HDR images
(HDR-VDP). They integrate several aspects of high contrast vision such as light scattering by
the eye optics, the nonlinear light response for full-range luminance, and local adaptation. In
particular, light scattering is important for HDR signals as strong light sources or highlights
can lead to significant glare, even for remote image regions. In a follow-up article, Mantiuk
et al. [Man+11] introduce HDR-VDP2. It improves on the original metric, among others, by
using another visual model for varying luminance conditions [Bar99]. Moreover, they have cal-
ibrated and validated the model using several image quality and contrast databases. Swaffort
et al. further improve HDR-VDP2 by providing an image metric to assess gaze-contingent ren-
dering quality [SCM15; Swa+16]. It adds measurements for the peripheral vision degradation
at increasing eccentricities by a CSF. Both CSF models have been discussed in Section 3.1.3.
Narwaria et al. [Nar+14] improve the accuracy of HDR-VDP2 prediction by employing a com-
prehensive database of HDR images along with their corresponding subjective ratings. The
same group provides a quality measure for HDR videos [NDL15]. This measure is based on a
spatio-temporal analysis focused on fixation behavior when viewing videos. The performance
of the method is verified using an HDR video database and their subjective ratings.

Despite VDP being widely used for various rendering systems (Section 4.2.2), it is compu-
tationally expensive due to the individual processing of each channel and band within the
frequency domain [LMK01]. The Sarnoff Visual Discrimination Metric (VDM) [Lub95] is
simpler, requires less computational effort and Graphics Processing Unit (GPU)-based im-
plementations are available [WM04]. In contrast to VDP, where image filtering is performed
in the frequency domain, VDM uses convolutions and down-sampling in the spatial domain
only [Čad04, p. 18]. A transducer function (Section 3.1.6) is applied to account for visual
masking [BM98]. VDM derives two measures from the input images. The first is a single
value representing the strength of the perceptual difference. The other is a map containing
the locations of regions with a high predicted visual difference. In contrast to VDP, VDM is
an example of a metric specifically designed to account for the magnitude of supra-threshold
image differences. However, this comes at the expense of precision loss, when near-threshold
differences need to be judged.

A metric specifically designed for realistic image synthesis and inspired by VDP and VDM
was introduced by Ramasubramanian et al. [RPG99]. Their metric attempts to predict thresh-
olds for detecting artifacts in order to spend most computational effort in regions with the
highest visibility of artifacts. The metric models the adaptation processes, contrast sensitivity
and visual masking. The key idea is to precompute the most expensive metric components for
direct lighting as a per-pixel contrast threshold elevation map. Such a map is directly used to
guide the costly computation of indirect lighting. Similarly, Walter et al. [WPG02] analyze
texture information to find a tolerance measure for visual error. The tolerance measurements
can be stored as a standard mip-map, along with the texture, and efficiently used as a lookup
table during rendering.
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Ramanarayanan et al. [Ram+07] pointed out that, even though VDP can predict various
visible image differences, they usually do not matter to human observers. The authors at-
tempt to focus on visual equivalence and determine whether two images convey the same
impression regarding scene appearance. A couple of psychophysical experiments along with a
validating study led to the Visual Equivalence Predictor (VEP) metric. Later, Křivánek et al.
[Kři+10] investigated visual equivalence for instant radiosity (virtual point light) algorithms
and proposed many useful rendering heuristics, which were otherwise challenging to formal-
ize into a ready-to-use computational metric. Vangorp et al. [Van+11] propose a perceptual
metric for measuring the perceptual impact of image artifacts generated by approximative
image-based rendering methods. They consider artifacts such as blurring, ghosting, parallax
distortions, and popping. For the evaluation, the authors generated viewpoint-interpolated
image datasets containing different levels of distortions and respective artifact combinations.
All of the aforementioned metrics assume that both reference and test images are perfectly
aligned. However, human perception compensates for geometric transformations. For exam-
ple, a human can easily tell that an image is identical to its rotated copy. Kellnhofer et
al. [Kel+15] present a metric that quantifies the effect of transformations not only on the
perception of image differences but also on saliency and motion parallax.

Cadik et al. [Čad+12] compare a large number of state-of-the-art image quality metrics and
evaluate their suitability for detecting rendering artifacts. This investigation includes SSIM,
MSSSIM, and HDR-VDP2. The authors conducted user experiments that show that the most
problematic features for existing metrics are an excessive sensitivity to brightness and contrast
changes, calibration for near-visibility threshold distortions, lack of discrimination between
plausible/implausible illumination and a poor spatial localization of distortions for multi-scale
metrics. Based on these observations, the authors have developed a test dataset in order to
support the development of future metrics. The current trend is to employ machine learning
methods to derive full reference metrics [ZK15; ZWF16; APY16]. So far, the existing metrics
are generally successful in predicting the Mean Opinion Score (MOS) value, i.e., a scalar
that characterizes the overall image quality, without producing detailed error maps. While
regarding the computation performance such metrics can be a viable option for rendering
applications.

3.2.2 No-Reference Metrics

All of the methods in the previous section are comparative approaches that assume the
reference image is given as an input. However, in the vast majority of computer graphics
applications, the goal is to synthesize a new image. In such a situation, the reference image
is missing. Here, it is desirable to have a method that can blindly estimate the quality of an
image or a video (Figure 31).

Chandler and Hemami [CH07] quantify the visual fidelity of natural images based on near-
threshold and supra-threshold properties of human vision. Their Visual Signal-to-Noise Ratio
(VNSR) uses contrast thresholds to detect image distortions. This detection stage is coupled
to a wavelet-based analysis of visual masking in order to determine whether the distortions are
visible. If the distortion is above the threshold, a second stage uses low-level vision models
and accommodates different viewing conditions and contrasts to compute the final VNSR
value.
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Figure 31: Example of a no-reference metric. No-reference metrics derive a measure (b) of perceived
image quality based on a single image (a). Results can be close to the ground truth (c)
often determined in psychophysical experiments. Image from Herzog et al. [Her+12]

Figure 32: NoRM – training [Her+12]. An example scene from the data set used to train a Support
Vector Machine (SVM) to derive the no-reference metric NoRM. Each case consists of a
reference color image and a test image with different rendering artifacts. Moreover, specific
3D scene information that is readily available in rendering such as the depth and diffuse
material/texture buffers are employed. Image from Herzog et al.[Her+12]

Stokes et al. [Sto+04] attempt to predict the perceptual importance of the indirect illumi-
nation components with respect to image quality by conducting a series of psychophysical
experiments. Their idea is based on the observation that the different direct and indirect illu-
mination components are probably not equally important with respect to their contributions
to the visual quality. Their metric is solely based on simple measures of scene reflectances
that are gathered during the computation of the direct illumination component. Hence, a
lightweight progressive update during the integration of the indirect illumination component
is possible. However, this metric cannot detect local artifacts which would sometimes be
desirable for local image enhancement.

Such local error maps, as also shown in Figure 31 (b), are generated by the no-reference
metric NoRM as proposed by Herzog et al. [Her+12]. They use a machine learning system,
trained with various types of rendering artifacts that are locally marked by the subjects in
a perceptual experiment. At both, the training and error prediction stage, they actively use
feature descriptors based on 3D scene information (Figure 32, top row) in order to compensate
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for the lack of a reference image. They also employ low-level models of the HVS in order to
predict the perceived strength of rendering artifacts in the error map (Figure 31 (b)).

Since it is difficult to build a general-purpose no-reference quality metric, many attempts
have been made to focus on specific artifacts such as ghosting [Ber+10] or camera-shake
blur [Liu+13] that cause specific and relatively easy to isolate changes in the image signal. A
closed source toolkit by the MSU Graphics & Media Lab [Vat+11] enables the estimation of
artifacts such as temporal noise, blocking artifacts, and overall brightness flickering. A more
detailed introduction to the noise estimation metric can be found in Appendix A.1.

Support Vector Machines (SVMs) and other classic machine learning techniques have been
employed in order to derive a number of novel no-reference metrics, similar to NoRM using
neural networks. These metrics typically rely on natural image statistics and are focused on
predicting various incarnations of noise and compression artifacts such as ringing, blur, or
blocking [MB10]. Here, the work by Liu et al. [Liu+13] provides a more complete survey. Most
recently, Wolski et al. [Wol+18] present another large dataset of images and marked visible
image distortions. The authors also propose a statistical model for a meaningful interpretation
of such data and to be used as input to a neural network in order to derive an image metric.

Similar to the full-reference metrics (Section 3.2.1), deep machine learning may provide a
viable tool for robust, no-reference artifact detection in the following years. Recent examples
in the field of blind image quality assessment by training deep neural networks include works
by Kang et al. [Kan+14], Bianco et al. [Bia+16], Bosse et al. [Bos+16; Bos+18], and Bemana
et al. [Bem+19].

3.3 attentional models

Attentional models are another way to describe higher-level processes of vision. Often, these
models are used to detect and quantify those components of the scene that catch our attention.
Components are for example points and features that are likely to be fixated by our gaze
or are in the scan-path that provides order to those features as our gaze wanders through
the environment. All this is centered around a stimulus’s saliency. The saliency refers to the
visual “attractiveness” or importance of components and features in the environment. In this
section, an overview of the most common and successful models to describe attention are
presented. It is based on the work by Michael Stengel presented in the previously published
state-of-the-art report [Wei+17]. An even more comprehensive review of the state-of-the-art
in modeling visual attention can be found in work by Scholl [Sch01], and Borji and Itti [BI13].

Saliency models can be categorized in bottom-up and top-down models. Bottom-up models
are driven by low-level features and stimuli such as parts that show high discontinuities,
e.g. in contrasts. Top-down models are driven by high-level attention, for example cognitive
processes such as subjects solving a task or the intention of the subject understanding the
scene. Historically these two-fields appear to have largely ignored each other [Lue+03, p.
285]. However, neuroscience has confirmed that there are “feed-forward” links in the brain
from the centers of higher cognition to the centers of lower-level visual processing [Lue+03,
p. 286]. Also higher-level cognitive processes, such as visual tunneling, can largely influence
perceptibility (Section 2.2.5)
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Attention can be guided by keeping track of additional information in so-called pre-attentive
object files – usually, those are stored per shape and object and are created before actual
attention is placed upon them. This way they may direct scan movements of the eyes in the
conscious, attentive processing of information [PRC84; PRH90] and have often be used to
predict fixation locations [JDT12; VDC14; Byl+15]. One information that can be stored is, if
and when an object was visible before as “new” objects may likely attract attention [WB97].

Saliency is generally recorded in saliency maps, often visualized as a greyscale image or heat
map. Such a map describes with which probability a particular image region is paid attention
to by the HVS. The saliency map can be thought of as a summary of the conspicuities of all
visual stimuli. Several approaches have been developed to compute such maps. One approach
is to look at common gaze patterns usually followed by healthy adult humans. However,
research has found that there are differences between cultural environments [CBN05] and
gender [VCD09; SI10]. Another promising approach is to “learn” visual saliency from large
amounts of eye tracking data [ZK13] or employ object or scene knowledge. One example for
the latter is that humans are similarly attracted by faces and objects that are located in
the line of sight of such faces [Gol10, p. 823]. “A strong interrelationship exists between pre-

attentive object files and saliency: pre-attentive segmentation (the process of creating ”figural

units”) is based either on perceptual grouping (object shapes are integrated with surface details)

or saliency” [Edw09, pp. 57–59].

3.3.1 Bottom-up Saliency Models

Early processes in vision greatly affect our percept. Hence, it can be assumed that the salience
of a stimulus is likewise affected by low-level features such as color, orientation, brightness
and contrast of the stimulus.

The development of bottom-up saliency models was motivated by feature integration the-
ory [Tre88] which states that these individual stimulus features can be added linearly resulting
in a normalized saliency map (Figure 33 (b)). A renowned biologically inspired bottom-up
model was introduced by Itti and Koch [IKN98]. It rebuilds some of basic stages of a hu-
man’s visual processing, for example by measuring local contrast on different scales, simu-
lating the receptive fields of ganglion cells in the retina and neurons in the visual cortex
(Section 2.1). Based on this model, various approaches have been developed that target dif-
ferent aspects of the HVS. These aspects include: depth, motion, proximity and habituation
components [LDC06], high edge density regions [MRW96], binocular disparity [JOK09], lo-
cal contrast, orientation and eccentricity [Opr+09], to name a few. A more detailed list can
be found in our previously published state-of-the-art report [Wei+17].

According to the bottom-up theory, the detection of objects across the visual field is as-
sumed to be subconscious and does not depend on attention [WDW99]. However, while
low-level features provide strong hints which parts are salient, they do not give information
on the sequence, order and duration of fixations, i.e. the scan path. However, in order to deter-
mine the scan path, models do not only rely on low-level features but attentional mechanisms
[Oli+03; Hen+07] to be found in top-down models presented in the following section.
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(a) (b) (c)

Figure 33: Bottom-up and top-down saliency. Given the input image (a) the method by Harel et
al. [HKP07] based on bottom-up saliency can predict fixations in a free-viewing task (b).
Top-down prediction in a visual search task for the teapot can result in (c). Image from

Weier et al. [Wei+17]

3.3.2 Top-down Saliency Models

Top-down models make use of attentional as well as cognitive models and observations to
derive saliency. However, these approaches are usually combined with bottom-up approaches
in order to increase prediction accuracy. In this manner various models have been developed
that include: task-related feature values [IK01], color opponent images and task informa-
tion [GVC03], an importance map for task-relevant objects combined with a bottom-up
saliency computation step [Sun+05], gaze behavior for natural scenes including face detec-
tion [Cer+08], and many more [Wei+17]. To this end, besides using pre-attentive object files,
methods commonly derive scene knowledge from figure-background segmentation [FWM15],
face and person detection [VJ04; FMR08], object detection [Cer+08] or manually defined
task-specific location bias [CCW03] (Figure 33 (c)).

In addition, deep convolutional networks trained on large image data sets have shown
great improvements in fixation prediction [VDC14; KTB14; KAB15]. Also, trained networks
can directly incorporate models that account for the influence of high-level (faces, text) and
abstract features. In this field, Kümmerer et al. [KTB14] reuse neural networks to decrease the
computational effort in creating a network for saliency prediction. Kruthiventi et al. [KAB15]
developed a location-biased convolutional filter. This enables learning location-dependent
patterns of fixations.

Apart from these learning-based approaches, findings in cognitive science remain important
to improve modern high-level saliency predictors. Koulieris et al. [Kou+14a] make use of
the scene schema [HH99] and the singleton hypothesis [TG02] in order to improve saliency
prediction. The scene schema hypothesis states that salient objects are those that are not
expected to occur in that scene, e.g., a lawn mower in the kitchen is considered to have a
high salience. The singleton hypothesis is based on the observation that the HVS is more
sensitive to features that are singular across the visual field while suppressing prevalent
features [Wol94]. Hence the singleton hypothesis states that the viewer’s attention is drawn
by stimuli that are locally unique and globally rare.
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3.3.3 Attention Model Quality

Free-viewing tasks commonly evaluate the prediction accuracy for bottom-up saliency. Par-
ticipants look at photographs and watch videos (ideally for the first time) [JDT12], while
their gaze is recorded. This way, the model predictions can be compared to real-world mea-
surements. However, there is controversy about the role of bottom-up versus top-down mech-
anisms in the context of gaze prediction [JDT12; VDC14; Byl+15]. Free-viewing experiments
assume controlled conditions in order to be comparable. These conditions are difficult to
achieve since participants may be biased by the cognitive load when performing the tests.
It is clear, that attention models for passive gaze prediction do not provide exact solutions
and are by far less exact than gaze measurements by an eye tracker. Nonetheless, knowing
the approximate gaze location may be sufficient for some applications. For free-viewing tasks,
saliency prediction based on convolutional networks learned from gaze-labeled natural images
often outperforms traditional “hand-crafted” saliency predictors [VDC14; KWB14; Byl+15].
Learning the ground truth gaze data from only two observers already gives more accurate
results than the best tested bottom-up gaze predictors.

Saliency prediction rarely results in a single, distinct salient region. Likewise, scene-viewing
models have been primarily designed to predict potential fixation locations rather than the
sequence of fixations. However, estimating the order and location, i.e. the scan-path of an ob-
server is even more challenging. Hence, saliency researchers ignored it for a long time [Nut+10].
In fact, the experiments by Henderson et al. [Hen+07] confirm that scan paths generated by
bottom-up saliency maps do not correlate well with ground truth. However, physiological
knowledge can help to increase quality. Le Meur et al. [LC16; MPE16] exploit this bias of
saccade motion in combination with bottom-up feature detection. When performing a sac-
cade, humans are biased towards making either horizontal or vertical saccades. Using this
knowledge results in a saccadic model for free-viewing scenarios that allows for predicting
spatial fixation and scan-paths. The saccadic model by Trukenbrod and Engbert predicts
fixation durations by varying the estimated fixation time with respect to the estimated foveal
processing effort of the salient region [TE14]. Other research present approaches for extract-
ing the scan path from a given video using machine learning on gaze data in combination
with a perceptually inspired color space [Boe+06; Dor+10; DVB12].

To conclude, successful saliency models balance the complex interaction of low-level and
high-level processes in visual perception. To this end, deep learning has shown great potential
when obtaining high-quality saliency estimates and scan-paths. Also hybrid approaches that
improve eye tracking quality might be a field for future research. In order to reduce the effects
of tracking latency when using eye tracking for gaze-contingent rendering, Arabadzhiyska et al.
[Ara+17] present a system-theoretic approach in order to predict saccade landing positions
to slightly shift the measured gaze point ahead in time. Such approaches enable to meet
the performance requirements in order to capture the critical eye movements more accurate
(Appendix A.2). Likewise, robust, accurate, fast and temporally stable scan-path prediction
remains a topic of ongoing research [Vig+12; VDC14; Hen+13; NE15].
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3.4 conclusion

This chapter presented a general overview of the HVS and its limitations as well as the
associated models to describe key visual processes or mechanisms. After two centuries of
intense research, the capabilities of human vision have been precisely measured. In particu-
lar, low-level knowledge on the eyes optical abilities (Section 2.2.1) and knowledge such as
sensitivity, distribution, and interconnection of retinal photoreceptors are well understood
(Section 2.2.2). Also, models for low-level vision features (Section 3.1) such as spatial and
temporal contrast sensitivity and adaptation are fairly well studied. Examples that are con-
vincingly adapting images to model perceptual properties can be found in adaptive local
tone-mapping and brightness adaptations. These are widely used in games and movies (Sec-
tion 3.1.5). However, integrating all existing models into high-level models (Section 3.2) and
suitable for (interactive) rendering is more involved. Often, these models describe high dimen-
sional functions involving parameters such as environment lighting and display properties. As
such, these models have been mainly developed and evaluated for synthetic lab setups. The
author believes that more research must place focus on specific measurements using real-
world or synthetic images to assure the validity of each model. One example that supports
this claim can be found in the work by Mantiuk et al. [Man+11] on the CSF function for
HDR-VDP2. The widely accepted CSF model by Barten [Bar99] does appear to perform
sub-optimally when applied to natural images (Section 3.1.3). Moreover, often the process of
calibrating spatio-temporal models is cumbersome and error-prone. The entire process is even
more challenging when no reference images or information of the output devices are available
(Section 3.2.2). As it can be seen in the following chapters, methods that exploit limitations
of the HVS may either rely completely on a model or take active measurements such as eye
tracking into account in order to increase the success of the technique. Using eye tracking,
the Point-of-Regard (PoR) can be derived from the location of the pupil’s center mapped into
screen space. Unfortunately, though steadily improving, eye tracking does have its pitfalls and
accuracy is never high and latency low enough to respond to eye movements sufficiently well.
This is especially apparent if 3D PoRs need to be measured (Chapter 7). Another approach
in order to perform selective rendering is using saliency and predicting fixations as well as
scan paths. However, higher-level perception such as attention (Section 2.2.5) is more difficult
to measure and still not well-understood due to the complexity of the involved parts of the
brain (Section 2.2.4). In addition, individual differences between subjects may vary widely.
Most models derived on those measurements neither provide temporal stability nor are they
able to provide a distinct gaze direction. This is a problem, as models for attention strongly
depend on the gaze direction due to differences in foveal and peripheral vision. Nonetheless,
knowledge of human perception can greatly improve the performance and quality of image
synthesis techniques. In the next chapter, an extensive overview of such methods is presented.
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EFF IC IENT RENDERING

A Matter of Sampling

Nobody will ever solve the anti-aliasing problem.

Jim Blinn [Bli02, p. 166]

The most fundamental goals in synthesizing realistic images are efficiency and realism. Often
these two goals cannot be considered separately. If the efficiency of an algorithm is increased,
a greater proportion of computational resources can be spend on creating more realistic
imagery. However, the field of efficient rendering techniques is broad. Methods that accelerate
rendering can, for example, improve performance by an optimized utilization of the hardware.
Noteworthy are also the tremendous efforts invested into the area of compilers, that allow
high-level language constructs to be translated to highly-optimized hardware specific machine
code. There is still at the very core of each rendering system the question of how to turn an
n-dimensional representation into an image that can be displayed on the screen. Frequently
this representation is defined over a continuous domain. When rendering a realistic scene at
a high-quality, the continuous function is the amount of incident radiance on the image plane
emitted from the 3D scene towards the observer. Unfortunately, it is almost always only
possible to achieve computationally efficient sampling from this higher dimensional function
in a point sampling manner. Hence, a great body of work focuses on how to make more
efficient and less error-prone sampling possible. However, eventually images are displayed on
physical devices such as computer screens, and these screens are formed by pixels, i.e., a small
discrete number of objects emitting light a single wavelength at a time. Here, the extent of a
pixel potentially covers a certain area of the view plane and thus covers a certain part of the
(potentially adapted) function. Ideally, to drive each pixel correctly multiple point samples
from the extent of the pixel need to be computed; these are then combined in a reconstruction

process in order to compute a final pixel color.

Imagine a triangle in front of a white background that is moving across the scene. If it is
touching a pixel’s cell but not covering its center, the white color is emitted although the pixel
intensity should be varied smoothly as it moves over the extent of the pixel. However, a naive
rendering system treats a pixel as either covered or not covered. This leads to the triangle’s
outline appearing to be jagged. If the extent of a triangle covers multiple pixels, each with
a different color, then only a single color from the triangle at the pixel’s center is used to
color that pixel. The matter is illustrated in Figure 34. Now, as the 3D scene or the virtual
camera is moving, a pixel can suddenly change its color as the triangle at the pixel’s center is
changing, leading to temporal instabilities in the form of a highly-disturbing flickering. The
entire process of computing and presenting digital images is likely to cause such artifacts
due to the under-sampling of the higher dimensional signal, that is aliasing. If this under-
sampling occurs spatially, it is referred to as spatial aliasing. Spatial aliasing artifacts manifest
themselves in various forms, showing jagged edges or by temporal flickering [PH04, p. 280].

57
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Sampling Position
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Final Pixel Color

Figure 34: The sampling process of a triangle at two different sampling rates. Note that the higher
number of samples per pixel yields a more accurate representation of the triangle when
outputted to screen.

Both these artifacts are two different aspects of aliasing. We see that an approach to mitigate
one issue might be far less efficient in the case of the other. One simple way to counteract
both artifacts is by increasing the sampling frequency, by taking more samples over the
extent of the pixel. However, this increases the computational costs and results in less efficient
rendering. The question that remains is what sampling rate, that is how many samples are
needed to enable a full reconstruction of the function. In order to answer this question, rather
than looking at radiance in a 3D scene, we first look at a simple one-dimensional function
f(x) as the theoretical considerations are identical for higher dimensional cases. Now, let
us assume that the function f(x) is band-limited by B, i.e. the function does not contain
any frequencies greater than B such that F{f(x)}(λ) = 0, ∀‖λ‖ > B. We refer to B also as
(baseband) bandwidth of the frequency in Hertz with F being the Fourier transform. Using
these prerequisites a minimum sampling rate for a perfect reconstruction can be determined
using the renowned Nyquist theorem by Shannon, Nyquist, and Whittaker [Luk99].

Nyquist Theorem. A band-limited signal f(x) with a (baseband) bandwidth of B can be
equally expressed by a sum

f(x) =
∞∑

n=−∞
f( n2B

)sinc(2Bx− n)

The sampling rate of λ = 2B is referred to as the Nyquist rate. For a perfect reconstruction
of a bandlimited signal, the sampling rate λ must be at least twice the signal’s bandwidth
B. In the case of λ = 2B, a perfect reconstruction is only possible if the sampling is not
happening exactly at the zero crossings from f(x). Formal proof of the Nyquist theorem can
be found in Marks’s work [II91, pp. 33ff].

However, although often used to reinforce arguments in the context of computer graphics
and well-suited to provide initial insight, the Nyquist theorem is hardly usable for image syn-
thesize processes in general. Nyquist’s sampling theorem states that the sampling frequency
needs to be more than twice the maximum frequency of the sampled function. In order to
establish this maximum frequency, the function must be bandlimited, which however, rarely
is the case with a 3D scene. Discontinuities in depth along edges or shadows produce discon-
tinuities in the signal. Essentially, the spatial frequency here is infinite. Therefore, there is
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Figure 35: Temporal aliasing known as the wagon wheel effect. A (a) wheel turning at a certain speed
that is captured at a low frame rate appears to be (b) moving backwards or (c) standing still.
In order to (d) correctly capture the forward movement of the wheel, sampling frequency
must be sufficiently high. Image after Akenine-Möller et al. [AHH08, p. 118]

always a position to be selected in between two other samples. Admittedly when representing
and rendering the scene we are in reality limited by the maximum accuracy of the datatypes
used. Even more important however is the insight that, after a certain number of samples has
been drawn, the Human Visual System (HVS) is not likely to notice any change in the image
if more samples are drawn. Likewise, if the display resolution is high, pixels might not be
computed as these cannot be resolved by the HVS due to limited visual acuity at a specific
eccentricity. All these constitute first cases where perception-driven approaches have been
successfully used both to mitigate some of the problems as well as to increase rendering effi-
ciency. Hence, “the key insight about aliasing in rendered images is that we can never remove

all of its sources. So we must develop techniques to mitigate its impact on the quality of the

final image” [PH04, p. 294] – ideally to a point where potential artifacts are not visible to a
human observer.

Another form of aliasing apart from spatial aliasing is temporal. A sequence of single images
displayed with a certain frame rate conveys a smooth motion. Temporal aliasing takes place
in cases where the frame rate is too low and the animation stutters. One effect that occurs
due to a limited temporal sampling frequency is the wagon wheel effect: A wagon wheel that
is recorded at a limited temporal sampling rate appears to be turning backwards although
it is actually turning in a forward direction [AHH08, pp. 118-119]. Here, having an idea of
the Critical Flicker Frequency (CFF) of the HVS and the perceptual implications can be a
valuable tool to estimate upper limits on frame rates and latencies when displaying smooth
animations and when generating images in real-time. Also, when considering animations or
interactive rendering, samples are not just entities in space but also in time. Hence, there is
considerable research that attempts to exploit this Temporal Coherence (TC).

In this chapter, rather than discussing all methods that have been developed to improve
the efficiency of rendering algorithms, the goal is more to explain general concepts and focus
closely on relevant perception-driven approaches. An overview of such methods is illustrated
in Figure 36. Based on the consideration of the current state-of-the-art relevant for this thesis,
four general strategies that improve the efficiency of rendering algorithms can be identified.
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Figure 36: Overview of efficient rendering methods that determines the structure of the state-of-the-
art in computer graphics.

1. Pre-filtering strategies attempt to provide a (multi-level) representation of the original
function, i.e. the 3D scene or object, enabling more efficient and less error-prone sam-
pling. These approaches commonly provide a scene at different Level-of-Details (LoDs).

2. Sampling strategies attempt to adapt the sampling rate and positions to generate images
that are more perceptually pleasing by putting increased computational effort into
regions that matter more to the observer or by transforming perceptually disturbing
artifacts into less regular patterns or noise.

3. Temporal approaches attempt to reuse samples over time and thus increase the amount
of available information per pixel - either by re-projecting samples in image space or by
caching mechanisms in world space.

4. Post-Filtering approaches, though not improving sampling rate or sampling efficiency,
attempt to alleviate and conceal potential artifacts often performed by selective blurring
and bilateral filtering mechanisms in image space.
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Please note however, that Figure 36 is not meant to be a taxonomy of efficient rendering
techniques. One specific implementation of a method might use multiple strategies to produce
images of a higher quality. However, the diagram in Figure 36 determines the structure of
the state-of-the-art in computer graphics presented in the next sections. Also, this overview
enables a classification of the methods and methodologies presented in the following chapters.

Regarding perception driven-approaches, static and dynamic approaches for pre-filtering
and sampling strategies have been developed. The static approaches do not adapt themselves
to changing perceptual requirements or the image content. In contrast, dynamic approaches
try to distribute computational requirements in areas of the image or 3D scene where a higher
quality matters most. Important in the context of dynamic methods is the terminology of
gaze-contingent methods. Gaze-contingent is a general term for techniques that adapt their
behavior, based on where the viewer is looking. Usually, an eye-tracker is used to determine
the user’s Point-of-Regard (PoR). The acquired information can the be used to update the
visualization, the display, or most general, a system’s response [Duc07].

In the following sections, we almost exclusively try to focus on those strategies that use
perceptual insights, with and without active measurements, to generate more perceptually
pleasing images in a shorter time frame. In line with the systems presented in the following
chapters, a broad overview is given before a focus is placed on gaze-contingent methods for
pre-filtering and sampling strategies.

contributions by the author This chapter is based on our state-of-the-art report:

Martin Weier et al. “Perception-driven Accelerated Rendering.” In: Computer Graphics

Forum (Proceedings of Eurographics) 36.2 (Apr. 2017).

In contrast to the published report, a new structure is used to present the related work
in the field (Figure 36). In this thesis, the related work is structured based on the funda-
mental concept of sampling and efficient rendering. Therefore, Section 4.3 and Section 4.4,
which cover techniques that exploit temporal coherence and post-processing in image space,
are entirely new. In addition, all chapters have been significantly extended, restructured, and
updated to include the latest works – most notably Section 4.2. Here, a more in-depth dis-
cussion of the perceptual implications of sampling in Section 4.2.1 and a broader discussion
of gaze-contingent rendering techniques in Section 4.2.3, are presented.
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4.1 pre-filtering

One way to mitigate aliasing artifacts and enable more efficient rendering is to adapt the
sampled function, i.e. the 3D scene. This way, reducing the complexity of a scene accelerates
the rendering and reduces artifacts at runtime. A reduction can be achieved by culling invisible
objects, adapting object details or by directly employing multiple representations at a different
LoDs, for example by reducing the number of polygons. “In simplification, the goal is often

to reduce model size while preserving visual fidelity.” [Lue+03, p. 279] The following section,
begins by briefly presenting general approaches before considering the perceptual aspects in
more detail.

4.1.1 General Approaches

Numerous methods have been developed that attempt to simplify 3D scenes either by pro-
cessing a scene’s polygonal description or by adapting/transforming it into another more
simple or compact form. Filtering can happen at a model’s surface, such as with bump or
normal maps in order to simplify high-frequency surfaces geometric detail [COM98; San+01;
WFG02]. Different approaches directly use impostors or layered depth images instead of full
polygonal models [Sha+98; Ris07]. However, in this section a focus is placed on methods that
are more general and directly work with 3D datasets. To this end, polygonal simplification,
point-based and voxel-based methods are discussed.

polygonal simplification methods The simplest form of geometric simplifica-
tions techniques are static approaches that precompute a small discrete set of models at
varying geometric LoDs. During the rendering process, the renderer selects the most appro-
priate one. Most basic, static simplification methods are vertex clustering or edge-collapsing
techniques [Lue+03, ch. 5.1][Lin00], often coupled with specific error metrics such as the
well-known Quadric Error Metric [GH97]. As presented in the next sections, adapting these
metrics to minimize the perceptual implications of the induced change in appearance is often
a key component of the perception-driven methods. However, as discrete changes between
the models from the set can become visible, dynamic simplification methods have been de-
veloped, that attempt to simplify the model continuously at runtime. An advantage of the
edge collapse operations is that the operation is reversible as the order of these can be stored
[AHH08, p. 562ff]. This also makes it also a valuable tool for dynamic Continuous Level-
of-Detail (CLOD) and progressive transmission over networks [Hop96; Tau+98]. Another
dynamic LoD approach by Limper et al. [Lim+13] that is well-suited for progressive mesh
refinements is based on reordering and quantization of the vertex positions in the mesh. How-
ever, in the case of all of the aforementioned approaches, there can be several criteria to select
a model or control the simplification process. Potential constraints can be lower bounds on
the frame rate or limited bandwidth. View-dependent approaches are most frequently found
in perception-driven rendering techniques. These allow that the LoD to vary within the model
and dependent on the current view. Early examples for these approaches can be found in ter-
rain rendering systems [Duc+97; AH05]. However, also methods for arbitrary input meshes
have been developed [Hop97; HSH10].
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point-based methods As the name suggests, point-based approaches describe 3D ge-
ometry by points in the 3D space. More lightweight representations of such a point set can
be derived by removing or averaging nearby points in the set. Traditionally points in 3D are
then projected to image space where filtering and reconstruction are performed in order to
fill the gaps between the projected points. The QSplat system introduced by Rusinkiewicz
and Levoy [RL00] uses a hierarchy of spheres as basic rendering primitives. The hierarchy
allows for LoD, backface and frustum culling. Pfister et al. [Pfi+00] introduce the concept of
surfels as a term for a surface element in 3D space. These surface elements store positions,
normals and textures. Surfels are rendered using an octree-based approach and splatting. In
the following years, several more splatting techniques for point-based rendering were devel-
oped [SPL04; Bot+05]. A disadvantage of all of the aforementioned approaches is that the
rendering processes are reasonably complex. Alternative and often faster are image-based re-
construction techniques such as the Pull-Push interpolation introduced by Marroquim et al.
[MKC07]. In the context of this thesis, it has been used as a fast reconstruction method in the
rendering framework introduced in Chapter 7. As point-based graphics is a wide and active
field of research a general introduction is given in the book by Gross and Pfister [GP07]. An-
other survey on early point-based rendering techniques was introduced by Sainz and Pajarola
[SP04].

voxel-based methods Voxel-based rendering systems realize another type of tech-
niques that use a different representation as polygons. Just as points, voxels are also volu-
metric entities in space. However, in contrast to point-based approaches, they are generally
represented as regular grid structure of different attributes. This regularity makes them well-
suited for LoD approaches as coarser representations of a scene can be represented by down-
sampling the 3D grid to a grid with a lower resolution. Hence, common structures to store
voxel dataset are octrees, i.e. hierarchies of grids. Often, these datasets are rendered using
ray-based approaches. Building upon traditional grid traversal algorithms [AW87], Laine and
Karras [LK11] introduce a very compact sparse voxel representation known as Sparse Voxel
Octree (SVO) along with a highly optimized incremental traversal algorithm. Crassin et al.
[Cra+09] traverse an octree using a kd-restart algorithm [FS05] in order to omit any need
for a stack. Due to the enormous amount of parallel threads on the Graphics Processing Unit
(GPU), maintaining a stack is challenging and introduces a potential performance bottleneck.
In contrast to point-based approaches, where datasets can be generated by considering (ran-
dom) points on a 3D surface or are a result of laser range scans of real objects, several articles
deal with how to construct voxel representations from polygonal models – a process that is
known as voxelization. In recent year several voxelization techniques using the GPU hardware
were proposed. Systems such as Voxelpipe [Pan11], or the system proposed by Schwarz and
Seidel [SS10], perform voxelization using an optimized triangle/box overlap test on the GPU.
Other approaches by Dong et al. [Don+04] and Zang et al. [Zha+07] use a GPU accelerated
rendering pipeline for performing voxelization. Both approaches render the scene from three
sides, combining multiple slices through the model into a final voxel representation. However,
this process has a negative impact on performance. Current OpenGL standards allow for
writing to a 3D texture or linear video memory directly from the fragment shader. Without
prejudging Chapter 5, this thesis introduces a system that is based-upon the voxelization
process by Crassin and Green [CG12] using those features. In addition, this chapter proves
that SVOs [LK11] are be a valuable tool for view-direction-based ray tracing systems.
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insights Approaches that pre-filter the function to get a multi-level representation of
complex scenes and objects are actively used in graphics applications. For the sake of focusing
on perception-driven approaches this section only introduces some of the general concepts.
A more in-depth description of the related work in the broad field is given in the renowned
books by Luebke et al. [Lue+03] and Akenine-Möller et al. [AHH08]. Given the brief overview
of the various fields and important publications now allows us to look at those methods that
augment these concepts by exploiting insights from human perception.

4.1.2 Model-driven Approaches

Early approaches in the field of perception-driven geometric simplification use rendered im-
ages of the models at different LoDs and compare these images using perceptual models in
order to guide LoD selection and generation [Red97; LT00; LH01]. This process commonly
results in static techniques that generate a fixed set of LoDs. An overview of such early LoD
methods can be found in the book by Luebke et al. [Lue+03, pp. 264–278]. One example is
the terrain rendering system by Scoggins et al. [SMM00]. It transforms terrain data to the
frequency domain to investigate a relationship between sampling rate, viewing distance, ob-
ject projection, and the expected image error caused by LoD approximations. The introduced
image metric makes use of visual acuity (Section 3.1.2) and a Contrast Sensitivity Function
(CSF) model, in this case the one described by Mannos and Sakrison (Section 3.1.3).

low-level perception All of the presented systems so far attempt to measure the
perceived quality of the output based on the view, or very simple measures of image con-
trast and the spatial frequency of the resulting LoD changes. However, they do not focus
specifically on textures and effects caused by dynamic lighting as this needs a deeper knowl-
edge of low-level perceptual processes. For that reason, Williams et al. [Wil+03] extends the
simple mesh edge-collapsing techniques, discussed in the previous section, in order to esti-
mate the degradation of textures and the induced lighting changes. Their technique creates
view-dependent dynamic LoD representations, sensitive to silhouettes, underlying texture
content, and illumination. It simplifies regions of imperceptibly low contrast first. Drettakis
et al. [Dre+07] and Qu and Meyer [QM08] (Figure 37) further improve on Williams et al. by
incorporating visual masking (Section 3.1.6). As this is computationally demanding, Qu and
Meyer [QM08] accelerate this process by an off-line pre-processing step that computes an
importance map which indicates the visual masking potential of a surface. To this end, they
use a model derived from JPEG 2000 (Section 3.1.6) and the Sarnoff Visual Discrimination
Metric (VDM) (Section 3.2). As detailed in Section 3.2, different high-level perceptual met-
rics exist to compare the visual quality of an image to ground truth data (Section 3.2). A
couple of these metrics have been used to generate LoDs by rendering and comparing degen-
erated models. An extensive overview of investigated metrics applied to mesh compression
and mesh watermarking is given in the reports from Corsini et al. [Cor+07; Cor+13].

Menzel and Guthe [MG10] present an alternative model that optimizes meshes specifically
in low-contrast areas. Their main contribution is a method to move the error computation
from image space to vertex space. This avoids costly per-pixel comparison. The idea is to
determine the changes in contrast, curvature and lighting at each vertex after a simplification
step. Moreover, they include measures of the interaction of spatial frequencies and orientations
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Figure 37: Perception-based mesh simplification by Qu and Meyer [QM08]. For a textured model (a)
visual masking is evaluated (d). Compared to traditional simplification (b) including visual
masking enables stronger simplification without affecting perceived mesh quality (c). Image

from Qu and Meyer [QM08]

in order to account for visual masking. A simplification step is only applied if it can be
considered imperceptible. Guo et al. [Guo+15] study the visibility of LoD distortions by
asking subjects to mark visible ones on a mesh. The derived ground truth is used to evaluate
different error metrics. In their study, perception-based metrics outperform purely geometry-
based approaches. However, recently, Lavoué et al. [LLV16] concluded that purely image-
based metrics including HDR-VDP2 (Section 3.2) perform sub-optimally. Based on these
observations, Nader et al. [Nad+16b; Nad+16a] perform an experimental study of the HVS’
low-level properties in order to derive a contrast sensitivity and contrast masking function.
This allows them to compute a contrast threshold function per geometric face using Barten’s
CSF (Section 3.1.3). The contrast masking function that is explicitly looking at the visual
regularity of surfaces allows for deriving a Just Noticeable Difference (JND) value and guiding
the simplification process.

high-level perception and attention Besides such measurements based on
low- and high-level vision models, geometry can be simplified while attempting to preserve
the salient features of the mesh using attention mechanisms. Those parts that probably draw
visual attention should be degraded more slowly. An early approach for automatic LoD gen-
eration and selection based on attentional models is proposed by Horvitz and Lengyel [Eri97].
The authors evaluate the trade-off between the mesh’s best visual quality and the compu-
tational savings using a cost-function that is based on mesh degradation and a probability
distribution over the attentional focus of the viewer. Lee et al. [LVJ05] make use of a top-
down attention model (Section 3.3.2) in order to preserve salient mesh features defining mesh

saliency. This is based on the observation that a substantial change in curvature should be con-
sidered to result in high local saliency. For mesh simplification, mesh reduction is steered by
evaluating such a geometric saliency. For partial shape matching of meshes, Gal et al. [GC06]
define the mesh saliency as a function of geometric features that is determined by clustering
regions of high curvature relative to their surroundings. Lavoué [Lav07] presents an extended
curvature-based measure for model roughness and shows how mesh saliency can be applied to
compute the visual masking potential of the geometry. Later, a study by Kim et al. [Kim+10]
confirmed that mesh saliency better describes human fixations than random models of eye
fixation, validating the importance of the local curvature measure. The approach by Wu et
al. [Wu+13] extends the ideas by looking at two more aspects: Local contrast and global rar-
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Figure 38: Mesh saliency method by Yang et al. [Yan+16]. The approach takes a textured mesh
(a),(b) and measures local geometric entropy (c), color and intensity (d). The features are
combined into a final saliency map (e) used to produce a simplified textured model (f).
Image from Yang et al. [Yan+16]

ity based on the singleton hypothesis. This hypothesis states that the viewer’s attention is
drawn by stimuli that are locally unique and globally rare (Section 3.3.2). Hence, rare fea-
tures should be degraded more slowly. To this end, the authors introduce a multi-scale shape
descriptor in order to estimate saliency locally, and in a rotationally invariant way. Yang
et al. [Yan+16] combine mesh saliency with texture contrast resulting in a saliency texture,
which is used to simplify textured models (Figure 38).

In contrast to the aforementioned techniques, Ramanarayanan et al. [Ram+07] do not re-
duce the complexity of the model by geometric means; they reduce the complexity of the
materials. Based on their Visual Equivalence Predictor (VEP) metric (Section 3.2), the au-
thors show that the complexity of individual maps and materials can be significantly reduced,
without sacrificing the visual appearance. The system by Koulieris et al. [Kou+14b] provides
a LoD approach for materials, building upon the ideas of their high-level saliency predic-
tor [Kou+14a]. The first type of information in this model accounts for the fact that an
object pops out if it is rotated in a way that violates its expected posture. Other modalities
derive a measure of an objects contextual isolation, i.e., is a specific object showing in parts
of the scene not typically expected. This allows for continuous adaptation of material quality.

insights Geometric techniques that reduce the scene’s complexity drastically reduce the
workload for geometry processing. Polygonal simplification processes are most common, and
most of the more recent related work is incorporating perceptual models in order to enhance
the simplification processes. Only a few systems make use of cross-modal effects. Such a
system was presented by Grelaud et al. [Gre+09]. They use both audio and graphics to guide
LoD selection and jointly adapt auditory and visual quality. Besides the limited knowledge
in systems that rely on cross-modal effects, the boundaries of perceptual and attentional
models are further blurred by coupling low-level knowledge of the HVS to attentional models.
Moreover, improvements of LoD systems for other scene representations (e.g., voxels and
points) and high-level scene properties (e.g., materials and lighting), will further improve on
reduction rates and quality. [Wei+17]

4.1.3 Gaze-Contingent Methods

More than four decades ago Clark suggested that 3D objects can be simplified based on their
eccentricity and velocity in the visual field [Cla76]. View-dependent geometric LoD is a typical
example of gaze-contingent rendering. Perceptual models and gaze-contingent information can
be used to reduce the quality of a scene representation in areas of lower acuity. Such a process
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utilizes data from devices such as head and eye trackers as well as inertial measurement units
often integrated into modern head-mounted devices [LaV+14; Ste+15].

polygonal simplification Ohshima et al. [OYT96] employ gaze-aware LoD ren-
dering in a virtual environment. The gaze is used to interact with a discrete set of static
precomputed presimplified models at different LoDs. Besides a simple model of the visual
acuity and eccentricity (Section 3.1.2), the authors take additional perceptual clues from
kinetic and binocular vision into account when selecting a model from the set of presim-
plified models. Interestingly, Ohshima et al. also experimented with saccadic suppression
(Section 2.2.3): Rendering is suspended if the gaze movement exceeds velocities of 180◦/s.
Furthermore, knowledge of the Depth-of-Field (DoF) is exploited in order to select from the
simplified candidates. Unfortunately, a user study to judge the implications of this approach
is missing. In contrast, Luebke et al. [Lue+00] simplify geometry progressively based on the
gaze. The degree of mesh simplification is controlled by a perceptual model that exploits
the limited visual acuity and the contrast sensitivity of the HVS in order to remain mostly
visually imperceptible (Section 3.1.7). Reddy [Red97, pp. 105–129] proposes a two-stage ap-
proach for generating and selecting LoDs. In the offline stage, each object is analyzed in the
spatial as well as the frequency domain to generate simplified model versions with defined
maximum spatial frequencies. Also, models are analyzed considering color changes in the CIE
LUV color space (Section 3.1.4). In the online stage, a perceptual model (including visual
acuity) and a custom CSF are used to select the appropriate LoD based on the projected
object rotation, relative size, the user’s gaze direction, and other pre-computed object data.
Along similar lines, Howlett et al. [HHO04; HHO05] use eye tracking in order to detect
salient features that can be improved by better geometric approximations during a mesh sim-
plification process. Murphy and Duchowski [MD01] propose a non-isotropic LoD rendering
approach using eye tracking for meshes based on a spatial degradation function derived via
a user study. Reddy [Red01] describes a system that recursively subdivides terrain meshes
until the projected polygon size reaches an imperceptibility threshold that is coupled to a
spatio-temporal CSF-model based on Mannos and Sakrison and a simple visual acuity model
utilizing the Cortical Magnification Factor (CMF) (Section 3.1).

beyond the ordinary A more recent approach apart from geometric simplification
has been proposed by Papadopoulos and Kaufmann [PK13]. They use tracking in front of
a large high-resolution display wall to adapt the visualization of gigapixel images to the
user’s physiological capabilities and visual field. Along similar lines, the next Chapter 5
introduces an approach to accelerate rendering on large high-resolution display walls using
a hybrid representation of voxel and polygonal data with an LoD control that adaptively
degrades visual quality based on the user’s position and visual field. Most recently, Lindeberg
[Lin16] uses filtering to simulate DoF in order to conceal artifacts arising from gaze-contingent
geometric simplifications by utilizing a tessellation shader in the Unreal Engine. As detailed
in Chapter 7, this thesis proposes to use DoF in order to hide undersampling artifacts in
image space.

insights Systems that adapt a scene’s complexity according to the user’s gaze have not
seen much attention lately. Considering the limited rasterization and ray-casting performance
achieved by previous graphics hardware generations, scene simplification techniques usually
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led to huge speed-up factors. However, in current pipelines for real-time rendering, shading
often dominates rendering costs [Vai+14; HGF14]. As already stated in a previously published
state-of-the-art report [Wei+17], novel approaches targeting methods for gaze-contingent ge-
ometric simplification, tesselation and a gaze-aware adaptation of other features such as
materials are foreseeable in the upcoming years.

4.2 sampling adaptation

Rendering, at its very core, is a sampling process. As such, samples must be generated,
evaluated and combined via reconstruction with the aim to produce an output image. The
following provides an overview of various perception-driven sampling strategies that attempt
to adapt this sampling process in order to meet perceptual requirements. Although tailored
rendering approaches exist, for example to adapt textures and draw line primitives [AHH08,
p. 124-125], this thesis specifically focuses on sampling arbitrary 3D scenes. In addition, the
sampling of higher-order functions such as light sources in a Global Illumination (GI) context
is not discussed here. This work restricts itself to methods that attempt to optimize rendering
by screen-based sampling. Here, modifications of the originally uniform sampling process may
happen at (sub-)pixel level as well as at image level in the form of selective rendering. While
the former methods are mainly concerned with reducing aliasing in image space, the latter
may also take higher-level perceptual properties into account. This makes it possible to sample
an image plane, potentially adaptively and progressively, based on knowledge about low-level,
high-level and attentional models of the HVS with the goal to increase rendering efficiency
and decouple rendering from a fix pixel grid.

4.2.1 Sub-pixel Approaches

Although samples can be taken on arbitrary positions for each pixel and the sampling patterns
can vary between the pixels, the simplest form of screen-based sampling is to compute a single
sample at the center of each pixel. However, doing so, all that is known for the pixel is whether
or not a triangle covers the center and the color information of the triangle at precisely this
position. As a results, undersampling is likely to occur. Consequently, it is beneficial to
compute more sample-per-pixel (spp). This process is referred to as super-sampling.

static and (pseudo-)random sampling The simplest form of super-sampling is
Full-Scene Anti-Aliasing (FSAA). Here n×n samples are computed for each pixel at positions
that are laid out in a grid-like fashion (Figure 39). The advantage of FSAA is simplicity
and regular sampling patterns benefit from coherent computations and memory accesses.
However, super-sampling the image plane is computationally demanding as all positions must
be sampled and fully shaded. Besides, regular sampling patterns can lead to artifacts such as
Moiré patterns or temporal flickering, artifacts to which the eye is highly sensitive. Therefore,
other uniform patterns with slightly improved perceptual and performance properties have
been developed. These include Quincunx, Checker, and Rooks patterns (Figure 39). These
patterns attempt to alleviate some of the regularity. Naiman [Nai98] showed that the visibility
of jaggedness of edges depends on their slope. A peak is found for edges with a slope of one
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1 Sample per
Pixel

1 × 2 Sample per
Pixel

2× 2 Samples per
Pixel

4× 4 CheckerQuincunx 8 Rooks

Figure 39: Regular sampling patterns can benefit from the coherency of memory accesses. However,
can cause perceptually disturbing artifacts such as Moiré pattern due to their regularity.
Image after Akenine-Möller [AHH08, p. 127]

(resulting in an edge at an angle of 45◦). This is one of the main reasons why Quincux,
Checkerboard, and Rooks, despite their regularity, provide an improved perceptual quality
over simple FSAA patterns.

Another reason why aliasing artifacts are disturbing is the Vernier acuity. The HVS has
the ability to tell if two lines aren’t exactly aligned with each other at scales that exceed the
visual acuity (Section 2.2.2). Due to those hyperacuity phenomena, jagged edges show, and
as long as displays do not allow for achieving resolutions that exceed the Vernier acuity, Anti-
Aliasing (AA) approaches are advantageous. However, as polygons can be arbitrarily small,
the chances are that a regular sampling pattern can never capture them perfectly anyway.
This will cause aliasing in one form or the other. Likewise, due to the regularity of these
patterns, they can suffer from the same artifacts that can appear when using FSAA.

In order to counteract the appearance of regular patterns, it is often beneficial to use
stochastic processes to select samples. This is called stochastic sampling and is driven by the
spectral properties of the photosensitive cells’ spatial distribution on the retina (Section 2.2.2).
It is often better to sample using a random or pseudo-random pattern as images with noise
often look better than aliased images [DW85]. Regular aliasing artifacts can be noticed more
readily than noise – even though the noise may not represent the underlying scene any
more accurately than the aliasing artifacts. On a lower physiological level, processes like
lateral inhibition and mechanisms such as the recently discovered positive feedback loop that
involves boosting the output of certain light receptors in the retina while damping down others
further amplify color and intensity discontinuities caused by the patterns (Section 2.1.1). Also,
the direction-dependent processing in the visual cortex is sensitive to regular structures and
patterns. The neurons in the visual cortex are selective based on the orientation, the pattern,
and the direction of a moving stimulus (Section 2.1.3). On the other hand, humans are able
to tolerate surprisingly large amounts of noise in images [Hua65]. Also, it must be noted that
the perception of noise in images is depended on the context of the noise. Lucassen et al.
[LBR08] show that there are differences in the perception of colored symbols in front of a
noisy background and vice versa. Just as the contrast sensitivity depends on the wavelength
of the stimulus, the visual perception of noise also depends on the color of neighboring pixels
[SK13a]. Interestingly, some studies report that the Stochastic Resonance (SR) induced by
the noise can actually increase the readability of letters for the visually impaired [PCR00],
or enhance motion discrimination [TDM16].

Unfortunately, a simple random sampling pattern can lead to non-optimal spatial cover-
age (Figure 40a). Pure random sampling can build clusters or leave large gaps. Therefore,
even better patterns are often used in practice, most notable are Poisson-disc patterns (Fig-
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Figure 40: Different random sampling patterns in 2D and their 1D projections.

ure 40b). Yeelot [Yel83] discovered that the photoreceptors on the retina are distributed in
a Poisson-disc fashion. Hence, Poisson disk distributions are known to work well in terms of
perception, and, when sampling, they most closely resemble the blue noise power spectrum
[Lag09]. Likewise, blue noise sampling can be used to model the spatial distribution of retinal
cells [Lan+19]. Beside their perceptual properties, their even energy distribution across the
spectrum make efficient techniques for blue noise sampling a general field of research for com-
puter graphic applications [HSD13; Ahm+16; GF16] and various other domains [Yan+15].
However, generating a dense Poisson-disc sampling is somewhat computationally involved,
especially in multiple dimensions and in a progressive manner. Hence, in order to achieve a
better distribution of samples compared to random sampling more efficiently, supporting grid
structures are widely used to create less clustered samples. The most basic approach doing
so is jittering. Here samples are distributed in finer grid-cells build for each pixel. Afterward,
the samples are randomly displaced within each cell (Figure 40c). Even better spatial distri-
butions, especially considering the point sets’ 1D projection can be obtained using n-rooks or
techniques such as multi-jittered sampling. An introduction in generating those patterns can
be found in the book by Suffer [Suf07, pp. 104-107].

Another prevalent type of approaches to generate samples is based on low discrepancy

sequences (Figure 41). Remember, that good sampling patterns have a well-distributed but
not uniform structure – samples do not clutter in certain areas and are not too far apart. The
concept of the discrepancy gives one measure to describe the quality of such a distribution.
The discrepancy of a point set can be computed by artificially dividing the domain into virtual
regions. For each virtual region, the count of points inside and the volume of the region are
compared. Here, for a good distribution, each given fraction of each volume should have
roughly the same fraction of sample points inside [PH04, p. 316]. Different low-discrepancy
sequences have been developed. An overview is given in Figure 41. These sequences are
commonly used in GI renderers. One advantage is that their construction is computationally
efficient. Moreover, they are easy to parameterize and samples can be obtained progressively.
More details on generating those sequences are presented in the PBRT [PH04, p. 316ff].

Still, massive oversampling of each pixel is the gold standard to counteract aliasing but
leads to highly increased computational costs, as each subpixel produces a shader call. Faster
approximating approaches such as Multisampling Anti-Aliasing (MSAA) [Ake93] and its
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Figure 41: Different low-discrepancy sampling patterns in 2D and their 1D projections.

derivatives [You06; Rel11; Wan+15] decouple shading from coverage, depth and stencil infor-
mation and can produce one shading color for all subpixel samples (Figure 42). This way, for
each pixel only one shading sample for each touching primitive and associated coverage infor-
mation is computed. Essentially AA happens only at polygon edges, which are potential areas
of highly varying contrasts. A filtering process is used to combine the pixel values to a final
color. Often a non-uniform sampling grid or centroid sampling [AHH08, p. 128] is used to
improve on the coverage estimate. Due to its quality, simplicity, and efficiency, MSAA-based
approaches have become an industry standard [Wan+15; Cra+15]. However, in the simplest
form, these approaches fail in regions with transparencies, shadows and high-frequency color
changes, which can be highly critical for perception. In addition, MSAA approaches have
limits when used in combination with methodologies such as deferred shading.

Shading for high-quality 3D scenes becomes more and more complex, and visually appealing
scenes often contain multiple light sources. However, when using traditional forward rendering
approaches, hidden surfaces cause wasted shading operations [HH04]. In contrast to forward
rendering, deferred shading makes it possible to perform shading computations only on the
visible surfaces. This widely used rendering technique decouples visibility computation from
shading by rendering different components (depth, normals, albedo, textures, etc.) of the
scene into a discrete G-buffer. Afterwards, only the visible surfaces in the G-Buffer become
the target for complex shading and lighting operations in a second render pass. However,
once a scene has been rasterized into a discrete G-buffer, it becomes impossible to resolve
finer geometric details. The process of combining multiple samples for AA happens after
accumulation [HH04]. This makes it more challenging to compute coverage information and
the number of touching primitives for each pixel.

In order to overcome this limitation and to allow for decoupling shading rate from geometric
sampling rate, the technique by Crassin et al. [Cra+15] uses the rasterization pipeline to
generate a compact, pre-filtered geometric representation that is stored for each pixel. Wang
et al. [Wan+15] show that these consolidated surface coverage and a single decoupled depth
value can be used for an optimized management for traditional forward rasterization as well.
Still, all MSAA methods compute a single or a limited number of shaded samples and are
usually tied to a fix resolution of the coverage information. Hence, several other strategies
using temporally jittered pixel locations [HA90] and pseudo-random patterns [Jim+11] have
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2x 4x 8x 8x

ATI NVIDIA

Figure 42: Different MSAA sampling patterns per pixel at varying sampling rates on ATI and NVIDIA
hardware. The shading sample is marked as a red dot, the gray samples are positional
samples. The latter samples are only used to determine the geometries coverage. This
potentially reduces costly shading operations for those samples. Note that these patterns
are repeated/replicated for each pixel, but must be considered as parts in a larger pixel
grid. Image after Akenine-Möller [AHH08, p. 129]

been developed. A general overview of those AA approaches can be found in work by Maule
et al. [Mau+12]. Also, a more advanced version of deferred shading, namely deferred lighting

[Eng09] is possible, due to the processing power of modern GPUs.

Deferred lighting decouples the costly lighting integrations. First, the 3D scene is rendered
into a G-buffer. A second pass computes the diffuse and specular irradiance values for each
visible surface and stores it to lighting buffers. Finally, in a third render pass, the scene’s
geometry is rasterized again. This time, lighting information can be read back from the
lighting buffers. In this way MSAA becomes possible for the last pass [Eng09]. However,
deferred lighting makes it necessary to render the scene geometry twice. Also, handling the
lighting buffers, which separate diffuse and specular irradiance values, becomes more complex.

progressive sampling Ideally, sample generation can also be driven progressively
using perceptual implications in order to control how to adapt sampling based on perceptual
requirements. However, this makes it necessary to (efficiently) resample an image in areas
that matter most. Unfortunately, an efficient random (re-)sampling of individual pixels is
hardly possible with rasterization, which is always tied to a fixed resolution. Better suited for
such perception-driven rendering systems are ray-based methods. An early approach involving
such perceptual aspects was introduced by Mitchell et al. [Mit87]. After initially sampling
the image plane with n spp, a simple error metric using contrast thresholds for the RGB
color values is used to guide a resampling process. Given the n samples, a contrast for each
intensity I of each color channel r,g, and b is computed as simple Michelson contrast:

C = Imax − Imin
Imax + Imin

Now, these three contrasts (for r,g,b) are each tested against separate thresholds. Mitchell et
al. use r = 0.4, g = 0.3 and b = 0.6 respectively. Supersampling is only performed if one of
the contrasts exceeds the thresholds. Please note that this test is meant to take into account
the perceptual distribution of the photosensitive cells. “Because green-sensitive cone cells are

far more common in the human retina, sensitivity to green-colored noise is twice as great as
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to red-colored noise and four times greater than to blue colored noise” [Mit87] (Section 3.1.4).
Painter and Sloan [PS89] presented hierarchical adaptive stochastic sampling for ray tracing
that works in a progressive manner. Confidence and coverage-based stopping criteria are used
to control sampling. By using a progressively updated mean values of the samples also the
size of the confidence interval can be adapted to stop drawing samples if these are considered
to be below a supra-threshold for the user. Based on this approach Meyer et al. [ML92] focus
on the change in the acuity of color perception with increasing eccentricities. Here, images
are transformed into the frequency domain and a custom LMS color space is used to account
for the different densities of the photosensitive cells and the color opponent processing in
the HVS (Section 3.1.4). Along similar lines, Bolin and Meyer [BM95] use a ray tracer that
inspects images in the frequency domain. It is coupled to an adaptive quadtree in image
space and a simple vision model, that controls where new rays are cast by accounting for
the perception of colors and frequency of the content within each image block (Section 3.1.4).
Later, Bolin and Meyer [BM98] have extended their work by developing a more elaborate
adaptive sampling algorithm, based on a simplified model of Sarnoff’s VDM (Section 3.2).

A more modern approaches by Jin et al. [Jin+09] propose an adaptive supersampling
scheme for efficient ray tracing on many-core architectures such as GPUs. This system uses
subpixel tests for geometric attributes, color and contrast gradients between adjacent pixels.
When discordance is found for at least one of these measurements, the subpixel is scheduled
for further sampling. Here a similar approach to Mitchel [Mit87] is used, testing the individ-
ual color channels against separate thresholds (Section 3.1.4). However, these thresholds are
scaled by a factor computed from the geometric attributes in order to further increase control
over the super-sampling process. Shevtsov et al. [SLR10] propose a SIMD-friendly adaptive
sampling scheme for packet-based ray tracing, where a three-pass architecture is described.
After an initial sampling step, a discontinuity detection performs a pair-wise computation of
gradients based on luminance or per color channel, again similar to Mitchel [Mit87].

Unfortunately, efficient (re-)sampling of individual pixels is hardly possible using rasteriza-
tion and less interesting due to the raw processing power of modern rasterization pipelines.
Only a few systems allow for adaptive supersampling using rasterization. One of those ap-
proaches is realized by Perrson [Per07]. As MSAA does only shade one spp along the geometric
seams it can, for example, fail for specular reflections on bump mapped surfaces. Such inte-

rior surfaces effects are solely computed in the pixel shader. Perrson makes use of gradient
functions to decide if a pixel needs more shading samples selectively. In this case, those are
computed and averaged inside the pixel shader. Siegl et al. [Sie+13] apply multiple render
passes. First, only the simple triangles, i.e. those that do not contain challenging appearance
properties (e.g. specular highlights), are rendered using MSAA. Afterward, FSAA is used in
a second render pass in order to improve the quality for the remaining challenging surfaces.
However, at this point, both approaches are solely function-driven and do not consider per-
ceptual implications to further improve image quality. Most recently, a hybrid system called
Adaptive Temporal Anti-aliasing (ATAA) [Mar+18] has been proposed that combines the
speed of rasterization with the flexibility of ray tracing. After initially rasterizing the frame
and by using information from the previous frame, critical discontinuities are detected in im-
age space. Now, to locally increase the sampling densities, rays are cast for those challenging
regions. Note, that this approach exploits Temporal Coherence (TC) (Section 4.3). Also,
the authors show that post-processing techniques can be applied for image regions that were
occluded in the previous frame (Section 4.4).
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insights What should become apparent from the latest related work, is that the meth-
ods for AA in real-time rendering have started to employ many strategies simultaneously
[Pet15; Ped16]. This thesis argues that even novel approaches such as ATAA can further be
improved by considering perceptual limitations. Likewise, the availability of tailored hard-
ware accelerated ray tracing [Sti18; Ima19] and the increase in sampling flexibility will drive
the development of novel AA methodologies. Novel techniques to distribute computational
resources will aid progressive sampling techniques.

4.2.2 Selective Rendering

Methods from the field of selective rendering take perceptual implications of the generated
image into account in order to put more computational effort into important regions of an
image. However, in contrast to the methods introduced in the previous section, selective ren-
dering methods look at the “bigger picture”. Here, perception-critical regions are determined
by detecting salient features, such as regions of high-contrast, noise or higher-level features.

low-level perception for production rendering Selective rendering is of-
ten used as a flexible rendering method in stochastic ray-based renderers in order to steer
the number of sample-per-pixel (spp) or recursion depth. A common goal is to obtain an
image that is perceptually indistinguishable from a fully converged, but expensive, rendering
solution.

For production rendering, the method by Walter [Wal98, p. 87ff] controls the kernel size in
a photon tracing framework by considering luminance and chrominance influences on percep-
tion. Guo [Guo98] developed a progressive refinement algorithm for Monte-Carlo rendering
that stops refining image blocks based on a CSF model (Section 3.1.3). In the work by Fer-
werda et al. [Fer+96], the authors take a closer look at the eye’s adaptation process. By
performing a psychophysical experiment, they developed a model to display and combine
the results of GI simulations at different illumination levels. The work by Myszkowski et
al. [Mys98; Hab+01] uses the Daly’s Visible Differences Predictor (VDP) (Section 3.2.1) as
an image metric to selectively stop rendering in a Monte-Carlo path tracer for GI rendering.
Farrugia et al. [FP04] make use of a perceptually inspired metric based on the adaptation of
the eye in order to progressively render and stop GI computation earlier when the perceptual
quality is sufficient. Yu et al. [Yu+09] analyze the influence of visibility approximations on
the perception of GI renderings. They also conduct a study on the perceived realism of scenes
rendered with imperfect visibility, (directional) ambient occlusion and another study where
renderings using visibility approximations are compared to reference renderings. The authors
conclude that using appropriate visibility, approximations can lead to results that are per-
ceived as realistic despite the fact that individual differences between the approximate and
reference renderings are visible in a direct comparison. Dachsbacher [Dac11] shows how the
analysis of visibility configurations can be used for adapting the sampling process in ray trac-
ing, improving perceptually motivated LoD approaches in real-time rendering and extending
visibility classifications in radiosity methods.
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high-level perception and attention for production rendering Mod-
els of visual attention (Section 3.3) can also be used to improve the quality of GI renderings
for animations and dynamic scenes [Mys02]. As rendering quality can be decreased for moving
objects or patterns, Myszkowski et al. [Mys02] use temporal reprojection alongside a tem-
poral extension of the VDP (Section 3.2.1) called Animation Quality Metric (AQM), which
accounts for motion when computing new samples. Jarabo et al. [Jar+12] take a closer look at
the importance of accurate lighting and its effect on perceived realism when rendering crowds.
They employ an approximation based on spherical harmonics, which is used to compute a
temporal interpolation of the full radiance transfer matrix. The essential factors influencing
scene fidelity found by the authors are geometric complexity, the presence or absence of color,
the movement of individual crowd entities as well as the movement of the crowd as a whole;
both known causes for crowding (Section 2.2.4).

The perceptual importance of the final image is often approximated by saliency extracted
from previews rendered at lower quality, where the initial image estimate requires at least
one spp. For decreased computation times, Longhurst et al. [LDC06] present a method that
computes such a preview frame by rasterization. This frame is used to extract saliency in-
cluding different low-level features such as edges, contrasts, motion, depth, color discrepancy,
and scene habituation. The generated saliency map is used to steer the number of samples
distributed on each pixel of the image. However, this way the approach fails when a high
(re-)sampling weight is needed for phenomena, such as caustics. Such optical phenomena
arise when light beams are focused on specific scene elements. Locally focused light can ei-
ther emerge from the refraction of light beams in transparent objects, or, from bundles of
light beams that are reflected back in the scene, e.g. emerging from convex glossy surfaces.
Computing such phenomena with rasterization is very challenging, because the global light
transport between objects in the scene must be considered. Hence, such effects are missing
in the preview frame and cannot be considered for the saliency map. In contrast, Cater et
al. [CCW03] and Sundstedt et al. [Sun+05] do not focus on low-level features such as edges
and contrast but selectively render task-relevant salient objects and features in high-quality
and reduce rendering quality for the remaining parts by adapting the resolution or the num-
ber of rays per pixel. In their studies the subjects were not able to distinguish high-fidelity
rendering from selective rendering results. The experiments demonstrate the suitability of
perceptual rendering if selective attention can be predicted.

One aspect of a saliency computation using attentional models (Section 3.3) is that move-
ment in the background of a scene may substantially influence how humans perceive fore-
ground objects, for example when objects start moving in the midst of a sequence. Yee et
al. [YPG01] use a model of visual attention for moving objects in order to accelerate render-
ing of animations. To this end, they introduce a method to compute a spatiotemporal error
tolerance map, based on a velocity-dependent CSF. This CSF is augmented by a top-down
model of visual attention (Section 3.3.2) to account for the tracking behavior of the eye when
guiding the sampling of a GI renderer. Another system that makes use of attentional models
has been developed by Chalmers et al. [CDS06]. The authors investigate several ideas such
as importance-based sampling for on-screen-distractors, for example sound-emitting objects.
Hasic et al. [HCS10] show the importance of visual tasks and motion for selective rendering,
as both attract the viewer’s attention. They present various types of movements with varied
accelerations in a psychophysical experiment to a group of subjects.
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Figure 43: Sampling adaptation method by Galea et al. [GDS14]. A deferred rendering system de-
couples direct and indirect illumination components. A saliency map (a) is computed and
sparsely evaluated (b) to accelerate the computation of the indirect illumination. Inpaint-
ing computes a dense representation of indirect lighting that is combined with the direct
lighting for the final image. Image from Galea et al. [GDS14]

interactive rendering Besides its extensive use, a disadvantage of rasterization
over ray-based approaches is that, for efficiency, rasterization and the corresponding shading
pipelines are traditionally tied to a fix resolution. In recent years, several approaches have
been introduced that allow formulti-rate andmulti-resolution shading: an enabling technology
for perception-driven selective rendering systems using rasterization. Clarberg et al. [Cla+14]
propose a modification to current rendering pipelines, which enables varying shading rates
on a per-patch basis to reuse shading results within tessellated primitives. He et al. [HGF14]
present a system that uses a coarse grid in order to reuse shading samples within grid cells.
Vaidyanathan et al. [Vai+14] introduce coarse pixels and tiles, which allow shading samples
to be reused in a multi-level grid-like fashion. NVIDIA GPUs support a multi-resolution
shading approach, drawing different resolutions within a single pass [Ree15]. The latest
NVIDIA GPUs generation allows also for multi-rate shading. NVIDIA calls this extension
Variable Rate Shading (VRS) or NVIDIA Adaptive Shading (NAS) [LJ19]. Essentially, pixel
shading operations can be applied to blocks of pixels. Here, similar to MSAA, the visibility
samples that are computed in the full resolution are used to improve the image quality when
interpolating coarser shading samples. Even though, as presented in the next section, these
techniques are nowadays widely used for gaze-contingent rendering, they are rarely used for
solely perceptual model-based approaches that do no consider active inputs. An example
of such a system has been proposed by Galea et al. [GDS14]. They describe a GPU-based
selective rendering algorithm for high-quality rasterization. Their sparse sampling approach
employs a saliency model in order to evaluate only a set of sparse sample locations which are
used to compute an indirect lighting solution that is perceptually equivalent to full sampling.
An inpainting algorithm is used to reconstruct a dense representation of the indirect lighting
component, which is then combined with direct lighting in order to produce the final image
(Figure 43).

Ray tracing systems are often solely used to get the highest image quality for production
rendering, even though interactive and real-time frame rates are achievable even for complex
scenes [ALK12; PKC15]. Still, ray-based approaches do not yet reach the performance and
convenience of rasterization when it comes to real-time rendering. In order to meet perfor-
mance requirements, a hybrid approach for Head-Mounted Displays (HMDs) was introduced
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by Pohl et al. [Poh+15]. Their system deploys rasterization combined with ray tracing on
the CPU in order to reduce the sampling rate for areas outside the lens’s center. This way
they can adapt rendering in HMDs by exploiting the lens astigmatism. Lens astigmatism is a
property of an optical system that leads to a decrease in image quality towards outer regions.
Also, all of the aforementioned approaches treat the HVS as a single-eyed system, though
healthy humans are capable of stereopsis due to binocular vision. Rendering images for both
eyes independently doubles the computational effort. The ray tracing approach by Lo et
al. [Lo+10] exploits perceptual limits that arise from the brain being able to fuse information
from both eyes separately. They show that the resolution could be reduced by a factor of six
of one of the images of a stereo pair without being noticed by the viewer. The authors also
observed that shadow and disparity cues perform equally well when judging depth. Currently
dedicated hardware for ray tracing, such as NVIDIA RTX [Sti18], is becoming available. Ray
tracing is integrated into high-performance rendering pipelines [Pha18; Ben19]. Hence, ray
tracing could become the primary algorithm to compute visibility and light transport, even
for interactive rendering.

multi-modal interaction Instead of only accounting for visual perception, several
selective rendering systems have been introduced that also consider multi-modal aspects.
A survey by Hulusić et al. [Hul+12] gives information on the perceptual and cross-modal
influences that have to be considered in the course of generating spatialized sound. Harvey
et al. [Har+16] investigate the effect of spatialized directional sound on the visual attention
of a user towards certain objects contained in the rendered imagery. Hulusić et al. [Hul+09]
show that the beat-rate of an audio cue has a substantial impact on viewer perception of a
video and video frame rate, allowing for the manipulation of the temporal visual perception.
Bonneel et al. [Bon+10] analyze how the auditory and visual LoD influence the perceived
quality of audio-visual rendering methods. They show strong interactions between auditory
and visual LoDs in the process of material similarity perception.

insights In conclusion, the current state-of-the-art shows that perception-based approach-
es that rely on models of the HVS have traditionally been used for stochastic ray tracing and
in GI computation, for example to adapt sampling of path tracing. Due to ever-increasing pro-
cessing powers, these methods are on the brink of appearing in real-time ray tracing systems
as well. Moreover, and in contrast to methods targeting the subpixel features, deferred render-
ing systems and developments on multi-resolution shading allow efficient selective rendering
using rasterization. Those methods will be further improved to enhance the visual quality
and performance in consumer level Virtual Reality (VR) and Augmented Reality (AR) de-
vices. Along similar lines, further exploiting other perceptual channels and their cross-modal
interaction will continue to improve presence in virtual environments and help to increase
the overall performance of modern rendering systems.

4.2.3 Gaze-contingent Methods

Active measures of a user’s gaze allows to exploit more limitations of visual perception. Adap-
tation of the sampling and shading quality is an important aspect of gaze-contingent rendering
systems. Early works in gaze-contingent rendering primarily observed the general detectabil-
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ity and influence of a dynamic quality degradation on visual performance [PP99; PLN01;
Nik+04; Dor+06]. Supported by the aforementioned findings, a large body of work focuses
on gaze-contingent techniques that exploit the limitations of the human eye by omitting de-
tails in the peripheral visual field that are largely imperceptible. The common goal of such
techniques is to exploit the spatial fall-off of the visual acuity (Section 2.2.2). This dynamic
adaptation of rendering based on the user’s retinal capabilities by employing gaze-contingent
methods is also known as foveated rendering. Often both terminologies, gaze-contingent and
foveated rendering, are used interchangeably. However, strictly speaking, the term foveated
rendering places a specific focus on adapting the sampling to the retinal capabilities, ideally
so that the users do not notice the adaptation. Gaze-contingent rendering, on the other hand,
has a broader scope and includes a greater field of techniques, such as methods that adapt the
LoD of polygonal representations (Section 4.1.3). In the following, the presented approaches
are structured based on the used rendering approach – rasterization, ray tracing or hybrid
approaches.

rasterization-based approaches An early rasterization-based system was pre-
sented by Guenter et al. [Gue+12]. It simulates the acuity fall-off by rendering three nested
layers around the PoR of increasing angular diameter and decreasing resolution. These layers
are blended in order to obtain the final image (Figure 44). For the decrease in resolution, a
model based on the CMF is employed (Section 3.1.2). This technique achieves impressive shad-
ing reductions but also introduces overheads by repeating the rasterization for each nested
layer. However, a continuous adaptation of sampling rates and shading complexity over the
image plane for rasterization requires efficient multi-rate and multi-resolution shading. To this
end, Vaidyanathan et al. [Vai+14] tested their approach for multi-rate shading in a foveated
rendering prototype by using a simplified acuity model (Section 4.2.2). Assuming a fix PoR
and a constant radial acuity function, shading is computed at full-resolution in the foveal
region and at a lower rate towards the periphery. A practical implementation of multi-rate
shading in the Source EngineTM by the Valve Corporation [Vla16] showed that in this way
rendering performance can be increased by 10-15%. Supported by these developments, the
work by Stengel et al. [Ste+16] presents a foveated rendering methodology for a deferred
shading pipeline (Figure 45). While fully sampling the G-buffer, the actual shaded fragments
are selected by a stochastic sampling pattern that is controlled by the user’s gaze and the
gaze velocity. The authors also point out the importance of contrast and brightness percep-
tion by specifically shading samples that have a high saliency or expose high contrasts. For
such regions, contrast sensitivity and thus visual acuity remain to be high (Section 2.2.2).
Finally, an image reconstruction method based on Pull-Push Interpolation (Section 4.1.1) al-
lows images to be generated that are perceptually equal to images rendered with full per-pixel
shading but at significantly reduced shading costs – the most computationally demanding
part of modern image synthesis algorithms. Later that year, a framework by NVIDIA was
introduced by Patney et al. [Pat+16b]. They carefully investigate the impact of several ef-
fects induced by quality degeneration in the periphery by distorting images. The result of
these preliminary studies led them to develop a foveated renderer with MSAA as well as a
saccade-aware Temporal Anti-Aliasing (TAA) [Kar14] strategy in order to improve temporal
stability and suppress aliasing artifacts critical to peripheral vision (Figure 46). This system
does not attempt to detect and individually create more shaded samples in salient image
regions, such as regions with high contrast, but rather provides a post-processing approach
in order to boost peripheral contrasts and thus counteracts the losses of contrast sensitivity
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Figure 44: Foveated 3D Graphics by Guenter et al. [Gue+12]. Rasterization is performed at three
different resolutions (d) according to acuity fall-off across the visual field. This approach
reduces the number of shaded pixels. The results are then blended together (b). The com-
bined image (c) approximates acuity fall-off and is faster to compute than traditional
full-resolution rendering. Image from Guenter et al. [Gue+12]

(a) (b) (d)

(c)

Figure 45: Gaze-contingent adaptive sampling by Stengel et al. [Ste+16]. Incorporating visual cues
such as acuity, eye motion, adaptation and contrast, a perceptually-adaptive sampling
pattern is computed and used for sparse shading (a). Fast image interpolation (b) achieves
the same perceived quality at a fraction of the costs of shading each fragment. The resulting
image contains high detail in the foveal region (c) and reduced detail in the periphery (d).
Image from Stengel et al. [Ste+16]
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Figure 46: Image from the foveated renderer by
Patney et al. [Pat+16b] This system
uses multi-resolution shading with qual-
ity degradation as a result in the periph-
eral visual field in preference to comput-
ing efficiency. Image from Patney et al.

[Pat+16b]

Figure 47: The foveated renderer by Fujita
and Harrada [FH14] uses a pre-
computed Voronoi pattern (top)
to reconstruct samples and thus
quality degradation in the vi-
sual periphery (bottom). Image

from Fujita and Harrada [FH14]

for peripheral vision. However, the method by Patney et al. is constrained by GPU design,
thus it only offers a theoretical saving rather than actual performance (frame rates) benefits
[Sun+17].

Meng et al. [Men+18] presented a log-space transform which synthesizes images in a
foveated fashion. The system uses TAA in order to increase temporal stability. The log-space
transform reduces shading by transforming and retransforming the G-Buffer of a deferred
rendering pipeline (Figure 48). Although the results presented are impressive, their method
still suffers from temporal artifacts and view-dependent inconsistencies for glossy specular
reflections. All of these methods require at least either the visibility computations at the full
resolution to be performed which helps to reduce shading calculations, or the scene needs to
be rendered multiple times – admittedly at varying resolutions. What also becomes apparent
here is that methods either attempt to detect and increase shading fidelity for salient parts
in the image (such as Stengel et al. [Ste+16]), or rely on post-processing techniques (such
as Patney et al. [Pat+16a] and Meng et al. [Men+18]) in order to conceal artifacts in the
peripheral visual field. All methods rely on TC methods to increase the temporal stability in
the periphery. TC methods are discussed in the next Section 4.3.

ray-based approaches While rendering to HMDs is mainly based on rasterization
due to performance considerations, ray tracing has several advantages when it comes to stereo
rendering, wide Fields of View (FoVs), correcting chromatic aberrations and low latency
rendering [Hun15]. Especially important for perception-driven sampling strategies is the ray
tracing’s ability to distribute samples freely on the screen and the inherent possibility of
creating high-quality renderings, crucial to achieving a good presence in VR worlds [Toc16,
ch. 3.3]. However, ray tracing has been mainly thwarted by its own performance as it is
challenging to achieve the same speed as rasterization without specific hardware acceleration,
such as NVIDIA RTX [Sti18].
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Figure 48: The work by Meng et al. [Men+18] transforms and retransforms a regular G-buffer from a
deferred shading pipeline to a kernel log-space to allow for more efficient shading compu-
tations. Image adapted from Meng et al. [Men+18]

An early system for ray-based volume rendering that adapts sampling using eye tracking
was developed by Levoy and Whitaker [LW90]. Here, the number of rays cast through the
image plane and the number of samples drawn along each ray are adapted based on the
tracking input. In order to reconstruct dense images from the potentially sparsely sampled
image plane, this work adapts masks and filtering kernels to the eccentricity. An approach
introduced in work by Murphy et al. [MD07] uses a precomputed mesh specifying ray locations
for sampling and increasing the sampling density near object silhouettes and regions with high
contrast. However, this method cannot accelerate rendering and does not reproject samples
from one frame to the next in order to improve image quality. Also, handling the mesh is
computationally involved. Another approach to foveated ray tracing was presented in the work
by Fujita and Harrada [FH14]. A precomputed sampling pattern together with a k Nearest-
Neighbors (kNN) scheme is used to reconstruct the image from sparse samples (Figure 47).
However, the proposed system shows artifacts and does not consider the eye’s sensitivity
to contrasts. In addition, there is no user study. Other recent developments for real-time
ray tracing are presented in the system Hierarchical Visibility for Virtual Reality (HVVR)
by Hunt et al. [HMN18; Hun17]. The authors present a hierarchical tile-based rendering
approach on the CPU in combination with a fast ray caster on the GPU. Although currently
not implemented to its full extent nor adequately evaluated regarding perceptual implications,
it uses the ideas from Patney et al. [Pat+16b], boosting image contrasts in peripheral vision
in its foveated mode.

Foveation methods can also be used to accelerate high-quality rendering on large-high reso-
lution display walls [Rot+15]. In this system, some elements of the method that is presented
in Chapter 5 were integrated to guide the sampling process of a path tracer. However, this
work by Roth et al. uses a hand-held device in order to select the region that needs the
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highest visual acuity as the system is not responsive enough to be used with eye or head
tracking. Another system that attempts to use foveated rendering for GI rendering in HMDs
is presented in the work by Koskela et al. [Kos+17]. Most notable in this work is that the
authors use the inversion method in order to derive a Probability Density Function (PDF)
from the visual acuity model by Reddy (Section 3.1.2). This PDF enables to generate acuity-
dependent samples in a stochastic fashion. However, their current GI rendering system is far
too unresponsive. Hence, users notice the quality adaption. Nonetheless, the accompanying
preliminary study shows that users preferred this foveated mode over sampling with random
patterns.

All of the approaches so far have only considered the amount foveation, i.e. the loss of
resolution for peripheral vision, as a function of the spatial resolution of the different stimuli.
However, the visibility of a stimulus is highly affected by its luminance and its contrast. Most
recently, Tursun et al. [Tur+19] introduced a foveated rendering system that considers both
features in order to derive a more precise predictor of the foveated rendering parameters. To
this end, a band-limited contrast is computed in an image pyramid. Next, a custom CSF is
described to account for the degradation of visual performance concerning a stimulis’ contrast
at increasing eccentricities. Here, also a simple model for visual masking is incorporated.
Eventually, this process is used to determine an estimator for an eccentricity and image
patch-dependent resolution reduction factor. For validity, the model is tested with different
rendering techniques and shading models. For foveated ray tracing, it is reported that this
method allows for a decrease of 53% of primary rays. In comparison, to stay below the
detection threshold with a standard foveated rendering without using the luminance and
contrast-aware model, the authors report a reduction of 45%. Potentially higher reduction
rates are possible if TC is also taken into consideration.

hybrid approaches Hybrid approaches attempt to combine rasterization and ray trac-
ing in a single system. Initially, Pohl et al. [Poh+15] presented such a system in order to exploit
lens astigmatism in HMDs (Section 4.2.2). Later, Pohl et al. [PZB16] extended their system
to also include eye tracking input. Most recently, Friston et al. [FRS19] propose perceptual

rasterization, another hybrid approach to foveated rendering. Essentially, images are synthe-
sized by warping primitives and their convex hulls, the so-called primitive-pixel bounds, in
a geometry shader. This warping is performed according to foveation parameters and the
requirements of the HMD. In the fragment shader a call is generated for all fragments that
reside in the primitive-pixel bounds. Finally, a ray casting step in this shader allows for inter-
secting the respective warped primitives. Also, this allows for a rolling rasterization in order
to update HMDs with rolling displays, such as the Oculus Rift DK2. This way each column
of pixels can be updated at a different point in time. While this approach is very promising,
implementation is not as straightforward as regular ray tracing. In order to produce appeal-
ing images, for secondary effects, the same techniques as performed for rasterization need to
be applied. Also, due to the inherent overhead, the method does perform worse than regular
rasterization in the full resolution. This is a common challenge for gaze-contingent rendering
systems (Chapter 7).

beyond the ordinary On the other end, researchers have started to use gaze-contingent
approaches for different rendering and data methodologies. One example in this field is the
rendering of lightfield data to respective displays as performed by Sun et al. [Sun+17]. While



4.3 temporal coherence 83

lightfields commonly support focal cues, they are usually not processed adaptively to the
retinal capabilities. In the work by Sun et al., a lightfield is sampled with a function that ac-
counts for eccentricity. This process is implemented using a GPU-based ray tracer. Finally, a
4D Gaussian radial basis function is used to reconstruct a dense dataset from sparse samples.
This way, frame times and sampling rates can be reduced significantly.

insights Due to vast improvements in eye tracking solutions integrated into modern
HMDs, research on gaze-contingent rendering is gaining increasing popularity. Although ras-
terization makes it inherently difficult to sample individual patterns in accordance with acuity
models, advances such as deferred rendering and multi-resolution shading are already show-
ing their potential in order to increase rendering performance. “The question for the future

is: How can locally changing rendering and shading quality make the most effective use of

perceptual limits to produce photo-realistic scenes with the required flexibility? ” [Wei+17].
The capability to perform efficient low-latency rendering has been demonstrated for both
main rendering strategies, rasterization, and ray tracing [FRS19; Fri+16]. Although raster-
ization methods are currently faster on GPUs, ray tracing does provide a higher degree of
flexibility. Hybrid approaches are promising but introduce additional burdens and limitations.
Accordingly, ray-based methods could possibly become the first choice for performance critical
real-time VR rendering in head-mounted devices [Hun15; Fri+16; HMN18].

In the course of this thesis, different foveated ray tracing systems for HMDs have been
developed. The developments presented in Chapter 6 have used reprojection that exploits
TC in order to increase the sampling density and to omit expensive image reconstruction
techniques. To this end, the reprojection information is combined into a smoothly refined
image allowing for TAA, where parts of the image with a high saliency are adaptively re-
sampled. This results in images that are perceptually equal to images rendered with full ray
tracing but with a significantly reduced number of traced rays. Chapter 7 presents a more
“traditional” foveated rendering framework that uses ray tracing and tightly integrates image
reconstruction and gaze-contingent DoF in order to filter rendering artifacts in the peripheral
visual field.

4.3 temporal coherence

While traditionally rendering approaches focus on improving the performance of each ren-
dered image, individually, exploiting TC between subsequent frames is a valuable tool to
meet perceptual and performance requirements. According to Scherzer et al. [SYM10] typ-
ically more than 90% of points on a surface remain visible from one frame to the next. A
color-coded visualization of the number of pixels that can be reused between subsequent
frames is presented in Figure 49. Reusing this information by exploiting its TC thus provides
great potential for optimizing rendering and sampling techniques. Hence, TC methods have
been around for over four decades [SSS74]. This chapter gives an overview of methods that
exploit TC in order to improve sampling. Here, the survey by Scherzer et al. [SYM10] on TC
methods forms an initial basis for this discussion.
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Figure 49: Tree different scenes with camera (a) and object motion (c, e). The corresponding images
(b, d, and f) show the amount of temporal coherence between subsequent frames. Samples
that can be reused by exploiting temporal coherence are colored green. Samples that needed
re-computation are colored red. Image from Nehab et al. [NSI06]

4.3.1 General Approaches

Generally, TC approaches can be categorized into image space and world space methods.
Image space methods usually rely on a viewport-sized off-screen buffer. This buffer is used to
stored information of the previous frame(s) and accessed in the current frame to aid its visual
quality. This is referred to as backward projection or reverse re-projection. The other type of
approach projects samples forward in time based on scene motion from the current frame to
the buffer that will become the basis for the computation of the next frame. Consequently,
this is referred to as forward re-projection.

world space caching In addition to the general image space approaches, samples
can also be stored in world space. One early world space approach is the Holodeck Ray Cache
[WS99]. It caches shaded samples, the associated rays and their hitpoints to a file that can be
index using ray beams. These ray beams are computed using a raster on the scene’s AABB. Fi-
nally, new views are constructed by projecting the cached samples to image space. The render
cache by Walter et al. [WDP99] also stores shaded samples as points in 3D space. This raw
point set is projected to a new perspective. Occlusions are resolved using a simple heuristic on
small pixel neighborhoods. Due to its simplicity, more efficient implementations for the GPU
have been introduced in the following years [TL05; Vel+06]. The Tapestry system [SS00]
by Simmons and Séquin uses a dynamic 3D triangle mesh with vertices corresponding to
the sample points. This triangle mesh is based on a dynamically updated and incrementally
recentered mesh of a unit sphere that is centered at the viewport. Tole et al. [Tol+02] use
a mesh in order to cache irradiance values when computing GI. However, using meshes does
not eliminate all the artifacts. Geometric edges, for example, have to be reconstructed using
a large number of point samples. Besides, these techniques either require dense sampling or
higher order representations such as Voronoi regions or a spherical Delaunay mesh in order to
reconstruct a full image. This makes them computationally demanding. Irradiance caching,
as introduced by Ward et al. [WRC88] or radiance caching, e.g. by Krivanek et al. [Kri+05],
attempt to reuse lighting computations in GI rendering processes. These approaches store
the radiance or irradiance values in acceleration structures such as octrees. The system by
Dietrich et al. [DS07] stores shaded samples in a hash map. A hash for a hit point on a surface
is computed using the primitive’s ID and a discretized spatial position using the projected
pixel footprint. Shaded samples are combined with old samples to obtain the final pixel color.
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World space methods have distinct advantages over image space methods. Having a com-
plete 3D representation of the scene at hand allows for storing samples even for those parts
of the scene that are occluded in image space. Moreover, samples can be reused over multiple
frames. Having a single buffer in image space to store only the previous frame(s) limits a cache
entry’s live. However, due to the global nature of world space approaches, storage and pro-
cessing requirements are not negligible. Moreover, dynamic adaptive acceleration structures
in R3 are more challenging to build efficiently in a progressive manner [JSF17].

image space caching As world space sample caching has high storage and processing
requirements, it is often more efficient to directly shoot more rays, render at higher resolu-
tions or use more elaborate sampling or post-processing approaches. Hence, more lightweight
solutions that reuse samples in image space have become more appealing and are commonly
used for video games [Kar14; Lab18] and to accelerate high-quality rendering [Lab18].

The real-time reprojection cache by Nehab et al. [NSI06] describes a method to cache and
track surface information through time in image space using a single frame buffer, avoiding
complex data structures. The frame buffer stores a running estimate of shaded color values
of the past frames. By storing projection space coordinates for the previous frame as an
attribute to each vertex, the current frame’s old image space position of each fragment can
efficiently be computed using the old and new model-view and projection matrices. The old
image space position can be used to obtain a bilinearly filtered reprojected color from the
old frame. Storing additional depth information enables to discard the use of old samples
in case of (dis-)occlusions. The work by Sitthi-amorn et al. [Sit+08a] further improves this
method by developing a three pass system that does reduce branching and performs better
on modern GPUs.

While reprojection caching can be used to integrate arbitrary shader computations over
time [Sit+08b], for example to improve the quality of soft shadows [SJW07], its most straight-
forward use is to temporally integrate shaded color samples in order to increase the sampling
rate and to increase image stability. Commonly these techniques are known as TAA methods.
Yang et al. [Yan+09] take a close look at the running estimate that is used to integrated
samples over time, as this computation is prone to over-blurring [SYM10, p. 11]. Some of the
ideas by Yang et al. are extended in Chapter 6 in order to increase the sampling density
in the peripheral visual field in the proposed foveated rendering system. In addition, some
considerations for designing a running estimate are presented in Appendix A.3.

hybrid approaches A different type of techniques that exploits TC uses image-based
proxies, for example billboards, in order to represent complex geometry in a scene by render-
ing more simple textured polygons. These textures on the polygons are previously computed
samples, usually obtained from image space [Sha+96; Xav+01; Déc+03]. Hence, these meth-
ods can also be seen as a form of reverse re-projection applied to individual parts of a scene
[SYM10, p. 3]. Alternatively, methods also attempt to partition the entire scene in different
layers [LS97] or augment the entire frame with depth information rendering layered-depth

images [Sha+98]. Image space methods using forward projection, such as the one by Qu et
al. [Qu+00], often use image warping to transform the output of the current frame to a new
view. However, as this process can leave holes due to (dis-)occlusion, the authors use selective
ray casting to computed missing information. As presented in the next section, similar tech-
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niques have been used to accelerate stereo rendering or to artificially increase frame rates by
inter-frame interpolation. Moreover, the gaze-contingent renderer presented in Chapter 6 uses
a coarse mesh to warp the old image to a new view. Other methods attempt to discard the
concept of frames completely [Bis+94; Day+05; Fri+16]. In these works, pixels are updated
progressively and independent from each other. Reprojection and adaptive reconstruction are
used to provide better images and more sensible output. Such frameless rendering approaches
will become an interesting field of research for novel VR rendering pipelines.

insights Exploiting TC in image space has become a central element in many modern
interactive rendering pipelines [Kar14; Jim17]. Due to their complexity and the increasing
processing power of modern GPUs, world space methods have not seen much attention lately.
TC in image space main advantage is their speed and low storage requirements. Hence, they
are well suited for performance critical VR and AR pipelines.

4.3.2 Perception-driven Approaches

A considerable body of work uses TC methods in perception-driven rendering pipelines. For
example, systems that selectively sample the image plane based on perceptual models or
direct measurements, e.g. using eye trackers, likely exhibit noise and temporal flickering in
different regions of the image. If this is the case, TC methods can help to increase image
quality and provide more stable and steady image sequences. Especially peripheral vision
is highly sensitive to motion (Section 3.1.7). Hence, a variety of gaze-contingent rendering
systems integrate some form of TAA (Section 4.2.3). However, TC methods have been used
in numerous ways in order to aid visual perception. Methods also attempt to accelerate
multi-view computations or artificially increase the dynamic range and palette as well as the
temporal or spatial resolution.

stereo rendering Up to now, the majority of the presented work treats the HVS as a
single-eyed system, though healthy humans are capable of stereopsis due to binocular vision.
Rendering images for both eyes independently doubles the computational effort. Several tech-
niques have been introduced to convert 2D images to stereo images automatically [Wei05].
These techniques are commonly used for 2D to 3D movie conversion and use, e.g., depth in-
formation that is reconstructed from the monocular video in order to produce a stereoscopic
version. However, this thesis considers computer generated images from 3D datasets. Here,
depth, as well as other scene information, are readily available. Using this information, sev-
eral approaches have been introduced that synthesize images by projection or gathering depth
samples from several views to reconstruct a new view [McM97; Bow10]. Such approaches are
especially well suited for synthesizing artificial stereo pairs. Here, the shift between the view
from one eye to the other eye is very limited. Still, any change of the viewport likely causes
occlusion to change and may lead to missing information in the synthesized view. Parts of the
scene that were not visible in one view cannot be properly reconstructed in the synthesized
view. Essentially, determining the pixel color for such parts is always an assumption on what
is right. Also, shading of an image is view-dependent to the apparent location of light bounc-
ing off the surface of an object. Highlights on highly glossy surfaces or mirror like reflections
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change with the view. Reconstruction such surfaces correctly when synthesizing new views
from an other view is very challenging.

For ray tracing, early approaches use TC to accelerate the intersection process using in-
formation from one eye in the other [AH93; Bad88]. If more object information, such as
object movement is included, the validity of samples and thus the performance can be highly
increased [AH95]. For accelerating stereo generation with rasterization, Fu et al. [FBP96]
use reprojection in combination with a hole-filling algorithm writing to a modified z-buffer.
Later, Didyk et al. [Did+10c] introduce an adaptive warping grid to forward-transform one
view into another. The adaptive process leads to areas with similar disparity being warped
with a coarse grid, where areas of differing disparity are warped using an adaptively tesselated
grid. In addition, the method exploits the fact that it can be beneficial (due to possible occlu-
sions) to change which eye to render first and synthesize one eye or the other consecutively.
Marbach [Mar09] takes a closer look at how layered rendering can be used to improve the
performance of rasterizing stereo views requiring just a single geometry pass.

increasing temporal resolution Another field that can greatly benefit from
exploiting TC is inter-frame interpolation to increase the temporal resolution of video output,
for example to counteract hold-type blur [Sch+12, p. 19]. This blur is introduced due to the
properties of the display. Opposed to CRT technology, LCDs do not flash the image but
present static images that stay on the display until the next display refresh. Moving content
presented on such screen can exhibit blur as the eye does integrate images on the retina
during eye motions. However, this blur is commonly mixed up with motion blur. Pan et al.
[PFD05] showed that only 30% of the perceived blur is a consequence motion blur, while
70% are mostly hold-type blur [Sch+12, p. 19]. This effect reduces image quality [Jan01]
and task performance [Did+10b]. Modern TVs already optimize image quality by employing
interpolation schemes [Sch+12, p. 19]. Didyk et al. [Did+10b] build upon the observation that
the HVS spreads high frequencies of one frame over succeeding blurred frames if a sufficiently
high frame rate is reached [TV05][Sch+12, p. 19]. Hence, a lower quality but very efficient
warping technique can be used to produce intra-frames – effectively a 40Hz sequence can be
transformed into a 120Hz output that is, according to an accompanying user study, barely
distinguishable from a sequence rendered at 120Hz. Another technique commonly used for
video gaming systems was presented by Andreev [And10]. In this approach, the scene is
segmented into static and dynamic elements. Static elements are forward projected using a
simple warping approach, and dynamic elements are added on top. Holes in the warped output
are filled using pixel patches from their neighborhood. Yang et al. [Yan+11] introduced a
method that interpolates a pair of consecutively rendered frames. Here information from both
frames is used to compute intermediate frames. A popular image space TC technique to hide
rendering latencies is Time Warping [MMB97]. The rendered image is shifted and distorted
just before display to compensate for orientation changes. However, due to occlusion it only
works for rotations and does not help with translations. Also, the original implementation
of Time Warping [MMB97] is synchronous. Warping is executed after new frames have been
rendered. However, in order to reduce latencies it is best to perform the warping operation
in a separate rendering thread. Nowadays, commercial HMDs make use of techniques such
as asynchronous time [BG16] and spacewarp [BHP16] to avoid skipped and repeated frames.
With asynchronous spacewarping [BHP16], re-projection is combined with a more advanced
warping technique in screen-space that takes the depth buffer into account. This way, this
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technique offers more freedoms with respect to camera translations. Still, missing information
due to (dis-)occlusions remains an issue. Most recently, Schollmeyer et al. [Sch+17b] propose
a hybrid approach to image warping for VR systems that uses a rasterized adaptive grid
coupled with a hole and dis-occlusion filling algorithm that employs ray tracing in the pixel
shader.

increasing the palette Besides increasing the temporal resolution also the palette
can be increased. If colors are presented at high framerates the eye can no longer distinguish
between individual frames and colors – the final color is mixed. This property is commonly
used in DLP projectors and in LCDs in order to increase the palette [Sch+12, p. 24]. Other
effects include using adaptation and afterimages. Bright light sources lead to a short-term
receptor bleaching - the retinal image is overexposed (Section 3.1.5). This can be used to
simulate and alter the perceived brightness and to enhance the visual experience by conveying
a higher dynamic range [RE12; Jac+15; Yu+17].

increasing sharpness Methods that exploit TC can also be used to enhance the
perception of spatial details. An approach by Didyk et al. [Did+10a] gives the impression of
higher resolution content on lower resolution displays. As the receptors of the eye integrate
the content of an image along its trajectory, a model of the Smooth Pursuit Eye Motion
(SPEM) as well as shuffled and adapted version of still images that are displayed at refresh
rates exceeding the CFF, enable to convey the impression of an increased resolution. This
work has also been extended to animation sequences by assuming that the eye movement
relates to the underlying optical flow [Tem+11]. Another system by Berthouzoz et al. [BF12]
uses the perceptual resolution increase by vibrating an entire display. Such techniques can
be a valuable tool to drive apparent display resolutions towards and beyond physical limits.
Because the HVS has a finite integration time, lower resolution frames can also be fused with
high resolution frames in order to produce the sensation of a sharp image. Researcher have
investigated techniques that render every other frame to lower resolution in order to reduce
the number of shaded pixels. Here, it can be exploited that the HVS is insensitive to both
high spatial and temporal frequencies. In order to be imperceptible one of the image should
be blurred and in the other image, high frequencies should be amplified. However, techniques
such as nonlinearity compensated smooth frame insertion [Che+05] may lead to ghosting
artifacts or contrast losses. Most recently, Temporal Resolution Multiplexing [Den+19] tries
to tackle these issues using a motion-aware filtering scheme.

insights Exploiting the temporal and spatial coherence of the views when rendering
in stereo is an obvious field where TC methods can demonstrate their benefits. Perception-
driven warping techniques are already showing their potential to hide rendering latencies for
performance critical VR and AR headsets. TC methods make it possible to artificially increase
the perceived temporal frequency, spatial resolution, dynamic range and the colorfulness of
the output. It is astonishing how insight of the human perception can be used to drive displays
and rendering outputs beyond their physical limits.
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4.4 post-processing

Post-processing techniques process the final output of a renderer in order to produce richer
and more perceptually pleasing images – usually, output at the final display resolution and
possibly including additional information such as depth-buffers. However, post-processing
techniques do in no way improve sampling. These approaches hide artifacts in a way that
they are less disturbing or ideally concealed.

hiding aliasing in traditional rendering pipelines In the previous years,
several techniques have been developed that use post-processing to filter the images in order
to reduce aliasing artifacts such as jagged edges. “The basic idea is to find discontinuities on

the image and to blur them in clever ways, in order to smooth the jagged edges.” [Jim+12]
While the concept is not new [Blo83; Ove92; IK99] these techniques experience a renais-
sance. The main reason for this is their performance. Usually, these filters process the image
in times not more than 2ms per frame [Jim+12]. In addition, these filters can be readily
used for arbitrary rendering paradigms such as deferred [HH04] or tiled rendering [BOA13].
In the last decade, several of such filtering approaches have been introduced [Jim+11; Lot11;
Jim+12]. Most of them are based on the initial idea by Reshetov, introducing Morphological
Anti-Aliasing (MLAA) [Res09]. A set of morphological operations is used to classify different
edges at discontinuities in the image (Figure 50 (a) and (b)). This classification is used to
derive a pixel coverage and in order to compute pre-pixel blending weights. As Reshetov’s
original approach was implemented for a CPU-based ray tracing framework, several GPU-
optimized variants have been developed since [BHD10; Jim+11]. Topological Reconstruction
Anti-Aliasing (TMLAA) [AD11] improves upon Reshetov by using some topological informa-
tion to recover subpixel features, for example for thin objects such as wires and fences that
draw to potentially disconnected lines when sampled with an insufficiently high sampling
rate. In order to detect edges, TMLAA [AD11] switches to the CIE-LAB color space, that is
a more “even” concerning perceptual implications (Section 3.1.4).

Fast Approximate Anti-Aliasing (FXAA) [Lot11] is NVIDIAs version of post-processing
AA. Edges are detected by determining changes in the local contrasts between neighboring
pixels. To this end, for each 2 × 2 pixel neighborhood, luminance differences are computed.
In order to account for the fact that the HVS is not very sensitive for “blueish” wavelengths
(Section 2.2.2), the luminance conversion of the RGB input only takes the red and green
channel of the RGB input into account. However, such a detection exclusively on local nu-
merical differences will produce spurious edges that decrease efficiency and image quality
during filtering. The image is overblurred and, as blurring is a computationally expensive
operation, the filter’s run time is increased.

For that reason, Subpixel Morphological Anti-Aliasing (SMAA) [Jim+12] extended the
ideas of FXAA by incorporating information on simultaneous contrasts and visual masking.
To this end, an adaptive double threshold is performed during the edge detection phase
(Figure 50 (c) and (d)). SMAA supports various color spaces. However, the authors usually
restrict themselves to using differences in the luma channel only. As the HVS mask contrast
edges in the presence of edges with higher contrast in the surrounding, additionally filtering
the lower contrast edges decreases performance, downgrades image quality, and temporal
stability [Jim+12]. Therefore, the maximum contrast of a set of edges in the surrounding
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Figure 50: MLAA overview. (a) Input image, with the intended approximation outlined by red lines
and the coverage areas shown in green. (b) Predefined patterns in the original algorithm
[Res09]. (c) Precomputed areas texture in Jimenez’s GPU implementation [Jim+11]. (d)
Detected edges. (e) Calculated coverage areas. (f) Final blending. The SMAA algorithm
overhauls the whole pipeline by extending (b) and (c) for sharp geometric features and
diagonals handling. Local contrast adaptation removes spurious edges in (d). Extended
patterns detection and accurate searches improve accuracy in (e). SMAA can handle ad-
ditional samples in (f) for accurate subpixel features and temporal supersampling. Image

and caption from Jimenez et al. [Jim+12]

of the detected edge is computed. If the detected edge is above the weighted maximum
contrast, it is not further considered. Otherwise, it is not marked for the blurring operation.
In general, SMAA provides a high visual quality but FXAA is faster. A more recent technique
that improves temporal stability, Conservative Morphological Anti-Aliasing (CMAA) [Str14],
positions itself between SMAA and FXAA. Compared to FXAA and low-quality SMAA
modes it provides higher image quality and can handle otherwise challenging long edges.
Adaptive Approximate Anti-Aliasing (AXAA) improves upon image quality and performance
of FXAA by not filtering pixels multiple times, conserving contrast of thin geometry and
adaptively setting the search range of edges based on the luma contrast.

Although screen space techniques are widely used in industry [Mit12; Val14] and can im-
prove image quality substantially, they often lack adequate subpixel accuracy and temporal
stability. Hence, a variety of the proposed methods specifically target these aspects. Subpixel
accuracy can be improved by finding the closest triangle edge per subpixel in a separate
render pass [Jim+11; Gör15], by providing G-buffers at a higher resolution [CML11; WJB],
or when using MSAA samples for a better gradient and color estimation [IYP09]. Temporal
stability can be improved by storing more geometric information per pixel [Per11; Gör15].
All of those approaches are highly computationally demanding and often not better than
optimized MSAA variants.

Besides, the introduced screen space techniques fail to antialias bead chains, as they only
work for visible edges in image space. “The fundamental problem [with bead chains] is that the

highlight is both very bright and very thin, and any anti-aliasing method based on sampling

in image space is likely to miss this feature, even with high supersampling. [Sie+13]” Adapt-
ing these techniques to handle aliasing from shading requires detecting and resolving those
artifacts in image space. Detecting such artifacts is a challenge in itself, as they occur in a
variety of different patterns and estimating the complexity inside a pixel is computationally
challenging and often next to impossible without computing and shading more fragments
within a pixel’s extent. Removing the resulting artifacts is even more difficult, as too much
information has already been lost in image space. This is one reason why rendering pipelines
in video games often use a combination of MLAA-based techniques in image space with TAA
[Val14], or, if they can afford to do so, MSAA and its successors (Section 4.2.1).
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However, depth discontinuities are most prominent regions where reprojection techniques
might fail. In addition, accurately representing regions with high local contrasts is crucial
for peripheral vision (Section 2.2.2). Hence, an edge detection filter inspired by SMAA in
order to detect regions that require resampling is used by the foveated ray tracing framework
detailed in Chapter 6.

hiding aliasing in stochastic rendering pipelines Other approaches that
greatly benefit from post-processing techniques are stochastic GI methods. Here, denoising
filters can help in creating more plausible and visually appealing images. As the rendering pro-
cess is already involved, a large body of work is focusing on offline methods. A comprehensive
overview of the state-of-the-art can be found in the survey by Zwicker et al. [Zwi+15]. Such
methods can afford to spend time filtering the image. Hence, commonly images are trans-
formed into the frequency or wavelet domain. Also, given high sampling densities, a wide
range of statistical analysis is possible. Several methods attempt a regression-based analysis
[Bit+16; Moo+15]. Besides, high initial sampling densities and accompanying G-buffers, that
separate colors from depth, normals, direct and indirect illumination, allow preserving edges
by bilateral filtering [Pet+04]. All this significantly lowers the amount of noise.

In recent years researchers started exploring those techniques to be executed at interactive
rendering rates and low sampling densities. For interactive or real-time rendering, it is often
not possible to execute complex filters and statistical analysis due to the given limited time
budget. However, by separating direct and indirect lighting at the first hit-point and approx-
imations of joint bilateral filtering by À-trous wavelets [Dam+10], Guided Image Filtering
[Bau+11] or adaptive manifolds [GO12; BEM15], make efficient implementations possible. Fil-
ters can also be combined. Bauszat et at. [Bau+15] create a set of filters from which they
select the most appropriate one per pixel and depending on estimated input error and vari-
ance. Alternatively, incorporating more geometric information in the edge-stopping function
of the filter improves the cross bilateral filter’s robustness under input noise. This is critical
when these filters are to be used at low-sampling densities. Also, methods profit greatly from
exploiting TC, for example the work by Schied et al. [Sch+17a]. With this, the denoising itself
is performed by using a hierarchical, image space wavelet filter. An overview of interactive
filtering techniques for GI rendering can be found in the book by Schwenk [Sch13], the report
by Zwicker et al. [Zwi+15] and the paper by Schied et al. [Sch+17a].

Besides these approaches, currently, the immense impact of machine learning methods can
be observed. Techniques such as Deep Learning Super Sampling (DLSS) [Bur18] attempt
to hide aliasing artifacts in image space with fast convolution neural networks. Also, there
is already a wide range of machine learning techniques that enables to upscale images at a
higher-quality compared to conventional approaches [Don+14; Yan+18; Str18]. In order to
filter GI, Kalantari et al. [KBS15] propose applying a small neural network to control a cross
bilateral filter’s per-pixel feature weights. Chaitanya et al. [Cha+17] present a technique for
reconstructing image sequences based on machine learning with deep convolutional networks.

depth-of-field Other techniques that are more in the scope of this thesis, filter im-
ages by exploiting the optical properties of the HVS, most notable the eye’s DoF. Besides
filtering GI the adaptive manifolds introduced by Bauszat et al. [BEM15] allow for an efficient
approximation of the DoF effect. The work by Lindeberg [Lin16] uses DoF in order to filter
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artifacts resulting from gaze-contingent polygonal simplifications (Section 4.1.3). Chapter 7
details a method to compute DoF in screen space in order to hide undersampling artifacts
in a foveated rendering framework. More information on general rendering methods for DoF
can be found in work by Barsky et al. [BK08]. The chapter by Demers [Dem04] and the work
by McIntosh et al. [MRD12] place its focus on post-processing techniques that compute DoF
in image space.

insights Post-processing techniques have tremendous potentials for efficient rendering
as they move much complexity from the world and sampling space in Rn to image space
in R2. However, post-processing techniques only conceal artifacts introduced by insufficient
sampling and temporal inconsistencies are an issue. That’s why exploiting TC has had a
great impact on filtering, for example GI noise [Sch+17a]. Furthermore, for post-processing
techniques, machine learning might be able to show its full potentials. Deep learning tech-
niques already provide remarkable results for filtering and upscaling images. The learned
models could become a relevant design criteria for deciding sampling and filtering parame-
ters. Further research in this direction will therefore be carried out. As with more traditional
approaches such as bilateral filters, temporal inconsistencies might be one major challenge
when designing learners. Also, techniques have not yet exploited perceptual implications to
its fullest potentials. Here, processes such as visual masking, contrast and color sensitivity
as well as the limited spatial acuity might be helpful when designing novel systems. To this
end, ideally, the visual masking potential and response to inputs at different colors as well as
contrasts are already integrated inside the learned model.

4.5 conclusion

This chapter has provided an in-depth overview of the wide field of efficient perception-
driven rendering techniques as well as general concepts, methods, and trends. Here, this
thesis has presented how insights of human perception and the underlying perceptual models
can be a valuable tool to enable more efficient rendering algorithms. While recently visual
acuity models have proven to be successful in rasterization, a shift of focus can be observed
to methods that adapt sampling in real-time ray tracing systems. Due to the increase in
geometric processing power of modern GPUs and the fact that shading costs often dominate
in modern rendering pipelines, selective ray tracing approaches are on the brink of becoming
the first choice in interactive rendering as well. Currently, it can be observed how dedicated
ray tracing hardware is becoming available to the masses. Most relevant here is the company
NVIDIA that implement hardware acceleration for ray tracing in their latest GPU generations
[Sti18]. Having said that, as sampling and rendering is a limiting factor in modern pipelines,
it is vital to spend computational power wisely. Increased computational effort is required
in order to produce various visual effects ranging from highly-complex direct lighting and
shading models to full GI solutions to further improve image fidelity. When rendering for
a human observer, it becomes apparent that state-of-the-art algorithms allocate most of
the computational effort where it matters most – namely in those regions that are critical to
perception. As such, perceptual models enable ray tracing processes to be steered into regions
that need more samples, resulting in faster convergence to photorealistic images.



4.5 conclusion 93

Moreover, it is highly beneficial to consider properties of the HVS in systems that require
low-latency rendering in order to reduce nausea. This is critical for immersive VR, believable
AR, and mixed-reality applications. Here, rendering quality should ideally be adapted to both
the computational power of the rendering system as well as the capabilities of the human per-
ception, thus guaranteeing lower bounds for the refresh rates. In direct comparison, methods
that enable gaze-contingent adaptive sampling by using active measurements still function
considerably more accurate than their solely model-based counterparts. Likewise, exploiting
TC and frameless rendering enables display refreshes, pixel color generation and their trans-
mission to be decoupled. Along with the shift towards methods that support interactive ray
tracing, machine learning techniques are already demonstrating some of their potential. Here,
novel approaches can be expected that model parts or the entire visual pipeline in order
to guide sampling processes, improve reconstruction and provide post-processing filters at a
higher quality.





Part III

METHODS AND METHODOLOGIES

In the next chapters, this thesis introduces original contributions to perception-

driven rendering pipelines for VR applications. While Chapter 5 presents an ap-

proach for large high-resolution display walls that adapts the model quality based

on the tracking the user’s gaze, Chapter 6 and Chapter 7 detail the author’s con-

tributions to the field of gaze-contingent rendering for HMDs with eye tracking.





5HYBRID SPARSE VOXEL OCTREES

Exploiting Field-of-View and Acuity Limits

Figure 51: The presented data structure combines voxel data (left, green) and polygonal data (left,
red) to synthesize view-adaptive images (right).

As discussed in the previous chapter, one strategy that aims to accelerate rendering and
reduce aliasing artifacts is to simplify the original function by pre-filtering in order to provide
a version that can be sampled more accurately and efficiently. Hence, for 3D models, various
strategies have been developed that enable the reduction of a model’s geometric complex-
ity, thus providing representations at various Level-of-Details (LoDs) that are less prone to
aliasing artifacts. As we have seen in Section 4.1, a large body of work focuses on geomet-
ric simplifications by adapting triangulated meshes. While this works well for most models,
primarily when they are described by a regularly tessellated and topologically simple mesh,
such methods can fail with high-frequency and irregularly tessellated models. In the latter
case, polygonal simplification is error-prone due to the complex structure of the model. Other
more tailored solutions take object knowledge into account to provide a higher visual fidelity
at a reduced computational complexity. Therefore, specific approaches for special types of
models like plants and trees [Deu+02; ZBJ06; Beh+05], buildings [VLA15; PSS16; Bil17] or
crowds of humans [Dob+05; MR06; Pen+11] have been developed.

Although specialized solutions provide a high visual fidelity, these cannot be applied to
arbitrary scenes and objects. It is difficult to simplify textured models with different surface
properties, e.g. no meaningful average can be calculated by combining different materials.
Some of those issues are discussed in Section 5.6. Likewise, maintaining code, preprocessing,
or modeling of new assets at different LoDs as well as launching rendering stages can be
challenging. In order to mitigate some of the problems and to provide a general solution for
the simplification of 3D models that is independent of the type of object or scene, the central

idea of the presented approach is to combine a volumetric representation using voxels with a

polygonal representation (Figure 51). This research project has opted to use voxels as volumet-
ric descriptions are less sensitive to a scene’s complexity and enable progressive refinement.
Once the mesh is voxelized, a coarse representation of the scene can be constructed using a
weighted mean of all voxels within a specific space. Volumetric descriptions can then be stored
in an octree where consecutive inner levels in the tree describe coarser scene representations.

97
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These representations, so-called Sparse Voxel Octrees (SVOs) [LK11; Cra+09], are well-suited
to provide LoD for high-frequency models. However, if these SVOs should provide a visual
quality that compares to a polygonal description, a high resolution and thus a considerable
amount of memory is required. When arbitrary scenes are voxelized, many voxels need to
be created for single triangles, possibly oversampling the geometric domain even though the
polygonal representation is more compact and provides higher visual fidelity. For this reason,
we set out to explore the potentials when combining both into a hybrid acceleration structure.

In the following we introduce the Hybrid Sparse Voxel Octree (HSVO) that extends upon
traditional voxel-only SVOs by augmenting them with triangle references in the leaf nodes.
Having voxel and polygonal data in one acceleration structure is an advantage because it
minimizes management and storage cost compared to having two separate structures. In
addition, having triangle information in the leaf nodes can reduce the size of the octree. The
construction of the HSVO can stop for nodes that contain a maximum of nsplit triangles.
Here, often nsplit = 2 is assumed, as two triangles are cheaper to intersect compared to
traversing the structure deeper. Also, this is common for non-isolated triangles, i.e. the ones
sharing an edge. Assuming that non-isolated triangles form a solid surface inside a voxel’s
space, they are far less crucial to geometric aliasing problems. Hence, the system can reduce
voxelization fidelity in favor of visualization quality or storage requirements and vice versa.
Another benefit of the hybrid octree structure is that it enables a convenient, smooth intra-
level interpolation, providing a way to blend between layers in the hierarchy. Nonetheless and
indeed most notable, it enables faster image generation if parts of the scene exist for which
a coarse representation is sufficient.

In order to achieve high performance and to support arbitrary meshes, voxelization and
construction of the structure are entirely performed on the Graphics Processing Unit (GPU)
using a specialized OpenGL Shading Language (GLSL) shader pipeline. Initially, the octree
was intended to reduce temporal aliasing artifacts which are perceptually-disturbing when
rendering large outdoor scenes. In order to generate and render these scenes, we make use
of our multi-level instantiation framework presented in our prior work [Wei+13]. At the
time, is was also necessary to render these and similar highly complex scenes onto a large
tiled-display wall. For such systems, the hybrid structure allows the visual quality to be
adapted according to the user’s visual field and view-direction, thus accelerating rendering
by exploiting the user’s visual acuity and limited Field of View (FoV). Here, the HSVO allows
the geometric complexity for parts that are in the visual peripheral and outside the user’s
FoV to be reduced. In line with the publications [Wei+14a; Wei+14b; WHS15] this chapter
introduces the HSVO structure. However, in comparison to the aforementioned publications,
the thesis contains an entirely new evaluation of the method’s visual quality, a greatly revised
evaluation of the accompanying user study, and a discussion of its potentials in future works.
In summary, the following contributions are presented:

• AGPU-based voxelization and octree construction scheme to build a hybrid acceleration
structure combining voxel and polygonal information.

• A ray tracing framework based on OpenCL with a LoD selection scheme utilizing the
hybrid acceleration structure.

• A validation by performance and quality benchmarks.
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• A view direction-based LoD selection scheme for perception-driven rendering accompa-
nied by a user study for perceptual evaluation.

contributions by the author This chapter is based on work published in:

Martin Weier, André Hinkenjann, and Philipp Slusallek. “A Unified Triangle/Voxel

Structure for GPUs and its Applications.” In: Journal of WSCG. WSCG 24.No. 1-2
(2015), pp. 83–90. issn: 2464-4617.
Martin Weier, Jens Maiero, Thorsten Roth, André Hinkenjann, and Philipp Slusallek.
“Enhancing Rendering Performance with View-Direction-Based Rendering Techniques

for Large, High Resolution Multi-Display Systems.” In: 11. Workshop Virtuelle Realität

und Augmented Reality der GI-Fachgruppe VR/AR. Sept. 2014.
Martin Weier, Jens Maiero, Thorsten Roth, André Hinkenjann, and Philipp Slusallek.
Lazy Details for Large High-Resolution Displays. SIGGRAPH Asia. 2014. Poster.
Martin Weier, André Hinkenjann, Georg Demme, and Philipp Slusallek. “Generating

and Rendering Large Scale Tiled Plant Populations.” In: JVRB - Journal of Virtual

Reality and Broadcasting 10.1 (2013).

I was the primary investigator for all publications, developed the GPU-based voxelization
and octree construction approach as well as the OpenCL-based ray tracing framework. In
addition, I developed the view direction-based LoD selection scheme. Contributions by my
co-author Thorsten Roth can be found in the virtual ray casting module to determine the
user’s visible field and the post-processing approach to smooth LoD transitions. Details are
provided in Section 5.4.1 and Section 5.4.3. I designed, executed, and evaluated the system
with benchmarks, visual quality metrics, and a user study. Here, this thesis contains a new
evaluation of the implications for the visual quality in Section 5.3 and a discussion on the
method’s applicability as well as its limitations in Section 5.6.
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Figure 52: Overview of the GPU-based construction pipeline for the hybrid acceleration structure.
A list of triangles is voxelized using OpenGL. Each fragment generated in the fragment
shader is extended by a triangle index. After that, shaders are launched that process the
voxel fragments in order to generate the octree structure, prepare the triangle indices, and
to fill the inner nodes.

5.1 method

An HSVO augments the multi-level voxel information by triangle references that are stored in
the leaf nodes. The construction pipeline is illustrated in Figure 52. First, the 3D scene, i.e.,
a list of triangles, is transformed into a list of unsorted voxel fragments. This is achieved by
using the GPU’s hardware rasterizer. Essentially, this step performs a 3D rasterization that
stores all fragments within the view frustum, their 3D spatial position, and attributes such as
colors and normals into a list. This process is detailed in Section 5.1.1. Based on the unsorted
list of voxel fragments, different compute shaders are launched, building the structure in top-
down and bottom-up processes. An overview of the memory layout of the resulting HSVO
and the construction process is presented in Section 5.1.2. Eventually, a ray tracing approach
is used to render images. Rendering is performed using traversal routines implemented in
OpenCL. A blending process between different levels of the tree can be employed in order to
smooth transitions. The traversal methods are presented in Section 5.1.3.

5.1.1 Voxelization

Voxelization describes the process of turning a 3D (polygonal) model into a voxel dataset, i.e.,
into a representation of the model as cells in a 3D grid. This process can be done efficiently
on the GPUs using hardware-accelerated rasterization pipelines, such as OpenGL [ED08;
CG12].

For constructing the HSVO, voxelization is performed in a similar manner to that presented
by Crassin and Green [CG12]. The aim of this process is to rasterize each triangle of the
model into the 3D grid in a single rendering pass. Voxelization starts by setting a view
port’s resolution that matches the voxelized model’s target voxel resolution, e.g., 5122 for
a 5123 voxel resolution. Likewise, the view frustum is set up to match the largest extent
of the scene’s bounding box to cover all triangles of the model. Now, after disabling depth
writes and backface culling, a GLSL pipeline with a custom geometry and fragment shader
is launched.



5.1 method 101

MORTON CODE 8B

RGBA 4B

NORMAL 12B

TRIANGLE INDEX 4B

Table 3: Structure of a voxel fragment
entry, including each element’s
memory size in byte.

However, without any specific hardware support, it
is only possible to render a 3D model from a single
viewport in a single rendering pass. Triangles that
are mostly perpendicular to the main viewing direc-
tion are potentially only covered by a few pixels or
are not visible at all. Traditionally, rasterization-based
voxelization systems have rendered the scene from
all three sides to maximize the projected surface of
each triangle with respect to the view plane [Don+04;
FC00]. However, following the approach by Crassin and Green, the geometry shader is used
to project each triangle according to its dominant axis, i.e., where its projected visible surface
is maximal. Each triangle is rasterized as it has been viewed from the best possible viewing
direction, with respect to the scene’s axis-aligned bounding box. This projection is later un-
done in the fragment shader. This allows all triangles to be processed in a single rendering
pass independent of their orientation.

Additionally, to make sure each non-empty voxel is generated, conservative rasterization

is performed [HAO05]. Conservative rasterization extends each primitive slightly to trigger
a call in the fragment shader for all fragments emerging from all triangles touching a voxel’s
cell. This is necessary since OpenGL samples each pixel during the rasterization only at the
pixel’s center. The triangles are extended slightly to ensure that each triangle intersecting a
pixel covers the pixel’s center (Figure 52 Triangle Processing). This way, each triangle within
the view frustum will create a set of fragments accessible in the fragment shader.

Eventually, using the GLSL and atomic counters, each fragment is written to a chunk of
linear video memory (Figure 52 Fragment Processing). Each of these voxel fragments stores
its discretized position encoded in a Morton code. Morton codes make it possible to perform a
fast per-fragment traversal using bit shifts and a rapid comparison with other fragments. Also,
the voxel fragments store a color, a normal, and a triangle index. This index is determined
per fragment by using the built-in variable gl_PrimitiveID. Table 3 gives an overview of
the memory layout of the voxel fragments.

5.1.2 Construction

The voxelization process results in a list of voxel fragments that represent an intersection of a
triangle with a specific voxel of the discretized space. Each voxel fragment stores the voxel’s
position as a Morton code, a color value, a normal, and the index of the intersecting primitive
in the list of triangles. At this point the HSVO structure is constructed. Figure 53 shows the
construction pipeline on the GPU. After discussing the memory layout of the structure, the
three distinct steps of its construction and the employed shaders are described.

memory layout of the hybrid sparse voxel octree The octree itself con-
sists of inner nodes (Figure 54 orange) and empty leaf nodes (Figure 54 light grey). A leaf
node can hold the reference to a single triangle along with the voxel information (Figure 54
blue). The configurable parameter nsplit, determines an upper limit of triangle indices per
node for the construction. For nodes that represent up to nsplit triangles (Figure 54 purple),
an indirection to a triangle index array is needed to store the respective triangle indices.
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Figure 53: GPU construction pipeline showing the different shader stages (light blue, light green, and
light yellow) and their processed and created data.

However, for both node types that hold a single or up to nsplit triangles, the construction
for deeper levels for these nodes can be stopped prematurely. If it contains more than nsplit
triangles, the node must be split, storing deeper levels. At the highest voxelization resolution,
nodes can contain more than nsplit triangles (Figure 54 green). Finer spatial information for
further spatial subdivision is not readily available. Hence, these nodes also store all their
corresponding triangle indices in the separate triangle index array.

Each node of the data structure is encoded in two 32 bit fields (Figure 55). One bit is
used to encode whether or not the node is a leaf; another bit is used to mark a node during
construction if it needs to be split further. The next 30 bits either encode the index of the
first child node, the index of the triangle if it is the only one represented in the voxel, or the
index into the triangle index array. The other 32 bits (payload) hold a reference to a voxel
array storing the voxel’s color, its normal and possibly user-defined fields, such as material
parameters (Figure 56).

generating the tree’s structure After the voxelization process, the construc-
tion starts by processing the list of voxel fragments. The aim of this step is to build the
general structure of the octree based on these voxel fragment positions. To this end, the tree
is traversed repeatedly, top-down, and in parallel, for each fragment in the list of voxel frag-
ments. This way, the tree is built level-by-level. The deepest nodes of the current level are
flagged to be split. A second shader creates new nodes based on this information. Initially,
this construction starts by adding a single leaf root node to the node list and by calling the
FlagNodes shader.

FlagNodes Shader: The FlagNodes shader is launched for each level of the octree. Here,
it processes all fragments in the list of voxel fragments from the voxelization process. Each
GPU thread traverses the tree according to the voxel fragment’s Morton code. Initially, this
traversal will reach the root node. However, as construction continues and more nodes are
added, deeper levels of the tree are constructed.

Once a leaf node is reached, the algorithm checks whether this node has to be split further.
Ultimately, the goal is to determine if a node contains none, a single, nsplit, or more trian-



5.1 method 103

Triangle Index Array

Nodes with n     triangles
split(n    = 2)

split Nodes with more than n     trianglessplit

Figure 54: Overview of the hybrid data structure storing triangles and voxels. Inner nodes (orange
circles), empty nodes (grey squares), leaf nodes containing a single triangle (light blue
triangles), leaf nodes containing up to nsplit triangles (purple diamonds, here nsplit is
assumed to be two), and leaf nodes containing more than nsplit triangles (green octagons).

Figure 55: Structure of a single node in the octree using two
32 bit types. While the ds (Datastructure) part
stores the octree topology, the payload field links
each node to a color, normal and triangle indices.

Figure 56: Structure of a single voxel
referenced by a node’s
payload field.

gles. This is achieved by caching triangle indices in the nodes using atomic compare-swap
operations. Nodes that represent a single triangle can directly cache the triangle index. If
nsplit = 2, both triangle indices can also be cached directly in the node’s 64 bit of memory.
If larger values for nsplit are desired, the caching must be performed in a separate storage
location. However, this additional indirection increases the computation and storage require-
ments. Hence, it is beneficial to parameterize nsplit = 2. If a node contains more then nsplit
triangles, it needs to be split further and the tree is constructed deeper. This splitting is
achieved by setting the node’s split bit (Figure 55). After the FlagNodes shader has been
executed, the CreateNodes shader is launched.

CreateNodes Shader: The CreateNodes shader is then executed for each node of the
currently highest level in the octree. Each thread checks whether its node at this level has
been marked to be split, and, if it has been marked, the leaf node bit is unset and a new empty
voxel is created. After this, eight new empty child nodes are created, and the position of the
first child node is stored in the next field of the former leaf. Memory slots are exclusively
reserved by each GPU thread in each array for the nodes, namely the voxels and the triangle
indices, using atomic-add operations on special atomic datatypes. This ensures that each
thread can exclusively write to a distinct array location. However, construction can be stopped
prematurely for those nodes that contain less than nsplit triangles. If a node’s split bit has
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Figure 57: Computation of a fragment’s triangle index array position. The position of a fragment’s
triangle index is computed by summing up the number of nodes with two triangles (blue,
4), the index stored in the leaf node’s next field (yellow, 1), and the respective array entries
in the triangle voxel count array and triangle voxel count scan array (purple,
4 and 2). Afterward, the value in the triangle voxel count array is decremented to
point to a new, empty position.

not been set and the construction has not reached the octree’s deepest level, the node either
contains only one, or represents up tp nsplit triangles, or is empty.

After the CreateNodes, the process starts again by calling the FlagNodes shader. This
is repeated until the tree’s deepest level has been reached. This level represents the scene’s
highest voxelized resolution. Finally, the FlagNodes shader is executed once more, and the
tree is traversed the last time. This time the nodes are not marked for splitting as now each
fragment represents a single distinct triangle in that voxel. Also, the number of fragments are
counted in each leaf node’s payload field using an atomic add and are stored to a temporary
buffer denoted as triangle voxel count. This buffer is needed to sort in triangles indices
in the further computation steps. The location in the triangle voxel count buffer is
stored in the next field of the node, while a position of a new empty leaf voxel is stored in
the payload field.

preparing triangle indices The last two shader stages build the octree’s general
structure. However, further computations are needed to link the leaf nodes to references to
triangle indices. To this end, the prefix sum of the previously computed triangle voxel
count array is computed. The results of the scan operation are stored in another temporary
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buffer denoted as triangle voxel count scan. At this point, another shader is executed
for each entry in the temporary triangle voxel count array. Each thread takes the value
from the triangle voxel count array and writes it to the correct location in the triangle
index array. This copy operation is needed as in this way each leaf node that represents
more than nsplit triangles links to a position in the triangle voxel count array that indi-
cates how many consecutive entries are triangle indices and belong to that node (Figure 54).
The “correct” location to store this value in the triangle index array is the sum of the
thread’s value from the prefix sum of triangle voxel count scan array, the thread’s in-
dex as well as the number of entries already stored in the triangle index array coming
from inner nodes that represented nsplit triangles. These index computations are detailed in
Figure 57.

filling the nodes After the tree has been constructed and the triangle index
array has been prepared, actual data needs to be filled in. In the first step, the triangle
index array and triangle voxel count now make it possible to store all triangle in-
dices of voxel fragments in the leaf nodes. Moreover, information such as voxel colors and
normals can be obtained from the initial voxel fragment list and are also written to leaf nodes.
Eventually, the latter values need to be combined to fill all inner nodes of the tree with valid
normals and colors. This is carried out in a bottom-up process. Both processes are described
in the following paragraphs.

FillLeafNodes Shader: Having constructed the general structure of the tree, the algo-
rithm continues by filling in the voxel colors, normals, and triangle indices for each node of
the tree. The process starts by filling the leaf nodes and by writing each triangle indices to
the correct location in the triangle index array. The FillLeafNodes shader is executed
for each voxel fragment in the voxel fragments list. Each thread traverses the tree according
to the position of the Morton code of its fragment. Once a leaf node is reached, the fragment’s
color and normal are averaged using atomic compare-and-swap operations, in a similar fash-
ion as described by Crassin and Green [CG12]. The final step within the FillLeafNodes
shader is to complete the triangle index array. The correct position of a triangle index
in that array is computed by taking the sum of the index stored in the leaf nodes’ next
field, together with the value of the triangle voxel count array at the index position
as well as the number of entries already stored in the triangle index array coming from
the inner nodes that represented nsplit triangles. Also, a value from the already computed
prefix sum stored in the triangle voxel count scan array is added at the index position.
Again, Figure 57 clarifies the index computation. The entry in the array of triangle voxel
count computed by the scan operation is decremented using an atomic add with −1. This
ensures that a second thread writes the next triangle index to the next free position in the
triangle index array. When all threads are finished, the triangle voxel count array
contains only zeros and the triangle index array is filled.

FillInnerNodes Shader: The final step of the algorithm is to fill all inner nodes of the
HSVO. This last shader is executed multiple times for all nodes level-by-level from the bottom
to the top. Each thread averages all colors and normals from its child nodes. Again, this is
performed in a similar way to that described by Cyril and Green [CG12]. Each thread checks
whether it can write its new summed and averaged value into the voxel’s color field by using
an atomic compare-and-swap operation in a loop. This loop continues until the new value
has been successfully written to memory. For the normals, a simple atomic add on the float
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components is used. If normals sum up to a normal with zero length, for example for two
opposing faces, the last valid normal is stored. Finally, after the execution has reached the
root node, all inner values are filled and the construction is completed. Now, the HSVO can
be used for rendering.

5.1.3 Traversal and Blending

A custom OpenCL renderer is used to render the data stored in the HSVO. To this end,
after the construction, each OpenGL buffer is mapped to OpenCL. These are the buffers
containing the nodes, the voxels, the triangle index array, and all triangle data as well as
the material information of the model.

traversal Similar to very early systems, each iteration of the traversal limits the para-
metric t-span ([tmin, tmax]) of a ray by intersecting it with the three planes subdividing the
voxel [AGL89]. With each step down in the tree, these values can be updated iteratively in
an efficient manner. The traversal of the voxel structure is implemented using a small stack
on the GPU, similar to the work by Laine and Karras [LK11]. Initially, the active parametric
t-span of each ray that hits the scene’s bounding box is set to cover the extent of this box.
The algorithm has three phases:

1. If the current first hit voxel within the active t-span is not empty, the tree is traversed
deeper, and the parent node with the current tmax is pushed onto a stack. tmax is set
to point to the end of the active voxel.

2. If the voxel is empty, either the next sibling node of the active parent is processed by
setting tmin to the beginning of the next node within the t-span, or

3. if the node is not a sibling node of the active parent, nodes are popped from the stack.
In the latter case, tmax is reset to the position stored on the stack until a hit with the
first possible neighboring voxel occurs. From here the process can continue by traversing
the tree deeper again.

If the traversal reaches a leaf, its triangles can be intersected – either one, nsplit or more.
Therefore, the algorithm looks at the index stored in the leaf’s next field. Since the index is
encoded using offsets, it can be decided directly if the node references a single, nsplit or more
triangles. The traversal code now determines the closest hit point of the ray and all triangles
within that leaf node. Note that now the closest hitpoint becomes the closest hit triangle
intersection within the boundaries described by the leaf node. Otherwise, the traversal must
be continued with the next sibling node.

inter-level blending For the LoD selection and to enable a smoother blending be-
tween different levels of the HSVO, Ray Differentials [Ige99] are used. Each ray is represented
by its origin and a unit vector describing its direction. Besides, the rays store differentials
describing pixel offsets on the image plane in x- and y-direction. By using ray differentials,
the estimated pixel’s footprint in world space on the voxels can be computed by appropriately
scaling the differential at each rays’ hit point. This footprint can be compared with the size
of an individual voxel at level l. If the pixel’s footprint is roughly equal to or smaller than the
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voxel, traversal can be stopped early as the current voxel resolution is sufficient for the pixel.
In addition, a value describing the underestimation φ(l, f) of the size of the pixel’s footprint
and the actual size of nodes at level l and l − 1 can be computed as

φ(l, f) = 2 · vw(l)− f
vw(l)

with vw(l) being the length of a side of a voxel in world space and f being the estimated length
of the pixel’s footprint at the ray’s hit point. This value φ can be used as an interpolation
factor between the two subsequent levels in the SVO. Since the tree is traversed using a small
stack, the system keeps track of the voxel at level l − 1 directly and use the interpolation
factor during shading and lighting computations for a smooth blending between subsequent
levels.

5.2 benchmarks

This section presents the benchmarks for construction and rendering using HSVOs. Bench-
marks were performed using an Nvidia GeForce GTX Titan with 6GiB VRAM on an Intel
Core i7 system with 16GiB RAM. In Figure 58 renderings of the scenes that were used for
measurements are shown. Figure 59 presents the construction times of four different test
scenes.

As expected, a rise in the number of triangles increases the run time of the construction.
However, the pure triangle count is not the only parameter when it comes to measuring
construction times. Highly detailed textures and shaders may further extend the required
time to voxelize the model. However, construction is an interactive process (< 20ms) even
for large scenes.

A few other approaches combine voxel- and point-based models with polygonal data – one
is FarVoxel [GM05]. There, a voxel-based approximation of the scene is generated using a
visibility-aware ray-based sampling of the scene represented by a BSP tree. FarVoxels can
be used for out-of-core rendering of very large but static models only – the construction of
the tree remains an offline process. Table 5 shows the advantage of the presented method in
comparison to a full build of the octree without prematurely stopping the construction for
nodes that contain not more than nsplit = 2 triangles. The first impression is that memory
savings are not noteworthy. However, the presented numbers also include the size required to
store the triangles themselves which in turn largely depends on the scene. The triangle count
in the Sponza scene is very low. This results in significant memory savings. If only the size
of the nodes and the voxel data is considered, the overall saved space amounts to a higher
percentage for most scenes. The Happy Buddha scene has many very small triangles. For this
scene, construction cannot be stopped for most inner nodes which results in only a small
memory saving.

In order to benchmark the rendering performance of the HSVOs, all test scenes have been
rendered with a resolution of 1024 × 1024 using a typical fly-through for about 700 frames.
After that, the run times have been averaged. The results in Table 4 list the rendering times
from the OpenCL renderer shooting primary rays with Phong lighting, a single point light
source, and no texture filtering. Rendering only voxels is fast but lacks visual quality. The
traversal of the hybrid structure displaying triangles only provides the highest visual quality
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(a) Sponza (b) Urban Sprawl

(c) Happy Buddha (d) Forest

Figure 58: Demo scenes at various LoDs used for benchmarking the presented hybrid acceleration
structure.

Scene
Voxel

only

Triangle

only
HSVO

Sponza 57.3 fps 18.2 fps 20.6 fps

Urban

Sprawl
40.3 fps 13.3 fps 23.7 fps

Happy

Buddha
63.1 fps 10.1 fps 16.7 fps

Forest

Scene
64.2 fps 2.4 fps 12.9 fps

Figure 59: Runtimes for each phase of the con-
struction as well as the overall con-
struction time. Each scene was vox-
elized with a resolution of 5123.

Table 4: FPS of four different scenes rendered
with a resolution of 1024 × 1024 using
only primary rays and Phong lighting
with simple shadows and a single point
light source. Each scene was voxelized
with a resolution of 5123.
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Full Octree Construction (nsplit = 1)

Scene Nodes Triangles
Triangle

Index Array
Voxel Overall

Sponza 42.29 27.66 14.14 46.06 130.15

Urban Sprawl 18.32 75.19 19.31 20.38 133.21

Happy Buddha 11.42 103.07 21.94 11.95 148.38

Forest Scene 30.41 156.25 34.58 33.29 254.53

Early Construction Termination (nsplit = 2)

Scene Nodes Triangles
Triangle

Index Array
Voxel Overall Saved

Sponza 10.89 27.66 12.51 13.97 65.03 50.03%

Urban Sprawl 12.37 75.19 18.47 14.77 120.81 9.31%

Happy Buddha 10.97 103.07 21.92 11.81 147.77 0.41%

Forest Scene 21.27 156.25 34.00 27.2 238.72 6.21%

Table 5: Size of the acceleration structure (MB). The upper part of the table shows the acceleration
structure size of the test scenes for a tree built for all octree levels. The lower part of the
table shows the presented method, where the tree is built only for nodes containing more
than two triangles (nsplit = 2) and lists the percentage of saved memory with respect to the
full octree.

but is slow and offers no LoD. Therefore, aliasing is prevalent. The hybrid structure can
place the emphasis on speed or on quality and offers LoD. Other approaches that combine
rasterization and sample-based ray casting to render hybrid data were presented by Reichl
et al. [Rei+12]. In their approach, all the polygonal data is subdivided into cubical bricks,
essentially performing a voxelization. However, it is mainly used to accelerate rasterization
using ray casting methods and not as a general rendering structure. Rendering using the
HSVO is possible in real-time with rendering times per frame ranging from 12.9ms in the
Forest scene to 23.7ms in the scene Sponza. However, measuring the frame rates for the
hybrid approach is non-trivial since they increase significantly if parts of the scene show only
the voxel data. For scenes such as Sponza showing an atrium where a camera is in effect
“inside” the model, only a few camera positions can make use of the voxel data, resulting in
only a small increase in speed. In the Forest or the Urban Sprawl scene, parts of the model
are frequently in the distance. The Forest scene shows 13 highly-detailed plant models on a
small plane. The Urban Sprawl model is a medium-sized but highly detailed city model. For
these scenes, voxel data is used more frequently resulting in a significant speedup.

5.3 metric-driven evaluation

One advantage of the HSVO structure is that it promises to reduce aliasing at lower sampling
densities. In this section, we investigate if this is indeed the case. In order to showcase its Anti-
Aliasing (AA) abilities, the HSVO is used to render highly-complex vegetated areas with LoD.
Here far distant models project to only a few pixels on screen, creating severe spatial aliasing
artifacts. The model is created using our Silva [Wei+13] framework for generating tiled plant
populations. This system creates such populations on an instantiable multi-level hierarchy.
A nested hierarchy of kd-trees over Wang tiles with Poisson Disc Distributions is used to
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(a) Fly-over (b) Close-up

Figure 60: Rendering of 40 million instantiated tree models using the hybrid acceleration structure.

represent individual plant locations. These tiles allow instanced but aperiodic repetitions to
be created that enable large vegetated areas to be covered with “sod lawn”-like tiles. Each
scene contains millions of highly-complex plant models reused several times. Although the
Silva framework is able to generate and render such large populations, the rendered images
show severe aliasing artifacts, when using only triangle data. Implementing a LoD system
for plant models that is directly adapting the polygonal representation was not considered a
viable solution. Here, we believe in the advantages of the HSVO.

The advantage of the hybrid representation over a polygonal simplification is that, within a
regular octree structure, an approximation of high-frequency input models (e.g. trees), with
different LoDs can be generated independently from the underlying geometric description.
Polygonal simplification of such models usually fails due to the complex foliage and branching
structure of the trees. One reason is that collapsing as well as merging operations might
introduce triangles that do not correspond to the topology of the tree itself. Sample caching
strategies in object space that provide LoD are limited to single instances, for example samples
cannot be cached in the accelerations structure of a single tree due to the fact that it is
reused in the scene several times. Sample caching strategies in world space as presented in
Section 4.3 have the drawback of high storage requirements. Therefore, it is beneficial to have
pre-filtered voxel data at hand to limit aliasing artifacts or in order to reduce the oversampling
needed to create smooth animations and crisp images. Moreover, this speeds up rendering.
The presented ray casting system allows billions of instantiated triangles that describe 40
million trees to be rendered at a resolution of 720p with about 5-7Frames-per-Second (FPS)
including direct shadows. Two renderings from the demo scene are presented in Figure 60.

In addition to the performance gain, the visual quality of the results can be estimated.
Therefore, a fly-over of the scene was rendered with 1500 frames. The camera path was
chosen to contain distant views on a large portion of the terrain, as well as close-up shots
that allow the detail of individual plants to be appreciated. An image sequence of the scene
is shown in Figure 61 (top). The scene was rendered multiple times with increasing samples-
per-pixel (spps), using instantiated HSVOs, and using plain triangle data. Also, the scene was
rendered with shadows turned on and turned off and all this at a resolution of 1080p. Finally,
all conditions were compared to ground truth data computed with 128 spp. An introduction
to all metrics used is provided in Section 3.2.1.
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The results of the PSNR-HVS-M metric are plotted in Figure 61. This metric computes
Peak Signal-to-Noise Ratio (PSNR) values that do consider a Contrast Sensitivity Function
(CSF) model and visual masking. Figure 61a shows the development of these PSNR values
using the HSVO when compared to a ground truth computed with the HSVO voxel description
using 128 spp and without shadows. Likewise, Figure 61b illustrates the development of the
PSNR values using only triangle data when compared to a ground truth using 128 spp and
without shadows. The figures clearly show higher PSNR values when using the HSVO. Image
noise levels are reduced significantly. This is also apparent when rendering the scene with
shadows as shown in Figure 61e and Figure 61f. Unfortunately, using results with triangle
data as ground truth does not work when evaluating the HSVO. Inspecting the results of the
triangle and HSVO configurations and the respective image sequences, it becomes apparent
that both representations provide slightly different images. A direct comparison is shown in
Figure 62. Using voxels, surface materials are averaged into volumetric entities. Moreover,
voxels create a more dense representation as they no longer tightly fit the underlying geometry.
Similarly, the increased surface area is likely to be more directly illuminated by the light
sources. Several of these issues are addressed in Section 5.6. Nonetheless, the PSNR values
provide initial insights into the quality of the renderings as far as image noise is concerned.

While PSNR is commonly used to evaluate compression and image artifacts, higher-level
video metrics exist; a popular one is Multi-Scale SSIM (MSSSIM). The results of MSSSIM
when rendering with shadows is presented in Figure 63 (a,b). However, PSNR and MSSSIM
compare image sequences frame-by-frame. Nonetheless, temporal stability is still an issue
when estimating the perceived noise levels. One approach that combines several image and
video metrics and takes motion into account is Netflix’s Video Multi-Method Assessment
Fusion (VMAF) [VMA17]. The results of VMAF when rendered with shadows is presented
in Figure 63 (c,d).

Both MSSSIM and VMAF show the advantages of using HSVOs regarding image quality.
Images rendered with 4 spp using the HSVO achieve quality ratings that compare to 8 −
16 spp images rendered with triangles only. Images show significantly fewer artifacts at lower
sampling densities and are more temporally stable according to all metrics. However, as
all results are computed against two different ground truths, one can argue that the visual
quality of the ground truths is not sufficient. However, the difference in the appearance of the
two rendering approaches can hardly be solved. Hence, it can be beneficial to estimate noise
and artifacts with a no-reference metric. The results of such measurements are presented in
Appendix A.1.
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(a) Triangles only (b) Voxels only

Figure 62: Heavily-zoomed cropped image regions showing the difference in the visual appeal between
using the triangle data (a) to using the hybrid voxel data (b). Although both represen-
tations provide pleasing images, a metric-based comparison between approaches does not
yields comparable results.
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Figure 63: MSSSIM and VMAF values for the evaluation scene rendered with shadows at
1080p@128 spp with different spp. The scene was rendered using the HSVO and compared
to a ground truth using HSVO (a and c). Likewise, the scene was rendered using triangles
and compared with a ground truth only using triangles (b and d). MSSSIM yields a better
structural similarity and VMAF yields results of a better quality for the HSVO at various
sample counts compared to using triangle data.
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Figure 64: Results of the focus and context strategy using head tracking in front of the large tiled
display wall HORNET.

5.4 lod selection based on the visual field

The traversal routines presented in Section 5.1.3 allow to stop traversal of the structure early,
if a voxel roughly projects to a pixel. This form of LoD selection allows for reducing aliasing
artifacts while also increasing the rendering performance. However, rendering can also be
adapted to other perceptual limitations, such as the user’s limited visual field. Central for
the evaluation of this approach is a large, high-resolution multi-display system (7×5 monitors)
that offers a high pixel density on a large visualization area. This setup enables users to step
up to the displays and see a small but highly detailed area. If the users move back a few
steps, they do not perceive details at pixel level but will instead get an overview of the whole
visualization. However, due to the number of pixels and the amount of data for complex
scenes, implementing rendering methods that achieve interactive frame rates on such setups
is challenging. This challenge can be tackled using the HSVO with an approach to drive
LoD selection based on the user’s FoV and acuity limits. The central idea is to parameterize
the rendering in a way that the user’s central visual field is rendered in high quality. The
surrounding is rendered with an adaptive LoD that is chosen depending on the eccentricity
in the user’s visual field. This is demonstrated in Figure 64.

As users can move around, this allows for rendering highly detailed information when
standing close to the multi-display system. Likewise, rendering quality can be adapted to the
acuity limits when user’s steps back to get the general overview of the whole scene. Here, the
Human Visual System (HVS) is unable to resolve all details provided by the displays. The
resolution of the displays exceeds the Minimum Angle of Resolution (MAR). To this end, the
user’s position and view-direction in front of the display wall are tracked using a six degrees of
freedom tracking system. Even though eye tracking was not available, this approach mimics
the acuity loss for peripheral vision as presented in Section 3.1.2.

Another advantage is that even if users notice a quality degradation in their peripheral
visual field, the context of the focused region is preserved. Thus, this approach can also be
regarded as a technique for focus and context.

Focus and context approaches are frequently used for 3D datasets in combination with
direct volume rendering. Adaptive lenses [LHJ01] or x-ray and cut-planes [KSW06; RLH14]
are tools for knowledge transfer, for instance, to visualize unique features of a volume. Other
focus and context systems such as the foveal inset [Sta+06] use an additional projector to
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display high-resolution content on top of a coarser projection. Most similar to our approach is
the work by Papadopoulos et al. [PK13] for large tiled display walls. Here, a focus region can
be selected to control the visualization of gigapixel imagery. Gigapixel images are challenging
because of their size, where a system’s bandwidth is the major problem. In the presented
system the image generation itself is challenging for highly complex scenes at the required
resolution.

The HSVO facilitate rendering coarse representations of a scene for the peripheral visual
field and displaying polygonal data within the area with the central visual field. To do so,
first, the user’s view-direction needs to be obtained to determine what the user sees on the
projection or display wall and which regions have to be rendered with all details. The following
section thus introduces one approach to generate the Field-of-Sharp-Vision (FSV) based on
the tracking input. Afterward, a metric is introduced that can be used to determine what to
show on screen and in which resolution. Finally, a post-processing step is proposed to blur
the transitions between multiple levels of the representation. All steps are presented in more
detail in the next sections.

5.4.1 Finding the User’s Visible Area

First, to render the specific area the user is looking at in a high LoD, the user’s position and
orientation in 3D space are determined with an optical tracking system. The FSV is specified
manually as an angle describing the horizontal and vertical angular extent of the area to be
rendered with all details. Now five rays are created to describe the user’s FSV. A central ray
defined by the direction the user is looking into and four bounding rays described by angular
offsets used to describe the FSV. The intersection of these rays with a virtual model of the
display wall is used to compute a leftmost, rightmost, topmost and bottommost intersection
point hleft, hright, vtop, vbottom ∈ R all in normalized device coordinates.

5.4.2 Metric to create the Detail-guide Image

The intersection of the user’s FSV and the display wall results in an elliptical/oval shape e.
This shape is defined by the position of the central ray c ∈ R2, the user is looking at, as well
as the bounds hleft, hright, vtop and vbottom. These intersections are assumed to reside in an
orthonormal coordinate system with the extent of the oval on the x and y axis. Now, these
intersections are used to evaluate a metric for each ray that hits the view plane in a point
p ∈ R2. This metric describes if a region has to be rendered in all its detail or if a coarser
representation is sufficient, i.e. the level of the hybrid structure that is to be rendered at a
specific location. The idea is to use the distance from the point p to the oval e to compute
a greyscale image serving as LoD selection guide. This image is referred to as Detail-guide
image (DGI). A DGI is presented in Figure 65b. Black areas in the DGI are to be rendered
showing all details, decreasing down to the lowest LoD with increasing brightness.

A DGI is computed as follows: First, to determine if the point p lies within the oval shape
it is projected to a unit circle. Now the quadrant of the oval shape e in which p falls is
determined and the distances from hleft, hright, vtop, vbottom to c depending on the quadrant
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are computed. These distances are denoted s = (shoriz, svert), s ∈ R2 respectively. Finally,
H(p) is computed as

H(p) =


1, if

∣∣∣∣∣∣(abs(p)− c) ·
 1/shoriz

1/svert

∣∣∣∣∣∣ ≤ 1

0, otherwise

If the point is inside the oval, zero is returned as distance, if it is not inside the distance d of
the point p to the oval e is computed.

Finding the distance between a point and an oval is not straightforward. The matter
is described in work by Eberly [Ebe13]. Each point pe on an oval/ellipse centered in the
coordinate systems origin can be described by sxcos(φ)

sysin(φ)

 , 0 ≤ φ ≤ 2π

Finding the distance of a point to a point on the oval/ellipse can thus be computed by the
function

dist(φ) =
√

(px − sxcos(φ))2 + (py − sycos(φ))2 (3)

Given an oval shape, the distance from it to a point can be computed for a specific quadrant
of the oval using φ : φ ≤ θ with ∀θ ∈ [0, π/2]. One solution to minimize this function is to use
a nested interval approach to find φ. However, such an approach is not robust, is inaccurate
and computationally demanding. Therefore, the approach introduced in Eberly [Ebe13] is
used. Since for the closest point on an ellipse/oval it holds that the normal of this point must
point towards p, equation (3) can be reformulated. This way and a new function F (t) can be
derived, for which its unique root gives the minimal distance of the point to the oval.

F (t) =
(
sxpx
t+ s2

x

)2

+
(
sypy
t+ s2

y

)2

− 1 = 0, t ≥ −s2
x (4)

In order to find this unique root, a hybrid approach between bisection and newtons method is
used. Please see Eberly [Ebe13] for implementation details. Finally, this distance is normalized
according to the normalized device coordinates dnorm = d√

(2)
, dnorm ∈ [0, 1].

dnorm can be computed independently for each intersection of a ray with the view plane
and is used during the traversal of the octree to determine when to stop traversing and thus
to decide to display the coarse voxel or the fine polygonal representation. If the octree has n
levels and it has been traversed to level k, traversal can be stopped if

k ≥ round(n · (1− dnorm))

This way all possible LoDs can be visible on the screen. However, since the distance on the
view plane has been normalized, the distance dnorm can be intuitively altered to represent
a steeper or shallower fall-off of the voxel representation at increasing eccentricities in the
rendering of the peripheral area.
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5.4.3 Post-processing the Images

Although the traversal of the HSVO makes it possible to smooth visible transition between
subsequent resolution levels (Section 5.1.3), transitions between LoDs in the peripheral vision
are noticeable. The movements of the user can be very abrupt and are decoupled from the
topologie of the 3D scene. Such transitions can be greatly disturbing to the user. In order to
smooth these transitions, a post-processing step in image space is performed as follows: First,
a Gaussian blur with a fixed σ is computed for the rendered image. This fixed σ allows for
an efficient computation on the GPU. However, to still account for the fact that blurriness
should increase with increasing eccentricities, the blurred image and the original image are
blended in the following way:

I ′ = w · Ib + (1− w) · Is, w = min
(

1, d
f

)
,

where Ib is the blurred image, Is is the sharp image, d is the distance from the ellipse border
on the image plane and f is a user-specified fall-off constant, defining the size of the border
area around the ellipse in which the interpolation between the two images occurs.

Figure 65a shows a rendering of the hybrid renderer and Figure 65b the used DGI. Note
that in Figure 65a only a small area is rendered with all details. In the peripheral visual field,
the blurred coarse voxel approximation is used.

5.5 user study

In this section, we present the results of a user study with the aim to measure the FSV
and give first insights into perceptual implications. The following research question has been
defined to evaluate the approach presented:

• RQ: What is an average FSV for which a user can barely distinguish if the image in
his peripheral visual field is blurred or sharp?

5.5.1 Procedure and Apparatus

The user study was performed on HORNET, a large tiled display wall. HORNET’s curved
display surface measures approx. 7 × 3 square meters and consists of 35 Full HD monitors
with less than three millimeters bezel each. The total resolution amounts to 72 megapixels.
HORNET therefore allows for 1 : 1 large-scale visualization at a very high resolution –
sufficiently high to surpass the resolution of the human eye when standing more than two
meters away from the displays. The monitors are driven by three display PCs that in turn
have three NVIDIA GTX 780 cards with four outputs each. These PCs are fast enough to
produce standard (OpenGL + shader, local illumination) graphics in real-time for moderate
scene sizes. In order to allow interaction, HORNET is equipped with an optical tracking
system consisting of seven tracking cameras with active infrared illumination. The visual
field and the user’s view-direction can be tracked with a specially prepared bicycle helmet.
However, the user studies were performed in a static setup where the participants were not
permitted to move and look around.



118 hybrid sparse voxel octrees

(a)

(b)

Figure 65: These images show the rendering of the Urban Sprawl scene (a) with a limited FSV and
(b) the detail-guide image to control the reduction of visual accuracy.

A total of 14 subjects (9 male/7 female, all with an academic background and experience in
Virtual Reality (VR)) participated in the experiment. All were between 18 and 47 years old
(M = 27.75, SD = 7.57) with either no known serious visual impairments or subjects wore
corrective glasses or contact lenses. Tracked tests were not performed because humans have
difficulties focusing on a single point when they move around (saccadic eye movement) and
gaze tracking was not available. Also, compensating for eye movement would need a higher
update frequency from the renderer.

After signing an informed consent, each participant was placed in front of the HORNET
display wall at a distance of 60 cm to the center display row. A fixation cross was displayed
in their central visual field. The participants were told to focus on the center of the cross
at all times. For each trial, a single angle was used for the FSV in both the horizontal and
vertical direction. At this point, the study started by showing a rendering with all details
for two seconds followed by a grey image for two seconds and finally a rendered image with
blurred borders using a modified FSV for a further two seconds. In this way, three different
Two Alternatives Forced Choice (2AFC) experiments were performed doing threshold testing
[Lue+03, p. 284-285]. For each trial, the participants were presented the following question:

• Q: Is the visual peripheral sharp or blurred?

The first experiments started with a wide FSV that was then narrowed down. Each time
the participants were asked if they considered the visual peripheral sharp or blurred. If
the participants reported a discrepancy between the first and second image, the test was
repeated with this FSV two further times. One run also was performed showing the completely
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sharp rendered image twice. The grey image was displayed in between to make sure that the
participants cannot notice a difference due to sudden changes in the peripheral visual field.

For the second experiment, the same test was performed but the other way around. It
started with a narrow FSV that was widened in each trial run. During the first runs, the
participants could distinguish between the image with all details and the partially adapted
image. Each time the participants were asked if they considered the visual peripheral of the
second image to be sharp or blurred.

In the final experiment, the combinations were randomly shuffled with FSVs from 0◦ to 180◦
in 6◦ steps. This time no grey image was displayed inbetween configurations. This experiment
is closer to a real dynamic scenario since now the visual difference between two images can
be perceived more directly. Again participants had to respond if they perceive the image in
the periphery sharp or blurred.

5.5.2 Results

To answer the research question RQ, Figure 66a shows the results of the first experiment.
Here, the FSV was gradually narrowed. If the participants reported to have noticed a change
in the visual peripheral, the same conditions were repeated two more times. The angular
size of the FSV was recorded if the participants reported a change in sharpness for all three
consecutive runs. The aim of this procedure was to diminish the influence of not tracking the
user’s gaze. It is assumed that the subjects can focus on the fixation cross in at least one of
the three runs of each trial. Thus, the angular dimensions of the FSV were obtained, for which
the lower quality becomes perceivable. This also allows means and quantiles of the data to be
computed. Likewise, Figure 66b shows the result if the FSV was gradually widened. Again
the procedure was stopped if participants reported that a change in the visible peripheral
was not visible for all three runs. In this case, the previous FSV was recorded, i.e. the one
where the participants last noticed a change in sharpness.

Finally, Figure 66c shows the results when presenting random FSV. Here, only the angle
is plotted when all narrower FSVs were identified to show all details. This way the trials were
removed where the participants were doubtful or falsely identified the images as sharp and
even narrower configurations were considered blurred. Considering all data and due to the
fact that a 2AFC experiment was performed, it can be evaluated plotting a psychometric
function. This function for the third experiment is shown in Figure 66d.

5.5.3 Discussion

After the user studies, the results in Figure 66a-66c show that on average an FSV of 130.5◦
is sufficient to create the sensation of a sharp image. It is important to note that probably
a narrower FSV can be chosen if more effort is spent on blurring the images at increased
eccentricities or, alternatively, data sets at a high voxelization resolution can be provided. In
addition to this, in a post-questionnaire, most users reported that they were not concerned
if they had a narrower FSV immediately as long as the context was preserved and, more
importantly, renderings were updated at higher frame rates. By looking at the psychometric
function for the third experiment in Figure 66d, it becomes evident that once the FSV exceeds
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Figure 66: Results of the first experiment (a) where the FSV was gradually narrowed, (b) widened and
(c) when testing FSV for randomly selected angles. The psychometric function of the third
user experiment (c) shows that once the fields-of-sharp-vision exceeds 128.26◦, images are
rated with a probability p > 0.5 to be sharp.

128.26◦, users rate the image to be sharp with a probability p > 0.5. This figure as well as
Figure 66a-66c show that the spread of the values for the FSV is rather low. The participants
had very consistent results.

Taking the results from the user study, performance impact of the presented LoD selection
can be measured. The benchmark system was equipped with a Nvidia GTX 680 on an Intel
Xeon E5520 system with 16GiB RAM. In order to display the rendered images on HORNET
the SAGE (Scalable Adaptive Graphics Environment) framework [DN02] was used. The DVI
output of the render PC was digitized using a DVI grabber installed on a separate machine
forwarding the video stream to SAGE. Therefore, only resolutions up to 4k were supported
in this scenario. Since a single machine was used for rendering, images could be generated
with about 8 − 10FPS. Hence, the absolute performance was barely interactive. The run
times of the renderer using the mean FSV of 130.5◦, determined in the user experiment, are
compared to the run times of the renderer when displaying an image with all details showing
the full polygonal model. In order to get realistic results, benchmarks were performed using
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Figure 67: Three renderings of a forest scene showing octree level five (left), eight (middle) and the
hybrid voxel polygonal output as rendered by the hybrid approach (right).

Figure 68: Three renderings of the urban sprawl scene showing octree level six (left), nine (middle)
and the hybrid voxel polygonal output as rendered by the hybrid approach (right).

prerecorded tracking data of a representative examination of a dataset on HORNET. For a
typical scenario where the users are allowed to walk or interact with the data set freely an
average increase of speed can be obtained of up to 32% for the Sponza scene with 0.28 million
triangles voxelized with a resolution of 5123, down to 25% for the Urban Sprawl scene with
750k triangles voxelized in a resolution of 20483. All images were rendered in 4k. Full-HD
showed similar results in the performance gain by rendering a narrow FSV.

5.6 applications and limitations

The hybrid structure presented is well-suited to applications that require a general LoD
scheme since the regular voxel description enables a representation for arbitrary input meshes
to be created. The HSVO can be seen as a multi-level grid, ignoring the fact that the HSVO
contains a color and a normal for each grid cell. In this research, the hybrid structure was a
logical step to counteract the artifacts present in the large-scale terrain and vegetation ren-
dering system Silva [Wei+13] (Section 5.3). Moreover, the voxel representation substantially
accelerates rendering. A scene showing several trees rendered at different LoDs is illustrated
in Figure 67. Other examples where this LoD structure is beneficial are found in urban
scenes. Figure 68 shows a general presentation of a city model rendered at different LoDs.
Even though a polygonal simplification of such structures is not as challenging as it would
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(a) (b)

Figure 69: Rendering of an urban environment (a) using the hybrid octree structure with voxel data in
the background and (b) showing a color coding. The red areas are rendered using polygonal
data and the green regions rendered using voxels.

be for tree models, renderings of such scenes from a distance have to compensate for high-
frequency aliasing. The highly-varying z-depth of the scene generates spatial aliasing which
can be reduced by having a pre-filtered voxel structure. Moreover, voxels are independent of
the scene’s local complexity and possibly large triangles in such a scene further reduce the
size of the octree. The hybrid structure allows for smoother transitions and color blending
between different levels as well as faster render times for highly-detailed areas in the scene
viewed from a distance. A rendering of the model and a color coding of the internals of the
structure are presented in Figure 69.

Although the presented LoD scheme can substantially reduce aliasing artifacts and has
proven to be applicable for VR systems and perception-driven rendering approaches, a voxel
representation has various limitations. In general, voxel representations have high storage
requirements and since the presented construction on the GPU is performed in-core, the
resolution of the voxelization is limited. Although out-of-core builds are possible in the latest
version of the developed voxelization approach, all data still has to be held in GPU memory
for rendering. Visually appealing models can easily require gigabytes of storage. Even though
compaction methods such as Sparse Voxel DAGs [KSA13; Dad+16] have been developed,
voxel representations usually fail to provide a balance between storage requirements and
visual quality when used as first-order rendering primitives. However, voxel-based approaches
are being successfully used for a fast and approximate simulation of Global Illumination (GI)
accumulating secondary light contributions [Cra+11; Pan14; PSS14].

Memory management during construction remains an issue. The number of fragments
generated by the voxelizer and the size of the octree as well as the triangle index list are not
known in advance. Hence, buffers must either be preallocated with a maximal size or be used
in a caching and paging scheme (e.g. [Cra+09]). Admittedly though, determining the size
required for buffers is a problem most grid construction algorithms have in common. However,
once the voxel fragment list has been generated, the approach presented allows the octree
construction to be stopped early when too much memory is required in order to construct
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(a) 2D illustration without contour planes (b) 2D illustration with contour planes

(c) 3D rendering without contour planes (d) 3D rendering with contour planes

Figure 70: Using contour planes in the hybrid renderer helps to discard empty space at an early point.
However, although the model representation is better, using contour planes might produce
aliasing artifacts and so incorrectly compute shadows are probably visible.

deeper levels. The system has already been extended to perform an out-of-core voxelization
and construction for parts of the scene that have to be voxelized with a higher resolution.

Another issue with voxels arises from their regular structure and cube-like shape. Voxels
store single colors and materials but often have to represent spatial entities that emit different
colors in various directions. Even a plain triangle can have different textures on each of its
sides. Hence, deciding which color to store and how to prefilter the values that reside in a
voxel is challenging. Likewise, prefiltering a material description is equally problematic. It is
often not possible to find an average material for various samples when the 3D function is
prefiltered. Although this is an issue all LoD frameworks have to deal with, it is an especially
challenging problem if space is subdivided regularly such as performed by SVOs. In this case,
information from entities with different materials must be merged as soon as they reside in the
same voxel. On the other hand, for approaches that simplify models using geometric meshes,
the weight of each vertex can be altered to prevent the model from merging vertices that
ought to be rendered with different materials. Hence, multi-level voxel representations work
best for cases in which relatively simple materials are present. Nonetheless, these issues are
problematic as becomes apparent in Section 5.3 for quality estimations between the hybrid
renderer and a traditional rendering approach. Another issue is that while the structure is
adaptive to space, it is not genuinely adaptive to the scene’s input geometry. If there is a
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highly-complex geometry inside a single leaf voxel, traversing these parts of the scene can have
a considerable impact on performance. Merely building a tree to deeper levels by a regular
subdivision of these parts is often not sufficient in order to subdivide the model’s input
geometry. It would be better to either identify these high-resolution parts beforehand and
voxelize them separately, or automatically use truly adaptive acceleration structures such as
BVHs or kD-Trees for these parts of the scene. However, since a coarser voxel representation
is available, the renderer can decide to stop traversing these parts and display the coarse voxel
representation in order to stay within constant frame rate limits. Another way to overcome
such issues is to use the HSVO as the first layer in a multi-level grid, for example the grid
implementation by Perard et al. [PKS17].

Figure 71: Finding the minimal oriented
bounding box that is encapsulat-
ing the enclosed set of vertices
as an alternative method to gen-
erate contour planes.

A further challenge with voxel structures involves
the question of how to encode the empty space in
voxels that contain geometry. If a planar surface re-
sides within extent’s of the voxel, its cubic shape
probably fills considerable space that does not con-
tain any geometry; thus it over-represents the ge-
ometric entity. This problem is illustrated in Fig-
ure 70a and presented in Figure 70c. One way to
counteract this kind of artifacts is to allow voxels
to be (semi-)transparent. Unfortunately, rendering
(semi-)transparent voxel structures requires at some
point a complete direct volume rendering pipeline
and will become less efficient. Another way to mit-
igate such artifacts is to augment the voxel by ad-
ditional contour planes, as illustrated in Figure 70b
and presented in Figure 70d. The idea of such con-
tour information is to limit the voxel space by using
two planes for each voxel. Introduced by Laine and
Karras [LK11], the contour planes are computed based on the average normal of the geometry
inside the voxel. During construction, initially, two planes are considered, a lower and upper
plane, both orthogonal to that normal. Now, the planes are shifted based on the minimum
and maximum projection of each vertex in the voxel on the respective plane. This way these
contour planes encapsulate the geometry of the respective node. As the SVO is traversed,
each traversed level of the octree continuously limits the space. The only space considered by
the intersection is the union of the space encapsulated by all contour planes from the root
node down to the node of the current level. While the renderer presented was extended to
support such contour planes, it also was extended to compute the contours in another way.

As averaged normals can wrongly represent the underlying geometry, a high-quality build
mode attempts to find the best encapsulating planes by computing the minimal Oriented
Bounding Box (OBB) for the geometry inside each node as illustrated in Figure 71. These
OBBs are intersected from one level to the next as the SVO is constructed. However, the
benchmarks presented and the quality estimation of the hybrid renderer were carried out
without contour planes as they do not help to solve another serious issue of voxel representa-
tions, namely shadow artifacts.

As the cubic-like voxels may be blocked from the incoming light by other voxels surround-
ing them and voxels have a problem when representing flat non-axis aligned planar geometry,
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Figure 72: Voxel self-shadowing artifacts that are a severe cause for visually disturbing aliasing arti-
facts.

voxel representations are prone to self-shadowing. By looking at Figure 72, it should become
clear that voxel-representation cause a many of such artifacts. Essentially these produce a
very unpleasant high-frequency noise in the scene. Ultimately, shadows are simply another
high-frequency signal likely to cause aliasing in the image that should have been removed by
the voxel representation in the first place. In a ray tracing framework, the hitpoint with the
voxels can be slightly shifted towards the observer or towards the light source for shadow rays
in order to prevent them from intersecting direct neighbors. However, this is not the com-
plete solution but merely limits some artifacts. Although it could be assumed that contour
planes mitigate the artifacts, they are no much help. No matter how the contour planes are
computed, the neighboring contour planes do not often have contact in single points. Hence,
highly irregular self-shadowing artifacts are visible. Furthermore, as voxels are no longer cube-
shaped, offsetting the ray’s hitpoint is more challenging and wrongly computed shadows are
more dominantly visible. Thus, it is often beneficial to use other strategies such as filtering
shadowing artifacts [RS09]. For the large-scale tree models, also, dynamically switching be-
tween two approaches depending on the distance to the camera is possible. Offset shadow
rays intersected with the coarse SVO representation are used when computing shadows for
trees in the distance (far-field). Here, the loss of image quality due the reduced shadow preci-
sion is neglectable. For objects that are close to the camera (in the mid-field and near-field),
and a high shadow quality matters, it is advisable to always use the triangle structure when
intersecting shadow rays.

However, it should be noted that all of the artifacts mentioned above are less critical when
using the perception-driven LoD selection scheme presented here. In this case, the coarse
representation is only used for areas that are of minor interest in the visualization or are not
visible or noticeable to the user. One limitation is that currently only single users are sup-
ported by the presented approach. While the respective FSVs could be combined for multiple
users, the resulting larger FSV does increase the computational workload – potentially to
a point where using the LoD scheme becomes superfluous. Nevertheless, an improved voxel
representation probably helps in reducing the FSV for single and multi-user setups.
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5.7 future work

The purpose of this chapter is to open up the limitations for further discussion as these
provide the avenues for future work.

While voxel models have high storage requirements, they allow for a progressive refine-
ment making them well-suited for out-of-core rendering. This field is targeted by research.
An overview can be found in the work by Crassin et al. [Cra+09]. In this work, volumetric
datasets are streamed into GPU memory using a high-level hierarchy of bricks representing
subsets of the volumetric entities. Moreover, different approaches have been introduced to
compact volumetric representations. Unfortunately, often these approaches only allow repre-
senting binary voxelizations or scalar volume datasets (MRT, CT, etc.). A survey on these
methods is provided by Balsa et al. [Bal+14]. One approach well-suited for binary voxeliza-
tions are Sparse Voxel DAGs [KSA13]. Here, octrees are compressed to more compact Directed
Acyclic Graphs (DAGs). Unfortunately, these DAGs lose their compactness once individual
colors and normals ought to be stored. Hence, more general schemes like the work by Bas et
al. [Dad+16] compresses attributes such as colors.

While indeed more work can be spent on more efficient compression and out-of-core schemes,
still, combining appearances (materials and textures) is another challenge to face if voxel rep-
resentations ought to be used as general rendering primitives. To this end, it is especially
important to find efficient representations of direction-dependent information to be stored in-
side voxels efficiently. However, this will come at increasing costs. Likewise, more effort should
be put in proper post-processing and LoD selection schemes in order to reduce regularity and
alleviate the block structure in perceptually challenging situations. Due to processes such as
lateral inhibition (Section 2.1.1), the block artifacts quickly become noticeable [Koh+05].

There are a lot of possible ideas for future work for the tracking scheme that adapts
rendering according to the visual field. However, currently, the achieved rendering times are
interactive and only sufficient for setups were only head tracking is used. Currently, there
is an ongoing discussion on utilizing a separate dedicated render cluster that is available for
HORNET and allowing for faster image generation due to more powerful hardware. Here, our
rendering abstraction framework [GWH17] that encapsulates renderers and message passing
(MPI) for synchronization using Docker containers could be one valuable tool. Moreover, to
further benefit from the FSV, different load balancing strategies ought to be developed to
distribute the workload to the different render PCs in the cluster.

Eventually, with newer hardware generations, HSVOs will be fast enough to be used in
gaze-tracked setups where the system has to cope with fast eye movements. As gaze-tracking
was not available for HORNET and rendering times were only just interactive (8 − 10FPS)
it has to be left for future work how the required FSV changes in dynamic or gaze-tracked
scenarios. Here, post-processing filters and better optimized bilateral blurring could prevent
transition artifacts from becoming perceivable. Also, even though a peripheral LoD change
might be visible in some scenarios, it usually should not bother the user to fulfill a specific task
– probably at equal speed and precision. Lastly, given the interactive construction times that
can be achieved already, it should be possible to use HSVO for dynamic scenes on upcoming
GPU generations as well.
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5.8 conclusion

This chapter has presented an approach to building a hybrid acceleration structure stor-
ing voxels for inner nodes, stopping construction of deeper levels if the number of primitives
within a node is not greater than nsplit, and storing the full triangle list for each leaf node that
represents the finest voxelized level. This way, an LoD description of the input geometry is gen-
erated so that sampling can be performed more efficiently. In addition, the presented hybrid
acceleration structure makes a substantial reduction in aliasing artifacts possible. Nonetheless,
the inherent issues and presented limitations, especially the high memory requirements and
the challenges with direction-dependency and the shadowing artifacts must be considered. In
the last years, traditional LoD approaches to cope with aliasing artifacts are becoming less
prominent for use-cases such as video games, where it is possible to hand-tune polygonal
information in order to meet perceptual and performance requirements. The current GPU
generations are far less sensitive in dealing with massive triangular meshes - triangle through-
puts and fill rates have substantially increased over the last decades. In 2016 a newly released
NVIDIA had a peak pixel fillrate of 111Gpixels/s and a peak rasterization rate of 6.9Gtris/s.
Ten years earlier, the high-end NVIDIA GTX 7900 only achieved 10.4Gpixels/s with a peak
rasterization rate of about 0.25GTris/s in ideal conditions.

In general, if render times are not an issue, it is usually better to take more samples to
counteract artifacts. For specific scenarios that require interactivity such as video games, for
example when rendering outdoor scenes and vegetation, specialized LoD schemes have proven
to be of a higher value. Industry can afford to maintain approaches for all the various aspects
of realistic scenes. Nonetheless, most AA is handled by techniques such as Multisampling
Anti-Aliasing (MSAA) or Temporal Anti-Aliasing (TAA) that are industry standard [Tat+16].
Despite this, the presented LoD approach is well-suited for lab setups and specialized VR
installations where arbitrary models need to be visualized and hand-tuning or specialized
rendering approaches are not available. This is the case for high-quality visualizations of
large outdoor scenes which must be generated quickly for mostly unknown datasets. For such
installations, a perception-driven LoD selection mechanism has been introduced here to en-
hance the rendering performance for large tiled display walls. Even though the experimentally
found FSV of 130.5◦ would appear to be wide, it is sufficient for typical scenarios to signifi-
cantly increase the application’s speed. Using the presented display wall, this FSV of 130.5◦
means that standing more than two meters away from the wall, the image has to be rendered
with the full resolution, i.e. the FSV covers the entire wall to match the visual acuity of 1◦.
For increased distances, reducing the display’s resolution is possible as rendering in 1080p
on each display exceeds the visual acuity limits at these and greater distances. In practice,
one observation is that people using display walls to discuss data sets stand very close to
them. Here the system presented in this chapter is especially beneficial. Also, the size of the
FSV can probably be further reduced by applying more elaborate post-processing methods
such as an edge-aware bilateral blur to hide transitions between the voxels and polygonal
representation.

Although the view-directed LoD selection approach has proven to be a valuable tool for
large high-resolution display walls and projection systems, it is challenging to achieve inter-
active render times. Hence, the approach presented here can not be used for gaze-contingent
rendering. To this end, it is often beneficial to adapt the sampling itself and so meet the
low-latency requirements to cope with fast eye movements.
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Exploiting the Limitations of the Sensor

(a) Small foveal region with

(r0=5◦, r1=10◦, pmin=0.01)

(b) Medium foveal region with

(r0=10◦, r1=20◦, pmin=0.05)

(c) Full Renderer

Figure 73: Images generated with the foveated renderer showing the effect of different configurations
for the foveal region, including an image that was rendered by ray tracing every pixel.

In previous years, advances in display technologies and mass production have led to the
introduction of a range of high-quality Head-Mounted Displays (HMDs) with a wide Field
of View (FoV), which have attracted the interest of researchers in the field of virtual and
augmented reality. At the same time, pixel densities have dramatically increased over the last
two decades (e.g. Forte VFX 3D at 263×480×2 in 1998 and StarVR at 2560×1440×2 in 2016,
Appendix A.4). One of the key challenges when rendering to HMDs is achieving low latencies
while filling the pixels. This is crucial to increase presence and reduce fatigue. The combination
of high pixel densities and refresh rates are a major challenge when bringing image synthesis
algorithms to HMDs and yet as far as resolution is concerned vast improvements are required.
Providing the highest possible visual quality at retinal resolution would require at least 432M
pixels for the full dynamic field of view of the human eye (Appendix A.4). Rendering at such
resolutions with the necessary refresh rates (≥ 75Hz) is far beyond the reach of current and
foreseeable hardware and software solutions.

One possible solution for increasing rendering efficiency is by a gaze-contingent adaption of
the visual quality in rendering systems based on the decreasing visual acuity with increasing
eccentricities of the visual field. Knowing the user’s gaze and his Point-of-Regard (PoR) on
the image plane allows the sampling to be adapted to the retinal limitations. As presented in
Section 4.2.3, several of such foveated rendering methods have been introduced in recent years.
This is made possible by the availability of reasonably-priced, accurate eye tracking devices.
The integration of these devices in HMDs has further increased the popularity as the fixed
relative positioning between eye and screen effectively reduces calibration costs and improves
accuracy. These necessary accuracies when determining the PoR are usually not achievable
when users are allowed to move in front of large-scale Virtual Reality (VR) installations,
such as the large high-resolution display wall mentioned in the previous chapter. Likewise,
the detailed method to adapt the visual quality using Level-of-Detail (LoD) and voxels has
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proven to be not sufficiently efficient to be used inside an HMD. Especially considering the
fact that its main purpose is to visualize highly complex geometry. For low-latency rendering
of commodity 3D scenes, it is better to adapt sampling directly.

This chapter of the thesis describes the development, a foveated rendering system based
on ray tracing that is capable of rendering high-quality images quickly enough for modern
HMDs (Figure 73). The sample density of the rendering process is reduced by adapting
the ray generation to visual acuity. In contrast to the methods available when this research
began, a focus is placed on ray tracing as the primary rendering method as it has several
distinct advantages when rendering to HMDs (Section 4.2.3). One of the key challenges for
foveated rendering methods is to reconstruct images at a high quality in order to limit the
detection of visual artifacts. To this end, the presented approach is coupled with a reprojection
scheme to increase temporal stability. The reprojection does combine samples thus creating
a smoothly refined image. Parts of the image that expose high contrasts are resampled, as
those are likely to cause artifacts that remain perceivable due to the eye’s contrast sensitivity
(Section 3.1.3). Using the approach presented, missing information from the sampling process
can be reconstructed either using a support image that is guaranteed to sample the full scene
using a lower uniform resolution or by using information from reprojected frames to improve
the quality of the reconstructed final image.

The benchmarks demonstrate the high performance of the presented implementation when
compared to standard ray tracing. In order to determine the methods perceptual quality, this
chapter also presents the results of a accompanying user study which employs an Oculus Rift
DK2 equipped with an eye tracker. This made it possible to substantiate the high visual
quality by the approach presented. Without overly prejudging the presented results, visual
tunneling (Section 2.2.5) and retinal velocity (Section 3.1.2) had interesting effects in the user
study when the visual quality needs to be judged. This demonstrates how mental workload
and other perceptual properties can be used to further optimize foveated rendering systems.
Fewer samples can be generated in the periphery when users concentrate on a specific part
of the scene or need to accomplish a task in the virtual world.

In summary, this part of the thesis presents a gaze-contingent rendering system for HMDs
including the following contributions:

• A high-performance, adaptive sampling approach for ray tracing driven by eye tracking
and limitations of human perception.

• A reprojecting and merging process using a coarse approximation of the scene geometry
to support reconstruction of the final image from sparse samples.

• An estimation of the tracking precision and fixation accuracy, supported by the evalu-
ation of eccentricity-based quality ratings.

• A user-study showing that the method only has minimal impact on the perceived qual-
ity when regarding foveal region limits. The study also reveals a great potential for
deploying visual attention to further optimize foveated rendering techniques.

• An analysis of the connection between subjective perceived quality and fixation accu-
racy, providing possible evidence of the presence of visual tunneling effects and the
magnitude of their influence on the user’s perception.
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contributions by the author This chapter is based on work published in the
paper:

Martin Weier, Thorsten Roth, Ernst Kruijff, André Hinkenjann, Arsène Pérard-Gayot,
Philipp Slusallek, and Yongmin Li. “Foveated Real-Time Ray Tracing for Head-Mount-

ed Displays.” In: Computer Graphics Forum (Proceedings of Pacific Graphics ’16). Oct.
2016.

I was the primary investigator for this paper and developed the GPU-based rendering, repro-
jection, and merging pipeline for foveated rendering as presented in the following sections.
My co-author Thorsten Roth supported this work by developing the ray generation kernels
for sparse sampling and the post-processing filter when using stochastic rendering methods.
As the latter components are not the author’s original work, only a few details are provided
in this thesis in Section 6.1.1 and Section 6.1.5. The ray tracing core itself was created in
collaboration with Arsène Pérard-Gayot. It was later also used for comparison purposes in
our paper:

Arsène Pérard-Gayot, Martin Weier, Richard Membarth, Philipp Slusallek, Roland
Leißa, and Sebastian Hack. “RaTrace: Simple and Efficient Abstractions for BVH

Ray Traversal Algorithms.” In: Proceedings of the 16th International Conference on

Generative Programming: Concepts & Experiences (GPCE). ACM. Vancouver, BC,
Canada, Oct. 2017, pp. 157–168.

The design and evaluation of the user study, presented in Section 6.3, was done in collabora-
tion with my colleagues Thorsten Roth and Ernst Kruijff. Noteworthy in this context is the
evaluation of the eye tracking data. My colleague Thorsten came up with the initial ideas
and details are provided in our paper:

Thorsten Roth, Martin Weier, André Hinkenjann, Yongmin Li, and Philipp Slusallek.
“A Quality-Centered Analysis of Eye Tracking Data in Foveated Rendering.” In: Jour-
nal of Eye Movement Research (JEMR) 10.5 (2017).

While some of this work can be found in this thesis, I explicitly marked the relevant places.
Here, I also added a new evaluation of the retinal velocity. This evaluation provides a further
explanation to our findings on visual tunneling effects that has so far not been discussed.
Details on this matter are provided in Section 6.3.3.
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Figure 74: Building blocks of the reprojection pipeline. Old color and auxiliary cache info are repro-
jected using a GL Reprojector (Block 1). New rays are generated based on the user’s gaze
and possible errors introduced by the reprojection are marked in a resampling info buffer.
The ray traced pixel values (Block 2) are blended using a temporal caching and merging
scheme (Block 3). An optional Post-Processing is used to smooth artifacts arising from
stochastic sampling processes such as ambient occlusion (Block 4).

6.1 method

In this section, the building blocks of the foveated rendering system are described. An overview
of the entire pipeline is presented in Figure 74. The system’s core is a fast ray tracer based
on NVIDIA CUDA using an SBVH acceleration structure [SFD09] (Figure 74, Block 2). It
generates a sampling pattern from three parameters describing a foveal region to account
for the user’s visual acuity and gaze (Section 6.1.1). However, this foveated sampling process
results in a sparse image. This means that with increasing eccentricities there are propor-
tionally larger gaps between sampled pixels. Presenting such an image to the user would not
meet the perceptual requirements, as the gaps would result in the sparse image’s brightness
being vastly different from the fully sampled image. Also, strong temporal flickering would
be present due to the stochastic sampling process, responsible for generating rays. Thus, it is
necessary to provide a method that improves image quality outside the foveal region, generat-
ing a smooth image from the sparse samples. This method has to meet specific requirements:
While performance has to be high enough to stay within VSync limits (13.3ms at 75Hz),
image quality has to suffice human perception.

In order to maintain a high image quality but still meet performance requirements the
central idea of the presented approach is to exploit Temporal Coherence (TC) between subse-
quent frames to increase the number of available samples. A frame rendered a timestep t−1 is
projected to a new frame at timestep t using a coarse mesh that is generated from the user’s
view. Artifacts arising from the reprojection and the use of the coarse mesh as well as depth
and brightness discontinuities are detected. This information is used to guide the sampling
process as resolving those artifacts is critical for the perception in the peripheral visual field.
More samples are generated based on the user’s gaze in combination with a temporal caching
and merging scheme. This allows for reusing samples across time and space.
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Buffer Name Resolution Components Description

Reprojected Image Native HMD

Resolution

RGBA32F Reprojected color image that is used to compute

the current frame.

Reprojected Cache Info Native HMD

Resolution

RGBA32F Reprojected weights for temporal integration.

The weights are used when combining new sam-

ples and the reprojected image.

Final Image Native HMD

Resolution

RGBA32F Last frame’s color information.

Final Cache Info Native HMD

Resolution

RGBA32F Last frame’s weights for temporal integration.

Resampling Info Native HMD

Resolution

R8 Auxiliary buffer to mark parts that benefit from

additional sampling.

Support Image Reduced Reso-

lution

RGBA32F Low-resolution color buffer to fill in values that

cannot be reconstructed from the last frame or

the new samples.

Support G-Buffer Reduced Reso-

lution

RGBA32F Low-resolution G-Buffer used to reconstruct

coarse geometry to reproject the next frame.

Table 6: Overview of the buffers that are used in the rendering pipeline. The last three buffers increase
the storage overhead compared to traditional temporal anti-aliasing approaches [Yan+09].
However, these operate at low resolutions or can be stored in a single channel.

The rendering pipeline consists of four steps (Figure 74):

1. The calculation of a new frame starts with the processing of an old frame (Figure 74,
Block 1). The final color image of the old frame with additional information is repro-
jected using a low resolution support G-buffer. The latter is used to generate a warping
geometry to turn the final color and cache info into textured geometry. The textured
geometry is now reprojected into the next frame using OpenGL. In addition, this step
detects regions in the image where this reprojection failed or which have high contrasts
and as a result a high saliency in peripheral vision. These areas are marked in an
auxiliary buffer called resampling info.

2. Eye tracker inputs with a foveated sampling scheme and the resampling info are used
to calculate new samples using ray tracing (Figure 74, Block 2).

3. Finally, the information is combined and a final image is (re-)constructed (Figure 74,
Block 3). Here, missing samples can either be reconstructed from the reprojected pre-
vious frame or from the low-resolution color and G-buffers (support image and support

G-buffer). These are fully updated per frame. However, the resolution of these buffers
is only a fraction of the target resolution required for the HMD. The support image

contains a regular low-resolution color image, while the support G-buffer contains the
geometric normals and depth values that are in turn used to reconstruct the coarse
geometry for the next frame.

4. An optional post-processing step (Figure 74, Block 4) can further improve image quality
when stochastic sampling processes are used.

An overview of the buffers used and their descriptions can be found in Table 6. The individual
steps of the pipeline are described in more detail in the following sections.
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Figure 75: Probability p(q) for sampling a specific pixel q based on its eccentricity and user-defined
parameters r0, r1, and pmin. Despite the hyperbolic fall-off of cones towards outer regions
a linear fall-off is employed to improve motion perception in the periphery and to reduce
spatial and temporal aliasing artifacts in these areas.

6.1.1 Ray Generation and Ray Tracing

Initially, a ray generation kernel is launched which selects the pixels to render regarding the
visual acuity. As presented in Section 3.1.2, visual acuity is subject to a hyperbolic fall-off
with increasing eccentricity. However, instead of relying on the models by Guenter [Gue+12]
or Reedy [Red01], for this work it was decided to use a model that allows for a more intuitive
adaptation of the visual field with a steep linear fall-off. Although this model yields a slightly
higher sampling rate in comparison to models with a hyperbolic fall-off (Section 3.1.2), all
acuity models are user-dependent anyhow and must be carefully tuned to each subject. Also,
the introduced linear model guarantees a minimum sampling density for the peripheral visual
field. Due to the higher sampling rate, this limit reduces spatial as well as temporal aliasing
artifacts in these areas that are critical due to the high flickering sensitivity at larger angular
distances to the center of vision. The spatial visual acuity model used is illustrated in Figure 75
and compared to other models in Section 3.1.2.

In order to achieve a linear behavior, the ray generation is based on two user-defined
eccentricity thresholds: An inner threshold r0 and an outer threshold r1, both given in degrees
of the visual field. Here, r0 determines the size of the foveal region (i.e. the area rendered in
full detail). The angular eccentricity r1 together with the minimum sampling probability pmin
determines the probability fall-off beyond r0. These three values represent a user-controllable
triplet, referred to as a Foveal Region Configuration (FRC). Pixels with a larger eccentricity
than r1 are only sampled with a probability of pmin. Sampling probabilities p(q) are computed
based on the eccentricity of each pixel using the function presented in Figure 75. Generally,
pixels are only selected for sampling if ξq < p(q) with ξq ∈ [0, 1] being a uniformly distributed
random number. In addition, the sampler schedules all pixels for sampling that are required
for the uniform lower resolution support image or that are marked in the resampling info

generated by the reprojection (Figure 74). Based on the selected samples, the GPU kernel
stores the respective primary rays in an array using atomic index increments.
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Next, the generated rays are intersected with the scene geometry resulting in a list of hit
points and their respective pixel indices. The kernel introduced by Aila and Laine [ALK12]
is employed for ray traversal.

After the intersections, a kernel computes shaded pixel colors for the rays’ hit points.
Shading currently supports Phong lighting with mipmapping, ambient occlusion, point, and
area light sources. The irradiance from the area light sources and the ambient occlusion value
are stored in a separate light buffer. This way the running estimate, used to combine samples
temporally, can be adapted to different rates. This enables a separation of color and irradiance
information allowing to reduce noise introduced by stochastic processes, for example when
sampling area light sources or ambient occlusion.

6.1.2 Reprojection

After computing an array of newly shaded samples along with the pixel indices for the current
frame, the reconstruction relies on information from the previous frame. As computing more
samples is expensive, exploiting TC helps to increase performance while it can also improve
image quality. In order to increase the available samples spatially, forward-reprojection is
performed. However, while it is theoretically possible to understand each sample as own unit
in space, reprojection each of those samples individually is costly. Even more challenging is
that this way it is hard to determine and resolve occlusions and disocclusions correctly. Hence,
the method forward-reprojects samples using the rough scene geometry. As presented in
Section 4.3, possible approaches for such types of forward-reprojection have been introduced
by Simmons and Séquin [SS00] and Tole et al. [Tol+02]. These construct and update an
irregular mesh with potentially as many vertices as pixels at the highest quality level. However,
such approaches are costly and ray tracing can be fast (up to 200Mrays/sec for traversal
[ALK12]). Usually, computationally expensive methods are not worth the effort.

In order to maintain high refresh-rates, this work uses a reprojection strategy based on
a coarse and uniform mesh that can be handled most efficiently. Although this process is
likely to produce errors in certain image areas, they can be resolved more efficiently by
computing additional samples instead of constructing a more precise mesh representation.
The reprojection process (Figure 74, Block 1) transforms the final color image along with
the final cache info to a new reprojected color image and reprojected cache info buffer. The
cache info buffers are used to keep a state in the buffer that maintains how samples should
be combined temporally. As described in Section 6.1.4, this buffer is a float4 texture that
is reprojected along with the color information. For each frame, a uniform mesh is generated
from the support G-Buffer by creating and displacing a uniform grid of vertices matching the
support G-Buffer’s resolution.

In order to reconstruct the scene geometry from the depth information stored in the support
G-buffer, the vertices are adjusted to these image space depth values with a geometry shader.
Afterward, an “unprojecting” step is performed using the model, view, and projection (MVP)
matrices of the previous frame. These were also used to create the support G-buffer and yield
the vertex positions in world space representing the surface of the visible scene geometry from
the previous frame. In the next step, the vertices are forward re-projected to the new frame
using the current MVP matrices. This mesh is rasterized at the full rendering resolution,
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textured with the last frame’s final color image and final cache info, finally yielding the
reprojected version of the previous frame.

Due to the changed perspective, each pixel’s footprint may cover a couple of texels of the
previous frame’s final color image. Therefore, simple bilinear filtering of the texture is not
sufficient and special care has to be taken to filter this texture during rendering. As computing
a mipmap hierarchy along with anisotropic filtering for the reprojected texture per frame
based on the new pixel’s footprint is too expensive, another texture filtering method has to
be used. This filtering method randomly samples the pixel footprint multiple times using
a normal distribution inside the fragment shader in order to compute the final reprojected
color.

6.1.3 Handling Reprojection Errors

The uniform mesh employed for reprojection is not a perfect representation of the actual
scene geometry. This may lead to perceptible errors. Possible causes for these errors include
geometry newly entering the view frustum, disocclusions, and undersampling [MMB97]. If a
part of the scene has not been inside the view frustum in the previous frame and sampling
has not been triggered by the visual acuity model, missing pixels are reconstructed from
the coarse support image (Section 6.1.4). Disocclusions and undersampling can both cause
strong visual artifacts to appear in the image (Figure 73a). This is caused by incorrectly or
incompletely reprojected information. Therefore, an additional render step attempts to detect
and create additional samples for areas with such artifacts, consequently improving perceived
image quality.

First, to detect regions that need further sampling, the scene is rendered using the coarse
resolution matching the support image and support G-Buffer using the reprojection procedure
described in Section 6.1.2. If there is a depth or luminance difference between a pixel and
its direct neighborhood in the reprojected image that is larger than a user-defined threshold
εdepth or εlum, a pixel is marked for resampling in the resampling info. This process resembles
edge-detection steps in post-processing methods like Subpixel Morphological Anti-Aliasing
(SMAA) (Section 4.4) and schedules critical regions for resampling. Interestingly, this entire
process shows similarities to the recently proposed hybrid Adaptive Temporal Anti-aliasing
(ATAA) (Section 4.2.1).

Depending on the chosen value for ε, geometry that does not resemble the scene may be
used for reprojection anyway, e.g., in case of relatively flat objects in front of a wall. If such
geometry is looked at frontally in frame t − 1, moving the camera to frame t can result in
undersampling artifacts because the possibly wrongly closed geometry is reconstructed, con-
necting the object to the wall. These objects might expose depth and luminance distances well
below the respective ε-thresholds, while the closed geometry resulting from the reprojection
process is actually wrong [MMB97]. Such surfaces occur along the user’s viewing direction,
i.e., when the angle between the surface normal and the observer is close to 90◦. These corner
cases are detected with an additional test looking at the surface geometry. From the previous
frame’s geometric normal ~n and camera orientation ~d, we compute edget = max{~n · ~d, 0}. If
edget < ε, the pixel is marked for ray generation. Partial derivatives of texture coordinates
would be another measure to detect regions that need sampling. They yield information about
an observer’s angle towards a potentially undersampled surface. However, in this work no no-
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ticeable visual enhancements by using this information could be found as head movements
are limited when wearing an HMD. In case of complex geometry, a considerable part of the
image may be covered by possibly undetected and thus undersampled edges (Figure 73a).
This necessitates a measure for sample quality accounting for a sample’s age, as presented in
the next section.

6.1.4 Cache Update and Merging

At this point, the current image only consists of the previous frame’s reprojected color image

(Figure 74). Newly shaded samples from the ray tracing process have to be combined with
this cache image using a temporal blending method. This accumulation process should be
designed in a way that reduces the weight of older samples, as simply accumulating samples
with equal weights does not make sense for two reasons: First, due to the sparse sampling
process, each pixel may have been sampled last at a different point in time. Second, assigning
a high weight to old samples leads to visual artifacts like smearing on edges. However, at the
same time just using the new sample without considering cached values can lead to disturbing
temporal noise, especially because of the human eye’s high peripheral flickering sensitivity
(Section 3.1.7). Hence, samples are usually temporally combined using a running estimate.
Some considerations on such a running estimate are presented in Appendix A.3.

In contrast to the state-of-the-art, not each pixel is sampled in every frame but the sampling
rates are adapted based on visual acuity. Hence, samples might be reprojected multiple times
before they are updated with a newly computed sample. Relying on reprojected values only,
most probably decrease the image quality. Hence, a smooth temporal blending process taking
into account a limit of the samples’ age and its last update is applied. While such a process
reduces temporal flickering, large-scale contrast for the visual periphery is preserved. This
leads to more stable images in the visual peripheral.

However, to begin with, not all samples are subject of temporal integration. A sample’s
color is directly written to the output if it belongs to the foveal region, is otherwise part
of the resampling process (marked in the resampling info), or is written to a part of the
image that did not contain any reprojected color due to disocclusion or movement. Also, this
pipeline stage does extract the support image and support G-buffer without considering tem-
poral integration (Figure 74). For all other samples, temporal integration might be employed.
Following the renowned considerations by Yang et al. [Yan+09] for Temporal Anti-Aliasing
(TAA), possible (dis-)occlusions caused by a change in perspective are determined by looking
at the depth difference between ct−1[p] and st[p]. Here, ct[p] does refer to the cache value at
pixel p and frame t, while st[p] is the newly computed sample for pixel p and time t. If the
depth difference of those samples is above a threshold ε, the reprojection contains a potential
occluder or parts have become disoccluded, as the ray has hit a part of the scene different
from the cache. In this case, only the newly generated sample are considered without inte-
grating anything from the cache. If the depth difference is below the threshold, the cached
color values at pixel p can be combined with the new sample s. The final pixel value ft[p] is
now computed using a blending value αt[p]:

ft[p]← αt[p] · st[p] + (1− αt[p]) · st−1[p] (5)
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Finally, to account for the sample’s age and limited update rates, αt[p] has to be adjusted
according to the number of samples accumulated at pixel position p as well as the most recent
update-time of this pixel. To do this, α′t[p] is computed as:

α′t[p]←
1

Nt−1[p] + 1 Nt[p] =
(
αt[p]2 + (1− αt[p])2

Nt−1[p]
)−1

,

where Nt[p] represents the number of samples that have been accumulated at pixel p and
frame t. This process resembles the method of Yang et al. (Appendix A.3). To avoid infinite
accumulation of samples, k is the minimum possible weight for the new sample to finally
compute αt[p]← min{αt[p]′, k}. However, it is proposed that it is best to adapt k dynamically
based on a sample’s age.

If a pixel has been sampled a couple of frames ago, it has undergone the potentially im-
precise reprojection process multiple times, especially since the camera is constantly moving
when head tracking is active. If the timespan between the previous update and the current
time is high, it is better to account for the current sample with a higher weight. Therefore,
instead of a fixed k, the following exponential function is used.

kt(∆t)← min
{

exp
(
x0 + ∆t− 1

tmax − 1(x1 − x0)
)
, kmax

}
, x0 = ln kmin and x1 = ln kmax

This function can be parameterized based on a fixed interval [kmin, kmax] and a maximum
timespan tmax for which it accumulates samples. The value ∆t = t− ttouched is the difference
of the current frame index and the frame index a value has last been touched and updated in
the cache. Here, tmax is the user-specified maximum number of frames between two samples.
Computing k this way, choices have to be made. The value tmax should be chosen according
to the refresh rate and in a way that resolves possible artifacts as early as possible by giving
the new sample a higher weight. At the same time, weighting older samples relatively high
guarantees a smooth temporal transition and reduces flickering. An additional cache infor-

mation buffer is used to keep track of αt[p], Nt[p] and ttouched. These are stored per pixel
along with the color image. However, to have the estimates available in the next frame it
is necessary to reproject this buffer to the new perspective the same way as it is performed
for the color values described in Section 6.1.2. The image now contains all newly computed
samples and the reprojected samples from the last frame. Still, pixel values might be missing.
This is the case for parts of the image that have not been in the view frustum for frame t− 1
and have not been updated by a newly computed sample. Eventually, a separate merge kernel
(Figure 74, Block 3) is launched to fill in all missing pixels with samples obtained from the
low-resolution but completely updated support image.

6.1.5 Post-Processing

As images are updated with varying rates due to the use of the visual acuity model that
sparsely samples the image plane, stochastic sampling processes might lead to varying con-
vergence behaviors in the scene. These artifacts are likely to be observed by a user. Hence, a
post-processing filter (Figure 74, Block 4) is proposed that does not only integrate samples
temporally but provides a path to integrate irradiance values spatially. For each pixel q in
a region that did not integrate information temporally, the nearest reconstructed (i.e., non-
resampled) neighbor along the horizontal and vertical axis on the image plane is searched. The
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distance to this neighbor is then used to create a search window which is randomly sampled
n times. This process selects the closest reconstructed pixel r found during the sampling step
and applies this pixel’s irradiance to the noisy pixel q. However, as the proposed system is
not yet fast enough to account for area lights, ambient occlusion or even Global Illumination
(GI) in HMDs – processes that need stochastic sampling – and the filter is not the authors
original work, no further discussion is presented here. However, more details of this filter are
provided in the previously published paper [Wei+16].

6.2 benchmarks

The hardware configuration for the performance benchmarks consisted of an Intel Core i7-
3820 CPU, 64GiB of RAM and an NVIDIA GeForce Titan X driving an Oculus Rift DK2.
Using the Oculus SDK, the FoV was determined for a single eye and in turn used to compute
the projection matrix. The rendering resolution was set to 1182 × 1464 per eye. Table 7
lists the benchmark results of fly-throughs with 1000 frames each. It was decided to use the
parameters (r0 = 10◦, r1 = 20◦, pmin = 0.05) to configure the user’s foveal region. As shown
in Section 6.3, users were mostly unable to detect any visual differences in images from
the full renderer for this FRC. For the benchmark process, the foveal region was statically
positioned at the image center. A resolution of 256× 318 was selected for the support image

and support G-buffer. This resolution was chosen empirically as it provided a good balance
between speed and quality for the used HMD and scenes. The four following test scenes were
selected: Sibenik, Sponza, Rungholt, Urban Sprawl (see Figure 76). Each of the scenes was
rendered with one point light source, an area light source with 8 sample-per-pixel (spp), and
ambient occlusion using 16 spp.

Table 7 shows the speed-up of the foveated ray tracer compared to a full ray tracer. It scales
well with increasing ray workloads, as this reduces the number of rays. Hence, the smallest
speed-up of 1.46 is achieved when rendering the scene Urban Sprawl with a single point
light, while the maximum speed-up of 4.18 is achieved for Sponza with ambient occlusion.
This table also gives the time required for reprojection, cache update, merging, and the
optional post-processing step. These run-times are nearly constant for all scenarios, as they
are mainly dependent on the rendering and support buffer resolutions. The coarse reprojection
and resampling can theoretically replace the asynchronous time warp functions performed by
the Oculus SDK, yet they only add a minimum latency to the overall rendering process
due to their asynchronous nature (Section 4.3.2). The influence of the FRC on the rendering
performance measured in Frames-per-Second (FPS) for Sponza is illustrated in Figure 77. For
a higher number of rays with a large FRC, the coherency of rays increases. Thus, it becomes
clear that rendering performance does not decrease linearly with an increase in the number
of rays traced per frame.

Even though rasterization is inherently different from ray tracing, several benchmark results
can be provided in order to make a comparison to other state-of-the-art approaches. In
”Foveated 3D graphics” by [Gue+12] the image is rasterized in three layers with different
resolutions. This yields a speed-up of 6.2 with only 7% of the pixels being rendered as the
images are strongly undersampled. To still achieve an acceptable visual quality, this approach
needs to rely on specific Anti-Aliasing (AA) methods, which in turn limits its applicability
[Ste+16]. Moreover, numbers are only reported for a single scene. By using NVIDIAs Multi-
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(a) Sponza (b) Rungholt

(c) Sibenik (d) Urban Sprawl

(e) Tunnel_Geom (f) Tunnel_Maps

Figure 76: Scenes used for benchmarks and user studies of the implementations.

Resolution Shading [Ree15] that does not allow for a foveated adaptation but adaptive shading
to match lens distorions of HMDs, a speed-up of 1.3 to 2 is reported depending on the
configuration. Stengel et al. [Ste+16] report a speed-up of 1.34 on average, with the number
of shaded pixels being decreased by 65% for a resolution of 1280 × 1440 pixels and 83%
for twice as many pixels. Our method has shown a reduction of sampled pixels by 79% on
average for all benchmark scenes, with an average speed-up of 2.55. The ray-based approach
by Fujita and Harada [FH14] shows similar frame rates compared to the approach presented
in this thesis, even though they use different and more GPUs rendering at a lower resolution.
The performance of the method here could be further improved by generating rays that
directly match the image distortion of the HMD, making it possible to achieve even higher
resolutions while maintaining refresh rates.
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MRays for different FRCs and Rendering Modes
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Figure 77: Influence of configuration of the foveal regions on FPS for the scene Sponza, (a) rendered
with a point light source, (b) an area light source with 8 spp and (c) with ambient occlusion
with 16 spp. MRays denotes the mean number of megarays per frame. The scene was
rendered at a resolution of 1182× 1464 using an NVIDIA GeForce Titan X.

6.3 user study

The user study addressed the perceived visual quality of the presented method. It was driven
by the following research questions:

• RQ1: Can subjects differentiate between scenes with varying graphical content, ren-
dered with and without the foveated rendering method?

• RQ2: Do modifications of the foveal region parameters in the ray generation have an
effect on the perceived visual quality?

• RQ3: Does the fixation type have an effect on the perceived visual quality?

6.3.1 Procedure and Apparatus

The setup used for the user study differed from the benchmark configuration. It comprised
an Oculus Rift DK2 (SDK 0.8) on a Windows 10 system including an Intel Xeon E5-2609
(2.4GHz), and 64GiB of RAM. The DK2’s native refresh rate of 75Hz was used as the
baseline. As both the foveated rendering and the OpenGL-based reprojection process had to
be parallelized in order to achieve this refresh rate, it was necessary to deploy two Quadro
K6000 cards. These were additionally required due to the unavailability of a Linux driver for
the utilized eye tracker. This in turn ment only Windows could be used, which does not allow
for multi-GPU rendering on NVIDIA’s consumer cards. The Oculus was equipped with an
SMI binocular eye tracker running at 60Hz (asynchronous). This eye tracking refresh rate
can be considered a lower bound for foveated rendering (Appendix A.2).
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The experiment was conducted as a within-subject study, employing a 4×4×3 full factorial
design. Each participant completed 96 trials in a randomized order. These trials were the
result of a full factorial combination of four scenes {Sponza, Tunnel_geom, Tunnel_maps,
Rungholt} presented in Figure 76, four FRCs {small, medium, large, full} and three fixation
types {fixed, moving, free}, described below, as well as two repetitions. Full ray tracing
was included as the FRC full, representing the control group. Each trial consisted of an 8-
second-flight with a one-factor combination. With some minor optimizations, frame rates of
at least 75Hz were achieved for all scenes, including the final image warping for display in the
Oculus. However, all sequences used for full ray tracing had to be pre-recorded (excluding any
optimization like reprojection), then loaded at runtime, and optionally augmented with the
specific trial fixations in order to be displayed at 75Hz. In the following, the chosen factors
are detailed and it is explained why they were selected to answer RQ1-3.

rq1: differentiation between foveated and non-foveated rendering.

In order to provide answers to RQ1, the test scenes were varied to study the effect of graphi-
cal contexts on the noticed visual artifacts. This way, more reliable statements can be made
when determining if there is a perceivable difference between foveated and full rendering.
While Sponza represents the most real world-like scene with only a few pronounced disconti-
nuities (and thus hard edges) usually visible, the scene also contains some smoother curves
resembling real objects. Rungholt, a scene generated from a Minecraft map, has many visible
depth discontinuities, which are both challenging for perception and reprojection methods.
The artificial test scene Tunnel_geom contains a tunnel consisting of noisy, displaced geom-
etry. Depending on the point of view, this scene can contain both hard edges and smooth,
continuous surfaces. Tunnel_maps is a tunnel textured with a checkerboard map and a noise
texture. Both scenes were designed to contain challenging discontinuities, either due to a
great variance in depths or in contrasts.

rq2: effect of foveal region scales. The following eccentricity thresholds
and minimum sampling probabilities were selected to test the influence of the chosen FRCs:
small (r0 = 5◦, r1 = 10◦, pmin = 0.01), medium (10◦, 20◦, 0.05), large (15◦, 30◦, 0.1) and
full (∞,∞, 1). FRCs were determined by using the angular size of the fovea for r0 with a
steep fall-off for the smallest setting and increasing the foveal region and minimum sampling
probability while reducing steepness for the other settings. The smallest FRC was expected
to yield visible artifacts for most participants, as the foveal region used for rendering barely
matches the extents of the fovea centralis. The medium and large FRC extended the foveal
region to include the parafovea and perifovea, respectively (Section 2.1.1).

rq3: effect of fixation types. Finally, while eye tracking determines a user’s
focal point in the scene (defining the foveal region), fixation may affect visual attention,
potentially leading to visual tunneling (Section 2.2.5). In order to determine a potential
influence, fixation types were varied to trigger different levels of visual attention. The fixed

focus mode contained a static fixation cross at the image center to be focused for the entire
trial. For the moving target mode, a set of paths across the image plane was generated. Here
a green sphere as fixation target that moved along the paths was displayed. The velocity of
this movement was static and did not exceed 18◦/s. Also, in order to provide a more natural
experience and allow users to focus on this target, it was adapted to the scene depth as
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it was directly located on each underlying surface. While identical paths were selected for
the repetitions, paths were varied in all trials. This was deemed necessary to avoid learning
effects and to have a better spread of potential fixation locations. In order to avoid a negative
influence of the eye tracker’s inaccuracies (relatively low refresh rate, inaccurate tracking
towards outer display regions), the foveal region for fixed focus and moving target was always
centered around the fixation target. Here, the moving target fixation mode was expected to
cause higher visual tunneling as the user had to concentrate on following the target. Only
those trials with free focus fixation enabled the user to look around freely with the foveal
region following the user’s gaze.

After signing an informed consent and receiving instructions, participants were seated and
equipped with the HMD. Prior to the main experiment, six test trials of a flight through
Sponza were shown, including the smallest FRC, full rendering, and all fixation types. In
order to avoid learning effects, the flight through Sponza in this introductory part differed
from the one used in the actual study. Still, the introductory part allowed participants to
familiarize themselves with the range of configurations and visible artifacts. After each main
trial, the participants were presented with the following statements

• Q1: The sequence shown was free of visual artifacts

• Q2: I was confident in giving this answer

to be rated on a 7-point Likert scale from strongly disagree (-3) to strongly agree (3). Eye
tracking data was recorded during all the trials to enable a comparison to be drawn of the
measured PoRs and the fixation paths as well as to provide more insights into tracking
accuracy.

6.3.2 Results

15 subjects participated in the user study (10 male/5 female, all with academic background),
aged between 26 and 51 (M = 33, SD = 7.24). All reported to have normal or corrected-to-
normal vision (< ±1D) and no other known serious visual impairments. Eight participants
(53, 3%) played computer games on a regular basis.

The next paragraph presents the data that concerns the visible artifacts of the proposed
method. This will allow insights into the visual quality (responses to Q1 and Q2) of the
rendering method to be provided. Afterwards, the following paragraphs present the quality
of the recorded eye tracking data to show its validity and the link between the mental workload
and the subjectively perceived image quality.

responses to q1 and q2 The responses of the Likert-ratings on the presence of visual
artifacts (Q1) can be found in Figure 78 and Figure 79. A multifactor Analysis Of Variance
(ANOVA) [FH03] was performed on the data (1440 trials) by Thorsten Roth, presented
in our previously published paper [Wei+16]. ANOVA contrasts were configured to always
compare to both the full-sized FRC and the factor mean values for the scene and fixation

type. Significant interactions and the observed main effects were analyzed with post-hoc t-
tests using Holm’s method for p-value adjustment. Confidence values (Q2) were mostly high
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Figure 78: Likert-scale ratings for Q1 (Was the sequence shown free of visual artifacts?) for all scenes
grouped according to foveal region configurations. The percentages on the left and right
represent the fraction of all participants who had a tendency towards disagree and agree,
respectively. The smallest foveal region configuration revealed a significant number of arti-
facts, while the larger foveal regions were close to the full renderer in this regard.

(M = 1.62, SD = 1.14) with negligible differences. Consequently, it was not deemed necessary
to further consider the confidence scores in this analysis.

In Figure 80 the average Q1 scores can be seen, grouped according to the different fixation
types and FRCs. On average the visible artifacts were rated to be less perceivable for all scenes
when a moving target was presented. To shed some light on the influence of the actual visual
quality, Figure 81 illustrates the data for the individual scenes. These plots present all three
fixation modes with respect to all FRCs up to full rendering, including red lines to show the
means for each of the fixation modes. A discussion of these results will be presented in the
next section.

recorded eye tracking data One essential property of the eye tracker is its pre-
cision. To get an idea of the tracking accuracy, the distance between the recorded PoR and
the actual location of the fixed focus and moving target that people were instructed to fix
their vision on, can be determined. It is noteable here that all distances are average values
of the left and the right eye in order to achieve a more compact analysis. The preceeding
experiments to determine usefull parameters ranges for this user study, made quite noticeable
eccentricity-dependent tracking inaccuracies evident. It became obvious, that the precision
degraded towards outer image areas. Hence, a discussion on tracking accuracies is a necessity
in order to put results of this user study into perspective.
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In order to prove the initial observations, the deviations of the recorded PoR from the
fixation target’s current position were investigated for all trials showing a moving target. The
analysis is based on the assumption that, if there are no eccentricity-dependent tracking
inaccuracies, the deviations should be to a great extent independent of the target’s position
in the image. If this is the case, an increase of deviations towards outer image areas is most
likely a result of tracking inaccuracies. To this end, as presented in the paper by Roth et
al. [Rot+17], an analysis by my co-authors was performed as follows: To show a potential
relationship between eccentricity and accuracy, data is sorted into eccentricity-dependent
bins. After this, the means are computed for each bin. To achieve a high resolution, bins were
determined as having a width of w = 0.1◦. Each bin stores a tuple of Bj = (F̄j , Ḡj), 0 ≤ j < n,
with

Fj = {Fp,t(i) | j · w ≤ Fp,t(i) < (j + 1) · w}, (6)
Gj = {Gp,t(i) |Fp,t(i) ∈ Fj}. (7)

Here, Fp,t(i) is the distance between the fixation target’s current position and the image
center, while Gp,t(i) represents the distance between the gaze and the fixation target in
trial t at the frame i for the participant p. The chosen bin width results in a total of n =
dmax(Fp,t(i))/we bins. Here, Ḡj , i.e. the mean value for the respective bin j, provides an
approximate tracking quality measure at a specific eccentricity. Finally, to analyze if the
tracking precision relates to the actual eccentricity, second order polynomial regression with
Ĝj = β0 + β1Fj + β2F

2
j is performed. The quadratic prediction for gaze deviation is plotted

in Figure 82. This plot clearly shows the dependency of tracking precision and eccentricity.
As expected, the results showed statistically significance, yielding a correlation coefficient of
r = 0.989 with β = (1.05, 0.024, 0.008). The unitless correlation coefficient r ranges from
−1 to 1. The closer the value is to one or the other, the better is the correlation of the fit.
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Figure 81: Quality ratings for fixation modes, Foveal Region Configurations and all scenes. The black
dots inside the boxes represent the respective mean quality ratings.

The coefficient of determination is R2 = 0.978 is another statistical measure of how well the
regression predicts the measured samples. A value of one is reported for perfect fits. However,
the high quality of the fit of the mean deviations between the tracking targets and the PoRs
is also clearly visible in Figure 82.

Besides the decreasing tracking inaccuracy, it is interesting to investigate where the PoR
in the image was located in relationship to the moving target and the fixation cross in the
fixed focus mode. A heatmap showing the deviations for these two factors and for the test
scenes is presented in Figure 83. In addition, an alternative way to look at the deviations is
by computing Cumulative Distribution Functions (CDFs). The results of these computations
are presented in Figure 84 for the fixed focus and the moving fixation target for all four
scenes. In these plots the horizontal axes represents the respective angular distances between
the participant’s gaze and the fixation target. The vertical axes represent the probability of
having an equal or smaller angular deviation.
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Figure 82: Tracking precision vs. fixation target’s distance to the image center. The green line rep-
resents the result of linear regression with a quadratic equation. The red points show the
binned means.
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Figure 84: Cumulative distribution functions (CDFs) of the measured fixation accuracy for fixed and
moving targets. The 95% quantiles of gaze deviations for each scene are illustrated with
dotted lines. There are significant differences between the fixation accuracy for the fixed

and the moving fixation targets. X is the actual gaze deviation. Image from Roth et al.

[Rot+17]

6.3.3 Discussion

This section provides answers to RQ1-RQ3, shows an evaluation of the tracking data as well
as potential interactions to subjective quality measurements. As illustrated in Figure 82, the
precision of the utilized eye tracking device decreases with increasing eccentricities. Adults
can physically rotate the eye up to 50◦ horizontally, 42◦ upwards and 48◦ downwards away
from the line of sight in the eye’s resting position [Adl+11]. In practice, however, humans
usually do not rotate the eye to the physiologically possible maximum. After a certain angular
deviation, a human would most probably begin to turn his head. As detailed in Section 2.2.3,
this Comfortable Viewing Angle (CVA) is considered to be ≈ 15◦ around the normal line of
sight. Thus, it is important to note that fixation target eccentricities larger than the CVA
in the precision measurements were not accounted for. In this user study, head tracking
was not activated in order to present identical visual stimuli to all participants. This would
not have been possible if users had been able to look around freely. However, for fixation
target positions further away from the image center than the CVA, users would probably
not just rely on eye movement to fixate a target, but instead, incorporate head movement.
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The solution for this in the user study has been to limit the area concerned to only include
fixation targets up to the CVA. This issue can also be approached in a different way. The
calibration step of the eye tracker could be investigated more thoroughly. Interestingly, the
built-in 9-point calibration procedure and the respective fixation patterns of the SMI-based
eye tracker covered only a small inner subset of the FoV.

As presented in Section 7.3.1 other eye trackers show significantly different accuracies
when evaluated using the approach presented here. However, even though Figure 82 suggests,
that the eye tracker is fairly accurate (with a mean error of 1◦ to 3◦ depending on the
eccentricity), the result of this type of tracking precision analysis should not be interpreted
as a direct measure for tracking precision. Latency-based deviations, saccadic or Smooth
Pursuit Eye Motion (SPEM) movements, as well as other possible disturbances, have not
been filtered from the data. The actual behavior of the measured gaze deviation, however,
yields a reasonable estimate of the eccentricity-dependent precision fall-off.

Closer study of Figure 84 reveals that there is a significant difference between the fixation
accuracy for the fixed target (below 1.1◦) and the moving target (approx. 4◦ to 4.5◦ for all
scenes). By further analyzing the paths using Figure 83 as performed by Roth et al. [Rot+17],
revealed that the fixation target moved left more often than right. Initially, this apparent
shift to the right for the gaze deviation was explained by the utilized fixation paths not being
equally distributed regarding the fixation target’s movement. Another explanation is that the
fixation accuracy between the moving target and the fixation cross differs due to the SPEM.
The movement of the target was not predictable for the participants. This unpredictability
naturally leads to a reduced SPEM precision. Moreover, accuracy is reduced because the
background is at the same distance from the eyes as the target to be followed by the gaze.
Also, head tracking was inactive, as prerecorded camera paths were presented. Thus, other
signals, for example by the vestibular system, could not be used by the Human Visual System
(HVS) to distinguish between target and background [Adl+11, p. 229].

Nonetheless, the presented data shows the validity of the acquired eye tracking data. Even
at large eccentricities, the average gaze deviation is well below the selected FRCs. Also, ex-
ceeding the CVA, the paths for trials showing a moving target were limited to always stay
within the innermost ≈ 50◦ of the FoV. Taking into account the aforementioned considera-
tions, a further analysis of the initial research questions RQ1-3 based on the user study as
well as a discussion of the results can be found below.

rq1: differentiation between foveated and non-foveated rendering.

By looking at the results presented in Figure 79, generally subjects cannot reliably differen-
tiate between full and foveated rendering. This is the case for foveal regions not smaller than
approx. 10◦. However, looking at Figure 78, where responses are grouped by scenes for vary-
ing FRCs, Tunnel_Maps shows a decrease in quality. Scenes with too much high-frequency
contrasts appear to be problematic. Nonetheless, what should be apparent now and revealed
by statistical data is that differentiation depends significantly on all the test variables: the
size of the FRC, the fixation mode as well as the displayed scene. While the factor FRC
shows a significant main effect (F ≈ 30.54, p ≈ 0), there is a strong interaction between
FRC and the scene (F ≈ 3.09, p < 0.005). Interestingly, the performed t-tests showed that
significant differences between the medium, large, and full FRC were only present in the scene
Tunnel_Maps. All other scenes only showed significant differences when the small FRC was
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involved. First, this was mainly attributed to the regular, rather extremely high-contrast
checkerboard pattern in Tunnel_Maps. However, as the eye tracking system is susceptible to
inaccuracies in outer image regions, the logged data was filtered for analyzing the tracking
information in order to include only the region utilized by SMI’s calibration method. This
region extends to maximum eccentricities of approx. 10.3◦ left/right and 11.68◦ up/down.
These numbers were taken from the SMI SDK’s 9-point calibration method and converted
to angles. Angular differences were analyzed between the fixation point and the tracked gaze.
Participants stayed closer to the fixation point for the fixed mode (M = 0.31◦, SD = 0.4◦)
than for the moving target (M = 1.9◦, SD = 1.52◦). Bearing in mind that Tunnel_Maps had
the greatest number of visible artifacts for the participants, it is important to mention that
the median angular differences for Sponza, Tunnel_Geom, and Rungholt were between 1.25◦
and 1.58◦, while for Tunnel_Maps a median difference of 2.24◦ was present. As this larger
distance to the foveal region’s center indicates that the gaze was closer to sparsely sampled
regions, this offers another explanation for the relatively low Likert ratings for this scene.

rq2: effect of foveal region scales. The previous paragraph already showed
that if the FRC is not too small, subjects will hardly notice visual artifacts using foveated
rendering. Studying Figure 79 once more, where the responses to Q1 for varying FRCs are
plotted including the mean values and standard deviations, the small FRC scored significantly
lower. Medium and large FRCs were almost identical as regards perceived visual artifacts.
The difference to full rendering was limited to a larger standard deviation. As Figure 78
illustrates, this can again be mainly attributed to the artifacts visible in Tunnel_Maps. In
addition, there were no significant differences between angular deviations for varying FRCs
for that scene. The median values over all scenes for the four FRCs were all within [1.62◦, 1.7◦]
for the moving target and [0.22◦, 0.25◦] for the fixed mode.

rq3: effect of fixation types. Fixation types, associated with different levels
of visual attention, had a significant main effect (F = 3.46, p = 0.03) on the perceived
visual quality. While free (M = 0.43, SD = 1.89) and fixed (M = 0.43, SD = 1.81) modes
showed nearly identical responses, the moving target was rated significantly better (M =
0.99, SD = 1.63). Thus, fewer visual artifacts were noticed with the presumed higher visual
attention of the moving target, as subjects were more probably less aware of details outside
the focus area. This is remarkable as it could further reduce the sampling rate outside the
foveal region. Furthermore, the foveal region matched the gaze when the target was perfectly
followed. Figure 80 shows that the average Q1 scores are highest for the moving target for
all scenes. In addition, as shown in Figure 81, the visual quality for the individual scenes in
dependency to the FRC was consistently superior with the moving target condition. However,
it also becomes apparent that the increase in rendering quality between the medium and
the large FRC did not result in a consistent improvement of subjectively perceived quality.
Differences from a medium FRC up to full rendering are mostly negligible for the moving
fixation target. Interestingly, in some cases, even a larger FRC results in lower subjective
perceived quality.

While the dependency of the fixation type to the visual quality can be estimated by looking
at deviations of the real and measured PoR, analyzing eye tracking data for the free viewing

task requires a different examination. Details on this matter can be found in the paper by
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Roth et al. [Rot+17]. As the differences between the scenes proved too small to draw any
further conclusions, they are not discussed here.

However, there might be another cause for the moving target mode being rated better
that has not been considered so far, namely retinal velocity. While there is strong evidence
that visual tunneling and mental workload play a significant role when judging the visual
quality, the retinal velocity also greatly influences visual acuity (Section 3.1.2). In an initial
step, the mean angular velocities were computed. These computations resulted in free viewing

(M = 22.20◦/s , SD = 62.24), fixed focus (M = 1.26◦/s , SD = 2.85) and moving target

(M = 9.88◦/s , SD = 24.69). As expected the lowest mean angular velocities was present for
the fixed focus mode. There is a striking difference here between free viewing and the moving

target. The mean velocities for free viewing are more than twice as high as for the moving

target. Hence, this is potentially an additional strong indicator for visual tunneling effects, as
the visual quality when following a moving target was rated to be highest, despite the lower
mean angular velocity. It can also be argued however that there is a difference in eye tracking
behavior.

While following a moving target, the user’s gaze has a much more constant velocity. Par-
ticipants are exhibiting SPEM (Section 2.2.3). On the other hand, while being able to freely
look around, users have much higher angular peak velocities but are able to spend more time
inspecting details at lower angular velocities. The increase in peak angular velocities is ob-
servable by looking at the standard deviations. In order to show the difference in behaviors,
a plot of the occurrence of different velocities for the first 50◦/s is presented in Figure 85.
As expected, the free viewing mode (Figure 85a) does contain a hyperbolically decreasing
number of values with low peak angular velocities. Outliers at high angular velocities did, in
fact, have an influence and resulted in a high mean. Also, by looking at the fixed focus results
(Figure 85b) its low mean values become clear. However, using the moving target mode (Fig-
ure 85c) produces a striking difference in the results. Overall, a greater number of velocities
for > 4◦/s is present. These velocities lead to a greatly reduced visual acuity (Figure 85c).
Also, a much smaller number of low angular velocities ≤ 4◦/s is present. The most obvious
cause for this is that users were simply physiologically unable to detect artifacts while follow-
ing the moving target. Hence, despite the visual tunneling, the reduced visual acuity at high
retinal velocities and the change in eye tracking behavior might be another reason that the
visual quality was rated highest for the moving target mode.

The user study revealed the perceived visual quality for even the moderately-sized FRC
medium (10◦, 20◦, 0.05) is almost identical to that of full rendering. Further improved out-
comes are to be expected if a better and more accurate eye tracker is used. It is worth noting
that the main causes for the low accuracy, besides the tracking precision itself, are tracking
latency and possible unpredictabilities of the target’s movement. However, the evaluation
also showed that increasing the FRC did not always result in improved quality ratings. One
possible explanation is that, eventually, all rendering methods can suffer from aliasing arti-
facts – in this case either with a finer and more regular or with a coarser pixel distribution.
As reprojection methods hide visual artifacts, they may be able to conceal certain artifacts
”more effectively” using the foveated mode presented.

While intuition may suggest a worse outcome for the fixed targets and the moving targets

mode due to the high gaze-deviation as illustrated in Figure 83 and Figure 84, this is only
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Figure 85: Histogram (Density) of peak angular velocities for the three focus modes free viewing (a),
fixed focus (b) and moving target (c). While free viewing and fixed focus have a great
number of values at low angular velocities, they are more evenly distributed when users
are instructed to follow a moving target.

true for the fixed target mode. Figure 80 and Figure 81 reveal that the quality ratings for
moving target fixation are better in all scenes tested. It can be argued that this difference
in perceived quality between fixation modes and their counter-intuitive nature when taking
tracking precision and temporal effects into account can be seen as evidence for the possible
presence of visual tunneling effects. Another cause could be that the decrease of visual acuity
is dependent on the retinal velocity. Either way visual artifacts that appear in the rendering
system are effectively filtered by human perception.

There is a clear tendency towards negative ratings for the small FRC. In order to over-
come this issue the foveal region can be enlarged with respect to the eye movement. This
approach, however, poses a significant challenge. Increasing the rendering quality results in a
performance hit, making it even more difficult to achieve the necessary refresh rate. As has
been seen, the mean values for gaze velocities were highest for the free viewing mode. These
high angular velocities pose a critical challenge when updating the image based on the PoR,
despite the fact that some of them are filtered by saccadic suppression (Section 2.2.3).

6.4 future work

Although rasterization methods are faster on current GPU generations, ray tracing does pro-
vide a higher degree of flexibility. Accordingly, ray-based methods could become the first
choice for performance critical real-time VR rendering in head-mounted devices [Hun15;
Fri+16]. It would be interesting to evaluate how this system performs with moving objects,
highly glossy materials, and dynamic light sources, also in the context of stochastic GI meth-
ods. In general, strongly view-dependent effects cannot be well captured with reprojection
techniques. However, ray tracing has the advantage of being able to re-sample individual
pixels efficiently. This could be used to include view-dependent effects in the resampling
process. In the worst case however, this could in turn also lead to a fully sampled image,
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bringing performance below the necessary refresh rates. It is planned to dynamically adapt
the foveal fall-off and minimum sampling probability in the peripheral visual field to meet
performance requirements consistently even for highly-complex scenes. Despite the fact that
a choice has to be made, the author is convinced that users will more readily accept a few
artifacts in the visual periphery than lower frame rates, especially in HMDs. This developed
approach is an important step in the process of making realistic real-time ray tracing suitable
for head-mounted devices.

Another exciting field for further research is frameless rendering (Section 4.3.1). The coarse
reprojection is able to run in a separate thread, outputting images while at the same time
matching and resolving reprojection errors to the display’s refresh rate. Other threads asyn-
chronously generate and merge new samples based on the user’s gaze. If resolutions of dis-
plays continually increase or wireless transmission becomes available, we face a situation
where a transmission of the computed pixels to the HMD is limited by the bandwidth of
the interconnect. In this case, methods are preferable that enable images to be partially and
asynchronously updated.

The accompanying user study and its evaluation also revealed the effects of an acuity loss
based on the retinal velocity, visual tunneling, and mental workload. Thus, there are more
circumstances which make it possible to reduce visual quality besides gaze. This is certainly
the case in games, where events can be triggered that produce a change in the visuals, or
task-driven environments. Task or navigation complexity may lead to high mental workloads.
Moreover, certain events may allow hints to be derived about which part of the scene it is that
attracts attention. Thus, visual quality can be reduced even further when attentional models
are used in combination with gaze and saccade landing position predictions (Section 3.3.2).
Another challenge yet to be solved is the issue of HMDs getting out of place in the process
of performing a task or in user studies. Also, re-wearing the headset remains an issue for
calibration. Accurate gaze-measurements might not be possible without recalibration once
the user has put the HMD on and off the head. This problem might also exist when HMD slips.
Even slight movements of the HMD on the user’s head may lead to inaccurate eye tracking
results and asking the user to repeat the calibration step each time the HMD become tilted
is not a viable option. To this end, new continuously updating, online calibration methods,
ideally embedded into the task, would make HMDs with eye trackers more practical for
everyday applications.

6.5 conclusion

This chapter has discussed a foveated rendering method that uses adaptive ray tracing and
reprojection from previous frames to increase temporal stability and reduce artifacts. Sparsely
sampled image data is reprojected to new views using a depth mesh generated from a low-
resolution G-Buffer. The number of errors arising from the reprojection in regions critical
for perception are reduced by an update strategy that allows these to be (re-)sampled by
incorporating the samples’ quality. The method enables the visualization of static scenes with
millions of triangles within the Oculus Rift DK2 at a refresh rate of 75Hz. Using the approach
presented here, the benchmarks have shown significantly improved performance, while the
user study has revealed that the perceived visual quality for even moderately sized FRCs is
almost equal in quality to full rendering. Analyzing the tracking precision regarding its angular
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dependencies has revealed a significant loss of tracking quality for higher eccentricities. When
inspecting these inaccuracies of the tracking device further, it becomes clear that applications
need to adjust the specific parameterizations for the given devices and users. An analysis of
the user’s ability to focus on static and moving fixation targets has revealed effects on the
perceived visual quality. While the results appeared to be contradictory at first, given the
intuitive assumption that worse fixations should result in worse quality ratings, the mean
quality ratings were best for the moving target mode and independent of the scene – even
though there was less of a match between the measured PoR and the actually focused PoR
than for the static fixation mode. It can be observed how the mental workload and retinal
velocities greatly degrade and limit our ability to judge visual artifacts.

Due to vast improvements in eye tracking solutions integrated into modern HMDs, research
on gaze-contingent rendering is gaining increasing popularity. Nonetheless, the key question
for the future remains: “How can locally changing rendering and shading quality make the

most effective use of perceptual limits to produce photo-realistic scenes with the required flex-

ibility?” [Wei+17] While rasterization can be used to adapt quality to an acuity model, e.g.
by using deferred rendering or multi-resolution shading, the author of this thesis argues, that
ray tracing is proving a higher degree of flexibility and does allow individual samples to be
more efficiently updated (Section 4.2.3). Nonetheless, ray tracing sparse samples reduces ray
coherency and in turn negatively influence vector processing and memory accesses. Hence,
efficient foveated rendering requires a decision in favor of either visual quality or performance.
While the presented reprojection and resampling strategy does provide great visual quality,
the overhead costs are considerable. On the other hand, simpler methods might show artifacts.
Thus, in the following chapter, a technique is presented that filters potential rendering arti-
facts by exploiting the eye’s Depth-of-Field (DoF). This enables a simpler foveated rendering
pipeline to be designed with which we can omit resampling salient regions for out-of-focus
areas by filtering high-frequency noise using the inherent low-pass nature of the DoF.
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Exploiting the Limitation of the Optics

Figure 86: A highly integrated Depth-of-Field (DoF) filter can conceal artifacts arising from simple,
yet efficient foveated rendering pipelines.

In addition to the system introduced in Chapter 6, in recent years several gaze-contingent
rendering methods have been proposed to reduce the computational workload. The majority
of them attempt to exploit the limitations of the Human Visual System (HVS) by adapting
rendering quality to the user’s retinal capabilities. Unfortunately, these foveated rendering
methods mean that priorities have to be set. While they effectively reduce shading costs by
disregarding a significant amount of pixels during rendering, this also leads to decreased coher-
ence and to the necessity of additional filtering steps in order to fulfill perceptual requirements.
The approach presented in the previous chapter attempts to alleviate such artifacts by using
a Temporal Anti-Aliasing (TAA) scheme that is coupled with a resampling strategy. Simi-
lar approaches have been performed for rasterization pipelines. Methods commonly resample
the scene or they apply post-process filtering in those areas that are critical for (peripheral)
perception, e.g. to enhance contrasts in the visual periphery (Section 4.2.3). Unfortunately,
depending on the specific situation, these approaches may even lead to an increase in the
total rendering time.

Along with the retina’s decreasing visual acuity, the HVS is also limited by its optical
properties. Among the most prominent effects of this is Depth-of-Field (DoF), which occurs
when focusing objects. While naturally, in an environment with objects at different distances,
accommodation adjusts the focus distance to the fixated object. It is usually not possible to
perceive all observed objects as one sharp image. While objects at the focused distance from
the eye are perceived clearly, other objects appear increasingly blurred depending on the
distance between their depth and the focused distance. At the same time, it is less important
to create a high number of samples in image areas that are out-of-focus as these areas of
course are not perceived sharply.
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Figure 87: An especially challenging object for gaze-depth estimation using spatial measures or ver-
gence measures alone. This view on the flower vase was used in our experiments to calibrate
and predict gaze-depth estimates.

This chapter describes a system to exploit this knowledge about the DoF when rendering
in a foveated fashion. To this end, DoF is applied in a post-processing step to conceal visual
artifacts by removing high-frequency signals from the visual periphery using the inherent blur
of the DoF (Figure 86). This allows more computational effort to be invested in regions that
are more important either because they are fixated or because they are in focus.

In order to do so, several subproblems need to be addressed. Firstly, the focused gaze-
depth is not as readily available as the Point-of-Regard (PoR). However, the accommodative
state of the eye must be modeled to render a correct image using DoF. Secondly, a foveated
rendering system, including a low-latency, high-performance DoF filter must be developed.
As demonstrated in the previous chapter, the attempts to reuse samples temporally, as well as
saliency-based resampling work impressively well. Unfortunately, the maintenance overhead
for the system is high. For example, the system uses rasterization for the reprojection. Hence,
besides, the central ray tracing routines, code for a separate rendering approach must be
maintained. Also, the management overhead for all buffers is high, and for dynamic scenes,
detecting reprojection errors and image regions with high saliency will become even more
complex. While simpler methods are likely to elicit visible artifacts, they can be implemented
more efficiently. A “simpler” fast system is needed, yet providing a sufficient visual quality
at least when filtered with DoF.

Last but not least, a filter needs to be developed that allows the DoF to be quickly simulated
to conceal those artifacts. While ray tracing makes it possible to sample a lens model to
acquire physically accurate DoF, this increases sampling density to a point where it would
have been more efficient to render in full detail directly. Hence, this chapter introduces a
fast approximate DoF filter in image space. Also, when rendering in a foveated fashion and
sampling the image plane sparsely a “final” image must be reconstructed. The information for
those pixels must be recovered that have not been sampled. Using the method presented, DoF
computation can be closely linked to this image reconstruction process in order to improve
the perceived visual quality of foveated rendering.
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Although it is possible for trained users to freely focus in space, in a typical application
scenario the focused depth will likely belong to a point on the surface of a fixated object. This
makes it feasible to use a regular eye tracker to derive a gaze-depth. If there were a perfect
spatial calibration of the eye tracker, then tracing a ray through the PoR to the scene’s
geometric hit point and then computing its depth, would be sufficient to derive a perfect
depth value. However, the spatial calibration is susceptible to inaccuracies. Hence, methods
that attempted to rely on this spatial measurement have proven not to be feasible [MBT11].
Serious errors can occur in the depth measurements in the case of complex, thin objects or
also when looking at a flat object at an angle and being only a fraction away from the actual
PoR instead of the one acquired by the eye tracker. The accuracy of the eye tracker might
not be high enough. If a user focuses on a thin object in the foreground, but the eye tracker
reports a PoR right next to the thin object on the background in the distance, the reported
depth and as a result the DoF computation is incorrect. A challenging object to estimate
accurate depths, that was used throughout our user experiments is presented in Figure 87.
Alternative methods for depth estimation include using the eyes’ vergence (Section 2.2.3).
However, there is less vergence with an increasing distance to the fixated object and the
central optical axes of the eyes generally become parallel, depth estimation using vergence is
reported to only work well for the first meter [EPR04; Wan+14]. Both the vergence and the
depth measurement at the PoR suffer from a lack of spatial tracking accuracy. As evident
from the discussion in the previous chapter, even high-quality devices inside Head-Mounted
Displays (HMDs) yield an accuracy of about 1◦ of visual angle and this only in a limited
region of the visual field (Section 6.3.2).

In order to increase the precision of gaze-depth estimation, a machine learning approach
is presented that combines several gaze-depth measurements, including vergence and various
spatially-obtained measurements. All of these are used in a calibration step as mixed input
to train a regression model that allows more accurate predictions. In order to investigate the
accuracy of this model, the required gaze data was collected by performing a user experiment.
Finally, this machine learning model is used to control a filter to conceal artifacts when
rendering in a simple, yet efficient, foveated fashion. As in the previous chapter, the foveated
renderer is based on ray tracing. While exploiting Temporal Coherence (TC), a simple image
space reconstruction technique is used to compute “dense” images from the sparse sample
sets. At the last step, the gaze-depth is used to control a fast, layered and guided bilateral
image space filter to add the appropriate DoF. The quality of this filter is determined by
evaluating the results of another user study that demonstrates that visual quality can be
greatly improved.

In summary, in this chapter, the following contributions are presented:

• A machine learning approach that is trained with multiple gaze-tracking and depth
measurements, providing an improved gaze-depth estimator.

• A calibration procedure based on this feature set used to collect the required training
data in synthetic and realistic scenes.

• An evaluation of the estimator in order to determine the accuracy, the required training
set sizes, and an estimation of the performance across users and across scenes.

• A DoF model, incorporating knowledge about tracking inaccuracies when obtaining 3D
gaze points
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• A gaze-contingent rendering system with a tightly integrated DoF filter concealing
potential visual artifacts

• A user study, evaluation, and benchmarks showing the potential of the proposed method
to filter artifacts when rendering in a foveated fashion.

contributions by the author This chapter is based on work published in the
papers:

Martin Weier, Thorsten Roth, André Hinkenjann, and Philipp Slusallek. “Foveated
Depth-of-Field Filtering in Head-Mounted Displays.” In: ACM Transactions on Applied

Perception (TAP). Vancouver, Canada, Aug. 2018. Best Paper Award, invited article.
Martin Weier, Thorsten Roth, André Hinkenjann, and Philipp Slusallek. “Predicting
the Gaze Depth in Head-mounted Displays using Multiple Feature Regression.” In: Pro-
ceedings of the ACM Symposium on Eye Tracking Research and Applications (ETRA).
Warsaw, Poland, June 2018.

I was the primary investigator for both papers, developed the machine learning model to
improve the gaze depth prediction and the rendering framework for gaze-contingent DoF.
I also designed and executed the benchmarks, the user study, and the user experiment to
evaluate both approaches. The data evaluation of the user experiment presented in Section 7.3
was performed in collaboration with my colleague Thorsten Roth. Here, I wrote the data
evaluation and plotting routines for RQ1, RQ2, RQ5, and RQ6. At the same time, I assisted
in developing the routines for RQ3 and RQ4.
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Figure 88: Rendering pipeline of the presented approach. First, ray tracing is used to sample the image
plane sparsely based on a visual acuity model. Next, reprojection is used to increase the
temporal stability of the sparse samples. Afterward, a reconstruction kernel reconstructs a
dense image from the sparse samples. Finally, depth-of-field is computed to conceal artifacts
in the final image.

7.1 method

In order to conceal perceptually disturbing artifacts, a foveated rendering system is combined
with an approach to compute gaze-contingent DoF in image space to filter the final image.
The entire rendering pipeline is depicted in Figure 88. First, a ray tracing step samples
the image sparsely according to a visual acuity model. Afterward, the temporal stability of
peripheral image regions is improved by using backward reprojection-based TAA. Next, the
full image is reconstructed using Pull-Push Interpolation (PP-Interpolation) [MKC07]. This
efficient approach provides a high degree of flexibility, allowing to use arbitrary acuity models
and (re-)sampling strategies [Ste+16; Wei+16]. Finally, to further improve the perceived
image quality, gaze-contingent DoF is computed in a post-processing step. A more detailed
description of each pipeline stage is presented in the following sections. All components are
implemented using NVIDIA CUDA.

7.1.1 Ray Generation and Ray Tracing

The ray generation, relies on the same visual acuity model as introduced in Section 6.1.1. Here,
a linear fall-off in a transitional region is modeled between the area of central and peripheral
vision (Figure 89). Again, this model is configured using a triplet (r0, r1, pmin), referred to as
the Foveal Region Configuration (FRC). However, in contrast to the approach presented in
Section 6.1.1, this time the sampling points are precomputed at program launch and stored
as two binary lookup tables Sin and Sout that represent pixels on the image plane. For each
frame a CUDA ray generation kernel is launched for every pixel on the image plane. A ray is
only generated for pixels with the associated bits, either in Sin or Sout, set to one.

The sampling pattern for the peripheral vision is represented with Sout. The pattern con-
tained in Sout corresponds to a uniform distribution with a sampling probability of pmin. For
central vision and the transitional region, Sin is used to mark the foveal and sampling points
in the transitional region between central and peripheral vision. The pattern Sin is translated
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based on the PoR obtained by the eye tracker. The translation is performed by changing the
addressing of this pattern in the ray generation kernel.

The reason for using a static precomputed patterns is twofold: Firstly, static patterns
can be computed offline. Thus, they allows for using high-quality low-discrepancy sampling
(Section 4.2.1). Secondly, the static patterns minimize temporal inconsistencies and flickering.
When using stochastic sampling, the pattern is constantly changing from one frame to the
next. As the camera moves and not all pixels are updated, the image flickers. This is especially
noticeable along discontinuities, such as depth or contrast edges, in the image. Exploiting the
TC helps to reduce flickering. However, it cannot remove such artifacts completely, whilst
maintaining a sharp image. Hence, using static precomputed patterns becomes necessary as
salient parts such as edges or contrast discontinuities are also not specifically resampled in
contrast to the approach presented in Chapter 6.

The binary lookup table Sin consists of two regions, limited by angular thresholds r0 and r1,
r0 < r1. Angular distances d < r0 are sampled with a probability of 1, while samples within
the transitional region (r0 ≤ d < r1) are generated with an importance sampling approach
in polar coordinates:

r = r0 + (r1 − r0)
√

(pmin2 − 1) · u+ 1− 1
pmin − 1 (8)

φ = 2πv (9)

Here, u, v ∈ [0, 1] are random variables computed using Halton sequences. The fractional part
of the function for generating samples for r (Equation (8)) is derived by applying the inversion
method to f(x) = 1 − (x · (1 − pmin)), describing the linear fall-off in the transition region,
with

∫ 1
0 cf(x)dx = 1. These values are then transformed to the range [r0, r1]. At runtime, a

ray generation kernel looks up which pixels to sample by querying both Sout and Sin. The
latter is shifted based on the pixel’s distance to the current PoR. If one of the queried bits is
set, a ray is generated. Eventually, CUDA threads are launched to compute pixel values for
all generated rays. In order to do so, the ray caster presented in Chapter 6 has been extended
to use the irregular grids developed by Pérard-Gayot et al. [PKS17] in order to accelerate
ray-geometry intersection.

7.1.2 Reprojection and Reconstruction

As sparsely sampled image regions lead to temporal instabilities, exploiting TC has become
a standard for foveated rendering systems (Section 4.2.3). In contrast to the forward repro-

jection using OpenGL as performed in the system introduced in the previous chapter, this
time backward reprojection is used (Section 4.3.1). This eliminates the necessity of a sepa-
rate rasterization step and the construction of a warping geometry. The code complexity is
significantly reduced.

The backward reprojection is performed as follows: The pixel footprint described by each
ray and its differentials [Ige99] is adapted based on the eccentricity-dependent sampling
probabilities. Now, the pixel footprint is transformed into world space and reprojected to the
previous frame. As the view is changing, the pixel footprint might be translated, scaled and
rotated between frames. Therefore, the color information of the old frame must be evaluated
by sampling the reprojected pixel’s footprint extent multiple times. As described below, the
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Figure 89: Layered blur to compute the depth-of-field.
For peripheral vision, a blur using a mipmap
representation is computed. For central vision,
a separable Gauss is used to blur the values
for each layer. The transition region is blended
between the blur approaches.

l+1

lp

rdx rdy

Figure 90: Sampling in the image pyramid
of the last frame with respect
to the backward projected pixel
footprint (rdx, rdy) at the ray’s
hitpoint p. For sampling a Quin-
cunx pattern is used (yellow
dots).
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Figure 91: Pull-push reconstruction method to render 3D point sets. In the pull phase, valid samples
are pulled and combined upwards (a), level by level, to fill a mipmap pyramid. For each
pixel, the respective valid pixels from the finer level are averaged (b). Afterward, in the push
phase (c) the mipmap pyramid is processed from the coarsest to the finest level. Missing
pixels are filled in by sampling the pixel value in the next higher mipmap level with the
coarser resolution (d). Image from Marroquim et al. [MKC07]

old frame’s information is not only a single image, but an image pyramid, similar to a mipmap
with depths stored in the alpha channel. In order to improve the precision of the reprojected
colors and depths, five samples are evaluated in a Quincunx pattern for a higher mipmap
level as illustrated in Figure 90.

The depth values obtained in the alpha channel facilitate for eliminating cache values
in case of perspective-related occlusions. The reprojection kernel can check if the depths
of the samples between to frames difference is above a critical ε threshold [Yan+09]. An
occlusion might have occurred if the reprojected depth values between subsequent frames are
too different. In this case, samples from the cache should not be considered. Now a running
estimate combines the colors from the new and the old frame (Appendix A.3).

As the system is still dealing with a sparse image, i.e. an image with ”unfilled” gaps
between pixels, eventually, these temporally smoothed samples are used to reconstruct a new
image using PP-Interpolation [MKC07]. The idea of PP-Interpolation has been introduced
for point-based rendering. It is divided into two distinct phases. The pull and push phase are
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illustrated in Figure 91. In the pull phase, mipmap pyramid levels are computed in bottom-up
order. The attributes (colors, normals, etc.) of a pixel of a coarser level are determined by
averaging the corresponding four pixels of the finer pyramid level. However, only pixels that
have (valid) data are included in the mean. If all (up to four) pixels are invalid, the new
pixel is also marked invalid and is left to be computed during the push phase. Pixels can
also be invalidated, if they are considered to be occluded depending on their depth value – a
necessity for point-based rendering. In the push phase, the algorithm works in top-down order,
i.e., from coarser to finer levels and only the attributes of invalid pixels are (re-)computed.
Here, the attributes of four pixels of a coarser mipmap pyramid level are used to interpolate
the attributes of a pixel of a finer level. Missing pixels are filled in by sampling the pixel
value at the image in the next higher mipmap level with the coarser resolution. Finally, the
mipmap pyramid becomes the input for the reprojection phase of the next frame and is also
used as input for the gaze-contingent DoF filter presented in the next section. To this end,
the focused gaze-depth has to be known.

7.1.3 Gaze-depth Estimation

Most recently, direct measurements of the eyes’ accommodative state for HMDs using au-
torefractors have been performed [Pad+17; Mer+17]. While these devices are bulky and slow,
rendering the DoF effect does not drive the physiological accommodation at all [Pad+17].
Hence, it is simply not possible to use such a device inside a consumer level HMD with a
single screen and a fixed-focus lens, i.e. when it is not using multifocal lenses or lightfield
displays. However, for gaze-contingent DoF it is critical to obtain a gaze-depth in order to
model the eye’s accommodative state. As the focused depth will likely belong to a point on
the surface of a fixated object, it is feasible to use a regular eye tracker. Using binocular
eye tracking and displaying synthetic images, several measurements can be used to estimate
the depth of the fixated object. However, spatial and vergence measurements might lack ac-
curacy due to the precision of the eye tracker and physiological constraints. Mantiuk et al.
[MBM13] improved tracking accuracy and stability when rendering gaze-contingent DoF by
applying object and scene knowledge. Essentially, a Hidden-Markov model is used to derive
probabilities on how likely an object in a 3D scene is fixated. Probabilities are computed
by combining 3D scene information, gaze positions, and velocities. Generally, methods are
needed that combine more measurements in order to increase the gaze-depth prediction for
off-the-shelf eye tracking hardware. The approach by Mantiuk et al. presents remarkable re-
sults. It can be used complementary the system here introduced. Besides, this system is not
limited to tracking distinct objects in the 3D scene and is likewise not limited by a discrete
set of fixation locations.

Our main idea is to combine several measurements obtained by the eye tracker. Initially,
multiple samples from the depth buffer of the rendered image in a region centered at the
PoR are taken. This region can be scaled according to a potentially eccentricity-dependent
tracking accuracy. For these samples, various measurements are taken and combined into a
feature set. These measurements include information about the eye’s vergence, spatial depths
at and around the PoR and depth variances as illustrated in Figure 92. In a calibration phase,
these measurements are used to train a regression model based on a Support Vector Machine
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(SVM). At runtime, these measurements are used as input to the SVM to obtain the focused
depth.

For training and runtime evaluation the eye tracker is queried to compute a PoR and gaze
vectors. The gaze vectors describe the central line of sight emerging from each eye. This
information is used to derive the two vergence-based depth estimates described below.

Method for depth estimation by Wang et al.: The technique by Wang et al. [Wan+12]
uses the PoR of the left LPoR = (lx, ly) and right eye RPoR = (rx, ry) in image space. Here,
Wang et al. average the PoRs’ heights y = (ly+ry)·0.5. The horizontal vergence in screen space
can now be described as distance ∆x = rx− lx. This assumes that the PoRs are referenced on
a single screen. However, HMDs are often centered around two screens, and thus two different
PoRs in two reference spaces are given. We assume that both screens are a single display and
shift the right eye’s PoR to the right, resulting in ∆x = ((1+rx)−lx)·0.5. With an Interocular
Distance (IOD) either assumed to be dIOD = 0.063m [Duc+14] or measured using the eye
tracker and an experimentally determined distance to screen dscreen, the gaze-depth can be
computed as

zwang = (∆x · dscreen)/(∆x− dIOD)

Ray-based depth estimation: As the skewed gaze vectors in 3D space do not necessarily
intersect in a single point, the distance to the points of closest approach can be computed for
both gaze vectors. The points of closest approach on gaze vectors ~rd and ~ld of the right and
left eye can be described as P = Ro+ t · ~rd and Q = Lo+s · ~ld, with Ro = (dIOD ·0.5, 0, 0) and
Lo = (−dIOD · 0.5, 0, 0). For the points of closest approach, it holds that the vector between
them is perpendicular to the gaze vectors. Thus we have (P −Q). ~rd = 0 and (P −Q).~ld = 0.
This condition makes it possible to set up a system of equations to compute t and s by
solving:~rd. ~rd · t+~rd.~ld · s= −Ro. ~rd+Lo. ~rd

~ld. ~rd · t+~ld.~ld · s= −Ro.~ld +Lo.~ld


The mean distance to P and Q is computed and assumed to be the gaze-depth as

zray = (Pz +Qz) · 0.5

As additional features, the information of the device’s spatial tracking accuracy and the
scene’s depth buffer is taken into consideration to estimate the gaze-depth. In a first experi-
ment, data about the tracking accuracy of the HMD was collected. Users were requested to
fixate and follow a tracking target, guiding the user’s gaze through the scene, much like it was
performed to evaluate the system presented in the previous chapter. This data showed that
this time spatial calibration of the eye tracker used provided an accuracy of roughly ±1◦ of
visual angle. This inaccuracy was later confirmed by the primary study that was conducted
in order to evaluate the approach here presented (Section 7.3.2). Now, besides computing a
single depth estimate at the PoR from the depth buffer, more data in the region of spatial
tracking uncertainty is collected. For this purpose, n depth samples are drawn around the
PoR (Figure 92), covering the 1◦ radius of tracking inaccuracy. Throughout the experiments,
n = 20 samples are drawn. These samples are used to compute a mean depth and a normal-
ized variance. Moreover, the PoR’s distance to the screen center (eccentricity) was recorded.



166 gaze-contingent depth-of-field

Figure 92: Depth samples (red) drawn around the PoR (yellow) to estimate the gaze-depth. The size
of the PoR and the sampling pattern are exaggerated for visualization purposes. The upper
right image shows a magnification of the sampled region. The lower right image shows the
same region with the tracking target used to guide the user’s gaze.

All of the previously describe gaze-depth measurements and statistics can be combined into
a set of gaze-depth features (feature set), summarized in Table 8.

The model presented assumes that if the variance is close to zero and the mean of all depth

samples results in a depth value close to the central depth measured at the PoR, the depth at

the PoR is likely the gaze-depth. However, if there is a high variance in the depth samples, but

their mean depth is close to the virtual camera, the underlying model should give the vergence

measures a higher weight when deriving the gaze-depth estimate. The challenge thus is when
and how to weight a vergence-based and a spatial measurements. However, building such a
model can be achieved using machine learning.

Feature Description

Center Depth at the PoR (depth buffer)
Mean Mean of the samples around the PoR (depth buffer)
Var. Variance of the samples around the PoR (depth buffer)
Ray Ray-based depth estimate (vergence)
Wang Method by [Wan+12] (vergence)
Ecc. Eccentricity of the PoR regarding the screen center

Table 8: Feature set used for training the regression model to improve gaze-depth estimates.

Although various approaches exist that allow for regression of such feature sets to train a
predictive model, here Support Vector Regression (SVR) with radial basis functions [Gun98]
is used. While the training phase of SVR models is computationally demanding, predicting
new values is highly efficient. This allows for low latencies, which is essential when rendering
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to an HMD. In order to decrease training times, computationally faster approximations for
large kernel machines are available, for example by Rahimi et al. [RR07]. Compared to other
machine learning approaches, one advantage of SVR with radial basis functions is that the
quality of the model is only determined by a small parameter set, depending on the type of
the underlying SVM implementation. This makes it an ideal tool for quality estimation. In
order to get the best results, it is recommend to tune the parameters based on preliminary
cross-validation. For runtime evaluation inside the renderer libSVM [CL11] is used.

7.1.4 Depth-of-Field Filter

Given the depth estimate, the reconstructed image, and the mipmap pyramid from the PP-
Interpolation, the DoF effect can be computed to produce the final image. Its distinct steps
of computation are detailed below.

7.1.4.1 CoC Computation

Although the upcoming evaluation does show that combining multiple measures into a single
regression model improves gaze-depth estimation substantially, it is still suffering from inaccu-
racies. One way to tackle these inaccuracies is to employ temporal filters such as higher-order
Butterworth filters in order to temporally smooth the estimates, as for example performed
by Duchowski et al. [Duc+11]. The system presented here makes use of such a filter to ob-
tain smoother depth estimates but the user can choose a high cut-off frequency for a more
responsive adaptation. In addition, a conservative model is proposed that accounts for poten-
tial tracking inaccuracies by extending the focus range based on the accuracy of the depth
estimate.

The conservative model assumes a thin lens that can be expressed using the general lens
equation 1/f = 1/do + 1/di. In this work, di, the distance to the image plane is assumed
to be fixed with 22.4mm, which is itself an estimate based on the average of measurements
of the human eye [Gro05, chp. 36.4]. The object’s distance do to the focused distance is
obtained using the machine learning model. Now two focal lengths fn and ff are computed
to obtain a near and far focal plane. This is achieved by using the mean tracking inaccuracies
t (Figure 98 green line) to adapt do as dn = do−t and df = do+t in order to solve the general
lens equation to determine the focal lengths. Finally, these values can be used to compute a
signed Circle-of-Confusion (CoC) as

CoC =


−(Vd(fn, g)− Vf (fn, dn)) · (k · Vd(fn, g)) · E if g < dn

(Vd(ff , g)− Vf (ff , df )) · (k · Vd(ff , g)) · E if g > df

0 otherwise

(10)

with Vd(F,G) = (F · G)/(G − F ), G > P and V (F,D) = (F · D)/(D − F ), D > F . A
derivation of these formulas is presented by Mulder and van Liere [ML00]. The distance
to the unfocused object is denoted g. E is a measure of the retinal resolution, such as the
reciprocal of the size of the receptive fields of the photo-sensitive cells, and k is the pupil’s
diameter. While having experimented with various estimates of E using, for example, the
size of the ganglion cell’s [Bar99, pp. 66-74] or the Minimum Angle of Resolution (MAR)
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(Section 3.1.2), it was decided to determine it experimentally to control the strength of the
DoF effect. k is mainly dependent on the retinal illumination. It can either be estimated, e.g.
by using Le Grand’s approximation formula (Section 3.1.1), measured directly using the eye
tracker, or selected by the user in order to control the intensity of the DoF effect.

The given formula to compute the CoC can be used in post-processing DoF approaches such
as the method introduced by Mulder et al. [ML00; Buk+13]. However, if one wants to model
and sample an actual lens model using ray-based [KMH95] or wavefront models [Kak+07], a
lenses optical imaging qualities are usually not described with two focal lengths, fn and ff .
However, in those cases, it is possible to alter the parameter of the retinal resolution E, i.e.
the sensor size, to have a wider focus range in order to take the region of tracking inaccuracy
into account.

In order to compute the CoC, a CUDA kernel is launched that calculates a signed value
for each newly computed sample. The sign marks if a pixel is located in the near or the far
field. Finally, each thread stores the color information and the signed CoC’s size encoded in
the samples alpha channel.

7.1.4.2 DoF Filtering

As gaze-contingent rendering for HMDs requires low latencies to cope with fast eye movements
and to match the displays’ refresh rates, performance is a critical aspect when computing
gaze-contingent DoF. It must be remembered that approaches that sample a lens model with
the aim to compute physically correct DoF require casting many rays, which is contradictory
to the idea of foveated rendering that aims to reduce the number of shaded samples. Although
various more efficient techniques have been developed to approximate DoF [Dem04; MRD12],
they are still barely usable inside a performance-critical rendering pipeline as even a simple
adaptive Gaussian blur at the native HMD resolution can take several milliseconds.

In general, the presented approach for DoF computation follows the idea of Buchowski et
al. [Buk+13]. However, in order to calculate the DoF effect more efficient its computations
are closely coupled with the foveated sampling and reconstruction scheme. Based on the pixel-
wise computed CoC, the rendered image is divided into three different layers: One layer for
pixels in the far field (with a CoC> ε), another layer for pixels in the focused mid field (with
‖CoC‖ < ε), and a third layer for pixels in the near field (with a CoC< −ε). These three
different layers are illustrated in Figure 89. Pixels are blurred, distributed on the according
layer, and combined to a final image.

In fact, for a plausible DoF effect, the blur has to take depth discontinuities continuously
into account and without a limited set of layers. Blurry distant objects should not bleed over
closer objects in the focused field. However, the assumption in this work and the approach
by Buckowski et al. is that as long as the order of the layers is preserved, users are likely to
tolerate potential blurring inconsistencies within each layer.

Despite this, even blurring a few buffers is computationally expensive. This is especially
the case when objects are focused at close range. Objects in the background, which are then
out-of-focus, must be heavily blurred. Filter kernels for blurring these become very large, and
as a result, the blurring operation becomes very slow. Therefore, Bukowski et al. work with
buffers of reduced resolution in order to obtain very blurred regions with a small filter kernels
and to stay within frame time budgets. However, the reduced resolution is not suitable when
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using an HMD. The reason here is the low angular resolution of the HMD’s display compared
to its large Field of View (FoV). Block and subsampling artifacts become visible. Therefore,
it is necessary to develop a method that can efficiently blur large areas at high resolutions.

In order to efficiently blur images, the presented approach samples the appropriate levels
from the mipmap pyramid, considering the CoC values for each pixel. Here, the algorithm
samples the mipmap several times in order to further improve the quality of the blur. In
addition, the type of blur and its quality are adapted based on the position in the visual field.
Filtering using the mipmap pyramid is particularly suitable for areas in the peripheral visual
field that already have low visual acuity. Higher quality blurs and better blending weights to
combine the final image layers are computed for central vision.

The blur kernel processes the image as follows: In the first pass of the filter, the pixels are
read horizontally. If a pixel is in a peripheral vision field, the mipmap is sampled. The radius
of the CoC is used to select the appropriate mipmap layer. In order to improve the quality
of the blurring operation, the mipmap is sampled multiple times [W3C16] using the same
Quincunx scheme as already used in the reprojection phase (Figure 90). Now, based on the
sign of the CoC and ε, the pixel value is stored either in the near or far field image buffer.
In order to blend between the layers, an additional coverage value is computed based on the
samples from the mipmap pyramid and the current pixel. To this end, the sign of the CoC
stored in each sample’s alpha value is examined. This makes it possible to only consider those
samples in the blurring operation that are valid for the current near or far field. More details
on the computation of the coverage values are provided by Buchowski et al. [Buk+13].

In the area of central vision and in the transition area to peripheral vision, a high-quality
blur is required. High visual quality matters here. At this point, if a pixel is in a position of
the visual field that is between central and peripheral vision, both pixels in the near and in
the far field are blurred with a Gaussian blur.

Still, the transition between central and peripheral vision may be visible in the final image
due to the different approaches to blur and combine the image. In order to overcome this issue,
both types of blur are blended in the vertical pass of the separable filter as follows: pixels
that are visible by peripheral vision are already blurred and remain untouched. Pixels that
are located in the central and transition region of the visual field are blurred in the vertical
direction using a Gaussian blur. However, for pixels that reside in the transitional region, the
blur resulting from sampling the mipmap is also computed. This allows blending between the
mipmap and the high-quality Gaussian blur in the near and far field buffer in a single pass.
The blending weights are chosen to be linearly controlled by the falloff parameters r0 and
r1, describing the central and transitional region of the visual field (Section 7.1.1). After two
separate blurred images for the near and far field with coverage values have been computed,
all available images are combined to a final image.

7.1.4.3 DoF Combine

In order to obtain the final image, the three available image layers are blended: the blurry
near field buffer, the blurry far field buffer, as well as the unmodified original image. Firstly
pixels are interpolated between the original unmodified image and the far field buffer based
on the CoC. Near field values are blended over the resulting image using alpha blending with
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Figure 93: Different rendering configurations showcasing the potential of the depth-of-field filter.

the associated coverage information stored in the alpha channel. This way, computing the
transitions between the regions can be handled efficiently using simple linear interpolations.

Another technique to counteract the quality degradation for peripheral vision is eccentricity-
dependent contrast enhancement. Patney et al. [Pat+16b] show that sampling rates in a
foveated rendering system can be reduced when contrast enhancement for peripheral vision
is applied. Several other researchers have also shown that enhancing contrasts helps to conceal
lost details [Gru+06; KRK11]. Patney et al. achieved the contrast enhancement by weighting
each pixel’s color with a blurred version of its surrounding using a kernel width adapted to the
eccentricity. However, computing such a blur takes considerable time, and Patney et al. found
that box blurs do not provide the necessary fidelity [Pat+16c]. However, the mipmap helps
to obtain blurred images at a high quality. Again, this is achieved by consecutively sampling
the mipmap. Essentially the box blur represented by the mipmap is used to approximate a
Gaussian blur [W3C16]. Having an efficient way to blur images adaptively, the color value
for each pixel p′ij in the final image is computed by evaluating

p′ij = p̄ij + fe · (1 + σij) · (pij − p̄ij)

using the unmodified pixel color pij and the blurred version p̄ij . The value σij measures the
filter width. It is zero for central vision and increases with the eccentricity in the visual field.
The parameter fe is user-defined. Patney et al. found fe = 0.2 to yield satisfactory results.
Finally, the combined image is presented to the user.

A comparison of different rendering configurations using DoF for the presented foveated
renderer in contrast to full rendering is shown in Figure 93. Please note how enabling DoF
filters potential rendering artifacts.
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Figure 94: The final renderings as presented in the gaze-contingent renderer. The images show the
test scene that was used in the user experiment. The PoR is marked as a black dot with
a yellow center, either fixating a target close to the user (near) or in the distance (far).
Moreover, this image shows the different DoF modes as used in the user study. The scene
itself consists of various targets at different depths. Targets labeled one range from 0.5m
to 1m. Targets labeled with a two range from 1m to 6m. The big blue ball labeled three
is located at a distance of 6m.

7.2 benchmarks

In this section, the benchmarks of the renderer and filter are presented. The benchmarks
and the accompanying user study were performed on Windows using an Intel Core i7-3820
machine clocked at 3.6GHz equipped with 16GiB RAM and two NVIDIA GeForce GTX
1080 Ti graphics cards with 11GiB VRAM each. For the benchmarks, the scene space shooting
range [Ros14] was modified. It consists of a long tunnel extended by the different targets as
illustrated in Figure 94. The version of the scene used here consists of 227568 triangles. Please
note that the runtimes of the kernel that performs the reprojection, the reconstruction, and
the DoF effect are independent of the scene’s geometric complexity; only samples in image
space are processed. The runtime of each pipeline stage is shown in Table 9. The scene was
rendered for a single eye, matching the HMD’s native resolution of 1280 × 1440. Run times
were averaged over 1000 frames. For these renderings, the same foveated configuration as for
the user study was chosen. Foveated rendering is configured with a FRC of (r0 = 10◦, r1 =
20◦, pmin = 0.2). The radius that is specifying the central vision (r0) and the transitional

DoF

Mode
Ray Reproj. Reconstr.

CoC Filter Combine Total # Samples

Tracing (TAA) (PP-Interp.)

Foveated

(Ours)
3.09 1.35 1.107 0.81 0.88 0.41 7.64 558945

Full Ray

Tracing
5.52 - 1.09 0.81 0.88 0.38 8.68 1843200

Table 9: Benchmarks of the presented pipeline in ms for a single eye rendered at a resolution
1280× 1440 averaged over 1000 frames. The approach presented reduces the number of
shaded samples by 69% compared to full ray tracing.
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region (r1) have been chosen based on the experience from the foveated rendering system
introduced in the previous chapter. This configuration has proven to be sufficient to generate
images that could mostly not be distinguished from full rendering. Also, these settings are
chosen that central and transitional region covers the parafovea and perifovea, respectively
(Section 2.1.1). Compared to the system that was introduced in the previous chapter, higher
values for pmin (0.2 instead of 0.05) were chosen. This is because no salient image regions
are resampled here.

DoF was computed with the medium setting as illustrated in Figure 94. For foveated
rendering, the inaccuracy of eye tracking can be compensated by using a larger foveal area or
by predicting saccadic movements [Ste+16; Ara+17]. However, determining the eye’s focused
depth in order to control the DoF is probably more inaccurate. Fortunately, the use of DoF
is supported by the rather slow speed of accommodation [TM89]. Hence, the update rate of
the focused depth is usually not critical when using eye tracking devices. A simple solution
for counteracting inaccuracies is to render more of the scene in focus. However, in this case,
filtering quality might be influenced negatively. Fewer parts of the image are affected by
the blurring of the DoF. As a result, more artifacts are potentially visible. Nonetheless, the
method proposed to compute the CoC enables to compensate for inaccurate depth estimates.
As a result of the measurements presented in the next section, the mean depth estimation
inaccuracy t can assumed to be 0.2m over the entire critical depth range of 6m. Although
the total performance increase of about 1ms does not appear to be noteworthy, the scene
was rendered using only primary rays and simple shading. No secondary contributions like
shadows, ambient occlusion or Global Illumination (GI) were computed. With an increasing
computational complexity of each shaded sample, the difference between foveated and full
rendering is expected to be much higher. Thus, the most important measure is the difference
in the number of rendered samples between foveated and full rendering. This reduction is
quite substantial, with the number of samples being reduced by 69%.

If a look is taken at the percentage of reduced samples using the method introduced in
the previous chapter – it was up to 79% – it becomes clear that the system here compares
well. However, note that in contrast to the system proposed here, this number of 79% is
scene- and view-dependent as salient image regions may need to be resampled using the
previous method. Also, DoF has the potential to increase realism and depth perception as
well as to reduced motion sickness [Hil+07; Hel+10; Lan+16]. Comparing to the rest of the
competing state-of-the-art, Guenter et al. [Gue+12] rasterize the image in three layers with
different resolutions and render only 7% of the pixels. The image is strongly undersampled.
Stengel et al. [Ste+16] report that shaded pixels are decreased by 65% for the same resolution
of 1280 × 1440. Patney et al. [Pat+16b], relying on Coarse Pixel Shading [Vai+14], do not
reduce the visibility rate (pixel writes) but the number of shading computations on the shaded
quads to about 50% compared to the work by Guenter et al. [Gue+12]. In contrast to Coarse
Pixel Shading [Vai+14], the PP-Interpolation used provides high flexibility at a reasonable
cost. The ray casting approach presented here has a runtime of 7.64ms. In order to stay
within the V-Sync limits of the HMD, two render threads were launched on two Graphics
Processing Units (GPUs). Besides rendering, most time is spent on reprojecting information
from previous frames.

Concerning the visual quality in the foveal region the approach presented mostly resembles
the work by Bukowski et al. [Buk+13]. Identical quality is achieved there. However, quality is
reduced for parts in the peripheral visual field as the high-quality Gaussian blur is replaced
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by the box blur from samples of the mipmap pyramid. Nevertheless, as the latter is sampled
multiple times to compute a final color and coverage information, differences are hardly
noticeable – especially, due to the general acuity loss at increasing eccentricities. Interestingly,
in this setup, the difference in runtime between the various DoF settings is rather minimal.
Once reprojection and reconstruction have been performed, the total time to compute the
DoF (CoC, Filter, Combine) with weak, medium and strong settings amounts to 2.08ms. The
almost constant runtime of the DoF filter can be accounted to the heavy usage of the mipmap
pyramid in the peripheral visual field, making the amount of blurriness largely independent
of the runtime. However, slightly worse runtimes are to be expected if the focused region in
the foveal and parafoveal region contains a higher amount of objects not in focus.

7.3 experimental evaluation - tracking data

In this section, the results of an experiment with the aim to evaluate the quality of the
gaze-depth estimation are presented. The following research questions provide insight into
the software’s potential:

• RQ1: Can the depth estimate be improved by combining measurements and how accu-
rate is the resulting model?

• RQ2: How much does accuracy depend on the target’s depth when using vergence
alone vs. the introduced model?

• RQ3: How much does accuracy depend on the number of training samples?

• RQ4: Can the model be used across users and scenes?

7.3.1 Procedure and Apparatus

An experiment to collect the required gaze data was performed to evaluate the gaze-depth esti-
mation framework. In contrast to the setup used to evaluate the foveated rendering framework
in the previous chapter, a Fove 0 Headset [Fov17] was used. This HMD is natively equipped
with a binocular eye tracker running at up to 120Hz with a precision of 1◦ and a latency
of 14ms. The experiment was conducted as a within-subject user experiment, employing a
4× 6× 3 full factorial design. Each participant had to perform 72 trials. The trials consisted
of four scenes, two typical video game scenarios (Sponza and Study) as well as two test scenes
(TestFar and TestNear), as shown in Figure 95. While for the test scenes a single static cam-
era position was chosen for all trials, the typical video game-like scenes Sponza and Study

were presented with six different camera positions (Appendix A.5). These positions were cho-
sen to have a high variability of depth changes, potentially spanning the entire depth range
in question, with a maximum of 12m. The test scenes were modeled to range from 0m to
12m (TestFar) and from 0m to 3m (TestNear), rendered with simple shading to limit the
number of possible distractions. Each of these scenes was composed of skewed boxes at fixed
depth intervals (Figure 95). All camera positions were randomly shuffled and presented to
the subjects three times. For each of these camera positions, a tracking target was generated
that followed a randomly generated path through the scene. It was presented in front of a
gray background for two seconds before the actual movement and data acquisition began in
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(a) Sponza (b) Study

(c) TestFar (d) TestNear

Figure 95: Test scenes and exemplary views used in the user study to acquire gaze data and to evaluate
the proposed method.

order to enable participants to find the target’s initial position. The paths were generated
to be within a radius of the innermost 20◦ of the visual field around the central optical axis
to cover the Comfortable Viewing Angle (CVA) of 15◦ (Section 2.2.3). Moreover, this was
intended to ensure the target’s visibility throughout the entire trial for each participant.

As illustrated in Figure 92 the tracking target was a semi-transparent red ball with an
opaque black center. This target was adapted to the scene’s depth at the current location on
the tracking path. As depth changes of the target along the randomly generated path can
potentially be high and for physiological reasons the participants are not able to perform
the vergence movement sufficiently fast, the accepted speed of depth changes was artificially
reduced. The maximum depth change allowed at which a user can still focus on an object is
said to be approx. 0.7m/sec (Section 2.2.3). In order to ensure that the user can focus on the
object at all times, the movement was further slowed down. Otherwise, double vision might
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Figure 96: The tracking accuracy shows how well participants could follow the calibration target
through the scene wrt. to the target’s eccentricity. It is computed based on the binned
differences of the tracking target positions and the measured points-of-regard, obtained
by the eye tracker. Red dots show the deviation’s mean. The green line shows a linear fit
through the binned means.

occur as the eyes may not be capable of keeping focused. While the target was translating
into depth and free space, no training samples were generated until the object was placed on a
surface again. Please note that the depth samples used for training the model were not taken
from the tracking target surface itself but the mesh of the underlying scene. The tracking
target behaves like a rendered 3D sphere and changes its size once it is further away from
the camera in the correct perspective manner. However, it was rendered in a second render
path and overlayed on top of the original image in order to prevent it from modifying the
original depth buffer. Note, that the semi-transparent tracking target was only meant to give
a notion of what to look at in order to steer the user’s gaze. It did not influence any of the
measures used in the feature set.

A total of 14 subjects (8 male/6 female, all with academic background and experience
in VR) aged between 22 and 50 (M = 33, SD = 7.09), participated in the experiment.
All participants reported having a normal or corrected-to-normal vision (< ±1D) without
known serious visual impairments. After signing informed consent and receiving instructions,
participants were seated and equipped with the HMD. Before presenting each scene, the
participants were asked to perform a spatial calibration provided by the Fove SDK. Following
that, the 18 paths per scene where shown to the subjects, where they had to track and fixate
the moving target throughout the experiment while feature sets were collected.

7.3.2 Results and Discussion

In this section, the evaluation of the data collected in the user experiment is presented.
Initially, the eye tracker’s spatial tracking accuracy is determined. Figure 96 shows the angle
of deviation of the tracking target’s position to the measured PoR for various eccentricities.
Based on this measure, the tracking accuracy is determined to be roughly 1◦ of the visual
field, getting slightly worse with increasing eccentricities.
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Figure 97: Mean squared error (MSE) in meters as the deviation from the ground truth for the cali-
bration per user with different features for every single scene and for all scenes using 50%
of the collected data for training the regression model and 50% for testing.

rq1: accuracy of the resulting model. In order to demonstrate that the model
presented improves the depth estimation, the Mean Squared Error (MSE) of the regression
model in meters for each user individually, per scene, and for all scenes, were computed. This
was either performed using the proposed feature set (All) or using only individual features
(Mean, Center, Ray, Wang). In order to get a fair comparison, the Eccentricity feature of
the tracking target was used for all combinations. The MSE was estimated by training the
regression model using a Leave-Group-Out-Validation (LGOV). For each user and each scene,
50% of the acquired gaze data was used to train the SVM and the remaining 50% to test it.
This was repeated ten times with randomized subsets. Figure 97 shows the averaged MSE
in meters as the deviation from ground truth including the data from the repetitions of all
participants.

The figure reveals that the combined feature set (All) provides a substantial improvement
over using individual features only. For all scenes, the MSE could be reduced to less than 50%
as compared to using a single feature only, with a MSE of the combined feature sets of 0.1m
for Sponza and 0.01m for TestNear. In general, the methods appears to perform better for
scenes that have a limited depth range like TestNear. The most important reason for this is
the fact that the impact of inaccurate predictions on the error is less for limited depths. Also,
the vergence provides more accurate results if the target is close to the user, which is most
probably the case in scenes with a small depth extent. However, the purely vergence-based
estimates, Ray and Wang, perform worse for scenes that have a great extent of depth as
estimates become less accurate if the tracking target is positioned at greater distances.

Figure 98 shows the accuracy of the depth as intervals of 0.25m, starting at a distance
of 0.25m. This plot is continued over the entire range of 6m. This distance is assumed to
be critical in order to estimate the accommodative state of the eye (Section 2.2.3). For each
user, 50% of the samples acquired per scene for that particular user were used to train the
regression model. The remaining 50% were used to test the model computing the deviation
from the ground truth. Again this was performed for ten repetitions with randomized training
and test sets. Although the median errors of the model’s accuracy are almost constant over the
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Figure 98: The depth accuracy showing how well the regression model predicts the calibration tar-
get’s depth in meters wrt. the target distance. The figure is based on cross-validating the
collected data. Red dots show the deviation’s mean. The green line illustrates the linear fit
of the means.
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Estimate Depth Difference of Combined Model vs. Central Depth 

Figure 99: Depth differences comparing the combined model to a regression model that only uses
the depth at the point of regard obtained with a standard ray casting approach. If the
difference in depth is negative, the predictor trained using only the central depth is closer
to the actual target by that amount. If it is positive, the combined feature set is more
accurate.

entire depth range of 6m with a deviation of approx. 0.1m, the mean deviations are becoming
worse with increasing distance. Due to a higher spread of samples, the mean deviation from
the target (Figure 98, red dots) ranges from 0.08m at a distance of 1m up to a deviation of
0.5m at a distance of 6m.

Using the same LGOV scheme, a unit-less measure of the importance of the individual
features for the prediction can be computed [Kuh17]. For the entire depth range of 6m, the
mean (95.03) and central depth (84.39) are the most important measurements, with the im-
portance of Ray (43.86) and Wang (40.1) being almost identical for the model. Surprisingly,
the eccentricity (11.43) is even less important than the variance (15.67). Keeping in mind
that uncalibrated vergence measurements are trained, the eccentricity of the target from the
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Figure 100: The averaged MSE per user learned from varying the intervals of samples to consider. The
proposed feature set (All) outperforms purely vergence-based measures (Ray and Wang).

screen’s center was expected to greatly influence the quality of the vergence-based measure-
ments. According to the data presented, this is not the case.

The standard approach to estimating the gaze-depth in a head-mounted device is sampling
the depth at the PoR using ray casting or sampling the depth buffer. Figure 99 illustrates
the difference in depth estimates that result from using the central depth alone as opposed
to using the proposed combined feature set. In order to compute these values, the model was
trained with 50% of the data and predictions were made with ten repetitions. The distance
of the predicted values to the ground truth, i.e., the depth of the displayed tracking target,
was computed. If the difference in depth is negative, using only the central depth at the
PoR is closer to the actual target by that amount. If it is positive, the combined feature
set is more accurate. Figure 99 illustrates that using the depth at the PoR’s center only,
without considering the other features, leads to a decrease in the tracking accuracy over the
entire depth range, especially at the far end of the range between 4m and 6m. Nonetheless,
in summary the evaluation shows that using the proposed feature sets for depth estimation
improves accuracy substantially.

rq2: target depth and the accuracy of vergence estimates. The pro-
posed combined feature set outperforms the purely vergence-based measurements. However,
it is questionable to which depth the vergence-based estimation is equally accurate or per-
haps even better. Figure 100 shows the regression model trained for increasing depth intervals.
First, all samples individually per user ranging from 0m to 0.25m were used to train and
predict values, following the introduced LGOV scheme. This is performed individually for
the participants and scenes, with ten repetitions. The averaged MSE is computed including
all repetitions, users, and scenes. Next, the interval from 0m to 0.5m is processed. This eval-
uation is repeated until the last interval (0m to 6m) is reached. The plot of the computed
average MSEs is illustrated in Figure 100. It becomes clear that after the first 0.5m the
vergence-based measure is becoming increasingly inaccurate. This correlates with the related
work on vergence-based depth estimations. Wang et al. [Wan+12] investigate the tracking
accuracy using targets ranging from 0m to 0.5m. However, it has to be noted that they use
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Figure 101: Prediction Accuracy (MSE) plotted vs. distance for different sampling densities p. These
determine the number of samples taken into consideration for the learning process.

a more elaborate method to calibrate the vergence estimates using Periodic Self-Organizing
Map (PSOM) [WNR00] including the spatial position of the current PoR. Interestingly, Fig-
ure 100 also shows that the image-based measures computing the central depth and mean
depth perform comparably to the vergence measures over the examined depth range. How-
ever, for these direct depth measurements, this comparable behavior results from the increased
probability of the eye tracker missing the correct position of the focused object at greater
depths: an effect caused by the reduced projected size of distant objects. Figure 100 also shows
that combining a vergence-based (Ray) and an image-based measure (Mean) diminishes the
effect. Combining features decreases the introduced error substantially (Mean+Ray).

rq3: effect of the training set size. Calibration is a cumbersome process
and might negatively influence the user experience if the process takes too long. Therefore,
it is essential to describe how the accuracy of the prediction is influenced by the number
of samples used to train it. Figure 101 shows how the prediction accuracy improves when
using an increasing amount of samples for the training process. The plotted lines show the
development of the MSE for data in the range of up to n meters on the x-axis. The number
of samples taken into account was chosen to be a percentage p (sampling density) of the
available samples, namely 10% to 50% in steps of 10% as larger sample sets lead to very long
training times. The measurements were performed by learning the respective percentage p
of the available tracking data from all scenes at once, but for each user individually. Depth
estimates were then computed for all available tracking data of all participants and errors
were averaged, as shown by the lines. The resulting number of samples for each sampling
density is shown by the bars in the background for each depth interval. The plot shows
clear improvements in the prediction accuracy when a higher number of samples is used for
training. However, these improvements happen in a somewhat logarithmic fashion. Assuming
that the calibration process is not a one-off task, but has to be performed on a regular basis,
it is necessary to limit the time it takes to perform this task. For each scene, collecting the
data using the calibration paths took each participant approximately five minutes. Judging
from the analysis, it is assumed that reducing this time by 50% would indeed be possible,
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Figure 102: Mean square errors for cross-prediction between users for the first meter only. Data was
learned for each user individually and then predicted for all subjects.

especially if the main requirement is a high accuracy for low distances. It also has to be
kept in mind that there is in fact an unknown dependency between chosen fixation paths,
viewpoints, and the accuracy of the predictor. This should be further analyzed in future work.
Gaining knowledge on the influence of the shape of chosen fixation paths regarding prediction
accuracy could enable further reductions of required sample set sizes.

rq4: effect of using the calibration across users and scenes. As
the calibration process can still take some time it would be desirable to have a universal

calibration that does not require each user to run the calibration process every time they
use the system. In order to test if one user’s trained data can be used to predict another
user’s target, physiological properties such as differences in the IOD need to be taken into
consideration. This made it necessary to add a stage where the target depth was predicted
solely based on vergence-related features (Wang, Ray, and Eccentricity). Essentially, the data
is first split into two distinct sets. All vergence-related features are then used to train and
predict the target depth. This prediction is used as a new feature for the second training
step together with the mean depth, center depth, and variance. The goal of this approach is
to reduce the dependency of features on the physiological properties of a user. The resulting
model is then used to predict the gaze-depth of each of the 14 participants. It should be noted
that all computations in this evaluation are only performed for recorded target distances of
up to 1m. The results are shown as a heatmap in Figure 102, with learned subjects on the
horizontal axis, predicted subjects on the vertical axis and the MSEs of the cross-prediction
being color-coded. Unfortunately, this reveals that a reliable cross-prediction between subjects
is indeed difficult. While not having identical calibration paths for all participants may be
one of the causes, choosing identical paths would not be a realistic scenario: Eye movements
in the prediction phase will not depend at all on a fixation path in real-world applications.

Even though using the calibration across subjects does not yield the same accuracy as train-
ing participants individually would, analyzing the accuracy across scenes is still worthwhile.
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Figure 103: The mean square error (MSE) in meters when training each of the 14 individual users
across scenes (1=Sponza, 2=TestNear, 3=TestFar, 4=Study). Rows represent learned
scenes, columns represent predicted scenes. A total of 50% of the data per trained scene
was used for building the model. The MSE was computed for all training samples of the
respective predicted scene.

Figure 97 illustrates the MSE computed using the 50% LGOV of data to train the regression
model per user, but for all scenes. By looking at the results for all features, it becomes appar-
ent that training across scenes does not result in substantially worse MSEs, leading to the
assumption that the calibration does work well in such a scenario. Hence, the approach was
evaluated using a Leave-One-Scene-Out (LOSO) scheme. This way the model was trained
with the same number of samples that would have been used to train a single user, i.e., 50%
of the number of an average user, but this time the training samples were selected from all
scenes except one. Following that, the model was used to predict the scene that was omitted.
In order to make a comparison possible, the MSE when predicting and learning from the same
scene was computed yielding a ground truth. Interestingly, the LOSO scheme provided lower
and thus better MSEs for Sponza (0.164 vs. 0.244) and TestFar (0.160 vs. 0.234) but higher
and thus worse for Study (0.155 vs. 0.102) and much worse for TestNear (0.202 vs. 0.008). This
difference can be attributed to the vastly different characteristics of the test scene TestNear,
which is very limited in depth. For this scene, most predictions are dependent on the vergence
information. However, using the LOSO scheme, samples were drawn from scenes where the
depth could potentially be larger and fewer training samples were generated for the extreme
near field. For further investigation the method’s cross prediction capabilities were evaluated
for each participant. The results are presented in Figure 103. Here, the regression model was
trained for each scene and participant individually, and predictions were made for all scenes
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for the respective subject. Rows represent the learned scenes, while columns represent the
predicted scenes. The heatmap on the lower right shows the median error values from all 14
participants. It can be noted that apart from Subject 13, even Scene 2 works well when used
as training data for predicting other scenes despite its lower depth extent. For vice versa,
the same is true, as Scenes 1, 3, and 4 lead to a good prediction of Scene 2 in most cases.
It is also important to note that there are some outliers, (e.g., for Subject 13) leading to a
significant increase in the total MSE, even though the system works well for most users. In
summary, Figure 103 shows that cross-prediction across scenes works well which is in direct
contrast to cross-prediction across participants. This means that the performed calibration
data is not only valid for a specific scene, which is supported by the low errors illustrated on
the diagonal in Figure 103, where the data was also learned independently of the scenes.

The evaluation shows that the presented approach that combines multiple measurements to
estimated gaze-depth is superior over using single measurements only. A tracking accuracy
with a median error of 0.1m and a mean of 0.1m to 0.5m in the critical depth range of
0.2m to 6m could be achieved. In contrast, vergence-based measurements were only accurate
up to a focused distance of 0.5m. However, the quality of the machine learning approach
depends on the number of training samples, and there is an unknown dependency between
chosen fixation paths, viewpoints, and the accuracy of the predictor. Also, while calibration
accuracies do not depend on the scene, the calibrated models should not be used across users.

7.4 user study - depth-of-field

Having developed and evaluated the system to obtain gaze depths, this section presents the
results of a user study in order to evaluate the perceptual quality and implications of the
presented gaze-contingent DoF filtering framework. It was driven by the following research
questions:

• RQ5: Does gaze-contingent DoF conceal visual artifacts?

• RQ6: Does gaze-contingent DoF increase depth perception?

7.4.1 Procedure and Apparatus

In order to evaluate the foveated rendering system with gaze-contingent DoF, the same Fove
0 Headset as in the previous experiments was used. This time, the study consisted of three
parts. First, users were asked to put on the HMD and do the spatial eye tracking calibration
provided by the Fove SDK. Following that, the calibration of the gaze-depth estimation was
performed as described in the experiments in the previous section. In order to collect the
training data in reasonable training time, only six randomly generated calibration paths per
participant were used. This took about three minutes. Although higher accuracies for gaze-
depth estimation are to be expected for bigger training set sizes, this value was selected to
balance accuracy, time, and the estimated subjects’s patience. The main part was conducted
as a within-subject study, employing a 4× 3× 2 full factorial design with four DoF settings,
three focus modes, and two rendering modes. Trials were generated with two repetitions and
were randomly shuffled resulting in a total of 48 trials per participant. A single camera position
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was chosen for all trials using the scene shown in Figure 94. The scene was presented with four
different DoF settings (DoFMode = NONE, WEAK, MEDIUM, or STRONG) (Figure 94)
and was designed to contain multiple labeled targets (spheres and boxes). Targets within
a range of 0.5m to 1m were labeled as “1”. Targets within a range from 1m to 6m were
labeled as “2”. For each trial the participants were either asked to fixate targets labeled “1”,
“2” or to freely look around in the scene, thus corresponding to the factor levels FocusMode

(NEAR, MID, or FREE). As the influence of the DoF is scene and focus point dependent, this
ensured a wide variety of objects at different depths were focused on by the user. Moreover,
the scene was tested with full ray tracing (FoveatedMode = FULL) vs. the presented foveated
mode (FOVEATED). For the latter the same settings as used in Section 7.2 were selected
for the ray generation, resulting in 558, 945 updated samples per frame, regardless of the
DoFMode. Each configuration was presented for 6 seconds. After each trial the participants
were presented the following statements:

• Q1: There were no visual artifacts in the periphery.

• Q2: The visual artifacts were not distracting.

• Q3: I could focus on scene elements based on my gaze reliably.

• Q4: Rate the intensity of depth perception.

Q1 to Q3 were rated on a 7-point Likert scale from -3 (strongly disagree) to 3 (strongly
agree), while Q4 was rated on a numerical scale from -3 (no depth perception) to 3 (strong
depth perception).

7.4.2 Results and Discussion

The study was performed with 12 participants (7 male/5 female, all with academic back-
ground) aged between 25 and 50 (M = 35, SD = 7.4), who reported to have normal or
corrected-to-normal vision (<±1D) without known serious visual impairments. Plots of the
ratings for Q1–Q3 are presented in Figure 104. The mean ratings for depth perception are
shown in Table 10. As presented in a previously published paper [Wei+18a], an Analysis Of
Variance (ANOVA) on the data was carried out. Here, a nonparametric, rank-based ANOVA
approach from R’s ARTool package [KW17] was used, as Levene and Shapiro-Wilk tests show
that the data’s homoscedasticity and normality cannot be relied upon. Performing a 3-way
ANOVA with factors FoveatedMode, FocusMode and DoFMode and accounting for interac-
tions produced the results presented in Table 11. Post-hoc tests have been carried out using
F-tests with Holm’s method for p-value adjustment.

The ratings presented in Q1 and Q2, as well as the depth perception rating in Q4 were
filtered using the focus reliability rating illustrated in Figure 104c. If the trial is rated below
zero and participants could not focus reliably (Rather Disagree), it was removed. This way the
influence of inaccurate tracking and depth estimation results was limited. In contrast to the
previous experiment to determine the quality of the gaze-depth estimation, this user study is
only intended to provide insights into the quality of the DoF filter. Looking at Figure 104c as
well as the results from the ANOVA, it can be seen that there is an interaction between the
focus reliability and the DoF mode. As the intensity of the DoF effect is increased, people are
less likely to tolerate below-perfect gaze-depth estimates. Even if the estimate is close to the
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focused depth, stronger DoF modes will most probably blur the image in regions which the
user expects to be in focus. Moreover, we observed that participants were unforgiving when
the DoF effect did not change with the correct speed. However, the speed of accommodation
and its range are dependent on a variety of influences (Section 2.2.3). The effects are very
individual. Nevertheless, it is worth looking at the filtered ratings for the perceptibility and
distractiveness of artifacts (Q1 and Q2).

rq5: differentiation between foveated and non-foveated rendering.

Studying the results of the Likert ratings presented in Figure 104a, a shift in ratings between
the various levels of DoFMode can be observed. Although the highest visual quality is reported
for full rendering without using DoF, the ratings between foveated and full rendering become
increasingly similar with an increasing strength of the DoF effect. This becomes apparent
when comparing ratings for DoFModes factors WEAK, MEDIUM and STRONG for both
full and foveated rendering. Interestingly, the mean Q1 ratings for DoFMode STRONG were
even higher for foveated than for full rendering. The existence of such differences is also
apparent from the interaction between factors in the ANOVA shown in Table 11. While the
results presented for Q2 in Figure 104b show that an increase of the DoF with changing
DoFMode factor levels result in worse ratings for full rendering, foveated rendering clearly
benefits from a WEAK DoF effect in terms of an improved artifact reduction. This positive
effect becomes especially apparent when comparing the means. Nonetheless, the results shown
in the figure provide strong evidence that both ratings are similar. Since visual artifacts were
least noticeable and disturbing for DoFModes WEAK and MEDIUM with foveated rendering,
it can be assumed that the DoF mode successfully conceals artifacts. Unfortunately, enabling
DoF appears to negatively influence the perceived quality using full ray tracing. In addition,
perceived image quality worsens with increasing DoF intensities for both full and foveated
rendering. The loss in apparent image quality coincides with previous works [Duc+14; VAF16].

rq6: effect on depth perception. With the ANOVA showing statistical signifi-
cance for the differences in depth perception between the various levels of DoFMode (p < 0.05,
F (3, 484) = 5.6), Table 10 shows the corresponding means and standard deviations. While
the lowest DoF setting shows the highest depth perception rating, differences between the
various factor combinations are small. In a questionnaire after the study, the participants
were asked for their level of agreement with the statement that DoF could increase depth
perception. Here mixed results could be observed (M=1, SD=1.13). While five of the partici-
pants rated their level of agreement as neutral, eight users rather agreed with the statement.
While it is certain that depth perception depends on the tracking accuracy, the response to
the DoF effect appears to be highly individual. Depth perception is rated best for DoFMode

= WEAK, with decreasing ratings in the order MEDIUM, NONE, STRONG.

Although the results show that the overall visual quality is reduced with respect to the
chosen DoFMode, a WEAK setting has a positive influence on the amount and the subjective
distraction caused by artifacts in the peripheral visual field. At the same time, for this setting,
the overall visual quality remains relatively high, while a slight increase in the overall sensation
of depth could be observed.
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a: Q1: There were no visual artifacts in the periphery

b: Q2: The visual artifacts were not distracting

c: Q3: I could focus scene elements based on my gaze reliably

Figure 104: Likert scale ratings of Q1-Q3 to provide insights into the visual quality of the DoF filter.
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DoF

NONE WEAK MEDIUM STRONG

FOVEATED
Mean 1.75 2.06 1.82 1.70

SD 0.73 0.63 0.83 0.85

FULL
Mean 1.81 2.03 1.94 1.74

SD 0.88 0.73 0.80 0.91

Table 10: Mean and SD for Q4 “Rate the intensity of depth perception” for all level combinations of
FoveatedMode and DoFMode.

FoveatedMode:DoFMode F(3, 484) = 11.78

Q1 FOVEATED - FULL

NONE - WEAK F(1, 484) = 13.7

NONE - MEDIUM F(1, 484) = 23.92

NONE - STRONG F(1, 484) = 25.16

FoveatedMode:DoFMode F(3, 484) = 7.72

Q2 FOVEATED - FULL

NONE - WEAK F(1, 484) = 19.16

NONE - MEDIUM F(1, 484) = 8.82

NONE - STRONG F(1, 484) = 12.82

FoveatedMode:DoFMode F(3, 484) = 2.73

Q3 FOVEATED - FULL

NONE - WEAK F(1, 484) = 3.87

NONE - MEDIUM F(1, 484) = 11.34

NONE - STRONG F(1, 484) = 15.88

Q4 DoFMode F(3, 484) = 5.6

Table 11: Significant results (p < 0.05) for the performed ANOVA. Main effects
were omitted if significant interactions were present. For Q1–Q4 signifi-
cant results are shown as main effects or interactions together with their
difference of differences (DoD) for significant factor levels.

7.5 future work

While the evaluation has shown the potential of gaze-contingent DoF, there are several di-
rections that future work could take. As user studies are time-consuming, it is worthwhile
computationally measuring the influence of DoF on various artifacts with different scenes
for example by using a wavelet analysis as presented by Patney et al. [Pat+16b]. The au-
thor is confident that using knowledge about the DoF is crucial when scheduling potentially
salient regions for (re-)sampling. Another possible path is to further reduce the number of
cast rays by considering DoF progressively. Although the system can already re-sample the
scene multiple times employing knowledge of the CoC, in this case the necessary frame rates
in order to meet the V-Sync limit of the HMD could not be achieved. However, meeting these
requirements is essential to reduce fatigue and to cope with fast eye movements [Alb+17].
This way, it may well be possible that the perceived visual quality using a DoF filter can
ultimately exceed full rendering modes while achieving equal or even lower render times at
lower sampling rates.

Besides the positive effects on the computational complexity, better and more precise eye
tracking solutions or methods that apply scene as well as object knowledge such as the method
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by Mantiuk et al. [MBM13], that allows more accurate gaze-depth estimates to be derived,
will extend the applicability of the approach presented. More elaborate physiological models
on the speed of accommodation might further improve perceived quality.

Surprisingly, the variance of the samples appears to have a higher influence on the accuracy
of the proposed model than the eccentricity of the PoR. Especially for challenging situations,
such as looking at the edge of a significant depth discontinuity, the variance of the samples
is vital. Nonetheless, it has been assumed the eccentricity is more influential because of its
direct connection to vergence. Future work will need to investigate how calibration paths,
scenes, and cameras should be chosen that are ideal for such a process. Collecting the data
took approximately three to five minutes to obtain per scene and user, and training the
model with only 50% of the samples resulted in low MSEs. This shows that such a scene-
based calibration is feasible in consumer-level devices as actual virtual content can be used
for calibration. This improves the user experience of the process. Nonetheless, the number
of calibration samples had to be reduced and so also the duration of the procedure for the
user study to evaluate the DoF filter, compared to the number presented in the evaluation of
the tracking accuracy (Section 7.3). However, the highest achievable accuracy will possibly
only be reached with specifically designed scenes and paths. Training the SVM with 50% of
the trained samples took a few seconds, whereas training huge datasets, for example all data
collected per user, takes between several minutes and several hours. If learning such larger
amounts of data is required, choosing other machine learning techniques such as linear SVMs
or neural networks is to be recommended.

Regarding the intensity of depth perception, it may be worthwhile to take a closer look at
the influence of artifacts and over-blurring in the visual periphery. Also, investigating methods
that render to multifocal and lightfield displays, so enabling a more natural presentation of
the rendered content to the user [Pad+17; Mer+17], might be another field that can greatly
benefit from sampling strategies that take the optical limitations of the HVS into account.

7.6 conclusion

In this chapter a gaze-contingent rendering and filtering approach exploits knowledge of the
retinal and optical abilities of the HVS to accelerate rendering. Samples can be reduced
by 69%, and gaze-contingent DoF has been proven to be a viable solution for concealing
rendering artifacts. A user study has shown that quality ratings between foveated and full
rendering were almost identical using gaze-contingent DoF, although the visual quality is
slightly reduced.

Filtering using DoF is made possible by employing an estimator for the gaze-depth using
an eye tracker inside an HMD. In a calibration step, eye tracking data was recorded and then
analysed to compute different depth features. These were then consolidated into a feature set
in order to train an SVM for depth prediction. It has been demonstrated that the proposed
method provides a high accuracy regarding the mean deviation from the reference depth of
0.1m for the first 2m up to 0.3m for targets at a distance of 6m. In contrast, solely vergence-
based estimates are only precise for the first 0.5m. Once trained this model works well when
used across scenes but becomes less precise when applied across users. As determining the
PoR should lead to similar results for all users, it is presumed that the decrease in performance
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is caused by an imprecise vergence calibration, especially since the IOD and the distance of
the eyes to the display was assumed to be fixed. More accurate results across users are to be
expected if more work is invested into calibrating the vergence and if the individual IOD is
taken into account. This also affects re-wearing the HMD, as this might significantly reduce
the tracking and estimation accuracy. Even the slightest movement and slipping of the HMD
on the user’s head might result in inaccurate tracking. However, as the computations rely on
very precise data to accurately derive the focused depth, it is anyhow beneficial to perform a
calibration per user each time before rendering a new scene as is also advisable for the spatial
calibration process.

As DoF is essentially a guided low-pass filter applied to the image, it is useful to hide
high-frequency artifacts that are challenging for peripheral vision. However, the influence of
the DoF effect is scene-dependent, as artifacts are only reduced for areas of the scene that are
out-of-focus. Hence, ultimately, for optimal results, several strategies for foveated rendering
need to be combined. Filtering the image using DoF is just another tool for perception-driven
rendering. Knowing the size of the CoC allows the image in regions that are in focus to be
resampled. Using PP-Interpolation already allows samples to be integrated based on percep-
tual requirements, such as image saliency. This way, it can be argued that DoF will become
another essential factor when deciding which regions or pixels need increased computational
effort. Flexible and faster ray casting and ray tracing solutions like NVIDIA RTX [Sti18] and
HVVR [HMN18], as well as new hardware generations, will provide the necessary computing
power. This also makes it possible to study fully dynamic scenes, which is as yet too slow for
HMDs in the current implementation.



Part IV

EVERYTHING MUST COME TO AN END

There are things known and there are things unknown, and in between

are the doors of perception.

Aldous Huxley (b1894 - d1963)

The eye sees only what the mind is prepared to comprehend.

Tempest-Tost

William Robertson Davies (b1913 - d1995)

It’s all in the mind.

George Harrison (b1943 - d2001)
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A close understanding of the Human Visual System (HVS) and the various processes of
perception has tremendous potential to improve the quality, the speed of generation, and
the comprehensibility of computer-generated images. For efficient rendering techniques, the
central question is how to exploit the limitations or use the potentials of perception to enhance
the quality of a method whilst maintaining its performance and vice versa. This thesis showed
some of the limitations and potentials as well as how to exploit them in modern rendering
systems. In this final chapter we summarize the major contributions, the results of this work,
and discuss future work.

This thesis has presented a wide variety of physiological and perceptual limitations of the
HVS and the models to describe these. Building such models is an active field of research
that dates back centuries (Chapter 2). Thanks to the growing understanding of the physio-
logical components, the availability of better optical appliances and instruments, high-quality
medical imaging as well as an ever-increasing mathematical and physical toolset, perception
research is constantly progressing. In this field, user studies and experiments are fundamental
tools to increase the understanding of limitations and potentials of the HVS. A large num-
ber of the most common models and systems that have proven themselves in the graphics
community were presented here (Chapter 3). By discussing the most fundamental concepts
of efficient rendering, the state-of-the-art in perception-driven accelerated rendering has been
presented (Chapter 4). This thesis shows how existing methods such as perception-driven
Level-of-Detail (LoD), sampling, or methods that exploit temporal coherence can be com-
bined into new rendering systems. Based on these considerations, this thesis has described
our efforts to push the boundaries of perception-driven rendering further. Here, we have
specifically targeted view- and gaze-contingent approaches that use active measurements of
the visual system.

Large-scale projections and Head-Mounted Displays (HMDs) allow the visual perceptual
channel to be addressed more directly. However, images must be rendered in high resolution
and possibly in real-time in order to take full advantage of such systems. Nevertheless, mean-
ingful 3D models that use the advantages of such display systems are visually complex. When
rendering such models, aliasing artifacts greatly limit the visual quality. Therefore, methods
are needed that dynamically adjust the rendering quality to increase the visual quality but
at the same time maintain low render times. To this end, we have introduced a Graphics
Processing Unit (GPU)-based voxelization and octree construction scheme to build a Hybrid
Sparse Voxel Octree (HSVO), combining voxel and polygonal information (Chapter 5). This
method has the potential to aid image quality, especially for large outdoor scenes. Here, a
voxel representation for distant objects might provide a sufficiently high visual quality but, at
the same time, can significantly reduce aliasing artifacts. Images rendered with four sample-
per-pixel (spp) using the HSVO achieve quality ratings that compare to 8 − 16 spp images
rendered with triangles only. The detailed evaluation of the visual quality provides valuable
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insights when evaluating flickering artifacts and noise resulting from undersampling artifacts.
Likewise, more robust tracking solutions have become an enabling technology that allows
active input to be incorporated into image synthesis approaches. Therefore, we presented an
approach that adapts rendering to the user’s field of vision in front of a large, high-resolution
display wall. Here, insights gained from the evaluation and the user study paved the way for
foveated rendering systems presented in the following chapters.

We presented two methods that adapt sampling to the retinal capabilities, i.e. foveated
rendering (Chapter 6), including a method to filter potential artifacts using the eye’s inher-
ent Depth-of-Field (DoF) when using HMDs (Chapter 7). This research shows that a deep
understanding of perception is becoming increasingly important when designing Virtual Re-
ality (VR) and Augmented Reality (AR) systems, starting with the necessary display and
eye tracking hardware through to the rendering techniques that synthesize images. Besides,
the presented approaches would not have been possible without efficient ray tracing cores.
Research from this thesis shows the relevance of resampling for perception-driven rendering
pipelines, and ray tracing cores gives the freedom to do so efficiently. In addition and in order
to maintain a high visual quality, all of the foveated rendering approaches that were devel-
oped for this thesis heavily exploit Temporal Coherence (TC) between subsequent frames.
Our methods demonstrate how ray tracing can be used to sample the image to resolve repro-
jection artifacts selectively.

This thesis has presented the results of several user studies and all show the limits and
potential of the respective methods. Foveated ray tracing with forward reprojection allows for
the reduction of the number of sampled pixels by 79% (Chapter 6) retaining a visual quality
that is on-par with full ray tracing. This makes speedup factors of two to three possible
compared to rendering all pixels of the image and not considering the retinal limitations.
Now, interactive ray tracing becomes possible, even for demanding rendering processes for
VR and AR that require frame rates exceeding 60 Hz.

Likewise, we showed that the process of filtering images with gaze-contingent DoF filters
has the potential to reduce the complexity of rendering pipelines but also to increase the
presence in the virtual world (Chapter 7). Knowledge about the design, the execution, and
evaluation of user studies and experiments are valuable skills when developing more efficient
perception-driven image synthesis approaches. The analysis of user studies with statistical
tools such as with and Analysis Of Variance (ANOVA) is needed to draw conclusions from
the data and gain more insights into the connection of different factors.

Also, this thesis demonstrated new ways to use and analyze eye tracking data. For example,
this thesis presented a method to derive more accurate gaze-depth locations using machine
learning techniques on multiple gaze-depth measurements (Chapter 7). This makes it pos-
sible to estimate gaze depth with an average error of about 0.2m for points in the critical
depth range of 0m to 6m. In addition, interesting conclusions from user studies and research
experiments can be drawn when analyzing eye tracking data. This way, we could show how
solving tasks significantly influences the way we perceive our surroundings. Such algorithms,
that target inattentional blindness and visual tunneling, bear another great potential: They
allow for the next level of rendering optimization. Here, additional knowledge about other
factors such as retinal velocity is important when putting results into perspective.

High display resolutions enable the perception of finer grained details, and a wider coverage
of the visual field. Large, high-resolution, projection-based displays as well as high-resolution
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tiled display walls have already become well-established installations in research institutions
around the world. In addition, the continuing interest in consumer level VR and AR tech-
nologies is driving the market for an ever-increasing range of head-mounted displays. Even
today, rendering high-quality images for those devices at the necessary refresh rates is chal-
lenging. For hardware, strong trends towards novel displays can be recognized that allow
rendering multiple views, lightfields, or holographic imagery. Also, retinal projection systems
are advancing beyond the prototype stage. Multi-panel installations and adaptable lenses
will create a more natural experience when viewing images in VR and AR headsets. These
displays can help in increasing presence and in reducing fatigues as well as limitations like the
vergence-accommodation conflict. Also, the field of computational displays that exploits the
limitations of the HVS in order to improve devices beyond their specifications might result in
devices with a better visual quality at a lower cost and within the technological constraints
of the time. Here, tricking our senses to improve the perceived contrast and apparent reso-
lution enhancements already enable image details to be shown that are beyond the physical
limitations of the display device. Still, in the pursuit of the dream of an ever-increasing im-
age quality, these approaches will further increase the requirements of rendering approaches.
Hence, based on these developments and the results of this thesis, the author sees several
promising research directions, which can lead to the development of even more efficient and
more robust rendering algorithms.

In the times when ray tracing methods were too slow to be practical, interactive graphics
had to rely on rasterization-based rendering technology. However, such techniques have limits
when sampling the image plane selectively. Still, hardware improvements concerning percep-
tual algorithms, such as efficient pixel-precise shading and multi-resolution rendering will
boost the efficiency of current and upcoming algorithms. However, we already see more flexi-
ble rendering pipelines with ray tracing hardware becoming available. In the author’s opinion,
dynamic real-time adaptive ray tracing permits more efficient and flexible sample schemes
to be implemented and thus better fit perceptual requirements. Images can be re-sampled
more readily in those parts that matter more to the user, either because they require the
highest visual acuity, are in-focus, or because they are more relevant to the HVS. Currently,
we are focusing on primary visibility by sparsely sampling the image plane. However, as the
computational requirements for shading are getting higher and higher, foveation should take
higher-order lighting effects into consideration. Determining primary visibility is relatively
efficient compared to those efforts necessary to compute Global Illumination (GI). This will
likely benefit more from an evaluation of an eccentricity-dependent contrast sensitivity rather
than visual acuity. Also, it is worthwhile to incorporate visual masking when selecting regions
that potentially need higher visual fidelity. Here, establishing the right toolsets to develop
for such a system is of great importance. Tools to firstly identify perceptually critical regions,
then select and re-sample images as well as filtering the final images (all this potentially
iteratively and within a given time-frame) might need novel approaches in comparison to
traditional rendering pipelines.

Ultimately, the transmission of the computed pixels and views at very high resolutions
is also limited by the bandwidth of the interconnect. Here, new approaches to frameless
rendering and display controllers may be one possible solution to drive such systems. For VR
and AR applications it is the author’s contemplation that a rendering method should ideally
be asynchronous from the display and independent from a fix refresh. A display controller
might be used to warp images to the correct perspective, while an asynchronous render
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thread updates individual pixels based on perceptual requirements. This way, computational
resources to increase visual quality can be distributed more flexible.

Besides that, the integration of low-latency eye tracking has led to a wide field of research
that aims to address usability and performance requirements by designing gaze-contingent
rendering and interaction methods. In addition, the extensive use of eye tracking may simplify
the creation of large-scale gaze databases. Such databases could, in turn, lead to significant
improvements in scan-path predictions and learning-based saliency methods. Unfortunately,
current eye tracking devices often lack precision. Even if they are head-mounted, there is
always the danger that the correct position of the tracker cannot be maintained. Putting
HMDs on and taking them off when using integrated eye trackers poses challenges. The
problem is the reproducibility of the accuracy without recalibration for the same user and
the same HMD once the user has put the HMD off and on the head again. The problem even
exists when the HMD slips due to a slight movement of the head. Hence, we suggest there is
a need for online calibration procedures that subconsciously steer the gaze towards tracking
targets in the virtual world to improve calibration progressively. In contrast, methods that
allow scan paths, saccades, and landing positions to be predicted may be another solution
to loosen the requirements of the tracking hardware. Likewise, not all parameters of the eye,
such as its accommodative state, can be captured as readily as gaze points (Points of Regard
(PoRs)). However, there is a need for methods or devices that can accurately capture the
accommodative state of the eye to enable gaze-contingent DoF but also for display systems
with an adaptable focus. One approach to improve gaze-depth estimates has been presented
in this thesis.

In order to provide more comprehensive models of the HVS that can be evaluated more
cost-effectively, we firmly believe in the potential of modern machine learning approaches.
Deep learning has already shown great potential in modeling the HVS with higher precision
and for general image data. Hence, it might provide a viable tool for more robust reference and
non-reference metrics, leading to new quality measures and sampling guidance methods in
the coming years. Also, estimates of saliency evaluations, the stimuli that drive our attention,
could become more reliable. Current methods including attentional models demonstrated the
potential to accelerate rendering. However, the success of these methods is dependent on
a balance between implementation effort, attention model detail, and the available model
knowledge, such as task description or the scene gist. Often, the complexity of such auto-
matic methods limits the applicability to offline rendering. Here, machine learning methods
could come into their own. Once trained, they are usually faster compared to approaches
evaluating every parameter individually. This way, the performance of more complex percep-
tion models based on for example an eccentricity-dependent Contrast Sensitivity Function
(CSF) evaluation or visual masking (limitations that bare tremendous potentials to reduce
rendering costs) might be increased. In addition, although users might be able to perceive
a visual difference compared to a fully rendered image, this is not always relevant to them
solving a specific task or accomplishing a defined goal. Here, user studies may help deter-
mine minimum requirements for rendering algorithms. Also, the interplay of different senses
is even more complex as well as mostly unexplored and models for multi-sensory perception
hardly exist. However, VR and AR applications will increasingly provide multi-sensory expe-
riences, including vision, audio, and haptics. Hence, we foresee further rendering optimization
involving “tuning” methods to account for the non-visual senses emerging.
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Perception-driven rendering has become a significant topic, and new ways to simu-

late and exploit human vision are sure to be discovered in the coming years. With

affordable tracking devices, non-obtrusive ways to capture human attention and

perception, novel VR devices available on a consumer level and ever-increasing dis-

plays technologies, the evolvement of vibrant, more immersive computer-generated

realities is only a question of time.

Weier et al. [Wei+17]





AAPPENDIX

a.1 no-reference metric for noise estimations

Measuring the noise without a reference is a challenge. It has to be decided whether the
detected high-frequency components are noise or rather part of the actual signal. Likewise,
the change of the signal over time must be considered to measure temporal stability. An
algorithm to measure noise in images must therefore distinguish whether an image distortion
and temporal flickering are artifacts, i.e. noise, or not. Vatolin et al. [Vat+11] introduce a set
of approaches, available in the MSU Noise Estimation Filter. Unfortunately, few implemen-
tation details are provided. Hence, this description of the metrics refers to the website of the
filters [Vat+11]. In total three different noise metrics are available.

MAD Performs a HAAR wavelet decomposition for each frame. The wavelet decomposition
can be considered to relate to the multi-scale processing in the visual cortex. The decompo-
sition yields four subbands of the image, the LL, LH, HL, and HH band. While the LL band
contains a low-pass filtered version of the image, the other bands represent the high-frequency
components. The LH component contains mostly vertical edges; the HL components empha-
sizes horizontal edges [Rit02, ch. 2]. Both are considered typical structures that can be found
in natural images. However, the HH band can be interpreted to contain edges in diagonal
direction [Rit02, ch. 2]. Such signals are considered to be noise. Hence, the medians of HH
component’s absolute values are computed by the metric. The final value of the metric is the
normalized median of these values. (Section 2.2.4).

Block-Based First, the frames are tessellated into a number of 8× 8 blocks. Then standard
deviations of intensity are computed for all the blocks. This provides a value on the strength
of the intensity change in each block – the smaller the standard deviation, the smoother the
block. This intensity variation may be due to noise, in which the standard deviation of the
block is close to that of Gaussian noise. Based on these values the blocks are sorted from low
to high. The final value of the metric is the normalized mean of the standard deviations of
30% of the blocks with the lowest values.

Spatio-Temporal Gradients Performs a wavelet decomposition for each frame. In this way
temporal and spatial histograms can be computed. The initial estimation of the noise level
is determined by the value at which the time or space histogram reaches its maximum value.
The decision of whether to use the spatial or temporal histogram is based on its deviation from
the Rayleigh distribution. Later, this estimation is corrected, using a Kolmogorov-Smirnow
test [All76]. The normalized corrected estimation is the final value of the metric.
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Figure 105: Results of the MSU noise estimation metrics (MAD, Block-based and Spatio-Temporal)
on a high-frequency test scene of 1500 frames rendered at 1080p with different sample-
per-pixel (spp). The voxel-based rendering method produces less noise compared to using
triangles only if shadows are turned off.

The metrics are computed with the image sequence used to evaluate the Hybrid Sparse Voxel
Octree (HSVO) (Figure 61), as presented in Section 5.3. Here, the scene rendered using
the HSVO is compared to renderings produced with the full triangle data. Moreover, it has
been tested with shadows turned both on and off. It becomes clear that using the HSVO
significantly reduces noise if no shadows are computed (Figure 105), while this cannot be
concluded when rendering the scene with shadows (Figure 106). This reduction of noise can
also be confirmed by looking at the means of the noise levels as presented in Figure 107. While
the mean noise level for renderings with HSVO in the case where no shadows are rendered are
lower compared to using a triangle representation, the opposite is the case when rendering
with shadows turned on. One possible explanation is that voxels usually provide a greater
closed surface that is more likely to be directly hit by the light source. This can clearly be
seen in scenes with tree and shrub vegetation. Trees in the distance appear to be brighter as
the voxel levels do capture more direct light, while for the triangle representation more light
is “lost” in the foliage. This increase in brightness can also be observed in Figure 62. These
more intense illuminations might have influenced the intensity measurements performed by
the metrics, and resulted in the slightly increased noise levels.
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Figure 106: Results of the MSU noise estimation metrics (MAD, Block-based and Spatio-Temporal)
on a high-frequent test scene of 1500 frames rendered at 1080p with different spp. Voxel-
based rendering appears to produce either more or an equal amount of noise compared to
using only triangles when rendering the scene with shadows.
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noise levels are lower when using the HSVO when shadows are turned off (a), turning
shadows on provides less clear results compared to using only triangle data (b).
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a.2 eye tracking latencies for gaze-contingent

rendering

Dedicated measurements of acceptable latencies for gaze-contingent displays have been con-
ducted in several studies [LW07; San+07; SW14; Rin+14]. The measured end-to-end latency

comprises the full gaze capture and rendering pipeline, starting with capturing data from
the eye tracker and ending with the reception of display-emitted photons on the retina. The
gaze-contingent display system presented by Santini et al. [San+07] renders at a frame rate
of 200Hz and achieves an end-to-end latency of only 10ms with dedicated hardware. Loschky
and Wolverton [LW07] tested for perceptually acceptable latencies with respect to peripheral
image blur of different sizes and blurring filters. Images are blurred with the blur’s strength
dependent on the eccentricity. The Point-of-Regard (PoR) is determine with eye tracking
hardware that supports updates at 1000Hz. Their study reveals that image update delays as
long as 60ms did not significantly increase blur detection. Besides that, the acceptable delay
for image updates depends on the task to be performed in the application and the stimulus
size in the visual field. However, after a certain delay, the likelihood of the detection of slow
updates increases quickly [LM00; LW07]. Nonetheless, for purely attentional processes such
as detecting objects, great latencies are tolerable [Fei+07]. For gaze-contingent rendering,
the work by Albert et al. [Alb+17] suggests that a total system latency of 50–70ms could be
tolerated. Shorter eye tracking latencies of 20–40ms have absolutely no effect on the amount
of “foveation”. Hence, even eye trackers running at only 60Hz to 90Hz are generally sufficient
for efficient gaze-contingent rendering.

a.3 considerations on running estimates

When exploiting temporal coherence, a common task is to compute a pixel color for a new
frame by combining old and newly sampled color values. This combination is usually per-
formed as a running estimate. Here, a new pixel p of a frame f at time t is computed using
a weighted sum of the current sample and st[p] and a (re-)projection πt−1 of p, fetching the
color from the old frame ft−1.

ft[p]← α · st[p] + (1− α) · ft−1[πt−1(p)] (11)

The weight α is used to control the amount of variance reduction and the responsiveness
of the cache to changes. A small α allows more samples to be integrated from the past but
has a risk of over-blurring and a filter that is less responsive to signal changes. According to
Scherzer et al. [SYM10, p. 7] variance reduction is given by

lim
t→∞

V ar(ft(p))
V ar(st(p))

= α

2− α (12)

Choosing α = 2/5, for example, reduces the variance to 1/4 of the original.

As choosing α provides a balance between smoothness and lag, finding an optimal value
for α has been a target of much research. As the camera or objects move in the scene, the
reprojected position usually samples the last frame at a different position. Moreover, poten-
tial magnifications and minifications of the reprojected pixel footprint of the last frame make
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it necessary to filter the information from the last frame in order to obtain the reprojected
pixel color. However, so as to be efficient and under the assumption that the change between
subsequent frames is minimal, most systems use simple bilinear filtering to fetch samples from
the cache. Unfortunately, this bilinear filtering influences the quality of the reprojected data
as it tends to attenuate and misplace high frequencies. This influence is especially apparent
when filtering takes place exactly between four neighboring pixels: As the camera or objects
move, this can result in challenging pixel velocities that move sampling positions between
neighboring pixels. The image gets blurred and at high velocities high-frequency components
show ghosting artifacts. If this happens subsequently, these bilinear filtered results are accu-
mulated over and over again, leading to blurring. This progressive low-pass nature can also
be described using a probability mass function of a Bernoulli distribution. The mathematical
derivation is presented in Scherzer et al. [SYM10, p. 9]. In order to overcome this over-blurring
Yang et al. [Yan+09] carefully designed the running estimate. The weight αt for each pixel
p can be expressed by including the number of accumulated samples Nt per frame into the
update rules.

αt[p]←
1

Nt−1[p] + 1 (13)

Nt[p]← Nt−1[p] + 1 (14)

Then, to limit the infinite accumulation of samples and thus the blur caused thereby, Yang
et al. derived a threshold for αt. This threshold is based on a precomputed table of pixel
velocities including sampling momentums and positions [Yan+09, p. 6]. As this changes the
rate of accumulation, the authors have also developed a new update rule for Nt.

Nt[p]←
(
αt[p]2 + (1− αt[p])2

Nt−1[πt−1(p)]

)−1

(15)

Besides this careful design of the running estimate, Yang et al. work with higher resolution
buffers of 2× 2 subpixel precision, updated in an irregular fashion to limit ghosting artifacts
and blurring. Often temporal methods are used to improve perception and create more tem-
porally stable images as presented in Chapter 4. In the foveated rendering pipeline, presented
in Section 6.1.4 on Page 137, the decision has been made to increase temporal stability by
sampling the reprojected pixel footprints multiple times in order to get more accurate samples
from the previous frames. In contrast to the approaches presented, not every pixel is updated
in each frame. Hence, for this work a limit for α, based on the sample’s age, is proposed.

a.4 resolution estimates of an optimal hmd

According to a keynote talk by Warren Hunt [Hun15] from Oculus Research/Facebook Reality
Labs that was presented at High-Performance Graphics 2015, achieving retinal resolution in
commodity Head-Mounted Displays (HMDs) would require approximately 16K×16K = 256
Megapixels. Here, Hunt assumed a Field of View (FoV) to be 100◦ which was the state-of-
the-art for consumer level HMDs at that time. For a full FoV of an eye that can move, Hunt
assumed 200◦ horizontally by 150◦ vertically, which resulted, according to his computations,
in a necessary resolution of 32K × 24K = 768 Megapixels per eye. The cone spacing and
optical filtering limits the Minimum Angle of Resolution (MAR), yielding a cut-off frequency
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of about 60Cycle per Degree (cpd) (Section 2.2.1). Although Hunt states that these values
have been computed using the MAR of the eye of 1 arcmin (Section 2.2.2), different resolution
limits were obtained in this research. In order to accurately represent such a grating pattern,
a pixel should span 0.5′ arcmin (Figure 17, Page 25). Given 0.5′ arcmin (= 0.0083◦) and a
100◦ FoV

100◦/(0.0083◦) = 12000.0

a resolution of 12k× 12k = 144 Megapixels per eye is sufficient. Considering a fully dynamic
FoV of 290◦ × 150◦

290◦/(0.0083◦) = 34800.0 150◦/(0.0083◦) = 18000.0

an HMD ideally needs a maximal resolution of 35k× 18k = 630 Megapixels. What is missing
here however, is the discussion of hyperacuity. Considering the minimum discriminable acuity
of 0.00024◦ (Table 1, Page 25) the resolution needs to be as high as approx. 1208k×625k = 755
Gigapixel per eye. With a minimum visible acuity of 0.00014◦ (Table 1, Page 25), resolution
requirements rise to approx. 1429k × 1071k = 1530.459 Gigapixel for a single eye. These
resolutions are necessary to achieve or exceed Vernier acuity (Section 2.2.2). There is still
a long way to achieving this. An overview on the development of pixel densities and refresh
rates of HMD systems over the last decades is provided in Table 12

Device Name Year Resolution Refresh Rate

Forte VFX-1 1994 263x230x2 60Hz
Sony Glasstron PLM-S700E 1997 832x642 85Hz
Forte VFX 3D 1998 263x480x2 60Hz
eMagin Z800 2005 800x600x2 60Hz
Headplay Visor 2007 800x600 120Hz
Zeiss cinemizer plus 2009 640x480 60Hz
Sony HMZ-T1 2011 1280x720x2 60Hz
Oculus DK1 2013 640x800x2 60Hz
Oculus DK2 2014 960x1080x2 75HZ
Razer OSVR 2015 960x1080x2 120Hz
Samsung Gear VR 2015 1280x1440x2 60Hz
Sony Playstation VR 2016 960x1080x2 120Hz
Oculus VR 2016 1080x1200x2 90Hz
HTC Vive 2016 1080x1200x2 90Hz
StarVR 2016 2560x1440x2 90Hz
FoveVR 2017 1280x1440x2 75Hz
HTC Vive Pro 2017 1440x1660x2 90Hz
Pimax 8k 2018 3840×2160x2 80Hz

Table 12: The development of pixel densities and refresh rates of HMDs over the
last two decades.
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a.5 gaze-depth calibration camera positons

In Figure 108 - Figure 110 the camera positions that were selected to evaluate the gaze-depth
estimator (Section 7.3) are presented.

Figure 108: Camera positions for the scene Sponza used in the experimental
evaluation of the gaze-depth estimation.

Figure 109: Camera positions for the scene StudyRoom used in the experi-
mental evaluation of the gaze-depth estimation.
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Figure 110: Camera positions for the artificial scenes TestNear (left) and TestFar
(right) used in the experimental evaluation of the gaze-depth estima-
tion.
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GLOSSARY AND ABBREVIAT IONS

2AFC Two Alternatives Forced Choice. 118,

AA Anti-Aliasing. 69, 109, 139,
Accommodation Mechanical ability of the

eye to compress and relax the lens,
enabling the eye to maintain focus on
an object, so that a sharp image ap-
pears on the retina.

Adaptation Automatically triggered and a
time-dependent process of tuning sen-
sitivity of the photosensitive retina to
the amount of incoming light, also in-
cludes the pupillary light reflex.

ANOVA Analysis Of Variance. 144, 183, 192,
AQM Animation Quality Metric. 75,
AR Augmented Reality. 4, 77, 192,
ATAA Adaptive Temporal Anti-aliasing. 73,

136,
AXAA Adaptive Approximate Anti-Aliasing.

90,

CDF Cumulative Distribution Function. 147,
Central Vision Part of the visual field that

is projected onto the fovea, parafovea
and perifovea, i.e., up to an eccentric-
ity of up to 17◦ .

CFF Critical Flicker Frequency. 59,
CIE Commission Internationale de

l’Eclairage. 43,
CLOD Continuous Level-of-Detail. 62,
CMAA Conservative Morphological Anti-

Aliasing. 90,
CMF Cortical Magnification Factor. 39, 67,
CoC Circle-of-Confusion. 167,
Cones Cone-shaped photoreceptors on the

retina responsible for(Photopic Vi-

sion). They are tightly packed in the
fovea centralis with their density de-
creasing quickly towards the periph-
ery. Cones can be subdivided into
Long, Medium and Short-Cones ac-

cording to the band of the visual spec-
trum they are sensitive to.

Contrast Sensitivity Sensitivity to the dif-
ference in the light intensities of two
adjacent areas [Gol13, p. 411].

Contrast Sensitivity Function (CSF)

A function defined over spatial fre-
quency of a sinusoidal grating pattern
yielding a subject’s contrast sensitiv-
ity.

Cortical Magnification Factor (CMF)

The linear extent of the visual stri-
ate cortex to which each degree of the
retina projects. It is directly propor-
tional to visual acuity [CR74].

cpd Cycle per Degree. 24, 36, 202,
CPU Central Processing Unit.
Critical Flicker Frequency (CFF) The

frame rate at which a sequentially
presented series of images appears as
continuous, or is perceptually fused.
Measured in Hertz (Hz) .

Cross-modal Interaction Effects between
various perceptual channels, e.g. vi-
sual stimuli might be missed when an
auditory distractor is active .

CRT Cathode Ray Tube.
CSF Contrast Sensitivity Function. 26, 40,

64, 111, 194,
CVA Comfortable Viewing Angle. 29, 149,

174,
Cycle per Degree (cpd) A unit to describe

the spatial frequency, defined as one
period of a sinusoidal grating pattern

at the projected size of 1 degree of the
visual field.

DAEAA Directionally Adaptive Edge Anti-
Aliasing.

DAG Directed Acyclic Graph. 126,
DEAA Distance-to-edge Anti-Aliasing.
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244 glossary and abbreviations

Depth Cues Strategies such as eye con-
vergence (binocular depth cue), mo-
tion parallax (monocular depth cue)
and perspective for estimating the
distance of an object.

Depth-of-Field (DoF) Is a property of an
optical system and describes the near-
est and the farthest distance in which
objects are sharply imaged and con-
sidered to be in focus. Objects out-
side those range are imaged blurred.
.

DGI Detail-guide image. 115,
DLSS Deep Learning Super Sampling. 91,
DoF Depth-of-Field. 5, 30, 67, 155, 157, 192,

Eccentricity Angular deviation from the
center of the fovea.

Field of View (FoV) A measure describ-
ing the extent of the world observable
by an optical system at one specific
point in time, given in degrees. Using
both eyes and looking straight ahead
humans have an almost 180◦ horizon-
tal field of view. If the eyeball rota-
tion is included (and with the tempo-
ral restriction being relaxed) the hor-
izontal field of view extends to 270◦.

Fixation Gazing at a point of the scene or
display for a certain time (fixation du-
ration).

FoV Field of View. 3, 23, 80, 98, 129, 169,
201,

Fovea (Centralis) The area of the retina
that is able to perceive and resolve
visual information at the highest pos-
sible detail from approx. 5.2◦ around
the central optical axis.

FPS Frames-per-Second. 3, 46, 110, 139,
FRC Foveal Region Configuration. 134, 161,
FSAA Full-Scene Anti-Aliasing. 68,
FSV Field-of-Sharp-Vision. 115,
FXAA Fast Approximate Anti-Aliasing. 89,

Gaze-contingency Paradigm A generic
term for devices and methods that
adapt their function depending on

the user’s gaze. Usually, the user’s
gaze is determined with an eye
tracker .

GBAA Geometry-Buffer Anti-Aliasing.
GI Global Illumination. 68, 122, 139, 172,

193,
GLSL OpenGL Shading Language. 98,
GPAA Geometric Post-process Anti-

Aliasing.
GPU Graphics Processing Unit. 49, 63, 98,

172, 191,

HDR High Dynamic Range. 28, 44,
High-level Perception A field concerned

with how known objects are recog-
nized. The "top-down" processing of
the human visual system.

HMD Head-Mounted Display. 4, 76, 129,
159, 191, 201,

HSVO Hybrid Sparse Voxel Octree. 98, 191,
198,

Human Visual System (HVS) A model
that describes the entire system that
enables humans to perceive and pro-
cess visual input including the eyes,
visual pathways, visual cortex, and
deeper neural processing.

HVS Human Visual System. 3, 9, 33, 59, 114,
150, 157, 191,

HVVR Hierarchical Visibility for Virtual Re-
ality. 81,

Hyperacuity Perception of features that ex-
ceed the visual acuity .

Inattentional Blindness Effect A psycho-
logical lack of attention in which an
individual fails to recognize an unex-
pected stimulus that is in plain sight.

Interpupillary Distance (IPD) The dis-
tance between the optical centers of
the pupils.

IOD Interocular Distance. 24, 165,
IPD Interpupillary Distance.

JND Just Noticeable Difference. 45, 65,
Just Noticeable Difference (JND) A

psycho-physical measure of how
much a stimulus has to be changed
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in order for a difference to be perceiv-
able in at least 50% of the cases.

kNN k Nearest-Neighbors. 81,

LCD Liquid Crystal Display.
LDR Low Dynamic Range. 44,
LGN Lateral Geniculate Nucleus. 17, 48,
LGOV Leave-Group-Out-Validation. 176,
LHRDW Large High-Resolution Display

Wall.
LMS Color Space Represents colors, sepa-

rated by their distribution into Long,
Medium and Short wavelengths, cor-
responding to the cone types in the
human eye.

LoD Level-of-Detail. 5, 60, 97, 129, 191,
LOSO Leave-One-Scene-Out. 181,
Low-level Perception The "bottom-level"

processing in the early stages of the
human visual system. Models allow
saliency estimation.

Luminance A photometric measure of the
intensity per unit area of light emit-
ted in a specific direction.

M-Scaling Hypothesis States that visual
performance degradation with in-
creasing eccentricity can be canceled
out by spatial scaling of stimuli, by
the inverse of the CMF .

MAR Minimum Angle of Resolution. 24, 36,
114, 167, 201,

MCPD Mean Co-Located Pixel Difference.
48,

Mesopic Vision A combination of pho-
topic and scotopic vision occurring at
dim light levels where both rods and
cones are active.

Minimum Angular Resolution (MAR)

Property to describe the resolution of
an optical system. Resolution is ex-
pressed as the minimum angle allow-
ing for the distinction of two points.
For the eye and with normal vision
this corresponds to about 1◦ when
mapped to the fovea and decreases
with increasing eccentricity.

MLAA Morphological Anti-Aliasing. 89,
MOS Mean Opinion Score. 50,
Motion Sickness Over time conflicting vi-

sual and motion cues can result in
motion sickness.

MSAA Multisampling Anti-Aliasing. 70,
127,

MSE Mean Squared Error. 47, 176,
MSSSIM Multi-Scale SSIM. 48, 111,
MTF Modulation Transfer Function. 35,

NAS NVIDIA Adaptive Shading. 76,
NPR Non-Photorealistic Rendering.

OBB Oriented Bounding Box. 124,
Object of Interest (OoI) An object or part

of a scene the user is looking at. It
can be either measured by using ac-
tive eye tracking or approximated by
saliency analysis.

OoI Object of Interest. 17,

Parafovea The area of the retina from ap-
prox. 5.2◦ to 9◦ around the central
optical axis.

PDF Probability Density Function. 38, 82,
Perifovea The area of the retina from approx.

9◦ to 17◦ around the central optical
axis.

Peripheral Vision Visual stimuli that are
not within central vision.

Photopic Vision Color vision using the
cone receptors under normal lighting
conditions (daylight). Rods are per-
manently saturated and therefore de-
activated under these conditions.

Photoreceptor Retinal cells (rods and
cones) that convert light received at
the retina into nerve signals. Rods are
achromatic and sensitive to motion,
while cones provide color sensitivity.

Point-of-Regard (PoI) The point the user
is looking at in image space, obtained
by the eye tracker.

PoR Point-of-Regard. 56, 61, 129, 158, 194,
200,

PP-Interpolation Pull-Push Interpolation.
161,
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PPI pixels-per-inch. 25,
PSNR Peak Signal-to-Noise Ratio. 47, 111,
PSOM Periodic Self-Organizing Map. 179,
Pupillary Light Reflex The process of ad-

justing the pupil’s diameter to the
amount of incoming light as a part
of adaptation.

Receptive FieldA particular part of the sen-
sory space in which a stimulus trig-
gers a neuron. The receptive field of
a photoreceptor can be described as a
cone-shaped volume representing the
directions in which light can trigger
a response. For the retina it is the
entire visual field.

Retina Photosensitive layer of the eye con-
taining photoreceptors.

Retinal Ganglion Cells The output
neurons containing circular receptive
fields in order to encode and trans-
mit information from the eye to the
brain.

RGSS Rotated Grid Supersampling.
Rods Rod-shaped achromatic photorecep-

tors in the retina that are especially
important in dim lighting conditions
(scotopic vision).

Saccade A small rapid movement of the eye
that occurs during the scanning of a
scene and fixation changes.

Saccadic Suppression The effect that the
visual system seems to shut down to
some degree during saccades. That
is, even though the point of fixation
moves at very high velocities during
a saccade, blurred vision is not expe-
rienced.

Saliency The perceptual importance of
parts in a scene and their likelihood
to capture attention .

Scan Path A description for captured gaze
behavior usually including spatial fix-
ation locations and fixation durations
.

Scene Schema Hypothesis States that
objects that are unexpected/unusual

in a specific context have a high
saliency [HH99].

Scotopic Vision Monochromatic vision un-
der low light-level conditions making
use of the rod receptors exclusively.

Simultaneous Contrasts The effect that
two colors when viewed side-by-side
interact with each other and can lead
to a different visual sensation.

Simultaneous Masking see Visual Mask-

ing .
Singleton Hypothesis States that the

viewer’s attention is drawn by stim-
uli that are locally unique and glob-
ally rare [TG02].

Sinusoidal Grating Pattern An alternat-
ing pattern of bright and dark areas
at a specific or increasing frequency
of a sine function. Used to measure a
subject’s contrast sensitivity.

SMAA Subpixel Morphological Anti-
Aliasing. 89, 136,

Smooth Pursuit Eye Motion (SPEM)

Smooth movement of the eyes when
following a moving object, stands
contrary to saccadic movements.
Smooth pursuit and saccadic move-
ments may occur in conjunction
when an object is moving fast, so
catch-up saccades may be required .

SPEM Smooth Pursuit Eye Motion. 28, 88,
150,

spp sample-per-pixel. 68, 74, 110, 139, 191,
198,

SR Stochastic Resonance. 69,
SRAA Subpixel Reconstruction Anti-

Aliasing.
SSAA Screen-space Anti-Aliasing.
SSIM Structural Similarity. 47,
Stereo Vision Describes the human ability

to combine two visual streams (Stere-
opsis) to improve visual performance,
e.g., depth perception.

Stereopsis Process that fuses the visual in-
put from both eyes to allow for stereo
vision.
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Supra-threshold A term to describe a stim-
ulus large enough to produce a re-
sponse. This can be an action poten-
tial in a sensory cell or even just a per-
ceivable difference of a stimulus (see
Just Noticeable Difference).

SVM Support Vector Machine. 52, 164,
SVO Sparse Voxel Octree. 63, 98,
SVR Support Vector Regression. 166,

TAA Temporal Anti-Aliasing. 78, 127, 137,
157,

TBAA Triangle-based Anti-Aliasing.
TC Temporal Coherence. 59, 73, 132, 159,

192,
TMLAA Topological Reconstruction Anti-

Aliasing. 89,
TMO Tone Mapping Operator. 28, 42,
Tone Mapping Operator (TMO) A com-

putational method to compute Tone

Mapping. This includes methods for
compressing the dynamic range of a
high-dynamic-range image in order
to display it on a low-dynamic-range
device such as a typical computer
screen.

VDB View-Direction Based.
VDM Sarnoff Visual Discrimination Metric.

45, 49, 64,
VDP Daly’s Visible Differences Predictor. 45,

48, 74,
VEP Visual Equivalence Predictor. 50, 66,
Vergence Describes the process that is re-

quired to simultaneously rotate both
eyes into opposite directions to fixate
an object.

Vergence-accommodation conflict De-
scribes the discomforting situa-
tion when stereo images are gen-
erated that convey depth informa-
tion, which needs a conflicting ver-

gence and accommodation to the one
given by the actual screen’s focal dis-
tance [Shi+11] .

Vestibular System The mechanism in the
ear to monitor the body’s accelera-

tion, equilibrium and its relationship
with the earth’s gravitational field.

vestibular-ocular reflex Keeps the orienta-
tion of the eyes aligned with the cur-
rent OOI, based on acceleration in-
formation from the vestibular system,
amount of head rotation and retinal
velocity.

VIF Visual Information Fidelity. 48,
Visual Acuity The ability to resolve small

detail under ideal illumination condi-
tions, i.e., the ability to detect and
distinguish two points close to each
other.

Visual Cortex The main part of the brain
concerned with the sense of sight and
the processing of visual information .

Visual Cues Signals or prompts derived
from visual input. Such cues are
preattentive by providing informa-
tion from the environment subcon-
sciously. Moreover, they might bring
knowledge from previous experiences
to mind.

Visual Difference Predictor (VDP)

Daly’s Visible Differences Predictor
[Dal93] introduces a psycho-physical
computational model of the HVS to
compare two input images and derive
a measure of perceivable differences.
VDP processes images in the fre-
quency domain. In contrast to VDM,
it is particularly sensitive to differ-
ences near the visibility threshold.

Visual Discrimination Metric (VDM)

The Sarnoff Visual Discrimination
Metric [Lub95] introduces a psycho-
physical computational model of the
HVS to compare two input images.
VDM derives a single JND value
and a difference map. VDM pro-
cesses images by convolution and
down-sampling. In contrast to VDP,
it is designed to generate a re-
sponse above the supra-threshold at
the expense of precision loss, when
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near threshold differences need to be
judged.

Visual Equivalence Predictor (VEP)

The VEP metric by Ramanarayanan
et al. [Ram+07] introduces a psycho-
physical computational model with
the goal of measuring the visual
equivalency of input images. Visual
equivalency means the same impres-
sion of scene appearance is conveyed
even though there can be measurable
perceptual differences.

Visual Field see Field of View.

Visual Masking The reduction or elimi-
nation of a stimulus (target) by the
presentation of a second stimulus
(mask). The detection threshold of
the target can be affected by the
interfering masking stimulus when
closely coupled in space and time.

VMAF Video Multi-Method Assessment Fu-
sion. 48, 111,

VNSR Visual Signal-to-Noise Ratio. 50,
VR Virtual Reality. 4, 31, 77, 118, 129, 192,
VRS Variable Rate Shading. 76,
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