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Abstract: Peripherally functionalized low-valent main group species allow for the
introduction/interconversion of functional groups without increasing the formal oxidation
state of the main group center. Herein, we report a straightforward method for the incorporation of a
α-chlorosilyl moiety adjacent to the NHC-coordinated germanium(II) center.
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1. Introduction

In recent years, the chemistry of the heavier analogues of carbenes (tetrylenes) has been expanded
beyond mere synthetic curiosity [1–3] towards application in synthesis. Heavier carbene analogues
are applied as a donor ligands in low-valent main group species [4,5] as well as in transition metal
complexes [6,7]. An increasing number of examples show competitive catalytic activity in different
organic transformations [8]. As the complexity of the tetrylenes increases with more intricate ligand
architectures [9], functionalization protocols in the presence of uncompromised low-valent Group
14 centers conveniently allow for a comparatively straightforward diversification in the final stages
of ligand synthesis. While the interconversion of functional groups is just beginning to emerge in
the case of heavier multiple bonds [10], numerous examples have been reported for the heavier
tetrylenes [11–15]. Recently, Scheschkewitz et al. have taken a similar approach with the synthesis of
the multiply functional NHC-coordinated silagermenylidenes, I and II (Scheme 1) [16,17], which serve
as precursors for cyclic NHC-coordinated germylenes of type III, IV, and V under consumption of
the Si=Ge bond, but retention of the low-valent germanium center (Scheme 1) [16,18,19]. The leaving
group characteristics of the peripheral chloro functionality of II can be exploited for the incorporation
of different organic substituents by treatment with organolithium reagents in order to fine-tune
the steric requirements of the ligand scaffold of cyclic germylenes of type IV [20,21]. Directly
chloro-functionalized silylenes and germylenes are readily converted to a variety of novel low-valent
group 14 compounds by functional group interconversion at the low-valent tetrel center [22].
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Scheme 1. Chemical structures of α-chlorosilyl-functionalized silagermenyledene I, and 
α-chloro-functionalized germylenes II–IV (R = Tip = 2,4,6-iPr3C6H2, NHCiPr2Me2 = 1,3-diisopropyl-4,5- 
dimethylimidazol-2-ylidene, NHCMe4 = 1,3,4,5-tetramethylimidazol-2-ylidene, Xyl = 2,6-Me2C6H3, 
and Mes = 2,6-Me2C6H3). 

An additional leaving group adjacent to a chloro-functionalized heavier carbene center would 
in principle provide a precursor for the synthesis of further examples of heavier vinylidene such as I 
and II. The synthesis of an NHC-coordinated (chlorogermyl)chlorogermylene, IV, from 
NHC-coordinated diaryl germylene and NHC- or 1,4-dioxane coordinated dichlorogermylene has 
been reported by the groups of Baines and Tobitah [23,24]. Herein, we now report the synthesis of 
NHC-stabilized (chlorosilyl)chlorogermylene, 1. 

2. Results and Discussions 

We anticipated that West's N-heterocyclic silylene, 2 [25] would insert into the Ge–Cl bond of 
the NHC- germanium(II)dichloride adduct 3 [26] as it is well known for the oxidative addition of 
different types of bonds e.g., C–Cl [27] and Ge–N [28]. Indeed, the reaction of 2 and 3 in a 1:1 ratio in 
toluene at room temperature afforded the NHC-stabilized (chlorosilyl)chlorogermylene 1 which was 
isolated as a crystalline compound (Scheme 2). We did not obtain any indication for the formation of 
donor–acceptor adducts between 2 and 3 or rearrangement products as often described for reactions 
of silylenes and germylenes [29,30]. 

 
Scheme 2. Synthesis of 1. 

Compound 1 was characterized in solution state by NMR spectroscopy as well as in solid state 
by single crystal X-ray molecular structure determination. The insertion of the silylene into the 
Ge–Cl bond turns the germanium atom into a center of chirality. As a result the two diastereotopic 
C–H protons of C2N2Si-moiety give rise to two doublets at δ = 5.87 and 6.03 ppm (1J(H, H) = 3.92 Hz) in 
the 1H NMR. Similarly, the two tBu groups show 1H NMR resonances at δ = 1.29 and 1.65 ppm. 
Hindered rotation can be excluded as the explanation for the doubling of these resonances. Despite 
the increased congestion about the germanium center, the NHC retains the local rotational 
C2-symmetry in solution: the 1H NMR shows only a single septet for the two CH moieties of the 
isopropyl groups. In contrast, there are again two signals for the adjacent diastereotopic methyl 
groups of the N-isopropyl moiety. In 13C{1H} NMR, the carbenic carbon shows a resonance at δ = 
171.01 ppm, which is similar to the chemical shifts observed for other NHC-coordinated Ge(II) 

Scheme 1. Chemical structures of α-chlorosilyl-functionalized silagermenyledene I, and
α-chloro-functionalized germylenes II–IV (R = Tip = 2,4,6-iPr3C6H2, NHCiPr2Me2 = 1,3-diisopropyl-4,5-
dimethylimidazol-2-ylidene, NHCMe4 = 1,3,4,5-tetramethylimidazol-2-ylidene, Xyl = 2,6-Me2C6H3,
and Mes = 2,6-Me2C6H3).

An additional leaving group adjacent to a chloro-functionalized heavier carbene center would in
principle provide a precursor for the synthesis of further examples of heavier vinylidene such as I and
II. The synthesis of an NHC-coordinated (chlorogermyl)chlorogermylene, IV, from NHC-coordinated
diaryl germylene and NHC- or 1,4-dioxane coordinated dichlorogermylene has been reported by
the groups of Baines and Tobitah [23,24]. Herein, we now report the synthesis of NHC-stabilized
(chlorosilyl)chlorogermylene, 1.

2. Results and Discussions

We anticipated that West’s N-heterocyclic silylene, 2 [25] would insert into the Ge–Cl bond of
the NHC-germanium(II)dichloride adduct 3 [26] as it is well known for the oxidative addition of
different types of bonds e.g., C–Cl [27] and Ge–N [28]. Indeed, the reaction of 2 and 3 in a 1:1 ratio in
toluene at room temperature afforded the NHC-stabilized (chlorosilyl)chlorogermylene 1 which was
isolated as a crystalline compound (Scheme 2). We did not obtain any indication for the formation of
donor–acceptor adducts between 2 and 3 or rearrangement products as often described for reactions
of silylenes and germylenes [29,30].
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Scheme 2. Synthesis of 1.

Compound 1 was characterized in solution state by NMR spectroscopy as well as in solid state by
single crystal X-ray molecular structure determination. The insertion of the silylene into the Ge–Cl
bond turns the germanium atom into a center of chirality. As a result the two diastereotopic C–H
protons of C2N2Si-moiety give rise to two doublets at δ = 5.87 and 6.03 ppm (1J(H, H) = 3.92 Hz) in the
1H NMR. Similarly, the two tBu groups show 1H NMR resonances at δ = 1.29 and 1.65 ppm. Hindered
rotation can be excluded as the explanation for the doubling of these resonances. Despite the increased
congestion about the germanium center, the NHC retains the local rotational C2-symmetry in solution:
the 1H NMR shows only a single septet for the two CH moieties of the isopropyl groups. In contrast,
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there are again two signals for the adjacent diastereotopic methyl groups of the N-isopropyl moiety.
In 13C{1H} NMR, the carbenic carbon shows a resonance at δ = 171.01 ppm, which is similar to the
chemical shifts observed for other NHC-coordinated Ge(II) compounds [18,19]. In 29Si{1H} NMR, the
singlet at δ = −3.39 ppm is strongly highfield shifted compared with that of the free N-heterocyclic
silylene (δ = +78.3 ppm) [25]. Notably, even repeated crystallization of 1 did not yield NMR spectra
uncontaminated by residual 2, which led us to speculate about the reversibility of the oxidative Ge–Cl
addition to the silylene. NMR at variable temperatures, however, did not show any temperature
dependence of the sample composition.

Nonetheless, single crystals of 1 suitable for a X-ray diffraction study were obtained from saturated
toluene solution at −20 ◦C after one day. Compound 1 crystallizes in the monoclinic P21/c space group.
However in the obtained single crystal X-ray diffraction data we did not see any residual electron
density for the cocrystalization of 2 along with 1. Analysis of molecular structure determination
revels the presence of α-chlorosilyl moiety adjacent to the NHC-coordinated germanium(II) center;
which was anticipated from the solution state structure (Figure 1). The Si–Ge bond length is 2.4969(7)
Å which is close to reported Si(IV)–Ge(II) bond length [19]. The distance between carbenic carbon
and germanium(II) center is 2.081(2) Å, which is slightly shorter than that of the corresponding
NHC-coordinated germanium(II)dichloride (2.106(3) Å) [26].
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3. Materials and Methods 

3.1. General Information 

All manipulation were carried out under an argon atmosphere using either a Schlenk line 
technique or inside a GloveBox. All solvents were dried by Innovative Technology solvent 
purification system. Compounds 2 [25] and 3 [26] were prepared according to literature procedures. 
Benzene-d6 was dried and distilled over potassium under argon. NMR spectra were recorded on a 
Bruker Avance III 300 MHz NanoBay NMR spectrometer (Bruker, Switzerland). 1H and 13C{1H} 
NMR spectra were referenced to the peaks of residual protons of the deuterated solvent (1H) or the 
deuterated solvent itself (13C{1H}). 29Si{1H} NMR spectra were referenced to external SiMe4. 

3.2. Experimental Details 

Synthesis of compound 1: 25-mL dry and degassed toluene were added to a Schlenk flask 
containing 2 (0.242 g, 1.23 mmol) and 3 (0.4 g, 1.23 mmol) at −78 °C. The mixture is brought to room 
temperature within one hour and stirred continuously for another two hours. Removal of the 
solvent in vacuum and washing of the solid residue with n-hexane was followed by extraction with 
20 mL warm toluene. The resulting yellow solution was concentrated to about 15 mL and kept at −20 
°C for one day to get bright yellow crystals of the desired compound, 1, suitable for single crystal 
X-ray diffraction study. Despite apparently uniform crystals, a pure sample of compound 1 without 
free silylene 2 could not be obtained. Yield: 0.360 g (56% which include 13% of compound 2). 1H 
NMR (300 MHz, C6D6, 298 K): δ = 1.13 (d, 1J(H, H) = 7.02 Hz, 6H, CH(CH3)2), 1.24 (d, 1J(H, H) = 6.9 Hz, 6H, 
CH(CH3)2), 1.29 (s, 9H, N(CH3)3), 1.51 (s, 6H, CCH3), 1.63 (s, 9H, N(CH3)3), 5.74 (sept, 1J(H, H) = 7.02 Hz, 

Figure 1. Molecular structure of 1 at 30% probability level, all H-atoms were deleted for clarity. Selected
bond lengths (Å) and bond angles (deg.): Ge1–C1 2.081(2), Ge1–Cl1 2.2891(8), Ge1–Si1 2.4969(7);
C1–Ge1–Cl1 92.58(7), C1–Ge1–Si1 102.56(7), Cl–Ge1–Si1 101.83(3).

3. Materials and Methods

3.1. General Information

All manipulation were carried out under an argon atmosphere using either a Schlenk line
technique or inside a GloveBox. All solvents were dried by Innovative Technology solvent purification
system. Compounds 2 [25] and 3 [26] were prepared according to literature procedures. Benzene-d6
was dried and distilled over potassium under argon. NMR spectra were recorded on a Bruker Avance
III 300 MHz NanoBay NMR spectrometer (Bruker, Switzerland). 1H and 13C{1H} NMR spectra were
referenced to the peaks of residual protons of the deuterated solvent (1H) or the deuterated solvent
itself (13C{1H}). 29Si{1H} NMR spectra were referenced to external SiMe4.

3.2. Experimental Details

Synthesis of compound 1: 25-mL dry and degassed toluene were added to a Schlenk flask
containing 2 (0.242 g, 1.23 mmol) and 3 (0.4 g, 1.23 mmol) at −78 ◦C. The mixture is brought to room
temperature within one hour and stirred continuously for another two hours. Removal of the solvent in
vacuum and washing of the solid residue with n-hexane was followed by extraction with 20 mL warm
toluene. The resulting yellow solution was concentrated to about 15 mL and kept at −20 ◦C for one day
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to get bright yellow crystals of the desired compound, 1, suitable for single crystal X-ray diffraction
study. Despite apparently uniform crystals, a pure sample of compound 1 without free silylene 2 could
not be obtained. Yield: 0.360 g (56% which include 13% of compound 2). 1H NMR (300 MHz, C6D6,
298 K): δ = 1.13 (d, 1J(H, H) = 7.02 Hz, 6H, CH(CH3)2), 1.24 (d, 1J(H, H) = 6.9 Hz, 6H, CH(CH3)2), 1.29
(s, 9H, N(CH3)3), 1.51 (s, 6H, CCH3), 1.63 (s, 9H, N(CH3)3), 5.74 (sept, 1J(H, H) = 7.02 Hz, 2H, CH(CH3)2),
5.87 (d, 1J(H, H) = 3.92 Hz, 1H, CHCH) 6.03 (d, 1H, 1J(H, H) = 3.92 Hz, CHCH) (1.42 and 6.76 ppm
refer to the resonances for compound 2) ppm. 13C{1H} NMR (75.4 MHz, C6D6, 298 K): δ = 10.35 (2C,
CCH3), 22.06(4C, CH(CH3)2), 31.97 (3C, C(CH3)3), 32.15 (3C, C(CH3)3), 51.97 (1C, C(CH3)3), 52.49 (1C,
C(CH3)3), 54.07 (2C, CH(CH3)2), 113.70 (1C, CHCH), 115.26 (1C, CHCH), 127.13 (2C, CCH3), 171.01
(1C, NCN). 29Si{1H} NMR (59.6 MHz, C6D6, 298 K): δ = −3.39 ppm.

3.3. X-ray Crystallographic Analysis

Single crystals of 1 were obtained from saturated toluene solution at −20 ◦C. Intensity data were
collected on a Bruker SMART APEX CCD diffractometer (Bruker, Germany with a Mo Kα radiation
(λ = 0.71073 Å) at T = 182(2) K. The structures were solved by a direct method (SHELXS [31]) and
refined by a full-matrix least square method on F2 for all reflections (SHELXL-2014 [32]). All hydrogen
atoms were placed using AFIX instructions, while all other atoms were refined anisotropically.
Crystallographic data (Supplementary Materials) were deposited at the Cambridge Crystallographic
Data Center (CCDC; under reference number: CCDC-1587144) and can be obtained free of charge via
https://www.ccdc.cam.ac.uk/structures/. X-ray crystallographic data for 1: M = 520.15, monoclinic,
P21/c, a = 11.3853(3) Å, b = 13.1071(3) Å, c = 17.5390(5) Å, β = 96.2860(10)◦, V = 2601.58(12) Å3,
Z = 4, Dcalc. = 1.328 gcm−3, m = 1.444 mm−1, 2θmax = 54.20◦, measd./unique refls. = 48784/5747
(Rint. = 0.0292), GOF = 1.075, R1 = 0.0408/0.0471 [I>2σ(I)/all data], wR2 = 0.1077/0.1112 [I>2σ(I)/all
data], largest diff. peak and hole 3.152 and −0.604 e.Å−3.

4. Conclusions

We have demonstrated a proof of principle study for the straightforward incorporation of a
α-chlorosilyl moiety adjacent to the donor-stabilized germanium(II) center. The resulting product
features a 1,2-dicholoro functionality and should therefore in principle be suitable as precursor for
the targeted synthesis of NHC-coordinated silagermenylidenes, the heavier analogues of vinylidenes.
So far, attempts to eliminate the two chloro substituents reductively were not met with success.

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/6/1/6/s1, Cif,
cif-checked, NMR spectra files.
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