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Abstract: During the last couple of decades, the rapidly advancing field of nanotechnology has
produced a wide palette of nanomaterials, most of which are considered as “synthetic” and, among
the wider public, are often met with a certain suspicion. Despite the technological sophistication
behind many of these materials, “nano” does not always equate with “artificial”. Indeed, nature itself
is an excellent nanotechnologist. It provides us with a range of fine particles, from inorganic ash,
soot, sulfur and mineral particles found in the air or in wells, to sulfur and selenium nanoparticles
produced by many bacteria and yeasts. These nanomaterials are entirely natural, and, not surprisingly,
there is a growing interest in the development of natural nanoproducts, for instance in the emerging
fields of phyto- and phyco-nanotechnology. This review will highlight some of the most recent—and
sometimes unexpected—advances in this exciting and diverse field of research and development.
Naturally occurring nanomaterials, artificially produced nanomaterials of natural products as well as
naturally occurring or produced nanomaterials of natural products all show their own, particular
chemical and physical properties, biological activities and promise for applications, especially in the
fields of medicine, nutrition, cosmetics and agriculture. In the future, such natural nanoparticles will
not only stimulate research and add a greener outlook to a traditionally high-tech field, they will also
provide solutions—pardon—suspensions for a range of problems. Here, we may anticipate specific
biogenic factories, valuable new materials based on waste, the effective removal of contaminants
as part of nano-bioremediation, and the conversion of poorly soluble substances and materials to
biologically available forms for practical uses.
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1. Introduction

Today, nanotechnology and its diverse products are omnipresent and form an integral part of
our products and lifestyle, from nanosilver in deodorants and nanoscopic particles with improved
release properties in medicines all the way to “nanoimpregnations” of shower cabins, bath tubs and
washing basins [1–3]. Whilst innovative materials containing particles with diameters in the one to one
hundred nanometer range have emerged in many areas of our daily life, there has also been a feeling
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that such materials are “not quite natural”. Not surprisingly, therefore, the field of nano-toxicology
more recently has attracted a particular interest—and there has also been mounting concern regarding
a possible toxic impact on humans and contamination of the environment with nanomaterials [4].

This concern is certainly not entirely unjustified, as some dramatic examples, for instance asbestos
(average diameter ranging from three to five micrometers) and other, air-bound fine particle matter,
such as the PM2.5 fraction in exhaust gases, fumes and smoke illustrate [5–7]. Such critique, however,
often ignores the fact that Nature itself is a skilled nanotechnologist, with numerous examples of
common nanomaterials literally emanating from natural sources, such as volcanoes and mineral
springs but also, in particular, from living organisms. Figure 1 provides a colorful reminder of
such entirely natural sources of nanoscopic and microscopic particles. Indeed, life revolves around
cells which themselves are microscopic in size (we do not account here for some rare and/or
controversial nanobacteria) and metabolize molecules which are picoscopic, but also materials in
between, which obviously are nanoscopic in their dimensions [8–10]. At the same time, nature also
provides the inspiration and eventually also the ingredients—and even some of the methods—for
natural nanomaterials.
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bacteria. Photos provided by Marc Schäfer and Muhmmad Jawad Nasim. 
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between nanomaterials which are, strictly speaking, natural, i.e., already present or formed in the 
environment without human intervention, and materials which are “nano” and also “bio”. In the 
second case, the predicate “natural” equates with “biological”, as in “natural products”, which refers 
primarily to biological substances or materials [11–13]. Figure 2 illustrates this divide and provides a 
few selected examples of particularly interesting natural nanoparticles, nanoparticles of natural 
products and, eventually, naturally produced nanoparticles of natural products which we will 
discuss in more detail in the following sections. From the outset, we should emphasize that the field 
of natural nanotechnology is wide and diverse. Since we are unable to grasp it in its entirety, we will 

Figure 1. Nature itself is a skilled nanotechnologist. Microscopic and nanoscopic particles are formed,
for instance, by combustion and are found: (a) near open fire; (b) as result of volcanic activity; (c) in
form of precipitates; and (d) as bioreductively formed deposits of elements in certain bacteria. Photos
provided by Marc Schäfer and Muhmmad Jawad Nasim.

Here, we will briefly consider the emerging field of natural nanoparticles. Before we start, we
must, however, clarify what exactly is meant here. As any cunning linguist may have noted, the
predicate “natural” may lead us into several directions. Indeed, there is a need for a distinction
between nanomaterials which are, strictly speaking, natural, i.e., already present or formed in the
environment without human intervention, and materials which are “nano” and also “bio”. In the
second case, the predicate “natural” equates with “biological”, as in “natural products”, which refers
primarily to biological substances or materials [11–13]. Figure 2 illustrates this divide and provides
a few selected examples of particularly interesting natural nanoparticles, nanoparticles of natural
products and, eventually, naturally produced nanoparticles of natural products which we will discuss
in more detail in the following sections. From the outset, we should emphasize that the field of natural
nanotechnology is wide and diverse. Since we are unable to grasp it in its entirety, we will focus
on a few highlights which we consider especially instructive, for instance in the fields of natural
product-based nutrition, cosmetics, medicine or eco-friendly, “green” agriculture.
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deposit in the upper respiratory tract, particles in the nanometer range penetrate deeply and deposit 
in tracheobronchial and alveolar regions where they can cause severe respiratory disorders [14]. 
“Carbon Nanotube” soot collected from the combustion of Texas Piǹon Pine, for instance, contains 
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to turn naturally occurring, inorganic materials into nanoparticles (Table 1).

Figure 2. Examples of natural and biological materials which contain nanoscopic particles. (a) Naturally
occurring nanoparticles of inorganic, elemental sulfur, for instance, are found at mineral wells rich
in hydrogen sulfide, such as the Elisenbrunnen in Aachen. (b) In contrast, mechanically produced
nanomaterials of natural products have been evaluated for medical and agricultural applications.
(c) Eventually, there are also naturally produced nanomaterials of natural, biological products, such
as nanoscopic particles of elemental selenium coated with microbial proteins which are formed by
bioreductive or oxidative metabolism in bacteria and fungi.

2. Natural but Not Biological: The Free Flow of Inorganic Nanocomposites

Whilst hunting for nanoscopic materials in the environment, one soon realizes that a fair number
of natural nanoparticles can be found outside the realm of life, for instance nanoscopic ash or soot
particles as a result of volcanic activity, fires or other types of combustion. These particles are natural,
yet usually not biological. Volcanic ash clouds contain a wide variety of polydisperse micro- and
nanoparticles. These particles range from 100 to 200 nm in size and are chemically primarily composed
of silicate and iron compounds. They are readily suspended in air and once inhaled may lead to
serious respiratory disorders. Indeed, whilst particles of sizes in the lower micrometer range deposit
in the upper respiratory tract, particles in the nanometer range penetrate deeply and deposit in
tracheobronchial and alveolar regions where they can cause severe respiratory disorders [14]. “Carbon
Nanotube” soot collected from the combustion of Texas Piǹon Pine, for instance, contains multi-walled
carbon nanotubes of 15 to 70 nm in size. These carbon-based objects readily become airborne and pose
severe health hazards to animals and the human population [15].

Fire, however, is only one chemical process in the inorganic sphere which eventually may result
in nanoscopic particles. Precipitation, oxidation and, to a lesser extent, reduction are also well suited
to turn naturally occurring, inorganic materials into nanoparticles (Table 1).
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Table 1. Selected examples of naturally occurring inorganic micro- and nanoparticles frequently found in our environment and associated with certain possible
applications or biological implications. Please note that the practical applications mentioned usually rely on refined materials of particularly good particle quality and
purity and not, or not yet, on the crude naturally occurring materials of similar constitution and composition.

Name Chemical Formulae and Symbols Natural Occurrence Practical Implications (of Similar, Refined Materials)

Calcium Carbonate CaCO3
natural surface water [16]

industry, biotechnology, cancer therapy, drug delivery, plant
nutrition and promotion of plant defense against pests [17–20]

Alumina Al2O3 desalination and defluorination of water [21–23]

Silicate SiO4
4− drug carrier and catalytic applications [24,25]

Silica SiO2 volcanic eruptions [26] food additive, anti-caking agent, ultraviolet antireflection
coating, cellular imaging and biomedical applications [27–30]

Bassanite (Calcium Sulfate) CaSO4 sea water [31] bone regeneration [32]

Iron Oxide Fe3O4 iceberg-hosted sediments [33] medical diagnostics, controlled drug release, hyperthermia,
biosensors, supercapacitor applications [34–37]

Manganese oxide MnO2 umber [38] imaging, remediation of contaminated soil and ground water,
catalysis [39–41]

Sulfur S mineral wells [42] medical applications, (antimicrobial, cytotoxic), fertilizers, fiber
industry [43]

Soot (in the form of carbon) C atmospheric particulate matter
composite reinforcements, nano-reactors, chemical sensors, gas
adsorbents, catalyst supports, templates, actuators, probes,
nano-pipes [44,45]

Silver Ag aquatic environment [46,47]
antimicrobial properties, nano-functionalized plastics, paints,
food containers, domestic appliances, textiles, medical products
and cosmetics [46,48]

Gold Au ore deposits [49] biosensorics, immunoassays, medical applications and laser
phototherapy of tumors [50]

Platinum Pt automobile exhausts [51] biomedical applications, nano-biomedicine, catalytic and
thermal applications [52–54]
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Amazingly, our drinking water, once considered under the microscope, is full of polydisperse
nanoscopic as well as microscopic solid materials, of irregular shape and chemically based primarily
on CaCO3 and CaSO4, often laced with other elements, such as iron oxides. Figure 3 provides an
example of such deposits found near a mineral well in Aachen, Germany, and a microscopic view of
the particles found in this water. Admittedly, such particles are of a rather poor quality and cannot be
compared to the perfectly shaped, well-defined and homogeneous nanomaterials achieved by modern
nanotechnological processes. Nonetheless, chemical, as well as physical processes, such as weathering,
the slow precipitation of iron oxide particles but also dissolution and precipitation of carbonates under
the influence of CO2 and the intermediate formation of hydrocarbonate (HCO3

−), are able to generate
such small-sized particle matter [55]. Abrasion, for instance, results in fine particle matter by scraping,
cutting or grinding down larger lumps. There are numerous examples of natural nanomaterials formed
this way, such as the CaSO4 and silicate particles in spring water [16]. Indeed, such inorganic particles
recently have inspired colleagues to synthesize a wide range of similar particles based on naturally
occurring materials, such as—refined—nanoparticles of Fe3O4 and MnO2 [56,57]. Concurrently, Nature,
in cahoots with human activities, often unwillingly generates such “nanosized” particles from bulk
materials, as the hot issue of microplastic in our oceans, fish and food highlights [58,59]. Nanoparticles
generated by natural nanosizing are therefore not uncommon in our environment, and additional
examples worth considering in earnest include the fine platinum particles released from millions of
cars and their catalysts, as well as abrasion from tires, which are hardly “natural”, yet slowly, but
continuously, affect our environment and eventually also our health [60,61].
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Figure 3. (a) The mineral wells in and near the town of Aachen in Germany are rich in sulfur, primarily
in form of hydrogen sulfide (H2S). Solid deposits of inorganic matter can therefore be found, for instance,
at the Marktbrunnen in Burtscheid (image kindly provided by Roman Leontiev). (b) A microscopic
investigation at 10,000-fold magnification reveals numerous microscopic and sub-microscopic particles
and irregular agglomerates in this kind of water which (c) according to Energy Dispersion X-ray
spectroscopy (EDX) consist of primarily of calcium salts and elemental sulfur [42].
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Besides such “simple” physical and chemical events, there are similar, albeit more controlled
particle generating processes, often based on spontaneous oxidation. One frequently observed example
is the oxidation of hydrogen sulfide (H2S) gas or hydrogen sulfide ions (HS−) dissolved in waters
of volcanic origin, such as volcanic lakes or mineral springs and wells which are common in many
regions of the planet [62,63]. Here, the sulfide present in the water is oxidized by oxygen in the air
to small particles of or containing elemental sulfur which can be found in the water itself, as in the
Elisenbrunnen or Marktbrunnen in Aachen and, eventually, as part of larger sulfur deposits at or
near the sulfide source. As before, Nature’s inorganic chemistry is not the best nanotechnologist,
and those particles are of a rather poor quality, polydisperse and also not entirely pure either. Still,
they are already quite well defined—at least regarding chemical composition—and represent an
interesting nanomaterial which is formed entirely naturally and can be obtained in considerable
amounts and concentrations. From the perspective of resources, the flow of sulfur nanoparticles from
volcanic sources is both, sustainable and virtually free of any costs. In the future, such natural sulfur
nanoparticles from mineral wells may well be “harvested” or employed directly, for instance as a
substitute for colloidal sulfur in agriculture, or may require some “maturation” in form of spontaneous
or controlled oxidation of the hydrogen sulfide contained within the water. Nonetheless, simple
medical applications, for instance on skin, also appear feasible. Indeed, many of the mineral wells
particularly rich in sulfide, such as Bad Nenndorf or Bad Wiessee in Germany, offer bathing—rather
than drinking—as part of therapy [64].

From a more scientific perspective, there are also still issues in the water which may need to be
resolved. The active ingredient(s) in these wells, for instance, may well be simple sulfide (HS−), as
traditionally assumed, but also inorganic polysulfides (HSx

−) or indeed elemental sulfur particles
(S8) [42]. Curiously, as these three classes of species exhibit their own, characteristic physical and
chemical properties and reactivities, for instance in the context of the “cellular thiolstat” [65]. These
Reactive Sulfur Species (RSS) are also easily converted into each other in the presence of oxidants
(such as air), reductants (such as glutathione) or even spontaneously by mutual interactions in form
of an extensive sulfur-centered “redox scrambling” [66]. Similarly, selenite (SeO3

2−) often occurs
together with sulfur and, if reduced by H2S or HS−, is able to form a wide range of elemental sulfur,
selenium and mixed selenosulfur nanoparticles. As in the case of the sulfur particles in mineral wells,
such selenosulfur species are interesting from a more applied, biological point of view. Selenosulfur
compounds are well established and widely known, for instance, as active ingredients of certain
anti-dandruff shampoos and even feature in movies such as “Evolution” [67,68].

Most of these nanocomposites generated more or less randomly in the wild by crude chemical
processes are of an equally crude morphology and complex chemical composition. Good quality
nanoparticles of elemental sulfur, selenium and tellurium can be produced under more controlled
conditions in the laboratory employing a very similar “chemistry”. The redox comproportionation of
sulfide (HS−) and sulfite (SO3

2−), for instance, results in nanoscopic sulfur monodisperse particles
of almost uniform size and round shape, and with an average diameter of around 150 nm. Similarly,
the reduction of selenite (SeO3

2−) with the sulfur-containing amino acid L-cysteine yields spherical
selenium nanoparticles with diameters in the range of 50 nm. Reduction of tellurite (TeO3

2−) with
hydrazine (N2H4) even enables the generation of tellurium particles in the form of nanoscopic
needles [69].

Inspiration for this kind of simple redox chemistry does not stop at the chalcogens. There are
many other examples of spontaneous chemical (redox) transformations which eventually lead to
small particles, such as the reduction of silver (Ag+) or gold (Au3+) cations to elemental silver or
gold particles, respectively. In the following sections, we will therefore consider such reduction and
oxidation reactions also in the context of other natural, biological agents.



Antioxidants 2018, 7, 3 7 of 21

3. Bioreductive Formation of Nanoparticles

Whilst volcanoes and mineral springs rely on simple chemical transformations to generate
nanoparticles, living cells can recruit an entire arsenal of biotransformations to eventually produce
such composites. Indeed, the living cell is mostly dealing with “nanotechnology”, i.e., with objects of a
nanoscopic size. Just to get a feeling for dimensions: A strand of DNA is 2.5 nm in diameter, a typical
virus is around 100 nm wide and a typical bacterium is ten times bigger, i.e., in the range of 1–3 µm.
Mammalian and plant cells are comparably large, occasionally reaching 50 µm in diameter [70,71].
It is therefore not surprising that cells, and here microbial cells in particular, engage in some sort of
“nanotechnology”. Still, in the context of nanoparticles, there is one major caveat: Living cells normally
do not prefer “the solid state”, as any deposits formed intracellularly may stress and eventually kill
them in a suicide-like process. The expulsion of such particles requires a more sophisticated machinery,
effort and energy for excretion. Hence the formation of deposits inside cells is not that common—but
also not entirely unknown either. When exposed to inorganic salts (e.g., containing S2−, SeO3

2−, Ag+

and Au3+), certain bacteria such as Pseudomonas aeruginosa, Thiobacillus, Serratia, and Stenotrophomonas
species employ a reductive or oxidizing pathway of detoxification which eventually leads to the
formation of elemental particles [72–77]. Such processes are rather well established and studied in the
context of sulfur and selenium as well as silver nanoparticles, but also seem to apply to nanoparticles
of gold and even platinum [78]. The particles produced by such biogenic factories are often of a
surprisingly good quality, for instance small spherical shapes of an almost uniform size (Figure 4).
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Figure 4. Schematic illustration of the biogenic factory which is able to turn biological substances,
extracts, plants, algae and even waste biomass into amazing new products and nanomaterials. A
particular interest resides on the added value resulting from the use and “up-cycling” of by-products
and waste, such as de-oiled herbs, spent grains and coffee grounds, as these materials initially are not
only food-grade but otherwise would go to waste and hence impact negatively on the environment.
Photo taken at Hassel (Saar) and kindly provided by Elizabeth Jacob.
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Not surprisingly, such biological processes may be exploited in practice to produce such particles
of good quality and yield. This is the case, for instance, for selenium nanoparticles in dairy products
produced by bacteria such as Shewanella sp. and Lactobacillus sp. Here, microorganisms which ferment
the milk are also able to reduce selenite to elemental selenium for an additional “kick” [79,80]. Such
processes are also of interest in the context of bioremediation and decontamination of soils enriched in
certain toxic metals or semi-metals. Indeed, the removal of environmental contaminants (such as heavy
metals, organic and inorganic pollutants) from contaminated sites using nanoparticles or nanomaterials
formed by or in plants, fungi and bacteria with the assistance of nanotechnology, often referred to as
nanobioremediation (NBR), is an emerging, environmentally friendly and economical alternative to
traditional chemical methods [81,82]. Here, the three main strategies of modern bioremediation include
the use of plants, microbes and isolated enzymes, for instance, laccase or nitrate reductase [83,84].

Whilst bioremediation is clearly an emerging topic related to microbially formed natural
nanoparticles, it aims primarily at the removal of contaminants. Even so, there is also a more positive
side to this approach. Here, the nanoparticles generated by such organisms are no longer seen as
contaminants but actually as valuable nanomaterials of a more or less natural origin (Figure 4). Within
this context, several of these bioreductively formed “natural” nanoparticles have been explored recently
with sight on potential medical and agricultural applications [85–88].

It is possible, for instance, to recruit harmless microorganisms, such as Saccharomyces cerevisiae
and Staphylococcus carnosus to generate fairly homogeneous selenium nanoparticles from SeO3

2− with
average diameters of 60 nm and 80 nm, respectively [89,90]. These particles can be harvested from the
yeasts and bacteria after lysis of the cell. The authors of such studies have speculated about possible
applications as food supplements and possibly as antimicrobial agents as some of these particles
exhibit a certain antimicrobial activity [89–91]. In the field of agriculture, possible applications have
even more facets, and a possible “hat trick” of simultaneously enriching the soil with selenium for
fortified food products, of providing plants with elements for their natural defense systems and of
eradicating plant pathogens seems feasible [89].

Within this context, one needs to emphasize that such naturally generated particles are not
comparable to industrially generated materials. They are not “chemically pure”, and usually also
contain a “natural” coating of proteins whose composition is a reflection of the yeasts or bacteria they
have been produced in. Hence the biological activity of such natural particles may stem from the bulk
material of the particle itself, such as selenium, from other compounds trapped or contained within the
particle, and also from the coating, which is often rich in proteins [89,92–94]. In such cases an extensive
“intracellular diagnostics” is required to elucidate the exact target(s) and precise mode(s) of action [95].

Eventually, one may envisage an elegant process by which bacteria are grown on contaminated
soils, and by remediating those soils produce well-defined nanoparticles which may be harvested and
used in medicine, agriculture or other suitable applications. The resulting benefits of such an approach
may be substantial—and are not far-fetched either, as relevant contaminants, such as heavy metals,
often also represent the basis of particularly interesting particles.

As these strategies traditionally have focused primarily on the production of nanomaterials,
the fate of the microorganisms involved usually has been of minor importance. Still, there may be
some additional benefits, especially in the context of pathogenic fungi and bacteria. Several studies
have demonstrated that the formation of nanosized materials by and inside pathogenic bacteria is
an effective instrument to destroy those organisms. It has been noticed, for instance, that pathogenic
strains of Staphyllococcus aureus, such as HEMSA and HEMSA 5M, reduce SeO3

2− to elemental selenium
when confronted with exceptionally high concentrations of this anion (around 2 mM) in an apparent
attempt to deal with this exposure [96]. Eventually, this protective strategy fails and the deposits of
selenium formed inside the bacteria kill these cells. This kind of “suicidal natural nanotechnology”
is found among many bacteria and fungi, including pathogenic ones [89]. It partially explains in
part the antimicrobial action often associated with SeO3

2− and SeO4
2− and other Reactive Selenium

Species (RSeS), as well as with TeO3
2− and TeO4

2− [89]. Such activities may be specific for certain
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organisms, endowing these agents and associated processes with certain “sensor/effector” properties.
In the future, this kind of natural nanotechnology therefore may provide an interesting avenue to
compromise, weaken, damage or perhaps even kill such pathogenic organisms [89].

4. Redox Chemistry with Natural Products

Just as many bacteria and fungi are able to produce nanoparticles of fairly good quality, this
approach requires a certain effort in form of culturing and harvesting. It frequently also results
in contamination with microbial biomolecules. Not surprisingly, alternative strategies have been
developed which employ specific, isolated cellular components instead of whole cells to achieve the
kind of—mostly bioreductive—chemistry which is usually required for the biological production
of nanoparticles. As mentioned above, enzymes, such as laccase and nitrate reductase, are already
employed in NBR, and similar avenues, based on isolated enzymes and simple natural reductants (or
oxidants) have recently been explored as a means to generate nanoparticles [97–100]. Ascorbic acid,
L-cysteine, reduced glutathione (GSH), flavonoids and a couple of other natural reducing agents are
rather abundant in Nature and easy to obtain. Not surprisingly, these agents have been investigated
already to produce nanoparticles of sulfur, selenium and silver, to name just a few [101–105]. Other
redox active secondary metabolites, such as terpeniods (e.g., eugenol), flavonoids (e.g., luteolin and
quercetin), sugars (e.g., glucose and sucrose) and certain amino acids (e.g., aspartate) have also
been employed successfully to generate metal nanoparticles [101]. Besides simple plant metabolites,
peptides have been considered, for example oligopeptides containing tryptophan residues. These
peptides reduce metal ions to peptide-functionalized silver and gold nanoparticles [106]. Larger
molecules, including redox active proteins, can also—chemically—produce nanoparticles, for instance
particles of elemental platinum [107]. There are also reports that proteins from natural sources, such
as whole cow milk, reduce metal cations, and generate, for instance, good quality nanoparticles of
silver [108].

These few selected examples demarcate a particularly promising field of natural, biological
nanotechnology, whereby isolated natural compounds, mixtures or even entire articles, such as whole
milk, are used to produce nanomaterials. In practice, Nature provides a plethora of such reducing
agents in form of compounds, peptides, proteins and enzymes. Indeed, certain microorganisms, plants
and plant extracts are rich in antioxidants, with millimolar concentrations of ascorbic acid and thiols
present therein [109–112]. As any lover of marmite will know, such extracts can be acquired rather
easily, often as left-overs or by-products, such as yeast extracts from breweries. From an ecological
and economical perspective, extracts are often superior to whole organisms and plants but also to
isolated and extensively purified substances. Not surprisingly, therefore, such extracts are not only
interesting from the prospect of being natural and fit for human consumption, but also since they are
widely available and cheap [113,114]. Within this context, one rather noteworthy study has employed
aqueous extracts of the fungus Amylomyces rouxii (strain KSU-09 isolated from the roots of Phoenix
dactylifera) to generate silver nanoparticles [115].

In the context of plants, in particular, extracts are common and readily available. Not surprisingly,
aqueous extracts of Nelumbo nucifera (root), Embelia ribes (seed), Rosmarinus officinalis, Ocimum basilicum,
Petroselinum crispum (leaf and root), Citrus limon (peel), Vitis vinifera (peel), Cucumis sativus (peel),
Mimusops elengi Linn. (leaf), Acalypha indica (leaf), Zingiber officinalis and Capsicum frutescens, among
others, are frequently used to produce nanoparticles of Ag, Au, Fe3O4 and ZnO [116–124]. Indeed, this
emerging field of “phyto-nanotechnology” provides numerous advantages (Figure 5). The materials
employed, such as extracts of herbs, are often available as cheap by-products, yet still rich in active
ingredients, and therefore of value for further processing. One should also remember that some
of these plant products are “food grade”, and hence entail possible applications in nutrition and
cosmetics [125]. Together with other “readily available” biomass, such as microalgae, such materials
are well suited for the controlled synthesis of good quality nanoparticles [126]. Indeed, the emerging
field of “phyco-nanotechnology” relies explicitly on algae for bio-nanomanufacture as these organisms
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are not only highly interesting from a scientific point of view, but also readily available, easy to culture
and environmentally friendly to use [127].Antioxidants 2018, 7, 3 10 of 21 
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Figure 5. The emerging field of phyto-nanotechnology employs isolated biological components and
substances to form, modify or coat nanoparticles. These particles often exhibit interesting properties,
such as pronounced biological activity, and may therefore be employed in medicine or agriculture.
Phyto-nanotechnology also offers new and innovative uses for plant materials and biomass, which
otherwise may have been wasted. Here, the field of phyco-nanotechnology, which is centered around
algae, for many biological, manufacturing, ecological and economical reasons today represents a
particularly interesting area of research and development.

Besides these more obvious applications of extracts and by-products in phyto-nanotechnology,
one should also briefly mention two additional applications in this field. One is the use of such
“waste” biomass as feedstock for bacteria and fungi able to generate nanoparticles in vivo [101,128]. In
this case, the biomass is not used directly as reducing material, as above, but rather indirectly—and
probably more extensively—to promote the growth of suitable bacteria able to perform this kind of
bioreduction. The second application concerns the coating of nanoparticles. As mentioned above,
nanomaterials produced by bacteria are often coated with proteins, and this coating may endow such
particles with improved stability, further features and especially also additional biological activities.
It is therefore not surprising that natural substances, such as extracts of Darjeeling tea, have been
investigated as coatings for silver nanoparticles to provide stability against agglomeration and also to
reduce toxicity [129].

In general, these materials—literally—provide a fertile ground for future research and
development, especially in the context of turning biomass waste into (nanomaterial) value (Figure 5).

5. Milling Vanilla

Thus far, natural products have been employed primarily to generate, cover or coat nanoparticles.
This raises the question if such biological materials themselves may not be converted into nanoparticles.
Similar to naturally occurring abrasion mentioned earlier, methods such as grinding, milling and (high
pressure) homogenization provide a wide and colorful arsenal of methods able to “mill down” almost
any material, including chemical elements in their solid state, sparingly soluble food supplements and
medications, and, actually, also plant parts and even entire trees [130]. The resulting particles of such
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natural products are of a unique nature, as they are still natural products, yet have been transformed
into an unusual, unnatural size and shape.

It is therefore hardly surprising that many natural products have been nanosized (or “nanonized”)
during the last couple of years. Antioxidants such as rutin, for instance, have been turned into
so-called “nanocrystals” using an eloquent technique which involves wet bead milling (WBM) and
high-pressure homogenization (HPH) [131,132]. Here, nanotechnology can be used to produce
nanoparticles with a dramatically improved solubility, excellent release kinetics and hence a good
bioavailability and biological activity. This approach is particularly attractive in the field of—often
sparingly soluble—antioxidants and plant products rich in such antioxidants, i.e., substances and
materials which originally have poor release kinetics on the lipid/aqueous surface of the skin but
thanks to the new technology can nowadays be used easily, for instance in cosmetics.

The basic physical principles behind this approach of nanosizing natural products are illustrated
in Figure 6. Indeed, the principle of nanosizing coarse materials to improve their biological activity
is very simple and is mainly based on the Noyes–Whitney equation, one of the major equations in
biopharmacy (Equation (1)).

dc
dt

= D · A · (cs − c0)

h
(1)

where dc/dt is the dissolution rate, D the diffusion coefficient, A the total surface area of the particles,
cs the saturation solubility of the active ingredient, c0 the concentration of dissolved active ingredient
in the solvent and h the diffusional distance.
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When nanosizing coarse material the rate of dissolution dc/dt increases, because the total surface
area of the particles involved increases (Figure 6a). In this case, the saturation solubility increases due to
a higher dissolution pressure, which is explained by a higher curvature of the particles (Kelvin equation,
Figure 6b) and the diffusional distance is also decreased (Prantl equation, Figure 6c). Eventually,
nanosizing leads to a significant increase in the overall velocity of dissolution, which is especially
interesting if active ingredients dissolve slowly or are even poorly soluble in water. Furthermore,
nanosizing improves the bioactivity of poorly soluble active ingredients. As a result of the increase in
solubility the concentration gradient, when compared to larger sized materials, is increased [133]. If
the active ingredient is taken up by the body (or the plant) via passive diffusion, the concentration
gradient is the driving force for uptake or permeation. Hence the higher the concentration gradient,



Antioxidants 2018, 7, 3 12 of 21

the faster and more efficient the uptake will be (Figure 6d). Eventually, the smaller the size of a particle,
the faster it will dissolve and the higher its bioactivity will be [134].

There are also additional benefits. Nanosized materials possess a much higher adhesiveness to
surfaces than coarse materials. This is due to the much larger surface to volume ratio of nanoparticles,
which translates into considerably more attaching points per volume and therefore to less forces
needed to stick to a surface (Figure 6e). Hence, after administration or application, nanoparticles tend
to adhere much tighter and longer to surfaces, the time to dissolve and to penetrate is prolonged,
therefore further increasing the bioactivity of active ingredients. Due to these superior features and the
ease of production, nanosizing, i.e., the production of nanocrystals, has become a major formulation
principle in pharmaceutics to improve the bioactivity of pharmaceutically active ingredients [135–137].

In the field of natural products, nanosizing has opened up a promising avenue to augment further
their potential. It is possible, for instance, to convert simple, intrinsically “insoluble” materials, such
as elemental sulfur, selenium and tellurium—and, of course, many of the other solid elements of the
Periodic Table—into nanosuspenions with interesting biological activities [69]. In the case of the three
chalcogens, a pronounced biological activity, for instance against Steinernema feltiae, Escherichia coli
and Saccaromyces cerevisiae has been observed which compares well with the one of the corresponding
elemental particles obtained by redox chemistry or bioreduction in S. carnosus [89].

Nanosizing chemically pure substances or mixtures is comparably straight forward, yet the
matter literally becomes more complicated once natural samples such as barks, shells, seeds or even
dried fruits, roots or entire plants are milled and homogenized. Here, specific techniques need
to be developed and applied. It may appear straight forward to mill down a shell of a walnut
or some commercially available grape seed flour, even so our experience tells us that nanosizing
a dried tomato plant or spent coffee ground is considerably more challenging. Specific protocols
with several steps may be required, from drying and freeze-drying to defatting and pre-milling.
Still, some plants, such as the Maltese mushroom Cynomorium coccinem L., a parasitic plant devoid
of any chlorophyll, can be obtained, freeze-dried, milled and homogenized to fairly stable, low
polydispersity and uniform particles with average diameters of around 400 nm without encountering
any unsurmountable problems [138]. Some of these milled down plant materials have been evaluated
already as potential food supplements and even as natural medicines and antimicrobial agents [130].
In the medium term, nanoparticles of natural products may be employed in the fields of nutrition,
medicine, cosmetics or, in the case of large scale manufacture, in “green” agriculture (Figure 7).

The activities observed for those nanosized materials are often promising, yet there is a fine balance
of arguments which needs to be considered. On a positive note, nanosizing an herb or medical plant
is comparably straightforward and considerably easier than extraction, purification and formulation
of the active ingredient(s) contained therein. It also produces no or little waste. Furthermore, the
nanoparticles essentially are still “natural”, at least as far as their chemical composition is concerned,
contain all the ingredients of the plant, have not undergone any extensive modifications and, notably,
have not been treated with any organic solvents. Ideally, they even represent a natural slow release
system of bioavailable and biologically active ingredients. In the case of HPH, such materials
initially are also sterile and, as more recent studies have confirmed, can also be lyophilized and
resuspended without loss of physical properties or activity once a simple stabilizer such as mannitol is
added [139–141].

Eventually, some caution is required as such materials are intrinsically ill defined chemically, often
contain fibrous materials, are prone to fouling if contaminated with microorganisms and also require
certain stabilizers so not to aggregate in nanosuspension or as a result of freeze-drying. In analogy to
the 1980s German pop band “Milli Vanilli”, milling vanilla is clearly exciting, fancy, hot and full of
potential, yet some care must be taken and there is still considerable need for further investigation and
improvement, especially once the power fails and the chips are down [142].
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6. Conclusions

The previous sections have highlighted just a few selected recent developments at the interface
of nanotechnology and natural products research. We have seen that nature itself is well suited to
produce a repertoire of nanomaterials by processes such as combustion, abrasion, precipitation and
oxidation, and, if the biosphere is included, by bioreduction and related processes. Some of the
natural nanoparticles obtained in this way may be useful in medicine, agriculture or other fields of
technology and engineering. Not surprisingly, this has stimulated research into these native materials
and processes, and has also inspired strategies to generate biological and biologically active materials
using similar materials and methods. It is now time to take stock and to anticipate some of the most
exciting developments which the next couple of years may bring (Figure 8).

First, it seems plausible that some freely flowing inorganic substances, such as H2S, which hitherto
have “only” been used in spa towns to pickle and macerate affluent pensioners or have been wasted
entirely, may be reconsidered as valuable precursors of fine chemicals, including certain nanoparticles.
Here, some “hat tricks” may also be feasible, such as the reaction of H2S from mineral springs with
fumes rich in SO2 as part of an elegant sulfur redox comproportionation, or a reaction of H2S with
NO2. Such “waste chemistry” may not only be employed to produce the desired nanoparticles—in
this case of sulfur, but also to detoxify two individual environmental hazards simultaneously [42].
Those ideas are still speculative, however, early studies into this direction are marred by issues, such as
adequate concentrations and how to bring the hazards—literally—under one roof. It seems to us that
crucial but manageable research is required to define the correct ingredients and conditions for such
manufacture and large-scale production of particles of sulfur and related elements, such as selenium.

Secondly, natural nanotechnology employing organisms such as yeasts and certain harmless
bacteria, but also isolated enzymes, may in future be recruited to generate a variety of particular particle
matter, starting with selenium and embracing large parts of the Periodic Table, but also other inorganic
materials, such as insoluble metal oxides. Indeed, it seems today that a wide palette of insoluble matter
may be generated inside bacteria. Whilst traditionally harvesting of such particles has involved lysis
of cells, some organisms also release their particles into the supernatant, as has been demonstrated
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for resveratrol-conjugated gold nanoparticles produced by the Delftia sp. strain KCM-006 [143]. Such
in vivo generation of nanoparticles may provide further impetus for bioremediation and inspire
new avenues to tackle some pathogenic organisms unable to release their particles with undesired
intracellular deposits.
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Thirdly, the use of certain plant products, such as de-oiled herbs, as reagents in nano-manufacture
may be considered more widely, especially in the context of waste management and “up-cycling”.
Here, plant waste from harvests or processes such as baking or brewing may provide an interesting
alternative to pure chemicals, as they are natural and readily available in large quantities and at low
cost. As mentioned already, these materials may either be employed directly as reducing agents or
coatings or, more indirectly, as feedstock for bacteria able to generate nanoparticles via a bioreductive
avenue. From an ecological perspective, it would be especially intriguing to employ nanosized waste
as feedstock for bacteria naturally producing natural nanoparticles.

Fourthly, milling and homogenization of plants may unlock a whole treasure chest of new
products, as it can be employed to render hitherto insoluble materials into nanosuspensions with
interesting release properties. Many of these products originate in agriculture and, once processed,
may be used there as well, hence providing the basis for interesting production and application cycles.
This field is still in its early stages of research and development and most certainly will lead to many
obstacles and pitfalls, but also to some truly innovative ideas, methods and products.

Eventually, we are likely to witness a rapidly growing interest in various fields of
bio-nanotechnology, such as phyto- and phyco-nanotechnology, not only with sight on product
development, but also in many areas of basic research which accompany such developments. In the
longer run, it may even be possible to explore some of these leads to generate nanoparticles of natural
products, such as active ingredients of plants, using natural processes, including bacterial or fungal
fermentation, in vitro bioreduction or abrasion. Here, the two meanings of natural, i.e., in form of
the material or as part of the method, may eventually meet and merge. Most of this is obviously still
speculative today, and time will tell which of these leads are green, fruitful inspirations and which are
more the kind of red herring which will stay in the fishbowl of the laboratory.
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