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Abstract: Adhesion of biological systems is often made possible through thin elastic layers, such
as human skin. To address the question of when a layer is sufficiently thin to become adhesive,
we extended Green’s function molecular dynamics (GFMD) to account for the finite thickness of an
elastic body that is supported by a fluid foundation. We observed that thin layers can much better
accommodate rough counterfaces than thick structures. As a result, the contact area is enlarged, in
particular, when the width of the layer w approaches or even falls below the short-wavelength cutoff
λs of the surface spectra. In the latter case, the proportionality coefficient between area and load
scales is (w/λs)3, which is consistent with Persson’s contact mechanics theory.
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1. Introduction

A central aspect in many engineering applications is the mechanical contact between nominally
flat but microscopically rough surfaces. It affects important issues such as friction and wear between
solids, energy efficiency, and durability as well as environmental compatibility of many devices.
Much progress has been made on the topic in the past few decades. Many analytical, numerical,
and experimental approaches have been pursued to determine what occurs, from the macro- to the
microscales, when two surfaces come into contact. Most of the attention so far has been focused on
surfaces resting on bulk solids, and generally described with a semi-infinite. This is in contrast to
many biological surfaces, which often have a hierarchical structure like gecko’s feet or consist of thin,
elastic layers resting on a fluid-like foundation, such as human skin.

An analysis of the contact mechanics of thin layers may thus constitute a first step towards
a better understanding of adhesion in biological systems. Indeed, adhesive devices reproducing,
on an industrial scale, the amazing adhesive properties of natural systems, are much sought-after.
Examples for the latter span a wide range of scales [1–9] from insects such as beetles and flies, to spiders
and lizards such as geckos. Independent of its systemic position and even the scale of the animal,
we find surprising similarities related to the shape of the terminal elements (setal tips) in all these
cases always have a similar thin shape as shown in Figure 1. Basically, all the spatulae are flattened
and stuck on a rough substrate, while the free ends are oriented in the distal direction [8]. In order
to understand the origin of the super-adhesive properties of these systems and, later, to reproduce
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them, a variety of studies, starting from the pioneering contributions of Kendall in the sixties [9],
have focused on the peeling mechanism, by which a tape detaches from the flat substrate where it is
attached [3–8,10,11]. Despite the interesting results obtained in these studies, the majority rely on the
assumption of perfectly flat substrates. However, in order to reproduce good adhesive properties at
macroscales, surface roughness cannot be ignored. This study takes a first step towards including the
effect of microscale roughness into the contact mechanics of thin layers. As depicted in Figure 1, our
model is a simple, yet explicative model for the contact between a rigid rough surface and an elastic
layer of finite thickness supported by a constant pressure.

Figure 1. Natural examples of spatula-shaped terminal elements : (a) beetle; (b) fly; (c) spider; (d) Tokay
gecko. Cryo-scanning electron microscopy (cryo-SEM) images adapted from [8] - Reproduced by
permission of The Royal Society of Chemistry. All the different cases are reduced to the model in the
inset where a rough rigid surface is in contact with an elastic layer supported by a constant pressure (σ0).

It is important to observe that solving the contact mechanics problem between rough solids is
challenging even when using the half-space assumption, which treats any characteristic length in
the interface as small compared to the thickness of the contacting bodies. Historically, the so-called
multiasperity models [12–16] have been the first attempt to resolve the contact between elastically
deformable and microscopically rough surfaces: fundamentally, these methodologies consider the
rough surfaces to be composed of asperities—with a certain distribution of heights and radii of
curvature—which behave like independent Hertzian punches without any mutual interaction. To
include the effect of elastic deformation on all scales, Persson developed a different approach [17,18]
based on the assumption that the contact pressure probability distribution is governed by a diffusive
process as the magnification at which we observe the interface is increased. The theory is formulated in
such a way that it is exact in full-contact conditions, while for partial contact, it provides an approximate
solution predicting correctly, for example, a linearity between contact area and load (see, e.g., in [19])
and the logarithmic dependence of the interfacial separation on load (see, e.g., in [20]). Furthermore,
a large variety of approaches have been developed to obtain quantitatively and qualitatively accurate
results: these techniques include finite element methods (FEM) [21], boundary element methodologies
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(BEM) [22–28], molecular dynamics simulations [29–31] and hybrid approaches [32,33]. An important
issue that these approaches have to deal with is their numerical convergence, which can be quite
demanding due to the multi-scale nature of the problem.

Here, we extend the well-known and rather efficient Green’s function molecular dynamics (GFMD)
technique [31] to the treatment of thin layers. The work is outlined as follows: Section 2 describes the
mathematical formulation of the methodology, while results are presented and discussed in Section 3.
Final remarks conclude the paper in Section 4.

2. Materials and Methods

We simulate a flat, elastic manifold of finite width that touches on one side a rigid, rough substrate
fixed in space and, on the other side, a fluid reservoir, or, alternatively, a solid with negligible shear
modulus in such a way that a uniform pressure is applied to the elastic layer (as shown in Figure 1).
This is done using the GFMD method [31,34,35] as described in [36]; with Green’s functions [37]
appropriate for our problem. The central aspects of the approach are described as follows. We
denote the position of surface points facing the substrate by their lateral and normal coordinates, ri,
which are equally spaced on a two-dimensional surface, representing N = n× n grid points, n being
typically 4096. In-plane periodic boundary conditions are employed and the system is treated as being
homogeneous within the plane. The coordinate system is chosen with the highest point of the substrate
set to zero. The (undeformed) elastic manifold touches the substrate in just this one point, when we
apply an infinitesimally small force. The mean displacement at this load is said to be zero. Contact
is complete when all points of the manifold touch the substrate. The displacement at that point is
normalized to one.

The grid points are propagated in time according to Newton’s equation of motion, which is
achieved with the Verlet algorithm. The total normal force, Fi, acting on a grid point is the sum of an
external force, the elastic force, a damping force, and the (unknown) constraint force preventing the
rigid surface from penetrating the thin layer. The external force is simply the external/fluid pressure
σ0 times the area element ∆A = a2 associated with the grid point. The elastic restoring on each atom is
computed from the Fourier transform of the stress in Fourier space. The latter is obtained as

σ̃(q) =
1

G(q)
z̃(q), (1)

where the coefficients z̃(q) are the Fourier transform of the grid point normal to the surface positions
z(ri) and q are in-plane wavevectors. For the given system, marked by a width w , the Fourier
transform of the Green’s function is

G(q) =
2

qE∗
f (qw) (2)

where E∗ is the contact modulus of the elastic manifold and a finite-width correction factor [37] of

f (t) =
sinh(2t) + 2t

cosh(2t)− 1− 2t2 , (3)

where t = qw is a dimensionless width. We note in passing that f (t) tends to one for t� 1 and scales
as t−3 for t � 1. This is, indeed, consistent with the equation governing thin plates (see [38,39] for
more details).

The damping force is linear in particle velocity, or, when dynamics are solved in Fourier space,
linear in the velocity of a given mode. The proportionality prefactor is best chosen such that the slowest
mode of the system is slightly underdamped. For medium loads, it often turns out to be proportional
to the load. The time step should be chosen as large as possible before dynamics become unstable,
since we only attempt to identify mechanical equilibrium rather than true dynamics.
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The constraint is established by setting each material point exactly onto the substrate if zi < h(ri)

after the Verlet time step, where h(r) denotes the height of the substrate. It is generated from its Fourier
transform, which are complex random numbers with the following expectation values

〈h̃(q)〉 = 0 (4)〈
|h̃(q)|2

〉
∝ C(q). (5)

Real and imaginary components of h̃(q) are drawn independently from each other. To avoid rare
but potential freak fluctuations, we do not draw from Gaussian but instead a uniform random number
with zero mean and a second moment according to the target spectrum. The surface spectra satisfy

C(q) = C(qr)×


1 for q < qr

q−2(1+H) for qr < q < qs

0 else,
(6)

where qr = 2π/λr and qs = 2π/λs are the roll-off and the cut-off wavenumber, respectively.
As proposed in [40], under the small-slope approximation method, we add an adhesive stress,

which acts normal to the surfaces and, in real space, is equal to:

σadh(r) =
γ0

ρ
exp[−{z(r)− h(r)}/ρ], (7)

where γ0 is the energy gained per unit area when the two solids touch mechanically, z(r)− h(r) is the
local gap between substrate and top solid, and ρ is the characteristic range of the attraction. We chose
ρ sufficiently small so that adhesion can be characterized as short ranged. The implementation of the
approach is summarized schematically in Figure 2.

Figure 2. Schematic flow-sheet describing the Green’s function molecular dynamics (GFMD)
method algorithm.

The GFMD method can handle a very large amount of elements on a single node. This exceeds the
size of most experimental surface topography measurements. Equilibration can be achieved within a
few thousand time steps for most loads in most cases. The method only becomes inefficient for relative
contact areas of less than 0.1% , in which case several hundred thousand iterations might be needed.
Here, we only solve for static equilibrium. However, if the method was extended to dynamics, the
accessible time span Tacc would depend on the level of discretization. As a rough rule of thumb, Tacc

would be a few µs times the distance between two grid points expressed in units of nanometers.

3. Results and Discussion

Results reported in this study relate to the contact between an elastic layer and a rigid fractal
surface numerically generated by means of the spectral method as described in [31]. In particular,
here we have generated fractal surfaces with λs = 4a for the short wavelength cut-off, λr = 64λs for
the roll-off wavelength, and a system length of 8λr. The Hurst roughness exponent H is equal to 0.8.
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Furthermore, we scale the surfaces in such a way that the root mean square gradient
√
< ∇h2 > is

equal to 1.
Firstly, we focuse our attention on the contact mechanics between the rigid surface and an elastic

layer with a negligible value of the surface adhesive energy γ: at this stage, our aim is to isolate
the effect of the layer thickness and, specifically, how the contact properties change in comparison
with thick substrates where the half-space assumption is valid. In Figure 3, we plot the relative
contact area as a function of the dimensionless load σ0/(E∗

√
< ∇h2 >) with E∗ being the composite

Young modulus E∗ = 1 Pa and for different values of the dimensionless width W = w/λs , where
w and λs are the layer width and the short wavelength cut-off, respectively. We observe that, by
decreasing the ratio W, the contact compliance is increased: a normal load is fixed and a larger contact
area is obtained. Indeed, as established by Persson’s theory [17,18] and generally accepted by the
scientific community ([23,41]), for an half-space, the area/load relation is described by the equation
A/A0 = er f (kσ0/(E∗

√
< ∇h2 > with k being a proportionality coefficient that, when adhesion can

be neglected, is approximately equal to k = 2 [19,31]. When dealing with thin layers, we observe an
increase of such a coefficient of several orders of magnitude.
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Figure 3. Contact area A/A0 as a function of the dimensionless load σ0/
(

E∗
√
< ∇h2 >

)
for different

values of the ratio W .

In more detail, in order to better understand the role played by the thickness, in Figure 4 in a
log-log plot, we report, again for different values of W, the quantity A(A0 − A)/A2

0 as a function of
the load, thus showing that the influence of a finite value of the layer width appears also with very low
loads. Indeed, this entails a marked difference of the system under investigation (i.e., an elastic layer
sustained by a constant pressure), not only in comparison with the classic half-space regime but also
with other types of boundary conditions and, in particular, with the case reported in [42], where the
deformable layer is bonded to a rigid half-space. In this last case, at low values of the contact area, the
system behaves like an half-space and, only when the contact load is increased, we obtain a transition
to a different regime where the thickness acquires an important role. This is consistent with the
cut-off effect produced by a corrective coefficient Θ(qw), the main effect of which is to remove the low
frequency contribution to the contact solution [42]. In contrast, under the conditions we investigate
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here, also at very low loads, the system shows a marked different trend and, in particular, the contact
compliance results increased. This is due to the different mathematical form of the corrective coefficient
f (qw) and may have important implications in many systems, including biological membranes and
human skin, where very large contact areas may be produced with relatively low loads.
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Figure 4. The quantity A(A0 − A)/A2
0 is plotted against the dimensionless load σ0/

(
E∗
√
< ∇h2 >

)
for different values of the ratio W .

To appreciate the quantitative importance of a correct estimation of the finite thickness effects,
in Figure 5a, we collapse the curves representing A(A0 − A)/A2

0 into a master curve coinciding with
the half-space solution by dividing the load for a corrective coefficient c that will be, as expected,
a function of the dimensionless width W. Consequently, for this kind of system, we can obtain the
following generalized area/load relation:

A
A0

=
1

c (W)

(
A
A0

)
HS

(8)

Indeed, beyond some differences for small contact area, the curves show a good overlap in
Figure 5a. At the same time, we observe that the corrective coefficient c has a variation range spanning
several orders of magnitude (see Figure 5b): this dramatically illuminates how important it is to
account for the actual width of the layer. Furthermore, if we observe the asymptotic trend for very
small values of W, we notice that c (W) ∼ W−3 as expected given the form of the Green’s function
coefficient f (qw) .

The increased compliance of the system can be noticed also when looking at the displacement
averaged in the contact area as a function of the load. In detail, as shown in Figure 6, at relatively
high loads, in agreement with many theoretical and numerical predictions [17,19,43], a logarithmic
dependence between the quantity s̃ = (1− < u > /umax) and σ0/E∗ is found; as expected when
running numerical simulation, at smaller loads, such a logarithmic trend is lost due the finiteness
of the rigid surface employed in the computations. Indeed, we notice that, when the thickness W is
reduced, fixed the load σ0/E∗, we obtain a much smaller separation s̃ , consistently with a system that
is more compliant.



Biomimetics 2016, 1, 7 7 of 10

 

(b)(a)

Figure 5. The quantity A(A0 − A)/A2
0 is plotted against the dimensionless load multiplied for a

correction factor σ0/
(
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)
(a). The correction factor c is plotted as a function of the width

W (b). The dotted line refers to the asymptotic trend ∼W−3 .
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Figure 6. The dimensionless separation s̃ versus the load σ0/E∗ .

Results shown so far refer to a case with negligible adhesion; however, the contact solution
also shows a similar trend when adhesive effects are accounted for. Indeed, such a behavior is
directly correlated with the elastic energy stored in the deformable layer. In our analysis, the dominant
contribution to the system deformation is assumed to be due to the bending and, indeed, for W << 1,
the mechanics of our layers coincides with that of thin plates [39]. The convention implies that any
contribution related to the stretching energy is neglected: such an approximation is fully justified
in a large variety of conditions, including, for example, the case of adhesive contact of insects and
geckos [38].
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Elastic energy stored in the layer is, indeed, a crucial quantity that determines the adhesive
performance of the structure. More specifically, we define the parameter θ as θ = Uel/Uad with Uel
and Uad equal to the elastic and to the adhesion energy, respectively. This is a qualitative measure of
the competition between the elastic energy, which has to be stored to deform the contacting bodies,
and the adhesive term, which corresponds to the bodies inclination to come into contact and create
contact areas: the smaller θ is, the easier it is to obtain large contacts results. Consequently, θ can be
considered a good way to estimate the adhesion capability. In Figure 7, for γ = 5 10−4 and µ = 2, and
for three different values of the contact area, θ dramatically decreases with W . This demonstrates that,
indeed, thin layers are preferred to thick structures when good adhesion properties are desired due to
the reduced compliance. Interestingly, as expected, for small values of W, θ scales again as ∼W3 .
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Figure 7. The adhesion parameter θ is plotted as a function of the dimensionless width W for three
different values of A/A0. The dotted lines refers to the asymptotic trend ∼W3 .

It is readily argued that the results we have just obtained are consistent with Persson’s contact
mechanics theory [17]. Persson predicts that the contact area follows er f (σ0/∆σ

√
2), where σ0 is the

apparent contact pressure perceived macroscopically, while ∆σ can be interpreted as the width of the
pressure distribution within the microscopically fully resolved contact points. This relation does not
depend on the thickness of the elastic manifold. However, the layer width would affect the degree of
broadening of the pressure distribution within the contact. Specifically, according to Persson theory,
adding ∆C(q) to the height spectrum at wavevector q leads to an increase of ∆σ2 that is proportional
to G(q)∆C(q). Adding up all roughness would then lead to a value of ∆σ2 scaling proportionally to
(t3E∗)2〈∇h2〉 (see also, for example, Equation (31) in [36]). For self-affine rough surfaces with a Hurst
exponent 0 < H < 1, the mean-square surface-height gradient is dominated by the short-wavelength
terms. For truly thin substrates resting on a fluid foundation, the integrated broadening ∆σ therefore
scales as (t/λs)3 times the Green’s function of the semi-infinite manifold, as we descrived in Section 2,
and as is revealed in our numerical results.

4. Conclusions

In the present study, we develop a numerical methodology based on the GFMD to study the
contact between a rigid fractal surface and an elastic layer sustained by a uniformly applied pressure.
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Indeed, such a scheme provides a model for a large variety of biological systems, spanning from the
human skin to biological membranes. All these cases can be studied by the GFMD method that has
been modified multiplying the Green’s function G(q) for a corrective parameter f that is related to the
dimensionless width t = qw . Our results show that, in comparison with solids with large values of
the thickness, where the half space approximation may be adopted, thin layers show a much larger
compliance that marks both the contact area and the separation when analyzed as functions of the load.
In particular, when looking at the contact area, we observe that the classic area/load relation can be
corrected by introducing a coefficient c . Interestingly, c scales as W−3 with W being the dimensionless
width of the layer: this is related to the mathematical form of the the Green’s function corrective
coefficient f (qw) and is consistent with Persson’s contact theory. Ultimately, we show why thin layers
should be preferred when good adhesive properties and large contact areas are desired.

Acknowledgments: C.P. gratefully acknowledges the support of the Marie Curie IEF project SOFT-MECH
(grant number 622632).

Author Contributions: All authors conceived and designed the methods presented in this study. All authors
contributed to write the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Geim, A.K.; Dubonos, S.V.; Gricorieva, I.V.; Novoselov, K.S.; Zhukov, A.A.; Shapoval, S. Microfabricated
adhesive mimicking gecko foot-hair. Nat. Mater. 2003, 2, 461–463.

2. Carbone, G.; Mangialardi, L. Adhesion and friction of an elastic half-space in contact with a slightly wavy
rigid surface. J. Mech. Phys. Solids 2004, 52, 1267–1287.

3. Carbone, G.; Pierro, E.; Gorb, S. Origin of the superior adhesive performance of mushroom shaped
microstructured surfaces. Soft Matter 2011, 7, 5545–5552.

4. Carbone, G.; Pierro, E. Sticky bio-inspired micropillars: Finding the best shape. SMALL 2012, 8, 1449–1454.
5. Carbone, G.; Pierro, E. Effect of interfacial air entrapment on the adhesion of bio-inspired mushroom-shaped

micro-pillars. Soft Matter 2012, 8, 7904–7908.
6. Afferrante, L.; Carbone, G.; Pugno, D.N. Adhesion of Elastic Thin Films: Double Peeling of Tapes Versus

Axisymmetric Peeling of Membranes. Tribol. Lett. 2013, doi:10.1007/s11249-013-0227-6.
7. Putignano, C.; Afferrante, L.; Mangialardi, L.; Carbone, G. Equilibrium states and stability of pre-tensioned

adhesive tapes Beilstein. J. Nanotechnol. 2014, 5, 1725–1731.
8. Varenberg, M.; Pugno, N.M.; Gorb, S.N. Spatulate structures in biological fibrillar adhesion. Soft Matter 2010,

6, 3269–3272.
9. Kendall, K. The adhesion and surface energy of elastic solids. J. Phys. D Appl. Phys. 1971, 4, 1186–1195.
10. Paggi, M.; Reinoso, J. An anisotropic large displacement cohesive zone model for fibrillar and crazing

interfaces. Int. J. Solids Struct. 2015, 69, 106–120.
11. Borri, C.; Paggi, M.; Reinoso, J.; Borodich, F.M. Adhesive behaviour of bonded paper layers: Mechanical

testing and statistical modelling. Proc. Inst. Mech. Eng. Part C 2016, 230, 1440–1448.
12. Greenwood, J.A.; Williamson, J.B.P. Contact of Nominally Flat Surfaces. Proc. R. Soc. Lond. A 1966, 295,

300–319.
13. Greenwood, J.A. A simplified elliptic model of rough surface contact. Wear 2006, 261, 191–200.
14. Greenwood, J.A.; Putignano, C.; Ciavarella, M. A Greenwood & Williamson theory for line contact. Wear

2011, 270, 332–334.
15. Bush, A.W.; Gibson, R.D.; Thomas, T.R. The elastic contact of a rough surface. Wear 1975, 35, 87–111.
16. Ciavarella, M.; Delfine, V.; Demelio, G. A “re-vitalized” Greenwood and Williamson model of elastic contat

between fractal surfaces. J. Mech. Phys. Solids 2006, 54, 2569–2591.
17. Persson, B.N.J. Theory of rubber friction and contact mechanics. J. Chem. Phys. 2001, 115, 3840–3861.
18. Persson, B.N.J. Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 2006, 61, 201–227.
19. Putignano, C.; Afferrante, L.; Carbone, G.; Demelio, G. The influence of the statistical properties of self-affine

surfaces in elastic contact: A numerical investigation. J. Mech. Phys. Solids 2012, 60, 973–982.



Biomimetics 2016, 1, 7 10 of 10

20. Dapp, W.B.; Prodanov, N.; Müser, M.H. Systematic analysis of Persson’s contact mechanics theory of
randomly rough elastic surfaces. J. Phys. Condens. Matter 2014, 26, 355002.

21. Hyun, S.; Pei, L.; Molinari, J.-F.; Robbins, M.O. Finite-element analysis of contact between elastic self-affine
surfaces. Phys. Rev. E 2004, 70, 026117.

22. Putignano, C.; Afferrante, L.; Carbone, G.; Demelio, G. A new efficient numerical method for contact
mechanics of rough surfaces. Int. J. Solids Struct. 2012, 49, 338–343.

23. Geike, T.; Popov, V.L. Mapping of three-dimensional contact problems into one dimension. Phys. Rev. E 2007,
76, 036710.

24. Paggi, M.; Ciavarella, M. The coefficient of proportionality between real contact area and load, with new
asperity models. Wear 2010, 268, 1020–1029.

25. Carbone, G.; Putignano, C. A novel methodology to predict sliding/rolling friction in viscoelastic materials:
Theory and experiments. J. Mech. Phys. Solids 2013, 61, 1822–1834.

26. Carbone, G.; Putignano, C. Rough viscoelastic sliding contact: Theory and experiments. Phys. Rev. E 2014,
89, 032408.

27. Putignano, C.; Carbone, G.; Dini, D. Theory of reciprocating contact for viscoelastic solids. Phys. Rev. E 2016,
93, 043003.

28. Borri, C.; Paggi, M. Topological characterization of antireflective and hydrophobic rough surfaces:
Are random process theory and fractal modeling applicable? J. Phys. D Appl. Phys. 2015, 48, 045301.

29. Yang, C.; Persson, B.N.J. Molecular Dynamics Study of Contact Mechanics: Contact Area and Interfacial
Separation from Small to Full Contac. Phys. Rev. Lett. 2008, 100, 024303.

30. Yang, C.; Tartaglino, U.; Persson, B.N.J. A multiscale molecular dynamics approach to contact mechanics.
Eur. Phys. J. E 2006, 19, 47–58.

31. Campana, C.; Muser, M.H. Contact mechanics of real vs. randomly rough surfaces: A Green’s function
moleculardynamics study. Europhys. Lett. 2007, 77, 38005.

32. Hyun, S.; Robbins, M.O. Elastic contact between rough surfaces: Effect of roughness at large and small
wavelengths. Tribol. Int. 2007, 40, 413–1422.

33. Luan, B.Q.; Hyun, S.; Molinari, J.F.; Bernstein, N.; Robbins, M.O. Multiscale modeling of two-dimensional
contacts. Phys. Rev. E 2006, 74, 046710.

34. Campañá, C.; Müser, M.H. Practical Green’s function approach to the simulation of elastic semi-infinite
solids. Phys. Rev. B 2006, 74, 075420.

35. Pastewka, L.; Sharp, T.A.; Robbins, M.O. Seamless elastic boundaries for atomistic calculations. Phys. Rev. B
2012, 86, 075459.

36. Prodanov, N.; Dapp, W.B.; Muser, M.H. On the contact area and mean gap of rough, elastic contacts:
Dimensional analysis, numerical corrections and reference data. Tribol. Lett. 2014, 53, 433–448.

37. Carbone, G.; Lorenz, B.; Persson, N.J.; Wohlers, A. Contact mechanics and rubber friction for randomly
rough surfaces with anisotropic statistical properties. Eur. Phys. J. E 2009, 29, 275–284.

38. Carbone, G.; Mangialardi, L.; Persson, B.N.J. Adhesion between a thin elastic plate and a hard randomly
rough substrate. Phys. Rev. B 2014, 70, 125407.

39. Landau, L.D.; Lifshitz, E.M. Theory of Elasticity; Pergamon: London, UK, 1959.
40. Müser, M.N. A dimensionless measure for adhesion and effects of the range of adhesion in contacts of

nominally flat surfaces. Tribol. Int. 2015, doi:10.1016/j.triboint.2015.11.010.
41. Scaraggi, M.; Putignano, C.; Carbone, G. Elastic contact of rough surfaces: A simple criterion to make

2D isotropic roughness equivalent to 1D one. Wear 2013, 297, 1811–817.
42. Putignano, C.; Carbone, G.; Dini, D. Mechanics of rough contacts in elastic and viscoelastic thin layers. Int. J.

Solids Struct. 2015, 69, 507–517.
43. Campana, C.; Persson, B.N.J.; Mueser, M.H. Transverse and normal interfacial stiffness of solids with

randomly rough surfaces. J. Phys. 2011, 23, 085001.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions

