
Model Counting
for Reactive Systems

A dissertation submitted towards the degree Doctor of Natural Sciences
(Dr. rer. nat.) of the Faculty of Mathematics and Computer Science

of Saarland University

by

Hazem Torfah

Saarbrücken, 2019

Dean of the faculty Prof. Dr. Sebastian Hack
Date of the colloquium Dec. 5th, 2019
Chair of the committee Prof. Dr. Sebastian Hack

Reviewers Prof. Bernd Finkbeiner, Ph.D.
Prof. Ruzica Piskac, Ph.D.
Prof. Sanjit Seshia, Ph.D.

Academic Assistant Dr. Roland Leißa

Abstract

Model counting is the problem of computing the number of solutions for a logi-
cal formula. In the last few years, it has been primarily studied for propositional
logic and has been shown to be useful in many applications. In planning, for
example, propositional model counting has been used to compute the robust-
ness of a plan in an incomplete domain. In information-flow control, model
counting has been applied to measure the amount of information leaked by a
security-critical system.

In this thesis, we introduce the model counting problem for linear-time prop-
erties and show its applications in formal verification. In the same way propo-
sitional model counting generalizes the satisfiability problem for propositional
logic, counting models for linear-time properties generalizes the emptiness prob-
lem for languages over infinite words to a problem that asks for the number of
words in a language. The model counting problem, thus, provides a foundation
for quantitative extensions of model checking, where not only the existence of
computations that violate the specification is determined, but also the number
of such violations.

We solve the model counting problem for the prominent class of omega-
regular properties. We present algorithms for solving the problem for different
classes of properties and show the advantages of our algorithms in comparison
to indirect approaches based on encodings into propositional logic. We further
show how model counting can be used for solving a variety of quantitative prob-
lems in formal verification, including probabilistic model checking, quantitative
information-flow in security-critical systems, and the synthesis of approximate
implementations for reactive systems.

i

Zusammenfassung

Das Modellzählproblem fragt nach der Anzahl der Lösungen einer logischen
Formel, und wurde in den letzten Jahren hauptsächlich für Aussagenlogik un-
tersucht. Das Zählen von Modellen aussagenlogischer Formeln hat sich in vie-
len Anwendungen als nützlich erwiesen. Im Bereich der künstlichen Intelligenz
wurde das Zählen von Modellen beispielsweise verwendet, um die Robustheit
eines Plans in einem unvollständigen Weltmodell zu bewerten. Das Zählen von
Modellen kann auch verwendet werden, um in sicherheitskritischen Systemen
die Menge an enthüllten vertraulichen Daten zu messen.

Diese Dissertation stellt das Modellzählproblem für Linearzeiteigenschaften
vor, und untersucht dessen Rolle in der Welt der formalen Verifikation. Das
Zählen von Modellen für Linearzeiteigenschaften führt zu neuen quantitativen
Erweiterungen klassischer Verifikationsprobleme, bei denen nicht nur die Exis-
tenz eines Fehlers in einem System zu überprüfen ist, sondern auch die Anzahl
solcher Fehler.

Wir präsentieren Algorithmen zur Lösung des Modellzählproblems für ver-
schiedene Klassen von Linearzeiteigenschaften und zeigen die Vorteile unserer
Algorithmen im Vergleich zu indirekten Ansätzen, die auf Kodierungen der un-
tersuchten Probleme in Aussagenlogik basieren. Darüberhinaus zeigen wir wie
das Zählen von Modellen zur Lösung einer Vielzahl quantitativer Probleme in
der formalen Verifikation verwendet werden kann. Dies beinhaltet unter an-
derem die Analyse probabilistischer Modelle, die Kontrolle quantitativen Infor-
mationsflusses in sicherheitskritischen Systemen, und die Synthese von approx-
imativen Implementierungen für reaktive Systeme.

iii

Acknowledgments

I want to express my immense gratitude to my advisor, Bernd Finkbeiner, for
adopting me to his group and for his continuous support throughout my years
as his doctoral student. Thank you, Bernd, for believing in me, for your patience,
and your commitment. Thank you for appreciating my crazy ideas and for en-
couraging me to pursue them. Thank you for sharing your knowledge with me,
for celebrating my achievements with me, and riding along in adventurous taxi
drives through Madrid. Thank you for setting the way. I am excited to continue
my journey.

I would like to thank my friends Andi, Andre, Caro, Connie, Florian, Elisa,
Jule, Julia, Marco, Nathalie, Nora, Patrick, Pia, Pia, Sina, Stefan, Stephan, Sven,
and Verena for wonderful times in Saarbrücken, for the Wohnheim-E evenings,
for the crazy parties at Heuduckstraße, for the late-night snow hikes in Sweden,
and for reconquering my true home Hazemburg. You are awesome. Julia, Andi,
Pia, Pia, Marco, Nora, and Andre thank you for being there for me in the last
months.

I am grateful to Manuel, Angela, Elias, and Lukas for making me part of their
family. I am glad to have you in my life.

I want to thank Mai for being there for me over all the years. Thank you for
understanding me, for believing in me, and for being my friend.

I want to thank Norine for her unconditional support, as a friend and col-
league. Thank you for sharing your tea with me and for reminding me to
breathe.

I want to thank my colleagues Jan Baumeister, Tom Baumeister, Rüdiger
Ehlers, Michael Gerke, Sebastian Gerling, Jesko Hecking-Harbusch, Jana Hof-
mann, Swen Jacobs, Felix Klein, Florian Kohn, Andrey Kupriyanov, Sabine Les-
sel, Niklas Metzger, Noemi Passing, Hans-Jörg Peter, Markus Rabe, Mouham-
mad Sakr, Christa Schäfer, Malte Schledjewski, Maximilian Schwenger, Alexan-
der Weinert, and Martin Zimmermann for productive collaborations, interesting
discussions, crossword puzzles, delicious cakes, tennis matches, and the won-
derful memories at Saarland University. Special thanks go to Rayna Dimitrova,
Anna Marie and Peter Faymonville, Christopher Hahn, and Leander Tentrup
for their continuous support during my time at the reactive systems group.

I want to thank my doctoral committee for their time and feedback: the exter-
nal reviewers, Ruzica Piskac and Sanjit A. Seshia, the committee chair Sebastian
Hack, and the academic staff committee member Roland Leißa.

v

I want to thank the Deutsche Telekom Foundation for supporting my doc-
toral studies. Special thanks go to Christiane Frense-Heck, Pascal Cerfontaine,
Martin Heining, Sarah Meisenheimer, and Helen Nöding.

I want to thank my Aunt Nahla and my Uncle Haitham for opening their
home for me, my Uncle Maher and Carmen for all their support and care, and
Brigitte and Kurt for their love, you are like parents to me.

Above all, I want to thank my parents for their love, devotion, and sacrifice.
You made me the person I am today. My sister Lisa, and my brother Rani, thank
you for having my back. I dedicate this thesis to you. I love you all.

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

Contents ix

1 Introduction 1
1.1 Propositional Model Counting . 4

1.1.1 Problem definition . 4
1.1.2 Generalizations of propositional model counting 4

1.2 Model Counting for Reactive Systems 5
1.2.1 Problem definition . 5
1.2.2 Bounded model counting 7

1.3 Contributions . 9
1.3.1 Part I: The model counting problem 9
1.3.2 Part II: Applications of model counting in formal verification 10

1.4 Related Work . 11
1.5 Publications . 14

I The Model Counting Problem 17

2 Models and Properties 19
2.1 Finite Labeled Transition Systems 19

ix

2.2 Linear-time Properties . 21
2.2.1 Safety and co-safety . 22
2.2.2 Liveness . 23

2.3 Omega-Regular Properties . 24
2.3.1 Parity automata . 24
2.3.2 Büchi automata . 26
2.3.3 Co-Büchi automata . 27

2.4 Linear-time Temporal Logic . 28
2.5 Model Checking Omega-Regular Properties 31

3 Model Counting Algorithms for Omega-regular Properties 35
3.1 Counting Complexity . 36
3.2 Counting Infinite Traces . 39

3.2.1 Doubly-pumped lassos . 40
3.2.2 Algorithms for counting infinite traces 48
3.2.3 Complexity bounds . 49

3.3 Counting Bad Prefixes . 52
3.3.1 Algorithms for counting bad prefixes 53
3.3.2 Complexity bounds . 56
3.3.3 Counting good prefixes . 58

3.4 Counting Lassos . 60
3.4.1 Algorithms for counting lassos 61
3.4.2 Complexity bounds . 72

3.5 Projected Model Counting . 72
3.6 Maximum Model Counting . 73
3.7 Proofs . 77

4 The Relation of Model Counting to Probabilistic Model Checking 87
4.1 Probabilistic Model Checking . 88
4.2 Probability of Linear-time Properties 90
4.3 Probabilities based on Bad Prefixes 91
4.4 Probabilities based on Good Prefixes 94
4.5 Probabilities based on Lassos . 95
4.6 Bibliographic Remarks . 99

II Applications of Model Counting in Formal Verification 103

5 Model Checking of Counting Hyperproperties 105

x

5.1 Information-Flow Policies . 105
5.2 HYPERLTL: A Temporal Logic for Hyperproperties 107

5.2.1 A model checking algorithm for HYPERLTL 109
5.3 Counting Hyperproperties . 113
5.4 Model Checking Counting Hyperproperties 116

5.4.1 Encoding counting hyperproperties in HYPERLTL 116
5.4.2 Model checking counting hyperproperties using maximum

model counting . 118
5.5 Symbolic Approach to Model Checking Counting Properties . . . 121

5.5.1 Evaluation . 123
5.6 Bibliographic Remarks . 123

6 Synthesis of Approximate Implementations 125
6.1 Synthesis of Reactive Systems . 125
6.2 Lasso-precise implementations . 128
6.3 Automata-theoretic synthesis of lasso-precise implementations . 130
6.4 Bounded Synthesis of Lasso-precise Implementations 134
6.5 Synthesis of Approximate Implementations 136
6.6 Bibliographic Remarks . 139

7 Discussion 143
7.1 Relation to Model Measuring . 144
7.2 Future Work . 146

7.2.1 Model counting Implementations 146
7.2.2 Model counting for software verification 146
7.2.3 Quantitative hyperlogics . 146
7.2.4 Optimizing model counting tools 146

Bibliography 149

List of Figures 167

List of Tables 169

xi

Chapter 1

Introduction

Reactive systems are computer systems that continuously interact with their sur-
rounding environment [81]. They constitute the majority of modern IT-systems
and play a crucial role in many applications in transport, telecommunications,
medicine, and several other safety- and security-critical areas. The development
of reactive systems can be very challenging. Constructing correct implementa-
tions for such systems requires developers to anticipate every possible behavior
of the environment, which is in many cases not possible. This has increased
the demand for advanced automated tools that support developers in the con-
struction of safe and secure reactive systems and has made formal verification
indispensable for computer-aided analysis tools.

A major breakthrough in the formal verification of reactive systems was
made with the introduction of model checking [43, 128]. Model checking is a pow-
erful push-button technique that automatically checks the correctness of a sys-
tem with respect to a formal specification. A formal specification is a formula,
given in some logical formalism, that defines the correct behavior of a system
by posing constraints on its interaction with the surrounding environment [91].
The most common logical formalism for the specification of reactive systems are
based on the linear-time paradigm [44, 121, 126, 143], where the behavior of the
system is captured by its set of traces, i.e., the infinite alternating sequences of
input and output values representing the values received from the environment
and those produced in reaction by the system. A linear-time property [13] defines

1

the correct behavior of the system by defining the set of traces that are allowed
to be produced by this system. In this setting, model checking is then defined as
the problem of verifying that all traces of the system lie within the set of traces
defined by linear-time property. Solving the model checking problem thus boils
down to solving the underlying emptiness problem for languages over infinite
words, where we check whether the intersection of the language defined by the
set of traces of the system and the complement of the language defined by the
linear-time property, is empty.

In this thesis, we generalize the emptiness problem to a counting problem
for languages over infinite words, identified as the model counting problem for
linear-time properties. Given a language over infinite words, the model count-
ing problem asks for the number of words, the models, that are defined by the
language. For model checking, this means that we are not only interested in
the existence of a trace in the system that violates a given linear-time property,
but also in the number of such traces. We show that model counting opens up
new applications in formal verification, and lays a new foundation for solving a
variety of quantitative verification problems.

In practice, constructing an implementation of a system that fully satisfies
all the requirements posed by the specification is mostly not possible. This calls
for analysis methods that reflect the degree of satisfaction and its impact on the
safety and security of the system. Model counting can be used to determine the
levels of satisfaction in a system by computing the number of system traces on
which a requirement is violated. The number of traces can be used to determine
the likelihood of satisfying a requirement. For example, in cases where we only
have a partial model of the environment, the number of traces can be used to
determine the number of unanticipated environment scenarios, that may cause
the system to violate the specification [119]. Model counting can also be used for
evaluating the level of security of security-critical systems. The leakage of infor-
mation in a system is in general unavoidable, as some leakage of information is
necessary to maintain a certain level of functionality (A password checker needs
to inform a user whether an entered phrase is correct or wrong). Nevertheless,
bounding the amount of information leaked by a system is necessary to keep
the uncertainty of an adversary at levels, high enough to prevent the adversary
from guessing the secrets in the system. One way to measure the leakage of
information in a system is by relating the number of outputs observable by the
adversary to the number of secret inputs to the system, which determines the
likelihood of guessing the secret data by an adversary [139].

2

We solve the model counting problem for a variety of logical formalisms for
the specification of reactive systems, covering automata-based formalisms [143]
and temporal logics [126, 44]. Here, we distinguish between two types of model
counting problems. The infinite-trace counting problem, where the models are
the infinite traces of the system, and bounded-trace counting problems, where the
models are defined as bounded finite traces of the system. This distinction is
made with respect to the class of the specification under scrutiny. Specifications
that define safety properties [108] for the system, i.e., properties whose violations
can be observed over finite traces of the system, can be solved by considering
finite traces of the system with increasing lengths. Specifications that define
liveness properties [1] for the system, i.e., properties that define the progress of
the system, can only be checked by looking at the infinite behavior of the sys-
tem. In this case, the model counting problem can be either defined over infinite
traces, or finite representations of those, for example by considering ultimately
periodic traces with periods of bound size. We present both automata-theoretic
and symbolic approaches for solving model counting problems for the differ-
ent specification formalisms and the different types of specification classes, and
show how these new algorithms can be used in solving quantitative verification
problems such as probabilistic model checking [104, 94], model checking quan-
titative information-flow policies [139], and the synthesis of approximate imple-
mentations for reactive systems [58], where implementations are approximated
by the number of input sequences for which the specification is satifisfied.

The model counting problem presented in this thesis follows a long history
of model counting problems investigated for propositional logic. Introduced
by Valiant in 1979 [147], the propositional model counting problem has been the
most studied counting problem for logical formalisms [77]. Propositional model
counting generalizes the satisfiability problem for propositional formulas, to a
problem that asks for the number of assignments that satisfy a propositional
formula. The model counting problem for linear-time properties is a general-
ization of the propositional model counting problem, where we not only ask
for the number of valuations of propositions but the number of such valuations
over time. We start with a brief introduction to the different model counting
problems defined for propositional logic and show how we can generalize these
problems to new counting problems for linear-time properties.

3

1.1 Propositional Model Counting

1.1.1 Problem definition

Propositional model counting is the problem of computing the number of satisfy-
ing assignments for a given propositional formula [148]. Given a propositional
formula ϕ over a set of propositional variables P, counting the models of ϕ is the
problem of computing the size of the set

{ν : P→ {0, 1} | ν satisfies ϕ}.

Besides its theoretical importance as the canonical counting problem for the
complexity class #P [147], with the rise of efficient and scalable SAT solvers,
model counting has recently gained a lot of attention on the algorithmic side [77].
Prominent examples of problems solved using propositional model counting are
bounded adversarial planning, where model counting has been used to evaluate
plans in incomplete domains [119], probabilistic reasoning, where DPLL-based
counting algorithms1 can be easily adapted to solving the Bayesian inference
problem by replacing clause functions (that evaluate to 0 or 1) with probability
functions over values between 0 and 1 [9], and quantitative information flow,
where, using the notion of min-entropy [139], computing the amount of infor-
mation leakage in security-critical systems boils down to computing the number
of possible reachable states of a program, which in turn can be bounded by the
number of possible outputs produced by the system [99, 154].

1.1.2 Generalizations of propositional model counting

Two prominent generalizations of propositional model counting are the prob-
lems of projected model counting and maximum model counting.

In projected model counting, we count the satisfying assignments of a propo-
sitional formula projected to a given set of propositional variables [8]. Formally,
for a propositional formula ϕ over a set of propositional variables P, and for a set
of propositional variables X ⊆ P, projected model counting asks for computing
the size of the set

{ν : X → {0, 1} | ∃ν′ : P→ {0, 1}, ν ⪯ ν′, and ν′ satisfies ϕ}

where v ⪯ v′ holds if ν and ν′ agree on the valuations of the variables in X, i.e.,
for all x ∈ X it holds that ν(x) = ν′(x).

1The Davis-Putnam-Logemann-Loveland (DPLL) algorithm for solving the satisfiability prob-
lem of propositional formulas can be adapted as a counting algorithm, where the solving procedure
continues looking for satisfying assignments as long as new ones can be found.

4

Projected model counting can be used for checking the robustness of non-
deterministic plans with respect to initial configurations [8]. For a set of initial
states and a set of goal states, one would like to know for how many initial
states there are plans that succeed in reaching a goal state. Independent of the
actions of the plan and the reached goal state, projected model counting allows
us to compute the number of such initial states by computing the number of
assignment projections projected to the variables defining the initial states.

In maximum model counting [73], one maximizes the number of satisfying
assignments for a given set of propositional variables, called the counting vari-
ables, over another set of propositional variables, known as the maximization
variables. For a propositional formula ϕ over a set of propositional variables
P, a set X ⊆ P, and a set Y ⊆ P, maximum model counting is the problem of
computing the value

max
ν:Y→{0,1}

|{ν′ : X → {0, 1} | ∃ν′′ : P→ {0, 1}, ν, ν′ ⪯ ν′′, and ν′′ satisfies ϕ}|.

Here, the sets Y and X represent the sets of maximization and counting vari-
ables, respectively.

Maximum model counting can be used for model checking quantitative infor-
mation-flow policies. In security-critical systems, we can distinguish between
two types of inputs: secret and public inputs. An external observer of the sys-
tem should not deduce any information about the secret inputs by observing
the outputs of the system. A quantitative information-flow policy may require
that the amount of information leaked to the external observer about the secret
inputs is bounded. By bounding the number of observable outputs, we are able
to limit the leakage of information to the external observer. Maximum model
counting can be used to check whether the system respects this bound by max-
imizing the number of observable outputs over all possible public inputs to the
system2.

1.2 Model Counting for Reactive Systems

1.2.1 Problem definition

Traces of reactive systems can be represented by sequences of evaluations over
a set of atomic propositions AP = I ∪O defining the input values received from
the environment, I, and the output values produced by the system, O. Proposi-
tional model counting can thus be lifted to model counting for linear-time prop-

2In channel capacity terms one would compute the entropy over this maximum value [99].

5

erties by lifting the satisfaction from a set of propositions P to a sequence of val-
uations over a set of atomic propositions AP. Formally, a linear-time property
φ over AP is defined as the set φ ⊆ (2AP)ω [13]. Given φ, the model counting
problem asks for computing the number of words σ ∈ φ, i.e., the size of the set
defined by φ. Regarding model checking, computing the number of violations
in a system T, with respect to a linear-time property φ, is done by solving the
model counting problem for the set defined by Traces(T) ∩ φ, where φ is the
complement language of φ, and Traces(T) is the set of traces of T.

Generalizations of the model counting problem for linear-time properties can
be presented in a similar fashion as for propositional logic. Projected model
counting is the problem, where given a linear-time property φ over a set of
atomic propositions AP, and a set X ⊆ AP, we want to compute the number
of different models of φ projected to atomic propositions in X. Maximum model
counting defines the problem where given sets X, Y ⊆ AP, we want to maximize
the number of models associated with a unique evaluation of the propositions
in Y, after projecting them to the values of propositions in X. Projected model
counting and maximum model counting are relevant for solving quantitative
verification problems for security-critical reactive systems. In such systems, an
adversary who is observing the sequences of outputs of the system should not
deduce anything about the sequences of secret inputs that lead to producing
these outputs. Projected model counting can be used to determine the degree of
deniability by counting the number of different output sequences produced by
the system, and comparing this number to the total number of secret inputs. A
system is secure if the number of secret inputs is much higher than the number
of secret outputs. Maximum model counting can further be used to check that
the number of different outputs for each public input does not exceed a certain
threshold, thus bounding the amount of information leaking from the secret in-
puts to the public outputs with respect to the individual public inputs to the
system [44, 99].

Excursion 1.1 (Branching-time properties). Specifications for reactive sys-
tems can be also defined using branching-time logics. Branching-time logi-
cal formalisms allow us to write properties of states by existentially or uni-
versally quantifying over executions that start in a specific state. For ex-
ample, a branching-time specification could state that "at every position in
an execution, there is always a continuation that can lead back to the initial
state" [13]. Such a property cannot be defined by any linear-time logic as

6

we only require some continuation from a state to lead back to the initial
state, and not all of them.

Prominent examples of branching-time logics include the logics CTL
[19, 42, 60] and CTL∗ [61]. The semantics of these two logics is defined
over infinite trees, instead of infinite words. Trees represent the full infi-
nite behavior of an implementation of a reactive system, where branches of
the trees represent the input from the environment and nodes of the tree
represent a state of the implementation.

The counting problem for branching-time logical formalisms is out of
the scope of this thesis. We will nevertheless give a glimpse of a possible
definition of this problem in our final discussion.

1.2.2 Bounded model counting

In addition to counting the number of traces violating the specification, we are
also interested in determining the degree of violation up to a certain time point,
or under restrictions on the behavior of the environment. Motivated by tech-
niques such as bounded model checking [22], and bounded synthesis [67, 101],
where violations in a system are restricted to bounded traces, we also look into
bounded model counting problems for linear-time properties.

Different types of properties allow for the definition of different types of
bounded models. In general, we can classify linear-time properties according
to their types of violations [13]. A linear-time property can be a combination of
safety and liveness properties [1, 2, 108], distinguishing between violations that
can be detected by observing a finite execution of the system, and violations that
can only be detected by inspecting the infinite behavior of the system. In the fol-
lowing, we give an overview of these different types of properties along with
their associated finite models.

Safety properties. A safety property is a linear-time property that requires that
"a bad thing never happens" [108]. To determine whether an implementation of
a system violates a safety property we need to check whether the "bad thing"
is observable on one of its traces. For example, consider the safety property
that requires an autonomous car to never cross a red light. A violation of the
property is a trace where the car passes a red light. Notice that the action of the
car is irreparable. Once the car has passed the red light, the safety property is
violated forever. We call the finite trace that includes "the bad thing", in the case

7

of the car the action of passing the red light, a bad prefix for the safety property,
which is a prefix of a trace that proves that the system violated the property.

By bounding the length of bad prefixes to some bound n, we can count the
number of bad prefixes for a safety property in a system that are of length n.
We refer to this problem as the bounded model counting problem for bad pre-
fixes. Counting bad prefixes can be used to determine the likelihood of an error
occurring in a system within n steps after the system has been deployed.

Liveness properties. A liveness property is a linear-time property that requires
that "a good thing happens" [1]. An example liveness property is one that requires
a traffic light to eventually turn green, every time a car approaches the traffic
light. In contrast to safety properties, a violation of a liveness property cannot
be detected by considering finite traces of the system. In order to determine
whether a liveness property is violated, we need to look at the full traces of
the system. A violation of a liveness property in the system can be detected by
finding a trace where the good thing is prevented from ever happening again.
This is usually done by searching for a loop in the implementation of the system,
a repeated sequence of inputs that keeps the system from reaching the good
thing. An iterative approach for the detection of violations of a liveness property
is one that looks for increasing sequences of inputs, if repeated forever, will
block the system from satisfying the liveness property.

By bounding the length of finite traces leading to such loops and bounding
the size of the loops themselves, we define bounded finite representations for
violations of liveness properties. We call such finite representations lassos. A
lasso represents a trace of a system where, after performing a finite number of
steps, the system enters a periodic behavior that is performed forever. The size
of the lasso is the joint size of its stem (the execution leading to the loop) and
the size of its loop. Given a linear-time property, the bounded model counting
problem for lassos is defined as the problem of computing the number of lassos
up to a certain size that represent traces that violate (or satisfy) the linear-time
property. Counting the number of lassos can be used to determine the likelihood
of a system ending up in a loop that prevents the system from fulfilling its tasks.

Remark 1.1. Liveness [1, 108] includes properties that require "a good thing to eventu-
ally happen" as well as properties that require that "the good thing happens an infinite
number of times". We will investigate these two types of liveness properties separately.
The first type is defined by the class of co-safety properties. In contrast to other live-
ness properties, co-safety properties can be checked by looking for finite traces where the
"good thing" has already occurred. Such finite traces are called good prefixes.

8

1.3 Contributions

The contributions of this thesis can be divided into two parts. In the first part,
we introduce the model counting problem for linear-time properties and pro-
vide algorithms for solving the problem for properties given in LTL [126], and
as automata over infinite words [143]. Building on that, we establish the re-
lation between model counting and probabilistic model checking [104]. In the
second part, we show the role of model counting algorithms in solving quantita-
tive verification problems such as model checking quantitative information-flow
policies [139], and approximate synthesis for reactive systems [63, 125].

1.3.1 Part I: The model counting problem

We introduce four model counting problems for linear-time properties: The infi-
nite trace counting problem, where we count the infinite traces defined by a given
linear-time property, and the bounded model counting problems for bad-prefixes,
good-prefixes, and lassos, where we compute the number of bad prefixes, good
prefixes of bounded length and lassos of bounded size for a linear-time property.

For the prominent subclass of omega-regular properties [121], we introduce
algorithms for solving the model counting problems for properties given as au-
tomata over infinite words [78, 143], and as formulas in linear-time temporal
logic (LTL) [126]. We introduce automata-based algorithms for each problem as
well as symbolic encodings of these problems in propositional logic and give a
thorough complexity analysis determining a lower and upper bound for each
problem. Our complexity analysis is done in terms of both the traditional deci-
sion complexity classes and the counting complexity classes [124]. For the latter,
we show that the traditional definitions of counting complexity classes [147, 148]
do not suffice for capturing all model counting problems presented in this thesis.

We further establish the relation between the probabilistic model checking
problem for discrete-time Markov chains [95] and each of the counting prob-
lems introduced in this thesis. Probabilistic model checking is a formal verifi-
cation technique for verifying properties of systems with probabilistic behav-
ior [13, 104]. Probabilistic modeling is essential, for reasoning about the relia-
bility of systems. For example, we can use probabilistic reasoning to quantify
the likelihood that a system fulfills its task given the probability for the different
environment scenarios that the system may encounter while it is running. We
revisit probabilistic model checking for linear-time properties, and show how
model counting can be used to solve this problem.

9

1.3.2 Part II: Applications of model counting in formal verification

We demonstrate the role of model counting in two different applications. The
first application is related to security-critical systems. We introduce new tech-
niques based on model counting for solving model checking problems of quan-
titative information-flow policies for reactive systems. The second application
involves the synthesis of reactive systems. We show that model counting can
be used for the automatic construction of approximate implementations for re-
active systems, allowing us to synthesize implementation even when the spec-
ification is unrealizable. In the following, we briefly elaborate on each of these
applications.

Model checking quantitative hyperproperties. We show that model count-
ing can be used for model checking quantitative information-flow policies for
security-critical systems. In security-critical systems, we distinguish between
public and secret inputs. In quantitative information-flow, the goal is to bound
the amount of information leaked from the secret inputs to the public outputs.

Verifying information-flow policies requires reasoning about multiple exe-
cutions in the system. Hyperproperties [46] allow for such reasoning by defining
sets of sets of executions that are allowed to coexists in the system (one can see
hyperproperties as a set of linear-time properties). We study the model check-
ing problem for a certain type of hyperproperties, which we define as counting
hyperproperties. Counting hyperproperties define hyperproperties that express
a bound on the number of executions that may appear in a certain relation. For
example, quantitative noninterference limits the amount of information about
certain secret inputs that is leaked through the observable outputs of a system.
Quantitative noninterference thus bounds the number of executions that have
the same observable input but a different observable output. We study count-
ing hyperproperties in the setting of the logic HYPERLTL [44], a temporal logic
for hyperproperties. We show that, while quantitative hyperproperties can be
expressed in HYPERLTL, the running time of the traditional HYPERLTL model
checking algorithm is, depending on the type of property, exponential or even
doubly exponential in the quantitative bound [66]. We improve this complex-
ity with a new model checking algorithm based on maximum model counting.
The new algorithm needs only logarithmic space in the bound and therefore im-
proves, depending on the property, exponentially or even doubly exponentially
over the traditional model checking algorithm of HYPERLTL [66].

10

Synthesis of approximate implementations. In synthesis, an implementation
of a system is automatically constructed from its formal specification [125]. The
advantage of synthesis is that the constructed implementation is inherently cor-
rect with respect to the given specification and no further debugging is needed
in that respect.

Synthesis shifts the task of developers from implementing the system to writ-
ing specifications for the system. The latter task comes however with its own
challenges, as writing correct specification is not always that simple. Specifica-
tions tend to quickly become unrealizable, i.e., there is no implementation that
fulfills the specification on all environmental behavior.

The unrealizability of a specification is often due to the assumption that the
behavior of the environment is unrestricted. In this thesis, we use model count-
ing to construct approximate implementations for reactive systems. The approxi-
mation is based on fulfilling the specification for restricted environments, in our
case, these are bounded environments, where the environment can only gener-
ate input sequences that are ultimately periodic words (lassos) with finite rep-
resentations of bounded size. The synthesis problem is thus transformed into
an optimization problem, where we search for an implementation that fulfills
the specification over a maximum number of environment inputs. We provide
automata-theoretic and symbolic approaches for solving this synthesis problem,
which use model counting to approximate the behavior of an implementation
under the given bounded environment.

1.4 Related Work

Quantitative approaches to formal verification. Quantitative approaches have
a long tradition in formal verification [85, 86, 88, 90, 94, 105, 139, 141]. In con-
trast to the classical view, where a specification is either satisfied or violated by
a system, quantitative approaches give a more informative perspective on up to
what extent the specification is fulfilled or violated by the system, and can thus
be used to evaluate certain tradeoffs in the implementation of systems.

Shortly after the introduction of model checking in the early eighties [43,
128], several works on quantitative extensions of model checking have started
to follow. Most of the proposed approaches where based on probabilistic noti-
nons [14, 49, 82, 127, 149], ones that were later expanded to newer notions with
cost and reward functions [11, 12, 71, 94], that allowed to tackle robustness prob-
lems, where we are interested in the stability of the system against unanticipated
perturbations in the environment [26, 72, 141, 142].

11

With the development of reactive systems, quantitative notions from other
fields have found their way to formal verification. These include prominent no-
tions like entropy [47, 137]3, which has closely become associated with quanti-
tative verification problems for security-critical systems [139]. The notion of en-
tropy, as used in computer science, was originally introduced by Claude Shan-
non as a measure of the uncertainty of information received in an event sent
over a communication channel [137]. The more information the event carries,
the more the uncertainty about this information is. In information-flow control,
entropy can be used to measure the amount of information leaked out of the
system [97, 139].

The probabilistic model checking problem for linear-time properties can be
approximated by bounded model counting in all variants presented above. Fur-
thermore, solving quantitative verification problems based on specific entropy
notions can also be done using model counting. Such notions include min-
entropy [139], which quantifies the amount of information about a secret gained
by an adversary by a single guess, or notions like language entropy [7, 38],
which defines the growth rate of a language and can be used to determine the
uncertainty of approximating a language with another language.

The model counting problem represents the class of quantitative verifica-
tion problem, where measures computed over the individual traces of a system
are aggregated to a measure for evaluating the whole system. Another class of
counting problems in formal verification includes those that are concerned with
counting the satisfaction of a property along the individual executions of the
system. Examples of such counting problems include verification problems for
counting logics, where the frequency of violations can be measured along an ex-
ecution in a system system [28, 53, 110]. In contrast to the model counting prob-
lem, such approaches do not present quantitative measures for the evaluation of
a system beyond the simple binary satisfaction a property along each execution
of the system. Model counting may be applied on top of these approaches to
determine the satisfaction of the quantitative properties over the whole system.

Counting words of regular languages. The model counting problem has also
been studied for regular languages. Given a finite automaton, the problem is
to compute the number of words of a certain length accepted by the automa-
ton [93]. Counting words of finite automata can be used for random generation

3The notions of entropy goes back to Rudolf Clausius, who used the term to describe the content
of a transformation during a change of a state in a physical system [47]. Here we use the term
entropy for information entropy as introduced by Claude Shannon [137].

12

algorithms [21]. In contrast, the model counting introduced in this thesis is de-
fined over omega-regular languages, i.e., languages over infinite words. Con-
cerning our bounded counting problems, we show that algorithms for solving
model counting for regular languages can be adapted to solving model counting
problems for bad and good prefixes.

Propositional model counting. A variety of algorithms for solving the model
counting problem and its generalizations for propositional logic have been pro-
posed [77]. In general, the algorithms can be split into exact model counting
algorithm and approximate model counting algorithms. In the following, we
give a brief overview of the different types of algorithms developed for solving
both types of algorithms 4.

Exact counting algorithms are either based on exhaustive search techniques
like DPLL, or on conversions into certain normal forms. In DPLL-based ap-
proaches, the search tree is traversed using similar optimizations to search-based
SAT-solvers such as pruning unsatisfiable branches or terminating the search in
a branch as soon as all clauses have at least one true literal. Examples of DPLL-
based model counting tools include CDP [25], Relsat [17], Cachet [135], and
sharpSAT [144]. In conversion-based approaches, the propositional formula is
transformed into another normal form where the model counting problem can
be solved efficiently. For example, the tool c2d [52] uses an algorithm based
on a transformation to deterministic decomposable negation normal form (d-
DNNF) [51].

Approximate counting algorithms are mostly based on sampling methods.
Examples of these algorithms are ones implemented in the tools ApproxCount
[153], SampleMiniSat [74], SampleCount [76], and ApproxMC [33, 34, 116].

Approaches for projected model counting have been proposed in the tools
#Clasp [8], and dSharp [107]. For maximum model counting, an approximate
approach was presented in the tool MaxCount [73].

Remark 1.2. For more information about further topics related to the model counting
problem of linear-time properties, and to each of the problems presented in this thesis we
refer the reader to the bibliographic remarks at the end of each chapter.

4For more details on the counting algorithms, we refer the reader to the survey presented in [77]

13

1.5 Publications

This thesis is based on the following peer-reviewed publications:

• Rayna Dimitrova, Bernd Finkbeiner, and Hazem Torfah (2019). Synthesiz-
ing Approximate Implementations for Unrealizable Specifications. In
Proceeding of the 31st International Conference on Computer Aided Veri-
fication (CAV 2019) [58].

• Bernd Finkbeiner, Lennart Haas, and Hazem Torfah (2019). Canonical
Representations of k-Safety Hyperproperties. In Proceeding of the 32nd
IEEE Computer Security Foundations Symposium (CSF 2019) [64].

• Rayna Dimitrova, Bernd Finkbeiner, and Hazem Torfah (2019). Approxi-
mate Automata for Omega-regular Languages. In Proceeding of the 17th
International Symposium on Automated Technology for Verification and
Analysis (ATVA 2019).

• Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah (2018). Model
Checking Quantitative Hyperproperties. In Proceeding of the 30th Inter-
national Conference on Computer Aided Verification (CAV 2018) [65].

• Bernd Finkbeiner and Hazem Torfah (2017). The Density of Linear-time
Properties. In Proceeding of the 15th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA 2017) [69].

• Hazem Torfah and Martin Zimmermann (2014). The Complexity of Count-
ing Models of Linear-time Temporal Logic. In Proceeding of the 34th In-
ternational Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS 2014, journal version Acta Informatica
2018)[145, 146].

• Bernd Finkbeiner and Hazem Torfah (2014). Counting Models of Linear-
time Temporal Logic. In Proceeding of the 8th International Conference
on Language and Automata Theory and Applications (LATA 2014) [68].

14

Part I

The Model Counting Problem

17

Chapter 2

Models and Properties

In this chapter we lay the foundations for modeling and specifying reactive sys-
tems. We use finite labeled transition systems for representing implementations,
and linear-time properties for representing specifications for reactive systems.
We are especially interested in subclasses of linear-time properties defined by
omega-automata and temporal logics. In the next chapter, we will present model
counting algorithms for specifications that fall within these subclasses.

2.1 Finite Labeled Transition Systems

We model implementations of reactive systems by finite labeled transitions sys-
tems. Labeled transitions systems represents the relation between the actions
to be performed by a system, so called outputs of the system, and the readings
from the surrounding environment, the inputs to the system. Formally, a labeled
transition system is defined by a tuple T = (AP, I, O, S, s0, τ, L) where:

• AP = I ∪O is a set of atomic propositions that define the inputs signals I
and the output signals O.

• S is a set of states a system may reach during runtime. The size of the
system, denoted by |T| is measured by the size of its set of states. The size
of a transition system determines the memory needed to implement the
system.

19

20 Models and Properties

• s0 represents the state in which the system initially starts.

• τ : S× 2I → S is the transition relation of the system that determines the
change in state after receiving new readings from the environment.

• L : S → 2O is a labeling function that determines the output of the system
in each state.

We consider transition systems that are finite, i.e., transition systems with a
finite set of states. Furthermore, throughout our study, we assume that the tran-
sition systems are deterministic and input enabled, i.e., the transition relation is
a total function that maps a state s ∈ S and an input i ∈ 2I to exactly one state
s′ ∈ S.

In general, a transition system can be captured by its set of executions. For-
mally, an execution of a transition system T is a sequence ρ : N → S × 2I of
states and inputs that follows the transition function τ, i.e., for all i ∈ N if
π(i) = (si, ei) and π(i + 1) = (si+1, ei+1), then si+1 = τ(si, ei). We call an exe-
cution initial if it starts with the initial state: π(0) = (s0, e) for some e ∈ 2I . For
an initial execution π of T, we call the sequence σπ : N → 2AP. i 7→ o(si) ∪ ei,
where π(i) = (si, ei), the trace of π. We denote the set of traces of a transition
system T by the set Traces(T) and define the language of T by its set of traces,
i.e., L(T) = Traces(T).

As we will see in the next section, a specification is given as a set of valid
traces that are allowed to be observed in a system under scrutiny. To check
a system against a property, we check the language of the system against that
property.

Figure 2.1 shows an example of a labeled transition system that implements
a controller that manages the access of two processes to a shared resource. The
controller receives two input signals request1 and request2 via which the pro-
cesses can request permission to enter the shared resource. Via the output sig-
nals grant1 and grant2, the controller grants each processes permission to use the
shared resource. The transition system on the right, represents an implemen-
tation of the controller C that manages the entrance of the two processes in a
round robin fashion, i.e., regardless of the input values, given by the symbol
⊤ to resemble all possible inputs, the system permanently outputs a grants to
process p1 and p2 interchangeably, starting with grant1.

In the rest of this thesis and for the matter of convenience we will represent
the labels of the inputs in a transition system symbolically. For example, if the
set of inputs is {r1, r2}, then an edge labeled with the symbol r2, represents two

2.2. Linear-time Properties 21

C

p1 p2

req
uest 1

gran
t 1

request2
grant2

grant1 grant2

⊤

⊤

Figure 2.1: A system composed of a controller C and two processes p1 and p2,
and a transition system T that implements the controller C. For input signals
I = {request1, request2} and output signals O = {grant1, grant2}, the transition
system T defines an implementation of the controller C that grants two processes
access to a shared resource in a round robin fashion.

transition, for the inputs {r1, r2} and {r2}. The symbol ⊤ then represents four
transitions for each of the possible inputs from 2{r1,r2}.

2.2 Linear-time Properties

We represent specifications of reactive systems in this work by linear-time prop-
erties, which define sets of infinite traces that are allowed to be produced by the
system. A linear-time property can be seen as the language of infinite words,
each word describing a valid trace. An infinite word over an alphabet Σ is a
sequence σ : N → Σ of letters from Σ. We denote the set of all infinite words
over Σ by the set Σω. Given an index i ∈ N the letter of a word σ at position
i is the letter equal to σ(i). Given some alphabet Σ, a linear-time property over
Σ is then a set φ ⊆ Σω. An example linear-time property can be given by the
set {σ ∈ {a, b}ω | ∀i ∈ N.∃j ∈ N. σ(j) = a} that defines the set of words over
the alphabet {a, b} where the letter a appears infinitely often. We call a word
σ ∈ Σω a model of a linear-time property φ if σ ∈ φ. If σ ̸∈ φ, then σ is called a
violation of φ.

In the case of a reactive system that is defined over a set of atomic propo-
sitions AP, a linear-time property for this system is a subset of the set (2AP)ω.
For a transition system T defined over AP and for a linear-time property φ over
(2AP)ω, we define the set Models(T, φ) = {σ ∈ Traces(T) | σ ∈ φ} as the set of
traces that are models of φ, and the set Violations(T, φ) = Models(T, φ) as the set
of traces that are not models for φ. We say that the transition system T satisfies
the linear-time property φ if Traces(T) ⊆ φ, denoted by T |= φ. For example,
given the set of atomic propositions AP = {request1, request2, grant1, grant2}, con-
sider the properties ψ1 = {σ ∈ (2AP)ω | ∀i ∈N. grants1 ̸∈ σ(i)∨ grants2 ̸∈ σ(i)}
and ψ2 = {σ ∈ (2AP)ω | ∀i ∈ N. request1 ̸∈ σ(i) → grant1 ̸∈ σ(i + 1)}. The

22 Models and Properties

property ψ1is a mutual exclusion property that requires that the shared resource
managed by the controller C in is not entered simultaneously by the processes
p1 and p2. The transition system in Figure 2.1 satisfies the property ψ1, because
every traces in the transition system, allows only one of the grants to be true at
a time. The transition system does not however satisfy the property ψ2, that re-
quires that a process is granted access only if the process requested access in the
step before. A violation in the transition system can be given by the any traces
that starts with the prefix {grant1, request1}{grant2, request1} . . . , where process
p2 is granted access without requesting to enter the shared resource.

Sometimes we are only interested in a subset of signals and define properties
only for this subset. Given a trace σ ∈ Traces(T) for some transition system T
over a set of atomic propositions AP and given a set C ⊆ AP, we define a pro-
jection of σ to C by a trace σC ∈ (2C)ω, such that, for all c ∈ C and for all i ∈ N,
c ∈ σ(i) if and only if c ∈ σC(i). Given a set of traces Γ ⊆ Traces(T) a projection
of Γ to the propositions C is defined by the set ΓC = {σC | σ ∈ Γ}.

Linear-time properties can be classified to safety, co-safety, and liveness, or a
combination of these properties. In the following we define these classes and
give some example properties that fall into each class.

2.2.1 Safety and co-safety

For an infinite word σ ∈ Σω, we say that, a finite word w ∈ Σ∗, where Σ∗ is
the set of all finite words over Σ, is a prefix of σ, denoted by w < σ, if there is a
position i ∈ N, such that, w = σ(0) · . . . σ(i). For a position i ∈ N, we denote
the prefix of σ of length i by σ[0, i].

Given a linear-time property φ over an alphabet Σ, we call a finite word
w ∈ Σ∗ a bad prefix for φ, if for any infinite word σ ∈ Σω, the word σ′ = w · σ
is a violation of φ, i.e., σ′ ̸∈ φ. For a linear-time property φ we denote the set of
all bad prefixes of φ by BadPref (φ). For a given bound n ∈ N on the length of
bad prefixes, we define the set BadPref (φ, n) = {w ∈ BadPref (φ) | |w| = n} to
contain all bad prefixes of φ of length n.

We call a linear-time property φ over an alphabet Σ a safety property, if for ev-
ery σ ̸∈ φ, there is a position i ∈ N, such that, σ[0, i] ∈ BadPref (φ). An example
of a safety property is the property ψ1 of mutual exclusion we presented above.
A violation of this property is a trace σ, such that, in some position i ∈ N, we
have that grant1 ∈ σ(i) and grant2 ∈ σ(i), and thus, the prefix σ[0, i] is a bad
prefix for the property ψ1.

2.2. Linear-time Properties 23

The dual property for a safety property is a co-safety property that is defined
based on the notion of good prefixes. A finite word w ∈ Σ∗ is a good prefix for a
linear-time property φ over the alphabet Σ, if for any infinite word σ ∈ Σω,
the word σ′ = w · σ is a model of φ, i.e., σ′ ∈ φ. For a linear-time prop-
erty φ we denote the set of all good prefixes of φ by GoodPref (φ). For a given
bound n ∈N on the length of good prefixes, we define the set GoodPref (φ, n) =
{w ∈ GoodPref (φ) | |w| = n} to contain all good prefixes of φ of length n. A
linear-time property φ over an alphabet Σ a co-safety property, if for every σ ∈ φ,
there is a position i ∈ N, such that, σ[0, i] ∈ GoodPref (φ). Co-safety properties
include all properties where a certain guarantee needs to be reached at some
bounded or unbounded point of time. For example, considering again the set
of atomic propositions AP = {request1, request2, grant1, grant2}, the following co-
safety property ψ3 = {σ ∈ (2AP)ω | ∃i ∈N. grant1 ̸∈ σ(i)∧ grant2 ̸∈ σ} requires
that there is a point of time where the shared resource is free. Every model σ of
ψ1 must have a point i where neither grant1 nor grant2 is true. The prefix σ[0, i]
is a good prefix for φ. The transition system in Figure 2.1 does not satisfy ψ3 as
no trace of the transition system has a good prefix for ψ3.

2.2.2 Liveness

A linear-time property φ over an alphabet Σ is a liveness property, if every finite
word w ∈ Σ∗ there is an infinite word σ ∈ Σω, such that, σ′ = w · σ ∈ φ. A live-
ness property is for example the property ψ4 = {σ ∈| ∀i ∈N. request1 ∈ σ(i)→
∃j ∈ N. j ≥ i ∧ grant1 ∈ σ(j)} for a set AP = {request1, request2, grant1, grant2}.
The property ψ4 requires a request from process p1 to be eventually answered
with a grant to access the shared resource. Since the time when to answer the
request is not specified, any finite trace where a request from the process is ob-
served can be extended by any infinite word where at some point the process is
granted access.

The sets of liveness properties and safety are disjoint sets of properties. For
some safety and liveness properties there is however a duality relation. The
reason for that is that the sets of liveness properties and co-safety properties
are not disjoint. Some co-safety properties are also liveness properties. For
example, unbounded reachability properties are the most famous example of
such properties. Consider again the property ψ3 from above. This property
is both a co-safety and a liveness property. Liveness properties that are not
co-safety, are usually ones that either include response properties that require
a certain property to be repeated infinitely often, or persistence properties, where

24 Models and Properties

eventually an invariant must hold [1, 35]. An example of a response prop-
erty is the property ψ4. An example of a persistence property is the property
ψ5 = {σ ∈ (2AP)ω | ∃i ∈ N.∀j ∈ N. j ≥ i → grant1} which requires that at
some point in time only process p1 will be granted access to the resource.

2.3 Omega-Regular Properties

In this section we define the widely used class of ω-regular properties, which
generalizes the definition of regular properties to infinite words [29, 121]. We
define ω-regular properties by introducing different types of ω-automata that
capture the languages defined by ω-regular properties [143]. We reintroduce
the classes of parity, Büchi and co-Büchi automaton in all their branching vari-
ants and show how they are related and the area of application of each type of
automaton.

2.3.1 Parity automata

An alternating parity automaton is a tuple P = (Σ, Q, Q0, δ, µ) where:

• Σ is the alphabet over which the automaton is defined.

• Q is the set of states of the automaton. The size of the automaton is defined
by the size of the set of its states, i.e., |P| = |Q|.

• Q0 ⊆ Q is the set of initial states.

• δ : Q× Σ→ B+(Q), where B+(Q) is a positive boolean combination over
the set of states Q, is the transition relation of the automaton.

• µ : Q → C ⊂ N is a coloring function that maps each state of the automa-
ton with a natural number from the finite set C.

The ω-regular property over an alphabet Σ defined by a parity automaton is
the language defined by this automaton, i.e., the set of infinite words from Σω

accepted by this automaton. The acceptance of an infinite word from Σω by an
alternating parity automaton is defined as follows.

Acceptance in parity automata. A tree T over a set of directions D is a prefix-
closed subset of D∗. The empty sequence ϵ is called the root. The children of
a node n ∈ T are the nodes {n · d ∈ T | d ∈ D}. A Σ-labeled tree is a pair
(T, l), where l : T → Σ is the labeling function. A run of an alternating parity

2.3. Omega-Regular Properties 25

0

1

⊤

a
a

a
a

(a) An alternating par-
ity automaton P for

a

0

0

0 1

(b) A rejecting run of
P for a(a)ω

0

0 ⊤

0 1

(c) An accepting run
of P for (aaa)ω

Figure 2.2: An alternating automaton an its runs for the word σ = a(a)ω, and
for the word σ′ = (aaa)ω.

automaton P = (Q, Q0, δ, µ) on an infinite word σ = α0α1 · · · ∈ Σω is a Q-
labeled tree (T, l) that satisfies the following constraints:

1. l(ϵ) ∈ Q0

2. for all n ∈ T, if l(n) = q, then {l(n′) | n′ is a child of n} satisfies δ(q, α|n|).

A run of P is accepting if every branch either hits a true transition, i.e., the last
transition is of the form δ(q, α) = ⊤ for some state q ∈ Q and letter α ∈ Σ, or is an
infinite branch n0n1n2 · · · ∈ T, and the sequence l(n0)l(n1)l(n2) . . . satisfies the
parity condition, which requires that the highest color occurring infinitely often
in the sequence µ(l(n0))µ(l(n1))µ(l(n2)) · · · ∈ Nω is even. An infinite word σ

is accepted by P if there exists an accepting run of P on σ. The set of infinite
words accepted by P is called its language, denoted L(P).

Figure 2.2 shows an alternating parity automaton P = (2{a}, {q0, q1}, q0, δ, µ)

for the ω-regular property a. The automaton consists of two states q0 and
q1. The initial state has color µ(q0) = 0 and the state q1 has color µ(q1) = 1. The
initial state q0 has two outgoing transitions. A universal transition for the letter
∅, represented by the symbolic value a, that reaches two states q0 and q1, i.e.,
δ(q0, ∅) = q0 ∧ q1. The other transition is a self-loop when the read letter is {a},
i.e., δ(q0, {a}) = q0. The state q1 has one transition for the letter ∅, that goes back
to q1, i.e., δ(q1, ∅) = q1. For the letter {a}, the transition relation δ is accepting,
i.e., δ(q1, {a}) = ⊤. Figure 2.2b shows the run for the infinite word a(a)ω. The
run is represented by a graph that if unrolled is a {q0, q1}-labeled tree. The run
is rejecting, because it has a branch where the highest infinitely often appearing
color is odd. A run for the infinite word (aaa)ω is given in Figure 2.2c. The run

26 Models and Properties

is accepting, because each branch of the run either ends with ⊤, or is an infinite
branch where the highest color is even.

Parity automata can be categorized by the type of their transition relation.
An alternating parity automaton P = (Σ, Q, Q0, δ, µ) is called non-deterministic if
for all states q ∈ Q and all letters α ∈ Σ, the transition relation is a disjunction,
i.e., δ(q, α) =

∨
q′∈Q′

q′, for some set Q′ ⊆ Q. The automaton P is called universal,

if for all states q ∈ Q and all letters α ∈ Σ, the transition relation is a conjunc-
tion, i.e., δ(q, α) =

∧
q′∈Q′

q′, for some set Q′ ⊆ Q. If P is both non-deterministic

and universal, then P is called deterministic. All variants of parity automaton
describe the same set of linear-time properties and form the so-called ω-regular
fragment of linear-time properties. A fact we state by the following lemma and
theorem.

Lemma 2.1 ([78, 118, 136]). For every alternating parity automaton A there is

• a non-deterministic parity automaton N, with L(N) = L(A). The size of N is
exponential in the size of A.

• a deterministic parity automaton D, with L(D) = L(A). The size of A is doubly-
exponential in the size of A.

Theorem 2.1 ([78, 114]). The set of languages defined by the set of deterministic parity
automata is equal to the set of ω-regular properties.

2.3.2 Büchi automata

A Büchi automaton over an alphabet Σ is a parity automaton B = (Σ, Q, Q0, δ, µ)

where the image of µ is restricted to the set {1, 2}. States with color 2 are called
the accepting states of B. A run in B is accepting, if an accepting state appears
infinitely often on that run. Instead of using a coloring function, we use the set
F to define the set of accepting states of B, and thus the automaton can be given
by the tuple B = (Σ, Q, Q0, δ, F).

The set of languages defined by alternating Büchi automata over an alphabet
Σ is equal to the set omega-regular properties over the same alphabet.

Theorem 2.2 (From parity to Büchi [102]). For every alternating parity automaton
P, there is an alternating Büchi automaton B of size polynomial in P.

The same also hold for nondeterministic Büchi automata. In the next theo-
rem, we show how to translate an alternating Büchi automaton, to an equivalent
nondeterministic Büchi automaton.

2.3. Omega-Regular Properties 27

Theorem 2.3 (Miyano-Hayashi [118]). For every alternating Büchi automaton A,
there is a nondeterministic Büchi automaton B of size 2O(|A|) with L(A) = L(B).

Proof. Let A = (Σ, Q, Q0, δ, F). We construct a nondeterministic Büchi au-
tomaton B = (Σ, Q′, Q′0, δ′, F′) as follows

• Q′ = 2Q × 2Q

• Q′0 = {({q0}, ∅) | q0 ∈ Q0}

• δ = {((Γ, ∅), α, (Γ′, Γ′ \ F)) | Γ′ |= ∧
q∈Γ

δ(q, α)} ∪

δ = {((Γ, Υ), α, (Γ′, Υ′ \ F)) | Υ ̸= ∅, υ′ ⊆ Γ′,
Γ′ |= ∧

q∈Γ
δ(q, α), Υ′ |= ∧

q∈Υ
δ(q, α)}

• F′ = {(Γ, ∅) | Γ ⊆ Q}

Deterministic Büchi automata are less expressive than nondeterministic Büchi
automata, and in turn less expressive than omega-regular properties [109]. To
construct an equivalent deterministic automaton for a nondeterministic Büchi
automaton, we can translate the automaton to a deterministic parity automaton
of exponential size.

Theorem 2.4 (Safra’s Construction [134]). For every non-deterministic Büchi au-
tomaton B there is a deterministic parity automaton P of size exponential in B, such
that, L(B) = L(P).

2.3.3 Co-Büchi automata

An alternating co-Büchi automaton over an alphabet Σ is a parity automaton
C = (Σ, Q, Q0, δ, µ) where the image of µ is restricted to the set {0, 1}. States
with color 1 are called the rejecting states of C. A run in C is accepting, if a
rejecting state appears only finitely often on that run. Instead of using a coloring
function, we use the set R to define the set of rejecting states of C, and thus the
automaton be can be given by the tuple C = (Σ, Q, Q0, δ, R).

The set of languages defined by nondeterministic co-Büchi automata over an
alphabet Σ is equal to the set omega-regular properties over the same alphabet.
The set of languages defined by deterministic co-Büchi automata is however
strictly weaker than the set of languages defined by nondeterministic co-Büchi

28 Models and Properties

automata. Another subset of co-Büchi automata that is equivalent to the set of
nondeterministic co-Büchi automata is the set of universal co-Büchi automata,
since every nondeterministic Büchi automaton can be dualized to a universal co-
Büchi automaton by replacing the nondeterministic transitions with universal
ones and defining the set of accepting states as the set of rejecting states of the
co-Büchi automaton.

Theorem 2.5. For every non-deterministic Büchi automaton B there is a universal co-
Büchi automaton U of equal size such that L(B) = L(U).

2.4 Linear-time Temporal Logic

Linear-time temporal logic (LTL) is the most prominent temporal logic for re-
active system proposed by Amir Pnueli in 1977 for defining linear-time prop-
erties [126], and has been, with the rise of model checking, the standard input
language for many verification tools [22, 40, 89, 103]. LTL builds on proposi-
tional logic by adding operators that allow for the definition of truth values of
the propositions over time. Although LTL does not cover the whole set of ω-
regular languages, it allows for the definition of many important specifications
of reactive systems.

For a set of propositions AP, an LTL formula over AP is given using the
following syntax:

φ ::= a ∈ AP | ¬φ | φ ∨ φ | φ | φU φ .

The next operator states that a certain property should hold in the next step.
For example, consider the formula a defined over the set of atomic proposi-
tions AP = {a}. A model of a is any infinite trace σ ∈ (2AP)ω with a ∈ σ(1).
The until operator defines traces where a certain property φ1 must hold until
another property φ2 is satisfied. For example, a model for the formula aU b
defined of the set AP = {a, b} is any trace σ = {a}{a}{a}{b} A trace
σ′ = {a}{a}{}{b}, on the other hand, violates the formula, as a, b ̸∈ σ′(2).

LTL also includes a list of derived operators. The release operator R is the
dual operator to U . The operator R states that the need to satisfying a cer-
tain property φ is released after another property φ2 has been satisfied. A for-
mula φ1R φ2 is equivalent to the formula ¬φ1 U ¬φ2. For example, a model
of the formula aR b is the infinite trace σ = {b}{b}{b}{a, b} The eventu-
ally operator states that a certain property must hold eventually. The trace
σ = {a}{a}{a}{b}{a} . . . as well as the trace {a}{a, b}{a}{a} . . . satisfy the

2.4. Linear-time Temporal Logic 29

formula b. For an LTL formula φ, the formula φ is equivalent to the for-
mula trueU φ. The dual operator to is the always operator ,which states that
a property φ must hold on all positions of a trace. For an LTL formula φ, the
formula φ is equivalent to the formula φR false.

Formally, the semantics of LTL is given as follows. For a set of atomic propo-
sitions AP, a word σ ∈ (2AP)ω satisfies an LTL formula at position i based on
the following rules:

σ, i |= a iff a ∈ σ(i)

σ, i |= ¬φ iff σ, i ̸|= φ

σ, i |= φ1 ∨ φ2 iff σ, i |= φ1 ∨ σ, i |= φ2

σ, i |= φ iff σ, i + 1 |= φ

σ, i |= φ1 U φ2 iff ∃j ≥ i. σ, j |= φ2 ∧ ∀i ≤ j′ < j. σ, j′ |= φ1 .

We say that an infinite trace σ ∈ (2AP)ω satisfies an LTL formula φ, denoted
by σ |= φ, if σ, 0 |= φ. Furthermore, we say that a transition system T satisfies
an LTL formula φ, denoted by T |= φ, if for every σ ∈ Traces(T) it holds that
σ |= φ. The language of an LTL formula φ over AP, denoted by L(φ), is defined
by the set {σ ∈ (2AP)ω | σ |= φ}.

For every LTL formula φ we can build an alternating Büchi automaton A
with L(A) = L(φ). The size of A is linear in |φ|, where |φ| denotes the length
of φ. We show the construction in the next theorem. For the construction,
we define the closure of an LTL formula φ by the set closure(φ) = {ψ,¬ψ |
ψ is a sub-formula of φ}.

Theorem 2.6 (LTL to alternating automata [120, 150]). For every LTL formula φ

there is an alternating Büchi automaton A of size O(|φ|) such that L(A) = L(φ).

Proof. Let φ be defined of a set of atomic propositions AP. We define the au-
tomaton A = (Σ, Q, Q0, δ, F) as follows:

• Σ = 2AP

• Q = closure(φ)

• Q0 = {φ}

• F = {¬(φ1 U φ2) ∈ closure(φ)}

• The transition relation δ is defined according the following rules

30 Models and Properties

– δ(a, α) = a ∈ α

– δ(¬φ, α) = δ(φ, α)

– δ(φ1 ∨ φ2, α) = δ(φ1) ∨ δ(φ2)

– δ(φ) = φ

– δ(φ1 U φ2, α) = δ(φ2, α) ∨ (δ(φ1, α) ∧ φ1 U φ2) .

Using the construction presented in Theorem 2.3, for an LTL formula φ,
we can construct a nondeterministic Büchi automaton N of size 2O(|φ|) with
L(N) = L(φ). Throughout the thesis we show that many problems can be
solved more efficiently if the automaton representing an omega-regular prop-
erty is unambiguous. In general, one can transform a nondeterministic Büchi
automaton to an unambiguous Büchi automaton of exponential size [30]. In the
next theorem, we show that, in the case of LTL, we can construct an unambigu-
ous Büchi of size exponential in the size of the LTL formula directly without
having to construct the nondeterministic Büchi automaton first. This can be
done with a slight modification of the construction in Theorem 2.3 specific to
LTL formulas 1.

Theorem 2.7 (LTL to unambiguous Büchi [13, 20, 50, 92, 151]). For every LTL for-
mula φ, there is an unambiguous Büchi automaton N of size 2O(|φ|) such that L(N) =

L(φ).

Proof. We present a translation that builds on the construction presented in
Theorem 2.3, Theorem 2.6, and the translation of LTL to generalized Büchi au-
tomata [13]. Let φ be defined over a set of atomic propositions AP. We define
N = (2AP, Q, Q0, δ, F) as follows

• Q = {(Γ, Γ′) ∈ 2closure(φ) × 2closure(φ) | Γ is elementary}.
We call a set Γ ⊆ closure(φ) elementary, if it satisfies the following condi-
tions

– Γ is consistent to propositional logic. For all φ′, φ1, φ2 ∈ closure(φ)

∗ If φ1 ∧ φ2 ∈ Γ, then φ1 ∈ Γ and φ2 ∈ Γ

1The same idea was used for the construction of Büchi automata for LTL formula via a con-
struction of a nondeterministic generalized Büchi automaton for the formula, and translating this
automaton to a nondeterministic Büchi automaton [13]. For presentation purposes, we modify the
construction presented in Theorem 2.3 based on the same ideas.

2.5. Model Checking Omega-Regular Properties 31

∗ If φ′ ∈ Γ, then ¬φ′ ̸∈ Γ

∗ If true ∈ closure(φ), then true ∈ Γ

– Γ is locally consistent w.r.t. the until operator. For all φ1 U φ2 ∈
closure(φ) it holds that

∗ If φ2 ∈ Γ, then φ1 U φ2 ∈ Γ

∗ If φ1 U φ2 ∈ Γ, and φ2 ̸∈ Γ, then φ1 ∈ Γ

– Γ is maximal. For all φ′ ∈ closure(φ)

∗ If φ′ ̸∈ Γ, then ¬φ′ ∈ Γ

• The definitions of Q0, F and δ are given as in Theorem 2.3.

For a word σ, each position in the run of U on σ defines the maximal set of sub-
formulas of φ satisfied in that position. If σ is accepted by U this run is unique
for σ.

2.5 Model Checking Omega-Regular Properties

Model checking omega-regular properties [43, 128, 13] describes the problem,
where we check whether a transition system T satisfies an omega-regular prop-
erty φ, i.e., Traces(T) ⊆ φ.

We recap the automata-based model checking approach, where given a non-
deterministic Büchi automaton the algorithm checks whether any trace of the
transition system is not the language defined by the automaton [13].

Let φ be an omega-regular property, and let Nφ = (2AP, Q, Q0, δ, F) be the
nondeterministic Büchi automaton for the complement property φ. To check
whether a transitions system T = (AP, I, O, S, s0, τ, L) satisfies the property φ,
we check the emptiness of the following nondeterministic Büchi automaton B⊗
which defines the intersection of the languages L(Nφ) ∩ Traces(T). The automa-
ton B⊗ = (2AP, Q⊗, Q0,⊗, δ⊗, F⊗) is defined as follows:

• Q⊗ = Q× S

• Q0,⊗ = Q0 × {s0}

• F⊗ = F× S

• δ⊗ = {((q, s), α, (q′, s′)) | q′ ∈ δ(q, α), αO = L(s), s′ = τ(s, αI)} .

If the automaton is not empty, i.e., L(B⊗) ̸= ∅, then there is a word shared
between Traces(T) and Nφ. Thus, there is a trace in T that violates φ.

32 Models and Properties

Theorem 2.8 (LTL Model Checking [13, 151]). For an omega-regular property, repre-
sented by an LTL formula φ, and for a transition system T, the model checking problem
for T and φ can be solved in time exponential in |φ| and polynomial in T.

Proof. Given an LTL formula φ we can compute the nondeterministic automa-
ton for the negated formula ¬φ and use the model checking algorithm described
above. The nondeterministic automaton is of exponential size in the length of
φ, and thus the product automaton is of size exponential in the length of φ and
polynomial in the size of T. The emptiness check can be done in time polynomial
in the size of the product automaton using a nested depth first search algorithm
[89].

Instead of constructing the full automaton for the negated LTL formula and
computing the product automaton with the transition system, we also may guess
an accepting run of the product automaton on the fly by guessing the run state
by state. Guessing a state can be done by guessing a state of the transition sys-
tem and an elementary subset of the closure of the LTL formula as defined in
Theorem 2.7. This results in the following complexity for the LTL model check-
ing problem.

Theorem 2.9 ([13, 151]). The problem of model checking a transition system T against
an LTL formula φ is PSPACE-complete.

Proof. In the following we give a polynomial-space algorithm for model check-
ing a transition system T against an LTL formula φ based on the construction
presented in Theorem 2.7. For the proof of the lower bound we refer the reader
to [13, 138].

The idea of the algorithm is to nondeterministically guess a lasso run in
the product automaton of N¬φ (the nondeterministic Büchi automaton for ¬φ),
and the transition system T. This can be done by guessing the following r =

(q0, s0)(q1, s1) . . . (qi−1, si−1)(qi, si) . . . (qk−1, sk−1) where k = |T| · 2|closure(φ)| defin-
ing the maximal size of the product automaton of N¬φ and T. The algorithm
then checks whether the run

(q0, s0)(q1, s1) . . . (qi−1, si−1)((qi, si) . . . (qk, sk))
ω

is an accepting run in the product automaton by checking whether there is i ≤
j ≤ k− 1 such that qj is an accepting state in N¬φ.

2.5. Model Checking Omega-Regular Properties 33

Using the construction in Theorem 2.7 to construct the automaton Nφ, the
states q0, . . . , qk−1 are subsets from closure(φ), and can thus be guessed by guess-
ing such subsets. After each guess, the algorithm checks whether the new state
satisfies both the transition relation of T as well as the conditions of the transi-
tion relation of N¬φ as defined in Theorem 2.7. Furthermore, at the beginning
of the process, the algorithm guesses the number i, representing the beginning
of the loop of the lasso, and checks at the end of the guessed word whether it
defines a loop in the automaton by checking whether there is a transition from
(qk−1, sk−1) to (qi, si). Along guessing the word, the algorithm keeps track of
whether an accepting state has been guessed from the point of reaching the loop
position i.

The algorithm only needs to store the number i, by storing ⌈log k⌉ bits, the
current guessed state, and the loop state, which all requires space in O(log |T| ·
|φ|).

Chapter 3

Model Counting Algorithms for
Omega-regular Properties

In this chapter, we introduce four model counting problems for linear-time prop-
erties, and present algorithms for solving these problems for the prominent sub-
class of omega-regular properties. We provide algorithms for omega-regular
properties given as deterministic parity automata, nondeterministic parity au-
tomata, and LTL formulas. In the following, we briefly describe each of the four
problems

• The trace counting problem: We start with the general problem of count-
ing infinite traces of a transition system. Given a transition system T and
a linear-time property φ, we want to compute the number of traces in T
that satisfy φ. Due to the infinite length of traces, the number of traces
satisfying a property may reach infinity. For omega-regular languages, we
show that if the number of traces is less than infinity, then it cannot exceed
a certain bound depending on the representation. In this case we can use
specialized algorithms for solving the trace counting problem.

• The bounded bad prefix counting problem: Given a transition system T,
a linear-time property φ, and a bound n ∈ N, the bad prefix counting
problem is the problem of computing the number of bad prefixes of φ of
length n in T.

35

36 Model Counting Algorithms for Omega-regular Properties

• The bounded good prefix counting problem: Given a transition system
T, a linear-time property φ, and a bound n ∈ N, the good prefix counting
problem is the dual problem for the bad prefix counting problem, and asks
for computing the number of good prefixes of φ of length n in T.

• The bounded lasso counting problem: Given a transition system T, a
linear-time property φ, and a bound n ∈ N, the lasso counting problem is
the problem where we are interested in computing the number of lassos of
size n that induce traces in T that satisfy φ.

Table 3.1 gives a summary on the run-time and space requirements of our
algorithms for different representations of omega-regular properties. For the
bounded counting problems, i.e., the counting problems for bad prefixes, good pre-
fixes, and lassos, there is sometimes a tradeoff between the complexities in the
size of the representation and in the bound.

In addition to the algorithmic complexity of each problem, we also provide
a complete complexity analysis in terms of counting complexity classes, provid-
ing lower and upper bounds for each counting problem. An overview of the
different counting complexity classes is given next.

3.1 Counting Complexity

Counting complexity classes are based on counting the accepting runs of non-
deterministic Turing machines. The first counting complexity class, #P, was in-
troduced by Valiant in his seminal paper on the complexity of computing the
permanent [147]. Valiant defined #P as the class of all counting problems asso-
ciated with decision problems in the class NP. Formally, a function f : Σ∗ →N,
for some alphabet Σ, is in #P if there is a nondeterministic polynomial time Tur-
ing machine M such that, for any word w ∈ Σ∗, f (w) is equal to the number
of accepting runs of M on w. The class #P includes many prominent counting
problems including the canonical model counting problem for propositional for-
mulas #SAT. With respect to the counting problems we introduce in this chapter,
we show that the class #P does not capture the complexity of some of these
problems, as some counting problems are associated with decisional problems
in classes less complex than, or beyond the class NP.

Analogously to the class #P, given a decisional complexity class C, we de-
fine the class #C by the class of counting problems associated with decisional
problems in the class C. For example, the class #L defines the set of func-
tions f : Σ∗ → N, for which there is nondeterministic logarithmic-space Turing

3.1. Counting Complexity 37

DPA D Time complexity Space complexity

Traces O(poly(|D|)) O(poly(|D|))

Bad prefixes (n) O(|D| · n) O(|D| · n)
|D| · 2O(n) O(log(|D|) + n)

Good prefixes (n) O(|D| · n) O(|D| · n)
|D| · 2O(n) O(log(|D|) + n)

Lassos (n) 2O(|D|) · n 2O(|D|) · n
|D| · 2O(n) O(|D|+ n)

NPA N Time complexity Space complexity

Traces 2O(poly(|N|)) O(poly((|N|))

Bad prefixes (n) 2O(poly(|N|)) · n 2O(poly(|N|)) · n
|N| · 2O(n) O(log(|N|) + n)

Good prefixes (n) 2O(poly(|N|)) · n 2O(poly(|N|)) · n
2O(poly(|N|)+n) O(poly(|N|) + n)

Lassos (n) 22O(poly(|N|)) · n 22O(poly(|N|)) · n
|N| · 2O(n) O(|N|+ n)

LTL φ Time complexity Space complexity

Traces 2O(poly(|φ|)) 2O(poly(|φ|))

Bad prefixes (n) 22O(|φ|) · n 22O(|φ|) · n
2O(|φ|·n) O(n + poly(|φ|))

Good prefixes (n) 22O(poly(|φ|)) · n 22O(poly(|φ|)) · n
2O(|φ|·n) O(poly(|φ|) + n)

Lassos (n) 22O(poly(|φ|)) · n 22O(poly(|φ|)) · n
poly(|φ|) · 2O(n) O(poly(|φ|) + n)

Table 3.1: Time and space complexity of the different model counting algo-
rithms for omega-regular properties represented by deterministic parity au-
tomaton (DPA), non-deterministic parity automata (NPA), and LTL formulas.
The bound n represents the length of the bad prefix, good prefix, or the size
of the lasso. For the bounded problems, the table distinguishes, using separate
rows, two algorithms with different complexities in the bound. The first row
shows the complexity for a propagation-based algorithm. The second row for
an algorithm that guesses and checks the bounded representation.

38 Model Counting Algorithms for Omega-regular Properties

Repres. Traces Bad prefixes Good prefixes Lassos

DPA #L-comp. #L-comp. #L-comp. #L/#P

NPA #P-comp. #P-comp. #P/#oPSPACE #P-comp.

LTL #PSPACE-comp. #P/#oPSPACE #P/#oPSPACE #P-comp.

Table 3.2: The complexities of counting problems for properties given by a de-
terministic or nondeterministic parity automaton, or by an LTL formula.

machine such that f (w) is equal to the number of accepting runs of M on w.
This stands in contrast to the interpretation proposed by Valiant, where #C de-
notes the class of functions counting the accepting paths of a nondeterministic
polynomial-time Turing machine with an oracle in the class C. To distinguish the
two definitions, we will refer to the oracle counting classes suggested by Valiant
by #oC. For example, the class #oPSPACE will define counting problems associ-
ated with a nondeterministic polynomial-time Turing machine with access to an
oracle in the class PSPACE.

In the next section, we will determine the complexities of our counting prob-
lems with respect to the counting complexity classes above. Table 3.2 gives a
summary on the complexities of all problems studied in this chapter. We use
parsimonious reductions to define hardness and completeness, i.e., the most re-
strictive notion of reduction for counting problems [124]. A function f is #P-
hard, if for every f ′ ∈ #P there is a polynomial-time computable function r such
that f ′(x) = f (r(x)) for all inputs x. In particular, if f ′ is induced by counting
the accepting runs of M, then r depends on M (and possibly on its time-bound
p(n)). Furthermore, f is #P-complete, if f is #P-hard and f ∈ #P. Hardness and
completeness for the other classes are defined analogously.

Excursion 3.1 (Relations between counting complexity classes). We use this
excursion to familiarize the reader with relations between the different coun-
ting classes. In the following, we give a partial inclusion hierarchy on the
counting classes used in this thesis. For more details on the hierarchy of
other counting complexity classes, we refer the reader to [84, 145].

#P#L ⊊

#PSPACE

⊊

⊆ ⊊

#oPSPACE

3.2. Counting Infinite Traces 39

Intuitively, the strict inclusions follow from the fact that the number of runs
of a nondeterministic logarithmic-space Turing machine is bounded from
above by a polynomial in the size of the Turing machine, and the number of
runs of a nondeterministic polynomial-time Turing machine is bounded by
an exponential in the size of the Turing machine. This means that the set of
functions computable by Turing machines in #P is strictly larger than the set
given by #L, and that the set of functions computable by Turing machines
in #PSPACE is strictly larger than the set given by #P, or #oPSPACE.

3.2 Counting Infinite Traces

The number of traces in a transition system T that satisfy or violate a linear-time
property may be infinitely many. Consider for example the transition system de-
picted in Figure 3.1. The transition system has one trace that violates the prop-
erty p, namely the one produced by the input sequence iω, and infinitely
many traces that satisfy the property, namely for all other inputs sequences be-
sides iω.

s0 : p

i

s1 : pi

i

s2 : p

i

⊤

Figure 3.1: A transition system with one trace violating and infinitely many
traces satisfying the property p.

Counting the number of traces in a transition system that satisfy a linear-
time property using enumeration is thus not feasible. For an ω-regular language
represented by a nondeterministic parity automaton N, we can determine the
number of traces in a transition system T by analyzing the graph structure of the
product automaton N⊗ T. This is done in two steps. First we need to determine
whether the product automaton accepts infinitely many words, by checking the
automaton for so-called doubly-pumped lassos, which we will define below. If the
automaton does not contain any doubly-pumped lasso, then we can compute
the number of traces in T that are in the language of N by computing the number
of minimal paths in the product automaton that lead to an accepting loop.

40 Model Counting Algorithms for Omega-regular Properties

3.2.1 Doubly-pumped lassos

A doubly-pumped lasso in a parity automaton is a subautomaton composed of
two lassos, where the loop of one lasso is reachable from a state on the other
lasso. Formally, we define doubly-pumped lassos as follows.

Definition 3.1 (Doubly-pumped lassos in parity automata). A doubly-pum-
ped lasso in a nondeterministic parity automaton P = (Σ, Q, Q0, δ, µ) is de-
fined by a tuple ρ = (u, v, u′, v′) ∈ (Q×Σ)∗× (Q×Σ)+× (Q×Σ)∗× (Q×
Σ)+ such that

• (u, v) and (u′, v′) are lassos in P, and

• there is w ∈ (Q× Σ)+ with |u| < |w| ≤ |u · v|, w ≤ u · v, and w ≤
u′ · v′.

The doubly-pumped lasso ρ is called initial, if (u · v)(0) = (q0, α) for some
α ∈ Σ. It is called accepting, if max{µ(qi) | 0 ≤ i < |v′|, v′(i) = (qi, αi)} is
even.

Figure 3.2 shows example doubly-pumped lassos in the product automaton
of the deterministic parity automaton for p, shown at the top of the fig-
ure, and the transition system depicted in Figure 3.1. The doubly-pumped lasso
on the left can be given by the tuple (u1, v1, u2, v2), where u1 = ((s0, q0), {i}),
v1 = ((s0, q1), {i}), u2 = ((s0, q0), {i}) · ((s0, q1), ∅) · ((s1, q1), {p}), and v2 =

((s1, q0), {p}). The doubly-pumped lasso on the right is defined by the tu-
ple (u1, v1, u2, v2), where u1 = ((s0, q0), ∅) · ((s1, q1), {p}), v1 = ((s1, q0), {p}),
u2 = ((s0, q0), ∅) · ((s1, q1), {p}), and v2 = ((s1, q0), {i}) · ((s2, q1), {p, i}).

In the next lemma, we show that the number of traces in a transition system T
that are models of a parity automaton P is infinite, if and only if, the product
automaton T ⊗ P has an initial accepting doubly-pumped lasso, composed of
two lassos that differ in their traces. If such a doubly-pumped lasso cannot
be found, we can then compute the number of traces accepted by P using an
algorithm that runs in time polynomial in |T| and |P|, when P is unambiguous.

Remark 3.1. In all the following lemmas and theorems in this chapter, we state our re-
sults in terms of non-deterministic, or deterministic automata. All results can be carried
to transition systems by building the product automaton of the transition system and
the given automaton, which results in a new parity automaton. The product automaton
preserves the determinism of the given automaton, because all transition systems that
we consider are deterministic.

3.2. Counting Infinite Traces 41

▷ Parity automaton for p:

q0 : 0

p

q1 : 1
p

p

p

▷Two doubly-pumped lassos in T ⊗ N:

(s0, q0) : 0

(s0, q1) : 1

p, i

p, i

(s1, q1) : 1

p, i

(s1, q0) : 0

p, i
p, i

(s0, q0) : 0

(s1, q1) : 1

p, i

p, i

(s1, q0) : 0

p, i

p, i
(s2, q1) : 1

p, ip, i

Figure 3.2: A parity automaton P for p, and two example doubly-pumped
lassos in the product automaton of the transition system T given in Figure 3.1
and P.

Lemma 3.1. Let N = (Σ, Q, Q0, δ, µ) be a nondeterministic parity automaton. The
number of words in L(N) is equal to infinity if and only if N has an initial accepting
doubly-pumped lasso (u1, v1, u2, v2) with trace(u1 · (v1)

ω) ̸= trace(u2 · (v2)
ω).

Proof. If N has an initial accepting doubly-pumped lasso (u1, v1, u2, v2), where
trace(u1 · (v1)

ω) ̸= trace(u2 · (v2)
ω), then the language of the doubly-pumped

lasso includes every infinite word with a run in N that has a prefix u1, concate-
nated with an infix (v1)

n · w, and a suffix vω
2 , where n ∈ N, and u1 · w · vω

2 =

u2 · vω
2 (the word w is the segment connecting the state reached by u1 to the first

states of the loop v2). Since trace(u1 · (v1)
ω) ̸= trace(u2 · (v2)

ω), every n ∈N dis-
tinguishes a unique word that is accepted by the automaton N (v2 is accepting),
and thus N accepts an infinite number of words over Σ.

To show that the existence of a doubly-pumped lasso (u1, v1, u2, v2) with

42 Model Counting Algorithms for Omega-regular Properties

trace(u1 · (v1)
ω) ̸= trace(u2 · (v2)

ω) is a necessary condition for L(N) = ∞,
we use the following argumentation based on the pigeonhole principle. If N
accepts infinitely many words, then each word has a run in N that has a prefix
u · v such that ρ = (u, v) is a lasso in N. Since N has a finite number of states,
and a finite number of transitions, by the pigeonhole principle, there are two
lassos ρ = (u, v) and ρ′ = (u′, v′) in N with trace(u · vω) ̸= trace(u′ · v′ω) such
that there is a state shared between v and u · v′. This means that (u, v, u′, v′) is
a doubly-pumped lasso in N that is initial, accepting, and where trace(u · vω) ̸=
trace(u′ · v′ω).

A more technical proof is provided for the reader in Section 3.7.

We present an algorithm for finding a doubly-pumped lasso (u, v, u′, v′) in a
nondeterministic parity automaton N that runs in time polynomial in the size
of N. To avoid enumerating all lassos in N, the algorithm first constructs the
self-composition N⊗ of N, where each run in N⊗ represents two runs in N, and
thus, a lasso in N⊗ represents two lassos in N. Our algorithms checks whether
N⊗ has a lasso that represents a doubly-pumped lasso in N.

The self-composition N⊗ is defined as follows. Let N = (Σ, Q, Q0, δ, µ). A
self-composition of N is an automaton N⊗ = (Σ⊗, Q⊗, Q0,⊗, δ⊗, µ⊗), where

• Σ⊗ = Σ× Σ

• Q⊗ = Q×Q

• Q0,⊗ = Q0 ×Q0

• δ⊗ = {((q1, q2), (α1, α2), (q′1, q′2)) | q′1 ∈ δ(q1, α1), q′2 ∈ δ(q2, α2)},

• µ⊗ = {((q1, q2), µ(q2)) | (q1, q2) ∈ Q⊗}

Let ρ = (u, v) be an initial lasso in the automaton N⊗, with u = (q0, q0)(α
1
1, α2

1) ·
(q1

1, q2
1)(α

1
2, α2

2) . . . (q1
j−1, q2

j−1)(α
1
j−1, α2

j−1), and v = (q1
j , q2

j)(α
1
j+1, α2

j+1) . . . (q1
k , q2

k)

(α1
k+1, α2

k+1), for some j, k ∈ N with j ≤ k. The lasso ρ defines two lassos ρ1 and
ρ2 in N. The lasso ρ1 is defined by (u1, v1), where u1 = q0α1

1 · q1
1α1

2 . . . q1
j−1α1

j−1

and v1 = q1
j α1

j+1 . . . q1
kα1

k+1. The lasso ρ2 is defined by (u2, v2), where u2 =

q0α2
1 · q2

1α2
2 . . . q2

j−1α2
j−1, and v2 = q2

j α2
j+1 . . . q2

kα2
k+1. To check whether the lassos

ρ1 and ρ2 form an initial accepting doubly-pumped lasso in N, the lasso ρ must
satisfy the following conditions:

1. ∃h ≤ j. q1
j = q2

h: This condition assures that ρ1 and ρ2 form a doubly-

pumped lasso in the graph of N. If q1
j = q2

h, then the period of ρ1 shares a

3.2. Counting Infinite Traces 43

q0 q× = (−, q1) q = (q1,−)

qeven

≤ c ≤ c q1
≤ c

q2

α1 ̸= α2

≤ c

Figure 3.3: An illustration of algorithm detectDPL. The state q0 is an initial state
in N⊗. The dashed lines represent a path in N⊗ leading from one state to another.
The solid line between q1 and q2 represents a transition (α1, α2) with α1 ̸= α2.
The lines annotated with ≤ c represent paths in N⊗, where the highest color is
less or equal to c.

state with ρ2. This implies that there is a word w with |u1| < |w| ≤ |u1 · v1|
that is a prefix for ρ1 and ρ2.

2. ρ must be accepting, i.e., the lasso ρ2 is an accepting lasso in N.

3. ∃h > j. αh ̸= α′h: The lassos differ in a letter in a position after the shared
state and thus trace(ρ1) ̸= trace(ρ2).

Checking whether N⊗ has a lasso ρ that fulfills conditions 1-3 can be done
in polynomial time in the size of N⊗ using the procedure presented in Algo-
rithm 3.1.

The idea of Algorithm 3.1 is illustrated in Figure 3.3. The algorithm checks
if N⊗ has two loops that start in the same state q = (q1, q2) (line 5). One loop
that satisfies condition 2 (lines 16 -21), and another loop that satisfies condition 3
(lines 23 - 28), and where the highest color seen in the loop is not larger than the
highest color seen in the first loop. For verifying condition 2, we check whether
q can reach itself via a loop where the highest color is an even color c. We do
that by checking whether q reaches itself via a state qeven with color c, and where
no higher color than c is observed along the way from q to qeven and back. The
reachability check is performed using the procedure "Reachable", which checks
for two states q and q′, and a color c, whether there is path in N⊗ from q to q′

where the highest color seen along the path is less or equal to c. If we find a loop
that fulfills condition 2, we continue with checking condition 3 by looking for a
loop from q with highest color c, and with one transition (α1, α2), where α1 ̸= α2.

Since both loops that satisfy condition 2 and condition 3 start in the same
state, they form one big loop in N⊗, that satisfies both conditions. Assuming that
all states in N⊗ are reachable from the initial state, the big loop then represents

44 Model Counting Algorithms for Omega-regular Properties

Algorithm 3.1 Detecting Doubly-pumped Lassos (detectDPL)
1: Input: N = (Σ, Q, Q0, δ, µ),
2: output: N has an accepting doubly-pumped lasso starting in q0 ∈ Q0
3: Begin:
4: b1, b2, b3 := false
5: for q := (q1, q2) ∈ Q⊗ do
6:
7: c := max{µ⊗(q)|q ∈ Q⊗}
8: for q× ∈ {(q′, q′′) ∈ Q⊗ | q′′ = q1} do
9: if Reachable(q×, c, q) then

10: b1 := true
11: break
12: if not b1 then
13: break
14:
15: for c := 0; c ≤ max{µ⊗(q)|q ∈ Q⊗}; c := c + 2 do
16: for qeven ∈ {q | µ⊗(q) = c} do
17: if Reachable(q, c, qeven) ∧ Reachable(qeven, c, q) then
18: b2 := true
19: break
20: if not b2 then
21: break
22:
23: for (q1, α, q2) ∈ {(q, (α1, α2), q′) | q′ ∈ δ(q, (α1, α2)) ∧ α1 ̸= α2} do
24: if Reachable(q, c, q1) ∧ Reachable(q1, c, q) then
25: b3 := true
26: break
27: if not b3 then
28: break
29:
30:
31: if b1 ∧ b2 ∧ b3 then
32: return true
33: return false
34: End.

3.2. Counting Infinite Traces 45

the period of a lasso ρ in N⊗ reached by a stem from an initial state of N⊗ to
q. To check that ρ represents a doubly-pumped lasso in N, we further need to
check that ρ satisfies condition 1 (lines 7 - 13).

To check condition 1, we need to check whether there is a state q× = (q′, q′′)
with q′′ = q1 and such that q is reachable from q×. This is done by calling a
procedure Reachable(q×, c, q). Since q× is on the stem of the lasso we are looking
for, the highest color of the system is irrelevant for the acceptance of the lasso,
and can thus be any color (line 7).

If the algorithm fails to satisfy one the conditions for q, it repeats the process
for a new state from Q⊗. The runtime of Algorithm 3.1, as we state in the next
theorem, is polynomial in the size of N.

Theorem 3.1. Let N be a nondeterministic parity automaton. The problem of deciding
whether |L(N)| = ∞ can be solved in time polynomial in the size of N.

Proof. In Algorithm 3.1, each reachability problem can be solved in polyno-
mial time using using the same procedure for checking reachability in graphs
[111], and additionally tracking the color c observed along the search. The size
of N⊗ is polynomial in N, and therefore, the overall procedure is also polyno-
mial in N.

The algorithm above needs space logarithmic in the size of the automa-
ton N⊗.

Corollary 3.1. Let N be a nondeterministic parity automaton. Deciding whether
|L(N)| = ∞ can be done in space logarithmic in the size of N.

Proof. In Algorithm 3.1, for each iteration of the for-loop in line 7, we only
need to store the value of the state q, and for checking the conditions 1, 2, and
3, we only need to keep the values of the states q×, qeven, q1, q2, the value of
the letter α, and the color c. Every state can be encoded by log(|N⊗|) many
bits. The color c can also be encoded by log(|N⊗|) bits, because the maximum
number of different colors in N⊗ is equal to the size of N⊗. The procedure
Reachable(q, c, q′) only needs to maintain the highest color seen along the ex-
ploration, and thus has the same complexity of the state-reachability algorithm
in graphs, which needs logarithmic space in the size of N⊗ [111].

46 Model Counting Algorithms for Omega-regular Properties

When a linear-time property is given by an LTL formula φ, checking whether
there are infinitely many traces in a transition system T that satisfy the LTL for-
mula can be done by checking whether an automaton defining the product of
a nondeterministic Büchi automaton B with L(B) = φ and T has a doubly-
pumped lasso satisfying the conditions 1,2, and 3 above. The doubly-pumped
lasso in the product automaton can be guessed on the fly, without having to
construct the Büchi automaton B, by guessing the right subsets from 2closure(φ),
which constitute the sets of the Büchi automaton as we have presented in The-
orem 2.7. Detecting such a doubly-pumped lasso can thus be done in space
polynomial in the length of φ, and logarithmic in the size of T.

Theorem 3.2. Let φ be an LTL formula. Deciding whether |L(φ)| = ∞ can be done
in space polynomial and time exponential in |φ|.

Proof. We apply a similar approach as for the polynomial-space algorithm in
Theorem 2.9 for model checking LTL formulas. For every LTL formula φ de-
fined over a set of atomic propositions AP, we can build a nondeterministic
Büchi automaton N = (Σ, Q, Q0, δ, F) of size |N| = 2O(|φ|) with L(N) = L(φ)

as we presented in Theorem 2.7. The sets of N are defined by the set of sub-
sets of closure(φ). A state in N can thus be guessed by guessing a subset of
closure(φ) and checking whether the set satisfies the consistency rules defined
in Theorem 2.7.

Following the approach presented in Corollary 3.1, we guess states q =

(q1, q2) ∈ Q × Q, q× = (q′, q1) for some q′ ∈ Q, qeven = (q1
even, q2

even) with
q2

even ∈ F , q1, q2 ∈ Q × Q, and a letter α = (α1, α2) ∈ Σ × Σ with α1 ̸= α2,
and check whether q is reachable from q×, q reaches itself via qeven, q1 is reach-
able from q, q is reachable from q2, and q2 is reachable from q1 via a transition
with α. This can be done by guessing runs in the automaton N, state by state and
checking whether they satisfy the transitions of N as defined in Theorem 2.7.

Storing each guessed state requires polynomial space in |φ|, and we only
need to store a constant number of these sets.

Corollary 3.2. Checking whether a transition system T has infinitely many traces that
satisfy an LTL formula φ can be done in space polynomial in |φ| and logarithmic in T.

Proof. This can be done by expanding the procedure in the last theorem to one
that additionally, for each guessed state in N, guesses a state in T and checks
that it satisfies the transition relation of T.

3.2. Counting Infinite Traces 47

The number of models of an omega-regular language φ is either infinity, or
bounded exponentially by the size of any nondeterministic parity automaton N,
with L(N) = φ. The number of models for an LTL formula is then bounded by
a double exponential in the length of the formula, considering the exponential
blow-up when translating the LTL formula into a nondeterministic automaton.
We prove the claims in the next theorem.

Theorem 3.3. For a parity automaton P, if |L(P)| < ∞, then |L(P)| ≤ 2|P|·log(|P|).

Proof. Let P = (Σ, Q, Q0, δ, µ). We show that if |L(P)| > 2|P|·log(|P|), then
|L(P)| = ∞. Assume that |L(P)| = k = 2|P|·log(|P|) + 1, and let σ1, . . . , σk ∈
L(P) be all models of L(P). For 1 ≤ ℓ ≤ k, let σℓ = αℓ1 · αℓ2 · · · , and let rℓ =

(qℓ0, αℓ1) · (qℓ1, αℓ2) · (qℓ2, αℓ3) · · · be a run of P over σ. By the pigeonhole principle,
we know that there is 0 ≤ i < |P|, and i < j ≤ |P|+ 1 such that qℓi = qℓj , and

thus that there is a lasso ρℓ = (uℓ, vℓ) in P with uℓ = (qℓ0, αℓ1) · · · (qℓi−1, αℓi) and
vℓ = (qℓi , αℓi+1) · · · (qℓj−1, αℓj). We distinguish two cases:

• Assume that for some 1 ≤ ℓ ≤ k it holds that trace(uℓ · (vℓ)ω) ̸= trace(rℓ).
This implies that for a number of repetitions n, we have that trace(uℓ ·
(vℓ)n) ̸= trace(rℓ[. . . |uℓ|+ |vℓ|n]), and that (uℓ · (vℓ)n)(h− 1) ̸= rℓ(h− 1)
for some |uℓ| + |vℓ| < h ≤ |uℓ| + |vℓ|n. Since r is accepting, then also
by the pigeonhole principle there must be two positions h ≤ i < j such
that qi = qj and µ(qj) is even and the highest color observed along r. It
follows that P has an initial accepting doubly-pumped lasso (uℓ, vℓ, u′, v′)
where u′ = rℓ[. . . i − 1] and v′ = rℓ[i . . . j], and with trace(uℓ · (vℓ)ω) ̸=
trace(u′ · (v′)ω). According to Lemma 3.1 the automaton P has infinitely
many models.

• Assume for all 1 ≤ ℓ ≤ k it holds that trace(uℓ · (vℓ)ω) = trace(r). By the
pigeonhole principle, there must be 1 ≤ ℓ ̸= ℓ′ ≤ k such that vℓ shares
a state with uℓ′ · vℓ′ . This implies that the automaton P has an initial ac-
cepting doubly-pumped lasso (uℓ, vℓ, uℓ′ , vℓ

′
). Since all σ1, . . . , σk are dif-

ferent, it follows that trace(uℓ · (vℓ)ω) ̸= trace(uℓ′ · (vℓ′)ω), and thus P has
infinitely many models.

Corollary 3.3. For an LTL formula φ, |L(φ)| < ∞, then |L(φ)| ≤ 22O(|φ|) ·log(|φ|).

48 Model Counting Algorithms for Omega-regular Properties

In the next theorem we show that there are LTL formulas with doubly-
exponential many words. The proof is given in Section 3.7.

Theorem 3.4. There is a family of LTL formulas φn for n ∈N with |φn| ∈ O(n) and
|L(φn)| ∈ 22O(n) ·log(n).

3.2.2 Algorithms for counting infinite traces

From Theorem 3.3, we know that if the number of models of a parity automaton
P is bounded, then P has a unique accepting lasso for each model σ ∈ L(P) of
size at most |P|. To compute the number of models of P we can enumerate the
accepting lassos in P up to size P, which may require time exponential in the
size of |P|.

In the following we show that if P is unambiguous, we can compute the
number of its models in time only polynomial in the size of P. The counting
procedure is presented in Algorithm 3.2, which is based on the following idea.
Since P is unambiguous, we know that any word accepted by P has exactly one
run in P which, after at most |P| steps, reaches an accepting loop in P. Since P
has no doubly-pumped lassos, the number of words accepted by P is equal to
the number of finite paths of length |P| that reach an accepting loop in P.

The algorithm starts by marking every state that lies on an accepting loop in
P with the value 1. After marking the states, the algorithm enters the following
loop. In each iteration i of the loop, the algorithm marks each state q in the
automaton by the number of finite paths of length i that reach an accepting loop
from q. This is computed by adding the values of all the successor states of q.
Since any accepting loop is reached within at most |P| steps from the initial state,
the algorithm iterates |P| times. The sum of values mapped to the initial states
defines then the number of initial paths leading to an accepting loop in P, which
is equal to the number of words accepted by P.

Theorem 3.5. Let P be an unambiguous parity automaton, and let |L(P)| < ∞. Com-
puting the number of models of L(P) can be done in time polynomial in the size of P.

Proof. Let P = (Σ, Q, Q0, δ, µ). The correctness of Algorithm 3.2 can be shown
by proving the following strengthening of the problem. Given a set Qι ⊆ Q
and a bound n ∈ N, computing the number of finite sequences r in (Q × Σ)n

with proj(1, r(0)) ∈ Qι that reach an accepting loop in P can be done in time
polynomial in n and in the size of P. The strengthening can be proven using

3.2. Counting Infinite Traces 49

Algorithm 3.2 Counting Infinite Traces (countTraces)
1: Input: Unambiguous parity automaton P = (Σ, Q, Q0, δ, µ), n ∈N, Qι ⊆ Q
2: Output: ∑

qι∈Qι

|L(qι)|

3: Begin:

4: for qι ∈ Qι do
5: if detectDPL(P, qι) then
6: return ∞
7:
8: C := ∅
9: for q ∈ Q do ▷ Mark states

10: if ReachesAcceptingLoop(P, q) then
11: C(q) = 1
12: else
13: C(q) := 0
14:
15: for i := 1; i ≤ n; i := i + 1 do ▷ Count
16: C′ := ∅
17: for q ∈ Q do
18: for α ∈ Σ do
19: for q′ ∈ δ(q, α) do
20: C′(q) := C′(q) + C(q′)
21: C := C′

22:
23: return ∑

qι∈Qι

C(qι)

24: End.

induction over n. We leave the proof to Section 3.7.

The next corollaries follow from Theorem 2.7, Theorem 2.4, and Theorem 3.5.

Corollary 3.4. Let N be a nondeterministic parity automaton, and let |L(N)| < ∞.
Computing the number of models of N can be done in space polynomial in the size of N.

Corollary 3.5. Let φ be an LTL formula, and let |L(φ)| < ∞. Computing the number
of models of φ can be done in time exponential in |φ|.

3.2.3 Complexity bounds

In the next three theorems, we present the complexity of the trace counting prob-
lem for omega-regular properties in terms of counting complexity classes. We
provide lower and upper bounds for the counting problems for omega-regular

50 Model Counting Algorithms for Omega-regular Properties

properties represented by deterministic parity automata, nondeterministic par-
ity automaton, and LTL formulas.

Theorem 3.6. Let D be a deterministic parity automaton, with |L(D)| < ∞. The
problem of computing the number models of D is #L-complete.

Proof. Let D = (Σ, Q, q0, δ, µ) with |Q| = n. To show that the problem is in #L,
we define a nondeterministic logarithmic-space Turing machine M as follows.
The machine M guesses a word ρ = (q0, α1) · (q1, α2) · · · (qn−1, αn) from (Q ×
Σ)n letter by letter. After guessing the word, the machine M continues with
guessing letters from (Q× Σ) until it guesses a letter with a state that is equal
to the state of the nth letter, or unitl it has guessed n further letters. In both
cases, the machine terminates. After guessing each letter, the machine checks
whether the guessed letter satisfies the transition relation δ. If not it rejects. If
the last guessed letter is not equal to the nth guessed letter the machine also
rejects. Finally, if the highest color of a state of a letter guessed between the nth
and the last letter is not even, then the machine also rejects. In all other cases,
the machine accepts.

When the machine M accepts, the guessed word represents an accepting
lasso in D. The first n letter represent the stem of the lasso. The sequence of
letters between the nth letter and the last one represent the loop of the lasso.
Each accepting run of M represents a unique lasso in D, because each word
consisting of the first n letters defines a unique finite run in D, and because the
machine terminates after the first reoccurrence of the state in letter n, all the
loops guessed by the machine M are unique for the guessed stem. Furthermore,
all accepting runs of D are represented by some accepting run of the machine,
because an accepting loop of D is reached after at most n steps, otherwise D
would contain a doubly-pumped lasso.

To meet the space requirement, M only stores the currently guessed letter,
the letter guessed at position n, the highest color seen after the letter n, and uses
a binary counter to guess exactly 2n symbols. The machine M discards any other
guessed letters.

The lower bound of the problem matches its upper bound, and can be proven
by encoding a logarithmic-space Turing machine into the problem. The reduc-
tion is given in Section 3.7.

If the omega-regular property is given by a nondeterministic parity automa-
ton, we will not be able to guess the run step by step, as one word may have

3.2. Counting Infinite Traces 51

more than one run in the automaton. An algorithm for counting the number of
models must thus guess the complete word in one step and verify whether it
reaches some accepting loop in the automaton.

Theorem 3.7. Let N be a nondeterministic parity automaton, with |L(N)| < ∞. The
problem of computing the number models of N is #P-complete.

Proof. Let N = (Σ, Q, Q0, δ, µ). To show that the problem is in #P, we define
a nondeterministic polynomial-time Turing machine M that works as follows.
The machine M guesses a word σ of length |N| over Σ, and checks whether
a run of σ in N reaches some accepting loop in N. The check can be done in
polynomial time using a depth first search (DFS) procedure. The DFS starts at
one of the states in Q0, and, in each step checks if a transition in the automaton
is consistent with the next letter of the guessed word. When the DFS iterates
over the word and reaches some state q ∈ Q, the DFS procedures continues
by looking for an accepting loop back to q. If such loop is not found, then the
guessed word is not a prefix of a model of N.

Since N has no doubly-pumped lassos, each guessed word leading to an
accepting loop is a prefix of a unique model of N. This implies that the number
of accepting runs of M is equal to the number of models of N.

The matching lower bound can be proven by reducing the model counting
problem for propositional formulas in disjunctive normal form (#DNF) to the
problem [77, 148]. We leave the proof to Section 3.7.

For LTL we need to count the number of minimal paths in an equivalent
nondeterministic Büchi automaton that lead to a loop in that automaton. We
can guess such a path on the fly in space polynomial in the LTL formula using
the construction presented in Theorem 2.7.

Theorem 3.8. Let φ be an LTL formula, with |L(φ)| < ∞. The problem of computing
the number models of φ #PSPACE-complete.

Proof. For proving the upper bound we can construct the following nondeter-
ministic polynomial-space Turing machine M. From Theorem 2.7, we know that
we can construct a nondeterministic Büchi automaton N the states of which are
pairs of subsets of states of the alternating automaton, i.e., its sets of states is
defined by 2closure(φ) × 2closure(φ). If the number of models of φ is bounded, then
the automaton N has no doubly-pumped lasso composed of two different las-

52 Model Counting Algorithms for Omega-regular Properties

sos, and thus to count the number of models we can count the number of runs
of length N leading to an accepting loop.

The machine M guesses on the fly a word of length 2|closure(φ)| · 2|closure(φ)|,
and checks if this word has a run that leads to an accepting loop in N. The
word and the run are guessed letter by letter, and state by state. The state is
guessed by guessing an elementary subset from closure(φ) and another subset
from closure(φ) and verifying it against the conditions of the transition relation
as defined in Theorem 2.7. After guessing the word, the machine checks whether
the reached state can be reached again from itself, passing through an accepting
state in N (similar to the machine in Theorem 3.6). This can be done in exponen-
tial time since we only need to guess at most 2 · 2|closure(φ)| · 2|closure(φ)| states.

Since the constructed nondeterministic automaton is unambiguous, each ac-
cepting run of the machine defines a uniques model of φ, and thus counting the
number of models of φ can be done by counting the number of accepting runs
of M.

To show the matching lower bound, we can encode the runs of a polynomial-
space Turing machine into an LTL formula using a parsimonious reduction. The
reduction is presented in Section 3.7.

3.3 Counting Bad Prefixes

In this section, we introduce algorithms for computing the number of bad pre-
fixes of bounded length for omega-regular properties represented by determin-
istic parity automaton, nondeterministic parity automaton and LTL formulas.

The bad-prefix counting problem for linear-time properties is formalized as
follows

Definition 3.2 (The Bounded Bad-prefix Counting Problem). Given a linear-
time property φ over an alphabet Σ, and a bound n ∈ N, the bad-prefix
counting problem for φ and n is the problem of computing the value

#Bad(φ, n) = |{u ∈ Σn | u ∈ BadPref (φ)}|.

We start with an algorithm for deterministic parity automaton and show that
computing the number of bad prefixes can be done in polynomial time in the
size of the automaton and the bound on the bad prefixes. For nondetermin-
istic parity automata and LTL formulas, we first need to construct an equiva-

3.3. Counting Bad Prefixes 53

lent deterministic parity automaton. This results in model counting algorithms
that are exponential in the size of the nondeterministic automaton and doubly-
exponential in the length of the LTL formula.

We also give a complete complexity analysis of each of the model counting
problems over the different representations with respect to counting complex-
ity classes. Here, we show that the problems of computing the number of bad
prefixes of bounded length are complete for the counting complexity classes #L,
#P, and #oPSPACE, when the omega-regular property is represented by a deter-
ministic parity automaton, a nondeterministic parity automaton, and an LTL
formula, respectively.

3.3.1 Algorithms for counting bad prefixes

To determine the number of bad prefixes of some length for some omega-regular
property represented by a deterministic parity automaton P, we apply the algo-
rithm presented in Algorithm 3.3, which is based on the following idea. If a
word w is a bad prefix for L(P), then the state reached in P by following the
word w must be one that lies on no accepting run in P. The algorithm marks
each state in P that does not lie on some accepting run in P (lines 4-7). A state q
lies on an accepting run in P if an accepting loop is reachable from q. In the next
phase, the algorithm computes a mapping that maps each state q in P with the
number of words of length n that lead to a marked reachable state from q. The
mapping is computed iteratively for words of increasing length up to the de-
sired length n. The mappings computed for a length i are used to compute the
mappings for length i + 1. This is done using the following approach. Initially,
each marked state q, i.e., q ∈ M, is mapped to 1 (lines 8-13). All other states are
mapped to 0. In iteration i < n (lines 15-21) the number of words of length i + 1
that lead to a state in M from some state q can be computed by adding up the
number of words that lead to M from all successors q′ of q. This holds because,
every word w of length i that leads to a state q′′ in M from in q′, can be extended
into a word w′ = α · w of length i + 1, where δ(q, α) = q′, that leads to the same
state q′′ in M starting in q. After n iteration we have computed a mapping that
maps each state in P with the number of words of length n that reach M. The
number of bad prefixes of length n is equal to the mapping C(q0) of the initial
state q0. Figure 3.4 shows an execution run of Algorithm 3.3 on a determinis-
tic parity automaton for the language L(aU b). The runtime of Algorithm 3.3 is
polynomial in both the bound n and the size of the given deterministic parity
automaton.

54 Model Counting Algorithms for Omega-regular Properties

Algorithm 3.3 Counting Bad Prefixes (countBadPrefixes(P, n))
1: Input: P = (Σ, Q, q0, δ, µ), n ∈N

2: Output: |{w ∈ Σn | w is a bad prefix for L(P)}|
3: Begin:
4: M := ∅
5: for q ∈ Q do ▷ Mark States
6: if not ReachesAcceptingLoop(P, q) then
7: M := M ∪ {q}
8: C := ∅
9: for q ∈ Q do ▷ Initialize Count

10: if q ∈ M then
11: C(q) := 1
12: else
13: C(q) := 0
14: i := 0
15: while i < n do ▷ Count
16: C′ := ∅
17: for q ∈ Q do
18: for α ∈ Σ do
19: q′ := δ(q, α)
20: C′(q) := C′(q) + C(q′)
21: C := C′

22: i := i + 1
23: return C(q0)
24: End.

Theorem 3.9. Computing the number of bad prefixes of length n for an omega-regular
property, represented by a deterministic parity automaton D, can be done in time poly-
nomial in n and |D|.

Proof. The counting algorithm presented in lines 15 to 22 in Algorithm 3.3
resembles the algorithm for counting finite words of length n in a finite state au-
tomaton, if we consider the marked states to be the accepting states of the finite
automaton [93]. This algorithm computes the number of words in polynomial
time in n and the size of the finite automaton. To prove the correctness of the
theorem we need to show that the markings of the states represent a finite state
automaton that accepts all bad prefixes of L(D), and that such markings can be
computed in polynomial time in n and |D|.

Let D = (Σ, Q, q0, δ, µ). Assume a word w is a bad prefix for L(D), and let
qw ∈ Q be the state reached in D following the word w. If qw is not marked, i.e.,
qw ̸∈ M, then qw lies on some accepting path in D. This however means that

3.3. Counting Bad Prefixes 55

▷ Mark States:

1 1

0

a ∧ b

b

a ∧ b

⊤

⊤

a ∧ b

b

a ∧ b

⊤

⊤

▷ Count bad prefixes of length 2:

a ∧ b

b

a ∧ b

⊤

⊤

0 1

0

Initialize

a ∧ b

b

a ∧ b

⊤

⊤

1 4

0

i = 0

a ∧ b

b

a ∧ b

⊤

⊤

5 4

0

i = 1

Figure 3.4: Using Algorithm 3.3 to compute the number of bad prefixes of length
2 for aU b.

there is an infinite word σ such that w · σ ∈ L(D), which in turn means that w
cannot be a bad prefix. If a word w is not a bad prefix for L(D), then its run does
not have any marked states, because if it would have such a state, then w has
a prefix that is a bad prefix for L(D), and thus w must also be a bad prefix for
L(D).

For each state q ∈ Q, we can check whether it lies on an accepting run, by
checking whether there is a run q1 . . . qi−1(qi . . . qm)ω in D, with q1 = q, and
such that max{µ(qj) | i ≤ j ≤ m} is even. Finding such a run can be done in
time polynomial in |D| (the reachability problem in graphs is in NL [111]). This
results in a total complexity that is polynomial in n and |D|.

If the omega-regular property is given by a nondeterministic parity automa-
ton, or an LTL formula, we first need to construct an equivalent deterministic
parity automaton, before applying Algorithm 3.3. This results in an exponential
and doubly-exponential blow-up in the size of the nondeterministic automaton
and the length of the LTL formula, respectively.

Corollary 3.6. Computing the number of bad prefixes of length n for an omega-regular
property, can be done in time polynomial in n, and

56 Model Counting Algorithms for Omega-regular Properties

• exponential in |N|, where N is a non-deterministic parity automaton representing
the omega-regular property.

• doubly-exponential in |φ|, where φ is an LTL formula representing the omega-
regular property.

3.3.2 Complexity bounds

We provide the complexity of the problem of counting bad prefixes in terms of
counting complexity classes. We start by showing that the problem for omega-
regular properties given as a deterministic parity automaton is #L-complete.

Theorem 3.10. The problem of computing the number of bad prefixes of length n ∈N

for an omega-regular property given as a deterministic parity automaton is #L-complete.

Proof. The completeness of the problem for the class #L follows from the com-
pleteness of the problem of counting words of a certain length for DFAs for the
same counting complexity class [5]. We show how we can reduce the word
counting problem for DFAs to the bad-prefix counting problem for DPAs, and
vice versa.

Given a DPA D = (Σ, Q, q0, δ, µ), we construct a DFA A = (Σ, Q, q0, δ, F)
where F is defined by the set of states in Q \W where W is the set of states from
which an accepting loop in D can be reached. Given a bound n, the number
of bad prefixes of length n of the omega-regular property represented by D is
equal to the number of words of length n accepted by A.

To prove the lower bound, let A = (Σ, Q, q0, δ, F), and let n ∈ N. We con-
struct a DPA D = (Σ, Q× {0, . . . , n + 1}, q′0, δ′, µ), where

• q′0 = (q0, 0)

• δ((q, c), α) =



(q′, c + 1) c < n− 1, δ(q, α) = q′

(q′, n) c = n− 1, δ(q, α) = q′, q′ ∈ F

(q′, n + 1) c = n− 1, δ(q, α) = q′, q′ ̸∈ F

(q′, n) c = n, δ(q, α) = q′

(q′, n + 1) c = n + 1, δ(q, α) = q′

• µ(q, c) =

1 c ≤ n

0 c = n + 1

3.3. Counting Bad Prefixes 57

The automaton D follows the transition relation of A and additionally tracks the
length of a word up to a length n. If, after reading n letters, the word is accepted
by A, then the word is a bad prefix for the property represented by D, since any
run starting in the state reached by that word will have an infinite appearance of
the color 1, and thus is a rejecting run in D. If the word ends in a nonaccepting
state of A, every run starting in that state will have an infinite appearance of the
color 0, und is thus accepting. In conclusion, every word of length n accepted
by A represents a unique bad prefix of length n for D.

The completeness of the problem of counting bad prefixes for an omega-
regular property given by a nondeterministic parity automaton for the class #P
can be shown using similar constructions.

Theorem 3.11. The problem of computing the number of bad prefixes of length n ∈N

for an omega-regular property, represented by a nondeterministic parity automaton is
#P-complete.

Proof. The completeness of the problem follows from the completeness of the
problem of counting words of a certain length for a NFA which is complete for
the class #P [93].

The reductions are similar to the reductions presented in the last theorem.
Given an NPA, we can construct an NFA in the same way we did for DPAs. For
the other direction, we construct an NPA in the same way as for DPAs, this time
respecting the nondeterministic transition relation of a given NFA.

To prove the upper bound for LTL, we make use of its polynomial-space
model checking algorithm.

Theorem 3.12. The problem of computing the number of bad prefixes of length n ∈N

for an omega-regular property, represented by an LTL formula is in #oPSPACE.

Proof. Let φ be an LTL formula defined over the set of atomic propositions
AP. We construct the following nondeterministic polynomial-time oracle Turing
machine M with a polynomial-space oracle. The machine M guesses a word of
length n over 2AP and checks using the oracle whether the guessed word is a
bad prefix for φ. This can be done in polynomial space with the same procedure
used for checking the satisfiability of LTL formulas [138], with the additional
constraint that a model of the LTL formula must start with the guessed word.

58 Model Counting Algorithms for Omega-regular Properties

If the oracle accepts the guessed word then the machine M rejects, otherwise it
accepts.

Theorem 3.13. The problem of computing the number of bad prefixes of length n ∈N

for an omega-regular property, represented by an LTL formula is #P-hard.

Proof. We can encode the runs of a nondeterministic polynomial-time Turing
machine using the same encoding presented in the proof of Theorem 3.8 (See
Section 3.7). This time, we can encode the Id’s using only logarithmic many bits
in the size of the Turing machine. We choose the bound n to be equal to the
maximum length of a run of the Turing machine. The number of bad prefixes of
length n of the negation of the LTL formula is equal to the number of accepting
runs of the Turing machine.

3.3.3 Counting good prefixes

Good-prefixes are related to co-safety properties, which require a "good thing to
eventually happen" (See Section 2.2.1). Co-safety properties are dual to safety
properties, and thus a good prefix for a co-safety property φ is a bad prefix for
the dual safety property φ. Computing the number of good prefixes of length n
for a property can be done by computing the number of bad prefixes of length n
for the dual property.

The good-prefix counting problem for linear-time properties is formalized as
follows

Definition 3.3 (The Bounded Good-prefix Counting Problem). Given a linear-
time property φ over an alphabet Σ, and a bound n ∈ N,the good-prefix
counting problem for φ and n is the problem of computing the value

#Good(φ, n) = |{u ∈ Σn | u ∈ GoodPref (φ)}|.

We summarize the complexities for computing the number of good prefixes
for an omega-regular properties in the following theorem.

Theorem 3.14. Computing the number of good prefixes of length n for an omega-
regular property can be done in

1. time and space polynomial in |D| and n, for a deterministic parity automaton D.

3.3. Counting Bad Prefixes 59

2. time exponential in n, and space logarithmic in |D| and polynomial in n, for a
deterministic parity automaton D.

3. time and space exponential in |N| and polynomial in n, for a nondeterministic
parity automaton N.

4. time exponential in n, and space polynomial in |N| and n, for a nondeterministic
parity automaton N.

5. time exponential in n, and space logarithmic in |U| and polynomial in n, for a
universal co-Büchi automaton U.

6. time and space doubly-exponential in |φ| and polynomial in n, for an LTL for-
mula φ.

7. time exponential in n, and space polynomial in |φ| and n, for an LTL formula φ.

Proof. The results in 1 and 2 follow from the results for computing the num-
ber of bad prefixes for deterministic parity automata. When the omega-regular
property is given by a nondeterministic parity automaton we need to transform
this automaton to a deterministic automaton, introducing an exponential blow-
up in the size of the automaton (3). If we enumerate words of length n, we can
check whether this words are bad prefixes for the dual property by guessing
the run of the deterministic automaton on the fly. Statement 5 follows from du-
alizing the automaton to a nondeterministic automaton and counting the bad
prefixes. As for LTL, the complexity in 6 and 7 result from negating the LTL
formula and applying the procedures for counting bad prefixes.

With respect to counting complexity classes we summarize the results in the
following theorem.

Theorem 3.15. The problem of computing the number of good prefixes of length n ∈N

for an omega-regular property φ is

1. #L-complete when φ is represented by a deterministic parity automaton.

2. #P-hard and in #oPSPACE when φ is represented by a nondeterministic parity
automaton.

3. #P-complete when φ is represented by a universal co-Büchi automaton.

4. #P-hard and in #oPSPACE when φ is represented by an LTL formula.

60 Model Counting Algorithms for Omega-regular Properties

Proof. Statement 1 follows from the #L-completeness of the bad-prefix count-
ing problem, since complementing the deterministic automaton can be done in
polynomial time.

To prove the lower bound in statement 2, we can again encode a DNF for-
mula as in the proof of Theorem 3.7. An algorithm for computing the number of
good prefixes is one that enumerates all words of length n, and checks whether
a word is a bad prefix for the complement language.

Statement 3 follows from the #P-completeness of the bad-prefix counting
problem, since any universal co-Büchi automaton can be dualized to a nonde-
terministic Büchi automaton in polynomial time.

Statement 4 follows from the results for counting bad prefixes. An algorithm
for computing the number of good prefixes is one that counts the bad prefixes for
the negated formula. The lower bound is shown by reducing a nondeterministic
polynomial-time Turing machine to the problem.

3.4 Counting Lassos

We proceed with the lasso counting problem for linear-time properties, and in-
troduce algorithms for solving the problem for omega-regular properties given
by deterministic parity automata, nondeterministic parity automata and LTL
formulas. The lasso counting problem is formalized as follows

Definition 3.4 (The Bounded Lasso Counting Problem). Given a linear-
time property φ over an alphabet Σ, and a bound n ∈ N, let Lasso(φ, n) =
{(u, v) ∈ Σ∗ × Σ+ | u · v| = n, u · vω |= φ}. The lasso counting problem for
φ and n is the problem of computing the value

#Lasso(φ, n) = |Lasso(φ, n)|.

We start with a symbolic algorithm based on a translation to propositional
logic. For deterministic parity automata, nondeterministic parity automata, and
LTL formulas, the translations are all polynomial in both the size of the repre-
sentation and the bound. This in turn means that the run time of our algorithm is
exponential in the size of the representation and the bound due to the exponen-
tial complexity of solving propositional formulas (SAT is NP-complete [124]).
We also present an automata-based construction that improves the complexity

3.4. Counting Lassos 61

exponentially in the bound. This however comes at the cost of an exponential
blow-up in the complexity with respect to the size of the representation.

3.4.1 Algorithms for counting lassos

We start with the symbolic approaches by encoding the lasso counting problems
for deterministic parity automata, nondeterministic parity automata, and LTL
formulas into propositional constraints. For an omega-regular property φ, and
a bound n, a satisfying assignment of the propositional constraint is one that
uniquely represents a lasso of length n that satisfies φ. Computing the num-
ber of lassos of length n is thus done by counting the satisfying assignments of
the propositional constraint. Encoding the satisfaction relation of a lasso and φ

depends on the representation in which φ is given. We present the construc-
tions and the different encodings of the satisfaction relation in the next three
theorems.

Theorem 3.16. Given a deterministic parity automaton D, and a bound n ∈ N, we
can construct a propositional formula ϕ of size polynomial in |D| and n such that the
number of models of ϕ is equal to #Lasso(L(D), n).

Proof. Let D = (Σ, Q, q0, δ, µ) with |D| = k, and w.l.o.g. assume that µ :
Q → {0, . . . , |D| − 1}. Our encoding is based on the following fact. Let a lasso
ρ = (u, v) ∈ Σ∗ × Σ+ with |u · v| = n. Since both the lasso ρ and the automaton
D are finite, the run r of the word u · vω can be represented by a lasso ρr =

(ur, vr) ∈ (Q× Σ)∗ × (Q× Σ)+ of length at most n · k. In our encoding below, a
satisfying assignment represents a lasso ρ of length n over Σ, and another lasso
ρr over Q × Σ of length n · k representing the accepting run of D on the word
u · vω. Although, D is deterministic, which means that each accepted word by D
has a unique run in D, a run can still be represented by two different lasso runs
(See Figure 3.5). To avoid counting multiple lasso runs for the same infinite run,
we make sure that ϕ only accepts the valuation of one unique lasso for the run.

The propositional formula ϕ is defined as the following conjunction of propo-
sitional formulas

ϕinit ∧ ϕloop ∧ ϕrun ∧ ϕaccepting ∧ ϕunique.

The formula ϕinit is defined over variables Vδ = {δ(q,α,q′) | q, q′ ∈ Q, α ∈ Σ} and
variables Vµ = {µc

q | q ∈ Q, 0 ≤ c ≤ |D| − 1} that encode the automaton D.
A variable δ(q,α,q′) is used to state whether the transition δ(q, α) = q′ is a valid
transition in D. A variable µc

q is used to state whether the coloring of q in D

62 Model Counting Algorithms for Omega-regular Properties

q0 q1 q2 q1 q2 q1

q0 q1 q2 q1 q2 q1

Figure 3.5: Two lasso runs inducing the same run.

is equal to c. Since D is deterministic, if a variable δ(q,α,q′) is used in a positive
literal, then all variables δ(q,α,q′′) for q′ ̸= q′′ ∈ Q must be used in a negative
literal, i.e., ∧

q∈Q

∧
α∈Σ

∧
q′∈Q

δ(q,α,q′) →
∧

q′′ ̸=q′
δ(q,α,q′′) .

Furthermore, every state of D is assigned to only one color. This means for a
state q ∈ Q the variables µc

q can be positive for only one 0 ≤ c ≤ |D| − 1, i.e.,

∧
q∈Q

∧
0≤c≤|D|−1

µc
q →

∧
0≤c′ ̸=c≤|D|−1

µc′
q .

The formula ϕloop defines the loop position of the lasso ρ, and is defined over
the variables Vloop = {ℓi | 0 ≤ i ≤ n− 1}. A variable ℓi is used to state whether
the loop of the lasso is at position i. Each lasso has a unique loop position. This
means that only one variable ℓi for 0 ≤ i ≤ n− 1 can be true at a time, i.e,

∧
0≤i≤n−1

ℓi →
∧

0≤j ̸=i≤n−1

ℓj .

The formula ϕrun defines the lasso ρr representing the run r in D on the lasso
ρ, and is defined over the variables Vstates = {qh | q ∈ Q, 0 ≤ h ≤ n · k} and
Vletters = {αi | α ∈ Σ, 0 ≤ i ≤ n}. A variable qh is used to state whether the state
at position h in the lasso ρr of the automaton D is equal to q. A variable αi is used
to state whether the ith letter of a lasso ρ is equal to α. Furthermore, the formula
determines the loop position in the lasso ρr using the variables VrunLoop = {rh |
0 ≤ i ≤ n · k− 1}. As for the loops of the lasso ρ, a variable rh is used to state
whether the loop of the run of the lasso is at position h, and only one variable
for some position h can be true at a time. To encode the lasso ρr, the formula ϕrun

defines the relation between the states and letters along the run with respect to
the letter of the lasso ρ and the transition relation δ of D. The constraint ϕrun is

3.4. Counting Lassos 63

given as follows

q00 (3.1)

∧
∧

0≤i≤n·k−1

∧
q,q′∈Q

∧
α∈Σ

(qi ∧
∨

0≤j<n
(ℓj ∧ α∆(i,n,j))→ (δq,α,q′ ↔ q′i+1)) (3.2)

∧
∧

q∈Q

∧
α∈Σ

((qn·k ↔ (
∨

0≤j<n·k
rj ∧ qj))) (3.3)

The lasso representing the run must start with the initial state of D (3.1). If
a state q is at position i in the lasso run ρr, and α is the letter in the lasso ρ

corresponding to the position i in ρr, then the next state q′ at position j + 1 must
satisfy the transition relation δ (3.2). The correspondence between a position in
ρr and ρ is computed using the function ∆, which is defined by

∆(i, n, j) =

i if i < n,

((i− n) mod (n− j)) + j otherwise.

where n − j is the size of the loop of the lasso ρ. The last formula (3.3) makes
sure that the states form a lasso. This is encoded by checking that the last state
is equal to the state at the loop position defined by the variables VrunLoop, i.e., if
the state at position n · k is equal to some state q ∈ Q, then the state at position j,
where j is the loop position of the lasso ρr must be equal to q.

The formula ϕaccepting ensures that the lasso ρr is an accepting lasso, i.e., the
highest color observed in the loop is even. Let o1, . . . , oh ∈ {c | 0 ≤ c ≤ |D| −
1, c is odd }, and let e1, . . . , eh′ ∈ {c | 0 ≤ c ≤ |D| − 1, c is even } for some h, h′.
The formula ϕaccepting is defined by∨

1≤i≤h′
highestColorei

, where

highestColorx =
∨

0≤j<n·k
(rj ∧ existsColorj,x ∧

∧
x<x′<|D|−1

existsColorj,x′)

existsColorj,x = (
∨

q∈Q
(qj ∧ µx

q)) ∨ existsColorj+1,x

existsColorn·k,x = false

Lastly, the formula ϕunique makes sure that we only choose one representative
ρr for the run r. To understand the idea of ϕunique, consider again the two lassos
depicted in Figure 3.5. Both lasso runs induce the same infinite run in D. When
solving the constraint system using only the formulas above, we might get two
satisfying assignments representing two different lassos for the same run in D.

64 Model Counting Algorithms for Omega-regular Properties

To avoid counting a run twice, with the formula ϕunique, we add a constraint that
only accepts the lower lasso (the one with the shortest loop). The formula ϕunique

is defined as follows∨
0≤i<n·k

∨
q∈Q

∨
0≤j<n

(ri ∧ qi ∧ ℓj ∧ existsState(i + 1, q, j, ∆(i, n, j))) ,

where

existsState(i, q, j, d) =
∧

q′∈Q

(q′i → q = q′) ∧ (d = ∆(i, n, j))

∨ existsState(i + 1, q, j, d)

existsState(n · k, q, j, d) = false .

The number of variables needed to encode the lasso counting problem is
polynomial in n and |D|. The size of each of the formulas presented above is
also polynomial both in the bound n and in the size of the automaton D.

In the next theorem we provide an encoding of the lasso counting problem
for nondeterministic parity automata. The encoding is based on the satisfac-
tion relation of the universal co-Büchi automaton for the complement language.
Counting the number of lassos of the complement language allows to determine
the number of lasso of the language itself by computing the difference to the to-
tal number of lassos.

Theorem 3.17. Given a universal co-Büchi automaton U, and a bound n ∈ N, we
can construct a propositional formula ϕ of size polynomial in |U| and n such that the
number of models of ϕ is equal to #Lasso(L(U), n).

Proof. Let U = (Σ, Q, q0, δ, R), and w.l.o.g. assume q0 has no ingoing transi-
tions. Our encoding is based on the following fact. If an infinite word over Σ
represented by a lasso ρ = (u, v) is accepted by U, then its run does not have a
branch with infinite appearances of rejecting states of U (remember, the accep-
tance condition of a universal co-Büchi automaton requires no rejecting state to
appear infinitely often on any branch of the run). Since both the automaton and
the lasso are of finite size, the run of U on ρ can be given by a finite automaton
U′ = (Σ, Q′, q′0, δ′, R′) where

• Q′ = Q × {0, . . . , n − 1}, where each state represents a state in U and a
position in ρ.

3.4. Counting Lassos 65

• q′0 = (q0, 0)

• R′ = R× {0, . . . , n− 1}

• δ′((q, c), α) =

(δ(q, α), ((c + 1) mod (n− |u|)) + |u|) if α = (u · v)(c)
⊥ otherwise

The automaton U′ for ρ is unique, since U is universal. In our encoding below,
a satisfying assignment represents a lasso ρ of length n and its accepting run
represented by U′. The number of satisfying assignments is thus equal to the
number of lassos of length n representing models of U.

The formula ϕ is defied by the following conjunction

ϕinit ∧ ϕloop ∧ ϕrun ∧ ϕaccepting ∧ ϕunique .

The formula ϕinit encodes the transition relation of U and is defined over vari-
ables Vδ = {δ(q,α,q′) | q, q′ ∈ Q, α ∈ Σ} that define the transitions of U.

The formula ϕloop defines a unique loop position of the lasso ρ, and is defined
over variables Vloop = {ℓi | 0 ≤ i ≤ n− 1}.

The formula ϕrun defines the automaton U′ and is defined over variables
Vstates = {v(q,c) | q ∈ Q, c ∈ {0, . . . , n− 1}}, and Vletters = {αi | α ∈ Σ, 0 ≤ i ≤
n}. The formula ϕrun determines which states in U′ are reachable from the initial
state (q0, 0) and is defined as follows

v(q0,0)

∧
∧

q∈Q

∧
c∈{0,...,n−1}

(v(q,c) ↔

∨
q′∈Q

∨
c′∈{0,...,n−1}

∨
α∈Σ

v(q′ ,c′) ∧

∧
0≤i<n

(ℓi → c′ = ∆(c, n, i)) ∧

δ(q′ ,α,q) ∧

αc′

) .

The formula describes that if a state (q, c) is reachable from (q0, 0), then there
must be a predecessor (q′, c′) that reaches (q, c) via a letter α, and such that c′ is
a position preceding c in the lasso ρ, either directly or via the loop, and α must
be equal to the letter in ρ at position c′.

66 Model Counting Algorithms for Omega-regular Properties

The formula ϕaccepting makes sure that U′ is accepting. As mentioned earlier,
the automaton U′ is accepting, if it contains no loop with a rejecting state. This
can be defined using the following idea that we adopt from the bounded syn-
thesis encoding [67]. If U′ has no loop with a rejecting state, then the number
of rejecting state observed so far up to a state in U′ is finite. Thus each state in
U′ can be annotated by the number of rejecting state seen up to this state. The
formula ϕaccepting is defined over the variables Vannotate = {λd

(q,c) | q ∈ Q, c ∈
{0, . . . , n− 1}, d ∈ {0, . . . , |Q| · n} ∪ {−}}. We define ϕaccepting as follows

λ0
(q0,0) ∧∧

q∈Q

∧
c∈{0,...,n−1}

∧
d∈{0,...,|Q|·n}∪{−}

λd
(q,c) →

∧
d ̸=d′∈{0,...,|Q|·n}∪{−}

λd′
(q,c) ∧

∧
q∈Q\R,q′∈Q

∧
c,c′∈{0,...,n−1}

Succ((q, c), (q′, c′)) ∧ λ−
(q,c) → Ann(q′, c′) ≥ Ann(q, c)

∧
q∈R,q′∈Q

∧
c,c′∈{0,...,n−1}

Succ((q, c), (q′, c′)) ∧ λ−
(q,c) → Ann(q′, c′) > Ann(q, c) ,

where Succ((q, c), (q′, c′)) is true when (q′, c′) is a successor of (q, c), and where
Ann(q′, c′) ≥ Ann(q, c) is true when the annotation of (q′, c′) is larger than or
equal to the annotation of (q, c). If U′ is not accepting, then there is no annotation
that satisfies the formula ϕaccepting.

Lastly, the formula ϕunique makes sure that the annotation is unique. This is
done by requiring that each state is annotated with the exact maximum number
of rejecting states seen along a path leading to this state, and by requiring that
each state not reachable from the initial state is annotated with "-". The formula
is define as follows∧

q∈Q

∧
c∈{0,...,n−1}

v(q,c) ↔ λ−
(q,c)

∀q ∈ Q. ∀c ∈ {0, . . . , n− 1}. ∀d ∈ {0, . . . , |U′|}.
λd
(q,c) → ∃q′ ∈ Q \ R. ∃c′ ∈ {0, . . . , n− 1}. Succ((q′, c′), (q, c)) ∧ λd

(q′ ,c′)∨

∃q′ ∈ R. ∃c′ ∈ {0, . . . , n− 1}. Succ((q′, c′), (q, c)) ∧ λd−1
(q′ ,c′) .

The encoding presented in the last theorem can be used to compute the num-
ber of lassos for some bound n for a nondeterministic parity automaton, by first

3.4. Counting Lassos 67

translating the automaton to a universal co-Büchi automaton for the comple-
ment language. The number of lassos can then be computed by subtracting the
number of lassos accepted by the universal co-Büchi automaton from the total
number of lassos of size n over Σ.

Corollary 3.7. Given a nondeterministic parity automaton N over an alphabet Σ, and
a bound n ∈ N, we can construct a propositional formula ϕ of size polynomial in |N|
and n such that the number of models of ϕ is equal to n · (2|Σ|)n − #Lasso(L(N), n).

Theorem 3.18. Given an LTL formula φ, and a bound n ∈ N, we can construct a
propositional formula ϕ of size polynomial in |φ| and n such that the number of models
of ϕ is equal to #Lasso(L(φ), n).

Proof. We use the same idea as in the encoding of the bounded model checking
problem [22]. The formula ϕ is defined as the conjunction

ϕloop ∧ ϕφ .

Let VAP = {ai | a ∈ AP, 0 ≤ i < n} such that ai states whether the atomic
proposition a is true at position i in the lasso. The formula ϕloop ensures that
there is exactly one loop, as we have seen in the last two theorems.

The formula ϕφ encodes the satisfaction relation of φ by stating which valua-
tion of atomic propositions are valid at a every position in the lasso. The formula
defines an unrolling of the alternating automaton of φ over a lasso of size n and
is given inductively as follows

i < n i = nJaKi
n ai

∨n−1
j=0 (lj ∧ aj)J¬aKi

n ¬ai
∨n−1

j=0 (lj ∧ ¬aj)J φ1Ki
n Jφ1Ki+1

n
∨n−1

j=0 (lj ∧ Jφ1Kj+1
n)Jφ1 U φ2Ki

n Jφ2Ki
n ∨ (Jφ1Ki

n ∧ Jφ1 U φKi+1
n)

∨n−1
j=0 (lj ∧ ⟨φ1 U φ2⟩

j
n)

⟨φ1 U φ2⟩in Jφ2Ki
n ∨ (Jφ1Ki

n ∧ ⟨φ1 U φ⟩i+1
n) falseJφ1R φ2Ki

n Jφ2Ki
n ∧ (Jφ1Ki

n ∨ Jφ1R φKi+1
n)

∨n−1
j=0 (lj ∧ ⟨φ1R φ2⟩

j
n)

⟨φ1R φ2⟩in Jφ2Ki
n ∧ (Jφ1Ki

n ∨ ⟨φ1R φ⟩i+1
n) true

All encodings are polynomial in the bound and in the size of the representa-
tion, solving the model counting problem thus requires time exponential in the
bound and the size of the representation.

68 Model Counting Algorithms for Omega-regular Properties

We introduce an alternative automaton-based approach that improves the
time complexity exponentially in the bound, but at the cost of an exponential
blow-up in the size of the representation if the property is given as an unam-
biguous parity automaton, or a double-exponential blow-up when the property
is given by a nondeterministic parity automaton or an LTL formula.

The automata-based approach builds on the following fact. Consider the
automaton depicted in Figure 3.6, and the lasso ρ = (u, v) with u = a · b and
v = a · b. Since both the lasso and the automaton are bounded in size, we can
give a finite representation for the run of the automaton on the word u · vω as
depicted in Figure 3.6. For each position in the lasso, we track the states of the
automaton visited at that position and order them with respect to the order in
which they were visited. Consider for example the representation of the run on
the left. In the first iteration, we visit the states q0, q1, q2, q3, and in this order.
In the second iteration, we have already entered the loop of the lasso and thus
only positions within the loop are marked again by the states of the automaton
visited at each position. Traversing the positions of the loop, we visit the states
q4, q6, and in the iteration that follows, we visit the states q6, q3. At this point
we have reached a loop in the automaton, because we have seen the state q3

twice at the end of the loop. From here on, the sequences of states q4, q5 and
q6, q3 will repeat interchangeably forever. In general, such a loop is reached in at
most n iterations, where n is the size of the automaton. In our example, the left
run can thus be represented by the tuple (q0, q1, (q2, q4, q6), (q3, q5, q3)). Such a
representation is unique for each run on the lasso.

q0 q1 q2 q3 q4 q5 q6
a b a b a b

a

q7 q8

a
b

a

a b (a b)ω

q0 q1 q2 q3 q4

q4 q5 q6

q6 q3 q4

q4 q5

a b (a b)ω

q0 q7 q8 q7

q8 q7

Figure 3.6: Runs of a Büchi automaton over a lasso.

3.4. Counting Lassos 69

Given a lasso ρ = (u, v), we can check whether u · vω is accepted by some
nondeterministic automaton N, by guessing the representation of a run of N on
ρ, and checking whether it represents an accepting run. The acceptance condi-
tion is checked by verifying that along the sequence of states between the last
state in the representation (in our example this was q3) and its repetition in the
representation, we have observed an accepting state of the automaton (in our ex-
ample, we have observed the state q5 in the second iteration of the loop, which
lies between the two appearances of q3).

Guessing the representation can be done nondeterministically by first guess-
ing the tuple of states that would have appeared after the end of the loop (in our
example this is the tuple (q4, q6, q4)), and guessing the next tuple while travers-
ing the word u · v backwards. The guessing is done nondeterministically by
choosing a predecessor for each state in the tuple (in our example we guess
the tuples, (q3, q5, q3) ,(q2, q4, q6), in this order). When a tuple t′ is found that is
equal to the initially guessed tuple t shifted by one position, i.e., for all 1 ≤ i < n,
t(i) = t′(i + 1), it remains to check that the state at the first position of the tuple
t′ (in our case state q2) is reachable from the initial state (q0) of the automaton
with the remainder of the letters in u · v (in our example, moving backwards we
read the letters b then a and reach the state q0).

In the next theorem, we build a nondeterministic finite automaton A that is
based on the procedure we just described. For a nondeterministic Büchi automa-
ton N, and a finite word w, the automaton A checks whether w−1 can be split
into words w = u · v such that u · vω is in L(N). As explained above, the automa-
ton guesses a tuple of |N| states in N, and checks whether the tuple shifted by
one position to the right can be reached traversing w, and whether an accepting
state from N is observed along the way between the two iterations describing
the repetition of the last state of the representation. If such a tuple is found for
the initially guessed tuple, then A checks if the initial state of N can be reached
from the first state in this tuple. The automaton is exponential in the size of N.

Theorem 3.19. For a nondeterministic Büchi automaton N over Σ, we can construct
a nondeterministic finite automaton A over Σ such that a word w ∈ L(A) if and only
if there are words u ∈ Σ∗ and v ∈ Σ+ with w−1 = u · v and u · vω ∈ L(N).

Proof. Let N = (Σ, Q, Q0, δ, F) be an unambiguous Büchi automaton. We de-
fine a nondeterministic finite automaton A = (Σ, Q′, Q′0, δ′, F′) as follows

• Q′ = (Q|N| × {0, . . . , |N| − 1})×Q|N| × {⊥,⊤}|N| × {⊥,⊤}.
A state (q, ℓ, q′, t, b) is composed of a tuple q = (q1, . . . , q|N|) of |N| states

70 Model Counting Algorithms for Omega-regular Properties

from Q representing the guessed states at the end of each iteration in the
representation of a run of a lasso. The position ℓ defines the iteration
between which an accepting state of N has to be observed. The tuple
q′ = (q1, . . . , q|N|) defines the tuple of states reached from the tuple q.
The tuple t states whether an accepting state has been observed along an
iteration. Finally, the flag b, determines whether a shifted tuple of q has
been seen up to reaching this state.

• Q′0 = {((q, ℓ), q,⊥|N|,⊥) | q ∈ Q|N|, 0 ≤ ℓ < h < |N|, q(ℓ) = q(h)}
A guessed initial tuple must have two positions i and j with equal states,
otherwise it does not represent a loop in the run of a lasso.

• F′ = {((q, ℓ), q′, v, b) | q′(0) ∈ Q0, b = ⊤}
A word is accepted, if the shifted initially guessed tuple and an accepting
loop has been seen along the way.

• δ′ : Q′ × Σ→ 2Q′ .
δ′((q, ℓ, q′, t, b), α) = {(q, ℓ, q′′, t′, b′) | ∀1 ≤ i ≤ |N|. q′(i) ∈ δ(q′(i), α)

∧ t′(i) = t(i) ∨ q′′(i) ∈ F,
b′ = b ∨
∀ℓ ≤ j < |N| − 1. q(j) = q′′(j + 1)
∃ℓ ≤ j < |N|. t′(j)

}

If we apply the last construction to an unambiguous automaton, then each
representation of a lasso-run will have a unique run in A. Based on this fact, in
the following, we present an algorithm for solving #Lasso(L(N), n) for an unam-
biguous Büchi automaton N. The procedure is given in Algorithm 3.4.

The algorithm starts by expanding the set of states of A to ones that addi-
tionally count the number of repetitions of the initially guessed tuple of states,
given by the set Q′ = Q× {0, . . . , n}. If a word reaches a state (q, i) ∈ Q′ then
the word allows i lassos to be defined over that word. In each iteration i of the
for-loop in line 8, the algorithm computes for each state in Q′ the number of
words of length i that reach this state starting from an initial state with the same
guessed tuples of states. These values are stored in the mapping Ω and are com-
puted by summing up the values of the predecessor states. When the process is
finished, the total number of lassos can be computed by summing up the values

3.4. Counting Lassos 71

of the initial states, each multiplied by the number c of repetitions of the initially
guessed tuple.

Algorithm 3.4 An Automata-based Algorithm for Counting Lassos
1: Input: Unambiguous Büchi automaton N, n ∈N

2: Output: #Lasso(L(N), n)
3: Begin:
4: Construct A = (Σ, Q, Q0, δ, F) for N as in Theorem 3.19
5: Q′ := Q× {0, . . . , n}
6: Ω = {((q, 0), 1) | q ∈ Q0}
7: Ω′ = ∅
8: for i := 1, i ≤ n, i ++ do
9: for q ∈ Q′ do

10: for α ∈ Σ do
11: for q′ ∈ δ(q, α) do
12: for c ∈ {1, . . . , n} do
13: let (#”q1, ℓ, #”q2,

#”t , b) = q′

14: if ∀ℓ ≤ j < |N|. #”q1(j) = #”q2(j + 1) ∧ b then
15: Ω′(q′, c) := Ω′(q′, c) + Ω(q, c− 1)
16: else
17: Ω′(q′, c) := Ω′(q′, c) + Ω(q, c)
18: Ω = Ω′

19: Ω′ = ∅

20: return ∑
(q0,c)∈Q0×{0,...,n}

Ω(q0, c) · c

21: End.

The complexity of the algorithm is summarized in the next theorem.

Theorem 3.20. For an unambiguous Büchi automaton N, and a bound n ∈ N, the
problem of computing the value #Lasso(L(N), n) can be solved in time linear in n and
exponential in |N|.

The complexity for nondeterministic Büchi automata or LTL formulas fol-
lows from translating the nondeterministic automaton and the LTL formula to
equivalent unambiguous Büchi automata (See Theorem 2.4 and Theorem 2.7).

Corollary 3.8. For a nondeterministic Büchi automaton N, and a bound n ∈ N, the
problem of computing the value #Lasso(L(N), n) can be solved in time linear in n and
double-exponential in |N|.

Corollary 3.9. For an LTL formula φ, and a bound n ∈N, the problem of computing
the value #Lasso(L(φ), n) can be solved in time linear in n and double-exponential in
|φ|.

72 Model Counting Algorithms for Omega-regular Properties

3.4.2 Complexity bounds

Theorem 3.21. For a deterministic parity automaton D, and a bound n ∈ N, the
problem of computing #Lasso(L(D), n) is #L-hard and in #P.

Proof. The lower bound can be proven using the same proof for the lower
bound of Theorem 3.6. To prove the upper bound we can build a nondeter-
ministic polynomial-time Turing machine that works as follows. The machine
guesses a lasso of length n by guessing a stem and period of appropriate size. It
then checks whether the lasso is accepted by the automaton, which can be done
in polynomial time in the size of the lasso and the automaton.

Theorem 3.22. For a nondeterministic parity automaton N, and a bound n ∈ N, the
problem of computing #Lasso(L(N), n) is #P-complete.

Proof. As for deterministic parity automata, we can construct a nondetermin-
istic polynomial-time Turing machine that guesses a lasso and checks whether
it is accepted by N. To prove a lower bound we can encode a DNF formula into
a nondeterministic parity automaton as we did in the proof for Theorem 3.7. We
choose the bound to be equal to the size of the automaton, which is polynomial
in the size of the DNF formula.

Theorem 3.23. For an LTL formula φ, and a bound n ∈N, the problem of computing
#Lasso(L(φ), n) is #P-complete.

Proof. The upper bound follows from the fact that we can encode the problem
into a propositional formula as we have presented above. The lower bound can
be shown by encoding a nondeterministic polynomial-time Turing machine in
an LTL formula as we did in the proof for Theorem 3.8, this time with id’s up
to a polynomial in the size of the Turing machine. We choose the bound to be
equal to the maximum id value.

3.5 Projected Model Counting

We define the projected model counting problem over linear-time properties de-
fined over an alphabet 2AP for a set AP of atomic propositions as follows

3.6. Maximum Model Counting 73

Definition 3.5 (Projected Model Counting). Given a linear-time property φ

over an alphabet Σ = 2AP for a set of atomic propositions AP, and given set
X, Z ⊆ AP such that X ∪ Z = AP, the projected model counting problem
#proj(φ, X) is to compute the value

|{σX ∈ (2X)ω | ∃σZ ∈ (2Z)ω. σX ∪ σZ ∈ L(φ)}|,

where σ1 ∪ σ2 = {σ | ∀i ∈ N. σ(i) = σ1(i) ∪ σ2(i)} is the point-wise union
of σ1 and σ2.

Every projected model counting problem for an omega-regular property φ

defined over an alphabet 2AP for some atomic proposition set AP, and for a pro-
jection set X ⊆ AP, can be reduced to a model counting problem by projecting
an automaton representing the property to another automaton over the alpha-
bet 2X . If the automaton of the property is nondeterministic, then the projection
automaton is also nondeterministic, and thus the complexities of the projected
model counting problems for traces, bad prefixes, good prefixes, and lasso are
equal to the complexities of the model counting problems for nondeterministic
parity automata. In case the property is represented by a deterministic parity
automaton, the the projection automaton becomes nondeterministic, und thus
the complexities for deterministic parity automata for the different problems is
equal to those of nondeterministic automata. For the case of LTL formula, we
only face a blow in the complexity for the counting algorithm. This blow-up
results from the fact that projecting the unambiguous automaton necessary for
computing the number of traces is a nondeterministic automaton that first needs
to be determinized again.

We state the complexities of the projected model counting problem for omega-
regular properties presented by deterministic parity automata and LTL formu-
las in Table 3.3. The difference to the complexities of model counting for the
same representations are marked in red.

3.6 Maximum Model Counting

We define the maximum model counting problem over linear-time properties
defined over an alphabet 2AP for a set AP of atomic propositions as follows

Definition 3.6 (Maximum Model Counting). Given a linear-time property

74 Model Counting Algorithms for Omega-regular Properties

DPA D Time complexity Space complexity

Traces 2O(poly(|D|)) O(poly((|D|))

Bad prefixes (n) 2O(poly(|D|)) · n 2O(poly(|D|)) · n
|D| · 2O(n) O(log(|D|) + n)

Good prefixes (n) 2O(poly(|D|)) · n 2O(poly(|D|)) · n
2O(poly(|D|)+n) O(poly(|D|) + n)

Lassos (n) 22O(poly(|D|)) · n 22O(poly(|D|)) · n
|D| · 2O(n) O(|D|+ n)

LTL φ Time complexity Space complexity

Traces 22O(poly(|φ|))
2O(poly(|φ|))

Bad prefixes (n) 22O(|φ|) · n 22O(|φ|) · n
2O(|φ|·n) O(n + poly(|φ|))

Good prefixes (n) 22O(poly(|φ|)) · n 22O(poly(|φ|)) · n
2O(|φ|·n) O(poly(|φ|) + n)

Lassos (n) 22O(poly(|φ|)) · n 22O(poly(|φ|)) · n
|φ| · 2O(n) O(poly(|φ|) + n)

Table 3.3: Complexity of projected model counting.

over an alphabet Σ = 2AP for a set of atomic propositions AP, and given sets
X, Y, Z ⊆ AP, such that, AP = X ∪ Y ∪ Z, the maximum model counting
problem #max(φ, X, Y, Z) is to compute the value

max
σY∈(2Y)ω

|{σX ∈ (2X)ω | ∃σZ ∈ (2Z)ω. σX ∪ σY ∪ σZ ∈ L(φ)}|,

where σ1 ∪ σ2 = {σ | ∀i ∈ N. σ(i) = σ1(i) ∪ σ2(i)} is the point-wise union
of σ1 and σ2.

For omega-regular properties, we solve the maximum model counting in two
steps. For a maximum model counting problem (L(P), X, Y, Z) for some par-
ity automaton P, we first check if there is a sequence σX ∈ (2X)ω for which
there exists an infinite number of sequences σY ∈ (2Y)ω, for which in turn there
exist a σZ ∈ (2Z)ω such that σX ∪ σY ∪ σZ ∈ L(P). This can be done with a
doubly-pumped lasso analysis as for model counting with the difference that

3.6. Maximum Model Counting 75

this time we need to find a doubly-pumped lasso (u, v, u′, v′) in P such that
trace(u · vω)|X = trace(u′ · v′ω)|X , and trace(u · vω)|Y ̸= trace(u′ · v′ω)|Y. This is
necessary, because we are maximizing the counts over sequence of valuations
over X. Finding such a lasso can be done in polynomial time in the size of the
automaton P, by modifying Algorithm 3.1 to look for a transition with labels
(α1, α2) such that (α1)|Y ̸= (α2)|Y, and loop in the automaton that includes this
transition, and that additionally does not differ at any transition in the loop
on the valuations of X. As for model counting, if the number of sequences
from σY ∈ (2Y)ω exceeds the exponential threshold, then the number of such
sequences is equal to infinity.

Lemma 3.2. Let a parity automaton P over a set of atomic propositions AP and sets
X, Y ⊆ AP. For each sequence σX ∈ (2X)ω the number of sequences σX∪Y ∈ (2X∪Y)ω

that are projections of a model σ ∈ L(P) with (σX∪Y)|X = σ|Y is less or equal than
2|P|·log(|P|), otherwise it is ∞.

If the number of sequence σY is not equal to infinity for any sequence σX ,
then we can solve the maximum model counting problem in time exponential
in the automaton P. The procedure is given in Algorithm 3.5

Algorithm 3.5 Maximum Model Counting

1: Input: B = (Q, q0, 2AP, δ, F), disjoint X, Y, Z ⊆ AP, n ∈N

2: Output: #X,Y,Z(B) > n
3: SCC = acceptingSCC(B)
4: i = 1
5: W =

∪
S∈SCC

S

6: while i ≤ |Q| do
7: i = i + 1
8: for q ∈W do
9: for (q′, α, q) do

10: W ′ = W ′ ∪ {q′}
11: for σ ∈ Π(q) do
12: Π′(q′) = Π′(q′) ∪ {αY∪X · σ}
13: W = W ′

14: W ′ = ∅
15: for q ∈W do
16: Π′(q) = ∅
17: return maxX,Y,Z Π(q0) ≥ n

From Lemma 3.2, we know that if no sequence σY ∈ (2Y)ω matches to in-
finitely many X ∪Y-projected models then the number of such models is bound

76 Model Counting Algorithms for Omega-regular Properties

q3

q1

q2

. . .

. . .

. . .

Π(q1) := {σ1, . . . , σk}

Π(q2) := {σ′1, . . . , σ′j}

Π(q3) := {α1σ1, . . . , α1σk}
∪ {α2σ′1, . . . , α2σj}

α1

α2

Figure 3.7: A Sketch of a step in this algorithm: Current elements of our working
set are q1, q2 ∈ W and q3 ∈ W ′. If i = 0, i.e., we are in the first step of the
algorithm, then q1 and q2 are states of accepting SCCs.

by 2|Q|. Each of these models has a run in B which ends in an accepting loop
that are not in a doubly-pumped lasso with the conditions mentioned above, in
at most |Q| steps. For each finite sequence wY of length |wY| = |Q| that reaches
an accepting loop, we count the number X ∪ Y-projected words w of length |Q|
with w =Y wY and that end in an accepting loop. This number is equal to the
maximum model counting number.

The algorithm works in a backwards fashion starting with states of accepting
loops. In each iteration i, the algorithm maps each state of the automaton with
X ∪ Y-projected words of length i that reach an accepting strongly connected
component. After |Q| iterations, the algorithm determines from the mapping of
initial state q0 a Y-projected word of length |Q| with the maximum number of
matching X ∪ Y-projected words. Figure 3.7 shows how the mapping is com-
puted for a state at each iteration.

Theorem 3.24. For an omega-regular property φ defined over 2AP for a set of atomic
propositions AP, and for sets X, Y, Z ⊆ AP with X∪Y∪Z = AP, if #max(φ, X, y, Z) <
∞, then solving #max(φ, X, Y, Z) can be done in time exponential in the size of a non-
deterministic parity automaton representing φ.

3.7. Proofs 77

3.7 Proofs

Proof of Lemma 3.1

Let N = (Σ, Q, Q0, δ, µ) be a non-deterministic parity automaton. The number of
words in L(N) is equal to infinity if and only if N has an initial accepting doubly-
pumped lasso (u1, v1, u2, v2) with trace(u1 · (v1)

ω) ̸= trace(u2 · (v2)
ω).

Proof.

• ⇒: We prove this directions in two steps. In the first step we show that
the existence of an initial doubly-pumped lasso is a necessary condition
for L(N) = ∞. In the second step we show that one doubly-pumped lasso
(u, v, u′, v′) must fulfill the condition trace(u · (v)ω) ̸= trace(u′ · (v′)ω), in
order to represent an infinite number of words.

Step 1: Let σ = α1 · α2 · · · ∈ L(N), and let ρ = (q0, α1) · (q1, α2) . . . be a
run for σ in N. Because N has finitely many states, we know that there are
indices 0 ≤ i < j ∈ N such that qi = qj, µ(qj) = max{µ(qh) | h ∈ N},
and µ(qj) is even. This in turn means that N has an accepting lasso (u, v),
where u = (q0, α1) · (q1, α2) · · · (qi−1, αi), and v = (qi, αi+1) · · · · · (qj−1, αj).
Without the loss of generality, we assume that there is no position ℓ ∈
{0, . . . , i − 1, i + 1, . . . , j − 1} with qℓ = qj. We distinguish two cases. In
the first case, we assume that j − i > |Q| + 1. This means that there are
two further positions i < i′ < j′ < j such that qi′ = qj′ . It follows that
N has an initial accepting doubly-pumped lasso (u′, v′, u, v), where u′ =
(q0, α1) · (q1, α2) · · · (qi′−1, αi′), and v′ = (qi′ , αi′+1) · · · · · (qj′−1, αj′). In the
second case, where j − i < |Q|+ 1, we further distinguish the following
two cases. If |u · v| > |Q|, then there must two positions i′ < j′ < j such
that qi′ = qj′ , and again N has an initial accepting doubly-pumped lasso.
If |u · v| ≤ |Q|, and N has no initial accepting doubly-pumped lasso, then
N accepts only a finite number of traces, as the number of lassos of length
|Q| is finite. This however contradicts the assumption that |L(N)| = ∞.

Step 2: Assume that for all doubly-pumped lassos ρ = (u, v, u′, v′) in N we
have trace(u · (v)ω) = trace(u′ · (v′)ω). We show that under this assump-
tion the languages represented by the doubly-pumped lasso would be a
singleton. Assume two different infinite words are in the language of ρ,
then there two points reachable in ρ by words of length n that differ in the
transition label. This however contradicts the assumption that all words
of length n reachable in ρ are equal.

78 Model Counting Algorithms for Omega-regular Properties

• ⇐: Let (u, v, u′, v′) be a doubly-pumped lasso in N with trace(u · vω) ̸=
trace(u′ · v′ω). The number of different accepting runs in N is at least as
large as Γ = {ρ | ρ ∈ u · v∗ · w · v′ω}, where w is the sequence of states in
N such that the last state of u · v · w is a predecessor of the first state of v′.
Such a sequence must exist, because any state in v′ is reachable from any
state in v′. Because u · vω ̸= u′ · v′ω, the size of Γ is infinitely large.

Proof of Theorem 3.4

There is a family of LTL formulas φn for n ∈ N with |φn| ∈ O(n) and |L(φn)| ∈
22n ·log(n).

Proof. Consider the following omega-regular property over the alphabet 2AP

where AP = {b0, . . . , bn−1, e}

Ln = {σ ∈ (2AP)ω | ∀0 ≤ i < 2n. binary(b0, . . . , bn−1, i) ⊂ σ(2 · i),
∀i ∈N. (e ∈ σ(i))↔ (i is even),

∀i ≥ 2n. σ(i) ∩ {b0, . . . , bn−1} = ∅}

where binary(b0, . . . , bn−1, i) defines a set X ⊂ {b0, . . . , bn} such that X resembles
the binary encoding of i with b0 and bn being the first and the last bit, respec-
tively. A language Ln defines all words the represent a counter that count to 2n

and which values are defined in the odd positions of the word. between two
values of the counter, any evaluation of the propositions {b0, . . . , bn} is allowed.
After the counter reaches its maximum values the counter is reset to 0 and re-
mains 0 forever. The size of a language Ln is equal to n2n

= 22n ·log(n).
Each property Ln can be defined by an LTL formula

φn = φinit ∧ φeven ∧ φcount

where

• φinit = ¬b0 ∧ . . . ,∧¬bn ∧ ¬e. At the initial position of each word of φn the
counter is set to 0.

• φeven = e ∧ (e ← e) is an auxiliary formula to identify the even and
odd positions of a word. The counter is defined over the odd positions of
a word, i.e., if at some odd position i the counter values defines the number
c, then the values of the bits b0, . . . , bn at position i + 2 define the number
c + 1.

3.7. Proofs 79

• φcount = (e→ Inc(b0, . . . , bn−1, 2)) where

Inc(b1, . . . , bℓ, d) = (
∨

0<i≤ℓ
¬bi)→

∧
0<i≤ℓ

[
((¬bi ∧

∧
i<j≤ℓ

bj)→ d bi)

∧((¬bi ∧ ¬
∧

i<j≤ℓ
bj)→ d ¬bi)

∧((bi ∧
∧

i<j≤ℓ
bj)→ d ¬bi)

∧((bi ∧ ¬
∧

i<j≤ℓ
bj)→ d bi)

]
which defines the operation of incrementing a binary sequence by one.

The size of the formula φn is polynomial in n.

Proof of Theorem 3.5

Let P be an unambiguous parity automaton, and let |L(P)| < ∞. Computing the
number of models of L(P) can be done in time polynomial in the size of P.

Proof. We proof the following strengthening of the problem. Given a set Qι ⊆
Q and a bound n ∈ N, computing the number of finite sequences r in (Q× Σ)n

with proj(1, r(0)) ∈ Qι that reach an accepting loop in P can be done in time
polynomial in n and in the size of P.

The proof of the strengthening follows by proving the correctness of Algo-
rithm 3.2, which we will do by induction over n.

• n = 0: In this case, the set (Q× Σ)0 = {ϵ}, and thus number of sequences
r in (Q× Σ)n with proj(1, r(0)) ∈ Qι that reach an accepting loop in P is
equal to the number of states qι that are in an accepting loop in the au-
tomaton. Since n = 0, the automaton will only mark the states according
to lines 9-13 and return the number of states in Qι marked with 1.

• n→ n+ 1: Assume that each state in Q is marked with the correct number
of sequences r in (Q× Σ)n that reach an accepting loop in P. The number
of sequences r in (Q × Σ)n+1 that reach an accepting loop in P, can be
computed as follows. Let q ∈ Q, and q′ ∈ Q such that (q, α, q′) ∈ delta
for some α ∈ Σ. If r is sequence r in (Q × Σ)n with proj(1, r(0)) = q′

that reaches an accepting loop in P, then (q, α) · r is a sequence r in (Q×
Σ)n+1 with proj(1, r(0)) = q that reaches an accepting loop in P. Thus, the

80 Model Counting Algorithms for Omega-regular Properties

number of sequences (q, α) · r in (Q× Σ)n+1 that reach an accepting loop
in P is equal to the number of sequences r in (Q× Σ)n with proj(1, r(0)) ∈
succ(q) that reach an accepting loop in P, where succ(q) are all successor
states of q.

If Qι = Q0 then all sequences r in (Q× Σ)n with proj(1, r(0)) ∈ Qι that reach
an accepting loop in P is equal to the number of accepting runs of P. Since P is
unambiguous, this number is equal to the number of models of P.

The run-time of Algorithm 3.2 is polynomial in |P| and n. When n = |P|, the
algorithm is polynomial in the size of P.

Proof of Theorem 3.6 (Lower Bound)

Let D be a deterministic parity automaton, with L(D) < ∞. The problem of computing
the number models of D is #L-complete.

Proof. We complete the proof of Theorem 3.6 by showing that the problem is
#L-hard. Let M = (Q, q0, QF, Σ, δ) be a two-tape nondeterministic logarithmic
space Turing machine (a tape for the input, and a tape for the output), where Q
is the set of states, q0 is the initial state, QF is the set of accepting states, Σ is the
alphabet, and δ : (Q \QF)× Σ→ 2Q×Σ×{−1,0,1} is the transition function, where
-1 and 1 encode the directions of the head. Note that the accepting states are
terminal and that M rejects by terminating in a nonaccepting state. Let M be
log(p(n))-space bounded for some polynomial p, and let w = w0 · · ·wn−1 be an
input to M. Let p′(n) be a polynomial (which only depends on M) such that M
terminates in at most p′(n) steps on inputs of length n.

We construct a deterministic parity automaton D, which is polynomial in |w|
and |M|, respectively, such that the number of accepting runs of M on w is equal
to the number of models of D. Let lc = ⌈log(p(n))⌉ be the maximal size of a
configuration of M on w. The automaton D = (ΣD, QD, q0,D, δD, µD) such that

• ΣD = Q× Σ× {−1, 0, 1} × {−1, 0, 1} ∪ {$}

• QD = Q× {0, . . . , lc − 1} × {0, . . . , n} × (Σ ∪ {#})lc × {0, . . . , p′(n)}
∪ {q⊥, q⊤}

• q0,D = (q0, 0, 0, #lc)

• µ : QD → {0, 1}. q 7→

0 if q = q⊤
1 otherwise

3.7. Proofs 81

• δD : QD × ΣD → QD.
δD((q′′, o, i, s1, . . . , slc , c), γ) =

(q′, o + ℓo, i + ℓi, s1, . . . , α, so+1 . . . , slc , c + 1) if c < p′(n), q′′ ̸∈ QF,

and γ = (q′, α, ℓo, ℓi)

q⊤ if q′′ ∈ QF, and γ = $

q⊤ if q = q⊤, and γ = $

q⊥ otherwise

Each state of the automaton D represents a configuration of M A run in the au-
tomaton represents a computation of M. The states q⊤ and q⊥ represent the
acceptance and rejection of M, respectively. The symbol $ represents the ter-
mination of M. A run of D represents a computation of M. Each accepting
computation of M can be matched to a unique run in D, namely the run of the
form:

(c0, γ1) · (c1, γ2) · · · (cp′(n), $) (q⊤, $)ω

where c0 is the initial configuration of M, for all 0 < i ≤ p′(n), ci respects the
transition relation δ of M, and cp′(n) is an accepting configuration of M. The
number of words accepted by D are thus equal to the number of accepting runs
of M.

Proof of Theorem 3.7 (Lower Bound)

Let N be a nondeterministic parity automaton, with L(N) < ∞. The problem of com-
puting the number models of N is #P-complete.

Proof. Let ϕ be propositional formula in disjunctive normal form with n dis-
juncts D1, . . . , Dn and m variables x1, . . . , xm. For 1 ≤ i ≤ n, let Lit(Di) de-
fine the set of all literals in Di. We define a nondeterministic Büchi automaton
N = (Σ, Q, Q0, δ, F) such that

• Σ = {x1, . . . , xm, x1, . . . , xm}

• Q =
∪

1≤i≤n
{Lit(Di), Lit(Di) \ {x1, x1}, Lit(Di) \ {x1, x1, x2, x2}, . . . , Lit(Di) \

{x1, . . . , xmx1, . . . , xm}} × {0, . . . , m} ∪ {q⊥}

• Q0 = {(Lit(Di), m) | 1 ≤ i ≤ n}

• F = {(∅, 0)}

82 Model Counting Algorithms for Omega-regular Properties

• δ : Q× Σ→ 2Q.

– ∀1 ≤ i ≤ m, δ((X, c), xi) =


(X \ {xi}, c− 1) if X ̸= ∅, i = c, and

xi ∈ X → xi ̸∈ X

q⊥ otherwise

– ∀1 ≤ i ≤ m, δ((X, c), xi) =


(X \ {xi}, c− 1) if X ̸= ∅, i = c, and

xi ∈ X → xi ̸∈ X

q⊥ otherwise

– δ((∅, c), α) =


(∅, c− 1) if c > 0, α = xc

(∅, 0) c = 0, α = x1

q⊥ otherwise

– δ(q⊥, α) = q⊥

The automaton resembles the algorithm for solving DNF formulas using the or-
der x1, . . . , xm. Each initial state represents a disjunction of the DNF formula.
The sequence of letters reaching the state (∅, 0) from one of the initial states,
represents a solution for the disjunct defined by that initial state, and thus rep-
resents also a solution for the DNF formula. Each word accepted by the au-
tomaton represents a unique satisfying assignment for the DNF formula, and
vice versa. Figure 3.8 shows the construction for the formula

Proof of Theorem 3.8 (Lower Bound)

Let φ be an LTL formula, with L(φ) < ∞. The problem of computing the number
models of φ #PSPACE-complete.

Proof. We complete the proof of Theorem 3.8 by showing that the problem
is #PSPACE-hard. Let M = (Σ, Q, qι, QF, δ) be a one-tape nondeterministic
polynomial-space Turing machine, where Q is the set of states, qι is the initial
state, QF is the set of accepting states, Σ is the alphabet, and δ : (Q \QF)× Σ→
2Q×Σ×{−1,0,1} is the transition function, where -1,0 and 1 encode the directions
of the head, left, stay, and right, respectively. Note that the accepting states are
terminal and that M rejects by terminating in a nonaccepting state. Let M be
p(n)-space bounded for some polynomial p, and let w = w0 · · ·wn−1 be an in-
put to M. Let p′(n) be a polynomial (which only depends on M) such that M

3.7. Proofs 83

(∅, 0)

x1

(x1 ∧ x2 ∧ x4) ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x3)

({x1, x2, x3}, 4)({x1, x2, x4}, 4) ({x1, x3}, 4)

({x2, x4}, 3)

x1

({x4}, 2)

x2

({x4}, 1)

x3 x3

x4

({x2, x3}, 3)

x1

({x3}, 2)

x2

(∅, 1)

x3

x4

({x3}, 3)

x1

({x3}, 2)

x2 x2

(∅, 1)

x3

x4

x4

Figure 3.8: A reduction from a propositional formula in disjunctive normal form
to a nondeterministic Büchi automaton.

terminates in at most 2p′(n) steps on inputs of length n. We construct an LTL for-
mula φw

M, which is polynomial in |w| and |M| such that the number of accepting
runs of M on w is equal to the number of models of φw

M.
A run of M on w is encoded by a finite alternating sequence of id’s idi and

configurations ci that is followed by an infinite repetition of a dummy symbol:

$ id0 # c0 $ id1 # c1 $ id2 # c2 $ · · · $ id2lc # c2lc (⊥)ω (3.4)

for lc = p′(n). The runs of M on w are encoded in the prefixes of models up
to the symbol ⊥, and such that the only possible suffix of models is ⊥ω, ensur-
ing that exactly 2lc configurations are encoded (by repeating the final configura-
tion if necessary). This ensures that an accepting run is encoded by exactly one
model.

Let lr = p(n) be the maximal size of a configuration of M on w. For the
id’s we use an encoding of a binary counter with lc = p′(n) many bits. Let
AP = (Q∪Σ)∪· {b1, . . . , blc , $, #,⊥} be the set of atomic propositions. The atomic
propositions in Q ∪ Σ are used to encode the configurations of M by encoding
the tape contents, the state of the machine, and the head position. The atomic

84 Model Counting Algorithms for Omega-regular Properties

propositions b1, . . . , blc represent the bit values of an id. The symbols $ and # are
used as separators between id’s and configurations, and ⊥ is a dummy symbol
for the model’s period. The distance between two $ symbols and also between
two # symbols in the encoding is given by d = lr + 3. Then, φw

M is the conjunction
of the following formulas:

• Id encodes the id’s of the configurations. It uses a formula Inc(b1, . . . , blc , d)
that asserts that the number encoded by the bits bj after d steps is obtained
by incrementing the number encoded at the current position.

• Init asserts that the run of M starts with the initial configuration.

• Accept asserts that the run must reach an accepting configuration.

• Config declares the consistency of two successive configurations with the
transition relation of M. Here, we use d many next operators to relate the
encoding of the two configurations.

• Repeat asserts that the encoding of an accepting configuration is repeated
until the maximum id is reached

• Loop defines the period of the word-model, which may only contain ⊥.

We show that all these properties can be expressed with polynomially-sized for-
mulas. Furthermore, we need a formula to specify technical details: atomic
propositions encoding the id’s are not allowed to appear in the configurations
and vice versa, symbols such as $ and # only appear as separators, each sepa-
rator appears 2p′(n) times every d positions, configuration encodings are repre-
sented by singleton sets of letters in Σ with the exception of one set that contains
a symbol from Q to determine the head position and the state of M, etc.

We start with the formula Id, which uses the formula Inc that enforces an
increment of a binary counter. The formula Inc is parameterized by the propo-
sitions b1, . . . , bℓ encoding the bits (b1 being the most significant one) and the
distance d between the two positions to be compared. Intuitively, the different
subformulas distinguish whether the increment ripples through to the current
bit bi or not. Note that the increment property only has to hold if there is no
overflow of the counter.

3.7. Proofs 85

Inc(b1, . . . , bℓ, d) = (
∨

0<i≤ℓ
¬bi)→

∧
0<i≤ℓ

[
((¬bi ∧

∧
i<j≤ℓ

bj)→ d bi)

∧((¬bi ∧ ¬
∧

i<j≤ℓ
bj)→ d ¬bi)

∧((bi ∧
∧

i<j≤ℓ
bj)→ d ¬bi)

∧((bi ∧ ¬
∧

i<j≤ℓ
bj)→ d bi)

]
Now, the formula Id is defined by initializing the counter to zero and always
requiring an increment after a $-separator:

Id = $ ∧ (
∧

0<j≤lc

¬bj) ∧ ($→ Inc(b1, . . . , blc , d))

We continue with the formula Init. In the initial configuration the tape of M
contains the input word w, the head is on the first cell, and M is in its initial
state:

Init = 2(# ∧ qι ∧ (
∧

0≤j<n

j wj) ∧ (
∧

n≤j≤lr

j))

The symbol refers to the blank cells of the tape.
The formula Accept considers the maximal id and checks whether it is fol-

lowed by an accepting configuration:

Accept = ($ ∧ (
∧

0<j≤lc

bj) →
∨

q∈QF

∨
0<j≤lr

j+2 q)

For atomic propositions q ∈ Q \QF and α ∈ Σ a formula configq,α asserts the
relation between the states, the head positions, and the content of the cell where
the head is pointing to in two successive configurations:

configq,α = (q ∧ α→
∨

(q′ ,β,dir)∈δ(q,α)

d β ∧ d+dir q′)

Another formula configα asserts the relation of the other tape cells of successive
configurations; the content of these cells is copied, unless the id is maximal:1

configα = ($ ∧ (
∨

0<j≤lc

¬bj)→
∧

0<j≤lr

j+2((
∧

q∈Q\QF

¬q) ∧ α→ d α))

1Note that this is not necessary for configq,α since the machine terminates in at most p(n) steps

86 Model Counting Algorithms for Omega-regular Properties

Config is the conjunction of all formulas configα and configq,α.
The formula Repeat requires an accepting configuration to be repeated if the

id is not yet maximal. The repetition of the letters is taken care of by the formulas
configα. Hence, Repeat only requires to copy the state and the head position.

Repeat = ($ ∧ (
∨

0<j≤lc

¬bj)→
∧

q f∈QF

∧
0<j≤lr

j+2
(q f → d q f))

Finally, the period of the model is fixed by the formula Loop which requires the
symbol ⊥ to be repeated after reaching the configuration with the maximal id:

Loop = ($ ∧ (
∧

0<j≤lc

bj)→ lr+3 ⊥)

Each accepting run ofM on w corresponds to exactly one model of φw
M that

encodes the run in its prefix of length 2lc · (lr + 3). Thus, the number of models
is equal to the number of accepting runs of M on w. The formula φw

M can be
obtained in polynomial time in |w| + |M|.

Chapter 4

The Relation of Model Counting to
Probabilistic Model Checking

Implementing a reactive system that satisfies all the guarantees on all inputs of
the environment is not always possible. However, in many cases, certain input
scenarios of the environment are less likely to happen. Given a probabilistic
model on the occurrence of inputs of the environment, we are able to better
assess how reliable a system is and determine the likelihood of the system failing
to fulfill the requirements posed by the specification.

In this chapter, we investigate the problem of computing the probability of
satisfying a linear-time property by a transition system. Transition systems can
be viewed as probabilistic systems, with a uniform probability distribution over
the inputs, i.e., each transition occurs with equal probability. We show that using
model counting, we can provide lower and upper bounds on the probability of
satisfying the property, which allows us to check whether the satisfaction of the
property is within some certain predefined thresholds.

We start the chapter with a brief recap on the model checking problem for
probabilistic systems modeled as discrete-time Markov chains [95] and show that
model counting coincides with the probability measures defined for Markov
chains, provided a uniform probability distribution on the inputs.

87

88 The Relation of Model Counting to Probabilistic Model Checking

4.1 Probabilistic Model Checking

To model the probabilistic behavior of environments and systems, transition sys-
tems are enhanced with probabilities. The enhancement can be done in different
ways [13]. In Markov chains [95], each choice in the system, i.e., each transition,
is assigned the probability of its input. Other models, such as Markov decision
processes [18], additionally allow nondeterministic choices that model the ran-
domized interleaving behavior of systems.

In this chapter, we will focus on probabilistic models based on Markov chains,
since transition systems for reactive systems can be defined as Markov chains
with a uniform probability function.

Definition 4.1 (Discrete-time Markov Chains [13, 95]). For a set of atomic
propositions AP, a discrete-time Markov chain over AP is defined by the
tuple

M = (AP, S, ι, P, L)

where

• S is a countable set of states

• ι : S→ [0, 1] is the initial distribution such that ∑
s∈S

ι(s) = 1

• P : S× S→ [0, 1] is the transition probability function such that

∀s ∈ S. ∑
s′∈S

P(s, s′) = 1

• L : S → 2AP is a labeling function that maps each state in S to a
valuation of AP

A path in a Markov chain M is an infinite sequence of states s0s1 · · · ∈ Sω

such that ι(s0) > 0 and for all i ≥ 0 we have P(si, si+1) > 0. The set
Paths(M) defines the set of all paths in M. The set defined as Pathsfin(M) =

Prefix(Paths(M)) is the set of finite paths in M.

To be able to compute the probability of a set of paths Γ in a Markov chain M,
the set Γ needs to be measurable, i.e., it needs to be associated with a probability
space of M, which defines the set of measurable sets over M.

4.1. Probabilistic Model Checking 89

Definition 4.2 (σ-Algebra and Probability Space [13]). A σ-algebra is a pair
(Γ, Ω) for a nonempty set Γ and a set Ω ⊆ 2Γ such that

• Γ ∈ Ω,

• if Γ′ ∈ Ω, then Γ \ Γ′ ∈ Ω, and

• if Γ0, Γ1, · · · ∈ Ω, then
∪

i∈N

Γi ∈ Ω

Note that since Γ ∈ Ω, also ∅ ∈ Ω.
A probability measure on a σ-algebra (Γ, Ω) is a probability function

P : Ω→ [0, 1] such that

• P(Γ) = 1, and

• if Γ0, Γ1, · · · ∈ Ω, and for all i, j ∈ N with i ̸= j it holds that Γi ∩ Γj =

∅, then P(
∪

i∈N

Γi) = ∑
i∈N

P(Γi)

A probability space is a tuple ((Γ, Ω), P), where (Γ, Ω) is a σ-algebra, and
P is a probability measure on (Γ, Ω).

A probability space given by ((Paths(M), Ω), P′) for a discrete-time Markov
chain M = (AP, S, ι, P, L) can be defined in terms of cylinder sets over Pathsfin(M).
For s0s1 . . . sm ∈ Pathsfin(M), a cylinder set C(s0s1 . . . sm) is defined by

C(s0s1 . . . sm) = {π ∈ Paths(M) | s0s1 . . . sm ∈ Prefix(π)}.

The probability space ((Paths(M), Ω), P′) for M is then defined such that for
w ∈ Pathsfin(M), it holds that C(w) ∈ Ω [13]. To prove that a set of paths
Γ ⊆ Paths(M) in a Markov chain M is measurable, we need to show that Γ ∈ Ω.
This can be done by showing that the set Γ can be defined as a countable union
of disjoint cylinder sets in Ω, i.e., there are finite paths wi ∈ Pathsfin(M), for
i ∈ X ⊆N such that

Γ′ =
∪
i∈X

C(wi).

The probability P(Γ′) can then be computed by computing

∑
i∈X

P(C(wi))

where P(C(πi)) for wi = s0s1 . . . sm and for some m ∈N is defined by

P(C(s0s1 . . . sm)) = ∏
0≤i<m

P(si, si+1).

90 The Relation of Model Counting to Probabilistic Model Checking

4.2 Probability of Linear-time Properties

For a linear-time property φ defined over an alphabet 2AP for a set of atomic
propositions AP, and a Markov chain M = (AP, S, ι, P, L), the probability of M
with respect to φ is defined by the probability

P(M, φ) = P({π ∈ Paths(M) | L(π) ∈ φ})

where L(π) is the generalization of the labeling function L to paths. The prob-
ability P(M, φ) is only computable if the set {π ∈ Paths(M) | L(π) ∈ φ} is
measurable.

To determine the probability of a linear-time property φ for a transition sys-
tem T = (AP, I, O, S, s0, τ, L), we can compute the probability of φ over the fol-
lowing underlying Markov chain M = (AP, S, ι, P, L) where

• ι(s) =

1 if s = s0

0 otherwise

• P(s, s′) = 1
2|I|

for all s, s′ ∈ S

Consider, for example, the transition system T depicted in Figure 4.1 and
the underlying Markov chain shown in the same figure. The transition system
satisfies the property given by the formula φ = p with probability 0, since, out
of the infinitely many traces in T, there is only one trace that satisfies φ, namely
the infinite trace with the input rω. This probability can be computed over the
Markov chain, by computing the probability of directly reaching s1 from the
initial state, and staying in this state, which is equal to 1

2 · ∏
i∈N

1
2 = 0.

We can also compute the probability of φ by computing the probability of
the set of traces violating φ. Since φ is a safety property, each violation of φ

in the transition system must have a bad prefix for φ. For a bound n = 2 on
the bad prefixes, we can distinguish two bad prefixes for φ, namely {p, r}{p, r}
and {p, r}{p, r}. This means that at least half of the traces of T violate φ. For
n = 3, we can compute a new lower bound 3

4 on the probability of violating
φ, since we can distinguish six different bad prefixes out of eight possible pre-
fixes of length 3. For a bound n ∈ N, we can give the probability for n by the

formula
n
∑

i=1
(1

2)
i. If we would compute the limit of this formula when n grows

towards ∞, i.e., the value lim
n→∞

n
∑

i=1
(1

2)
i, we would get the value 1, which in turn

means that the probability of satisfying φ in T is equal to 0. To compute an upper
bound on the probability we can compute the rate of the number of bad prefixes

4.3. Probabilities based on Bad Prefixes 91

p

p

p

r

r
r

r

r

r

p

ps2

p
s1

1
2

1
2

1
2

1
2

1
2

1
2

Figure 4.1: A transition system and its underlying Markov chain. The Markov
chain satisfies p with probability 0

of a certain length. In case the property is a safety property, the limits of this rate
is equal to the exact probability.

We discuss how counting the number of bad prefixes, good prefixes, and
lassos for a linear-time property φ can be used to compute upper and lower
bounds on the probability of a transition system satisfying φ, and when the rate
of theses models in the limit is equal to the exact probability of φ. We show that
for any linear-time property the sets of paths in a Markov chain defined in terms
of bad prefixes or good prefixes of bounded length are always measurable, and
how to use these measures for computing the probability of φ. For lassos, we
show that the rate of lassos in a transition system that satisfy a property φ is not
always defined.

4.3 Probabilities based on Bad Prefixes

If the set Models(T, φ) = {σ ∈ Traces(T) | σ ∈ φ} for transition system T, and a
linear-time property φ, is measurable, then so is the set Violations(T, φ), and we
can compute the probability P(T, φ) by computing the probability 1− P(T, φ).

In the following, we show that the probability P(T, φ) can be bounded from
below by the probability P({σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ}). The set
{σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ} is measurable, since it can be defined
as the union of cylinder sets ∪

m∈N, w0w1 ...wm∈BadPref (φ)

C(w0w1 . . . wm)

and because

{σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ} ⊆ Violations(T, φ)

it follows that

P({σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ}) ≤ P(T, φ).

92 The Relation of Model Counting to Probabilistic Model Checking

Furthermore, since for every n ∈N the set {σ ∈ Traces(T) | ∃w ∈ BadPref (φ, n).
w < σ} is also measurable, the probability of the set for any n ∈ N is also a
lower bound for the probability P(T, φ).

Lemma 4.1. For every safety property φ, and a transition system T, it holds that

P({σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ}) = P(T, φ)

Proof. Since φ is a safety property, it holds that

{σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ} = Violations(T, φ).

We show how we can compute the probability P({σ ∈ Traces(T) | ∃w ∈
BadPref (φ). w < σ}) using model counting over bad prefixes. Our proof is
based on the following definition.

Definition 4.3 (Bad-prefix Rate). For a transition system T and a linear-time
property φ, the bad-prefix rate function ET,φ

Bad : N→ [0, 1] is defined by

ET,φ
Bad (n) =

|BadPref (φ, n) ∩ Tracesfin(T)|
|Tracesfin(T, n)| .

The bad-prefix rate is defined by ET,φ = lim
n→∞

ET,φ
Bad (n).

For a transition system T and linear-time property φ, we define ET,φ =

lim
n→∞

ET,φ
Bad (n), and show that ET,φ is equal to the probability P({σ ∈ Traces(T) |

∃w ∈ BadPref (φ). w < σ}), and thus defines a lower bound for P(T, φ). This
can be done by first establishing the relation between the function ET,φ

Bad (n) and
the probability of the sets

Bn = {σ ∈ Traces(T) | ∃w ∈ BadPref (φ, n). w < σ}

for n ∈N.

Lemma 4.2. For a transition system T, a linear-time property φ, and a bound n ∈ N,
it holds that

ET,φ
Bad (n) = P(Bn).

4.3. Probabilities based on Bad Prefixes 93

Proof. Let T = (AP, I, O, S, s0, δ, L). The set Bn can be defined as the union∪
w1w2 ...wn∈BadPref (φ,n)∩Tracesfin(T)

C(w1w2 . . . wn).

The probability P(Bn) is thus equal to the value

∑
w1w2 ...wn∈BadPref (φ,n)∩Tracesfin(T)

P(C(w1w2 . . . wn))

which in turn is equal to

∑
w1w2 ...wn∈BadPref (φ,n)∩Tracesfin(T)

1
(2|I|)n

.

Because T is deterministic, this in turn is equal to

|BadPref (φ, n) ∩ Tracesfin(T)|
(2|I|)n

=
|BadPref (φ, n) ∩ Tracesfin(T)|

|Tracesfin(T, n)| .

Using the last lemma, we show that we can use ET,φ to compute an upper
bound on P(T, φ).

Theorem 4.1. For a transition system T, a linear-time property φ, it holds that

P(T, φ) ≤ 1− ET,φ

Proof. We show that ET,φ = P({σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ}).
This can be done by showing that (1) the sets Bn form a countable union that is
equal to the set {σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ}. Then we show that
(2) for each n ∈ N it holds that Bn ⊆ Bn+1. This implies that the probability of
the set P({σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ}) is equal to lim

n→∞
P(Bn).

Finally, we show that (3) lim
n→∞

P(Bn) is equal to ET,φ.

(1) Let σ ∈ {σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ}. It follows that there
is w with |w| = n for some n ∈ N such that w ∈ BadPref (φ, n). This in
turn means that σ ∈ Bn. With a similar argumentation we can also prove the
other direction, i.e., that each σ ∈ Bn for some n ∈ N is also an element of
the set {σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ}.

94 The Relation of Model Counting to Probabilistic Model Checking

(2) Let σ ∈ Bn. It follows that there is w with |w| = n such that w ∈ BadPref (φ, n).
Let α · σ′ ∈ Σω, such that w · α · σ′ = σ. Since w is a bad prefix, so is w · α,
and thus σ ∈ Bn+1.

(3) From the last lemma we know that for each n ∈ N, it holds that ET,φ
Bad (n) =

P(Bn). This implies that lim
n→∞

P(Bn) = ET,φ.

In summary, for a value n ∈N, the value of the rate function ET,φ
Bad (n) defines

a lower bound for the probability P(T, φ), and thus we can compute an upper
bound on the probability P(T, φ) by computing the value 1− ET,φ

Bad (n). In case
φ is a safety property, by computing the value ET,φ we can compute the exact
probability P(T, φ) and P(T, φ).

4.4 Probabilities based on Good Prefixes

For every linear-time property φ, we know that every good prefix for φ is a bad
prefix for φ. Computing the probability for the set

{σ ∈ Traces(T) | ∃w ∈ GoodPref (φ). w < σ}

can thus be done by computing the probability for the set

{σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ}.

Since

{σ ∈ Traces(T) | ∃w ∈ BadPref (φ). w < σ} ⊆ Violations(T, φ)

it follows that

{σ ∈ Traces(T) | ∃w ∈ GoodPref (φ). w < σ} ⊆ Models(T, φ)

and thus

P({σ ∈ Traces(T) | ∃w ∈ GoodPref (φ). w < σ}) ≤ P(T, φ)

and the probability of every set {σ ∈ Traces(T) | ∃w ∈ GoodPref (φ, n). w < σ}
is also a lower bound for the probability P(T, φ). In the case that φ is a co-safety
property, the probability of the set of good prefixes is equal to the probability
P(T, φ).

Lemma 4.3. For every co-safety property φ, and a transition system T, it holds that

P({σ ∈ Traces(T) | ∃w ∈ GoodPref (φ). w < σ}) = P(T, φ)

4.5. Probabilities based on Lassos 95

Proof. Since φ is a co-safety property, it holds that

{σ ∈ Traces(T) | ∃w ∈ GoodPref (φ). w < σ} = Models(T, φ).

We show now that computing the probability P({σ ∈ Traces(T) | ∃w ∈
GoodPref (φ). w < σ}), can be done by computing the limit of the rate of good
prefixes.

Definition 4.4 (Good-prefix Rate). For a transition system T and a linear-
time property φ, the good-prefix rate function RT,φ

Good : N → [0, 1] is defined
by

RT,φ
Good(n) =

|GoodPref (φ, n) ∩ Tracesfin(T)|
|Tracesfin(T, n)|

The good-prefix rate is defined byRT,φ = lim
n→∞

RT,φ
Good(n).

For a transition system T and linear-time property φ, we define RT,φ =

lim
n→∞

RT,φ
Good(n), which, as we will show, is equal to the probability of the set of

good prefixes of φ.

Theorem 4.2. For a transition system T, a linear-time property φ, it holds that

RT,φ ≤ P(T, φ)

Proof. We show that RT,φ = P({σ ∈ Traces(T) | ∃w ∈ GoodPref (φ). w <

σ}). Since P({σ ∈ Traces(T) | ∃w ∈ GoodPref (φ). w < σ} is equal to P({σ ∈
Traces(T) | ∃w ∈ BadPref (φ). w < σ}, it holds that P({σ ∈ Traces(T) | ∃w ∈
GoodPref (φ). w < σ} = ET,φ. The claim follows from the fact that ET,φ = RT,φ,
which is a consequence of GoodPref (φ, n) = BadPref (φ, n), for every n ∈N.

4.5 Probabilities based on Lassos

In the following, we show the relation between the rate of lassos of a certain
length that satisfy a linear-time property φ and the probability of traces in a
transition system T that satisfy the property φ. The rate of lassos is defined as
follows.

96 The Relation of Model Counting to Probabilistic Model Checking

Definition 4.5 (Lasso Rate). For a transition system T and a linear-time
property φ we define the lasso rate function by the function

RT,φ
Lasso(n) =

|Lasso(φ, n) ∩ Lasso(Traces(T), n)|
|Lasso(Traces(T), n)|

In contrast to the bad-prefix rate, that allows us to compute the exact prob-
ability for safety properties, we will show that the rate function RT,φ

Lasso(n) for
some transition system T and for a linear-time property φ does not necessarily
converge to the value P(T, φ) when n grows to infinity. The reason for this is
that lassos cannot capture violations of the system that are not ultimately peri-
odic. For any n, the sets Lasso(φ, n)∩ Lasso(Traces(T), n) and Lasso(Traces(T), n),
only define subsets of the sets Models(T, φ) and Traces(T), respectively, and thus
the rates will not always coincide with the probabilities.

Theorem 4.3. There is a transition system T and a linear-time property φ, such that,
RT,φ

Lasso(n) is nonconvergent.

Proof. We first define the property φ and then give a transition system T with
a non-convergent lasso rate function for φ.

• The property φ: We define a linear-time property φ over the atomic propo-
sitions AP = {r, p}. Let c0, c1, · · · ∈ N and d0, d1, · · · ∈ N such that, for
all i ∈ N, we have ci < di and di ≤ ci+1. The property φ is defined as the
union φ =

∪
j∈N

Γj where:

– Γ0 = ∅

– If j > 0 we distinguish two cases

∗ ∃i ∈N. j ∈ [ci, di) then
Γj = {σ ∈ (2AP)ω | ∃(u, v) ∈ Lasso((2{p})ω, j). σ|{p} = u · vω} \

j−1∪
h=0

Γh

∗ ∃i ∈N. j ∈ [di, ci+1) then
Γj = Γj−1

The property φ defines the set of all traces over AP that are ultimately pe-
riodic for the set of propositions {p} and for which the smallest lasso they
can be represented by is of length j ∈ [ci, di) for some i ∈ N. Figure 4.2
gives an illustration on which traces over AP are models of φ.

4.5. Probabilities based on Lassos 97

∈ φ

̸∈ φ

∈ φ

̸∈ φ

∈ φ

..
.

c0

d0

c1

d1

c2

d2

∪
d

0 −
1

j=
c0

Γ
j

∪
d

1 −
1

j=
c1

Γ
j ∪ ∪

d
0 −

1
j=

c0
Γ

j

∪
d

2 −
1

j=
c2

Γ
j ∪ ∪

d
1 −

1
j=

c1
Γ

j ∪ ∪
d

0 −
1

j=
c0

Γ
j

Figure 4.2: A nonconvergent linear-time property φ. The colored areas represent
ultimately-periodic words that are in φ. The white areas represent ultimately-
periodic words that are not in φ.

• The system T: We define T as the following transition system

p p

r r
r

r

Every ultimately periodic trace in T over {p} is also ultimately periodic
over AP.

• The lasso rate: We show that there exist intervals [ci, di) and [di, ci+1) for all
i ∈N such that the functionRT,φ

Lasso(n) is not convergent. The definition of
RT,φ

Lasso(n) distinguishes two cases:

– ∃i ∈ N. n ∈ [di, ci+1]: For the bound n the set of models in T that can
be represented by lassos of length n is defined as follows:

Lasso(Traces(T) ∩ φ, n) = Lasso(Traces(T) ∩ φ, n− 1)

because every model that can be represented by a lasso of length n− 1
can be represented by one of length n, and all traces that are repre-
sentable by lassos of length n, but not by smaller ones, are violations

98 The Relation of Model Counting to Probabilistic Model Checking

of φ. This implies that

RT,φ
Lasso(n) =

Lasso(Traces(T) ∩ φ, n− 1)
Lasso(Traces(T), n)

and in turn that

RT,φ
Lasso(n) = R

T,φ
Lasso(ci − 1) ·

(
Lasso((2|I|)ω, n− 1)

Lasso((2|I|)ω, n)

)n−ci+1

.

The rate
(

Lasso((2|I|)ω ,n−1)
Lasso((2|I|)ω ,n)

)n−ci+1
< 1 and monotonically decreasing

towards 0 when n grows towards ∞. This means that the function
RT,φ

Lasso is decreasing as long as di ≤ n ≤ ci+1, and that there is a ci+1

such that, RT,φ
Lasso(ci+1) < R

T,φ
Lasso(ci), because it is decreasing towards

0.

– ∃i ∈ N.n ∈ [ci, di): For the bound n, the set of lasso violations in T is
defined as follows:

Lasso(Traces(T) ∩ φ, n) = Lasso(Traces(T) ∩ φ, n− 1)

∪ (Lasso((2|I|)ω, n)− Lasso((2|I|)ω, n− 1))

because every model that can be represented by a lasso of length n− 1
can be represented by one of length n, and all traces that are repre-
sentable by lassos of length n, but not by smaller ones, are models of
φ. This implies that

RT,φ
Lasso(n)

=
|Lasso(Traces(T) ∩ φ, n− 1) ∪ (Lasso((2|I|)ω , n)− Lasso((2|I|)ω , n− 1))|

|Lasso((2|I|)ω , n)|

=
|Lasso(Traces(T) ∩ φ, n− 1)|+ |Lasso((2|I|)ω , n)| − |Lasso((2|I|)ω , n− 1)|

|Lasso((2|I|)ω , n)|

=
|Lasso(Traces(T) ∩ φ, n− 1)|+ |Lasso((2|I|)ω , n)| − |Lasso((2|I|)ω , n− 1)|
|Lasso((2|I|)ω , n− 1)|+ |Lasso((2|I|)ω , n)| − |Lasso((2|I|)ω , n− 1)|

which in turn means that

RT,φ
Lasso(n) > R

T,φ
Lasso(n− 1)

because |Lasso((2|I|)ω, n)| − |Lasso((2|I|)ω, n− 1)| > 0, and

|Lasso(Traces(T) ∩ φ, n− 1)|+ δ

|Lasso((2|I|)ω, n− 1)|+ δ
>
|Lasso(Traces(T) ∩ φ, n− 1)|
|Lasso((2|I|)ω, n− 1)|

4.6. Bibliographic Remarks 99

for any δ ∈ N. This further means that the function RT,φ
Lasso is increas-

ing towards 1 when n grows towards ∞. This means that RT,φ
Lasso(n)

is increasing as long as ci ≤ n < di and that there is a di such that
RT,φ

Lasso(di − 1) > RT,φ
Lasso(di−1 − 1), because it is increasing towards 1.

The functionRT,φ
Lasso(n) is increasing towards 1 when n ∈ [ci, di) and decreas-

ing towards 0 when n ∈ [di, ci+1), which means it will never converge.

We summarize our result from the last three sections and show how the num-
ber of each type of bounded model can be used to determine lower and upper
bounds on the probability of satisfying a linear-time property. Figure 4.3 shows
the shapes of the rate functions for the different types of models.

The rate of bad prefixes gives an upper bound on the satisfiability probabil-
ity, and is equal to the actual probability, if φ is a safety property Figure 4.3c. The
rate of good prefixes gives a lower bound on the satisfiability probability, and
is equal to the actual probability, if φ is a co-safety property Figure 4.3b. When
a linear-time property is both safety and co-safety, then the rate of bad prefixes
and good prefixes are equal. If we are not able to compute the limits of the rates
of bad prefixes and good prefixes, the the value of the rate functions define a
lower bound, and an upper bound, respectively, for any bound on the bad and
good prefixes.

The limit of the lasso rate is not always defined for linear-time properties in
general.

4.6 Bibliographic Remarks

The rate functions defined in this chapter are closely related to the notion of den-
sity of languages. The density of a language defines a probabilistic measure on
the language by relating the number of words in the language to the total num-
ber of words definable over the alphabet of the language [27, 69]. The study
of density has a long history [27, 38, 70, 83, 140]. For each language φ ⊆ Σ∗

of finite words over some alphabet Σ, the density function is defined as the quo-
tient dφ(n) = |φ ∩ Σn|/|Σn|, i.e., the number of words of length n in φ over the
number of all words of length n. The rate functions for bad prefixes and good
prefixes, define the densities of the languages of bad prefixes and good prefixes
of bounded length. In 1958, Chomsky and Miller [38] showed that for each reg-
ular language φ, there exists an initial length n0 such that for all n ≥ n0, |φ∩Σn|
can be described by a linear recurrence. For example, for the language ψ of the

100 The Relation of Model Counting to Probabilistic Model Checking

0

1

n

1− ET,φ
Bad (n)

P(T, φ) = 1− ET,φ(n)

(a) φ is a safety property.

0

1

n

RT,φ
Good(n)

P(T, φ) = RT,φ(n)

(b) φ is a co-safety property.

0

1

n

1− ET,φ(n) = RT,φ(n)

1− ET,φ
Bad (n)

RT,φ
Good(n)

(c) φ is a safety and a co-safety
property.

0

1

n

RT,φ
Lasso(n) P(T, φ)

?
≥ lim

n→∞
RT,φ

Lasso(n)

P(T, φ) ≤ ET,φ(n)

P(T, φ) ≥ RT,φ(n)

(d) φ is a combination of different
properties

Figure 4.3: Bounding the probability of a linear-time property φ in a transition
system T using model counting over bad prefixes, good prefixes, and lassos

regular expression (ab + baa)∗, we have that |ψ∩Σn| = |ψ∩Σn−2|+ |φ∩Σn−3|.
The recursive description of |φ∩ Σn| allows for a detailed analysis of the shapes
of |φ ∩ Σn| and dφ(n) (cf. [83]). The result was later extended to the nonam-
biguous context-free languages [83]. Much attention has focussed on sparse lan-
guages, i.e., languages where |φ ∩ Σn| can be bounded from above by a polyno-
mial [54, 70, 140]. Sparse languages can be used to restrict NP-complete prob-
lems so that they can be solved polynomially [54]. An interesting application of
the density is to determine how well a non-regular language is approximated
by a finite automaton [59]; this is important in streaming algorithms, where the
incoming string must be classified quickly, and it suffices if the classification is
correct most of the time.

Notions related to the density have also been used to quantitatively define
the safety level of a property by computing the probability that a prefix of a

4.6. Bibliographic Remarks 101

word not in φ is a bad prefix of φ [62]. The notion used in this work uses a
generalization of density where the sizes of two different languages are related
to each other.

Anther notion related to the density is language entropy[38]. Language en-
tropy was used for the investigation of the asymptotic behavior of temporal
logic [7], to show the relation between formulas in parametric linear-time tem-
poral logic and formulas in standard LTL as some bounds tend to infinity.

Part II

Applications of Model Counting in
Formal Verification

103

Chapter 5

Model Checking of Counting
Hyperproperties

Specifications of security-critical systems require us in many cases to reason
about multiple executions of the system. Such specifications are therefore not
expressible as linear-time properties. Hyperproperties, on the other hand, define
sets of sets of traces, and allow us to relate traces of a system with each other [46].
In this chapter, we study a special type of hyperproperties called counting hy-
perproperties, which allow for the specification of quantitative security policies.
We study counting hyperproperties in the setting of HYPERLTL [44], a temporal
logic for hyperproperties, and show that, while counting hyperproperties can
be verified using the traditional model checking algorithm for HYPERLTL, we
can improve the complexity of model checking counting hyperproperties using
a new algorithm based on a maximum model counting algorithm for LTL.

5.1 Information-Flow Policies

The main goal in information-flow control is to regulate the flow of informa-
tion in a system, preventing any information with a higher security level from
leaking to users with a lower security level. One of the first formalizations of
information-flow control was introduced with the notion of noninterference [75].
Noninterference states that a change in the secret values of a system should not

105

106 Model Checking of Counting Hyperproperties

Secret Inputs

Public Inputs

Secret Outputs

Public Outputs

7

Figure 5.1: A security-critical systems with distinguished public and secret in-
puts and outputs. Information about the secret inputs should not flow to the
public outputs.

be visible by an adversary that is capable of observing the inputs and outputs
to and of that system. For reactive systems, noninterference can be formalized
based on the model depicted in Figure 5.1. In a security-critical reactive system,
we can distinguish between two types of inputs and output, secret and public.
Secret inputs and outputs represent confidential information that is not directly
visible to any external party observing the system. Public inputs and outputs,
on the other hand, are visible to any user interacting with the system 1. For each
new secret and public input to the system, the system computes a new secret
and public output. Noninterference for reactive systems can then be formally
defined as follows. For a transition system T defined over public inputs PI, and
public outputs PO, noninterference is defined by the formula2

∀π1, π2 ∈ Traces(T).(π1 =PI π2)→ (π1 =PO π2)

where =X , for some set of atomic propositions X, denotes the relation that only
includes pairs of infinite words that agree on the valuation of propositions in
X. Noninterference states that if an adversary observes two traces of the system
that share the same valuation of the public inputs, then the adversary should
see no difference in the valuations of the public outputs of these two traces.

Security policies like noninterference cannot be defined by linear-time prop-
erties since we need to reason about pairs of traces of the system rather than

1This is a very abstract view on security-critical systems where we distinguish only between
two levels of secrecy. In practice, we may distinguish between several secrecy levels ordered within
a lattice, the so-called security lattice [55]. Noninterference can then be formulated as the policy that
requires change in the input of a certain level not to be visible in outputs with a lower secrecy level.

2This is one of many definitions of noninterference in the setting of reactive systems. Other
possible definition may require that the public outputs are equal only as long as the public inputs
are. We chose one of these definitions for the purpose of demonstration.

5.2. HYPERLTL: A Temporal Logic for Hyperproperties 107

individual traces. In fact, noninterference defines a set of sets of traces, those
that include only traces where two traces that are equal on the public input are
also equal on the public output. Properties of this type are called hyperproper-
ties [46], and can be formalized as follows.

Definition 5.1 (Hyperproperties [46]). For an alphabet Σ, let Σω denote the
set of infinite traces over Σ. A hyperproperty over Σ is a set H ⊆ 2Σω

.
A system T satisfies a hyperproperty H, denoted by T |= H if and only if
Traces(T) ∈ H.

Intuitively, the sets defined by hyperproperties define sets of traces that are
allowed to co-exist in a system. Hyperproperties have been widely used for
the specification of information-flow policies, but are not only restricted to this
domain. Prominent examples of hyperproperties include robustness properties
for reactive systems, where we want to make sure that the outputs of systems
remain stable under the influence of noise [123]. Hyperproperties can also be
used to define symmetries between process that access a shared resource, or
to define the functional correctness of encoders and decoders of error resistant
codes, where we require all pairs of code words to have a certain minimum
Hamming distance [66].

In this chapter, we will focus on hyperproperties that describe information-
flow policies and quantitative extensions of such policies. Our model check-
ing approach is nevertheless adaptable to all other mentioned domains, and be-
yond.

5.2 HYPERLTL: A Temporal Logic for Hyperproperties

We investigate hyperproperties that can be expressed in the temporal hyper-
logic HYPERLTL [44]. HYPERLTL extends linear-time temporal logic (LTL) with
quantifiers over trace variables. Let V be an infinite supply of trace variables, and
let AP be a set of atomic propositions. The syntax of HYPERLTL is given by the
following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | φ

φ ::= aπ | ¬φ | φ ∨ φ | φ | φ U φ

where a ∈ AP is an atomic proposition, and π ∈ V is a trace variable. Note that
atomic propositions are indexed by trace variables. The derived operators ,

and W are defined as for LTL. We call a trace variable π free in a HyperLTL

108 Model Checking of Counting Hyperproperties

formula if there is no quantification over π, and we call a HyperLTL formula φ

closed if there exists no free trace variable in φ.
Formally, the semantics of HYPERLTL formulas over an alphabet Σ is given

with respect to a trace assignment Π from V to Σω, i.e., a partial function map-
ping trace variables to actual traces. Π[π 7→ t] denotes that π is mapped to t,
with everything else mapped according to Π. Π[i, ∞] denotes the trace assign-
ment such that for all π, Π[i, ∞](π) = Π(π)[i, ∞]. Given a set of traces T, the
semantics of HYPERLTL is defined as follows

Π |=T ∃π.ψ iff there exists t ∈ T : Π[π 7→ t] |=T ψ

Π |=T ∀π.ψ iff for all t ∈ T : Π[π 7→ t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]

Π |=T ¬ψ iff Π ̸|=T ψ

Π |=T ψ1 ∨ ψ2 iff Π |=T ψ1 or Π |=T ψ2

Π |=T ψ iff Π[1, ∞] |=T ψ

Π |=T ψ1 U ψ2 iff there exists i ≥ 0 : Π[i, ∞] |=T ψ2

and for all 0 ≤ j < i we have Π[j, ∞] |=T ψ1

We say a set of traces T satisfies a HYPERLTL formula φ if ∅ |=T φ, where ∅ is
the empty trace assignment.

Example 5.1 (Noninterference). Let a set of atomic propositions AP = SI∪· SO∪·
PI ∪· PO be composed of the sets if secret inputs, secret outputs, public inputs,
and public outputs. The policy of noninterference for a system T defined over
AP can be given by the HYPERLTL formula

∀π1.∀π2. (
∧

i∈PI
iπ1 = iπ2)→ (

∧
o∈PO

oπ1 = oπ2).

The formula states that if two traces π1 and π2 in Traces(T) share the same val-
uation of propositions in PI at every position, then they should share the same
valuation of propositions in PO at every position.

Example 5.2 (Deniability). Another prominent information-flow policy is deni-
ability [23, 32]. Deniability defines the policy that states that by observing the
public output alone, we should not be able to infer any of the values of the se-
cret inputs. Deniability is an important policy with respect to electronic voting,
where we should not infer any information about the choices of voters, after
knowing the outcome of the elections. Formally, we can define deniability by
the formula

∀π1.∃π2.(π1 =PO π2) ∧ (π1 ̸=SI π2).

5.2. HYPERLTL: A Temporal Logic for Hyperproperties 109

The specification states that every public output sequence of the system should
be the result of at least two different sequences of secret inputs. In HYPERLTL,
deniability can be defined as follows. Let the set of atomic propositions AP =

SI ∪· SO ∪· PI ∪· PO. Deniability for a system T defined over AP can be given by
the HYPERLTL formula

∀π1.∃π2. (
∧

o∈PO
oπ1 = oπ2) ∧ (

∨
i∈SI

iπ1 ̸= iπ2).

For each trace π1 in Traces(T), we must find another trace π2 that shares the same
valuation of public output propositions, and differs from π1 in the valuation of
secret input propositions in at least one position along the two traces.

5.2.1 A model checking algorithm for HYPERLTL

Model checking of HYPERLTL formulas builds on the algorithm for model check-
ing properties given in LTL. We start by presenting the model checking algo-
rithm for existential HYPERLTL formulas, i.e., formulas with only existential
quantifiers. An algorithm for the full fragment of HYPERLTL is then given based
on the constructions used for the existential fragment.

The model checking problem for existential HYPERLTL can be reduced to
LTL model checking. To model check a system T against an LTL formula φ (See
Section 2.5), we construct a Büchi automaton accepting the language defined by
φ, comput the product of this automaton and the transition system T, and check
the product automaton for emptiness. The language of the product automaton
defines the mutual traces in the system and the Büchi automaton for φ, and thus
a trace accepted by the product automaton represents a trace in T violating the
property φ.

Model checking a transitions system T against an LTL formula φ can be seen
as model checking T against the HYPERLTL formula ∃π. φ, where we look for a
trace π in T that violates φ. To check T against an existential HYPERLTL formula
∃π1. . . . ∃πk. ψ, we need to find a set of k traces in T that satisfy ψ, and thus
compute the product of the Büchi automaton for ψ with k copies of the transition
system T, one copy for finding each of the k traces. The ith copy of the system is
associated with atomic propositions in ψ indexed with trace variable πi. Such an
automaton construction was presented in [66]. We introduce a slightly modified
automata construction that is compatible with finite labeled transition systems.
Instead of labeling over states of a Kripke structure as in [66], we label over sets
of atomic propositions. The constructions are equivalent as any nondeterminism

110 Model Checking of Counting Hyperproperties

in the Kripke structure is inherently resolved, because formulas in HYPERLTL
quantify over traces instead of paths.

Automata for HYPERLTL. Let φ be a closed existential HYPERLTL formula
defined over a set of atomic propositions AP. Let V be the set of all trace vari-
ables introduced by the existential quantifiers in φ. Let AP[V] be defined as the
set

AP[V] = {aπ | a ∈ AP, π ∈ V}.

A Büchi automaton Bφ for φ is defined over the alphabet Σ = (2AP[V]) and is
constructed inductively as as follows.

For atomic propositions, Boolean connectives, and temporal operators in
the quantifier free part of φ, our construction follows the standard translation
from LTL to alternating Büchi automata [150]. Let Bψ1 = (Σ, Q1, q0,1, δ1, F1), and
Bψ2 = (Σ, Q2, q0,2, δ2, F2) be two alternating Büchi automata for two quantifier-
free HYPERLTL formulas ψ1 and ψ2. An alternating Büchi automaton for a quan-
tifier free HYPERLTL formula ψ is constructed as follows:

• ψ = aπ for some aπ ∈ AP[V]:

Bψ = (Σ, {q0}, q0, δ, ∅) where ∀α ∈ Σ. δ(q0, α) = (aπ ∈ α).

• ψ = ¬aπ for some aπ ∈ AP[V]:

Bψ = (Σ, {q0}, q0, δ, ∅) where ∀α ∈ Σ. δ(q0, α) = (aπ ̸∈ α).

• ψ = ψ1 ∧ ψ2:
Bψ = (Σ, Q1 ∪· Q2 ∪· {q0}, q0, δ, F1 ∪· F2)

where q0 is a fresh state,
∀α ∈ Σ. δ(q0, α) = δ1(q0,1, α) ∧ δ2(q0,2, α), and
∀i ∈ {1, 2}.∀q ∈ Qi.∀α ∈ Σ. δ(q, α) = δi(q, α)

• ψ = ψ1 ∨ ψ2:
Bψ = (Σ, Q1 ∪· Q2 ∪· {q0}, q0, δ, F1 ∪· F2)

where q0 is a fresh state,
∀α ∈ Σ. δ(q0, α) = δ1(q0,1, α) ∨ δ2(q0,2, α), and
∀i ∈ {1, 2}.∀q ∈ Qi.∀α ∈ Σ. δ(q, α) = δi(q, α)

• ψ = ψ1:
Bψ = (Σ, Q1 ∪· {q0}, q0, δ, F1)

5.2. HYPERLTL: A Temporal Logic for Hyperproperties 111

where q0 is a fresh state,
∀α ∈ Σ. δ(q0, α) = q0,1, and
∀q ∈ Q1.∀α ∈ Σ. δ(q, α) = δ1(q, α).

• ψ = ψ1 U ψ2:
Bψ = (Σ, Q1 ∪· Q2 ∪· {q0}, q0, δ, F1 ∪· F2)

where q0 is a fresh state,
δ(q0, α) = δ2(q0,2, α) ∨ (δ1(q0,1, α) ∧ q0), and
∀i ∈ {1, 2}.∀q ∈ Qi.∀α ∈ Σ. δ(q, α) = δi(q, α).

• ψ = ψ1Rψ2:

Bψ = (Σ, Q1 ∪· Q2 ∪· {q0}, q0, δ, F1 ∪· F2 ∪· {q0})

where q0 is a fresh state,
δ(q0, α) = δ2(q0,2, α) ∧ (δ1(q0,1, α) ∨ q0), and
∀i ∈ {1, 2}.∀q ∈ Qi.∀α ∈ Σ. δ(q, α) = δi(q, α).

Intuitively, the construction above defines an automaton that represents the lan-
guage of sets of k traces {π1, . . . , πk} that satisfy the formula ψ. Each trace πi, is
distinguished by its own set of atomic propositions {aπi | a ∈ AP}.

To handle the existential quantifiers of φ we first construct the alternating
automaton as presented above for the quantifier-free part of φ, transform the
automaton into a nondeterministic Büchi automaton that defines the same lan-
guage (Lemma 2.1), and then compute the product of this automaton with a k
self-composition of the transition system under scrutiny, each copy in the com-
position for tracking one of the k traces. The automaton for a formula φ = ∃π.ψ
is constructed inductively as follows.

Let Bψ = (Σ, Q, q0, δ, F) be a nondeterministic Büchi automaton constructed
for an existential HYPERLTL formula ψ, and let T = (AP, I, O, S, s0, τ, L) be a
transition system. Let further X[x 7→y] denote a set where every x ∈ X is substi-
tuted with a y, and Xπ = {xπ | x ∈ X}. The product automaton for φ is built
using the following rule:

• φ = ∃π.ψ

Bφ = (2AP[V]\{aπ |a∈AP}, (Q× S) ∪· {q′0}, δ′, F× S)

where q′0 is a fresh state, and

∀α ∈ Σ. δ′(q′0, α) = {(q′, s′) | ∃α′ ∈ 2{aπ |a∈AP}. q′ ∈ δ(q0, α ∪ α′)∧
L(s0)π = α′Oπ

∧
s′ ∈ τ(s0, {α′Iπ

}[I[π] 7→I])}

112 Model Checking of Counting Hyperproperties

and

∀α ∈ Σ.∀q ∈ Q.∀s ∈ S.

δ′((q, s), α) = {(q′, s′) | ∃α′ ∈ 2{aπ |a∈AP}. q′ ∈ δ(q, α ∪ α′)∧
L(s)π = α′Oπ

∧
s′ ∈ τ(s, {α′Iπ

}[I[π] 7→I])}

After constructing the product automaton we preform an emptiness check.
If the automaton is not empty, then there is a set of k traces in the system that
satisfy the property φ.

Remark 5.1. For more details on automata and representations for hyperproperties we
refer the reader to [64].

Model checking universally quantified formulas. To model check a transition
system T against a universal HYPERLTL formula φ = ∀π1 . . . ∀πk.ψ we search
for k traces in Traces(T) that violate the formula ψ. If no such traces are found,
then T satisfies φ. Thus, the model checking problem for φ can be reduced to
model checking problem for existential formulas.

Theorem 5.1 ([66]). The problem of model checking a transition system T against an
alternation-free HYPERLTL formula φ is PSPACE-complete in the length of φ and NL-
complete in the size of T.

Proof. The size of the alternating automaton Bφ for a HYPERLTL formula φ =

∃π1 . . . ∃πk.ψ is linear in the length of φ. The size of the product automaton is
of size polynomial in the size of transition system T. To check that the product
automaton is empty, we need to find an accepting lasso run in the automaton.
Guessing such lasso can be done in space polynomial in the length of φ and
space logarithmic in the size of T [152]. The lower bound follows from the lower
bound for LTL model checking, since HYPERLTL subsumes LTL [138].

Handling quantifier alternation. The construction of automata for existential
HYPERLTL formulas can be extended to full HYPERLTL by handling negated
existential formulas, i.e., formulas of the form ¬∃π.ψ for some HYPERLTL for-
mula ψ. An automaton for such a formula can be constructed by computing the
complement automaton of the automaton for the formula ∃π.ψ [78]. Let NB be
the nondeterministic Büchi automaton constructed for the formula ∃π.ψ using

5.3. Counting Hyperproperties 113

our construction above. We extend the rules for automata construction by the
rule

• φ = ¬∃π.ψ:
Bφ = NB

where NB is the complement automaton of NB.
Constructing the complement automaton adds exponential cost to our con-

struction. The size of the automaton constructed for model checking a system
against a HYPERLTL formula thus depends on the number of quantifier alterna-
tions in the formula.

Definition 5.2 (Alternation Depth). Given a HYPERLTL formula φ, the al-
ternation depth of φ is number of alternations from existential to universal
quantifiers and from universal to existential quantifiers in the quantifier
prefix.

For example, for a quantifier free formula ψ, the formulas ∃π∃π′.ψ and
∀π∀π′.ψ have alternation depth 0, the formula ∃π.∀π′.ψ has alternation
depth 1, and the formula ∀π.∃π′.∀π′′∃π′′′.ψ has depth 3.

Let exp : N×N→N be the function defined as follows:

depth(k, c) =

c k = 0

2depth(k−1,c) k ≥ 1

In the next theorem, we use the function depth to give the overall complexity of
the model checking problem of HYPERLTL.

Theorem 5.2 ([66]). Model checking a transition system T against a HYPERLTL for-
mula φ with alternation depth n can be done in space O(depth(n, |φ|)) and in space
O(depth((n− 1), |T|)).

5.3 Counting Hyperproperties

Information leakage is unavoidable in practice, and sometimes necessary to
keep a certain level of functionality in the system. For example, a password
checker leaks information about a secret password by replying whether an en-
tered phrase is right or wrong. Sometimes, password checkers inform users that
the phrase must contain some special character or number, giving even more in-
formation about the secret password. Leaking such information is nevertheless
still acceptable as it does not endanger the secrecy of the private password.

114 Model Checking of Counting Hyperproperties

In quantitative information flow [45, 79, 98] we determine the security of a
system by measuring the amount of information leaked by the system. As long
as the amount is below a certain threshold appropriate for the system under
scrutiny, the system is considered to be secure against adversaries observing
the public values of the system. Quantitative approaches to information-flow
control are mostly based on notions of entropy [139]. Two prominent entropy
notions that have been argued to be most adequate for measuring information
leakage are min-entropy [139] and minimal guessing entropy [96].

Min-entropy measures the expected likelihood of guessing the secret inputs
with one try after observing the public values of the system, and is defined by
the logarithm of the number of different public outputs. The bounding prob-
lem [154] for min-entropy is to determine whether that amount is bounded from
above by a constant 2n, corresponding to n bits of information. Specifying that
the min-entropy is bounded by n bits can be done in terms of the following hy-
perproperty H that bounds the number of public outputs of the system [129]

Γ ∈ H iff |ΓPO| ≤ 2n

where ΓPO defines the set of traces in Γ projected to only to the values of the
public outputs. If we also want to include the public inputs, we can define the
boundedness of min-entropy by the hyperproperty H′ that bounds the number
of public outputs for each public input of the system [129]

Γ ∈ H iff ∀Γ′ ⊆ Γ. (∀π, π′ ∈ Γ′. π =PI π′)→ |ΓPO| ≤ 2n

The hyperproperty H defines a quantitative version of noninterference, where a
public input may result in up to 2n different public outputs.

Minimal guessing entropy is closely related to deniability. It measures the
worst-case likelihood needed to guess the secret inputs after observing the pub-
lic values of the system, and is defined as the logarithm of the number of differ-
ent secret inputs leading to the same public output. The bounding problem for
minimal guessing entropy can be specified by the hyperproperty H

Γ ∈ H iff ∀Γ′ ⊆ Γ. (∀π, π′ ∈ Γ′. π =PO π′)→ |ΓSI| ≥ 2n

which states that each public input should be mapped to at least 2n secret inputs.

Excursion 5.1 (Shannon Entropy). Shannon entropy, also known as infor-
mation entropy, is the most prominent notion of entropy [137]. Introduced

5.3. Counting Hyperproperties 115

by Claude Shannon in 1948, Shannon entropy was used to measure the un-
certainty about information carried over a communication channel. Shan-
non entropy has also been widely used for measuring information leak-
age [139]. In our study, we concentrate on deterministic security-critical
systems with a uniform distribution of inputs. For this case, Shannon en-
tropy and min-entropy coincide [139].

In the following, we give a formalization of quantitative hyperproperties that
expresses a bound on the number of traces that may appear in a certain relation.
We call such hyperproperties by the name counting hyperproperties.

Definition 5.3 (Counting Hyperproperties). For hyperproperties H and J
defined over a set of atomic propositions AP, a set A ⊆ AP, bounds n, k ∈
N, and a comparison operator ◁ ∈ {<,≤,=,>,≥}, a counting hyperprop-
erty φ is defined by the expression

φ = ∀π1. . . . ∀πk. J → (#A σ. H) ◁ n.

A transition system T satisfies φ, if for each set of traces {t1, . . . , tk} ⊆
Traces(T), with {t1, . . . , tk} |= J the following holds:

|{tA | t ∈ Traces(T) ∧ {t1, . . . , tk, t} |= H}| ◁ n

where tA represents the projection of trace t to the valuations of proposi-
tions in A.

Example 5.3 (Quantitative Noninterference). A quantitative noninterference pol-
icy lays a bound on the number of different outputs produced by the system.
For a set of atomic propositions AP, and a set of public outputs O ⊆ AP, and
for a bound 2c corresponding to a bound of c bits of information, a system must
satisfy the policy defined by the counting hyperproperty

(#PO σ. true) ≤ n

We may also limit the number of outputs produced by the system for every
public input to the system by using the following policy

∀π. (#PO σ. (π =PI σ)) ≤ n

116 Model Checking of Counting Hyperproperties

for a set of public inputs PI. The counting hyperproperty ensures that for each
trace π in the system, there are no more than 2c traces σ that have the same ob-
servable input as π (With respect to the definition of counting hyperproperties,
J ≡ true and H ≡ (π =PI σ)) but different observable outputs.

Example 5.4 (Quantitative Deniability). A quantitative variant of deniability re-
quires that the number of secret inputs corresponding to a public output is larger
than a given threshold. Quantitative deniability can be defined by the following
counting hyperproperty

∀π. (#SI σ. (π =PO σ)) > n

where SI are the secret inputs to the system. For all traces π of the system, we
count the number of different sequences σ over 2SI in the system with the same
public output sequence as in π, i.e., for the fixed output sequence given by π we
count the number of input sequences that lead to this output.

In the following, we study counting hyperproperties φ = ∀π1. . . . ∀πk. J →
(#A σ. H) ◁ n. where the hyperproperties J and H are defined by HYPERLTL
formulas.

5.4 Model Checking Counting Hyperproperties

In this section, we present two approaches to model checking counting hyper-
properties. One based on encodings into HYPERLTL and another one based on
maximum model counting. We show that the maximum model counting based
approach improves the complexity exponentially in the bound, and sometimes
doubly exponentially depending on the counting hyperproperty, over the model
checking algorithm of HYPERLTL.

5.4.1 Encoding counting hyperproperties in HYPERLTL

The idea of the encoding is to check a lower bound of n traces by existentially
quantifying over n traces, and to check an upper bound of n traces by universally
quantifying over n + 1 traces. The resulting HyperLTL formula can be verified
using the standard model checking algorithm for HYPERLTL presented in Sec-
tion 5.2.1.

Theorem 5.3. Every counting hyperproperty ∀π1 . . . πk. J → (#A σ. H ◁ n) can be
expressed as a HyperLTL formula. For ◁ ∈ {≤}({<}), the HyperLTL formula has
n + k + 1(resp. n + k) universal trace quantifiers in addition to the quantifiers in J

5.4. Model Checking Counting Hyperproperties 117

and H. For ◁ =≥ (>), the HyperLTL formula has k universal trace quantifiers and
n (resp. n + 1) existential trace quantifiers in addition to the quantifiers in J and H.
For ◁ ∈ {=}, the HyperLTL formula has n + k + 1 universal trace quantifiers and n
existential trace quantifiers in addition to the quantifiers in J and H.

Proof. For ◁ = ≤, we encode the counting hyperproperty ∀π1, . . . , πk. J →
(#A σ. H) ◁ n as the following HyperLTL formula

∀π1, . . . , πk. ∀π′1, . . . , π′n+1.

J ∧
∧
i ̸=j

(π′i ̸=A π′j)

→ (∨
i
¬H[σ 7→ π′i]

)

where ψ[σ 7→ π′i] is the HyperLTL formula ψ with all occurrences of σ replaced
by π′i . The formula states that there is no tuple of n + 1 traces π′1, . . . , π′n+1
different in the evaluations of A, that satisfies H. In other words, for every n + 1
tuple of traces π′1, . . . , π′n+1 that differ in the evaluation of A, one of the paths
must violate ψ. For ◁ = <, we use the same formula, with ∀π′1, . . . , π′n instead
of ∀π′1, . . . , π′n+1.

For ◁ =≥, we encode the counting hyperproperty analogously as the Hyper-
LTL formula

∀π1, . . . , πk. ∃π′1, . . . , π′n. J →

∧
i ̸=j

(π′i ̸=A π′j)

 ∧(∧
i

H[σ 7→ π′i]

)

The formula states that there exist paths π′1, . . . , π′n that differ in the evalua-
tion of A, and that all satisfy H. For ◁ ∈ {>}, we use the same formula, with
∃π′1, . . . , π′n+1 instead of ∃π′1, . . . , π′n.

Lastly, for ◁ ∈ {=}, we encode the counting hyperproperty as a conjunction
of the encodings for ≤ and for ≥.

Example 5.5 (Quantitative noninterference in HYPERLTL). As discussed in Ex-
ample 5.3, quantitative noninterference is the counting hyperproperty

∀π. (#PO σ. (π =PI σ)) ≤ n

This can be encoded in HyperLTL as the requirement that there are no n + 1
traces distinguishable in their output for the same input

∀π0. ∀π1 . . . ∀πn.

(∧
i

(πi =PI π0)

)
→

∨
i ̸=j

(πi =PO πj)

 .

118 Model Checking of Counting Hyperproperties

This formula is equivalent to the formalization of quantitative noninterference
given in [66].

Example 5.6 (Quantitative deniability in HYPERLTL). As discussed in Exam-
ple 5.4, quantitative deniability is the counting hyperproperty

∀π. (#SI σ. (π =PO σ)) > n

Quantitative deniability can be given in HYPERLTL by the formula

∀π0. ∃π1 . . . ∃πn.

(∧
i

(πi =PO π0)

)
∧

∧
i ̸=j

(πi ̸=SI πj)


which encodes the requirement that there are at least n+ 1 traces distinguishable
in their secret inputs for the same public output.

Model checking quantitative hyperproperties via the reduction to HyperLTL
is very expensive. In the best case, when ◁ ∈ {≤,<}, J does not contain exis-
tential quantifiers, and ψ does not contain universal quantifiers, we obtain an
HyperLTL formula without quantifier alternations, where the number of quan-
tifiers grows linearly with the bound n. For m quantifiers, the HyperLTL model
checking algorithm [66] constructs and analyzes the m-fold self-composition of
the Kripke structure. The running time of the model checking algorithm is thus
exponential in the bound. If ◁ ∈ {≥,>,=}, the encoding additionally intro-
duces a quantifier alternation. The model checking algorithm checks quantifier
alternations via a complementation of Büchi automata, which adds another ex-
ponent, resulting in an overall doubly exponential running time.

The model checking algorithm we introduce in the next section avoids the n-
fold self-composition. It needs only logarithmic space in the bound, and there-
fore improves, depending on the property, exponentially or even doubly expo-
nentially over the model checking algorithm of HyperLTL.

5.4.2 Model checking counting hyperproperties using maximum
model counting

In this section, we present an algorithm for solving the model checking problem
for counting hyperproperties based on a reduction to maximum model counting
for linear-time properties. The algorithm builds on the following.

Let a transition system T = (AP, I, O, S, s0, τ, L), HYPERLTL formulas J and
H over a set of atomic propositions AP, a set A ⊆ AP, bounds n, k ∈ N, and
a comparison operator ◁ ∈ {<,≤,=, ̸=,>,≥}. Let φ = ∀π1. . . . ∀πk. J →

5.4. Model Checking Counting Hyperproperties 119

(#A σ. H) ◁ n be a counting hyperproperty where J is defined over AP[{π1,...,πk}],
and H is defined over AP[{π1,...,πk ,σ}]. To check whether T violates φ, we need
to find a set of traces {t1, . . . , tk} ⊆ Traces(T) that satisfies the hyperproperty J,
and such that the size of the set

Γ = {tA | t ∈ Traces(T) ∧ {t1, . . . , tk, t} |= H}

satisfies the relation ◁ n where ◁ is the opposite operator of ◁. The model check-
ing problem thus reduces to maximizing (when ◁ ∈ {≤,<}), or minimizing
(when ◁ ∈ {>,≥}) the size of Γ over all sets of k traces in T that satisfy J. This
can be done in three steps:

• First, we need to capture the language of sets of traces {t1, . . . , tk, t} that
satisfy the hyperproperty J ∧ H. This is done by building a Büchi au-
tomaton BJ∧H for the HYPERLTL formula J ∧ H following the construc-
tion in Section 5.2.1. The automaton BJ∧H is defined over the alphabet
2AP[{π1,...,πk ,σ}] .

• Second, we construct a product automaton P of BJ∧H and k + 1 copies of
T, corresponding to the trace variables π1, . . . , πk, and σ, as follows

– P0 = BJ∧H

– For some 0 ≤ i < k, if Pi = (Qi, {q0,i}, 2AP{π1,...,πk ,σ} , δi, Fi), then
Pi+1 = (Qi × S ∪· {q0,i+1}, q0,i+1, 2AP{π1,...,πk ,σ} , δi+1, Fi × S) where
q0,i+1 is a fresh state, and δi+1 is defined as follows

δi+1(q0,i+1, α) = {(q′, s′) | q′ ∈ δi(q0,i, α)∧
L(s0)[πi]

= αOπi
∧

s′ ∈ τ(s0, (αIπi
)[aπi∈Iπi 7→a])}

and

δi+1((q, s), α) = {(q′, s′) | q′ ∈ δ(q, α)∧
L(s)[πi]

= αOπi
∧

s′ ∈ τ(s, (αIπi
)[aπi∈Iπ 7→a])}

We define the product automaton P as the automaton Pk.

• Third, given the product automaton P, we define the following maximum
(or minimum) model counting problem over P. Let APH be all the atomic
propositions that appear H (with their trace variable indices). The the

120 Model Checking of Counting Hyperproperties

maximum (minimum) model counting is defined over the counting set
A{σ}, and maximization (minimization) set APH \AP{σ}.

We illustrate the advantages of the new algorithm over the standard HYPERLTL
model checking algorithm by comparing the complexities for model checking
the counting hyperproperties of quantitative noninterference and deniability.

Example 5.7 (Model checking quantitative noninterference). Quantitative non-
interference is defined by the counting hyperproperty

φ = ∀π. (#PO σ. (π =PI σ)) ≤ n

which in turn can be encoded as the HYPERLTL formula

φ = ∀π0. ∀π1 . . . ∀πn.

(∧
i

(πi =I π0)

)
→

∨
i ̸=j

(πi =O πj)

 .

Using the standard model checking algorithm for HYPERLTL, we need to
construct a n-self composition of the transition T system to be model checked
against φ. The size of the self-composition is exponential in n, and thus the
model checking algorithm runs in time exponential, and space polynomial in
the n.

In contrast, the maximum-model-counting-based algorithm requires only
space logarithmic, and time polynomial in the bound n. The reason for that
is, that we only need to maintain binary encoded counter that counts up to n.
As soon as the maximum model counting algorithm reaches this bound, we can
terminate the procedure and return a violation for the counting property. For
quantitative noninterference, there is however a tradeoff in the complexity in
the size of the system T. The maximum model counting algorithms runs in
space polynomial in the size of the product automaton (Section 3.6), which is of
size polynomial in the size of T, in contrast to a logarithmic space complexity
in T (Theorem 5.1).

Example 5.8 (Model checking quantitative deniability). Quantitative deniability
is defined by the counting hyperproperty

∀π. (#SI σ. (π =PO σ)) > n

which in turn can be encoded as the HYPERLTL formula

∀π0. ∃π1 . . . ∃πn.

(
(
∧

o∈PO
oπ = oπ′)

)
→
(

(
∨

i∈SI
iπ1 ̸= iπ2)

)

5.5. Symbolic Approach to Model Checking Counting Properties 121

Using the standard model checking algorithm for HYPERLTL, we need to a
product automaton composed of the Büchi automaton for the formula(

(
∧

o∈PO
oπ = oπ′)

)
→
(

(
∨

i∈SI
iπ1 ̸= iπ2)

)
with n-self composition of the transition T, a complementation of this automa-
ton, and computing a final product of the complement automaton and the tran-
sitions system T. The size of the resulting automaton is doubly-exponential in
n, and thus the model checking algorithm runs in time doubly-exponential, and
space exponential in the n.

In contrast, a minimum-model-counting-based algorithm requires only space
logarithmic, and time polynomial in the bound n, as we only need to maintain a
counter of log(n) bits. With respect to the complexity in the size of the transition
system, the algorithm runs, as in the case of quantitative noninterference, only
in polynomial space in the size of T. This is also the case for the standard model
checking algorithm, because the alternation depth in the HYPERLTL formula
is 1 (Theorem 5.2).

The complexity of the model checking algorithm is summarized in the fol-
lowing theorem.

Theorem 5.4. Given a transition system T and a quantitative hyperproperty φ with
bound n, deciding whether T |= φ can be done in logarithmic space in the bound n, and
in polynomial space in the size of T.

5.5 Symbolic Approach to Model Checking Counting
Properties

For existential HYPERLTL formulas J and H, we give a model checking ap-
proach by encoding the automaton-based construction presented into a propo-
sitional formula.

Given a transitions system = (AP, I, O, S, s0, τ, L), and a quantitative hyper-
property φ = ∀π1, . . . , πk. J → (#Aσ. H) ◁ n over a set of atomic propositions
APφ ⊆ AP and bound µ (defined below), our algorithm constructs a proposi-
tional formula ϕ such that, every satisfying assignment of ϕ uniquely encodes a
tuple of lassos (π1, . . . , πk, σ) in T of length µ, where (π1, . . . , πk) satisfies J and
(π1, . . . , πk, σ) satisfies H.

To compute the values

max
(π1,...,πk)

|{σA | (π1, . . . , πk, σ) |= J ∧ H}|

122 Model Checking of Counting Hyperproperties

in case ◁ ∈ {≤,<}, or

min
(π1,...,πk)

|{σA | (π1, . . . , πk, σ) |= J ∧ H}|

in case ◁ ∈ {≥,>}, we apply a maximum model counter or a minimal model
counter on ϕ, respectively, with the appropriate sets of counting and maximiza-
tion, or minimization propositions. From Lemma 3.2 we know that it is enough
to consider lassos of length linear in the product automaton. The size of ϕ is
thus exponential in the size of φ and polynomial in the size of T.

The construction resembles the encoding of the bounded model checking ap-
proach for LTL [22]. Let J = ∃π′1 . . . π′k′ . J′ and H = ∃π′′1 . . . π′′k′′ . H′′ and let APJ

and APH be the sets of atomic propositions that appear in J and H respectively.
The propositional formula ϕ is given as a conjunction of the following proposi-
tional formulas:

ϕ =
∧
i≤k

JTKπi
µ ∧ JTKσ

µ ∧ JJK0
µ ∧ JHK0

µ

where:

• µ is length of considered lassos and is equal to µ = 2|ψ
′
ι∧ψ′′ | ∗ |S|k+k′+k′′+1 +

1, which is one plus the size of the product automaton constructed from
the k+ k′+ k′′+ 1 self-composition and the automaton for J ∧H. The "plus
one" is to additionally to check whether the number of models is infinite.

• JTKπ
k is the encoding of the transition relation of the copy of T where

atomic propositions are indexed with π and up to an unrolling of length
k. Each state of T can be encoded as an evaluation of a vector of log |S|
unique propositional variables. The encoding3 is given by the proposi-
tional formula I(#”v π

0) ∧
∧k−1

i=0 τ(#”v π
i , #”v π

i+1) which encodes all paths of T of
length k. The formula I(#”v π

0) defines the assignment of the initial state.
The formulas τ(#”v π

i , #”v π
i+1) define valid transitions in T from the ith to the

(i + 1)st state of a path.

• JJK0
k and JHK0

k are constructed using the following rules:

3We refer the reader to [22] for more information on the encoding

5.6. Bibliographic Remarks 123

i < k i = kJaπKi
k ai

π
∨k−1

j=0 (lj ∧ aj
π)J¬aπKi

k ¬ai
π

∨k−1
j=0 (lj ∧ ¬aj

π)J φ1Ki
k Jφ1Ki+1

k
∨k−1

j=0 (lj ∧ Jφ1Kj
k)Jφ1 U φ2Ki

k Jφ2Ki
k ∨ (Jφ1Ki

k ∧ Jφ1 U φKi+1
k)

∨k−1
j=0 (lj ∧ ⟨φ1 U φ2⟩

j
k)

⟨φ1 U φ2⟩ik Jφ2Ki
k ∨ (Jφ1Ki

k ∧ ⟨φ1 U φ⟩i+1
k) falseJφ1R φ2Ki

k Jφ2Ki
k ∧ (Jφ1Ki

k ∨ Jφ1R φKi+1
k)

∨k−1
j=0 (lj ∧ ⟨φ1R φ2⟩

j
k)

⟨φ1R φ2⟩ik Jφ2Ki
k ∧ (Jφ1Ki

k ∨ ⟨φ1R φ⟩i+1
k) true

in case of an existential quantifier over a trace variable π, we add a copy
of the encoding of T with new variables distinguished by π:

J∃π.φ1Ki
k JTKπ

k ∧ Jφ1Ki
k

We define sets X = {ai
σ | a ∈ A, i ≤ k}, Y = {ai | a ∈ APH \ A, i ≤ k} and

Z = P \ X ∪ Y, where P is the set of all propositions in ϕ. The maximum model
counting problem is then #max(ϕ, X, Y, Z).

5.5.1 Evaluation

We have implemented the symbolic approach from the last section and com-
pared it to the expansion-based approach of HYPERLTL [66]. Our implemen-
tation uses the MaxCount tool [73]. We use the option in MaxCount that enu-
merates, rather than approximates, the number of assignments for the counting
variables. We furthermore instrumented the tool so that it terminates as soon as
a sample is found that exceeds the given bound. If no sample is found after one
hour, we report a timeout.

Table 5.1 shows the results on a parameterized benchmark obtained from the
implementation of an 8bit passcode checker. The parameter of the benchmark is
the bound on the number of bits that is leaked to an adversary, who might, for
example, enter passcodes in a brute-force manner. In all instances, a violation
is found. The results show that the Max#Sat-based approach scales significantly
better than the expansion-based approach.

5.6 Bibliographic Remarks

Quantitative information-flow has been studied extensively in the literature [139,
96, 45, 6, 79]. Multiple verification methods for quantitative information-flow

124 Model Checking of Counting Hyperproperties

Specification MCHyper MCQHyper
#Latches #Gates #Quan. Time(sec) #max #count Time(sec).

1bit_leak

9 55

2 0.3 16 2 1
2bit_leak 4 0.4 32 4 1
3bit_leak 8 1.3 64 8 2
4bit_leak 16 97 128 16 4
5bit_leak 32 TO 256 32 8
6bit_leak 64 TO 512 64 335
8bit_leak 256 TO 2048 256 TO

Table 5.1: Comparison between the expansion-based approach (MCHyper) and
the Max#Sat-based approach (MCQHyper). #max is the number of maximiza-
tion variables (set Y). #count is the number of the counting variables (set X). TO
indicates a time-out after 1 hour.

were proposed for sequential systems. For example, with static analysis tech-
niques [41], approximation methods [98], equivalence relations [10, 48], and
randomized methods [98]. Quantitative information-flow for multi-threaded
programs was considered in [37].

The study of quantitative information-flow in a reactive setting gained a
lot of attention recently after the introduction of hyperproperties [46] and the
idea of verifying the self-composition of a reactive system [16] in order to re-
late traces to each other. There are several possibilities to measure the amount
of leakage, such as Shannon entropy [137, 56, 41, 115], and the ones we used
in this chapter, guessing entropy [96], min-entropy [139]. A classification of
quantitative information-flow policies as safety and liveness hyperproperties
was given in [155]. While several verification techniques for hyperproperties
exists [15, 80, 117, 122], the literature was missing general approaches to quan-
titative information-flow control. SecLTL [57] was introduced as first general
approach to model check (quantitative) hyperproperties, before HyperLTL [44],
and its corresponding model checker [66], was introduced as a temporal logic
for hyperproperties, which subsumes the previous approaches.

Among the already existing tools for computing the amount of information
leakage, for example, QUAIL [24], which analyzes programs written in a specific
while-language and LeakWatch [39], which estimates the amount of leakage in
Java programs, Moped-QLeak [31] is closest to our approach. However, their
approach of computing a symbolic summary as an Algebraic Decision Diagram
is, in contrast to our approach, solely based on model counting, not maximum
model counting.

Chapter 6

Synthesis of Approximate
Implementations

6.1 Synthesis of Reactive Systems

In formal synthesis of reactive systems an implementation of a system is auto-
matically constructed from its formal specification [63, 125]. The great advan-
tage of synthesis is that the resulting implementation is correct by construction,
and thus allows developers to focus on determining what a system should do
rather than how it should do it.

In synthesis, the task of the developer is shifted from writing a program that
implements the system to writing a specification for it. This comes with the main
hurdle that the system designer has to provide the right formal specification,
which as we have discussed earlier is often a difficult task [100]. In particular,
since the system being synthesized is required to satisfy its requirements against
all possible environments allowed by the specification, accurately capturing the
designer’s knowledge about the environment in which the system will execute
is crucial for being able to successfully synthesize an implementation. Missing
assumptions about the environment lead quickly to unrealizable specifications,
i.e., specifications for which there is no implementation that satisfies them.

125

126 Synthesis of Approximate Implementations

Traditionally, environment assumptions are included in the specification.
One way to repair an unrealizable specification is by refining these assumptions
or weakening the guarantees expected of the system [133]. There are, however
less explored ways of incorporating information about the environment, for ex-
ample, one of which is to consider a bound on the size of the environment, that is,
a bound on the size of the state space of a transition system that describes the
possible environment behaviors. Restricting the space of possible environments
can render an unrealizable specification into a realizable one.

The synthesis under such bounded environments was first studied in [101],
where the authors extensively study the problem, in several versions, from the
complexity-theoretic point of view. In this chapter, we present another approach
to providing environment assumptions, where instead of bounding the size of
the state space of the environment, we bound the sequences of values of input
signals produced by the environment. The infinite input sequences produced
by a finite-state environment which interacts with a finite state system are ulti-
mately periodic, and thus, each such infinite sequence σ ∈ Σω

I , over the input
alphabet ΣI , can be represented as a lasso, which is a pair (u, v) of finite words
u ∈ Σ∗I and v ∈ Σ+

I , such that σ = u · vω. It is the length of such sequences that
we consider a bound on. More precisely, given a bound k ∈ N, we consider the
language of all infinite sequences of inputs that can be represented by a lasso
(u, v) with |u · v| = k. The goal of the synthesis of lasso precise implementations is
then to synthesize a system for which each execution resulting from a sequence
of environment inputs in that language, satisfies a given linear-time property.

Example. Consider an arbiter serving two client processes. Each client issues
a request when it wants to access a shared resource, and keeps the request sig-
nal up until it is done using the resource. The goal of the arbiter is to ensure
the classical mutual exclusion property, by not granting access to the two clients
simultaneously. The arbiter has to also ensure that each client request is even-
tually granted. This, however, is difficult since, first, a client might gain access
to the resource and never lower the request signal, and second, the arbiter is not
allowed to take away a grant unless the request has been set to false, or the client
never sets the request to false in the future (the client has become unresponsive).
The last two requirements together make the specification unrealizable, as the
arbiter has no way of determining if a client has become unresponsive, or will
lower the request signal in the future. If, however, the length of the lassos of the
input sequences is bounded, then, after a sufficient number of steps, the arbiter
can assume that if the request has not been set to false, then it will not be low-

6.1. Synthesis of Reactive Systems 127

ered in the future either, as the sequence of inputs must already have run at least
once through it’s period that will be ultimately repeated from that point on.

Formally, we can express the requirements on the arbiter in LTL as follows.
There is one input variable ri (for request) and one output variable gi (for grant)
associated with each client. The specification is then given as the conjunction

φ=φmutex ∧ φresp ∧ φrel

where
φmutex = ¬(g1 ∧ g2),
φresp =

∧2
i=1(ri → gi),

φrel =
∧2

i=1(gi ∧ ri ∧ (¬ri)→ gi).

Due to the requirement to not revoke grants stated in φrel, the specification φ is
unrealizable. For any bound k on the length of the input lassos, however, φ is
realizable. More precisely, there exists an implementation in which once client
i has not lowered the request signal for k consecutive steps, the variable gi is
set to false. This example shows that when the system designer has knowledge
about the resources available to the environment processes, taking this knowl-
edge into account can enable us to synthesize a system that is correct under this
assumption.

We formally define the synthesis problem for lasso-precise implementations,
that is, implementations that are correct for input lassos of bounded size, and
describe an automata-theoretic approach to this synthesis problem. We also con-
sider the synthesis of lasso-precise implementations of bounded size, and provide a
symbolic synthesis algorithm based on quantified Boolean satisfiability.

Bounding the size of the input lassos can render some unrealizable specifi-
cations realizable, but, similarly to bounding the size of the environment, comes
at the price of higher computational complexity. To alleviate this problem, we
further study the synthesis of approximate implementations, where we relax the
synthesis problem further, and only require that for a given ϵ > 0 the ratio of in-
put lassos of a given size for which the specification is satisfied, to the total num-
ber of input lassos of that size is at least 1− ϵ. We then propose an approximate
synthesis method based on maximum model counting for Boolean formulas [73].
The benefits of the approximate approach are two-fold. Firstly, it can often de-
liver high-quality approximate solutions more efficiently than the lasso-precise
synthesis method, and secondly, even when the specification is still unrealizable
for a given lasso bound, we might be able to synthesize an implementation that
is correct for a given fraction of the possible input lassos.

128 Synthesis of Approximate Implementations

6.2 Lasso-precise implementations

We begin by formally defining the language of sequences of input values rep-
resentable by lassos of a given length k. For the rest of the section, we consider
linear-time properties defined over a set of atomic propositions AP. The subset
I ⊆ AP consists of the input atomic propositions controlled by the environment.

Definition 6.1 (Bounded Model Languages). Let φ be a linear-time prop-
erty over a set of atomic propositions AP, let Σ = 2AP, and let I ⊆ AP.

We say that an infinite word σ ∈ Σω is an I-k-model of φ, for a bound
k ∈N, if and only if σ ∈ L(φ), and there are words u ∈ (2I)∗ and v ∈ (2I)+

such that |u · v| = k and σ|I = u · vω. The language of I-k-models of the
property φ is defined by the set LI

k(φ) = {σ ∈ Σω | σ is a I-k-model of φ}.

Note that a model of φ might be induced by lassos of different length and by
more than one lasso of the same length, e.g, aω is induced by (a, a) and (ϵ, aa).
The next lemma establishes that if a model of φ can be represented by a lasso of
length k then it can also be represented by a lasso of any larger length.

Lemma 6.1. For a linear-time property φ over Σ = 2AP, subset I ⊆ AP of atomic
propositions, and bound k ∈N, we have LI

k(φ) ⊆ LI
k′(φ) for all k′ > k.

Proof. Let σ ∈ LI
k(φ). Then, σ |= φ and there exists (u, v) ∈ (2I)∗ × (2I)+ such

that |u · v| = k and σ|I = u · vω. Let v = v1 . . . vk. Since u · v1(v2 . . . vkv1)
ω =

u · (v1 . . . vk)
ω = σ|I , we have σ ∈ LI

k+1(φ). The claim follows by induction.

Using the definition of I-k-models, the language of infinite sequences of en-
vironment inputs representable by lassos of length k can be expressed as LI

k(Σ
ω).

Definition 6.2 (k-lasso-precise Implementations). For a linear-time prop-
erty φ over Σ = 2AP, subset I ⊆ AP of atomic propositions, and bound
k ∈ N, we say that a transition system T is a k-lasso-precise implementa-
tion of φ, denoted T |=k,I φ, if it holds that LI

k(Traces(T)) ⊆ φ.
That is, in a k-lasso-precise implementation T, all the traces of T that

belong to the language LI
k(Σ

ω) are I-k-models of the specification φ.

Using the last definitions, we can formally define the synthesis problem of
lasso-precise implementations as follows

6.2. Lasso-precise implementations 129

Definition 6.3 (Synthesis of lasso-precise implementations). Given a linear-
time property φ over atomic propositions AP with input atomic proposi-
tions I, and given a bound k ∈N, construct an implementation T such that
T |=k,I φ, or determine that such an implementation does not exist.

We establish the relationship between the synthesis of lasso-precise imple-
mentations and synthesis under bounded environments. The synthesis problem
for bounded environments asks for a given linear-time property φ and a bound
k ∈ N to synthesize a transition system T such that for every possible environ-
ment E of size at most k, the transition system T satisfies φ under environment
E, i.e., T |=E φ. Intuitively, the two synthesis problems can be reduced to each
other since an environment of a given size, interacting with a given implemen-
tation, can only produce ultimately periodic sequences of inputs representable
by lassos of length determined by the sizes of the environment and the imple-
mentation. This intuition is formalized in the following proposition, stating the
connection between the two problems.

Proposition 6.1. Given a specification φ over a set of atomic propositions AP with
subset I ⊆ AP of atomic propositions controlled by the environment, and a bound
k ∈N, for every transition system T the following statements hold:

(1) If T |=E φ for all environments E of size at most k, then T |=k,I φ.

(2) If T |=k·|T|,I φ, then T |=E φ for all environments E of size at most k.

Proof. For (1), let T be a transition system such that T |=E φ for all environ-
ments E of size at most k. Assume, for the sake of contradiction, that T ̸|=k,I φ.
Thus, that there exists a word σ ∈ Traces(T), such that σ ∈ LI

k(Σ
ω) and σ ̸|= φ.

Since σ ∈ LI
k(Σ

ω), we can construct an environment E of size at most k that
produces the sequence of inputs σ|I . Since E is of size at most k, we have that
T |=E φ. Thus, since σ ∈ Traces(T× E), we have σ |= φ, which is a contradiction.

For (2), let T be a transition system such that T |=k·|T|,I φ. Assume, for the
sake of contradiction that there exists an environment E of size at most k such
that T ̸|=E φ. Since T ̸|=E φ, there exists σ ∈ Traces(T × E) such that σ ̸|= φ. As
the number of states of E is at most k, the input sequences it generates can be
represented as lassos of size k · |T|. Thus, σ ∈ LI

k·|T|(Σ
ω). This is a contradiction

with the choice of T, according to which T |=k·|T|,I φ.

130 Synthesis of Approximate Implementations

6.3 Automata-theoretic synthesis of lasso-precise
implementations

We now provide an automata-theoretic algorithm for the synthesis of lasso-
precise implementations. The underlying idea of this approach is to first con-
struct an automaton over finite traces that accepts all finite prefixes of traces
in LI

k(Σ
ω). Then, combining this automaton and an automaton representing the

property φ, we can construct an automaton whose language is non-empty if and
only if there exists an k-lasso-precise implementation of φ.

The next theorem presents the construction of a deterministic finite automa-
ton for the language Prefix(LI

k(Σ
ω)).

Theorem 6.1. For any set AP of atomic propositions, subset I ⊆ AP, and bound
k ∈ N there is a deterministic finite automaton Ak over alphabet Σ = 2AP, with size
(2|I| + 1)k · (k + 1)k, such that L(Ak) = {w ∈ Σ∗ | ∃σ ∈ LI

k(Σ
ω). w < σ}.

Idea & Construction. For given k ∈ N we first define an automaton Âk =

(Q, q0, δ, F) over Σ̂ = 2I , such that L(Âk) = {ŵ ∈ Σ̂∗ | ∃σ̂ ∈ LI
k(Σ̂

ω). ŵ < σ̂}.
That, is L(Âk) is the set of all finite prefixes of infinite words over Σ̂ that can be
represented by a lasso of length k. We can then define the automaton Ak as the
automaton that for each w ∈ Σ∗ simulates Âk on the projection w|I of w. We
define the automaton Âk = (Q, q0, δ, F) such that

• Q = (Σ̂ ∪ {#})k × {−, 1, . . . , k}k,

• q0 = (#k, (1, 2, . . . , k)),

• δ(q, α) =



(w · α · #m−1, t) if q = (w · #m, t) where 1 ≤ m ≤ k,

w ∈ Σ̂(k−m), t ∈ {−, 1, . . . , k}k

(w, (i′1, . . . , i′k)) if q = (w, (i1, . . . , ik)) where w ∈ Σ̂k, and

i′j =



− ij ≤ k ∧ w(ij) ̸= α or ij = −

ij + 1 ij < k ∧ w(ij) = α

j ij = k ∧ w(ij) = α

• F = Q \ {(w, (−, . . . ,−)) | w ∈ Σ̂k}.

6.3. Automata-theoretic synthesis of lasso-precise implementations 131

Proof. States of the form (w · α · #m, t) with m ≥ 1 store the portion of the input
word read so far, for input words of length smaller than k. In states of this form
we have t = (1, 2, . . . , k), which implies that all such states are accepting. In
turn, this means that Ak accepts all words of length smaller or equal to k. This
is justified by the fact that, each word of length smaller or equal to k is a prefix
of an infinite word in LI

k(Σ̂
ω), obtained by repeating the prefix infinitely often.

Now, let us consider words of length greater than k.

In states of the form (u, (i1, . . . , ik)), with u ∈ Σ̂∗, the word u stores the
first k letters of the input word. Intuitively, the tuple (i1, . . . , ik) stores the in-
formation about the loops that are still possible, given the portion of the input
word that is read thus far. To see this, let us consider a word w ∈ Σ̂∗ such that
|w| = l > k, and let q0q1 . . . ql be the run of Ak on w. The state ql is of the
form ql = (w(1) . . . w(k), (il

1, . . . , il
k)). It can be shown by induction on l that

for each j we have il
j ̸= − if and only if w is of the form w = w′ · w′′ · w′′′

where w′ = w(1) . . . w(j− 1), w′′ = (w(j) . . . w(k))k for some k ≥ 0, and w′′′ =
(w(j) . . . w(il

j − 1)). Thus, if il
j ̸= −, then it is possible to have a loop starting at

position j, and il
j is such that (w(j) . . . w(il

j − 1)) is the prefix of w(j) . . . w(k) ap-
pearing after the (possibly empty) sequence of repetitions of w(j) . . . w(k). This
means, that if il

j ̸= −, then w is a prefix of the infinite word w′ · (w′′)ω ∈ LI
k(Σ̂

ω).
Therefore, if the run of Ak on a word w with |w| > k is accepting, then there
exists σ ∈ LI

k(Σ̂
ω) such that w < σ.

For the other direction, suppose that for each j, we have il
j = −. Take any

j, and consider the first position m in the run q0q1 . . . ql where im
j = −. By

the definition of δ we have that w(m) ̸= w(im−1
j). This means that the prefix

w(1) . . . w(m) cannot be extended to the word w(1) . . . w(j− 1)(w(j) . . . w(k))ω.
Since for every j ∈ {1, . . . , k} we can find such a position m, it holds that there
does not exist σ ∈ LI

k(Σ̂
ω) such that w < σ. This concludes the proof.

The automaton constructed in the previous theorem has size which is expo-
nential in the length of the lassos. In the next theorem we show that this expo-
nential blow-up is unavoidable. That is, we show that every nondeterministic
finite automaton for the language Prefix(LI

k(Σ
ω)) is of size at least 2Ω(k).

Theorem 6.2. For any bound k ∈ N and sets of atomic propositions AP and ∅ ̸=
I ⊆ AP, every nondeterministic finite automaton N over the alphabet Σ = 2AP that
recognizes L = {w ∈ Σ∗ | ∃σ ∈ LI

k(Σ
ω). w < σ} is of size at least 2Ω(k).

132 Synthesis of Approximate Implementations

Proof. Let N = (Q, Q0, δ, F) be a nondeterministic finite automaton for L. For
each w ∈ Σk, we have that w · w ∈ L. Therefore, for each w ∈ Σk there exists at
least one accepting run ρ = q0q1 . . . q f of N on w ·w. We denote with q(ρ, m) the
state qm that appears at the position indexed m of a run ρ.

Let a ∈ 2I be a letter in 2I , and let Σ′ = Σ \ {a′ ∈ Σ | a′|I = a}. Let L′ ⊆ L be
the language L′ = {w ∈ Σk | ∃w′ ∈ (Σ′)k−1, a′ ∈ Σ : w = w′ · a′ and a′|I = a}.
That is, L′ consists of the words of length k in which letters a′ with a′|I = a
appear in the last position and only in the last position.

Let us define the set of states

Qk = {q(ρ, k) | ∃w ∈ L′ : ρ is an accepting run of N on w · w}.

That is, Qk consists of the states that appear at position k on some accepting
run on some word w · w, where w is from L′. We will show that |Qk| ≥ 2k−1.

Assume that this does not hold, i.e., |Qk| < 2k−1. Since |L′| ≥ 2k−1, this im-
plies that there exist w1, w2 ∈ L′, such that w1|I ̸= w2|I and there exists accept-
ing runs ρ1 and ρ2 of N on w1 · w1 and w2 · w2 respectively, such that q(ρ1, k) =
q(ρ2, k). That is, there must be two words in L′ with w1|I ̸= w2|I , which have
accepting runs on w1 · w1 and w2 · w2 visiting the same state at position k.

We now construct a run ρ1,2 on the word w1 · w2 that follows ρ1 for the first
k steps on w1, ending in state q(ρ1, k), and from there on follows ρ2 on w2. It is
easy to see that ρ1,2 is a run on the word w1 ·w2. The run is accepting, since ρ2 is
accepting. This means that w1 · w2 ∈ L, which we will show leads to contradic-
tion.

To see this, recall that w1 = w′1 · a′ and w2 = w′2 · a′′, and w1|I ̸= w2|I , and
a′|I = a′′|I = a. Since w1 · w2 ∈ L, we have that w′1 · a′ · w′2 · a′′ < σ for some
σ ∈ LI

k(Σ
ω). That is, there exists a lasso for some word σ, and w′1 · a′ ·w′2 · a′′ is a

prefix of this word. Since a does not appear in w′2|I , this means that the loop in
this lasso is the whole word w1|I , which is not possible, since w1|I ̸= w2|I .

This is a contradiction, which shows that |Q| ≥ |Qk| ≥ 2k−1. SinceN was an
arbitrary nondeterministic finite automaton for L, this implies that the minimal
automaton for L has at least 2Ω(k) states, which concludes the proof.

Using the automaton from Theorem 6.1, we can transform every property
automaton A into an automaton that accepts words representable by lassos of
length less than or equal to k if and only if they are in L(A), and accepts all
words that are not representable by lassos of length less than or equal to k.

6.3. Automata-theoretic synthesis of lasso-precise implementations 133

Theorem 6.3. Let AP be a set of atomic propositions, and let I ⊆ AP. For every
(deterministic, nondeterministic or alternating) parity automaton A over Σ = 2AP,
and k ∈N, there is a (deterministic, nondeterministic or alternating) parity automaton
A′ of size 2O(k) · |A|, s.t., L(A′) = (LI

k(Σ
ω) ∩ L(A)) ∪ (Σω \ LI

k(Σ
ω)).

Proof. The theorem is a consequence of Theorem 6.1 established as follows.
Let A = (Q, Q0, δ, µ) be a parity automaton, and let D = (Q̂, q̂0, δ̂, F) be the
deterministic finite automaton for bound k defined as in Theorem 6.1. We define
the parity automaton A = (Q′, Q′0, δ′, µ′) with the following components:

• Q′ = (Q× Q̂);

• Q′0 = {(q0, q̂0) | q0 ∈ Q0} (when A is deterministic Q′0 is a singleton set);

• δ′((q, q̂), α) = δ(q, α)[q′/(q′ ,δ̂(q̂,α))], where δ(q, α)[q′/(q′ ,q̂′)] is the Boolean ex-
pression obtained from δ(q, α) by replacing every state q′ by the state (q′, q̂′);

• µ′((q, q̂)) =

µ(q) if q̂ ∈ F,

0 if q̂ ̸∈ F.

Intuitively, the automaton A′ is constructed as the product of A and D, where
runs entering a state in D that is not accepting in D are accepting in A′. To see
this, recall from the construction in Theorem 6.1 that once D enters a state in
Q̂ \ F̂ it remains in such a state forever. Thus, by setting the color of all states
(q, q̂) where q̂ ̸∈ F to 0, we ensure that words containing a prefix rejected by D
have only runs in which the highest color appearing infinitely often is 0. Thus,
we ensure that all words that are not representable by lassos of length less than
or equal to k are accepted by A′, while words representable by lassos of length
less than or equal to k are accepted if and only if they are in L(A).

The following theorem is a consequence of the one above, and of the com-
plexity of synthesis fo deterministic parity automata [125], and provides us with
an automata-theoretic approach to solving the lasso-precise synthesis problem.

Theorem 6.4 (Synthesis). Let AP be a set of atomic propositions, and I ⊆ AP be a
subset of AP consisting of the atomic propositions controlled by the environment. For a
specification, given as a deterministic parity automaton P over the alphabet Σ = 2AP,
and a bound k ∈ N, finding an implementation T, such that, T |=k,I P can be done in
time polynomial in the size of the automaton P and exponential in the bound k.

134 Synthesis of Approximate Implementations

6.4 Bounded Synthesis of Lasso-precise Implementations

For a specification φ given as an LTL formula, a bound n on the size of the
synthesized implementation and a bound k on the lassos of input sequences,
bounded synthesis of lasso-precise implementations searches for an implementation
T of size n, such that T |=k,I φ. Using the automata constructions in the previ-
ous section we can construct a universal co-Büchi automaton for the language
LI

k(φ) ∪ (Σω \ LI
k(Σ

ω)) and construct the constraint system as presented in [67].
This constraint system is exponential in both |φ| and k. In the following we
show how the problem can be encoded as a quantified Boolean formula of size
polynomial in |φ| and k.

Theorem 6.5. For a specification given as an LTL formula φ, and bounds k ∈ N

and n ∈ N, there exists a quantified Boolean formula ϕ, such that, ϕ is satisfiable
if and only if there is a transition system T = (AP, I, O, S, s0, τ, L) of size n with
T |=k,I φ. The size of ϕ is in O(|φ|+ n2 + k2). The number of variables of ϕ is equal
to n · (n · 2|I| + |O|) + k · (|I|+ 1) + n · k(|O|+ n + 1).

Construction. We encode the bounded synthesis problem in the following quan-
tified Boolean formula:

∃{τs,i,s′ | s, s′ ∈ S, i ∈ 2I}. ∃{os | s ∈ S, o ∈ O}. (6.1)

∀{ij | i ∈ I, 0 ≤ j < k}. ∀{lj | 0 ≤ j < k}. (6.2)

∀{oj | o ∈ O, 0 ≤ j < n · k}. (6.3)

∀{sj | s ∈ S, 0 ≤ j < n · k}. (6.4)

∀{l′j | 0 ≤ j < n · k}. (6.5)

φdet ∧ (φlasso ∧ φn,k
∈T → JφKk,n·k

0) (6.6)

which we read as: there is a transition system (1), such that, for all input
sequences representable by lassos of length k (2) the corresponding sequence of
outputs of the system (3) satisfies φ. The variables introduced in lines (4) and (5)
are necessary to encode the corresponding output for the chosen input lasso.

An assignment to the variables satisfies the formula in line (6), if it represents
a deterministic transition system (φdet) in which lassos of length n · k (φlasso∧φn,k

∈T
)

satisfy the property φ (JφK(k,n·k)
0)). These constraints are defined as follows.

φdet: A transition system is deterministic if for each state s and input i there
is exactly one transition τs,i,s′ to some state s′:

∧
s∈S

∧
i∈2I

∨
s′∈S

(τs,i,s′ ∧
∧

s′ ̸=s′′
τs,i,s′′).

6.4. Bounded Synthesis of Lasso-precise Implementations 135

φn,k
∈T : for a certain input lasso of size k we can match a lasso in the system of

size at most n · k. A lasso of this size in the transition system matches the input
lasso if the following constraints are satisfied.∧

0≤j<n·k

∧
s∈S

(sj →
∧

o∈O
(oj ↔ osj)) (6.7)

∧ s00 (6.8)

∧
∧

0≤j<n·k−1

∧
i∈2I

∧
s,s′∈S

((
∧

0≤j′<k

lj′ → i∆(j,k,j′)) ∧ sj → (τs,i,s′ ↔ s′j+1)) (6.9)

∧
∧

i∈2I ,s,s′∈S

((
∧

0≤j′<k

lj′ → i∆(n·k−1,k,j′)) ∧ sn·k−1 → (τs,i,s′ ↔ (
∨

0≤j<n·k
l′j ∧ s′j)))

(6.10)

Lines (9) and (10) make sure that the chosen lasso follows the guessed transition
relation τ. Line (10) handles the loop transition of the lasso, and makes sure that
the loop of the lasso follows τ. Line (7) is a necessary requirement in order to
match the output produced on the lasso with φ. If the output variables oj satisfy

the constraint JφK(k,n·k)
0 , then the lasso satisfies φ. As the input lasso is smaller

than its matching lasso in the system we need to make sure that the indices of
the input variables are correct with respect to the chosen loop. This is computed
using the function ∆ which is given by:

∆(j, k, j′) =

j if j < k,

((j− k) mod (k− j′)) + j′ otherwise.

φlasso: The formula encodes the additional constraint that exactly one of the
loop variables can be true for a given variable valuation.JφKk,m

0 : This constraint encodes the satisfaction of φ on lassos of size m. The
encoding is similar to the encoding of bounded model checking [22] and the
constraint we presented in the proof of Theorem 3.18, with the distinction of en-
coding the satisfaction relation of the atomic propositions, given below. As the
inputs run with different indices than the outputs, we again, as in the lines (9)
and (10), need to compute the correct indices using the function ∆.

h < m h = mJiKk,m
h

∧
0≤j′<k

(lj′ → i∆(h,k,j′))
∨m−1

j=0 (l′j ∧
∧

0≤j′<k
(lj′ → i∆(j,k,j′)))

J¬iKk,m
h

∧
0≤j′<k

(lj′ → ¬i∆(h,k,j′))
∨m−1

j=0 (l′j ∧
∧

0≤j′<k
(lj′ → ¬i∆(j,k,j′)))

JoKk,m
h oh

∨m−1
j=0 (l′j ∧ oj)J¬oKk,m

h ¬oh
∨m−1

j=0 (l′j ∧ ¬oj)

136 Synthesis of Approximate Implementations

6.5 Synthesis of Approximate Implementations

In some cases, specifications remain unrealizable even when considered under
bounded environments. Nevertheless, one might still be able to construct im-
plementations that satisfy the specification in almost all input sequences of the
environment. Consider for example the following simplified arbiter specifica-
tion:

(w→ g) ∧ (r → g)

The specification defines an arbiter that should give grants g upon requests r,
but is not allowed to provide these grants unless a signal w is true. The specifi-
cation is unrealizable, because a sequence of inputs where the signal w is always
false prevents the arbiter from answering any request. Bounding the environ-
ment does not help in this case as a lasso of size 1 already suffices to violate the
specification (the one where w is always false). Nevertheless, one can still find
reasonable implementations that satisfy the specification for a large fraction of
input sequences. In particular, the fraction of input sequences where w remains
false forever is less probable.

Definition 6.4 (ϵ-k-Approximation). For a specification φ, a bound k, and an
error rate ϵ, we say that a transition system T approximately satisfies φ with an
error rate ϵ for lassos of length at most k, denoted by T |=ϵ

k,I φ, if and only if,
|{σ|σ∈LI

k(Traces(T))),σ|=φ}|
|LI

k((2
I)ω)| ≥ 1− ϵ. We call T an ϵ-k-approximation of φ.

Theorem 6.6. For a specification given as a deterministic parity automaton P, a bound
k and a error rate 0 ≤ ϵ ≤ 1, checking whether there is an implementation T, such that,
T |=ϵ

k,I P can be done in time polynomial in |P| and exponential in k.

Proof. For a given ϵ and k, we construct a nondeterministic parity tree au-
tomaton N that accepts all ϵ-k-approximations with respect to L(P). For ϵ, we
can compute the minimal number m of lassos from LI

k((2
I)ω) for which an ϵ-k-

approximation has to satisfy the specification. In its initial state, the automaton
N guesses m many lassos and accepts a transition system if it does not violate
the specification on any of these lassos. The latter check is done by following
the structure of the automaton constructed for P using Theorem 6.3. In order to
check whether there is an ϵ-k-approximation for P, we solve the emptiness game
of N. The size of N is (2k)m+1 · |P|.

6.5. Synthesis of Approximate Implementations 137

Symbolic Approach

In the following, we present a symbolic approach for finding ϵ-k-approximations
based on maximum model counting. We show that we can build a constraint
system and apply a maximum model counting algorithm to compute a tran-
sition system that satisfies a specification for a maximum number of input se-
quences.

For a specification φ, bounds k and n on the length of the lassos and size of
the system, respectively, we can compute an ϵ-k-approximation for φ by apply-
ing a maximum model counting algorithm to the constraint system given below.
It encodes transition systems of size n that have an input lasso of length k that
satisfies φ.

∃{τs,i,s′ | s, s′ ∈ S, i ∈ 2I}. ∃{ot | s ∈ S, o ∈ O}. (6.11)

∃{ij | i ∈ I, 0 ≤ j < k}. ∃{lj | 0 ≤ j < k}. (6.12)

∃{xi
j | x ∈ I, 0 ≤ i, j < k} (6.13)

∃{oj | o ∈ O, 0 ≤ j < n · k}. (6.14)

∃{sj | s ∈ S, 0 ≤ j < n · k}. (6.15)

∃{l′j | 0 ≤ j < n · k}. (6.16)

φdet ∧ φlasso ∧ φn,k
∈T ∧ JφKk,n·k

0 ∧ JkK0 (6.17)

To check the existence of a ϵ-k-approximation, we maximize over the set of as-
signment to variables that define the transition system (line 11) and count over
variables that define input sequences of the environment given by lassos of
length k. As two input lassos of the same length may induce the same infinite
input sequence, we count over auxiliary variables that represent unrollings of
the lassos instead of counting over the input propositions themselves (line 13).

The formulas φdet, φlasso, φn,k
∈T and JφKk,n·k

0 are defined as in the previous
section. The formula JkK0 is defined over that variables in line (13) and makes
sure that input lasso that represent the same infinite sequence are not counted
twice by unrolling the lasso to size 2k. It is defined using the following recursive

138 Synthesis of Approximate Implementations

rules:

for 0 ≤ j < k− 1 JkKj =
∧
x∈I

(x0
j ↔ xj) ∧ (6.18)

∧
0<i<k

(xi
j ↔ xi−1

j+1) ∧ (6.19)

JkKj+1 (6.20)JkKk−1 =
∧
x∈I

(x0
k−1 ↔ xk−1) ∧ (6.21)

∧
0≤j<k

(lj →
∧

0<i<k

(xi
k−1 ↔ xi−1

j)) (6.22)

Theorem 6.7. For a specification given as an LTL formula φ, and bounds k and n, and
an error rate ϵ, the propositional formula ϕ defined above is of size O(|φ|+ n2 + k2).
The number of variables of ϕ is equal to n · (n · 2|I| + |O|) + k · (k · |I|+ |I|+ 1) + n ·
k(|O|+ n + 1).

We implemented the symbolic encodings for the exact and approximate syn-
thesis methods, and evaluated our approach on a bounded version of the greedy
arbiter specification given at the beginning of the chapter, and another specifi-
cation of a round-robin arbiter. The round-robin arbiter is defined by the speci-
fication:

w→ g1 ∧ g2 ∧ (¬w→ (¬g1 ∧ ¬g2)) ∧ (¬g1 ∨ ¬g2)

This specification is realizable, with transition systems of size at least 4. We used
our implementation to check whether we can find approximative solutions with
smaller sizes. We used the tool CAQE [130] for solving the QBF instances and
the tool MaxCount [73] for solving the approximate synthesis instances.

The results are presented in Table 6.1. As usual in synthesis, the size of the
instances grows quickly as the size bound and number of processes increase. In-
specting the encoding constraints shows that the constraint for the specification
is responsible for more than 80% of the number of gates in the encoding. The
results show that, using the approach we proposed, we can synthesize imple-
mentations for unrealizable specifications by bounding the environment. The
results for the approximate synthesis method further demonstrate that for the
unrealizable cases one can still obtain approximative implementations that sat-
isfy the specification on a large number of input sequences.

6.6. Bibliographic Remarks 139

instance QBF MaxCount
Spec. Proc. #States Bound Result #Gates ∀ ∃ time #Max #Count rate time

Round-
Robin
Arbiter

2 2 4 Unreal. 15556 48 12 9.91s 12 8 0.5 26s
2 3 2 Unreal. 5338 40 24 2.45s 24 4 0.88 161s
2 4 2 Real. 13414 60 12 12.15s 40 4 0.88 283s
1 2 2 Real. 1597 20 10 0.41s 10 4 1.0 0.79s
1 2 3 Unreal. 4749 30 10 1.95s 10 6 0.88 3.86s
1 3 3 Unreal. 16861 48 21 17.26s 21 6 0.88 20.83s

Greedy 1 4 3 Real. 43692 78 36 3m7.44s 36 6 1.0 2m43s
Arbiter 1 4 4 - 169829 104 36 TO 36 8 - TO

2 4 2 Real. 24688 62 72 1m.24s 72 6 - TO
2 4 3 Unreal. 103433 93 72 27m15.2 72 12 - TO
3 2 2 Unreal. 3985 93 72 1.39s 38 8 0.65 4.18s

Table 6.1: Experimental results for the symbolic approaches. The rate in the approximate
approach is the rate of input lassos on which the specification is satisfied.

6.6 Bibliographic Remarks

Providing good-quality environment specifications (typically in the form of as-
sumptions on the allowed behaviors of the environment) is crucial for the syn-
thesis of implementations from high-level specifications. Formal specifications,
and thus also environment assumptions, are often hard to get right, and have
been identified as one of the bottlenecks in formal methods and autonomy [133].
It is therefore not surprising, that there is a plethora of approaches addressing
the problem of how to revise inadequate environment assumptions in the cases
when these are the cause of unrealizability of the system requirements.

Most approaches in this direction build upon the idea of analyzing the cause
of unrealizability of the specification and extracting assumptions that help elim-
inate this cause. The method proposed in [36] uses the game graph that is used
to answer the realizability question in order to construct a Büchi automaton rep-
resenting a minimal assumption that makes the specification realizable. The
authors of [112, 113] provide an alternative approach where the environment
assumptions are gradually strengthened based on counterstrategies for the envi-
ronment. The key ingredient for this approach is using a library of specification
templates and user scenarios for the mining of assumptions, in order to generate
good-quality assumptions. A similar approach is used in [4], where, however,
assumption patterns are synthesized directly from the counterstrategy without
the need for the user to provide patterns. A different line of work focuses on
giving feedback to the user or specification designer about the reason for unre-
alizability, so that they can, if possible, revise the specification accordingly. The
key challenge addressed there lies in providing easy-to-understand feedback to
users, which relies on finding a minimal cause for why the requirements are not
achievable and generating a natural language explanation of this cause [131].

140 Synthesis of Approximate Implementations

In the above mentioned approaches, assumptions are provided or constructed
in the form of a temporal logic formula or an omega-automaton. Thus, it is on
the one hand often difficult for specification designers to specify the right as-
sumptions, and on the other hand special care has to be taken by the assumption
generation procedures to ensure that the constructed assumptions are simple
enough for the user to understand and evaluate. The work [101] takes a differ-
ent route, by making assumptions about the size of the environment. That is,
including as an additional parameter to the synthesis problem a bound on the
state space of the environment. Similarly to temporal logic assumptions, this
relaxation of the synthesis problem can render unrealizable specifications into
realizable ones. From the system designer point of view, however, it might be
significantly easier to estimate the size of environments that are feasible in prac-
tice than to express the implications of this additional information in a temporal
logic formula. We take a similar route to [101], and consider a bound on the
cyclic structures in the environment’s behavior. Thus, the closest to our work
is the temporal synthesis for bounded environments studied in [101]. In fact,
we have shown that the synthesis problem for lasso-precise implementations
and the synthesis problem under bounded environments can be reduced to each
other. However, while the focus in [101] is on the computational complexity of
the bounded synthesis problems, here we provide both automata-theoretic, as
well as symbolic approaches for solving the synthesis problem for environments
with bounded lassos. We further consider an approximate version of this synthe-
sis problem. The benefits of using approximation are two-fold. Firstly, as shown
in [101], while bounding the environment can make some specifications realiz-
able, this comes at a high computational complexity price. In this case, approx-
imation might be able to provide solutions of sufficient quality more efficiently.
Furthermore, even after bounding the environment’s input behaviors, the spec-
ification might still remain unrealizable, in which case we would like to satisfy
the requirements for as many input lassos as possible. In that sense, we get
closer to synthesis methods for probabilistic temporal properties in probabilistic
environments [106]. However, we consider non-probabilistic environments (i.e.,
all possible inputs are equally likely), and provide probabilistic guarantees with
desired confidence by employing maximum model counting techniques. Maxi-
mum model counting has previously been used for the synthesis of approximate
non-reactive programs [73]. Here, on the other hand we are concerned with the
synthesis of reactive systems from temporal specifications.

Bounding the size of the synthesized system implementation is a comple-
mentary restriction of the synthesis problem, which has attracted a lot of atten-

6.6. Bibliographic Remarks 141

tion in recent years [67]. The computational complexity of the synthesis problem
when both the system’s and the environment’s size is bounded has been studied
in [101]. We provided a symbolic synthesis procedure for bounded synthesis of
lasso-precise implementations based on quantified Boolean satisfiability.

In the nonreactive setting, propositional maximum model counting has been
used for the synthesis of approximate programs [73]. Here, given a sketch of
the program [3], the synthesis process searches for realizations of the program
sketch such that the specification is satisfied on a maximum number of inputs.

Chapter 7

Discussion

In this thesis, we have introduced the model counting problem for linear-time
properties, and presented algorithms for solving the model counting problem
for different classes of properties, defined using different types of formalisms.
We provided a thorough complexity analysis of the problem analyzing the time
and space complexity of each algorithm, and established lower and upper com-
plexity bounds in terms of counting complexity classes.

In addition to studying the algorithmic complexity of the model counting
problem, we showed its connection to quantitative verification problems, ex-
plaining the relation of the problem to probabilistic model checking problems,
quantitative information-flow control problems, and the synthesis of approxi-
mate implementations. For probabilistic model checking, we showed how model
counting can be used to establish lower and upper bounds on the probability of
a linear-time property being satisfied by a system. For quantitative information-
flow control, we showed that using model counting we can introduce special-
ized efficient algorithm, for solving model checking problems for quantitative
security policies, which significantly improve over the traditional model check-
ing algorithms. Finally, in synthesis, we showed although a specification is unre-
alizable, using model counting we can synthesize approximate implementations
for these specifications.

This thesis constitutes a significant step towards a general framework for
quantitative verification problems based on model counting. In the next section

143

144 Discussion

we show a first possible framework that captures the problems investigated in
this thesis. We conclude our discussion and the thesis with an outlook on possi-
ble works that build the results of this thesis.

7.1 Relation to Model Measuring

In a more general view, we can see model checking of linear-time properties
as a procedure of two operations that are consecutively applied to the system
under scrutiny. Given a system and a trace property, the first operation assigns
values 0 or 1 to the traces of the system, with respect to whether they violate or
satisfy the property. The second operation is then applied on the results of the
first operation by computing the minimum of all values and checking whether
it is equal to 0. We can adapt this generalization for the computation of more
involved quantitative measures. Instead of mapping traces of the system to 0 or
1, we can define a distance on traces and evaluate them against a specification
according to this distance. Using an aggregation on the individual computed
values, we can then determine a measure for the whole system, and compare
the different systems by means of this measure.

The computation of the distance between a system and a specification is
known as the model measuring problem [86, 88]. A model measuring problem is
defined by a triple (T, δφ, δagg), where T is the system under scrutiny, δφ : Traces(T) ⇀
R is the distance function, a partial function that assigns traces of T values in R,
and δagg : Multi(R) → R, where Multi(R) is the set of all multisets over R, is
the measuring function that computes an aggregate over all defined traces val-
ues computed by the distance function δφ. Solving a model measuring problem
given by an instance (T, δφ, δagg) is then the problem of computing the value

δagg([δφ(t) ∈ R | t ∈ Traces(T)])

where [.] denotes a multiset over values in R. Model checking a system T against
a trace property φ is thus the model measuring problem with the distance func-
tion δφ(t) = (t ∈ φ), and the measuring function δagg(Γ) = min(Γ) for some
multi set Γ over {0, 1}.

The way we define model measuring instances above is characteristic to
model measuring problems where the underlying model is a linear-time prop-
erty, i.e., the distance function is defined over traces of the system. Many model
measuring problems are nevertheless not captured by this formulation. Think of
information-flow policies like deniability, where we want to compute the num-
ber of secret inputs that induce a single output. A distance function that only

7.1. Relation to Model Measuring 145

measures single traces of the system is not enough for solving this measuring
problem. What we need is a distance function that computes for each output
the size of the largest set of traces where this output is produced, thus comput-
ing the number of secret inputs that produce this output. A distance function of
this form is one that measures the distance of a set of traces of the system rather
than the one for just a single trace, i.e., a distance function that generalizes hy-
perproperties .

To define model measuring instances over hyperproperties we need to gen-
eralize the distance function from a function that measures traces to a function
that measure sets of traces. For an instance (T, δH , δagg) the model measuring
problem becomes thus the problem of computing the value

δagg([δH(Γ) ∈ R | Γ ⊆ Traces(T)])

for a transition system T, a distance function δH : 2Traces(T) ⇀ R, and a measur-
ing function δagg : Multi(R)→ R.

Using this definition of model measuring, we can now define the measuring
problem of computing the minimal number of secret inputs that lead to the same
output by the model measuring instance (T, δH , δagg) where

• δH(Γ) =

|Γ| ∀t, t′ ∈ Γ. t =ΣO t′

undefined otherwise

• δagg(Γ) = min(Γ)

Each set of traces Γ is mapped to its size if all the traces Γ share the same se-
quence of public output (t =ΣO t′), otherwise the set is not relevant and its
distance value is undefined.

Based on this notion of model measuring, quantitative verification problems
that can be solved using model counting can be formalized as model measuring
instances where the distance function is defined over the size of sets of traces
that satisfy a certain hyperproperty, i.e., model measuring problems of the form

δH(Γ) =

∆(|Γ|) Γ ∈ H

undefined otherwise

for some function ∆ : 2Traces(T) → R ∪ {∞} and a hyperproperty H. This for-
malization captures all the model measuring problems addressed in this thesis.
Whether there exists model-counting-based quantitative verification problems
beyond this formalization is a question we leave for future work.

146 Discussion

7.2 Future Work

7.2.1 Model counting Implementations

The model counting problem discussed in this thesis is based on a verification
point of view, where we check the quality of the system with respect to a speci-
fication. We can also consider the model counting problem from the perspective
of evaluating the specification itself. In many cases, specifications tend to under-
specify a system. In this case, although a system satisfies the specification, it
might still not fulfill the intent of the designer, as certain aspect on the func-
tionality of the system have not been considered by the specification. Counting
the number of implementations for a given specification, gives a measure on
the quality of specification that determines the completeness of a specification.
Specifications that are satisfied by a large number of implementation, tend to
allow behaviors that where not intended by the designer of the system. A first
approach for counting implementations is based on counting the number of fi-
nite trees that satisfy a formula [68].

7.2.2 Model counting for software verification

Debugging software is a tedious task and automated-tool support is necessary
to quickly and effectively find bugs in a program. A possible way to increase
the efficiency in debugging programs is one where we point out the fragments
of the program that contain the majority of bugs. Using model counting, we
might be able to mark the states of the program that lead to large number of
error in the program.

7.2.3 Quantitative hyperlogics

As we have seen above, one possible formalization of model counting problems
is one based on the notion of model measuring. Another possible way would
be to check whether there is a logical formalization of counting problems for
linear-time properties by introducing a logic that captures, for example, all the
quantitative verification problems discussed in this thesis.

7.2.4 Optimizing model counting tools

Current state-of-the-art model counters cannot handle more than approximately
1000 to 10000 propositional variables [17, 135, 144]. Our propositional instances
in our experiments where much larger and thus could not all be solved using the

7.2. Future Work 147

current model counting tools in reasonable time and with reasonable memory.
It is thus vital to look into optimizations specialized for counting problems of
linear-time properties. For example, whether heuristics for smartly exploring
the search space used in SAT-solvers can effectively be adapted for our model
counting problems, or how techniques such symmetry breaking can be used to
boost the time performance of model counters.

Bibliography

[1] Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett.,
21(4):181–185, 1985.

[2] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.
Distributed Computing, 2(3):117–126, 1987.

[3] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In For-
mal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pages 1–8, 2013.

[4] Rajeev Alur, Salar Moarref, and Ufuk Topcu. Counter-strategy guided
refinement of GR(1) temporal logic specifications. In Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23,
2013, pages 26–33, 2013.

[5] Carme Àlvarez and Birgit Jenner. A very hard log-space counting class.
Theor. Comput. Sci., 107(1):3–30, 1993.

[6] Mário S. Alvim, Miguel E. Andrés, and Catuscia Palamidessi. Quantita-
tive information flow in interactive systems. Journal of Computer Security,
20(1):3–50, 2012.

[7] Eugene Asarin, Michel Blockelet, Aldric Degorre, Catalin Dima, and
Chunyan Mu. Asymptotic behaviour in temporal logic. In Henzinger
and Miller [87], pages 10:1–10:9.

149

150 Bibliography

[8] Rehan Abdul Aziz, Geoffrey Chu, Christian Muise, and Peter Stuckey. #∃
sat: Projected model counting. In Marijn Heule and Sean Weaver, editors,
Theory and Applications of Satisfiability Testing – SAT 2015, pages 121–137,
Cham, 2015. Springer International Publishing.

[9] F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity results
for #sat and bayesian inference. In 44th Annual IEEE Symposium on Foun-
dations of Computer Science, 2003. Proceedings., pages 340–351, Oct 2003.

[10] Michael Backes, Boris Kopf, and Andrey Rybalchenko. Automatic discov-
ery and quantification of information leaks. In Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy, SP ’09, pages 141–153, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

[11] Christel Baier, Lucia Cloth, Boudewijn R. Haverkort, Holger Hermanns,
and Joost-Pieter Katoen. Performability assessment by model checking of
markov reward models. Formal Methods in System Design, 36(1):1–36, 2010.

[12] Christel Baier and Clemens Dubslaff. From verification to synthesis under
cost-utility constraints. SIGLOG News, 5(4):26–46, 2018.

[13] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[14] Christel Baier, Joachim Klein, Sascha Klüppelholz, and Sascha Wunder-
lich. Weight monitoring with linear temporal logic: complexity and de-
cidability. In Henzinger and Miller [87], pages 11:1–11:10.

[15] Anindya Banerjee and David A. Naumann. Stack-based access control
and secure information flow. J. Funct. Program., 15(2):131–177, 2005.

[16] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure informa-
tion flow by self-composition. Mathematical Structures in Computer Science,
21(6):1207–1252, 2011.

[17] Roberto J. Bayardo, Jr., and J. D. Pehoushek. Counting models using con-
nected components. In In AAAI, pages 157–162, 2000.

[18] Richard Bellman. A markovian decision process. Journal of Mathematics
and Mechanics, 6(5):679–684, 1957.

[19] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The temporal logic
of branching time. Acta Informatica, 20(3):207–226, Sep 1983.

Bibliography 151

[20] Michael Benedikt, Rastislav Lenhardt, and James Worrell. LTL model
checking of interval markov chains. In Nir Piterman and Scott A. Smolka,
editors, Tools and Algorithms for the Construction and Analysis of Systems
- 19th International Conference, TACAS 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings, volume 7795 of Lecture Notes in Computer
Science, pages 32–46. Springer, 2013.

[21] Olivier Bernardi and Omer Giménez. A linear algorithm for the random
sampling from regular languages. Algorithmica, 62(1-2):130–145, 2012.

[22] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. Advances in Computers,
58:117–148, 2003.

[23] Vincent Bindschaedler, Reza Shokri, and Carl A. Gunter. Plausible denia-
bility for privacy-preserving data synthesis. PVLDB, 10(5):481–492, 2017.

[24] Fabrizio Biondi, Axel Legay, Louis-Marie Traonouez, and Andrzej Wa-
sowski. QUAIL: A quantitative security analyzer for imperative code. In
Computer Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, pages 702–707, 2013.

[25] Elazar Birnbaum and Eliezer L. Lozinskii. The good old davis-putnam
procedure helps counting models. J. Artif. Intell. Res., 10:457–477, 1999.

[26] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Hen-
zinger, Georg Hofferek, Barbara Jobstmann, Bettina Könighofer, and
Robert Könighofer. Synthesizing robust systems. Acta Inf., 51(3-4):193–
220, 2014.

[27] Manuel Bodirsky, Tobias Gärtner, Timo von Oertzen, and Jan Schwing-
hammer. Effciently computing the density of regular languages. In LATIN,
2004.

[28] Benedikt Bollig, Normann Decker, and Martin Leucker. Frequency linear-
time temporal logic. In Sixth International Symposium on Theoretical Aspects
of Software Engineering, TASE 2012, 4-6 July 2012, Beijing, China, pages 85–
92, 2012.

[29] J. Richakd Büchi. Weak Second-Order Arithmetic and Finite Automata, pages
398–424. Springer New York, New York, NY, 1990.

152 Bibliography

[30] Olivier Carton and Max Michel. Unambiguous büchi automata. Theo-
retical Computer Science, 297(1):37 – 81, 2003. Latin American Theoretical
Informatics.

[31] Rohit Chadha, Umang Mathur, and Stefan Schwoon. Computing infor-
mation flow using symbolic model-checking. In Raman and Suresh [132],
pages 505–516.

[32] Anrin Chakraborti, Chen Chen, and Radu Sion. Datalair: Efficient block
storage with plausible deniability against multi-snapshot adversaries.
PoPETs, 2017(3):179, 2017.

[33] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A scalable
approximate model counter. In CP, volume 8124 of Lecture Notes in Com-
puter Science, pages 200–216. Springer, 2013.

[34] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic
improvements in approximate counting for probabilistic inference: From
linear to logarithmic sat calls. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI’16, pages 3569–3576. AAAI
Press, 2016.

[35] Edward Chang, Zohar Manna, and Amir Pnueli. The safety-progress clas-
sification. In Friedrich L. Bauer, Wilfried Brauer, and Helmut Schwicht-
enberg, editors, Logic and Algebra of Specification, pages 143–202, Berlin,
Heidelberg, 1993. Springer Berlin Heidelberg.

[36] Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.
Environment assumptions for synthesis. In Franck van Breugel and Mar-
sha Chechik, editors, CONCUR 2008 - Concurrency Theory, 19th Interna-
tional Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008. Pro-
ceedings, volume 5201 of Lecture Notes in Computer Science, pages 147–161.
Springer, 2008.

[37] Han Chen and Pasquale Malacaria. Quantitative analysis of leakage for
multi-threaded programs. In Proceedings of the 2007 Workshop on Program-
ming Languages and Analysis for Security, PLAS 2007, San Diego, California,
USA, June 14, 2007, pages 31–40, 2007.

[38] Noam Chomsky and George A. Miller. Finite state languages. Information
and Control, 1(2):91–112, 1958.

Bibliography 153

[39] Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. Leakwatch: Es-
timating information leakage from java programs. In Computer Security -
ESORICS 2014 - 19th European Symposium on Research in Computer Security,
Wroclaw, Poland, September 7-11, 2014. Proceedings, Part II, pages 219–236,
2014.

[40] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. Nusmv 2: An opensource tool for symbolic model
checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer
Aided Verification, 14th International Conference, CAV 2002,Copenhagen, Den-
mark, July 27-31, 2002, Proceedings, volume 2404 of Lecture Notes in Com-
puter Science, pages 359–364. Springer, 2002.

[41] David Clark, Sebastian Hunt, and Pasquale Malacaria. A static analysis
for quantifying information flow in a simple imperative language. Journal
of Computer Security, 15(3):321–371, 2007.

[42] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Logics of
Programs, Workshop, Yorktown Heights, New York, USA, May 1981, pages
52–71, 1981.

[43] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching time temporal logic. In Dexter
Kozen, editor, Logics of Programs, pages 52–71, Berlin, Heidelberg, 1982.
Springer Berlin Heidelberg.

[44] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K.
Micinski, Markus N. Rabe, and César Sánchez. Temporal logics for hy-
perproperties. In Martín Abadi and Steve Kremer, editors, Principles of
Security and Trust - Third International Conference, POST 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8414 of Lecture
Notes in Computer Science, pages 265–284. Springer, 2014.

[45] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Quantify-
ing information flow with beliefs. Journal of Computer Security, 17(5):655–
701, 2009.

[46] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput.
Secur., 18(6):1157–1210, September 2010.

154 Bibliography

[47] R. Clausius and Thomas Archer Hirst. The mechanical theory of heat, with its
applications to the steam-engine and to the physical properties of bodies. English
translation. J. Van Voorst, London, 1867.

[48] Ellis S Cohen. Information transmission in sequential programs. Founda-
tions of Secure Computation, pages 297–335, 1978.

[49] Costas Courcoubetis and Mihalis Yannakakis. Verifying temporal prop-
erties of finite-state probabilistic programs. In 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York, USA, 24-26 October
1988, pages 338–345. IEEE Computer Society, 1988.

[50] Jean-Michel Couvreur, Nasser Saheb, and Grégoire Sutre. An optimal
automata approach to LTL model checking of probabilistic systems. In
Moshe Y. Vardi and Andrei Voronkov, editors, Logic for Programming, Ar-
tificial Intelligence, and Reasoning, 10th International Conference, LPAR 2003,
Almaty, Kazakhstan, September 22-26, 2003, Proceedings, volume 2850 of Lec-
ture Notes in Computer Science, pages 361–375. Springer, 2003.

[51] Adnan Darwiche. Decomposable negation normal form. J. ACM,
48(4):608–647, 2001.

[52] Adnan Darwiche. New advances in compiling CNF into decomposable
negation normal form. In Ramón López de Mántaras and Lorenza Saitta,
editors, Proceedings of the 16th Eureopean Conference on Artificial Intelligence,
ECAI’2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004,
Valencia, Spain, August 22-27, 2004, pages 328–332. IOS Press, 2004.

[53] Normann Decker, Peter Habermehl, Martin Leucker, Arnaud Sangnier,
and Daniel Thoma. Model-checking counting temporal logics on flat
structures. In Roland Meyer and Uwe Nestmann, editors, 28th Inter-
national Conference on Concurrency Theory, CONCUR 2017, September 5-
8, 2017, Berlin, Germany, volume 85 of LIPIcs, pages 29:1–29:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[54] Erik D. Demaine, Alejandro López-Ortiz, and J.Ian Munro. On universally
easy classes for np-complete problems. Theoretical Computer Science, 2003.

[55] Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, 1976.

[56] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley,
1982.

Bibliography 155

[57] Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N. Rabe, and
Helmut Seidl. Model checking information flow in reactive systems. In
Verification, Model Checking, and Abstract Interpretation - 13th International
Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Pro-
ceedings, pages 169–185, 2012.

[58] Rayna Dimitrova, Bernd Finkbeiner, and Hazem Torfah. Synthesizing ap-
proximate implementations for unrealizable specifications. In Isil Dillig
and Serdar Tasiran, editors, Computer Aided Verification - 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I, volume 11561 of Lecture Notes in Computer Science, pages 241–258.
Springer, 2019.

[59] Gerry Eisman and B. Ravikumar. Approximate recognition of non-regular
languages by finite automata. In Proceedings of the 28th Australasian Con-
ference on Computer Science - Volume 38, ACSC ’05, Darlinghurst, Australia,
2005.

[60] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness
properties of parallel programs using fixpoints. In J. W. de Bakker and
Jan van Leeuwen, editors, Automata, Languages and Programming, 7th Col-
loquium, Noordweijkerhout, The Netherlands, July 14-18, 1980, Proceedings,
volume 85 of Lecture Notes in Computer Science, pages 169–181. Springer,
1980.

[61] E. Allen Emerson and Joseph Y. Halpern. "sometimes" and "not never" re-
visited: on branching versus linear time temporal logic. J. ACM, 33(1):151–
178, 1986.

[62] Rachel Faran and Orna Kupferman. Spanning the spectrum from safety
to liveness. In ATVA 2015, Shanghai, China, Proceedings.

[63] Bernd Finkbeiner. Synthesis of reactive systems. In Javier Esparza, Orna
Grumberg, and Salomon Sickert, editors, Dependable Software Systems En-
gineering, volume 45 of NATO Science for Peace and Security Series, D: Infor-
mation and Communication Security, pages 72–98. IOS Press, 2016.

[64] Bernd Finkbeiner, Lennart Haas, and Hazem Torfah. Canonical represen-
tations of k-safety hyperproperties. In 32nd IEEE Computer Security Foun-
dations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019, pages
17–31. IEEE, 2019.

156 Bibliography

[65] Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah. Model check-
ing quantitative hyperproperties. In Hana Chockler and Georg Weis-
senbacher, editors, Computer Aided Verification - 30th International Confer-
ence, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981 of Lecture
Notes in Computer Science, pages 144–163. Springer, 2018.

[66] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for
model checking HyperLTL and HyperCTL. In Daniel Kroening and Co-
rina S. Pasareanu, editors, Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceed-
ings, Part I, volume 9206 of Lecture Notes in Computer Science, pages 30–48.
Springer, 2015.

[67] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. STTT, 15(5-
6):519–539, 2013.

[68] Bernd Finkbeiner and Hazem Torfah. Counting models of linear-time tem-
poral logic. In Adrian-Horia Dediu, Carlos Martín-Vide, José Luis Sierra-
Rodríguez, and Bianca Truthe, editors, Language and Automata Theory and
Applications - 8th International Conference, LATA 2014, Madrid, Spain, March
10-14, 2014. Proceedings, volume 8370 of Lecture Notes in Computer Science,
pages 360–371. Springer, 2014.

[69] Bernd Finkbeiner and Hazem Torfah. The density of linear-time prop-
erties. In Deepak D’Souza and K. Narayan Kumar, editors, Automated
Technology for Verification and Analysis - 15th International Symposium, ATVA
2017, Pune, India, October 3-6, 2017, Proceedings, volume 10482 of Lecture
Notes in Computer Science, pages 139–155. Springer, 2017.

[70] Philippe Flajolet. Analytic models and ambiguity of context-free lan-
guages. Theoretical Computer Science, 49(23):283 – 309, 1987.

[71] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
Automated verification techniques for probabilistic systems. In Formal
Methods for Eternal Networked Software Systems - 11th International School on
Formal Methods for the Design of Computer, Communication and Software Sys-
tems, SFM 2011, Bertinoro, Italy, June 13-18, 2011. Advanced Lectures, pages
53–113, 2011.

Bibliography 157

[72] Martin Fränzle, James Kapinski, and Pavithra Prabhakar. Robustness
in cyber-physical systems (dagstuhl seminar 16362). Dagstuhl Reports,
6(9):29–45, 2016.

[73] Daniel J. Fremont, Markus N. Rabe, and Sanjit A. Seshia. Maximum model
counting. In AAAI, pages 3885–3892. AAAI Press, 2017.

[74] Vibhav Gogate and Rina Dechter. Approximate counting by sampling the
backtrack-free search space. In Proceedings of the Twenty-Second AAAI Con-
ference on Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia,
Canada, pages 198–203, 2007.

[75] J. A. Goguen and J. Meseguer. Security policies and security models. In
1982 IEEE Symposium on Security and Privacy, pages 11–11, April 1982.

[76] Carla P. Gomes, Jörg Hoffmann, Ashish Sabharwal, and Bart Selman.
From sampling to model counting. In IJCAI 2007, Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, pages 2293–2299, 2007.

[77] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting. In
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications, pages 633–654. IOS Press, 2009.

[78] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research. Springer-Verlag
New York, Inc., New York, NY, USA, 2002.

[79] James W. Gray, III. Toward a mathematical foundation for information
flow security. In Proc. IEEE Symposium on Security and Privacy, pages 210–
34, May 1991.

[80] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive,
and object-sensitive information flow control based on program depen-
dence graphs. Int. J. Inf. Sec., 8(6):399–422, 2009.

[81] D. Harel and A. Pnueli. On the development of reactive systems. In
Krzysztof R. Apt, editor, Logics and Models of Concurrent Systems, pages
477–498, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[82] Sergiu Hart, Micha Sharir, and Amir Pnueli. Termination of probabilistic
concurrent program. ACM Trans. Program. Lang. Syst., 5(3):356–380, 1983.

158 Bibliography

[83] Michael Hartwig. On the density of regular and context-free languages.
In Computing and Combinatorics. Springer Berlin Heidelberg, 2010.

[84] Lane A. Hemaspaandra and Heribert Vollmer. The satanic notations:
counting classes beyond #p and other definitional adventures. SIGACT
News, 26(1):2–13, 1995.

[85] Thomas A. Henzinger. Quantitative fitness measures for embedded sys-
tems. In PECCS 2013 - Proceedings of the 3rd International Conference on Per-
vasive Embedded Computing and Communication Systems, Barcelona, Spain,
19-21 February, 2013, 2013.

[86] Thomas A. Henzinger. Quantitative reactive modeling and verification.
Computer Science - R&D, 28(4):331–344, 2013.

[87] Thomas A. Henzinger and Dale Miller, editors. Joint Meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic (CSL) and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014. ACM, 2014.

[88] Thomas A. Henzinger and Jan Otop. From model checking to model
measuring. In Pedro R. D’Argenio and Hernán Melgratti, editors, CON-
CUR 2013 – Concurrency Theory, pages 273–287, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[89] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng.,
23(5):279–295, May 1997.

[90] Michael Huth and Marta Z. Kwiatkowska. Quantitative analysis and
model checking. In Proceedings, 12th Annual IEEE Symposium on Logic in
Computer Science, Warsaw, Poland, June 29 - July 2, 1997, pages 111–122.
IEEE Computer Society, 1997.

[91] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
Reasoning About Systems. Cambridge University Press, New York, NY,
USA, 2004.

[92] Simon Jantsch, David Müller, Christel Baier, and Joachim Klein. From
LTL to unambiguous büchi automata via disambiguation of alternating
automata. In Formal Methods - The Next 30 Years - Third World Congress, FM
2019, Porto, Portugal, October 7-11, 2019, Proceedings, pages 262–279, 2019.

Bibliography 159

[93] Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. Counting and
random generation of strings in regular languages. In Kenneth L. Clark-
son, editor, Proceedings of the Sixth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 22-24 January 1995. San Francisco, California, USA., pages
551–557. ACM/SIAM, 1995.

[94] Joost-Pieter Katoen. The probabilistic model checking landscape. In Mar-
tin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016, pages 31–45. ACM, 2016.

[95] John G Kemeny, James Laurie Snell, et al. Finite markov chains, volume 356.
van Nostrand Princeton, NJ, 1960.

[96] Boris Köpf and David A. Basin. An information-theoretic model for
adaptive side-channel attacks. In Proceedings of the 2007 ACM Conference
on Computer and Communications Security, CCS 2007, Alexandria, Virginia,
USA, October 28-31, 2007, pages 286–296, 2007.

[97] Boris Köpf and David A. Basin. Automatically deriving information-
theoretic bounds for adaptive side-channel attacks. Journal of Computer
Security, 19(1):1–31, 2011.

[98] Boris Köpf and Andrey Rybalchenko. Approximation and randomization
for quantitative information-flow analysis. In Proceedings of the 23rd IEEE
Computer Security Foundations Symposium, CSF 2010, Edinburgh, United
Kingdom, July 17-19, 2010, pages 3–14, 2010.

[99] Boris Köpf and Andrey Rybalchenko. Automation of Quantitative
Information-Flow Analysis, pages 1–28. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[100] Hadas Kress-Gazit and Hazem Torfah. The challenges in specifying and
explaining synthesized implementations of reactive systems. In Bernd
Finkbeiner and Samantha Kleinberg, editors, Proceedings 3rd Workshop on
formal reasoning about Causation, Responsibility, and Explanations in Science
and Technology, CREST@ETAPS 2018, Thessaloniki, Greece, 21st April 2018.,
volume 286 of EPTCS, pages 50–64, 2018.

[101] Orna Kupferman, Yoad Lustig, Moshe Y. Vardi, and Mihalis Yannakakis.
Temporal synthesis for bounded systems and environments. In Thomas
Schwentick and Christoph Dürr, editors, 28th International Symposium on

160 Bibliography

Theoretical Aspects of Computer Science, STACS 2011, March 10-12, 2011,
Dortmund, Germany, volume 9 of LIPIcs, pages 615–626. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2011.

[102] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata and tree
automata emptiness. In Proceedings of the Thirtieth Annual ACM Symposium
on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 224–
233, 1998.

[103] Andrey Kupriyanov and Bernd Finkbeiner. Causal termination of multi-
threaded programs. In Armin Biere and Roderick Bloem, editors, Com-
puter Aided Verification - 26th International Conference, CAV 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,
2014. Proceedings, volume 8559 of Lecture Notes in Computer Science, pages
814–830. Springer, 2014.

[104] Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic
model checking: advances and applications. In Rolf Drechsler, editor,
Formal System Verification: State-of the-Art and Future Trends, pages 73–121.
Springer Verlag, 2017.

[105] Marta Z. Kwiatkowska. Quantitative verification: models, techniques
and tools. In Ivica Crnkovic and Antonia Bertolino, editors, Proceedings
of the 6th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, 2007, Dubrovnik, Croatia, September 3-7, 2007, Companion Papers,
pages 449–458. ACM, 2007.

[106] Marta Z. Kwiatkowska and David Parker. Automated verification and
strategy synthesis for probabilistic systems. In Dang Van Hung and
Mizuhito Ogawa, editors, Automated Technology for Verification and Analysis
- 11th International Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18,
2013. Proceedings, volume 8172 of Lecture Notes in Computer Science, pages
5–22. Springer, 2013.

[107] Jean-Marie Lagniez and Pierre Marquis. A recursive algorithm for pro-
jected model counting. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019., pages 1536–1543, 2019.

Bibliography 161

[108] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Softw. Eng., 3(2):125–143, March 1977.

[109] L. H. Landweber. Decision problems forω-automata. Mathematical systems
theory, 3(4):376–384, Dec 1969.

[110] François Laroussinie, Antoine Meyer, and Eudes Petonnet. Counting CTL.
Logical Methods in Computer Science, 9(1), 2012.

[111] Thomas Lengauer and Klaus W. Wagner. The correlation between the
complexities of the nonhierarchical and hierarchical versions of graph
problems. J. Comput. Syst. Sci., 44(1):63–93, 1992.

[112] Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. Mining assumptions for
synthesis. In Satnam Singh, Barbara Jobstmann, Michael Kishinevsky,
and Jens Brandt, editors, 9th IEEE/ACM International Conference on Formal
Methods and Models for Codesign, MEMOCODE 2011, Cambridge, UK, 11-13
July, 2011, pages 43–50. IEEE, 2011.

[113] Wenchao Li, Dorsa Sadigh, S. Shankar Sastry, and Sanjit A. Seshia. Synthe-
sis for human-in-the-loop control systems. In Tools and Algorithms for the
Construction and Analysis of Systems - 20th International Conference, TACAS
2014, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings, pages
470–484, 2014.

[114] Peter A. Lindsay. On alternating -automata. Journal of Computer and System
Sciences, 36(1):16 – 24, 1988.

[115] Pasquale Malacaria. Assessing security threats of looping constructs. In
Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2007, Nice, France, January 17-19, 2007,
pages 225–235, 2007.

[116] Kuldeep Meel. Constrained Counting and Sampling: Bridging the Gap between
Theory and Practice. PhD thesis, Rice University, 2017.

[117] Dimiter Milushev and Dave Clarke. Incremental hyperproperty model
checking via games. In Secure IT Systems - 18th Nordic Conference, NordSec
2013, Ilulissat, Greenland, October 18-21, 2013, Proceedings, pages 247–262,
2013.

162 Bibliography

[118] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on
omega-words. Theor. Comput. Sci., 32:321–330, 1984.

[119] Daniel Morwood and Daniel Bryce. Evaluating temporal plans in incom-
plete domains. In Proceedings of the Twenty-Sixth AAAI Conference on Arti-
ficial Intelligence, AAAI’12, pages 1793–1801. AAAI Press, 2012.

[120] D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give
a simple explanation of why most temporal and dynamic logics are decid-
able in exponential time. In [1988] Proceedings. Third Annual Symposium on
Logic in Computer Science, pages 422–427, July 1988.

[121] David E. Muller. Infinite sequences and finite machines. In Proceedings
of the 1963 Proceedings of the Fourth Annual Symposium on Switching Circuit
Theory and Logical Design, SWCT ’63, pages 3–16, Washington, DC, USA,
1963. IEEE Computer Society.

[122] Andrew C. Myers. Jflow: Practical mostly-static information flow control.
In POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Antonio, TX, USA, January 20-22,
1999, pages 228–241, 1999.

[123] Luan Viet Nguyen, James Kapinski, Xiaoqing Jin, Jyotirmoy V. Deshmukh,
and Taylor T. Johnson. Hyperproperties of real-valued signals. In Jean-
Pierre Talpin, Patricia Derler, and Klaus Schneider, editors, Proceedings of
the 15th ACM-IEEE International Conference on Formal Methods and Models
for System Design, MEMOCODE 2017, Vienna, Austria, September 29 - Octo-
ber 02, 2017, pages 104–113. ACM, 2017.

[124] Christos H. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

[125] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’89, pages 179–190, New York, NY, USA, 1989.
ACM.

[126] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS ’77, pages 46–
57, Washington, DC, USA, 1977. IEEE Computer Society.

Bibliography 163

[127] Amir Pnueli and Lenore D. Zuck. Probabilistic verification by tableaux. In
Proceedings of the Symposium on Logic in Computer Science (LICS ’86), Cam-
bridge, Massachusetts, USA, June 16-18, 1986, pages 322–331, 1986.

[128] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of
concurrent systems in CESAR. In Proceedings of the 5th Colloquium on In-
ternational Symposium on Programming, pages 337–351, London, UK, UK,
1982. Springer-Verlag.

[129] Markus N. Rabe. A temporal logic approach to iInformation-flow control. PhD
thesis, Saarland University, 2016.

[130] Markus N. Rabe and Leander Tentrup. Caqe: A certifying qbf solver. In
Proceedings of the 15th Conference on Formal Methods in Computer-aided De-
sign (FMCAD’15), pages 136–143, September 2015.

[131] Vasumathi Raman, Constantine Lignos, Cameron Finucane, Kenton C. T.
Lee, Mitchell P. Marcus, and Hadas Kress-Gazit. Sorry dave, i’m afraid I
can’t do that: Explaining unachievable robot tasks using natural language.
In Paul Newman, Dieter Fox, and David Hsu, editors, Robotics: Science and
Systems IX, Technische Universität Berlin, Berlin, Germany, June 24 - June 28,
2013, 2013.

[132] Venkatesh Raman and S. P. Suresh, editors. 34th International Conference on
Foundation of Software Technology and Theoretical Computer Science, FSTTCS
2014, December 15-17, 2014, New Delhi, India, volume 29 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

[133] Kristin Yvonne Rozier. Specification: The biggest bottleneck in formal
methods and autonomy. In Verified Software. Theories, Tools, and Experiments
- 8th International Conference, VSTTE 2016, Toronto, ON, Canada, July 17-18,
2016, Revised Selected Papers, pages 8–26, 2016.

[134] S. Safra. On the complexity of omega -automata. In Proceedings of the 29th
Annual Symposium on Foundations of Computer Science, SFCS ’88, pages 319–
327, Washington, DC, USA, 1988. IEEE Computer Society.

[135] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann
Pitassi. Combining component caching and clause learning for effective
model counting. In Proceedings of the 7th International Conference on Theory
and Applications of Satisfiability Testing, 2004.

164 Bibliography

[136] Sven Schewe and Thomas Varghese. Determinising parity automata. In
Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors,
Mathematical Foundations of Computer Science 2014, pages 486–498, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[137] Claude E. Shannon. A mathematical theory of communication. Mobile
Computing and Communications Review, 5(1):3–55, 2001.

[138] A. P. Sistla and E. M. Clarke. The complexity of propositional linear tem-
poral logics. J. ACM, 32(3):733–749, July 1985.

[139] Geoffrey Smith. On the foundations of quantitative information flow. In
Luca de Alfaro, editor, Foundations of Software Science and Computational
Structures, pages 288–302, Berlin, Heidelberg, 2009. Springer Berlin Hei-
delberg.

[140] Andrew Szilard, Sheng Yu, Kaizhong Zhang, and Jeffrey Shallit. Char-
acterizing regular languages with polynomial densities. In Mathematical
Foundations of Computer Science 1992. Springer Berlin Heidelberg, 1992.

[141] Paulo Tabuada, Ayca Balkan, Sina Y. Caliskan, Yasser Shoukry, and Ru-
pak Majumdar. Input-output robustness for discrete systems. In Ahmed
Jerraya, Luca P. Carloni, Florence Maraninchi, and John Regehr, editors,
Proceedings of the 12th International Conference on Embedded Software, EM-
SOFT 2012, part of the Eighth Embedded Systems Week, ESWeek 2012, Tampere,
Finland, October 7-12, 2012, pages 217–226. ACM, 2012.

[142] Paulo Tabuada, Sina Yamac Caliskan, Matthias Rungger, and Rupak Ma-
jumdar. Towards robustness for cyber-physical systems. IEEE Trans. Au-
tomat. Contr., 59(12):3151–3163, 2014.

[143] Wolfgang Thomas. Handbook of theoretical computer science (vol. b).
chapter Automata on Infinite Objects, pages 133–191. MIT Press, Cam-
bridge, MA, USA, 1990.

[144] Marc Thurley. sharpSAT: Counting models with advanced component
caching and implicit bcp. In Proceedings of the 9th International Conference
on Theory and Applications of Satisfiability Testing, SAT’06, pages 424–429,
Berlin, Heidelberg, 2006. Springer-Verlag.

[145] Hazem Torfah and Martin Zimmermann. The complexity of counting
models of linear-time temporal logic. In Raman and Suresh [132], pages
241–252.

Bibliography 165

[146] Hazem Torfah and Martin Zimmermann. The complexity of counting
models of linear-time temporal logic. Acta Informatica, 55(3):191–212, 2018.

[147] Leslie G. Valiant. The complexity of computing the permanent. Theor.
Comput. Sci., 8:189–201, 1979.

[148] Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM J. Comput., 8(3):410–421, 1979.

[149] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-
state programs. In 26th Annual Symposium on Foundations of Computer Sci-
ence, Portland, Oregon, USA, 21-23 October 1985, pages 327–338. IEEE Com-
puter Society, 1985.

[150] Moshe Y. Vardi. Alternating automata and program verification, pages 471–
485. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

[151] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification (preliminary report). In Proceedings of
the Symposium on Logic in Computer Science (LICS ’86), Cambridge, Mas-
sachusetts, USA, June 16-18, 1986, pages 332–344, 1986.

[152] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf.
Comput., 115(1):1–37, November 1994.

[153] Wei Wei and Bart Selman. A new approach to model counting. In Fahiem
Bacchus and Toby Walsh, editors, Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19-23,
2005, Proceedings, volume 3569 of Lecture Notes in Computer Science, pages
324–339. Springer, 2005.

[154] H. Yasuoka and T. Terauchi. On bounding problems of quantitative infor-
mation flow. In Proc. European Symposium on Research in Computer Security,
pages 357–372, September 2010.

[155] Hirotoshi Yasuoka and Tachio Terauchi. Quantitative information flow
as safety and liveness hyperproperties. Theor. Comput. Sci., 538:167–182,
2014.

List of Figures

2.1 Example transition system . 21

3.1 A transition system with infinitely many models 39
3.2 Doubly-pumped lassos . 41
3.3 An illustration of algorithm detectDPL 43
3.4 Counting bad prefixes . 55
3.5 Two lasso runs inducing the same run. 62
3.6 Runs of a Büchi automaton over a lasso. 68
3.7 Illustration of the maximum model counting algorithm 76
3.8 A reduction from DNF to NPA . 83

4.1 A transition system and its underlying Markov chain 91
4.2 A nonconvergent linear-time property 97
4.3 Bounding the probability of linear-time properties 100

5.1 Security-critical systems . 106

167

List of Tables

3.1 Complexity of model counting algorithms 37
3.2 Counting complexities of the model counting algorithms 38
3.3 Complexity of projected model counting. 74

5.1 Comparing the expansion-based approach (MCHyper) and the Max#Sat-
based approach (MCQHyper) . 124

6.1 Experimental results approximate synthesis 139

169

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Propositional Model Counting
	Problem definition
	Generalizations of propositional model counting

	Model Counting for Reactive Systems
	Problem definition
	Bounded model counting

	Contributions
	Part I: The model counting problem
	Part II: Applications of model counting in formal verification

	Related Work
	Publications

	The Model Counting Problem
	Models and Properties
	Finite Labeled Transition Systems
	Linear-time Properties
	Safety and co-safety
	Liveness

	Omega-Regular Properties
	Parity automata
	Büchi automata
	Co-Büchi automata

	Linear-time Temporal Logic
	Model Checking Omega-Regular Properties

	Model Counting Algorithms for Omega-regular Properties
	Counting Complexity
	Counting Infinite Traces
	Doubly-pumped lassos
	Algorithms for counting infinite traces
	Complexity bounds

	Counting Bad Prefixes
	Algorithms for counting bad prefixes
	Complexity bounds
	Counting good prefixes

	Counting Lassos
	Algorithms for counting lassos
	Complexity bounds

	Projected Model Counting
	Maximum Model Counting
	Proofs

	The Relation of Model Counting to Probabilistic Model Checking
	Probabilistic Model Checking
	Probability of Linear-time Properties
	Probabilities based on Bad Prefixes
	Probabilities based on Good Prefixes
	Probabilities based on Lassos
	Bibliographic Remarks

	Applications of Model Counting in Formal Verification
	Model Checking of Counting Hyperproperties
	Information-Flow Policies
	HyperLTL: A Temporal Logic for Hyperproperties
	A model checking algorithm for HyperLTL

	Counting Hyperproperties
	Model Checking Counting Hyperproperties
	Encoding counting hyperproperties in HyperLTL
	Model checking counting hyperproperties using maximum model counting

	Symbolic Approach to Model Checking Counting Properties
	Evaluation

	Bibliographic Remarks

	Synthesis of Approximate Implementations
	Synthesis of Reactive Systems
	Lasso-precise implementations
	Automata-theoretic synthesis of lasso-precise implementations
	Bounded Synthesis of Lasso-precise Implementations
	Synthesis of Approximate Implementations
	Bibliographic Remarks

	Discussion
	Relation to Model Measuring
	Future Work
	Model counting Implementations
	Model counting for software verification
	Quantitative hyperlogics
	Optimizing model counting tools

	Bibliography
	List of Figures
	List of Tables

