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Summary 

 

Over the past decades, Bacillus megaterium has been employed for the industrial production of 

recombinant proteins and active pharmaceutical compounds. However, the limited repertoire of 

promoter sequences has largely impaired the potential of B. megaterium for the heterologous protein 

expression and the rational strain design towards a more efficient biosynthesis of these compounds. In 

the present work, 19 innovative promoter elements of diverse promoter classes were identified based 

on differential gene expression analyses and characterized via β-galactosidase screening. Their 

activities ranged from 15% to 145% compared to the reference promoter. Selected promoters were 

successfully applied to establish the currently most efficient B. megaterium based whole-cell systems 

for the cholesterol oxidase mediated conversion of pregnenolone to progesterone and the 11β-

hydroxysteroid dehydrogenase mediated conversion of cortisol to cortisone. Multigram scaled steroid 

yields were achieved. Moreover, the novel promoters were used to establish the complex biosynthesis 

of C30 carotenoids. The involved enzymes in B. megaterium had previously been identified within this 

work along with the underlying biosynthetic route towards the production of the pharmaceutically 

relevant C30 carotenoid diaponeurosporene. In summary, the versatile range of applications 

demonstrated the promising potential of the novel promoters for a future use in diverse 

biotechnological processes. 
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Zusammenfassung 

 

Bacillus megaterium wird seit Jahren für die industrielle Produktion von rekombinanten Proteinen und 

pharmazeutisch aktiven Substanzen eingesetzt. Aufgrund der beschränkten Auswahl an 

Promotorsequenzen wurde das Potenzial von B. megaterium für die heterologe Proteinexpression und 

das rationale Stammdesign allerdings weitestgehend vernachlässigt. Im Rahmen der vorliegenden 

Arbeit wurden 19 innovative Promotoren unterschiedlicher Promotorklassen auf Grundlage von 

differentiellen Genexpressionsanalysen im B. megaterium Stamm MS941 identifiziert und mittels β-

Galaktosidase-Screening charakterisiert. Das Spektrum der Promotoraktivitäten lag im Vergleich zum 

Referenzpromotor zwischen 15% und 145%. Durch die Anwendung ausgewählter Promotoren 

konnten die zurzeit effizientesten B. megaterium basierten Ganzzellsysteme für den 

Cholesteroloxidase vermittelten Umsatz von Pregnenolon zu Progesteron sowie für die 11β-

Hydroxysteroid Dehydrogenase katalysierte Produktion von Cortison etabliert werden. Die 

Steroidausbeuten lagen hierbei im Multigramm Bereich. Des Weiteren konnten die neuen Promotoren 

erfolgreich für die komplexere Biosynthese von C30-Carotinoiden angewendet werden. Die 

beteiligten Enzyme wurden zuvor in B. megaterium identifiziert und der Syntheseweg wurde bis zum 

pharmazeutisch interessanten C30-Carotinoid Diaponeurosporen aufgeklärt. Das breite 

Anwendungsspektrum der neuen Promotoren zeigt deren enormes Potenzial für eine zukünftige 

biotechnologische Nutzung. 
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1. Introduction 

 

1.1 Microbial strain development 

The conventional chemical production of fuels, industrially important bulk chemicals and high-value 

compounds for the pharmaceutical industry is strongly dependent on petroleum based resources. The 

reckless exploitation of these raw materials as well as the harsh process and reaction conditions during 

chemical synthesis significantly contribute to a wide range of severe problems, including 

environmental pollution, climate change and health risks (Yang et al., 2002). Given the progressive 

depletion of nonrenewable natural resources, the sustainable and environmentally friendly production 

of valuable chemicals by microorganisms is considered to be one of the major challenges in modern 

biotechnology (Chubukov et al., 2016; Gosset, 2008; Lee et al., 2011; Weusthuis et al., 2011). Natural 

strains of microorganisms were originally used for basic biotechnological applications such as food 

fermentation, but they rarely meet the requirements of the nowadays highly specialized industrial 

biotechnology (Ray and Joshi, 2014; Sengun and Karabiyikli, 2011; Sicard and Legras, 2011). 

Consequently, the demand for more efficient industrial production strains with enhanced properties 

regarding product formation rates and costs as well as product yields and specificities gave rise to the 

fascinating interdisciplinary research field of microbial strain development (Parekh et al., 2000). 

In general, the strategies for microbial strain development can be conceptualized into an adaptive 

approach, also known as directed evolution and into an approach which is based on rational design 

(Zhou and Alper, 2019). Despite fundamental methodological differences, both strategies aim to 

overcome the same innate cellular limitations of gene regulation, signaling networks, enzyme 

activities and metabolic fluxes (Bailey, 1991). The adaptive approach of microbial strain development 

is mainly directed towards the imitation and acceleration of natural evolution by random mutagenesis, 

thereby generating the largest libraries of diverse phenotypes (Cobb et al., 2013). However, the 

screening effort for strains with improved properties is considerably high, due to the immense genetic 

diversity (Reetz et al., 2008). Since random mutagenesis is typically induced with highly mutagenic 

radiation or highly mutagenic chemicals such as ethyl methanesulfonate (EMS), information about the 

genetic background is not necessarily required. Furthermore, the resulting microbial strains are not 

classified as genetically modified and are consequently considered to be particularly compliant with 

the strict regulations of the food and beverage industry (Jankowicz-Cieslak et al., 2017; Sikora et al., 

2011). More recently, novel strategies for continuous evolution processes were established in 

customized mutator strains with impaired DNA repair systems, thus leading to spontaneous genome-

wide insertions during DNA replication (Greener et al., 1997). The mutation frequencies of these 

strains were significantly improved using DNA polymerases with impaired proofreading activity (Abe 

et al., 2009; Shimoda et al., 2006). A major limitation of the directed evolution approach, however, is 
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that not only the location of randomly distributed genome-wide mutations, but also their contribution 

to the improved phenotypes remain uncharacterized. This loss of information is considered to be 

extremely detrimental for the rapid and efficient evolution of microbial strains. Contrarily, rational 

strain design is based on profound knowledge about the genotype-phenotype relationships in the 

complex network of transcriptional, translational and metabolic control of living cells (Machado and 

Herrgård, 2015; McCloskey et al., 2013). The minimal prerequisite for this understanding is to have 

access to the genomic sequence of the desired strain. Since information about the genetic background 

is not available for any strain or microorganism, the lack of genomic data is considered to be a major 

drawback of rational strain design. However, as the number of sequenced genomes and molecular 

tools for genome editing continuously increases, rational strain design will become available for more 

microbial species (Land et al., 2015; Smith, 2017). Traditional strain design and engineering was 

predominantly focused on the elimination or optimization of individual enzyme activities to achieve 

maximal titers of a desired product, thereby disregarding potential negative effects on the overall 

system performance during industrial fermentation processes. A more systemic and modern approach 

of rational microbial strain design involves the emerging research area of systems biology. Systems 

biology relies primarily on comparative “omics”-driven technologies to gain profound insights into 

any level of the complex regulatory networks in living cells (St. John and Bomble, 2019). The 

knowledge collectively derived from genomic, transcriptomic, proteomic and metabolomic as well as 

fluxomic data is utilized for the establishment of complex computational frameworks to iteratively 

predict, simulate, assess and ultimately determine the best combinatorial genetic manipulations along 

with optimal fermentation conditions for the efficient production of a desired compound in a specific 

microorganism (Nielsen and Keasling, 2016). The implementation of these so called “design-build-

test-learn” cycles was successfully applied to improve microbial strains with regard to product 

selectivity and productivity (Cao et al., 2016; Carbonell et al., 2018). 

 

1.2 Promoter systems and their contribution to microbial strain development 

From the early beginnings of recombinant protein production, multiple concepts have been developed 

to overcome the cellular limitations for the efficient expression of complex proteins, membrane and 

even toxic proteins. These concepts not only include various modifications at the DNA/RNA level 

such as the adaptation of rare codons, the engineering of ribosomal binding sites (RBS) or the rational 

design of the mRNA structure and stability but also modifications at the protein level like the 

coexpression of chaperons or fusions with solubilizing protein tags (Francis and Page, 2010). 

Altogether, these strategies were successfully applied to maximize the yields of individual proteins in 

many microorganisms (Kaur et al., 2018). However, a more universal approach for the optimization of 

heterologous protein expression is based on promoters. As important regulatory elements in the 

complex network of transcriptional control, promoters play a fundamental role during RNA 
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polymerase recruitment, the initiation of the transcription process as well the determination of the 

transcription efficiency (Feklistov, 2013; Ghosh et al., 2010; Saecker et al., 2011; Seshasayee et al., 

2006). According to the mode of activation, promoter systems are broadly categorized into inducible, 

constitutive as well as growth phase dependent promoter classes, each of them possessing their own 

benefits but also limitations. For several decades, inducible promoter systems were preferentially used 

for the production of recombinant proteins, since they provide the highest flexibility with regard to 

temporal and quantitative control of protein expression (Briand et al., 2016; Giacalone et al., 2006). 

The production time and the expression level of a desired protein is simply manipulated by the amount 

of chemically inducing agents (e.g. trace elements, nutrients, alcohols, carbon sources or antibiotics) 

(Hemmati and Basu, 2015; Rodríguez-García et al., 2005; Rouch and Brown, 1997; Weinhandl et al., 

2014) or the extent of environmental influences (like osmotic stress, temperature differences or light 

exposure) (Dattananda et al., 1991; Tabor et al., 2011; Taylor et al., 1984). The most commonly used 

inducible promoter systems are of bacterial origin and comprise promoters of different sugar 

metabolizing operons such as the lactose or arabinose inducible promoter system from E. coli or the 

xylose inducible promoter system from B. megaterium (Greenfield et al., 1978; Hopkins, 1974; Rygus 

et al., 1991). These promoters were combined with expression systems of bacteriophages for the 

establishment of the popular and wildly used T7 or T5 promoter systems (Brunner and Bujard, 1987; 

Gamer et al., 2009). The application of these inducible promoters was shown to be especially 

beneficial for the high yield expression of many challenging proteins including native membrane 

proteins and toxic proteins (Baneyx, 1999; Joseph et al., 2015; Montigny et al., 2004). However, 

inducible promoter systems reach their limit when high costs of conventional inducing agents or toxic 

effects, particularly of the commonly used allolactose analog IPTG, impair the application in 

industrially scaled processes (Nocadello and Swennen, 2012). Contrarily, constitutive promoters are 

not subject to the restrictions of inducible promoter systems since the addition of expensive or toxic 

inducing agents is not necessary (Redden et al., 2015). Though recombinant protein production occurs 

permanently and can certainly lead to the accumulation of large quantities of protein at early stages of 

bacterial growth, the static protein formation rates of constitutive promoters do not provide much 

flexibility in terms of tuning protein expression. As a result, the application of constitutive promoters 

for the heterologous expression of complex proteins is often associated with considerable formation of 

inclusion bodies, with growth inhibition or even cell death caused by severe protein toxicity (Donnelly 

et al., 2001). Growth phase dependent promoters, however, serve as important link between inducible 

and constitutive expression systems since they combine the useful properties of both systems. They 

are not dependent on the addition of inducing agents but nonetheless allow sufficient flexibility 

concerning the time point of protein induction as a result of growth phase specific transcription as well 

as protein expression patterns (Di Gennaro et al., 2008). In recent years, many growth phase dependent 

promoters were identified and characterized in a wide variety of different microorganisms and thus 

became increasingly important to the biotechnological industry, particularly for the efficient 
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expression of recombinant proteins during late microbial growth phases (Guan et al., 2015; Solera et 

al., 2004; Studier, 2005). 

Apart from their significance for the optimization of recombinant protein yields, different promoter 

systems have also attracted considerable interest for the application of metabolic pathway engineering 

in the context of rational strain design (Guiziou et al., 2016; Markley et al., 2015; Vogl et al., 2018). 

Instead of maximizing the expression levels of single proteins, the rational approach of microbial 

strain design is rather focused on harmonizing protein expression levels in complex biosynthetic 

pathways that often involve the coordinated action of multi-enzyme cascades (Farnberger et al., 2017; 

Hold et al., 2016). The main challenge with increasing reaction network complexity, however, is to 

gain operational control over simultaneously expressed proteins because the resulting metabolic 

burden of imbalanced protein expression was shown to impair the overall catalytic performance of 

microbial biocatalysts remarkably (Wachtmeister and Rother, 2016). In order to meet these 

requirements, a broad set of promoters with diverse activities is considered fundamental for the 

dynamic control of protein expression levels in tailored microbial cell factories (Chen et al., 2018; 

Jayaraman et al., 2018; Müller and Stelling, 2009; Zhang and Zhou, 2014). Promoters with different 

induction time points as well as transcription efficiencies were deliberately used to exploit native as 

well as engineered biosynthetic pathways in many microorganisms (Brockman and Prather, 2015a; 

Gupta et al., 2017; Nevoigt, 2008). The adaption and fine tuning of protein levels in linear multi-

enzyme cascades was demonstrated to have a beneficial effect on cell viability and product formation 

rates (Gardner et al., 2000; Hwang et al., 2018). Moreover, side product formation was significantly 

reduced (Taniguchi et al., 2017). Increasing numbers of scientific studies furthermore report the 

redirection of metabolic fluxes in competing biosynthetic pathways, thereby maximizing the yield of 

desired and valorized natural products. In the course of these studies, particularly weak promoters 

have gained a prominent role as important tools for the development of knockdown phenotypes of 

genes that are predominantly located at crucial branch points within the central carbon metabolism 

(Brockman and Prather, 2015b; Scalcinati et al., 2012). Ultimately, the selection of suitable promoter 

systems has to be compliant with the experimental approach. Consequently, the availability of a broad 

promoter set with a wide range of activities is considered indispensible not only for the efficient 

expression of single proteins but also for the efficient manipulation and engineering of whole 

metabolic pathways in the emerging field of rational microbial strain design.  
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1.3 Bacillus megaterium  

Bacillus megaterium was first described in 1884 by Anton De Bary and belongs to the group of non-

pathogenic Gram-positive bacteria (De Bary, 1884). The rod-shaped, aerobic, endospore-forming 

bacterium is predominantly found in the soil, but is also able to colonize various alternative and 

unexpected habitats such as seawater, sediment and honey (Vary et al., 2007). Consequently, it is not 

surprising that B. megaterium was observed to grow in minimal media on over 62 different carbon 

sources, which allows a simple and inexpensive cultivation (Vary, 1994). Due to its large vegetative 

cell size of up to 4 µm in length and 1.5 µm in diameter, B. megaterium has originally been used as a 

model organism for intensive studies on cytoplasmic membrane and bacterial cell wall biosynthesis, 

on protein localization, as well as on spore formation and spore structure (Vary, 1992).  

However, over the last decades B. megaterium has become increasingly important to the 

biotechnological industry, due to its simple cultivation, high capacity for protein production and 

plasmid stability (Vary et al., 2007). Unlike other bacteria for recombinant protein expression, B. 

megaterium has been granted with the GRAS (generally recognized as safe) status since it does not 

produce any endotoxins (Wang et al., 2006). Moreover, the absence of alkaline proteases is considered 

to be particularly attractive for the downstream processing and recovery of recombinantly expressed 

and secreted proteins (Priest, 1977). The successful production of bulk enzymes with useful 

applications in the biotechnological industry was reported for several amylases (Hebeda et al., 1988; 

Metz et al., 1988), penicillin G acylase (Martín et al., 1995; Suga et al., 1990), glucose dehydrogenase 

(Pauly and Pfleiderer, 1975), keratinase (Radha and Gunasekaran, 2007) and xylanase (Sindhu et al., 

2006). Apart from being relevant for the industrial production of these recombinant proteins, B. 

megaterium has recently gained considerable interest as microbial cell factory for the biosynthesis of 

secondary metabolites and biotransformation of pharmaceutical compounds. The elucidation of 

enzymes involved in these complex biosynthetic pathways and biotransformation systems was 

significantly accelerated by the publication of the whole genome sequences of the industrially 

important B. megaterium strains DSM319, QMB1551 and WSH-002 in 2011 (Eppinger et al., 2011; 

Liu et al., 2011). Since then, various novel enzymes for potential biotechnological and pharmaceutical 

applications have been identified and characterized in B. megaterium. The most prominent enzymes 

certainly belong to the group of cytochromes P450 and auxiliary redox proteins, which were used for 

the conversion of natural as well as synthetic steroid hormones (Kiss et al., 2015; Putkaradze et al., 

2019, 2017a; Schmitz et al., 2018), valorization of vitamins (Abdulmughni et al., 2017; Biedendieck et 

al., 2010; Ehrhardt et al., 2016), terpenoids (Bleif et al., 2012, 2011; Putkaradze et al., 2017b) as well 

as other pharmaceutical compounds (Milhim et al., 2016). Likewise, the production of oxetanocin, a 

potent inhibitor of viral infections was described in B. megaterium (Morita et al., 1999; Tseng et al., 

1991). Even the biosynthesis of polyhydroxyalkanoates (PHAs), a promising starting material for the 

sustainable manufacturing of biodegradable plastics, was reported to be very efficient (McCool, 1996; 
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Rodríguez-Contreras et al., 2013). Particularly, these PHAs were attributed for the intracellular 

accumulation of hydrophobic organic compounds such as cholesterol, which makes B. megaterium an 

ideal microbial platform for the biotransformation of steroids and steroidal drugs (Gerber et al., 2015). 

 

1.4 Biosynthesis of terpenoids 

The biosynthesis of terpenoids is a complex process which involves the coordinated action of multiple 

enzymes. In general, the backbone structure of terpenoids is derived from the common isoprenoid 

precursor molecules isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP) 

(Vattekkatte et al., 2018). Depending on the organism, the intracellular pool of IDP and DMADP can 

be supplied by two different biosynthetic pathways, the mevalonate (MEV) pathway or the non-

mevalonate pathway, often referred as methylerythritol phosphate (MEP) pathway (Boucher and 

Doolittle, 2000). The MEV-pathway, and variations thereof, is predominantly found in archaea, fungi 

and higher eukaryotes (Zhao et al., 2013), while the MEP-pathway is mainly distributed among most 

bacteria and parasitic protozoa (Banerjee and Sharkey, 2014; Guggisberg et al., 2014). Higher plants 

are considered a special case, since both pathways are present (Kuzuyama and Seto, 2012). The initial 

biosynthetic steps of the MEV-pathway comprise the successive condensation of three molecules of 

acetyl-CoA (9) to form 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA). This condensation cascade 

first involves the activity of the acetyl-CoA-acetyltransferase (Acat) to yield acetoacetyl-CoA (10), 

which is then further converted to HMG-CoA (11) by the HMG-CoA synthase (Hmgs). The 

subsequent reduction of HMG-CoA to (R)-mevalonate (12) was demonstrated to be the rate-limiting 

step within the MEV-pathway and is catalyzed by the HMG-CoA-reductase (Hmgr). This reduction is 

followed by a phosphorylation cascade, starting with the formation of (R)-mevalonate-5-phosphate 

(13), which is then further converted to (R)-mevalonate-5-diphosphate (14). The involved mevalonate 

kinase (Mek) and phosphomevalonate kinase (Pmk) are both dependent on adenosine triphosphate 

(ATP) consumption. The final decarboxylation reaction of (R)-mevalonate-5-diphosphate is catalyzed 

by the diphosphomevalonate decarboxylase (Mdc) and results in the formation of isopentenyl 

diphosphate (16). Intramolecular rearrangements, performed by the IDP-isomerase (Idi), allow the 

conversion of IDP to dimethylallyl diphosphate (15) (Jain, 2014; McGarvey, 1995). The initial 

reaction step of the MEP-pathway comprises the formation of 1-deoxy-D-xylulose 5-phosphate (3) 

and is catalyzed by the DXP synthase (Dxs) which covalently bonds one molecule of glyceraldehydes-

3-phosphate (1) to one molecule pyruvate (2). Carbon dioxide (CO2) is released as a byproduct. In the 

next step, the DXP reductase (Dxr) catalyzes the intramolecular rearrangement and concomitant 

reduction of DXP to 2C-methyl-D-erythritol-4-phosphate (4). This reduction step is followed by the 

addition of cytidine diphosphate (CDP) to form 4-diphosphocytidyl-2C-methyl-D-erythritol (5) and 

involves the activity of the MEP cytidyltransferase (IspD). The subsequent phosphorylation of CDP-

ME to 4-diphosphocytidyl-2-C-methyl-D-erythritol-2-phosphate (6) is performed by the 
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corresponding kinase (IspE). The cleavage of cytidine monophosphate (CMP) then leads to the 

cyclization of CDP-MEP yielding 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (7). This cyclization 

reaction is catalyzed by the corresponding MEcDP synthase (IspF).The penultimate step of the MEP-

pathway is the reduction of MEcDP to (E)-4-Hydroxy-3-methyl-but-2-enyl-diphosphate (8) and 

involves the activity of the HMB-DP synthase (IspG). Finally, HMB-DP is converted by the 

isopentenyl diphosphate and dimethylallyl diphosphate synthase (IspH) to IDP (16) as well as 

DMADP (15) (Lichtenthaler, 1999; Rohmer, 1999). 

MEP       MEV 

 

Figure 1.1. Comparison of the biosynthetic steps of the methylerythritol phosphate (MEP) pathway 

(left) and the mevalonate (MEV) pathway (right). Adopted and modified from (Partow et al., 2012). 
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Consecutive condensation reactions of IDP and DMADP lead to the formation of terpenoid structures 

with varying chain lengths, such as the geranyl diphospate (GDP) derived monoterpenoids, farnesyl 

diphosphate (FDP) derived sesqui- and triterpenoids or the geranylgeranyl diphosphate (GGDP) 

derived di- and tetraterpenoids (see Figure 1.2).  

 

Figure 1.2. Schematic presentation of the terpenoid biosynthesis. 

 

1.5 Biosynthesis and biotransformation of steroids 

Natural steroids and steroid-like compounds occur in almost every kingdom of life where they have 

key roles in the control of many different physiological processes. The most prominent functions of 

steroids in mammals, including humans, comprise the stabilization of membranes (sterols) (Raffy and 

Teissié, 1999), the regulation of the salt-water balance (mineralocorticoids) (Funder et al., 1997) and 

immune response (glucocorticoids) (Munck et al., 1984) as well as the development of sexual 

characteristics and behavior (progestogens, androgens and estrogens) (Wierman, 2007). The biological 

functions of steroids are mainly dependent on the oxidation state of the steroidal core structure as well 

as on the presence, position and nature of attached functional groups (Lednicer, 2011). For this reason, 

the gonane core of steroids is considered an important lead structure for the development of novel 

steroid derived drugs with versatile therapeutic applications (Tong and Dong, 2009). The global 

market value of steroidal active pharmaceuticals is second just behind antibiotics and projected to 

exceed 17 billion US$ by the end of 2025 (https://industrialjournalism.com). Consequently, the 

commercial interest for the production of natural steroid hormones and steroid derived drugs is 

accordingly high. However, the biosynthesis of steroids in general and steroid hormones in the human 

body is a complex process, which is enabled by the chronologically and spatially coordinated action of 

multiple enzymes (see Figure 1.3), such as hydroxysteroid dehydrogenases (HSDs) and cytochromes 

P450 (CYPs) (Ghayee and Auchus, 2007).  
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Figure 1.3. Schematic presentation of the steroid hormone biosynthesis in the human body. Figure 

was taken and modified from (Neunzig et al., 2017).  

The potential of microorganisms as biocatalysts for the biotransformation of steroids became obvious 

right after initial attempts for a total chemosynthesis of the important glucocorticoid cortisone 

(Peterson and Murray, 1952; Sarett, 1946). While total chemosynthesis was typically associated with 

numerous consecutive reactions under harsh conditions, low selectivity and yields as well as high 

economic costs, the application of natural microbial strains lead to a significant reduction of chemical 

steps and production costs, thereby contributing to establish more economically viable processes for a 

wide variety of steroid hormones (Egorova et al., 2002; El-Kadi and Eman Mostafa, 2004; Fernández-

Cabezón et al., 2017; Hakki et al., 2008; Hannemann et al., 2007; Kiss et al., 2015). Given the 

increasing number of sequenced genomes and molecular tools for genome editing, nowadays, the main 

challenges for the design and development of microbial strains with improved properties for the 

production of pharmaceutically important steroidal precursors (synthons) mainly involve the 

restriction of endogenous steroid degradation pathways and the de novo biosynthesis of steroids from 

cheap and sustainable feedstocks such as glucose, glycerol or second generation biomass (Fernández-

Cabezón et al., 2018). Steroid degradation in microorganisms often derives from undesired 

modifications like hydroxylation and/or dehydrogenation of the gonane ring structure. The successful 

elimination of these interfering enzyme activities by rational gene deletion has significantly 

contributed to a better understanding of the microbial steroid catabolism (Gerber et al., 2015; Yao et 

al., 2014). However, extensive studies on steroid anabolism played an equally important role for the 
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development of improved microbial steroid transformers. Research on the de novo biosynthesis of 

natural steroid hormones in yeasts was predominantly focused on the optimization of the supply with 

isoprenoid building blocks for the efficient assembly of squalene, the triterpenoid precursor for the 

formation of the gonane structure of sterols (Duport et al., 1998; Szczebara et al., 2003). Significant 

improvements were associated with the engineering of the mevalonate pathway for the biosynthesis of 

the universal terpenoid precursors isopentenyl diphosphate (IDP) and dimethylallyl diphosphate 

(DMADP) (Ma et al., 2018). The knowledge collectively derived from these prime examples of 

microbial steroid transformation has paved the way for the engineering of superior strains with 

enhanced properties for the industrial production of steroid derived drugs.  

 

1.6 Structure, function and biosynthesis of carotenoids 

In 1831, Heinrich W. F. Wackenroder first described the isolation of a yellow pigment from carrots 

and consequently named it "carotin" (Wackenroder, 1831). This pigment was later attributed to be 

eponymous for one of the most diverse and widespread class of naturally occurring pigments, the 

carotenoids (Mortensen, 2006). Since then, the number of identified carotenoids has continously 

increased to a total of over 1100 structures which are ubiquitously distributed among all domains of 

life (Yabuzaki, 2017). The colorful world of carotenoids ranges from yellow through orange and red to 

purple shades (Britton, 1995). The main cause for this wide range of colors is the differing number and 

location of conjugated double bonds within the carotenoid backbone. The individual composition of 

alternating double bonds confers unique characteristics to any carotenoid with regard to the absorption 

of visible light and susceptibility towards electrophilic reagents as well as aggressive radicals (Britton 

et al., 2008). 

Carotenoids are primarily differentiated by the number of carbon atoms in the isoprenoid backbone, 

which is primarily dependent on the number of the isoprenoid building blocks IDP and DMADP. Both 

are substrates for the biosynthesis of longer-chained prenyl diphosphates, such as the C10 isoprenoid 

geranyl diphosphate (GDP), the C15 isoprenoid farnesyl diphosphate (FDP), the C20 isoprenoid 

geranylgeranyl diphosphate (GGDP) and even higher isoprenoid structures (Tarshis et al., 1996). The 

class of enzymes which is involved in this process is generally assigned as prenyl diphosphate 

transferases or prenyl diphosphate synthases, even though most representatives of this enzyme class 

are more precisely named according to the end product of the prenyl transferase reaction as GDP, FDP 

or GGDP synthases, etc. (Burke et al., 1999). As illustrated in Figure 1.4, the initial step of the 

carotenoid biosynthesis (exemplified for β-carotene derivatives) is actually catalyzed by carotenoid 

synthases (e.g. PSY, phytoene synthase) and comprises the head to head condensation of two 

molecules of prenyl diphosphates (here GGDP, geranylgeranyl diphosphate) resulting in the formation 

of the basic, linear carotenoid backbone structure (Moise et al., 2014). The carotenoid backbone is 



INTRODUCTION

 

11 

 

considered symmetric if both prenyl diphosphates have equal chain lengths, while the condensation of 

prenyl diphosphates with varying chain lengths leads to the formation of asymmetric carotenoid 

structures (Perez-Fons et al., 2011). The following reactions of carotenoid biosynthesis involve the 

activity of carotenoid desaturases (e.g. PDS, phytoene desaturase), which are responsible for the 

sequential introduction of additional double bonds in the carotenoid backbone, thereby contributing to 

the diversification of carotenoid structures as well as properties. Carotenoid structures may be further 

modified through the action of carotenoid cyclases (e.g. LYC, lycopene cyclase) (Mialoundama et al., 

2010), oxygenases (Lobo et al., 2012), glycosyl transferases (Pelz et al., 2005) or carotenoid cleavage 

enzymes (Schwartz et al., 2001).  

 

Figure 1.4. Biosynthetic pathway of the common C40 carotenoid β-carotene and its derivatives. 

Figure was taken and modified from (Wang et al., 2019) . 

Among the plethora of all carotenoids, C40 carotenoids which are predominantly found in plants, are 

considered to be the most abundant class of carotenoid structures in nature. There are also carotenoid 

structures with noticeably shorter or extended isoprenoid backbones. While C30 carotenoids were 

described as main natural colorants in the group of pigmented bacilli (Köcher et al., 2009; Perez-Fons 

et al., 2011; Steiger et al., 2012; Takaichi et al., 1997; Tao et al., 2005; Wieland et al., 1994), the 

biosynthesis of previously unknown carotenoid structures with C35, C45, C50 and even C60 

isoprenoid backbones and novel properties was recently enabled by directed evolution of several 

carotenoid synthases (Li et al., 2019; Tobias and Arnold, 2006). Given the fact that carotenoids are 

usually synthesized from C5 isoprene units, the number of carbon atoms in the carotenoid backbone 

seems to be limited to an interval of 5. However, there are many examples where the cleavage of the 

carotenoid backbone results in an expanded spectrum of carotenoid structures with irregular numbers 

of carbon atoms (Auldridge et al., 2006; Fleischmann and Zorn, 2008). These carotenoid structures are 

mainly classified as carotenoid derived aroma compounds comprising various apocarotenoids and 
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norisoprenoids (Winterhalter, 1996). Further differentiation criteria for carotenoids are based on the 

formation of aliphatic or cyclic end groups (Kirti et al., 2014). The most commonly known 

representative of aliphatic carotenoids is the linear C40 carotenoid lycopene, which is responsible for 

the red color of several fruits and vegetables, particularly of tomatoes (Khoo et al., 2011). Monocyclic 

carotenoids which possess both an aliphatic as well as a cyclic end group are less commonly 

distributed in nature, since they are usually considered as intermediates during the biosynthesis of 

bicyclic carotenoids, like β-carotene. However, accumulation of monocyclic carotenoids was observed 

in individual microorganisms (An et al., 1999; Iniesta et al., 2008; Takaichi et al., 1995, 1990). Apart 

from the classification according to the end group, carotenoids are divided in more detail into 

carotenes, exclusively composed of carbon as well as hydrogen molecules and xanthophylls, which are 

functionalized with at least one atom of oxygen originating from hydroxy, carboxy, epoxy, keto or 

ether groups (Breithaupt and Bamedi, 2001). Even glycosylated carotenoids and carotenoids esterified 

with fatty acids have been described (Takaichi and Mochimaru, 2007).  

The physiological functions of carotenoids are as diverse as their structures but can principally be 

categorized into photosynthesis, photoprotection and nutrition (Kirti et al., 2014). The majority of 

carotenoids is found in photosynthetic organisms like plants, algae, euglena and bacteria, where they 

exert dual functions during photosynthesis. As key components of the chlorophyll containing light-

harvesting complexes, carotenoids primarily contribute to expand the absorption spectrum of 

chlorophyll and support the light induced resonance energy transfer towards the photosynthetic 

reaction center (Frank and Cogdell, 1996). Moreover, carotenoids protect the photosystems against 

extreme light exposure via non-photochemical quenching (NPQ), a process in which excessive 

excitation energy is harmlessly converted to heat, thereby minimizing photooxidative damage (Müller 

et al., 2001). Apart from their crucial role in photosynthesis and photoprotection, carotenoids also 

serve as important precursors for the biosynthesis of essential plant hormones and other signaling 

molecules, such as abscisic acid, strigolactones and rose ketones (Ruiz-Sola and Rodríguez-

Concepción, 2012). Abscisic acid (ABA), for example, is generated as a result of carotenoid cleavage 

by members of the 9-cis-epoxycarotenoid dioxygenase family (Neuman et al., 2014; North et al., 

2007). As a key mediator of physiological responses to environmental stress conditions, including 

high temperatures, aridity and salinity, ABA controls many substantial processes during plant 

development and plant growth, such as seed dormancy, germination, maturation and stomatal 

regulation (Kumar et al., 2013). A recently identified class of phytohormones, the strigolactones (SLs), 

is also proposed to derive from carotenoid metabolites (Chen et al., 2009). Originally identified in 

parasitic plant seeds, SLs were later characterized as exogenous stimulants of seed germination as well 

as chemoattractants for symbiotic mycorrhizal fungi (Besserer et al., 2006). SLs, furthermore, 

participate as endogenous signaling molecules in a variety of fundamental processes, most notably 

root formation and shoot branching (Waldie et al., 2014). Other degradation products of carotenoids 

are assigned to the family of rose ketones, which comprises closely related volatile compounds like 
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ionons, damascones and damascenones, main components of various essential oils. Due to their 

fragrant properties, rose ketones are not only attractive for pollinating insects or seed dispersing 

animals, but also highly demanded chemicals for the fragrance industry (Winterhalter and Rouseff, 

2001).  

Although non-photosynthetic organisms are lacking corresponding photosystems, they can similarly 

benefit from the photoprotective as well as antioxidant properties of carotenoids. This protective role 

was demonstrated e.g. for a wide variety of endospore forming bacteria (Duc et al., 2006; Perez-Fons 

et al., 2011). The biosynthesis of carotenoids during different stages of spore formation was associated 

with significantly increased survival rates when the bacterial cells were exposed to harsh 

environmental conditions such as heat and extreme light irradiation (Moeller et al., 2005). As a result 

of these studies, the accumulation of carotenoids in the cytoplasmic membrane and spore envelope 

was assumed not only to prevent reactive oxygen species (ROS) and aggressive radicals from 

damaging integral constituents of biological membranes but also the genomic DNA from suffering 

harmful or even lethal mutations (Young and Lowe, 2018). Furthermore the presence of carotenoids 

was proposed to play an essential role in the modulation of membrane fluidity, particularly as 

stabilizing components in extreme halophilic and thermophilic bacteria (Hara et al., 1999; Hoshino et 

al., 1994; Yatsunami et al., 2014; Yokoyama et al., 1995). Higher order animals, including humans, 

are not able to produce carotenoids and are consequently dependent on dietary uptake, particularly of 

carotenoids with provitamin A function, like α-carotene, β-carotene or β-cryptoxanthin. After 

metabolic activation, vitamin A (retinol) as well as its cognate forms retinal and retinoic acid are 

involved in many physiological processes including cell growth, cell differentiation, immune 

modulation, reproduction and most prominently in the visual process (Chew and Park, 2004; McDevitt 

et al., 2005; Zile and Cullum, 1983). Furthermore, carotenoids significantly contribute to various 

health benefits for humans. This has been demonstrated in various scientific studies and is strongly 

associated with the extraordinary antioxidant potential of carotenoids (Britton et al., 2008). As 

molecules with hydrophobic character, carotenoids are primarily localized in the lipid bilayer of 

cytoplasmic membrane and subcellular membrane systems where these antioxidant properties are fully 

exploited to protect unsaturated fatty acids as well as lipoproteins against ROS and free radicals 

originating from environmental stress, cellular respiration and other metabolic processes (Sharma et 

al., 2012). As a result, carotenoids were unsurprisingly shown to exhibit inhibitory effects on the 

progress of severe diseases such as cancer, cardiovascular and neurodegenerative diseases (Gerster, 

1993; Miyake et al., 2011; Obulesu et al., 2011; Rao and Agarwal, 2000).  
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1.7 Aim of this work 

Over the past decades, Bacillus megaterium has been wildly used for the recombinant production of 

individual proteins with industrial importance. However, recent developments in microbial strain 

design increasingly favored the establishment of B. megaterium as microbial cell factory for the 

efficient biotransformation of pharmaceutically active compounds. These compounds include 

vitamins, terpenoids, cholesterol lowering drugs and steroid-derived drugs. Except for the production 

of vitamin B12, the potential of B. megaterium for the de novo biosynthesis of bioactive compounds 

from sustainable feedstocks has been largely ignored (Biedendieck et al., 2010; Brey et al., 1986; 

Moore et al., 2014). The underlying complex reaction networks are usually dependent on the 

coordinated action of multi-enzyme cascades that necessarily require harmonized protein expression 

levels. Although promoters are considered as key regulators for harmonized gene expression, the 

repertoire of useful promoter elements in B. megaterium has almost exclusively been limited to the 

xylose inducible promoter system (Bäumchen et al., 2007; Burger et al., 2003; Korneli et al., 2013). 

The lack of alternative promoter systems combined with the lack of comprehensive knowledge on 

biosynthetic pathways with industrial importance has so far evidently impaired the development of B. 

megaterium as efficient microbial cell factory. 

In order to overcome these limitations, the present work aims on the characterization of novel 

promoter systems along with the elucidation of novel biosynthetic pathways in the industrially 

important B. megaterium strain MS941 (DSM319 ∆nprM) (Wittchen and Meinhardt, 1995). Based on 

the published genome sequence of the B. megaterium strain DSM319 (Eppinger et al., 2011), the study 

will address the identification of inducible, constitutive as well as growth phase dependent promoter 

classes, thus providing an expanded set of promoters with a broad range of promoter activities. The 

collaboration with OakLabs GmbH in Berlin is used for the design and validation of microarray chips 

that allow the genome-wide analyses of differential gene expression profiles for the identification of 

novel promoters. The activity of selected promoter candidates is subsequently evaluated in a β-

galactosidase based reporter gene assay. The collaboration with Metabolomic Discoveries in Potsdam 

is used to perform a focused metabolite profiling for the identification of novel bioactive compounds 

and intermediates thereof. The data collectively derived from transcriptomic and metabolomic 

analyses of B. megaterium MS941 are exploited to develop B. megaterium into a more efficient 

microbial cell factory for the transformation and biosynthesis of valuable bioactive compounds. 
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2.1 (Hartz et al., 2019) 

 

Expanding the promoter toolbox of Bacillus megaterium. 

Hartz, P., Mattes, C., Schad, M., Bernhardt, R and Hannemann, F. 

 

Journal of Biotechnology. 2019 Jan; 294:38-44 

 

DOI: 10.1016/j.jbiotec.2019.01.018 

 

 

Reprinted with permission of Journal of Biotechnology. All rights reserved. 
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Supplemental Figure 3: In-vivo conversions with different B. megaterium strains. A: Conversion of 

progesterone. B: Conversion of DOC as internal standard (IS). 
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Supplemental Table 1. List of bacterial strains and vectors used in this study. 

Bacterial strain Description Reference 

E. coli Top10 F– mcrA ∆(mrr-hsdRMS-mcrBC) 
Φ80lacZ∆M15 ∆lacX74 recA1 araD139 
∆(ara leu) 7697 galU galK rpsL (StrR) 
endA1 nupG 

Invitrogen (Karlsruhe, Germany) 

B. megaterium MS941 
Mutant of DSM319; ∆nprM (extracellular 
protease) 

Wittchen and Meinhardt (1995) 

B. megaterium GHH1 Mutant of MS941; ∆upp (selection marker) Gerber et al. (2015) 
B. megaterium GHH8 Mutant of GHH1; ∆cyp106A1; 

∆BMD_0912; ∆BMD_1595; ∆BMD_1068; 
∆BMD_3715 (20αHSDs) 

Gerber et al. (2016) 

B. megaterium GHH9 Mutant of GHH1; ∆BMD_2126 (lacZ) This study 

Plasmid name Description Reference 

pSMF2.1 Shuttle vector for xylose inducible protein 
expression with optimized PxylA 

Bleif et al. (2012), based on 
Stammen et al. (2010) 

pXyl*.lacZ Derivative of pSMF2.1 for xylose-inducible 
expression of lacZ 

This study 

pAra.lacZ Derivative of pSMF2.1 for arabinose-
inducible expression of lacZ 

This study 

pSuc.lacZ Derivative of pSMF2.1 for sucrose-
inducible expression of lacZ 

This study 

pBga.lacZ Derivative of pSMF2.1 for lactose/IPTG- 
inducible expression of lacZ 

This study 

pGal.lacZ Derivative of pSMF2.1 for galactose- 
inducible expression of lacZ 

This study 

p0462.lacZ Derivative of pSMF2.1 for protein 
expression of lacZ under the control of the 
putative promoter of BMD_0462 

This study 

p0551.lacZ Derivative of pSMF2.1 for protein 
expression of lacZ under the control of the 
putative promoter of BMD_0551 

This study 

p1081.lacZ Derivative of pSMF2.1 for protein 
expression of lacZ under the control of the 
putative promoter of BMD_1081 

This study 

p2097.lacZ Derivative of pSMF2.1 for protein 
expression of lacZ under the control of the 
putative promoter of BMD_2097 

This study 

p2948.lacZ Derivative of pSMF2.1 for protein 
expression of lacZ under the control of the 
putative promoter of BMD_0462 

This study 

p0706.lacZ Derivative of pSMF2.1 for  constitutive 
protein expression of lacZ under the control 
of the putative promoter of BMD_0706 

This study 

p4756.lacZ Derivative of pSMF2.1 for  constitutive 
protein expression of lacZ under the control 
of the putative promoter of BMD_4756 

This study 

p0123.lacZ Derivative of pSMF2.1 for  constitutive 
protein expression of lacZ under the control 
of the putative promoter of BMD_0123 

This study 

p3115.lacZ Derivative of pSMF2.1 for  constitutive 
protein expression of lacZ under the control 
of the putative promoter of BMD_3115 

This study 

p3537.lacZ Derivative of pSMF2.1 for  constitutive 
protein expression of lacZ under the control 
of the putative promoter of BMD_3537 

This study 
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p0450.lacZ Derivative of pSMF2.1 for  constitutive 
protein expression of lacZ under the control 
of the putative promoter of BMD_0450 

This study 

p1214.lacZ Derivative of pSMF2.1 for  constitutive 
protein expression of lacZ under the control 
of the putative promoter of BMD_1214 

This study 

p2386.lacZ Derivative of pSMF2.1 for  constitutive 
protein expression of lacZ under the control 
of the putative promoter of BMD_2386 

This study 

p2618.lacZ Derivative of pSMF2.1 for  constitutive 
protein expression of lacZ under the control 
of the putative promoter of BMD_2618 

This study 

p4632.lacZ Derivative of pSMF2.1 for  constitutive 
protein expression of lacZ under the control 
of the putative promoter of BMD_4632 

This study 

pUCTV2_Upp Backbone vector for gene deletion Gerber et al. (2015), based on 
Wittchen and Meinhardt (1995) 

pUCTV2_Upp_∆BMD_2126 Genomic deletion of BMD_2126 (lacZ) This study 

 

Supplemental Table 2. List of primers used in this study. Restriction sites are shown in bold letters. 

Ribosomal binding sites are underlined. 

Name Sequence (5´-3´) Description 

∆2126-A-for TGTACGAATTCGTCGAAGCATATTGCTTCGACT
TTTTTTGC 

Amplification of flanking region A 
upstream of BMD_2126 and 

insertion in knockout vector 
pUCTV2_Upp with EcoRI 

∆2126-A-rev CGGCAAGAAATTTCATTATACAGTTTGAACTGG
AGGCTTACGATCATTTTTAC 

Overlapping extension PCR with 
flanking region B 

∆2126-B-for ATCGTAAGCCTCCAGTTCAAAGCTGTATAATGA
AATTTCTTGCCGG 

Overlapping extension PCR with 
flanking region A 

∆2126-B-rev TGTACGAATTCTATCCCTCCTTTTTGTTTCTTCTC
TC 

Amplification of flanking region A 
upstream of BMD_2126 and 

insertion in knockout vector 
pUCTV2_Upp with EcoRI 

lacZ-screen-for AAGCCATTGTTCTTGCGTCAGCAGAACC Screening for genomic deletion of 
BMD_2126 

lacZ-screen-rev CCGGAAAGTACATACGGTCCACATTACTTCC Screening for genomic deletion of 
BMD_2126 

Ec-lacZ-for TGTACACTAGTAAATCAAGGAGGTGAATGTACA
GTGGTTTTACAACGTCGTGAC 

Amplification of E. coli lacZ gene 
and insertion in pSMF2.1 vector 
with SpeI 

Ec-lacZ-rev TGTACGGTACCTTATTTTTGACACCAGACCAAC
TGGTAATGG 

Amplification of E. coli lacZ gene 
and insertion in pSMF2.1 vector 
with KpnI 

BCO2-for TGTACAACTAGTAAATCAAGGAGGTGAATGTAC
AATG 

Cloning of cholesterol oxidase II 
(BCO2) in pSMF2.1 vector with 
SpeI 

BCO2-rev TGTACAGGTACCTTATGTAGAATCTAATCCTAA
TAAAGGATTAGG 

Cloning of cholesterol oxidase II 
(BCO2) in pSMF2.1 vector with 
KpnI 

pAra-for GTCTGTACGTTCCTTAAGTTAACGAACTTCATCA
CGCTTCGCATTTAACTC 

Cloning of putative promoter 
sequence upstream of BMD_3532 
incl. BMD_3531 as putative 
repressor 
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pAra-rev GTTTATCCATCAGCTAGCCAATACCTATAGCAGT
AAGGAAGCGCTTTCC 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_3532 incl. 
BMD_3531 as putative repressor 

pBga-for TGTACCTTAAGCCTAGATAAAACCCGATATATG
TAGC 

Cloning of putative promoter 
sequence upstream of BMD_2126 
incl. BMD_2127 as putative 
repressor with AflII 

pBga-rev TGTACACTAGTGTCGATCCCTCATTTCTAAAGTA
TTAG 

Cloning of putative promoter 
sequence upstream of BMD_2126 
incl. BMD_2127 as putative 
repressor with SpeI 

pGal-for GTCTGTACGTTCCTTAAGTTATTTTGGCAATGCA
AAGTGCTCATC 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_0689 incl. 
BMD_0688 as putative repressor 

pGal-rev ACCTCCTTGATTTACTAGTTTAATTAAGTAGTTT
TTTGGAAACGGATTCATATGTAC 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_0689 incl. 
BMD_0688 as putative repressor 

pSuc-for GTCTGTACGTTCCTTAAGTTACGTTGTTTGTCCTT
CTAGAAG 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_1565 incl. 
BMD_1564 as putative repressor 

pSuc-rev ACCTCCTTGATTTACTAGTTTAATTAAGATATAA
AATCTTTTATCTAACAAAATGAAAGCAC 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_1565 incl. 
BMD_1564 as putative repressor 

p0123-for CTGTACGTTCCTTAAGATCAACGTAAATTTGGAA
ATAAATCGGTGTTGAC 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_0123 

p0123-rev  CTCCTTGATTTACTAGTTTAATTAACTTTACACC
TCCTGTAGATTTCC 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_0123 

p0450-for CGTCTGTACGTTCCTTAAGTTGTCTAGCTTTTTTT
ATTTAAGGGTTG 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_0450 

p0450-rev TCCTTGATTTACTAGTTTAATTAATACATATTCC
TCCGGTTTCG 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_0450 

p0462-for TGTACCTTAAGAGCCGTTGAGAAATCAACGG Cloning of putative promoter 
sequence upstream of BMD_0462 
with AflII 

p0462-rev TGTACGCTAGCTAAAAACGCTCCTTTCTCTATC
ATTC 

Cloning of putative promoter 
sequence upstream of BMD_0462 
with NheI 

p0551-for TGTACCTTAAGTCATATAAAAAGCAGAATGATG
CGG 

Cloning of putative promoter 
sequence upstream of 
BMD_0551with AflII 

p0551-rev TGTACGCTAGCATGATCGAAACCTTTCTATTCG
G 

Cloning of putative promoter 
sequence upstream of 
BMD_0551with NheI 

p0706-for TGTACCTTAAGCAAATCTTCCTTTCATCTGCACA
TATATGATGC 

Cloning of putative promoter 
sequence upstream of BMD_0706 
with AflII 

p0706-rev TGTACACTAGTTGCATGTTACCCCCTATTAAATT
TTGTTTG 

Cloning of putative promoter 
sequence upstream of BMD_0706 
with SpeI 

p1081-for TGTACCTTAAGTGTTTAAAAGAGGCTAGAACAT
AAG 

Cloning of putative promoter 
sequence upstream of BMD_1081 
with AflII 
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p1081-rev TGTACGCTAGCGCTATCCCTCCGTCCCTTTG Cloning of putative promoter 
sequence upstream of BMD_1081 
with NheI 

p1214-for TAAGCCGTCTGTACGTTCCTTAAGACAAAGATTT
AGAATTGTTTATTTTG 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_1214 

p1214-rev TCCTTGATTTACTAGTTTAATTAAAACTCCATCT
CCTTTCTTGTGTACGT 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_1214 

p2097-for TGTACCTTAAGTTTGTTCTCTCCTTTCTTCTATTT
ATATGGG 

Cloning of putative promoter 
sequence upstream of BMD_2097 
with AflII 

p2097-rev TGTACGCTAGCCAAAATCCTCCTTTAATATGAG
GAAGTC 

Cloning of putative promoter 
sequence upstream of BMD_2097 
with NheI 

p2386-for CGTCTGTACGTTCCTTAAGAAGAAGTTCTCCTTT
CCAAATAGGGCT 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_2386 

p2386-rev ACCTCCTTGATTTACTAGTTTAATTAATTTGTAC
TCTCCTCTGATTATC 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_2386 

p2618-for GTCTGTACGTTCCTTAAGGTTATATCTCCTTACA
TAAGATG 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_2618 

p2618-for ACCTCCTTGATTTACTAGTTTAATTAAAGTCGAT
CCTCCGTCCAC 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_2618 

p2948-for TGTACCTTAAGGAAGTACTTCTTAAGAAAAGGC
GG 

Cloning of putative promoter 
sequence upstream of BMD_2948 
with AflII 

p2948-rev TGTACGCTAGCTTTCCACTCTCCTCATTTTTAGT
TG 

Cloning of putative promoter 
sequence upstream of BMD_2948 
with NheI 

p3115-for  GTCTGTACGTTCCTTAAGATCAACGTGAGCGCTT
GTATGCTTTCTAAG 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_3115 

p3115-rev CTCCTTGATTTACTAGTTTAATTAAAATTGTATT
CTCTCCTTTTTTTCTATAC 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_3115 

p3537-for  GTCTGTACGTTCCTTAAGATCAACGAAAAGCCT
CCTAAAGTGATTTTTTGAGG 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_3537 

p3537-rev  CTCCTTGATTTACTAGTTTAATTAACGTCATCAC
CTACTTTTTTCAC 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_3537 

p4632-for CTGTACGTTCCTTAAGATCAACGTCACCTTCACC
TCACACG 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_4632 

p4632-rev CTCCTTGATTTACTAGTTTAATTAATACTTCAGC
TCCCTTTTTTATG 

Restriction site independent cloning 
of putative promoter sequence 
upstream of BMD_4632 

p4756-for TGTACCTTAAGCTTATTTATTTATGAAATTAACC
GAACTTTTTTCGTAG 

Cloning of putative promoter 
sequence upstream of BMD_4756 
with AflII 

p4756-rev TGTACACTAGTAAATCTCCACTCCTTTACAGAA
AAAATTCC 

Cloning of putative promoter 
sequence upstream of BMD_4756 
with SpeI 
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2.2 (Gerber et al., 2016) 

 

Genetic engineering of Bacillus megaterium for high-yield 

production of the major teleost progestogens 17α,20β-di- and 

17α,20β,21α-trihydroxy-4-pregnen-3-one. 

Gerber, A., Milhim, M., Hartz, P., Zapp, J. and Bernhardt, R. 

 

Metabolic Engineering. 2016 Feb; 36:19-27 

 

DOI: 10.1016/j.ymben.2016.02.010 

 

 

Reprinted with permission of Metabolic Engineering. All rights reserved. 
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2.2 (Gerber et al., 2016) 

 

Supplemental information 

 

Genetic engineering of Bacillus megaterium for high-yield 

production of the major teleost progestogens 17α,20β-di- and 

17α,20β,21α-trihydroxy-4-pregnen-3-one. 

Gerber, A., Milhim, M., Hartz, P., Zapp, J. and Bernhardt, R. 

 

Metabolic Engineering. 2016 Feb; 36:19-27 

 

DOI: 10.1016/j.ymben.2016.02.010 

 

 

Reprinted with permission of Metabolic Engineering. All rights reserved. 
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Supplemental Fig. 2. Absence of steroid degradation activity with B. megaterium strain GHH8. Main 
cultures were grown for 20 h, then substrates were added to a final concentration of 200 µM. A and B: 
Addition of 17OH-P (S2). C and D: Addition of RSS (S3). No difference in the sum of substrate and 
product peak areas between 0 and 8 h could be observed for both substrates. 17α,20αDiOH-P (P4) and 
20βOH-RSS (P5) are formed through the action of the chromosomally encoded FabG. 

 

 
Supplemental Figure 3. Determination of the sum of product and substrate peak areas during 
20βHSD catalysis. A and B: Conversion of 200 µM 17OH-P (S2) to 17α,20βDiOH-P (P4). C and D: 
Conversion of 200 µM RSS (S3) to 20βOH-RSS (P5). During both reactions, the overall product and 
substrate peak areas remain constant, indicating that the substrates and their products exhibit similar 
molar extinction coefficients. 
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Supplemental Table 1: List of primers used in this study. 

Primer name Sequence (5‘ -> 3‘) Description 

0912for TATCAACTAGTAAATCAAGGAGGTGAAT

GTACAATGGAAAACTTACAGTCAACTAC 
Forward primer for BMD_0912 
amplification (SpeI site (italic), 
followed by ribosomal binding site 
(RBS, bold) and start codon of 
ORF (underlined)) 

0912rev 
TATCAACGCGTTTAAAAATCAAAGTTATC
TGGATC 

Reverse primer for BMD_0912 
amplification (MluI site, stop 
codon of ORF (underlined)) 

1595for TATCAACTAGTAAATCAAGGAGGTGAAT

GTACAATGAATATTGTTACATTAAACAA 
Forward primer for BMD_1595 
amplification (SpeI site, RBS, start 
codon) 

1595rev TATCAACGCGTTTATCGGACGTTCATGTC
ACTTGGG 

Reverse primer for BMD_1595 
amplification (MluI site, stop 
codon) 

1068for TATCAACTAGTAAATCAAGGAGGTGAAT

GTACAATGAGTAATCATTTGCAAGATAC
AGT 

Forward primer for BMD_1068 
amplification (SpeI site, RBS, start 
codon) 

1068rev TATCAACGCGTTTAAAAATCAAAATTGTC
CGGATC 

Reverse primer for BMD_1068 
amplification (MluI site, stop 
codon) 

3715for TATCAACGCGTTTAAAAATCAAAGTTGTC
AGGATCT 

Forward primer for BMD_3715 
(MluI site, stop codon) 

3715rev TATCAACTAGTAAATCAAGGAGGTGAAT

GTACAATGATGAAAAATTTACAGGATAC
AG 

Reverse primer for BMD_3715 
(SpeI site, RBS, start codon) 

Fabgfor TATCAACGCGTTTACATCACCATTCCGCC
GTCAACG 

Forward primer for FabG 
amplification (MluI, stop codon) 

Fabgrev TATCAACTAGTAAATCAAGGAGGTGAAT

GTACAATGTTACAAGGGAAAGTTGCGGT
TG 

Reverse primer for FabG 
amplification (SpeI site, RBS, start 
codon) 

106Afor TATCAGAATTCTCTGTGATCATTCCCATTA
CTCGATTTTCT 

Forward primer for amplification 
of flanking region downstream of 
CYP106A1 (EcoRI site) 

106Arev CATGTTAAACAAGTCTTGAGCGACTACG
AAGGCCTTTTCTCATATCGAACCATTTGA
AG 

Reverse primer for amplification of 
flanking region downstream of 
CYP106A1 

106Bfor CTTCAAATGGTTCGATATGAGAAAAGGC
CTTCGTAGTCGCTCAAGACTTGTTTAACA
TG 

Forward primer for amplification 
of flanking region upstream of 
CYP106A1 

106Brev TATCAGAATTCGGTTAGCAAACTATATCA
CGTTTGATCTTAAGAATGA 

Reverse primer for amplification of 
flanking region upstream of 
CYP106A1 (EcoRI site) 

0912Afor TATCAGAGCTCTACGTCATATATTCTCTCT
TACAGG 

Forward primer for amplification 
of flanking region downstream of 
BMD_0912 (SacI site) 

0912Arev CAAATACGTCTGCATTTTGGATAATATAA
ACACCTAAACCTAACCAAGGC 

Reverse primer for amplification of 
flanking region downstream of 
BMD_0912 

0912Bfor GCCTTGGTTAGGTTTAGGTGTTTATATTA
TCCAAAATGCAGACGTATTTG 

Forward primer for amplification 
of flanking region upstream of 
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BMD_0912 
0912Brev TATCAGAGCTCGCTGTAGCTTTCTCAATT

TCTTCTT 
Reverse primer for amplification of 
flanking region upstream of 
BMD_0912 (SacI site) 

1595Afor TATCAGGTACCGTTCGGGTATTGTTAATT
CGATTGCAC 

Forward primer for amplification 
of flanking region downstream of 
BMD_1595 (KpnI site) 

1595Arev CGTTCATGTCACTTGGGTGCGGATTTTTG
ACACCAGACCAACTGGTAA 

Reverse primer for amplification of 
flanking region downstream of 
BMD_1595 

1595Bfor TTACCAGTTGGTCTGGTGTCAAAAATCCG
CACCCAAGTGACATGAACG 

Forward primer for amplification 
of flanking region upstream of 
BMD_1595 

1595Brev TATCAGGTACCCTACTCCTACAGCTGTCA
TTGCCTG 

Reverse primer for amplification of 
flanking region upstream of 
BMD_1595 (KpnI site) 

1068Afor TATCAGGTACC CTGTCTGTAACG 
GCTGGAAACACA GC 

Forward primer for amplification 
of flanking region downstream of 
BMD_1068 (KpnI site) 

1068Arev ATTTAATCCATCAATTTTGCTTACATCTG
ATTACTCATTATAAAAAACCTCCTGCT 

Reverse primer for amplification of 
flanking region downstream of 
BMD_1068 

1068Bfor AGCAGGAGGTTTTTTATAATGAGTAATCA
GATGTAAGCAAAATTGATGGATTAAAT 

Forward primer for amplification 
of flanking region upstream of 
BMD_1068 

1068Brev TATCAGGTACCAGAGTGAGTACATTAGAC
TTGCTCTTT 

Reverse primer for amplification of 
flanking region upstream of 
BMD_1068 (KpnI site) 

3715Afor TATCAGAATTCTGTTGAGGCAAACATCTA
ATGA 

Forward primer for amplification 
of flanking region downstream of 
BMD_3715 (EcoRI site) 

3715Arev GAGTAAAGATGCCTGGCTTTGGCCGTGT
AGGTCCAGATCCTGACAACTT 

Reverse primer for amplification of 
flanking region downstream of 
BMD_3715 

3715Bfor AAGTTGTCAGGATCTGGACCTACACGGC
CAAAGCCAGGCATCTTTA CTC 

Forward primer for amplification 
of flanking region upstream of 
BMD_3715 

3715Brev TATCAGAATTCATTTGAGAGGGTTGATTA
TTTATTTTCTTA 

Reverse primer for amplification of 
flanking region upstream of 
BMD_3715 (EcoRI site) 
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Supplemental Table 2: NMR data for 20βOH-cortisol (P6) and 20βOH-cortisone (P7) 

Product P6: 11β, 17α, 20β, 21-Tetrahydroxy-4-pregnen-3-one (20αOH-Cortisol) 

1
H NMR 

(CDCl3, 

500 MHz) 

1H NMR (CDCl3, 500 MHz): δ 1.08 (s, 3xH-18), 1.02 (dd, J=11.1 and 3.4 Hz, H-9), 
1.12 (m, H-7a), 1.44 (s, 3xH-19), 1.30 (m, H-15a), 1.55 (m, H-16a), 4.41 (q, 3.3 Hz, H-
11), 1.65 (m, H-14), 1.87 (m, H-1a), 1.81 (m, 2H, H-15b and H-16b), 1.86 (m, H-12a), 
1.98 (m, H-7b), 1.92 (m, H-1b), 2.00 (m, H-8), 2.18 (dt, J= 13.4 and 4.7, H-12a), 2.24 
(ddd, 14.5, 4.5 and 2.0 Hz, H-6a), 2.35 (dt, J=16.8 and 4.3 Hz, H-2a), 2.46 (m, H-6b), 
2.48 (ddd, J=16.8, 13.9 and 5.0 Hz,  H-2b), 3.76 (dd, J=11.0 and 3.4 Hz, H-21a), 3.80 
(dd, J=11.0 and 5.2 Hz, H-21b), 3.83 (dd, J=5.2 and 3.4 Hz, H-20), 5.67 (br s, H-4). 13C 
NMR (CDCl3, 125 MHz): δ 17.83 (CH3, C-18), 20.92 (CH3, C-19), 23.82 (CH2, C-15), 
31.12 (CH2, C-6), 31.55 (CH, C-8), 32.71 (CH2, C-7), 33.07 (CH2, C-16), 33.81 (CH2, 
C-2), 34.94 (CH2, C-12), 39.21 (C, C-10), 41.53 (CH2, C-1), 46.64 (C, C-13), 50.53 
(CH, C-14), 56.00 (CH, C-9), 64.68 (CH2, C-21), 68.54 (CH, C-11), 72.88 (CH, C-20), 
85.15 (C, C-17), 122.26 (CH, C-4), 172.55 (C, C-5), 199.78 (C, C-3). 

Product P7: 17α, 20β, 21-Trihydroxy-4-pregnen-3,11-dione (20βOH-Cortisone) 

1
H NMR 

(CDCl3, 

500 MHz) 

δ 0.77 (s, 3xH-18), 1.30 (m, H-7a), 1.32 (m, H-15a), 1.39 (s, 3xH-19), 1.63 (td, J=14.0 
and 4.4 Hz, H-1a), 1.73 (m, H-16a), 1.84 (m, H-16b), 1.90 (m, H-8), 1.92 (m, H-15b), 
1.93 (m, H-9), 1.96 (m, H-7b), 2.28 (m, H-6a), 2.29 (m, H-2a), 2.33 (m, H-14), 2.40 
(tdd, J= 14.5, 5.2 and 1.8 Hz, H-6b), 2.47 (ddd, J=17.0, 14.0 and 5.0 Hz,  H-2b), 2.49 
(d, J=12.5 Hz, H-12a), 2.66 (d, J=12.5 Hz, H-12b), 2.75 (ddd, J= 14.0 5.0 and 3.2 Hz, 
H-1b), 3.77 (m, 3H, H-20, H-21a and H-21b), 5.72 (br s, H-4). 13C NMR (CDCl3, 125 
MHz): δ 15.71 (CH3, C-18), 17.19 (CH3, C-19), 23.45 (CH2, C-15), 32.31 (2xCH2, C-6 
and C-7), 33.33 (CH2, C-16), 33.71 (CH2, C-2), 34.68 (CH2, C-1), 36.96 (CH, C-8), 
38.15 (C, C-10), 48.35 (CH, C-14), 51.26 (CH2, C-12), 51.58 (C, C-13), 62.43 (CH, C-
9), 64.41 (CH2, C-21), 72.57 (CH, C-20), 84.11 (C, C-17), 124.45 (CH, C-4), 169.13 
(C, C-5), 200.02 (C, C-3), 210.92 (C, C-11). 
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2.3 (König et al., 2019) 

 

High-yield C11-oxidation of hydrocortisone by establishment of 

an efficient whole-cell system in Bacillus megaterium. 

König, L., Hartz, P., Bernhardt, R and Hannemann F. 

 

Metabolic Engineering. 2019 Jun; 55:59-67 

 

DOI: 10.1016/j.ymben.2019.06.005 

 

 

Reprinted with permission of Metabolic Engineering. All rights reserved. 
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2.3 (König et al., 2019) 

 

Supplemental information 

 

High-yield C11-oxidation of hydrocortisone by establishment of 

an efficient whole-cell system in Bacillus megaterium. 

König, L., Hartz, P., Bernhardt, R and Hannemann F. 

 

Metabolic Engineering. 2019 Jun; 55:59-67 

 

DOI: 10.1016/j.ymben.2019.06.005 

 

 

Reprinted with permission of Metabolic Engineering. All rights reserved. 
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Table S1: List of used primers for cloning in this work 

Primer name Sequence (5’ � 3’) Description 

11βHSD_PacI_for GTACTTAATTAAAAATCAAG

GAGGTGATGTACAATGAA
CGAAAAATTCCGTCCAG 

Forward primer for 11β-HSD1 amplification 
(PacI site (italic), followed by RBS (bold) and 
start codon of ORF (underlined)) 

11βHSD_NotI_rev GTACGCGGCCGCTTAAGCC
CAACGACCG 

Reverse primer for 11β-HSD1 amplification 
(NotI site (italic), and stop codon of ORF 
(underlined)) 

HSD_Y274stop_  
NotI 

CATGGCGGCCGCTTATAAT
TTTTCGTTAGATAATACGT
TATCCC 

Reverse primer for 11β-HSD1 amplification (C-
terminally truncated version, NotI site (italic) and 
stop codon of ORF (underlined)) 

SpeI_LbADH_for GTACACTAGTAAAATCAAG

GAGGTGAATATACAATGT
CTAACCGTTTGGATGGT 

Forward primer for LbADH amplification (SpeI 
site (italic), followed by RBS (bold) and start 
codon of ORF (underlined)) 

LbADH_NheI_for GTACGCTAGCAAATCAAGG

AGGTGAATATACAATGTC
TAACCGTTTGGATGG 

Forward primer for LbADH amplification (NheI 
site (italic), followed by RBS (bold) and start 
codon of ORF (underlined)) 

LbADH_PacI_rev CATGTTAATTAACTATTGAG
CAGTGTAGCCACC 

Reverse primer for LbADH amplification (PacI 
site (italic), and stop codon of ORF (underlined)) 

 

 

 

Figure S1: HPLC chromatogram of cortisone conversion in B. megaterium MS941 containing an 

empty pSMF2.1 expression vector. Following a 24 h expression period in M9CA medium at 37°C, 
the biotransformation of cortisone was performed in M9CA medium at the same temperature after 
adjustment of 180 g L-1 cell density (WCW). The reaction was conducted for 24 h in 2 mL reaction 
volume containing 25% DMSO and 1 mM cortisone with or without supplementation of 2.5% acetone. 
Extracted steroids were quantified by RP-HPLC.  
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Figure S2: Effect of Tween-20 on 11β-HSD1 dependent cortisone formation in B. megaterium 

after 24 h. Gene expression in MS941/pARA_XNC was conducted in TB medium for 24 h after 
induction with 0.4% arabinose. The biotransformations of hydrocortisone were carried out in test tubes 
containing 2 mL reaction volume. The cells were suspended in 100 mM potassium phosphate buffer 
(pH 7.4) by adjustment of 100 g L-1 WCW. The reactions contain varying concentrations of Tween-20, 
10% DMSO, 2.5% acetone and 15 mM hydrocortisone. Steroid quantification was conducted by RP-
HPLC analysis. The results represent the mean of three conversion experiments, performed in 
simultaneously. Error bars indicate respective standard deviations. 
 

 

 

Figure S3: Effect of increasing hydrocortisone concentrations on 11β-HSD1 dependent cortisone 

formation in B. megaterium after 24 h. Gene expression in MS941/p0706_XNC was conducted in 
M9CA medium for 24 h. The biotransformations of hydrocortisone were carried out in test tubes 
containing 2 mL reaction volume. The cells were suspended in previously used medium by adjustment 
of 180 g L-1 WCW. The reactions contain varying concentrations of the substrate hydrocortisone using 
the same final concentrations of DMSO (25 %) and acetone (2.5%). Steroid quantification was 
conducted by RP-HPLC analysis. The results represent the mean of three conversion experiments, 
performed simultaneously. Error bars indicate respective standard deviations. 
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Figure S4: pH monitoring during hydrocortisone bioconversion in B. megaterium MS941. The 
whole-cell biotransformation of hydrocortisone was performed in different expression and conversion 
media. The grey line shows development of pH of hydrocortisone conversion reaction potassium 
phosphate buffer when cells were previously cultivated in TB; The black line represents values of pH 
monitoring in M9CA medium, recycled after expression period for conversion. The reactions were 
carried out using 25% DMSO, 2.5% acetone final concentration and 180 g L-1 WCW in the presence 
of 15 mM hydrocortisone. 
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2.4 (Milhim et al., 2019) 

 

A novel short chain dehydrogenase from Bacillus megaterium for 

the conversion of the sesquiterpene nootkatol to (+)-nootkatone. 

Milhim, M., Hartz, P., Gerber, A. and Bernhardt R. 

 

Journal of Biotechnology. 2019 May; 301:52-55 

 

DOI: 10.1016/j.jbiotec.2019.05.017 

 

 

Reprinted with permission of Journal of Biotechnology. All rights reserved. 
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2.5 (Hartz et al., 2018) 

 

Characterization and engineering of a carotenoid biosynthesis 

operon from Bacillus megaterium. 

Hartz, P., Milhim, M., Trenkamp, S., Bernhardt, R. and Hannemann, F. 

 

Metabolic Engineering. 2018 Jul; 49:77-58 

 

DOI: 10.1016/j.ymben.2018.07.017 

 

 

Reprinted with permission of Metabolic Engineering. All rights reserved. 
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2.6 (Milhim et al., 2016) 

 

Identification of a new plasmid-encoded cytochrome P450 

CYP107DY1 from Bacillus megaterium with a catalytic activity 

towards mevastatin. 

Milhim, M., Putkaradze, N., Abdulmughni, A., Kern, F., Hartz, P. and Bernhardt, R. 

 

Journal of Biotechnology. 2016 Nov; 240:68-75 

 

DOI: 10.1016/j.jbiotec.2016.11.002 

 

 

Reprinted with permission of Journal of Biotechnology. All rights reserved. 
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2.6 (Milhim et al., 2016) 

 

Supplemental information 

 

Identification of a new plasmid-encoded cytochrome P450 

CYP107DY1 from Bacillus megaterium with a catalytic activity 

towards mevastatin. 

Milhim, M., Putkaradze, N., Abdulmughni, A., Kern, F., Hartz, P. and Bernhardt, R. 

 

Journal of Biotechnology. 2016 Nov; 240:68-75 

 

DOI: 10.1016/j.jbiotec.2016.11.002 

 

 

Reprinted with permission of Journal of Biotechnology. All rights reserved. 
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Supplementary Table 1. Protein sequence identity values of CYP107DY1 with different cytochrome P450s. 
Closest match with different CYP107 

Protein Abb. Natural function or substrate/s No. of aa Species  Identity%(a) UniProtKB accession 

numbers.(b) 

CYP107DY1 ---. 410 B. megaterium QM B1551 100 D5E3H2 

CYP267B1 Drug metabolism 405 Sorangium cellulosumSo ce5 43.5 A9ERX9 

CYP107B1 7-ethoxycoumarin 405 Saccharopoly sporaerythraea 41.9 P33271 

CYP107K1 (PksS) Polyketide biosynthesis (bacillaene biosynthesis) 405 Bacillus subtilis (Strain 168) 41.8 O31785 

CYP107H1 (bioI) Biotin biosynthesis 395 Bacillus subtilis (Strain 168) 40.8 P53554 

CYP107J1 Testosterone enanthate 410 Bacillus subtilis (Strain 168) 40.7 O08469 

CYP107BR1 (Vdh) Vitamin D3 403 Pseudonocardia autotrophica 40 C4B644 

CYP107L1 (PiKC) Pikromycin biosynthesis 416 Streptomyces venezuelae 39.2 O87605 

CYP107A1 (eryF) Erythromycin biosynthesis 404 Saccharopolyspora erythraea 36.2 Q00441 

CYP107E4 Diclofenac 396 Actinoplanes sp.ATCC 53771 36 C0LR90 

CYP109B1 Various substrtae (e.g. (+)-valencene) 396 Bacillus subtilis 35.4 U5U1Z3 

CYP267A1 Drugs metabolism 429 Sorangium cellulosumSo ce5 35.3 A9EN90 

CYP109A2 Steroids 403 B. megaterium DSM319 34.6 D5DF88 

CYP109E1 Steroids 404 B. megaterium DSM319 32.7 D5DKI8 

CYP106A1 Steroids and terpenoids  410 B. megaterium DSM319 29.1 D5DF35 

CYP108 α-terpinol 428 Pseudomonas sp. 28 P33006 

CYP102A1 Fatty acids  1,049 B. megaterium DSM319 18.4 P14779 

      
(a) Based on Clustal Omega Multiple Sequence Alignment (MSA) (http://www.ebi.ac.uk/Tools/msa/) 
(b) http://www.uniprot.org/ 

 

 

Supplementary Table 2. List of tested substrates with CYP107DY1  
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Supplementary Fig. S1. The open reading frame sequence of the CYP107DY1. The upper and the 
lower lines represent the nucleotide and deduced amino acid sequences, respectively. The one-letter 
code for each amino acid is aligned with the first nucleotide of each codon. Several conserved motifs 
used for the identification of cytochrome P450s are underlined. I- helix (A/G-G-x-E/D-T-T/S), K-helix 
(E-x-x-R), and the heme pocket (F-x-x-G-x-x-x-C-x-G). 
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Supplementary Fig. S2. Homology model of CYP107DY1. A model of CYP107DY1 was calculated 
using CYP107RB1 (Vdh) (PDB accession code: 3A4G) as template. The coordinates of the heme-
porphyrin atoms from the template structure were added subsequently to the obtained homology 
model. Program Modeller 9.14 (University of California San Francisco, USA) was used. 
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3. General Discussion 

 

3.1 Identification and characterization of novel promoter systems in B. megaterium 

Genome-wide differential gene expression analyses of the B. megaterium strain MS941 revealed 

growth phase dependent transcription patterns for many open reading frames (ORFs) (see publication 

2.1, Figure 1). Throughout the evaluation process of the generated microarray data it became obvious 

that most ORFs showed significantly changed transcription levels during the late exponential and the 

early stationary phases of bacterial growth. Contrarily, the early and mid-exponential growth phases 

were rather associated with some of the highest signal intensities. For this reason, the corresponding 

putative promoter elements were categorized into the group of “fold change promoters”, representing 

the genes with the most significantly changed transcription levels (see publication 2.1, Figure 2A) and 

the group of “signal intensity promoters” which showed the highest transcription levels (see 

publication 2.1, Figure 2B). Strikingly, some of the ORFs with the highest transcription levels were 

also reported to be found among the most abundant proteins of B. megaterium (Wang et al., 2005), 

thus further emphasizing the quality of the generated microarray data. Furthermore, novel sugar-

inducible promoter elements were identified based on the architecture of the xylose promoter-

repressor system (Rygus et al., 1991) (see publication 2.1, Figure 5A). A β-galactosidase-deficient B. 

megaterium strain was generated (see publication 2.1, Figure 3) and the putative promoter elements 

were successfully characterized via β-galactosidase (LacZ) screening (see publication 2.1, Figure 4 

and 5B) with particular focus on the comparison of the different promoter strengths with that of the 

extensively used and already optimized xylose inducible promoter system (pXyl*) of B. megaterium 

(Ryugus and Hillen, 1991; Stammen et al., 2010). As a result, a diverse set of 19 promoters, 

comprising constitutive, growth phase dependent as well as inducible promoters, was characterized 

with promoter strengths ranging from 15% to 145% compared to that of the reference promoter 

(summarized in Table 3.1).  
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Table 3.1. Overview of the main characteristics of the novel promoter library. 

Promoter Class Strength (%) 
a 

p0123 early exponential  14.9  

p4756 early exponential  75.0  

p0706  early exponential  91.5  

p0551 mid-exponential < 1.0 

p0450 mid-exponential 15.1  

p2097 mid-exponential 16.8  

p2618 late exponential 14.8  

p4632 late exponential 93.9  

p2386 late exponential 108.3  

p3537 late exponential 145.6  

p2948 early stationary < 1.0 

p0462 early stationary < 1.0 

p1081 early stationary 15.0  

p3115 constitutive 20.7  

p1214 constitutive 34.5  

pSuc not inducible < 1.0 

pGal inducible 23.9  

pBga inducible 34.9  

pAra inducible 75.4 

pXyl* inducible 100.0 

a compared to the LacZ activity of the optimized xylose inducible promoter system (pXyl*) 
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The best promoter p3537 was additionally shown to be responsive to iron which ultimately resulted in 

a nearly 45% increase in LacZ expression levels under optimized cultivation conditions compared 

with the optimized xylose inducible promoter (see publication 2.1, Supplemental Figure 2B). 

Furthermore, promoter p4632 was characterized as the first heat inducible promoter in B. megaterium, 

showing 2.6 fold increased LacZ expression levels at elevated cultivation temperatures that almost 

matched those of the reference promoter (see publication 2.1, Supplemental Figure 2C). The LacZ 

expression levels correlated remarkably with the corresponding LacZ activities as shown in SDS-

PAGE analyses (see publication 2.1, Supplemental Figure 1). To the best of our knowledge, this is the 

first and most comprehensive study for the identification of novel promoter elements for B. 

megaterium, especially with regard to growth phase dependent promoters. For this reason there are no 

comparable data available in B. megaterium. However, based on the increasing number of recent 

publications that deal with the identification and characterization of growth phase dependent 

promoters in general, they seem to have considerable importance for biotechnological applications in 

different microorganisms, not least because of the fact that they are independent of the addition of 

expensive or toxic inducing agents that possibly impair their usage in industrially scaled processes 

(Hofsten, 1961; Nocadello and Swennen, 2012; Wilson et al., 1981). Similar promoter screening 

approaches for Bacillus subtilis recently provided the basis for the identification of the highly active 

stationary phase promoters Pylb and the constitutive promoters PsodA as well as PydzA. Their 

application was demonstrated to significantly improve the recombinant expression of pullulanase, a 

wildly used enzyme with application in the starch processing industries (Hii et al., 2012; Liu et al., 

2018; Meng et al., 2018; Yu et al., 2015). Unfortunately, most of these studies are merely focused on 

the identification of the strongest promoters for the recombinant expression of single proteins. 

However, excessive and fixed protein expression under the control of the same promoter does not 

meet the requirements of modern rational strain design, since it is nowadays often associated with 

increasing reaction network complexity and involves multi enzyme cascades that necessarily rely on 

well defined and harmonized protein expression levels (Jones et al., 2015; Pitera et al., 2007; Xu et al., 

2014). This aspect highlights the great potential of the expanded promoter toolbox with its diverse 

promoter activities as identified and evaluated here for B. megaterium. Particularly, the newly 

identified class of growth phase dependent promoters is virtually predestined to be exploited for the 

rational strain design of B. megaterium allowing the simultaneous use of multiple promoters for both 

the temporal and the quantitative control of individual protein expression levels within the complex 

crosstalk of metabolic networks. However, the simultaneous application of multiple sugar-inducible 

promoters is rather limited for a similar fine tuning of protein expression levels in multi enzyme 

cascades due to their mutual susceptibility to carbon catabolite repression (CCR) (Giacalone et al., 

2006; Miyada et al., 1984; Rygus and Hillen, 1992). Unsurprisingly, a corresponding effect was also 

observed for the non optimized (pXyl) and optimized xylose inducible promoter (pXyl*) as well as for 

the novel arabinose inducible promoter systems (pAra) in B. megaterium (listed in Table 3.2). 
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Table 3.2. Effect of different sugars on the carbon catabolite repression (%) of selected inducible 

promoter systems in B. megaterium. 

Sugar 
a
 pAra 

b
 pXyl 

b
 pXyl* 

b
 

(L)-Arabinose 0.0 c 48.9 ± 3.4  14.1 ± 12.1  

(D)-Xylose 40.3 ± 11.6 0.0 c 0.0 c 

(D)-Glucose  95.8 ± 0.5 91.8 ± 0.5 30.0 ± 12.4 

(D)-Galactose 79.7 ± 4.8 5.2 ± 3.8 13.3 ± 4.2  

(D)-Fructose 86.3 ± 1.2 73.1 ± 0.4 0.0 

(D)-Sucrose 81.6 ± 2.6 14.1 ± 2.2 0.0 

a the final concentration of the carbon catabolite repressor was 3 % (w/v) 
b the final concentration of the inducing sugar was 0.5 % (w/v) 
c no carbon catabolite repressor was supplemented 

In general, the carbon catabolite repression (CCR) profiles of the sugar-inducible promoter systems of 

B. megaterium differentiated significantly. While the optimized xylose inducible promoter system 

(pXyl*) was obviously insensitive to CCR except for glucose, the non optimized xylose promoter 

(pXyl) showed significant CCR for xylose, glucose and sucrose. However, the arabinose inducible 

promoter (pAra) seemed to be remarkably CCR susceptible to most of the tested sugars. Consequently 

the simultaneous application of the xylose and arabinose inducible promoter system in the same 

whole-cell biocatalyst will be associated with a significant decrease in recombinant protein expression 

levels and is therefore not recommended. Alternatively, the evaluation and engineering of a CCR 

insensitive B. megaterium strain would be a reasonable approach to avoid mutual repression of sugar-

inducible promoter systems as described for other Bacillus species (Ludwig and Stülke, 2001; van der 

Voort et al., 2008). Intriguingly, glycerol did not negatively affect any of the tested promoters, 

conversely leading to higher β-galactosidase (LacZ) activities of up to 66.8% (see Table 3.3). This 

beneficial effect on recombinant protein expression in B. megaterium makes glycerol an ideal and 

cheap carbon source for industrial fermentation processes not only for the sugar-inducible promoter 

systems but also for the class of growth phase dependent promoters. 
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Table 3.3. Stimulatory effect of glycerol supplementation on the β-galactosidase activities (%) of 

selected inducible promoter systems in B. megaterium. 

 pAra 
b
 pXyl 

b
 pXyl* 

b
 

- Glycerol a 100 100 100 

+ Glycerol a 114.9 ±  4.4 120.1 ± 4.0 166.8 ± 4.9  

a the final concentration of glycerol was 3 % (w/v) 
b the final concentration of the inducing sugar was 0.5 % (w/v) 

The rational adaptation of protein expression levels using different promoters with versatile promoter 

strengths is considered to be particularly attractive for the optimization of cytochrome P450 driven 

reactions, such as epoxidation, dealkylation, C-C bond cleavage, but mainly hydroxylation of valuable 

compounds (Bernhardt and Urlacher, 2014). Cytochromes P450 belong to the group of heme 

containing monooxygenases and necessarily rely on auxiliary redox proteins which support the 

electron transport from an external coenzyme (NADPH) to the substrate (Bernhardt, 2006). In vitro 

studies with well defined ratios of CYP260A1 from Sorangium cellulosum to its surrogate redox 

partners adrenodoxin (Adx) and adrenodoxin reductase (AdR) demonstrated a significant influence not 

only on the activity but also on the product pattern of CYP260A1 (Khatri et al., 2017). Similarly, the 

engineering of the multi component redox chain of bovine CYP11B1 in an E. coli based whole-cell 

system was shown to accelerate as well as improve production of the common glucocorticoid cortisol, 

remarkably (Schiffer et al., 2015). Since the repertoire of useful promoter elements in B. megaterium 

has been limited to the xylose inducible system so far, the novel promoter toolbox will offer the 

innovative possibility to deliberately manipulate and harmonize ratios of cytochromes P450 and 

corresponding redox proteins in vivo, thereby not only modulating the product pattern but possibly 

also the efficiency of P450 mediated steroid conversions in B. megaterium. 
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3.2 Biotransformation of steroids in B. megaterium using new promoters 

The promising potential of B. megaterium for the biotransformation of various steroids and steroid 

derived compounds has been shown in several studies before. The endogenous cytochromes P450 of 

B. megaterium as well as engineered variants thereof were successfully applied for the development of 

efficient whole-cell systems for the conversion of a diverse set of natural steroids such as cholesterol 

(Putkaradze et al., 2019), testosterone (Jóźwik et al., 2016; van Vugt-Lussenburg et al., 2006), 

progesterone (Lee et al., 2015; Zehentgruber et al., 2010) or dehydroepiandrosterone (Schmitz et al., 

2014) as well as synthetic steroids like prednisone, dexamethasone (Putkaradze et al., 2017a) or 

cyproterone acetate (Kiss et al., 2015). Recently, B. megaterium was also shown to be a suitable host 

for the recombinant expression of membrane associated mammalian cytochromes P450 (Ehrhardt et 

al., 2016; Gerber et al., 2015). Particularly, the CYP11A1 mediated side-chain cleavage of cholesterol 

to pregnenolone, the initial reaction of the steroid hormone biosynthesis, was demonstrated to be 

extraordinarily efficient in B. megaterium compared with other microbial cell factories (Duport et al., 

1998). Another important step towards the biosynthesis of steroid hormones comprises the conversion 

of pregnenolone to progesterone (see publication 2.1, Figure 6A), a key intermediate for the 

production of corticosteroids (see Figure 1.3). For this reason, we aimed to apply the novel promoter 

toolbox in B. megaterium for the heterologous expression of the cholesterol oxidase 2 (BCO2) from 

Brevibacterium sterolicum, which was previously shown to catalyze the desired conversion of ∆5-3β-

hydroxysteroids, including pregnenolone, to the corresponding steroids with ∆4-3-keto configuration, 

such as progesterone (Coulombe et al., 2001; Croteau and Vrielink, 1996). As shown in publication 

2.1, Figure 6B-E, all tested promoters of a focused promoter library were successfully applied for the 

BCO2 mediated conversion of pregnenolone to progesterone in a genetically engineered B. 

megaterium strain with innate steroid hydroxylase as well as 20α-hydroxysteroid dehydrogenase 

deficiencies (see publication 2.2, Table 1). Strikingly, the observed progesterone formation rates and 

yields accurately reflected the individual promoter strengths that were previously determined via β-

galactosidase (LacZ) assays. Consequently, the initial pregnenolone conversion with the arabinose 

inducible promoter system (pAra) seemed to be decelerated compared to the reference promoter 

(pXyl*). The final progesterone yield of 3.5 mM/L/d, however, was identical to that of pXyl*. 

Similarly, the early exponential growth-phase dependent promoters p0706 and p4756 showed slower 

progesterone formation rates that ultimately resulted in slightly decreased progesterone yields of 3.3 

mM/L/d and 2.9 mM/L/d, respectively. Since the late exponential growth-phase dependent promoter 

p3537 was screened as the strongest promoter according to the results of the LacZ assay, it was 

expected to be the most potent promoter for the BCO2 mediated production of progesterone in B. 

megaterium. Indeed, the final progesterone yield of 3.6 mM/L/d was found to be slightly improved 

compared to the optimized xylose inducible promoter system (pXyl*). In this context, it should be 

emphasized that, in contrast to the heavily engineered and optimized xylose inducible promoter system 

(pXyl*), the regulatory DNA sequences of all novel promoters are wildtype sequences. Hence, their 
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potential for the future optimization of recombinant protein production in B. megaterium seems to be 

more than promising, particularly considering the fact that pregnenolone conversions with the 

comparable wildtype xylose inducible promoter system (pXyl) barely resulted in higher progersterone 

yields than 1.4 mM/L/d (see publication 2.1, Figure 6F). The BCO2 mediated formation of 

progesterone in B. megaterium was further optimized using high cell density conversion approaches. 

The application of p3537 as the best promoter resulted in significantly accelerated progesterone 

formation rates that allowed a nearly total biotransformation of 5 mM pregnenolone yielding 

approximately 1.55 g/L progesterone within the first 2 h of conversion with resting cells (data not 

shown). To the best of our knowledge, the cholesterol oxidase mediated conversion of ∆5-3β-

hydroxysteroids has not been carried out with recombinant whole-cell biocatalysts, yet. Conventional 

biocatalysis of the corresponding ∆4-3-keto steroids was either performed with extensively purified 

cholesterol oxidase enzymes (Alexander and Fisher, 1995; Labaree et al., 1997) or natural microbial 

strains which both resulted in low product titers of barely more than 0.2 g/L or complex product 

mixtures (Ahmad et al., 1991). Consequently, the established B. megaterium based whole-cell 

biocatalyst offers an efficient and innovative platform with nearly 8 fold increased ∆4-3-keto steroid 

formation rates compared to other systems. 

Since localized at the crossroad of corticosteroid biosynthesis (see Figure 1.3), progesterone can either 

be directed towards the biosynthesis of mineralocorticoids by the CYP21A1 mediated formation of 

21α-hydroxyprogesterone (deoxycorticosterone; DOC) or transformed by CYP17A1 to 17α-

hydroxyprogesterone (17αOH-P) which is considered an important intermediate for the biosynthesis of 

pharmaceutically valuable glucocorticoids, like cortisol (Gilep et al., 2011). While DOC was 

demonstrated not being metabolized in B. megaterium (see publication 2.1, Supplemental Figure 3), 

17αOH-P was evidently further converted to several unwanted side products (see publication 2.2, 

Figure 3). The major side product was characterized as 17α,20α-dihydroxyprogesterone 

(17α,20αDiOH-P) whereas its minor side product was identified as 17α,20β-dihydroxyprogesterone 

(17α,20βDiOH-P). Bioinformatic analyses were applied to identify putative open reading frames 

(ORFs) with hydroxysteroid dehydrogenase (HSD) activity. Upon overexpression, a corresponding 

20α-HSD activity was confirmed for 4 of the screened ORFs (see publication 2.2, Figure 4B). The 

stepwise deletion of all 20α-HSD genes ultimately enabled the development of the B. megaterium 

strain GHH8 with completely abolished 20α-HSD activity (see publication 2.2, Figure 4D). Among 

the other ORFs with potential HSD activity, the 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) was 

identified accordingly to be associated with the residual 20β-HSD activity (see publication 2.2, Figure 

5A). Unfortunately, FabG is an essential component during the bacterial fatty acid synthesis (FAS) 

and therefore not suitable for the generation of a deletion mutant with reduced 20β-HSD activity 

(Zhang and Cronan, 1998). Compounding this problem is the fact that further transformation of 

17αOH-P, such as the CYP21A1 catalyzed hydroxylation to 17α,21-dihydroxyprogesterone (11-

deoxycortisol, RSS) or the CYP11B1 mediated hydroxylation of RSS to cortisol seems to increase the 
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substrate affinity of 17αOH-P derived steroids to FabG (unpublished data), thereby facilitating the 

formation of pharmaceutically unfavorable 20β-hydroxysteroids in B. megaterium. Intriguingly, the 

supplementation of acetone during steroid conversions seemed to have an inhibitory effect on the 20β-

HSD activity of FabG, though accumulation of 20β-hydroxysteroids was not completely prevented 

(see publication 2.3, Supplemental Figure 1). As substrate for the recombinantly expressed alcohol 

dehydrogenase of Lactobacillus brevis (LbADH), acetone was originally intended to drive a 

corresponding NADP+ regeneration system in B. megaterium (see publication 2.3, Figure 12) which 

was determined as crucial factor for the efficient oxidation of the pharmaceutically valuable cortisol to 

cortisone (see publication 2.3, Figure 11). However, the increased pool of NADP+ also contributed 

significantly to the reduced 20β-HSD activity of FabG which, itself, is dependent on NADPH.  

More important than the reduced side product formation, the productivity of the developed B. 

megaterium based whole-cell system for the 11β-hydroxysteroid dehydrogenase (11β-HSD) mediated 

conversion of cortisol to cortisone was improved considerably by applying the novel arabinose 

inducible promoter system (pAra) and the growth phase dependent promoter p0706 for the 

recombinant expression of a modified type 1 guinea pig 11β-HSD (Lawson et al., 2009). Compared to 

the optimized xylose inducible promoter (pXyl*) which already showed a high volumetric cortisone 

production of approximately 6 g/L/d under optimized cultivation conditions, cortisone formation rates 

were further increased 1.3 fold with pAra and 2.2 fold with p0706 resulting in extraordinary space-

time yields of nearly 8 g/L/d and 14 g/L/d cortisone, respectively (see publication 2.3, Figure 11). To 

the best of our knowledge, the previously highest reported yield of 9 g/L/d for a similar microbial 

glucocorticoid conversion of cortisone to cortisol was achieved with an E. coli based whole-cell 

biocatalyst (Zhang et al., 2014). Consequently, the application of the novel promoter systems in B. 

megaterium lead to the accumulation of 1.6 fold higher glucocorticoid levels compared to the formerly 

best microbial cell factory of Zhang and coworkers. Besides the improved cholesterol oxidase (BCO2) 

mediated conversion of pregnenolone to progesterone, the significantly enhanced activity of the 11β-

HSD is yet another striking example for the potential of the novel promoter toolbox as key component 

for the development and optimization of B. megaterium as efficient and versatile platform for protein 

production and steroid transformations. 

The ability of B. megaterium for the biotransformation of pharmaceutically important steroids can be 

summarized as follows. Although the novel promoters were successfully applied for the heterologous 

expression of a diverse set of enzymes from different enzyme classes (including the BCO2 from B. 

sterolicum, the guinea pig 11β-HSD as well as several mammalian steroidogenic cytochromes P450 

(unpublished data)) the residual 20β-HSD activity of FabG has mainly impaired the application of B. 

megaterium as efficient microbial cell factory for the production of cortisol and cortisone, so far. 

Consequently, the elimination or minimization of this 20β-HSD activity remains the major challenge 
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for future engineering approaches to develop B. megaterium into an ideal microbial platform for 

steroid biotransformations. 

 

3.3 Identification of a novel short chain dehydrogenase for the production of the sesquiterpene 

(+)-nootkatone in B. megaterium 

In the course of the studies for the identification of putative hydroxysteroid dehydrogenases (HSDs) in 

B. megaterium we found a promising open reading frame (BMD_2094) which was not only able to act 

as 17β-HSD on the sex hormone testosterone to produce androstenedione (unpublished data) but more 

importantly to catalyze the efficient oxidation of (trans)-nootkatol to the industrially valuable flavor 

and fragrance compound (+)-nootkatone (see publication 2.4, Figure 1). Commercial (+)-nootkatone 

production involves a two-step biotransformation process comprising the regioselective hydroxylation 

of (+)-valencene to (trans)-nootkatol which is then further converted to (+)-nootkatone (Fraatz et al., 

2009) (see publication 2.4, Scheme 1). While the first catalytic step of (+)-nootkatone formation has 

been elucidated as a cytochrome P450 mediated reaction (Cankar et al., 2011; Gavira et al., 2013; 

Girhard et al., 2009; Schulz et al., 2015; Sowden et al., 2005), only scarce information is known about 

suitable enzymes for the final oxidation step which is believed to involve a dehydrogenase 

(Wriessnegger et al., 2014). To the best of our knowledge, the novel short chain dehydrogenase (SDR) 

BMD_2094 is the first bacterial enzyme with activity towards the conversion of (trans)-nootkatol to 

(+)-nootkatone. As demonstrated in publication 2.4, Figure 2, the recombinant expression of 

BMD_2094 under the control of the optimized xylose inducible promoter (pXyl*) resulted in a very 

efficient B. megaterium based whole-cell system with (+)-nootkatone formation rates of 44 mg/L/h. 

While other microbial cell factories were reported to yield approximately 0.35 mg/L/h (+)-nootkatone 

in Pichia pastoris (Wriessnegger et al., 2014) and 8.06 mg/L/h (+)-nootkatone in Yarrowia lipolytica 

(Palmerín-Carreño et al., 2016), the corresponding space-time yields for (+)-nootkatone production in 

B. megaterium were shown to be over 120 fold and 5 fold higher than those of P. pastoris and Y. 

lipolytica, respectively. This extraordinary productivity srikingly illustrates the promising potential of 

the novel dehydrogenase BMD_2094 as well as the potential of B. megaterium for the development of 

efficient microbial cell factories for the improved production of the industrially valuable sesquiterpene 

(+)-nootkatone. 
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3.4 Biosynthesis of C30 carotenoids in B. megaterium  

Metabolic profiling of B. megaterium MS941 by LC-MS analyses revealed the presence of two 

carotenoid species with low abundance. According to the authentic standard library of our 

collaboration partner Metabolic Discoveries in Potsdam, the identified carotenoids showed identical 

m/z ratios and retention times to those of the C30 carotenoids 4,4´-diapophytofluene (DPFL) and its 

oxygenated derivative 4,4´-diaponeurosporenic acid (DNSA), respectively (see publication 2.5, Figure 

3). These findings agreed with scientific reports from the early 1980s that describe the accumulation of 

two major pigments during spore formation of B. megaterium (Racine and Vary, 1980). Although the 

pigments were not further characterized, they intriguingly showed a carotenoid-like absorption 

spectrum with multiple maxima in the range of visible light (Mitchell et al., 1986). Particularly the 

absorption spectrum of the yellow pigment observed by Mitchell and coworkers was strikingly similar 

to the later characterized spectrum of 4,4´-diaponeurosporene (DNSP), one of several pigments in the 

staphyloxanthin biosynthetic pathway of the pathogen Staphylococcus aureus (Kim et al., 2016; 

Marshall and Wilmoth, 1981; Wieland et al., 1994). Meanwhile, various spore forming bacteria 

including the group of pigmented bacilli were shown to accumulate a diverse set of C30 carotenoids 

(Köcher et al., 2009; Perez-Fons et al., 2011; Steiger et al., 2012; Takaichi et al., 1997). While most of 

these carotenoid structures have successfully been elucidated along with their underlying biosynthetic 

pathways and involved enzymes, there was no information or experimental data about a cognate 

biosynthetic route for B. megaterium. Consequently, the published genome sequence of the parental B. 

megaterium strain DSM319 was used for the identification of a putative biosynthetic pathway that 

evidently led to the accumulation of DPFL and DNSA in vegetative cells of the B. megaterium strain 

MS941. In the course of these bioinformatic analyses, several open reading frames (ORFs) were 

identified with significant sequence identities to the deduced amino acid sequences of the 

corresponding enzymes in the extensively studied staphyloxanthin biosynthetic pathway of S. aureus 

(Pelz et al., 2005) (see publication 2.5, Table 3). Intriguingly, some of them seemed to be coordinated 

as a biosynthetic operon (see publication 2.5, Figure 4). A functional characterization of the individual 

enzyme activities in the non carotenogenic model organism Escherichia coli partially revealed unique 

features of the putative C30 carotenoid biosynthesis operon of B. megaterium MS941.  

In general, the number of carbon atoms in the carotenoid backbone as well as its structure is strongly 

dependent on the chain lengths of the prenyl diphosphates that are used for the initial condensation 

reaction during carotenoid biosynthesis (Norris et al., 1995). Compared to other pigmented bacilli, the 

biosynthesis of prenyl diphosphates in B. megaterium was demonstrated to be limited to the formation 

of farnesyl diphosphate (FDP) (see publication 2.5, Figure 2), thus providing the basis for the 

subsequent head-to-head condensation of two molecules of FDP (C15) to form the symmetric C30 

carotenoid backbone structure of 4,4´-diapocarotenoids. As a result, the activity of the putative 

carotenoid synthase (BmCrtM) of B. megaterium exclusively yielded the symmetric carotenoid 



GENERAL DISCUSSION

 

106 

 

precursor 4,4´-diapophytoene (DPHY) (see publication 2.5, Figure 6A). Contrarily, this condensation 

reaction was shown in other pigmented bacilli to preferentially take place between one molecule of 

geranyl diphosphate (C10) and one molecule of geranylgeranyl diphosphate (C20) yielding the 

asymmetric C30 carotenoid backbone structure of apo-8´-carotenoids (Perez-Fons et al., 2011). 

Furthermore, striking conceptual differences were observed between the desaturation process of 

DPHY in B. megaterium, which involved the coordinated action of multiple carotenoid desturases 

(BmCrtN1-2) and the desaturation process of the corresponding apocarotenoids in S. aureus as well as 

other pigmented bacilli, where this desaturation reaction is catalyzed by a single carotenoid desaturase 

(Pelz et al., 2005; Steiger et al., 2015) (summarized in Figure 3.1). The carotenoid desaturase 

BmCrtN1 of B. megaterium was characterized to perform the insertion of a single double bond into the 

backbone of DPHY which resulted in the formation of 4,4´-diapophytofluene (DPFL) (see publication 

2.5, Figure 6B). In the course of these studies, the activity of BmCrtN1 was shown to be essential to 

provide adequate amounts of DPFL for the subsequent desaturation steps catalyzed by the carotenoid 

desaturase BmCrtN2 (see publication 2.5, Figure 6C). This second carotenoid desaturase of B. 

megaterium showed extraordinary properties in terms of substrate specificity (with DPFL being the 

preferred substrate), desaturation activity (by catalyzing a defined two-step desaturation reaction) and 

product specificity (with 4,4´-diaponeurosporene (DNSP) being the exclusive desaturation product).  

 

Figure 3.1. Biosynthetic routes of C30 carotenoid formation. A: Formation of 

symmetric 4,4´-diapocarotenoids in B. megaterium. B: Formation of 

asymmetric apo-8´-carotenoids in other pigmented bacilli. Adopted and 

modified from (Perez-Fons et al., 2011). 
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To the best of our knowledge these unique features, particularly the product specificity, have neither 

been described for the carotenoid biosynthesis in S. aureus nor in other pigmented bacilli, where 

DNSP is further converted to the completely desaturated carotenoid structure of 4,4´-diapolycopene 

(DLPN) (Yoshida et al., 2009) (see publication 2.5, Scheme 1). A third putative carotenoid desaturase 

BmCrtN3 was found to be located far apart from the original DNSP biosynthesis operon (see 

publication 2.5, Figure 4C). However, due to a considerably higher sequence identity to the carotenoid 

oxygenases (CrtP) of S. aureus, this ORF was rather supposed to act as the missing carotenoid 

oxygenase towards the biosynthesis of 4,4´-diaponeurosporenic acid (DNSA), one of the two 

carotenoid species that were detected during the initial metabolite profiling of B. megaterium MS941. 

Despite various attempts to characterize BmCrtP as carotenoid oxygenase or carotenoid desaturase, 

BmCrtP ultimately seemed not to be involved in the process of C30 carotenoid biosynthesis (see 

publication 2.5, Figure 6D).  

Nevertheless, there is a reasonable possibility that other, yet to identify, carotenoid oxygenases apart 

from CrtN3 are responsible for the terminal oxygenation of DNSP to form DNSA in B. megaterium. 

The most promising candidates certainly belong to the group of cytochrome P450 monooxygenases, 

since multiple studies have demonstrated their potential to act as carotenoid hydroxylases in various 

organisms including plants, fungi and bacteria (Alvarez et al., 2006; Blasco et al., 2004; Fiore et al., 

2006). B. megaterium also possesses several cytochromes P450, whose substrate ranges were subject 

to intensive studies that were predominantly focused on steroidal compounds. Just recently, 

CYP109E1 from B. megaterium was identified as efficient hydroxylase for the conversion of different 

carotenoid derived aroma compounds (Putkaradze et al., 2017b). Furthermore, CYP102A1, probably 

better known as BM3, was demonstrated to have activity towards the linear hydrocarbon skeleton of 

fatty acids, which resembles the linear backbone structure of acyclic carotenoids like DNSP 

(Whitehouse et al., 2012). Based on these encouraging findings, both CYP109E1 and CYP102A1 

could become priority targets with regard to a future identification as well as characterization of the 

still obscure carotenoid oxygenase activity in B. megaterium. 

DNSP itself has recently drawn considerable attention as promising pharmaceutical compound due to 

its stimulatory effects on the murine immune system (Liu et al., 2016). Several studies convincingly 

demonstrated an anti-inflammatory effect on chronic gastrointestinal diseases as well as a reduced 

susceptibility to Salmonella infections (Jing et al., 2019, 2017; Liu et al., 2017). However, there are no 

suitable microbial cell factories for the efficient and selective biosynthesis of DNSP, since natural 

producer strains, like S. aureus, are either pathogenic or associated with considerable side product 

formation (Archer, 1998; Chae et al., 2010). A major amount of DNSP in these strains is converted by 

a broad set of carotenoid modifying enzymes, including desaturases, oxygenases or glycosylases to the 

corresponding DNSP derivatives like 4,4´-diapolycopene, 4,4´-diapolycopenal or staphyloxanthin, 

respectively (Perez-Fons et al., 2011; Steiger et al., 2015; Wieland et al., 1994). Until now, the effects 
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of the aforementioned DNSP modifications have not been tested, hence it is not clear whether they 

have a comparable positive effect on the immune system or whether they are associated with adverse 

effects. At least staphyloxanthin was hypothesized to promote immune evasion, thereby significantly 

contributing to the pathogenic phenotype of S. aureus (Clauditz et al., 2006). Consequently, the 

selective production of DNSP in a microbial cell factory with GRAS (generally recognized as safe) 

status is considered a crucial prerequisite for the development of biotechnological processes that are 

compliant with the strict regulations of the pharmaceutical industry. In order to address the selective 

production of DNSP, the unique features of the newly identified C30 carotenoid biosynthetic cluster of 

B. megaterium were exploited to establish and assess the potential of an Escherichia coli based whole-

cell system (see publication 2.5, Table 4). The engineered carotenoid gene cluster additionally 

contained the farnesyl diphosphate synthase (BmFDS) of B. megaterium to provide adequate amounts 

of FDP for the DNSP biosynthesis. This approach not only resulted in unrivaled product selectivity but 

also in significantly higher DNSP yields, thus clearly demonstrating that the application of the 

engineered DNSP gene cluster from B. megaterium provides not only a competitive but also a superior 

alternative for the efficient production of DNSP in comparison to other E. coli based microbial cell 

factories (summarized in Table 3.4). Despite significant longer production times of up to 78 h, most of 

them showed substantially lower specific C30 carotenoid yields ranging between 12 µg/g wet cell 

weight and 49.4 µg/g wet cell weight (Chae et al., 2010; Furubayashi et al., 2014; Xue et al., 2015). 

Only the heterologous expression of the C30 carotenoid gene cluster from S. aureus in genetically 

engineered E. coli K12 strains, optimized for the consumption of sucrose, was reported to produce 

higher specific C30 carotenoid yields of approximately 375 µg/g wet cell weight (Kim et al., 2013). 

However the utilization of high sucrose concentrations seemed to prevent high cell density 

fermentation, thus limiting the total C30 carotenoid yield to 0.7 mg/L compared to approximately 4 

mg/L obtained with the engineered carotenoid operon derived from B. megaterium. These results 

further emphasize the potential of the developed E. coli whole-cell system for a high yield DNSP 

production, most importantly without any side products, which will significantly facilitate downstream 

processing in future industrially scaled processes. 
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Table 3.4. C30 carotenoid yields obtained with different microbial cell factories. 

Source 
Expression 

Strain 

C30 yield 

(µg/g wcw) 

C30 yield 

(mg/L) 
Time Reference 

B. megaterium 

DSM319 

E. coli  
TOP10 

146.1 a, b 4.03 b 20 h publication 2.5 

B. megaterium 

DSM319 

B. megaterium 

MS941 
262.7 a, b  7.91b 20 h unpublished 

S. aureus 
B. subtilis  

168 
68 a, b n.d. 24 h (Xue et al., 2015) 

S. aureus 
E. coli  

XL1-Blue 
28.0 a, b n.d. 60 h (Furubayashi et al., 2014) 

H. sapiens;       
S. aureus 

E. coli  
XL1-Blue 

12.0 a, b  n.d. 60 h  (Furubayashi et al., 2014) 

S. aureus 
E. coli  
SURE 

49.4 c n.c. 48 h (Chae et al., 2010) 

S. aureus 
E. coli  

XL1-Blue 
35.3 c n.c. 48 h (Chae et al., 2010) 

S. aureus 
E. coli  
TOP10 

12.4 c n.c. 48 h (Chae et al., 2010) 

S. aureus 
E. coli  

K12 derivative 
375.0 a, c 0.7 c 78 h (Kim et al., 2013) 

n.d. not determined 

n.c. not comprehensible 
a  wet cell weight was estimated according to (Bratbak and Dundas, 1984) 
b   carotenoid yields refer to 4,4´-diaponeurosporene 
c   carotenoid yields refer to the major product 4,4´-diapolycopene 

Encouraged by the outstanding performance of the developed E. coli system, which allowed the 

production of DNSP with unchallenged selectivity and volumetric yields, we wanted to test the 

potential of B. megaterium for the production of C30 carotenoids. The homologous expression of the 

engineered carotenoid cluster from B. megaterium was initially driven by the optimized xylose 

inducible system and resulted in a total C30 carotenoid yield of 3.84 mg/L (data not shown). This 

yield was found to be comparable with the 4.03 mg/L DNSP obtained with the corresponding E. coli 

based system (see Table 3.4). Although considerable side product formation was expected due to the 

not identified and characterized carotenoid oxygenase (BmCrtP), HPLC analyses of the C30 

carotenoid extracts from B. megaterium surprisingly revealed DNSP as the exclusive carotenoid 

product. The retention time as well as the absorption spectrum of the isolated C30 carotenoid was 

identical to those, previously reported for the DNSP extracts from E. coli (see Figure 3.2). Obviously, 

the expression of the unknown carotenoid oxygenase in B. megaterium was not induced under the 

tested growth conditions. One possible reason for the absence of the carotenoid oxygenase activity 

may be related to the observation that carotenoid modification processes, particularly oxygenations, 
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3.5 Biosynthesis of C40 carotenoids in B. megaterium 

Although the C30 carotenoid 4,4´-diaponeurosporene (DNSP) has the potential to become a 

pharmaceutically valuable compound for the treatment of severe infectious as well as inflammatory 

diseases, the commercial interest and demand for the production of C40 carotenoids is still 

considerably higher. The most demanded C40 carotenoids include commonly known representatives 

like lycopene, β-carotene and oxygenated derivatives thereof such as lutein, zeaxanthin, canthaxanthin 

or astaxanthin, the carotenoid with the most antioxidant potential (Ernst, 2002; Torregrosa-Crespo et 

al., 2018). They find versatile application as colorants in the food and feed industry, as additives in 

cosmetics and as dietary supplements with beneficial effect for the human health, a property that was 

eponymous for the neologism “nutraceutical” (Anunciato and da Rocha Filho, 2012). Due to the 

growing demand for natural C40 carotenoids, they are projected to collectively contribute to an annual 

global market value of 2.0 billion US dollar by 2022 and are consequently products of high interest for 

the biotechnological industry (BBC Research).  

As demonstrated in publication 2.5, Figure 2, B. megaterium was evidently incapable of initializing 

C40 carotenoid formation, since the corresponding biosynthetic pathway necessarily relies on 

geranylgeranyl diphosphate (GGDP) as substrate for the initial condensation reaction, but biosynthesis 

of the required prenyl diphosphates is only limited to the formation of farnesyl diphosphate (FDP). In 

order to overcome this limitation, the innate carotenoid biosynthetic pathway of B. megaterium was 

extended by the recombinant expression of components of the extensively studied C40 carotenoid 

pathway of the carotenogenic bacterium and plant pathogen Pantoea ananatis (formerly Erwinia 

uredovora) (Coutinho and Venter, 2009). The biosynthetic pathway for the production of the C40 

carotenoid β-carotene comprises the open reading frames (ORFs) for a GGDP synthase (PaCrtE), a 

phytoene synthase (PaCrtB), a phytoene desaturase (PaCrtI) as well as a lycopene cyclase (PaCrtY) 

(Misawa et al., 1990). These ORFs were assembled as a synthetic operon under the control of the 

optimized xylose inducible promoter system and subsequently expressed in B. megaterium MS941. As 

shown in Figure 3.3, HPLC analyses of the corresponding carotenoid extracts demonstrated the 

presence of a carotenoid with an identical retention time to that of a commercial standard of the C40 

carotenoid β-carotene. 
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established B. megaterium whole-cell systems was evaluated to be low, particularly with regard to the 

already optimized E. coli systems for the production of β-carotene (Kim et al., 2009). For this reason, 

C40 carotenoid biosynthesis should be further optimized to be competitive in B. megaterium. Popular 

approaches to obtain a more efficient carotenoid biosynthesis have been reviewed in the literature 

before and predominantly focus on extensive metabolic pathway engineering to enhance the pool of 

the isoprenoid precursors IDP and DMADP (Nguyen et al., 2012; Yang and Guo, 2014). 
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4. Future Perspectives 

 

4.1 Application of the novel promoters and rational strain design of B. megaterium for the 

efficient biotransformation of steroids  

B. megaterium was shown to inherently possess beneficial characteristics for the biotransformation of 

hydrophobic compounds such as steroids and steroid derived drugs. These characteristics include the 

extraordinary resistance to high concentrations of toxic solvents and the presence of 

polyhydroxyalkanoate (PHA) bodies. While the resistance to solvents mainly contributes to the 

enrichment of the cultivation medium with hydrophobic substrates, the PHA bodies were 

demonstrated to support the accumulation of hydrophobic compounds inside the bacterial cell, thereby 

significantly facilitating their conversion (Gerber et al., 2015).  

Furthermore, B. megaterium was established as suitable host for the challenging expression of various 

oxidoreductases, including several mammalian cytochromes P450, the guinea pig 11β-hydroxysteroid 

dehydrogenase (11β-HSD) as well as the cholesterol oxidase (BCO2) from B. sterolicum, which are all 

involved in the biosynthesis of the pharmaceutically important glucocorticoids cortisol and cortisone. 

Since the activity of cytochromes P450 is heavily dependent on the availability of auxiliary redox 

partners, the novel promoter library with its various promoter strengths should be exploited to 

deliberately manipulate and harmonize the expression levels of cytochromes P450 and corresponding 

redox partners in order to maximize the efficiency of cytochrome P450 mediated steroid conversions 

in B. megaterium. Moreover, the regulatory DNA sequences of all novel promoters are wildtype 

sequences, yet some of were able to compete with the heavily engineered and optimized xylose 

inducible promoter system in terms of their promoter strength. For this reason, the key regulatory 

consensus sequences of these promising promoters, like the -10 or -35 regions, should be redesigned 

according to the example of the optimized xylose inducible promoter system (Stammen et al., 2010). 

This approach should help to evolve the already powerful novel promoters to even more efficient 

promoter elements for the recombinant protein production in B. megaterium. 

Although the abundant side product formation of 20α-hydroxysteroids was successfully abolished by 

extensive genetic engineering efforts, the residual 20β-HSD activity of FabG remains a major 

challenge for the development of B. megaterium towards a selective production of steroidal drugs. As 

essential component of the bacterial fatty acid synthesis, the complete elimination of the aberrant 20β-

HSD activity of FabG cannot be approached by gene deletion. Alternatively, the weakest promoters of 

the novel promoter library could possibly be used to replace the native promoter of the FabG gene, 

thereby generating a knockdown phenotype with reduced 20β-HSD activity and consequently reduced 

side product formation.  
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4.2 Metabolic engineering of B. megaterium towards an improved carotenoid biosynthesis 

While the total 4,4´-diaponeurosporene (DNSP) yields in the novel B. megaterium based microbial 

cell factory were shown to be higher than those of any other non-optimized biocatalysts, the 

corresponding yields of the C40 carotenoid β-carotene were rather low, particularly compared to the β-

carotene titers obtained with E. coli systems. Similar to these metabolically engineered E. coli strains, 

B. megaterium also offers great potential for the optimization of the carotenoid production. As 

mentioned before, wildly applied strategies to boost the carotenoid production in microorganisms aim 

at increasing the intracellular pool of the common isoprenoid precursors IDP and DMADP. In this 

context, the recombinant expression of enzymes that catalyze the rate limiting steps of the mevalonate 

or the non mevalonate pathway was demonstrated to be beneficial for the redistribution of metabolic 

fluxes towards the biosynthesis of isoprenoids, thus positively contributing to the overall system 

performance (Nguyen et al., 2012; Yang and Guo, 2014). Accordingly, the overexpression of the DXP 

synthase (IspB) as well as the DXP reductase (IspC), both involved in the first biosynthetic steps of 

the non mevalonate pathway, was shown to enhance carotenoid production in B. subtilis nearly 8 and 9 

fold, respectively (Xue et al., 2015). An equivalent approach would definitely be a reasonable option 

to optimize carotenoid production in B. megaterium significantly.  

The most promising potential for a maximization of the carotenoid production in B. megaterium, 

however, is the presence of polyhydroxyalkanoate (PHA) inclusions in the cytoplasmic environment 

of the bacterial cells. In general, PHAs are built from different monomers, such as saturated as well as 

unsaturated, branched or substituted 3-hydroxyacids of various lengths, to form large and diverse 

organic polyesters (Steinbüchel, 1995; Sudesh et al., 2000). PHAs are predominantly produced during 

excessive nutrient availability and serve as an important source of energy as well as compounds for 

carbon storage (Pötter and Steinbüchel, 2005). Some microorganisms, including B. megaterium, are 

capable of accumulating up to 70 % of their biomass as PHA bodies (Rodríguez-Contreras et al., 

2013). In B. megaterium, PHA formation seems to be limited to the monomer 3-hydroxybutyrate, 

which is derived from the central metabolite acetyl-CoA. The biosynthesis of PHA is initialized by the 

action of an acetyl-CoA acetyltransferase (PhaA or Acat) which catalyzes the condensation of two 

molecules of acetyl-CoA to form acetoacetyl-CoA (Grage et al., 2009). This biosynthetic reaction is 

identical to the initial step of the mevalonate pathway (see Figure 4.1), providing the basis to exploit 

the immense reservoir of acetoacetyl-CoA in B. megaterium for the biosynthesis of IDP and DMADP. 
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Figure 4.1. Metabolic crossroads of the polyhydroxyalkanoate (PHA) pathway and the mevalonate 

pathway. Potential knockout targets to block the accumulation of PHAs in B. megaterium are shown in 

red. Enzymes of the mevalonate pathway are shown in green. Their recombinant expression in B. 

megaterium should enable the efficient redirection of acetoacetyl-CoA towards the biosynthesis of 

IDP and DMADP. 

In order to ensure and direct a maximum metabolic flux of acetoacetyl-CoA towards the biosynthetic 

route of the mevalonate pathway, the subsequent reactions of the PHA biosynthesis necessarily have 

to be eliminated. These are the NADPH dependent reduction of acetoacetyl-CoA to (R)-3-

hydroxybutyryl-CoA, catalyzed by the acetoacetyl-CoA reductase (PhaB) and the following iterative 

condensation of (R)-3-hydroxybutyryl-CoA to form the high-molecular weight polymers of PHAs, 

which is driven by the PHA synthase complex consisting of PhaC and PhaR (McCool and Cannon, 

2001; Rehm, 2003). For this reason, a genomic deletion of the corresponding ORFs would be a viable 

approach for the rational design and development of B. megaterium as microbial cell factory for a high 

yield production of isoprenoid derived compounds with both pharmaceutical and industrial 

importance. 
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