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“Panta rhei” Everything flows

Heraclitus



Abstract: Red blood cells (RBCs) are the major cellular component of blood (about
98%). Therefore, they are the principal responsible for blood dynamics. At the scale
of cells, the inertial forces are negligible and the blood flow is modeled with the
Stokes equation.
In this thesis, we present a two-dimensional numerical study of RBC behavior under
flow using the capsule and the vesicle model. First, in a shear flow, we compare
the motion and deformation of the shape in both models. Next, we investigate the
behavior of a single, and a pair of vesicles in a steady and oscillating Poiseuille flow.
For the steady Poiseuille flow the shape of the vesicle depends on the flow strength,
the mechanical properties of the membrane, and the width of the channel as reported
in the past. The oscillation of the flow is introduced using amplitude modulation of
the Poiseuille flow to mimic the pulsatile flow in the human circulatory system. We
found that the flow oscillation can accelerate the transition of the vesicle from its
initial to its final shape. We also observed shape transition of the Snaking shape
(a shape where the vesicle shows an oscillatory motion like a swimmer flagella) to
parachute or unconfined slipper shapes. For the pair of vesicles, the flow oscillation
also decreases the distance between the vesicles. The influence of the oscillation flow
was only observed for low flow rate. While for a higher rate, as the shape transition
becomes instantaneous the influence of flow oscillation is then insignificant.



Kurzzusammenfassung: Rote Blutzellen (RBCs, engl. Red Blood Cells) sind der
zelluläre Hauptbestandteil des Blutes (ca. 98%). Aufgrunddessen sind sie hauptver-
antwortlich für die dynamischen Eigenschaften des Blutes. Auf zellulärer Ebene
sind die Inertialkräfte vernachlässigbar und die Blutströmung wird durch die Stokes-
Gleichung modelliert.
In der vorliegenden Arbeit präsentieren wir eine zweidimensionale numerische Studie
des Verhaltens von RBC in Strömung mithilfe des Kapsel- sowie des Vesikelmodells.
Als Erstes wird die Bewegung sowie die Deformation in beiden Modellen im Scher-
fluss verglichen. Im nächsten Schritt untersuchen wir das Verhalten eines einzelnen
sowie eines Vesikelpaars in stationärer sowie oszillierender Poiseuilleströmung. Für
stationäre Poiseuilleströmung wurde in der Vergangenheit bereits aufgezeigt, dass
die Form des Vesikels von der Flussstärke, den mechanischen Eigenschaften der
Membran sowie der Kanalbreite abhängt. Die Oszillation der Strömung wird mit-
tels Amplitudenmodulation des Poiseuilleflusses erreicht und ahmt die pulsierende
Strömung im menschlichen Kreislaufsystem nach. Es zeigte sich, dass die Strömung-
soszillation den Übergang des Vesikels von seinem Anfangs- zu seinem Endzus-
tand beschleunigen kann. Wir beobachteten auch den Übergang der «Snaking»-
Form (ein Zustand, bei dem das Vesikel eine oszillierende Bewegung ähnlich einem
Flagellum vollführt) zur «parachute»- oder «unconfined slipper»-Form. Für ein
Vesikelpaar führt die Oszillation auch zu einer Verringerug des Abstandes zwis-
chen den Vesikeln. Der Einfluss der oszillierenden Strömung wurde nur für niedrige
Flussraten beobachtet. Für höhere Flussraten ist der Einfluss der Oszillation uner-
heblich, da der Übergang zwischen den Formen instantan erfolgt.
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1

General Introduction
Blood is a fluid that fascinated many civilizations since ancient times and made it
one of the most important subjects of study in human history. The first medical
practices in antiquity were all related to the physical properties of blood. Therefore,
the hemorheology, the study of the flow properties of blood, is considered as one of
the oldest research fields in human history [1].
Probably the first phenomenon related to blood that was studied is the blood sedi-
mentation. The ancient Greeks noticed that sedimented blood generally forms four
layers, which led them to conclude that blood is composed of four fluids. The top
layer is the blood plasma and was referred to yellow bile or cholera due to its color.
The second layer that consists of white blood cells and platelets was called phlegm
or the mucus due to its colorless and viscous form. The third layer contains the red
blood cells (RBC), called sanguine or blood. Finally, the last layer is filled with de-
oxygenated RBC, called the black bile for its deep red color [2]. In ancient times,
Greeks used this separation as a diagnostic tool, where any disproportion between
the four layers was associated with diseases.
This concept has origins in ancient Egyptian medicine, but Hippocrates (460-370 BC)
was the one who applied this idea to medicine. In his work On the Nature of Man, he
describes the theory as follows: “The Human body contains blood, phlegm, yellow bile,
and black bile. These are the things that make up its constitution and cause its pains and
health. Health is primarily that state in which these constituent substances are in the correct
proportion to each other, both in strength and quantity, and are well mixed. Pain occurs
when one of the substances presents either a deficiency or an excess, or is separated in the
body and not mixed with others.”[3].
Hippocrates laid the foundation of Greek medicine which was spread far and wide
throughout the entire world and expanded by other physicians and philosophers
from Romans to nowadays. One of the greatest physicians of the Roman empire
was Claudius Galenus (129-216 BC) often anglicized as Galen. He was a supporter
of the humoral theory of Hippocrates. In his view, an imbalance in one of the four
bodily fluids corresponded to a particular human temperament.
Based on the humoral theory, and the effect of disproportion of the blood layers in
disease, the physicians began to develop techniques to correct this imbalance and
thus relieve the patient. The most common method used was the bloodletting. It
consists of withdrawing blood from a patient by lancing a major vessel or by using
leeches to balance the components. This method often resulted in the death of pa-
tients.
During the Renaissance, classical Greco-Roman and Islamic science flocked to Eu-
rope, and a new era of scientific progress was in the air. Leonardo da Vinci (1452-
1519) was one of the most exceptional scientists of that time. There was a moment at
which his passion for art leads him to the study of human anatomy, not to improve
his drawing, but to understand its functioning. Some of these drawings have sur-
vived in the Leicester Codex. Alongside with these representations, he paid particular
attention to the vortices of water flowing around different obstacles, which seems
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to be the basis of his later studies on the heart mechanisms, and the blood flow, in
which he devoted much of his time between 1508 and 1513 [4]. From these draw-
ings, comes what was later acknowledged to be the first hemodynamic records. In
one of his sketch, see Figure 1, Leonardo demonstrates the formation of vortices in
the sinus during the closure of the aortic valve.
In the early seventeenth century, William Harvey (1578-1657), an English physician,
discovered blood circulation, one of the most significant discoveries of all time, and
one of the pivotal points in the history. Before Harvey’s discovery, it was thought
that blood flowed through the veins and arteries, transmitting the so-called “vital
spirit” to all tissues and the heart was responsible in the reconstitution of the blood
consumed during this process.
In his reasoning, Harvey relied on his observations of the one-way valves in the
veins in and around dissected animal hearts [6]. He also hypothesized the exis-
tence of microvessels between arteries and veins, but since he did not have access to
microscopy, he could not see these microcirculatory vessels. It was left to Marcelo
Malpighi (1628-1694) in 1661 who was the first to observe the capillary vessels using
one of the first microscopes in human history which proved Harvey’s theory [7]. He
stated that capillaries were connected to arteries and veins and that they allowed the
backflow of blood to the heart in our circulation system.
Besides the discovery of the circulatory system, the true nature of blood remained
a mystery. It was considered as a simple liquid, but this began to change with the
advent of the microscope. Thirteen years after the first observations of the red blood
cells by Malpighi, Anthoni Van Leeuwenhoek (1632-1723), gave the first accurate
description of the red cells [8]. He observed the blood flowing in microcirculation,

FIGURE 1: Study of vortices in blood flow inside the heart and in the ascending aorta. Vari-
ous types of waves of blood flow can be seen, with eddies in the opposite direction [5].
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and realized that large deformability was necessary for them to pass through the
smaller blood capillaries. He also observed RBC aggregation, and even estimated
their diameter at 8.5 µm [9].
After Harvey’s discovery, physicians and scientists began to investigate the factors
that determined the flow of blood in and to different organs. Jean-Leonard-Marie
Poiseuille (1797-1869) believed that these factors were linked to the flow properties
of the blood. To prove this assumption, he simplified the problem and investigated
flow in cylindrical glass tubes. As blood was too difficult to use due to its non-
Newtonian behavior, he performed most of his studies on simpler liquids such as
water and alcohol. Around 1839-1844 Poiseuille and Gotthilf Heinrich Ludwig Ha-
gen published, experimentally and independently, the Hagen-Poiseuille Law [10,
11], summarized in the equation:

∆P =
8µLQ

πr4 , (1)

where ∆P is the pressure drop between the two ends of the tube, µ is the dynamic
viscosity, L and r represent the length and the radius of the tube, respectively, and Q
is the volumetric flow rate. This equation is only valid for Newtonian liquids.
Previously in this introduction, blood sedimentation was mentioned and how the
ancient Greeks used it as a diagnostic tool. Robin Fåhraeus (1888-1968) provided a
clear view of the phenomenon [2]. He studied the factors affecting the blood sedi-
mentation in sickness and in health which led to the development of the Erythrocyte
Sedimentation Rate (ESR) test as a valuable quantitative diagnostic tool. Fåhraeus
made many other contributions to hemorheology, especially his conclusions result-
ing from his studies of blood flow in very small diameter glass tubes. In collabora-
tion with the Swedish physician Johan Torsten Lindqvist (1906-2007), he was able
to show that the apparent viscosity of blood decreases as the diameter of the tube
through which it flows decreases. This is now known as the Fåhraeus-Lindqvist
Effect [12]. This effect is due to the migration of RBCs to the center of the vessel,
leaving plasma at the boundaries.
During a considerable time, there was no technique for measuring the non-Newtonian
blood characteristics until the second half of the twentieth century, when viscome-
ters capable of measuring non-Newtonian viscosity emerged. Initially, the devices
were developed for commercial applications on complex liquids, like paints. One
of the most remarkable was the Weissenberg Rheogoniometer, manufactured by the
Austrian physicist Karl Weissenberg (1893-1976). Subsequently, many physicist and
engineers have made a considerable contribution to the hemorheology field by mod-
ifying the rheometer instrument to allow its use in blood experiments, and for the
first time, data from different laboratories around the world became comparable.
Until now, the main area of research on blood was its viscosity, but with the appear-
ance of new techniques and devices, scientists began to be interested in the mechan-
ical properties of RBCs, and their deformability in particular.
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In the larger vessels of the human circulatory system like the arteries, blood can
be modeled as a homogeneous and non-Newtonian fluid [13]. However, in narrow
vessels, like the capillaries (the smallest blood vessels in the body) the blood cells can
only travel through them one by one (Figure 2), and therefore, blood in this condition
is considered as a suspension of RBCs in plasma, rather than a homogeneous fluid.

FIGURE 2: Photography of red blood cells flowing in a capillary vessel (from [14]).

The membrane of red blood cells is a lipid bilayer of phospholipids with a network
of proteins. Due to this complexity, simplified systems, like vesicles and capsules
are used as models for RBCs. Constitute laws, like the Mooney-Rivlin or Skalak
laws (see section 2.2), are used to model the membrane mathematically. The mem-
brane model is formulated so that any deviation from the resting shape increases
the membrane energy and induces response forces that drive the membrane shape
towards a new equilibrium shape. In 1973 Helfrich proposed a constitutive law de-
scribing the membrane resistance to bending [15]. For the resistance to stretching,
the Neo-Hookean law is the most used because of its simplicity [16, 17] but it is
limited to small deformations. For large deformations, Skalak [18] introduced the
Skalak constitutive law which accounts for shear deformations and area dilatation.
Two types of methods can be used to solve the fluid-membrane interaction. The
first, called the immersed boundary method (IBM), was initially developed by Pe-
skin for the coupled simulation of blood flow and muscle contraction in a beating
heart [19]. It consists of two grids, a Eulerian mesh for the fluid domain, whereas a
Lagrangian mesh is used for the membrane. The two meshes are then coupled with
an approximate Dirac delta function [20]. The second method is called the boundary
integral method (BIM), presented first by Youngren and Acrivos [21] for flow past a
rigid particle, and later on extended by Pozrikidis [22] for deformable particles. In
the BIM approach, only the mesh of the membrane is used, the fluid flow and the
membrane energy are coupled using the Lorentz reciprocal formula and the Green’s
functions (see section 2.3.2).
Under blood flow conditions, RBCs are usually subjected to two types of flow: they
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can be locally sheared in large vessels such as arteries or deformed by the parabolic
flow in small vessels such as capillaries. Several experimental approaches are used
to study RBC behaviors (see section 1.4), e.g., Flow techniques like microfluidic de-
vices are used to mimic the flow condition of RBC in the circulatory system. Gold-
smith [23] showed that for smalls shear rate suspensions of single and a rouleau of
RBCs rotates like a rigid circular disk, in Poiseuille and shear flow. This was called
later the "Tumbling" motion. Using a cone-plate rheometer Fischer [24] showed that
in shear flow the RBCs maintain a fixed angle relative to the flow direction, while
the membrane is rotating periodically around its center of mass. This motion was
named "tank-treading". They also found that the tank-treading frequency and the
cell elongation are proportional to the flow shear rate. Later on, Abkarian [25] found
that under a moderate shear rate, RBCs adopt a so-called "swinging" motion, where
the long axis of the vesicle oscillates up and down about the flow direction. Exper-
imental studies of blood flow in capillary vessels [14, 26] or in microfluidic devices
[27, 28] of the same order of diameter as RBC (that is, below 10 µm) observed that
the red cells could flow in two shapes, a parachute-like (also called umbrella-like
shape), or a slipper-like shape. The parachute shape is symmetrical with respect to
the axis of symmetry of the channel, and its center of mass lies on this axis. In con-
trast, the slipper shape is asymmetric. Its center of mass is shifted vertically, and the
membrane shows a tank-treading motion.
Using the vesicle model [29, 30], previous numerical works from Kaoui [31], Tahiri
[32], and Aouane [33] showed that a two-dimensional vesicle in a confined Poiseuille
flow can adopt three different shapes. The usual symmetric parachute shape, the
asymmetrical shapes, confined and unconfined slippers, and a transition shape called
"snaking shape". The same shapes were also observed by Fedosov [34] in three-
dimensional simulations. In the circulatory system, when the heart contracts to
pump the blood, the pressure in the aorta and other large arteries rises and during
the expansion falls again. This induces a cyclic oscillation of the vessel walls with
a frequency of oscillation equal to that of the heartbeat. This process occurs during
every cardiac cycle (every contraction, expansion of the heart), and makes the blood
flow in an oscillating manner, in response to the pulsatile pressure [35]. This thesis
aims to study, numerically, the effect of this oscillating flow on the RBC shapes.
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Chapter 1
Generalities about Blood

Content
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1.3 The Cytoskeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Experimental Methods for Measuring Cell Mechanics . . . . . . . . . . 9
1.5 Blood viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 The circulatory system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.1 Arteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.2 Arterioles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.3 Capillaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.4 Venules and Veins . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

This chapter consists of a brief introduction and overview of the human circulatory system,
also known as the cardiovascular system, which consists of the heart pumping blood through
a closed system of vessels. The primary function of blood is to supply oxygen, nutrients,
and other substances to all of the body’s tissues and organs, and to remove waste products.
We shall briefly describe the blood components, namely the plasma, leukocytes, platelets, and
erythrocytes. The latter, also commonly referred as red blood cells (RBCs), constitute by
far the major component (about 98%) of blood, and consequently, have the most significant
influence on its mechanical properties like the viscosity. The higher viscosity of the blood, the
greater its resistance to flow, and more energy is required from the heart to pump it through
the circulatory system. We will also describe the cell membrane, a double layer of lipids and
proteins that surrounds a cell and separates its content (cytoplasm) from its surrounding
environment. It gives the RBC its structure and regulates the exchange of materials between
the inner and the outer cell environment. We will also shortly describe some techniques used
to measure the mechanical properties of cell membranes. Finally, we will review different
types of vessel constituting the circulatory system.
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1.1 Blood components

Blood is a viscous, non-homogeneous liquid. Its most important components are red
blood cells (or erythrocytes), white cells (or leukocytes), platelets (or thrombocytes),
and plasma. The function of blood is to feed all the tissues of the body and to remove
waste. The blood travels through a complex vascular network of the human body
at a specific flow rate. This rate of circulation is determined by the driving pressure
generated by the heart, the geometrical resistance in the vessel network and the flow
properties of the blood [36].

1.1.1 Plasma

The plasma is a liquid which mostly contains water (more than 95% of its volume)
and a mixture of dissolved proteins, ions, and metabolic molecules. The smallest
of the solutes are the ions of dissolved and dissociated inorganic salts. They repre-
sent about 1% of the plasma by weight. The most concentrated one is the sodium
(Na+) derived from dissociated sodium chloride (NaCl). If its concentration falls or
exceeds a certain range (135 to 145 mmol for a healthy human), the RBC shrinks or
swells. Therefore, it influences their mechanical properties and, consequently, the
viscosity of blood. The other important ion is the potassium HCO−3 . The concentra-
tion in the human body normally lies in the range of 24 to 30 mmol. It is also one of
the factors controlling blood pH and maintaining it between 7.35 and 7.45, which is
vital for normal functioning of the body. Metabolic molecules such as glucose, urea
and amino acids represent about 1% by weight of the plasma. Their concentrations
are generally smaller and better controlled than those of the ions mentioned above,
which is why they have a relatively minor hemorheological effect. The plasma pro-
teins are all very bulky and represent about 7% of the plasma by weight. They are
necessary to carry many vital materials, to protect against infections, to hemostasis,
and so forth. From the hemorheological point of view, they are important for two
main reasons: first, because of their relatively high concentration and their large size,
they have a strong effect on the viscosity of the plasma. The second reason is that
some of them cause the RBCs to stick together like stacks of coins, called rouleau
so that the viscosity of blood is highly dependent on the shear rate to which it is
exposed [1].

1.1.2 Leukocytes

Leukocytes play a vital role in the battle against infections in the body via the de-
struction of bacteria and viruses and the formation of antibodies and sensitized lym-
phocytes. Since there is only one leukocyte for 30 platelets and 600 RBCs, the role
that plays white cells in determining the viscosity of the whole blood is weak except
in microcirculation like capillaries or disease condition. In this case, their influence
is increased because they have much greater viscoelastic properties due to their in-
ternal contents, and a larger volume compared to RBCs [37].
There are five morphologically different varieties of leukocytes, monocytes which
are the largest one, basophils, eosinophils and neutrophils (collectively called gran-
ulocytes), and lymphocytes which are the smallest ones.
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1.1.3 Platelets

Platelets, also called thrombocytes, are small fragments of non-nucleated discoid
cells with a diameter in the order of 2-3 µm, making them much smaller than ery-
throcytes and leukocytes. Because of that, they do not affect blood viscosity. Their
primary role is the prevention of blood loss. When they come into contact with a
damaged vascular surface, they release chemicals that activate nearby platelets and
make them adhere to each other which lead to a platelet plug which is sufficient to
stop bleeding in small wounds. For larger injuries, platelets play an important role
in solidifying blood as clots [36].

1.1.4 Erythrocytes

Erythrocytes, or red blood cells, are highly flexible cells made of a two-dimensional
fluid bilayer of phospholipids. They are filled with a saturated solution of hemoglobin
in water as well as inorganic elements (like potassium and calcium). Hemoglobin is
the protein inside RBC that gives blood its red color. It is primarily involved in the
transport of oxygen and carbon dioxide between the lungs and body tissues. A Nor-
mal human RBC in the unstressed state has the shape of a biconcave disk with a
maximum diameter of 8 µm, a thickness of 2.5 µm, a surface area of 140 µm2 and a
volume of 90 µm3 Figure 1.1. This shape can be changed due to mechanical, chemical
or thermal effects. Such a structure allows the cells to undergo large deformations
in flow and achieve complex shapes that differ significantly from the biconcave rest-
ing shape. Red blood cells are by far the major component (about 98%). Therefore,
they have the most significant influence on the mechanical properties of blood. The
volume concentration of RBCs in the blood is called hematocrit. The properties of
an individual RBC changes with its age. The average lifespan of an RBC in human
blood is approximately 120 days [36].

FIGURE 1.1: (a) Scanning electron image of a RBC (with permission from G. Simionato); (b)
Profile schematic of a discoid RBC.

1.2 The Cell Membrane

RBCs can deform both due to in-plane stretching and out of plane bending of the
membrane. The high deformability of RBC is due to the lack of a nucleus, to the ge-
ometric factors such as the shape, volume, and surface, plus the elastic and viscous
properties of its membrane [38].
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The RBC membrane is an extremely flexible structure composed of two adjacent lay-
ers of phospholipids (like all human cells). The lipid tails of one layer, face the lipid
tails of the other layer, joining at the interface of the two layers, the phospholipid
heads being turned outward. One layer is exposed to the intracellular fluid (the
fluid inside the cell) and the other layer is exposed to the extracellular fluid (the sur-
rounding fluid outside the cell membrane). A single phospholipid molecule has a
phosphate group at one end, called the "head", and two-sided chains of acids that
form the lipid tails. The phosphate group is negatively charged, which makes the
head polar and hydrophilic, and therefore attracted by water. Lipid tails, on the
other hand, are not charged and are hydrophobic. They repel themselves and are
repelled by water. Since the lipid tails are hydrophobic, They meet in the internal
region of the membrane, separating the intracellular and extracellular fluid of this
space.
RBCs have different proteins distributed on their membrane. Cholesterol is also
present, which contributes to the fluidity of the membrane. Various membrane-
integrated proteins perform a variety of functions. An essential characteristic of the
membrane is that it remains fluid, so the lipids and proteins in the cell membrane
are not rigidly blocked (Figure 1.2).

FIGURE 1.2: Sketch of a cell membrane from [36] including phospholipids, proteins and
cholesterol.

1.3 The Cytoskeleton

The cytoskeleton forms a complex network of filamentous proteins that provide
structural support for cells. It plays an important role in maintaining cell shape,
for cellular motility, cell division, and the transportation of substances within the
cell. The three major types of cytoskeletal filaments are (i) Microtubules, formed
from a protein called tubulin. (ii) Microfilaments, a thin type of filament. The pri-
mary component of these filaments is actin protein. The final cytoskeletal filament
is (iii) intermediate filaments that are thicker than microfilaments and thinner than
microtubules. They are made up of a long fibrous protein called keratin [36, 39].

1.4 Experimental Methods for Measuring Cell Mechanics

One of the most commonly used techniques for measuring RBC deformability is
based on the use of small glass micropipettes with similar dimensions of the RBCs,
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in which part of the cell membrane is sucked into the pipette. From its radius of
curvature and the suction pressure rate, an estimation of the mechanical properties
of the membrane could be established [40, 41]. In the same field, another common
technique relied on the use of micropore filters. These filters had pores with a similar
size of small blood capillaries, and simple filtration methods gave evidence of RBC
deformability [42].

FIGURE 1.3: Picture from [43] illustrating different experimental techniques used to extract
different mechanical proprieties of cells.

More complex and more precise experimental techniques for measuring cell me-
chanics have gradually begun to emerge, such as microneedles, and the atomic force
microscope. In microneedle experiments, a thin and flexible fiberglass microneedle
is used to push or pull on a cell or one of its subcellular structures, since the glass
microneedle acts as a cantilever spring. The deflection of the tip of the needle can
determine the force applied to the cell, which can be measured electrically or op-
tically [44, 45]. Atomic force microscopy (AFM) also offers excellent measurement
accuracy. It is similar to the manipulation of microneedles in that it also uses a flex-
ible cantilever with a fine tip at its free end. The tip is used to probe a sample of a
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cellular structure by measuring its displacement in the vertical direction when the
tip is directed downwards by a piezoelectric stage. Using this technique, an approx-
imation of Young’s modulus of the indented cell can be determined as a function of
the force applied by the AFM, the shape of the AFM tip and the indentation depth
[46, 47].
Optical techniques employing photon trapping are also widely used, the most com-
mon ones are optical tweezers and optical stretching. The optical tweezers or optical
trapping uses an infrared laser and a microscope to trap an object and control its
movements through photons. When the photons pass through an object, their di-
rection changes as a function of the refractive index of the object. This change of
direction causes a change in momentum resulting in a trapping force on the object.
This force can be calculated from the laser intensity gradient, the refractive index
of the bead, and the refractive index of the surrounding cell medium [48]. Alterna-
tively, in an optical stretcher, laser light is coupled to one or more optical fibers with
fiber couplers and delivered to the cell chamber. Two-dimensional trapping can be
achieved using a single beam fiber, while three-dimensional trapping requires two
fibers [49]. These systems can be used to trap and, or, stretch cells and have been
used primarily to study the mechanical properties of cells [50], their response to
stretching [51], and to distinguish between diseased and healthy cells [52].
In another interesting technique, the cell is exposed to a shear flow system to mimic
flow conditions in the human body. The three most popular types of shear flow
devices are the cone-plate system, the parallel plate flow chamber, and microfluidic
devices. In these systems, cells can be subject to laminar, transient or turbulent flow
profiles. In the cone-plate system, rotation of the fluid in the cell chamber is induced
by rotating the cone perpendicularly to the surface of the plate. The geometry of
the rotating cone generates uniform shear stress on the entire cell population of the
chamber [53]. Alternatively, in a parallel plate flow chamber, a pressure drop be-
tween the openings on either side of the chamber is used to drive the fluid through
a layer of cells [25]. There is also a wide range of microfluidic devices developed to
study the effect of physical properties of cells. These devices can control the cell envi-
ronment while simultaneously measuring its mechanics. They can also be designed
to approach physiological conditions and can measure several types of mechanical,
electrical, and chemical properties of the cell culture [54]. Further techniques for
evaluating the mechanical properties of RBCs or cells are shown in Figure 1.3.

1.5 Blood viscosity

Blood viscosity is defined as the ability of blood to flow through the vessels. Exper-
imental studies show that blood behaves as a non-Newtonian fluid. The viscosity
of human blood varies dynamically from high shear to low shear during each car-
diac cycle: at a higher shear rate (systole), blood is physically thinner, while at a
lower shear rate (diastole), blood is thicker and stickier. The phenomenon is known
as shear-thinning. The primary determinants of blood viscosity are hematocrit, red
blood cell deformability, red blood cell aggregation, and plasma viscosity.
Indeed when the RBCs are subjected to smaller shear rates, they tend to aggregate
and stack together. Therefore, the viscoelastic properties of blood are dominated by
the aggregation and RBC’s deformability is insignificant. As the shear rate increases,
the size of the aggregates begins to decrease. The influence of the aggregation prop-
erties on the viscoelasticity then drops, and the influence of the deformability of
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RBCs begins to increase. At the higher shear rates, the viscoelasticity of the blood
only depends on the RBC’s deformability [1].

1.6 The circulatory system

The human circulatory system consists of a muscular pumping mechanism, the
heart, and a closed network of vessels. The heart pumps the blood, which is rich
in oxygen, and nutrients contained in the system around a circuit of vessels, provid-
ing all the body’s tissues with the blood by the process of bulk flow.

FIGURE 1.4: Schematic of the human cardiovascular circulation [36].

Through this process, air and blood pass from high-pressure regions to low-pressure
regions. In the human circulatory system, the heart is the pump that generates the
pressure gradients that cause the bulk flow of blood. Such a system allows rapid
transport of respiratory gas molecules and nutrients over long distances to reach all
tissues of the body [36].
The circulatory system is composed of two separate circuits. The pulmonary circuit
(supplied by the right side of the heart), receives blood returning to the heart from
the body and pumps it to the lungs. This circuit serves to exchange carbon dioxide in
the blood with oxygen from the lungs. The systemic circuit (supplied by the left side
of the heart) takes the freshly oxygenated blood and delivers it to the entire body. In
both circuits, the blood passes through a series of blood vessels. Blood is pumped
out of the heart into large muscle arteries that branch out into smaller arteries, then
the arterioles, followed by intricate networks of tiny capillaries. Capillaries are the
sites of exchange between blood and neighboring cells. After leaving the capillaries,
the blood is collected in venules and veins of increasing size, before being returned
to the heart. In both systems, the arteries remove the blood from the heart, and the
veins bring blood to the heart. To keep the body’s blood in motion, the heart pumps
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about 8000 liters of blood per day.
Within each of the two circuits, there are five basic types of blood vessels: arteries,
arterioles, capillaries, venules, and veins. Each type of blood vessel differs in their
structure, but they share the same general features.

1.6.1 Arteries

An artery is a blood vessel that conducts blood away from the heart and distributes it
to all of the body’s tissues, including the heart itself. First, blood enters large arteries
that immediately begin to branch into medium-sized and then smaller arteries. The
larger arteries have elastic walls that can withstand the high pressure of the blood
ejected from the heart. The medium-sized arteries distribute blood to skeletal mus-
cles and major organs. These arteries, in general, have a thinner muscle layer, but
the difference in arterial structure from the larger arteries is insignificant. The elastic
retraction of the vascular wall helps to maintain arterial pressure [36].

1.6.2 Arterioles

Arterioles, also called resistance vessels, are very small arteries that lead to capillar-
ies. They have an inner layer of smooth muscle cells connected to the central neural
system. If the arterioles receive a signal to increase their diameter (or vasodilate),
blood pressure is reduced. Conversely, when stimulated to decrease their diameter
(or vasoconstrict), they resist blood flow and increase blood pressure. These vessels
play the most critical role in the determination of blood pressure, as they are the
primary site of resistance and regulation of blood pressure [36].

1.6.3 Capillaries

Capillaries are the smallest blood vessels in the body. They are microscopic channels
that supply blood to tissues, a process called perfusion. Exchange of gases and other
substances occurs in the capillaries between the blood and the interstitial fluid of the
surrounding cells. The diameter of a capillary range from 5 to 10 µm, just barely
wide enough for an RBC to squeeze through.
Flow through capillaries is often described as microcirculation. The wall of a cap-
illary consists of the endothelial layer surrounded by a basement membrane with
occasional smooth muscle fibers. The walls of the capillaries leak, letting the sub-
stances pass through. There are three main types of capillaries, which differ accord-
ing to their degree of leakiness: continuous, fenestrated, and sinusoidal capillaries
(Figure 1.5).
Continuous capillaries are the most common. They are characterized by a complete
endothelial lining with tight junctions between endothelial cells. Although a tight
junction is generally impermeable and allows only the passage of water and ions,
they are often incomplete in the capillaries, leaving intercellular slits allowing the ex-
change of water and other very small molecules between the blood plasma and the
interstitial fluid. A fenestrated capillary has pores in addition to tight junctions in
the endothelial lining. These pores make the capillary permeable to larger molecules.
They are common in the small intestine, which is the main site of absorption of nu-
trients, as well as in the kidneys, which filter the blood. They are also found in many
other endocrine structures.
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FIGURE 1.5: The three major types of capillaries: continuous, fenestrated, and sinusoid,
picture from [36].

Sinusoid capillaries are flattened, and they have extensive intercellular interstices
and incomplete basement membranes, in addition to intercellular clefts and pores.
These very large openings allow the passage of larger molecules, including plasma
proteins and even cells. Blood flow through the sinusoids is very slow, allowing
more time for the exchange of gases, nutrients, and wastes. Sinusoids are found in
the liver and spleen, bone marrow and many endocrine glands. For example, in the
bone marrow, when a new RBC is formed, it must enter the blood and can only do
so through the large openings of a sinusoidal capillary.

1.6.4 Venules and Veins

As the capillaries converge, venules are formed whose function is to collect deoxy-
genated blood and metabolic debris from the capillary networks. Venules consist of
an endothelial tube supported by a small amount of collagenous tissue and, in larger
venules, few smooth muscle fibers. Venules and capillaries are the primary sites in
which white blood cells adhere to the endothelial lining of vessels and then squeeze
through adjacent cells to enter the tissue fluid.
Multiple venules join to form veins, the vessels that conduct blood toward the heart.
Because they are low-pressure vessels, the larger veins are usually equipped with
valves that promote a unidirectional flow of blood to the heart and prevent back-
flow toward the capillaries caused by the inherent low blood pressure in the veins
as well as gravity [36].

1.7 Conclusion

The function of blood is to supply oxygen, nutrients, and other substances to all of
the body’s tissues and organs, and to remove waste products. It is constituted by
(i) plasma, a liquid made mostly of water and a mixture of dissolved proteins, ions,
and metabolic molecules. (ii) white blood cells (leukocytes) which are the cells of
the immune system that are involved in fighting infections and foreign bacteria, and
viruses. (iii) platelets, which prevent blood loss from vessels in case of injuries by
clumping and thereby initiating a blood clot. (iv) Red blood cells (RBCs), which are
involved in oxygen and carbon dioxide transport between the lungs and tissues of
the body. The latter constitute about 98% of blood, and consequently, have the most
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significant influence on the mechanical proprieties of blood. An RBC is a highly flex-
ible cell, made of a membrane surrounding a hemoglobin solution. The membrane is
made of a fluid bilayer of phospholipids and contains different proteins, cholesterol,
and various membrane-integrated proteins, distributed on it. Blood supplies oxy-
gen, nutrients, and other substances through a circulatory system made of vessels of
different sizes and properties.
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The membrane of an RBC is a fluid bilayer of phospholipids, containing a network of proteins
and transmembrane proteins (like ion channels). Due to this complexity, simplified systems
like vesicles (made of a pure bilayer of phospholipids) and capsules (made of an extensible
polymer shell) are used as models for RBCs. Both systems reproduce several features known
for RBCs under flow. There are different types of vesicles and capsules classified by form, size,
and type of production. In the following chapter, we shall review the mechanical properties of
each model. The cell membrane can undergo in-plane and out-of-plane deformations. Consti-
tute laws, like Helfrich or Skalak law, are used to model these deformations mathematically.
The numerical procedures to solve fluid-structure interaction problems may be classified into
two approaches: the monolithic approach and the partitioned approach. The monolithic ap-
proach treats the fluid and structure dynamics in the same mathematical framework to form
a single system formulation for the entire problem, which is solved simultaneously by a uni-
fied algorithm. In contrast, the partitioned approach treats the fluid and the structure as two
computational fields which can be solved separately with their respective mesh discretiza-
tion and numerical algorithm. The interfacial conditions are used explicitly to communicate
information between the fluid and structure solutions [55].
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2.1 Vesicles and Capsules

Due to their similarity to living cells, vesicles and capsules have been extensively
studied theoretically as well by experiments [56, 57], in order to understand and dis-
tinguish the characteristics of RBC mechanics that arise from the components of the
cell membrane.
Lipid vesicles, or liposomes, are self-assembled lipid structures in the shape of a
closed membrane consisting of a phospholipid bilayer. They can act as bio-mimetic
compartments with a membrane that closely resembles that of living cells encapsu-
lating materials such as proteins, drugs or other chemicals. They can be formed,
manipulated, and modified in a variety of ways. Liposomes were first described
in 1961 by Bangham [58]. In the following years a variety of macroscopic methods
has been developed for their production, such as extrusion through porous mem-
branes [59], electroformation [60], freeze-drying [61], hydration or swelling [62] to
name a few of them. Vesicles may have a diameter ranging from a few nanometers
to a few hundred micrometers classified as small unilamellar vesicles (SUVs), large
unilamellar vesicles (LUVs), and giant unilamellar vesicles (GUVs) (Figure 2.1). Dif-
ferent type of phospholipid can be used to act on the stiffness of the membrane.
Another important aspect of the membrane structure is its lamellarity, a term that
defines the number of bilayers of which it is composed. Liposomes that contain
more than one bilayer are called multilamellar vesicles (like MLVs). Another type of
liposome called multivesicular vesicle consists of one giant vesicle containing sev-
eral smaller vesicles (MVV). Giant unilamellar vesicles (GUVs) resemble to the living
cells in their structure, functions, and geometry (such as membrane inextensibility
of red blood cells), which is why they serve as a simplified system of RBC.

FIGURE 2.1: The common types of vesicle according to their size and lamellarity [63].

Capsules are found in nature in the form of cells, bacteria, seeds, and eggs. They
consist of an internal substance enclosed by a semi-permeable membrane made of
polymers. Depending on the fabrication process their membrane can be extensible,
unlike vesicles. In turn they are endowed with shear elasticity, mimicking the cy-
toskeleton of the RBCs. The primary role of the capsule membrane is to confine and
protect the encapsulated substance, as well as to control the exchange between the
capsule’s content and the ambient environment. The size of capsules can range from
a few nanometers to a few hundred millimeters, where the later corresponds to a
pharmaceutical capsule used for drug delivery. Artificial capsules are commonly
used in cell sorting and cell characterization devices [27], determination of mem-
brane properties [64], and of course to mimick blood flow in vascular capillaries [65,
13]. Several techniques based on physical and/or chemical methods are used in the
fabrication process like air-suspension coating, pan coating, spray–drying, solvent
evaporation or polymerization [66].
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2.2 Mechanical properties of membranes

Theoretically, the membrane is considered as a two-dimensional impermeable and
incompressible Newtonian fluid with a negligible mass due to its finite thickness.
Four relevant energies contribution can be identified: (i) The local in-plane energy
which is caused by the resistance to shear and dilation deformation. (ii) The local
out-of-plane energy due to the bending deformation. (iii) The constraint energy for
the total surface and volume conservation. (iv) The energy acting between pairs
of membranes or membranes and walls, but are not part of the membrane model
itself. It is assumed that the contribution of the energies mentioned above are in-
dependent of each other, which is a common idealization in simulations. Two ap-
proaches can be used to obtain a constitutive law for a two-dimensional membrane.
In the first approach, the mathematical modeling of tensions and bending moments
is an extrapolation of a three-dimensional elastic relation which relies on the clas-
sical theory of thin shells developed and widely used in structural engineering [67,
68]. Another approach is to postulate directly a two-dimensional constitutive law,
which has been accomplished by different authors to describe biological membranes
[18, 69]. The membrane model is formulated in such a way that any deviation from
the resting shape increases the membrane energy and response forces are induced
which drive the membrane shape towards an equilibrium shape [70].

2.2.1 Equilibrium shapes

The parameter controlling the shape in the absence of external flow is the reduced
volume, also called the swelling ratio ν3D [71]. It is defined as the ratio of the actual
volume of the cell over that of a sphere having the same area. In two dimensions it
is defined as the reduced area ν2D, which is the surface area of the cell divided by
the area of a circle having the same perimeter. This parameter quantifies the degree
of deflation of a cell:

ν3D =
V

4
3

π

(
A

4π

) 3
2

, (2.1)

ν2D =
A

π
( p

2π

)2 , (2.2)

where V is the volume, A the area, and p the perimeter. Equilibrium shapes in the
absence of flow can be computed by the minimization of the total bending energy
(while imposing constraints of constant enclosed volume and constant area [71]).
The shapes are axisymmetric and can be conveniently represented via their section
as a function of the reduced volume. This investigation of shapes for vesicles was
proposed by Seifert [71] as shown in Figure 2.2. If we consider a sphere (ν = 1) and
deflate it progressively, we first find prolate shapes, which are elongated around the
rotation axis. If we swell below ν ≈ 0.65, the minimal equilibrium shape is oblate,
or discocyte. This kind of shape is the biconcave one assumed by RBCs. Below
ν ≈ 0.59 there is a transition towards the stomatocyte, the cell folds on itself. It
must be specified that in two dimensions there is no difference between prolates
and oblates, and stomatocytes do not constitute a configuration of minimal energy.
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FIGURE 2.2: Different vesicle equilibrium shapes as a function of the reduced volume ν [71].

2.2.2 Bending energy

FIGURE 2.3: Section from the membrane curved in two planes [72].

The local bending energy expressed as a function of to the principal mean and Gaus-
sian curvatures (2.3) was proposed first by Canham [72], and then generalized by
Helfrich [15] for biological membranes.

WB =
KB

2

∮
A
(2H − C0)

2 dA + KG

∮
A

HG dA , (2.3)

where the integration is performed over the instantaneous membrane shape.
C0 is the spontaneous curvature, KB is the bending modulus associated with the
mean curvature H, and KG is the bending modulus associated with the Gaussian
curvature HG. The mean and Gaussian curvatures are given by:

H =
1
2
(C1 + C2) (2.4)

HG = C1 C2 , (2.5)
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C1 and C2 stand for the principal curvatures, which are defined as the inverse of the
curvature radius

(
Ci = R−1

i

)
(Figure 2.3).

The concept of spontaneous curvature was introduced by Helfrich to account for
possible asymmetries in the bilayer molecular structure of a biological membrane.
In the case of symmetric membrane, C0 = 0.
According to the Gauss-Bonnet theorem of differential geometry, the surface inte-
gral of the Gaussian curvature in equation (2.3) is a topological invariant. Since the
present membrane model does not allow rupture or topology change, the Gaussian
energy term is always constant and, thus, does not contribute to the energy balance.
Hence, it can be neglected [73, 65].
Another non-local bending energy term may be included. It arises from the fact that
the two layers of the RBC membrane do not interchange material readily. Therefore,
they may have slightly different relaxed areas (due, for example, to a few additional
molecules in one layer compared to the other) [73, 74]. The corresponding energy is
defined as follows:

Wr =
Kr

2h2A0
(∆A− ∆A0)

2 , (2.6)

where Kr is the non-local bending modulus, and h is the distance between the neutral
surfaces of the two layers. ∆A is the difference between the neutral surface area of
the outer and the inner bilayer, which is defined as,

∆A = 2h
∫

A
H dA , (2.7)

∆A0 is the corresponding difference between the inner and outer unstressed area of
these layers ∆A0 = Aout

0 − Ain
0 . This contribution is neglected in this work for the

sake of simplicity.

2.2.3 Elastic in-plane energy

According to Evans and Skalak [75] the RBC membrane is considered as an isotropic,
homogeneous, and hyperelastic continuous material. "Hyperelastic", also called
Green elastic material, means that the elasticity is assumed to be non-dissipative.
This implies that the membrane deformation is reversible. Since the energy is in-
dependent on the rotations or translations of the membrane (isotropic and homoge-
neous membrane), it is possible to align the undeformed and the deformed patches
as shown in Figue 2.4.
The elastic energy is stored locally in a shear deformation and expansion of the mem-
brane via the displacement gradient tensor Di,j. This tensor describes the state of the
local deformation of the membrane. Since the thickness is negligible, it is sufficient
to treat the 2D case [70]. Here, the displacement gradient tensor is defined as:

Di,j = δi,j +
∂Ui
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with:

{
Ux = U1,1′~i + U2,2′~i + U3,3′~i ,
Uy = U1,1′~j + U2,2′~j + U3,3′~j .

(2.9)
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FIGURE 2.4: In-plane Deformation of a membrane face element. The undeformed face is
defined by the vertices (1, 2, 3), while the deformed one is defined with (1′, 2′, 3′). Ui,j is the

displacement vector from the undeformed to the deformed face.

The constitutive law for the elastic energy depends on the principal in-plane stretch
ratios λ1 and λ2. These invariants are the eigenvalues of the displacement tensor
Di,j. Equivalently, the so-called strain invariants I1 = λ2

1 + λ2
2 − 2 and I2 = λ2

1λ2
2 − 1

which describe the strain and dilation state of the membrane, respectively, can be
used. Several laws have been proposed to model thin membranes, but only the
most used are presented here.
A classical 3D law, initially designed to describe rubber-like materials, and extrap-
olated with the thin shells theory is the Neo-Hookean (NH) law given in equation
(2.10). Another simpler model relies on Hooke’s law (H) (2.11). Both models (NH
and H) are restricted to small deformations. To model the large deformations of
RBCs membrane, Skalak introduced the Skalak law (SK) [18], which accounts for
shear deformations and area dilatation (2.12).
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where Gs denotes the surface shear modulus, νs is the surface Poisson ratio where
νs ∈ ]− 1; 1[, and C is a positive dimensionless parameter preserving the area from

large dilatation C =
νs

1 + νs
.

The total elastic energy of the membrane is the surface integral : Ws =
∮

A ws dA
where ws stands for the elastic energy law discussed above.
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2.2.4 Area dilatation energy

In reality, the total surface area of an RBC is strongly conserved. To incorporate
the constraints of fixed area (perimeter in 2D) it is convenient to introduce the La-
grangian multiplier ζ (2.13) which can be seen as a fluid-pressure difference that
preserves locally the surface area [73]. The corresponding energy is written:

Wc =
∮

A
ζ dA , (2.13)

where dA is a surface element on the membrane surface A. Even for strongly de-
formed RBCs, the observed surface deviations are usually smaller than 1%.

2.2.5 Membrane forces

As the membrane is considered as a fluid (see section 2.2), we have to introduce
the hydrodynamic equations and determine the membrane forces from membrane
bending energy (2.3), and from the elastic (2.11, 2.10 or 2.12) and the constraint (2.13)
energies, in order to get the vesicle or capsule motion in flow.
For a two-dimensinal planar membrane (one principal curvature) with zero sponta-
neous curvature, and negligible Gaussian energy (as previously discussed in section
2.2.2), the Helfrich bending energy (2.3) is written:

WB =
KB

2

∮
A

c2 dA . (2.14)

The corresponding bending force is deduced from the functional derivative of this
energy,

fB = −
1
√

g
δWB

δr
, (2.15)

where δr is a small local displacement of a point r of the membrane, and g is the
determinant of the metric tensor defining a fixed parametrization used to describe
the membrane surface [76]. In two dimensions, it reads:

fB = KB

(
d2c
dl2 +

1
2

c3

)
n , (2.16)

where n is the normal unit vector pointing outward at the considered position on
the membrane, and dl the arc length (see [77] for calculation details).

For each constitutive elastic law, Biesel [78] derived, in the three-dimensional case,
the tension components T1 and T2 respectively in the principal direction n1 and n2,

TNH
1 =

Gs

λ1λ2

(
λ2

1 −
1

(λ1λ2)
2

)
(2.17)

TH
1 =

Gs

(1− νs)

[
λ2

1 − 1 + νs
(
λ2

2 − 1
)]

(2.18)

TSK
1 =

Gs

λ1λ2

[
λ2

1(λ
2
1 − 1) + C(λ1λ2)

2 ((λ1λ2)
2 − 1

)]
. (2.19)
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The principal stretch ratios λ1 and λ2 are measured along the principal deformation
as the ratio between undeformed area by the deformed one, Gs is the shear modu-
lus, νs is the Poisson ratio of the surface, and C a positive constant preserving the
local membrane area from large deviation. The tension component T2 in the second
direction n2 is obtained by interchanging the indices 1 and 2 for each constitutive
law.
For the 2D simulation, the cell is equivalent to an actual 3D cell subject to a stretch-
ing in direction 1 only: T1 6= 0, T2 = 0. The stretch ratio λ2 is not zero, but since

T2 = 0 we can express λ2 in terms of λ1 (e.g., for Neo-Hookean law λ2 = λ
− 1

2
1 ). Then

for a 2D cell we have,

TNH =
Gs

λ3/2

(
λ3 − 1

)
(2.20)

TH = Gs(1 + νs)(λ
2 − 1) (2.21)

TSK = Gsλ1(λ
2 − 1)

√
1 + Cλ2

1 + Cλ4

[
1 + Cλ4

1 + Cλ2 +
C

1 + Cλ4

]
, (2.22)

where T = T1 and λ = λ1. For a membrane discretized by a set of points, T is
the tension acting along a line segment connecting two adjacent points on the mem-

brane, and λ =
dl0
dli

is the stretch ratio of the line segment. The membrane elastic

force fs at a point x of the membrane is then the resultant vector of the tensions in
the two adjacent segments [16] (Figure. 2.5),

fs(x) = Titi − Tjtj . (2.23)

FIGURE 2.5: Illustration of the point x from the membrane with the two adjacent points i
and j, with their corresponding unit tangent vectors ti and tj along them.

As discussed in section 2.2.4, a constraint must be introduced over the membrane
surface to preserve the membrane from large deviations, for the 2D case, it reads,

fc = −
1
√

g
δWc

δr
= −ζcn +

∂ζ

∂l
t . (2.24)

The membrane force is then the summation of the bending, the elastic, and the con-
straint forces. In the capsule model the membrane can be extensible, unlike the
vesicle model which shows a higher resistance to the shear elasticity. This differ-
ence is translated by considering only the constraint force for in-plane deformations
for the vesicle model. For capsules, this constraint is already fulfilled in the Skalak
model by the area dilatation constant C (Hooke and Neo-Hooke laws are not suited
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for large deformations). Finally in the 2D case, the membrane forces for vesicle and
capsule model reads,

f vesicle
mem = fB + fc = KB

(
d2c
dl2 +

1
2

c3

)
n− ζcn +

∂ζ

∂l
t (2.25)

f capsule
mem = fB + fs = KB

(
d2c
dl2 +

1
2

c3

)
n + Tm t , (m = NH, H or SK) (2.26)

2.2.6 Membrane-membrane interaction

Between two closed lipid bilayers, there are different types of interaction forces that
can be attractive, repulsive or both (oscillatory). In the absence of any other forces,
unstressed bilayers attract each other via the Van der Waals force. This interaction
has an effective range of at most 15 nm. Beyond this value, the effect becomes in-
significant [79]. Due to the thermal agitation, the membrane fluctuates on different
micro-states. This fluctuation is attenuated when two membranes are close enough,
or equivalently their entropy becomes smaller, which leads to a repulsive force called
entropic interaction. Another type of entropic interaction due to strongly bound wa-
ter molecules on the membrane leads to an oscillatory steric-hydration force because
of the energy needed to dehydrate these groups as the surfaces approach each other
[80].
Other interaction that can be repulsive or oscillatory called depletion force. This in-
teraction is associated with the macromolecules that are not attracted to or repelled
from the membrane surface. Therefore, they are excluded from the area between
the cells which induces an osmotic pressure between the bulk solution that contains
macromolecules at a certain concentration and the depleted zone between the two
surfaces that is free of macromolecules [81]. On the other hand, if the membrane ad-
sorbs surrounding macromolecules, bridges shall be formed with the neighboring
cell membrane, leading to the formation of an aggregate [82].
Another kind of force referred to as non-equilibrium (or non-conservative) force be-
cause they involve energy dissipation. They arise only as a reaction to motion or
another force, like Hydrodynamic forces and viscous forces [83, 84, 85]. The interac-
tions between biological cells are generally far more complex than can be described
by just one or two types of interaction, especially if the cells have different sizes,
topologies, and types (see [80]).

2.3 The numerical methods

In the approximation of small membrane deformations an analytical solution can be
found [86, 87], but in the case of large deformations, a numerical simulation is nec-
essary to solve the fully coupled equations governing the mechanics of the fluid and
the membrane. Numerical methods for fluid-structure interaction are thus needed
to predict the deformation of the membrane under flow conditions. At the small
scale of the cells, inertial forces are negligible compared to viscous forces. Therefore,
the blood flow is modeled using the Stokes equations. The load on the membrane is
due to the normal and tangent components of pressure forces and viscous tractions.
This problem has been studied over the last three decades and different techniques
have been considered to derive numerical solutions. Many of these studies have
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used a coupling strategy based on the boundary integral method to solve the Stokes
flow and the equations of membrane elasticity on the same mesh [22, 88]. Another
coupling method used for fluid-membrane interaction is the immersed boundary
method [89, 90] where two grids are used, a stationary Eulerian grid for the fluid
flow and a Lagrangian moving boundary for the interface. In this thesis, we used
the Boundary integral method as a numerical method to solve the fluid-membrane
interaction.

2.3.1 Immersed Boundary method

Another coupling method used for deformable particle simulation is the immersed
boundary method. This method was initially developed by Peskin for the coupled
simulation of blood flow and muscle contraction in a beating heart [19]. In contrast
with the boundary integral method, two grids are used in this method, a stationary
grid for the fluid flow and a moving boundary grid for the interface. The forces
exerted by the membrane on the fluid and the flow velocity inducing membrane
deformation are applied locally from one grid to the other using approximate Dirac
functions [20]. The Navier-Stokes equations are generally solved using finite dif-
ference schemes [89, 98], or more recently using a lattice Boltzmann method [99,
70]. The immersed boundary method has the advantage over the boundary integral
method to be applicable to non-zero Reynolds numbers and non-Newtonian fluids.

2.3.2 Element Boundary methods

Boundary Element Methods (BEM) are numerical computational methods which
consist of transforming a partial differential equation (PDE), which holds over a
given domain, into an integral equation over the boundary of this domain using the
boundary integral method (BIM). BEM are applicable to problems for which Green’s
functions can be calculated, including fluid mechanics, acoustics, electromagnetics,
fracture mechanics, and contact mechanics.
These methods have the advantage of reducing the geometric dimension of the prob-
lem by one, which largely decreases the total number of the meshing nodes. It also
does not involve discretizing spatial derivatives (e.g., with finite element/volume
methods) and is very accurate. In particular, it has been shown to be efficient, pre-
cise, and stable when modeling the deformation of vesicles or capsules subjected to
flows [91, 92]. Considering the Stokes equation for an incompressible Newtonian
fluid,

−∇p + µ ∇2u + f = 0 , (2.27)

∇u = 0 , (2.28)

where u is the velocity of the fluid, p the pressure, f expresses the effect of an applied
external body force, and µ the dynamic viscosity. Since the fluid is incompressible,
the mass is conserved, which can be expressed by the continuity equation in (2.28).
Numerical solutions of the boundary integral equation for Stokes flow were first
presented by Youngren and Acrivos [21] with reference to flow past a rigid parti-
cle. A growing body of literature on boundary integral equation methods for low
Reynolds number flow has been established since that time [93, 94].
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The boundary-integral representation of a two-dimensional Stokes flow is given by
(see Appendix B for details),

uj(r0) = −
1

4πµ

∫
C

Gij(r, r0) fi(r) dl(r) +
1

4π

∫ PV

C
ui(r)Tijk(r, r0)nk(r) dl(r) , (2.29)

where uj(r0) is the velocity at a point r0(x0, y0) lying inside a control area, due to
a point force applied at the position r(x, y). Gij(r, r0) and Tijk(r, r0) are the Green’s
functions of Stokes flow representing, respectively, the velocity and stress field due
to the point force r, f j(r) ≡ σij · nk(r) is the traction force at the boundary C of a
selected control area, l is the arc length along C. The superscript PV indicates that
the integral is a principal value, and nk(r) is the unit normal vector pointing into the
control area.

For three dimensional Stokes flow we obtain,

uj(r0) = −
1

8πµ

∫
A

Gij(r, r0) f j(r) dS(r) +
1

8π

∫ PV

A
ui(r)Tijk(r, r0)nk(r) dS(r) ,

(2.30)
where uj(r0) is the velocity at the point r0(x0, y0, z0) inside a control volume bounded
by the surface A, and the unit normal vector nk(r) points inward.
The Boundary integral equation where r0 lies on the interface (e.g., closed mem-
brane) can be deduced by combining the two BIM representations on either side of
the interface. The boundary integral equation for Stokes flow in the presence of in-
terfaces was presented by Pozrikidis [22, p.141]. For two-dimensional Stokes flow,
we find (see Appendix C),

uj(r0) =
2

1 + λ
u∞

j (r0) −
1

2πµext(1 + λ)

∫
C

Gij(r, r0) f j(r) dl(r)

+
1− λ

2π(1 + λ)

∫ PV

C
ui(r)Tijk(r, r0)nk(r) dl(r) ,

(2.31)

and for the three-dimensional case,

uj(r0) =
2

1 + λ
u∞

j (r0) −
1

4πµext(1 + λ)

∫
A

Gij(r, r0) f j(r) dS(r)

+
1− λ

4π(1 + λ)

∫ PV

A
ui(r)Tijk(r, r0)nk(r) dS(r) ,

(2.32)

where λ = µint/µext is the viscosity ratio between the fluid inside and outside the in-
terface, and u∞ is the imposed flow.
In the case of unbounded flow, the so-called free-space Green’s function for a two-
dimensional flow are given by (see Appendix A),

Gij(r, r0) = −δij ln(|r− r0|) +
(r− r0)i(r− r0)j

|r− r0|2
, (2.33)

Tijk(r, r0) = −4
(r− r0)i(r− r0)j(r− r0)k

|r− r0|4
. (2.34)
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For three-dimensional flow, the free-space Green’s function are,

Gij(r, r0) =
δij

|r− r0|
+

(r− r0)i(r− r0)j

|r− r0|3
, (2.35)

Tijk(r, r0) = −6
(r− r0)i(r− r0)j(r− r0)k

|r− r0|5
. (2.36)

Gij(r, r0) is also referred to as stokeslet, and Tijk(r, r0) as stresslet. The two tensors are
also called the Oseen-Burgers tensors.

For a Stokes flow bounded by one infinite plane wall located at y = W, Blake [95]
demonstrated that the Green’s function can be constructed using the image system
method from a stokeslet G f s

ij , and a few image singularities, including a stokeslet

equal in magnitude but opposite in sign to the initial stokeslet −G f s
ij , a potential

dipoles GD
ij , and a stokeslet dipoles GSD

ij , (2.37),

G1W
ij (r, r0) = G f s

ij (r− r0)− G f s
ij (r− rIm

0 ) + 2h2GD
ij (r− rIm

0 )− 2hGSD
ij (r− rIm

0 ) , (2.37)

where h = y0−w is the distance of the point force from the wall and rIm
0 = (x0, 2w−

y0) is the image of r0 with respect to wall (Figure 2.6).

FIGURE 2.6: Illustration of a point force located at r0 , above an infinite wall positioned at
y = W. The point rIm

0 is the image of the point force with respect to the wall.

The potential and the stokeslet dipoles for the two-dimensional case are,

GD
ij (r) = ±

(
δij

r2 − 2
rirj

r 4

)
, (2.38)

GSD
ij (r) = ryGD

ij (r)±
(

δjyri − δiyrj

r2

)
, (2.39)

where "+" stand for the x-direction and "−" for the y-direction. The associated stress
tensor is given by,

T1W
ijk (r, r0) = T f s

ijk(r− r0)− T f s
ijk(r, rIm

0 ) + 2h2TD
ijk(r, rIm

0 )− 2hTSD
ijk (r, rIm

0 ) , (2.40)
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where,

TD
ijk(r) = ±4

(
−

δijrk + δikrj + δjkri

|r 4| + 4
rirjrk

|r 6|

)
, (2.41)

TSD
ijk (r) = ryTD

ijk(r)± 2
(

δjyδki

|r2| −
δjyrkri

|r 4|

)
+

2δik

|r|4
(

2rxry, r2
x − r2

y

)
. (2.42)

The Green’s function for the case of a Stokes flow in a domain bounded by two par-
allel and rigid walls are the sum of a fundamental Green’s function G f

ij in (2.33), or
(2.35) for 3D case, associated with the flow produced by the point force belonging to
the domain, and its image system with respect to the two walls, and a complemen-
tary Green’s function Gc

ij for which the associated flow field satisfies the boundary
conditions on the walls. The imaging system is composed of two y-periodic sets
of point force. For example, the first red point rIm

0 next to the lower wall is the re-
flection of the point force r0 by the lower wall, this first image will only cancel the
contribution of the lower wall but will disturb the boundary condition in the upper
wall, so that the reflection of the first image to the upper wall is to be considered,
this reflection correction is r1, and so on (Figure. 2.7). The first green point rIm

−1 next
to the upper wall is the reflection of the point force r0 by the upper wall, this image
is then reflected by the lower wall and gives the image r−1.

FIGURE 2.7: Illustration of a point force located at r0 bounded by two infinite wall positioned
at y = ±W/2, and it’s images system rn and rIm

n .
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The fundamental component is the sum over all the stokeslet images N (2.43),

G f
ij(r, r0) =

N

∑
n=−N

(
−δij ln(|r− rn|) +

(r− rn)i(r− rn)j

|r− rn|2

)

−
N

∑
n=−N

(
−δij ln(|r− rIm

n |) +
(r− rIm

n )i(r− rIm
n )j

|r− rIm
n |2

)
,

(2.43)

where rn = (x0, y0 + 2Wn) and rIm
n = (x0,−y0 −W + 2Wn). The first term in the

right-hand-side of (2.43) is the sum of the point force itself, and the second term is
the sum of the image of the point force with respect to the walls. The force magni-
tude of the image point in the second term is equal to the point force in the first term,
but with opposite direction.

As N tends to infinity, both sums in (2.43) diverge. To normalize (2.43) we use the
summation formula proposed by Lamb [96, p.71],

∞

∑
−∞

ln(r) =
1
2

ln
(
cosh(ry)− cos(rx)

)
+

1
2

ln(2) , (2.44)

where the term
1
2

ln(2) was added so the Green’s function close to the source point
reduces to a stokeslet [22, p.94].

The fundamental Green’s function is then,

G f
ij(r, r0) = Qij(r− r0)−Qij(r− rIm

0 ) , (2.45)

where,

Qij(r) =



Qxx = −
1
2

ln
[
cosh

( xπ

W

)
− cos

(yπ

W

)]
+

xπ

2W

sinh
( xπ

W

)
cosh

( xπ

W

)
− cos

(yπ

W

) ,

Qxy = Qyx =
xπ

2W

sinh
(yπ

W

)
cosh

( xπ

W

)
− cos

(yπ

W

) ,

Qyy = −
1
2

ln
[
cosh

( xπ

W

)
− cos

(yπ

W

)]
−

xπ

2W

sinh
( xπ

W

)
cosh

( xπ

W

)
− cos

(yπ

W

) .

(2.46)
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Evaluating G f
ij(r, r0) at the two walls we find,

G f
xx(y = ±W/2) = G f

yy(y = ±W/2) = 0 ,

G f
xy(y = +W/2) = G f

yx(y = +W/2) =
(x− x0)π

W

sinh
(

h2π

W

)
cosh

(
(x− x0)π

W

)
− cos

(
h2π

W

) ,

G f
xy(y = −W/2) = G f

yx(y = −W/2) = −
(x− x0)π

W

sinh
(

h1π

W

)
cosh

(
(x− x0)π

W

)
− cos

(
h1π

W

) ,

(2.47)

where h1 = y0 +
W
2

and h2 =
W
2
− y0 (Figure. 2.7). From (2.47) it is obvious that only

the diagonal terms of G f
ij vanish over each wall. We require then a complementary

Green tensor Gc
ij which must satisfy the following boundary conditions,

Gc
xx(y = ±W/2) = Gc

yy(y = ±W/2) = 0 ,

Gc
xy(y = +W/2) = Gc

yx(y = +W/2) = −G f
xy(y = +W/2) ,

Gc
xy(y = −W/2) = Gc

yx(y = −W/2) = −G f
xy(y = −W/2) .

(2.48)

The complementary term is calculated using Fourier transforms. First, one takes the
Fourier transform of the Stokes equation with the boundary conditions (2.48). Then,
by an inverse Fourier transform the complementary Green’s tensor Gc

ij is determined

in real space and added to the fundamental Green’s tensor G f
ij in order to obtain the

full Green’s tensor G2w
ij . The same approach is also used for the stresslet T2w

ijk . The
full analytical calculations of the Green’s function can be found in [22, p.98] for the
2D case. The calculations for the 3D case was done by Liron and Mochon [97].
In our simulation (see Chapter 3) the complementary Green’s tensor is evaluated
numerically by fast Fourier transform subroutines.

2.4 Hydrodynamic equations

The velocity and the hydrodynamic pressure fields due to a point force in the mem-
brane are found by solving the continuity equation (2.28), and the Stokes equa-
tion (2.27) with the forcing term replaced by a singular forcing term in the two-
dimensional case,

−∇p + µ ∇2u = −f δ(r− r0) , (2.49)

where u is the velocity of the fluid, p the pressure, and µ the dynamic viscosity. δ(r−
r0) represents the Dirac delta function imposing that the force f vanishes everywhere
except at the singular point r = r0. First, we write all the variables in right-hand side
of (2.49) in a dimensionless form using,
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r∗ =
r

R0
; u∗ =

u
U

; p∗ =
pR0

µU
, (2.50)

where the cell radius R0 is the characteristic length scale and U is the characteristic
velocity. Substituting the terms in (2.50) in the Stokes equation (2.49) and multiply-

ing it by the quantity
(

R2
0

µU

)
we obtain,

−∇∗p∗ +∇∗2 u∗ = −
(

R2
0

µU

)
f δ(r− r0) . (2.51)

Now we write the membrane forces for the vesicle or the capsule model (2.25, 2.26),
and the Dirac delta function in dimensionless form using,

c∗ = cR0 ; l∗ =
l

R0
; ζ∗ =

ζ

Γ
; δ(r− r0) = δ (R0(r∗ − r∗0))

=
δ(r∗ − r∗0)

R0

1

,

(2.52)

where Γ is the spring constant of the membrane. Introducing the shear rate with
γ̇ = U

R0
, the dimensionless membrane forces for the vesicle model reads,

R0

µγ̇
f∗mem =

KB

µγ̇R3
0

(
d2c∗

dl∗2
+

1
2

c∗3
)

δ(r∗ − r∗0)n

+
Γ

µγ̇R0

(
∂ζ∗

∂l∗
t− ζ∗c∗n

)
δ(r∗ − r∗0) .

(2.53)

We introduce the following dimensionless number,

• The capillary number :

Ca =
µγ̇R3

0
KB

≡ γ̇τB , (2.54)

it measures the flow strength over the bending energy of the membrane. It
also gives the ratio between the shear time γ̇−1 and the characteristic time in
bending modes needed by a deformed vesicle to relax to its equilibrium shape
µR3

0
KB

.

• The tension number :

CT =
µγ̇R0

Γ
, (2.55)

is the ratio between the spring relaxation time and the shear time.

1Using Dirac delta property: δ(ax) = 1
|a| δ(x)
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• For the capsule model, the dimensionless shear rate related to the shear force
determines the relative importance of shearing and elasticity. It reads,

Cs =
µγ̇R0

Gs
≡ γ̇τs . (2.56)

• Another important parameter is the reduced ratio of bending to elasticity mod-
ulus, in the form of,

Ce =
KB

GsR2
0

. (2.57)

• For the flow confined between two parallel walls, the dimensional number Cn
describes the degree of confinement of the cell. It reads,

Cn =
2R0

W
. (2.58)

2.5 Conclusion

Due to the complexity of the RBC membranes, simplified models like capsules, and
vesicles are used to mimic RBC behaviors both in simulations and in experiments.
The main difference between these two models is their extensibility. The capsules
membrane, depending on the fabrication process, can be extensible unlike the vesi-
cles. The membrane model is formulated in such a way that any deviation from the
resting shape increases the membrane energy and response forces are induced which
drive the membrane towards an equilibrium shape. In simulations, the unstressed
shape is controlled with the reduced volume (reduced area for the two-dimensional
case), also called swelling ratio. This parameter quantifies the degree of deflation of
a cell. In the absence of externally applied flow, RBCs assumes a discocyte shape,
where the swell ratio is around ν = 0.65 (see Figure 2.2). In the presence of external
flow, four relevant response forces contributions can be identified: Local in-plane
forces are caused by the resistance to shear and dilation. The bending energy, giving
rise to forces normal to the membrane. To ensure that the total surface and volume
are constant, like for RBCs, we impose a constraint force. Furthermore, the forces
that act between pairs of membranes or membranes and walls, but are not part of
the membrane model itself. Constitutive laws are adopted for the bending and the
stretching energies. Helfrich law (2.3) is used for the bending energy, both for the
vesicle and the capsule model. For small in-plane deformation, in the capsule model,
Hooke and Neo-Hooke laws are used for the stretching energy, to model the large
deformations of RBC membranes, Skalak law (2.12) is used. It accounts for shear
deformation and area dilatation.
Two approaches can be used as numerical procedures to solve fluid-membrane inter-
action problems. In the first one, the fluid and the membrane dynamics are brought
together into a single formulation for the entire problem. This resulting equation
can be calculated using the Boundary integral method, where the partial differential
equation is transformed into an integral equation over the boundary of the domain
using Green’s function and the Lorentz reciprocal theorem (see Appendix B). The
Green’s function differs from one geometry to another (e.g.: unbounded flow, flow
bounded by one or two walls, coaxial-cylinders, etc.). The imaging system method
[95] is generally used to find the right Green’s function associated with each geom-
etry. In contrast, the second approach consists of two separated grids, a stationary
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grid for the fluid flow and a moving boundary grid for the interface. The interac-
tion between the fluid and the membrane grids is calculated using an approximated
Dirac delta function. This approach is called the immersed boundary method.
Using dimensional analysis for the Stokes equation, and the membrane forces equa-
tion, the system of equations can be described with dimensionless quantities. The
capillary number Ca, and the tension number CT are used for the vesicle model.
The dimensionless shear rate Cs, and the reduced ratio of bending Ce for the capsule
model. Another dimensionless parameter used in the case of a cell confined between
two walls is the confinement number Cn.
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In this chapter, we will study the shape of two-dimensional cells, for unconfined shear flow,
and confined Poiseuille flow. The simulations are done with the boundary integral method,
a diagram of the algorithm is shown in Figure 3.4. First, we start by a comparison between
the capsule and vesicle deformation, and the observed shapes for different viscosity ratio λ in
shear flow. Then, for the Poiseuille flow, we will focus only on the vesicle model for a viscosity
ratio λ set equal one. We will study and summarize as a function of the capillary number Ca
and the confinement Cn the vesicle shapes in a phase diagram. We will extend the discussion
to time-dependent flows using amplitude modulation of the Poiseuille flow and investigating
its effect on the vesicles shape. We focus on the emerging snaking shape, where the vesicle
shows an oscillatory motion like a swimmer flagella even though the flow is stationary. In all
simulations, we have set the reduced area ν to 0.6 which is close to the one of an RBC in 2D.
We will also extend the study to the case of two vesicles in steady and oscillating Poiseuille
flow.
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3.1 Algorithm

The vesicle membrane is discretized with a set number of nodes N. At a certain time
t each node ri(t) is defined by its x and y coordinates Figure 3.1.

FIGURE 3.1: Vesicle membrane nodes ri at a certain time t.

The numerical procedure begins by calculating the local curvature using the tangent
and normal unit vectors. Then using equation (2.25) for vesicle model or (2.26) for
capsules, the force vectors fi(t) are generated on each node ri(t) Figure 3.2.

FIGURE 3.2: Force vectors fi calculated from (2.25) in each membrane node ri.

Applying an external flow u∞, the membrane will deform and move with a certain
velocity. The velocity vectors ui(ri(t)) on each node, Figure 3.3, are obtained by
solving the equation (2.29) with the appropriate Green’s functions.

FIGURE 3.3: The figure in the left shows the velocity vectors ui(ri) calculated using BIM
formulation in (2.29) on each nodes. In the right figure, the new shape and position of the

membrane ri(t + dt) are obtained with Euler integration.
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Finally the new membrane shape and position are obtained by a numerical integra-
tion of the velocity vectors with Euler method r(t+ dt) = r(t) + u(r(t), t). Figure 3.4
shows the algorithm scheme used for the BIM method.
The combination between the BIM method and the vesicle model was initially de-
veloped by Biben and Misbah [100]. Many studies used the same approach to study
vesicle behaviors in flow like [87, 101]. The numerical approach was also extended
to study 3D vesicle dynamics [102].

Simulation Initialization:
* Generating initial shape by setting the number of points
describing the membrane, and the reduced area ν.
Or start from from a previous one.
* Setting the other constant of the simulation depending
on the model chosen (vesicle or capsule), for vesicle:

Ca ; CT ; λ ; R0

From the membrane points position, deducing the local
curvature c, and then the membrane forces using the
equation (2.25 or 2.26).

Using the boundary integral formulation in (2.31) for two
dimensional simulation, and with the appropriate Green’s
Function, deducing the velocity vector at each node from
the membrane.

Updating the nodes position using the Eulerian explicit
scheme:

r = r(t + dt)− u(r(t), t)

And getting the nex shape configuration.

ri(t)

fi(ri(t))

u(ri(t), t)

Loop over
the Time step.

FIGURE 3.4: Illustration of the algorithm used for two-dimensional simulation with the
boundary integral method.
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3.2 Single cells in shear flow

Considering the Stokes equation (2.27) without external force (f = 0), we are looking
for the flow profile u(ux(y), 0) between a lower plane wall at y = −W/2 moving
parallel to itself with a constant velocity −V0, and an upper plane wall also moving
in parallel with the constant velocity V0, as shown in Figure 3.5. It is assumed that
no external pressure gradient is applied parallel to the walls, and the flow is fully
developed, the Stokes equation is then,

µ
d2ux

dy2 = 0 . (3.1)

FIGURE 3.5: Shear flow illustration, the upper and lower wall are moving respectively with
the constant velocity V0 and −V0.

Integrating equation (3.1) from y = −W/2 to y = W/2, and taking into account
the boundary condition at the upper wall (ux(y = W/2) = V0) and at the lower one
(ux(y = −W/2) = −V0), the velocity profile for a shear flow is then,

u(x, y) =


ux = 2V0

y
W

uy = 0
. (3.2)

The behavior of a cell in shear flow is used here as a test case. The objective is
to compare the deformation and the motion in vesicle and capsule model with the
literature.

3.2.1 Vesicles under shear flow

We consider a two-dimensional vesicle immersed in an unbounded shear flow. The
membrane forces are computed using the equation (2.25). The Stokes equation is
solved for each point of the membrane using (2.31) and the associated free space
Green’s functions (2.33, 2.34).
The flow is unbounded, means that W tends to infinity and consequently the con-
finement effect vanishes Cn = 0. Therefore, only the Capillary number Ca and the
viscosity ratio λ come into play.
If the viscosities of the liquid inside and outside of the vesicle are equal, the vesicle
shows a dynamic state called tank-treading (TT), this motion is due to the elonga-
tion part of the shear flow in which the vesicle becomes oriented within the shear
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plane, but with a constant inclination angle θ0 to the flow direction, as shown in Fig-
ure. 3.6. The rotational part of the shear flow induces a rotational flow of the interior
liquid, which implies a rotation of the membrane around the vesicle interior. As
the viscosity contrast increases, the vesicle shows a bifurcation to a different type of
motion called tumbling (TB), See Figure. 3.6. Here, the vesicle rotates periodically in
the shear plane, instead of only its membrane. At higher shear rates, An intermedi-
ate regime between TT and TB emerges. Called the vacillating-breathing (VB) (also
named trembling or swinging) founded theoretically by Misbah [87]. In this state,
the long axis of the vesicle does not perform full rotations as in the TB mode, but
only oscillates up and down about the flow direction.
A phase diagram summarizing vesicle shapes were made numerically [103], analyt-
ically [29, 104], and also by in-vitro experiments [105]. Generally, the transition from
TT to TB trough VB is done by an increase of the viscosity ratio and a decreasing of
the capillary number Ca.

(a) (b)

FIGURE 3.6: Tank-treading motion of a vesicle in shear flow for Ca = 1, λ = 1. is a por-
tion of the membrane. (a) and (b) shows the displacement of a portion from the membrane.

(a) (b)

FIGURE 3.7: (a) and (b) shows the tumbling motion of a vesicle in shear flow for Ca = 1
and λ = 5.

3.2.2 Capsules under shear flow

In this section, we study the motion of a two-dimensional capsule with an initial
circular shape under shear flow. The Skalak law is employed for the in-plane de-
formation due to its similarity with RBC, and the Helfrich law for the out of plane
deformation. Due to the shear flow, the capsule deforms and rotates about its sta-
tionary origin. Besides the TT, TB and VB motions previously discussed for the vesi-
cle model, the in-plane elasticity of the capsule membrane introduces two main new
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effects: (i) if there is no viscosity contrast, under a weak enough flow the capsule un-
dergoes TB, where a vesicle always exhibit a TT. (ii) A swinging (SW) or oscillatory
motion at a low viscosity contrast emerges. In this mode, the inclination angle oscil-
lates but always remains positive (not to be confused with VB, where the inclination
angle oscillation is quite large).
The capsule deformation is captured within the deformation parameter D (also re-
ferred to as the Taylor parameter or elongation parameter),

D =
L− B
L + B

, (3.3)

where L and B are respectively the largest and smallest axis of the deformed capsule,
as shown in Figure 3.8 (for a circle D = 0).

L
B

FIGURE 3.8: The elliptic shape adopted by a capsule in shear flow. L and B are the largest
and smallest axis of the deformed capsule.

FIGURE 3.9: Deformed capsule with a circular initial shape for the dimensionless shear rates
Cs = 0.04 and Cs = 0.125

Figure 3.9 shows the deformed capsule for the dimensionless shear rate (Cs = 0.04
and 0.125), the viscosity ratio λ = 1, and without bending stiffness effect Ce = 0. The
capsule elongates and aligns itself with the direction of the flow as the Cs increases.
After the capsule deforms to a steady configuration, its membrane undergoes a TT



40 Chapter 3. Cells under flow

motion. A slight increase in the perimeter accompanies the elongation. To quan-
titatively illustrate the effect of increasing the dimensionless shear rate Cs on the
capsule deformation, the temporal evolution of the Taylor deformation parameter D
is presented in Figure 3.10.

FIGURE 3.10: Temporal evolution of Taylor deformation of a capsule for Cs = 0.04 and
Cs = 0.125, without bending stiffness effect (Ce = 0)

FIGURE 3.11: Temporal evolution of Taylor deformation of a capsule for a fixed dimension-
less shear rate Cs = 0.04, and different bending ratio Ce

In Figure 3.11, and for a fixed dimensionless shear rate Cs = 0.04 the effect of the
bending stiffness is reported. It restricts the global deformation of capsules. Increas-
ing the bending modulus Ce, the shape of the deformed capsules tends to a circle,
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and the orientation becomes less aligned with the flow direction. These results agree
with those of previous researchers, e.g., Ramanujan and Pozrikidis [88], and Bagchi
[16].

3.3 Vesicles in Poiseuille flow

In this section, we treat the flow of an incompressible fluid between two parallel and
fixed walls. The flow is induced by a pressure difference applied between the inlet
and outlet of the channel. The two walls are at y = −W/2 and y = W/2. The pressure
gradient varies negatively in the direction of the x axis ∂p/∂x = −∆p/L.
Assuming that no external forces are applied, the Stokes equation is

−∂p
∂x

+ µ
∂2ux

∂y2 =
∆p
L

+ µ
∂2ux

∂y2 = 0

−∂p
∂y

= 0

. (3.4)

Integrating this equation, and taking into account the no-slip boundary conditions
on the walls of the channel (ux = 0 for y = ±W/2), we find:

u(x, y) =

ux =
∆p
2µL

(
−y2 +

W2

4

)
= Vmax

(
1− 4y2

W2

)
uy = 0

. (3.5)

The corresponding flow is referred to as the plane Poiseuille flow. Its velocity profile
is parabolic as shown in Figure 3.12, and the velocity ux has its maximum value Vmax
in the plane of symmetry of the channel (y = 0) with:

Vmax =
∆p
L

W2

8µ
=

(
−∂p

∂x

)
W2

8µ
. (3.6)

FIGURE 3.12: Poiseuille flow illustration, the velocity vanishes at the upper and lower wall
and becomes maximal in the middle of the channel at y = 0.

The volumetric flow rate Q per unit of the channel width is given by,

Q =
∫ W/2

−W/2
ux(y)dy =

∆p
L

W3

12µ
. (3.7)
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The flow rate Q is proportional to W3 for a given pressure difference. Therefore, it
decreases drastically as the width decreases. The viscosity forces, which increases
with the velocity gradient, are thus higher in smaller capillaries [106].

3.3.1 Steady shapes

We consider a vesicle in two-dimensional bounded Poiseuille flow. As already men-
tioned, the reduced area ν is fixed to 0.6 to be close to an RBC. The Stokes equation is
solved on the membrane using the boundary integral method representation (2.31),
and the expression of Poiseuille flow in (3.5) for the imposed flow u∞. The appropri-
ate Green’s functions for a flow bounded by two plane walls are described in section
2.3.2. Several numerical [31, 107] and experimental [108, 109] studies showed the ex-
istence of several shapes adopted by the vesicle as function of the capillary number
Ca and the confinement Cn.
There are three families of shapes, the symmetric shapes, where the vesicle center of
mass always remains on the symmetry axis of the channel. The asymmetric shapes,
where the center of mass is dispatched vertically, while the vesicle membrane shows
a TT motion. The oscillatory shapes which correspond to a transition between sym-
metric and asymmetric shapes, in which the vesicle shows an oscillatory motion like
a swimmer flagella. In the following, those shapes will be discussed in details.
For the viscosity ratio λ = 1, Kaoui et al. presented in a phase diagram the result-
ing shapes as function of Ck and Cs in Figure 3.13, where five distinct regions are
identified.

FIGURE 3.13: Phase diagram of a vesicle in Poiseuille flow for λ = 1 [31]

For Ck ≥ 10, a weak confinement Cn gives the unconfined slipper (U-Sl)(Figure 3.16.b
and 3.16.c), while a strong confinement leads to the confined slipper (C-Sl) (Fig-
ure 3.16.d and 3.16.e). The slipper shapes belongs to the asymmetric shapes. For
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an intermediate confinement, the vesicle adopt the symmetric parachute shape (Fig-
ure 3.15). When the flow strength becomes weak Ck < 10, the intermediate oscil-
latory shapes emerges, that has been called "Snaking" (Sn). The oscillation may be
centered (C-Sn) (where the mean value of ycm component of the center of mass, over
a period of oscillation, is equal to zero), or off-centered (OC-Sn) (the mean value of
ycm is different from zero).
In microcirculation, where the viscosity contrast is λ ' 5, RBCs must deform to fit
the smallest blood vessels like the capillaries. Most of the experiment observe that
the cells adopt the symmetric parachute-like shape. The asymmetric slipper shape
is also observed experimentally in microvessels upon increasing the flow strength.
Several studies investigated the different shapes encountered by the RBCs with var-
ious flow strength, degree of confinement, and viscosity ratio [27, 110, 111].
In Figure 3.14 we reproduce in parts the phase diagram from Figure 3.13 for λ = 1,
where Ck = Ca ∗W. We focused on the oscillatory shape which appear in our simu-
lation for CaW < 9. We find that in this region there is coexistence between the CSn
and the parachute/unconfined slipper shapes.

FIGURE 3.14: Phase diagram showing the different shapes of a vesicle in a steady Poiseuille
flow as a function of the capillary number Ca and the confinement Cn. The region where
centered snaking shapes (CSn) are found consists of three different parts: two regions of
coexistence (¶: CSn and parachutes, ·: CSn and unconfined slippers) and the region ¸,
where only CSn are found. The amplitude and the frequency along the dashed lines are

shown in Figure 3.22.
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(b) (c)

(a)

FIGURE 3.15: Parachute shape. (a) picture of parachute shape in microfluidic experiment
(with permission of A.Kihm). (b) parachute shape for CaW = 5 and Cn = 0.5. (c) parachute

shape for CaW = 10 and Cn = 0.5. u represent the center of mass of the vesicle.

(a)

(b) (c)

(d) (e)

FIGURE 3.16: Slipper shape. (a) picture of slipper shape in microfluidic experiment (with
permission of A.Kihm). (b) and (c) represent the unconfined slipper shape for CaW = 4 and
Cn = 0.2, respectively at a given time t and t + dt. (d) and (e) represent the confined slipper
shape for CaW = 10 and Cn = 2, respectively at a given time t and t + dt. u represent the

center of mass of the vesicle, and shows the TT motion from time t to t + dt.
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3.3.2 The snaking shape

FIGURE 3.17: Sketch of the Centered snaking shape in a steady Poiseuille flow for CaW = 5
and Cn = 0.55 (cf. point B in Figure 3.14)

The region of the CSn is located at weak external flows (CaW < 9). When the walls
of the confinement are sufficiently far away from the vesicle (Cn ≤ 0.45), one either
observes stable parachutes or unconfined slippers (Figure 3.18). Decreasing the size
of the channel enhances the interaction between the channel and the vesicle (the lift
force applied by the channels increases). During the simulation, the vesicle evolves
towards a stable shape but is repelled by the fluid interactions with one wall to-
wards the other one (lift forces). It again tries to adopt a stable shape but is pushed
back again (Figure 3.19). The resulting oscillation gives rise to the CSn (Figure 3.17).
When the channel is not yet too small (0.45 ≤ Cn ≤ 0.6), the vesicle will not neces-
sarily adopt the CSn but can become a parachute or an unconfined slipper as well,
depending on the initial conditions of the simulation. The resulting regions of co-
existence between the CSn and the parachutes/unconfined slippers are depicted in
Figure 3.14. For larger confinement (Cn ≥ 0.6), the coexistence ceases since the walls
are so close that the unconfined shapes are not possible anymore.
That regions of coexistence between parachutes and slippers have already been ob-
served for vesicles whose inner fluid viscosity was five times the viscosity of the
surrounding fluid [32].

FIGURE 3.18: Transition to parachute shape for CaW = 5 and Cn = 0.4.

FIGURE 3.19: Transition to snaking shape for CaW = 5 and Cn = 0.55.

To characterize the oscillation of the CSn in more detail, we choose to follow the
temporal evolution of the vertical position of the center of mass of the vesicle, ycm.
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The maximal vertical distance of the center of mass from the mid-line, ymax
cm , is a mea-

sure for the amplitude of the CSn. Figure 3.20 shows an example for CaW = 5 and
Cn = 0.55 which corresponds to point B in the phase diagram in Figure 3.14. Af-
ter the transient oscillation, the vesicle starts oscillating periodically as one can see
in Figure 3.20.a and the zoom in Figure 3.20.b. The Poincare-map in Figure 3.20.c
shows a non-circular limit cycle, which implies that the oscillation of the vesicle is
not harmonic. The Fourier transform of ycm in Figure 3.20.d confirms this observa-
tion. Increasing the confinement leads to the off-centered snaking, where the oscilla-
tion axis of the center of mass is dispatched vertically, see Figure 3.21. Aouane et al.
[33] found that for certain confinement values the center of mass oscillation becomes
multi-periodic and even chaotic. This behavior is out of interest in this thesis.

(a)

(b) (c)

(d)

FIGURE 3.20: Centered snaking shape in a steady Poiseuille flow for CaW = 5 and Cn = 0.55
(cf. point B in Figure 3.14). (a) Vertical component of the vesicle center of mass ycm as a
function of time. (b) Zoom of (a). (c) Poincare map, and (d) the Fourier transform of the

signal of (a).
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An increase of Ca or Cn intensifies the interaction between the fluid and the vesicle
membrane. The amplitude of the oscillation of the CSn will thus be attenuated as one
can see in Figure 3.22. At the same time we observe an increase of the fundamental
frequency of the oscillation which becomes almost a constant close to the boundaries
of the region of CSn. In Figure 3.22.a the confinement is set to Cn = 0.55 while Ca is
increased until the vesicle changes its shape to a parachute. In Figure 3.22.b we fix
Ca = 1.37 and increase Cn (decreasing the channel width) until the vesicle reaches
the off-centered snaking shape.

(a)

(b)

FIGURE 3.22: Amplitude (triangles) and frequency (circles) of the oscillation of the CSn (a)
for a fixed confinement Cn = 0.55 and (b) for a fixed capillary number Ca = 1.37. The points
A, B, and C are shown in the phase diagram, Figure 3.14, together with the two dashed

curves corresponding to Cn = 0.55 and Ca = 1.37, respectively.
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3.4 Vesicles in modulated Poiseuille flow

RBCs in circulation are subject to unsteady flow. The intermittent nature of heart-
pumping causes the flow to be pulsatile. The unsteadiness can also arise due to the
contraction and recoil of smaller arteries regulating local circulation [112], or dis-
eased arteries with various degrees of atherosclerosis [113]. The fluctuation over the
blood flow in capillaries is introduced by adding an additional term to the Poiseuille
flow equation, it reads,

u∞(x, y) =

u∞
x = Vmax

(
1− 4y2

W2

)
[1 + εmcos (2π fmt)]

u∞
y = 0

, (3.8)

where Vmax is the maximal velocity occurring in the middle of the channel. The pa-
rameters εm and fm, respectively, represent the amplitude and the frequency of a
modulated Poiseuille flow. The frequency fm describes how fast the flow is oscil-
lating, we only consider frequencies which are much smaller than the characteristic
shear rate of the flow field γ̇ in the channel. This implies that we can assume a
quasi-steady Stokes flow, and therefore, use the BIM formulation in section 2.3.2.
For εm = 0 we recover the usual steady Poiseuille flow.

FIGURE 3.23: Sketch of a modulated Poiseuille flow, where δu = u εm cos (2π fmt) (from 3.8).
shows flow profile for a maximal fluctuation (cos (2π fmt) = 1), and shows the

minimal fluctuation (cos (2π fmt) = −1).

The same type of flow modulation has been used by Farutin and Misbah for an ana-
lytical study of the rheological properties of a single vesicle in shear flow [114]. They
have shown theoretically that the effective viscosity exhibits resonance for vesicles,
similarly to what happens for capsules [115]. Matsunaga et al. also used this type
of oscillating flow profile to study capsule deformation in shear flow [116]. Noguchi
et al. mimicked the oscillating Poiseuille flow using a microchannel whose width
varies periodically [117].
There have been also few studies that address the effect of pulsatile flow on RBC dy-
namics in microcirculation [118, 119, 120]. Nakajima et al., for example, have studied
the deformation response of RBCs in a sinusoidally varying shear flow generated in
a cone-and-plate viscometer [121]. A major finding of their experiment is that the
deformation response is not identical during different phases of the shear flow. The
deformation is higher during the retarding phase and lowers during the accelerating
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phase. They noted that such an unequal response was probably due to the rheologi-
cal properties of the intracellular fluid and its interaction with the membrane.
The effect of the fluctuation amplitude εm, and the frequency fm, over the vesicle
shape will be studied in the following.

Transition shape

Transition shape

Parachute

Parachute

(a)

(b)

FIGURE 3.24: Temporal evolution of the vertical component of the vesicle center of mass ycm
for Ca = 2.5 and Cn = 0.5. (a) For a steady Poiseuille flow. (b) For oscillating Poiseuille flow

modulated with εm = 0.2 and fm = 0.05.

In steady Poiseuille flow, and depending on the Capillary number, the vesicle will
resist to the imposed flow and will take a certain time to reach a final shape. For an
oscillating flow this time can be decreased depending on the oscillation parameters
εm and fm. Comparing Figure 3.24.a with Figure 3.24.b we can observe that the shape
transition in oscillating flow is faster than in steady flow. For the highest capillary
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number, the vesicle quickly adopts the final shape (parachute or slipper). Therefore,
the effect of the flow oscillation is insignificant in this case.

3.4.1 Steady shapes

Here we are interested in the response of the fully developed parachute and slipper
shapes to the oscillation of the imposed flow. The oscillation amplitude is fixed at
εm = 0.2 and the frequency fm = 0.05. The vesicle shape response to the flow os-
cillation for parachute and for both, unconfined, and confined slippers are shown,
respectively in Figure 3.25, 3.26, and 3.27.

(a) (b)

FIGURE 3.25: Parachute shape in oscillating flow, (a) is the minimal deformation, and (b) is
the maximal one.

(a) (b)

FIGURE 3.26: Unconfined slipper in oscillating flow, (a) is the minimal deformation, and (b)
is the maximal one.
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(a) (b)

FIGURE 3.27: Confined slipper in oscillating flow, (a) is the minimal deformation, and (b) is
the maximal one.

For the parachute shape, where the flow strength is more dominant over the confine-
ment, the shape undergoes a breathing like motion following the flow oscillation, for
the unconfined slipper, the vesicle will also oscillate, but between two unconfined
slipper shapes. For the confined slipper, the shape is imposed by the confinement,
consequently, the flow oscillation has an insignificant influence on the vesicle shape.
Next, we focus only on the parachute response, where we interpret the shape re-
sponse to the oscillation using the distance between two points laying on the sym-
metry axis of the channel, and where their vertical component is null (because of the
non TT motion in the symmetric parachute shape), as shown in Figure 3.28.

(a) (b)

Xmin Xmax

FIGURE 3.28: Parachute shape (Ca = 2.5 and Cn = 0.5) in oscillating flow, (a) is the minimal
deformation, and (b) is the maximal one. Xmin and Xmax represent the distance between two
points laying in the center x axis, respectively, for the minimal and maximal deformation.

For a fixed oscillation amplitude εm = 0.2, we have varied the frequency fm and
we report the vesicle response with the quantity X = Xmax − Xmin in Figure 3.29.
As expected, if the flow oscillation becomes faster fm ≥ 1, the vesicle will not fol-
low, and the oscillation will not affect the vesicle shape anymore. Only the small
frequencies have a significant effect. Increasing the amplitude εm will increase the
vesicle oscillation (X increases), but no shape transformation has been observed.
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FIGURE 3.29: Variation of the distance X = Xmax − Xmin (see Figure 3.28), as function of the
oscillation frequencies fm. The data point are linked by an spline curve.

3.4.2 The snaking shape

In the following section the effect of the oscillation over the snaking shape is stud-
ied. Three points (A, b, and C) from the phase diagram will be considered (see
Figure 3.14). Each point lies in one of the three regions where the centered snaking
shape can be found. The first point, A, with Ca = 2.33 and Cn = 0.55 lies in the re-
gion of coexistence between the CSn and the parachutes close to the upper boundary
of the region. The second point, B, corresponds to the same confinement as point A
but smaller capillary number Ca = 1.37. It lies in the region of coexistence between
the CSn and the unconfined slippers. Finally, we choose the point C as represen-
tative of the region where only CSn are found by keeping the capillary number of
point B but increasing the confinement to Cn = 0.72.
After the vesicle has reached the CSn in Poiseuille flow, we switch on the oscillat-
ing flow using the profile. The frequency fm is fixed to the fundamental frequency
in steady Poiseuille flow which can be read off from Figure 3.22. The vesicles corre-
sponding to the three considered points are then perturbed by varying the amplitude
εm. As the point A is near to the boundary of the parachute region, a small ampli-
tude εm = 0.2 with fm = 0.05 can already induce a migration to the parachute shape.
When we impose a steady Poiseuille flow again, the vesicle stays in the parachute
shape as expected since A lies in the region of coexistence between the two shapes.
The CSn of point B can as well be forced to evolve to the parachute shape but a
much higher amplitude is needed (εm = 1). After imposing a steady Poiseuille flow
again the vesicle takes on the shape of an unconfined slipper since the point B lies
in the region of coexistence between the CSn and the unconfined slippers, as shown
in Figure 3.30. In point C the vesicle is more confined than in A and B. Therefore,
we cannot force it away from the CSn even if we apply the same high perturba-
tion (εm = 1). The shapes found in the three points for steady Poiseuille flow after
switching off the time-dependence of the flow are all in agreement with the dashed
areas in Figure 3.14.
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FIGURE 3.30: Shape transition from centered snaking to the unconfined slipper through the
parachute under an oscillating Poiseuille flow.

(a)

(b)

FIGURE 3.31: (a) Vertical component of the vesicle center of mass as a function of time in a
modulated Poiseuille flow of amplitude εm = 0.1 and frequency fm = 0.01 around the point

B, for which C0
a = 1.37, y0

cm = 0.19, and f0 = 0.04. (b) Zoom of (a).
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Now, in order to study the effect of the frequency fm, we fix the oscillation ampli-
tude εm and we follow the vertical component of the center of mass ycm for different
oscillation frequency fm. We start with a CSn with a center of mass that oscillates
periodically with amplitude y0

cm and fundamental frequency f0. When it is put into
a modulated flow of fixed amplitude εm and frequency fm, the oscillation becomes
more complicated. Figure 3.31 shows one example for the point B with εm = 0.1 and
fm = 0.01.
The investigated system is obviously not a linear time invariant (LTI) system, be-
cause the output contains non vanishing amplitudes at frequencies different from
the input frequency [122], as shown in Figure 3.32). However, at a first approxima-
tion, the nonlinear response of the system to the harmonically modulated flow can be
treated using a quasi-stationary approach. The scaled frequencies fm and f0 are both
much smaller than one which implies that the elastic modes of the vesicle relax very
quickly compared to a typical period of the shape oscillation. The time-dependent
flow amplitude instantaneously affects the oscillation of the vesicle. Since the flow is
directly proportional to the capillary number Ca, we can use Figure 3.22.a to predict
the behavior of the system. The imposed oscillation of Ca around the value of the
initial CSn, C0

a , enforces an oscillation of position and frequency of the vesicle center
of mass. These quantities are approximately linear in Ca (see Figure 3.22.a), which
allows to approximate the oscillation of the center of mass using a mixed modula-
tion [123].
A vesicle with a CSn motion in steady Poiseuille flow is put into a harmonically
modulated Poiseuille flow (see 3.8). This implies an oscillation of the capillary num-
ber Ca of the system which is directly proportional to the imposed flow. Ca is thus
harmonically modulated with the same amplitude εm and frequency fm as the flow,

Ca(t) = C0
a [1 + εm cos(2π fmt)] , (3.9)

where C0
a is the capillary number corresponding to the initial CSn. In other words,

we force the system to oscillate on a vertical line of the phase diagram (Figure 3.14).
From the data of Figure 3.22.a we can obtain linear fits for amplitude and fundamen-
tal frequency of the vertical component of the vesicle center of mass as a function of
Ca,

ymax
cm (Ca) = y0

cm − a(Ca − C0
a) and f (Ca) =

f0

C0
a

Ca (3.10)

with a = 0.13. The value of a is obtained by neglecting the points for which Ca < 0.3.
The fit of f is only acceptable for Ca < 1.6 since the error becomes too large for higher
values of Ca. The parameters y0

cm and f0 are the fundamental frequency and capillary
number of the initial CSn.
Inserting Ca(t) from 3.9 into these fits yields,

ymax
cm (t) = y0

cm [1−m cos(2π fmt)] (3.11)

with m = aC0
a

y0
cm

εm for the amplitude and,

f (t) = f0[1 + εm cos(2π fmt)] (3.12)

for the frequency as a function of time.
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The whole signal thus consists of a simultaneous amplitude and frequency modula-
tion. This mixed modulation (referred as MM) can be written as,

yMM
cm (t) = ymax

cm (t) cos θ(t) (3.13)

with the phase angle,

θ(t) = 2π
∫ t

0
f (t′)dt′ = 2π f0t + β sin(2π fmt) (3.14)

where β = f0
fm

εm is the index of the frequency modulation. Putting everything to-
gether we obtain,

yMM
cm (t) = y0

cm[1−m cos(2π fmt)]× cos [2π f0t + β sin(2π fmt)] (3.15)

where m = 0.13×C0
a

y0
cm

εm and β = f0
fm

εm are the indices of, respectively, amplitude and

frequency modulation 1.
The envelope of yMM

cm oscillates between y0
cm(1 ± m) and does not depend on the

frequency fm of the flow. One can easily show that

yMM
cm (t)
y0

cm
= cos (2π f0t)− (β + m)

2
cos [2π( f0 − fm)t]

+
(β−m)

2
cos [2π( f0 + fm)t] + . . . (3.16)

to highest order in m and β. The resulting spectrum consists of the fundamental
frequency f0 of the initial CSn and sidebands with frequencies f0 ± n fm (n ∈ N),
which are due to the mixed modulation.
Figure 3.32 shows for fm = 0.01 and εm = 0.1 that the analytical approximation in
(3.16), describes the result of the simulation surprisingly well. Even the amplitudes
of the sidebands around the fundamental frequency f0 (see FFT in Figure 3.32.b) are
predicted correctly with our simple model.
When the modulation frequency fm of the flow is exactly a multiple of the funda-
mental frequency, fm = n f0 (n ∈N), the upper and lower envelopes of ycm should
be constants according to the analytical theory in 3.15. For an even n the total enve-
lope should be symmetric with respect to the center of the channel whereas it should
be asymmetric for odd n. This implies that there are two solutions with constant en-
velope for odd n: one with envelope situated at y+ and −y− and a second one with
envelope at y− and −y+. To check these predictions we again focus on the point
B in the following and fix εm to a value smaller than one to avoid any changement
to the unconfined slipper shape. Looking at the simulations, we observe that the
oscillation of ycm does not display a constant envelope for fm = f0. The numerical re-
sults indicate that the two solutions with asymmetric constant envelope (n is odd) are
linearly unstable; the system oscillates between them. However, one indeed finds a
constant envelope for fm = 2 f0, which is symmetric with respect to the channel. But
even when fm is not exactly 2 f0, the envelope of the signal equals a constant whose
value depends on εm and fm. In the following we shows one example for a fixed
εm = 0.7.

1Note that we do not take into account the higher harmonics of the initial CSn in this approach to
simplify the discussion.
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(a)

(b)

FIGURE 3.32: (a) Corresponding mixed modulation signal yMM
cm with indices of modulation

m = 0.09 and β = 0.4 together with envelope (solid red) and frequency (dashed green). (b)
Comparison of the Fourier transforms of theory (black) and simulation (red).

FIGURE 3.33: Vertical component of the vesicle’s center of mass, ycm, as function of time
in Poiseuille flow modulated with the amplitude εm = 0.7 and frequency fm = 0.04. The
dashed line represents the time at which the modulation of the Poiseuille flow is switched

on.
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For fm = f0 = 0.04 the vesicle oscillates between the two asymmetric solutions of
constant envelope as mentioned above (see Figure. 3.33).

(a)

(b)

FIGURE 3.34: Vertical component of the vesicle’s center of mass, ycm, as function of time
in Poiseuille flow modulated the amplitude εm = 0.7 and frequencies (a) fm = 0.0565, (b)
fm = 0.0920. The dashed line represents the time at which the modulation of the Poiseuille

flow is switched on.

FIGURE 3.35: Vertical component of the vesicle’s center of mass, ycm, as function of time in
Poiseuille flow modulated with the amplitude εm = 0.7 and frequency fm = 0.0930. The
dashed line represents the time at which the modulation of the Poiseuille flow is switched

on.
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Increasing the modulation frequency with a step size of 10−3, the vesicle exhibits
stable oscillations already at fm = 0.056 < 2 f0 (see Figure 3.34.a). When increasing
the frequency fm even more, the envelope of the oscillation remains a constant while
attenuating until the frequency fm = 0.092 > 2 f0 is reached (Figure 3.34.b). Above
this frequency ( fm > 0.0920) the envelope of ycm is not a constant again, Figure 3.35.
To find the domain of frequencies where the oscillation displays a constant envelope
in the simulation, we have varied the modulation amplitude εm from 0.1 to 0.9 with
a step size of 0.1 (εm = 1 is not considered cause for this amplitude the vesicle will
evolve to a parachute as discussed before) and the imposed frequency fm with a step
size of 10−3. Fig. 3.36 presents the resulting region (hashed area). Its size increases
with increasing εm.

Figure 3.34.b Figure 3.35

Figure 3.34.a
Figure 3.33

FIGURE 3.36: Region of oscillations with constant envelope (hashed) as a function of the
imposed amplitude εm and frequency fm of the modulated flow. The dashed lines indicate

an analytical estimate of the boundaries of this region for small εm (see text below).

This is due to the fact that the imposed flow not only corresponds to an oscillation
around the point B but can also be interpreted as an oscillation around other points
B’ of same confinement Cn = 0.55, as long as their stationary capillary number C0′

k
lies in the range of capillary numbers that are reached by the oscillation of the flow.
The points B’ all lie on the same vertical line of the phase diagram as point B (see
dashed vertical line in Figure 3.14).
A closer look into the results of the simulation reveals that ycm oscillates with a fun-
damental frequency of f ′0 = fm/2 when its envelope is constant. This oscillation cor-
responds to a mixed modulation around another point of the phase diagram whose
stationary CSn has the frequency f ′0. Consequently, there can be two different states
depending on the values of fm and εm in our system. State 1 can be understood as a
mixed modulation of the stationary CSn of point B, whereas state 2 is a mixed mod-
ulation around point B’ with fundamental frequency f ′0 and a constant envelope.
When fm is close to 2 f0, the system is in state 2. However, for this state to be acces-
sible, f ′0 has to lie in the range of steady state frequencies (compare Figure 3.22.a)
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of the points on the vertical line of the phase diagram that the flow reaches during
its oscillation. If we take this criterion as an estimate for the boundaries of the re-
gion of oscillations with constant envelope, we obtain the dashed lines depicted in
Figure. 3.36.
The discrepancy between this theoretical prediction and the simulations is most
probably due to the fact that the oscillation in Ck is only symmetric around the point
B but asymmetric for all other points B’. One thus expects a transition region where
the system switches between states 1 and 2. This is indeed what we observe: there
are frequencies (next to the boundaries of the region of constant envelope) where
the system reaches an envelope of constant amplitude which then starts oscillating
again. This behavior repeats itself periodically. Further complications arise from the
linear approximation of amplitude and frequency ( (3.10), where the mixed modula-
tion breaks down for modulation amplitudes larger than εm ≈ 0.2. When εm is close
to one we even expect that there are further states that the vesicle might be able to
adopt. Simulations for εm = 0.9 indeed show that the vesicle tries to take on a shape
resembling to a confined slipper but does not quite manage to do so. The underly-
ing theory goes beyond the scope of this paper but could be a promising subject of
future studies.

3.5 Two vesicles in Poiseuille flow

In this section, we investigate the distance between a pair of two-dimensional vesi-
cles in a confined Poiseuille flow. As already discussed in section 2.2.6, there are
different types of interaction forces between two close lipid bilayer membranes (see
section 2.2.6). In the following, we will just consider the hydrodynamic interaction
force, where the distance between the two vesicles is only dictated by the external
flow. We restrict ourselves to the case where the vesicles adopt a parachute shape,
with a reduced area ν = 0.65, and the viscosity ratio λ = 1. The simulation is done
using the BIM method, where the equation (2.31) is evaluated by considering also
the influence of the nodes of the second membrane, and it reads,

uj(r0) =
2

1 + λ
u∞

j (r0) − ∑
i

1
2πµext(1 + λ)

∫
Ci

Gij(r, r0) f j(r) dl(r)

+ ∑
i

1− λ

2π(1 + λ)

∫ PV

Ci

ui(r)Tijk(r, r0)nk(r) dl(r)
(3.17)

where the index i stands for the first or the second vesicle. The strength of the inter-
action between cells is generally governed by the following: their shape and size, the
distance between them, their orientation with respect to each other, their individual
orientation relative to the direction of the gravitational field, and their velocity and
spin relative to the fluid at infinity [124, p.235].
Experimental studies with microfluidic channels showed that RBCs in the capillaries
tend to form clusters, due to the hydrodynamic interaction or by the plasma macro-
molecules [125, 126]. Many numerical studies also observed a pair of vesicles or
capsules forming a cluster in a two-dimensional confined and unconfined geome-
tries [127, 128], and also for vesicles and capsules in three-dimensional cylindrical
and rectangular channels [129, 111].
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Figure 3.37 show two vesicles reaching a stable distance d measured between their
respective center of masses. This distance is around d = 6.2 for Ca = 10 and W = 4.

FIGURE 3.37: Distance d between two vesicles center of mass as function of time for Ca = 10
and W = 4.

Aouane et al. [128] found that the distance between two pair of vesicles is not af-
fected by the capillary number, but rather related to the confinement. In a phase
diagram (see Figure 3.38), they found the existence of a strong confinement region
were the solution is unique (for W < 12), and a region of weak confinement were a
stable solution merges with an unstable solution (W ≥ 12).

FIGURE 3.38: Distance d between two vesicles center of mass for different channel width W,
figure from [128]
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For small Ca the pairing dynamics of vesicles is different. Indeed, for weak flow
strength, the vesicles will not adopt a stable shape instantaneously but will pass by
a transition shape, as already shown in Figure 3.24.a, this leads to an interesting fact:
two vesicles in the same flow conditions evolving with different shapes.
Figure 3.39 shows the distance between two vesicles for Ca = 2.5 and Cn = 0.5(W =
4), the initial shape of the vesicles is a vertical ellipse, and the initial distance be-
tween their center of masses is set as di = 0.2, see Figure 3.40.a.

FIGURE 3.39: Distance d between two vesicles center of mass for Ca = 2.5 and W = 4 as
function of time.

When initially the vesicles are close enough, their interaction make the first vesicle
quickly adopt the parachute shape, while the second one evolve with a transition
shape resembling to a peanut (Figure 3.40.b), after a certain time the second vesicle
will also adopt the parachute shape (Figure 3.40.c) and the distance d will become
constant.

(a)

(b)

(c)

FIGURE 3.40: Corresponding vesicles shapes from Figure 3.39, (a) at time t = 0, (b) t = 50,
and (c) at t = 300.

Figure 3.41 shows a comparison between the average velocity of the parachute (First
vesicle) and the peanut-like (second vesicle) shape. As the peanut is much faster, it
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will move far from the parachute, which explains this large distance d in Figure 3.39.

FIGURE 3.41: Comparison between the average velocity of a parachute and a peanut like for
Ca = 2.5 and W = 4 (velocity is in unit of R0/τB).

For an initial distance di = 0.3 and above, the vesicles will only interact with the
surrounding fluid cause they are sufficiently far from each other. Consequently, they
will form a cluster as shown in Figure 3.42.

FIGURE 3.42: Distance between two vesicles for different initial distance di as function of
time (Ca = 2.5 and W = 4).

We perturb now the imposed flow using the equation (3.8). For a strong Ca, the
distance d between vesicles for the steady and the oscillating flow is invariant, cause
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the vesicles will instantaneously adopt the parachute shape (see Figure 3.37), and
they will oscillate in the same way. However, for a weak Ca, the flow oscillation
will accelerate the migration of the second vesicle toward the parachute shape (as
already discussed in Sec 3.4), which will affect the distance d between the pair of
vesicles, as shown in Figure 3.43.

FIGURE 3.43: Distance d between two vesicles in oscillating flow for Ca = 2.5 and W = 4 as
function of time, the initial distance is di = 0.2.

3.6 Conclusion

In shear flow, and without boundary effect (free-space flow), the vesicle shows three
types of motion: (i) for a viscosity ratio λ equal one, the vesicle adopt a tank-treading
(TT) motion, where the membrane rotates around the vesicle interior. (ii) Increasing
the viscosity contrast, the vesicle starts to rotate periodically in the shear plane in-
stead of only its membrane, this state is referred to as tumbling (TB). (iii) An inter-
mediate regime between TT and TB called the vacillating-breathing (VB) is observed
at a higher shear rate. In this state, the long axis of the vesicle oscillates about the
flow direction. For a capsule in shear flow, and in addition the TT, TB and VB mo-
tions, the membrane can elongate with the direction of the flow. This deformation is
captured with the so-called Taylor parameter and is proportional to the shear rate.

Next, we investigated the vesicle behavior in a confined Poiseuille, three types of
shapes are found. (i) The symmetric shapes, where the vesicle center of mass al-
ways remains on the symmetry axis of the channel, like the parachute shape. (ii)
The asymmetric shapes, where the center of mass is dispatched vertically, while the
vesicle membrane shows a TT motion, like the slipper shapes. (iii) The oscillatory
shapes, they correspond to a transition between symmetric and asymmetric shapes,
and in which the vesicle shows an oscillatory motion like a swimmer flagella re-
ferred to as the snaking shape. The shapes are presented in a phase diagram as a
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function of the capillary number Ca and the confinement Cn.

To characterize the oscillation of the snaking shape, we have studied the motion of
the vesicle center of mass as a function of time, we have found that increasing the
flow strength or the degree of confinement forces the vesicle to oscillate faster but
with decreasing amplitude. The oscillations attenuate until the vesicle makes a tran-
sition to either a parachute or an off-centered snaking shape. We also investigated
the effect of an oscillating flow on the vesicle shape using amplitude modulation of
the applied Poiseuille flow. For the static shapes (parachute and slippers), when the
imposed flow is not strong enough, the oscillation will accelerate the shape conver-
gence from the initial to the final shape. On the other hand, for the snaking shape,
when the modulation amplitude of the flow is large enough, a transition to static
shapes is observed, and two regions of coexistence between the centered snaking
and parachutes or with the unconfined slippers are found, as reported in the phase
diagram on Figure 3.14. For small modulation amplitudes, the vesicle keeps oscil-
lating but in a more complex manner. These results were published in APS journal
[101].

For a pair of two vesicles, we investigated the distance between their respective
center of masses as a function of time in steady and oscillating Poiseuille flow for
fixed confinement and weak Ca. The case of a strong Ca for different channel width
was already studied [128]. We found that the final distance is large, this is due to the
fact that for weak flow the vesicle does not adopt its final shape instantaneously. By
applying an oscillating flow, or by changing the initial distance, one can accelerate
the vesicle shape convergence towards its stable form, and thus reduce this final
distance.
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The purpose of this chapter is to provide an overview of the flow field inside and outside the
vesicle using streamline plot. The resultant flow field is a summation of the imposed flow and
the flow induced by the presence of the vesicle. We first plot the streamline for a single vesicle
in the shear flow with TT and TB motion, and in a Poiseuille flow for parachute, slipper
and Snaking shapes. We also show the streamline for a pair of vesicles with a parachute and
slipper shapes.
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4.1 Flow field for a single vesicle

The boundary integral representation of the velocity field outside the membrane
is given by Pozrikidis [22, p.141]. He considered that the force is discontinuous
through the membrane. Therefore, he used two BIM expressions, one for the fluid
inside the cell and the other one for the fluid outside the cell. In our simulation, we
consider that the force is continuous through the membrane. Thus we only use one
BIM expression for both fluids. The velocity field using BIM reads,

uj(r0) = u∞
j (r0)−

1
4πµext

∫
C

Gij(r, r0) f j(r) dl(r)+
1− λ

4π

∫
C

ui(r)Tijk(r, r0)nk(r) dl(r) ,

(4.1)
where uj(r0) is the velocity at the point r0 due to the membrane forces f j(r). The
point r0 can be inside or outside the cell domain. Gij(r, r0) and Tijk(r, r0) are the
Green’s functions for the Stokes flow, and u∞

j (r0) is the velocity for the external flow.
The integral is performed on the membrane contour C. Physically, the two integrals
in the right-hand-side of (4.1) gives the flow field induced by the presence of the
cell. The sum of the induced and the external flow1 gives the resultant flow field, as
shown in Figure 4.1.

+

=

(a) (b)

(c)

FIGURE 4.1: The flow field around a vesicle in TT motion. (a) The flow field for the external
shear flow. (b) The flow field induced by the presence of the vesicle. (c) The summation of

the external and the induced flow fields.

4.1.1 Shear flow

The streamlines of the resultant flow field for the TT motion is shown in Figure 4.2,
where the inner fluid is rotational. The streamlines in Figures 4.3.a and 4.3.b shows
a larger vortex, which is obviously, responsible of the TB motion of the vesicle.

1The external flow in all our illustrations is from left to right.
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FIGURE 4.2: Streamlines for the fluid inside and outside the vesicle in the TT motion

(a)

(b)

FIGURE 4.3: Streamlines for the fluid inside and outside the vesicle in the TB motion, (a) and
(b) shows the TB motion.

4.1.2 Poiseuille flow

For the vesicle shapes in Poiseuille flow, the inner fluid is rotational in the case of
the asymmetric slipper shapes (Figures 4.4.b and 4.4.c) where the membrane also
shows a TT motion. But for the parachute shape, where the shape is symmetric to
the axis of the channel, the inner fluid is irrotational (Figure 4.4.a).
The streamlines around RBCs can be recovered experimentally by following the tra-
jectories of nanoparticles previously added to the flow as shown in Figure 4.4.b and
Figure 4.4.e. Here an aqueous solution of Polyethylene glycol nanoparticles of 250
nm is mixed with healthy drawn blood sample previously washed with PBS to pre-
vent the aggregation of RBCs. The prepared solution is then pumped into a rectan-
gular channel of few microns mimicking capillaries, with different velocities in order
to obtain different shapes of RBCs. The particles are detected on every frame using
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the LoG (Laplacian of a Gaussian) filter after subtracting the background. Combin-
ing these filtered images, we obtain the particle’s trajectory which also shows the
streamline around the cells.
The nanoparticles trajectories (colored curves) in Figures 4.4.b and 4.4.e are in agree-
ment with the streamlines from our simulations in Figures 4.4.a, 4.4.c, and 4.4.d.

(a) (b)

(c)

(d)

(e)

FIGURE 4.4: Streamlines from simulations for the fluid inside and outside the vesicle. (a)
For parachute shape. (c) For unconfined slipper. (d) For confined slipper. (b)-(e) Red blood
cell with respectively, the parachute, and the unconfined slipper shape. The colors show the

nanoparticles trajectories (experiments by F. Yaya).
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The Figures 4.5.a-e show the streamlines for the CSn shape motion in one period of
oscillation.

(a)

(b)

(c)

(d)

(e)

FIGURE 4.5: Streamlines for the fluid inside and outside the vesicle for one oscillation period
of the CSn shape (from (a) to (e)).
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4.2 Flow field for two vesicles

4.2.1 Pair of parachute

The flow field between and around a pair of two vesicles is obtained by solving the
equation (3.17) for the fluid domain inside and outside the membrane of the vesicles.
For Ca = 10 and W = 4, Figure 4.6 shows the streamlines induced by the pair and
Figure 4.7 shows the sum of the induced flow with the imposed Poiseuille flow.

FIGURE 4.6: Streamlines for the fluid inside and outside induced by the presence of the
vesicles pair with parachute shape.

(a) (b)

FIGURE 4.7: (a) Streamlines of the flow field for 2 vesicles in Poiseuille flow, (b) nanopar-
ticles trajectory showing the streamline around two red blood cells in microfluidic channel

(experiment by F.Yaya).

The streamlines of the resultant flow profile are similar to the single parachute shape
in Figures 4.4.a and 4.4.b, except that in between the two vesicles, two vortices sym-
metric to the center axis of the channel are formed. These vortices were also ob-
served experimentally (Figure 4.4.a) by following the nanoparticles trajectories. Sev-
eral studies also reported the formation of vortices between neighboring cells when
clusters are formed [129, 128].

4.2.2 Pair of slipper

FIGURE 4.8: Streamlines of the resultant flow field for the fluid inside and outside a pair of
confined slippers shape.
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Decreasing the channel width to W = 2 and using the same capillary number Ca =
10, the pair of parachutes become a pair of confined slipper. In Figure 4.8, we plot
the streamline for the resultant flow field, we observe that the two vortices are not
symmetric with respect to the channel axis, unlike the vortices between the pair of
parachutes.

4.3 Conclusion

We investigated in this chapter the flow field inside and outside a single and a pair
of vesicles using a streamline plot. we observed that for the TT motion in shear or
Poiseuille flow the interior liquid is rotational. Unlike the TT motion, in TB motion
the fluid outside is also rotational. We have also observed two symmetric vortices or
eddies with respect to the channel axis for a pair of parachutes, but the two eddies
become asymmetric when the pair adopt asymmetric shapes like slippers. These
results simulations were in good agreement with experimental results.
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The main functions of blood are to supply oxygen, nutrients, and other substances to
all of the body’s tissues and organs, as well as to remove waste products. It consists
of plasma, white blood cells (leukocytes), platelets, and red blood cells (RBCs). The
latter constitute about 98% of these blood components, and consequently, have the
largest influence on its mechanical properties. RBC is a highly flexible cell made of a
membrane surrounding a hemoglobin solution. The membrane is a fluid bilayer of
phospholipids and has various membrane-integrated proteins distributed on it. The
blood supplies oxygen, nutrients, and other substances through a circulatory system
made of vessels of different sizes and properties.
Due to the complexity of the RBC membrane simplified models like capsules, and
vesicles are used to mimic the behavior of RBCs, both in simulations and in exper-
iments. The main difference between these two models is their extensibility. In the
case of the capsule, the membrane can be extensible depending on the fabrication
process, unlike the vesicles. In the absence of external flow, RBCs assume a disco-
cyte shape, where the swelling ratio is around ν = 0.65 (see Figure 2.2). In the pres-
ence of external flow, four relevant energy contributions can be identified: (i) Local
in-plane, and (ii) out of plane energies, respectively called stretching and bending
energies. (iii) Constraint energy used to impose volume and surface conservation.
(iv) The energy acting between pairs of membranes or membranes and walls, but
are not part of the membrane model itself. The membrane model is formulated in
such a way that any deviation from the equilibrium shape increases the membrane
energy and response forces are induced which drive the membrane shape towards
a new equilibrium shape. Constitutive laws like Helfrich or Skalak are adopted for
the bending and the stretching energies. At the scale of cells, the inertial forces of
the internal and external flows are negligible compared to the viscous forces, and
consequently, the fluid flow can be modeled by the Stokes equation. Using dimen-
sional analysis for the Stokes equation and membrane forces, that can be derived
from membrane energies, the system of equations can be described with dimension-
less quantities. The capillary number Ca, and the tension number CT are used for the
vesicle model, and the dimensionless shear rate Cs, and the reduced ratio of bend-
ing Ce for the capsule model. Another dimensionless parameter, which is used in the
case of a cell confined between two walls, is the confinement number Cn. In order
to solve the fluid-membrane interaction numerically, two approaches can be used.
In the first one, called the boundary element method, the fluid and the membrane
dynamics are brought together under a single formulation using Green’s functions
and the Lorentz reciprocal theorem. The boundary effects are included using the
image system method [95]. In the second approach, called the immersed boundary
method, the fluid and the membrane dynamics are solved in two separated grids,
then the interactions between the fluid and the membrane grid are computed using
an approximated Dirac delta function.
In shear flow, the vesicle shows three types of motion. For a viscosity ratio λ equal
one, the vesicle adopts a tank-treading (TT) motion, where the membrane rotates
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around the interior of the vesicle. Increasing the viscosity contrast, the vesicle starts
to rotate periodically, this state is referred to as tumbling (TB). At a higher shear rate,
an intermediate motion between TT and TB called the vacillating-breathing (VB) is
observed, where the long axis of the vesicle oscillates about the flow direction. For a
capsule in shear flow, and in addition to the TT, TB and VB motions, the membrane
can elongate with the direction of the flow. This deformation is captured with the
so-called Taylor parameter and is proportional to the shear rate. For a healthy RBC,
the Taylor parameter is around 0.4.
Next, we focused on the vesicle behavior in a confined Poiseuille, to mimic RBC
flow in capillaries. The vesicle model was chosen for its membrane inextensibility,
for sake of simplicity. Three types of shapes are found: (i) Symmetric shapes, like the
parachute shape, where the vesicle center of mass always remains on the symmetry
axis of the channel. (ii) Asymmetric shapes, like the slipper shape, where the center
of mass is dispatched vertically, while the vesicle membrane shows a TT motion.
(iii) Oscillatory shapes, which correspond to a transition between symmetric and
asymmetric shapes, in which the vesicle shows an oscillatory motion like a swimmer
flagella, referred to as the snaking shape. The shapes were presented in a phase
diagram as a function of the capillary number Ca and the confinement Cn.
In order to understand the behavior of the snaking shape, we have studied the mo-
tion of the vesicle center of mass as a function of time. We found that an increase
of either the flow strength or the degree of confinement forces the vesicle to oscil-
late faster but with decreasing amplitude. The oscillations attenuate until the vesicle
makes a transition to either a parachute or an off-centered snaking shape. We also
investigated the effect of an oscillating flow on the vesicle shape using amplitude
modulation of the applied Poiseuille flow to mimic the pulsatile flow in the human
circulatory system. For the parachute and slipper shapes, when the imposed flow
is not strong enough, the oscillation will accelerate the shape convergence from the
initial to the final shape. On the other hand, for the snaking shape, when the mod-
ulation amplitude of the flow is large enough, transitions to static shapes are ob-
served, and two regions of coexistence between the centered snaking and parachutes
or with the unconfined slippers are found (see Figure 3.14). For small modulation
amplitudes, the vesicle keeps oscillating but in a more complex manner.
For the case of two interacting vesicles, we investigated the pair distance as a func-
tion of time in steady and oscillating Poiseuille flow for a fixed Cn and weak Ca.
We found that the final distance is large. This is due to the fact that for weak flow
the vesicle does not adopt its final shape instantaneously. By applying an oscillat-
ing flow, or by changing the initial distance, one can accelerate the vesicle shape
convergence towards its stable form, and thus reduce this final distance.
We have also investigated the flow field inside and outside a single and pair of vesi-
cle using a streamline plot. We have observed that for the TT motion in shear or
Poiseuille flow the interior liquid is rotational. Unlike the TT motion, in TB motion
the fluid outside is also rotational. We also have shown two symmetric vortex or
eddies with respect to the channel axis for a pair of parachutes, but the two eddies
become asymmetric when the pair adopt asymmetric shapes like slippers.
It remains a lot to do. In the first place, a three-dimensional study of the vesicle
behavior in confined Poiseuille flow is necessary to complete our understanding.
It will also be interesting to study the snaking shape motion as a function of the
viscosity, or in a confined Poiseuille flow with deformable boundaries. We can also
investigate the snaking shape behavior with stretching energy in addition to the
bending and the constraint energies. The simulation of more than two vesicles in
steady and oscillating Poiseuille flow may show some interesting behavior.
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Appendix A
Free-space Green’s function for steady

Stokes flow

Several methods can be used to determine the Green’s function for the steady Stokes
flow of an incompressible fluid. For example, using the Fourier transform propri-
eties [130, p.20], or simply using some vector analysis [131, p.241]. Here, we use
the approach proposed by Pozrikidis [22, p.22] to derive the Green’s function for a
two-dimensional unbounded Stokes flow, also referred to as the free-space Green’s
function.
First, we rewrite the singularly forced Stokes equation (2.49), and the continuity
equation,

−∇p + µ ∇2u + f δ(r− r0) = ∇σ + f δ(r− r0) = 0 , (A.1)

∇u = 0 . (A.2)

Introducing the divergence in (A.1), and using the continuity equation, we get,

∇(∇p)− µ ∇(∆u) = ∇(f δ(r̂))
∆p− µ ∆(∇u) = δ(r̂)∇(f) + f ∇(δ(r̂))

∆p = δ(r̂)∇(f) + f ∇(δ(r̂)) ,
(A.3)

where r̂ = r− r0 and f is a constant that only shows the strength and the direction
of a point force placed at the point r0. Consequently ∇f = 0, then (A.3) becomes,

∆p = f ∇(δ(r̂)) , (A.4)

The equation in (A.4) is similar to Laplace equation (∆φ(x) = 0), which also satisfy,

∆φ(x) = −δ(x̂) , (A.5)

φ vanish at the infinity, and has as fundamental solution,

φ(x) =


− 1

2π
ln(x) for 2D

1
4πx

for 3D.

(A.6)
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Using the two-dimensional solution of Laplace equation in (A.6), the equation (A.4)
becomes,

∆p =
1

2π
f ∇ [∆ ln(r̂)] =

1
2π

f ∆ [∇ ln(r̂)]

=
1

2π
f ∆ [∇ ln(| r̂ |)] ,

(A.7)

where r̂ =| r̂ |=| r − r0 |=
√
(r− r0)2

i + (r− r0)2
j . For three-dimensional case,

one can use the fundamental solution of Laplace equation in 3D case and follow the
same steps as described below.

Integrating (A.7) we obtain,

p =
1

2π
f ∇ [ln(r̂)] + ζ(r) . (A.8)

Using the condition that the pressure vanishes in the infinity (similarly to Laplace
equation), we have,

lim
r→∞

p =
1

2π
f lim

r→∞

∇r̂
r̂

+ lim
r→∞

ζ(r) = 0 , (A.9)

which implies that ζ ≡ 0, and we obtain,

p =
1

2π
f ∇ [ln(r̂)] , (A.10)

Now deriving (A.10), where ∇ = ∂
∂xi

+ ∂
∂xj

and r̂ =
√

r̂2
i + r̂2

j , we obtain,

p =
1

4π

(
2

r̂
r̂2

)
f =

1
4π

g f , (A.11)

g is called the pressure vector, and also referred to as the free-space Green’s function
for the pressure, in Einstein notation it gives,

p =
1

4π
gj(r, r0) f j , (A.12)

where,

gj(r, r0) = 2
r̂j

r̂2 . (A.13)

Now we consider the biharmonic equation ∆(∆ψ) = ∆φ = 0, which will also satisfy,

∆(∆ψ) = −δ(r̂) . (A.14)

Substituting (A.14) into (A.4), and using (A.5), we get,

p = −f ∇φ = −f ∇(∆ψ) = −f ∆(∇ψ) . (A.15)

Now substituting (A.15), and (A.14) into the Stokes equation (A.1), we obtain,

u = − f
µ
(∇∇− 1∆)ψ . (A.16)
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It remains now to find a solution for ψ by solving ∆ψ = φ = −1/2π ln(r̂).

Considering r̂ in polar coordinate system (er, eθ), the Laplacian of ψ reads then,

∆ψ =
∂2ψ

∂r2 +
1
r̂

∂ψ

∂r
+

1
r̂2

∂2ψ

∂θ2 = − 1
2π

ln(r̂) . (A.17)

As ψ is independent of θ we obtain,

∆ψ =
∂2ψ

∂r2 +
1
r̂

∂ψ

∂r
= ψ′′ +

1
r̂

ψ′

= − 1
2π

ln(r̂) .
(A.18)

Rearranging now (A.18),

(
r̂ψ′
)′
= − r̂

2π
ln(r̂) . (A.19)

Integrating1 twice from both sides we obtain,

ψ(r̂) =
r̂2

8π
(1− ln(r̂)) + C1 ln(r̂) + C2 . (A.20)

Using the condition that ψ must vanish at the infinity and the equation (A.14), we
find that the constant C1 and C2 are equal to zero, we obtain,

ψ(r̂) =
r̂2

8π
(1− ln(r̂)) . (A.21)

Substituting (A.21) into (A.16), and after some straight forward algebra we have
finally,

u =
1

4πµ
f
[
∇∇( r̂2

2
(ln r̂− 1))− 1∆(

r̂2

2
(1− ln r̂))

]
=

1
4πµ

[
−1 ln(r̂) +

r̂r̂
r̂2

]
f

=
1

4πµ
G(r̂)f .

(A.22)

Using Einstein notation we obtain,

ui =
1

4πµ
Gij(r, r0) f j , (A.23)

where Gij(r, r0) is the free-space Green function for the velocity, also called the stokeslet,
or the first Oseen-Burgers tensor, and given by,

Gij(r, r0) = −δij ln(r̂) +
r̂i r̂j

r̂2 . (A.24)

1 r̂ = r− r0, where r is variable and r0 is constant. The first and the second integral of (A.19) is then∫
[(r− r0)ψ′]′ dr = − 1

2π

∫
(r− r0) ln(r− r0)dr

∫
ψ′dr =

∫ [
− 1

4π
r̂ ln(r̂) +

1
8π

r̂ +
C1
r̂

]
dr
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Now we consider the stress tensor for a Newtonian fluid,

σik = −pδik + µ

(
∂ui

∂xk
+

∂uk

∂xi

)
. (A.25)

Substituting (A.12), and (A.23) into (A.25) we obtain,

σik =
1

4π

[
−δik gj(r, r0) +

∂Gij(r, r0)

∂xk
+

∂Gik(r, r0)

∂xi

]
f j

=
1

4π
Tijk(r, r0) f j ,

(A.26)

where,

Tijk(r, r0) = −δik gj(r, r0) +
∂Gij(r, r0)

∂xk
+

∂Gik(r, r0)

∂xi
. (A.27)

Substituting now (A.13) and (A.24) into (A.27), and after some algebra, we obtain the
free-space Green function for the stress field, also called the stresslet, or the second
Oseen-Burgers tensor,

Tijk(r, r0) = −4
r̂i r̂j r̂k

r̂4 . (A.28)
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Appendix B
Boundary integral representation of

unbounded steady Stokes flow

To develop the boundary integral formulation for steady Stokes flow we proceed in
3 steps. (i) First, we define the Green second identity. (ii) We introduce the free-
space Green’s functions for a two-dimensional steady Stokes flow. (iii) And finally,
we derive the integral representation using the divergence theorem. More details
can be found in [22, p.19], and [132, p.161].

Green’s second identity

Let us consider two unrelated Newtonian and incompressible fluids. The associated
velocity fields are u and u′, the stress tensors are σ, σ′ and the pressures are P and
P′. Whence,

u′ · (∇σ) = u′i
∂σij

∂xj
=

∂

∂xj

(
u′iσij

)
− σij

∂u′i
∂xj

=
∂

∂xj

(
u′iσij

)
−

∂u′i
∂xj

[
−pδij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)]
=

∂

∂xj

(
u′iσij

)
+ p

∂(δiju′i)
∂xj

− µ

(
∂ui

∂xj
+

∂uj

∂xi

)
∂u′i
∂xj

,

(B.1)

where δij is the Kronecker function (δij = 1 if i = j, and δij = 0 if i 6= j) and µ the fluid
viscosity. Invoking the Kronecker’s delta function definition u′iδij = u′j and using the
continuity equation ∂u′j/∂xj = 0 to eliminate the pressure term in (B.1), we obtain the
Green’s first identity counterpart,

u′i
∂σij

∂xj
=

∂

∂xj

(
u′iσij

)
− µ

(
∂ui

∂xj
+

∂uj

∂xi

)
∂u′i
∂xj

. (B.2)

Switching the roles of u and u′ we obtain,

ui
∂σ′ij
∂xj

=
∂

∂xj

(
uiσ
′
ij

)
− µ

(
∂u′i
∂xj

+
∂u′j
∂xi

)
∂ui

∂xj
. (B.3)
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Subtracting now (B.2) from (B.3), we obtain the Green second identity counterpart,

∂

∂xj

(
u′iσij − uiσ

′
ij

)
= u′i

∂σij

∂xj
− ui

∂σ′ij
∂xj

. (B.4)

In the absence of body force (∇σ = 0), the right-hand side term in (B.4) vanishes,
yielding to the Lorentz reciprocal relation,

∂

∂xj

(
u′iσij − uiσ

′
ij

)
= 0 . (B.5)

The Lorentz reciprocal relation (and the second Green’s identity) allow us to con-
struct a solution for the desired flow without solving the equations of motion, just
by using information of another flow.

Free-space Green’s function

The pressure, the stress, and the velocity field due to a point force located at r0 can
be expressed in terms of the stokeslet G(r, r0), the stresslet T(r, r0), and the pressure
vector g(r, r0) (see appendix A) as,

ui(r) =
1

4πµ
Gij(r, r0) f j, p(r) =

1
4π

gj(r, r0) f j, σik(r) =
1

4π
Tijk(r, r0) f j,

(B.6)
where the associated free-space Greens function are given by,

Gij(r, r0) = −δij ln(|(r− r0)|) +
(r− r0)i(r− r0)j

|r− r0|2
, (B.7)

Tijk(r, r0) = −4
(r− r0)i(r− r0)j(r− r0)k

|r− r0|4
, (B.8)

gj(r, r0) = 2
(r− r0)j

|r− r0|2
. (B.9)

The Greens function must satisfy the Stokes equation in (B.10), and the continuity
equation in (B.11),

−
∂pj(r)

∂xi
+∇2Gij(r, r0) + 4π δij δ(r− r0) = 0 ,

∂Tijk(r, r0)

∂xk
+ 4π δij δ(r− r0) = 0 ,

(B.10)

∂Gij(r, r0)

∂xi
= 0 . (B.11)

Using the expressions in (B.6), the Lorentz reciprocal identity in (B.5) can be written,

∂

∂xk

[
Gij(r, r0) σik(r)− µ ui(r) Tijk(r, r0)

]
= 0 . (B.12)
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Using the divergence theorem in the plane1, we obtain,∮
C

[
Gij(r, r0) σik(r)− µ ui(r) Tijk(r, r0)

]
nk(r) dl(r) = 0 . (B.13)

Integral representation

Now consider two Stokes flow, one is due to a point force (B.14) with the corre-
sponding velocity and stress tensor (u′, σ′), and a second unknown one, without a
point force effect (B.15), where the velocity and stress tensor are (u, σ). As we al-
ready know the solution for the fluid (u′, σ′), the idea is to use the second Green
identity (or Lorentz reciprocal formula) to construct a solution for the second flow
(u, σ) from the solution of the fluid (u′, σ′),

−∇p′ + µ ∇2u′ = ∇σ′ = −f δ(r− r0) , (B.14)

−∇p + µ ∇2u = ∇σ = 0 . (B.15)

The Green second identity relation (B.4) reads,

u′i
∂σik

∂xk
− ui

∂σ′ik
∂xk

=
∂

∂xk

(
u′iσik − uiσ

′
ik
)

. (B.16)

From (B.15), we have,

∂σik

∂xk
= 0 . (B.17)

And from (B.14), we have,

∂σ′ik
∂xk

= − f j δij δ(r− r0) . (B.18)

Substituting the velocity and the stress field expressions in (B.6), and the derivatives
in (B.17) and (B.18), into the Green’s second identity relation in (B.16) we obtain,

ui(r) δij δ(r− r0) f j =
∂

∂xk

(
1

4πµ
Gij(r, r0) f j σik(r)− ui(r)

1
4π

Tijk(r, r0) f j

)
.

(B.19)
Discarding f j, and using the Kronecker delta definition (uiδij = uj) we obtain,

uj(r) δ(r− r0) =
1

4πµ

∂

∂xk

[
Gij(r, r0) σik(r)− µ ui(r) Tijk(r, r0)

]
(B.20)

Now integrating (B.20) over a selected area A that is enclosed by a contour denoted
C, and using the Gauss divergence theorem in the plane for the right-hand side, we
obtain,

1The divergence theorem of Gauss in the plane state that for any two-dimensional, and differen-
tiable vector V over an area, we have ∫∫

A
∇V dS =

∫
C

V n dl ,

where l is the arc length along the contour C, and n is the unit normal vector on A pointing outward.
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∫∫
A

uj(r) δ(r− r0) dS =
∫∫

A

1
4πµ

∂

∂xk

[
Gij(r, r0) σik(r)− µ ui(r) Tijk(r, r0)

]
dS

= − 1
4πµ

∮
C

Gij(r, r0) σik(r) nk(r) dl(r)

+
1

4π

∮
C

ui(r) Tijk(r, r0) nk(r) dl(r) ,

(B.21)
where the unit normal vector n is pointing into the control area enclosed by C.

Next, and using the Dirac delta properties2 on left-hand side of (B.21), we obtain,

uj(r0) =−
1

4πµ

∮
C

Gij(r, r0) fi(r) dl(r)

+
1

4π

∮
C

ui(r) Tijk(r, r0) nk(r) dl(r) ,
(B.22)

where f ≡ σ n is the traction in the domain boundary. Equation (B.22) provides us
with a representation of flow in terms of two distributions involving the stokeslet
Gij and the associated stresslet Tijk. The first distribution on the right-hand of (B.22)
is called the single-layer potential, and the second distribution is called the double-
layer potential. The reason for this terminology is that for the single layer, the poten-
tials are just superpositions of the hydrodynamic potentials of a point force, whereas
the double layer potentials are those caused by a layer of sources (or sinks) and dou-
blets of point forces [130, p.376].

Next, we examine the behavior of the boundary integral representation as the point
r0 approaches the boundary A of a selected domain of the flow. Investigating the
limit of the single-layer and the double-layer potential as (r− r0) tend to 0, we found
that the stokeslet exhibits a weak singularity. The single-layer integral remains con-
tinuous as the point r0 approaches and then crosses A from either side. Whereas, the
double-layer potential undergoes a discontinuity as the point r0 crosses the bound-
ary A [132, p.16]. Applying the divergence theorem to the second equation in (B.11),
and using the proprieties of Dirac delta function, we obtain,

1
4π

∮
C

Tijk(r, r0)nk(r)dl(r) =


δij When r0 is inside C

1
2

δij When r0 is on C

0 When r0 is outside C

(B.23)

where the unit normal vector nk(r) points into the control area enclosed by C. Equa-
tion (B.23) can be written as,

lim
r0→C

∮
C

ui(r)Tijk(r, r0)nk(r)dl(r) =
∮ PV

C
ui(r)Tijk(r, r0)nk(r)dl(r)± 2π uj(r0) .

(B.24)

2The integral of the product of an arbitrary function, f (x), and the delta function over an interval
that contains the point x0 is ∫

f (x) δ(x− x0) dx = f (x0)
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Where the superscript PV indicates the principal value integral of the double layer
potential found by placing the point r0 precisely on the contour C. The plus sign
on the right-hand side of (B.24) applies when the point r0 approaches from the ex-
ternal side, in the direction of the normal vector n, and the negative sign is when it
approaches from the internal side.
Using the relation in (B.24), we finally obtain the boundary integral representation
of the Stokes equation,

αuj(r0) =−
1

4πµ

∮
C

Gij(r, r0) fi(r) dl(r)

+
1

4π

∮ PV

C
ui(r) Tijk(r, r0) nk(r) dl(r) ,

(B.25)

where α = 0 when r0 is outside A, α = 1 when r0 is inside A, and α = 1/2 when r0 is
on C.
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Appendix C
Boundary integral representation for flow

past a closed interface

To describe the flow field around a closed interface, we use a boundary integral for-
mulation that considers the flow on each side of the interface separately. We consider
that the velocity is continuous across the interface, while the surface forces are dis-
continuous [22, p.139].

The boundary integral representation (B.22) at a point r0 in the external fluid dis-
turbed by the presence of a closed interface reads,

u
′
j(r0) =−

1
4πµ

∮
C

Gij(r, r0) f
′
i (r) dl(r)

+
1

4π

∮
C

u
′
i(r) Tijk(r, r0) nk(r) dl(r) ,

(C.1)

where the prime symbol stands for the external perturbed flow and µ for the external
viscosity. Now for the same point r0 that is located exterior to the closed interface,
we apply the reciprocal identity in (B.13) for an incident exterior flow u∞, we obtain,

0 =− 1
4πµ

∮
C

Gij(r, r0) f ∞
i (r) dl(r)

+
1

4π

∮
C

u∞
i (r) Tijk(r, r0) nk(r) dl(r) .

(C.2)

Summing now the boundary integral representation for the disturbed external flow
in (C.1) with the external incident flow in (C.2), we formulate the total external ve-
locity u(2) = u∞ + u

′
and the total traction force f(2) = f∞ + f

′
, we obtain,

u
′
j(r0) =−

1
4πµ

∮
C

Gij(r, r0) f (2)i (r) dl(r)

+
1

4π

∮
C

u(2)
i (r) Tijk(r, r0) nk(r) dl(r) .

(C.3)
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Adding the incident velocity field u∞ to both sides in (C.3), we obtain,

u(2)
j (r0) =u∞

j (r)−
1

4πµ

∮
C

Gij(r, r0) f (2)i (r) dl(r)

+
1

4π

∮
C

u(2)
i (r) Tijk(r, r0) nk(r) dl(r) ,

(C.4)

where the superscript (2) stands for the total external flow.

Now we consider an internal flow with the velocity field u(1) and the viscosity λµ,
where λ is the viscosity ratio between the internal and external viscosity (λ = µ(1)/µ).
Applying the reciprocal theorem at the point r0 lying now in the internal fluid, we
obtain,

0 =− 1
4πλµ

∮
C

Gij(r, r0) f (1)i (r) dl(r)

+
1

4π

∮
C

u(1)
i (r) Tijk(r, r0) nk(r) dl(r) .

(C.5)

Subtracting now (C.5) from (C.4), to formulate the difference between the total exte-
rior traction f(2) and the interior traction f(1), we obtain,

u(2)
j (r0) =u∞

j (r)−
1

4πµ

∮
C

Gij(r, r0)
[

f (2)i − f (1)i

]
(r) dl(r)

+
1

4π

∮
C

[
u(2)

i − λu(1)
i

]
(r) Tijk(r, r0) nk(r) dl(r) .

(C.6)

Setting the jump in traction across the interface as ∆f = f(2) − f(1), and assuming
that the velocity is continuous across the interface u∞ + u′ = u(2) = u(1) = u, we
derive the integral representation,

uj(r0) =u∞
j (r)−

1
4πµ

∮
C

Gij(r, r0) ∆ fi(r) dl(r)

+
1− λ

4π

∮
C

ui(r) Tijk(r, r0) nk(r) dl(r) .
(C.7)

Now letting the point r0 approaching the closed interface from the outside, and using
the relation in (B.24) (with the plus sign as r0 approaches from the external side of
the considered interface), the right-hand side in (C.7) becomes,

uj(r0) =u∞
j (r)−

1
4πµ

∮
C

Gij(r, r0) ∆ fi(r) dl(r)

+
1− λ

4π

∮ PV

C
ui(r) Tijk(r, r0) nk(r) dl(r) +

1− λ

2
uj(r0) ,

(C.8)

where the superscript PV denotes the principal value of the double-layer potential
(see B.23). Rearranging (C.8), we finally obtain the integral equation for the flow
field around a closed interface, where the point r0 is lying in the interface,

1 + λ

2
uj(r0) =u∞

j (r)−
1

4πµ

∮
C

Gij(r, r0) ∆ fi(r) dl(r)

+
1− λ

4π

∮ PV

C
ui(r) Tijk(r, r0) nk(r) dl(r) .

(C.9)
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It will be noted that when the viscosities on each side of the interface are equal
(λ = 1), the double-layer distribution vanish, and the flow is expressed only in
terms of a single-layer potential, and when λ = 0 the particle becomes a rigid body.
the jump in hydrodynamic traction across the interface may be expressed in terms
of a constitutive law that may involve a number of physical constants, including
the densities of the fluids, surface tension, surface viscosity, surface elasticity, and
surface modules of bending and dilatation [22].
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