VOLATILE BIOMARKER IN DER AUSATEMLUFT WÄHREND SYSTEMISCHER INFLAMMATION

Eine experimentelle in vivo Studie an der beatmeten Ratte

Dissertation zur Erlangung des Grades eines Doktors der Medizin der Medizinischen Fakultät der UNIVERSITÄT DES SAARLANDES

2019

vorgelegt von Michaela Hedwig Schwaiblmair
geboren am 08.02.1994 in München
Für meine Brüder
Datum: 20.11.2019

Dekan: Prof. Dr. Michael D. Menger

Berichterstatter: PD Dr. Tobias Fink
ABBILDUNGSVERZEICHNIS

Abb. 1: Entwicklung von SIRS und MODS ... 8
Abb. 2: Tierexperimenteller MCC-IMS Arbeitsplatz .. 21
Abb. 3: Darstellung des zeitlichen Verlaufs der Versuchsgruppen 23
Abb. 4: Querschnitt durch eine Multikapillarsäule & Betriebsparameter
 MCC-OV5 ... 24
Abb. 5: Schematische Darstellung eines Ionenmobilitätspektrum (IMS) 25
Abb. 6: Beispiel eines IMS-Einzelspektrums & Betriebsparameter des
 Bioscout 2011 MCC-IMS .. 27
Abb. 7: Schematische Darstellung eines Sandwich-ELISA 28
Abb. 8: Schematische Darstellung des HovaCal® 4836-VOC 29
Abb. 9: Beispiel eines 3D-Spektrogramms ... 33
Abb. 10: Signalintensitäten der signifikanten Peaks nach Induktion einer
 systemischen Inflammation durch Applikation von TNF-α 40
Abb. 11: Mittlerer arterieller Blutdruck (MAP) über den Versuchszeitraum
 von 24h ... 42
Abb. 12: IL-6- und IL-10-Plasmakonzentrationen nach TNF-α-Gabe 43
Abb. 13: Chromatogramm der HovaCal®-Messung der TNF-α-Lösung 44
Abb. 14: Signalintensitäten von 1-Butanol, 1-Pentanol, 3-Pentanon und
 p-Cymol nach isolierter Extremitätenperfusion mittels Injection
 von TNF-α .. 45
Abb. 15: Entstehung von 3-Pentanon im BCKA-Metabolismus 56
TABELLENVERZEICHNIS

Tab. 1: SOFA-Score ... 11
Tab. 2: Sepsis-Definitionen und qSOFA-Score nach Sepsis-3 12
Tab. 3: Liste der verwendeten Medikamente und Chemikalien 19
Tab. 4: Technische Daten des HovaCal® 4836-VOC .. 31
Tab. 5: Atemluftprofil der gesunden Sprague-Dawley® Ratte 36
Tab. 6: Blutgasanalyse und Herzzeitvolumen nach TNF-α-Gabe 38
Tab. 7: Atemluftsignale nach TNF-α-Gabe .. 39
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>µmol/l</td>
<td>Mikromol pro Liter</td>
</tr>
<tr>
<td>1/K0</td>
<td>reduzierte Ionenmobilität</td>
</tr>
<tr>
<td>63Ni</td>
<td>Nickel-63</td>
</tr>
<tr>
<td>99mTc</td>
<td>Technetium-99m</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ACCP/SCCM</td>
<td>American College of Chest Physicians / Society of Critical Care Medicine</td>
</tr>
<tr>
<td>AL</td>
<td>Atemluft</td>
</tr>
<tr>
<td>BCAA</td>
<td>Branched-chain amino acid, verzweigtkettige Aminosäure</td>
</tr>
<tr>
<td>BCAT</td>
<td>Branched-chain aminotransferase, verzweigtkettige Aminotransferase</td>
</tr>
<tr>
<td>BCKA</td>
<td>Branched-chain keto acid, verzweigtkettige Ketocarbonsäure</td>
</tr>
<tr>
<td>BCKD</td>
<td>Branched-chain keto acid dehydrogenase, verzweigtkettige Ketocarbonsäuren-Dehydrogenase</td>
</tr>
<tr>
<td>BCKDK</td>
<td>Branched-chain keto acid dehydrogenase kinase, verzweigtkettige Ketocarbonsäuren-Dehydrogenase-Kinase</td>
</tr>
<tr>
<td>BE</td>
<td>Base excess</td>
</tr>
<tr>
<td>BG5®</td>
<td>Sterofundin® BG-5 Infusionslösung</td>
</tr>
<tr>
<td>BGA</td>
<td>Blutgasanalyse</td>
</tr>
<tr>
<td>CD14</td>
<td>Cluster of differentiation 14</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>cm²/Vs</td>
<td>Quadratzentimeter pro Volt mal Sekunde</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
</tr>
<tr>
<td>ESICM</td>
<td>European Society of Intensive Care Medicine</td>
</tr>
</tbody>
</table>
MUT Methylmalonyl-CoA-Mutase
mV Millivolt
ng/l Nanogramm pro Liter
Ni/min Standard Liter pro Minute
NN No Name
O₂ Sauerstoff
PaCO₂ arterieller Kohlenstoffdioxidpartialdruck in mmHg
PaO₂ arterieller Sauerstoffpartialdruck in mmHg
PaO₂/FiO₂ Oxygenierungsindex, Horowitz-Index
PCCA Propionyl-CoA-Carboxylase (α-Kette)
PCCB Propionyl-CoA-Carboxylase (β-Kette)
pCO₂ Kohlenstoffdioxidpartialdruck
PEEP Positive Endexpiratory Pressure
PE-Katheter Polyethylen-Katheter
pg/l Pikogramm pro Liter
pO₂ Sauerstoffpartialdruck
ppb Parts per Billion
ppm Parts per Million
PPM1K Protein Phosphatase Mg²⁺/Mn²⁺ dependent 1K
ppt Parts per Trillion
qSOFA quick Sequential Organ Failure Assessment Score
R Respirator
RIP Reaktionsionen-Peak
RT Retentionszeit
s Sekunde
SIRS Systemic Inflammatory Response Syndrome
SOFA Sequential Organ Failure Assessment Score
sog. sogenannt
Tab. Tabelle
TNF-α Tumornekrosefaktor-Alpha
u.a. unter anderem
UV Ultraviolett
V Volt
V/cm Einheit elektrisches Feld
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
<tr>
<td>vs.</td>
<td>versus</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>ZVK</td>
<td>Zentralvenöser Katheter</td>
</tr>
</tbody>
</table>
INHALTSVERZEICHNIS

1. ZUSAMMENFASSUNG .. 4

2. SUMMARY .. 5

3. EINLEITUNG .. 6
 3.1. Inflammation .. 6
 3.1.1. Historie der Inflammation ... 7
 3.1.2. Pathophysiologie der systemischen Inflammation .. 8
 3.1.3. Diagnostik der systemischen Inflammation .. 9
 3.2. Ionenmobilität zur Atemluftanalyse ... 12

4. ZIEL DER STUDIE ... 16

5. MATERIAL UND METHODEN .. 17
 5.1. Tierexperiment ... 17
 5.1.1. Versuchstiere .. 17
 5.1.2. Anästhesie der Versuchstiere .. 17
 5.1.3. Chirurgische Präparation .. 18
 5.1.4. Versuchsaufbau zur Atemluftanalyse .. 20
 5.1.5. Versuchsgruppen .. 21
 5.1.5.1. Kontrollgruppe ... 21
 5.1.5.2. Inflammationsgruppe ... 22
 5.1.6. Versuchsprotokoll ... 22
 5.2. Atemluftmessung mit Ionenmobilitätsspektrometrie ... 23
 5.2.1. Vortrennung des Gasgemisches durch eine Multikapillarsäule 23
 5.2.2. Aufbau und Funktion eines Ionenmobilitätsspektrometers 24
 5.3. ELISA-Messung zur Zytokinbestimmung .. 27
 5.4. HovaCal® .. 29
 5.5. Patientenmessung .. 31
5.5.1. Patient ... 31
5.5.2. Isolierte Extremitätenperfusion mittels TNF-α 32
5.6. Signalauswertung ... 32
5.7. Software und Statistik ... 33

6. ERGEBNISSE ... 35

6.1. Physiologisches Atemluftprofil der Ratte .. 35
6.2. Inflammation nach Injektion von TNF-α .. 37
6.2.1. Blutgasanalyse und Herzzeitvolumen .. 37
6.2.2. Atemluftprofil .. 38
6.2.3. Überlebenszeit .. 41
6.2.4. Vitalparameter .. 41
6.2.5. Zytokinkonzentration .. 42
6.3. HovaCal®-Messung ... 43
6.4. Atemluftprofil der Patientin .. 44
6.5. Zusammenfassung der Ergebnisse .. 45

7. DISKUSSION ... 47

7.1. Diskussion von Material und Methoden ... 47
7.1.1. In vivo-Modell .. 47
7.1.2. Vortrennung durch Multikapillarsäule-Kopplung 49
7.1.3. Biomarker-Detektion: Ionenmobilitätsspektrometer 51
7.1.4. Isolierte Extremitätenperfusion ... 52
7.2. Diskussion der Ergebnisse ... 53
7.2.1. Tiernessung ... 53
7.2.1.1. Atemluftanalyse .. 53
7.2.1.2. Zytokinbestimmung ... 57
7.2.2. HovaCal®-Messung .. 58
7.2.3. Patientenmessung ... 59
7.2.4. Limitationen der Studie ... 60
7.3. Schlussfolgerung und klinische Perspektiven ... 61

8. LITERATURVERZEICHNIS ... 63
9. DANKSAGUNG .. 82

10. PUBLIKATIONEN UND KONGRESSBEITRÄGE .. 83

10.1. Abstracts und Kongressbeiträge aus der vorliegenden Arbeit 83
10.2. Weitere Originalarbeiten, Abstracts und Kongressbeiträge 83

11. LEBENSLAUF ... 85
1. ZUSAMMENFASSUNG

Die rasche Diagnose einer systemischen Entzündungsreaktion stellt eine wichtige Herausforderung im klinischen Alltag dar. Im Gegensatz zu aktuell verwendeten, relativ unspezifischen Laborparametern könnte die Atemluftanalyse einen vielversprechenden Ansatz zur Frühdetektion einer Inflammation bieten. Im Rahmen dieser Methode wird die exhalierte Luftprobe mittels Ionenmobilitätsspektrometer (IMS) auf bestimmte Komponenten untersucht und auf eine Systemreaktionen des Körpers geschlossen. In der vorliegenden Arbeit wurde deshalb mithilfe dieser Technik untersucht, ob während einer systemischen Inflammation volatile Biomarker in der Ausatmungsfahrt reproduzierbar zu demonstrieren sind.

Basierend auf diesen Ergebnissen konnte in der vorliegenden Grundlagenstudie gezeigt werden, dass die Atemluftanalyse mittels IMS zum Nachweis einer systemischen Inflammation einsetzbar ist. Die vorliegende Arbeit demonstrierte darüber hinaus, dass die Anwendung dieser Methode nicht nur auf das Tiermodell beschränkt ist, sondern auch bei der humanen Nutzung vielversprechend sein könnte.
2. Summary

Timely diagnosis of systemic inflammatory reactions is critical in everyday clinical practice. In contrast to currently used unspecific laboratory parameters, breath analysis may represent a promising approach for the early detection of systemic inflammation. This method assesses the exhaled air for specific volatile organic components using ion mobility spectrometers (IMS). The organic components may themselves be associated with systemic inflammation. The present study analyzes whether volatile biomarkers can be reliably detected during systemic inflammation. Sprague-Dawley® rats were ventilated in a controlled manner over a 24-hour period and breath samples were analyzed by means of an IMS. The physiological profile of the exhaled air from rats was determined and compared with samples of rats during systemic inflammation. Inflammation in rats was induced by injecting a dose of 200 µg/kg or 600 µg/kg of the pro-inflammatory cytokine TNF-α at the beginning of the experiments. After TNF-α-application a systemic inflammation was demonstrated. A significant increase of the biomarkers 1-butanol, 1-pentanol, 3-pentanone, and p-cymol was detected in the exhaled air of animals injected with TNF-α when compared to the profile of exhaled air of non-treated rats. In a first pilot experiment, these four biomarkers were also found to be present in a patient who underwent isolated limb perfusion with TNF-α.

Based on these results, the present proof-of-principle study showed that breath analysis using IMS may be eligible for the detection of systemic inflammation. In addition, the present study demonstrated that the application of this method may not only be limited to an animal model but may also be promising for use in human patients.
3. **EINLEITUNG**

3.1. Inflammation

Eine Inflammation ist die Antwort eines Organismus auf Schäden, die Gewebe und seine Zellen durch schädliche Chemikalien, physikalische Insulte sowie durch mikrobielle Krankheitserreger erfahren. Diese Inflamationsreaktion kann zum einen als lokaler Prozess auftreten und ist häufig mit Schmerzen verbunden. Zum anderen kann die Inflammation mit zunehmender Gewebedestruktion eine starke systemische Reaktion des gesamten Körpers auslösen, die als systemische Inflammation (Systemic Inflammatory Response Syndrome, SIRS) zu Multiorganversagen und Tod führen kann [182]. Während die Inflammation sich in einigen Fällen zu einem chronischen Stadium entwickelt, das beispielsweise mit Arthritis, Multipler Sklerose oder Krebsleiden assoziiert ist, verläuft der Inflamationsprozess in anderen Fällen akut [28, 147, 179]. Um dabei einen fatalen Verlauf der Erkrankung abzuwenden, ist die Bedeutung einer raschen Diagnose sowie Intervention prognostisch relevant [81].

3.1.1. Historie der Inflammation

3.1.2. Pathophysiologie der systemischen Inflammation

Der systemische Inflammationsprozess lässt sich in vier Hauptkomponenten gliedern: den Auslöser, den Sensor, die entzündlichen Mediatoren und das Zielgewebe (Abbildung 1).

![Abbildung 1: Entwicklung von SIRS und MODS.](image)

Als Auslöser des SIRS kommen neben systemischen oder lokalen Infektionen noch Gewebeischämien unterschiedlicher Genese, der hämorrhagische Schock, immunvermittelte Organverletzung und die exogene Verabreichung von Vermittlern des entzündlichen Prozesses, wie beispielsweise Tumornekrosefaktor, Interleukin-1 und -6, Histamin und Prostaglandine, in Frage [14, 96].

3.1.3. Diagnostik der systemischen Inflammation

Die internationale Konsensus-Konferenz des American College of Chest Physicians / Society of Critical Care Medicine (ACCP/SCCM) befasste sich 1991 mit der Suche nach einer leicht anwendbaren vereinheitlichenden Definition zur Früherkennung einer
systemischen Entzündungsreaktion [14]. Aus dieser Arbeit ging eine Definition hervor, nach der eine systemische Entzündungsreaktion bei Erfüllung von mindestens zwei SIRS-Kriterien vorliegt. Zu diesen zählen Fieber (≥ 38 °C), oder Hypothermie (≤ 36 °C), Tachykardie (Herzfrequenz ≥ 90/min), Tachypnoe (Frequenz ≥ 20/min), Hyperventilation (PaCO₂ ≤ 4,3 kPa / ≤ 33 mmHg), Leukozytose (≥ 12.000/mm³), oder Leukopenie (≤ 4000/mm³) und ≥ 10% unreife neutrophile Granulozyten im Differentialblutbild. Wird darüber hinaus noch der mikrobiologische Nachweis einer Infektion erbracht, liegt *per definitionem* von 1991 eine Sepsis vor [1, 14]. Das primäre Ziel der SIRS-Kriterien war, eine zeitnahe Diagnosefindung anhand leicht verfügbarer klinischer Parameter zu ermöglichen, ohne auf anspruchsvolle und mitunter zeitaufwendige Untersuchungen der entzündlichen Biomarker warten zu müssen. Allerdings weisen die SIRS-Kriterien nur eine geringe Spezifität bei hoher Sensitivität auf, weswegen der Erfahrungswert des behandelnden Arztes einen entscheidenden Einfluss auf die korrekte Diagnosestellung innehat [7, 85].

Die aktuelle Definition beschreibt die systemische Inflammation im Rahmen einer Sepsis als eine lebensbedrohliche Organdysfunktion aufgrund einer inadäquaten Wirtsreaktion auf eine Infektion. Eine Organdysfunktion wird hierbei definiert als ein SOFA-Score von ≥ 2 Punkten als Konsequenz auf die Infektion (Tabelle 2). Außerdem wurde ein weiterer Score etabliert, der die Identifikation von Patienten erleichtern soll, bei denen ein verlängerter Intensivaufenthalt und ein höheres Mortalitätsrisiko zu erwarten sind. Zu den Kriterien des Quick-SOFA-Score (qSOFA) gehören Veränderungen des mentalen Zustands, systolischer Blutdruck ≤ 100 mmHg, oder eine Atemfrequenz von ≥ 22/min.

Ein weiterer Fokus lag bei der Konferenz 2014 auf dem Einfluss der Entzündungsreaktion auf objektiv messbare Biomarker. Änderungen verschiedener Biomarker, darunter Procalcitonin, IL-6, Adrenomedullin, lösliches CD14, lösliches Endothelzell-/Leukozytenadhäsionsmolekül-1, Macrophage Inflammatory Protein (MCP)-1α, extrazelluläre Phospholipase A2 sowie C-reactives Protein sind in Patienten, die die weit gefassten SIRS-Kriterien aus dem Jahr 1991 erfüllen, beschrieben [64, 145, 149, 153, 160]. Klinische Anwendung findet heute vorrangig Procalcitonin [152, 174].

Der Wunsch nach zusätzlichen Parametern, die auf eine Inflammationsreaktion
möglichst zeitnah hinweisen, führte zu der Idee die ionenmobilitätsspektrometrische Untersuchung der Ausatemluft zum Nachweis einer Inflammation zu untersuchen.

I. Sepsis

- Definiert als eine lebensbedrohliche Organdysfunktion aufgrund einer inadäquaten Wirtsreaktion auf eine Infektion

II. Organdysfunktion

- akute Veränderung des SOFA-Scores auf ≥ 2 Punkte als Konsequenz auf die Infektion
- Die Baseline des SOFA-Scores liegt bei Patienten ohne bekannte Organdysfunktion bei 0
- Ein SOFA-Score ≥ 2 gibt ein Gesamt-Mortalitätsrisiko von 10 % in der allgemeinen Krankenhauspopulation wieder
- Patienten, bei denen ein längerer Intensivaufenthalt und ein höheres Mortalitätsrisiko erwartet wird, können zeitnah mithilfe des qSOFA (Quick SOFA)-Scores ermittelt werden

III. qSOFA (Quick SOFA) Kriterien

- respirationsrate ≥ 22/min
- Veränderungen des mentalen Zustands
- Systolischer Blutdruck ≤ 100 mmHg

IV. Septischer Schock

- Definition: Septischer Schock ist eine Untergruppe der Sepsis, bei dem zugrunde liegende Kreislauf und Zell-/Stoffwechselstörungen gravierend genug sind, um die Mortalität wesentlich zu erhöhen
- Kriterien: Sepsis + persistierende Hypotension, die Vasopressoren benötigt, um MAP ≥ 65 mmHg zu halten + Serumlaktat ≥ 2 mmol/L (18 mg/dl), trotz adäquater Volumen substitution

Tabelle 2: Sepsis-Definitionen und qSOFA-Score nach Sepsis-3. SOFA-Score: Sequential Organ Failure Assessment-Score, qSOFA-Score: Quick SOFA-Score, MAP: mittlerer arterieller Blutdruck. [140]

3.2. Ionenmobilitätsspektrometrie zur Atemluftanalyse

Die Grundlagen für das Prinzip der Ionenmobilitätsspektrometrie setzte der Physiker Paul Langevin im frühen 20. Jahrhundert, als er die Bewegung von Ionen im elektrischen Feld beschrieb [82]. Erst 70 Jahre später wurde dieses chemisch-physikalische Analysegerät unter der Bezeichnung Plasma-Chromatograph eingeführt und seitdem weiterentwickelt, sodass das Ionenmobilitätsspektrometer (IMS) heutzutage eine kostengünstige und aussagekräftige Analysetechnik zur Bestimmung von Gasen in Umgebungsdruck bei Raumtemperatur darstellt [26, 29].

Ursprünglich wurde das IMS vom amerikanischen und britischen Militär zur frühzeitigen Identifikation von feindlichen Kämpfern im vietnamesischen Dschungel entwickelt [38]. Seit den späten 1970er Jahren erkannte auch die zivile Wissenschaft das Potential der Ionenmobilitätsspektrometrie für Forschungszwecke, unter anderem
aufgrund einer niedrigen Nachweisgrenze im unteren ppb- bis ppt-Bereich (ppb = parts per billion; ppt = parts per trillion, \(v \) = bezogen auf das Volumen), der Detektion von Analyten unterschiedlicher chemischer Substanzklassen in Umgebungsdruck und kurzen Analysezeiten von wenigen Minuten. Die Errungenschaft, das IMS-Gerät zum leichteren Transport zu miniaturisieren, hat die Anwendungsmöglichkeiten von Laboren auf den alltäglichen Berufseinsatz erweitert [29].

Um die Spezifität der Analyse zu erhöhen und Proben mit hoher Luftfeuchtigkeit messen zu können, kann das IMS-Gerät mit einer Multikapillarsäule (multicapillary columns, MCC) gekoppelt werden. Dabei werden die Analyt-Moleküle vor dem Eintritt in den Ionisationsraum des IMS durch parallel angeordnete Kapillaren geleitet. Die Durchtrittszeit (Retentionzeit) durch die Kapillaren ist für die einzelnen Analyt-Moleküle charakteristisch [138].

Durch die Erweiterung des IMS mit einer Multikapillarsäule (MCC-IMS) zur Vortrennung der Atemluft wurde die Forschung und medizinische Anwendung der

Für die Differenzierung von Patienten mit und ohne COPD eignet sich das zyklische Keton Cyclohexanon [12, 181]; auch bei Mäusen mit Asthma bronchiale konnten Biomarker in der bronchoalveolären Lavage detektiert werden, die auf eine Inflammation der Atemwege hinweisen [106, 163].

Bei Patienten, die an einer akuten oder chronischen Niereninsuffizienz leiden, kann man häufig einen charakteristischen, nach Urin riechenden Atem- und Körpergeruch, den Foetor uraemicus, feststellen. Aufgrund der Identifizierung von drei VOCs, die bei eingeschränkter Nierenfunktion in der Atemluft akkumulieren und nach Hämodialyse wieder abfallen, könnte es in Zukunft möglich sein, charakteristische Veränderungen des Atemluftprofils zur Früherkennung der Niereninsuffizienz zu nutzen [68, 104, 107].

Eine Vollnarkose kann durch inhalative und intravenöse Anästhetika induziert und aufrechterhalten werden. Die Überwachung der Konzentration mittels Ausatemluftmessung wird heutzutage bereits für die inhalative Anästhesie im klinischen Alltag angewendet. Für die Bestimmung der Konzentration von

Eine zeitnahe und akkurate Diagnosestellung mit direkt anschließender Therapie ist bei SIRS / Sepsis für das Überleben der Patienten entscheidend [81]. Guamán et al. konnte erstmals flüchtige organische Verbindungen bei systemischer Inflammation 24 h nach Induktion einer Inflammation durch intraperitoneale Lipopolysaccharid-Injektion mithilfe eines Gaschromatograph-IMS (GC-IMS) messen [57]. Aceton sowie 14 weitere VOCs unterschieden sich in dieser Studie bei inflammatorischen und gesunden Versuchstieren. Auch MCC-IMS-Geräte wurden bereits bei der Suche nach signifikanten VOC-Veränderungen in inflammatorischen Ratten verwendet. So fand Fink et al. 7 VOCs, die sich bei Ratten nach Lipopolysaccharid-Injektion signifikant von denen einer Kontrollgruppe unterschieden [46].

In Tiermodellen konnte bereits gezeigt werden, dass auch die Anwendung von TNF-α zur zuverlässigen Modellierung der im menschlichen Körper ablaufenden Entzündungsreaktionen führt [13, 122, 136]. In der vorliegenden Arbeit wurden nun die Auswirkungen einer Inflammation nach TNF-α-Injektion auf das Atemluftprofil von beatmeten Ratten untersucht. Dabei sollte herausgefunden werden, ob sich die Atemluftanalyse volatiler Biomarker prinzipiell auch zur Diagnostik von systemischen Inflammationsreaktionen im Körper eignet.
4. ZIEL DER STUDIE

1. Gibt es Unterschiede im Atemluftprofil von gesunden Ratten und Ratten nach Induktion einer systemischen Inflammation mit TNF-α?

2. Sind die Veränderungen des Atemluftprofils der Ratten abhängig von der applizierten TNF-α-Dosis?

3. Ist die Veränderung von volatilen Biomarkern während systemischer Inflammation auch begleitet von Änderungen der Vitalparameter, dem Überleben und von pro-inflammatorischen Zytokinen im Blut?

4. Sind gemessene Atemluftsignale bei Ratten prinzipiell auch im Atemluftprofil eines Menschen während systemischer Inflammation detektierbar?
5. MATERIAL UND METHODEN

5.1. Tierexperiment

5.1.1. Versuchstiere

Als Versuchstiere dienten für alle tierexperimentellen Untersuchungen männliche Sprague-Dawley® Ratten (Charles River (WIGA) GmbH, Sulzfeld, Deutschland) mit einem Gewicht von 200-300 g, welches einem Alter von 8 bis 10 Wochen entspricht. Alle Tierversuche wurden unter Berücksichtigung des deutschen Tierschutzgesetzes (§ 7-9 TierSchG) nach Genehmigung durch die zuständige Tierschutzkommission (Nummer 36/14, Landesamt für Gesundheit und Verbraucherschutz, Saarbrücken, Deutschland) durchgeführt. Die Tiere wurden bis zum Versuchsbeginn unter standardisierten klimatischen Bedingungen (Lufttemperatur 20 ± 2°C, relative Luftfeuchtigkeit 50 ± 5%) in der Abteilung für Klinisch-Experimentelle Chirurgie des Universitätsklinikums des Saarlandes (Direktor: Prof. Dr. Michael D. Menger) gehalten. Als Nahrung diente Standardlaborfutter (Altromin, Lage, Deutschland) sowie Wasser ad libitum. Um nahrungsabhängig Störeinflüsse zu vermeiden, wurden die Tiere 12 h vor Versuchsbeginn einer Nahrungskarenz unterzogen.

5.1.2. Anästhesie der Versuchstiere

Vor der Präparation wurden die Ratten zuerst durch eine inhalative Kurznarkose mit Sevofluran (Baxter, Deerfield, IL, USA) sediert. Nach dem Wiegen wurden die Ratten anschließend durch gewichtsadaptierte Gabe (60 mg/kgKG) Pentobarbital (Narcoren® 16g/100ml; Merial, Hallbergmoos, Deutschland) intraperitoneal in den linken unteren Quadranten des Abdomens anästhesiert. Die chirurgische Präparation wurde erst begonnen, wenn die Versuchstiere das Stadium einer suffizienten Analgesie bei erhaltenener Spontanatmung erreichten und somit von einer ausreichenden Narkosetiefe ausgegangen werden konnte. Sobald ein zentraler Venenkatheter (ZVK) in die rechte Vena jugularis interna angelegt wurde, konnte Pentobarbital bedarfsgerecht intravenös verabreicht werden (0,2 ml/30 min einer 16g/100 ml Injektionslösung). Um
eine Hypothermie zu verhindern, wurden die Versuchstiere während des gesamten Experiments auf einer Wärmeplatte (Terra Plus Comfort Heat Mat, Eurozoo e.K., Geilenkirchen, Deutschland) in Rückenlage platziert und die Körpertemperatur über ein rektales Thermometer überprüft.

5.1.3. Chirurgische Präparation

Den Beginn der chirurgischen Präparation stellte die Tracheotomie und nachfolgende Platzierung einer Trachealkanüle aus Edelstahl dar, welche die maschinelle Beatmung nach der Präparation ermöglichte [185]. Hierzu wurde zuerst zwischen *Manubrium sterni* und *Mandibula* ein etwa 1 cm langer Hautschnitt vorgenommen und die freigelegte Faszie mit dem Lokalanästhetikum Bupivacain (actavis Group PTC ehf, Hafnorfjördur, Island) betäubt. Anschließend wurde die *Trachea* stumpf freipräpariert, nach Inzision zwischen zwei Knorpelspangen die Trachealkanüle eingeführt und mit Halterfäden kranial und kaudal der Inzision fixiert.

Über die rechte *Vena jugularis interna* erfolgte nun die Anlage eines ZVK. Dazu wurde nach stumpfer Freilegung und kranialer Legierung der Vene ein kleiner Schnitt zur Eröffnung des Gefäßes vorgenommen. Anschließend konnte ein Polyethylen-Katheter (PE-50 0,4 x 0,8 mm, Braun, Melsungen, Deutschland) vorgeschoben und mit Halterfäden befestigt werden. Über den ZVK wurde mithilfe eines Perfusors (Fresenius Kabi, Injectomat®; TIVA Agilia, Bad Homburg, Deutschland) die Flüssigkeitssubstitution (0,5 ml/h x kgKG Sterofundin BG5®; B. Braun, Melsungen, Deutschland), die Verabreichung der bedarfsgerechten Narkose (0,2 ml/30 min einer 16 g/100 ml Pentobarbital-Lösung) und die Gabe der Studienmedikation sichergestellt (*Tabelle 3*).

Zur invasiven Messung von Blutdruck, Pulsfrequenz und Entnahme von Blut zur Analyse der Blutgase, sowie der Messung von Zytokinen, wurde die linke *Arteria femoralis* kanüliert. Um die Arterie freizulegen, wurde in der linken Leiste zuerst ein 1 cm langer Hautschnitt vorgenommen und im Anschluss daran das Bindegewebe stumpf voneinander getrennt. Die Arterie stellt sich zumeist zusammen mit der zugehörigen *Vena femoralis* dar und musste von ebendieser separiert werden. Zur Vermeidung großer Blutverluste wurde eine Bulldog-Klemme im Bereich des Leistenbandes auf die *Arteria femoralis* platziert und die Arterie distal legiert. Danach

Nach der operativen Vorbereitung wurden die Hautschnitte mit Mullkompressen (Gazin®; Lohmann & Rauscher International GmbH & Co.KG, Rengsdorf, Deutschland) abgedeckt, um den Flüssigkeitsverlust über die offenen Wunden zu minimieren.

<table>
<thead>
<tr>
<th>Medikament</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atracurium</td>
<td>Hexal, Holzkirchen, Deutschland</td>
</tr>
<tr>
<td>Bupivacain</td>
<td>actavis Group PTC ehf, Hafnorfjörður, Island</td>
</tr>
<tr>
<td>Pentobarbital</td>
<td>Merial, Halbergmoos, Deutschland</td>
</tr>
<tr>
<td>Sevofluran</td>
<td>Baxter, Deerfield IL, USA</td>
</tr>
<tr>
<td>Sterofundin BG5®</td>
<td>B. Braun, Melsungen, Deutschland</td>
</tr>
<tr>
<td>TNFα = Tasonermin</td>
<td>Böhringer Ingelheim, Ingelheim, Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 3: Liste der verwendeten Medikamente und Chemikalien.
5.1.4. Versuchsaufbau zur Atemluftanalyse

Bevor das Versuchstier an die Beatmungseinheit angeschlossen werden konnte, wurde zuerst die Raum- und Beatmungsluft gemessen, um eine mögliche Kontamination zu detektieren. Zur Verringerung zusätzlicher Störfaktoren wurde das Beatmungsgerät eine Stunde vor und während des gesamten Versuchszeitraums mit synthetischer Luft höchsten Reinheitsgrades (\(\text{O}_2 20,5 \text{ Vol}-\% , \text{N}_2 79,5 \text{ Vol}-\% , \text{CO}_2 <100 \text{ ppb}, \text{CO} <100 \text{ ppb}, \text{Kohlenwasserstoffe} <50 \text{ ppb}, \text{Stickoxide} <10 \text{ ppb}, \text{SO}_2 <5 \text{ ppb}, \text{H}_2\text{S} <5 \text{ ppb}, \text{H}_2\text{O} <2 \text{ ppm}; \text{Air Liquide, Ludwigshafen, Deutschland}) betrieben. Außerdem wurden nur Beatmungs- und Probeschläuche aus Polytetrafluorethylen (Bohlender, Grünsfeld, Deutschland) und Konnektoren aus Edelstahl verwendet. Dadurch wurden weitere Störsignale, die von den Materialien entstammen oder durch Resorption durch die Versuchsmaterialien entstehen könnten, auf ein Minimum reduziert.

Das Beatmungsgerät wurde zu Beginn auf eine Atemfrequenz von 65 min\(^{-1}\), eine Inspirations-Ratio von 45% und einen positiven endexspiratorischen Druck von 1-2 cm Wassersäule eingestellt. Das Tidalvolumen wurde dem physiologischen Bewegungsprofil der Thoraxwand angepasst, was in etwa 8 ml/kgKG entspricht. Zur Kontrolle der beatmungsabhängigen Parameter wie \(\text{pO}_2 \), \(\text{pCO}_2 \) und des Säure-Basen-Haushalts wurden regelmäßig Blutgasanalysen (BGA) durchgeführt und bei pathologischen Abweichungen die Beatmungseinstellungen entsprechend korrigiert.

Kurz bevor die Versuchstiere über die Trachealkanüle mit dem Beatmungsgerät verbunden wurden, wurde das Muskelrelaxans Atracurium (Hexal, Holzkirchen, Deutschland) über den ZVK verabreicht, um so ein Gegenatmen zu verhindern. Ehe den Versuchsgruppen die Studienmedikation verabreicht wurde, erfolgte eine 30-minütige Adaptationsphase an die maschinelle Beatmung. In dieser Zeit wurden sowohl die Ausgangswerte der Vitalparameter als auch die erste Atemluftanalyse erhoben. Die automatische Probenentnahme erfolgte alle 20 Minuten am Exspirationsschenkel der Beatmungseinheit, an welchem der Probenschlauch im Seitenstromprinzip direkt mit dem MCC-IMS (B&S Analytik GmbH, Dortmund) verbunden war ([Abbildung 2]). Dabei wurde über 20 Sekunden eine Luftprobe von 10 ml entnommen. Dies stellte keine wesentliche Beeinträchtigung der Hämodynamik oder der respiratorischen Funktion der Ratten dar.
5.1.5. Versuchsgruppen

Zur IMS-Messung von VOCs in der Ausatemluft bei systemischer Inflammation wurden drei Versuchsgruppen mit jeweils 10 männlichen Sprague-Dawley® Ratten untersucht. Eine Gruppe diente dabei als Kontrollgruppe, welcher kein TNF-\textgreek{a} zur Induktion einer systemischen Inflammation verabreicht wurde. Mithilfe des Atemluftprofils dieser Gruppe konnten Signale aufgezeichnet werden, die im physiologischen Atemluftprofil der Ratte zu finden sind. Die zwei Interventionsgruppen dienten zur Messung von spezifischen volatilen Biomarkern, die während einer Inflammation in der Ausatemluft zu detektieren sind.

5.1.5.1. Kontrollgruppe

Die Kontrollgruppe, bestehend aus 10 randomisiert ausgewählten männlichen Sprague-Dawley® Ratten, erhielt eine Basisinfusion mit 5\% Glucose (Sterofundin BG5®, B. Braun, Melsungen, Deutschland) bei einer Infusionsrate von 0,5 ml/100gKG/h. Daraus ergibt sich über 24 h eine Glucosezufuhr von 200 kJ/kg, was einem Drittel des Grundumsatzes einer Ratte entspricht. Im Rahmen der Verblindung
bekamen auch die Tiere der Kontrollgruppe zu Beginn der Untersuchung eine Vehikellösung verabreicht. Welche Tiere TNF-α und welche die Vehikellösung als Studienmedikation verabreicht bekommen haben, wurde zufällig ausgewählt und bis zum Ende aller Untersuchungen nicht erkennbar gemacht.

5.1.5.2. Inflammationsgruppe

Auch die Inflammationsgruppe erhielt als Basisinfusion Sterofundin BG5®. Zur Induktion einer Inflammation wurde das pro-inflammatorische Zytokin TNF-α (Tasonermin, Böhringer Ingelheim, Ingelheim, Deutschland) zu Beginn der Untersuchung verabreicht. Die Inflammationsgruppe teilte sich wiederum in zwei Untergruppen. Die erste Gruppe (n=10) bekam nach einer halbstündigen Adaptationszeit an die maschinelle Beatmung eine Dosis von 200 µg/kgKG TNF-α (Niedrigdosis-Gruppe) injiziert. Der zweiten Versuchsgruppe (n=10) wurde nach einer gleichen Adaptationszeit 600 µg/kgKG TNF-α (Hochdosis-Gruppe) appliziert.

5.1.6. Versuchsprotokoll

Der Beobachtungszeitraum für die Kontrollgruppe sowie für die Inflammationsgruppen wurde auf 24 h begrenzt. Die Vitalparameter der Versuchstiere (systolischer, diastolischer und mittlerer arterieller Blutdruck, Beatmungsdruck, Herzfrequenz, Körpertemperatur) wurden fortlaufend digital aufgezeichnet (PowerLab 8/35, LabChart V7; ADInstruments, Oxford, Great Britain). Zu Beginn und im weiteren Abstand von 4 h erfolgten Blutentnahmen aus dem Arteria femoralis-Katheter zur Blutgaskontrolle (je 0,1ml Blut pro Zeitpunkt), sowie zu Versuchsbeginn und nach 12 h zur Untersuchung von Zytokinen (je 0,5ml Blut pro Zeitpunkt) (Abbildung 3). Zusätzlich wurde alle 4 h das HZV mithilfe der transpulmonalen Thermodilutionstechnik gemessen. Versuchstiere, die nach Ablauf des Versuchszeitraums noch lebten, wurden in tiefer Narkose durch eine Überdosis Pentobarbital getötet.

5.2. Atemluftmessung mit Ionenmobilitätsspektrometrie

5.2.1. Vortrennung des Gasgemisches durch eine Multikapillarsäule

Ein Problem bei der Analyse von Ausatemluft mit hohen Wasserdampf-Konzentrationen (relative Feuchte 100 %) und komplexen Gasgemischen kann entstehen, wenn sich die Signale der einzelnen Analyt-Ionen überlagern und so nicht sicher identifizierbar sind.

Bei vermehrtem Aufkommen von H₂O im Analyt entstehen bei radioaktiver Strahlungsquelle vermehrt hydratisierte Monomere und Dimere, die sich im Spannungsfeld langsamer bewegen und dadurch verfälschte IMS-Signale erzeugen. Deswegen wurde in der vorliegenden Untersuchung das IMS-Gerät mit einer Multikapillarsäule (MCC) gekoppelt.

Die Betriebsparameter der hier verwendeten MCC-OV5 (Multichrom, Moskau und Novosibirsk, Russia) sind in Abbildung 4, B aufgeführt.

Betriebsparameter des MCC-OV5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperaturbereich</td>
<td>max. 250 °C</td>
</tr>
<tr>
<td>Trägergasfluss</td>
<td>5 - 300 ml/min</td>
</tr>
<tr>
<td>Säulenlänge</td>
<td>bis 100 cm</td>
</tr>
<tr>
<td>Bodenzahl / m</td>
<td>5000</td>
</tr>
<tr>
<td>Anzahl der gebündelten Kapillaren</td>
<td>900 - 1200</td>
</tr>
<tr>
<td>Innendurchmesser der Kapillaren</td>
<td>43 µm</td>
</tr>
<tr>
<td>Säulendurchmesser</td>
<td>3 mm</td>
</tr>
<tr>
<td>Polarität</td>
<td>polar / unpolar</td>
</tr>
<tr>
<td>Filmdicke</td>
<td>200 nm</td>
</tr>
</tbody>
</table>

Abbildung 4: A: Querschnitt durch eine Multikapillarsäule (MCC). Entnommen aus Baumbach *et al.* [9]. Maßstab: 0,4 mm. **B: Betriebsparameter des MCC-OV5.**

5.2.2. Aufbau und Funktion eines Ionenmobilitätsspektrometers

Zur Analyse von flüchtigen Stoffwechselprodukten in der Ausatemluft ist ein Gerät nötig, welches Analyt-Moleküle in Konzentrationen von ng/l bis pg/l (ppm-ppt) detektiert, unterschiedliche chemische Substanzklassen voneinander unterscheiden kann und eine möglichst kurze Analysezeit benötigt, um so Messungen direkt am Versuchstier bzw. am Patienten durchführen zu können.

Das Ionenmobilitätsspektrometer (IMS) besteht aus drei Hauptkomponenten: dem Ionisationsraum, in welchem die Analyt-Moleküle ionisiert werden, der Driftröhre zur Trennung der Analyt-Ionen und der Faraday-Platte, auf welcher die auftreffenden Analyt-Ionen ein elektrisches Signal erzeugen (Abbildung 5).
Die Probe gelangt zusammen mit einem Trägergas (i.e. Stickstoff, Luft) über ein Probeneinlasssystem kontrolliert in den Ionisationsraum. Durch geeignete Ionisationsquellen (i.e. radioaktive Strahlungsquellen, UV-Strahlungsquellen, Teilentladungen, Laserlicht, Elektrospray) werden die in dem Trägergas befindlichen Analyt-Moleküle ionisiert. Für diese Versuchsreihe wurde ein IMS mit einer $^{63}{\text{Ni}}$-Strahlungsquelle (Bioscout 2011, 550 MBq, B&S Analytik, Dortmund, Deutschland) verwendet.

Durch Betazerfall des Nuklids $^{63}{\text{Ni}}$ entstehen β-Teilchen, die mit einer Energie von 67 keV emittiert werden und bei dem Zusammenstoßen mit Gasmolekülen zu deren Ionisation führen. Wird Luft als Trägergas verwendet, werden etwa 35 keV zur Bildung eines Ionenpaares benötigt, wobei der Großteil der Energie der β-Teilchen in kinetische Energie der gebildeten Ionen umgewandelt wird. Zuerst werden die Trägergasmoleküle ionisiert und im Anschluss daran entstehen Reaktionsionen. Dieser Vorgang wird als indirekter Ionisationsprozess bezeichnet. Als Reaktionsionen entstehen überwiegend $\text{H}^+(\text{H}_2\text{O})_n$ und negative $\text{O}_2(\text{H}_2\text{O})_m$ Ionen (n, m = ganze Zahlen, i.d.R. zwischen 2 und 6). Durch Protonen- bzw. Elektronentransfer werden schließlich die Analyt-Moleküle selbst ionisiert, die nun im IMS-Spektrogramm neben dem Reaktionsionen-Peak als eigenes Signal zu erkennen sind. Die Stärke der

Abbildung 5: Schematische Darstellung eines Ionenmobilitätspektrometers (IMS). Modifiziert nach [29, 30].

Für die hier aufgeführten Untersuchungen wurde ein Bioscout 2011 MCC-IMS mit folgenden Betriebsparametern verwendet (Abbildung 6, B).

Abbildung 6: A: Beispiel eines IMS-Einzelspektrums in der Ausatemluftanalyse. $1/K_0 \approx$ reduzierte Ionenmobilität: [cm2/Vs]. B: Betriebsparameter des Bioscout 2011 MCC-IMS.

<table>
<thead>
<tr>
<th>Betriebsparameter des Bioscout 2011 MCC-IMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionisationsquelle</td>
</tr>
<tr>
<td>Elektrische Feldstärke</td>
</tr>
<tr>
<td>Driftdistanz</td>
</tr>
<tr>
<td>Driftdurchmesser</td>
</tr>
<tr>
<td>Öffnungsdauer des Schaltgitters</td>
</tr>
<tr>
<td>Driftgasfluss</td>
</tr>
<tr>
<td>Trägergasfluss</td>
</tr>
<tr>
<td>Betriebstemperatur</td>
</tr>
<tr>
<td>Volumen der Probeschleife</td>
</tr>
<tr>
<td>Probefluss</td>
</tr>
</tbody>
</table>

5.3. ELISA-Messung zur Zytokinbestimmung

Der erste Antikörper, ein sog. Fänger-Antikörper, ist an einer festen Phase, in diesem Fall an eine Mikrotiterplatte, gebunden. Die Probe mit dem nachzuweisenden Antigen wird auf die Mikrotiterplatte gegeben, sodass der Fänger-Antikörper während der Inkubationszeit an ein spezifisches Epitop des Antigens binden kann. Nach Ablauf der Inkubationszeit werden ungebundene Bestandteile abgewaschen und ein Peroxidase-Antikörper zur Detektion (Detektions-Antikörper) hinzugegeben. Dieser enzymgekoppelte Detektions-Antikörper erkennt und bindet an ein anderes Epitop als

Um überschüssige Detektions-Antikörper zu entfernen, wird die Mikrotiterplatte ein weiteres Mal gewaschen, sodass ausschließlich das zu messende Antigen gebunden an die Antikörper übrigbleibt. Nun kann das Antigen detektiert und quantifiziert werden. Dazu wird ein Peroxidase-abhängiges Substrat hinzugegeben, das eine Farbreaktion hervorruft, die proportional zu der Menge des Antigens ist. Um ein Fortfahren des Farbumschlags zu beenden, wird nach einer weiteren Inkubationszeit von 15-30 min in Dunkelheit 1-molare Schwefelsäure beigefügt.

Die photometrische Bestimmung der Farbreaktion erfolgt mit einem ELISA-Reader (ELx800™ Absorbance Microplate Reader; BioTEK® Instruments GmbH, Bad Friedrichshall, Deutschland) und der dazugehörigen Gen5™ Software (BioTEK® Instruments GmbH). Um eine Kalibrierungskurve für das gemessene Antigen zu erhalten, wurden in die ersten beiden Reihen der Mikrotiterplatte rekombinante Zytokine als Verdünnungsreihe aufgebracht. Die minimal messbare Zytokininkonzentration liegt laut Hersteller bei 2 pg/ml.

Abbildung 7: Schematische Darstellung eines Sandwich-ELISA. (1) Fänger-Antikörper (Y) auf Mikrotiterplatte (hellblauer Strich); (2) Hinzufügen des Antigens (blaues Oval), (3) Detektions-Antikörper bindet an Antigen (gedrehtes Y), (4) Zugabe eines Enzym-gekoppelten Antikörpers (dunkelblauer Kreis), (5) Farbreaktion (weißer Stern wird zu blauem Stern).
5.4. HovaCal

Ein Hot-Vapour-Calibration-Prüfgasgenerator (HovaCal) wird zur Herstellung von Prüfgasen definierter Konzentrationen genutzt. Bei der hier vorliegenden Untersuchung wurde eine TNF-α-Lösung gemessen, um so etwaige Korrelationen zwischen Signalen der Lösung und inflammatorischen Atemluftsignalen der Versuchstiere aufzuzeigen. Dazu wurde die Lösung unter kontinuierlicher Beimengung eines Trägergases verdampft. Über die Einstellung des Mengenverhältnisses von Lösung und Trägergas kann die gewünschte Konzentration des zu messenden Analyten hergestellt werden.

Für die hier vorliegenden Untersuchungen wurde ein HovaCAL 4836-VOC (IAS GmbH, Oberursel, Deutschland) genutzt, der über die Software viewCal 4836 (IAS GmbH, Oberursel, Deutschland) gesteuert wurde. Der Kalibriergasgenerator HovaCal 4836-VOC ist aus drei Stufen aufgebaut (Abbildung 8).

In Stufe 1 wird zuerst über ein Spritzenpumpenmodul die zu messende Substanz in einen geheizten Verdampfer eingelassen und dort mit einem definierten Trägergasstrom (Massendurchflussregler = MFC) gemischt. Das Spritzenpumpenmodul funktioniert nach dem Push-Pull-Prinzip: während die eine Spritze Flüssigkeit fördert, wird die andere Spritze automatisch für den Folgehub gefüllt. Um eine kontinuierliche Förderung zu gewährleisten, sind die Umschaltvorgänge der totvolumenarmen Drehschieberventile zeitlich etwas versetzt, sodass diese sich überlappen und ein Dauerbetrieb möglich ist.

Der Verdampfer ist trägergasgestützt, sodass ein Mindestgasfluss nötig ist, um ein kontinuierliches Verdampfen zu gewährleisten. Der Gasstrom in Stufe 1 beträgt 1,5 Nl/min und wird über den Massendurchflussregler (MFC1) eingeteilt. Die Temperatur des Verdampfers kann zwischen 60 °C und 180 °C eingestellt werden und sollte für das zu verdampfende Gemisch so gewählt werden, dass die Temperatur deutlich über dem zu erwartenden Taupunkt liegt. Das nun entstandene Gas-Dampf-Gemisch kann nach dem Verdampfer aus dem System abgeleitet werden.

Das Gemisch aus Analyt und Trägergas wird über einen Bypass und ein Kapillarsystem aus dem Verdampfer gelassen und mit einem definierten Verdünnungsgasstrom gemischt und in Folge dessen weiter verdünnt.

Die elektronischen Vordruckregler regeln den konstanten Durchfluss des Gasgemisches durch die beheizte Kapillare.

Im Verdünnungssystem (Stufe 2 und 3) wird über beheizte Kapillaren, einem weiteren MFC für Verdünnungsgas (MFC2 und MFC3) und zwei Druckreglern ein noch größeres Verdünnungsverhältnis eingestellt. Die beheizten Kapillaren sorgen für konstante Bedingungen für den Durchfluss des Gasdampfstroms (vor allem dessen Viskosität) und minimieren zusätzlich Adsorptionseffekte. Der dampfbeladene Gasstrom kommt während der Passage nur mit den beheizten Kapillaren in Kontakt, wodurch die Verunreinigung von kalten Oberflächen umgangen wird.

Durch das Verdünnungssystem können Verdünnungsverhältnisse von bis zu 1/2.000.000 erreicht werden. Zusammen mit dem Vorgemisch aus Stufe 1, das Konzentrationen von 100 ppm bis 10.000 ppm aufweisen kann, ist es demnach möglich, Konzentrationen von ca. 50 ppb bis 50 ppt bei Reinsubstanzen zu erzielen. Allerdings sind auch erheblich geringere Konzentrationsbereiche realisierbar, wenn anstelle einer Reinsubstanz Lösungen mit Dotierkonzentrationen verwendet werden. Laut Hersteller ist es möglich, mit 1.000 ppm-Lösungen Konzentrationen zwischen
0,05 ppt bis 50 ppt herzustellen. Jede Stufe des HovaCal kann über ein separates Dosier- und Verdampfersystem befeuchtet werden (*Tabelle 4*) [118, 166].

<table>
<thead>
<tr>
<th>Technische Daten des HovaCal® 4836-VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasdurchfluss MFC1, MFC2, MFC3</td>
</tr>
<tr>
<td>Gastemperatur Eingang Massenflussregler</td>
</tr>
<tr>
<td>Gastemperatur Ausgang Naherhitzer</td>
</tr>
<tr>
<td>Gasdruck vor Massenflussregler</td>
</tr>
<tr>
<td>Anwärmezeit</td>
</tr>
<tr>
<td>Medienberührte Materialien</td>
</tr>
<tr>
<td>Umgebungstemperatur im Betrieb</td>
</tr>
<tr>
<td>Umgebungstemperatur bei Lagerung und Transport</td>
</tr>
<tr>
<td>Versorgungsspannung</td>
</tr>
<tr>
<td>Leistungsaufnahme</td>
</tr>
</tbody>
</table>

Tabelle 4: Technische Daten des HovaCal 4836-VOC.

5.5. Patientenmessung

5.5.1. Patient

Die IMS-Probenentnahme erfolgte automatisiert im Abstand von 20 Minuten aus dem Expirationsschenkel des Beatmungsgeräts, was weder eine hämodynamische noch respiratorische Einschränkung verursachte.

5.5.2. Isolierte Extremitätenperfusion mittels TNF-α

5.6. Signalauswertung

Die Software Visual Now (Version 3.1; B&S Analytik, Dortmund, Deutschland) diente zur Identifizierung sowie Quantifizierung der gefundenen Analyte im IMS. Aufgezeichnete Signale mit einer Signalstärke von 1 mV bis 5 V wurden als Peak definiert, da 1 mV dem Fünffachen des Hintergrundrauschens der IMS-Signale entspricht und 5 V, da dies die obere Detektionsgrenze der maximal möglichen Ionisation der Ni^{63}-Ionisationsquelle darstellt.

Abbildung 9: Beispiel eines 3D-Spektrogramms mit den Parametern Retentionszeit, Driftzeit und Intensität.

5.7. Software und Statistik

Zur Erstellung der Dissertationsschrift wurde Microsoft® Office Word® 2016 (Microsoft Corporation, Redmond, Washington, USA) verwendet und die Graphiken wurden mit
6. ERGEBNISSE

6.1. Physiologisches Atemluftprofil der Ratte

Tabelle 5: Atemluftprofil der gesunden Sprague-Dawley® Ratte. Die Signale R01-R35 sind VOCs, die sowohl während der Messung des Beatmungssystems als auch bei einstündiger Messung des beatmeten Versuchstieres detektiert wurden. Demnach wurden diese Signale dem Respirator zugeordnet. Die Signale AL0-AL37 konnten nur während der Messung an der beatmeten Ratte detektiert werden und konnten dementsprechend dem Atemluftprofil der Ratte zugeschrieben werden. R: Respirator; NN: No Name / unbekannte VOCs; AL: Atemluft; 1/K0: Reduzierte Ionenmobilität \(\equiv \) Driftzeit, K0: \([\text{cm}^2/\text{Vs}]\). RT: Retentionszeit in [s].
6.2. Inflammation nach Injektion von TNF-α

6.2.1. Blutgasanalyse und Herzzeitvolumen

Überlebensrate

<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>TNF-α 200</th>
<th>TNF-α 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>0h</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4h</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8h</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>12h</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16h</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20h</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>24h</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

pH

<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>TNF-α 200</th>
<th>TNF-α 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>7.43 ± 0.05</td>
<td>7.46 ± 0.03</td>
</tr>
<tr>
<td>TNF-α 200</td>
<td>7.43 ± 0.03</td>
<td>7.43 ± 0.08</td>
</tr>
<tr>
<td>TNF-α 600</td>
<td>7.43 ± 0.04</td>
<td>7.48 ± 0.04</td>
</tr>
</tbody>
</table>

BE

<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>TNF-α 200</th>
<th>TNF-α 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>1.7 ± 1.8</td>
<td>-0.6 ± 2.1</td>
</tr>
<tr>
<td>TNF-α 200</td>
<td>-1.7 ± 2.7</td>
<td>-7.4* ± 3.7</td>
</tr>
<tr>
<td>TNF-α 600</td>
<td>1.0 ± 1.9</td>
<td>0.1 ± 1.8</td>
</tr>
</tbody>
</table>

Laktat [mmol/l]

<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>TNF-α 200</th>
<th>TNF-α 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>0.9 ± 0.3</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>TNF-α 200</td>
<td>0.9 ± 0.2</td>
<td>1.5 ± 0.4</td>
</tr>
<tr>
<td>TNF-α 600</td>
<td>0.7 ± 0.1</td>
<td>1.3 ± 0.2</td>
</tr>
</tbody>
</table>

pO₂ [mmHg]

<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>TNF-α 200</th>
<th>TNF-α 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>83.6 ± 12.8</td>
<td>85.7 ± 11.5</td>
</tr>
<tr>
<td>TNF-α 200</td>
<td>96.8 ± 2.4</td>
<td>96.4 ± 2.7</td>
</tr>
<tr>
<td>TNF-α 600</td>
<td>84.3 ± 1.9</td>
<td>96.9 ± 1.8</td>
</tr>
</tbody>
</table>

pCO₂ [mmHg]

<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>TNF-α 200</th>
<th>TNF-α 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>40.4 ± 7.3</td>
<td>32.7 ± 2.8</td>
</tr>
<tr>
<td>TNF-α 200</td>
<td>36.0 ± 4.6</td>
<td>35.3 ± 9.4</td>
</tr>
<tr>
<td>TNF-α 600</td>
<td>36.2 ± 5.8</td>
<td>32.2 ± 3.9</td>
</tr>
</tbody>
</table>

Herzzeitvolumen [ml/min]

<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>TNF-α 200</th>
<th>TNF-α 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>92.3 ± 16.3</td>
<td>102 ± 31.1</td>
</tr>
<tr>
<td>TNF-α 200</td>
<td>82.6 ± 16.2</td>
<td>71.8 ± 13.1</td>
</tr>
<tr>
<td>TNF-α 600</td>
<td>82.8 ± 9.6</td>
<td>85.2 ± 20.1</td>
</tr>
</tbody>
</table>

Tabelle 6: Blutgasanalyse und Herzzeitvolumen nach TNF-α-Gabe. Kontrolle: keine Studienmedikation, nur Basisinfusion mit 5 % Glucose; TNF-α 200: 200 µg/kgKG TNF-α, TNF-α 600: 600 µg/kgKG TNF-α, * p<0,05 vs. Kontrolle, # p<0,05 vs. 0 h. BE: Basenüberschuss, pO₂: Sauerstoffpartialdruck, pCO₂: Kohlenstoffdioxidpartialdruck. Darstellung: Mittelwert ± 95% Konfidenzintervall des Mittelwerts.

6.2.2. Atemluftprofil

Überlebensrate
Kontrolle
TNF-α 200
TNF-α 600

<table>
<thead>
<tr>
<th></th>
<th>0h</th>
<th>4h</th>
<th>8h</th>
<th>12h</th>
<th>16h</th>
<th>20h</th>
<th>24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TNF-α 200</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>TNF-α 600</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

1-Butanol [mV]

<table>
<thead>
<tr>
<th></th>
<th>0h</th>
<th>4h</th>
<th>8h</th>
<th>12h</th>
<th>16h</th>
<th>20h</th>
<th>24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>10,8±5,3</td>
<td>7,3±3,1</td>
<td>6,8±2,3</td>
<td>6,5±2,5</td>
<td>6,6±2,3</td>
<td>6,6±2,0</td>
<td>8,1±2,0</td>
</tr>
<tr>
<td>TNF-α 200</td>
<td>9,9±2,3</td>
<td>6,2±1,7</td>
<td>5,5±1,1</td>
<td>6,3±1,5</td>
<td>7,2±0,8</td>
<td>11,1±0,9</td>
<td>11,8±1,0</td>
</tr>
<tr>
<td>TNF-α 600</td>
<td>10,8±2,7</td>
<td>9,0±2,7</td>
<td>7,5±2,5</td>
<td>8,1±2,1</td>
<td>10,2±2,6</td>
<td>14,3±2,1</td>
<td>13,6±2,4</td>
</tr>
</tbody>
</table>

1-Pentanol [mV]

<table>
<thead>
<tr>
<th></th>
<th>0h</th>
<th>4h</th>
<th>8h</th>
<th>12h</th>
<th>16h</th>
<th>20h</th>
<th>24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>26,9±12,1</td>
<td>23,8±12,5</td>
<td>27,1±11,3</td>
<td>27,8±19,2</td>
<td>28,3±20,8</td>
<td>30,4±23,9</td>
<td>29,4±22,4</td>
</tr>
<tr>
<td>TNF-α 200</td>
<td>42,2±15,9</td>
<td>36,2±11,4</td>
<td>29,4±12,7</td>
<td>34,8±17,6</td>
<td>47,5±12,4</td>
<td>78,6±11,5</td>
<td>86,7±13,8</td>
</tr>
<tr>
<td>TNF-α 600</td>
<td>37,9±7,0</td>
<td>34,9±5,7</td>
<td>27,6±7,4</td>
<td>34,5±8,2</td>
<td>51,6±10,2</td>
<td>75,4±10,9</td>
<td>78,4±11,6</td>
</tr>
</tbody>
</table>

3-Pentanon [mV]

<table>
<thead>
<tr>
<th></th>
<th>0h</th>
<th>4h</th>
<th>8h</th>
<th>12h</th>
<th>16h</th>
<th>20h</th>
<th>24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>230,8±91,6</td>
<td>129,6±46,5</td>
<td>68,0±16,0</td>
<td>51,5±9,9</td>
<td>56,0±10,0</td>
<td>70,8±11,7</td>
<td>82,8±25,0</td>
</tr>
<tr>
<td>TNF-α 200</td>
<td>696,2±67,8</td>
<td>455,0±108,3</td>
<td>169,2±74,6</td>
<td>159,6±68,1</td>
<td>191,3±69,8</td>
<td>297,2±95,9</td>
<td>420,6±120,8</td>
</tr>
<tr>
<td>TNF-α 600</td>
<td>753,3±45,1</td>
<td>518,0±84,5</td>
<td>128,1±20,8</td>
<td>118,1±31,1</td>
<td>188,0±50,7</td>
<td>240,2±74,6</td>
<td>394,5±109,2</td>
</tr>
</tbody>
</table>

p-Cymol [mV]

<table>
<thead>
<tr>
<th></th>
<th>0h</th>
<th>4h</th>
<th>8h</th>
<th>12h</th>
<th>16h</th>
<th>20h</th>
<th>24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>5,2±1,2</td>
<td>3,8±0,9</td>
<td>3,5±0,9</td>
<td>3,4±0,9</td>
<td>3,3±0,9</td>
<td>3,2±0,7</td>
<td>3,6±0,8</td>
</tr>
<tr>
<td>TNF-α 200</td>
<td>5,1±1,9</td>
<td>4,5±3,0</td>
<td>4,6±2,6</td>
<td>4,3±2,5</td>
<td>4,1±2,4</td>
<td>4,6±2,2</td>
<td>4,7±2,1</td>
</tr>
<tr>
<td>TNF-α 600</td>
<td>7,3±3,0</td>
<td>10,9±4,5</td>
<td>9,5±4,7</td>
<td>9,1±4,9</td>
<td>9,8±4,6</td>
<td>9,0±4,4</td>
<td>10,1±4,2</td>
</tr>
</tbody>
</table>

Tabelle 7: Atemluftsignale nach TNF-α-Gabe. Die Tabelle zeigt die gemessenen Werte der signifikanten Peaks nach TNF-α-Gabe im Vergleich zu diesen Signalen in der Kontrollgruppe. TNF-α 200: 200 µg/kgKG TNFα, TNF-α 600: 600 µg/kgKG TNFα. *: p<0,05 vs. Kontrolle, #: p<0,05 vs. korrespondierender Ausgangswert, §: p<0,05 vs. TNF-α 200. VOC: Volatile Organic Compound, mV: Millivolt. Darstellung: Mittelwert ± 95% Konfidenzintervall des Mittelwerts.

In den ersten beiden Stunden der Beatmung stiegen die 1-Pentanol-Intensitäten der Inflammationsgruppen leicht an und fielen daraufhin bis 9 h nach TNF-α-Gabe ab. Anschließend stiegen die Signalintensitäten und erreichten 20 h nach Versuchsbeginn in beiden Inflammationsgruppen signifikant höhere Werte im Vergleich zu der Kontrollgruppe und dem korrespondierenden Ausgangswert.

6.2.3. Überlebenszeit

Alle Tiere der Kontrollgruppe überlebten den Versuchszeitraum von 24 h. Die TNF-α-Gruppe, der 200 µg/kgKG verabreicht wurde, überlebte im Mittel 21,6 h. Die Versuchsgruppe mit höherdosierter TNF-α-Application hatte eine mittlere Überlebenszeit von 22,8 h. Dieser Unterschied zwischen den Gruppen war nicht signifikant.

6.2.4. Vitalparameter

Die hämodynamischen Parameter blieben in der Kontrollgruppe den gesamten Untersuchungszeitraum von 24 h über stabil. Ausgangswert war in allen drei Versuchsgruppen ein MAP von ca. 100 mmHg. In beiden Inflammationsgruppen fiel 12 h nach Versuchsbeginn der MAP signifikant im Vergleich zur Kontrollgruppe ab. Die Kontrollgruppe verzeichnete 12 h nach Versuchsbeginn einen Mittelwert des MAPs von 97 mmHg (95%-Konfidenzintervall ± 10). Die Niedrigdosis-Gruppe wies als MAP-
ERGEBNISSE

Mittelwert 78 mmHg (95%-Konfidenzintervall ± 13) und die Hochdosis-Gruppe einen Mittelwert von 68 mmHg (95%-Konfidenzintervall ± 11) auf. Sowohl in der Hochdosis- als auch in der Niedrigdosis-Gruppe waren die Werte des MAPs gegen Ende auf ca. 50 mmHg gesunken (*Abbildung 11*). Eine Intervention mit hämodynamisch wirksamen Substanzen erfolgte zu keinem Zeitpunkt der Untersuchung.

Abbildung 11: Mittlerer arterieller Blutdruck (MAP) über den Versuchszeitraum von 24h. Mittlerer arterieller Blutdruck; Kontrolle: Vehikellösung und Basisinfusion mit 5 % Glucose; TNF-α 200: Inflammationsgruppe, der 200 µg/kgKG TNF-α appliziert wurde; TNF-α 600: Inflammationsgruppe, der 600 µg/kgKG TNF-α appliziert wurde. *: p<0,05 beide Inflammationsgruppen vs. Kontrolle; #: p<0,05 TNF-α 600 vs. Kontrolle. Mittelwert ± Standardfehler des Mittelwerts.

6.2.5. Zytokinkonzentration

Zu Versuchsbeginn sowie nach 12 h wurde den Versuchstieren 0,5 ml Blut zur Zytokinbestimmung abgenommen. Dabei konnte für die Zytokine IL-6 und IL-10 Unterschiede zur Kontrollgruppe ausgemacht werden. IL-6 stieg sowohl in der Niedrigdosis-Gruppe als auch in der Hochdosis-Gruppe in den ersten 12 h an. In der Kontrollgruppe blieb die IL-6-Konzentration über den gesamten Untersuchungszeitraum annähernd stabil (*Abbildung 12, A*). IL-10 zeigte in der Niedrigdosis-Gruppe nur einen minimalen Anstieg in den ersten 12 h nach Versuchsbeginn. In der Hochdosis-Gruppe war IL-10 zu Beginn nur in basalen Konzentrationen messbar. Nach 12 h hingegen konnten in dieser Gruppe die höchsten
Werte für IL-10 gemessen werden. In der Kontrollgruppe blieben die Werte für IL-10 auf einem leicht abfallenden niedrigen Niveau (Abbildung 12, B).

![Abbildung 12: IL-6- und IL-10-Plasmakonzentrationen nach TNF-α-Gabe. A: IL-6 Plasmakonzentrationen zu Versuchsbeginn und nach 12 h. B: IL-10 Plasmakonzentrationen zu Versuchsbeginn und nach 12 h. Daten werden als Mittelwert ± SD dargestellt. p < 0,05. Mittelwert ± Standardfehler des Mittelwerts.]

6.3. HovaCal®-Messung

Die Messung des Medikaments Tasonermin, ein rekombinanter TNF-α, erfolgte mit dem HovaCal®. Dabei wurde das Medikament bei 100 °C verdampft und anschließend die Signale mittels IMS gemessen. Hierbei konnte keine Übereinstimmung mit den Messungen der Ausatemluft der Ratten während der Inflammation festgestellt werden (Abbildung 13).
6.4. Atemluftprofil der Patientin

annähernd konstant mit leicht erhöhten Werten gegen Ende der Atemluftanalyse (Abbildung 14).

6.5. Zusammenfassung der Ergebnisse

In der vorliegenden Arbeit wurden die Veränderungen von VOCs in der Ausatemluft während TNF-α induzierter systemischer Inflammation mittels IMS im Tiermodell untersucht. In diesem Zusammenhang wurde diese Messung erstmals an einem Patienten bei isolierter TNF-α Extremitätenperfusion angewandt und mit den erhobenen tierexperimentellen Daten verglichen.

Aus der vorliegenden Fragestellung wurden folgende Erkenntnisse gewonnen:

2. Eine Dosisabhängigkeit der Inflammationsgruppen besteht bei den VOCs 1-Butanol, 3-Pentanon und p-Cymol. In der Hochdosis-Gruppe stieg die Intensität

7. Diskussion von Material und Methoden

7.1. In vivo-Modell

Zur Charakterisierung der Ausatemluft bei systemischer Inflammation fand in der vorliegenden Arbeit ein Rattenmodell Anwendung. Das Ziel war die Darstellung der Interaktion zwischen messbaren Komponenten des Exhalats und der induzierten Inflammation.

Tatsächlich stehen für die Darstellung der in vivo-Antwort auf eine Inflammation heute eine Vielzahl von Modellen zur Verfügung, die mit verschiedenen Endotoxinen oder Zytokinen arbeiten. Ein häufig verwendetes Tiermodell zur Induktion einer sterilen Inflammation ist die Injektion von Lipopolysaccharid (LPS) [20]. Dabei werden ähnliche pro-inflammatorische Komponenten freigesetzt wie bei TNF-α, unter anderem IL-1 und IL-6 [126]. Des Weiteren kann eine Inflammation durch die intraperitoneale Injektion von Thioglykolat ausgelöst werden, bei der Keratinocyte-derived Chemokine, Makrophage Inflammatory Protein-2 und Monocyte Chemoattractant Protein-1 als Mediatoren der Entzündungsreaktion fungieren [66]. Ein alternatives, weniger gebräuchliches in vivo-Modell stellt die Injektion des Homoglykans Zymosan dar. Hierbei wird das Komplementsystem im Zuge der angeborenen Immunantwort aktiviert und führt so zu einer Entzündungsreaktion [117]. Interessanterweise scheinen alle drei Stoffe zumindest teilweise agonistisch zu wirken, und TNF-α wird als gemeinsamer
downstream-liegender Mediator von LPS, Thioglykolat und Zymosan induziert [131, 139, 161]. Dementsprechend wird TNF-α sowohl in der bakteriellen als auch in der sterilen Inflammation eine Kernfunktion zuteil [122].

Um Tiere suffizient maschinell beatmen zu können, spielt auch die Größe des Versuchstiers eine entscheidende Rolle. Sowohl die Tracheotomie zur Intubation als auch die Anlage der Gefäßzugänge und die Überprüfung von Beatmung und Narkoseführung sind bei Ratten qualitativ hochwertiger zu bewerkstelligen als bei Mäusen.

7.1.2. Vortrennung durch Multikapillarsäule-Kopplung

die Ionen an Größe zunehmen und deshalb an Wänden und am Einlassgitter verbleiben, was eine Detektion verhindert [128]. Durch diese Effekte werden die Detektion der Ionen und die Interpretation von Ausatemluft mittels IMS-Analyse erschwert. Folglich erhöht eine Abtrennung der Wassermoleküle vor dem Eintritt in den Ionisationsraum sowohl die Sensitivität als auch die Spezifität der Detektionsmethode erheblich [45].

7.1.3. Biomarker-Detektion: Ionenmobilitätspektrometer

Eine breite Auswahl von Detektoren hat in den vergangenen Jahren Einzug in die medizinische Atemluftanalyse gehalten, wobei eine Vielzahl von Anforderungen für den klinischen Einsatz erfüllt werden müssen. Der Probentransport der Atemluft ist nur sehr limitiert möglich, da lange Transportwege zu einem geeigneten laborchemischen Setting zeit- und kostenaufwendig sind und die Fehlerquote drastisch steigern [183, 184]. Bei einer Zeitverzögerung der Atemluftmessung kann sich durch Temperaturschwankungen und den hohen Feuchtigkeitsgehalt die chemische Zusammensetzung des Analyts ändern und so zu Messungenaigkeiten führen. Im Vordergrund stehen demnach praktische Aspekte der patientennahen Anwendung wie Größe, Lautstärke und Widerstandsfähigkeit gegenüber externen Einflussfaktoren, wie sie bereits für die gekoppelten Vortrennungssysteme erwähnt worden sind. Des Weiteren liegen die zu detektierenden Analyt-Ionen in der Luftprobe in Konzentrationen im Spurenbereich zwischen ppb\textsubscript{v} bis ppt\textsubscript{v} (10-9 bis 10-12) vor. Zwar kann die Sensitivität und Spezifität eines jeden Detektors durch Anwendung eines geeigneten Vortrennungsverfahrens stark erhöht werden, doch stellt die Analyse dieses geringen Probenvolumens immer noch eine hohe Anforderung an die Analyseverfahren dar. Darüber hinaus setzen sich die zu messenden Biomarker aus verschiedenen chemischen Einzelsubstanzen zusammen und unterliegen erheblichen physiologischen Konzentrationschwankungen.

In Abhängigkeit von der Fragestellung finden heute vorranging Massenspektrometer, Photoionisations- und Flammenionisationsdetektoren Einsatz [54, 71, 142, 148]. Während jede dieser Methoden als Gemeinsamkeit die Analyse ionisierter Biomarker hat, unterscheiden sich die unterschiedlichen Geräte doch in ihren Maßen und verschiedenen Charakteristika.

potentielle Möglichkeit der Miniaturisierung [2]. Zur weiteren Maximierung der Standardisierung wurde sowohl das MCC-IMS als auch das Beatmungsgerät mit synthetischer Luft höchsten Reinheitsgrades betrieben. Zusätzlich wurden nur Beatmungs- und Probeschlüche sowie Konnektoren aus Teflon oder Edelstahl verwendet, um so die Resorption flüchtiger Verbindungen zu minimieren und Störsignale zu vermeiden [3, 185]. Insgesamt konnten so Resultate erzielt werden, die eine Charakterisierung der untersuchten VOCs mit hoher Genauigkeit verlässlich zuließen [72].

7.1.4. Isolierte Extremitätenperfusion

7.2. Diskussion der Ergebnisse

7.2.1. Tiermessung

7.2.1.1 Atemluftanalyse

Bei den detektierten VOCs sollte zwischen dem Profil einer unbehandelten, gesunden Ratte und dem eines behandelten Versuchstieres während einer Inflammation unterschieden werden. Deshalb wurde zusätzlich zu den Inflammationsgruppen eine unbehandelte Kontrollgruppe untersucht. Das Atemluftprofil der Tiere innerhalb der Kontrollgruppe war durch einen konstanten Verlauf der untersuchten VOCs gekennzeichnet.

Um diese Hypothese zu bekräftigen, untersuchten Kleber et al. Lebergewebe von Ratten 24 h nach TNF-α Applikation [76]. Dabei fanden sich eine gesteigerte Expression von verzweigtkettiger Ketocarbonsäuren-Dehydrogenase (BCKD), eine niedrigere Expression der Propionyl-CoA Carboxylase (PCCA und PCCB) und
Veränderungen der Expression von Dehydrogenase-regulierenden Enzymen. Daher scheint die Verstoffwechselung von Propionyl-CoA zu Methylmalonyl-CoA bei TNF-α-induzierter systemischer Inflammation gemindert zu sein, was eine vermehrte Umwandlung von Propionyl-CoA zu Kondensationsprodukten zur Folge hat (Abbildung 15). Die BCKD-Kinase (BCKDK) inaktiviert die Aktivität der BCKD durch Phosphorylierung. Die Phosphatase PPM1K ist verantwortlich für die Dephosphorylierung und Aktivierung der BCKD [33, 62]. Kleber et al. fand in den TNF-α-Gruppen eine verminderte Phosphorylierung der BCKD, was eine erhöhte PPM1K- und eine erniedrigte BCKDK-Aktivität vermuten lässt [76].

Das Muster von 3-Pentanon während der frühen Inflammation lässt darauf schließen, dass verzweigkettige Ketocarbonsäuren für die Synthese von neuen Proteinen wiederverwendet werden und nicht über die BCKD den oxidativen, katabolen Reaktionsweg einschlagen.

Dies erklärt den Abfall des gemessenen Ketons 3-Pentanon zu Beginn der Inflammation. Bei langanhaltender Inflammation werden Substrate zur Energieversorgung der Zellen erforderlich. Deshalb wird vermutlich der irreversible Abbau (BCKA Oxidation) von überschüssigen BCKA zu Propionyl-CoA aktiviert, was dann wiederum zu einem erhöhten 3-Pentanon in den Inflammationsgruppen führt.

7.2.1.2. Zytokinbestimmung

Die Plasmakonzentrationen von IL-6 und IL-10 wiesen in der Kontrollgruppe annähernd stabile Werte auf. In beiden Inflammationsgruppen stieg die Konzentration beider Zytokine erwartungsgemäß an. In anderen Tierstudien wurde bereits gezeigt, dass TNF-α die Sekretion von IL-6 induziert, was mit unseren Messungen korreliert [151, 187]. Es ist bekannt, dass IL-6 eine wichtige Rolle bei der Induktion von Akute Phase-Reaktionen bei systemischer Inflammation spielt [43, 127]. Auf der einen Seite ergaben Untersuchungen an IL-6 Knock out-Mäusen wesentlich höhere Spiegel an pro-inflammatorischen Zytokinen wie TNF-α und IL-1, was für eine antiinflammatorische Funktion von IL-6 spricht [186]. Außerdem inhibiert IL-6 pro-inflammatorische Zytokine und induziert wahrscheinlich die Ausschüttung antiinflammatorischer Moleküle und extrahepatischer Protease-Inhibitoren [89, 120, 156]. Es ist möglich, dass in der hier vorliegenden Untersuchung das erhöhte IL-6, als immunregulatorische Aufgabe, die Supprimierung von TNF-α verursacht. Auf der anderen Seite induziert IL-6 das Einwandern von Entzündungszellen, inhibiert deren Apoptose und die regulatorische T-Zell-Differenzierung [5, 123, 124, 132]. Die unterschiedlichen Auswirkungen von IL-6 auf inflammatorische Prozesse im Körper beruhen dabei auf unterschiedlichen Signalwegen [90, 123, 132, 137]. Weitergehende molekularbiologische Untersuchungen sind nötig, um diese Signalwege in einen Zusammenhang mit der von uns gemessenen Exhalation des Markers in der Ausatemluft zu verknüpfen.

In unseren Untersuchungen war die Konzentration von IL-10 vor allem in der Hochdosis-Gruppe zu Beginn im Vergleich zur Kontrollgruppe sehr niedrig. Zum Zeitpunkt der 12 h-Messung konnte wiederum ein erhöhter Spiegel an IL-10 in beiden Inflammationsgruppen nachgewiesen werden. Normalerweise wird ein hoher Spiegel an TNF-α durch frühzeitige und nachhaltige Expression von antiinflammatorischem IL-
IL-10 unterdrückt u.a. die Produktion von Entzündungsmediatoren, einschließlich TNF-α, hemmt die Rekrutierung von Leukozyten an den Ort der Entzündung und hält den Gewebeschaden in Grenzen [37, 42, 47, 48, 177]. Demnach wird IL-10 eine protektive Rolle im Zuge der systemischen Inflammation zugeschrieben [49, 53]. Jedoch wurde ein initiales Fehlen von IL-10 bereits bei intrazellulären Infektionen als Vorteil beschrieben, da so der initial pro-inflammatorische Mechanismus zu einem Absterben des Pathogens führen kann [100, 130]. Anschließend sorgt die Hochregulierung von IL-10 dafür, dass es nicht zu einer überschießenden Wirtsantwort kommt. Niedrige Konzentrationen von IL-10 über einen längeren Zeitraum wurden wiederum als schädlich demonstriert, da so erhöhte Mengen an pro-inflammatorischen Mediatoren produziert und freigesetzt werden und zu systemischen Krankheitsverläufen wie septischem Schock führen können [69, 100, 130]. Auch in unseren Untersuchungen zeichnete sich in beiden Inflammationsgruppen dieses Muster des niedrigen IL-10-Spiegels zu Beginn ab, welches im Laufe der Untersuchung anstieg. Vor allem die Hochdosis-Gruppe wies einen erheblichen Konzentrationsanstieg während systemischer Inflammation auf. Folglich kann spekuliert werden, dass ähnliche Prozesse mit einem undulierenden Verlauf der IL-10 Plasmakonzentration, wie sie auf Einzelzellebene beschrieben wurden, im Rahmen unseres Tiermodells aktiv waren [100, 130].

TNF-α wurde den Tieren zum Versuchsbeginn exogen zur Induktion der Entzündung verabreicht. Aus diesem Grund konnte TNF-α nicht mehr verlässlich als Zytokin im Serum der Versuchstiere untersucht werden, und wurde deshalb im Rahmen der vorliegenden Arbeit nicht bestimmt.

7.2.2. HovaCal®-Messung

Auf der einen Seite könnte das Fehlen dieser VOCs darauf beruhen, dass diese während der Verdampfung der TNF-α-Lösung bei 100 °C Dimere bilden. Dieser
Vorgang ist nötig, damit das HovaCal® die Substanz adäquat analysieren kann. Allerdings finden sich diese Dimere nicht in der Ausatemluft [76]. Folglich könnte die Bildung von Dimeren das entstehende Signalspektrum im HovaCal verschieben und das Ergebnis verzerren. Auf der anderen Seite könnte das Messergebnis allerdings auch bestätigen, dass die detektierten VOCs in der Atemluft bei Ratten kein direktes Produkt von TNF-α sind, sondern tatsächlich erst aufgrund von inflammatorischen Prozessen im Organismus entstehen. Um diese Hypothese zu erklären, erfolgte eine ausführliche Literaturrecherche zur Rolle der einzelnen signifikanten VOCs während des Inflammationsprozesses. Da die vier VOCs teils von uns zum ersten Mal in einem Zusammenhang mit der Inflammation beschrieben wurden, sind zur endgültigen Klärung der Funktion der VOCs weitere molekularbiologische Studien nötig. 1-Butanol war eines der signifikanten Signale in den Inflammationsgruppen, für welches eine antiinflammatorische Funktion beschrieben wurde [18].

7.2.3. Patientenmessung

Die Ergebnisse der Patientenmessung weisen auf Parallelen mit den signifikanten vier VOCs der Tiermessungen hin. Für den Vergleich mit den Tiermessungen ist es sinnvoll, die Werte der VOCs ab dem Zeitpunkt nach Studienmedikationsgabe, also 3,5 h nach Beginn der Messungen, zu betrachten. 1-Butanol und 1-Pentanol stiegen zu Beginn noch leicht an und blieben dann auf einem stabilen Niveau. 2,5 h nach TNF-α-Gabe zeigten die Intensitäten der beiden VOCs eine abfallende Tendenz. Auch bei den Inflammationsgruppen der Sprague-Dawley®-Ratten waren die Signalintensitäten von 1-Butanol und 1-Pentanol zu Beginn konstant und fielen etwa 2-3 h nach TNF-α-Gabe ab. Auch die Intensitäten von 3-Pentanon während der Patientenmessung weisen Ähnlichkeiten zur Inflammation im Tiermodell auf. Zum einen wurden in beiden Untersuchungen im Vergleich zu den drei anderen untersuchten VOCs viel höhere Signalintensitäten gemessen. Zum anderen blieben sowohl während den ersten beiden Stunden der Patientenmessung nach Studienmedikationsgabe als auch im gleichen Zeitraum bei den Tiermessungen die Intensitäten von 3-Pentanon konstant hoch. Erst danach fielen die Werte in beiden Tiergruppen mit Inflammation drastisch ab. Auch gegen Ende der Patientenmessung konnte eine abfallende Tendenz

7.2.4. Limitationen der Studie

Die vorliegende Studie weist einige Limitationen auf, die bei möglichen Schlussfolgerungen zu berücksichtigen sind. Von den 73 gemessenen VOCs des physiologischen Atemluftprofils der Ratte konnten 24 VOCs bis zum jetzigen Zeitpunkt noch nicht identifiziert werden. Demnach limitiert dies die Aussage über die Anzahl der VOCs, die während systemischer Inflammation signifikant gegenüber der Kontrollgruppe ansteigen. Die Bedeutung der biomedizinischen Rolle ebendieser unbekannten VOCs ist daher nur sehr eingeschränkt nachvollziehbar. Außerdem blieben die Beatmungseinstellungen der Ratte, wie z.B. das Tidalvolumen und die Atemfrequenz, nicht über den gesamten Versuchszeitraum konstant. Gerade diese Schwankungen, die bereits bei nicht kontrolliert beatmeten Mäusen kritisiert wurden (siehe Kapitel 7.1.1), sind zu einem gewissen Teil auch in unserem Tiermodell zu beanstanden [106, 164]. Es ist durchaus möglich, dass auch in der vorliegenden...

7.3. Schlussfolgerung und klinische Perspektiven

8. LITERATURVERZEICHNIS

98. Metchnikoff E (1892) Zur Immunitälehre. 11te Deutschen Kongress für innere Medezin: 282-289

144. Sohn H, Steinhanses J (1998) Use of ion mobility spectrometry for the preliminary evaluation of hazardous military waste sites-opportunities and limitations. IJIMS 1: 1-14

175. Waller A (1846) LVIII. Microscopic observation on the perforation of the capillaries by the corpuscles of the blood, and on the origin of mucus and pus-globules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 29: 397-405

176. Waller A (1846) XLIV. Microscopic examination of some of the principal tissues of the animal frame, as observed in the tongue of the living Frog, Toad, &c. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 29: 271-287

9. DANKSAGUNG

Auf diesem Wege möchte ich gerne all denjenigen danken, die zur Entstehung meiner Dissertation beigetragen haben.
Mein Dank gilt Herrn Professor Dr. med. Thomas Volk und Herrn Professor Dr. med. Sascha Kreuer für die Überlassung des spannenden Themas und die Möglichkeit im Forschungslabor der Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie des Universitätsklinikums des Saarlandes unter hervorragender Leitung arbeiten zu dürfen.
Weiterhin möchte ich mich gerne bei den Mitdoktoranden und Mitarbeitern des Center of Breath Research des Universitätsklinikums des Saarlandes für die freundschaftliche Arbeitsatmosphäre und die tatkräftige Zusammenarbeit bedanken.
Besonderer Dank gebührt meiner großen und kleinen Familie, die mich mit ihrer bedingungslosen Liebe und uneingeschränkten Unterstützung bereits viel größere Herausforderungen haben schaffen lassen. Ich schätze mich sehr glücklich mit Euch an meiner Seite.
10. PUBLIKATIONEN UND KONGRESSBEITRÄGE

10.1. Abstracts und Kongressbeiträge aus der vorliegenden Arbeit

10.2. Weitere Originalarbeiten, Abstracts und Kongressbeiträge

