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Summary: 

The genes of TRP channel subunits are expressed in many tissues. I identified transcripts of 

Trpc1 and Trpv6 in bone. In order to understand their function in bone, I studied the bone 

phenotype in mice lacking Trpc1 (Trpc1-/-), in mice carrying a non-functional mutation of Trpv6 

(Trpv6mt/mt), in mice carrying both mutations and in wild-type mice. To this aim, I had first to 

establish µCT measurements using femur as a long bone and to determine age-dependent 

changes of femurs from wild-type mice on a C57BL/6 ("B6") and on a 129SvJ/C57BL/6 

("mixed") genetic background to exclude genetic heterogeneity, which might affect the bone 

phenotype. Femur length was shorter, endocortical volume was reduced and cross-sectional 

thickness was increased in Trpv6mt/mt mice whereas the bone volume fraction, mineral density 

and thickness of trabecular bone was reduced in Trpc1-/- mice. In the double mutant mice, the 

cortical bone phenotype of Trpv6mt/mt mice was not compensated by the deletion of Trpc1 

whereas the effect of Trpc1 deletion on trabecular bone was compensated by the Trpv6 

mutation.  

I also established a femur fracture model, set up a tasklist for analyzing the callus formation 

by µCT and used a three-point bending test to estimate the biomechanical stiffness of the 

femur. Mineralization of callus was increased in Trpv6mt/mt mice but I did not observe any 

difference in stiffness comparing all four mouse strains.  

Because of the positive bone phenotype of Trpc1-/- mice, I examined osteoclasts and 

osteoblasts isolated/differentiated from bone marrow cells and bone pieces for Trpc1 

expression. Both cell types were positive. In order to visualize Trpc1 expressing cells and to 

delete Trpc1 in a cell-specific way, I generated two novel mouse strains from scratch by 

homologous recombination: A Trpc1-IRES-Cre mouse strain and a "floxed" Trpc1 mouse strain. 

Pups of both stains are available and with Trpc1-IRES-Cre strain, we already visualized Trpc1 

expressing cells in various tissues including bone. Together with the Trpc1 "global" knockout 

mice (studied for their bone phenotype), the two novel Trpc1 strains allow dissecting Trpc1 

function in a cell-specific way, especially in bone. 
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Zusammenfassung: 

Die Gene von TRP-Kanal Untereinheiten werden in vielen Geweben exprimiert. Ich habe Trpc1 

und Trpv6 Transkripte in Knochen identifiziert. Um deren Funktion im Knochen zu verstehen, 

habe ich den Knochenphänotyp von Mäusen, denen das Trpc1-Gen (Trpc1-/-) fehlt, Mäusen 

die eine Kanal-inaktivierte Mutation von Trpv6 (Trpv6mt/mt) aufweisen, Mäusen welche beide 

Mutationen aufweisen  (Trpc1-/-/ Trpv6mt/mt) und Wildtyp Mäuse untersucht. Für dieses Ziel 

musste ich zuerst µCT Messungen, unter der Verwendung von Femur als Röhrenknochen, 

etablieren, sowie die altersabhängigen Veränderungen der Femora von Wildtyp Mäusen und 

die genetische Heterogenität, die den Knochenphänotyp betreffen könnte, bei Mäusen mit 

einem C57BL/6 („B6”) sowie einem 129SvJ/C57BL/6 („gemischtem”) genetischen Hintergrund, 

bestimmen. Der Femur von Trpv6mt/mt Mäusen war kürzer, das endokortikale Volumen 

reduziert und die Dicke des Querschnitts erhöht. Da waren bei Femora von Trpc1-/--Mäusen 

der Anteil des Knochen Volumens, die Mineraldichte und die Dicke der Trabekel vermindert 

im Vergleich zu Femora. Bei den Mäusen mit Doppelmutation wurde der kortikale 

Knochenphänotyp von Trpv6mt/mt  Mäusen nicht durch die Deletion von Trpc1-/- kompensiert, 

wohingegen der Effekt der Trpc1-/- Deletion auf den trabekulären Knochen durch die Mutation 

von Trpv6  kompensiert wurde. 

Gleichzeitig habe ich ein Frakturmodell des Femurs etabliert, eine Tasklist entwickelt zur 

Analyse der Kallusbildung mittels µCT und einen 3-Punkt-Biegeversuch angewendet, um die 

biomechanische Steifheit des Femur einzuschätzen. Die Mineralisierung des Kallusgewebes 

bei Trpv6mt/mt Mäusen war erhöht, allerdings konnte ich beim Vergleich aller vier Mauslinien 

keine Unterschiede in der Steifheit feststellen. 

Wegen des eindeutigen Knochenphänotyps bei Trpc1-/- Mäusen, habe ich Osteoklasten und 

Osteoblasten isoliert bzw. differenziert aus Knochenmarkzellen und Knochenstückchen auf 

Trpc1-Expression untersucht. Beide Zelltypen waren positiv. Um Trpc1-exprimierende Zellen 

sichtbar zu machen und um Trpc1 zellspezifisch auszuschalten, habe ich zwei neue Mauslinien 

mittels homologer Rekombination von Grund auf neu hergestellt: Eine Trpc1-IRES-Cre 

Mauslinie und eine „gefloxte“ Trpc1 Mauslinie. Die Nachkommen beider Linien sind verfügbar 

und mit der Trpc1-IRES-Cre Linie haben wir bereits Trpc1 exprimierende Zellen in mehreren 

Geweben, inklusive Knochen, sichtbar gemacht. Gemeinsam mit der bis ausschließlich 
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verfügbaren Trpc1 „globalen“ Knock-out Linie (die ich im Hinblick auf einen möglichen 

Knochenphänotyp untersucht habe), erlauben die zwei neuen Trpc1 Linien die Trpc1 Funktion 

detailliert und zellspezifisch, besonders im Knochen, zu untersuchen.  
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1 Introduction 

1.1 Bone 

Bone is a dynamic tissue organized as a framework to form a skeletal system in organisms. 

The skeleton plays several significant roles in the body such as protection e.g. the skull 

protects the brain, movement and locomotion, e.g. the organisms move due to the 

coordinated function of bone and muscles, and reservoir, such as the bones serve as a storage 

unit for minerals like calcium, phosphate and magnesium. In bone, principally there are two 

main cell types: Bone forming osteoblasts and bone resorbing osteoclasts, which work in a 

balanced fashion to maintain normal bone structure (Allen and Burr, 2014). The skeleton is 

continuously changing under the effects of modelling and remodeling processes (Katsimbri, 

2017). Modelling includes the change in shape or size of bones mostly occurring early in 

development, for instance during growth of long bones. On the other hand, remodeling 

involves the maintenance of the structure of bones throughout the lifespan due to the 

coordinated activity of osteoblasts and osteoclasts (Kobayashi et al., 2003).  

1.1.1  Osteoblasts 

Osteoblasts are specialized bone-forming cells located on the outer surfaces of bone and 

within the bone cavities and derived from pluripotent mesenchymal stromal cells (Katsimbri, 

2017). Various signaling pathways, for instance, a Wnt signaling pathway (Day et al., 2005) and 

proteins such as bone morphogenetic proteins (BMP) (Cao and Chen, 2005) play a vital role in 

osteoblasts differentiation and function. The Wnt signaling pathway, which activates ß-

catenin (canonical Wnt signaling pathway) leads to the up-regulation of transcriptional 

factors, required for differentiation and maturation of osteoblasts and ultimately increases 

bone mass (Monroe et al., 2012). The process for the formation of osteoblasts is called 

osteoblastogenesis. They start to build up the bone by the synthesis and secretion of type-I 

collagen and other, mostly non-collagenous specialized extracellular matrix proteins, which 

form the unmineralized organic matrix called osteoid. It serves as a template for osteoblasts 

to deposit minerals in the form of hydroxyapatite crystals leading to the formation of bone. A 

fraction of osteoblasts remains in the osteoid and are known as osteocytes (Katsimbri, 2017). 

Another small part of osteoblasts become bone lining cells covering quiescent parts of the 
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bone. The remainder 60-80% of the cells undergo apoptosis after completing the process of 

bone formation.   

1.1.2  Osteoclasts 

Osteoclasts are large multinucleated cells derived from mononuclear precursor cells of the 

monocyte macrophage lineage capable of resorbing the bone (Teitelbaum and Ross, 2003). 

The differentiation process of osteoclasts from their precursor cells, known as 

osteoclastogenesis, primarily depends on two important cytokines namely CSF-1 (colony 

stimulating factor 1) and RANKL (receptor activator of nuclear factor NF-B ligand) (Yoshida 

et al., 1990), which signal through c-fms (the receptor of macrophage colony stimulating 

factor, M-CSF) and RANK, respectively (Katsimbri, 2017). Resorption of bone starts when 

mature osteoclasts adhere to the bone surface and become polarized to produce villus-like 

projections (podosomes) and distinct membrane domains, the sealing zone (SZ), the ruffled 

border (RB) and the functional secretory domain (FSD) (Katsimbri, 2017) (Figure 1-1). The SZ 

provides firm adhesion of the osteoclasts to the bone surface and isolates the acidic 

environment required for resorption from the neighboring bone matrix. Osteoclasts then start 

secreting several acids such as citric, hydrochloric and lactic acids at the RB in a tightly closed 

compartment to resorb the bone (Luxenburg et al., 2007) and proteolytic enzymes such as 

Cathepsin K (Cat K) for degradation (Yamaza et al., 1998). After degradation, the degraded 

collagen as well as mineral residues such as Ca2+ and PO4+ are phagocytosed by the osteoclasts 

and either get dissolved by lysosomes or enter the functional secretory domain (Nesbitt and 

Horton, 1997) eventually being released into the blood stream by the process termed as 

transcytosis. After completing the bone resorption process, osteoclasts undergo apoptosis 

(programmed cell death) due to increased extracellular Ca2+ levels. Dysregulation of 

osteoclasts such as increased activity may lead to a condition known as osteoporosis, whereas 

compromised functionality may cause osteopetrosis (Katsimbri, 2017).  
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Figure 1-1 Bone resorption by an osteoclast. Schematic representation of a resorbing 

multinucleated osteoclast illustrating the sealing zone (SZ), ruffled border (RB) and the 

functional secretory domain (FSD). It resorbs the bone surface and forms a Howship lacuna by 

the secretion of ions (H+ and Cl-) and the proteolytic enzyme Cathepsin K (Cat K). The bone 

degradation products are phagocytosed by osteoclasts and either degraded by lysosomes or 

released into the blood stream by the process of transcytosis. [Source: Figure adapted from the 

original in Basic and Applied Bone Biology, Editors David B.Burr, Mathew R. Allen] 

1.1.3  The bone remodeling cycle 

The bone remodeling cycle (Figure 1-2) can be classified into five different stages, activation, 

resorption, reversal, formation and termination (Katsimbri, 2017). At the end of this 

physiological cycle, total bone volume does not alter, but the old bone get replaced by a newly 

formed one (Andersen et al., 2009). This cycle is very crucial in maintaining the mechanical 

integrity of bones by replacing the old or damaged bone with a new healthier one. The cells 

responsible for bone remodeling i.e. osteoclasts and osteoblasts are arranged in a temporary 

anatomical cascade known as a basic multicellular unit (BMU) and the duration of the BMU is 

known as the bone remodeling period, which could last for several months.    

1 Activation: It is the first stage of a cycle which involves the recruitment of osteoclast 

precursors to form fully functional multinucleated osteoclasts. The remodeling initiating 

signals either hormonal or mechanical are assessed by bone. Hormones such as 

parathyroid hormone (PTH) and estrogen released in response to systemic changes, 

mechanical stress and micro-damage to the skeleton, are considered as triggering signals 

to osteocytes (Bonewald, 2007). The PTH binds with PTH-receptors present on the surface 

of osteoblasts and stromal cells, which activates the expression of RANKL and M-CSF that 

are crucial for the differentiation and activation of osteoclasts (Juppner et al., 1991). 
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2 Resorption: Mature multinucleated osteoclasts digest the bone by the combined action of 

proteolytic enzymes (Bouillon and Prodonova, 2000) and acid secretion (Kornak et al., 

2001). Functional osteoclasts secrete H+ and Cl- ions in a sealed vicinity, which lowers the 

pH to 4.5 to degrade the bony surface by dissolution, thus exposing them to the matrix 

metalloproteinase enzymes such as Cat K. The resultant pits are known as Howship 

lacunae (Lüllmann-Rauch, 2012). After resorption, osteoclasts undergo apoptosis thus 

terminating this phase (Katsimbri, 2017).  

3 Reversal: It is the least well understood phase of the cycle and is described by the 

termination of resorption and initiation of a bone formation phase, which involves the 

recruitment of cells such as monocytes and pre-osteoblasts required for the bone 

formation (Everts et al., 2002). The exact coupling signals that link the bone resorption and 

formation phases are not clear, however it is proposed that transforming growth factor-ß 

(TGF-ß) interferes with the production of RANKL by osteoblasts, thus inhibiting pre-

osteoclasts from differentiating into functional cells; ultimately decreasing bone 

resorption (Katsimbri, 2017). Osteoclasts are then replaced by osteoblast-lineage cells to 

initiate the bone formation. Mononuclear cells present in the pre-formed cavities deposit 

mucopolysaccharide-rich material such as osteopontin that serves as a cement line 

between the new and old bone (Andersen et al., 2013). 

4 Formation: During this stage, osteoblasts lay down an unmineralized organic matrix called 

osteoid, primarily composed of type I collagen, which serves as a template to form mature 

bone after deposition of minerals over time. Some osteoblasts get buried within the newly 

formed osteoid also known as osteocytes. This phase lasts for several months (Katsimbri, 

2017).  

5 Termination: This is the final step of the remodeling cycle that involves the mineralization 

of osteoid and takes place over 90 and 130 days in the case of trabecular and cortical 

bones, respectively. It involves the deposition of hydroxyapatite crystals along with small 

amounts of acid phosphate, carbonate and magnesium. After mineralization, the bone 

enters into the resting or quiescent phase (Lind et al., 1995).  
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Figure 1-2 Bone remodeling cycle. A sequential schematic representation of five stages of the 

bone remodeling cycle is shown. Following microdamage or another trigger, a portion of bone 

in a resting phase enters into the first stage, activation, where pre-osteoclasts start 

accumulating over the surface of old bone followed by the second stage, resorption, polarized 

multi-nucleated osteoclasts engulf the bone and form resorption pits where pre-osteoblasts 

migrate to replace the osteoclasts in a reversal phase. In the fourth stage, formation, 

osteoblasts generate bone, and subsequently minerals (Ca2+,PO4+) and hydroxyapatite crystals 

are deposited and a compact new bone is formed in the final stage, termination. The bone 

thus enters into the resting phase again. [Source: Figure adapted from the original in Agents Affecting 

Mineral Ion Homeostasis and Bone Turnover in Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 

12th Edition]    

1.1.4  Bone fracture 

Bone fractures either due to severe mechanical traumas such as accidents, falls and sport 

injuries, or spontaneously in a disease state called osteoporosis. It causes anatomical 

discontinuity of a bone structure and inability to withstand mechanical load efficiently. Bone 

fractures can be broadly classified into two main types: 

1. Open fracture: Along with bone, there is damage to surrounding soft tissue including skin 

and periosteum. Thus, there are higher risks of opportunistic infections. 
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2. Closed fracture: In this case, breaking of a bone occurs internally while the skin remains 

intact. 

It is a common problem, which affects all age groups ranging from infants to elderly people. 

Over the recent years, incidence of osteoporotic or fragility fractures have become a serious 

issue worldwide. According to the International Osteoporosis Foundation (IFO), the annual 

number of osteoporotic fractures in the European Union (EU) will rise from 3.5 million in 2010 

to 4.5 million in 2025, with an approximate incidence increase of 28% (Hernlund et al., 2013). 

Therefore, new therapeutic advancements are in high demand to aid the fracture healing 

process. 

1.1.4.1 Bone fracture healing 

Bone fracture healing is a complex series of events where the bone heals without the 

formation of scar tissue. Although it is a natural process, various biophysical, biomechanical 

and pharmaceutical interventions may aid in rapid healing (Casanova et al., 2014). Biophysical 

approaches such as ultrasound, shockwaves and electromagnetic field simulations help in 

bone anabolism or formation (Aaron et al., 2006). Mechanical interventions include the usage 

of screws, metal plates etc. to stabilize the broken ends of a bone for proper healing (Histing 

et al., 2011). The goal of medicaments is to accelerate the healing process and strengthening 

the callus tissue for the union of broken ends. The process of fracture healing can be divided 

into four different overlapping stages (Figure 1-3) (Schindeler et al., 2008): 

a. Inflammation: Excessive trauma leading to a bone fracture causes the disruption of 

the vascular supply and therefore a hypoxic condition arises in this region. Due to 

decreased local oxygen levels and nutrients, macrophages leucocytes and other 

inflammatory cells such as granulocytes, lymphocytes and monocytes migrate in this 

region to resist infections and also leads to the formation of a hematoma (Schindeler 

et al., 2008). A wide range of cytokines and growth factors like transforming growth 

factor-ß (TGF-ß), platelet derived growth factor (PDGF), macrophage colony 

stimulating factor (M-CSF), bone morphogenetic proteins (BMPs) and tumor necrosis 

growth factor-α (TNF-α) are also secreted in this region (Einhorn, 1998), (Bolander, 

1992). These factors cause the migration of multipotent mesenchymal stem cells which 

play a significant role in repair and subsequently bone formation (Shapiro, 2008).  This 

process may last for seven days followed by the soft callus formation. At this stage, the 
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surrounding tissues and muscles mainly provide mechanical support to the broken 

structure.  

b. Soft callus (fibrocartilage) formation: During this stage, the hematoma formed is 

replaced by a fibro-vascular tissue, which is rich in chondrocytes and fibroblasts 

(Schindeler et al., 2008). Proliferation of chondrocytes and fibroblasts are stimulated 

by the coordinated activity of growth factors like TGF-ß, PDGF, insulin like growth 

factor (IGF) and BMPs (Gerstenfeld et al., 2003), (Ai-Aql et al., 2008). Chondrocytes and 

fibroblasts synthesize the cartilaginous matrix, mainly composed of collagen type II 

and fibrous tissue respectively to form a fibrocartilaginous, semi-rigid soft tissue 

between the broken ends to provide some mechanical stability (Barnes et al., 1999). 

However, at this stage the callus cannot withstand any significant amount of load and 

is inclined to re-fracture when exposed to trauma. Cartilaginous callus is deprived of 

vascular system at this stage, which develops later in the woven bone.  The soft callus 

serves as a template for bony callus formation at later stages. 

 

Figure 1-3 Stages of fracture healing. Schematic representation of overlapping stages of the 

bone healing process is shown. (a) Inflammation, upon fracture vascular supply disrupts and 

a hematoma is formed followed by (b) soft callus formation: periosteal (external) and 

endosteal (internal) soft calluses are formed, which serve as the template for (c) hard callus 

formation, osteoblasts generate spongy or woven bone having better biomechanical 

properties than soft callus and finally (d) remodeling: to convert the woven bone into a 

lamellar (healed) bone also known as bony callus by the combined activity of osteoclasts and 

osteoblasts. [Source: Figure taken from Anatomy and Physiology by Rice University, author/publisher 

OpenStax, available online on BCCampus] 

c. Hard callus formation: This stage also known as primary bone formation and is the 

most active energy demanding stage of fracture repair and is characterized by a higher 

number of osteoblasts, as indicated by elevated osteoblast markers e.g. type I 
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collagen, alkaline phosphatase and osteocalcin in the bloodstream (Gerstenfeld et al., 

2003). Osteoprogenitors differentiate into osteoblasts, in the presence of certain 

osteogenic factors (Gerstenfeld et al., 2003) and members of the BMP family (Chen et 

al., 2004), (Nakase and Yoshikawa, 2006) generate woven bone matrix. The 

osteoprogenitors originate from variable sources such as from local surrounding 

tissues (Rumi et al., 2005) or the circulation (Eghbali-Fatourechi et al., 2005). The 

woven bone or hard callus has better mechanical stability compared to the 

fibrocartilage (Casanova et al., 2014). 

d. Bone remodeling: This is the final stage of fracture repair also known as secondary 

bone formation where the shape of bone and vascular system prior to fracture is 

restored (Gerstenfeld et al., 2003). It is a similar to the remodeling procedure where 

osteoclasts and osteoblasts work in an organized fashion to maintain the bone 

integrity. Here lamellar bone replaces the woven or spongy bone and the mechanical 

strength is also restored. 

1.1.4.2   Evaluation of fracture healing 

Assessment of fracture healing is a very challenging task, as callus is a complex structure 

consisting of different type of cells and tissues that change over time. The extent and quality 

of fracture healing can be assessed by both structural and biomechanical evaluations. In 

animal models, structural evaluations involve both non-invasive methods like radiography, 

micro-magnetic resonance imaging (micro-MRI) and micro-computed tomography (µCT) 

(Morgan et al., 2009) and invasive methods like histology (Epari et al., 2010). Radiography is 

the most direct and robust way of analyzing the fracture of a bone. In the early stages of 

fracture healing, micro-MRI can be used to evaluate the quantity as well as the quality of 

fibrocartilage tissue. However, this method has a disadvantage that strong magnetic 

radiations interfere with the healing process itself (Casanova et al., 2014). Over the last 

decade, µCT has emerged as a powerful tool to determine the callus microarchitecture. It not 

only provides information about the callus volume but also gives an estimation about the 

mechanical strength of the newly formed bone (Morgan et al., 2009), (Shefelbine et al., 2005). 

Most recently, Raman imaging and small-angle X-ray scattering (SAXS) have been used to 

evaluate the direction of collagen fibers, an indication of newly formed bone (bony callus) and 

resistance to re-fracture (Casanova et al., 2014).   
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In biomechanical evaluations, varying degrees of load are applied to estimate the stress 

bearing capacity of a healed bone. In vitro three-point and four-point bending tests provide 

estimation of bending stiffness of fractured bones, an in vivo method especially suitable for 

long bones. Nanoindentation (Leong and Morgan, 2008) and scanning acoustic microscopy 

(SAM) (Eckardt and Hein, 2001) are also used for the assessment of callus biomechanical 

properties. In nanoindentation, a diamond tip is inserted into a specimen up to a certain depth 

and mechanical properties are estimated depending on the resistance of the tissue to the 

applied forces.  In contrast, using SAM, mechanical properties or strength are estimated by 

the reflection of acoustic (sound) waves after hitting the callus tissue. 

1.1.4.3 Micro-computed tomography (µCT) 

The µCT enables to understand the bone microarchitecture by determining cortical and 

trabecular parameters, estimating the bone mineral density (Bouxsein et al., 2010) and 

prediction of biomechanical properties of intact and fractured bones (Shefelbine et al., 2005). 

It has become a valuable tool nowadays in the field of bone biology, which works on the 

principle of taking X-ray projected images of an object at different angles and mathematically 

converting them into 3-dimentional (3D) images.  

 

Figure 1-4 Basic operational principle of µCT scanning system. Schematic representation of a 

µCT scanner with all components is shown. An X-ray source emits radiation which passes 

through the filter to strike the object i.e. bone placed inside the sample holder rotating at an 

angle and subsequently projected X-rays are detected by the detector. The detector transfers 

the signal to an attached computer system to produce a resultant stack of 3D images using 

mathematical algorithms. [Source: Guidelines for assessment of bone microstructure in 

rodents using micro-Computed Tomography; JBMR, Mary L Bouxsein et al. 2010, with 

permission] 
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The bone is placed in an object holder and then X-rays emitted from a radiation source passes 

through a filter (aluminum or copper) and finally strike the rotating object. The resultant 

images fall on the detector attached to the computer that converts the stack of signals into 

3D images by using mathematical algorithms. With the in vitro scanning system, the object is 

continuously moving at a defined angle while the X-ray source and detector remains 

stationary. Such systems are used for analysis for explanted organs such as femurs, teeth etc. 

In an in vivo scanning system, contrary to in vitro scanners the bone remains stationary while 

camera/detector revolves around the object used for imaging live animal models (Helfrich, 

2012). 

1.2 Transient Receptor Potential (TRP) channels 

The TRP channels were first discovered in fruit-fly Drosophila melanogaster photoreceptors in 

which a spontaneous mutation caused a transient potential, instead of a sustained potential, 

upon steady light stimulation (Cosens and Manning, 1969). Twenty years later, the mutation 

responsible for this transient potential was identified by Montell and Rubin (Montell and 

Rubin, 1989) and the underlying gene dubbed “transient receptor potential” or “trp”. Later in 

1995, the first mammalian TRP cDNA i.e. TRPC1 was cloned (Zhu et al., 1995), (Wes et al., 

1995). Since then TRP channels have been extensively studied to determine their potential 

role in mammalian physiology as well as pathology. The TRP cation channel family comprises 

of 28 mammalian (27 human) members and has been classified into six subfamilies based on 

their sequence similarities (Nilius and Owsianik, 2011). The six subfamilies include TRPC, 

where C stands for “canonical” which comprises of seven members i.e. TRPC1-C7, TRPV, with 

V for “vanilloid” comprises of six members i.e. TRPV1-V6, TRPM, with M for “melastatin” 

contains eight members i.e. TRPM1-M8, TRPP, with P for “polycystin” has three members 

namely TRPP2, TRPP3 and TRPP5, TRPML, with ML for “mucolipin” has also three members 

being TRPML1-ML3 and the last group TRPA has only one member TRPA1, with A for “ankyrin” 

(Figure 1-5 a). All members of this superfamily share a similar characteristic of having six 

transmembrane domains (TM1-TM6) flanked by cytosolic N (amino) and C (carboxy) termini 

(Figure 1-5 b). The cation permeable pore region of TRP proteins resides within the TM5-TM6 

linkers. Four TRP proteins co-assemble to form a tetrameric channel. For example, TRPC4 can 

form homotetrameric TRPC4 channels or heterotetrameric TRPC4/TRPC1, TRPC5/TRPC1 or 

TRPC5/TRPC4/TRPC1 channels. The members within the subfamilies differ from each other 
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depending on their amino acid sequences and the length of the N and C termini (Nilius and 

Flockerzi, 2014a, b). The structures of more than ten TRP channel complexes have been solved 

by X-ray crystallography and cryo electron-microscopy (Cryo-EM) (Madej and Ziegler, 2018).    

 

Figure 1-5 The Transient Receptor Potential (TRP) channel superfamily. (a) The classification 

of TRP channels into six subfamilies based on their amino acid sequence similarity i.e.  TRPC 

(seven members, C1-C7), TRPM (eight members, M1-M8), TRPV (six members, V1-V6), TRPML 

(three members, ML1-ML3), TRPA (one member), TRPP (three members, P2-P3 and P5) and 

two pore channels (TPC1 and TPC2) are shown. (b) Scheme of a single TRP protein/subunit 

consisting of six transmembrane domains (1-6) flanked by cytoplasmic N-, C-termini, and the 

pore region permeable to cations (Ca2+ and Na+) is present in between the transmembrane 

domains 5 and 6.   

The majority of TRPs are known to act as non-selective cation channels, permeable to both 

Ca2+ and Na+ ions. Exceptions include TRPV5 and TRPV6, which are highly Ca2+ selective and 

TRPM4 and TRPM5 being highly Na+ selective (Nilius and Flockerzi, 2014a, b). The channels 

are activated by different mechanisms such as temperature change (heat or cold stimulus), 

pH change and by certain agonists and antagonists via secondary messengers (Freichel et al., 

2012).  

1.2.1  Functional diversity of TRP channels 

TRP-deficient mouse models have been generated by manipulating the Trp genes in 

embryonic stem (ES) cells using homologous recombination to identify their role in normal 

physiological as well as pathological conditions. They play a significant role from embryonic 

level to adulthood, in maintaining the normal physiological processes such as body 
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temperature, reproduction, metabolic and neuronal pathways, memory and taste perception 

(Nilius and Flockerzi, 2014a, b). For instance, Trpm7 is of fundamental significance during 

embryonic development and Trpm7-/- embryos cannot survive more than eight days of 

embryogenesis (Jin et al., 2012). Conversely, deletion at adulthood causes 

macrothrombocytopenia (Jin et al., 2008). Studies have also shown lethal embryonic effects 

of the deletion of Trpm6 (Walder et al., 2009) and Trpp2 (Wu et al., 1998). Trpc1-deficient 

mice have shown increased body weight (Dietrich et al., 2007 and own results) and decreased 

salivary secretions (Liu et al., 2007). The significance of Trpv6 in reproduction was determined 

by Weissgerber et al. in 2011, i.e. deletion of Trpv6 leads to impaired male fertility and 

decreased Ca2+ absorption from intestine (Weissgerber et al., 2012), (Weissgerber et al., 

2011). Other members of the TRPV family such as TRPV1 act as thermosensors and 

nocisensors, whereas TRPV4 is involved in maintenance of systemic osmoregulation as well as 

neuro-inflammation (Flockerzi and Nilius, 2007). Trpm5 KO mouse models have shown 

reduced insulin secretion and thus elevated blood glucose levels (Brixel et al., 2010), (Colsoul 

et al., 2010). TRPA1 has been recognized as a sensor for the environmental stimuli such as 

cold, itch and pain (Nilius and Flockerzi, 2014a, b). Approximately 20 hereditary diseases in 

humans related to diverse fields such as cardiology, nephrology, pulmonology, urology etc. 

are linked to or caused by mutations of 12 Trp genes.    

1.2.2  Transient Receptor Potential Canonical 1 (TRPC1)  

The transient receptor potential canonical 1 (TRPC1) belongs to the subfamily of TRPC 

channels. Trpc1 was the first mammalian Trp cDNA to be cloned (Wes et al., 1995), (Zhu et al., 

1995) however the exact mechanism for the activation of this channel is still a matter of 

debate (Dietrich et al., 2014). TRPC channels are activated following phospholipase C (PLC) 

stimulation by Gq-coupled receptors (GqCR) or receptor tyrosine kinase (RTK) activation by 

certain agonists (Nilius and Flockerzi, 2014a, b). The Trpc1 gene, which encodes TRPC1 protein, 

is located on chromosome 3 and 9 in the human and mouse genomes, respectively. The gene 

consists of 13 distinct exons while the initiation codon for the translation of the protein is 

present within exon one (Nilius and Flockerzi, 2014a, b). Until now, Trpc1 reportedly translates 

into five different splice variants in humans and seven in rodents (mice) according to the 

Ensemble genome browser (http://www.ensembl.org/Mus_musculus/Info/Index).  
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The TRPC1 protein is predicted to have six transmembrane domains (TM1 to TM6) flanked by 

cytosolic C- and N-termini (Wes et al., 1995), (Zhu et al., 1995). In 2004, Dohke et al. postulated 

that TM5 and TM6 are involved in the formation of the ion conducting pore region of the 

channel (Dohke et al., 2004). It also shows highest amino acid sequence similarity with the 

other members of its family like TRPC2, TRPC4 and TRPC5 (Flockerzi and Nilius, 2007). 

Although TRPC1 is the founding member of this superfamily, sufficient data to support that it 

could form a functional homomeric channel is still lacking. It interacts with other members of 

its subgroup such as TRPC4 and TRPC5 channel subunits to form heteromeric TRPC1/TRPC4, 

TRPC1/TRPC5 and TRPC1/TRPC4/TRPC5 channels (Broker-Lai et al., 2017) For instance, co-

expression of TRPC1 with TRPC4 or TRPC5 in HEK293 cells, leads to the formation of functional 

heterotetrameric channels as indicated by specific current-voltage (IV) relationship in 

comparison to the IV-relationship of homomeric TRPC5 channels (Beck et al., 2017). It has also 

been shown that TRPC1 may interact with other proteins such as TRPV4, TRPV6 and TRPP2 

(Nilius and Flockerzi, 2014a, b) and both ORAI and STIM proteins (Ambudkar, 2014).  

Transcripts of Trpc1 are expressed in many cells and tissues such as brain, heart, and kidney 

(Nilius and Flockerzi, 2014a, b) and it has been postulated that Trpc1 gene is ubiquitously 

expressed throughout the body (Wes et al., 1995), (Zhu et al., 1995). This assumption is 

difficult to prove considering that there are no reliable ion currents detectable or suitable 

antibodies available. Dietrich et al. have generated Trpc1-deficient mice (Dietrich et al., 2007).  

Most information about the physiological functions of TRPC1 derived from experiments 

performed on those Trpc1-deficient mice, which lack TRPC1 throughout the organism. Lack of 

TRPC1 has been associated with changes of cardiovascular, central nervous, skeletal and 

immune functions (Dietrich et al., 2014). It has also been associated with pathologic conditions 

such as diabetic nephropathy (Zhang et al., 2009), Parkinson’s disease (Mattson, 2012), Darier-

White disease (Pani and Singh, 2008) and Huntington’s disease (Wu et al., 2011). 

1.2.3  Transient Receptor Potential Vanilloid 6 (TRPV6) 

The TRPV6 channel belongs to the subfamily of TRPV channels, encoded by the gene Trpv6 

located on chromosomes 7q33-q34 and 6 in the human and mouse genomes respectively. The 

Trpv6 gene contains 15 exons and 14 introns, which spans over a region of ≈15.7 kb (Hirnet et 

al., 2003). According to the Ensemble genome browser, Trpv6 has three splice variants to date 

(http://www.ensembl.org/Mus_musculus/Info/Index). The transcripts of Trpv6 have been 
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detected in uterus, placenta, pancreas, prostate, parts of the digestive system (oesophagus, 

stomach, duodenum and colon) and kidney by RT-PCR and northern blot analyses in mouse 

tissues (Hirnet et al., 2003), (Weissgerber et al., 2011), (Lehen'kyi et al., 2012). Trpv6 

transcripts along with transcripts of its closest relative Trpv5, have also been identified in 

human and mouse bone and osteoclasts. Nijenhuis et al. have shown the expression of Trpv6 

in bone marrow cells (Nijenhuis et al., 2003). Trpv6 mRNA has been also detected in murine 

syncytiotrophoblasts (Wissenbach et al., 2001) and uterus (Moreau et al., 2002).  

TRPV6 and its closest relative TRPV5 are the only highly Ca2+-selective channels in the TRP-

superfamily (Peng et al., 1999), (Wissenbach et al., 2001). In normal physiological conditions, 

TRPV6 conducts only Ca2+ ions but in their absence it can also conducts monovalent cations 

like Na+ (Voets et al., 2003), (Wissenbach et al., 2001). TRPV6 proteins co-assemble to form 

homotetrameric channels (Saotome et al., 2016) while heterotetrameric TRPV5/TRPV6 

channels might occur after heterologous expression of TRPV6/TRPV5 cRNAs in oocytes 

(Hoenderop et al., 2003). TRPV6 also shows interaction with other proteins such as TRPC1 

(Schindl et al., 2012), (Courjaret et al., 2013) and calmodulin (Niemeyer et al., 2001). TRPV6 

becomes inactivated by various compounds such as Xestospongin C (Vassilev et al., 2001), 

Ruthenium red and certain anti-fungal drugs like econazole and miconazole (Hoenderop et al., 

2001).  

As for many other TRP proteins, the information about the physiological functions of TRPV6 

has been gathered mainly from Trpv6-deficient (Bianco et al., 2007) (Weissgerber et al., 2011) 

or Trpv6-mutant mouse lines (Weissgerber et al., 2012). Mice lacking functional TRPV6 are 

viable but they have shown compromised body weight and reduced femoral length and 

mineral density (Bianco et al., 2007) as well as decreased fertility (Weissgerber et al., 2012), 

(Weissgerber et al., 2011). In 2011, van der Eerden et al. showed reduced cortical and 

endocortical volume in Trpv6 mutated mice compared to wild-type animals. The role of TRPV6 

channel in prostate, breast, colon, ovarian, and thyroid gland cancers has been extensively 

studied by various research groups (Nilius and Flockerzi, 2014a, b). Trpv6 transcripts are 

overexpressed in prostate cancer (Wissenbach et al., 2001) as well as breast cancer (Lehen'kyi 

et al., 2012) and the expression pattern correlates with the severity of the disease; especially 

in case of prostate cancer (Wissenbach et al., 2001). These studies clearly demonstrate the 
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significance of Trpv6 in carcinogenesis and might serve as a suitable marker for detection as 

well as a potential therapeutic target.   

1.3 Targeted modification of TRP channel genes 

Gene deficient mouse models have contributed significantly in understanding the functional 

significance of TRP channels (Flockerzi and Nilius, 2007). The classical way is to replace the 

chromosomal regions by targeted homologous recombination and thereby the gene of 

interest either can be disrupted to obtain classical/constitutive “knockout” or modified by the 

insertion of additional gene cassettes comprising of fluorescent reporter genes to obtain 

“knock-in” mouse models (Joyner, 2005).   

1.3.1 Classical gene targeting 

Constitutive knockout mouse models have been widely used for the functional 

characterization of TRP channels such as Trpc1-/- (Dietrich et al., 2007) and Trpv6-/- 

(Weissgerber et al., 2011) mouse models. This approach has several limitations such as 

potential embryonic lethality, if the gene of interest such as Trpm6 (transient receptor 

potential melastatin 6) or Trpm7 being essential for embryogenesis is ablated: The embryos 

mostly die at embryonic day 12.5 (Walder et al., 2009). Another drawback especially 

associated with the widely expressed genes, is the determination of cell- or organ-specific role 

of them, since it is almost impossible to distinguish cell-autonomous effects from effects 

resulting from other tissues or organs.   

1.3.2 Conditional gene targeting 

Conditional gene targeting describes a type of gene targeting where manipulation of a 

particular gene of interest is carried out in a defined population of cells or in an organ at a 

specific time-point, using a cell-specific recombinase system (Joyner, 2005), (Albert et al., 

1995).  

Cre-loxP and Flp-FRT are the two types of site-specific recombinase systems mostly used for 

generating conditional gene targeting (Joyner, 2005). The Cre-loxP system, derived from 

bacteriophage P1, is a robust system that requires three components for functioning: Cre 

recombinase, loxP target sites and mono/di-valent ions. No additional cofactors and accessory 

proteins are required (Nagy, 2000), (Lobe et al., 1999). Cre-recombinase belongs to λ integrase 
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superfamily that cleaves the DNA segment flanked by loxP sites. The target site for the Cre 

enzyme is loxP or “locus of crossing over x at bacteriophage P1” (Sternberg et al., 1981). A lox 

P site comprises of 34 base pairs with an eight bp non-palindromic core region flanked by a 13 

bp palindromic region. The loxP site is commonly represented by a triangle and the direction 

of the triangle depicts the outcome of the recombination reaction like deletion (floxing a 

gene), inversion and translocation of that specific DNA sequence (Hoess et al., 1982), (Figure 

1-6). The Flp-FRT system is analogous to the Cre-loxP system.       

 

Figure 1-6 The Cre-loxP recombinase system. Schematic representation of DNA 

recombinations i.e. (a) deletion, (b) inversion and (c) translocation of a gene of interest 

between heterologous chromosomes upon Cre mediated excision, (black triangle depicts loxP 

site), Cre, Cre recombinase.    
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Aims of study 

1. TRPC1 and TRPV6 proteins are expressed in bone cells but the exact role of these 

proteins in bone homeostasis and fracture healing is not known. The first aim was to 

establish µCT for the precise determination of cortical trabecular and callus 

parameters of bone. Using this method, I wanted to elucidate the role of TRPC1 and 

TRPV6 in bone microarchitecture using Trpc1 or Trpv6 gene-deficient and Trpc1/Trpv6 

double mutant mouse strains. Additionally, I correlated the µCT results with 

biomechanical properties of Trpc1 or Trpv6 gene-deficient bones using three-point 

bending tests. At the cellular level, I compared in vitro osteoclasts differentiation 

between Trpc1-deficient and wild-type mice. 

 

2. As the cellular expression of Trpc1 is hard to analyze due to missing appropriate 

antibodies for immunohistochemistry it is still an open debate where exactly TRPC1 

proteins occur in mice. Therefore, the second aim was the generation of a Trpc1-IRES-

Cre mouse line where Cre recombinase is present in all Trpc1 expressing cells. After 

crossing with reporter mouse strains such as eRosa26-GFP, Trpc1-positive cells are 

easily detectable by their fluorescence. This mouse line will help to visualize and to 

analyze the expression of Trpc1 in bone as well as all over the mouse body. 

 

3. The TRPC1 protein seems to be present in different bone cells such as osteoclasts and 

osteoblasts. Using global Trpc1-deficient mice, it is difficult to rule out the role of Trpc1 

specifically in bone, as one cannot exclude any interfering effects from the TRPC1 

present in other cells or organs. To attribute a phenotype to a certain cell type it is 

necessary to use a conditional knockout mouse strain. Therefore, the third aim of my 

doctoral research was the generation of a conditional Trpc1–flox mouse strain. After 

crossing these mice with a cell-specific Cre mouse strain, it will be possible to 

determine TRPC1 function in the desired cell type or organ.
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2 Materials and Methods 

2.1 Bone analyses 

2.1.1 General materials 

Experiment Materials Supplier (catalog number) 

Primary 
osteoclasts 

culture 

α-MEM (Minimal Essential 
Medium) 

gibco by Life Technologies (22561-
021) 

FBS  gibco by Life Technologies (10270-
106) 

Heparin (Heparin-Natrium) 5000 
iE/mL 

Braun GmbH 

Antibiotic antimycotic solution Sigma-Aldrich (A5955) 

Recombinant Mouse M-CSF    R&D systems (416-ML-010) 

Recombinant Mouse 
TRANCE/TNFSF11/RANK L     

R&D systems (462-TEC-010) 
 

TRACP & ALP double stain kit  TaKaRa Bio Inc. (MK300) 

Bovine Serum Albumin Sigma-Aldrich (A4503) 

Osteo Assay Stripwell plate Corning Inc. (3989) 

Fracture 
model 

Surgical instruments  Fine Science Tools GmbH, Heidelberg 

Tungsten guide wire (0.2 mm)  RISystem (RIS.521.100) 

Mouse screw RISystem (RIS.221.100) 

Hand-drill 2-1mm  RISystem (RIS.390.130) 

Square box wrench 0.50 mm RISystem (RIS. 590.111) 

Suture (Surgicryl) 3/8 circle  Smi (11151519) 

asid-med, hair removing cream Aisd-Bonz (NDXZ10) 

Dexpanthenol 5% (BEPANTHEN®) Bayer (3400935940179) 

Carprofen 50 mg/mL (RIMADYL®) Zoetis Inc. 

Ketaminhydrochlorid 100 mg/mL 

(URSOTAMIN®) 

Serumwerk Bernburg AG 

Xylazinhydrochlorid 23.32 mg/mL  

2% (ROMPUM®) 

Bayer  

0.9% NaCl  B.Braun 

Glucose 5% B.Braun 

2.1.2  Mice 

All animal experiments have been reviewed and approved by the responsible authority, the 

local ethics committee of the Saarland. We abide by the 3R principle (replacement, reduction, 

refinement). Four independent mouse strains were used in the bone related experiments: 

Wild-type, Trpc1-/- (Dietrich et al., 2007), Trpv6mt/mt (Weissgerber et al., 2012) and double 
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mutant mice i.e. Trpc1-/-/Trpv6mt/mt (generated by breeding of Trpc1-/- and Trpv6mt/mt mice). To 

get mice of a defined mixed genetic background all of the above mentioned genotypes were 

obtained by specific breeding of a 129SvJ with a C57BL/6 mouse. The resulting pups, the F1 

generation were used for all experiments as “mixed” (129SvJ/C57BL/6). Mice were under a 12 

h light/dark cycle with food and water ad libitum. All animals had the same genetic background 

i.e. mixed strain (129SvJ/C57BL/6). Only male mice were used in experiments at ages ranging 

from 2 to 24 weeks.   

2.1.3  Methods 

2.1.3.1 Primary osteoclast culture 

The primary osteoclasts culture protocol was established in our laboratory by modifying the 

original method published by van der Eerden et al. (van der Eerden et al., 2005). Mice were 

sacrificed by cervical dislocation and bones (femurs and tibiae) were freed from muscles and 

surrounding soft tissues. Bones were cut at the distal end to make an opening, fixed within a 

small piece of microfluidic tubing and finally placed in a 1.5 mL eppendorf tube containing 250 

µL mouse osteoclast culture (MOC) medium. The composition of MOC medium: Minimum 

essential medium with nucleosides (alpha-MEM) supplemented with 10% FBS, 170 IE/mL 

heparin. Hundred U/mL penicillin, 100 µg/mL streptomycin, 250 ng/mL amphotericin B were 

added as antibiotic/antimycotic solution. The tubes were centrifuged at 4500 rpm for 3 min 

to thoroughly flush out the bone marrow cells. The cell pellet was re-suspended in 750 µL 

medium and transferred to a Falcon tube containing 9 mL culture medium. The cells were 

centrifuged at 4°C for 5 min at 410 g followed by resuspension of the pellet in 1 mL medium 

and 9 mL lysis buffer and subsequent incubation for 5 min at 21°C. Thereafter, cells were 

centrifuged at 410 g for 5 min at 4°C and the cell pellet was washed (220 g for 5 min) twice 

with 5 mL MOC medium. Finally, the cells were counted using Neubauer’s chamber (Blau 

Brand) and seeded at a concentration of 1x105 cells per well (total volume per well was 150 

µL) in an Osteo Assay Stripwell plate in the presence of 30 ng/mL M-CSF and 20 ng/mL RANKL. 

Every 2-3 days, approximately two-thirds of culture medium was replaced by freshly prepared 

MOC medium containing both growth factors and 85 µL of 6N HCl/50 mL medium. Eight days 

later, culture medium was aspirated and attached cells were washed once with 1xPBS (Sigma-

Aldrich) and stained for tartrate-resistant acid phosphatase (TRAP) activity as per 

manufacturer’s instructions (TaKaRa). TRAP served as a marker for osteoclasts. The von Kossa 



MATERIALS AND METHODS  

  

20 
 

staining was performed to determine the resorption capability of osteoclasts after visualizing 

the pits and trails formed. 

For using the TRACP & ALP double stain kit, cells were fixed by adding 50 µL fixation solution 

(provided by the manufacturer) to each well and incubated for 5 min at 21°C. Wells were 

washed twice with deionized water and then TRAP solution was added containing 0.1 volume 

of sodium tartrate as per manufacturer’s guidelines. The wells were incubated for 40 min at 

37°C for the enzymatic reaction to take place. The enzymatic activity was stopped by adding 

deionized water and subsequently wells were washed three times with the deionized water. 

TRACP-positive red/pink colored cells, containing more than three nuclei were considered as 

mature osteoclasts. Those cells were counted manually using a microscope (Zeiss Axiovert 40 

CFL, Carl Zeiss AG) at a magnification of 10x and in parallel representative images were taken 

by a camera (Zeiss AxioCam MRC5, Carl Zeiss AG).   

For von Kossa staining, all reagents were prepared fresh prior to use. The culture medium was 

removed and wells were washed three times with deionized water followed by incubation for 

30 min with 5% AgNO3 in bright light. The wells were washed three times with deionized water 

and incubated for 2 min with 5% Na2CO3 (in 25% formalin). The reaction was stopped by 

washing three times with deionized water and subsequently 5% Na2S2O3 was added for two 

minutes. At the end, the wells were washed again three times with deionized water and 

observed with a microscope (Zeiss Stemi 2000-C, Carl Zeiss AG) at a magnification of 1.6x and 

in parallel representative images were taken by a camera (Zeiss AxioCam MRC5, Carl Zeiss AG). 

The unstained surface (resorbed areas) was quantified using ImageJ (Version 1.51f) available 

online.     

2.1.3.2 RT-PCR from crushed bone and bone cells 

Total RNA from the crushed femurs and in vitro cultured osteoclasts and osteoblasts was 

isolated using the RNeasy Micro Kit (Qiagen). Total RNA (0.5 µg) was reverse transcribed using 

the Maxima first strand cDNA synthesis kit (ThermoFisher Scientific) as per the manufacturer’s 

guidelines. One µL of cDNA was used in RT-PCR reaction for the detection of Trpc1 transcripts 

using a primer set (Forward primer: 5’-TGCAAACGTTCTGAGTTACC-3’ and a reverse primer: 5’-

GGTTGTGATTGTGCTGACG-3’) covering sequences from exons 9 to11. The composition of 

reaction mixture:   
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Component (reagent) Quantity (µL) Final concentration 

First strand (cDNA) 1 variable 

5x Phusion buffer HF 5 1x 

10 mM dNTP’s 0.5 200 µM 

2U/µL DNA polymerase 0.5 1 U 

10 µM forward primer 1.5 0.5 µM 

10 µM reverse primer 1.5 0.5 µM 

Deionized H2O ad 25  

 

RT-PCR conditions were as follows: initial denaturation for 30 s at 98°C, 35 amplification cycles 

(10 s at 98°C, 20 s at 64°C, 15 s at 72°C), and a final extension for 5 min at 72°C using a phusion 

high fidelity polymerase (ThermoFisher scientific) in a 25 µL reaction volume. The resultant 

product was loaded onto a 2% agarose standard gel (Roth) and separated by electrophoresis 

along with a GeneRuler 1Kb plus DNA ladder as marker (ThermoFisher scientific) to estimate 

the size of the amplified DNAs. 

2.1.3.3 Fracture model 

All mice used in this experiment were handled with great care according to the animal welfare 

and ethical norms. The surgical procedure as described by Herath and coworkers (Herath et 

al., 2015) was approved by the responsible authority of the Saarland. Twenty-week-old male 

mice were weighed and anesthetized by administering 100 mg/kg body weight (BW) ketamine 

and 10 mg/kg BW xylazine intraperitoneally. Under aseptic conditions, a 5 mm medial 

parapatellar incision was performed on the right knee to dislocate the patella laterally. After 

drilling a 0.5 mm diameter hole into the intercondylar notch, an injection needle (27G 3/4˝, 

0.4x19 mm) was inserted through the intramedullary canal followed by a 0.2 mm tungsten 

guidewire coming out from the proximal side of the femur. A simple, transverse mid-shaft 

fracture (according to AO classification) was produced using a blunt guillotine. A weight of 80 

g was dropped from a height of 100 mm in the middle of femoral shaft and afterwards the 

broken ends were stabilized using a 17.2 mm stainless steel mouse screw (RISystem). Wound 

closure was carried out using 4-0 synthetic absorbable sutures. Bone fracture and subsequent 

screw implantation was controlled at various steps by radiography (MX-20, Faxitron X-ray 

Corp., Wheeling, IL, USA) (Figure 2-1).  Five mg/kg BW carprofen was injected subcutaneously 

prior to the surgical procedure and the following day. Carprofen is a nonsteroidal anti-

inflammatory and analgesic drug. All animals were housed in separate cages with ad libitum 

excess to food and water and a standard cycle of 12 h of light and dark each for four weeks. 
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Wound status was carefully monitored daily during the first week and then once per week 

until four weeks.  

 

Figure 2-1 Fracture model at surgery day. Representative X-ray images taken at three 

different steps of surgical procedure at day zero: (a) Arrow-head indicates the fracture site 

and a guidewire passing through the bone; (b) insertion of a screw following a guidewire to 

hold the broken ends and (c) fractured femur stabilized by a screw.  

After four weeks, mice were weighed again and wound status, activity, and gait pattern was 

carefully examined. The mice were sacrificed by cervical dislocation and an X-ray image of the 

broken bone was taken for the preliminary estimation of bone healing (Figure 2-2). 

Afterwards, both healthy and fractured femora were removed and freed from muscles and 

surrounding tissue. The screw was explanted using a square box wrench. Biomechanical 

testing was performed by a non-destructive three-point bending test. Finally, bones were 

wrapped in a 0.9% NaCl soaked gauze or wet tissue paper and preserved at -80°C for callus 

analysis by µCT. 

 

Figure 2-2 Fracture model after 27 days. Representative X-ray image taken at day 28 after 

fracture, arrow-head shows broken ends joined together by the callus formation. 
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2.1.3.4  Bone biomechanics 

The femurs were mounted on a three-point bending device (Mini Zwick Z 2.5, Zwick GmbH) 

for estimation of the bending stiffness (N/mm) using a non-destructive bending test. The 

protocol followed the procedure described by Herath and coworkers (Herath et al., 2015). The 

bones were placed horizontally on two lower posts 6 mm apart, with the condyles facing 

upwards. A gradually increasing load at a rate of 1 mm/min was applied in the middle of the 

femoral shaft by the upper post (Figure 2-3) and displacement plotted versus applied load (N) 

was displayed using the software testXpert V12.0 on a computer system attached with a 

three-point bending device.  The application of force was manually stopped as soon as the 

displacement curve deviated slightly from the linearity. Finally, bones were wrapped within 

0.9% NaCl soaked gauze and frozen at -80°C for µCT analysis. The bending stiffness (L/D) 

(N/mm) was calculated as the slope of the linear portion of the load versus displacement 

curve:  

Bending stiffness (N/mm) = y2-y1/x2-x1, where x (x2-x1) is the displacement (D) in mm and y 

(y2-y1) is the load (force) applied in Newton, N. 

 

Figure 2-3 Biomechanical testing. (A) The three-point bending device (Mini Zwick Z 2.5) is 

shown with a femur lying horizontally on two lower posts 6 mm apart while a force is applied 

vertically from the upper post. The image is taken of the instrument (Mini Zwick Z 2.5) that is 

present in the Institut für Klinisch-Experimentelle Chirurgie, Universität des Saarlandes, 

Homburg. (B) Load/force-displacement curve. 
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2.1.3.5  Bone analysis by µCT 

Intact/healthy and fractured femurs from male mice were removed and thoroughly cleaned 

from the surrounding muscles. All bones were scanned at a resolution of 6.5 µm using a high 

resolution scanning system SkyScan 1172 µCT (Bruker MicroCT, Kontisch, Belgium). The bones 

were wrapped in a wet tissue paper, placed in a plastic holder and mounted vertically in the 

sample chamber for imaging. The scanning conditions were adjusted according to the 

previously published guidelines by M. L. Bouxsein (Bouxsein et al., 2010). X-ray source voltage 

and current were 50 kV and 200 µA, respectively. Beam hardening was reduced using a 0.5 

mm aluminum filter. The exposure time was five seconds and scanning angular rotation was 

set to 180° with an increment of 0.4 rotation step (deg). NRecon (version 1.6.10.6) software 

was used to reconstruct the images while other software such as DataViewer (1.5.1.2) and 

CtAn (1.16.4.1+) were used for bone analysis (all provided by Bruker MicroCT).   

Projection images obtained after scanning the bone samples were converted into 

tomographic cross-sectional images using NRecon software. All datasets were reconstructed 

under the same conditions. Misalignment compensation was always used as automatically 

estimated by the software and smoothing and ring artifact reduction were set at levels 2 and 

5, respectively. A 20% correction in beam hardening was performed to sharpen the resultant 

cross-sectional images. After reconstruction, 3D femurs were oriented in the desired direction 

using a software DataViewer.  

DataViewer was used to direct the reconstructed cross-sections of a dataset in a fixed/defined 

orientation for consistent analysis of the individual bones. By comparing three different views 

i.e. coronal, transaxial and sagittal views, displayed in DataViewer, the bone dataset was 

oriented in an upright position displayed in the coronal view keeping the femoral head 

upwards while in a transaxial view, the intersecting lines were kept exactly in the middle of 

the growth-plate cross-section (Figure 2-4). In this way, all samples have similar orientations, 

which is important for selecting a similar volume of interest (VOI) for cortical and trabecular 

analysis of each bone using CtAn software. 
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Figure 2-4 Orientation of a 3D femur using a DataViewer software. Representative images 

depict three different views of a reconstructed 3D femur dataset i.e. coronal, transaxial and 

sagittal views. 3D femur appears straight with a femoral head on the top in a coronal view. In 

a transaxial view, the representative cross-section is oriented so that the intersecting lines are 

exactly in the middle of four semi-circular islands. 

After orientation, the dataset was uploaded in CtAn software to determine the bone 

parameters. For determining the cortical and trabecular parameters, the first step was to 

determine the volume of interest (VOI) for both cortical and trabecular bone analyses 

(Bouxsein et al., 2010). The center of the femoral shaft was used as a reference for selecting 

cortical bone VOI, whereas the trabecular bone VOI was selected with reference to the growth 

plate (van der Eerden et al., 2012) (Figure 2-5).  
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Figure 2-5 Selection of volume of interest (VOI) for cortical and trabecular analysis of femurs 

from 12- (left panel) and 24-week- (right panel) old mice. (Aa, Ba) For cortical bone analysis, 

the central dotted white line in the femoral shaft is considered as a reference, 25 cross-

sections (6.5 µm each) are analyzed above and below this reference to determine the cortical 

bone parameters. For trabecular bone analysis, the reference for defining VOI is adapted 

according to the original method defined in the Bruker-microCT application note (Micro-CT 

analysis of mouse long bones (proximal tibia, distal femur)) as follows: Moving slice-by-slice 

towards the growth plate from the condyles, a point is reached where a clear “bridge” of low 

density cartilage (chondrocyte seam) is established from one corner of the cross-section to 

another. As soon as this bridge starts to disappear, that particular cross-section is taken as a 

landmark. This landmark defines the reference section, RS, at position 0, (indicated as 1, in 

red), trabecular VOI is then defined relative to this reference section, at section 100 (RS+100, 

2), 150 (RS+150, 3), 300 (RS+300, 4) and 350 (RS+350, 5) (Ab, Bb). For 12-week-old mice, 

sections between 1 and 3 are considered as offset (150 cross-sections), while VOI lies within 

the sections 3 and 5 (150 cross-sections). For 24-week-old mice, sections between 1 and 2 are 

taken as offset (100 cross-sections), while VOI consists of the sections 2 and 4 (200 cross-

sections) as indicated by red lines and the corresponding cross-section.   
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For the cortical bone analysis, the reference was selected exactly in the middle of the femur 

shaft by dividing the total number of cross-sections by two and then twenty-five cross-sections 

above and below this reference were taken as VOI. A total of fifty cross-sections of 6.5 µm 

each were analyzed to determine the cortical bone parameters such as cortical bone volume 

(BV), endocortical volume (Ec.V), cross-sectional thickness (Cs.Th), and perimeter using a 

special tasklist (supplementary Table 6-1) in the supplement. Cortical tissue mineral density 

(TMD) was estimated using calcium hydroxyapaptite (CaHA) phantoms of known densities i.e. 

0.25 and 0.75 g/cm3 (Bouxsein et al., 2010) following a Bruker-microCT method note (Bone 

mineral density (BMD) and tissue mineral density (TMD) calibration and measurement   by 

micro-CT using Bruker-MicroCT CT-Analyser) and a special tasklist (supplementary Table 6-2) 

in the supplement. 

For the trabecular bone analysis, the cross-section where the chondrocyte seam, a low density 

cartilage ‘bridge’, separating the four islands started to disappear was selected as a reference 

section or landmark (Figure 2-5). Moving away from this landmark towards the diaphysis, the 

region including the growth plate and primary spongiosa in the metaphysis was excluded as 

offset (Figure 2-5). Selection of an appropriate VOI for the trabecular bone analyses in mouse 

femur bone is crucial, because trabecular region is located adjacent to the metaphyseal 

growth plate. Selecting a VOI too close to the growth plate will cause contamination of primary 

spongiosa or extending too far from the growth plate will leads to the inclusion of empty 

spaces i.e. tissue volume, subsequently reducing the bone volume fraction (BV/TV). Moreover, 

trabecular bone is constantly changing with age, which highlights the need of selecting 

appropriate trabecular bone VOI depending on the age of mice being analyzed. A total number 

of 150 and 200 cross-sections in the region of the secondary or mature spongiosa for 12- and 

24-week-old mice respectively were used to determine trabecular bone parameters using a 

special tasklist (supplementary Table 6-3) in the supplement. These parameters include 

trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp) and 

trabecular pattern factor (Tb.Pf). Trabecular separation is the mean distance between the 

trabeculae whereas trabecular pattern factor is inverse index of connectivity between the 

trabeculae. Trabecular bone mineral density (BMD) (includes both bony- and non-bony-

voxels) was also estimated by comparing the dataset with CaHA phantoms in a similar fashion 

as tissue mineral density, however a separate tasklist was used (supplementary Table 6-4) in 

the supplement. Two different threshold ranges i.e. 120-255 and 80-255, estimated by the 
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Otsu method of thresholding (Manual for Bruker-microCT CT-Analyser v.1.13, The user’s 

guide), were utilized for cortical and trabecular bone analyses, respectively. All four tasklists 

were modified from the original that were kindly provided by Dr. Bram van der Eerden, 

Erasmus Medical Centre, Rotterdam.  

For the callus tissue analysis, the steps such as scanning, reconstruction and orientation of 

fractured femur bones were performed exactly in the same aforementioned manner. After 

loading the dataset in CtAn, the VOI was selected based on the presence of callus tissue. The 

VOI contained all cross-sections comprising the callus tissue i.e. newly formed tissue (bone) 

surrounding the fracture site. For ROI selection, endosteal and periosteal callus region was 

manually selected by eliminating the cortical bone from the surrounding callus tissue 

(Casanova et al., 2016). (Figure 2-6). Total callus volume, volume of low and highly mineralized 

bony callus were determined using various threshold values such as 68-255 (total volume), 

68-97 (low mineralized callus) and 98-255 (highly mineralized callus) respectively (Bosemark 

et al., 2013), (Orth et al., 2017). As callus is a newly formed bone tissue, trabecular parameters 

such as Tb.N, Tb.Th, Tb.Sp and Tb.Pf were determined to estimate the callus microarchitecture 

(Casanova et al., 2016), (Kondo et al., 2015) using an independent tasklist (supplementary 

Table 6-5) in the supplement. This special tasklist for callus analysis modified from the original 

that was kindly provided by Dr. Robert Tower (MacKay Orthopedic Research Laboratory, 

Perelman, School of Medicine, University of Pennsylvania, USA). 

 

Figure 2-6 Selection of VOI and ROI for callus analysis. (a) Representative X-ray image shows 

the explanted fractured femur after removal of the screw; two dotted lines indicate the VOI 

i.e. all cross-sections containing the callus tissue while the central line represents (b) a cross-

sectional image (6.5 µm) wherein periosteal and endosteal callus ‘ROI’ has been selected 

manually (highlighted in red color) delineating the cortical bone (grey) for callus analysis. 
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2.2 Targeted modification of the mouse Trpc1 gene 

2.2.1 General materials 

2.2.1.1  List of enzymes 

Enzyme Article number*    

AflII R0520 

AgeI-HF R3552 

AscI R0558 

BamHI-HF R3136 

DraI R0129 

DraIII-HF R3510 

EcoRI-HF R3101 

HindIII-HF R3104 

KpnI-HF R3142 

MluI R0198 

NdeI R0111 

NotI-HF R3189 

PflMI R0509 

PmeI R0560 

PvuI-HF R3150 

RsrII R0501 

SacI-HF R3156 

SalI-HF R3138 

ScaI-HF R3122 

StuI R0187 

XmnI R0194 

T4 DNA ligase M0202 

Antarctic 
phoshatase 

M0289 

Phusion high fidelity 
DNA polymerase 

M0530 

*All enzymes were purchased from New England BioLabs® (NEB, Ipswich, Massachusetts, USA), HF means     
High-Fidelity 

2.2.1.2  List of kits 

Kits Supplier (catalog number) 

GenElute plasmid miniprep kit Sigma-Aldrich (PLN350) 

Promega PureYield plasmid maxiprep 
System 

Promega (A2393) 

Qiagen plasmid Plus maxi kit  Qiagen (12963) 

High pure PCR product purification kit Roche Life Science (11732676001) 

Transcriptor first strand cDNA synthesis kit Roche Life Science (04896866001) 

RNeasy micro kit (50) Qiagen (74004) 
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Megaprime DNA Labeling System, dNTP GE Healthcare (RPN1605) 

Wizard SV gel and PCR clean up system Promega (A9281) 
 

2.2.1.3  Oligodeoxyribonucleotide primers 

All oligodeoxyribonucleotide primers were purchased from Sigma-Aldrich in a lyophilized form 

and stored at -20°C until use. Stock solution (100 µM) was prepared by dissolving DNA in 

deionized water as per the manufacturer’s instructions and stored at -20°C. Working solution 

of 10 µM was used in all experiments. The name, sequence (5’-3’), melting temperature (Tm), 

forward (F) or reverse (R) orientation and application/purpose of the respective 

oligodeoxyribonucleotide primers is listed in tables below (Table 2-1 to Table 2-5)  

Table 2-1 Oligodeoxyribonucleotides for the generation of the Trpc1-IC targeting vector and 

amplification of cDNAs used as probes in Southern blots 

Primer 
name 

Oligodeoxyribonucleotide 
sequence (5’-3’) 

Tm 
(°C) 

F or 
R 

Application 

CM_82 GTCGACGATATCGGTGTCTCTGG
GGAGGGG 

62 R Cloning pAR_1, 5´P, SalI and EcoRV 
site 

CM_83 CTTAAGAGCTTCCAAATGCTGACA
CC 

60 F Amplification of 3´2 with AflII site 

CM_84 CTTAAGGCTACACAGAGAAACCC
TGT 

60 F Amplification of 3´2 with AflII site  

CM_85 CTTAAGCCTTTCATCTGATTTTGT
AACC 

60 R Amplification of 3´2 with AflII site  

CM_86 CTTAAGACAGGGTTTCTCTGTGTA
GC 

60 R Amplification of 3´2 with AflII site 

CM_87 CCATAAGGGATCTCAGAAAGG 62 F Amplification of 3’1 probe (IC) 

CM_88 ACCTCTTGTCTATCTTTTGGC 60 R Amplification of 3’1 probe (IC) 

CM_89 GGCATTTGAAACTCAGTCCC 60 F Amplification of 3’2 probe (IC) 

CM_90 CAGAGGAAGTCCTCTGTCC 60 R Amplification of 3’2 probe (IC) 

CM_91 AGGCATACCTTTGGGTTAGG 60 F Amplification of 3’3 probe (IC) 

CM_92 CAGGCTCAACTTAAAATTCATC 60 R Amplification of 3’3 probe (IC) 

CM_93 TAGAATTATGCTTGTGTCAACC 60 F Amplification of 3’4 probe (IC) 

CM_94 GTTGCTAAATCATAACTTCATCC 62 R Amplification of 3’4 probe (IC) 

CM_95 GCATAATAAATGTTAAGAAGTGC 60 F Amplification of 5’1 probe (IC) 

CM_96 AGTGTAAAGGCTGTTCTAAGTTC 60 R Amplification of 5’1 probe (IC) 

CM_97 TCTATTCTAGTCCTCCTGCC 60 F Amplification of 5’2 probe (IC) 

CM_98 GGTGGGTCACTTAGGAAGAC 62 R Amplification of 5’2 probe (IC) 

CM_99 CAACAACAAATACGAGGAGATG 62 F Amplification of 5’3 probe (IC) 

CM_100 ATCCTATAGGTAAAGATGATGAA 60 R Amplification of 5’3probe  (IC) 

CM_101 CCAGTGCATTAAGGAAAATGTG 62 F Amplification of 5’4 probe (IC) 

CM_102 GAAGAGGAATTAGCCCTAAAAG 62 R Amplification of 5’4 probe (IC) 
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CM_103 CGCGTCTTAAGTAGTAGATCC 62 F Sequencing 5’Homology (IC) 

CM_104 GGATCTACTACTTAAGACGCG 62 R Sequencing 5’Homology (IC) 

CM_105 CCTGAAGGCTGAAGTAGAGG 62 F Sequencing 5’Homology (IC) 

CM_106 CCTCTACTTCAGCCTTCAGG 62 R Sequencing 5’Homology (IC) 

CM_107 GCTGTGATTGTTGGAACTTAC 60 F Sequencing 5’Homology (IC) 

CM_108 GTAAGTTCCAACAATCACAGC 60 R Sequencing 5’Homology (IC) 

CM_109 CCTCATTCTTACTATGTAGCTG 62 F Sequencing 5’Homology (IC) 

CM_110 CAGCTACATAGTAAGAATGAGG 62 R Sequencing 5’Homology (IC) 

CM_111 CTAGGGAAAACAGAATTCCCT 60 F Sequencing 5’Homology (IC) 

CM_112 AGGGAATTCTGTTTTCCCTAG 60 R Sequencing 5’Homology (IC) 

CM_125 CCATAACAGATCTGAAAGACTG 62 F Sequencing 3’Homology (IC) 

CM_126 CAGTCTTTCAGATCTGTTATGG 62 R Sequencing 3’Homology (IC) 

CM_127 CACAGAGAAATCCTGTCTTGG 62 F Sequencing 3’Homology (IC) 

CM_128 CCAAGACAGGATTTCTCTGTG 62 R Sequencing 3’Homology (IC) 

CM_129 GGTTTCCCAGCTGTCGCATG 64 F Sequencing 3’Homology (IC) 

CM_130 CATGCGACAGCTGGGAAACC 64 R Sequencing 3’Homology (IC) 

CM_131 CCATGTAGGGACTAAATTGAG 60 F Sequencing 3’Homology (IC) 

CM_132 CTCAATTTAGTCCCTACATGG 60 R Sequencing 3’Homology (IC) 

CM_133 GCGCCAAGATCTGTCAAAATT 60 F Sequencing pAR_9 (IC) 

CM_134 GGCTTCGGCCAGTAACGTTA 62 R Sequencing pAR_9 (IC) 

CM_135 GGCTTCTGAGGCGGAAAGA 60 F Sequencing pAR_9 (IC) 

CM_136 GCAAGTATGCAAATACAGTCT 58 R Sequencing pAR_9 (IC) 

CM_137 CGCCGGATCTGATATCATCG 62 F Sequencing pKO.ICF 

CM_138 CGATGATATCAGATCCGGCG 62 R Sequencing pKO.ICF 

CM_139 TAACGTTACTGGCCGAAGCC 62 F Sequencing pKO.ICF 

CM_140 CACGGGGACGTGGTTTTCC 62 F Sequencing pKO.ICF 

CM_141 GGAAAACCACGTCCCCGTG 62 R Sequencing pKO.ICF 

CM_143 CGATCGCTGCCAGGATATAC 62 F Sequencing pKO.ICF 

CM_144 GTATATCCTGGCAGCGATCG 62 R Sequencing pKO.ICF 

CM_145 CCGTAACCTGGATAGTGAAAC 62 F Sequencing pKO.ICF 

CM_146 GTTTCACTATCCAGGTTACGG 62 R Sequencing pKO.ICF 

CM_147 TTCTGGGCTCAGAGGCTGG 62 F Sequencing pKO.ICF 

CM_148 CCAGCCTCTGAGCCCAGAA 62 R Sequencing pKO.ICF 

CM_149 GCTCCTGCCGAGAAAGTATC 62 F Sequencing pKO.ICF 

CM_150 GATACTTTCTCGGCAGGAGC 62 R Sequencing pKO.ICF 

CM_151 GCTCGCTGATCAGCCTCGA 62 F Sequencing pKO.ICF 

CM_152 TCGAGGCTGATCAGCGAGC 62 R Sequencing pKO.ICF 

Table 2-2 Oligodeoxyribonucleotides for the generation of Trpc1-flox targeting vector and 

amplification of cDNAs used as probes in Southern blots 

Primer 
name 

Oligodeoxyribonucleotide 
sequence (5’-3’) 

Tm 
(°C) 

F or 
R 

Application 

CM_159 GCTCCATTGTTACTTCACATG 60 F Cloning of 5’Probe1Trpc1_C1Z 

CM_160 CCTGCTGTATGTTCTGATCAG 62 R Cloning of 5’Probe1Trpc1_C1Z 

CM_161 CCAGTGTCCAAGTACCACAAC 64 F Cloning of 5’Probe2Trpc1_C1Z 

CM_162 CCTGCGCTATCTGAAATTTCAG 64 R Cloning of 5’Probe2Trpc1_C1Z 
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CM_163 GGCTAAACATTTTGCTGAGCA 60 F Cloning of 5’Probe3Trpc1_C1Z 

CM_164 CCTCGTTCCTAAAGGCGTTT 60 R Cloning of 5’Probe3Trpc1_C1Z 

CM_165 CCTTGGATGAAGGACCAAGTT 62 F Cloning of 3’Probe1Trpc1_C1Z 

CM_166 CCAGTATAGCAAAATCAGTGTC 62 R Cloning of 3’Probe1Trpc1_C1Z 

CM_167 CCAAGTCAGTGTGCTTAGGC 62 F Cloning of 3’Probe2Trpc1_C1Z  

CM_168 CCAAGAATGAAACTACAGCAGA 62 R Cloning of 3’Probe2Trpc1_C1Z 

AR_1 CCTGCCCTAGTTGCCGAAA 60 F Sequencing 5’Hom Trpc1_C1Z 

AR_2 TTTCGGCAACTAGGGCAGG 60 R Sequencing 5’Hom Trpc1_C1Z 

AR_3 GGTTTAAGTCAACAACATCTCC 62 F Sequencing 5’Hom Trpc1_C1Z 

AR_4 GGAGATGTTGTTGACTTAAACC 62 R Sequencing 5’Hom Trpc1_C1Z 

AR_5 GGGTGAAGAGAGTATAATTAGT 60 F Sequencing 5’Hom Trpc1_C1Z 

AR_6 ACTAATTATACTCTCTTCACCC 60 R Sequencing 5’Hom Trpc1_C1Z 

AR_7 GGATTAAAGGCGTGCACCAC 62 F Sequencing 5’Hom Trpc1_C1Z 

AR_8 GTGGTGCACGCCTTTAATCC 62 R Sequencing 5’Hom Trpc1_C1Z 

AR_9 CCAGTAGGATTTCTTTGGGTT 60 F Sequencing 5’Hom Trpc1_C1Z 

AR_10 AACCCAAAGAAATCCTACTGG 60 R Sequencing 5’Hom Trpc1_C1Z 

AR_11 GCTAGCCCAGTTTCCAGTG 60 F Sequencing 5’Hom Trpc1_C1Z 

AR_12 CACTGGAAACTGGGCTAGC 60 R Sequencing 5’Hom Trpc1_C1Z 

AR_13 CCACTGTGAACTGAATCCAAC 62 F Sequencing 5’Hom Trpc1_C1Z 

AR_14 GTTGGATTCAGTTCACAGTGG 62 R Sequencing 5’Hom Trpc1_C1Z 

AR_15 GGGTTTGCTGTGTCACAGG 60 F Sequencing 5’Hom Trpc1_C1Z 

AR_16 CCTGTGACACAGCAAACCC 60 R Sequencing 5’Hom Trpc1_C1Z 

AR_17 CCAAAGACGAGATGTAACTTG 60 F Sequencing 5’Hom Trpc1_C1Z 

AR_18 CAAGTTACATCTCGTCTTTGG 60 R Sequencing 5’Hom Trpc1_C1Z 

AR_19 CGACTTAAGAGCATCACTTCA 60 F Sequencing 5’Hom Trpc1_C1Z 

AR_20 TGAAGTGATGCTCTTAAGTCG 60 R Sequencing 5’Hom Trpc1_C1Z 

AR_21 GGATGACAAGTTTGTGGCCT 60 F Sequencing 5’Hom Trpc1_C1Z 

AR_22 AGGCCACAAACTTGTCATCC 60 R Sequencing 5’Hom Trpc1_C1Z 

AR_23 GCGAGTGATCTAGAAGCGC 60 F Sequencing 3’Hom Trpc1_C1Z 

AR_24 GCGCTTCTAGATCACTCGC 60 R Sequencing 3’Hom Trpc1_C1Z 

AR_25 CCAGTCACTTAGCTGTCTAG 60 F Sequencing 3’Hom Trpc1_C1Z 

AR_26 CTAGACAGCTAAGTGACTGG 60 R Sequencing 3’Hom Trpc1_C1Z 

AR_27 CCACAGTCAGTCTATCAAGA 58 F Sequencing 3’Hom Trpc1_C1Z 

AR_28 TCTTGATAGACTGACTGTGG 58 R Sequencing 3’Hom Trpc1_C1Z 

AR_29 CCATACCTGACCCAAATGTC 60 F Sequencing 3’Hom Trpc1_C1Z 

AR_30 GACATTTGGGTCAGGTATGG 60 R Sequencing 3’Hom Trpc1_C1Z 

AR_31 CCAGGGAATCCAATGCCCC 62 F Sequencing 3’Hom Trpc1_C1Z 

AR_32 GGGGCATTGGATTCCCTGG 62 R Sequencing 3’Hom Trpc1_C1Z 

AR_33 CCTATAAGAGCAGTCACAGC 60 F Sequencing 3’Hom Trpc1_C1Z 

AR_34 GCTGTGACTGCTCTTATAGG 60 R Sequencing 3’Hom Trpc1_C1Z 

AR_51 CCGTCAGGATGGCCTTCTG 62 F Sequencing 5’Hom Trpc1_C1Z 

AR_52 GGGAGTTAAGGAGGGAGGGA 62 F Sequencing 5’Hom Trpc1_C1Z 

AR_53 CCGCCAGCCTGTATTTCGG 62 F Sequencing 5’Hom Trpc1_C1Z 

AR_54 CCGAAATACAGGCTGGCGG 62 R Sequencing 5’Hom Trpc1_C1Z 

AR_55 CTTGAGGCTGGACATGTGCC 64 R Sequencing Trpc1_C1Z 

AR_56 CCTCCAGCGCGGGGATCT 62 F Sequencing Trpc1_C1Z 

AR_57 AGATCCCCGCGCTGGAGG 62 R Sequencing Trpc1_C1Z 
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AR_58 CTGTGCACATGTCCACATGC 62 R Sequencing Trpc1_C1Z 

AR_59 CCCTGCATCAGACGGAAGTAA 62 F Sequencing Trpc1_C1Z 

AR_60 TTACTTCCGTCTGATGCAGGG 62 R Sequencing Trpc1_C1Z 

AR_61 GGAGTTAGATCAGGAAGCGC 62 F Sequencing Trpc1_C1Z 

AR_62 GCGCTTCCTGATCTAACTCC 62 R Sequencing Trpc1_C1Z 

AR_63 CTAGACAGCTAAGTGACTGG 60 R Sequencing 3’Hom Trpc1_C1Z 

AR_64 GTACAGCGGTACAGAAGACC 62 R Sequencing 3’Hom Trpc1_C1Z 

AR_65 GATTGGGAAGACAATAGCAGG 62 R Sequencing Trpc1_C1Z 

AR_66 CAGCTTACGAACCGAACAGG 62 R Sequencing Trpc1_C1Z 

AR_67 CCTTTGGCTTTCACACCACC 62 R Sequencing 3’Hom Trpc1_C1Z 

AR_68 CCTTGAAGGACTCCAATAGG 60 R Sequencing Trpc1_C1Z 

AR_69 CCAGAGGCTCAAGGCTGAGT 64 F Sequencing Trpc1_C1Z 

AR_70 ACTCAGCCTTGAGCCTCTGG 64 R Sequencing Trpc1_C1Z 

AR_71 CCATTCGACCACCAAGCGAA 62 F Sequencing Trpc1_C1Z 

AR_72 CCTGCATCAGACGGAAGTAAA 62 F Trpc1_C1Z _loxP-PCR  

AR_73 GTGAGGAACATTTATTCATGTG 60 R Trpc1_C1Z _loxP-PCR  

AR_74 CCTGTTTCCTTTCCCTGCAT 60 F Trpc1_C1Z _loxP-PCR  

AR_75 AGGAGAAAACCAAATTGAACTG 60 R Trpc1_C1Z _loxP-PCR  

Table 2-3 Oligodeoxyribonucleotides for the genotyping of Trpc1-IC KI mouse strain 

Primer 
name 

Oligodeoxyribonucleotide 
sequence (5’-3’) 

Tm 
(°C) 

F or 
R 

Application 

AR_76 GGATTTGCTTGGCTTTCGGA 60 F Trpc1_SubF_IC_genotyping  

AR_77 CAAAAGACGGCAATATGGTGG 62 R Trpc1_SubF_IC_genotyping  

AR_78 CTTCGGCCAGTAACGTTAGG 62 R Trpc1_SubF_IC_genotyping  

AR_79 GGGCGGAATTCATCGATGAT 60 R Trpc1_SubF_IC_genotyping  

Table 2-4 Oligodeoxyribonucleotides for the genotyping of conditional Trpc1 mouse strain 

Primer 
name 

Oligodeoxyribonucleotide 
sequence (5’-3’) 

Tm 
(°C) 

F or 
R 

Application 

AR_80 CCGCCAGCCTGTATTTCGG 62 F Trpc1_MANN_flox_genotyping  

AR_81 GCGGAATTCTCTAGAGTCCA 60 R Trpc1_MANN_flox_genotyping  

AR_82 CCGGTCGCTACCATTACCA 60 F Trpc1_MANN_flox_genotyping  

AR_83 GCGTGCAATCCATCTTGTTC 60 R Trpc1_MANN_flox_genotyping  

AR_84 CCTTCTTGACGAGTTCTTCTG 60 F Trpc1_MANN_flox_genotyping  

AR_85 GCTGGGTCTAGATATCTCGA 60 R Trpc1_MANN_flox_genotyping  

AR_86 GGACTACGGTTGTCAGGTAC 62 F Trpc1_MANN_flox_genotyping  

Table 2-5 Additional genotyping primers 

Primer 
name 

Oligodeoxyribonucleotide 
sequence (5’-3’) 

Tm 
(°C) 

F or 
R 

Application 

SD_222 CCCATTCCATGCGGGGTATCG 68 F Flp recombinase_genotyping 

SD_223 GCATCTGGGAGATCACTGAG 62 R Flp recombinase_genotyping 

Cre_1 ACCTGAAGATGTTCGCGATTATCT 68 F Cre recombinase_genotyping 

Cre_2 ACCGTCAGTACGTGAGATATCTT 64 R Cre recombinase_genotyping 
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new 
ROSA 

GGAAGCACTTGCTCTCCCAAAG 70 F GFP_genotyping 

new 
eROSA 

GGGCGTACTTGGCATATGATACA
C 
  

72 R GFP_genotyping 

 

2.2.1.4  List of buffer solutions  

For miniprep (crude preparation of small 
amount of plasmid DNA) 

STET-L buffer, pH 8.0  
8% (w/v)   Sucrose 
5% (v/v)    Triton X-100 
0.05 M      EDTA 
0.05 M      Tris 
Add Lysozyme (100 μg/mL) freshly added 
from 10 mg/mL Lysozyme stock solution 

For maxiprep (preparation of large amount, 
≥0.5 mg, of plasmid DNA) 

Cell resuspension solution 
50 mM Tris-HCl (pH 7.5)  
10 mM EDTA  
100 µg/mL RNase A 
 
Cell lysis solution 
0.2 M      NaOH 
1% (w/v) SDS 
 
Neutralization solution, pH 4.2 
4.09 M guanidine hydrochloride 
0.759 M potassium acetate   
2.12 M glacial acetic acid 

For DNA storage TE-buffer, pH 8.0, autoclaved 
10 mM  Tris       
  1 mM  EDTA    

For preparation of chemical competent 
bacterial cells 

Transformation storage solution (TSS) buffer 
10% (w/v)  PEG 3350 
5% (v/v)     DMSO 
1% (w/v)    Tryptone/Peptone  
1% (w/v)    NaCl 
0.5% (w/v) Yeast extract 
0.05 M        MgCl2 

For gel electrophoresis Tris-Borate-EDTA (TBE) buffer, pH 8.0 
90 mM    Tris base 
90 mM    Boric acid 
  2 mM    EDTA  

Loading buffer (6x) 
0.25% (v/v)  Bromophenol blue  
15% (w/v)    Ficoll 400 
0.25%  (v/v) Xylencyanol  
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For genotyping PCR 10x Taq buffer, pH 8.3 
0.1 M       Tris 
0.5 M       KCl 
0.015 M   MgCl2 

For genomic DNA preparation for 
genotyping 

Tissue lysis buffer, pH 8.0 
50   mM   Tris HCl 
100 mM   NaCl 
    1  mM   EDTA 
0.5%  (w/v)  proteinase K 
0.2%  (w/v)  Nonidet P40 
0.2%  (w/v)  Tween-20 

For Southern blot 0.25 N Hydrochloric acid 
20.76 mL Hydrochloric acid (37%) ad 1000 
mL deionized H2O; used for depurination 

Denaturation buffer 
0.5 M NaOH 
1.5 M NaCl 

Neutralization buffer, pH 7.5 
0.5 M Tris       
   3 M NaCl 

10x SSC, pH 7.0 
0.15 M  Sodium citrate 
1.5   M  NaCl 

Church buffer 
0.5 M         Sodium phosphate (pH 7.4)  
1% (w/v)    BSA 
7% (w/v)    SDS 
1 mM         EDTA 
0.1 mg/mL Salmon sperm DNA, Roche, 
(added after being denatured at 95°C for 5 
minutes) 

 

2.2.1.5   Media for bacterial culture 

Luria-Bertani (LB) medium, pH 7.4 

Tryptone/Peptone   10 g 

NaCl                            10 g 

Yeast extract               5 g 

Deionized H2O           ad 1000 mL 

autoclaved at 121°C, 2.0 bar for 20 minutes. 

 

LB-agar 

15 g/L agar in LB-medium, autoclaved at 121°C, 2.0 bar for 20 min and plated after cooling 

down to 50°C. 
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Antibiotics 

Added in LB-medium just before plating at the following final concentrations  

Ampicillin 50 μg/mL 

Kanamycin 25 μg/mL   

2.2.2 General methods 

2.2.2.1  Restriction endonuclease treatment of plasmid DNA 

Restriction enzyme reactions were carried out to generate the required DNA fragments for 

linearization of vector plasmids and validation of the integrity of the recombinant plasmid. 

Single or combinations of two different restriction enzymes were used in the reactions. 

Combinations of enzymes were used either simultaneously if reaction conditions were similar 

for both enzymes or a sequential incubation approach was used if reaction conditions were 

different for each enzyme. Table below summarizes the composition of a typical restriction 

digest used: 

Component (reagent) Quantity (µL) Final concentration 

Template DNA variable 0.5-2 µg 

Enzyme 1 1 10 U* 

Enzyme 2 1               10 U 

Restriction buffer (10x) 5                  1x 

Water, nuclease-free ad 50 µL  
                     *usually ≤1/10 of total volume 

After pipetting, all components were thoroughly mixed and incubated at 37°C or 25°C 

depending on the enzyme. 

2.2.2.2  Gel electrophoresis 

Agarose gel electrophoresis was used for the separation of DNA fragments based on their 

sizes. 0.6-4% agarose gels were used depending on the expected band sizes in the individual 

cloning steps. The agarose gel was prepared by dissolving agarose standard (CarlRoth) powder 

in 1xTBE-buffer and boiled for several minutes in a microwave until a transparent solution was 

obtained. Approximately, after 3 min of mild cooling by keeping at 21°C, ethidium bromide 

(0.05% v/v) was added followed by pouring the agarose solution into a gel tray. Ethidium 

bromide, a fluorescent dye, intercalates with the DNA double strands and absorbs radiation 

at wavelengths from 302 nm to 366 nm and re-emits energy at 590 nm (Le Pecq and Paoletti, 

1966). The agarose gel solution was incubated for 20 min at 21°C for solidification and finally 
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stored at 4°C or directly used for running the samples. The DNA samples were solved in loading 

buffer (10x) applied to the gel wells and electrophoresis was performed at 100–150 V (Consort 

EV 261). Molecular weight markers were run in the same gel to determine the molecular 

weights of DNA products. The separated DNA fragments were visualized using a UV light 

transilluminator (HeroLab UVT-28 ME-HC) and images were taken using an attached camera 

(Herolab B1228-U5). For the gel purification of DNA fragments, an appropriate DNA band was 

excised from the gel using a sterile scalpel, the DNA was extracted from the gel by either 

electroelution or using a Wizard SV gel and PCR clean up system (Promega) according to the 

manufacturer’s instructions.  

2.2.2.3  Purification of DNA by electroelution 

The excised portion of an agarose gel containing the required DNA fragment was placed inside 

a dialysis bag (Dialysis Tubing, Sigma-Aldrich) and 250 µL of autoclaved 1xTBE buffer was 

added (avoiding air bubbles as much as possible). The dialysis bag was sealed with the plastic 

clips and placed in a special electrophoresis chamber (Bio-Rad, PowerPac HC) for 

electroelution to occur at 135 mA at 4°C for 20-30 minutes. Electroelution was briefly 

monitored by UV light (312 nm). When electroelution was complete the solution containing 

the eluted DNA was collected. The bag was rinsed with additional 250 µL nuclease free H2O 

and added to the solution containing the DNA. The DNA was finally purified using the high 

pure PCR product purification kit (Roche) which works on the principle of binding of DNA to 

the special glass fibers of filter tubes due to the presence of chaotropic salt guanidine 

thiocyanate and subsequent washing steps to remove the contaminants. The DNA 

concentration was determined using a NanoDrop spectrophotometer. The DNA was stored at 

-20°C until used for the ligation reaction.  

2.2.2.4 Dephosphorylation of a plasmid DNA 

Antarctic phosphatase was used to dephosphorylate 5’ and 3’ ends of DNA to prevent re-

ligation of a linearized plasmid. The following protocol was applied: 

26 μL    linearized plasmid DNA  
  3 μL    10x antarctic buffer 
  1 μL    antarctic phosphatase (5U/µL) 
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The reaction mixture (30 µL) was incubated at 37°C for 60 min; afterwards the enzyme was 

inactivated by incubating the sample at 80°C for two minutes. The dephosphorylated plasmid 

DNA was stored at -20°C until used for ligation reaction.  

2.2.2.5  Generation of recombinant plasmids by a ligation reaction 

The T4 DNA ligase catalyzes the formation of a phosphodiester bond between juxtaposed 5’- 

phosphate and 3’-hydroxyl ends in double stranded DNA. In a ligation reaction, ratio of mol 

vector and mol fragment ranges from 1:3 to 1:10. The protocol was as follows: 

variable      plasmid DNA (vector) 
variable      fragment DNA (insert)     
  1 μL          T4 DNA Ligase (400U/ µL) 
  2 μL          10x ligase buffer 
20 µL          ad deionized water  

The reaction mixture was incubated at 21°C for 60 min for ligation of “sticky” ends or overnight 

at 16°C for ligation of “blunt” ends. The ligase enzyme was inactivated at 65°C for ten minutes. 

The recombinant plasmids were then used to transform bacteria.  

2.2.2.6  Bacterial transformation  

Transformation refers to the process of direct up-take of exogenous plasmid DNA by bacteria 

through the membrane on exposure either to a chemical or electrical stimulus. Bacteria which 

have the ability of accepting foreign DNA are called the competent cells. 

Generation of competent bacteria 

To generate competent bacteria, E.Coli were grown overnight on ampicillin containing LB agar 

plates. One colony was used to inoculate 5 mL LB medium and thereafter the suspension was 

incubated for 16 h at 37°C without any antibiotic to obtain a pre-culture. Under sterile 

conditions, 1 mL pre-culture was added to 100 mL LB medium present in a baffled-flask and 

incubated for 2 h at 37°C with gentle shaking (orbital) at 260 rpm. Once the optical density 

(OD600) reached 0.4-0.5, the bacterial suspension was centrifuged at 1600 g for 10 min at 4°C. 

The supernatants were discarded and the pellet was re-suspended in 15 mL ice-cold 

transformation storage solution (TSS) (Chung et al., 1989). A total amount of 300 µL 

suspension was added to pre-cooled 1.5 mL eppendorf tubes followed by snap freezing using 

liquid nitrogen. The competency of prepared chemically competent bacterial cells was 

estimated by transforming the plasmid pUC18 and plating the transformed bacteria on 
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ampicillin containing plates. The transformation efficiency should be 5x106 to 5x107 

independent bacterial colonies per µg pUC18 DNA. The bacterial cells were stored at -80°C 

until used for the transformation of ligation products during individual cloning steps.  

Transformation of chemically competent bacterial cells 

The suspension containing competent bacteria (300 µL) was thawed at 4°C for 5 min followed 

by the addition of 20 µL plasmid/ligation reaction and incubated for 30 min at 4°C. After 

incubation for 2 min at 42°C (water-bath) the suspension was immediately incubated for 2 

min at 4°C. Pre-warmed 900 µL LB-medium was added to the bacterial suspension, followed 

by incubation for 1 h at 37°C with mild shaking (150 rpm). A portion of bacterial suspension 

(150 µL) was transferred onto a specific antibiotic-resistant LB-agar plate and the remaining 

portion was centrifuged at 800 g for 2 minutes.  The supernatants were discarded and the 

pellet was dissolved in 150 µL LB medium and finally plated on a second LB-agar plate. The 

plates were incubated for approximately 16 h (overnight) at 37°C. The resulting bacterial 

colonies were used for the isolation of plasmid DNA.  

2.2.2.7  Extraction of plasmid DNA 

The isolation of plasmid DNA from bacteria is divided into two procedures based on the 

amount of DNA to be isolated. 

Analytical isolation of plasmid DNA (Miniprep) 

The "boiling method" (Holmes and Quigley, 1981) was used with slight modifications for the 

isolation of plasmid DNA. Individual bacterial colonies were picked by autoclaved wooden 

toothpicks under sterile conditions and used to inoculate 5 mL LB medium containing 

ampicillin. The tubes were incubated overnight at 37°C with mild shaking in an orbital shaker 

at 270 rpm. A portion of bacterial suspension was poured into 1.5 mL eppendorf tubes and 

centrifuged at 16100 g for 1 minute. The supernatants were discarded and the pellet was 

dissolved in 300 µL freshly prepared STET-L buffer. The tubes were incubated for 5 min on ice 

followed by a thermal shock for 1 min at 95°C. After centrifugation at 16100 g for 15 min, a 

gelatinous pellet was obtained. The pellet was removed with the wooden toothpick under 

sterile conditions and 300 µL of isopropanol was added followed by centrifugation at 16100 g 

for 30 minutes. The supernatants were discarded and the precipitate was washed (16100 g x 

10 min) with 500 µL of 70% (v/v) ethanol, air-dried and dissolved in 50 µL water with RNase 

(40 µg/mL). The DNA was subjected to endonuclease restriction enzyme digestion. 
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Preparative isolation of plasmid DNA (Maxiprep) 

After identifying the bacterial clones carrying the desired plasmid DNA by restriction enzyme 

digestion and subsequent sequencing, the next step was to isolate the plasmid DNA on a larger 

preparative scale. An Erlenmeyer flask containing 250 mL LB-medium and appropriate 

antibiotic was inoculated with 500 µL of bacterial suspension containing the desired plasmid. 

The flask was incubated overnight at 37°C with mild shaking at 200 rpm in an orbital shaker. 

For DNA isolation, two different maxiprep kits were used: Promega PureYield plasmid 

maxiprep System (Promega) and Qiagen plasmid Plus maxi kit (Qiagen). The extraction of 

plasmid DNA is based on the principle of alkaline lysis of bacterial cells followed by removal of 

the contaminants and binding of DNA to a column, finally plasmid DNA is eluted from the 

column in an appropriate buffer solution after successive washing steps. The DNA was 

extracted according to the manufacturer’s instructions and stored at -20°C until use for other 

cloning purposes. The amount and integrity of the isolated DNA was analyzed using a 

NanoDrop spectrophotometer.  

2.2.2.8  Determination of DNA concentration and quality 

The concentration and quality of a DNA sample in an aqueous solution was determined by 

measuring its UV absorbance at 260 and 280 nm. The NanoDrop 1000 spectrophotometer 

(Thermo Scientific) was used which measures samples as small as one µL with high accuracy 

and reproducibility. The purity of the DNA was estimated by comparing the ratio of 

absorbance at 260 and 280 nm.  A ratio of ˃1.8 was considered to be a pure DNA sample. The 

base line of the NanoDrop 1000 was set by water or TE buffer.  

2.2.3 Southern blot technique 

Southern blotting involves the transfer of electrophoretically separated DNA fragments onto 

a filter membrane and subsequent fragment detection by hybridizing with a radioactively 

labelled DNA probe. For Southern blot, 15-30 µL of hydrolyzed genomic DNA was incubated 

overnight at 37°C by a specific endonuclease restriction enzyme (40 U); the fragments were 

electrophoretically separated on a 0.6% agarose gel along with a marker, a 1 Kb DNA ladder 

(Invitrogen). Electrophoresis was performed at 140 V for about 3.5-4 h followed by imaging of 

the gel under UV light (HeroLab UVT-28 ME-HC). A fluorescent ruler was coincided with the 

gel in such a way that the starting zero-point matched to the level of loading wells for 
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estimation of DNA sizes after hybridization. After imaging, the gel was treated with 0.25 N HCl 

for 45 min for the depurination of genomic DNA. Depurination lays the phosphate-sugar 

backbone of DNA open to subsequent cleavage by hydroxyl ions. By this procedure the DNA 

is nicked, which improves transfer of fragments ˃10 Kb. Subsequently the gel was rinsed with 

distilled water, followed by incubation with the denaturation and neutralization buffers for 45 

and 30 min respectively, with mild shaking at 21°C. Denaturation ultimately causes the 

conversion of a double-stranded DNA structure into a single strand DNA molecules by 

breaking the hydrogen bonds present between the complementary strands of the double helix 

of DNA. The gel was washed once with distilled water and placed over a Whatman 3MM filter 

paper lying on two spontex sponges soaked in 10x SSC transfer buffer in a steel pan. A gel-

sized pre-wet Hybond-N nylon membrane (RPN203N, GE Healthcare, Amersham) was placed 

over the gel squeezing out the air bubbles by rolling a glass pipette, followed by two or three 

Whatman filter papers, a stack of tissue papers and a metal or glass plate. A weight of about 

0.8-1 kg was placed on the top of the plate to start the transfer of genomic DNA towards the 

membrane by a capillary action. In order to prevent any leaky transfer of the buffer, the empty 

space around the gel was covered with parafilm strips. After 16 h of incubation, the nylon 

membrane was removed and transferred DNA was immobilized by cross-linking in Stratalinker 

UV cross linker (Agilent) at 0.12 J/cm2, autocrosslink mode, followed by incubating the 

membrane at 80°C for two hours. 

2.2.3.1  Southern probes preparation and labeling 

The Southern probes (5’ and 3’ probes) for both targeting constructs, pAR_11 and C1Z, used 

for the generation of Trpc1-IC knock-in and conditional Trpc1 knockout mice respectively, 

were prepared by the PCR amplification of genomic DNA, obtained from mouse (mus 

musculus, C57BL/6N strain) DNA using different primer combinations (Table 2-1, 2-2). These 

primer combinations (forward and reverse) were designed to amplify specific regions called 

probes, ranging from 450 bp to 780 bp in length, placed outside the homology arms to detect 

the precise integration of a targeting construct within the endogenous DNA in ES cells upon 

homologous recombination. The PCR reaction mix and conditions used for the generation of 

5’ and 3’ probes are shown below:  
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PCR composition: 

Component (reagent) Quantity (µL) Final concentration 

Genomic DNA 1 variable 

5x Phusion buffer HF 10 1x 

10 mM dNTP’s 1 200 µM 

2U/µL DNA polymerase 0.5 1 U 

10 µM forward primer 2.5 0.5 µM 

10 µM reverse primer 2.5 0.5 µM 

Deionized H2O ad 50  

PCR protocol: 

Steps Temperature (°C) Time  Number of cycles 

Initial denaturation 98 60 s 1 

Denaturation 
Annealing 
Elongation 

98 
63 
72 

10 s 
20 s 
30 s 

 
27 

       Final extension 72 5 min 1 

Hold 4 α  

The amplified PCR product was subcloned into the EcoRV cut pUC18 or pBlueKS cloning 

vectors. After ligation and transformation, the bacterial clones containing a desired 

recombinant plasmid were selected after miniprep, restriction enzyme cut and sequencing. 

The correct plasmids were prepared by maxiprep and the amplified DNA fragments obtained 

by appropriate restriction enzymes. In the next step the cDNA fragments were labelled by 32P. 

A random oligo-primed DNA synthesis method was used to label DNA fragments to be used 

as probes for Southern hybridization. The probe labeling was performed using a Megaprime 

DNA labeling system (GE Healthcare Life Sciences). The reaction mixture was composed of 

DNA (≈25-30 ng), denatured by incubating at 95°C for 10 min and subsequent chilling for 3 

min at 4°C, an appropriate amount of random hexamer primers, reaction buffer, Klenow 

polymerase and a mixture of nucleotides including 32PdCTP (Hartman Analytic). 

Component  Quantity (µL) 

DNA (≈25-30 ng) variable 

Primer solution 5 

Reaction buffer (10x) 5 

dATP 4 

dGTP 4 

dTTP 4 

32PdCTP (10 µCi/µL) 5 

Klenow’s enzyme (1 U/µL) 2 
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Deionized H2O ad 50 

The mixture was incubated for 30 min at 37°C. The polymerase incorporated the nucleotides 

including the radioactive 32PdCTP into the newly synthesized complementary DNA 

(Feinberg and Vogelstein, 1984). The DNA was separated from non-incorporated nucleotides 

with 1x TE-buffer by gel filtration through NICK-columns Sephadex G-50 DNA grade (Cat. No. 

17-0855-02, GE Healthcare). The elutes from the columns were collected in six individual 

tubes. To identify the labelled DNA and to quantify the efficacy of 32PdCTP incorporation, 

the aliquots from the six tubes were measured by liquid scintillation counting in a Wallac 1409 

scintillation counter. The fractions 2 and 3 contained the labelled probes, which were later 

used for the hybridization.  

2.2.3.2  Southern hybridization 

Southern blot membrane was pre-hybridized by incubating for two hours at 65°C (mild 

shaking) in pre-warmed Church buffer (Church and Gilbert, 1984) to block the non-specific 

binding sites of the membrane. After pre-hybridization, the membrane was incubated with 

the hybridization solution (1 mL/cm2 membrane surface) overnight at 65°C in a sealed plastic 

bag. The hybridization solution consisted of church buffer and denatured 32PdCTP labelled 

probe (2-4x107 cpm/mL). The denaturation of probe was carried out at 95°C for 10 min 

followed by rapid chilling at 4°C for 3 minutes. After overnight hybridization, the membrane 

was washed twice with increasing stringency i.e. 2x SSC/1% SDS followed by 0.4x SSC/1% SDS 

in a shaking water bath at 65°C for 15 min each. After the first washing step, the radioactivity 

on the blot and in the washing solution was monitored by a Geiger-Müller counter (LB 122, 

Berthold). The membrane was then exposed to a phosphoimager screen (Fujifilm BAS-IP MP 

2040) which was scanned after 4 h and 24 h of exposure time by a phosphoimager (BAS reader, 

Raytest). In cases of weaker signals obtained after 24 h exposition time, the membrane was 

exposed for additional three days to one week.  

2.2.4  ES cell gene targeting 

The strategy and generation of the targeting constructs is described in the “Results” section. 

The vectors carrying the final targeting constructs (100 µg) were linearized by incubation in 

the presence of restriction endonucleases at 37°C for 4-7 hours. The linearized plasmids were 

cleaned by High pure PCR product purification kit (Roche) and send on ice to ingenious 

Targeting Laboratory, iTL, (Ronkonkoma, New York, USA). iTL performed electroporation into 
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C57BL/6 ES cells and selected ES cell clones by positive and negative selection. Aliquots of 

selected ES cells were sent to Homburg and I prepared DNA from these clones performed 

Southern blot analysis using 3’-, 5’- and neo DNA probes.   

2.2.5  Detection of positively targeted ES cell clones 

After electroporation, ES cell clones were picked up by iTL and 288 lyophilized clones were 

shipped in nine 32-well plates. The DNA of these clones was dissolved by the addition of 300 

µL 1xTE buffer followed by incubation at 55°C for 3 h with mild shaking (300 rpm). The genomic 

DNA was stored at 4°C until restriction enzyme cut, agarose gel electrophoresis and Southern 

blot analyses were performed. For the detection of correctly targeted ES cell clones three 

probes were used; a 5’- probe and 3’- probe also known as “external probes” derived from 

sequences outside the homology arms and the neomycin resistance (neo) probe also known 

as “internal probe”. The targeting construct, C1Z contained one of the loxP sites present 

adjacent to the 3’ homology arm, therefore additional PCR was performed to confirm the 

correct insertion of that particular loxP site upon homologous recombination. According to 

the results of Southern blot and PCR the correct ES cell clones (5-6 in both cases) were 

expanded and karyotyped by iTL. The selected clones were then injected into the BALB/c 

blastocysts by iTL and by Interfakultäre Biomedizinische Forschungseinrichtung (IBF) 

Heidelberg University. Blastocysts were then transferred in pseudopregnant mothers which 

gave birth to pups which carried or did not carry the targeted allele.  

2.2.6 Genotyping strategy for the identification of germline transmission of 

the inserted mutation 

A PCR based genotyping strategy was established to distinguish between wild-type and 

mutant mouse strains in the F1 generation. Several primer combinations were designed 

spanning over various regions of the mutant allele. After identification of the desired mutant 

mouse strain, the mice were transferred to our laboratory from iTL. The heterozygous mice 

were housed in the quarantine of the animal facility of the Medical Faculty directed by Dr. 

Petra Weissgerber (Gebäude 61.4, Uniklinikum Homburg). By embryo transfer mice were 

introduced into the specific pathogen free animal facility. Mice were kept under a standard 

light/dark cycle (12 h) with food and water ad libitum. All breeding were conducted according 

to the regulations of the local authority and the ethics committee of the Saarland.  
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2.2.6.1  Genomic DNA preparation  

Genomic DNA required for genotyping PCR was isolated from tissue samples obtained from 

individual mice by an ear punch. The tissue sample was incubated in lysis buffer for 

approximately 16 h at 55°C with vigorous shaking and stored thereafter at 4°C until use. One 

µL of the lysed tissue was taken as a template to perform PCR to identify the genotype. 

2.2.6.2  Genotyping PCR  

The PCR protocol and steps used were: 

a. PCR protocol: 

 

 
 
 
 
 
 
 

b. PCR steps: 
 

Gene PCR conditions Fragment size (bp) 

Flp 94°C : 3 min 

94°C : 30 s  

58°C : 60 s               35x 

72°C : 60 s 

72°C : 5 min 

15°C: ∞  

mt fragment: 750 

Trpc1-IC KI 
and Cre-recombinase 

94°C : 90 s 

94°C : 30 s  

65°C : 30 s               10x*  

72°C : 30 s 

94°C : 30 s      

60°C : 30 s               26x  

72°C : 30 s   

Trpc1-IC KI detection: 
mt fragment: 192 
 
Cre-recombinase 
detection: 
mt fragment: 392 

Component (reagent) Quantity 
(µL) 

Final 
concentration 

Genomic DNA 1 variable 

10x PCR buffer 2.5 1x 

10 mM dNTPs 0.5 200 µM 

25 mM MgCl2 0.5 500 µM 

Taq polymerase 1 ≈1 U 

10 µM forward primer 1.25 0.5 µM 

10 µM reverse primer 1.25 0.5 µM 

Deionized H2O ad 25  
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72°C : 5 min   

15°C : ∞ 

eROSA26 94°C : 5 min 

94°C : 35 s  

56°C : 45 s                35x 

72°C : 90 s 

72°C : 7 min 

15°C : ∞ 

wt fragment: 256 
mt fragment: 495 
 

 

 

*(0.5°C decrease per cycle)     

 

2.2.7 Statistical methods 

Data were analyzed using Microsoft Excel and GraphPad Prism 5. Data are shown as mean ± 

SD or mean ± SEM. To estimate the significance of differences, two-tailed unpaired student’s 

t-test for two groups and one way ANOVA followed by Bonferroni multiple comparison test 

for more than two groups were performed. The difference was found significant if the P-value 

< 0.05 (*), <0.01 (**) or < 0.001 (***). 
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3 Results 

In this section, the results obtained for the three major goals of my thesis have been described.  

3.1 Micro-computed tomography 

3.1.1 Bone microarchitecture of different strains of wild-type mice  

In order to understand the bone microarchitecture and to dissect the roles of TRP channels- 

especially of TRPC1 and TRPV6 in bone, I had to establish µCT of long bones as a method to 

screen bone microarchitecture. An important point is that bone microarchitecture changes 

with age and strongly depends on the mouse strain. So before comparing bones from wild-

type mice with the bones from Trpc1-/-, Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt mice, a clear 

phenotypic characterization of the bones from wild-type mice of the most common strains 

used for gene targeting, B6 strain (C57BL/6) and mice of a mixed genetic background 

(129SvJ/C57BL/6) had to be analyzed. 

For that purpose, I had first to establish the use of a SkyScan1172 µCT and data acquisition 

using appropriate tasklists of the available software. With good advice from Dr. Phil Salmon, 

Application Scientist at Bruker microCT Systems, Kontich, Belgium, and with great help from 

Professor Dr. Bram van der Eerden from Erasmus Medical Centre, Rotterdam, The 

Netherlands, I succeeded in establishing the µCT methods of analyses. We decided to analyze 

only long bones, femurs, from male mice to reduce additional effects of the cycling hormonal 

status on bones, which is most prominent in females. 

First, I weighed the C57BL/6 (from now on “B6”) and the 129SvJ/C57BL/6 (from now on 

“mixed”) mice at different ages (Figure 3-1A, B) and determined the femur length (Figure 3-

1D, E). Until 20-week of age there was a steady increase in weight of mice of both strains, with 

mixed mice were approximately 10% heavier especially at week 2 and week 12 compared to 

C57BL/6 (Figure 3-1C). The length of femurs from mixed mice reached maximum (16.5 ± 0.24 

mm) at week 12 (Figure 3-1D) but femur length from C57BL/6 increased from week 2 (8.4 ± 

0.67 mm) to week 24 (15.99 ± 0.22 mm) (Figure 3-1E). Femur length of mixed mice was slightly 

larger than that of C57BL/6 at week 12 (Figure 3-1F). 
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Figure 3-1 Comparison of weight and femur length of wild-type mice on mixed 

(129SvJ/C57BL/6) and B6 (C57BL/6) strains of different age groups. (A, B) Comparison of 

weight and (D, E) femur length estimated by µCT of wild-type male mice on mixed genetic 

background 129SvJ/C57BL/6 (grey bars) and B6 strain, C57BL/6 background (black bars) of 

different ages such as 2, 9, 12, 20 and 24 weeks. For the estimation of differences between 

the strains, ratios were calculated for weight (C) and femur length (F). Data shown as mean ± 

SD with n, number of mice or femurs given below the bar graphs. Data analysed by one-way 

ANOVA with consecutive Bonferroni multiple comparison test (p<0.05 *, p<0.001 ***). Age in 

weeks and n indicated below the bar graphs.  

Next, I analyzed the cortical parameters of femurs by µCT, averaged from fifty 6.5 µm cross-

sections from the middle of the femur’s diaphysis (Figure 2-5). Cortical bone parameters 

(Figure 3-2A) include bone volume, endocortical volume, cross-sectional thickness and 

perimeter. These parameters are highlighted in red in the left column of Figure 3-2A. In the 

right column the values obtained for femurs from C57BL/6 (B6) and 129SvJ/C57BL/6 mice 

(mixed) are indicated, for 12-week of age (black bars) and 24-week of age (grey bars). 

Endocortical volume and perimeters were increased in femurs from 24-week compared to 12-

week old C57BL/6 mice whereas bone volume and cross-sectional thickness were not different 
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(Figure 3-2A). In femurs from mice of the mixed background, bone volume and cross-sectional 

thickness decreased with age, whereas endocortical volume and perimeters were not 

changed. The estimated mineral density (g/cm3) of cortical bone was not significantly different 

between any of the groups tested (1.33 ± 0.02 (B6, 12-week), 1.32 ± 0.06 (B6, 24-week), 1.32 

± 0.01 (mixed, 12-week), 1.31 ± 0.05 (mixed, 24-week), number of femurs as in Figure 3-2). 

Table 3-1 summarizes all data obtained to characterize cortical bone by µCT. 

Trabecular bone parameters (Figure 3-2B) averaged from metaphyseal sections as shown in 

(Figure 2-5) include bone volume as percentage of total tissue volume, trabecular number, 

trabecular thickness and trabecular separation as highlighted in red in the left column (Figure 

3-2B). In addition, I determined the trabecular pattern factor, which describes the 3D 

connectivity of the trabeculae by calculating an index of relative convexity or concavity of the 

total bone surface (Morphometric parameters measured by SkyScanTM CT-analyser software). 

In mice of mixed background, the percentage of bone volume from tissue volume and the 

trabecular number decreased indicating an age-dependent loss of bone (Figure 3-2B, right 

column). These values are mirrored by an increase of trabecular separation and of the 

trabecular pattern factor (Figure 3-2B, right column) as well as an age-dependent loss of 

mineral density (g/cm3) (0.20 ± 0.04 (B6, 12-week) 0.19 ± 0.03 (B6, 24-week), 0.29 ± 0.02 

(mixed, 12-week) 0.16 ± 0.02 (mixed, 24-week)). Determination of mineral density measured 

by µCT is only an estimation considering the attenuation of X-rays by the bone compared to 

the attenuation of X-rays by calcium hydroxyapatite “phantoms”. (So far, we did not apply 

quantitative backscattered electron imaging, qBEI, which is only available in very few 

laboratories, as a direct method to determine bone mineral density). Table 3-2 summarizes 

all data obtained to characterize trabecular bone by µCT. 
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Figure 3-2 Comparison of bone microarchitecture from 12- and 24-week-old wild-type male 

mice on B6 strain, C57BL/6 and mixed strain, 129SvJ/C57BL/6. (A) Cortical bone parameters, 

left column indicate the cross-sectional images to depict the cortical parameters, right column 

depicts the graphical representation of cortical bone parameters: Bone volume (mm3), 

endocortical volume (mm3), cross-sectional thickness (mm) and perimeter (mm). (B) 

Trabecular bone parameters, left column indicates the cross-sectional images to depict the 

trabecular parameters, right column shows the graphical representation of trabecular 

parameters such as bone volume fraction (%), trabecular number (1/mm), trabecular 

thickness (mm), trabecular separation (mm) and trabecular pattern factor (1/mm). Values 

shown as mean ± SD, the number of femurs for each group is indicated in the upper most bars-

graphs. Two-tailed unpaired student’s t-test was performed on 12- and 24-week-old mice 

dataset for each genetic background (p-value summary, p<0.05 *, p<0.01 **). Black and grey 

bar graphs represent data obtained from femurs of 12- and 24-week-old mice. 
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Femurs of mice from C57BL/6 showed only minor age dependent differences (Figure 3-2B and 

Table 3-1, 3-2): we observed a non-significant tendency of age-dependent reduction of 

percentage of bone volume and trabecular number, which however was sufficient to yield a 

significant increase of trabecular separation. The trabecular pattern factor and the mineral 

density estimated by µCT were not different. 

 

Table 3-1 Comparison of cortical bone parameters of 12- and 24-week-old mice on C57BL/6 

(B6) and 129SvJ/C57BL/6 (mixed) genetic backgrounds, Ø= no change, ↑= increase compared 

to reference in the left column and ↓= decrease compared to reference in the left column, 

calculated as mean ± SD by one-way ANOVA followed by Bonferroni multiple comparison test 

(* indicates p-value < 0.05 and *** p-value < 0.001). For example, perimeter of femurs 

obtained from 24-week B6 mice is increased compared to femurs from 12-week B6 mice (black 

arrow); bone volume of femurs from 12-week mixed mice is larger than bone volume of 

femurs obtained from 12-week B6 mice (red arrow); bone volume of femurs from 24-week 

mixed is smaller than bone volume of femurs from 12-week mixed mice (black arrow). 

By directly comparing the parameters obtained from the femurs from C57BL/6 and from 

mixed mice, the data revealed that cortical bone values from mixed femurs, independent of 

age, are larger than those from C57BL/6 femurs. Whereas in trabecular bone, values obtained 

only from 12-week mixed femurs, not from 24-week mixed femurs, are more effected 

compared to 12-week and 24-week C57BL/6 femurs. Accordingly, age-dependent differences 

are more apparent in femurs from mixed than from B6 mice.    
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Table 3-2 Comparison of trabecular bone parameters of 12- and 24-week-old mice on C57BL/6 

(B6) and 129SvJ/C57BL/6 (mixed) genetic backgrounds, Ø= no change, ↑= increase compared 

to reference in the left column and ↓= decrease compared to reference in the left column, 

calculated as mean ± SD by one-way ANOVA followed by Bonferroni multiple comparison test 

(* indicates p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001). For example, trabecular 

separation in femurs obtained from 24-week B6 mice is increased compared to femurs from 

12-week B6 mice (black arrow); bone volume fraction in femurs from 12-week mixed mice is 

larger than bone volume fraction in femurs obtained from 12- week B6 mice (red arrow); bone 

volume fraction of femurs from 24-week mixed is smaller than bone volume fraction of femurs 

from 12-week mixed mice (black arrow).          

3.1.2 Comparison of normal femur microarchitecture of WT, Trpc1-/-, 

Trpv6mt/mt and double mutant Trpc1-/-/Trpv6mt/mt mice 

Next I wanted to analyze femurs from wild-type, Trpc1-/-, Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt 

mice. Before starting these experiments, I confirmed that transcripts of Trpc1 and Trpv6 are 

present in RNA extracted from 1) osteoclasts differentiated and cultivated from bone marrow, 

2) crushed femur and 3) osteoblasts migrating out of bone slices and cultivated thereafter. 

Figure 3-3 shows that Trpc1 transcripts are present in osteoclast (Figure 3-3A), crushed femur 

(Figure 3-3A, B) and in osteoblast (Figure 3-3C). By similar experiments, I could amplify Trpv6 

transcripts in crushed femur (Figure 3-3D) and thereby confirm previous results described by 

van der Eerden et al. (van der Eerden et al., 2012).  
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Figure 3-3 Trpc1 and Trpv6 transcripts are present in mRNA extracted from bone cells or 

bone. Representative agarose gels: (A) Amplification of the full length TRPC1-encoding 

transcript (2879 bp) from mouse bone marrow derived in vitro cultured osteoclasts and 

crushed bone (femur). (B), (C) Trpc1 transcript (403 bp) in mRNA from crushed bone (femur) 

and mouse bone marrow derived in vitro cultured osteoblasts. (D) Trpv6 transcript (242 bp) in 

mRNA from crushed bone (femur). Messenger RNA from brain and placenta or no mRNA 

(water) used as positive and negative controls. Size marker for each gel (Kb or bp) are 

indicated.  

Trpc1 and Trpv6 encode proteins, which form tetrameric cation channels. However, no 

antagonists for these two channel types are available. In order to get hold of these Trpc1 and 

Trpv6 function in bone we analyzed and compared femurs from Trpc1-/- mice, Trpv6mt/mt mice 

and Trpc1-/-/Trpv6mt/mt double mutant mice: Functional deficits or additional functions of the 

bones from mutant mice compared to bones from wild-type mice should point to the 

functions of Trpc1 and Trpv6. All mice of four different groups were on the same genetic 

background i.e. mixed strain (129SvJ/C57BL/6) and 24-weeks old. The length of femurs from 

Trpv6mt/mt mice and from Trpc1-/-/Trpv6mt/mt mice was smaller than the length of femurs from 

the wild-type and Trpc1-/-mice (Figure 3-4A) but their estimated cortical mineral densities 

were not different (Figure 3-4B).   

There was a significant increase in cortical bone volume of Trpc1-/-/Trpv6mt/mt femurs whereas 

endocortical volume was reduced by approximately 30% in Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt 

femurs compared to WT and Trpc1-/- femurs. The cortical cross-sectional thickness was 

significantly increased in both Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt femurs compared to WT and 

Trpc1-/- femurs. Moreover, there was a significant increase in cross-sectional thickness of 

Trpc1-/-/Trpv6mt/mt femurs compared to Trpv6mt/mt femurs. The perimeter of the femoral shaft 

was significantly reduced in Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt femurs compared to the bones 

from wild-type and Trpc1-/- mice. In summary, the data indicate a prominent cortical 

phenotype especially in femurs from Trpv6mt/mt mice, which also persists in the Trpc1-/-

/Trpv6mt/mt femurs. Whereas Trpc1 deletion has almost no effect. 
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Figure 3-4 Analyses of intact femurs. Femur length (A), cortical- (B) and trabecular- (C) femur 

bone parameters of wild-type, Trpc1-/-, Trpv6mt/mt and double mutant Trpc1-/-/Trpv6mt/mt mice 

determined by µCT. Data are shown as mean ± SD, analyzed by one-way ANOVA followed by 

Bonferroni multiple comparison test (* indicates p-value < 0.05, ** p-value < 0.01 and *** p-

value < 0.001). The four genotypes are indicated in black (wild-type, WT), green (Trpc1-/-), red 

(Trpv6mt/mt) and blue (Trpc1-/-/Trpv6mt/mt), with the number of femurs for each group is 

indicated in the bottom squares. 

The µCT data revealed a prominent trabecular phenotype in Trpc1-/- compared to WT mice 

(Figure 3-4C). The ratio of trabecular bone volume/tissue volume, the mineral density and the 

trabecular thickness were significantly reduced in femurs of Trpc1-/- mice compared to femurs 

from WT mice. In line with these observations, trabecular separation and trabecular pattern 

factor were significantly increased in femurs of Trpc1 deficient mice compared to WT femurs. 

I also analyzed femurs from 12-week-old wild-type and Trpc1-/- mice on B6 background and a 

similar trabecular phenotype was observed (supplementary Figure 6-8) indicating that this 
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phenotype is independent of the genetic background. We also observed significant differences 

in trabecular parameters of femurs from both Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt mice in 

comparison to femurs from Trpc1-/- mice: Trabecular bone volume fraction, mineral density 

and trabecular number were significantly increased while trabecular separation and 

trabecular pattern factor were significantly reduced in Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt 

femurs compared to Trpc1-/- mice. In summary, trabecular bone volume fraction and mineral 

density is effected by Trpc1 deletion but not by Trpv6 mutation, which in Trpc1-/-/Trpv6mt/mt 

femurs rescues the wild-type phenotype. Similarly, the increased trabecular number and 

reduced trabecular separation is caused by mutation of Trpv6 both in Trpv6mt/mt and Trpc1-/-

/Trpv6mt/mt femurs. These differences in healthy bone parameters led us to establish a fracture 

model in our laboratory for studying the fracture healing, especially the callus formation in 

femurs after a defined fracture.  

3.1.3 Fractured femur analyses of wild-type, Trpc1-/-, Trpv6mt/mt and double 

mutant Trpc1-/-/Trpv6mt/mt mice 

As outlined in section 2.1.3.5 and Figure 2-6, I established a protocol to derive callus 

parameters of fractured femurs from 24-week-old male mice, four weeks after fracture, of 

four different genotypes. The fracture healing of WT mice were compared with the healing of 

Trpc1-/-, Trpv6mt/mt and double mutant Trpc1-/-/Trpv6mt/mt mice. All mice used in this study had 

the same genetic background, i.e. mixed (129SvJ/C57BL/6). Fractured femurs were removed 

and after explanting the screws, they were scanned by SkyScan 1172 µCT. We also compared 

the weight of individual mice immediately before producing the fracture and four weeks later, 

prior to explanting the screw. We observed no significant reduction in weight of mice during 

the healing phase, (supplementary Figure 6-2). The µCT data showed that callus parameters 

remained unchanged in WT and Trpc1-deficient femurs (Figure 3-5) whereas the volume of 

total callus and bone volume, the mineralized portion within the callus were approximately 

50% reduced in Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt mice compared to WT and Trpc1-/- mice 

(Figure 3-5A). A significant increase in mineral density and trabecular number was seen in 

Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt mice compared to WT and Trpc1-/- mice. A significant 

reduction in trabecular separation in Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt mice was observed 

fitting with the increase in trabecular number. The trabecular thickness of callus tissue was 

not different between the groups (Figure 3-5A).   
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We also assessed the extent of mineralization by determining the volume of highly and low 

mineralized bone within the callus of all four groups using two different threshold ranges to 

estimate the proportion of highly mineralized callus calculated at the threshold range of 98-

255 and of low mineralized callus at threshold range of 68-97. The amount of highly 

mineralized bone was significantly increased in callus tissue from Trpv6mt/mt and Trpc1-/-

/Trpv6mt/mt mice compared to callus in WT and Trpc1-/- mice. To summarize, fractured femur 

analyses showed significant reduction of total callus volume and a higher proportion of bony 

callus in Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt as compared to callus in wild-type and Trpc1-/- mice 

(Figure 3-5B, C). 

 

Figure 3-5 Analyses of femurs four weeks after fracture. The defined fracture was applied to 

20-weeks old wild-type, Trpc1-/-, Trpv6mt/mt and double mutant Trpc1-/-/Trpv6mt/mt mice. 

Fractured femurs scanned by SkyScan 1172 to evaluate (A) callus parameters determined at a 

grayscale range of 68-255. (B, C) Volume and percentage of highly and low mineralized bone 

within the callus tissue determined at a threshold range of 98-255 (high) and 68-97 (low). Data 

shown as mean ± SD statistically calculated by one-way ANOVA followed by Bonferroni 

multiple comparison test (p<0.05 *, p<0.01 **, p<0.001 ***). The bars represent WT (black), 

Trpc1-/-(green), Trpv6mt/mt (red) and Trpc1-/-/Trpv6mt/mt (blue), with the number of animals for 

each group is indicated in the color legends. 
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3.2 Biomechanical properties of femora 

The µCT data helps in understanding the bone microarchitecture but provides minimal insight 

into the mechanical properties of bone. Therefore, we measured the biomechanical 

properties of intact and fractured femurs by a 3-point bending device (Herath et al., 2015). 

The bones from wild-type animals were compared with Trpc1-/-, Trpv6mt/mt and double mutant 

Trpc1-/-/Trpv6mt/mt mice. As above, all mice used in this experiment were on mixed 

(129SvJ/C57BL6/N) genetic background and twenty-four weeks old. The data revealed 

significant increase in bending stiffness of bones from Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt as 

compared to WT and Trpc1-/- mice (Figure 3-6). These findings correlate to the results of µCT 

data especially the increment of cross-sectional thickness of femurs from Trpv6mt/mt and Trpc1-

/-/Trpv6mt/mt mice compared to wild-type mice (Figure 3-4A).  

Figure 3-6 Bending stiffness of intact femurs 

from 24-week-old wild-type, Trpc1-/-, Trpv6mt/mt 

and double mutant Trpc1-/-/Trpv6mt/mt male 

mice. Bending stiffness (N/mm) was analyzed by 

a non-destructive three-point bending test. Data 

shown as mean ± SD, calculated by one-way 

ANOVA followed by Bonferroni multiple 

comparison test (p-value summary, p<0.05 *, 

p<0.001 ***). The colored bars represent four 

different genotypes: wild-type (black), Trpc1-/-

(green), Trpv6mt/mt(red) and Trpc1-/-/Trpv6mt/mt 

(blue) with the number of animals for each group 

indicated  in the colored square.                                                                                                                       

In conclusion, we observed greatest resistance against the gradually applied force by the 

bones from Trpc1-/-/Trpv6mt/mt mice in comparison to the other genotypes. We also 

determined the bending stiffness of fractured femurs of four different genotype mice after 

explanting the screw. However, no significant difference in bending stiffness was observed 

between all four groups (supplementary Figure 6-3). 

3.3 Primary osteoclasts culture 

The µCT data revealed a reduced trabecular bone volume fraction in femurs of TRPC1 deficient 

mice (Figure 3-4B) which prompted us to investigate the role of Trpc1 at the cellular level in 



RESULTS  

  

58 
 

primary osteoclasts culture. Up to this aim, I established the differentiation and culture of 

osteoclasts from bone marrow derived cells. After flushing out, the bone marrow cells were 

differentiated in the presence of M-CSF and RANK-L.  Figure 3-7A shows differentiating 

osteoclasts at day two (D2) until day eight (D8), at which largely poly-nucleated osteoclasts 

are present. Trpc1-transcripts are present during differentiation and in mature osteoclasts 

(Figure 3-7B). I also identified transcripts of other members of Trpc subfamily in mature 

osteoclasts (Figure 3-7C) with the exception of Trpc5. My colleague Kai-Markus Busch showed 

that Trpc1 transcripts also present in osteoblasts, outgrown from bone slices (supplementary 

Figure 6-7).    

 

Figure 3-7 Differentiation of primary mouse osteoclast. (A) Representative images of tartrate 

resistant acid-phosphatase (TRAP) stained precursors (day 2 and 4), and matured 

multinucleated osteoclasts (day 6 and 8), (B) RT-PCR of Trpc1 transcripts with total RNA 

isolated from M-CSF and RANK-L untreated (day 0) or M-CSF and RANK-L treated (day 2, 4, 6 

and 8) bone marrow-derived cells, mRNA from brain served as a control, Hprt1 was amplified 

as a positive control and water was used a negative control, (C) RT-PCR of Trpc transcripts with 

total RNA isolated from matured multinucleated osteoclasts (top), and from brain (bottom); 

negative control as in (B). (Figure 3-7C is also part of the supplement Figure 6-7B.)   
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The TRAP staining experiments showed significantly reduced osteoclasts number in the 

culture from bone marrow derived cells form Trpc1-/- mice as compared to wild-type mice 

(Figure 3-8A, B) although the same number of cells were seeded i.e. 1x105 cells per well of 96-

well plate. This result suggested that in vitro osteoclasts differentiation is impaired in Trpc1-/- 

mice. Using a von Kossa staining, we observed significantly reduced number of resorption pits, 

formed by the osteoclasts derived from Trpc1-/- mice (Figure 3-8C, D) complying with our TRAP 

staining results. These experiments were performed together with my colleague Kai-Markus 

Busch.  

 

Figure 3-8 Primary osteoclast culture. (A) Representative images of TRAP-positive 

multinucleated osteoclasts differentiated from bone marrow cells of wild-type (left panel) and 

Trpc1-/- (right panel) mice, black arrows indicate examples of the multinucleated osteoclasts, 

scale bar = 0.1 mm. (B) Bar graphs indicate the number of osteoclasts in each well as mean ± 

SEM, with three wells per mouse from 13 mice (WT, black) and three wells per mouse from 

12 mice (Trpc1-/-, green). (C) Representative images of von Kossa stained bone (black) showing 

resorbed surface (white) by the activity of differentiated osteoclasts of wild-type (left panel) 

and Trpc1-/- (right panel) mice, scale bar = 1 mm. (D) Bar graphs indicate the percentage of 

resorbed bone in each well as mean ± SEM, with three wells per mouse from 11 mice (WT, 

black) and three wells per mouse from 10 mice (Trpc1-/-, green), significance was calculated 

by two-tailed unpaired student’s t-test (p<0.05 *).  
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3.4 Generation of a Trpc1-IRES-Cre (Trpc1-IC) mouse strain 

In previous studies, it has been hypothesized that Trpc1 transcripts are ubiquitously expressed 

(Zhu et al., 1995), (Nilius and Flockerzi, 2014a, b), (Wes et al., 1995). However, it has always 

been very challenging to test this hypothesis because of the following reasons. There is a lack 

of appropriate antibodies to detect TRPC1 protein by immunohistochemistry and no reliable 

TRPC1 ion currents have been measured by patch clamp recordings. To overcome these 

difficulties and to effectively visualize and manipulate Trpc1-expressing cells throughout the 

body in mice, a Trpc1-specific Cre recombinase knock-in (KI) mouse strain had to be generated.   

3.4.1 Strategy for the generation of a Trpc1-IC mouse strain 

In order to generate the Trpc1-IRES-Cre recombinase KI mouse strain (Trpc1-IRES-Cre or 

TRPC1-IC) an “IRES-Cre recombinase-FRT site-neo-FRT site cassette” had to be inserted just 

downstream to the STOP codon by gene targeting. The presence of the IRES-DNA sequence 

downstream the STOP codon should allow generating a bicistronic mRNA under the control of 

the endogenous Trpc1 promoter (Figure 3-9).  

 

Figure 3-9 Strategy for the generation of a Trpc1-IC mouse strain. By homologous 

recombination the “IRES-Cre recombinase (Cre)-FRT-neo-FRT cassette” is introduced 3’ of the 

STOP codon in the last protein coding exon 13 of the Trpc1 gene. It transcribes into bicistronic 

messenger RNA (mRNA), which upon translation yields two independent proteins i.e. TRPC1 

and Cre-recombinase within the same cell. (Black bars depict exon 13, not in scale, unfilled 

triangles represent FRT site). 
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These TRPC1-IC mice have to be bred with, for example, eROSA26-GFP reporter mice. The 

litters obtained from this breeding, TRPC1-IC/eR26-GFP animals, will have constitutive GFP 

expression in Trpc1-expressing cells: The Cre-recombinase, co-expressed with Trpc1, will lead 

to excision of the floxed transcriptional termination signal (STOP cassette). As a result, 

eROSA26-GFP-driven transcription of GFP (or other reporters, depending on the type of 

reporter mouse) will occur in TRPC1-IC/eR26-GFP double KI mice (Figure 3-10).    

 

Figure 3-10 Breeding strategy to genetically label Trpc1-expressing cells. Breeding of Trpc1-

IC mice with the eR26-GFP reporter mouse strain will lead to excision of the floxed 

transcriptional termination signal (STOP) cassette, which in turn will activate eROSA26-driven 

transcription of GFP in Trpc1-IC/eR26-GFP double knock-in mice. (Filled triangles represent 

loxP site). The eR26-GFP mouse strain was generated (Wen et al., 2011) and generously 

provided by Prof. Dr. Ulrich Boehm (FR 2.4, Homburg).  

3.4.2 Cloning strategy to generate Trpc1-IC targeting vector 

The Trpc1-IC targeting construct (pAR_11, 12939 bp) is composed of a 5’ Trpc1 homology arm 

followed by an IRES-Cre recombinase cDNA-phosphoglycerate kinase (pgk) promotor driven-

FRT site-neomycin resistance gene (neo)-FRT site cassette- and a 3’ Trpc1 homology arm 

(Figure 3-11). First, the Trpc1 gene organization and sequence was obtained from the 

Ensemble genome browser. The 5’ (3254 bp) and 3’ (2387 bp) homology regions derived from 

the Trpc1 gene from C57BL/6J mice (Gen Bank: AC091531.9, C57BL/6J) were determined, 
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synthesized and cloned into the pUC18 by Biomatik (Ontario, Canada) to yield plasmids pAR_7 

and pAR_6 (Figure 3-11A). The AgeI-NotI 5’ homology region (5’ Hom) from pAR_7 was 

subcloned into the AgeI-NotI cut plasmid pAR_6 to yield pAR_8 (8320 bp) (Figure 3-11B). The 

AscI fragment obtained from plasmid pKO-ICF comprising of splice acceptor IRES-Cre 

recombinase-phosphoglycerate kinase promotor-driven FRT-neomycin resistance-FRT 

cassette was subcloned into AscI cut pAR_8 to yield pAR_9 (11763 bp) (Figure 3-11C). The 

cassette was inserted 23 nucleotides downstream to the STOP codon of Trpc1.    

The ‘neo’ cassette was added as a positive selection marker used for the 

identification/selection of ES cell clones having integrated targeting construct.  In the presence 

of geneticin only those cells survive which carry the neomycin resistance gene, that is the gene 

of aminoglycoside phosphotransferase. Geneticin (abbreviated as G418) inhibits protein 

synthesis and kills eukaryotic cells. The aminoglycoside phosphotransferase phosphorylates 

HO-groups of G418 thereby inactivating G418 allowing survival of these cells carrying the 

resistance gene. Finally, phosphoglycerate kinase (pgk)-promoter driven diphtheria toxin A 

fragment (DTA) cassette was subcloned downstream to the 3’ homology: To generate blunt-

ended DNA the RsrII cDNA fragment encoding the cassette, DTA, from plasmid pKOselect 

DTV840 and the NotI cut plasmid pAR_9 were incubated in the presence of T4 DNA 

polymerase, dNTPs and the blunt-ended DNAs were ligated to obtain pAR_11, the final 

targeting vector (12939 bp) (Figure 3-11D).  The DTA was added to the plasmid as a negative 

selection marker to ensure the selection of ES cell clones with correctly integrated DNA. In 

case the targeting construct is randomly integrated, DTA fragment will be translated and kill 

the cells (Yagi et al., 1993).  
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Figure 3-11 Cloning strategy for the generation of Trpc1-IC targeting vector. (A) The vectors 

pAR_7 (5947 bp) and pAR_6 (5082 bp) depicts 5’ homology along with the stop codon and 

3’homology regions, respectively. The fragment 3’ homology arm (2381 bp) is prepared from 

the vector pAR_6 by the restriction enzymes AgeI and NotI and subcloned into AgeI/NotI cut 

vector pAR_7 yielding vector pAR_8 (8320 bp) (B) Internal ribosome entry site (IRES)-Cre 

recombinase cDNA (Cre)-pgk promotor-driven Flp recombination target (FRT) site-neomycin 

resistance gene (neo)- FRT cassette (3444 bp) is prepared from the vector pKO-ICF (6596 bp) 

by the restriction enzyme AscI and subcloned into the AscI cut vector pAR_8 downstream of 

the stop codon yielding vector pAR_9 (11763 bp) (C) The Diptheria toxin A (DTA) fragment 

(1190 bp) is isolated from the vector pKOselect DTV840 (2984 bp) by the enzyme RsrII, blunted 

and inserted into the vector pAR_9 at the blunted NotI site yielding a vector pAR_11 (12939 
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bp) (D) The final targeting construct pAR_11 is linearized by the restriction enzyme ScaI. Black 

arrows highlight the approximate location of restriction enzymes required in specific cloning 

steps. Location of enzymes is determined by the software Accelrys Gene v2.5. Unfilled 

triangles represent FRT sites.     

The correctness of pAR_11 was confirmed by restriction enzyme cuts followed by agarose gel 

electrophoresis and by nucleotide sequencing on both strands. The pAR_11 was linearized 

with ScaI (Figure 3-12), sent to iTL (ingenious Targeting Laboratory, Ronkonkoma, New York, 

USA) and electroporated there into C57BL/6 ES cells. The representative agarose gel images 

of individual cloning steps are shown in the supplementary Figure 6-4. The vectors pKO-ICF 

and pKOselect DTV840 were generously provided by Prof. Dr. Ulrich Boehm (FR 2.4, Homburg) 

and Prof. Dr. Thomas Jentsch (MDC/ FMP, Berlin), respectively.   

 

Figure 3-12 Linearized final targeting plasmid, pAR_11. Agarose gel electrophoresis of 

pAR_11 cut by ScaI (+) and non-cut super-coiled DNA (-), marker was applied on the right lane.    

3.4.3 Identification of precisely integrated ES cell clones by Southern blotting   

The linearized targeting construct ‘pAR_11’ was electroporated into C57BL/6 ES. The 5’ and 3’ 

homology regions of the targeting construct allow integration at the Trpc1 gene locus by 

homologous recombination. After selection with G418 and DTA a total number of 288 ES cell 

colonies were isolated by iTL and lyophilized replicas sent to Homburg for Southern blotting. 

For the identification of correctly integrated ES cell clones, a Southern blot strategy was 

established based on three probes, the 5’-probe and the 3’-probe, both probes located 

outside of the homology regions, and the neo-probe, present within the targeting construct 

(Figure 3-13A).  Initially, I checked 128 ES cell clones by the 5’-probe and 93 clones were found 

to be positive i.e. heterozygous for the mutation, carrying both wild-type and mutant alleles. 
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Figure 3-13 Southern blot analysis for the selection of precisely integrated ES cell clones. (A) 

Southern strategy: from top to bottom, Trpc1-wt allele, Trpc1-targeting vector and targeted 

recombination of the Trpc1 locus (F2 allele) indicated. Translated exons (not in scale) are 

shown as black boxes. The targeting vector is composed of an internal ribosome entry site 

(IRES) element followed by a Cre, the coding sequence of Cre recombinase and a neomycin 

resistance gene (neo) cassette flanked by FRT, the Flippase recombination target sites (unfilled 

triangles) has been inserted after the stop codon present within exon 13. Dotted lines in 

between the wt allele and targeting vector represent the region of homologous 

recombination. The sites for restriction enzymes (S, SacI, H, HindIII) and location of 5’-, neo- 

and 3’-probes used for Southern blot hybridization are indicated. The predicted fragment sizes 

in both wt and mt alleles are shown by the arrows. (B) Southern blot: Representative images 

indicate the expected bands in the genomic DNA cut by SacI (5’ probe) and HindIII (neo and 

3’probes) from three independent recombinant Trpc1-IC ES-cell clones (clone numbers 1.3B4, 

1.3D2 and 1.3D3) using 5’-, neo- and 3’-probes. All representative three ES cell clones show 

Trpc1-wt and -mt alleles.  

Thus, the calculated recombination efficiency was approximately 73%. The 5’-probe labelled 

SacI fragments of genomic ES cell DNA of 4.7 Kb and 7.5 Kb in wt and mt alleles respectively. 

Thirty-two clones out of those 93 were tested with both the 3’-probe and the neo-probe. The 

3’-probe labelled HindIII fragment of 5.3 Kb in the wild-type and 6.4 Kb in the mutant allele. 

The internal neo probe labelled a single 6.4 Kb HindIII fragment, confirming that the targeting 
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construct is integrated only once within the genome (Figure 3-13B). Twenty-seven out of 32 

clones were found to be positive. All three probes confirmed precise integration of the 

targeting construct at the Trpc1 locus by homologous recombination. Five out of 27 were 

selected, expanded and karyotyped for chromosome count analysis (Table 3-3). 

Sr. # Clone  
numbers 

Euploid 
karyotype 

(%) 

1 1.3B2 78 

2 1.3B4 77 

3 1.3D2 100 

4 1.3D3 86 

5 1.3E4 75 

Table 3-3 Chromosome count performed by iTL (karyotype result) for five selected ES cell 

clones for the generation of Trpc1-IC KI mouse strain. 

3.4.4 Identification of Trpc1-IC mice by PCR based genotyping  

Three ES cell clones (clone numbers 1.3D2, 1.3B4 and 1.3B2) out of five selected based on 

their karyogram were injected into BALB/c blastocysts. The summary of injections performed 

in Interfakultäre Biomedizinische Forschungseinrichtung (IBF) Heidelberg University and iTL 

(USA) is given in the supplementary section (Table 6-6). Subsequently these blastocysts were 

implanted into the uterus of pseudopregnant C57BL/6 foster mothers. All three implantations 

resulted in eight chimeras. These pups were the F0 generation. All chimeras were derived from 

clone 1.3B4. The percentage of chimerism in F0 progeny was estimated based on coat color 

distribution. The success of a gene targeting depends on the maintenance of a mutant allele 

in the gametes (sperms or eggs) i.e. germline transmission. In this way, the mutation can be 

transmitted over generations. Therefore, the next step was to backcross the highly chimeric 

animals with C57BL6/N wild-type mice to check if the mutant allele has been inherited. The 

presence of the F2 allele in the offspring from chimera was tested by PCR based genotyping 

using specific primers amplifying the locus of integration within exon 13 and the FRT sites 

(Figure 3-14B). Our results showed the presence of heterozygous mice in F1 generation.  

Images of selected heterozygous mice are shown in Figure 3-15. They are viable, healthy and 

show no obvious abnormalities. One of the three ES-cell (1.3B4) derived mouse lines was used 

for further experiments.  
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Figure 3-14 Genotyping strategy to follow successful recombination. Schematic 

representation of the genotyping strategy: (A) Trpc1 wt allele shows three exons (11-13), filled 

boxes, not in scale, approximate location of primer combination is shown spanning over the 

exon 13 to identify the wt allele by PCR, (B) Trpc1 F2 allele, (F2 because of two FRT sites (open 

triangles)) contains the IRES-Cre-neomycin resistance cassette, neo, flanked by two FRT sites 

inserted after the stop codon in the middle of exon 13. Arrows indicate position of forward 

and reverse primers used for PCR, (C) Trpc1 F1 allele obtained upon Flp-mediated excision 

shows IRES-Cre and the single remaining FRT site, (D) table (top) shows the forward (F) and 

reverse (R) primer combinations used for the PCR reactions 1 to 5 along with the expected 

fragment sizes (bp). Representative agarose gel images (middle and bottom) show the PCR 

based genotyping results for the identification of mice carrying wt, F2 and F1 alleles. Numbers 

indicate PCR reaction from the table.   

                        

Figure 3-15 Trpc1-IC heterozygous mice in F1 generation. Representative images show female 

(left) and male (right) heterozygous mice identified by genotyping PCR. All mice resulted from 

the injection of ES cell clone number 1.3B4 into Balb/c blastocysts subsequently implanted in 

C57BL/6 foster mothers.    
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Previous studies have shown that the neo cassette contains cryptic splice sites and thus its 

presence within the genome could interfere with the expression of neighboring genes (Meyers 

et al., 1998). Therefore, the neo cassette has to be removed once the targeting construct is 

successfully integrated within the endogenous DNA sequence to avoid a possible 

hypomorphic allele (Jacks et al., 1994). In our targeting plasmid, the neo cassette is flanked by 

FRT sites. Mice carrying the F2 allele (Figure 3-14B) were bred with Flp deleter mice, 

ubiquitously expressing Flpe recombinase as a transgene (Dymecki, 1996). The resultant pups 

were genotyped using PCR primers to confirm the deletion of the neo cassette, in terms of the 

targeting construct recombination results in the Trpc1 F1 allele or Trpc1-IRES-Cre-neo- allele 

(Figure 3-14C). In terms of mice, the new Trpc1-IRES-Cre strain is also dubbed as “Trpc1-IC”. 

Currently, the breeding of Trpc1-IC mouse strain is successfully operational in our animal 

facility. Homozygous pups born are healthy, fertile and without any obvious phenotypic 

abnormalities. These animals can now be crossed with one of eROSA26-reporter mouse 

strains provided by Prof. Dr. Ulrich Boehm (FR 2.4, Homburg) in order to manipulate or to 

visualize Trpc1-expressing cells. (Figure 3-10) shows the breeding scheme with the eROSA26-

GFP  reporter strain (Wen et al., 2011) yielding Trpc1-IC/eR26-GFP mice, with constitutive 

GFP expression in Trpc1 expressing cells. Experiments performed on the pituitary, obtained 

from Trpc1-IC/eR26-GFP mice by my colleague Dr. Hongmei Wang, enabled us to visualize 

the TRPC1 expression pattern in pituitary cells and to specifically characterize the Trpc1-

expressing cells (manuscript submitted).    
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3.5 Generation of a conditional Trpc1 mouse strain 

In the year 2007, Alexander Dietrich et al. reported the generation of a Trpc1 global KO mouse 

model and until present, it has been extensively studied to characterize the role of TRPC1 in 

various organs (Dietrich et al., 2007). However, using a Trpc1 conventional KO mouse strain, 

it is quite challenging to explain the cell- or tissue-specific role of Trpc1. Thus, in order to 

determine the specific role of Trpc1 in any desired cell type or any organ such as bone cells or 

bone, I have generated a mouse line carrying a conditional Trpc1 allele, which could be bred 

with any cell/tissue-specific Cre-recombinase mouse strain to generate Trpc1 deletion in a cell 

specific manner.    

3.5.1 Strategy for the generation of a conditional Trpc1 mouse strain 

We developed a cloning strategy as outlined in the (supplementary Figure 6-6) for the 

generation of a conditional Trpc1 mouse strain. The loxP sites should flank exon 8 and 9, which 

is part of the ion-conducting TRPC1 pore. The molecular biology techniques employed for 

getting the targeting construct are identical to those described above for the cloning of the 

targeting vector required to generate the Trpc1-IRES-Cre mouse strain. However, abundant 

repetitive DNA sequences prevented amplification of the 3’ homology region. After several 

trials, I abandoned this targeting strategy.  

Instead, we decided to use a targeting construct from EUCOMM (PG00239_Z_4_A03) with a 

floxed exon two of the Trpc1 gene. In the mouse (mus musculus) genome, exon 2 of Trpc1 

transcript, Trpc1-204, (transcript ID ENSMUST00000189137.6) consists of a 155 bp long 

nucleotide sequence (5’upstream sequence, start:end, 95,743,351:95,743,197) as indicated in 

the Ensemble genome browser. Deletion of this particular exon would lead to a shift in the 

reading frame causing a premature termination during translation of the TRPC1 protein due 

to nonsense mutations.   

We obtained the targeting construct, C1Z_21361 bp, from EUCOMM and had it sequenced on 

both strands. The targeting construct consists of 5’ (5544 bp) and 3’ (3616 bp) homology 

regions for the homologous recombination at the Trpc1 gene locus in the mouse. The 5’ 

homology arm was followed by a pair of consensus FRT-sites. The cassette has been inserted 

in between the FRT-sites consisting of splice acceptor (SA) site- IRES-(bacterial beta-

galactosidase gene) lacZ cDNA, a polyadenylation (pA) signal site-a loxP site and a human beta 
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actin promoter-driver neo cassette. Exon two of Trpc1 is flanked by loxP sites and DTA has 

been inserted as a negative selection marker (Figure 3-16). 

 

Figure 3-16 Targeting vector (EUCOMM; PG00239_Z_4_A03) for the generation of a 

conditional Trpc1 mouse strain. The targeting vector, C1Z_21361 bp consists of 5’ (5544 bp) 

and 3’ (3616 bp) homology arms and in between flippase recombination target (FRT) site-

splice acceptor (SA)- internal ribosome entry site (IRES)-lacZ-polyadenylation (pA) signal-loxP 

site-neo cassette-FRT is shown. The exon two is flanked by loxP sites. Diphtheria toxin A (DTA) 

is located downstream of the 3’homology arm. Approximate site of the restriction enzyme 

AsiSI is indicated by the arrow. Unfilled and filled triangles show FRT and loxP sites 

respectively.  

This vector (Figure 3-16 and 3-17) was used for gene targeting in C57BL/6 ES cells to generate 

ES-cells heterozygous for the inserted mutation; the ES cells should carry the wild-type allele 

and the Trpc1 L3F2 allele: L3 stands for three loxP sites, F2 stands for two FRT sites. By crossing 

L3F2 mice with Flp recombinase deleter mice, a Trpc1 flox allele should be generated (Figure 

3-17B). In the floxed allele, exon two of the Trpc1 gene is flanked by two loxP sites, within the 

second and third introns, respectively. Subsequent crossing of Trpc1 flox mice with tissue 

specific Cre recombinase deleter mouse lines should lead to the deletion of exon two (Figure 

3-17C). 

Using this targeting vector, the L3F2 allele can also be used to generate a lacZ reporter mouse 

strain. By crossing mice bearing Trpc1 L3F2 allele with Cre recombinase deleter mice, a Trpc1 

KO IRES-lacZ allele can be generated which comprises of SA-IRES-lacZ cassette (Figure 3-17D). 

By splicing, the IRES-lacZ sequence should be attached to the exon one of the Trpc1 gene due 

to the presence of splice acceptor (SA) site. The IRES element leads to the formation of a 

bicistronic mRNA. The first mRNA encodes exon one which upon translation runs into a 

premature stop. The second mRNA encodes the β-galactosidase encoded by the lacZ gene. As 

transcription of the bicistronic mRNA is under the control of Trpc1 promoter, the β-



RESULTS  

  

71 
 

galactosidase should be present only in cells originally expressing Trpc1 and now lacking Trpc1. 

That means β-galactosidase enzyme activity can be used to identify Trpc1-KO cells by adding 

its substrate ‘X-gal’ and subsequent detection of blue coloration. By this strategy, we generate 

a complementary mouse strain to the Trpc1-IRES-Cre mouse. The Trpc1-IRES-Cre mouse can 

be bred with reporter strains such as eR26-GFP in order to visualize Trpc1-expressing cells by 

GFP (Figure 3-10); with the “lacZ” strategy, we are able to visualize Trpc1 KO cells. 

 

Figure 3-17 Targeting strategy for the generation of conditional Trpc1 mouse strain. 

Schematic representation of a targeting strategy (A) Trpc1-wt allele, Trpc1-targeting vector 

and targeted recombination (L3F2 allele) indicated. Translated exons (not in scale) are shown 

as black boxes, dotted lines represent the region of homologous recombination. The targeting 

vector consists of consensus FRT sites (unfilled triangles), in between these sites SA-IRES-lacZ-

loxP site-neo cassette is located, exon two flanked by loxP sites (filled triangles) is shown. Flp-

mediated excision, left panel, will lead to (B) Trpc1 L2F1 allele (L2 because of two loxP sites 

and F1 due to a single FRT site) consists of a FRT site downstream of the exon one and a floxed 

exon two, Cre-mediated excision of Trpc1 L2F1 allele will lead to (C) Trpc1 L1F1 (L1 because of 

one loxP sites and F1 due to of a single FRT site) or Trpc1 KO allele contains FRT and loxP sites 

present in between exons one and three is indicated. (D) Cre-mediated excision of Trpc1 L2F1 

allele, right panel, will lead to Trpc1 KO IRES-lacZ allele consists of a FRT site-SA-IRES-lacZ-loxP 

site cassette present in between exons one and three is shown. 
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3.5.2 Identification of correctly targeted ES cell clones by PCR and Southern 

blotting  

The ‘C1Z_21361 bp’ targeting vector was confirmed by sequencing on both strands and then 

linearized by the restriction enzyme AsiSI (Figure 3-18). The linearized plasmid was 

electroporated into the C57BL/6 ES cells by ingenious Targeting Laboratory (iTL). 

 

Figure 3-18 Linearized targeting construct, C1Z. The representative agarose gel image shows 

the plasmid C1Z, cut (+) by AsiSI and super-coiled non-cut (-). Arrow indicates the expected 

fragment size (21361 bp), size marker in kilo base pairs (Kb) is indicated.    

A total number of 288 neomycin-resistant ES cell colonies were picked by iTL and sent to us 

for screening by PCR and Southern blotting. The targeting construct, C1Z, has three loxP sites 

and the exon two is flanked by the second and third loxP sites (Figure 3-16). The third loxP site 

is located close to the 3’ homology arm and thus there were greater chances of its loss during 

homologous recombination. Therefore, it was crucial to verify the insertion of the third loxP 

site into the target sequence. As Southern blotting is not an appropriate method for the 

detection of 34 bp loxP site in the mutant allele, I designed a PCR strategy with a primer 

combination, AR-74/AR-75, spanning over the third loxP site. Initially, I performed PCR on 96 

ES cell clones and 88 clones were found positive i.e. showing both wt and mutant fragments 

(Figure 3-19). The representative agarose gel (Figure 3-19C) shows a PCR result of a wild-type 

ES clone and a clone where the third loxP site is present. Out of 88 PCR-positive clones, I 

selected 32 ES cell clones for further Southern analysis. 
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Figure 3-19 PCR strategy for the identification of third loxP site insertion in the mutant allele. 

(A) PCR strategy: top, Trpc1 wt allele containing exons (black boxes), not in scale, and position 

of forward primer, AR-74 and reverse primer, AR-75; bottom, Trpc1 L3F2 allele shows the 

targeting construct, present downstream of the exon one, containing Flippase recombination 

target (FRT) site-splice acceptor (SA)-internal ribosome entry site (IRES)-lacZ-loxP site-neo 

cassette-FRT site-consensus loxP sites. Forward primer, AR-74 and reverse primer, AR-75 

spanning over third loxP site. Unfilled triangles show FRT sites while filled triangles depict loxP 

sites. (B) Table shows the expected band sizes in wt and L3F2 alleles obtained by PCR using 

primers AR-74 and AR-75. (C) Representative agarose gel image shows a single band (250 bp) 

in wt allele, representing the two wt alleles and two bands (250 and 282 bp) in L3F2 allele, 

representing one wt and one mutant allele both differing in the loxP site present in the mutant 

allele. 

In order to identify correctly recombined ES cell clones, I designed a Southern strategy based 

on three probes namely a 5’-, and a 3’-probe, both external to the targeted sequence and an 

internal neo’-probe, present within the targeting construct showing singular integration of the 

targeting vector in the ES cell genome (Figure 3-20). Thirty-two ES cell clones positive for the 

third loxP site were analyzed with all three probes by Southern blot. The 5’-probe hybridized 

to a 16.2 Kb band and a 13.9 Kb band in StuI cut DNA respectively, the expected DNA 

fragments from the wild-type allele and the mutant allele (Figure 3-20B). The 3’-probe 

hybridized to PflMI cut DNA with 6.4 Kb and 9.7 Kb band sizes in wt and mt alleles respectively. 

The internal probe, neo-, hybridized to PflMI cut DNA; the size of the band was 9.7 Kb 

indicating singular integration into the L3F2 allele.  



RESULTS  

  

74 
 

 

Figure 3-20 Southern blot analysis for the generation of a conditional Trpc1 mouse strain. 

(A) Southern strategy: from top to bottom, Trpc1- wt allele, Trpc1-targeting vector and 

targeted recombination (L3F2 allele) indicated. Translated exons (not in scale) are shown as 

black boxes. The targeting vector is composed of 5’ homology arm followed by a pair of 

consensus Flippase recombination target (FRT) sites. The cassette inserted in between the FRT 

sites consists of splice acceptor (SA) site-internal ribosome entry site (IRES)-lacZ cDNA-loxP 

site and a neomycin resistance gene cassette (neo). Exon two of the Trpc1 gene is flanked by 

loxP sites and diphtheria toxin A (DTA) as a negative selection marker is shown. Dotted lines 

in between the wt allele and targeting vector represent the regions of homologous 

recombination. Restriction enzyme sites (S, StuI, P, PflMI) and location of 5’-, neo- and 3’-

probes used for Southern blot hybridization are indicated. The predicted fragment sizes in 

both wt and mt alleles are shown by the arrows. (B) Southern blot: Representative images 

indicate expected bands in the genomic DNA cut by StuI (5’probe) and PflMI (3’ and neo probe) 

from three independent recombinant Trpc1 ES-cell clones (clone numbers 3.1B2, 3.1D4 and 

3.2D2) using 5’-, neo- and 3’-probes. All representative three ES cell clones show Trpc1-wt and 

-mt alleles.  

Twenty-four ES cell clones out of 32 were positive with all three probes and six out of those 

were finally selected for expansion and karyotyping analysis at iTL (Table 3-4).  
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Sr. # Clone 
numbers 

Euploid 
karyotype 

(%) 

1 3.1B2 71 

2 3.1D3 86 

3 3.1D4 75 

4 3.2A1 79 

5 3.2D2 85 

6 3.2D3 86 

Table 3-4 Chromosome count performed by iTL (karyotype result) for selected six ES cell 

clones for the generation of the conditional Trpc1 KO mouse strain.  

3.5.3 Identification of Trpc1-L3F2 mice by PCR based genotyping 

Five out of six ES cell clones, selected on the basis of PCR, Southern and karyogram analyses, 

were injected into BALB/c blastocysts, and subsequently transplanted into the uterus of 

C57BL/6 pseudopregnant foster mothers. The summary of injections performed in 

Interfakultäre Biomedizinische Forschungseinrichtung (IBF) Heidelberg University or iTL (USA) 

is given in the supplementary section (Table 6-7). Only two out of five implanted ES cell clones 

(clone numbers 3.1D4, 3.2D2) resulted into chimeric progeny (Figure 3-21). 

                   

Figure 3-21 Chimeric mice. Representative images show the chimeric progeny resulted from 

the injection of Trpc1-floxed allele positive-ES cell clone number 3.2D2 (left) and 3.1D4 (right).  

The percentage of chimerism was estimated based on coat color distribution. Brown/black 

coat color derives from the mutant ES cells and white coat color from the Balb/c blastocysts.  

Highly chimeric mice derived from two independent ES cell clones were bred with C57BL/6 

WT mice yielded the F1 progeny. The next step was to differentiate between the WT and 

heterozygous pups. Therefore, a genotyping strategy was designed using various primer 

combinations spanning different elements of the inserted targeting construct as outlined in 
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(Figure 3-22A). A representative agarose gel image (Figure 3-22C) shows the PCR genotyping 

result of a WT animal and a mouse, which is heterozygous for the L3F2 allele.  

 

 

Figure 3-22 Genotyping strategy to identify the Trpc1-L3F2 allele and to genotype mice. (A) 

Genotyping strategy: Trpc1 wt allele shows three coding exons (1-3, black boxes, not in scale) 

approximate location of primer combinations is shown spanning over the exon two to identify 

the wt allele by PCR. Trpc1 L3F2 allele contains consensus FRT sites (unfilled triangles), in 

between the FRT sites, SA-IRES-lacZ-loxP site-neo cassette is shown. Exon two is flanked by 

loxP sites (filled triangles), arrows indicate position of forward and reverse primers used for 

PCR. (B) Table (top) shows the forward (F) and reverse (R) primer combinations used the PCR 

reactions along with the expected sizes. (C) Representative agarose gel image shows the PCR 

results for the identification of mice carrying wt and L3F2 alleles. Numbers indicate PCR 

reactions from the table. 

By using PCR genotyping, we identified heterozygous pups in the F1 generation bearing L3F2 

allele, indicative of successful germline transmission (Figure 3-23). 

              

Figure 3-23 Conditional Trpc1 heterozygous mice in F1 generation. Representative images of 

heterozygous mice identified by genotyping. Mice shown on left and right side resulted from 

the injection of ES cell clones 3.2D2 and 3.1D4, respectively.    
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3.5.4 Generation of Trpc1 flox mice 

The heterozygous L3F2 mice serve as a basis for the generation of Trpc1-flox mice. Currently 

heterozygous L3F2 mice are being crossed with Flp deleter mice to remove the FRT flanked 

SA-IRES-lacZ-loxP-neo cassette resulting in a floxed L2F1 allele (Figure 3-24B). First pups were 

born and PCR based genotyping revealed the generation of mice bearing L2F1 allele. Figure 

shows a representative PCR genotyping result of a Trpc1+/flox animal, which is also positive for 

Flp recombinase (Figure 3-24C). Next step will be backcrossing with C57BL6/N wild-type mice 

to get rid of the Flp gene. The resulting Trpc1+/flox Flp- mice can be used for crossing with a 

osteoclasts specific Cre mouse lines e.g. a TRAP- or Cat K- Cre mouse lines (Chiu et al., 2004) 

to generate an osteoclast specific Trpc1 KO mouse strain. 

 

Figure 3-24 Generation of Trpc1 flox mice. Breeding strategy to generate Trpc1 flox mice: (A) 

Trpc1 L3F2 allele contains three exons (1-3), black boxes (not in scale). The targeting construct 

consists of consensus FRT sites (unfilled triangles), in between these sites, SA-IRES-lacZ-loxP 

site-neo cassette is located, exon two flanked by loxP sites (filled triangles) is shown. Flp-

mediated excision will lead to (B) Trpc1 L2F1 allele consisting of a FRT site downstream of the 

exon one and a floxed exon two. (C) Table (top) shows the forward (F) and reverse (R) primer 

combinations used for the PCR reactions along with the expected sizes; a representative 

agarose gel image (bottom) depicts the PCR results for the identification of mice carrying L2F1 

and wt alleles. Both animals are positive for the Flp recombinase as shown in reaction three. 

Numbers indicate PCR reactions from the table. (D) Cre-mediated excision of Trpc1 L2F1 allele 

will lead to Trpc1 L1F1, which is a Trpc1 KO allele, containing singular FRT and loxP sites 

present in between exon one and three as indicated.
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4 Discussion 

In my thesis, I have generated two mouse strains, TRPC1-IRES-Cre mice and mice carrying a 

conditional Trpc1 allele. Both mouse strains will allow dissecting the physiological and 

pathophysiological roles of Trpc1 in the living organism. In order to characterize the 

physiological function of Trpc1 in bone, I established µCT analysis of long bones, a femur 

fracture model and the methods to differentiate osteoclasts and to characterize their 

function. In the following, I will first discuss the contribution of Trpc1 to bone function, 

followed by a discussion of the two mouse strains, which I have generated.       

4.1 Contribution of TRPC1 to bone function 

Although the TRPC1 cDNA was the first mammalian cDNA which has been cloned (Wes et al., 

1995), (Zhu et al., 1995), it is still an open question whether TRPC1 itself forms a functional 

channel or whether it is a part of a heteromeric TRP channel complex. In brain and in 

hippocampal neurons TRPC1 is a part of heteromeric TRPC4/TRPC1, TRPC5/TRPC1 or 

TRPC5/TRPC4/TRPC1 channels (Broker-Lai et al., 2017). In heterologous expression systems, 

including cell culture cells such as HEK293 cells or oocytes TRPC1 also forms heterotetrameric 

channels with TRPC4, TRPC5 but also with TRPV4 or TRPV6. Especially TRPV6 has been shown 

to negatively interfere with functional TRPC1 or vice versa (Courjaret et al., 2013), (Schindl et 

al., 2012) . Compared to the broad Trpc1 gene expression the Trpv6 gene expression is quite 

restricted, especially to epididymis, placenta, pancreatic acinar cells and bone.  

Both Trpv6 and Trpc1 transcripts have been identified in various immortalized bone cells. For 

instance, we could identify Trpc1 transcripts in a number of human osteoblast-like cells such 

as SAOS-2, U-2 OS, SK-N-SH and MG-63 (Supplementary Figure 6-7), whereas Trpv6 transcripts 

have been identified in the murine KS483 and the human SV-HFO osteoblast-like cells (van der 

Eerden et al., 2012) and in the murine osteoclast-like cell-line RAW264.7 (van der Eerden et 

al., 2012). More important, van der Eerden et al. and Ong et al. have shown that either 

transcript is expressed in cells derived from bone in living mice, but whether or whether not 

they function in concert or independently is not known.  
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We decided to answer this question by two approaches: First, we wanted to confirm that 

transcripts of both genes are expressed in bone. In case, the transcripts are present we wanted 

to study whether deletion of either gene provokes a bone phenotype. If there would be a 

phenotype, it would be worthy to go back and analyze bone function and bone cell function 

in detail.  

To get an answer to question one, I performed RT-PCR using RNA from crushed bone as a 

template. By this approach, I amplified the full-length protein coding 2879 bp cDNA of Trpc1 

(Figure 3-3A) and a 242 bp fragment of Trpv6 (Figure 3-3D). These results confirmed that 

TRPC1 and TRPV6 are expressed in bone. TRPC1 gene-deficient (KO) mice are available in the 

laboratory as a part of collaboration with Alexander Dietrich (München) and Lutz Birnbaumer 

(Buenos Aires), as well as TRPV6 mutant mice, which have been generated in our group 

(Weissgerber et al., 2011), (Weissgerber et al., 2012). TRPV6 mutant mice carry a point 

mutation, which renders the TRPV6 channel non-functional; they behave like TRPV6 KO mice 

also generated in our group (Weissgerber et al., 2012). Next, we thought about a bone 

phenotype. Using a Bruker µCT system (SkyScan 1172) available at the Institut für Klinisch-

Experimentelle Chirurgie, Universität des Saarlandes, Homburg, we decided to look for a 

phenotype in long bones by comparing the femurs from wild-type, Trpc1-/-, Trpv6mt/mt and 

Trpc1-/-/Trpv6mt/mt mice. 

Mice have been extensively studied using µCT to determine the bone structure at the finest 

resolution. However, there are several considerations, both mouse- and scanning system-

related, that must be taken into account before starting the experiment. Mouse related 

factors include the effect of age, gender, and genetic background (Halloran et al., 2002), 

(Wergedal et al., 2005). The µCT-related technical aspects include image resolution, X-ray 

source voltage and current, filter type and thickness, exposure time and application of beam 

hardening corrections. We aimed to establish a consistent way of determining the cortical and 

trabecular bone microarchitecture in line with the guidelines published by Bouxsein (Bouxsein 

et al., 2010).  

Genetic heterogeneity has an effect on the bone phenotype and has to be considered when 

analyzing the bone parameters (Jilka, 2013). In our animal facility, mice are available on two 

genetic backgrounds, either as C57BL/6 strain or as mixed 129SvJ/C57BL/6 strain. Like human 

bones, bones in mice undergo age-dependent changes (Jilka, 2013) and firstly we have 
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analyzed femurs of wild-type mice of the two genetic strains at two ages, at 12 and at 24 

weeks of age. For this basic experiment, we have restricted our studies only to male mice to 

avoid any influence of recurring physiological changes induced by reproductive hormones in 

females (Halloran et al., 2002). The settings for µCT scanning were kept constant throughout 

the study. For the cortical bone analyses, the region of interest covered fifty 6.5 µm cross-

sections exactly in the middle of the femur shaft irrespective of age (Figure 2-5Aa, Ba). For the 

trabecular bone analyses, cross-sections in the region of secondary or mature spongiosa have 

been used where trabeculae are stable, avoiding the contamination of primary spongiosa as 

much as possible (Figure 2-5Ab, Bb). Accordingly, I reduced the “offset” for analyzing 

trabecular bone from 24-week-old mice compared to the measurements of bones from 12-

week-old mice (Figure 2-5Bb), although at these two ages, 12- and 24-week, this adjustment 

yielded identical values of trabecular bone parameters as if taken the 12-week or 24-week 

offset for both ages (data not shown).  

As expected femur length increased with age up to the 12th week in B6, but not in mixed 

(Figure 3-1D, E) and there was an additional increase from the 12th to the 24th week. The 

cortical bone parameters such as endocortical volume and perimeter increased with age in 

bones of mice on B6 background (Figure 3-2A) but not in bones of mice of mixed genetic 

background. In comparison to the cortical bone parameters, we have found more prominent 

differences in trabecular bone parameter with an advancing age in wild-type mice on mixed 

genetic background with considerable loss of bone volume and trabecular number (Figure 3-

2B). Considering these parameters, B6 femurs were not as much affected. Thus, initial 

investigation emphasizes the need, only to compare mice on an identical genetic background. 

For comparing the bone phenotype of Trpc1-/-, Trpv6mt/mt, Trpc1-/-/Trpv6mt/mt and wild-type 

mice, we therefore bred the respective genotypes on the uniform mixed background and 

consecutively analyzed femurs of 24-week-old male mice. Femur length was shorter in 

Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt mice but not in Trpc1-/- mice when compared to femur length 

of wild-type mice. The cortical bone phenotype in Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt mice 

compared to wild-type and Trpc1-/- mice is more prominent as indicated by reduction in 

endocortical volume and significant increase in cross-sectional thickness (Figure 3-4B) of 

femurs. In the double mutant Trpc1-/-/Trpv6mt/mt mice, we have observed cortical bone 

differences similar to the Trpv6mt/mt suggesting the dominant effect of the Trpv6 mutant. Our 
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results do not fully agree with the findings that cortical and trabecular parameters remained 

unchanged in Trpv6 mutant femurs as compared to WT mice (van der Eerden et al., 2012). 

However, the study by van der Eerden et al. have also reported reduced femur length and 

reduced endocortical volume (van der Eerden et al., 2012). Our results suggest a thicker 

cortical bone in Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt mice, indicative of increased mechanical 

strength. Although µCT parameters such as polar moment of inertia enables us to predict 

mechanical properties of the bone (Shefelbine et al., 2005), we performed three-point 

bending stiffness test to directly monitor the mechanical properties of the femurs (Allen and 

Burr, 2014). Our results show that a significantly elevated force (N) is required for bending 

bones from Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt mice (Figure 3-6) which is in agreement with the 

expectations of the µCT data.  

Different to the cortical bone, the trabecular bone parameters are more affected in femurs 

from Trpc1-/- mice: The bone volume fraction, the mineral density and the trabecular thickness 

is reduced as compared to wild-type femurs. The trabecular separation and trabecular pattern 

factor are increased fitting with the reduced bone volume fraction as expected (Figure 3-4C). 

Our data from the femur bone analyses from 12-week-old WT and Trpc1-/-mice on B6 

background (supplementary Figure 6-8) comply with the trabecular phenotype observed in 

mice on mixed genetic background. In summary, these findings confirmed the effect of TRPC1 

on bone microarchitecture independent of the genetic heterogeneity. Our results are in 

contrast with the findings from the group of Leonidas Tsiokas, which showed significantly 

increased trabecular bone mass, whereas all other parameters remained unchanged (Ong et 

al., 2013).  At least three reasons might explain these differences: Ong et al. showed µCT 

analysis performed on the tibiae from 12-week-old mice, the µCT scanning settings have not 

been fully described and might have been different, and the genetic background of the mice 

analyzed is not known.   

The trabecular number is increased in Trpv6mt/mt femurs and, again, data indicate a dominant 

effect of the TRPV6 mutation on the Trpc1 KO, abrogating the TRPC1 phenotype. In summary, 

these data indicate that deletion/mutation of TRPV6 cannot be compensated by the deletion 

of TRPC1 whereas the effect of Trpc1 deletion on trabecular bone was compensated by the 

Trpv6 mutation.      
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Those findings prompted us to investigate the involvement of these channel subunits in a 

functional assay, in healing of a defined femur fracture (Histing et al., 2011). Fracture healing 

is a complex phenomenon, which begins with the inflammatory response and involves a 

variety of cellular components, growth factors and cytokines (Stegen et al., 2015). Osteoclasts 

perform cartilage resorption and remodeling while osteoblasts form new bone and together 

these are the two main key players in the healing process of a fractured bone (He et al., 2017). 

We have used a closed femur fracture model in our studies where the ends of a broken femur 

are stabilized by a screw (Figure 2-1). Although some cells of the intramedullary cavity could 

get flush out, and thereupon might interfere with the healing mechanism. During the fracture 

healing, the periosteal and endosteal callus tissue, surrounding the cortical bone, provides 

mechanical stability to the fractured bone. Therefore, for the precise determination of callus 

parameters, it is mandatory to select all callus tissue for analyses. Unfortunately, currently 

there is no reliable algorithm available for the automatic isolation of the region of the callus, 

therefore I have selected the callus region of interest manually by drawing the borders of the 

callus (Supplementary Figure 6-5).  

The µCT data obtained show a significantly reduced amount of callus volume in fractured 

femurs of Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt mice. The percentage of highly mineralized bony 

callus is also increased in these mice, an indicative for the rapid healing process. The trabecular 

parameters such as trabecular number and the estimate of mineral density is also increased 

in femurs from Trpv6mt/mt - and Trpc1-/-/Trpv6mt/mt mice, indicative of more bony callus (Figure 

3-5). However, this “bony callus” does not translate into increased mechanical strength 

because we observed no difference in the bending stiffness of the fractured bones from all 

four groups using three-point bending test (Supplementary Figure 6-3). It must be noted that 

a four-point bending test might be preferable for estimation of the bending stiffness in 

fractured bones because of a more adequate application of the bending forces to the femur 

(Allen and Burr, 2014): The surface of the bony callus is not smooth and the force transducer 

hits exactly the fractured region of the femur using the three-point bending apparatus.  

The µCT findings point to a remarkable trabecular phenotype in Trpc1-/- mice and as 

osteoclasts and osteoblast are major players in bone modelling and remodeling to construct 

the overall bone structure, we decided to elucidate the role of Trpc1 in osteoclast formation 

and functionality. During differentiation of bone marrow derived cells to osteoclasts, we 



DISCUSSION 

 

83 
 

observed a significant reduction in osteoclast number. This reduction was mirrored by less 

bone resorption monitored by von Kossa stained pits and trails (Figure 3-8). Our observations 

from the osteoclast culture experiments contrast with the µCT results where we have 

observed reduced trabecular numbers. Our culture experiments also contrast with the 

published results from the group of L. Tsiokas: Ong et al. have shown no difference in 

osteoclast differentiation and resorption in the cultured cells from wild-type and Trpc1-/- mice 

(Ong et al., 2013). As osteoclasts and osteoblasts both play a vital role in the fracture healing, 

compromised osteoclastogenesis would slow down the cartilage resorption ultimately 

resulting in delayed fracture healing. On the other hand, the fractured bone data has shown 

no significant differences in callus tissue parameters from Trpc1-/- mice compared to wild-type 

mice. Therefore, further attention must be paid towards primary osteoblasts, which do 

express Trpc1 (supplementary Figure 6-7B), and might essentially contribute to the observed 

trabecular bone phenotype.  
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4.2 Generation of a Trpc1-IC KI mouse strain  

Gathering conclusive data on the presence of TRPC1 protein in a given cell is challenging 

because of the lack of reliable TRPC1-antibodies for immunohistochemistry as well as the 

absence of authentic TRPC1-mediated currents in patch-clamp experiments. In order to 

overcome these limitations, there was a critical need of visualizing Trpc1-expressing cells in 

mice including TRPC1-expressing bone cells.  

I generated a novel TRPC1-IRES-Cre knock-in mouse strain by inserting an IRES-Cre cassette 26 

nucleotides downstream of the stop codon present within coding exon 13 of the Trpc1 gene. 

The presence of an IRES element causes transcription of a bicistronic mRNA under control of 

the endogenous TRPC1 promoter, which is translated into two independent proteins, TRPC1 

and Cre recombinase within the same cell. For the characterization of Trpc1-expressing cells, 

homozygous Trpc1-IC mice have been bred with the reporter mouse strain eROSA26-GFP 

(Wen et al., 2011) to obtain double knock-in Trpc1-IC/eR26-GFP mice. The Cre recombinase 

present in Trpc1-expressing cells, deletes the transcriptional termination signal dubbed 

“STOP” in Figure 3-10. As a consequence, the DNA of the green fluorescent protein will be 

expressed under control of the ROSA26 promoter. The ROSA26 (R26) locus is ubiquitously 

expressed. The efficiency of the R26 promoter has been enhanced by introducing a so called 

CAGS fragment based the on chicken-β-actin promoter and cytomegalovirus (CMV) enhancer 

(Wen et al., 2011). Once switched on by Cre-dependent recombination, the green 

fluorescence exclusively depends on the eR26 locus. In the absence of Cre-mediated 

recombination, the transcriptional termination signal “STOP” flanked by two loxP sites, 

prevents transcription of the GFP DNA. Other reporter mouse strains (Wyatt et al., 2017) 

carrying yellow or red fluorescent protein, can be bred with the TRPC1-IC mouse.  

This binary genetic approach leads to the amplification of the fluorescent signal and thereby 

visualizesTrpc1-expressing cells. Other strategies involve the fusion of the fluorescent protein 

DNA as an IRES cassette: Like expression of the IRES-Cre cassette in the TRPC1-IC mouse, the 

expression of the IRES GFP cassette would be under the control of the TRPC1 promoter. 

Considering a very low expression level of TRPC1, the GFP expression would also very low and 

the fluorescent signal would be difficult to be detected using the later approach. In the current 

approach, fluorophore and Cre recombinase are expressed from two independent promotors: 

Even a single Cre molecule is sufficient to “switch on” the transcription of the GFP DNA. In 
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summary, Trpc1-IC KI mouse strain is a step towards solving the expression profile of the Trpc1 

gene. 

In ongoing experiments, we, my colleague Dr. Hongmei Wang and myself, have visualized 

TRPC1 expressing cells in the pituitary after breeding the Trpc1-IC and the eROSA26-GFP 

mouse lines. Single green cells and non-green cells were isolated and checked for the 

expression of Trpc1. All green cells and very low non-green cells do express Trpc1 transcripts 

(manuscript submitted). Apparently, the green fluorescence of the “non-green” cells 

expressing Trpc1 might escape our detection. Overall, these experiments demonstrate the 

versatility of this approach. 
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4.3 Generation of a conditional Trpc1 mouse strain 

In addition to the Trpc1-IC strain, I generated a mouse line carrying a conditional Trpc1 allele 

that functions as a wild-type allele in an undeleted state or as a null allele upon Cre-mediated 

excision. In 2007, Dietrich et al. described the generation of a global Trpc1 knockout by 

deleting the coding exon 8, supposedly involved in the formation of a pore region (Dietrich et 

al., 2007). This global Trpc1 gene-deficient model has been studied to characterize the role of 

TRPC1 in working memory formation (Broker-Lai et al., 2017), salivary fluid secretions 

(Ambudkar, 2014), in hemodynamic stress and cardiac hypertrophy (Seth et al., 2009), 

osteoclastogenesis and bone architecture (Ong et al., 2013). However, by the global TRPC1 

knockout, it is difficult to determine the role of TRPC1 in specific cells or organs. Therefore, it 

was in high demand to generate a conditional Trpc1 mouse model enabling to study the cell-

specific role of Trpc1 without interfering with the expression of Trpc1 in other cells. 

For the generation of a conditional Trpc1 mouse strain, we first wanted to insert loxP sites up-

stream of exon seven and downstream of exon eight. However, because of presence of 

repetitive nucleic acid sequences we abandoned that targeting strategy. As an alternative 

strategy, exon two was flanked by loxP sites. The resulting targeting vector was electroporated 

into ES cells. The ES cells were selected and the homologous recombination in ES cells 

heterozygous for the mutation was proven by PCR and Southern blotting.  We performed 

three independent set of trials by injecting six different ES cell clones at IBF, Heidelberg in 

cooperation with Prof. Dr. Marc Freichel and at iTL (New York, USA). From three independent 

clones we received 14 chimeras at IBF, with the chimerism percentage based on coat color 

distribution varies between 10-90%. We set different breedings in order to get F1 mice i.e. 

germline transmission but remained unsuccessful. The reason for this ordeal remained 

unknown. However, we remained successful in obtaining chimeras and subsequently F1 mice 

at iTL from three independent ES cell clones (supplementary Table 6-7).  With these F1 mice 

carrying the conditional allele, it is possible to obtain mice carrying a Trpc1 floxed allele by Flp 

recombinase activity and/or a Trpc1 L1F1 allele upon Cre-recombinase activity (Figure 3-17).  

Conditional gene targeting using a site-specific recombinase system i.e. Cre/loxP allows to 

delete the Trpc1 gene from any desired organ or a cell type at any time using a specific Cre-

recombinase expressing deleter mouse strains. It is based on the principle of breeding two 

independent mouse strains; one carrying a floxed Trpc1 allele and the other strain expresses 
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Cre-recombinase in selected cell types or tissues. For instance, we have observed a trabecular 

bone phenotype and compromised osteoclastogenesis in our experiments performed on 

Trpc1-global knockout mice. For precisely defining the role of Trpc1 in osteoclast, deletion of 

Trpc1 specifically in osteoclasts is required using Cre-deleter strains which express the Cre-

recombinase gene under control of either TRAP or Cat K promoters (Chiu et al., 2004). The Osx 

(Osxterix)-Cre mouse strain can be used to delete Trpc1 specifically from the osteoblasts 

(Rodda and McMahon, 2006). However, endogenous skeletal defects such as delayed calvarial 

ossification have been identified in Osx-Cre deleter mice; making these mice not a good choice 

(Huang and Olsen, 2015).  

In summary, the conditional Trpc1 mouse strain will be useful for the deletion of the Trpc1 

gene in a spatially restricted or/and temporally restricted way. Our knowledge from studies 

with Trpc1 global knockout mice and our new studies with the Trpc1-IRES-Cre mouse have 

been shown the involvement of TRPC1 in different cells serving different functions. Studies 

with the conditional Trpc1 strain will complement this work and allow to dissect Trpc1 function 

with higher accuracy.     
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6 Supplementary data and information 

 

 

Figure 6-1 Comparison of weight between two strains of wild-type mice. Comparison of 

weight (grams, g) of 20-week-old male wild-type mice of two genetic backgrounds i.e. B6 

strain, C57BL/6 and mixed strain, 129SvJ/C57BL/6 is shown. 'n' numbers of wild-type mice on 

B6 and mixed genetic backgrounds are seven and nine, respectively. Statistics: Mean ± SD, 

two-tailed unpaired student’s t-test, with the number of mice indicated in the bars. 

 

Figure 6-2 Comparison of weight before fracture and after the healing phase of wild-type, 

Trpc1-/-, Trpv6mt/mt and double mutant Trpc1-/-/Trpv6mt/mt mice. Comparison of weight 

(grams, g) at day 0 (before the surgical procedure) and at day 28 (after sacrificing the mice, 

still with the screws) of (A) WT (B) Trpc1-/- (C) Trpv6mt/mt and (D) Trpc1-/-/Trpv6mt/mt mice is 

shown. 'n' numbers of WT, Trpc1-/-, Trpv6mt/mt and Trpc1-/-/Trpv6mt/mt mice are 11, 10, 10, 10 

respectively.  
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Figure 6-3 Biomechanical analyses of fractured 

femurs from 24-week-old male WT, Trpc1-/-, 

Trpv6mt/mt and double mutant Trpc1-/-

/Trpv6mt/mt mice. Bending stiffness (N/mm) of 

fractured femurs analyzed by a non-destructive 

three-point bending test. Data shown as mean ± 

SD, calculated by one-way ANOVA followed by 

Bonferroni multiple comparison test. Four 

different colored bars represent four different 

genotypes: WT (black), Trpc1-/-(green), 

Trpv6mt/mt(red) and Trpc1-/-/Trpv6mt/mt (blue) with ‘n’ representing number of femurs in each 

group are 11, 10, 10, and 10 respectively.  

 

 

Figure 6-4 Cloning steps for the construction of the targeting construct, pAR_11, to generate 

the Trpc1-IC KI mouse strain. Agarose gel electrophoresis images show preparation of (A) 

pAR_6 and pAR_7 by sequential restriction enzyme cut, firstly, plasmids treated with (+) or 

without (-) restriction enzymes NotI-HF and PvuI-HF. Second cut with AgeI to obtain expected 

fragment size of 2381 bp (pAR_6) and 5947 bp (pAR_7). (B) Vector pAR_8 (8320 bp) and 

fragment pKO_ICF (3444 bp), arrow, after cut with the enzyme AscI. (C) Vector pAR_9 (11763 

bp) and fragment pKOselect DTV840 (1190 bp), arrow, after cut with the enzymes NotI and 

RsrII, respectively. The signs + or – depict presence or absence of restriction enzymes in the 

reaction.   
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Figure 6-5 Selection of periosteal and endosteal calluses for analyses. Schematic 

representation of (a) a 6.5 µm cross-section with the cortical bone and periosteal and 

endosteal callus regions, (b) manually selected callus regions highlighted in red delineating 

the cortical bone in white, and (c) ROI consisting of only callus tissue for analyses.        

 

Figure 6-6 Abandoned targeting strategy for the generation of conditional Trpc1 mouse strain 

by floxing the exons 8 and 9.   
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Figure 6-7 RT-PCR of Trpc transcripts with total RNA of (A) immortalized human osteoblast 

like cells and (B) bone marrow derived-osteoclasts (top), and bone derived-osteoblasts 

(middle), mRNA from brain served as a control (bottom), Hprt1 was amplified as a positive 

control and water used a negative control.  
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Figure 6-8 Femur length (A) and parameters of cortical- (B) and trabecular- (C) bone of wild-

type and Trpc1-/- 12-week-old male mice on C57BL/6 (B6) genetic background determined by 

µCT. Data are shown as mean ± SD, analyzed by two-tailed unpaired t-test (* indicates p-value 

< 0.05, ** p-value < 0.01). The two genotypes are indicated in black (wild-type, WT) and green 

(Trpc1-/-), with the number of femurs for WT and Trpc1-/- mice are 8 and 8, respectively.    
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Table 6-1 Tasklist (Final_cortical_tasklist_Ahsan.ctt) for the determination of cortical bone 

parameters 

 

Table 6-2 Tasklist (Bruker_cortical (TMD)_tasklist_AR.ctt) for the determination of cortical 

TMD 
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Table 6-3 Tasklist (Final_trabecular_tasklist_Ahsan.ctt) for the determination of trabecular 

bone parameters 

 

 Table 6-4 Tasklist (Bruker_trabecular (BMD)_tasklist_AR.ctt) for the determination of 

trabecular BMD 
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Table 6-5 Tasklist (AR_callus analysis_final.ctt) for the determination of callus tissue 

parameters. 

Table 6-6 Summary of injections performed in Interfakultäre Biomedizinische 

Forschungseinrichtung (IBF), Heidelberg University, and iTL for the generation of Trpc1-IC 

mouse strain. 

 

Table 6-7 Summary of injections performed in Interfakultäre Biomedizinische 

Forschungseinrichtung (IBF), Heidelberg University, and iTL for the generation of conditional 

Trpc1 mouse strain.

Clone 
number 

Euploid 
karyotype (%) 

IBF 
(Heidelberg) 

iTL  
(USA) 

Pups (chimera) 
obtained 

Number of F1 
mice 

13D2 100   1 (iTL) - 

13D3 86   -  

13B4 77   6 8 

13B2 78   1 - 

Clone 
number 

Euploid 
karyotype (%) 

IBF 
(Heidelberg) 

iTL 
(USA) 

Pups (chimera) 
obtained 

Number of F1 
mice 

11D3 80   -  

12A4 69   -  

31D3 86   -  

32A1 79   1 (iTL) - 

31B2 71   -  

32D2 85   1   16 

31D4 75   5   7 


