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Abstract

Cancer is the second leading cause of death worldwide. A charac-
teristic of this disease is its complexity leading to a wide variety of
genetic and molecular aberrations in the tumors. This heterogene-
ity necessitates personalized therapies for the patients. However,
currently defined cancer subtypes used in clinical practice for treat-
ment decision-making are based on relatively few selected markers
and thus provide only a coarse classification of tumors. The in-
creased availability in multi-omics data measured for cancer pa-
tients now offers the possibility of defining more informed cancer
subtypes. Such a more fine-grained characterization of cancer sub-
types harbors the potential of substantially expanding treatment
options in personalized cancer therapy.
In this thesis, we identify comprehensive cancer subtypes using mul-
tidimensional data. For this purpose, we apply and extend un-
supervised multiple kernel learning methods. Three challenges of
unsupervised multiple kernel learning are addressed: robustness,
applicability, and interpretability. First, we show that regulariza-
tion of the multiple kernel graph embedding framework, which en-
ables the implementation of dimensionality reduction techniques,
can increase the stability of the resulting patient subgroups. This
improvement is especially beneficial for data sets with a small num-
ber of samples. Second, we adapt the objective function of kernel
principal component analysis to enable the application of multiple
kernel learning in combination with this widely used dimensional-
ity reduction technique. Third, we improve the interpretability of
kernel learning procedures by performing feature clustering prior to
integrating the data via multiple kernel learning. On the basis of
these clusters, we derive a score indicating the impact of a feature
cluster on a patient cluster, thereby facilitating further analysis
of the cluster-specific biological properties. All three procedures
are successfully tested on real-world cancer data. Comparing our
newly derived methodologies to established methods provides evi-
dence that our work offers novel and beneficial ways of identifying
patient subgroups and gaining insights into medically relevant char-
acteristics of cancer subtypes.
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Zusammenfassung

Krebs ist eine der häufigsten Todesursachen weltweit. Krebs
ist gekennzeichnet durch seine Komplexität, die zu vielen ver-
schiedenen genetischen und molekularen Aberrationen im Tumor
führt. Die Unterschiede zwischen Tumoren erfordern personalisierte
Therapien für die einzelnen Patienten. Die Krebssubtypen, die
derzeit zur Behandlungsplanung in der klinischen Praxis verwen-
det werden, basieren auf relativ wenigen, genetischen oder moleku-
laren Markern und können daher nur eine grobe Unterteilung
der Tumoren liefern. Die zunehmende Verfügbarkeit von Multi-
Omics-Daten für Krebspatienten ermöglicht die Neudefinition von
fundierteren Krebssubtypen, die wiederum zu spezifischeren Be-
handlungen für Krebspatienten führen könnten.
In dieser Dissertation identifizieren wir neue, potentielle Krebssub-
typen basierend auf Multi-Omics-Daten. Hierfür verwenden wir
unüberwachtes Multiple Kernel Learning, welches in der Lage ist
mehrere Datentypen miteinander zu kombinieren. Drei Heraus-
forderungen des unüberwachten Multiple Kernel Learnings wer-
den adressiert: Robustheit, Anwendbarkeit und Interpretierbarkeit.
Zunächst zeigen wir, dass die zusätzliche Regularisierung des
Multiple Kernel Learning Frameworks zur Implementierung ver-
schiedener Dimensionsreduktionstechniken die Stabilität der iden-
tifizierten Patientengruppen erhöht. Diese Robustheit ist besonders
vorteilhaft für Datensätze mit einer geringen Anzahl von Proben.
Zweitens passen wir die Zielfunktion der kernbasierten Hauptkom-
ponentenanalyse an, um eine integrative Version dieser weit ver-
breiteten Dimensionsreduktionstechnik zu ermöglichen. Drittens
verbessern wir die Interpretierbarkeit von kernbasierten Lernproze-
duren, indem wir verwendete Merkmale in homogene Gruppen un-
terteilen bevor wir die Daten integrieren. Mit Hilfe dieser Gruppen
definieren wir eine Bewertungsfunktion, die die weitere Auswertung
der biologischen Eigenschaften von Patientengruppen erleichtert.
Alle drei Verfahren werden an realen Krebsdaten getestet. Den
Vergleich unserer Methodik mit etablierten Methoden weist nach,
dass unsere Arbeit neue und nützliche Möglichkeiten bietet, um in-
tegrative Patientengruppen zu identifizieren und Einblicke in medi-
zinisch relevante Eigenschaften von Krebssubtypen zu erhalten.
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Chapter 1

Introduction

Many common diseases are not caused by mutations perturbing the function
of a single gene, but instead, exhibit various molecular aberrations and are
therefore called multifactorial or complex diseases. One group of them is
cancer, the second leading cause of death worldwide [163]. The most com-
mon types of cancer are lung and prostate cancer in males, and breast and
colorectum cancer in females [73]. Even though an estimated 30-50% of all
cases could be prevented by avoiding key risk factors, such as tobacco, al-
cohol and obesity [163], the worldwide overall incidence is increasing. The
number of new cases is predicted to increase from 18.1 millions in 2018 to
24.1 millions in 2030 [72]. At the same time, the number of cancer-related
deaths is expected to increase from 9.6 millions in 2018 to 13 millions in
2030. Moreover, it has been shown that cancer is overtaking heart disease
as the leading cause of death in several high-income countries [141]. Overall,
this shows that despite the improvements made in the medical and pharma-
ceutical sector, the treatment of cancer still poses a highly relevant, major
challenge.

In clinical practice, a tumor in a specific organ is usually classified based
on its stage and grade [8]. The most common staging scheme is the so-called
TNM system, where T describes the size and the location of the original
tumor, N reflects to which degree lymph nodes are affected, and M describes
whether the tumor has already formed metastases in distant body parts.
Other staging systems exist, e.g., for brain tumors and blood cancers, where
not all of the TNM factors apply. On the other hand, the grade of a tumor
is a histological measure describing the cellular appearance of the tumor. In
many cases, its grade correlates with the speed at which the tumor grows or
spreads, i.e., with its aggressiveness. Generally, the grade varies from 0, if
the tumor looks very similar to the healthy tissue, to 4, which indicates that
the tumor consists of poorly differentiated tissue. In addition to stage and
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2 Introduction

grade, known markers, which correlate with clinically relevant characteristics,
are considered to make treatment decisions for certain cancer types. Such
markers can be of different types, including proteins, DNA mutations, or
epigenetic characteristics. One example of a protein being used as a marker
is PSA, the prostate-specific antigen, which is measured for the detection
and classification of prostate cancer [5]. DNA mutations are considered for
instance in lung cancer, where specific mutations in the epidermal growth
factor receptor are used to determine the therapy of lung cancer patients [4].
An example of an epigenetic marker is the methylation status of the pro-
moter of the MGMT gene, which is used in glioblastoma to guide treatment
decisions [2]. For some cancer types, more complex markers are considered,
e.g., the PAM50 test, which is based on the expression of 50 selected genes,
distinguishes four clinically relevant subtypes of breast cancer [3, 106]. The
combination of stage, grade, and specific markers gives rise to a classification
of the tumors, which is used to determine prognosis and treatment.

In contrast to this rough classification based on a few pieces of infor-
mation, each tumor exhibits a complex landscape of genetic and molecular
aberrations. These changes are caused by a sequence of oncogenic events in-
cluding, e.g., genetic, epigenetic, and regulatory alterations [48]. As a result,
tumors that are similar in their phenotype and status of specific markers still
might vary strongly in their overall molecular composition. As the currently
employed classification is mainly based on histological features and a small
number of molecular features, large parts of this diversity are not captured,
and, consequently, not considered in treatment decisions. In contrast, mod-
ern personalized medicine aims at taking into account the molecular foun-
dation of a tumor [155]. One aspect of personalized medicine is the search
for cancer subtypes that are based on a combination of different molecular
data, instead of one individual data type. Diagnosing patients with specific
subtypes could translate into targeted, and therefore more effective, ther-
apies. The identification of such subtypes is facilitated by large consortia,
such as The Cancer Genome Atlas (TCGA), which accumulate molecular
data for large patient cohorts covering various cancer types. Publicly avail-
able measurements1 include, amongst others, gene expression, somatic mu-
tations, DNA methylation, protein expression, and miRNA expression. Due
to the interconnectedness of the different cellular mechanisms, the different
data types are correlated to a certain degree. However, different data types
can contribute complementary information, and hence, no individual data
type provides the complete information. Moreover, analyzing the different
data types jointly can reveal mechanisms in which multiple molecular cellu-

1https://dcc.icgc.org/projects/details

https://dcc.icgc.org/projects/details
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lar processes (measured by different data types) work in concert to generate
the observed outcome [15]. Overall, integrating multiple data types allows
accounting for combinatorial effects in cancer or – in other words – to ac-
count for a principle that was already formulated by Aristotle: “The whole
is greater than the sum of its parts.”

Objective of this work

The objective of this work is the development and extension of data integra-
tion methods to enable the identification of comprehensive cancer subtypes,
i.e, of subtypes identified using multi-omic data. This type of data is also
called multidimensional data and enables exploiting synergies and comple-
mentary information between the different data types. Therefore, the identi-
fied subtypes should reflect both weak signals that are consistent over multi-
ple data types and strong signals in individual data types. The integration of
different data types for subtype identification is motivated by the complexity
of cancer at the molecular level. For some cancer types, molecular signatures
that correlate with relevant clinical parameters have been identified based
on individual data types [104, 154]. However, analyzing a combination of
multiple data types can lead to comprehensive subtypes, which would pave
the way for more patient-specific therapy, implying higher effectiveness and
fewer side effects.

Integrating biological data types harbors a number of challenges. One
of them is that different data types might have different characteristics, for
instance, gene expression data tend to be Gaussian distributed while DNA
methylation data generally follow a bimodal distribution. Moreover, molec-
ular data can be high-dimensional, that is, a large number of features is
available. In biological settings, these features are often measured for a small
number of patients. For data fusion, in which multiple data types are con-
sidered, the number of features increases even further while the number of
patients remains the same or is even reduced if some patients lack measure-
ments for one or more data types. This combination of few samples with
many features leads to the so-called curse of dimensionality, a phenomenon
of increasing data sparsity in high dimensions [62, Section 2.5]. The spar-
sity represents a methodical challenge as it implies that Euclidean distances
between the samples all converge toward the same value, rendering some
approaches ineffective, such as nearest neighbor analysis [7]. Despite these
challenges, including additional data types into a biological analysis also
provides advantages. Overall, the use of several data sources with certain
degrees of pairwise correlations can reduce the influence of the noise that is
present in the experimental data. Furthermore, such an integrative analysis
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can provide a more detailed picture of the disease and help to understand
the involved processes.

Considering the described challenges, we chose multiple kernel learning
[54] for the data integration process. This class of methods provides substan-
tial flexibility due to the processing of each input data using specific kernel
functions, which can preserve characteristic properties of the respective data
type. As mentioned above, this work aims at further increasing the usability
of multiple kernel learning in biological settings by addressing different chal-
lenges, namely robustness, applicability, and interpretability. Each of the
approaches presented in this thesis was implemented and evaluated on real-
world data with respect to the biological relevance of the identified subtypes.

Thesis outline

Chapter 2 introduces the relevant background, starting with the biological
aspects. Section 2.1 discusses cancer and its relationship to the molecular
landscape of the cell. Subsequently, the methodical basis of this thesis is
presented, which includes the general idea of machine learning and kernel
methods, as well as the extension to multiple kernel learning (Section 2.2).
Established dimensionality reduction and clustering methods are introduced
in Section 2.3 and 2.4, followed by methods to evaluate clustering results
according to both mathematical and biological criteria (Section 2.5). The
chapter ends with Section 2.6, which provides an overview of related work
in the field of cancer subtyping, as well as general methods that have been
proposed for unsupervised data integration.

Chapter 3 is concerned with increasing the robustness of an existing multi-
ple kernel learning framework, which supports the implementation of various
dimensionality reduction schemes. After a short overview of the procedure
and related approaches (Section 3.1), Section 3.2 describes the methods and
the added regularization. Section 3.3 discusses the application of a specific
multiple kernel dimensionality reduction scheme to real-world cancer data
sets, showing the usefulness of the extended approach.

Chapter 4 focuses on a multiple kernel implementation of principal com-
ponent analysis. Section 4.1 motivates the interest in this particular dimen-
sionality reduction technique. Section 4.2 and Section 4.3 demonstrate the
mathematical limitations of multiple kernel principal component analysis in
the graph embedding framework and in general. In Section 4.4, we propose a
gain function as an alternative to the traditional objective function for princi-
pal component analysis and show results for this gain function in comparison
to standard approaches.

Chapter 5 addresses the problem of interpretability for multiple kernel
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learning. Section 5.1 provides an introduction on the problem and current
approaches aiming at better interpretability of clustering results. Section 5.2
introduces the idea of feature clustering in combination with multiple kernel
learning. Section 5.3 presents the methodology and introduces a score that
can be used to identify groups of features having high importance for a spe-
cific patient cluster. The results for cancer data sets, given in Section 5.4,
show that this approach enables the extraction of meaningful hypotheses for
the identified patient subgroups.

Chapter 6 completes this thesis with a summary of the methodological
advances in the field of unsupervised data integration. Results and biological
findings of this work are summarized before highlighting potential future
directions for cancer subtyping.





Chapter 2

Background

This Background chapter summarizes the underlying biological and method-
ological concepts that are necessary to understand the approaches presented
in Chapter 3, 4, and 5. Section 2.1 starts with an overview of tumor forma-
tion followed by a summary of the molecular data types measured for cancer
patients. Section 2.2 provides a general introduction to machine learning
and kernel methods, which form the methodological foundation of this the-
sis. Section 2.3 introduces the concept of dimensionality reduction and two
specific algorithms before presenting graph embedding, a general framework
that can implement different dimensionality reduction schemes. Clustering
approaches, which will later be used to identify groups of cancer patients, are
presented in Section 2.4, followed by an overview of different approaches for
the evaluation of clustering results in Section 2.5. The Background chapter
ends with a review summarizing related work in the field of cancer subtyping
and data integration.

2.1 Biological background

2.1.1 Development of cancer

Cancer can arise from different cells in the human body (for instance epithe-
lial cells) that divide uncontrollably. In solid tissue, cancer manifests as a
tumor, or a neoplasm, which describes a center of mass formed by the body’s
own cells. Tumors are classified as benign (i.e., noncancerous) or malignant
(i.e., cancerous). The latter invade neighboring tissue and can form distant
metastases, which are secondary tumors caused by the spread of cells from
the primary tumor through the body [35]. There are also different types of
blood cancers, which generally do not form a solid tumor but are also charac-
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8 Background

terized by an uncontrolled growth of abnormal cells, in this case blood cells
or their progenitors. Besides being named according to their primary site
(e.g., lung or breast), tumors are classified based on their cell type of origin.
The most common cancer categories are carcinoma (growth from epithelial
cells), sarcoma (growth from connective tissue including muscles, bones, etc.),
myeloma (growth from the plasma cells of bone marrow), leukemia (growth
from the bone marrow), and lymphoma (growth from glands or cells of the
lymphatic system) [161].

Regardless of the cell type and organ of origin, cancer cells often share
a number of properties. Hanahan and Weinberg [58, 59] summarized them
in the so-called hallmarks of cancer, which are illustrated in Figure 2.1.
First, Hanahan and Weinberg [58] identified six different characteristics: (i)
sustaining proliferative signaling, (ii) evading growth suppressors, (iii) resist-
ing cell death, (iv) enabling replicative immortality, (v) inducing angiogene-
sis, and (vi) activating invasion and metastasis. In a follow-up work, Hana-
han and Weinberg [59] extended this original set by two additional cancer
hallmarks, which are deregulating cellular energetics, and avoiding immune

Figure 2.1: The second generation of the hallmarks of cancer identified
by Hanahan and Weinberg [59] together with selected drugs targeting the
respective characteristics (license #4477730950179, see Table B.1).
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destruction. Together, these hallmarks enable the cancer cell population
to grow without being controlled by the standard cellular mechanisms, e.g.
apoptosis or cell cycle arrest. The same authors proposed two additional
characteristics that help the cell acquiring the aforementioned hallmarks.
These characteristics are (i) genome instability and mutation, and (ii) tumor-
promoting inflammation. Genome instability is prevented in a healthy cell
by a maintenance machinery, which repairs or inactivates damaged DNA.
If this machinery is defective, the mutation rate increases, which leads to
instability of the genome. In this case, a large number of stochastic DNA
mutations can accumulate, some of which eventually lead to the formation
of one or more of the aforementioned cancer hallmarks [103]. For instance,
mutations in TP53 can degrade the ability of the encoded protein (p53) to
trigger apoptosis as a response to cellular stress.

This explains why tumors are so diverse, even when originating from the
same tissue and cell type: the transformation of a healthy cell into a cancer
cell is a multi-step process in which hallmarks can be acquired at different
time points via different mechanisms. Even for specific subgroups of cancer
types, various driver genes have been identified. For example, the majority
of cases of hereditary breast cancer can be attributed to mutations either in
the BRCA1 gene, or in the BRCA2 gene, however, a minority of cases cannot
be linked to any of the two genes [49]. In addition, there is a multitude of
aberrations that can affect a single driver gene for a specific type of cancer.
For example, the ClinVar archive for clinically relevant variants [83] lists
several thousands of different mutations for BRCA1 and BRCA2 with varying
clinical significances for breast cancer. The complexity of cancer is further
increased by the large number of possible combinations of oncogenic events
happening on different levels of the cell, which include genetic, epigenetic,
and regulatory events. Characterizing tumors on the genetic and on the
molecular level is hence a challenging yet relevant task. Research consortia
such as The Cancer Genome Atlas and the International Cancer Genome
Consortium [75] have been founded with the goal of systematically charting
cancer heterogeneity by collecting cancer data from large patient cohorts.
These data will be described in the next section.

2.1.2 Molecular data

Real-world cancer data sets comprise for each patient a number of different
molecular data types. These data cover genomic, epigenomic, and transcrip-
tomic measurements. Previous studies could show correlations between these
data and the outcome of a patient, e.g., recurrence, or response to treatment.
In the following, we will shortly introduce the different data types that were
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available in the data sets used in our analysis and their relevance to oncoge-
nesis and tumor progression.

Gene expression Gene expression belongs to the field of transcriptomics.
While in general every cell contains the same genetic material, gene expres-
sion varies widely between cells and is measured by the number of copies of
messenger RNA (mRNA) that are synthesized via transcription. For a given
DNA segment representing, e.g., a gene or a regulatory element, expression
differences in healthy cells occur, for instance, due to tissue specificity or due
to time [165]. Nevertheless, some general trends have been observed, which
distinguish gene expression profiles of cancer cells from those of healthy cells.
First, tumor cells generally overexpress oncogenes, which are genes that are
related to functions such as cell-cycle progression or apoptosis inhibition [95].
At the same time, tumor suppressor genes, which are mainly genes inhibit-
ing cell proliferation, e.g., via DNA repair or cell-cycle control, are often
silenced in tumor cells [95]. Despite these common trends, gene expression
profiles vary between cancer patients. Exploiting the differences between
patients, van de Vijver et al. [152] were able to train a supervised model
affording a more accurate prognosis for breast cancer patients on the ba-
sis of the expression of 70 genes than using clinical and histological data.
Perou et al. [110] identified subtypes of breast cancer (Luminal A, Luminal
B, HER2-enriched, and Basal-like) using unsupervised analysis of gene ex-
pression data. Subsequently, a set of 50 genes (PAM50) was identified whose
expression can be used to predict these subtypes accurately [106]. For various
other cancer types, gene expression subtypes were also shown to add valuable
insights, which could not be retrieved from the available clinical data. For
gliomas, unsupervised analysis of cancer patients based on gene expression
data resulted in patient groups having a higher correlation with survival than
histology-based subtypes [56]; Verhaak et al. [154] defined four subtypes of
the aggressive brain tumor glioblastoma (Proneural, Neural, Classical, and
Mesenchymal subtype) that differ significantly concerning their response to
treatment; Chung et al. [34] defined four gene expression subtypes of head
and neck squamous cell carcinoma that differ significantly in their recurrence-
free survival (i.e., the time to disease relapse or death).

The following sections introduce miRNA expression, copy number alter-
ations, and DNA methylation, all of which are influenced by the expression of
specific genes, such as DNA polymerase, and DNA methyltransferase. Vice
versa, the expression of a gene is influenced by its copy number and regulatory
processes. These regulatory processes can be induced by DNA methylation
or miRNA expression, as will be described in the respective sections.
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miRNA expression Like gene expression, miRNA expression levels are
transcriptomic characteristics of the cell. microRNAs (miRNAs) are non-
coding RNA fragments of 19-25 nucleotides length. By sequence comple-
mentarity, a miRNA can bind to an mRNA and, thereby, induce post-
transcriptional silencing of the respective gene. In cancer cells, most miR-
NAs have low expression levels. This low abundance of miRNAs can be a
selective advantage for the respective cell given that miRNAs can help inac-
tivating oncogenes and inducing apoptosis. For instance, the miR-34 group
that comprises three miRNAs involved in apoptosis or cell-cycle arrest is of-
ten inactivated in cancer cells by DNA methylation [65]. There are some
exceptions, such as miR-21, which inactivates the tumor suppressor gene
PTEN, and is highly expressed in different cancer types including breast,
lung, prostate, and colorectal cancer [14]. Cancer type-specific miRNA ex-
pression patterns can be used to predict the tissue of origin more accurately
than gene expression data, which is particularly important for cancers of
unknown primary tissue [30]. Besides, differences in miRNA expression pro-
files exist between patients with the same cancer type (e.g., shown in lung
cancer [97]). Therefore, miRNA expression data were included in integra-
tive subtype identification approaches, e.g., a correlation between miRNA
subtypes and gene expression subtypes was reported for breast tumors [146].

Copy number alterations Copy number alterations belong to the field
of genomics, as this term directly refers to the DNA that is available in the
cells. Human cells are usually diploid, i.e., they contain two copies of the
DNA with the exception of the sex-determining chromosomes in men. Copy
number alterations are structural variations in the genome, comprising dupli-
cations and deletions, that lead to either more or fewer than two copies of a
DNA segment. A copy number alteration is usually related to the expression
level of the gene in which it occurs, copy number aberrations in regulatory
regions can even influence the expression of sets of genes. While copy num-
ber alterations do not necessarily lead to an altered phenotype [171], copy
number alterations are so commonly observed in cancer genomes that this
structural instability is considered one of the characteristic features of cancer
(see Figure 2.1). This feature has been found to contribute to the hallmarks
of cancer in various ways, e.g., some cancer cells have an amplification of
the MCL1 and BCL2L1 anti-apoptotic genes, which helps the cancer cell to
evade apoptosis [20]. Although some cancer type-specific patterns occur [20],
even copy number profiles of patients with the same cancer type exhibit high
variance. In a study of small-cell lung cancer patients, copy number profiles
of circulating tumor cells could be used to predict chemosensitivity [29].
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DNA methylation DNA methylation is a heritable, epigenetic modifica-
tion of the DNA. The term describes the addition of methyl groups to the
DNA molecule. In contrast to the sequence of the DNA, methylation pat-
terns are dynamic and influenced by environmental factors, e.g., cigarette
smoking [87]. DNA methylation occurs predominantly in cytosines that are
part of a CpG dinucleotide with approximately 70-80% of CpGs being methy-
lated [22]. However, CpG islands, which are regions of DNA of at least 200
bases with a high frequency of CpG sites, generally exhibit a low abundance
of DNA methylation. CpG islands often overlap with promoter regions and
are subject to tissue-specific methylation [19]. The regulatory effect of the
modification on gene activity depends on the position of the methylation:
DNA methylation in promoter regions generally leads to the silencing of the
respective genomic region, while methylation of the gene body was found to
be positively correlated with expression [167].

Cancer cells often exhibit a global hypomethylation in comparison to
healthy cells, which can lead to chromosomal instability, thereby influenc-
ing the previously described copy number aberrations [45]. In contrast, high
levels of methylation were found in promoters of tumor suppressor genes
leading to their inactivation [46]. Because of its reversible character, DNA
methylation is being explored as a potential target for cancer therapy, for
example, aiming at inhibiting the methylation of promoter regions of tu-
mor suppressor genes [74]. Subtypes with distinct clinical outcomes were
identified for various cancer types using DNA methylation data, e.g., CpG
island methylator phenotypes were identified in colorectal cancer [151] and
in glioblastoma [104].

Overall, the considered cell properties interact in a complex machinery lead-
ing to a specific cellular phenotype. For example, a recent study reported that
resistance to the drug ABT-199 in lymphoma depends on mechanisms that
involve both genetic and non-mutational characteristics [175]. Due to their
mutual regulatory activities, one expects correlations between the respective
data types. Additionally, the different data types can harbor complementary
information, for example, gene expression can change due to epigenetic regu-
lation mechanisms (e.g., DNA methylation) or copy number variations. Data
integration methods should ideally be able to uncover concordant signals in
different data types and also include strong individual signals. Patients are
then not only differentiated by their gene expression profile, but also by the
mechanisms that influence this profile.
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2.2 Machine learning and kernel methods

Due to recent developments such as autonomous driving, personalized movie
recommendations, and robot assistants, there is a growing public interest
in machine learning. Applications in the medical field, such as evaluation
of electronic health records, diagnosis based on medical images, epidemic
outbreak prediction, or robotic surgery contribute to this trend [105, 84].
Being a diverse area, the general aim of machine learning methods can be
described as detecting patterns or drawing conclusions from given data.

The data consist of samples xi (e.g., patients), which are described by
features (e.g., genes). In certain scenarios, sample-specific labels or outcomes
yi (e.g., age or severity of the disease) are known. The field of machine
learning can roughly be divided into three different settings: (i) supervised
learning, where known outcomes yi for the samples xi are used to train the
model; (ii) unsupervised learning, where the outcome of interest yi is not
used when training the model; and (iii) semi-supervised learning, where the
outcome yi is known only for a subset of the samples xi.

For supervised learning, a training data set is given, which provides for
each sample xi (described by a set of features) a known outcome yi. Using
this data set, a model for predicting the label yi given the input xi is trained
via minimizing a loss function or objective function. A classical loss function
is the squared error loss

L = (ŷ − y)2 (2.1)

with ŷ being the model predictions that are compared to the real outcome
y [62, Chapter 2]. When training the model, there are parametric and non-
parametric approaches. In the parametric setting, ŷ is obtained as f(x),
where f is a function with a predefined shape (e.g., linear) whose parameters
are learned such that the given loss function L is minimized. Non-parametric
methods, on the other hand, do not assume a predetermined shape of f and
thus provide more flexibility. Moreover, supervised methods can be distin-
guished according to the type of outcome that they predict: Either classifi-
cation is performed, i.e., predicting a categorical outcome, or regression, i.e.,
predicting a quantitative outcome. An important question when evaluating
supervised learning methods is how well they generalize, i.e., how accurate
the learned relationship predicts the outcome for new, unseen samples. This
generalization ability should be tested on a data set that is disjoint from the
previously used training data set.

In contrast to supervised methods, unsupervised learning methods do
not use the outcome of interest in their optimization process. The main
goal of unsupervised learning is the analysis or discovery of structures in the
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data set. This can be achieved via dimensionality reduction, i.e., projecting
samples into a low-dimensional subspace with minimal loss of information
(Section 2.3), or clustering, i.e., identifying homogeneous groups of samples
(Section 2.4).

Semisupervised learning approaches are used for data sets in which only
a subset of samples has a known label yi. Information that is available for all
samples, e.g., their pairwise distances are combined with the available labels.
In this way, the partial information of the labels can guide the learning
process, which is not possible in unsupervised learning.

2.2.1 Kernel methods

Learning methods are often based on assumptions concerning the distribution
of the data, e.g., some methods expect linearity in the mapping function f or
convex compact clusters. However, in many cases these linearity assumptions
do not hold for the data as described by their available features. Kernel
functions provide one way of handling nonlinearity, e.g., in the boundaries
between the clusters. The use of kernel functions is best known in the context
of support vector machines, a supervised classification method [37], but they
were also integrated into other supervised and unsupervised methods [126,
127]. Intuitively, a kernel function provides the similarity of samples mapped
into a different (typically high-dimensional) feature space. Due to the change
of basis vectors, linear relationships in the feature space may correspond to
nonlinear relationships in the original data space. Consequently, a linear
model learned in the feature space can provide a nonlinear model in the data
space.

We consider a function φ : xi → φ(xi) that maps the data points into a
possibly infinite-dimensional feature space. If this function is chosen “wisely”,
the problem of interest will be easier (e.g., linear) in the feature space.
In many cases, the feature space is unknown or its construction is time-
consuming. Therefore, the kernel trick enables making use of this mapping
procedure in algorithms that can be formulated on the basis of inner products
between the samples instead of using the coordinates of the data points di-
rectly. In these cases, the kernel trick means that we can replace the original
inner product with the kernel function, which renders the explicit construc-
tion of the feature space obsolete. Applying a kernel function k to the data
points xi, xj only implicitly maps these data points into the feature space.
Nevertheless, the calculated kernel value is the inner product between two
projected points φ(xi) and φ(xj):

k(xi, xj) = 〈φ(xi), φ(xj)〉. (2.2)
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Kernel functions give rise to so-called kernel matrices, or Gram matrices,
defined by Kij := k(xi, xj). Kernel matrices are symmetric by construc-
tion, rotationally invariant, and capture all information of the input data
set that is relevant for the application of kernel-based algorithms. As kernel
matrices represent inner products, it can be shown that each kernel matrix
is positive semidefinite, i.e., for any vector v holds vTKv ≥ 0 [128]. Vice
versa, any kernel function that generates a symmetric positive semidefinite
kernel matrix can be decomposed into mapping the data into a Hilbert space
before calculating the inner product in that space, i.e., it can be used to
construct a Hilbert space with the reproducing property, a reproducing ker-
nel Hilbert space (RKHS). Further explanations and mathematical aspects
of this concept can be found in Schölkopf and Smola [125] and Shawe-Taylor
and Cristianini [128].

Radial basis kernel function (RBF) Given the large variety of appli-
cation scenarios for kernel methods, a multitude of kernel functions exist of
which many have been designed to exploit specific properties of certain data
types. The discussion here is limited to the popular RBF (or Gaussian) ker-
nel [25], which was used for the work in Chapter 3, 4, and 5. This kernel
function is defined by

k(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
= exp(−γ‖xi − xj‖2). (2.3)

The hyperparameter σ (or γ) influences the variance of the Gaussian, i.e.,
how fast kernel values decrease with increasing distance of the samples. In
general, for each sample xi holds that k(xi, xi) = 1. Consequently, in the
RKHS, each projected sample φ(xi) has a distance of unit length 1 to the
origin. Additionally, the mapped data points all lie in the same orthant, as
all kernel values (i.e., inner products) are positive, which corresponds to an
enclosed angle smaller than π/2 [125].

The RBF kernel is defined on real-valued data, however, there are kernel
functions for other data types, such as graph kernels [156, 132] or sequence
kernels [88]. Since the cancer patients in the data sets we used were described
by numerical data, these other types of kernels are not considered in this
thesis.

2.2.2 Multiple kernel learning

Kernel matrices have a number of closure properties that enable the construc-
tion of new kernels based on one or more known kernel matrices. Mathemat-
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ical operations that preserve the properties of positive semidefiniteness and
symmetry include addition and multiplication with a positive scalar [128].

Multiple kernel learning (MKL) uses this fact by optimizing a weight
vector β that linearly combines a set of input kernel matrices {K1, ..., KM}
to generate a unified ensemble kernel matrix K, such that

K =
M∑
m=1

βmKm, βm ≥ 0 ∀m ∈ {1, ...,M}. (2.4)

Consequently, a kernel approach can be extended to handle several kernels by
additionally optimizing the kernel weight vector β. The optimization is then
performed according to the objective function of the respective algorithm
subject to the additional constraints concerning the kernel weights.

There are different possibilities to generate the individual kernel matrices
that should be integrated via MKL. Chapter 3 and 4 present results where
each kernel matrix is generated on all features of one specific data type.
Chapter 5 extends this idea by using different sets of features to generate
multiple kernel matrices per data type.

Centering data in the RKHS Equivalently to the mean in the original
space, the mean vector, or center of mass, in the RKHS is defined as

φ(X) =
1

N

N∑
i=1

φ(xi). (2.5)

Consequently, the data can be centered in the RKHS by moving the mean
to the origin. As shown in the following, this can be done implicitly by
exploiting the fact that the kernel function k(a, b) calculates the inner product
of φ(a) and φ(b), with a and b being two arbitrary data points.

kc(a, b) = 〈φc(a), φc(b)〉 =
〈
φ(a)− φ(X), φ(b)− φ(X)

〉
=

〈
φ(a)− 1

N

N∑
i=1

φ(xi), φ(b)− 1

N

N∑
i=1

φ(xi)

〉

= k(a, b)− 1

N

N∑
i=1

k(a, xi)−
1

N

N∑
i=1

k(b, xi) +
1

N2

N∑
i,j=1

k(xi, xj) (2.6)

Unlike the uncentered kernel matrix K, the centered kernel matrix Kc con-
tains negative entries and has a row, column, and matrix mean of zero.
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Spectral normalization of the data in the RKHS The norm of a data
point that is mapped into the RKHS φ(a) can be calculated by

‖φ(a)‖2 =
√
〈φ(a), φ(a)〉 =

√
K(a, a). (2.7)

This equation facilitates different normalizations of the kernel matrix. We use
the spectral normalization, which ensures that the distances of the samples
to the origin in the RKHS are equal to one.

knorm(a, b) =

〈
φ(a)

‖φ(a)‖2

,
φ(b)

‖φ(b)‖2

〉
=

〈φ(a), φ(b)〉
‖φ(a)‖2 ‖φ(b)‖2

=
k(a, b)√

k(a, a)k(b, b)
(2.8)

The normalized kernel matrix Knorm has a variance of N , the number of
samples, as can be seen by the diagonal entries, which are set to one when
applying Equation (2.8).

When integrating multiple kernel matrices, each kernel matrix is nor-
malized to avoid arbitrary differences in variance, which would influence the
optimization of the kernel weights. For the application of all approaches
that are presented in the following chapters, the kernel matrices were first
centered using Equation (2.6) and then normalized using Equation (2.8).

2.3 Dimensionality reduction

Data available for machine learning in medical settings often have more fea-
tures than samples, i.e., the samples are distributed in a high-dimensional
space. In particular for cases where the number of features is much larger
than the number of samples (short: p � N), the curse of dimensionality
results in sample sparsity, which makes local neighborhoods hard to iden-
tify [62, Section 2.5]. The challenging situation of the curse of dimensionality
is commonly remedied by performing feature selection. Feature selection has
the purpose of reducing the total number of features as much as possible while
retaining most of the information in the data, i.e., uninformative features are
discarded and informative ones are kept in the data set. Alternatively, di-
mensionality reduction procedures identify a low-dimensional subspace into
which the data are projected while keeping the loss of information as small as
possible. Dimensionality reduction can be used as a preprocessing step before
applying the algorithm of interest or for visualization purposes. The approach
can be performed in a supervised manner (i.e., including the knowledge of
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all sample labels), in an unsupervised manner (i.e., not including any infor-
mation on the sample labels), or in a semi-supervised manner (i.e., including
the knowledge of some of the sample labels). Depending on the availability
of labeled data, on the aim of the analysis, and on the assumptions about
the data, different parts of the structure in the data need to be preserved.
This gives rise to a number of dimensionality reduction schemes based on
different objective functions. In the following sections, the two unsupervised
approaches locality preserving projections [63] and principal component anal-
ysis [109] will be discussed. Both operate by optimizing a set of new basis
vectors according to the respective objective function. The data are pro-
jected onto these basis vectors using a mapping function. Dimensionality
reduction is achieved by reducing the number of basis vectors. In both ap-
proaches, new data points can still be easily included after the optimization,
in contrast to other methods, where the mapping function is not known (e.g.,
t-distributed stochastic neighbor embedding [153]). The inability to project
unseen samples into the same space is often referred to as the out-of-sample
problem. Dimensionality reduction methods depend on a parameter p, which
is the number of dimensions that is used for the projection. Usually, the user
has to choose a reasonable value either according to practical reasons (for
instance if the dimensionality reduction is performed for visualization), prior
knowledge, or a heuristic such as the elbow method [6]. In the following sec-
tions, we will mainly formulate the dimensionality reduction methods using
a projection vector, i.e., p = 1. However, projection into a multidimensional
space is possible by optimizing a projection matrix.

2.3.1 Locality preserving projections

As the name suggests, locality preserving projections (LPP) [63] is a method
that projects the data points into a subspace with the aim of preserving local
structures. Locality is defined on the basis of neighborhood graphs in which
two neighboring data points are connected by an edge. To construct the
graph He and Niyogi [63] propose to use either ε-neighborhoods (i.e., two
nodes xi and xj are neighbors if ‖xi − xj‖2 < ε) or k-nearest neighbors (i.e.,
two samples xi and xj are neighbors if xi is among the k data points that are
closest to xj or vice versa). However, other neighborhood graphs are possible
depending on the data of interest. Irrespective of its construction, the aim
of the approach is the preservation of the defined neighborhood graph. The
weight wij of the edge connecting xi and xj can also be set in different ways:
either in a uniform manner where the weight for each existing edge wij is set
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to 1, or by using a heat kernel1 wij = exp
(
−‖xi−xj‖

2

t

)
, which considers the

squared euclidean distance between xi and xj and depends on the parameter
t. The weights between non-connected (non-neighboring) nodes are always
zero, resulting in a sparse symmetric weight matrix W of size n×n. The first
basis vector v for the projection optimizes the following objective function

arg min
v

∑
i,j∈N

(vTxi − vTxj)2 Wij

subject to
∑
i

(vTxi)
2Dii = 1, (2.9)

with Dii =
∑

jWij, which is the degree of sample xi in the neighborhood
graph. Intuitively, the objective function penalizes two neighbors with a high
edge weight Wij being projected far away from each other while imposing
no restrictions on the projection of non-neighboring points. The constraint
is necessary to avoid the trivial solution of obtaining the minimal sum of
distances by projecting each point to the origin.

The solution of Problem (2.9) are the eigenvectors corresponding to the
smallest eigenvalues for the generalized eigenvalue problem:

XLXTv = λXDXTv, (2.10)

with L = D −W being the Laplacian matrix and λ the corresponding gen-
eralized eigenvalue.

This approach results in a linear projection of the data points, that is,
proj(xi) = vTxi. Using the kernel trick, LPP can be conducted in the repro-
ducing kernel Hilbert space, thereby facilitating nonlinear projections. The
results of kernel LPP are equivalent to those obtained by Laplacian Eigen-
maps [16]. However, as opposed to Laplacian Eigenmaps, LPP affords also
projecting new samples into the learned space because LPP generates the
actual projection vectors, and not just the new coordinates of the projected
samples.

2.3.2 Principal component analysis

Principal component analysis (PCA) [109] can be used for dimensionality
reduction. The data points are transformed from the original coordinate
system into a new orthogonal basis spanned by the principal components.

1He and Niyogi [63] use the term heat kernel, which is motivated from the physical
process of heat diffusion over time t. As we can see in their definition, it is equivalent to
the RBF kernel with t = 2σ2 (cf. Formula 2.3).



20 Background

The first principal component is the axis along which the data points have
the highest variance, with the variance of a random variable X being defined
as Var(X) = E[(X − E(X))2]. The first principal component v optimizes

arg max
v

Var(Xv), ‖v‖ = 1, (2.11)

with X ∈ RN×d being the data matrix describing N samples and d features.
Subsequent principal components are orthogonal to each other and sorted by
decreasing variance in the samples. The first p principal components are the
eigenvectors associated to the p largest eigenvalues of the sample covariance
matrix. The respective eigenvalues give the variance in each of these compo-
nents. The objective function of PCA is motivated by the assumption that
the directions with the smallest variance mainly represent noise. Therefore,
a projection that only uses the first p principal components, with p being
smaller than the original dimensionality of the data, will still contain large
parts of the (biologically) meaningful variation. As a consequence of this
choice of projection basis vectors, the reconstruction error, which is the sum
of the euclidean distances between each data point xi and its projection vTxi,
is minimized. In contrast to LPP, which preserves local structures, PCA is a
global dimensionality reduction method since the variance is a global char-
acteristic of all data points combined.

As for LPP, a kernel version of PCA exists, which identifies the directions
of maximum variance in the reproducing kernel Hilbert space [127]. PCA can
thus be used for linear, kernel PCA for nonlinear projections.

2.3.3 Graph embedding

The dimensionality reduction methods described above optimize distinct ob-
jective functions with different constraints. Yan et al. [166] showed that many
dimensionality reduction approaches can be formulated under the common
framework of so-called graph embeddings. The graph embedding framework
affords a straightforward implementation of dimensionality reduction meth-
ods that only requires adjusting two parameters. These parameters are an
adjacency matrix W defined by a similarity graph G, and a constraint matrix
D (or W ′), which will be described in the following.

Assume G being an undirected similarity graph with edge weights W ,
which reflect similarities that are to be preserved. Then, the projection
vector v (for the projection into a one-dimensional subspace) or the projection
matrix V ∈ Rd×p (for the projection into p dimensions) is optimized based
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on the following graph-preserving criterion:

arg min
v

N∑
i,j=1

‖vTxi − vTxj‖2wij (2.12)

subject to
N∑
i=1

‖vTxi‖2dii = C, or (2.13)

N∑
i,j=1

‖vTxi − vTxj‖2w′ij = C (2.14)

with C being a positive constant. Equations (2.13) and (2.14) are two al-
ternative constraints used for different dimensionality reduction techniques.
These constraints are either based on penalty graph G′ with edge weights W ′

representing similarities that are to be suppressed in the learned projection
or on a diagonal matrix D for scale normalization. The minimization prob-
lem preserves the given graph structure because pairs of data points with
high similarity wij are forced to be projected close together. At the same
time, smaller and especially negative similarities cause larger distances in the
resulting projections.

As mentioned above, the choice of adjacency matrix W and constraint
matrix D (or W ′) determines the dimensionality reduction scheme that is
implemented. For the methods used in this work, the respective matrices are
listed in Table 2.1. The formulation of LPP is based on either one of the
two neighborhood graphs introduced in Section 2.3.1, while PCA is based
on a complete graph with uniform weights reflecting the global optimization
criterion. Furthermore, both methods are formulated using a diagonal matrix
D in the constraint for scale normalization.

2.3.3.1 Nonlinear extension of graph embedding

In Formula (2.12), dimensionality reduction is achieved by linear projection
of the data point, i.e., proj(xi) = vTxi. Extending the formulation using the
kernel trick enables the optimization of nonlinear projections. The kernel
trick corresponds to implicitly mapping the samples into a RKHS using a
function φ : xi → φ(xi) (see Section 2.2). It can be shown that the optimal
projection vector v lies in the span of the data points, the projection vector v
can thus be represented as a weighted linear combination of the data points
in the RKHS, i.e.,

v =
N∑
n=1

αnφ(xn), (2.15)
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Table 2.1: Similarity and constraint matrices for different dimensionality
reduction schemes in the graph embedding framework. Nk(xi) represents
the set of the k nearest neighbors of sample xi.

Algorithm Similarity matrix Constraint matrix

LPP

wij =

{
s, if ‖xi − xj‖2 < ε

0, else, or

wij =

{
s, if xi ∈ Nk(xj) ∨ xj ∈ Nk(xi)
0, else

with s = 1 or s = exp
(
−‖xi−xj‖2

t

)
dii =

∑
i 6=j wij

PCA wij =

{
1
N
, if i 6= j

0, else
dii = 1

where α is the sample coefficient vector for the specific projection vector v.
As the kernel matrix consists of the pairwise inner products of points in the
RKHS, i.e., Kij = φ(xi)

Tφ(xj), Equation (2.15) can be used to formulate the
projection of a point xi into a one-dimensional space using only the kernel
matrix as follows:

proj(xi) =

(
N∑
n=1

αnφ(xn)

)T

φ(xi) = αTKi (2.16)

with Ki being the ith column of the kernel matrix K. Consequently, nonlin-
ear sample projections can be obtained by kernelization of the graph embed-
ding framework as follows:

arg min
α

N∑
i,j=1

‖αTKi − αTKj‖2wij

subject to
N∑
i=1

‖αTKi‖2dii = C, or

N∑
i,j=1

‖αTKi − αTKj‖2w′ij = C (2.17)

with
α = [α1 · · ·αN ]T ∈ RN . (2.18)
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Using the definition of the Laplacian matrix L of a graph, L = D − W
with dii =

∑
j wij and W being the adjacency matrix as defined before, the

objective function can be reformulated as

N∑
i,j=1

‖αTKi − αTKj‖2wij = 2

(
N∑
i=1

αTKidiiK
T
i α−

N∑
i,j=1

αTKiwijK
T
j α

)

= 2
(
αTK(D −W )KTα

)
= 2αTKLKTα. (2.19)

Including the first of the two alternative constraints, this leads to the opti-
mization problem

arg min
α

αTKLKTα

subject to αTKDKTα = C. (2.20)

A widely used strategy for solving constrained optimization problems is the
Lagrangian function and Karush-Kuhn-Tucker conditions (further details can
be found in [23, Appendix E]). In the considered setting, the corresponding
Lagrangian function and the derived Karush-Kuhn-Tucker conditions show
that the problem can be solved via the generalized eigenvalue problem

KLKTα = λKDKTα. (2.21)

The optimal sample coefficient vector α is the generalized eigenvector asso-
ciated with the minimum generalized eigenvalue. In general, projections into
p-dimensional spaces are achieved using the eigenvectors that correspond to
the p smallest generalized eigenvalues.

2.3.3.2 Multiple kernel extension of graph embedding

The kernelized version of the constrained optimization problem (2.17) can be
extended to integrate several kernel matrices via multiple kernel learning [92].
Replacing the kernel matrix in the optimization problem with the ensemble
kernel matrix (cf. Formula 2.4) yields the following optimization problem:

arg min
α,β

N∑
i,j=1

‖αTK(i)β − αTK(j)β‖2wij

subject to
N∑
i=1

‖αTK(i)β‖2dii = C or
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N∑
i,j=1

‖αTK(i)β − αTK(j)β‖2w′ij = C

βm ≥ 0, m = 1, 2, ...,M. (2.22)

where

β = [β1 · · · βM ]T ∈ RM , (2.23)

K(i) =

K1(1, i) · · · KM(1, i)
...

. . .
...

K1(N, i) · · · KM(N, i)

 ∈ RN×M . (2.24)

This problem requires the optimization of two entities, the projection vector
α (or more generally the projection matrix A ∈ RN×p for reduction into p
dimensions) and the kernel weight vector β. This is often achieved via coor-
dinate descent, which iteratively optimizes the two variables in an alternating
manner [92].

2.4 Clustering

Unlike dimensionality reduction, which aims at projecting samples into a low-
dimensional space, clustering is the task of identifying groups of samples in
the data. Generally, each cluster should have high intra-cluster similarity and
high inter-cluster dissimilarity. If both properties are fulfilled, the clusters
are described as dense and well-separated.

2.4.1 K-means clustering

Given a data matrix X ∈ RN×d describing N samples xi with d features.
K-means [61] is a widely used algorithm that identifies K clusters, which are
sets of samples C = {C1, ..., CK}, by minimizing the objective function

arg min
C

K∑
k=1

∑
xi∈Ck

‖xi − µk‖2 (2.25)

with µk representing the mean of cluster Ck. The number of clusters K is
a hyperparameter that needs to be set a priori by the user. Intuitively, k-
means learns cluster memberships such that the within-cluster scatter, which
is defined using the euclidean distance, is minimized. Since the optimiza-
tion problem is computationally difficult, an iterative, local heuristic (i.e., a
greedy approach) is used. The heuristic repeats the following two steps:
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1. identify the cluster means (in the first step at random, later according
to the current cluster assignment of the samples),

2. assign each sample to the cluster whose mean is closest to the sample.

Due to the greedy approach, the random initialization of the cluster means in
Step 1 might result in different locally optimal cluster assignments. There-
fore, the procedure is usually repeated several times in order to find the
global optimum of the objective function.

Due to the euclidean distance in the objective function, the approach fa-
vors spherical clusters of approximately the same size, while it is not suited for
long, snake-like clusters or clusters that strongly differ in size. To deal with
this limitation when using k-means, one can apply a nonlinear dimension-
ality reduction method beforehand. Alternatively, kernel k-means clusters
the samples after projection in the RKHS, analogous to previously discussed
applications of the kernel trick [126].

2.4.2 Fuzzy c-means clustering

Similar to k-means, fuzzy c-means [44, 21] identifies K cluster centers µk.
However, instead of learning a binary cluster assignment (also called hard
clustering), where each sample is assigned to exactly one cluster, a fuzzy
clustering is generated. In a fuzzy clustering, each sample xi has a mem-
bership probability for each cluster Ck, the so-called degree of membership
ui,k. These probabilities are obtained by minimizing the following objective
function:

arg min
U,µ

N∑
i=1

K∑
k=1

ufi,k‖xi − µk‖
2

subject to
K∑
k=1

ui,k = 1 ∀i

ui,k ≥ 0 ∀i, k
N∑
i=1

ui,k > 0 ∀k. (2.26)

The resulting U is a matrix of size N × K containing the degrees of clus-
ter memberships ui,k. The result depends on f ≥ 1, a parameter of the
method that controls the degree of fuzzification. Choosing f = 1 results in
a hard clustering of the samples, i.e., ui,k ∈ {0, 1}, whereas choosing f →∞
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results in uniform cluster probabilities ui,k = 1/K for all samples xi and clus-
ters Ck. Similar to k-means, the optimization problem is solved by a local
optimization heuristic, such that the algorithm might return a local opti-
mum. Repeating the method multiple times generates more stable results.
In contrast to k-means, fuzzy clustering provides additional information on
the reliability of the cluster assignment for each sample. A measure that
quantifies “confidence” in sample-to-cluster assignments is particularly rele-
vant for studies in which the expected clusters are unlikely to show a clear
separation, e.g. subgroups of patients with the same cancer type.

2.5 Cluster evaluation

Since clustering is an unsupervised method, external labels are not available
to validate the identified clusters. For this reason, a number of methods
have been developed to assess the quality of a clustering. One approach is to
re-use the same information that was used for clustering, i.e. the distances
or similarities between the samples, resulting in so-called internal evaluation
methods (Section 2.5.1). External methods leverage additional information
that presumably correlates with the outcome of interest, e.g., survival data
(Section 2.5.2). Finally, enrichment methods can be applied to sets of features
that are relevant for a cluster to obtain a biologically meaningful interpreta-
tion of the clustering (Section 2.5.3).

2.5.1 Internal cluster evaluation measures

Internal measures evaluate a given clustering on the basis of the data that
were used for the clustering process itself. Pairwise sample similarities can
be separated into intra-cluster and inter-cluster similarity, depending on the
cluster assignments of the respective samples. A classical measure, which
uses this information to quantify how dense and how separated the different
clusters are, is the silhouette score (Section 2.5.1.1). Another important prop-
erty of a result is its robustness, which describes how similar the clusterings
identified on slightly modified data sets are. This property can be evaluated
using a cross-validation technique (Section 2.5.1.2), as applied in Chapter 3.
Even though it is not a traditional internal cluster evaluation approach, we
discuss cross-validation in this section since no external information, such as
class labels, is used for its application.
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2.5.1.1 Silhouette value

Given a cluster assignment, the silhouette score Si [121] indicates how similar
a sample xi is to all samples that are assigned to the same cluster compared
to all samples in the neighboring cluster. The score is calculated by

Si =
b(i)− a(i)

max{a(i), b(i)}
∀i : Si ∈ [−1, 1], (2.27)

where a(i) denotes the average dissimilarity of xi to all other samples in the
same cluster and b(i) denotes the average dissimilarity of xi to all samples
in the neighboring cluster. Here, the neighboring cluster is defined as the
one with the lowest dissimilarity to the considered sample xi. In general, the
higher the silhouette value, the higher is the quality of this cluster assignment:

Si > 0 =⇒ a(i) < b(i) (good cluster assignment) (2.28)

Si = 0 =⇒ a(i) = b(i) (2.29)

Si < 0 =⇒ a(i) > b(i) (bad cluster assignment) (2.30)

Calculating the average silhouette score over all samples

Si =
1

N

N∑
i=1

Si (2.31)

quantifies how dense and how well separated the identified clusters are.
In Chapter 3 and 4, the silhouette score is used for identifying the number

of clusters in the data set, i.e., we vary the number of clusters K for the
clustering process and choose K such that the average silhouette score Si is
maximized.

2.5.1.2 Cross-validation

In supervised learning, overtraining or overfitting refers to a phenomenon
where an algorithm fits very closely the data set on which it was trained, but
lacks the ability to generalize on unseen data. Since no labels are used, clus-
tering is not prone to overtraining. However, it is possible that a clustering
result was obtained by chance and that slight variations in the training data
or in the parameter setting lead to completely different results. Therefore, it
can be reasonable to assess the stability of the obtained cluster assignment
with respect to small changes in the clustering scenario. For this purpose, we
apply the concept of K-fold cross-validation (CV), a method widely used in
supervised learning to estimate the test error [62, Section 7.10], and combine
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it with the Rand index, which measures similarity between two clusterings
(see Section 2.5.2.1).

To mimic the existence of independent training and test sets, CV splits
the complete data set into K disjoint parts of roughly the same size. Then,
K − 1 parts are used as training data while one part is left out and serves as
independent test data to assess the performance of the trained model. This
procedure is repeated K times such that each part was used once as test set.
The cross-validation error can then be calculated based on all samples:

CV(f) =
1

N

N∑
i=1

L(yi, f
−ki(xi)), (2.32)

with L being the loss function, yi the known label for sample xi, and f−ki(xi)
the prediction for sample xi of the model trained without the partition ki
that contains sample xi. This approach provides an estimation of the gen-
eralization error even when no separate test set is available. In the special
case where K, the parameter determining into how many parts the data set
is split, equals N (the total number of samples), the approach is also called
leave-one-out cross-validation (LOOCV).

In order to evaluate the robustness of a clustering method, we apply
LOOCV by leaving out one sample for the clustering procedure and assign-
ing it afterwards to the cluster with the mean closest to the respective sample.
Analogous to supervised learning, the test point was not involved in learning
the model, i.e., learning the cluster centers, still, we obtain a cluster assign-
ment for this sample. In this scenario, there are no labels y available to
calculate the cross-validation error. Therefore, we also generate a clustering
of the complete data set without leaving out any sample. This cluster as-
signment of the full data set is then compared to each LOOCV clustering
result using the Rand index, a measure quantifying the similarity between
two clustering assignments (see Section 2.5.2.1). These comparisons of the
LOOCV result and the full clustering indicate how strong the results vary
when they are based on slightly different training sets.

2.5.2 External cluster evaluation measures

Instead of evaluating the clustering based on the structure in the data, ex-
ternal measures use additional information to assess the quality of a cluster
assignment. This approach is reasonable even if the external information
used is not exactly the outcome of interest, as long as a correlation to the
outcome of interest is expected. For instance, one would assume a correlation
between reasonable cancer subtypes and the survival times of the patients.



2.5 Cluster evaluation 29

Furthermore, external measures can be used to compare different clustering
results, e.g., to show an overlap with previous results or the robustness of
the clustering method.

2.5.2.1 Rand index

The Rand index [114] measures pairwise cluster similarity. The Rand index
is an adaptation of the accuracy measure [99], which is a commonly employed
model performance measure in supervised learning:

acc =
TP + TN

TP + TN + FP + FN
(2.33)

with TP being the number of correctly predicted positive samples, TN the
number of correctly predicted negative samples, FP the number of falsely
predicted positive samples, and FN the number of falsely predicted negative
samples. Since the Rand index has been developed for cluster evaluation,
that is for unlabeled data, it formulates the notion of accuracy of the cluster
assignment using a pairwise definition of the considered properties (TP , TN ,
FP , and FN) in the following way:

R =
a+ b

a+ b+ c+ d
R ∈ [0, 1] (2.34)

where a, b, c, and d replace the previous entities to highlight the change of
definition. Comparing two different cluster assignments C1 and C2, a is the
number of sample pairs where both partners belong to the same cluster in
both assignments C1 and C2 (representing TP ), b is the number of sample
pairs belonging to different clusters in both C1 and C2 (representing TN),
c is the number of sample pairs belonging the same cluster in C1 but to
different clusters in C2 (representing FP ), and d is the number of sample pairs
belonging to different clusters in C1 and the same cluster in C2 (representing
FN).

The Rand index ranges from zero to one, where values close to one indicate
strong similarity between the two clusterings. A Rand index of zero indicates
that no pair of samples has the same relation in both cluster assignments, a
Rand index of one signifies that the two clusterings are exactly identical.

2.5.2.2 Survival analysis

Medical studies analyzing patient cohorts are often focused on the occurrence
of certain events in the course of patient treatment, e.g., the recurrence of a
disease or a disease-related death. Such an analysis of patient cohort data
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Figure 2.2 & Table 2.2: Example of a Kaplan-Meier graph depicting the
survival of kidney cancer patients and, exemplarily, survival data for the
first seven patients. Each patient without occurrence of the event (status=0)
is censored at the given time point.

is called survival analysis. One important characteristic of data for survival
analysis is the so-called (right) censoring. Censoring happens if a patient
leaves the study at a time point before he had an event, or if a patient did
not experience the event until the end of the study. An example would be
a breast cancer study on recurrence-free survival of the patients: the data
for each patient leaving the study for medically irrelevant reasons would be
censored after that point in time, but would still provide useful information
for any prior time point. An illustration of these data is given in Table 2.2,
where the status reports for each patient if the event occurred and at which
time the event or the censoring happened.

Kaplan-Meier graph The Kaplan-Meier estimator Ŝ(t) [77], or product
limit estimator, estimates the conditional probability of survival at time t via

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
. (2.35)

For each time point ti, the number of deaths observed (= di) are compared to
the number of patients at risk of an event (= ni). The calculation accounts
for censoring because a censored patient will not be counted in ni after the
time of the censoring. The estimated survival function can be displayed in
a Kaplan-Meier graph as exemplified in Figure 2.2. The confidence intervals
are estimated at each time point t based on the Greenwood formula for the
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variance [47]2. As the 0.95% confidence intervals illustrate, the estimate of
the survival function is associated with uncertainties that increase with a
decrease in the number of patients being considered at point ti.

Log-rank test The Kaplan-Meier graph depicting estimated survival func-
tions for two or more groups of patients can give a visual impression of possi-
ble differences between the sample groups in terms of survival time. Statisti-
cal tests evaluate how likely observed differences between two or more curves
appear due to chance under the null hypothesis that the curves are equal.
These tests differ from standard approaches, such as the one-way analysis
of variance, in their ability to handle censored observations. For two groups
of size n1 and n2, the Mantel-Cox test or log-rank test [68] compares the
expected with the observed events (e.g., deaths) by computing

LR =
(O2 − E2)2

Var(O2 − E2)
. (2.36)

Here, O2 =
∑T

t=1 o2t, which is the number of observed events in Group
2 over all times t, and E2 is the expected number of events for Group 2,
calculated by

E2 =
T∑
t=1

risk× n2t =
T∑
t=1

ot
nt
× n2t, (2.37)

with n2t being the number of patients belonging to Group 2 that are at risk
at time t, i.e., the size of Group 2 at time t. ot is the number of observed
events at time t and nt the sum of the two group sizes n1t and n2t. The risk of
an event, used for the expected number of events, is calculated on the whole
data set and not for each group separately. The variance in the denominator
of the test statistic LR can be calculated by

Var(O2 − E2) =
T∑
t=1

n1tn2t(o1t + o2t)(n1t + n2t − o1t − o2t)

(n1t + n2t)2(n1t + n2t − 1)

=
T∑
t=1

n1tn2tot(nt − ot)
n2
t (nt − 1)

. (2.38)

To increase the number of groups tested from 2 to K, one needs to include
covariances in addition to the variances resulting in

LR = dTV −1d, (2.39)

2The variance formula was originally published in Major Greenwood’s report on “The
natural duration of cancer”(1926). This publication is not available online, however, the
cited publication provides the relevant paragraphs in Appendix B.
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with d being a vector of length K with di = Oi − Ei and V being the
covariance matrix where Vij = Cov(Oi − Ei, Oj − Ej) for i, j ∈ {1, ..., K}.

The log-rank test is based on the proportional hazards assumption, where
the hazard is the slope of the survival curve. Proportional hazards require
the ratio of the hazards to be constant over time with deviations only due
to random sampling. In some cases, a violation of this assumption can be
detected visually, for example, when two survival curves cross. For suffi-
ciently many events and under the assumptions of proportional hazards and
group-independent censoring, the resulting test statistic is approximately χ2-
distributed with K−1 degrees of freedom, where K is the number of groups.
The degrees of freedom implicitly correct for the number of groups compared,
such that multiple testing correction is not necessary when applying this test
to data sets with more than two groups. The resulting p-value indicates how
likely it is to observe at least such extreme differences simply due to chance
if, in fact, all curves follow the same survival function.

2.5.3 Enrichment analysis

Enrichment analysis tests whether certain biological functions (or entities
of a different category of interest) are over-represented in a specified set of
genes compared to a background set of genes. For Chapter 3 and 5, we
used the categories of Gene Ontology (GO). GO provides a standardized
set of terms for describing gene products with respect to their molecular
function, their participation in biological processes, and their localization in
certain cellular components [10]. Using these GO terms, we applied over-
representation analysis (ORA), which operates on unsorted gene lists and is
implemented using the hypergeometric test [42].

Assuming, we are given N genes of which M belong to a specific GO
term C. In the following, this set will be called background or reference set.
When choosing K out of N genes at random, the expected number of genes
belonging to C can be calculated as

k′ =
M ∗K
N

. (2.40)

With K genes being randomly chosen, the probability of having x genes of
category C can be calculated using the hypergeometric distribution

P (X = x|N,M,K) =

(
M
x

)(
N−M
K−x

)(
N
K

) . (2.41)

The hypergeometric test with the null hypothesis that genes labeled with
C and not labeled with C are chosen from the background with the same
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probability can be formulated as

p =

{∑min(K,M)
i=x P (X = i|N,M,K), if k′ < x∑x
i=max(K+M−N,0) P (X = i|N,M,K), else,

(2.42)

where x is the number of genes drawn from category C and k′ the expected
number of chosen genes belonging to C as defined in Equation (2.40). In
summary, ORA checks if the chosen subset contains more or less genes from
category C than would be expected based on the complete set of N genes.
The p-value is then the probability of observing an outcome at least as ex-
treme as in the given sample if the null hypothesis were true.

In this thesis, ORA was used to gain insights into the biological char-
acteristics of the identified patient clusters (Chapter 3 and 5). Meaningful
subsets of genes for the cluster were identified for instance according to dif-
ferential methylation or differential expression in the respective cluster. To
identify these genes, statistical hypothesis testing determines whether the
null hypothesis (i.e., the distribution of the expression of a particular gene a
in the cluster is the same as in the remaining data set) can be rejected on the
basis of the available data. Gene sets that have been identified in this way
can be tested for connections to specific functions using enrichment analysis.

2.5.3.1 Multiple testing correction

A p-value is considered significant, if it is smaller than a chosen significance
threshold α, i.e., if p < α. When performing a large number of hypothe-
sis tests, the probability of obtaining a significant result purely by chance
increases even if the null hypothesis is actually true, i.e., if there is no de-
tectable effect in the data, and all variation is simply due to noise. This
scenario occurs, for instance, when testing a gene set for enrichment with a
large number of different terms (e.g., as provided by GO). In these cases, one
needs to correct for the number of tests executed to avoid random, signifi-
cant results. In this thesis, we used two different methods for this purpose:
Bonferroni correction and Benjamini-Hochberg correction.

Bonferroni correction The Bonferroni correction [159] controls the family-
wise error rate, which is the probability of rejecting the null hypothesis if it
were actually true. The Bonferroni correction method tries to avoid such
false-positive discoveries by multiplying each p-value p with the number of
tests, i.e., padj = mp with m being the number of tests performed. Equiv-
alently, one can also adjust the significance threshold α such that the null
hypothesis is rejected if p < 1

m
α. The Bonferroni method is one of the most

conservative correction methods.
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Benjamini-Hochberg correction When using the Benjamini-Hochberg
method [17], the significance threshold is defined as the largest p-value pi for
which pi <

i
m
α holds (where i is the rank of the p-value when all obtained

p-values are sorted increasingly). With this adjustment, the false discovery
rate, i.e., the expected number of false rejections of the null hypothesis,
remains thus at most α. When we report p-values that are corrected via
Benjamini-Hochberg padj

i , they are calculated by

padj
i = min{pi

m

i
, padj

i+1} (2.43)

with i being the rank of the p-value and m the number of tests performed.

2.6 Related work

This section provides an overview of previously proposed cancer subtypes
and methodical approaches that integrate multidimensional cancer patient
data in an unsupervised manner. We include integrative clustering methods
but also integrative dimensionality reduction methods, because the latter can
provide a good basis for applying simple clustering algorithms, e.g., k-means,
resulting in sample groups that are influenced by all input data. Additionally,
the representation of data in an integrative, reduced-dimensional space can
facilitate other valuable applications, such as visualizations, which are not
discussed in this work.

Single-omics cancer subtypes

As mentioned in Section 2.1.2, molecular subtypes have been identified for
a few cancer types on the basis of different, individual data types. Four
breast cancer subtypes, which were determined based on hierarchical clus-
tering of gene expression data [110], are currently considered in the treatment
guidelines. Subtypes for glioblastoma have been identified via consensus hi-
erarchical clustering of gene expression data [154] and via consensus k-means
clustering of DNA methylation data [104]. One of the methylation subtypes
appears as a subgroup of one of the previously identified gene expression
subtypes [104]. Subtyping efforts based on single-omics have been made for
other cancer types, including head and neck squamous cell carcinoma [34],
and lung adenocarcinoma [50].

Multi-view approaches

Since the combination of several data sources could provide more compre-
hensive views on the patients, a number of unsupervised multi-view methods
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have been developed over the last years. Some approaches aim specifically at
integrating biological data and make use of known relationships between the
data types. Besides, general approaches for the application in diverse scenar-
ios, e.g., the combination of different views in computer vision scenarios [174],
have been proposed.

Figure 2.3: Illustration of early, inter-
mediate, and late integration on the
example of a kernel-based classifier. Re-
production from Pavlidis et al. [108] (li-
cense #4462490879804, see Table B.1).

In general, multi-omics or
multi-view methods can be classi-
fied based on the time point when
the data integration is performed,
i.e., one distinguishes between
early, intermediate and late inte-
gration methods [108].

As illustrated in Figure 2.3,
early integration corresponds to a
simple concatenation of the avail-
able data and subsequent execu-
tion of a single-omic approach.
LRAcluster [164], a representa-
tive of early integration, models
each feature as a random vari-
able with a hidden parameter
before decomposing the concate-
nated parameter matrix to iden-
tify candidate sample groups. For a pan-cancer data set, the authors in-
tegrate somatic mutations, copy number variations, DNA methylation, and
gene expression data. While this method is able to handle conceptually differ-
ent data types (e.g., real-valued and binary data), it ignores differences in di-
mensionality between the data types. Another example for early integration
is MEREDITH [142]: by reducing the number of features for each data type
to 50 via principal component analysis before the concatenation, the authors
circumvent the problem of differences in dimensionality. Based on the con-
catenation of the remaining features, the samples are subsequently projected
into a two-dimensional space using t-distributed stochastic neighborhood em-
bedding and clustered using DBSCAN. The authors applied MEREDITH to
a pan-cancer data set and could identify known, tissue-specific clusters, as
well as new clusters comprising tumors from different tissues. However, this
method does not account for differences regarding the statistical properties
of the data types, such as their distribution.

Late integration is a frequently applied method for combining biological
data, which consists of separate sample clustering for each data type and
subsequent integration of the different cluster assignments. The latter step
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can be performed either manually or automatically, e.g., using consensus
clustering [102]. Consensus clustering combines several clusterings into a
consensus matrix indicating for each pair of samples, in how many of the
clusterings they were assigned to the same cluster. Based on this consen-
sus matrix, a consensus clustering is derived. This approach was used, for
instance, for the identification of comprehensive breast cancer subtypes on
TCGA data [146]. Although both manual and automatic integration might
maintain strong signals in the data, late integration approaches cannot cap-
ture weak but concordant structures in different data types because these
signals already vanish during the initial clustering. Additionally, manual
integration tends to be biased, leading to inconsistent results. For these rea-
sons, other approaches bring forward the step of data integration leading to
intermediate integration.

The following paragraphs present different intermediate integration tech-
niques categorized according to their algorithmic approach.

Co-regularization To respect the structure of the different data types at
the time of data integration, co-regularization extends the objective func-
tion of a specific algorithm such that the clustering of each single source is
regularized by all other sources. Cai et al. [26] apply co-regularization to k-
means, i.e., the samples are clustered based on each data source separately,
however, the objective function of k-means is constrained by the clusterings
derived from the other data sources. In this way, the approach, which is
called multi-view k-means clustering, converges to a common clustering re-
sult. Cai et al. [26] additionally use the l2,1-norm in the objective function
instead of the l2-norm, which is usual for k-means clustering, to render the
approach robust to outliers.

Kumar et al. [81] proposed two versions of multi-view spectral clustering.
The co-regularization term in the objective function either penalizes pair-
wise differences between the kernel matrices or the difference of each kernel
matrix to a common centroid. Here, kernel matrices measure the similarity
between two eigenvector embeddings based on the different data that are
used for the clustering. Both approaches are solved iteratively with each
kernel matrix being updated separately. Moreover, both formulations con-
tain a hyperparameter weighting the influence of each data type. To make
a reasonable choice for the parameter, the user would need prior knowledge
on the importance of the different data types.

Matrix factorization A classic approach for analyzing two sets of vari-
ables, or two data types, is Canonical Correlation Analysis (CCA) [69]. As
the name suggests, this method identifies the directions in the data in which
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the correlation between the two data matrices is maximized. In the initial
formulation, the number of samples is required to be larger than the number
of features, which makes an application to high-dimensional datasets pro-
hibitive. Several approaches have been proposed that make CCA applicable
for these high-dimensional data and enable analyzing correlations between
more than two different data types, e.g., using sparse multiple CCA [160],
regularized generalized CCA [143], or sparse generalized CCA [144].

Similar to CCA, intermediate integration methods are often based on the
idea of identifying shared or correlated information in different data sources.
Consequently, numerous methods were developed that decompose the input
matrices into common structure and data type-specific structure. Shen et al.
[129] introduced iCluster for the integration of continuous data, which is
based on a Gaussian latent variable model. The latent variables are shared
between the data types and interpreted as the driving factors for the tumor
in the example of cancer patient data. Therefore, these latent variables can
be used to project the data into a low-dimensional, integrative subspace, as
well as for sample clustering. Whereas the original version of iCluster uses l1-
penalties to perform feature selection, extensions include variance weighted
penalty terms [130] and specific penalty terms for different data types [131].
Furthermore, the extension iClusterPlus enables the integration of count,
binary and categorical data in addition to continuous data [100]. Finally,
iClusterBayes employs a Bayesian latent variable model, which additionally
returns a posterior probability for each feature [101]. Despite improvements
in the running time, this series of methods remains computationally expen-
sive and requires a feature preselection. Similar methods use (group) factor
analysis to decompose the data matrices, where factors represent the shared
information between the data sources. Multi-omics factor analysis [9] imple-
ments a factor- and source-specific regularization with the level of regulariza-
tion learned automatically during model training. This procedure improves
the interpretability of the results by inducing sparsity of the used features.
In contrast to iCluster and its extensions, multi-omics factor analysis can
include samples in the analysis for which some measurements are missing
without requiring explicit data imputation. Other Bayesian approaches in-
clude the use of mixture models and extensions thereof [13, 78].

Data integration has also been realized based on non-negative matrix fac-
torization (NMF), which learns a decomposition of a matrix X ≈ V H subject
to the constraint that the constituent matrices need to be non-negative [86].
NMF is often applied for clustering as the matrix H can be used for clus-
ter identification. Extensions to multiple input data types include collective
NMF, where a common matrix H is enforced for all data types [133]. Besides,
Liu et al. [93] proposed multi-view NMF, which learns the two components
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V and H specifically for each data type but iteratively regularizes H towards
a common consensus. The methods described above decompose the matrices
such that reconstruction is possible via multiplication of the identified compo-
nents. Lock et al. [94] introduced a matrix factorization method called Joint
and Individual Variation Explained (JIVE), which affords a reconstruction
of the original matrices via a summation of the three learned entities. These
components represent the joint variation in the data, individual variation
per data type, and residual noise. Joint and individual variations are opti-
mized in an alternating manner by minimizing the squared residual noise.
In general, matrix factorization approaches might require some additional
processing steps to handle non-numeric data types.

Deep learning In recent years, deep learning has proven to be a promising
field of study in machine learning [123]. These methods, which are based on
neural networks, have initially been utilized mainly in the context of image
data. However, in more recent work, deep learning methods have success-
fully been applied to biological problems, e.g., to discover specific patterns
in genomic sequences [89]. Chaudhary et al. [32] proposed a deep learning-
based early integration scheme for cancer subtype discovery. Their approach
uses variational autoencoders for joint dimensionality reduction resulting in
100 transformed features that contain all input data types. The subsequent
patient clustering is, however, not entirely unsupervised as the features are
preselected based on their correlation to the survival time. In a similar
approach, Ronen et al. [120] use stacked variational autoencoders and subse-
quent clustering to identify integrative subgroups of colorectal cancer. The
identified subgroups differ significantly in their survival rates and represent
a refinement of the state-of-the-art subtypes, which are defined on gene ex-
pression. However, model selection was performed based on a score that
considers both the survival times and the state-of-the-art subtypes.

Multi-modal deep neural networks have been proposed, which correspond
to the intermediate integration scheme. The main idea of multi-modal deep
neural networks is to stack different learning machines, such that the network
performing data integration is fed by an input layer of one learning machine
per data source (e.g., Deep Boltzmann Machines [139]). Liang et al. [91] use a
multi-modal Deep Believe Network, a hierarchical model of several restricted
Boltzmann machines (see [66] for details) for clustering cancer patients based
on genomic data. Multi-modal deep neural networks benefit from their archi-
tecture, which enables pretraining for each data type separately, while still
being able to identify global effects due to the integrative layers. Moreover,
they can also handle samples with missing values without the need for imput-
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ing missing data before model training. While a noteworthy characteristic
of deep learning methods is their ability to learn complex structures, this
flexibility comes at the cost of potential overtraining and thus poor gener-
alization. This issue appears particularly in biological applications, where
the number of available samples is often very limited. Therefore, reasonable
regularization schemes have to be employed.

Similarity-based integration The methods discussed so far are concerned
with direct data integration. The following section introduces methods that
perform the integration on the basis of similarities or kernel matrices derived
from the individual data types. These methods have the advantage that they
are not restricted to specific types of data, e.g., numeric or binary data. Fur-
thermore, similarity matrices or networks are an efficient way to represent
sample information, especially in high-dimensional settings when the number
of features is higher than the number of samples.

For these reasons, similarity network fusion (SNF) uses pairwise sample
similarities from each data type [158]. The similarities are generated by a
scaled exponential similarity kernel, which is similar to a radial basis ker-
nel with an additional normalization for local density structures. Sample
similarity networks derived from these kernels are then fused iteratively by
using a message-passing algorithm until convergence to a common, integrated
network. In this way, SNF implements a nonlinear integration of the simi-
larities. Finally, the patient or sample clusters are identified using spectral
clustering [157] on the integrated network.

Another possibility for similarity-based data integration is multiple kernel
learning, where one weight is optimized for each input kernel matrix leading
to a combined ensemble kernel matrix (see Section 2.2.2). In the supervised
setting, various methods of optimizing the ensemble kernel have been pro-
posed, including kernel-target alignment [39] and idealized kernels [82]. All
of these aim at finding the best kernel for a given supervised learning task.
However, without labels for the samples, different strategies and objective
functions need to be adopted with the simplest approach being a fixed kernel
combination. Here, fixed refers to the fact that no data-dependent param-
eter needs to be learned because the ensemble kernel is generated as the
unweighted sum or product of the input kernels. NEMO, a recently pro-
posed data integration method, uses the average kernel, a commonly chosen
fixed kernel combination [116]. Similar to SNF, the method uses radial ba-
sis kernel functions with a normalization for the density in the respective
neighborhoods. The strength of NEMO lies in its simplicity, which results
in robust solutions and low computational complexity. Additionally, NEMO
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can be used to integrate partial data sets as long as each pair of samples
has measurements for at least one common data type. However, noisy ker-
nel matrices without a clear structure cannot be automatically excluded or
downweighted when using a fixed and data-independent kernel combination.

Therefore, other approaches for integrating several kernel matrices op-
timize specific kernel weights by extending existing dimension reduction or
clustering approaches. These methods often employ an iterative procedure
that alternates between the optimization of the kernel weights and the op-
timization of the cluster assignment or projection matrix (for clustering or
dimensionality reduction approaches, respectively). Yu et al. [170] developed
a multiple kernel version of k-means clustering. The optimization of the ker-
nel weights and cluster memberships is a non-convex problem, potentially
having local optima. This is tackled by an alternating minimization pro-
cedure. The multiple kernel k-means uses an additional parameter δ that
controls the sparsity of the kernel weights by imposing the weight vector to
have an lδ-norm of one. Further extensions aim at increasing the robustness
of multiple kernel k-means [43] or implement a fuzzy cluster assignment [70].
In addition to the previously discussed co-regularization extension of spectral
clustering [81], Huang et al. [71] propose affinity aggregation for spectral clus-
tering. Both methods extend spectral clustering, however, they differ in the
data integration approach: whereas Kumar et al. [81] apply co-regularization
to generate a common result, Huang et al. [71] directly fuse the kernel ma-
trices using learned kernel weights.

The multiple kernel learning methods discussed above optimize a lin-
ear combination of kernel matrices using one weight per matrix. Gönen and
Margolin [55] moved one step further by introducing localized multiple kernel
k-means, which uses sample-specific weights instead of optimizing one weight
per kernel. This leads to a nonlinear integration of kernel matrices, which
provides more flexibility to account for sample-specific characteristics or noise
in some measurements. However, the additional flexibility requires optimiz-
ing a notably larger set of parameters and can therefore lead to instabilities
in the obtained clustering results and optimized weights.

Contributions

This section summarizes the contributions in this thesis in the light of the
given related work.

1. Multiple kernel learning aims at optimizing kernel- or sample-specific
weights, which provides increased flexibility in comparison to fixed ker-
nel combinations. However, this technique bears the risk that the re-
sults depend strongly on the used data set and might thus not be robust
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to outliers or small changes in the data set. We demonstrate that reg-
ularizing the kernel weights in unsupervised multiple kernel learning
increases the robustness of the final results (Chapter 3).

2. Many dimensionality reduction schemes have been extended such that
they can handle multiple input data types. We prove that for kernel
PCA, one of the most widely used dimensionality reduction methods, a
sensible extension into a multiple kernel setting is not possible. More-
over, we provide an alternative formulation, which combines the basic
concept of PCA with the aim of data integration (Chapter 4).

3. Despite the large number of different approaches that optimize kernel-
or sample-specific weights, interpretation remains a difficult issue for
multiple kernel learning as well as for most of the similarity based
integration methods. The biological interpretation of the results is
commonly done retrospectively, e.g., by filtering for genes that are dif-
ferentially expressed between the patient groups and associating these
genes with common biological functions. However, it remains unclear
how the learning machine has come to the final result. Therefore, we
present a general extension for kernel learning methods that yields bet-
ter interpretability of the obtained results (Chapter 5).





Chapter 3

Regularization of unsupervised
multiple kernel learning

This chapter presents the extension and application of current multiple kernel
learning approaches in the context of dimensionality reduction. We provide
evidence that the graph embedding framework that incorporates several in-
put kernel matrices gains robustness by using an additional regularization
constraint. Furthermore, we show that this regularized approach can also
be used with a larger number of input kernels and thereby enables implicit
kernel parameter selection.

The content of this chapter was published in Speicher and Pfeifer [136] in
the proceedings of the conference Intelligent Systems for Molecular Biology
(ISMB 2015).

3.1 Overview

For the identification of cancer subtypes, we propose to apply nonlinear,
kernel-based dimensionality reduction with subsequent patient clustering.
To this end, we adopt the multiple kernel learning for dimensionality re-
duction framework (MKL-DR; see Section 2.3.3.2) that enables dimension-
ality reduction and data integration at the same time. In order to avoid
overfitting, especially in scenarios with many distinct input matrices, we ex-
tend the MKL-DR approach by adding a regularizing constraint resulting in
rMKL-DR. The samples, in our case cancer patients, are projected into a
low-dimensional, integrated space where they can be further analyzed. We
show that this representation captures meaningful information, which we use
for clustering the samples.

The outlined procedure offers several advantages: multiple kernel learning

43
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provides high flexibility concerning the input data type, which enables the
combination of qualitatively different data, such as sequences or numerical
matrices. Moreover, in case one does not have enough information to choose
the best kernel function for a data type or the best parameter (combination)
for a given kernel beforehand, it is possible to input several kernel matri-
ces per data type, based on different kernel functions or parameter settings.
The multiple kernel learning approach automatically upweights the matri-
ces providing more information with respect to the objective function while
downweighting those with less information. Moreover, the framework pro-
vides high flexibility concerning the choice of the dimensionality reduction
method, which does not need to be unsupervised, but also various super-
vised and semi-supervised methods can be adopted. Finally, by capturing
the nonlinearity in the dimensionality reduction step, we can apply after-
wards a simple clustering algorithm, such as k-means, to identify the patient
subgroups.

The evaluation of our method on five different cancer sets shows that
the results gain robustness due to the regularization of the kernel weights
(Section 3.3.1). The identified patient clusters reflect characteristics from
distinct input data types and show differences concerning their response to
treatment with a standard chemotherapy drug. Furthermore, we observe
that kernel matrices with less information have less influence on the final
result. A comparison of the survival differences between our clusters and
a state-of-the-art method shows that our method yields comparable results
while using a simpler, and therefore potentially more robust, data integration
process.

Related work A general overview on multi-omics and multi-view data in-
tegration approaches is provided in Section 2.6. Here, we focus on approaches
that are similar to the proposed rMKL-DR in the sense that they build on the
graph embedding framework (see Section 2.3.3) and intend to increase its sta-
bility. Jiang and Chung [76] developed MKL-TR, an approach that optimizes
multiple kernel graph embedding using the trace ratio optimization problem.
This problem maximizes the ratio of inter-class (or inter-cluster) variation to
intra-class (or intra-cluster) variation. Here, the definition of class or clus-
ter is given by the user, which makes MKL-TR a framework that supports
the implementation of different dimension reduction techniques. In this ap-
proach, the authors tackle the problem of overfitting, and thereby reduced
robustness, by adding a regularization term to the denominator of the objec-
tive function, i.e., the trace ratio maximization. Later, Li et al. [90] further
extended the formulation by adding a regularization term to the numerator
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of the trace ratio maximization to improve the performance with sparse in-
put data in high dimensions. Going into a different direction, an adaptive
extension of MKL-DR was proposed by Thiagarajan et al. [148]. After the
complete optimization of the low-dimensional representation via MKL-DR,
their algorithm re-calculates the affinity matrices on the basis of the learned
projection, thereby updating the objective function. The iterative execution
of these two steps aims at reducing the sensitivity of the affinities to per-
turbations in the data. To our knowledge, none of these methods have been
applied to cancer or molecular data to prove their usefulness in this specific
setting. Moreover, for none of the three approaches an implementation is
publicly available.

Therefore, and because of its popularity in the bioinformatics commu-
nity, we used similarity network fusion (see Section 2.6: Similarity-based
integration) for comparison to our method. Similarity network fusion first
determines similarities between the samples using a kernel function that is
related to the RBF kernel we are using. In contrast to our method, the subse-
quent combination of the different sources is performed in a nonlinear manner
whereas our approach uses a linear combination that learns one weight per
data type.

3.2 Methods

In order to integrate several data types, we extend the MKL-DR approach
(multiple kernel learning for dimensionality reduction, see Section 2.3.3.2).
This method is based, on the one hand, on multiple kernel learning, and,
on the other hand, on the graph embedding framework for dimensionality
reduction. We add a constraint that leads to the regularization of the vector
controlling the kernel combinations. We call this method rMKL-DR (regu-
larized multiple kernel learning for dimensionality reduction) in the following
discussion.

3.2.1 Regularization in the graph embedding frame-
work

As described in Section 2.3.3.2, the multiple kernel graph embedding frame-
work combines the optimization of an ensemble kernel matrix K with the
objective of dimensionality reduction schemes. The ensemble kernel matrix
K is defined as a weighted linear combination of the available input kernel
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matrices {K1, ..., KM}

K =
M∑
m=1

βmKm, (3.1)

with βm being the weight of the kernel matrix Km. The graph embedding
framework optimizes the projection matrix A ∈ RN×p that leads to the re-
duction of the dimensionality of the data, and the vector β that weights the
input kernels at the same time. Having learned these two parameters A and
β, we obtain the low-dimensional (here p-dimensional) representation of the
samples in the data set X ∈ RN×d via

proj(X) = AT
M∑
m=1

βmKm ∈ RN×p, (3.2)

where M is the number of integrated kernel matrices considered. However,
when M is large, the risk of overfitting during parameter training, a phe-
nomenon leading to high variance in the results for slightly varying input
data, increases. To avoid this behavior, we add the constraint ‖β‖1 = 1 to
the original optimization problem (Formula 2.22), which restricts the search
space for the kernel weights. Had we added the constraint ‖β‖1 ≤ 1, this
would amount to an l1-regularization, which is regularly used in supervised
learning approaches (e.g. the lasso [150]). However, in our case, the equality
in the constraint ensures variance preservation in the ensemble kernel matrix
and thus avoids solutions with very small weights for all kernel matrices. For
N samples described by M different kernel matrices {K1, ..., KM}, the full
optimization problem for rMKL-DR is given by:

arg min
A,β

N∑
i,j=1

‖ATK(i)β − ATK(j)β‖2wij (3.3)

subject to
N∑
i=1

‖ATK(i)β‖2dii = C (3.4)

‖β‖1 = 1 (3.5)

βm ≥ 0, m = 1, 2, ...,M (3.6)

with C being a positive constant, β and K(i) defined as in Section 2.3.3.2:

β = [β1 · · · βM ]T ∈ RM , (3.7)

K(i) =

K1(1, i) · · · KM(1, i)
...

. . .
...

K1(N, i) · · · KM(N, i)

 ∈ RN×M . (3.8)
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The projection matrix A ∈ RN×p consists of p vectors {α1, ..., αp} to project
the samples into p dimensions. The weight matrix W and the diagonal matrix
D determine which dimensionality reduction scheme is implemented.

3.2.1.1 Iterative optimization

Since the simultaneous optimization of the two variables of interest is difficult,
coordinate descent is employed as suggested for the MKL-DR framework [92].
In this technique, A and β are iteratively optimized in an alternating manner
until convergence or until a maximum number of iterations is reached. One
can start either with the optimization of A, then β is initialized to equal
weights for all kernel matrices summing up to one (such that βi = 1/M, ∀i ∈
{1, ...,M}), or with the optimization of β, then AAT is initialized to the
identity matrix I.

Optimizing A For the optimization of the projection matrix A, β is fixed.
As for a vector u holds ‖u‖2 = trace(uuT ), the problem can be reformulated
as follows:

arg min
A

trace(ATSβWA) (3.9)

subject to trace(ATSβDA) = C (3.10)

with

SβW =
N∑

i,j=1

wij (K(i) −K(j))ββT (K(i) −K(j))T , (3.11)

and SβD =
N∑
i=1

diiK(i)ββT (K(i))T . (3.12)

The additional Constraints (3.5) and (3.6) only concern β and are thus irrel-
evant for the optimization of A. The formulated problem corresponds to a
trace ratio problem, i.e.

arg min
A

trace(ATSβWA)

trace(ATSβDA)
, (3.13)

for which no closed-form solution exists. However, the trace ratio problem
can be relaxed into a ratio trace problem, that is

arg min
A

trace[(ATSβDA)−1(ATSβWA)], (3.14)
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which can be efficiently solved using the generalized eigenvalue decomposition

SβWα = λSβDα. (3.15)

The projection vectors of A are the eigenvectors {α1, ..., αp} corresponding
to the p smallest generalized eigenvalues λ.

In case of reducing the dimensionality to one, the solution of the ratio
trace problem is equal to the solution of the trace ratio problem. For higher
dimensions, solving the ratio trace problem can be seen as a greedy approach
to the trace ratio problem.

Optimizing β For the optimization of the kernel weight vector β, the
projection matrix A is fixed. By using the fact that ‖u‖2 = uTu (for a given
vector u), the problem becomes

arg min
β

βTSAW β (3.16)

subject to βTSAD β = C (3.17)

‖β‖1 = 1 (3.18)

βm ≥ 0,m = 1, 2, ...,M. (3.19)

with

SAW =
N∑

i,j=1

wij (K(i) −K(j))AAT (K(i) −K(j))T , (3.20)

and SAD =
N∑
i=1

diiK(i)AAT (K(i))T . (3.21)

Due to the additional constraints on β, this non-convex problem cannot
be solved using a generalized eigenvalue decomposition as was possible for
the optimization of A. However, this quadratically constrained quadratic
programming problem can still be solved efficiently using a semidefinite pro-
gramming relaxation [92].

Complexity of the approach The runtime of the algorithm can be de-
composed into the dimensionality reduction step and the k-means clustering.
The dimensionality reduction is performed by iteratively updating the pro-
jection matrix A and the kernel weight vector β (in this implementation, at
most 20 iterations were performed with a convergence threshold of 1E-05).
The optimization of β uses semidefinite programming where the number of
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constraints is linear in the number of input kernel matrices and the number
of variables is quadratic in the number of input kernel matrices. However,
if M � N , the dominating term is the optimization of A. This optimiza-
tion involves solving a generalized eigenvalue problem having a complexity
of O(N3), where N is the number of samples in the data set.

3.2.2 Leave-one-out cross-validation for rMKL-DR

In order to assess the stability of the resulting clusterings, we applied a
leave-one-out cross-validation approach (see Section 2.5.1.2). After learning
the projection matrix A, the kernel weights β, and the cluster assignment
on the reduced data set (without the ith patient), the projection of the
left-out sample xi can be calculated as proj(xi) = ATKiβ ∈ Rp. The leave-
one-out clustering is obtained by assigning patient xi to the cluster, which
has the mean that is closest to proj(xi) in the dimensionality-reduced space.
This cluster assignment is performed in concordance with the idea of k-
means. Finally, we compare this leave-one-out clustering to the clustering
of the full data set using the Rand index, which measures the similarity
of two clusterings (see Section 2.5.2.1). It should be noted that the leave-
one-out cross-validation can only be applied because the used dimensionality
reduction procedure does not suffer from the out-of-sample problem, i.e., new
samples can be projected into the new space using A (see Section 2.3).

3.2.3 Materials

We used data from five different cancer types from The Cancer Genome
Atlas (TCGA) [1] that were preprocessed by Wang et al. [158]1. The can-
cer types comprise breast invasive carcinoma (BIC), colon adenocarcinoma
(COAD), glioblastoma multiforme (GBM), kidney renal clear cell carcinoma
(KRCCC), and lung squamous cell carcinoma (LSCC). For each cancer type,
we clustered the patients based on gene expression, DNA methylation, and
miRNA expression data (see Section 2.1.2 for an introduction on the biolog-
ical relevance of these data types in the context of cancer). Additionally, we
leveraged patient survival data for the subsequent evaluation. In the pre-
processing, all patients with more than 20% missing values over all features
were removed. Similarly, all features with more than 20% missing values
over all patients were removed. Remaining missing values were imputed us-
ing k-nearest neighbor imputation. Finally, the data were normalized by
subtracting the mean and dividing by the standard deviation. Table 3.1

1downloaded from http://compbio.cs.toronto.edu/SNF/SNF/Software.html

http://compbio.cs.toronto.edu/SNF/SNF/Software.html
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Table 3.1: Overview over the number of features per data type in each cancer
type.

Cancer type Gene expression DNA methylation miRNA expression

BIC 17 814 23 094 354

COAD 17 814 23 088 312

GBM 12 042 1 305 534

KRCCC 17 899 24 960 329

LSCC 12 042 23 074 352

summarizes the numbers of features for each data type. The numbers dis-
play a large difference between gene expression and DNA methylation with
tens of thousands of features on the one hand, and miRNA expression with
only a few hundreds of features on the other hand. The provided clinical
data contained the overall survival of the patients. For most cancer types,
this was measured by the number of days to the last follow-up. For COAD,
a combination of the number of days to last known alive and the number
of days to the last follow-up was provided because of many missing values
in the latter attribute. Furthermore, the vital status of the patients (i.e.,
alive or deceased) was used in the survival analysis. Table 3.2 summarizes
the number of samples analyzed, as well as the survival data in terms of
the number of events, which refers here to a cancer-related deaths, for each
cancer type. Each patient without event represents a censored data point.

Table 3.2: Overview over the number of samples N per cancer type and the
respective number of events (i.e., cancer-related deaths) that are used for the
survival analysis.

Cancer type N W/ event W/o event

BIC Breast invasive carcinoma 105 18 87

COAD Colon adenocarcinoma 92 9 83

GBM Glioblastoma multiforme 213 197 16

KRCCC Kidney renal clear cell carcinoma 122 33 89

LSCC Lung squamous cell carcinoma 106 66 40
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Implementation

The data integration approach rMKL-DR was implemented in Matlab ver-
sion R2016b [147]. For the optimization of the kernel weights β the modeling
and optimization toolbox YALMIP [96] was used. The evaluation including
leave-one-out cross-validation, survival analysis, and comparison to estab-
lished subtypes was performed using custom scripts in R version 3.1.3 [112].
The enrichment analysis was performed using GeneTrail2 [140] via a custom
Python script.

3.3 Regularized multiple kernel locality pre-

serving projections

Using the presented framework, we applied the unsupervised local dimen-
sionality reduction algorithm Locality Preserving Projections (LPP, see Sec-
tion 2.3.1 and Table 2.1), which aims to preserve the distances of each sample
to its local neighborhood. For LPP, there are different possibilities of defin-
ing the matrices W and D controlling the dimensionality reduction in the
graph embedding framework. We defined the neighborhood graph of each
data point xi by its nearest neighbors. This neighborhood is denoted as
Nk(xi), with kN being a parameter controlling the size of the neighborhood2.
Moreover, we chose uniform weights between neighboring samples, resulting
in the following definitions for W and D:

wij =

{
1, if xi ∈ Nk(xj) ∨ xj ∈ Nk(xi)
0, else

(3.22)

dij =

{∑N
n=1win, if i = j

0, else.
(3.23)

The rMKL-DR approach implementing LPP will be called rMKL-LPP from
now on.

Workflow We applied rMKL-LPP to each of the five cancer data sets sepa-
rately. For each available data type, we used the Gaussian radial basis kernel
function to calculate the kernel matrices, then centered and normalized them
in the RKHS (see Section 2.2.2). In order to investigate how well the method
is able to handle multiple input kernels for single data types, we generated
two different scenarios:

2The number of nearest neighbors is denoted by kN to avoid confusion with the number
of clusters for k-means.



52 Regularization of unsupervised multiple kernel learning

• Scenario 1 (3K): We generated one kernel matrix per data type,
resulting in a total number of three kernels; the kernel parameter γ was
chosen according to the heuristic γ = 1/2d2, with d being the number of
features of the respective data matrix [51].

• Scenario 2 (15K): We generated five kernel matrices per data type,
resulting in a total number of 15 kernels; the kernel parameters γn were
derived by scaling the previously used heuristic with a constant factor
such that γn = fγ 1/2d2, with fγ ∈ {10−6, 10−3, 1, 103, 106} and d being
the number of features.

For each cancer type, the data types were combined using rMKL-LPP with
both possible initializations, i.e., starting with the optimization of A and
with the optimization of β. The number of retained dimensions was fixed to
5 for several reasons. First, due to the curse of dimensionality, samples with
many dimensions tend to lie far apart from each other, leading to sparse
and dispersed clusterings. Second, we wanted only a medium number of
subtypes, such that very high dimensionality was not necessary. However,
reducing the dimensions to two or three, such that visualization would have
been possible, could be too simplistic given the heterogeneity of cancer data.
After dimensionality reduction, the integrated data points were clustered
using k-means (see Section 2.4.1). To decide on the number of clusters,
we used the average silhouette width of all samples (see Section 2.5.1.1),
a measure that indicates how compact the clusters are and how well they
are separated. This enabled to identify the most coherent result among
the clusterings with K = {2, ..., 15} clusters. The average silhouette width
was then also utilized to select the best clustering among the two different
initializations.

3.3.1 Results and discussion

In this section, we first evaluate the dependence of the results on the pa-
rameter settings and the convergence behavior of the iterative optimization,
before discussing the results obtained using the cancer data and their biolog-
ical implications.

3.3.1.1 Model training

Robustness with respect to parameter settings The iterative opti-
mization of rMKL-LPP either starts with the optimization of the projection
matrix A or with the kernel weights β. Concerning these two possibilities,
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Table 3.3: Optimal number of clusters (determined by the average silhouette
score) when initializing A or β in the 3K and 15K scenario.

3K 15K

Initialized Initialized

Cancer type A β A β

BIC 7 6 6 7

COAD 3 2 6 6

GBM 5 5 6 6

KRCCC 6 5 14 7

LSCC 3 2 6 6

the application to the biological data sets showed that initializing β to uni-
form weights led to slightly better (i.e. higher) silhouette values in most
cases. However, the final results for both initializations were highly similar
concerning the number of identified clusters (see Table 3.3) and the cluster
assignment. Figure 3.1 depicts pairwise similarities between cluster assign-
ments with the same number of clusters but generated using different initial-
izations, i.e., we varied the number of cluster K from 2 to 15 and compared
the results of the two possible initializations using the Rand index. The
figure illustrates that in most cases, at least 90% of all sample pairs have
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Figure 3.1: Comparison of rMKL-LPP results with different initial-
izations. For each number of clusters K ∈ {2, ..., 15} the Rand index was
calculated comparing the result obtained when initializing A vs. initializing
β.
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the same relationship in both results (either they belong to the same cluster
in both assignments or to different clusters in both assignments). Further-
more, we can already observe that, despite the increased number of learned
parameters in the 15K scenario, the results seem more stable. This finding is
supported by higher similarities between the two modes measured according
to the number of clusters (Table 3.3) as well as the specific cluster assign-
ments (Figure 3.1).

To evaluate the influence of the number of neighbors kN on the clus-
tering results, we varied this parameter between 5 and 15. The number of
dimensions was fixed at 5, the number of clusters and the initialization were
chosen according to the silhouette score. The consistency of the results is
visualized in Figure 3.2. For most cancer types, similar cluster assignments
are identified when using different numbers of neighbors, resulting in merely
slight variations in the Rand index. Only for KRCCC, there seem to be two
different possible cluster assignments with relatively low similarity (only ap-
proximately 30% percent of sample pairs have the same relationship in the
two compared clusterings), which appears as two separate accumulations of
Rand indices with rather low variations within the groups.

Motivated by the general stability, subsequent results for all cancer types
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Figure 3.2: Comparison of rMKL-LPP results with different num-
bers of neighbors considered. Each point represents the similarity be-
tween two clusterings generated with varied number of neighbors kN (from
5 to 15).
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are based on nine nearest neighbors, although specific optimization would be
feasible in terms of running time and memory requirements.

Iterative optimization For the GBM data set with three kernels in total,
Figure 3.3 shows the value of the objective function as well as the optimized
kernel weights in each iteration of the optimization procedure. In this exam-
ples, the kernel weights were initialized to 1/3 such that the projection matrix
A was optimized first. We can see that the objective value improves quickly in
the beginning, and after 6 iterations reaches almost the final value. In num-
bers, the total improvement after the 6th iteration is lower than 5, which
is less than 0.14% of the final objective value. However, the convergence
threshold of 1E-05 is only reached after 19 iterations. The same findings also
hold for the learned kernel weights of the three data types, which remain
relatively stable after the 6th iteration. We observed a similar trend when
analyzing other cancer types. This suggests that, if necessary, a higher con-
vergence threshold could be used to reduce the running time of the method
without strong perturbations of the final results.
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Figure 3.3: Iterative optimization of the objective value and the
kernel weights for GBM with nine nearest neighbors and projection into
five dimensions in the 3K scenario.
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3.3.1.2 Comparison to state-of-the-art

We compared the identified clusterings with the results of Similarity Net-
work Fusion (SNF) in terms of survival differences between the clusters (see
Table 3.4). Regarding the p-value for the log-rank test (see Section 2.5.2.2),
rMKL-LPP with one kernel per data type (3K) has a comparable perfor-
mance to SNF. Only for KRCCC, the result was not considered significant
with a significance level α of 0.05. As can be seen in the last column (15K),
the significance for four out of the five data sets increased when using a set of
different values for the kernel parameter γ. This indicates that our method
is able to capture more information if it is provided. A further observation
when increasing the number of kernel matrices from 3 to 15 is the higher op-
timal number of clusters determined. A possible explanation for this is that
more detailed information is contributed by the different kernel matrices.
Depending on the kernel parameter setting, similarities between particular
groups of patients can appear stronger in the respective kernel matrix while
others diminish, leading to a more fine-grained clustering. Moreover, in the
15K scenario, we obtain the least significant p-values for BIC and COAD.
This could be a consequence of the composition of the data sets: these two
are the cancer types with the smallest number of samples and the lowest
number of events (see Table 3.2). One can generally assume an improved
performance with higher sample numbers, since they likely cover the under-

Table 3.4: Survival analysis of clustering results of similarity based network
fusion (SNF) and the proposed rMKL-LPP with one and five kernels per
data type. The numbers in brackets denote the number of clusters. For
SNF, these are determined using the eigenrotation method [158], and for
rMKL-LPP using the silhouette value.

rMKL-LPP

Cancer type SNF 3K 15K

BIC 1.1E-3 (5) 3.0E-4 (6) 3.4E-3 (7)

COAD 8.8E-4 (3) 2.8E-2 (2) 2.8E-3 (6)

GBM 2.0E-4 (3) 4.5E-2 (5) 6.5E-6 (6)

KRCCC 2.9E-2 (3) 0.23 (6) 4.0E-5 (14)

LSCC 2.0E-2 (4) 2.2E-3 (2) 2.4E-4 (6)

median 1.1E-3 2.8E-2 2.4E-4

product 1.1E-13 1.9E-10 5.9E-19
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lying distribution better. Moreover, small numbers of events implicate lower
power of the survival analysis. Overall, the performance of rMKL-LPP with
five kernel matrices per data type was best, shown by the smallest median
and product p-value. Note that the higher number of clusters of rMKL-LPP
is controlled in the calculation of the log-rank test p-value by the higher
number of degrees of freedom of the χ2-distribution.

An advantage of the rMKL-LPP method with five kernels per data type
is that one does not have to decide on the best similarity measure for each
data type beforehand, which makes this method more applicable out of the
box. Additionally, the results suggest that it might even be beneficial in some
scenarios to have more than one kernel matrix per data type to capture dif-
ferent degrees of similarity between data points (patients in this application
scenario).

Runtime As shown by Wang et al. [158], the runtime of the probabilistic
approach iCluster (see Section 2.6: Matrix factorization) scales exponentially
in the number of genes, which makes the analysis of the cancer data sets
infeasible if no gene preselection is performed. For SNF, this preprocessing
step is not necessary and it is significantly faster than iCluster. We compared
the runtime for the data integration in SNF and rMKL-LPP (15K), which
precedes the clustering step in both methods. The SNF approach with the
standard parameter settings completes the network fusion procedure for each
cancer type within a few seconds, while the data integration with rMKL-LPP
(15K) was slightly slower with running times up to one minute. However, just
like SNF, rMKL-LPP does not require a gene preselection, which suggests
that using data sets with a higher number of samples as well as including
more kernel matrices would be feasible in terms of runtimes.

3.3.1.3 Contribution of individual kernel matrices

For rMKL-LPP (15K), Figure 3.4 shows the influence of every kernel matrix
on the final integrated matrix. The top bar shows what the graphic would
look like for an equal contribution of all kernel matrices. In comparison to
this, we can see that kernel matrices using high values for the parameter
γn = γ ∗ 106 have a very low impact for all cancer types. These results
agree with the heuristic that the parameter should be chosen in the order of
magnitude of 1

2d2
or lower, which was used for the choice of γ. Furthermore,

most data types contribute significantly to the combined kernel supporting
the hypothesis that different kernel parameters lead to different but useful
information in the generated kernel matrix. Finally, there are differences
between the cancer types, e.g., for BIC, DNA methylation data have a higher
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Figure 3.4: Contribution of the different kernel matrices to each en-
try in the unified ensemble kernel matrix. The three colors represent
the considered data types: gene expression (blue), DNA methylation (yel-
low), and miRNA expression (red). The color intensities represent the used
kernel parameters γn, starting from γn = 1

2d2
∗10−6 (high intensity) to 1

2d2
∗106

(low intensity), with d being the number of features of the data type.

impact while for KRCCC, there is more information taken from the gene
expression data.

3.3.1.4 Robustness analysis

In order to assess the robustness of the approach to small changes in the
data set, we performed a leave-one-out cross-validation approach (see Sec-
tion 3.2.2). Figure 3.5 shows the stability of the clustering when using one
kernel matrix per data source (3K) and five kernel matrices per data source
(15K). While almost no perturbation in cluster structure appears for GBM
and LSCC in 3K, for the other three cancer types there is some deviation
concerning the left-out sample but also the clustering of the training sam-
ples observable. Especially for the COAD data set, we obtained a number of
leave-one-out clusterings in which, compared to the full clustering, one of the
clusters was split up into two distinct groups. This separation increases the
overall number of clusters from two to three and leads to a strong decrease
in the Rand index. The opposite happens for BIC, where we have a full clus-
tering consisting of six groups, while in some of the leave-one-out runs two of
the groups collapsed, resulting in five different clusters and, therefore, a low-
ered Rand index. However, when using five kernel matrices per data source,
the results seem to be more stable: they show an increased agreement with
the full clustering and a generally reduced variance among the leave-one-out
results.

To further investigate the impact of the regularization constraint, we
compared the robustness of the results obtained using rMKL-LPP to the
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Figure 3.5: Robustness of clustering results assessed by leave-one-
out cross-validation. Each patient is left out once in the dimensionality
reduction and clustering procedure and afterwards added to the cluster with
the closest mean based on the learned projection for this data point, which is
given by proj(xi) = ATKiβ. The depicted Rand index indicates the similarity
between the leave-one-out result and the clustering of the whole data set, the
error bars represent one standard deviation.

robustness of the results from MKL-LPP, which were generated by simply
omitting the regularization constraint. For both approaches, we used the 15K
scenario as it seems to result in more stable clusterings. In general, overfit-
ting is expected especially for data sets with a small number of samples or a
high number of predictors. To account for this, we created from each cancer
data set smaller data sets by randomly sampling without replacement 50%
of the patients and repeated the sampling 20 times. On these reduced data,
the unregularized MKL-LPP showed the highest instabilities for GBM and
KRCCC, with an overall increase in variance among the clustering results
compared to the regularized version for most cancer types (see Figure 3.6).
This trend continued when the number of samples was further reduced, as
Figure 3.7 summarizes for all data types. Although the results without regu-
larization seem to be robust when using the complete data set for each cancer
type, the robustness decreased with the number of available samples. The
regularized approach, however, showed only a slight decrease in robustness
when half the samples of each cancer type were considered, and remained at
this level when only one third or one quarter of the data were used. This sug-
gests that rMKL-LPP has advantages in scenarios where MKL-LPP would
overfit, while being comparable when no regularization is required.
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Figure 3.6: Impact of the regularization of MKL-LPP on the ro-
bustness of the clusterings. For each cancer type, we sampled 20 times
half of the patients and applied leave-one-out cross-validation as described
in Section 3.2.2. The error bars represent one standard deviation.
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Figure 3.7: Robustness of the method with and without regulariza-
tion on data sets of varying size averaged over all cancer types. The
percentage on the x-axis denotes how many patients were used for generat-
ing a smaller data set on which leave-one-out cross-validation was performed.
For each cancer type and each fraction of patients, we repeated the process
20 times. The error bars represent one standard deviation.
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Table 3.5: Comparison of clusters identified by rMKL-LPP to gene expression
and DNA methylation subtypes of GBM (Rand indices of 0.75 and 0.64,
respectively).

Subtypes based on:

Gene Expression
Verhaak et al. [154]

DNA methylation
Noushmehr et al. [104]
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3.3.1.5 Comparison of clusterings to established subtypes

In the following, we look further into the results generated by the 15K sce-
nario for the glioblastoma multiforme (GBM) data set. For this cancer type,
four subtypes determined by their gene expression profiles [154] have been
published. Additionally, Noushmehr et al. [104] identified three patient sub-
groups via clustering of DNA methylation data, one of them was charac-
terized as the Glioma-CpG island methylator phenotype (G-CIMP)3. The
comparison of our GBM clustering to these existing subtypes shows that our
result does not only reflect evidence from one individual data type, but finds
a clustering that combines information from both gene expression and DNA
methylation data. This is reflected by a similarity (measured by Rand index)
of 0.75 between our result and the gene expression subtypes, and a similarity
of 0.64 to the DNA methylation subtypes.

Table 3.5 illustrates that Cluster 1 is strongly enriched for the mesenchy-
mal subtype, whereas Cluster 2 contains mainly samples that belong to the

3In this study, only G-CIMP was further characterized, we will thus refer to the other
two clusters as Cluster #2 and #3.
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classical and the neural subtype. Moreover, Cluster 1 and 2 differ in their
predominant methylation cluster assignment. Samples of the proneural sub-
type are mainly distributed over Cluster 3 and Cluster 4, which are two
clusters that can be distinguished at the DNA methylation level by their
G-CIMP status. While Cluster 3 consists almost only of G-CIMP positive
samples, Cluster 4 contains samples that belong to the proneural subtype
but are G-CIMP negative. This shows that in this scenario, evaluating gene
expression and DNA methylation data together can provide useful additional
information since the analysis based on gene expression data alone could not
distinguish Cluster 3 and Cluster 4. For Cluster 5 and 6, we cannot see an
enrichment of one of the already established subtypes.

3.3.1.6 Clinical implications of the clusterings

To gain further insights into the biological characteristics of the identified
clusters, we investigated how patients of the different clusters respond to
the same treatment exemplified by GBM. Analysis and refinement of GBM
subtypes is particularly relevant because it is at the same time the most
common (3.2/100 000 persons a year) and the most aggressive (survival rate
after two years approximately 14%) of primary brain tumors [2]. According
to the WHO, GBM tumors are currently mainly classified according to their
IDH status as wildtype or mutant [162]. Of the 213 GBM patients, 94 were
treated with temozolomide, a drug that forms part of the standard ther-
apy for gliomas. Temozolomide constitutes an alkylating agent, which leads
to thymine mispairing during DNA replication, thereby eliminating rapidly
duplicating cancer cells [107].

Figure 3.8 shows for each cluster the survival time of patients treated
versus those not treated with this drug. Patients belonging to Cluster 5 had
a significantly increased survival time when treated with temozolomide with
a p-value < 0.01 after Bonferroni correction. The multiple testing correction
was applied due to the six tests performed (see Section 2.5.3.1). For Cluster 1
and Cluster 2, we can see a weaker tendency of treated patients living longer
than untreated ones (p-value after Bonferroni correction < 0.05), while for
the other clusters, we did not detect significant differences in survival time
between treated and untreated patients after correcting for multiple test-
ing. To summarize, we detect a difference between the two groups (treated
vs. untreated) only in a subset of the identified clusters indicating that the
treatment success might depend on the molecular foundation of the tumor.
Survival analysis for other medications could show their effectiveness in dif-
ferent groups.

Cluster 3 consists mainly of patients belonging to the proneural expression
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Figure 3.8: Survival analysis of GBM patients separated accord-
ing to treatment with temozolomide in the different clusters. The
numbers in brackets denote the number of patients in the respective group.
The specified p-values are corrected for multiple testing using the Bonferroni
method.

subtype and the G-CIMP methylation subtype. Patients from this cluster
show in general an increased survival time; however, they do not benefit
significantly from the treatment with temozolomide. We have determined
differentially expressed genes between these patients and all other patients
using the Kruskal-Wallis rank sum test [80]. As the name suggests, this test
is based on the ranks of the data and, therefore, does not assume a specific
distribution in the data. It is based on the null hypothesis that the means of
the ranks of each group are equal. Under this hypothesis, the test statistic
follows a χ2-distribution with K − 1 degrees of freedom, where K refers to
the number of groups that are compared. The genes that were identified as
differentially expressed, were divided into over- and underexpressed and were
tested for enrichment of Gene Ontology (GO) terms using over-representation
analysis (ORA, see Section 2.5.3).

Table 3.6 shows GO terms of the category Biological Process enriched in
the overexpressed set. When comparing the identified terms to those found to
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Table 3.6: Enriched GO terms identified by ORA using the category Biolog-
ical Process for overexpressed genes of GBM Cluster 3.

K=3 GO Term (Benjamini-Hochberg corrected p-value < 0.05)

tumor necrosis factor production

positive regulation of lymphocyte differentiation

positive regulation of transcription factor import into nucleus

positive regulation of NF kappaB transcription factor activity

transcription factor import into nucleus

regulation of transcription factor import into nucleus

RNA export from nucleus

regulation of mRNA metabolic process

mRNA catabolic process

nucleobase containing compound transport

regulation of mRNA processing

tRNA metabolic process

be significant for the G-CIMP positive subtype [104], both results cover sim-
ilar processes related to the regulation of gene expression in general. Besides,
the results for the underexpressed genes, given in Table 3.7, confirmed the
G-CIMP-specific downregulation of the extracellular matrix. Additionally,
the analysis of the underexpressed genes revealed associations to the immune
system and inflammation processes. Although the immune system plays an
important role in tumor prevention, chronic inflammation has been associ-
ated with tumor formation and progression [59]. Hanahan and Weinberg [59]
suggested tumor-promoting inflammation as a characteristic enabling tumors
to acquire further hallmarks of cancer. Therefore, the downregulation of im-
mune response-related genes in this patient group might contribute to their
favorable outcome.



3.3 Regularized multiple kernel locality preserving projections 65

Table 3.7: Enriched GO terms identified by ORA using the category Biolog-
ical Process for underexpressed genes of GBM Cluster 3.

K=3 GO Term (Benjamini-Hochberg corrected p-value < 0.05)

antigen receptor mediated signaling pathway

regulation of T cell proliferation

synapse assembly

leukocyte apoptotic process

negative regulation of neurogenesis

cell activation involved in immune response

negative regulation of mRNA metabolic process

pallium development

DNA methylation or demethylation

chronic inflammatory response

regulation of extracellular matrix assembly

negative regulation of inflammatory response

regulation of DNA damage response signal transduction by p53
class mediator

3.3.2 External validation

Our approach was reviewed in a benchmark paper by Rappoport and Shamir
[115]. The authors tested nine different data integration methods covering
different integration strategies, such as early integration based on concatena-
tion (LRAcluster, k-means, and spectral clustering), intermediate (MCCA,
MultiNMF, iCluster, SNF, rMKL-LPP) and late integration (PINS). Ten
cancer types from TCGA were used. The data for each sample consist of
DNA methylation, gene expression, and miRNA expression measurements.
Our approach rMKL-LPP was used with the same parameters as described
previously. Each data type was represented by five different kernel matrices,
similar to the 15K scenario, with kernel widths of {10−6, 10−3, 1, 103, 106}. In
the absence of a known label, the performance was evaluated on the basis of
survival analysis using the log-rank test. Furthermore, the authors tested the
identified clusterings for an enrichment of six clinical labels (gender, age at
diagnosis, pathologic T, pathologic M, pathologic N, and pathologic stage).
The p-values for survival differences and enrichment were estimated based on
permutation tests. Figure 3.9 summarizes the performances of the compared
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Figure 3.9: Performance of nine integrative clustering approaches
evaluated via survival p-values and the number of enriched clinical parame-
ters averaged over ten cancer data sets (Figure from Rappoport and Shamir
[115], license #4455320736016, see Table B.1).

approaches with respect to these two measures. The optimal method would
identify clusterings that are both enriched for clinical parameters and have
significant differences in survival time between the clusters, i.e., be located
in the top right corner of the plot. One can see that rMKL-LPP provides
reasonable results in terms of survival analysis. Additionally, the rMKL-LPP
clusters have higher concordance with the chosen clinical labels on average
than the clusters identified by other approaches.

3.4 Conclusion

The availability of multidimensional data for cancer patients enables studying
this complex disease in a more comprehensive manner. For the unsupervised
analysis of patients that aims at identifying interesting subgroups, it is in
general not clear how to weight the importance of the different types of
information. In this chapter, we have proposed to use a regularized version
of the multiple kernel graph embedding framework, which does not only
automatically learn an appropriate weight for each source of information but
can also be used to implement of various dimensionality reduction techniques.

For patient data from five different cancers, we have shown that our ap-
proach implementing locality preserving projections can find subgroups that
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provide a better separation with respect to patient survival according to
the log-rank test than the ones found by state-of-the-art methods. Further-
more, we have demonstrated that we can utilize several kernel matrices per
data type, not only to improve performance but also to remove the burden
of manually selecting the optimal kernel matrix. The visualizations of the
contributions of the individual kernels and the survival analyses of the final
clusterings suggest that kernel matrices based on different parameter set-
tings add valuable information. Moreover, the stability analysis shows that
the method does not overfit when more kernels are added. In contrast to the
unregularized MKL-DR, rMKL-DR remains stable also for small data sets.
For a wide applicability of the method, this is especially important, since
in many potential application scenarios the number of available samples is
smaller than in this study. The good performance of our method was en-
dorsed in a later benchmark study with an evaluation via survival analysis
and enrichment for clinical parameters. The application of the methods to
ten different cancer data sets confirmed the stability of our approach.

Our clustering of GBM patients displayed concordance to previous clus-
terings based on gene expression as well as on DNA methylation data, which
shows that rMKL-LPP is able to capture diverse information within one
clustering. For the same clustering, we also analyzed the response of the pa-
tients to the drug temozolomide, revealing that patients belonging to specific
clusters significantly benefit from this therapy while others do not. These
results suggest that integrative subtypes can support personalized treatment
decisions. The exemplary GO enrichments for one cluster of GBM patients
showed, on the one hand, similar results to what was known from the bio-
logical literature. On the other hand, the enrichment also indicated a down-
regulation of the immune system in the subgroup of cancer patients who
survived longer. This suggests that down-regulation of parts of the immune
system could be beneficial in some scenarios and points at the controver-
sial role of the immune system in cancer. Follow-up studies for the different
clusterings are necessary to assess their biological significance and medical
implications.

Furthermore, given that the learned data representation unites informa-
tion from all sources in a low-dimensional space, other follow-up analyses,
e.g., the visualization of new patients, could also benefit from the data inte-
gration. Additionally, semi-supervised dimensionality reduction is straight-
forward in this framework, which makes different analyses possible, e.g., the
treatment data can be used as labels, where available, to evaluate how un-
labeled data points are distributed in the projected space or over different
clusters.





Chapter 4

Multiple kernel principal
component analysis

This chapter focuses on extending one particular dimensionality reduction
technique, namely principal component analysis (PCA), to enable a joint
analysis of multi-omics input. We point out intrinsic problems when the
objective function of PCA is used to optimize kernel weights and present an
alternative heuristic, which generates promising results on cancer data.

The main parts of Section 4.3 - 4.5 were published in Speicher and Pfeifer
[137] as a part of the 13th International Symposium on Integrative Bioinfor-
matics (IB 2017).

4.1 Overview

Similar to the last chapter, the aim of this chapter is the identification
of cancer subtypes after integrative projection of the patients into a low-
dimensional space. However, this chapter specifically concentrates on ex-
tending the global dimensionality reduction approach PCA, a widely used
algorithm, which benefits from valuable advantages: the application to an
arbitrary data set is easy, as one does not need to determine parameters
that define the size of a neighborhood as is necessary for local dimensionality
reduction techniques. Still, due to the possibility of using a kernel function
(i.e., using kernel PCA), the method provides enough flexibility to model dif-
ferent types of data with different characteristics also in a nonlinear fashion.
Moreover, both linear PCA and kernel PCA learn a projection matrix and
hence, do not suffer from the out-of-sample problem. Consequently, new test
samples can easily be projected into the same coordinate system.

In the following, we will first show that although kernel PCA (kPCA) can

69



70 Multiple kernel principal component analysis

be implemented in the graph embedding framework (see Section 2.3.3), mul-
tiple kernel PCA cannot be solved using the extended framework presented
in the previous chapter due to an ill-posed eigenvalue problem. Section 4.3
demonstrates why a direct transfer of the optimization problem for PCA in
the multiple kernel scenario only yields a trivial solution that chooses exactly
one kernel matrix. Previous observations in molecular cancer subtyping sug-
gest the usefulness of combining several data types instead of considering
only one data type or kernel matrix [158], thereby motivating the develop-
ment of an alternative objective function, which is introduced in Section 4.4.
Results on cancer data are presented in Section 4.5.

Related work Several approaches have been proposed to make PCA ap-
plicable with multiple inputs. Guo [57] applied a late integration kPCA
approach to medical image data. The data types that are combined corre-
spond here to clusters of voxels, each cluster giving rise to a kernel matrix
reflecting similarities between subjects. Then, kPCA is applied on each of
these matrices separately, and the identified principal components are used
in a prediction model. However, when learning this model, the weight of each
kernel matrix (or rather the influence of the respective principal components)
is determined in a supervised manner based on the outcome of interest. An-
other version of multiple kernel PCA combines a local scoring term similar
to the nearest neighbor-based objective function of LPP (see Section 2.3.1)
to the global variance maximizing objective function of PCA to learn kernel
weights [118]. Finally, some approaches first optimize kernel weights such
that the local topology or the consensual information is preserved and inde-
pendently apply kPCA to the combined ensemble kernel matrix [98].

In many scenarios, methods using the uniformly weighted average kernel
as input give good results or even outperform standard approaches that learn
kernel-specific weights [79]. Moreover, using uniform weights does not require
making assumptions on the individual data types. For these reasons, we use
kPCA on the average kernel matrix as a baseline in this chapter.

4.2 PCA in the graph embedding framework

As described in Section 2.3.3, graph embedding provides a flexible framework
for the implementation of different dimensionality reduction schemes includ-
ing PCA and kPCA. For this algorithm, the similarity matrix W is set to
uniform weights, i.e., wij = 1/N, for all i, j ∈ {1, ..., N}, and the diagonal con-
straint matrix D is set to the identity matrix, i.e., dii = 1 for all i ∈ {1, ..., N}
(see Table 2.1). Using uniform values in W seems intuitively reasonable as it
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reflects that PCA is a global method seeking to preserve as much variance as
possible. Moreover, one needs to consider that the introduced minimization
problem of graph embedding (Problem (2.12) for linear and Problem (2.22)
for multiple kernel formulation) identifies the directions of minimum variance.
Instead of solving the minimization problem and discarding these directions,
one can formulate a maximization problem to directly identify the directions
of maximum variance. The final optimization problem is given by

arg max
A,β

1

N

N∑
i,j=1

‖ATK(i)β − ATK(j)β‖2 (4.1)

subject to
N∑
i=1

‖ATK(i)β‖2 = const. (4.2)

‖β‖1 = 1 (4.3)

βm ≥ 0, m = 1, 2, ...,M, (4.4)

with A ∈ RN×p, β ∈ RM and

K(i) =

K1(1, i) · · · KM(1, i)
...

. . .
...

K1(N, i) · · · KM(N, i)

 ∈ RN×M (4.5)

as introduced in Section 2.3.3.2.
PCA is used on centered data, consequently, the projections ATK(i)β for

all data points xi are centered around zero as well. In this case, the objective
function (4.1) is the same as the first constraint (4.2), as both are, up to a
multiplicative normalization constant, formulations for the variance.

Theorem 1. Consider m centered kernel matrices Km ∈ RN×N , which are
combined into N matrices K(i) with i ∈ {1, ..., N} as shown in Equation (4.5),
a projection matrix A ∈ RN×p, and a weight vector β ∈ RM with ‖β‖ = 1.
Then,

1

N

N∑
i,j=1

‖ATK(i)β − ATK(j)β‖2 = 2
N∑
i=1

‖ATK(i)β‖2 (4.6)

holds.

Proof. For the sake of brevity, we replace the term ATK(i)β, which is the
projection of sample xi, in the following with pri; mpr is used to represent
the mean of the projected data.

1

N

N∑
i,j=1

‖pri − prj‖2
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=
1

N

N∑
i,j=1

‖(pri −mpr)− (prj −mpr)‖2

=
1

N

N∑
i,j=1

(
‖pri −mpr‖2 − 2(pri −mpr)

T (prj −mpr) + ‖prj −mpr‖2
)

=
N∑
i=1

‖pri −mpr‖2 +
N∑
j=1

‖prj −mpr‖2 − 2

N

N∑
i,j=1

(pri −mpr)
T (prj −mpr)︸ ︷︷ ︸

=0, by the definition of the mean

= 2
N∑
i=1

‖pri −mpr‖2 + 0

(mpr=0)
= 2

N∑
i=1

‖pri‖2 (4.7)

As the data were centered beforehand, the meanmpr is equal to zero, resulting
in Term (4.7), which was derived the left-hand side of Equation (4.6) and is
equal to the right-hand side of Equation (4.6).

This problem manifests in an ill-posed eigenvalue problem, when opti-
mizing the projection matrix A, as will be shown in the following.

In general, A and β are optimized iteratively, as described in Section 3.2.1.1.
The optimization of A is formulated as a trace ratio problem involving the
matrices SβW and SβD. For kPCA, the setting of W and D leads to

SβW =
1

N

N∑
i,j=1

(K(i) −K(j))ββT (K(i) −K(j))T , (4.8)

and SβD =
N∑
i=1

K(i)ββT (K(i))T . (4.9)

As K(i)β is equal to Ki, the ith column of the ensemble kernel matrix K, we
can rewrite the equations into

SβW =
1

N

N∑
i,j=1

(Ki −Kj)(Ki −Kj)
T , (4.10)

and SβD =
N∑
i=1

KiKT
i . (4.11)
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For two arbitrary but fixed indices a, b ∈ {1, ..., N}, we consider SβW [a, b] and
SβD[a, b], which are entries of the matrices SβW and SβD, respectively. In the

following, we will use mi for the mean of row i of K, i.e., mi = 1
N

∑N
j=1 K[i, j].

SβW [a, b] =
1

N

N∑
i,j=1

(K[a, i]−K[a, j]) (K[b, i]−K[b, j])

=
1

N

N∑
i,j=1

(K[a, i]K[b, i]−K[a, i]K[b, j]−K[a, j]K[b, i] + K[a, j]K[b, j])

=
N∑
i=1

(
K[a, i]K[b, i]−K[a, i]mb −maK[b, i] +

1

N

N∑
j=1

K[a, j]K[b, j]

)

=
N∑
i=1

K[a, i]K[b, i]− 2Nmamb +
N∑
j=1

K[a, j]K[b, j]

= 2
N∑
i=1

K[a, i]K[b, i]− 2Nmamb

and SβD[a, b] =
N∑
i=1

K[a, i]K[b, i].

Since we are interested in variation from the mean, and not from the
origin, each kernel matrix is centered using Formula (2.6). Consequently, the
ensemble kernel matrix K, being a weighted linear combination of the input
kernels, will be centered as well. This causes ma and mb to be zero, which
leads to

SβW = 2SβD, (4.12)

when choosing the parameter setting for kPCA in the graph embedding
framework. Therefore, the generalized eigenvalue problem SWα = λSDα
(or SWA = λSDA, for matrices) cannot provide a unique, meaningful solu-
tion for the projection vector α. For this reason, graph embedding is not
suitable for multiple kernel PCA.

4.3 Direct extension of kernel principal com-

ponent analysis

Instead of making use of the graph embedding framework, the following
formulation extends the original optimization problem for the first principal
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component in kPCA (Formula 2.11) such that multiple input kernels are
incorporated:

arg max
α,β

Var(αT
M∑
m=1

βmKm)

subject to βm ≥ 0, m = 1, ...,M

M∑
m=1

βm = 1. (4.13)

λ is the eigenvalue corresponding to the eigenvector α and α is normalized
in length such that ‖α‖ = 1/

√
Nλ. The latter follows from the orthonormality

constraint ATKA = I, with I being the identity matrix. Yet, this direct
implementation does not allow for data integration. The variance of the
data in each principal component is given by the respective eigenvalue. In
this context, the fact that the direct implementation does not lead to an
integration of the different data becomes clear when looking at Thompson’s
inequality concerning the eigenvalues of sums of matrices [172].

Theorem 2 (Thompson). Consider A and B being n×n Hermitian matrices
and C = A + B, with their respective eigenvalues λi(A), λi(B), and λi(C)
sorted decreasingly. Then, for any p ≥ 1 holds

p∑
i=1

λi(C) ≤
p∑
i=1

λi(A) +

p∑
i=1

λi(B). (4.14)

For the special case of the multiple kernel scenario, we extend this formula
by including the kernel weight β1, which simply scales the eigenvalues of the
respective matrices. Having C = β1A + (1 − β1)B and 0 ≤ β1 ≤ 1 leads to
the following inequality

p∑
i=1

λi(C) ≤ β1

p∑
i=1

λi(A) + (1− β1)

p∑
i=1

λi(B). (4.15)

The right hand side is maximized if the kernel matrix with the highest
sum of the p largest eigenvalues has a weight of one. In that setting, the
right hand side is equal to the left hand side and, thus, this would also be
the maximum of the left hand side. Consequently, weights that maximize the
sum of the first p eigenvalues are binary, and do not lead to data integration.

Figure 4.1 illustrates the theoretical upper bound for the sum of eigen-
values of weighted combinations of two example data sets1 calculated using

1This chapter uses the same data sets as Chapter 3. Therefore, these are described in
Section 3.2.3
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Figure 4.1: Theoretical upper bound and practical results for the
variance of the ensemble kernel matrix K = β1K1 + (1− β1)K2 in the
first three principal components.

Equation (4.15). In comparison to this upper bound, the practically achieved
sum of eigenvalues for weighted combinations of the example data are shown.
The sums of eigenvalues correspond to the variance explained in the first
three dimensions and are to be maximized in kPCA. In most cases, the sum
of the first p eigenvalues will differ between the individual kernel matrices
as depicted in Figure 4.1a. Occasionally, the sums of eigenvalues might be
very similar or even the same (see Figure 4.1b). Even in the latter case,
we can observe a decrease in the curve depicting variance between the two
special cases of β1 (being either zero or one). This shows that, in any case,
a PCA-like algorithm maximizing the variance would choose one of the two
trivial solutions instead of a combination of the kernel matrices.

The extension of the theorem to more than two kernel matrices can be
made by recursively partitioning the involved matrices, e.g., A can already
be the sum of two matrices, which would C make the sum of three matrices.
It therefore follows that optimizing Problem (4.13) leads to weight vectors β
with βi = 1 and βj = 0 for all j 6= i, where i is the index of the matrix for
which the sum of the p largest eigenvalues is maximal.

The constraint ‖β‖ = 1 is a major factor for the observed behavior, how-
ever, this constraint is necessary to ensure that the ensemble kernel matrix
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will be normalized in the RKHS, just like the input kernel matrices are nor-
malized in the RKHS. Dropping the constraint could lead to an arbitrary
increase in variance in the ensemble kernel matrix and consequently in the
projections, without being based on the input data but due to an increase in
the kernel weights.

4.4 Scoring function

A kernel weight vector that chooses one kernel matrix (i.e., an indicator vec-
tor) instead of combining the available matrices maximizes the variance in
the first p principal components. However, it might not be the best choice
for biological data, where we assume that different data types can give com-
plementary information and should therefore be considered jointly. Hence, in
the following, we will introduce a scoring function that combines the idea of
maximizing the variance with the assumption of different data supplementing
each other. Proceeding in the spirit of kPCA, the aim of this approach is to
find the ensemble kernel matrix that preserves the global variance best, but
also integrates data from different sources. Consequently, new information
can be added even if it does not lead to an increase in the total variance of
the projection.

For integrating M different kernel matrices {K1, ..., KM} to an ensemble
kernel matrix

K =
M∑
m=1

βmKm with
M∑
m=1

βm = 1,

we propose the following gain function:

gi = exp

(
λi(K)

max{max
m
{λi(Km)}, 1}

− 1

)
(4.16)

for each dimension i, with λi(Km) being the ith eigenvalue of Km. In the
following, we will assume that the eigenvalues are sorted decreasingly, i.e.,
λi ≥ λi+1. The overall score Gp for a projection into a p-dimensional space
is then calculated as

Gp =
1

p

p∑
i=1

gi, (4.17)

i.e., the average gain over the retained p dimensions. The main idea is the
definition of a baseline for each dimension i, i.e.

max{max
m
{λi(Km)}, 1} (4.18)
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that represents the variance we can have by using only one matrix, more
specifically, the matrix with the highest ith eigenvalue. It should be noted
that the matrix considered in this baseline might be different with varying i.
Due to the use of the exponential function, gains of variance in comparison
to this baseline have a strong positive impact on the score while losses of
variance are penalized only slightly. Thereby, we can account for the fact
that small losses of variance in one direction often do not change the global
structure of the data, but allow for more variation in a subsequent direction.
Additionally, we ensure that the baseline is not smaller than one, which is
the variance each direction would have in case of an equal distribution of the
variance. Finally, the best kernel weights β optimize the following objective
function:

arg max
β

Gp. (4.19)

The projection matrix A is optimized such that it maximizes the variance in
the projections given the ensemble kernel matrix K. Although this procedure
constitutes a method in which the optimizations of A and β are performed
independently and based on different objective functions, the proposed gain
function is strongly geared to the variance maximization rationale of PCA.

Figure 4.2 illustrates a scenario where maximizing the variance does not
yield the best result in terms of dimensionality reduction. Despite the sum-
mative variance in the maximum variance kPCA projection (Figure 4.2 B)
being larger than in the gain function kPCA result (Figure 4.2 C) with 10.79%
vs. 9.45% of the variance explained by the first two dimensions, the cluster
structure is preserved better using the latter approach. This can be explained
by the fact that increasing the distance between two already separated clus-
ters does increase the variance, but does not provide additional information
in terms of cluster structure. Moreover, using the gain function leads to
a more balanced distribution of variance between the two shown principal
components. This is not the case in the maximum variance approach, where
the variance is mainly concentrated in the first principal component with the
second only adding 0.71%.



78 Multiple kernel principal component analysis

50 100 150 200 250 300

50

100

150

200

250

300

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0

50

100

150

200

250

300

50 100 150 200 250 300

50

100

150

200

250

300

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

50 100 150 200 250 300

50

100

150

200

250

300

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

−0.4 −0.2 0.0 0.2

−0.4

−0.2

0.0

0.2

1st principal component
(variance explained = 4.79%)

2n
d 

pr
in

cip
al

 c
om

po
ne

nt
(v

ar
ia

nc
e 

ex
pl

ai
ne

d 
= 

4.
66

%
)

low

high

Sa
m

pl
es

 w
ith

 c
lu

st
er

 a
ss

ig
nm

en
t

A

B

−0.4 −0.2 0.0 0.2 0.4

−0.2

−0.1

0.0

0.1

0.2

1st principal component
(variance explained = 10.08%)

2n
d 

pr
in

cip
al

 c
om

po
ne

nt
(v

ar
ia

nc
e 

ex
pl

ai
ne

d 
= 

0.
71

%
)

~ 
Si

m
ila

rit
y

max Variance max GainC

Figure 4.2: Illustrating example: different versions of PCA on synthetic
data. (A) shows the given cluster assignment of the patients and the two
kernel matrices to be combined, where high kernel values (depicted in yellow)
roughly correspond to high similarity. (B) and (C) show the results obtained
by maximum variance kPCA and by gain function kPCA. The third principal
component only harbors less than 0.6% of the variance for both approaches.

4.5 Application to cancer patient data

4.5.1 Materials

The analyses in this chapter were performed on data for five cancer types:
breast invasive carcinoma (BIC), colon adenocarcinoma (COAD), glioblas-
toma multiforme (GBM), kidney renal clear cell carcinoma (KRCCC), and
lung squamous cell carcinoma (LSCC). For each cancer type, gene expres-
sion, DNA methylation, and miRNA expression data were available. Survival
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data were additionally used for the subsequent validation. As the same data
were used to test rMKL-LPP (Chapter 3), they are introduced in more de-
tail in Section 3.2.3, with descriptive summaries on the number of samples,
features, and events per cancer type given in Tables 3.1 and 3.2.

Implementation

The optimization of gain function kPCA for data integration was imple-
mented in Matlab (version R2016b) [147] via random sampling of the kernel
weights. The evaluation including survival analysis was done using custom
scripts in R version 3.4.0 [112].

4.5.2 Workflow

For each cancer type, we generated results using a two-step procedure, i.e.,
we performed integrative dimensionality reduction and subsequent clustering
of the patients.

In the first step, we optimized the kernel weights according to the pro-
posed scoring function and ran the dimensionality reduction approach in
order to integrate the three data types and reduce the noise in the final
projection. In similar approaches, the number of projection dimensions is
usually determined either by using the elbow method [6] or based on a cho-
sen threshold for the remaining variance [27]. Here, we could benefit from the
proposed scoring function (Section 4.4), which indicates for each dimension
if we gain variance by combining matrices in comparison to using only one
matrix. The scoring function can thus be used to measure whether adding
the subsequent principal component increases or decreases the gain. Since
this is a non-convex function, we started with a projection into one dimension
and increased the number of considered dimensions. Then, we used the first
local maximum of the average gain Gp to determine the number of projection
directions. Thereby, we avoided adding directions with no gain in combined
variance.

In the second step, we clustered the projected samples using k-means (see
Section 2.4.1) to identify potential cancer subtypes. The number of clusters
was chosen according to the average silhouette width (see Section 2.5.1.1)
of all results from 2 to 15 clusters. For each cancer type, we evaluated the
resulting clusterings by comparing the survival of the patients among the
different groups using the log-rank test (see Section 2.5.2.2). This test is
based on a χ2-distribution whose degrees of freedom are equal to the number
of clusters, such that correction for multiple testing is not necessary. We
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compared our approach (gain function kPCA) to two different versions of
kPCA:

• average kPCA based on the average kernel (i.e. fixed kernel weights
of 1/M), and

• max variance kPCA based on the kernel with the highest variance
in the first p dimensions. As shown in Section 4.3, this corresponds to
the trivial solution to multiple kernel PCA.

4.5.3 Results and discussion

Variance preservation Given that the main idea behind PCA is retaining
as much variance as possible, we inspected the variance preserved in the first
p principal components derived by the different methods. Figure 4.3 depicts
the percentage of variance preserved in the first p principal components,
i.e., the sum of the p largest eigenvalues of the respective kernel matrix
divided by the total sum of the eigenvalues, for each cancer type. Each kernel
matrix was normalized beforehand such that the overall variance equals the
number of patients available in the respective data set for the individual
kernel matrices and for the ensemble kernel matrix. This means that the
reference value of 100% variance remains the same for each cancer type. The
number of dimensions p was chosen according to the average gain Gp as
described previously.

The inspection of the variances shows that different data types harbor
most variance in the first p principal components in different cancer types.
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Figure 4.3: Variances preserved in the first p dimensions of individual
data types and combined data. For each cancer type, the parameter p
was chosen according to the average gain Gp (for BIC, p = 3 ; for COAD,
p = 2; for GBM, p = 3; for KRCCC, p = 3; and for LSCC, p = 4).
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As expected, max variance kPCA has the highest variance of the integrative
methods because it simply chooses the one data type with maximum variance.
Average kPCA preserves much less variance, in some cases even less than any
individual data type. This observation is not surprising given the results on
the integration of two data types: Figure 4.1a and 4.1b show a decrease
of variance below the theoretical upper bound and also below the variances
of the individual kernel matrices. For gain function kPCA, the preserved
variances are often only slightly below the maximum variance, showing that
the overall variance still has a strong impact on the scoring function. This is
especially true if there is one data type that clearly dominates the others in
terms of variance. For BIC, where DNA methylation and miRNA expression
account for approximately the same amount of variance, we can see a stronger
decrease in variance for gain function kPCA compared to the max variance
kPCA.

Survival analysis The number of retained dimensions p with the highest
gain Gp and the p-values of the survival analysis for all three approaches
are provided in Table 4.1. For all cancer types, p was rather small (at most
four), which could be due to the fact that we used three input data types.
If these data types are not strongly correlated, it would be possible that
each of them contributed its strongest information thereby adding a useful
direction. Nevertheless, this low-dimensional projection harbors meaningful
information and facilitates the identification of biologically significant clusters
within the cancer types, as is shown in the survival analysis.

Using the conservative significance threshold of α ≤ 0.01, our method
was able to find significant clusters in three cancer types (BIC, COAD, and
LSCC). Both other methods identified significant clusters only for two out of
the five cancer types (BIC and LSCC for average kPCA; COAD and LSCC
for max variance kPCA). This fact indicates that it can be beneficial to
combine the two goals, namely data integration and variance maximization,
in the objective function. In the GBM data, the gene expression kernel is
dominant in terms of variance, therefore, it obtains a high weight in the gain
function kPCA. However, there is no clear group structure in this matrix,
such that neither max variance kPCA nor gain function kPCA is able to find
a clustering that correlates with the survival of the patients. For KRCCC,
there is a very small group of patients whose survival behavior differs from
the other patients. The survival analysis of the KRCCC clustering shows
a trend for max variance kPCA and gain function kPCA (p-values ≤ 0.05)
but due to the small number of samples in each cluster, the result is not
significant according to α ≤ 0.01. However, in this example, one can see that
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Table 4.1: P-values of survival analysis for the clustering results of kPCA
used with an average kernel (average kPCA), a weighted integrated kernel
(gain function kPCA), and the kernel with the largest variance in the first
p dimensions (max variance kPCA). p denotes the number of considered
dimensions. The numbers of clusters was determined by the silhouette value
and are given in brackets.

Cancer p average kPCA gain function kPCA max variance kPCA

BIC 3 5.7E-4 (4) 6.65E-3 (4) 0.59 (2)

COAD 2 3.28E-2 (3) 6.47E-3 (2) 6.47E-3 (2)

GBM 3 1.59E-2 (4) 0.11 (3) 0.11 (5)

KRCCC 3 0.17 (8) 1.37E-2 (14) 2.27E-2 (14)

LSCC 4 9.22E-3 (3) 7.52E-3 (3) 7.52E-3 (3)

median 1.59E-2 7.52E-3 2.27E-2

product 4.66E-10 4.86E-10 7.17E-8

with the unweighted average of the kernel functions, the signal of interest is
not captured (p-value = 0.17).

The results for the LSCC data are very stable for all three methods. For
all other cancer types, at least one of the naive approaches results in a clus-
tering with no significant difference in survival times between the patient
groups, while gain function kPCA results only for GBM in a non-significant
clustering. These results show that using the gain function can be benefi-
cial in cases, where only one of the naive approaches identifies a significant
clustering. In these cases, gain function kPCA provides the flexibility to de-
termine appropriate weights for the different kernel matrices. Overall, gain
function kPCA has the minimal median p-value. One can also see that the
average kPCA constitutes a reasonable baseline with a similar product of
the p-values. Both integrative approaches outperform max variance kPCA,
which only considers one kernel matrix.

Visualization In addition to clustering the cancer patients, the use of di-
mensionality reduction also enables inspecting the results visually. Figure 4.4
shows the first two principal components learned via gain function kPCA on
the LSCC data set. In this graphic, we can see that the black cluster clearly
separates from the other two. However, the cluster assignment generated for
the other patients seems to be too strict, given that the exact location of the
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Figure 4.4: Scatter plot of LSCC patients on the first two principal
components identified by gain function kPCA. Colors represent the
different clusters identified by k-means clustering.

border between the clusters might vary with the training data set. Patients
close to this border probably share molecular traits from both subgroups
and would thus be better described by a mixture of the characteristics of the
subgroups.

4.6 Conclusion

This chapter discussed options to extend kernel PCA in order to enable the
integration of different data sources. We showed that the objective function
of PCA (i.e., maximizing the variance of the projection) in combination with
the side constraint for β in multiple kernel learning (i.e.,

∑
m βm = 1) does

not allow for data integration. This objective function is therefore not suit-
able to optimize kernel weights β for the integration of biological data, where
different data types are assumed to add supplementary information. To this
end, we introduced a gain function that scores possible ensemble kernel ma-



84 Multiple kernel principal component analysis

trices. The function does not use the sum of variances in the projection
directions, but instead is based on the increase of variance in individual di-
rections. Our results indicate that kernel weights that maximize this scoring
function generally enable the integration of different kernel matrices. Appli-
cation to five cancer data sets with three different input data types showed
that, despite preserving less variance than possible, this approach can per-
form meaningful data integration in cases where the standard approaches,
namely generating an average kernel matrix or choosing the one with the
highest variance, cannot capture the relevant patterns.

Future work could focus on improving the heuristic scoring function. Dif-
ferent choices for the denominator in the baseline would be possible, for
instance, consistently using the same kernel matrix Kbest for all dimensions,
where Kbest is the matrix with the maximum sum of the p largest eigenval-
ues. For increasing number of dimensions, this choice would still consider
previous eigenvalues, therefore, the baseline might in some cases be smaller
than our currently used one. This would promote a more balanced weight
distribution and move the approach farther away from the strict variance
maximization. In addition, the exponential function could be replaced by
various other functions with similar characteristics. A systematic evaluation
of these possibilities on a large number of test sets could either identify the
best overall scoring function or determine properties of the test set that can
guide the choice of a data-specific scoring function. Moreover, the presented
approach disconnects the optimization of the kernel weights from the calcula-
tion of the projection directions. It would be promising to develop a multiple
kernel PCA where the kernel weights and the projection matrix optimize the
same objective function, without preventing data integration as it is the case
for the straightforward approach.



Chapter 5

Increased interpretability of
unsupervised multiple kernel
learning

This chapter addresses the difficulties in the interpretability of multiple ker-
nel learning methods. The extension proposed in this chapter involves the
identification of feature sets, and thus represents a version of kernel-based
biclustering. Moreover, motivated by previous observations, we assign clus-
ter probabilities to each patient using fuzzy clustering instead of generating
a hard clustering.

The content of this chapter is publicly available on arXiv (Speicher and
Pfeifer [138]).

5.1 Introduction

Due to the flexibility of the kernel functions, multiple kernel learning meth-
ods enable the integration of distinct data types, such as numerical, sequence,
or graph data. Additionally, the individual up- or downweighting of kernel
matrices can account for differences in the quality or relevance for the learn-
ing task at hand. However, these advantages come along with deficiencies of
interpretability of the learning process and final results. The general process
of unsupervised multiple kernel clustering comprises the calculation of kernel
matrices for the input data, subsequent data integration, and clustering of
the samples. After obtaining the final result, it is not clear how the learning
machine has come to this conclusion, as for nonlinear kernels it is in general
not straightforward to identify features that were important for solving the
particular learning task. Therefore, evaluation and interpretation of the clus-
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tering are difficult, especially when there is no known outcome of interest that
can be used as ground truth. In this chapter, we present a general extension
for existing unsupervised multiple kernel learning approaches that aims at
increasing their interpretability. Therefore, our approach combines feature
clustering with subsequent data integration using multiple kernel learning
before clustering the samples. Due to the learned kernel weights, we are able
to identify which feature clusters were especially influential for each identified
sample cluster, making a further biological characterization of the different
sample clusters possible.

When analyzing cancer data, identified patient clusters are considered
interesting or meaningful if they correlate with clinically relevant character-
istics, e.g., if the groups show group-specific responses to treatments. Differ-
ent clinically relevant patient characteristics are related to different subsets of
features, e.g., the success of a particular therapy might primarily depend on
the activity of the targeted gene or pathway. Additionally, a therapy-specific
set of enzymes processing and transporting the drug might be relevant for
the efficacy of the treatment (see for example [124]). In the example of breast
cancer treatment, some drugs (e.g., tamoxifen) bind to the estrogen receptor
and, therefore, are also influenced by the activity of the estrogen receptor
pathway in the tumor cells [111], whereas other drugs rather depend on the
ERBB2 signaling pathway (e.g., trastuzumab [169]). Consequently, the avail-
able features might be of varying importance for different, clinically relevant
patient groups. Therefore, we propose a procedure that is based on the as-
sumption that patient clusters are not defined by all features, but rather
by a subset of features. This assumption is also the basis of biclustering or
co-clustering, i.e., the simultaneous clustering of samples and features [60].
The approach starts with clustering the features of each data type in order
to identify groups of features with similar patterns in the respective data
type, e.g. similar expression or methylation patterns over all patients. Based
on each feature cluster, a kernel matrix is calculated reflecting sample sim-
ilarities. Such a kernel matrix can reveal a clear cluster structure for those
patients with consistent patterns in the underlying feature set. Since each
kernel matrix uses a different set of features, different biological aspects are
covered, which can potentially help to identify different groups of patients.
In this way, we can reduce the noise in the kernel matrices compared to a
kernel calculation based on all available features.

Another new aspect in this chapter is the choice of the clustering method
used for the samples. Most clustering algorithms, including k-means, which
was used in the two previous chapters, generate a hard clustering, i.e., each
sample is assigned to exactly one cluster. This approach is reasonable if
the clusters are well separated, or if the assignment of samples into distinct



5.1 Introduction 87

groups is necessary, e.g., for the sizing of clothes. Samples representing cancer
patients might lie between two or more clusters because they exhibit charac-
teristics of each of them, as illustrated in Figure 4.4 for lung cancer patients.
In such cases, fuzzy or soft clustering methods give additional information,
because they express the patient-to-cluster assignment in a probabilistic –
rather than binary – manner. Therefore, we apply fuzzy c-means (see Sec-
tion 2.4.2), which provides a soft clustering version of the prominent k-means
clustering method. A multiple kernel extension for fuzzy c-means has been
proposed by Huang et al. [70]. However, we will apply fuzzy c-means to the
projection of the samples obtained from regularized multiple kernel based
LPP (as introduced in Section 3.3), as this integrative dimensionality reduc-
tion approach has been shown to perform very well in comparison to other
data integration approaches (see Section 3.3.2).

Related work A general overview of data integration methods is given in
Section 2.6. In the following paragraph, we will focus specifically on data
integration methods that perform biclustering or aim at improving the inter-
pretability of the clustering results.

A common approach for biclustering is matrix factorization. SRF (Sub-
typing with Ranked Factors) [85] integrates gene expression with Boolean
mutation data by transforming both into ranked matrices either directly (ex-
pression data), or by using a known network of molecular gene-gene interac-
tions (mutation data). Via rank matrix factorization, Le Van et al. [85] are
able to identify patient subgroups associated with one set of genes per data
type. In line with the idea of biclustering, the chosen genes show a consistent
behavior in the respective data source for the group of patients. On breast
cancer data, the method could refine the established subtypes, which are cur-
rently used to guide treatment decisions. However, the current approach is
limited to the integration of the two data types used. Other approaches are
based on non-negative matrix tri-factorization (NMTF), which extends NMF
such that a matrix X is decomposed into three non-negative low-dimensional
factors, i.e., X = FSGT [41]. Gligorijević et al. [52] used this approach to
co-cluster three different entities, namely patients, genes, and drugs, which
are described by mutation data and drug-target interactions. The common
dimension in these two binary data matrices are the genes, which makes the
joint clustering of the three entities possible. The decompositions of the two
input matrices share a common matrix associated with the genes, while the
other two derived matrices are unique to the respective data type, and can
be used to identify clusters of patients and drugs via a simple matrix bina-
rization approach. The authors constrained the decomposition using known
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molecular or chemical similarities within the genes and drugs. Just as in this
example, NMTF is often used for relational data. Unlike multi-view data,
where each data source describes the same set of samples using different fea-
tures, relational data additionally contains different types of samples (e.g.,
genes or patients). Relational data and multi-view data can be understood
as a graph, where a node corresponds to either one dimension of a data ma-
trix, that is a set of features or a set of samples, and an edge between two
nodes v1 and v2 indicates the existence of a data type relating the entities
represented by v1 and v2. In this representation, a multi-view data graph is
star-shaped (i.e., every feature set is connected to the set of samples), while
a graph representing relational data is connected but not restricted in its
shape.

Kernel approaches similar to ours – in the sense that they subdivide the
features before applying multiple kernel learning – were presented by Sin-
nott and Cai [134] for supervised survival prediction of cancer patients and
by Rahimi and Gönen [113] for discriminating early- from late-stage cancers.
The two methods offered better interpretability compared to standard ap-
proaches, because the learned kernel weights provide information concerning
the importance of the respective feature sets for the learning task. However,
in both cases, the known outcome of interest is used to train the models,
which is not the case for our unsupervised clustering. Moreover, the feature
groups are identified using prior knowledge, i.e., gene groups reflecting the
memberships to pre-defined biological pathways. Thereby, the approaches
necessarily exclude genes, methylation patterns, or whole data types that
are not already well studied.

5.2 Conceptual outline

We propose a procedure that combines feature clustering with sample clus-
tering based on multiple kernels. Thereby, we increase the potential of in-
terpreting the result without losing the power of the multiple kernel learning
approach.

First, we cluster the features of each data type using k-means such that we
can generate one kernel matrix based on each feature cluster (see Figure 5.1).
The kernel matrices are then integrated using a multiple kernel learning ap-
proach. For this purpose, we use regularized multiple kernel learning for
locality preserving projections (rMKL-LPP), however, other multiple kernel
learning approaches could be used. The increased homogeneity of the fea-
tures within a feature cluster can reduce the noise in each kernel matrix. In
this way, a signal that is generated by only a few features can still signifi-
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cantly influence the final result if these features behave consistently over a
subset of samples. Based on the low-dimensional projection, we cluster the
samples using fuzzy c-means. The availability of the feature clusters and
respective kernel weights helps interpreting the obtained patient clusters, as
each patient cluster can be traced back to those feature clusters that had the
highest influence on the sample similarities. We introduce the score FIPPA
(Feature cluster ImPact on PAtient cluster) that can be used to quantify this
influence. To our knowledge, this is the first extension of a multiple kernel
clustering algorithm to integrative biclustering.
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Figure 5.1: Overview of the proposed approach exemplified for two
input data matrices. First, feature clustering is performed, here with
K = 3. Each feature cluster gives rise to one kernel matrix, which are inte-
grated using rMKL-LPP. This method optimizes one weight for each kernel
matrix and a projection matrix, leading to a low-dimensional representation
of the samples. Using these learned coordinates, the samples are clustered
using fuzzy c-means. Finally, the feature clusters, kernel weights per feature
cluster, and the patient clusters are used to calculate FIPPA scores, which
indicate the feature cluster impact on a patient cluster.
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5.3 Methods

As described in the Section 5.2, the presented approach combines k-means
clustering (see Section 2.4.1) with rMKL-LPP (see Section 3.3). The latter
is a multiple kernel extension of locality preserving projections, a dimension-
ality reduction scheme aiming at preserving local neighborhoods. Using this
objective, rMKL-LPP optimizes one weight βm per kernel matrix and a pro-
jection matrix A ∈ RN×p, such that the information in the different kernels
can be combined into an ensemble kernel matrix K =

∑M
m=1 βmKm, and

projected via proj(xi) = ATK(i)β. The result is a p-dimensional, integra-
tive projection of the samples, which are subsequently clustered using fuzzy
c-means (see Section 2.4.2).

The following section describes the calculation of FIPPA, a score that
measures the impact of the feature groups on the density and separation of
the individual patient clusters.

5.3.1 Feature cluster impact on patient cluster

After the data integration, each feature cluster FCm with m ∈ {1, ..,M} is
associated with a kernel matrix Km and a kernel weight βm. For each patient
cluster Ck with k ∈ {1, ..., K}, we denominate the set of all indices of samples
assigned to this cluster by ICk

, i.e.,

ICk
= {l|xl ∈ Ck}. (5.1)

The impact of each feature cluster FCm on each identified patient cluster Ck
(in the following: FIPPAk,m) can be calculated based on Km and βm using
the following equation

FIPPAk,m =
2

|Ck|2 − |Ck|
∑

i,j∈ICk
j>i

βmKm[i, j]

K[i, j]
, (5.2)

with K being the ensemble kernel matrix. Intuitively, we calculate for each
sample pair with both partners being assigned to Ck how much of the kernel
value in the ensemble kernel can be attributed to the specific feature cluster.
The factor in the beginning accounts for the 1

2
(|Ck|2− |Ck|) pairs of samples

considered. Due to the symmetry of each kernel matrix and the ensemble
kernel matrix, the order of the samples in the pair is not relevant and we use
either (xi, xj) or (xj, xi) for the calculation of FIPPA.

In Equation (5.2), we suppose a hard clustering of the patients, which can
be generated using a hard clustering algorithm, such as k-means, or using
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the modal class of a fuzzy clustering. However, fuzzy clustering provides
additional information concerning the reliability of the cluster assignment
for each sample. Using these probabilities can make the calculated scores
more robust, because it takes into account that some samples might have an
ambiguous signature and therefore lie between two or more clusters. Given
the probability pk(xi∧xj) = p(xi ∈ Ck∧xj ∈ Ck) that patient xi and patient
xj both belong to the same cluster Ck, the fuzzy FIPPA can be calculated
as follows:

fFIPPAk,m =
2

N2 −N

N∑
i=1

N∑
j=i+1

pk(xi ∧ xj)
βmKm[i, j]

K[i, j]
, (5.3)

where N is the total number of samples. The incorporation of the joint
probability pk(xi ∧ xj) replaces the selection of sample pairs performed in
Equation (5.2), such that the effects of sample pairs where at least one partner
is unlikely to belong to Ck are reduced. For all sample pairs (xi, xj) with
i 6= j, we assume independence between pk(xi) and pk(xj), such that pk(xi ∧
xj) = pk(xi)pk(xj).

We generally calculate the positive and the negative part of the impor-
tances separately to avoid that terms cancel each other out, which is possible
when the kernel matrices are centered in the feature space. For this purpose,
we define

K+ =
M∑
m=1

βmK
+
m and K− =

M∑
m=1

βmK
−
m (5.4)

with K+
m being the positive part of the matrix Km (all negative values set to

zero) and vice versa for K−m. Moreover, we can calculate the fFIPPA based
on the positive values (fFIPPA+

k,m) such that it is related to high intra-cluster
similarity, by using the joint probability pk(xi ∧ xj) as probability factor for
each summand. In this way, sample pairs where both partners are likely
to belong to cluster Ck have higher influence on the feature cluster-specific
score.

In contrast to fFIPPA+
k,m, the fFIPPA score based on the negative values

(fFIPPA−k,m) is calculated to disentangle high dissimilarity between two clus-
ters, i.e., this score emphasizes the differences between two clusters. This is
achieved by choosing the exclusive or, defined by

pk(xi ⊕ xj) = pk(xi) + pk(xj)− 2pk(xi ∧ xj), (5.5)

as probability factor. This choice results in an increased factor for pairs of
samples of which exactly one partner has a high probability of belonging to
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Ck. When combining Formula (5.4) with Formula (5.3) and the adjusted
factors, the calculations of fFIPPA+

k,m and fFIPPA−k,m are given by

fFIPPA+
k,m =

2

N2 −N

N∑
i=1

N∑
j=i+1

pk(xi ∧ xj)
βmK

+
m[i, j]

K+[i, j]
, and

fFIPPA−k,m =
2

N2 −N

N∑
i=1

N∑
j=i+1

pk(xi ⊕ xj)
βmK

−
m[i, j]

K−[i, j]
. (5.6)

Due to the construction of the fFIPPA scores, the calculated values facilitate
the identification of feature clusters that contribute more than average to the
similarity of the samples within a sample cluster, and also the identification
of features clusters that contribute more than average to the dissimilarity
of a cluster to all other clusters. This information can help in revealing the
underlying basis of the generated clustering result.

5.3.2 Materials

We applied our approach to six different cancer data sets from The Can-
cer Genome Atlas (TCGA), which were downloaded from the UCSC Xena
browser [53]1. The cancer types included in the analysis are breast inva-
sive carcinoma (BIC), lung adenocarcinoma (LUAD), head and neck squa-
mous cell carcinoma (HNSC), lower grade glioma (LGG), thyroid carcinoma
(THCA), and prostate adenocarcinoma (PRAD). For each cancer patient, we
used DNA methylation, gene expression data, copy number variations, and
miRNA expression data for clustering. For the evaluation, we further lever-
aged the survival times of the patients. Table 5.1 provides an overview of
the number of events (i.e., deaths) that could be used for a survival analysis.
Due to the small number of events, we excluded the PRAD and THCA data
set from the evaluation via survival analysis.

Data preprocessing

To avoid gender bias, we removed all male patients from the BIC data. Since
breast cancer is very rare in males, this step reduced the sample size only
marginally. The PRAD data set did not contain any female patients to be
removed. Features were excluded if they had more than 20 % missing values,
and, similarly, patients were excluded if they had more than 20% missing fea-
tures. This threshold was chosen in analogy to the preprocessing performed

1date accessed: 2017/10/24
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Table 5.1: Number of samples N and number of events for each cancer type.
Discrepancies between N and the sum over the last two columns occur due
to the fact that for some patients the vital status (dead/alive) is missing.

Cancer type N W/ event W/o event

BIC Breast invasive carcinoma 600 76 522

HNSC Head and neck squamous cell
carcinoma

464 188 274

LGG Lower grade glioma 503 124 375

LUAD Lung adenocarcinoma 439 150 278

PRAD Prostate adenocarcinoma 482 8 473

THCA Thyroid carcinoma 490 14 475

Table 5.2: Number of features per data type for each cancer type after the
removal of samples and patients with more than 20% missing values.

Cancer
type

Gene
expression

DNA
methylation

Copy number
variation

miRNA
expression

BIC 20 209 59 097 24 776 516

HNSC 19 433 57 159 23 817 581

LGG 19 414 57 159 23 817 592

LUAD 19 351 57 156 23 817 567

PRAD 20 219 59 214 24 776 484

THCA 19 366 57 158 23 817 556

by Wang et al. [158] for the data used in Chapters 3 and 4. Table 5.2 displays
the number of remaining features for each data type. For this data set, miss-
ing values were imputed as the average of the three nearest neighbors. Gene
expression, copy number variation, and miRNA data were standardized to a
mean of zero and a variance of one. The DNA methylation data was quantile
normalized via BMIQ [145]. The measurements, which were available at the
level of methylation sites, were summarized for gene promoter and gene body
regions using RnBeads [11]. Using GeneTrail2 [140], we mapped the miRNAs
to their target genes (i.e., the gene that is regulated by the miRNA). Finally,
due to the high number of features in the data set, we applied the method
to a reduced data set for each cancer type containing the 10% most variable
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features of each data type, in any case keeping at least 500 features.

Implementation

Preprocessing of the data was done using custom scripts in R version 3.4.0
[112] and Matlab version R2016b [147]. The feature clustering with subse-
quent application of rMKL-LPP and patient clustering was implemented in
Matlab. The calculation of the fFIPPA scores, as well as the subsequent gene
filtering, was done using custom scripts in R. GO enrichment of the resulting
gene lists was performed using GeneTrail2 [140].

5.4 Results and discussion

5.4.1 Parameter selection

When applying our method to a data set, the user needs to choose the num-
ber of feature clusters per data type, as well as the number of patient clusters.
For the validation of our method, we set both parameters to the same value
(K ∈ {2, ..., 6}). Choosing the number of feature clusters according to the
silhouette score would result in the same feature clusters independent of the
number of sample clusters. To increase the differences in the used sets of
features (and consequently kernel matrices), we interlinked these two param-
eters, i.e., the number of clusters for features and samples. Feature clustering
was performed using k-means before generating the kernel matrices using the
Gaussian radial basis function (RBF) kernel. The kernel parameter γ was
chosen according to the heuristic of setting γ = 1

2d2
[51]. In other words, the

parameter γ varies depending on the number of features in the respective
feature set. We generated three kernels per feature set by multiplying γ with
a factor fγ ∈ {0.5, 1, 2}, and only used the one kernel matrix with the highest
variance in the first p principal components. This parameter p also refers to
the number of retained dimensions for rMKL-LPP and was set to five. The
number of neighbors for rMKL-LPP was set to nine2. The fuzzification de-
gree f of the soft-clustering algorithm fuzzy c-means was set to the default
value of 2 in concordance with Dunn [44]. If necessary for the subsequent
analysis (for instance survival analysis), we assigned each patient to its modal
cluster (i.e., the cluster with the highest probability). Otherwise, we used
the cluster membership probabilities returned by fuzzy c-means.

2The number of retained dimensions and the number of neighbors are both parameters
of rMKL-LPP and discussed in more detail in Section 3.3.
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5.4.2 Robustness of the final clusterings

Since each kernel matrix in our method is constructed on the basis of a pre-
viously identified feature cluster, slight changes in the initial feature clusters
will propagate through the algorithm and might have an effect on the final
result. We repeated the complete analysis 50 times with different random
initializations for the clustering steps to analyze the robustness of the final
patient clustering. The pairwise similarities between the patient clusterings
measured by the Rand index are depicted in Figure 5.2.

When including all patients according to their modal class, we observed
high reproducibility of the clusterings for all cancer types except LUAD, for
which the average Rand index is approximately 0.85. We then used the clus-
ter probabilities for each sample to exclude patients where the assignment
has low confidence, here defined as the probability for the modal cluster be-
ing more than one standard deviation lower than the mean over all patients.
Using this smaller set of patients, the cluster assignments for the remain-
ing patients were more stable for all cancer types including LUAD. Overall,
this suggests that, despite the random initializations, the results are repro-
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Figure 5.2: Robustness of FC+rMKL-LPP in 50 repetitions. Dark grey
boxes indicate Rand indices on the basis of all patients. Light grey boxes in-
dicate Rand indices calculated without low confidence samples, i.e., patients
with a modal class probability pk more than one standard deviation smaller
than the mean of the modal class probabilities.
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ducible for most samples. Additionally, the cluster probabilities can be used
to remove outliers or patients that are located between several clusters and,
thereby, increase the robustness of the approach.

5.4.3 Survival analysis

The clinical relevance of a patient clustering can be evaluated, for example,
using survival analysis (see Section 2.5.2.2). We use this analysis to investi-
gate if the performance of the chosen multiple kernel learning approach (here
rMKL-LPP) degrades when prior feature clustering is performed. Therefore,
we also generated patient clusterings using rMKL-LPP without feature clus-
tering. For comparison, we also include kLPP based on the average kernel
into the analysis. As this method does not involve feature clustering or ker-
nel weight optimization, one kernel matrix per data type is used to calculate
the unweighted average kernel. In general, multiple kernel methods using
uniform weights have been shown to perform well in many scenarios [79],
but lack the additional information gained through the kernel weights. For
all three approaches, we evaluated the clustering results for K ∈ {2, ..., 6}
and chose the number of clusters that resulted in the lowest p-value for the
log-rank test.

The p-value for the log-rank test indicates if there is at least one group of
patients among the identified ones with a significant difference in the survival
rate compared to the other groups. While the number of clusters is reflected
in the degrees of freedom that are used in computing the test statistic, we
still corrected for the number of tests performed due to the variation of K
using Benjamini-Hochberg correction.

Table 5.3 summarizes the obtained results for the three methods. For
our approach, we report the median p-value from 50 runs to account for
variation due to the feature clustering. The results indicate that, on the four
cancer types where the number of events allows for a meaningful survival
analysis, our method performs comparably to the established methods, i.e.,
it is able to find biologically relevant groups of patients. Moreover, despite the
additional flexibility that is achieved by the feature clustering, the optimal
number of clusters does not increase in comparison to less complex methods.
Besides, average kLPP performs well on three cancer types, but does not
lead to significant clusters with respect to survival differences for LUAD.
This finding supports the assumption that in some scenarios, the unweighted
average cannot capture the provided information.

However, for some data sets, the small number of events does not permit a
robust survival analysis, as it is the case for the PRAD and THCA data. Ad-
ditionally, the survival data can be biased as not all patients receive optimal
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Table 5.3: Survival analysis of the clustering results obtained by different
methods. Average kLPP stands for kernel locality preserving projections on
the (uniformly weighted) average kernel, rMKL-LPP for the standard multi-
ple kernel learning approach with one kernel per data type, and FC + rMKL-
LPP represents the proposed approach for which the reported p-values are
the median of 50 runs. All three approaches are combined with subsequent
fuzzy c-means clustering. For each cancer type and method, we chose the
number of clusters (given in brackets) according to the best survival result.

Cancer average kLPP rMKL-LPP FC + rMKL-LPP

BIC 3.7E-2 (6) 7.3E-2 (6) 5.0E-2 (4)

HNSC 1.4E-3 (6) 1.4E-3 (6) 9.96E-3 (5)

LGG <1.0E-16 (3:6) <1.0E-16 (3:6) <1.0E-16 (3:6)

LUAD 0.15 (2) 2.9E-2 (2) 3.1E-2 (6)

treatment. Therefore, FIPPA provides an additional strategy to nevertheless
interpret the clustering results without relying on survival data.

5.4.4 Interpretation

As described in Section 5.3.1, the weights for each feature cluster in combi-
nation with the kernel matrices facilitate calculating the fFIPPA scores. As
a result, we obtain one fFIPPA+ score and one fFIPPA− score for each pair
of feature cluster and patient cluster. Figure 5.3 visualizes the calculated
fFIPPA scores exemplified for the BIC clustering with K = 4. While the un-
derlying assignment of features in clusters does not change with the patient
cluster, we can see clear differences between the fFIPPA scores for the same
feature cluster in the different patient clusters. For all patient clusters, copy
number variations have the strongest impact, but the exact contributions of
the data types vary (e.g., the fFIPPA of gene expression, especially feature
cluster 3, is strongest in patient cluster 3). When comparing fFIPPA+ (Fig-
ure 5.3a) and fFIPPA− (Figure 5.3b), we observe in general similar patterns.
Differences still exist, e.g., the fFIPPA+ of CNV is larger than fFIPPA− for
patient clusters 2 and 4, meaning that CNV contributes more to the intra-
cluster similarity (i.e., what makes the patient cluster dense) than to the
dissimilarity to other patients.

Identification of cancer subtype-specific features Deriving the im-
pact of each data type is also possible with traditional multiple kernel learn-
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(a) fFIPPA+ scores for intra-cluster similarity of the patient clusters.
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(b) fFIPPA− scores for inter-cluster dissimilarity of the patient clusters.

Figure 5.3: fFIPPA scores of each feature cluster and patient cluster
for BIC with K = 4. Each row represents one patient cluster Ck, i.e., it
is derived using the sample probabilities for this specific cluster. Different
colors represent the different data types. Each bar segment represents one
feature cluster FCm, where the feature clusters remain the same independent
of the patient clustering considered. The width of a segment is defined by
fFIPPA+

k,m (or fFIPPA−k,m) for the respective patient cluster Ck and feature
cluster FCm.

ing. However using our method, we can additionally analyze the impact
of the individual feature clusters on specific patient clusters, and thereby
further characterize the potential cancer subtypes. We could describe each
feature cluster by the main functions in which the included features partic-
ipate, i.e., by a set of representative functions. These representatives could
be directly associated to the calculated fFIPPA scores. However, in doing so,
we would ignore synergies between different feature clusters and could not
detect functionalities that are spread over different feature clusters. There-
fore, we instead generate lists of relevant features for each patient cluster in
two steps:

1. For each patient cluster, we identify high impact feature clusters.

2. We identify genes within the high impact feature clusters, that exhibit
constant patterns in the respective data type over the patients of the
related cluster.

In the first step, we chose all feature clusters that contributed more than
average to the patient cluster. For this purpose, the average was calculated
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separately for fFIPPA+
k,m and fFIPPA−k,m. Consequently, we generated two

lists of feature clusters for each patient cluster Ck: the first list is associated
with high dissimilarity to other patient clusters (based on fFIPPA−), the
second list is associated with high similarity within the patient cluster (based
on fFIPPA+). The fFIPPA calculation assigns the same value to all genes in
one cluster, but these clusters might not be entirely homogeneous due to the
limited number of feature clusters and the impossibility to exclude outliers.
After identification of the high-fFIPPA feature clusters, we therefore filtered
the associated features in the second step. The aim was to keep only those
features with a consistent pattern over the patients of the specific cluster.
The consistency was checked using the data of the respective type, i.e., gene
expression, methylation, or copy number data. Besides the used data, the
proceeding of this filtering step was the same for every feature. We counted
in how many patients of the respective patient cluster the gene was consistent
in its expression, methylation, or copy number (i.e., either above or below
the average, whichever happened more often). Based on these counts, we
obtained a distribution representing the homogeneity of the features with
respect to a patient cluster. For further analysis, we kept every feature
with a count larger than the mean of this distribution. In other words,
we kept all genes from a high-fFIPPA feature cluster that showed a more
homogeneous expression, methylation, or copy number than the average gene
in the considered patient cluster.

Finally, we distinguished between features with a higher expression, methy-
lation, or copy number than the average and features with a lower expression,
methylation, or copy number than the average. In this way, we generated
four feature lists for each patient cluster describing a) active genes leading
to high intra-cluster similarity, b) inactive genes leading to high intra-cluster
similarity, c) active genes leading to high inter-cluster dissimilarity and d) in-
active genes leading to high inter-cluster dissimilarity.

Insights from cancer subtype-specific features In the assembled lists,
we found genes with known implications to cancer formation or progression.
Some of the genes were related to several cancer types, e.g. PTEN, which
regulates the AKT/PKB signaling pathway and thereby represents a tumor
suppressor in various tumors [28] was present in lists for BIC, THCA, and
PRAD. Some genes were related to several clusters of the same cancer type,
e.g. SOX2, which has been shown to control tumor initiation in squamous-
cell carcinomas [24] was present in several clusters of HNSC patients. Other
genes were only found for one specific cluster of a cancer type (e.g., among
the four clusters of BIC, only one gene list included GRPR, a G-protein cou-
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pled receptor that has been shown to influence the viability of breast cancer
cells [36]). From a biological perspective, this finding is consistent with our
expectation that the lists are not disjoint, since cancer does not form due to
an individual mutation, but rather as a consequence of a number of different
aberrations (see Section 2.1.1). These can be shared between different sub-
types, e.g., if they happened early in the process of tumorigenesis, or even
between different cancer types.

Besides examining the lists at the level of individual genes, we also inferred
biological functions ascribed to the genes based on the GO annotation using
GeneTrail2 [140]. We performed over-representation analysis (ORA) testing
if significantly more genes in the list are associated with a specific category
than would be expected based on a background gene list (see Section 2.5.3).
All genes that entered the clustering were used as background and we tested
for enrichment of KEGG pathways and gene ontology categories (GO).

Given that we detected some variation in the cluster assignment (see
Section 5.4.2), a certain variation among the enriched terms can be expected.
To quantify the stability of the result, we compared the identified terms of the
best result to the terms of the median result, where “best” and “median” was
defined according to the survival p-value. The similarity of the GO terms was
determined using the relevance score [122], for the similarity between two sets
of KEGG pathways we used the Jaccard index. The average similarities based
on GO terms and KEGG pathways correlate with the observed stabilities
of the cluster assignments: the value for LUAD is slightly lower than for
BIC and HNSC (0.48 vs. 0.58 and 0.68, respectively). However, for all
three cancer types, the scores indicate that similar functions or pathways are
found. For LGG, the results were stable such that the best and median were
equivalent, for PRAD and THCA, the best and median result could not be
identified due to the lack of adequate survival data.

Similar to these two latter examples, there are many other biological
scenarios in which the user is not able to identify the optimal result of an
unsupervised problem. Therefore, the following analysis is based on the in-
tersection of the best and median result, as this intersection contains terms
that are found consistently over different runs. Table 5.4 and Table 5.5 show
findings for HNSC for Cluster 3, which has the poorest prognosis (median
survival time 1079 days), and for Cluster 4, which has the best prognosis
(median survival time > 4241 days), respectively. The terms are very dif-
ferent for the two clusters. In Cluster 3, the downregulated, enriched terms
were mainly associated with muscle cells, and more specifically with their de-
velopment or their activation. Skeletal muscle invasion has been reported to
be correlated with the recurrence of the tumor [31]. This finding agrees with
our observation that patients with a distinct signature in the genes involved
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Table 5.4: Significant GO terms associated with high intra-cluster similar-
ity identified by over-representation analysis for patient cluster 3 (median
survival time 1079 days) for HNSC. The terms are based on inactive genes.

k = 3 GO - Cellular component (p-value < 1.0E − 3)

contractile fiber

myofibril

sarcomere

I band

myosin II complex

muscle myosin complex

A band

myosin complex

Z disc

myofilament

GO - Biological Process (p-value < 1.0E − 3)

myofibril assembly

striated muscle cell development

muscle filament sliding&actin myosin filament sliding

striated muscle contraction

actomyosin structure organization

muscle cell development

in these functions have a poor survival.

For patient cluster 4, we identified terms related to the phosphorylation
of STAT protein, which forms part of the JAK/STAT signaling pathway
regulating cell growth, and has been shown to play a role in tumor formation
and progression [135]. On the other hand, the identified terms mainly refer to
functions of the immune system, including the regulation of type I interferon
mediated signaling pathway, which is involved in the regulation of the innate
immune response. Inflammation processes and the immune system seem
to play an important yet controversial role in cancer [38], however, specific
regulation of the immune system could have a positive effect on survival
times in the respective patient group. For HNSC, the terms associated with
high inter-cluster dissimilarity and high intra-cluster similarity differ only
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Table 5.5: Significant GO terms associated with high intra-cluster similarity
identified by over-representation analysis for patient cluster 4 (median sur-
vival time > 4241 days) for HNSC. ORA was performed using active genes.

k = 4 GO - Biological process (p-value < 1.0E − 3)

regulation of peptidyl serine phosphorylation of STAT protein

positive regulation of peptidyl serine phosphorylation of STAT pro-
tein

serine phosphorylation of STAT protein

positive regulation of peptidyl serine phosphorylation

natural killer cell activation involved in immune response

response to exogenous dsRNA

natural killer cell activation

regulation of type I interferon mediated signaling pathway

for Cluster 1, where we identified terms, such as B cell differentiation and
proliferation, that are associated with high dissimilarity to other clusters but
not to high intra-cluster similarity.

We also applied our approach to patient groups of PRAD and THCA.
These two cancer types share the common property that only relatively few
patients die from the cancer, which renders a meaningful survival analysis
difficult. For both cancer types, we set K = 4 and could identify several
significantly enriched GO terms for the patient clusters. For PRAD, we
identified, amongst others, a number of terms related to the activity of olfac-
tory receptors, which have been shown to participate in the process of tumor
cell proliferation and apoptosis [33]. Several hits for THCA, e.g., DNA deam-
ination, suggest an influence of epigenetic regulatory mechanisms, which is
in line with current reports in the literature [119].

5.5 Conclusion

The extension presented in this chapter provides a step toward improved in-
terpretability of multiple kernel clustering. Extracting feature importances is
only straightforward for a few kernel functions, leaving a vast number of ker-
nels with limited usefulness for scenarios where this level of interpretability is
essential. Our method closes this gap as we designed it with the objective of
providing a framework that could be used with any type of kernel function.
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We demonstrated the utility of our method in an exemplary study of diverse
cancer types, where we could show that our method delivers state-of-the-art
performance for survival analyses while providing biologically interpretable
results. We developed the FIPPA score as an informative measure of feature
cluster impact on patient clusterings. The FIPPA score enabled us to identify
the underlying high impact feature groups that contributed to the formation
of the respective patient cluster. The high impact features, filtered for ho-
mogeneity in the respective data type and patient cluster, were enriched for
certain biological functions or pathways, which supports hypothesis genera-
tion concerning potential deregulations in the tumor cells of the respective
patient group. The initial screening for overlap between the enriched terms
and biological literature showed very promising results: for HNSC, the iden-
tified terms differed strongly between the two clusters with the best and the
worst survival prognosis, respectively, hinting at the involvement of muscle
cells and of the immune system in this particular type of cancer. Overall, our
method provides impact information from the actual learning process instead
of a retrospective analysis of the patient clusters. These results could lead
to deeper insights on individual subtypes, which can be tested in suitably
designed follow-up studies. Finally, in line with the literature, we found that
each patient seems to represent a unique history of initial cancer formation
and progression, which is reflected in the numerous patient samples that are
placed in-between clusters.

In the current implementation of our method, the feature clusters influ-
ence the patient clusters but not vice versa. While these feature clusters
provide valuable information, simultaneous optimization of both feature and
patient clusters could lead to even more specific selections of features. In
addition, the feature clusters are currently restricted to be non-overlapping
and to cover the whole feature space. In many real-world scenarios, we might
want a more flexible approach, that is, relaxing these constraints, e.g., to be
able to exclude outlier features. This additional flexibility in the feature clus-
tering process could be achieved, for example, by employing a fuzzy clustering
approach.

Besides, fFIPPA combines, in the proposed version, the information on
the feature clusters directly with the fuzzy cluster assignment of the patients,
while the projected coordinates of the samples are ignored. Alternatively, an
inspection of the individual patients would be possible such that a FIPPA
vector is calculated for each patient indicating the impact of the used kernel
matrices on the basis of the low-dimensional projection. For this purpose,
the fuzziness in FIPPA would be dropped, since we would not consider clus-
ter membership probabilities. This individual analysis would be particularly
interesting in cases where highly different FIPPA vectors are derived for
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patients that appear overall very similar to each other. In these cases, differ-
ent molecular bases of the tumors might lead to different, clinically relevant
characteristics, e.g., response to treatment. A similar approach would be
an interactive application enhancing the interpretability of dimensionality
reduction methods. This application could help to understand which fac-
tors are important by updating feature-group specific weights according to
a user-defined movement of a sample. For instance, when moving a patient
closer to a well-defined cluster, a decreased weight for one data type might
indicate intrinsic differences between the two entities, possibly hinting at
treatment options to overcome these differences. Such interactive scenarios
could also be useful when partial additional information is available, that is,
in combination with semi-supervised learning.



Chapter 6

Conclusions and outlook

6.1 Summary

Due to the large amount of biological measurements, it is has become pos-
sible to study complex diseases on many different levels, such as comparing
differences in DNA methylation, gene expression, or copy number variation.
In cancer, aberrations have been observed on different levels of the cell and
markers of different data types are already used to guide treatment deci-
sions. However, the currently established cancer subtypes with their respec-
tive markers do not cover the heterogeneity of the disease. Therefore, data
integration approaches aim at developing a comprehensive understanding of
the different facets of a tumor.

In this work, we focused on multiple kernel learning (MKL) to combine
the available data types with the aim of identifying integrative cancer sub-
types. MKL enables a flexible integration of qualitatively distinct data types,
which is valuable in the field of bioinformatics, where, amongst others, nu-
merical, categorical, and sequence data naturally occur. In MKL, one data
type is commonly represented as one kernel matrix and the integration is
performed as a weighted linear combination of these kernel matrices. We
addressed three important issues of MKL, namely robustness, applicability,
and interpretability.

We extended the multiple kernel graph embedding framework, which im-
plements numerous dimensionality reduction schemes, by adding a constraint
that regularizes the kernel weights. We showed that this restriction of the
search space for the weights leads to increased robustness of the method with
respect to perturbations in the training data (Section 3.3.1). The gained sta-
bility is beneficial since it also enables the analysis of smaller data sets or
the use of a larger number of input kernels without impairment of the per-
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formance. One use case, which is made possible by the increased stability,
is to represent each data type by multiple kernel matrices, which enables an
implicit parameter learning as the user does not need to know the optimal
kernel function or parameters for each data type beforehand.

Despite the flexibility of the regularized multiple kernel graph embed-
ding framework, one limitation we observed is the nonapplicability of prin-
cipal component analysis. This widely used global dimensionality reduction
scheme cannot be implemented in the framework due to an ill-posed gener-
alized eigenvalue problem (Section 4.2). Moreover, the direct multiple kernel
extension of principal component analysis results in kernel selection instead
of kernel combination (Section 4.3). However, incorporating into the ob-
jective function the assumption that biological data types supplement each
other, we were able to generate a method that performs data integration
without abandoning the core of principal component analysis, which is the
variance maximization. The good performance of this method in comparison
to standard methods supports the biological assumption that was made.

Finally, a common drawback of kernel-based approaches is their lack of
interpretability: after the implicit mapping into a potentially high- or even
infinite-dimensional feature space, the feature contributions to the result can-
not easily be sorted out. Therefore, we applied a feature clustering before
the MKL approach, on the basis of which we could calculate patient cluster-
specific feature importances. Our results showed that this provides additional
means to interpret the result from the perspective of the method (Chapter 5)
instead of performing a retrospective analysis only considering the final re-
sult.

From the biological perspective, an important factor that emerged in the
analysis of several cancer types is the immune system and inflammation pro-
cesses. In recent years, the functionality of the immune system has been of
particular interest due to the research on cancer immunotherapy, a therapy
stimulating the patient’s immune system to fight tumor cells [168]. In our
analysis, we found deregulations in immune system-related genes in glioblas-
toma (Section 3.3.1.6), and head and neck squamous cell carcinoma (Sec-
tion 5.4.4). In both cases, the respective group of patients had a relatively
good prognosis. However, for glioblastoma, the genes related to the immune
response were underexpressed while they were overexpressed for head and
neck cancer. This indicates the controversial role of the immune system in
cancer: on the one hand, acute, temporary activation of the immune system
protects against cancer development. In studies, immune-suppressed patients
showed an increased risk for certain cancer types, such as viral-associated
cancers [40]. On the other hand, chronic inflammation increases the risk of
cancer development and might lead to a poor prognosis [40]. These different
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aspects were used by Thorsson et al. [149], who identified six immune cancer
subtypes based on published immune expression signatures. For multiple
cancer types, these immune subtypes correlated to the survival times of the
patients.

Summarizing, our results show that multiple kernel learning provides a
useful and stable framework for the integration of various biological data
types in unsupervised settings. Whereas some methods could be directly
translated into a multiple kernel version, others required some adaptations
to serve as a reasonable data integration method, as was the case for principal
component analysis. Moreover, some common issues of kernel methods can
be tackled using simple, known approaches, e.g., feature clustering for im-
proved interpretability. Overall, our biological findings agreed with current
literature. The developed methodologies can thus be used to generate new
hypotheses potentially leading to new and clearly defined cancer subtypes.

6.2 Perspectives

The aim of this work was the development of methods that facilitate the iden-
tification of clinically relevant cancer subtypes. Despite the ever-increasing
amount of molecular data for cancer patients, it would be misguided to be-
lieve that we have complete data sets. Therefore, extending the current
methodologies such that they enable the incorporation of data types, even if
measurements are missing for some patients, would greatly increase the num-
ber of utilizable samples and data types, thereby leading to more represen-
tative results. The recently proposed NEMO, a method using the uniformly
weighted average kernel, is able to handle missing data types by calculat-
ing the average over each available data type for the respective samples and
thus simply ignores the missing data type [116]. A similar approach could be
adapted in our MKL scenario by preserving the relation of the weights for the
available data types and setting the other weights to zero for the incomplete
samples. To some extent, this corresponds to the use of per-sample weights,
however, the analogy is limited since these introduced sample-specific kernel
weights do not optimize an objective function but are only adapted in case of
missing measurements. Therefore, the kernel weights will be more stable and
less patient-specific compared to localized multiple kernel learning (e.g., as
proposed by Gönen and Margolin [55] as an extension of k-means). Localized
versions of our proposed MKL methods could combine both, the incorpora-
tion of incomplete data and the ability to learn sample-specific weights for
each data type. However, as this implies an enormous increase in flexibility
due to the increase in the number of learned parameters, a sensible regular-
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ization of the parameters would be necessary.
In general, the approach of dividing the samples into strict subgroups

might not be suitable for cancer patient data. Therefore, Chapter 5 started
a transition from a binary cluster assignment toward considering the distri-
bution of the cancer patients via fuzzy clustering. In this chapter, cluster
probabilities were only used for the calculation of the feature impact scores,
however, other aspects of the analysis could also benefit from this more fine-
grained information. One such aspect would be the choice of the number
of clusters, which was in this thesis largely performed using the average sil-
houette score. Using a fuzzy silhouette score would penalize samples less
that have a low cluster membership probability. This approach might help
to identify clusters that have a dense core, and are therefore biologically
interesting, without being influenced strongly by outliers in the data set.

Thinking more globally, it could be beneficial to study multiple cancer
types jointly, instead of each of them individually. Concatenating the data
measured for the different cancer types (as done for instance by Taskesen
et al. [142]) often leads to a clustering that is dominated by the tumor type
[18]. Hoadley et al. [67] also obtained clustering results according to histology,
tissue type, or anatomic origin for various individual data types as well as
for their integrative analysis, which suggests high tissue specificity in the
used data. However, some studies indicate partially high genetic similarity
between different cancer types [64, 12]. Exploiting these partial correlations
between tumor samples in different tissues, a pan-cancer analysis could be
formulated as a multi-task problem, where each cancer type defines one task.
Multi-task learning aims at improving the generalization performance for
each individual task and has been extended in recent years from supervised
to unsupervised application scenarios (see [173] for an overview of multi-task
learning approaches). Transferred to the pan-cancer setting, the analysis of
each cancer type could benefit from the additional, available data leading
to increased power of the analysis. In analogy to the terms used for the
integration of different data types, this approach would move the combination
of patients with different cancer types from an early integration, namely
concatenation as performed, e.g., in [142], to an intermediate integration.

In general, the approaches presented in this thesis as well as possible
extensions could also provide valuable insights when applied to other complex
diseases. For this purpose, interpretability plays an important role, which
motivates the extension of the current methodology towards feature selection.
Especially for poorly understood diseases with treatments that are limited in
their efficacy, e.g., Alzheimer’s disease [117], the exploratory analysis could
help to generate new hypotheses concerning the molecular foundations of the
disease and possibly hint to new drug targets.
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cited. (See link “Permissions” in the online version of the article.)

License: #4455330381284

Multiple kernel principal component analysis

The main parts of Section 4.3–4.5 have been published in Speicher and Pfeifer
[137] in the Journal of Integrative Bioinformatics. This work is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0
License (cf. BY-NC-ND 3.0).

113

https://academic.oup.com/bioinformatics/article/31/12/i268/215962
https://creativecommons.org/licenses/by-nc-nd/3.0/


114 Licensing, copyright, and plagiarism prevention

Increased interpretability of multiple kernel learning

The manuscript [138] describing the approach of Chapter 5 is publicly avail-
able as a preprint at arXiv: https://arxiv.org/abs/1811.08102.

B.2 Figure reprints

Table B.1: Licensing information for figure reprints

Fig. License No. Publisher Source

2.1 4477730950179 Elsevier Hanahan and Weinberg [59]

2.3 4462490879804 Mary Ann Liebert,
Inc.

Pavlidis et al. [108]

3.9 4455320736016 Oxford University
Press

Rappoport and Shamir [115]

B.3 Plagiarism prevention

The contents of each chapter of this thesis were screened for plagiarism using
the software iThenticate on July, 18. The papers [136, 137, 138] mentioned
in Section B.1 were excluded from the corpus. Table B.2 summarizes the
results obtained using the standard settings of iThenticate.

Table B.2: Results of the plagiarism detection software iThenticate for each
chapter of this thesis.

Similarity index

Chapter 1 1%

Chapter 2 7%

Chapter 3 9%

Chapter 4 4%

Chapter 5 4%

Chapter 6 1%
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nung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzi-
noms, Kurzversion 5.0, 2018. AWMF Registernummer: 043/022OL
http://leitlinienprogramm-onkologie.de/Prostatakarzinom.58.0.html [Ac-
cessed: 2018/11/27].

[6] H. Abdi and L. J. Williams. Principal component analysis. Wiley Inter-
disciplinary Reviews: Computational Statistics, 2(4):433–459, Jul 2010. doi:
10.1002/wics.101.

[7] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior
of distance metrics in high dimensional space. In J. Van den Bussche and
V. Vianu, editors, Database Theory — ICDT 2001. Lecture Notes in Com-
puter Science, vol 1973. Springer, 2001. doi: 10.1007/3-540-44503-X 27.

[8] M. B. Amin, D. M. Gress, L. R. Meyer Vega, S. B. Edge, et al. AJCC Cancer
Staging Manual, Eighth Edition. American College of Surgeons, 8 edition,
2018.

115



116 BIBLIOGRAPHY

[9] R. Argelaguet, B. Velten, D. Arnol, S. Dietrich, et al. Multi-Omics Fac-
tor Analysis-a framework for unsupervised integration of multi-omics data
sets. Molecular systems biology, 14(6):e8124, Jun 2018. doi: 10.15252/MSB.
20178124.

[10] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, et al. Gene Ontology:
tool for the unification of biology. Nature Genetics, 25(1):25–29, May 2000.
doi: 10.1038/75556.

[11] Y. Assenov, F. Müller, P. Lutsik, J. Walter, et al. Comprehensive analysis of
DNA methylation data with RnBeads. Nature Methods, 11(11):1138–1140,
2014. doi: 10.1038/nmeth.3115.

[12] M. H. Bailey, C. Tokheim, E. Porta-Pardo, S. Sengupta, et al. Compre-
hensive characterization of cancer driver genes and mutations. Cell, 173(2):
371–385.e18, Apr 2018. doi: 10.1016/J.CELL.2018.02.060.

[13] Y. Barash and N. Friedman. Context-specific bayesian clustering for gene
expression data. Journal of Computational Biology, 9:169–191, 2002. doi:
10.1089/10665270252935403.

[14] E. Barbarotto, T. D. Schmittgen, and G. A. Calin. MicroRNAs and cancer:
Profile, profile, profile. International Journal of Cancer, 122(5):969–977,
Mar 2008. doi: 10.1002/ijc.23343.

[15] S. B. Baylin, M. Esteller, M. R. Rountree, K. E. Bachman, et al. Aberrant
patterns of DNA methylation, chromatin formation and gene expression in
cancer. Human Molecular Genetics, 10(7):687–692, Apr 2001. doi: 10.1093/
hmg/10.7.687.

[16] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for
embedding and clustering. In Advances in Neural Information Processing
Systems 14, pages 585–591, 2002. doi: 10.7551/mitpress/1120.003.0080.

[17] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal
Statistical Society. Series B (Methodological), 57(1):289–300, 1995. doi:
10.1111/j.2517-6161.1995.tb02031.x.

[18] A. C. Berger, A. Korkut, R. S. Kanchi, A. M. Hegde, et al. A comprehensive
pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell,
33(4):690–705.e9, Apr 2018. doi: 10.1016/J.CCELL.2018.03.014.

[19] B. E. Bernstein, A. Meissner, and E. S. Lander. The mammalian epigenome.
Cell, 128(4):669–681, Feb 2007. doi: 10.1016/J.CELL.2007.01.033.

[20] R. Beroukhim, C. H. Mermel, D. Porter, G. Wei, et al. The landscape of
somatic copy-number alteration across human cancers. Nature, 463(7283):
899–905, Feb 2010. doi: 10.1038/nature08822.

[21] J. C. Bezdek. Pattern recognition with fuzzy objective function algorithms.
Plenum Press, 1981. doi: 10.1007/978-1-4757-0450-1.



BIBLIOGRAPHY 117

[22] A. Bird. DNA methylation patterns and epigenetic memory. Genes & De-
velopment, 16:6–21, 2002. doi: 10.1101/gad.947102.

[23] C. M. Bishop. Pattern recognition and machine learning. Springer Sci-
ence+Business Media, LLC, 2006. doi: 10.1016/c2009-0-22409-3.

[24] S. Boumahdi, G. Driessens, G. Lapouge, S. Rorive, et al. SOX2 controls
tumour initiation and cancer stem-cell functions in squamous-cell carcinoma.
Nature, 511(7508):246–250, 2014. doi: 10.1038/nature13305.

[25] M. D. Buhmann. Radial basis functions : theory and implementations. Cam-
bridge University Press, 2003. doi: 10.1017/cbo9780511543241.

[26] X. Cai, F. Nie, and H. Huang. Multi-view k-means clustering on big data. In
Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, pages 2598–2604, Beijing, China, 2013. AAAI Press.

[27] R. Cangelosi and A. Goriely. Component retention in principal component
analysis with application to cDNA microarray data. Biology direct, 2:2, Jan
2007. doi: 10.1186/1745-6150-2-2.

[28] L. C. Cantley and B. G. Neel. New insights into tumor suppression:
PTEN suppresses tumor formation by restraining the phosphoinositide 3-
kinase/AKT pathway. Proceedings of the National Academy of Sciences of
the United States of America, 96(8):4240–5, Apr 1999. doi: 10.1073/PNAS.
96.8.4240.

[29] L. Carter, D. G. Rothwell, B. Mesquita, C. Smowton, et al. Molecular
analysis of circulating tumor cells identifies distinct copy-number profiles
in patients with chemosensitive and chemorefractory small-cell lung cancer.
Nature Medicine, 23(1):114–119, Jan 2017. doi: 10.1038/nm.4239.

[30] E. Chan, D. E. Prado, and J. B. Weidhaas. Cancer microRNAs: from
subtype profiling to predictors of response to therapy. Trends in molecular
medicine, 17(5):235–43, May 2011. doi: 10.1016/j.molmed.2011.01.008.

[31] K. Chandler, C. Vance, S. Budnick, and S. Muller. Muscle invasion in oral
tongue squamous cell carcinoma as a predictor of nodal status and local
recurrence: just as effective as depth of invasion? Head and neck pathology,
5(4):359–63, Dec 2011. doi: 10.1007/s12105-011-0296-5.

[32] K. Chaudhary, O. B. Poirion, L. Lu, and L. X. Garmire. Deep learning-based
multi-omics integration robustly predicts survival in liver cancer. Clini-
cal cancer research, 24(6):1248–1259, Mar 2018. doi: 10.1158/1078-0432.
CCR-17-0853.

[33] Z. Chen, H. Zhao, N. Fu, and L. Chen. The diversified function and potential
therapy of ectopic olfactory receptors in non-olfactory tissues. Journal of
Cellular Physiology, 233(3):2104–2115, Mar 2018. doi: 10.1002/jcp.25929.

[34] C. H. Chung, J. S. Parker, G. Karaca, J. Wu, et al. Molecular classification of



118 BIBLIOGRAPHY

head and neck squamous cell carcinomas using patterns of gene expression.
Cancer Cell, 5(5):489–500, May 2004. doi: 10.1016/S1535-6108(04)00112-6.

[35] G. M. Cooper. The cell: A molecular approach. Sinauer Associates, 2nd
edition, 2000.

[36] D. B. Cornelio, C. B. DE Farias, D. S. Prusch, T. E. Heinen, et al. Influence of
GRPR and BDNF/TrkB signaling on the viability of breast and gynecologic
cancer cells. Molecular and clinical oncology, 1(1):148–152, Jan 2013. doi:
10.3892/mco.2012.7.

[37] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20
(3):273–297, Sep 1995. doi: 10.1007/BF00994018.

[38] L. M. Coussens and Z. Werb. Inflammation and cancer. Nature, 420(6917):
860–7, 2002. doi: 10.1038/nature01322.

[39] N. Cristianini, A. Elisseeff, J. Shawe-Taylor, and J. Kandola. On kernel-
target alignment. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems 14 (NIPS 2001), 2001.
doi: 10.7551/mitpress/1120.003.0052.

[40] K. E. de Visser, A. Eichten, and L. M. Coussens. Paradoxical roles of the
immune system during cancer development. Nature Reviews Cancer, 6:24–
37, 2006. doi: 10.1038/nrc1782.

[41] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix
t-factorizations for clustering. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
126–135. ACM Press, 2006. doi: 10.1145/1150402.1150420.
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