
Prediction, detection, and
correction of misunderstandings

in interactive tasks

Dissertation
zur Erlangung des akademischen Grades

eines Doktors der Philosophie
der Philosophischen Fakultät

der Universität des Saarlandes

vorgelegt von
Martín Villalba

aus Posadas, Argentinische Republik

Saarbrücken, 2019

Der Dekan: Univ.-Prof. Dr. Heinrich Schlange-Schöningen
Berichterstatter/innen: Prof. Dr. Alexander Koller

Prof. Dr. Luciana Benotti
Tag der letzten Prüfungsleistung: 16. August 2019

I’d like to thank Luciana Benotti for her help kickstarting my PhD,
and Alexander Koller for his patience guiding me throughout it.

I’d also like to thank my research group for making it so much fun.
Antoine, Christoph, Jonas, Meaghan, and Nikos,

this wouldn’t have been possible without you.

I’d also like to dedicate this thesis to my family, who have supported
me at every step despite secretly hoping I’d just go back home.

In that respect, I’d like to thank my drawing group, Potsdam
researchers (specially PRIM and Manfred’s students), my Iaido group,

and other Saarbrücken researchers for making it worth the stay.

Finally, special thanks to Manja for her support along the way,
without whom I wouldn’t have made it this far.

iv

Abstract

Technology has allowed all kinds of devices and software to come into
our lives. Advances in GPS, Virtual Reality, and wearable computers with
increased computing power and Internet connectivity open the doors for
interactive systems that were considered science fiction less than a decade
ago, and are capable of guiding us in a variety of environments.

This increased accessibility comes at the cost of increasing both the scale
of problems that can be realistically tackled and the capabilities that we ex-
pect from such systems. Indoor navigation is an example of such a task:
although guiding a car is a solved problem, guiding humans for instance
inside a museum is much more challenging. Unlike cars, pedestrians use
landmarks rather than absolute distances. They must discriminate from
a larger number of distractors, and expect sentences of higher complexity
than those appropriate for a car driver. A car driver prefers short, simple
instructions that do not distract them from traffic. A tourist inside a mu-
seum on the contrary can afford the mental effort that a detailed grounding
process would require.

Both car and indoor navigation are specific examples of a wider fam-
ily of collaborative tasks known as “Instruction Following”. In these tasks,
agents with the two clearly defined roles of Instruction Giver and Instruction
Follower must cooperate to achieve a joint objective. The former has access
to all required information about the environment, including (but not lim-
ited to) a detailed map of the environment, a clear list of objectives, and a
profound understanding of the effect that specific actions have in the en-
vironment. The latter is tasked with following the instructions, interacting
with the environment and moving the undertaking forward. It is then the
Instruction Giver’s responsibility to assess a detailed plan of action, seg-
ment it into smaller subgoals, and present instructions to the Instruction
Follower in a language that is clear and understandable.

No matter how carefully crafted the Instruction Giver’s utterances are,
it is expected that misunderstandings will take place. Although some of
these misunderstandings are easy to detect and repair, others can be very
difficult or even impossible to solve. It is therefore important for the In-
struction Giver to generate instructions that are as clear as possible, to de-
tect misunderstandings as early as possible, and to correct them in the most
effective way. This thesis introduces several algorithms and strategies de-
signed to tackle the aforementioned problems from end to end, presenting
the individual aspects of a system that successfully predicts, detects, and
corrects misunderstandings in interactive Instruction Following tasks.

We focus on one particular type of instruction: those involving Refer-
ring Expressions. A Referring Expression identifies a single object out of

v

vi

many, such as “the red button” or “the tall plant”. Generating Referring
Expressions is a key component of Inst. Following tasks, since any kind of
object manipulation is likely to require a description of the object. Due to
its importance and complexity, this is one of the most widely studied areas
of Natural Language Generation. In this thesis we use Semantically Inter-
preted Grammars, an approach that integrates both Referring Expression Gen-
eration (identifying which properties are required for a unique description)
and Surface realization (combining those properties into a concrete Noun
Phrase).

The complexity of performing, recording, and analyzing Instruction
Following tasks in the real world is one of the major challenges of Instruc-
tion Following research. In order to simplify both the development of new
algorithms and the access to those results by the research community, our
work is evaluated in what we call a Virtual Environment — an environment
that mimics the main aspects of the real world and abstracts distractions
while preserving enough characteristics of the real world to be useful for
research. Selecting the appropriate virtual environment for a research task
ensures that results will be applicable in the real world. We have selected
the Virtual Environment of the GIVE Challenge, an environment designed
for an Instruction Following task in which a human Instruction Follower is
paired with an automated Instruction Giver in a maze-like 3D world. Com-
pleting the task requires navigating the space, avoiding alarms, interacting
with objects, generating instructions in Natural Language, and preventing
mistakes that can bring the task to a premature end. Even under these
simplified conditions, the task presents several computational challenges:
performing these tasks in real time require fast algorithms, and ensuring
the efficiency of our approaches remains a priority at every step.

Our first experimental study identifies the most challenging type of
mistakes that our system is expected to find. Creating an Inst. Follow-
ing system that leverages previously-recorded human data and follows in-
structions using a simple greedy algorithm, we clearly separate those situa-
tions for which no further study is warranted from those that are of interest
for our research. We test our algorithm with similarity metrics of vary-
ing complexity, ranging from overlap measures such as Jaccard and edit
distances to advanced machine learning algorithms such as Support Vector
Machines. The best performing algorithms achieve not only good accuracy,
but we show in fact that mistakes are highly correlated with situations that
are also challenging for human annotators. Going a step further, we also
study the type of improvement that can be expected from our system if
we give it the chance of retrying after a mistake was made. This system
has no prior beliefs on which actions are more likely to be selected next,
and our results make a good case for this vision to be one of its weakest
points. Moving away from a paradigm where all actions are considered
equally likely, and moving towards a model in which the Inst. Follower’s

vii

own action is taken into account, our subsequent step is the development
of a system that explicitly models listener’s understanding.

Given an instruction containing a Referring Expression, we approach
the Instruction Follower’s understanding of it with a combination of two
probabilistic models. The Semantic model uses features of the Referring Ex-
pression to identify which object is more likely to be selected: if the instruc-
tion mentions a red button, it is unlikely that the Inst. Follower will select a
blue one. The Observational model, on the other hand, predicts which object
will be selected by the Inst. Follower based on their behavior: if the user
is walking straight towards a specific object, it is very likely that this object
will be selected. These two log-linear, probabilistic models were trained with
recorded human data from the GIVE Challenge, resulting in a model that
can effectively predict that a misunderstanding is about to take place sev-
eral seconds before it actually happens. Using our Combined model, we can
easily detect and predict misunderstandings — if the Inst. Giver tells the
Inst. Follower to “click the red button”, and the Combined model detects
that the Inst. Follower will select a blue one, we know that a misunder-
standing took place, we know what the misunderstood object is, and we
know both facts early enough to generate a correction that will stop the
Inst. Follower from making the mistake in the first place.

A follow-up study extends the Observational model introducing fea-
tures based on the gaze of the Inst. Follower. Gaze has been shown to corre-
late with human attention, and our study explores whether gaze-based fea-
tures can improve the accuracy of the Observational model. Using previously-
collected data from the GIVE Environment in which gaze was recorded us-
ing eye-tracking equipment, the resulting Extended Observational model im-
proves the accuracy of predictions in challenging scenes where the number
of distractors is high.

Having a reliable method for the detection of misunderstandings, we
turn our attention towards corrections. A corrective Referring Expression is
one designed not only for the identification of a single object out of many,
but rather, for identifying a previously-wrongly-identified object. The sim-
plest possible corrective Referring Expression is repetition: if the user mis-
understood the expression “the red button” the first time, it is possible that
they will understand it correctly the second time.

A smarter approach, however, is to reformulate the Referring Expres-
sion in a way that makes it easier for the Inst. Follower to understand. We
designed and evaluated two different strategies for the generation of cor-
rective feedback. The first of these strategies exploits the pragmatics con-
cept of a Context Set, according to which human attention can be segmented
into objects that are being attended to (that is, those inside the Context Set)
and those that are ignored. According to our theory, we could virtually ig-
nore all objects outside the Context Set and generate Referring Expressions
that would not be uniquely identifying with respect to the entire context,

viii

but would still be identifying enough for the Inst. Follower. As an exam-
ple, if the user is undecided between a red button and a blue one, we could
generate the Referring Expression “the red one” even if there are other red
buttons on the scene that the user is not paying attention to. Using our proba-
bilistic models as a measure for which elements to include in the Context
Set, we modified our Referring Expression Generation algorithm to build
sentences that explicitly account for this behavior. We performed experi-
ments over the GIVE Challenge Virtual Environment, crowdsourcing the
data collection process, with mixed results: even if our definition of a Con-
text Set were correct (a point that our results can neither confirm nor deny),
our strategy generates Referring Expressions that prevents some mistakes,
but are in general harder to understand than the baseline approach. The
results are presented along with an extensive error analysis of the algo-
rithm. They imply that corrections can cause the Instruction Follower to
re-evaluate the entire situation in a new light, making our previous def-
inition of Context Set impractical. Our approach also fails at identifying
previously grounded referents, compounding the number of pragmatic ef-
fects that conspire against this approach.

The second strategy for corrective feedback consists on adding Con-
trastive focus to a second, corrective Referring Expression In a scenario in
which the user receives the Referring Expression “the red button” and yet
mistakenly selects a blue one, an approach with contrastive focus would
generate “no, the RED button” as a correction. Such a Referring Expres-
sion makes it clear to the Inst. Follower that on the one hand their selec-
tion of an object of type “button” was correct, and that on the other hand
it is the property “color” that needs re-evaluation. In our approach, we
model a misunderstanding as a noisy channel corruption: the Inst. Giver
generates a correct Referring Expression for a given object, but it is cor-
rupted in transit and reaches the Inst. Follower in the form of an altered,
incorrect Referring Expression We correct this misconstrual by generating
a new, corrective Referring Expression: starting from the original Referring
Expression and the misunderstood object, we identify the constituents of
the Referring Expression that were corrupted and place contrastive focus
on them. Our hypothesis states that the minimum edit sequence between
the original and misunderstood Referring Expression correctly identifies
the constituents requiring contrastive focus, a claim that we verify experi-
mentally.

We perform crowdsourced preference tests over several variations of
this idea, evaluating Referring Expressions that either present contrast side
by side (as in “no, not the BLUE button, the RED button”) or attempt to
remove redundant information (as in “no, the RED one”). We evaluate
our approaches using both simple scenes from the GIVE Challenge and
more complicated ones showing pictures from the more challenging TUNA
people corpus. Our results show that human users significantly prefer our

ix

most straightforward contrastive algorithm.
In addition to detailing models and strategies for misunderstanding de-

tection and correction, this thesis also includes practical considerations that
must be taken into account when dealing with similar tasks to those dis-
cussed here. We pay special attention to Crowdsourcing, a practice in which
data about tasks can be collected from participants all over the world at
a lower cost than traditional alternatives. Researchers interested in using
crowdsourced data must often deal both with unmotivated players and
with players whose main motivation is to complete as many tasks as pos-
sible in the least amount of time. Designing a crowdsourced experiment
requires a multifaceted approach: the task must be designed in such a way
as to motivate honest players, discourage other players from cheating, im-
plementing technical measures to detect bad data, and prevent undesired
behavior looking at the entire pipeline with a Security mindset. We dedicate
a Chapter to this issue, presenting a full example that will undoubtedly be
of help for future research.

We also include sections dedicated to the theory behind our implemen-
tations. Background literature includes the pragmatics of dialogue, mis-
understandings, and focus, the link between gaze and visual attention, the
evolution of approaches towards Referring Expression Generation, and re-
ports on the motivations of crowdsourced workers that borrow from fields
such as psychology and economics. This background contextualizes our
methods and results with respect to wider fields of study, enabling us to
explain not only that our methods work but also why they work.

We finish our work with a brief overview of future areas of study. Re-
search on the prediction, detection, and correction of misunderstandings
for a multitude of environments is already underway. With the introduc-
tion of more advanced virtual environments, modern spoken, dialogue-
based tools revolutionizing the market of home devices, and computing
power and data being easily available, we expect that the results presented
here will prove useful for researchers in several areas of Natural Language
Processing for many years to come.

x

Zusammenfassung

Die Technologie hat alle möglichen Arten von unterstützenden Gerä-
ten und Softwares in unsere Leben geführt. Fortschritte in GPS, Virtueller
Realität, und tragbaren Computern mit wachsender Rechenkraft und Inter-
netverbindung öffnen die Türen für interaktive Systeme, die vor weniger
als einem Jahrzehnt als Science Fiction galten, und die in der Lage sind, uns
in einer Vielfalt von Umgebungen anzuleiten. Diese gesteigerte Zugäng-
lichkeit kommt zulasten sowohl des Umfangs der Probleme, die realistisch
gelöst werden können, als auch der Leistungsfähigkeit, die wir von solchen
Systemen erwarten. Innennavigation ist ein Beispiel einer solcher Aufga-
ben: obwohl Autonavigation ein gelöstes Problem ist, ist das Anleiten von
Meschen zum Beispiel in einem Museum eine größere Herausforderung.
Anders als Autos, nutzen Fußgänger eher Orientierungspunkte als abso-
lute Distanzen. Sie müssen von einer größeren Anzahl von Ablenkungen
unterscheiden können und Sätze höherer Komplexität erwarten, als die, die
für Autofahrer angebracht sind. Ein Autofahrer bevorzugt kurze, einfache
Instruktionen, die ihn nicht vom Verkehr ablenken. Ein Tourist in einem
Museum dagegen kann die metale Leistung erbringen, die ein detaillier-
ter Fundierungsprozess benötigt. Sowohl Auto- als auch Innennavigation
sind spezifische Beispiele einer größeren Familie von kollaborativen Auf-
gaben bekannt als Instruction Following. In diesen Aufgaben müssen die
zwei klar definierten Akteure des Instruction Givers und des Instruction Fol-
lowers zusammen arbeiten, um ein gemeinsames Ziel zu erreichen. Der ers-
tere hat Zugang zu allen benötigten Informationen über die Umgebung,
inklusive (aber nicht begrenzt auf) einer detallierten Karte der Umgebung,
einer klaren Liste von Zielen und einem genauen Verständnis von Effek-
ten, die spezifische Handlungen in dieser Umgebung haben. Der letztere
ist beauftragt, den Instruktionen zu folgen, mit der Umgebung zu intera-
gieren und die Aufgabe voranzubringen. Es ist dann die Verantwortung
des Instruction Giver, einen detaillierten Handlungsplan auszuarbeiten, ihn
in kleinere Unterziele zu unterteilen und die Instruktionen dem Instructi-
on Follower in einer klaren, verständlichen Sprache darzulegen. Egal wie
sorgfältig die Äußerungen des Instruction Givers erarbeitet sind, ist es zu
erwarten, dass Missverständnisse stattfinden. Obwohl einige dieser Miss-
verständnisse einfach festzustellen und zu beheben sind, können anderen
sehr schwierig oder gar unmöglich zu lösen sein. Daher ist es wichtig, dass
der Instruction Giver die Anweisungen so klar wie möglich formuliert, um
Missverständnisse so früh wie möglich aufzudecken, und sie in der effek-
tivsten Weise zu berichtigen.

Diese Thesis führt mehrere Algorithmen und Strategien ein, die dazu
entworfen wurden, die oben genannten Probleme in einem End-to-End Pro-

xi

xii

zess zu lösen. Dabei werden die individuellen Aspekte eines Systems prä-
sentiert, dass erfolgreich Missverständnisse in interaktiven Instruction Fol-
lowing Aufgaben vorhersagen, feststellen und korrigieren kann. Wir richten
unsere Aufmerksamkeit auf eine bestimmte Art von Instruktion: die sogen-
nanten Referring Expressions. Eine Referring Expression idenfiziert ein einzel-
nes Objekt aus vielen, wie zum Beispiel „der rote Knopf” oder „die große
Pflanze”. Das Generieren von Referring Expressions ist eine Schlüsselkom-
ponente von Instruction Following Aufgaben, da jegliche Art von Manipula-
tion sehr wahrscheinlich eine Beschreibung des Objektes erfordert. Wegen
der Wichtigkeit und Komplexität ist dies eine der am meisten untersuchten
Gebiete der Textgenerierung. In dieser Thesis verwenden wir Semantisch In-
terpretierte Grammatik, eine Methode, die sowohl die Generierung von Refer-
ring Expressions (Identifizierung von Eigenschaften für eine eindeutige Be-
schreibung) als auch Surface Realization (Kombinieren dieser Eigenschaften
in eine konkrete Substantivgruppe) integriert. Die Komplexität der Durch-
führung, Aufzeichnung und Analyse von Instruction Following Aufgaben
in der realen Welt ist eine der großen Herausforderungen der Instruction
Following Forschung. Um sowohl die Entwicklung neuer Algorithmen und
den Zugang zu diesen Ergebnissen durch die Wissenschaftsgemeinde zu
vereinfachen, wird unsere Arbeit in einer Virtuellen Umgebung bewertet. Ei-
ne virtuelle Umgebung ahmt die Hauptaspekte der realen Welt nach und
nimmt Ablenkungen weg, während genug Eigenschaften der realen Welt
erhalten bleiben, um verwendbar für die Untersuchung zu sein. Die Aus-
wahl der angebrachten virtuellen Umgebung für eine Forschungsaufgabe
gewährleistet, dass die Ergebnisse auch in der realen Welt anwendbar sind.
Wir haben eine virtuelle Umgebung der GIVE Challenge ausgesucht âĂŞ ei-
ne Umgebung, die für eine Instruction Following Aufgabe entworfen wurde, in
der ein menschlicher Instruction Follower mit einem automatischen Instruction
Giver in einer Labyrinth-artigen 3D Welt verbunden wird. Die Aufgabe zu
beenden erfordert Navigation im Raum, Vermeidung von Alarmen, Inter-
agieren mit Objekten, Textgenerierung und Verhindern von Fehlern, die zu
einer vorzeitigen Beendung der Aufgabe führen. Sogar unter diesen verein-
fachten Bedingungen stellt die Aufgabe mehrere rechentechnische Heraus-
forderungen dar: die Aufgabe in Echtzeit durchzuführen erfordert schnelle
Algorithmen, und die Effizienz unserer Methode zu gewährleisten bleibt
Priorotät in jedem Schritt.

Unser erstes Experiment identifiziert die herausfordernste Art von Feh-
lern, die unser System erwartungsgemäß finden soll. Durch den Entwurf
eines Instruction Following Systems, das sich zuvor aufgezeichnete mensch-
liche Daten zu Nutze macht und durch die Nutzung eines einfachen gie-
rigen Algorithmus Intruktionen folgt, grenzen wir klar die Situationen ab,
die keine weitere Studie rechtfertigen, von denen, die interessant für un-
sere Forschung sind. Wir testen unseren Algorithmus mit Ähnlichkeits-
maßen verschiedener Komplexität, die sich von Überlappungsmaßnahmen

xiii

wie Jaccard und Editierdistanzen, bis zu fortgeschrittenen Algorithmen des
Maschinellen Lernens erstrecken. Die am besten ausführenden Algorith-
men erreichen nicht nur gute Genauigkeit sondern tatsächlich zeigen wir,
dass Fehler hoch korreliert sind mit Situationen, die auch herausfordernd
für menschliche Kommentatoren sind. In einem weiteren Schritt untersu-
chen wir die Art von Verbesserung, die von unserem System erwartet wer-
den kann wenn wir ihm die Chance geben, es wieder zu versuchen nach-
dem ein Fehler gemacht wurde. Dieses System macht keine vorherigen
Annahmen darüber, welche Aktionen am wahrscheinlichsten als nächstes
ausgewählt werden und unsere Ergebnisse liefern gute Argumente dafür,
dass dieser Ansatz einer der schwächsten Aspekte ist. Um sich von einem
Paradigma wegzubewegen, in dem alle Aktionen gleich wahrscheinlich be-
trachtet werden, zu einem Model, in dem das Handeln des Instruction Follo-
wers in Betracht gezogen wird, ist unser folgender Schritt die Entwicklung
eines Systems, dass explizit das Verständnis des Anwenders modelliert.
Voraussetzend, dass die Instruktion eine Referring Expression beinhaltet, ge-
hen wir das Verstehen des Instruction Followers mit einer Kombination aus
zwei probabilistischen Modellen an. Das semantische Modell verwendet
Eigenschaften der Referring Expression um zu identifizieren, welches Ob-
jekt wahrscheinlicher ausgewählt wird: wenn die Instruktion einen roten
Knopf benennt, ist es unwahrscheinlich, dass der Instruction Follower den
blauen wählt. Das Beobachtungsmodell dagegen sagt vorher, welches Ob-
jekt von dem Instruction Follower basierend auf seinem Verhalten gewählt
wird: wenn der Anwender direkt auf ein spezifisches Objekt zuläuft, ist
es sehr wahrscheinlich, dass er dieses auswählt. Diese zwei log-linearen,
probabilistischen Modelle wurden mit aufgezeichneten menschlichen Da-
ten von der GIVE Challenge trainiert. Daraus resultiert ein Modell, welches
effektiv vorhersagen kann, dass ein Missverständnis geschehen wird, meh-
rere Sekunden bevor es tatsächlich passiert. Durch die Nutzung unseres
Kombinierten Modells können wir leicht Missverständnisse feststellen und
vorhersagen: wenn der Instruction Giver zu dem Instruction Follower sagt
„betätige den roten Knopf”, und das Kombinierte Modell feststellt, dass
der Instruction Follower den blauen wählen will, wissen wir, dass ein Miss-
verständnis stattgefunden hat. Zusätzlich wissen wir beide Fakten früh ge-
nug, um eine Korrektur vorzunehmen, die den Instruction Follower davon
abhält, den Fehler in erster Linie zu begehen. Eine Folgestudie erweitert
das Beobachtungsmodell, indem Eigenschaften des Instruction Followers ba-
sierend auf dessen Blickrichtung eingeführt werden. Die Blickrichtung kor-
reliert mit der Aufmerksamtkeit von Menschen, und unsere Studie unter-
sucht, ob Blick-basierte Eigenschaften die Genauigkeit des Beobachtungs-
modells verbessern können. Durch die Nutzung vorherig gesammelter Da-
ten aus der GIVE Umgebung, in welcher die Blickrichtung mithilfe einer
Augenverfolgungsausstattung aufgezeichnet wurde, verbessert das resul-
tierende Erweiterte Beobachtungsmodell die Genauigkeit der Vorhersagen

xiv

in herausfordernden Vorgängen, in der die Anzahl der Ablenkungen hoch
ist.

Durch den Besitz einer verlässlichen Methode für die Feststellung von
Missverständnissen wenden wir unsere Aufmerksamkeit in Richtung Kor-
rekturen. Eine korrigierende Referring Expression ist nicht nur für die Identi-
fikation eines einzelnes Objekts aus vielen entworfen, sondern für die Fest-
stellung der zuvor falschen Identifikation eines Objekts. Die einfachst mög-
liche korrigierende Referring Expression ist die Wiederholung: wenn der An-
wender die Aussage „der rote Knopf” das erste Mal falsch verstanden hat,
ist es möglich, dass er es beim zweiten Mal richtig versteht. Eine klügere
Methode ist, die Referring Expression so umzuformulieren, dass es für den
Instruction Follower leichter ist, sie zu verstehen. Wir entwarfen und evalu-
ierten zwei verschiedene Strategien für die Generierung von korrigieren-
der Rückmeldung. Die erste dieser Strategien nutzt das pragmatische Kon-
zept eines Context Sets, nachdem menschliche Aufmerksamkeit in Objekte
unterteilt wird, denen Aufmerksamkeit zukommt (innerhalb des Context
Sets) und denen, die ignoriert werden. Nach unserer Theorie könnten wir
nahezu alle Objekte außerhalb des Context Sets ignorieren und Referring Ex-
pressions generieren, die nicht eindeutig mit Bezug auf den gesamten Kon-
text identifizieren, aber genug für den Instruction Follower. Zum Beispiel,
wenn der Anwender unentschieden ist zwischen einem roten und einem
blauen Knopf, könnten wir die Referring Expression „der Rote” generieren,
sogar wenn es noch andere rote Knöpfe in der Szene gibt, auf die der An-
wender nicht achtet. Durch die Nutzung unseres probabilistischen Modells
als Maß dafür, welches Element in das Context Set einbezogen wird, modi-
fizieren wir den Generierungsalgorithmus der Referring Expression, um Sät-
ze zu bilden, die explizit dieses Verhalten einbeziehen. Wir haben Experi-
mente in der GIVE Challenge virtuellen Umgebung, mit einem Crowdsource
Datensammlungsprozess durchgeführt, mit gemischten Ergebnissen: sogar
wenn unsere Definition von Context Set richtig gewesen wäre (ein Punkt,
den unsere Ergebnisse weder bestätigen noch widerlegen), generiert unse-
re Strategie Referring Expressions, die einige Fehler verhindern aber generell
schwieriger zu verstehen sind als der Basisansatz. Die Ergebnisse gehen
einher mit einer umfangreichen Fehleranalyse des Algorithmus’; sie legen
nah, dass Korrekturen den Instruction Follower dazu veranlassen, die ge-
samte Situation in einem neuen Licht zu bewerten, wodurch unsere vorhe-
rige Definition von Context Set unbrauchbar wird. Unsere Methode ist wei-
terhin nicht in der Lage, bereits zuvor verstandene Objekte zu identifizie-
ren, wodurch die Anzahl der pragmatischen Effekte steigt, die sich gegen
diese Methode stellen. Die zweite Strategie für eine korrigierende Rück-
meldung besteht darin, einen Gegensatzfokus zu einer zweiten korrigie-
renden Referring Expression hinzuzufügen. In einem Szenario, in dem der
Anwender die Referring Expression „der rote Knopf” erhält und trotzdem
fälschlicherweise den blauen wählt, würde ein Ansatz mit Gegensatzfokus

xv

„nein, der ROTE Knopf” als Korrektur generieren. Solch eine Referring Ex-
pression macht dem Instruction Follower klar, dass einerseits die Auswahl ei-
nes Objekts des Typ „Knopf” richtig war, und andererseits die Eigenschaft
„Farbe” eine Neubewertung benötigt.

In unserer Methode modellieren wir ein Missverständnis mit einer noi-
sy channel Verfälschung: der Instruction Giver generiert eine korrekte Refer-
ring Expression für ein bestimmtes Objekt aber es wird bei der Übertragung
verfälscht und erreicht den Instruction Follower in der Form einer veränder-
ten, inkorrekten Referring Expression. Wir korrigieren die Fehlinterpretation
durch die Generierung einer neuen, korrigierenden Referring Expression:
ausgehend von der originalen Referring Expression und dem missverstande-
nem Objekt, identifizieren wir die Bestandteile der Referring Expression, die
verfälscht wurden und legen einen gegensätzlichen Fokus auf sie. Unse-
re Hypothese besagt, dass die minimale Überarbeitungssequenz zwischen
der originalen und der missverstandenen Referring Expression die Bestand-
teile korrekt identifiziert, die einen gegesätzlichen Fokus erfordern - ei-
ne Behauptung, die wir experimentell bestätigen. Wir führen Crowdsource
Tests mit verschiedenen Varianten dieser Idee durch, wobei wir Referring
Expressions evaluieren, die entweder einen Kontrast darstellen (z.B. „nein,
nicht der BLAUE Knopf, der ROTE Knopf”) oder versuchen, die überflüs-
sige Information zu entfernen (z.B. „nein, der ROTE”). Wir evaluieren un-
sere Ansätze durch die Nutzung von sowohl einfachen Szenen der GIVE
Challenge als auch komplizierteren Bildern aus dem mehr herausfordern-
den TUNA people corpus. Unsere Ergebnisse zeigen, dass menschliche An-
wender unseren unkompliziertesten gegensätzlichen Algorithmus signifi-
kant bevorzugen.

Zusätzlich zu den detaillierten Modellen und Strategien zur Missver-
ständnisfestellung und -korrektur, beinhaltet diese Thesis praktische Hin-
weise, die in Betracht gezogen werden müssen wenn man mit Aufgaben zu
tun hat, die ähnlich zu den hier diskutierten sind. Wir richten besonderes
Augenmerk auf Crowdsourcing, eine Praxis, bei der durch Aufgaben Daten
von Teilnehmern aus aller Welt zu niedrigeren Kosten als durch traditio-
nelle Alternativen gesammelt werden können. Wissenschaftler, die daran
interessiert sind, Crowdsource Daten zu verwenden, müssen oft sowohl mit
unmotivierten Spielern umgehen, als auch mit Spielern, deren Hauptmo-
tivation es ist, so viele Aufgaben in so kurzer Zeit wie möglich zu lösen.
Ein Crowdsource Experiment zu entwerfen erfordert eine vielseitige Metho-
dik: die Aufgabe muss so entwickelt sein, dass sie einen ehrlichen Spieler
motiviert, andere Spieler vom Betrügen abhält, technische MaÎše zum Fest-
stellen schlechter Daten implementiert, und unerwünschtes Verhalten ver-
hindert mit Blick auf die gesamte Pipeline und einem „Sicherheit zuerst”-
Ansatz. Wir widmen ein ganzes Kapitel dieser Problematik und präsen-
tieren ein komplettes Beispiel, das zweifelsfrei hilfreich für künftige For-
schung sein wird.

xvi

Weiterhin fügen wir Sektionen ein, die sich der Theorie hinter unse-
ren Anwendungen widmen. Hintergrundliteratur beinhaltet die Pragmatik
von Dialogen, Missverständnissen und Fokus, die Verbindung zwischen
Blickrichtung und visueller Aufmerksamkeit und der Evolution von Me-
thoden für die Generierung von Referring Expressions. Zusätzlich präsen-
tieren wir Berichte, die die Motivation von Crowdsource Arbeitern unter-
suchen, sowohl aus einer theoretischen als auch aus einer experimentellen
Perspektive âĂŞ die erstere durch Aufgreifen von Konzepten aus der Psy-
chologie und Wirtschaft, und die zweitere durch Experimente, die zum Tes-
ten der Ehrlichkeit des Arbeiters entworfen wurden. Dieser Hintergrund
bringt unsere Methoden und Ergebnisse in Verbindung mit Bezug zu breit-
gefächerten Fachgebieten, die uns ermöglichen nicht nur zu erklären, dass
unsere Methoden funktionieren sondern auch warum sie funktionieren.
Wir beenden unsere Arbeit mit einem kurzen Überblick über künftige For-
schungsbereiche. Forschung zur Vorhersage, Feststellung und Korrektur
von Missverständnissen für eine Vielzahl von Umwelten ist bereits un-
terwegs. Mit der Einführung von fortgeschrittenen virtuellen Umgebun-
gen, modern ausgedrückt, Dialog-basierte Werkzeuge, die den Markt von
Heimgeräten, Rechenkraft und vereinfachtem Datenzugriff revolutionie-
ren, erwarten wir, dass die hier präsentierten Ergebnisse sich für Forscher
in mehreren Bereichen der natürlichen Sprachverarbeitung auf Jahre hin-
aus als nützlich erweisen werden.

xvii

Contents

Abstract v

Zusammenfassung xi

Table of contents xix

List of Figures xxii

List of Abbreviations xxiii

1 Introduction 1
1.1 Challenges . 3

1.1.1 Challenges in developing for the real world 4
1.1.2 Challenges in detection of misunderstandings 5
1.1.3 Challenges in correcting misunderstandings 6
1.1.4 Published research . 7

1.2 Summary . 8

2 Instruction following in
Virtual Environments 11
2.1 Early work on Instruction Following 12
2.2 Automated planning . 14
2.3 Natural Language Generation 15

2.3.1 Referring Expression Generation 18
2.3.2 Interpreted Regular Tree Grammars 20

2.4 Virtual Environments . 26
2.5 The GIVE Challenge . 30
2.6 The pragmatics of dialogue, misunderstandings, and focus . 32

2.6.1 Misunderstandings . 33
2.6.2 Focus . 34

2.7 Conclusion . 34
2.8 Further reading . 35

3 Following instructions 37
3.1 A simple strategy for instruction following 38
3.2 Implementing our IF . 39

3.2.1 Data collection and segmentation 39
3.2.2 Interpretation . 41
3.2.3 Group selection by word similarity 42
3.2.4 Group selection with machine translation methods . 43
3.2.5 Group selection with machine learning 43
3.2.6 Corrections . 44

3.3 Experiments and Results . 45
3.4 Lessons learned . 47

xviii

3.5 Conclusion . 47

4 Detecting
misunderstandings 49
4.1 Definitions . 50
4.2 A model of listener’s understanding 51

4.2.1 The Principle of Maximum Entropy and log-linear
models . 52

4.2.2 Feature functions for PSem 53
4.2.3 Feature functions for PObs 55

4.3 Experimental setup and evaluation 58
4.3.1 Prediction accuracy . 58
4.3.2 Feedback appropriateness 59

4.4 Conclusion . 60

5 Tracking attention 63
5.1 Attention and Visual Attention 64

5.1.1 Visual Saliency . 66
5.1.2 Eye-tracking . 67

5.2 Eye-tracking and Extended Probabilistic model 68
5.2.1 New features . 69
5.2.2 Time to interaction . 70

5.3 Experimental setup and evaluation 70
5.3.1 Results . 71

5.4 Conclusion . 72

6 Crowdsourcing and
cheating detection 75
6.1 Cheating . 76

6.1.1 The security mindset 77
6.1.2 Related work . 78

6.2 Pipeline . 79
6.2.1 The GIVE Matchmaker 80
6.2.2 The GIVE Unity client 80
6.2.3 The GIVE Automated IG 81
6.2.4 The Crowdflower interface 84

6.3 Quality control . 85
6.3.1 Payment scale . 86
6.3.2 Secret words . 86
6.3.3 Results . 87

6.4 Conclusion . 88

xix

7 Correcting
misunderstandings:
reformulation 91
7.1 Attention and Context Set . 92
7.2 Generating with a Context Set 93
7.3 Experimental setup . 96

7.3.1 Strategies for feedback generation 96
7.3.2 Results . 97
7.3.3 Error analysis . 98

7.4 Conclusion . 102

8 Correcting
misunderstandings:
Contrastive Referring Expressions 103
8.1 Contrastive focus . 104
8.2 A minimum-distance approach to contrast 106

8.2.1 Finding the missing RE 107
8.3 Generation of contrastive feedback 110
8.4 Experimental setup . 111

8.4.1 Experiment results . 113
8.4.2 Experiment 2 . 113

8.5 Discussion . 114
8.6 Conclusion . 115

9 Conclusion 117
9.1 Summary . 118
9.2 Future work . 119

Bibliography 133

xx

xxi

List of Figures

2.1 Example of all steps involved in a weather report system.
a) Content determination. b) Text structuring. c) Sentence
aggregation. d) Lexicalization. e) Referring Expression Gen-
eration. f) Linguistic realization. 17

2.2 Annotated example of a SIG 22
2.3 World model for the example 23
2.4 Example derivation tree (center) with the string interpreta-

tions of every subtree on the left and the relational interpre-
tations of every subtree on the right. 23

2.5 Chart containing derivations for the object b1. This chart is
based on a simplified grammar that does not include [above/below]-
of relations between objects. 24

2.6 Visual domain of the GRE3D corpus and its corresponding
attributes. be f =“before”, beh=“behind”, nt=“next to”. 28

2.7 Images and attributes from the TUNA corpus domains . . . 28
2.8 SCARE Corpus - First-Person view and upstairs floor map . 30
2.9 First-person and Map view of a GIVE world from the 2011

evaluation worlds (Striegnitz et al., 2011). 31

3.1 Accuracy values as a function of the number of corrections . 46

4.1 Anatomy of an episode . 51
4.2 Prediction accuracy as a function of time 59
4.3 Feedback F1 measure as a function of time 60

5.1 Input images and their corresponding saliency maps 67
5.2 Recording user data with an eye-tracker. The image shows

the eye-tracker equipment on the bottom right, the player’s
point of view, and circles (not shown to the player) indicat-
ing the recorded user’s gaze on the current scene. 68

5.3 Gaze cursor and fixated targets in the GIVE Challenge 69
5.4 Accuracy as a function of training and testing time 72

6.1 Crowdsourcing pipeline . 79
6.2 Network connectivity example. Computers inside a private

network can connect with each other, but communication
outside must go through a router. Public computers cannot
contact computers inside the private network directly. 82

6.3 Network connectivity for our pipeline. The GIVE Match-
maker is on the public internet, while the GIVE Automated
IG resides in a private network. Port forwarding is requires
to allow communication between them. 83

6.4 Web interface of the cf-thesis project 86

xxii

7.1 Example of scenes with color buttons 94
7.2 SIG rules that were altered to incorporate the CS into the RE

generation process . 95
7.3 Button bhall9 and surrounding environment 98
7.4 Buttons in an L-shaped configuration 99
7.5 Example of failed Episodes from the IF’s point of view . . . 100

8.1 Corruption model . 106
8.2 Sample scenes from our experiments in the GIVE and Tuna

domains. 112

xxiii

List of Abbreviations

CFG Context-Free Grammar
CS Context set
FSA Finite-State Automaton
GPS Global Positioning System
IF Instruction Follower
IG Instruction Giver
IRTG Interpreted Regular Tree Grammars
ML Machine Learning
NLG Natural Language Generation
NLP Natural Language Processing
NP Noun Phrase
PP Prepositional Phrase
RE Referring Expression
REG Referring Expression Generation
SIG Semantically Interpreted Grammars
VE Virtual Environment
VS Visual Salience
VSTM Visual Short-Term Memory

xxiv

1

Introduction

It was not a dark and stormy night. It was dark, true, but in a German
winter that barely rules out a quarter of the day. It was not stormy either,
but it was certainly wet, foggy, and cold.

So it was a dark, wet, foggy, and cold day in southwest Germany.
Max was not happy. As he walked once more down the city’s main

square, with rain drops on his hair and wet grass leaves on his shoes, he
tried again to find his way to the museum. This, and not the weather, is
what made Max unhappy: that he didn’t know his way, and his phone
kept giving him directions that made no sense. “Go south”, it told him,
assuming that no young adult in the 21st Century would leave his house
without a compass to point out where the South is. “Turn left”, it would
also say, followed by lengthy instructions for coming back to the starting
point. Apparently, Max thought, the phone meant my other left.

There are several reasons why Max won’t be happy anytime soon. Some
of them we cannot fix, such as the lack of empty lockers for his backpack
once he reaches his destination. But there are others that we can improve,
and we’ll focus on those a lot in the next hundred pages.

Max’s phone is a miracle of technology: it can pinpoint his location
anywhere in the world, combine hundreds of route directions, and pick the
best one in a matter of seconds. It definitely knows where Max is, where
he is going, and how are streets laid out. But as much as it knows, there
is a lot still that it doesn’t know: what the buildings look like, where the
doors lead to, whether there are any sidewalks, or even whether Max is a
car or not. It also makes no attempt to understand Max and, even though
it realizes (eventually) that Max is not where he should be, it doesn’t make

1

2

any attempts to figure out why Max went the way he did. Max is a person,
living in a 3D world full of visual cues. His phone is a computer, evaluating
everything in terms of graph distances and cost functions. They live in
different worlds, and although Max has made his best to turn his concerns
into terms his phone can understand, his phone did not level back with
him.

What could have Max’s phone done? For starters, it could have checked
whether Max understood its instructions correctly. Why waiting until Max
walks into a corner, when a simple “Sorry, my bad, go back and let’s try
again” would have sufficed? And even better: once Max walks back to
where he started, his phone should not say the exact same thing that led to
the dead-end in the first place.

If Max’s phone had realized that Max is a pedestrian, the prospects
would have been better: car drivers have to focus their attention on the
road and other cars, and therefore their GPSs cannot go beyond instruc-
tions more complex than “drive 200m. and turn right”. But given that
Max can stop and look around, he could follow instructions such as “go
through the arch between those two buildings”, “walk to the building with
yellow metallic doors”, or “the yellow building – you should see it from
here”. These kind of instructions are more effective because they refer to
attributes in the environment, making it easier for Max and his phone to
coordinate with each other: if the phone refers to a yellow building that
Max cannot see, he could immediately realize that something is wrong and
take steps to correct it. Making reference to physical properties of the sur-
rounding environment plays an important role in what we call an effective
referring expression, and the process by which Max and his phone try to sort
out what went wrong is called grounding. Both topics are central to this
thesis and will be presented in great detail.

We also need to talk about what Max’s phone needs. Our first problem:
if we want Max and his phone to successfully reach their destination, Max’s
phone needs to know where they are and what things look like. These are
hard problems, and discussing them would take one or two extra theses.
Luckily, we can simplify: instead of asking a human to walk around and
expect their phone to understand their surroundings, we can bring the hu-
man down to the phone’s level. This is what we call a virtual environment,
an artificial world where all distractions are taken away leaving behind
only those aspects we care about: for a navigational task such as our exam-
ple, we would have buildings and doors, but no weather nor other people.
This simplified approach makes it easy enough to run all kinds of exper-
iments with collaborators all over the world, while still being challenging
enough to show what our results are solid.

The second and last problem is detecting misunderstandings. If Max
went in a different direction than his phone intended, what’s the best way
for his phone to correct him? And how early can we detect this misunder-

3

standing? Both issues can be approached with a little help from statistics:
if we have a good approximation of how the average person would react
in a certain situation, and we observe that Max’s behavior does not agree
with that, we can assume that Max has misunderstood what his phone said.
Even better: by exploring why would an average person do what Max just
did, we can infer what Max intended to do and say “I think you misunder-
stood me: you seem to be walking towards the glass door, but I meant the
metallic one”.

This thesis focuses on methods for detecting, identifying and correct-
ing misunderstandings in interactive, collaborative tasks. More specific,
the detection and correction of misunderstood referring expressions in 3D
virtual environments. We will explore probabilistic models of listener’s un-
derstanding to detect when a misunderstanding took place, what the misun-
derstanding was, and how to best correct it. With these capabilities in place,
Max’ phone should be able to guide Max with less misunderstandings, in
a shorter time, and in a more pleasant way.

1.1 Challenges

Generating good referring expressions, detecting, identifying, and correct-
ing misunderstandings are very complex tasks that can be applied to a
multitude of different problems and combined in a myriad of ways. This
section details why each one of these tasks is relevant to our problem, the
challenges we face when integrating them all in a unified framework, and
a few ideas about how to overcome them. Turning these sketches into full–
fledged strategies is what this thesis is about.

Max’ problems are rooted in a simple confusion: his phone believes that
Max is a special, slow type of car that can “drive” in the wrong direction
and is not allowed on highways. This is the result of some compromises
made by GPS manufacturers in the name of efficiency: displaying maps,
calculating routes, and giving directions in any point of the planet repre-
sents an incredible amount of work done in a small device with limited
memory and processing power. Some design choices had to be made and,
as a result, your device knows where you are, where (most) roads are...
and that’s it. If you want to go from A to B, all your device cares about
is where point A is, where point B is, and what’s the shortest road that
connects them both. Car drivers have limited attention to spare, and GPS
devices have limited memory and information; all a car driver wants to
hear is where to turn, and all a GPS device wants to do is describe the road
one intersection at the time. This approach to navigation would not work
inside a museum, but works very well on the highway.

Extending the functionality of navigation devices to work inside a mu-
seum is a complicated task. One key problem is rethinking the way our

4

device “sees” the world. Cars move in what we call network space, which
is characterized “by clearly identifiable decision points (intersections) con-
nected by paths (streets)” Mast and Wolter (2013); Rüetschi (2007). Traffic
rules impose other constraints: a car does not typically make an unexpected
180Âř turn, drive in the wrong way, nor stops in the middle of the highway
for no reason. But pedestrians move in scene space with no clear network
structure Rüetschi (2007), get inside buildings, pay attention to their sur-
roundings and collide with each other all the time. A good pedestrian
navigation system needs to take all of this into account and, as a result,
the number of ways in which instructions can be given grow exponentially.
Guiding a person to the exit could include traditional instructions such as
“take the door to your right”, but good route instructions are useful only if
they relate to environmental features Mast and Wolter (2013), such as:

(1) go through the Egyptian exhibit.

(2) the door surrounded by two Greek statues.

(3) walk through the yellow arch behind you and keep going.

If we intend to generate instructions like those, we need a model of the
world that a computer can understand; we also need to generate referring
expressions (RE) for all objects, and a mechanism to decide which of several
possible referring expressions is the “best” one – and all of it has to be done
efficiently, too.

The challenge of finding a good representation of the world is discussed
in Section 1.1.1, where Virtual Environments are introduced as a mecha-
nism for testing new research ideas much more efficiently than testing in
the real world would be. Section 1.1.2 is focused on the challenges involved
in detecting that a misunderstanding took place, arguing that a probabilis-
tic model of listener’s understanding is the best approach for the task. And
finally, having made our case in favor of detecting misunderstandings, 1.1.3
details the challenges that must be overcome to generate corrections that
are both natural and effective.

1.1.1 Challenges in developing for the real world

The instructions we’ve seen in the previous paragraph are definitely good,
but how good are they, really? Each one of them raises further questions.
What if in (1) I don’t know the difference between the Egyptian and Sume-
rian exhibits? What if I know the two Greek statues in (2) are actually
Syrian, but belonging to the Hellenistic period - is that the correct door?
What if I turned while instruction (3) was being spoken? And what if I’m
colorblind? Luckily, rather than guess, we can experiment: we can test
several different strategies, measure which ones give the best results, and
implement only the ones that make sense for our use case.

5

The last step cannot be overstated: even if a strategy is shown to be the
one guiding users the fastest and/or with the least number of instructions,
it might still not be the best strategy for us. Maybe it’s too expensive, re-
quiring us to manually enter too many attributes per object; maybe it’s too
inconvenient, requiring people to walk with their phones in front of their
faces at all times. Or maybe it’s too unfriendly, too unnatural, or too slow.
These are called non-functional requirements, and they have the annoying
habit of popping up only after we’ve done all the work, which we now
have to throw away.

We would like to find a spot in the middle in which we can experiment
with as many complicated strategies as we can without spending too many
resources on them. This is the reason why we use Virtual Environments
(VE) rather than experiments in the real world. If we wanted to navigate
a museum we would have to catalog all artifacts, develop computer vision
algorithms capable of recognizing them, install expensive, fine-grained,
position-detection hardware, and heavily optimize for the kind of under-
powered portable devices visitors are expected to carry around. In contrast,
we could test our algorithms in a 3D world with made-up artifacts with
comparable results at a fraction of the development and test cost. All that
remains afterwards is to map the real world onto our VE. More information
on VEs is presented in Chapter 2.

1.1.2 Challenges in detection of misunderstandings

Detecting misunderstandings is an example of the type of scaffolding that,
done well, can greatly enhance a user’s experience. It is a well known de-
fect of computers that they do what we tell them to do, rather than what
we meant to tell them. Luckily, for some specific, limited tasks computers
are wisening up: cameras put our faces in focus automatically, search en-
gines ask us whether we meant something else, social networks guess who
among several strangers with the same name is the one we are looking for,
and so on. The key word here is limited: the smaller the task, the easier it
gets to infer what a user is trying to do and to add some extra scaffolding
that helps them with their work.

In the context of a navigational task, detecting a misunderstanding is
straightforward: we expected the user to move in a certain direction, but
they went somewhere else. Detecting that a RE was misunderstood is not
as easy, and potentially costly: if a user activates a fire alarm due to a mis-
understood RE, no correction will takes us back to a state in which the user
is not in trouble. It is important not only to detect that a misunderstanding
took place, but also to do it as early as possible.

To detect a misunderstanding, we need to model the listener’s under-
standing of a RE. This is a limited enough task that, while challenging, it’s
within our reach. In this thesis we’ll explore how to keep track of the user’s

6

focus in all objects around them, generate REs that take advantage of the
user’s mental model, and detect early if the user’s response to a RE does
not correspond with the expected response to said RE. This topic is the fo-
cus of Chapters 4 and 5. Chapter 4 shows how a log-linear model trained
on user data can accurately predict the resolution of a Referring Expression,
while Chapter 5 shows an extension to this model based on eye-tracking
data.

1.1.3 Challenges in correcting misunderstandings

Even the best navigation system has to deal with the topic of misunder-
standings. Misconstruals, as discussed in Section 2.6, are influenced by a
multitude of factors that are external to the text of the conversation itself.
Misunderstandings can take place at any point during a dialogue.

In the case of pedestrian navigational tasks, there’s one specific type of
mistake that we care about: unsuccessfully-resolved REs.

It should be clear that the most effective way of correcting misunder-
standings is not to have misunderstandings to begin with. In order to gen-
erate referring expressions that are best suited for a specific domain, mul-
tiple families of algorithms have been developed based on their main ob-
jective. Some approaches optimize for human-likeness (Altamirano et al.,
2012), brevity (Dale, 1989), usefulness (Garoufi and Koller, 2011a), over- or
under-specification (Koolen et al., 2009), specific use cases such as medical
decision support (Portet et al., 2009), etc. Interactivity is also an important
factor: while some tasks are limited to one-shot strategies (Gorniak and Roy,
2004), other tasks allow for reference in installments and corrections.

The scenarios that we have described during this chapter are always
interactive, and our REG must be suited for it. Interactive settings allows us
to monitor the user’s behavior and generate corrections at any time but, as a
downside, require fast algorithms capable of dealing with an environment
in constant change. No matter which strategy we choose, it must be fast
enough to be used in real time.

The type of corrective RE that we choose plays a major role too. For
some specific situations and domains, even the simplest approach may be
enough to keep a user in track. If we expected a user to take the door on
the left, but the user is about to take the door on the right, an utterance as
simple as “no, not that way” could be enough. Our typical scenarios are not
like that: in pedestrian navigation, the range of possibilities is so large that
merely pointing out the presence of a misunderstanding does not suffice
— rather, we need to make it clear that a misunderstanding took place,
what the misunderstanding was, and we need to point out again what the
original intention was.

We intend to keep misunderstandings as low as possible by using the
REG algorithm presented by Engonopoulos and Koller (2014). This algo-

7

rithm can codify a (possibly infinite) set of REs for a target object and select
the most effective one, where the most effective is defined as “the RE that
maximizes the probability of being understood as the target referent”.

Should a misunderstanding still take place, we also present two ap-
proaches for the generation of corrective Referring Expressions built as
extensions of this REG framework. For the instruction presented in (2),
“the door surrounded by two Greek statues”, we could imagine a user that
chooses a door surrounded by Egyptian statues instead. The first approach
we introduce to correct this misunderstanding explores whether a theory of
mind based on Context Sets can generate good corrections. This approach
could generate corrections like “no, Greek statues”, where “door” is no
longer mentioned because it is assumed that the user has already under-
stood that part, and is only confused about a specific characteristic. Chapter
7 presents a different (and more successful) approach, in which the correc-
tion would introduce contrastive feedback and read “no, the door surrounded
by GREEK statues”.

1.1.4 Published research

The Challenges presented here and the solutions we propose have been
thoroughly discussed and tested. A significant part of the work presented
here has been published in peer-reviewed conferences and journals, and
several Chapters of this thesis correspond roughly with one of them.

The simple Instruction Follower system described in Chapter 3 was
published in Benotti et al. (2012). This paper details how to interpret an
instruction in a VE without a manually annotated corpora: Given a cor-
pus of instructions and the user actions that followed them, this approach
associates the user-performed actions and the state of the VE to the given
instruction. Benotti et al. (2014) expands on these results, fine-tuning the
details of the overall algorithm.

The system for predicting misunderstandings detailed in Chapter 4 was
first published in Engonopoulos et al. (2013). This paper details two proba-
bilistic models, Psem and Pobs, that predict a user’s reaction to an instruction
based respectively in the semantics of the instruction and the observed be-
havior of the user after receiving said instruction. Both models can be com-
bined in a probabilistic model Pcomb, improving on the accuracy of either
individual model. These models can reliably predict to which target object
will a RE be resolved, which we will use to detect misunderstandings. The
improved results with eye–tracking detailed in Chapter 5 were presented
in Koleva et al. (2015). At the time of this writing, it is expected that both
results will also be detailed in the PhD Theses of Nikos Engonopoulos and
Nikolina Koleva, respectively.

The algorithm for generating contrastive referring expressions, related
experiments, and results described in Chapter 8 were published in Villalba

8

et al. (2017). This paper details a method for generating contrastive REs,
such as “No, the BLUE button”. This method can be used to correct mis-
understandings, as the explicit contrast marking is shown to be preferred
over corrective REs without contrast.

1.2 Summary

The research presented in this thesis improves several aspects of an instruc-
tion giving system. A system built with this approach should be capable
of detecting and correcting misunderstandings thanks to its model of lis-
tener’s understanding. With this model we can infer where has the user
focused their attention, giving us a chance to accurately detect when a mis-
understanding takes place and how to better correct it. To my knowledge,
this is the first time that so much care is paid to user’s attention in an end-
to-end system.

Each stage of this research improves over the previous one, ensuring
that the entire communicative act (instruction, misunderstanding, and cor-
rection) can be handled from beginning to end in one place. We expect this
process to feel much more natural to an IF than previous IG systems.

Chapter 2 presents a detailed introduction to the task of Instruction
Following, laying the technical foundation for this thesis. This Chapter
introduces key concepts such as Virtual Environments, Referring Expression
Generation, the GIVE Challenge, and an overview of relevant related work.
The Chapter closes with an analysis of the pragmatics involved throughout
this process, introducing well-researched concepts like Common ground and
Context Set that underlie our algorithms.

Chapter 3 presents an instruction following system, capable of follow-
ing instructions in simple virtual environments with a high degree of ac-
curacy. Extending this system to more complex environments requires en-
hancing the IF system with several attributes, and these attributes will lay
the foundations for what we can expect from an ideal human IF in the fol-
lowing chapters.

Chapter 4 uses these attributes to explain how and why misunderstand-
ings occur, even when an instruction is technically correct. The Chapter
introduces a probabilistic model to detect and predict misunderstandings,
divided into two models of listener’s understanding, showing that these
models are more effective at this task when combined. These models will
tackle the problem of detecting misunderstandings based on two comple-
mentary approaches: a semantic model that predicts misunderstandings
based on the semantics of an instruction, and an observational model that
predicts misunderstandings based on the observed behavior of the IF.

Chapter 5 introduces a detailed analysis of user attention, rooted in the
psycholinguistics literature. This analysis introduces eye–tracking as a use-

9

ful technique, and it is shown that features based on eye–tracking can effec-
tively improve the accuracy of the observational model presented in Chap-
ter 4.

Chapter 6 takes a small detour, detailing our efforts in the collection of
data for our crowdsourced experiments. This is a challenging and under-
reported aspect of modern online research, and it’s included here with
enough detail to be of use for future researchers. Our methodology of data
collection is rooted on the concept of a Security Mindset, a concept we bor-
row from the Computer Security community and apply with great success.

Once a misunderstanding has been detected, it is necessary to act on
it. Chapter 7 discusses our first strategy: the correction of misunderstand-
ings using a simple reformulation of the misunderstood referring expres-
sion and a model of user attention. This strategy does not perform as well
as we expected and, as a result, we dedicate the second half of the Chapter
to error analysis.

A step forward in feedback strategies is the implementation of con-
trastive feedback, a type of feedback in which both the misunderstanding
and the correction are presented in clear contrast to each other. Chapter 8
explores the use visual contrast between what we believe the listener un-
derstood and what was actually intended, and we show that this strategy
is both effective and natural to guide users in the intended direction.

Finally, Chapter 9 presents how this system can work as a pipeline giv-
ing instructions, monitoring their effect, and presenting feedback when-
ever misunderstandings are detected. The Chapter, and this thesis, close
with thoughts on future work that builds on the concepts introduced here.

10

2

Instruction following in

Virtual Environments

The term “Instruction following” refers to a family of tasks in which two
participants with clearly defined roles must cooperate to reach a specific
goal, one as the “Instruction Follower” and the other as the “Instruction
Giver”. The Instruction follower has limited information about the state of
the environment, and must be guided by the better-informed Instruction
Giver in order to complete the task. They are typically allowed to commu-
nicate with each other, although specific tasks call for restrictions on which
type of communication between them is allowed.

A large number of everyday situations fall under this family of tasks.
The car driver that follows the instructions of his GPS, the tourist asking
how to reach Baker Street, the daughter that explains to his father over
the phone how to use the printer, and the man in the supermarket going
through a list written by their wife, they are all involved in Instruction
Following tasks. These tasks are very different from each other, and it is the
purpose of this Chapter to provide a unified framework to reason about all
of them.

This thesis focuses on one specific sub-category of Instruction Follow-
ing tasks, Navigational Instruction Following. These tasks require the In-
struction Follower to navigate an environment (real or virtual), and de-
mand that the Instruction Giver provide not only a description of where to
go, but also how to go there. Following a GPS is a Navigational task, but
collecting items from a grocery list is not. Throughout this thesis, and un-
less otherwise specified, we use the term “Instruction Following” to refer

11

12

to “Navigational Instruction Following”.
At it’s core, Instruction Following can be divided into three interrelated

tasks:

1. Making a plan about how to achieve the next required step of the
overall goal,

2. Guiding the Instruction Follower to the place where the next action
must take place, and

3. Explaining what has to be done in there.

When following a GPS, for instance, the system may evaluate multiple
possible routes, and reach the conclusion that the best route involves taking
the highway (1). The system may then guide the driver to the highway
saying “drive 500m and turn left” (2) and, once there, instruct the driver to
“turn left and get on the highway” (3). It is clear that the system does not
intend the trip to end there, but rather, than both the Instruction Follower
and Giver have collaborated and, as a result, are both now closer to their
intended destination.

This Chapter introduces the foundations required to understand our In-
struction Following framework. Automated planning, introduced in Sec-
tion 2.2, explains how a system decides which action should be performed
next; Section 2.3 presents an overview of the most influential and/or rele-
vant approaches to Natural Language Generation, the part of the task in
which computer instructions and databases are turned into human lan-
guage. This Section puts a strong focus on Referring Expression Generation
and Semantically Interpreted Grammars, as these concepts are particularly
important in subsequent chapters.

Not all instructions are followed in the real world - indeed, research
in this thesis is performed in what we call a Virtual Environment. Section
2.4 examines what a Virtual Environment is, what are its characteristics,
and what are the benefits of using them. All of these research areas are
combined in the GIVE Challenge, a Virtual Environment that will be used
throughout this thesis as a test bed for our experiments. Finally, Section
2.6 will introduce theoretical concepts from the Pragmatics and Linguistics
literature that will be necessary to contextualize our experimental results
and algorithms, giving us the background to understand not only that our
algorithms work, but also providing a framework for explaining why they
work.

2.1 Early work on Instruction Following

Early work on (Navigational) Instruction Following was performed by lin-
guists such as Klein (1982) who studied the role of verbal and situational

13

context in language behavior. In the context of a larger project, this study
brings together Linguistics and Psychology to understand and explain how
space structures language in ways that neither field could explain indepen-
dently. The study asked people for directions in central Frankfurt while
recording their interactions for later transcription, and presented interest-
ing insights on the interaction between local deictics (“here”, “there”, “right”,
etc.), situational awareness, and the need of a clear task plan as a condition
for a successful completion of the task. Di Eugenio (1992) is also consid-
ered a precursor of the analysis of instruction following, suggesting that a
successful analysis of an instruction should focus not only on the syntax of
an instruction, but also on its purpose. Unlike previous linguistic work, Di
Eugenio presents also an early algorithm for instruction following. These
and similar works would introduce the idea of “instruction following” as
a concrete task, collecting and releasing data that would be analyzed by
researchers for many years to come.

“Instruction following” would be more formally defined in the influen-
tial HCRC Map Task Corpus of Thompson et al. (1993). Originally designed
for speech recognition, the HCRC Map Task Corpus comprises recordings
of a task in which two human participants must collaborate to successfully
navigate a map with named locations. In this task, both the Instruction
Follower (IF) and Instruction Giver (IG)1 were provided with copies of a
2D map, and the IG was asked to guide the IF across a route that’s only
visible to him. In line with previous studies, the released corpus includes
digital copies of the maps, recordings of the participants’ conversation, and
their transcriptions. This data would be later used as training data for the
earliest automated, data-driven IF systems. Similar corpora of natural lan-
guage instructions obtained from human participants is still released to this
day with data from more challenging environments, orders of magnitude
larger, and/or including a wider range of test subjects. Examples can be
found in the work of Kollar et al. (2010), who collected instructions, 3D LI-
DAR scans and camera data of real office environments, and in the vasts
amounts of crowdsourced data released by de Vries et al. (2018).

The HCRC Map Task Corpus inspired the development and testing of
systems capable of interpreting the natural language navigational direc-
tions provided in the corpus (Levit and Roy, 2007; Vogel and Jurafsky,
2010). This research would later expand towards more complex domains,
highlighting a need for a more systematic data collection process and tasks
with a more focused approach. As a result, modern research on Instruc-
tion Following is typically performed in virtual environments, rather than
in real-life scenarios.

1The terms “Instruction Follower” and “Instruction Giver” are first introduced in this
paper

14

2.2 Automated planning

Automated planning is defined as the process of finding a sequence of ac-
tions which, if executed by an agent, result in the achievement of a set of
predefined goals. This sequence of actions is known as a plan (Partalas
et al., 2008), and a computer system that generates this plan is known as a
planner. Instruction Following as a task relies heavily on planning: decid-
ing which steps are required in which order to achieve the goal of the task,
deciding which instruction to present, and evaluating the progress made
on the task are all aspects of an IF system that require planning.

To make planning problems tractable, classical planning makes simplifying
assumptions: the environment is assumed to be completely observable, de-
terministic, finite, static (changes only occur when an agent acts) and dis-
crete in time, actions, objects, and effects (Russell and Norvig, 2004). In
addition, approaches that do not rely on all of these simplifications are the
focus of extensive modern research.

STRIPS (STanford Research Institute Problem Solver) is both the name
of an influential classical planner developed by Fikes and Nilsson (1971)
and the name for the problem-representation formal language of the plan-
ner. STRIPS represents states as a sequence of connected, positive propo-
sitional variables or conditions where unmentioned conditions are assumed
to be false (closed world hypothesis). A problem is then described in terms
of:

• An initial state describing which conditions are true at the beginning
of the problem.

• A goal describing the conditions that we would like to satisfy.

• A set of actions specified in terms of the preconditions that must be
satisfied before the action is executed and the effects describing how
the execution will change the state of the problem.

Example: A STRIPS problem
Imagine that we are inside a dark room, and we wish to make the room
bright. We can describe the initial state of the problem with the logi-
cal expression {In(R1) ∧ Dark(R1) ∧ Room(R1) ∧ Lamp(L1)}. Our de-
sired goal can be described as {In(R1) ∧ Bright(R1)}, and we can reach
it through the following actions:

switch_lamp_on (lamp)
PRECOND: Near(lamp) ∧ Lamp(lamp)
EFFECT: ¬Dark(R1) ∧ Bright(R1)

move_closer (room, object)
PRECOND: In(room)

15

EFFECT: Near(object)

One possible way to reach the goal is applying the sequence of ac-
tions 〈move_closer(R1, L1), switch_lamp_on(L1)〉. We then reach the
state {In(R1) ∧ Bright(R1) ∧ Near(L1) ∧ Room(R1) ∧ Lamp(L1)} which
satisfies all the conditions of our goal.

Following STRIPS, further research on automatic planning showed that
this formalism was not expressive enough for certain real domains, lead-
ing to the development of new formalisms. ADL (Action Description Lan-
guage) is one of the most important ones. Based on an open world hypoth-
esis (where unmentioned literals are not false, but rather unknown), ADL
extends the expressive power of logical formulas allowing for negation
in states, allowing conjunctions and disjunctions in goals, and introduc-
ing features such as types, equality comparisons, and conditional effects
among others (Pednault, 1987). Both STRIPS and ADL have been included
into PDDL (Planning Domain Definition Language), a common formalism
for describing planning domains that allows researchers to share and com-
pare problems and results (McDermott et al., 1998).

In this thesis, we make use of planning in two specific circumstances.
Section 3.2.1 uses the output of a planner to discretise user behavior, link-
ing user behavior to the actions of a planner. In addition, the baseline P1
system used in Chapters 7 and 8 includes planning at two stages: the se-
quence of movements and object manipulation actions that the automated
Instruction Giver implements is provided explicitly by the GIVE Frame-
work, and referring expressions are generated using a planning-based ap-
proach to sentence generation (Garoufi and Koller, 2011b; Koller and Stone,
2007).

2.3 Natural Language Generation

Reiter and Dale (1997) define Natural Language Generation (NLG) as “the
sub-field of artificial intelligence and computational linguistics that is con-
cerned with the construction of computer systems than can produce under-
standable texts in English or other human languages from some underlying
non-linguistic representation of information”. Gatt and Krahmer (2018) ar-
gues for a less restrictive definition, using instead NLG to refer to “systems
that generate text from non-linguistic data”. But even this definition may
not be enough: tasks such as Automatic Summarization and Paraphrasing
receive linguistic data and input. For the purposes of this thesis, we define
NLG simply as the family of tasks that support the generation of natural
text and where the “final product” is interesting not only because it’s text,
but rather because of the semantics of that text. A word processor can gen-
erate text, but it is not an NLG application.

16

A way to address the problem of NLG is in terms of the sub-problem(s)
that a specific system solves. Although there is no single agreed taxonomy
of NLG tasks, the classification of Reiter and Dale (1997, 2000) is the most
widespread one. This classification includes the following families of prob-
lems, with Figure 2.1 showing an example of how all steps can be involved
in the task of generating weather reports.

Content determination Decide which part(s) of the input data should be
included in the text that will be generated.

Text structuring Decide in which order should data be presented.

Sentence aggregation Decide the content of each sentence that will be gen-
erated.

Lexicalization Decide how will the content of a sentence be expressed as a
sentence.

Referring Expression Generation Decide which attributes of objects are
necessary to identify them in a given domain.

Linguistic realization Combine individual words into full sentences, and
individual sentences into a full text.

The main challenges in content determination are deciding which in-
formation is relevant and which information can be ignored. As an exam-
ple, and given the same input data, a weather report system for a daily
news report could extract unremarkable, average information from the ar-
eas surrounding major cities while a weather warning system would look
for specific patterns all over the country. Figure 2.1.a. illustrates this step.

Deciding in which order to present information is the problem that
text structuring focuses on. For the weather warning example, the sys-
tem might decide that the type of event should be introduced first, then the
areas more likely to be affected, and finally the characteristics of the event
(Figure 2.1.b).

The next step, sentence aggregation, decides how should information
be combined into specific sentences. For our running example in Figure
2.1.c, the system might decide that the time and date of the event should
be presented in the same sentence, merging the events [hurricane, sunday]
(which we can interpret as the event “a hurricane is expected on Sunday”)
and [Dominican republic, south coast] (“the affected area is the south coast
of the Dominican Republic”) into a single sentence such as “a hurricane
will approach the south coast of the Dominican Republic on Sunday”.

The step that follows, Lexicalization, is the step in which we no longer
decide what information should be shown, but rather settle on how should
this information be displayed in a sentence. This step identifies

17

Figure 2.1: Example of all steps involved in a weather report system. a)
Content determination. b) Text structuring. c) Sentence aggregation. d)
Lexicalization. e) Referring Expression Generation. f) Linguistic realiza-
tion.

18

Referring Expression Generation is the task in charge of “naming” the
objects to which we want to refer. In our example, we could use expressions
such as “the hurricane”, “Hurricane Gilbert”, “the storm”, and so on. This
is the step shown in Figure 2.1.e, and a detailed discussion is presented in
the next Section.

Finally, linguistic realization combines the information obtained in pre-
vious steps into a single, coherent text. This is the step that generates the
final text seen in Figure 2.1.f.

2.3.1 Referring Expression Generation

Referring Expression Generation (REG) is characterized by Reiter and Dale
(1997) as “the task of selecting words or phrases to identify domain enti-
ties”.

Early work on REG is typically traced back to the 1970’s and 1980’s,
starting with the work of Winograd (1972) on Natural Language Under-
standing. Their work presented SHRDLU, a program capable of both nat-
ural language understanding and generation, the latter of which used a
relatively simple REG algorithm: it considered a number of attributes in
a fixed order (type, color, size, the object that it supports, and the object
that is near), and added them until it reached a uniquely identifying RE.
Researchers belonging to what Krahmer and van Deemter (2012) calls the
1980s “California School” such as Appelt and Kronfeld studied REG in the
context of larger speech acts, hoping to better understand the complexi-
ties of human communication. Their approach, reflected in programs such
as KAMP (Appelt and Kronfelt, 1987), considered that “research progress
was best made by investigating hard, anomalous cases that pose difficulties
for conventional accounts”2. Their systems generate REs as part of a plan-
ning system and account for complex interplays between the speaker’s and
hearer’s knowledge, but this approach would later fall out of favor.

In the 1990s REG would be once again considered as a task by its own
right, focusing on the problem of determining which properties of an ob-
ject should be chosen for the identification of a referent. Research of this
period would be strongly influenced by the work of Dale and Reiter. Their
first breakthrough would be the Full Brevity Algorithm (Dale, 1989), which
selects the minimum number of properties required to identify a referent,
at the cost of a high algorithmic complexity and REs that did not always
match those of human speakers. This work was later extended with the
Greedy Algorithm (Dale, 1992) that selects at every step the property that
excludes the largest number of remaining distractors, achieving good re-
sults with better complexity. But the most influential paper of this era
would be the Incremental Algorithm (IA) of Dale and Reiter (1995). This

2Doug Appelt, personal communication

19

algorithm operates in a similar fashion as Full Brevity, but selecting at ev-
ery step the most preferred attribute (which is given as a parameter) rather
than the most distinguishing one. Later work would modify the IA to ac-
count for properties such as the saliency of an object (Krahmer and Theune,
1999) or relational descriptions (Horacek 1996; Krahmer and Theune 2002;
Kelleher and Kruijff 2006).

Research up until this point focused on efficiently computing which
properties of an object were required to make a distinguishing descrip-
tion. Research in the 2000s would focus instead on more challenging REG
sub-tasks. Krahmer and van Deemter (2012) characterize modern REG in
terms of limitations of previous approaches and how modern algorithms
deal with them, a classification that we follow here.

The most straightforward extension of the IA are algorithms capable of
generating REs for sets rather than individual objects. Given the set {b1 :
(red, chair), b2 : (green, book), b3 : (blue, book)}, a simple RE for {b1, b2}
would generate “the red chair and the green book”, but a better approach
would generate “the objects that are not blue”. An approach for such
Boolean expressions was first proposed by van Deemter (2002) and re-
fined by Gardent (2002), bringing back the Full-Brevity algorithm to pre-
vent situations in which excessively large REs are generated. Horacek
(2004) would improve even further by expressing logical propositions in
Disjunctive Normal Form rather than the Conjunctive Normal Form of pre-
vious approaches, a change that led to shorter REs and that future work
adopted as the standard.

Describing objects in relation to other objects would prove a challenge
to the IA. A typical difficult situation is a scene where neither "the but-
ton" nor "the window" are uniquely identifying but "the button above the
window" is. These type of REs do not lend themselves well to incremental
strategies, a problem further exacerbated by the possibility of finding loops
(as in “the button above the window underneath the button above the . . . ”).

A different set of problems is posed by properties that are not crisply
defined, gradable, vague, and/or context dependent. An object described
as “the thin sumo wrestler” in a specific context could easily be described
as “the large man” in a different one. REs such as “the tall man” can also
cause problems in borderline cases. As a simple solution, the later case can
be solved if we stop algorithms from using these properties when the gap
between the target object and distractors is not big enough (Gorniak and
Roy, 2004).

A special case of context-dependent properties is saliency. The question
of when is an object salient enough than an otherwise vague RE suffices
is one that has not yet been solved. Current approaches model these sit-
uations in terms of focus stacks or context sets, a topic from the Pragmatics
literature that we discuss in Page 34. DeVault et al. (2004) generation ap-
proach assumes that a vague RE can be correctly resolved to the highest

20

object in the focus stack that matches the description, while Krahmer and
Theune (1999) present a more nuanced approach in which the position of
an object in the stack is replaced by salience weights.

A final issue to consider is how knowledge about the world is repre-
sented. Modern approaches are expected to be efficient enough to allow for
the development of fast algorithms, and yet remain flexible enough to al-
low algorithms to be reused in multiple domains. Modern approaches tend
to gravitate towards search-based (Kelleher and Kruijff, 2006), logic-based
(Areces et al., 2008), or graph-based approaches (Krahmer et al., 2003).

Search-based approaches consider REG as the problem of finding a spe-
cific goal through a large space of possible states. Each state can be modeled
as a triple 〈L, C, P〉 consisting of a description L of the target that’s also true
for all distractors C and a set of properties P of the target whose inclusion
remains to be decided. The initial state is the state 〈∅, C, P〉with no selected
properties and no discarded distractors, while the goal state 〈L, ∅, P′〉 con-
tains a description of the target L that is not true for any other object.

Logic-based approaches are based on the premise that an RE can be un-
derstood as a formula of Description Logic, turning REG into the problem
of finding a formula that denotes the target set of objects. Finally, Graph-
based approaches model the knowledge base as labeled, directed scenes
graph where objects are nodes and properties and relations are edges. The
problem of REG can be then understood as the search for a distinguishing
graph that is also a sub-graph of the scene.

In this thesis, however, we are particularly interested in a new kind of
approach, namely, a grammar-based approach. This approach models REG
in terms of standard parsing techniques in a formalism known as Interpreted
Regular Tree Grammars.

2.3.2 Interpreted Regular Tree Grammars

All REs in this thesis are generated using the grammar formalism known
as Semantically Interpreted Grammars (SIG) (Engonopoulos and Koller, 2014;
Koller and Engonopoulos, 2017), an approach that integrates both REG and
surface realization. It is defined as “a synchronous grammar formalism that
relates natural language strings with the sets of objects in a given domain
which they describe”, and it is a specific application of Interpreted Regular
Tree Grammars (IRTG).

A SIG is defined as a triple (G, IS , IR). G is a regular tree grammar that
describes languages of derivation trees; IS is a string interpretation, a func-
tion that maps any derivation tree over G to a string. Finally, IR is a rela-
tional interpretation that maps any derivation tree over G to a class of rela-
tions. This SIG can then relate strings with the sets of objects they refer to,
and vice versa.

In the relational interpretation IR, objects are represented as elements

21

in a set, properties are represented as sets, and relations between objects
are represented as ordered pairs of elements. For example, the set blue =
{b1} indicates that the object b1 is blue, and the set le f t− o f = {(b1, b2)}
indicates that the object b1 is to the left of the object b2.

Figure 2.2 shows an annotated example of a SIG capable of generating
REs such as “the window”, “the button to the [left/right] of the yellow but-
ton”, “the blue button above the window” and so on. This SIG constructs
IR combining the denotations of atomic predicate symbols provided as a
world model and the following operations:

proji(R) projects every element r = 〈r1, . . . , rk〉 ∈ R to its i-th component,
or ∅ if i > k.

R1 ∩i R2 is the intersection on the i-th component of R1, i.e., the set of ele-
ments r = 〈r1, . . . , rk〉 ∈ R1 such that ri ∈ R2 (or ∅ if i > k).

uniqa(R) evaluates to {a} if R = {a}, and to ∅ otherwise.

membera(R) evaluates to {a} if a ∈ R, and to ∅ otherwise.

To better understand the generation algorithm, we use now the SIG
from Figure 2.2 and the world model shown in Figure 2.3 to generate the RE
“the blue button above the window”, which uniquely identifies the button
b1. The derivation steps are shown in Figure 2.4 with the derivation tree in
G in the center, the string interpretation IS of each subtree on the left, and
the relational interpretation IR of each subtree on the right.

The step (1) of the derivation tree shown in Figure 2.4 uses the gram-
mar rule Na → buttona and yields the terminal button whose string inter-
pretation is the string “button” and whose relational interpretation is the
set {b1, . . . , b4}. Applying the rule Na → bluea(Na) in (2) yields the tree
bluea(buttona), the string interpretation “blue • button”, and the relational
interpretation

“blue ∩1 button” = {b1, b4} ∩1 {b1, . . . , b4}
= {b1, b4}

Rule (3) is similar to (1), but (4) applies the rule NPa → def a(Na) that
guarantees that its non-terminal Na contains a single element. The tree
interpretation of NPa → def a(windowa) is the string “the window”, and its
relational interpretation is the set {w1}.

The result of applying rule (5) is the string interpretation “blue button
• above • the window” and the relational interpretation:

22

for all a ∈ U:
NPa → def a(Na)
IS(def a)(w1) = the • w1
IR(def a)(R1) = membera(R1)

String interpretation: the string “the”
concatenated with the string interpreta-
tion w1.
Relational interpretation: R1 if a ∈ R1,
and an empty set otherwise.

for all a ∈ button:
Na → buttona
IS(buttona) = button
IR(buttona) = button

String interpretation: the string “button”
Relational interpretation: the set button

for all a ∈ window:
Na → windowa
IS(windowa) = window
IR(windowa) = window

Same principle as above

for all a ∈ blue:
Na → bluea(Na)
IS(bluea)(w1) = blue • w1
IR(bluea)(R1) = blue∩1 R1

String interpretation: the string “blue”
concatenated with the string interpreta-
tion w1.
Relational interpretation: intersects the
set blue with R1 on the first component.
The result is the set of all elements in blue
whose first component is a member of R1.

for all a ∈ yellow:
Na → yellowa(Na)
IS(yellowa)(w1) = yellow • w1
IR(yellowa)(R1) = yellow ∩1 R1

Same principle as above

for all a, b ∈ left− of:
Na → leftof a,b(Na, NPb)
IS(leftof a,b)(w1, w2) = w1 • to the left of • w2
IR(leftof a,b)(R1, R2) =

proj1((left− of ∩1 R1) ∩2 R2)

String interpretation: concatenates the
string interpretation w1 with the string “to
the left of” and the string interpretation
w2.
Relational interpretation: the set le f t −
o f contains ordered pairs of elements,
making (left− of ∩1 R1) the set of ordered
pairs whose first component is in R1. This
set is then intersected with R2 on the sec-
ond component, yielding the set {〈a, b〉 ∈
left-of|a ∈ R1, b ∈ R2}. The final opera-
tion proj1 maps all ordered pairs into their
first component.

for all a, b ∈ right− of:
Na → rightof a,b(Na, NPb)
IS(rightof a,b)(w1, w2) = w1 • to the right of • w2
IR(rightof a,b)(R1, R2) =

proj1((right− of ∩1 R1) ∩2 R2)

Same principle as above

for all a, b ∈ above− of:
Na → abovea,b(Na, NPb)
IS(abovea,b)(w1, w2) = w1 • above • w2
IR(abovea,b)(R1, R2) =

proj1((above− of ∩1 R1) ∩2 R2)

Same principle as above

for all a, b ∈ below− of:
Na → belowa,b(Na, NPb)
IS(belowa,b)(w1, w2) = w1 • below • w2
IR(belowa,b)(R1, R2) =

proj1((below− of ∩1 R1) ∩2 R2)

Same principle as above

Figure 2.2: Annotated example of a SIG

23

(a) Graphic representation of the world
model of the example

button = {b1, b2, b3, b4}
window = {w1}
yellow = {b2, b3}
blue = {b1, b4}
right− o f = {(b2, b1), (b4, b3)}
le f t− o f = {(b1, b2), (b3, b4)}
above− o f = {(b1, w1), (b2, w1),

(w1, b3), (w1, b4)}
below− o f = {(w1, b1), (w1, b2),

(b3, w1), (b4, w1)}
(b) Sets and relations defined for the
world model

Figure 2.3: World model for the example

Figure 2.4: Example derivation tree (center) with the string interpretations
of every subtree on the left and the relational interpretations of every sub-
tree on the right.

proj1((above-of∩1 {b1, b4}) ∩2 {w1})
= <Expansion of above− o f >

proj1(({(b1, w1), (b2, w1), (w1, b3), (w1, b4)} ∩1 {b1, b4}) ∩2 {w1})
= <Select all pairs in above− o f with first component b1 or b4>

proj1({(b1, w1)} ∩2 {w1})
= <Select all pairs of elements whose second component is w1>

proj1({(b1, w1)})
= <Project the first element of every pair in the set>
{b1}

Just like rule (4), rule (6) ensures that the subtree to which it is applied
contains a single element. The result of applying this final rule is the string
interpretation “the blue button above the window”, and the relational in-
terpretation {b1}.

To make the generation process more efficient, it is possible to build a
chart such that it represents all REs for a given target in a compact way.
A chart is “a packed data structure which describes how larger syntactic
representations can be recursively built from smaller ones” (Engonopoulos
and Koller, 2014). While chart-based algorithms are common in parsing

24

Nb1
/{b1, . . . , b4} → buttonb1

Nb1
/{b1} → blueb1

(Nb1
/{b1})

Nb1
/{b1, b4} → blueb1

(Nb1
/{b1, b4})

Nb1
/{b1, b4} → blueb1

(Nb1
/{b1, . . . , b4})

Nb1
/{b1} → leftof b1,b2

(Nb1
/{b1}, NPb2 /{b2})

Nb1
/{b1} → leftof b1,b2

(Nb1
/{b1, b4}, NPb2 /{b2})

Nb1
/{b1} → leftof b1,b2

(Nb1
/{b1, . . . , b4}, NPb2 /{b2})

NPb1
/{b1} → def b1

(Nb1
/{b1})

NPb1
/{b1} → def b1

(Nb1
/{b1, b4})

NPb1
/{b1} → def b1

(Nb1
/{b1, . . . , b4})

Nb2 /{b1, . . . , b4} → buttonb2

Nb2 /{b2} → yellowb2
(Nb2 /{b2})

Nb2 /{b2, b3} → yellowb2
(Nb2 /{b2, b3})

Nb2 /{b2, b3} → yellowb2
(Nb2 /{b1, . . . , b4})

Nb2 /{b2} → rightof b2,b1
(Nb2 /{b2}, NPb1

/{b1})
Nb2 /{b2} → rightof b2,b1

(Nb2 /{b2, b3}, NPb1
/{b1})

Nb2 /{b2} → rightof b2,b1
(Nb2 /{b1, . . . , b4}, NPb1

/{b1})
NPb2 /{b2} → def b2

(Nb2 /{b2})
NPb2 /{b2} → def b2

(Nb2 /{b2, b3})
NPb2 /{b2} → def b2

(Nb2 /{b1, . . . , b4})
Nb3 /{b1, . . . , b4} → buttonb3

Nb3 /{b3} → yellowb3
(Nb3 /{b3})

Nb3 /{b2, b3} → yellowb3
(Nb3 /{b2, b3})

Nb3 /{b2, b3} → yellowb3
(Nb3 /{b1, . . . , b4})

Nb3 /{b3} → leftof b3,b4
(Nb3 /{b3}, NPb4

/{b4})
Nb3 /{b3} → leftof b3,b4

(Nb3 /{b2, b3}, NPb4
/{b4})

Nb3 /{b3} → leftof b3,b4
(Nb3 /{b1, . . . , b4}, NPb4

/{b4})
NPb3 /{b3} → def b3

(Nb3 /{b3})
NPb3 /{b3} → def b3

(Nb3 /{b2, b3})
NPb3 /{b3} → def b3

(Nb3 /{b1, . . . , b4})
Nb4

/{b1, . . . , b4} → buttonb4

Nb4
/{b4} → blueb4

(Nb4
/{b4})

Nb4
/{b1, b4} → blueb4

(Nb4
/{b1, b4})

Nb4
/{b1, b4} → blueb4

(Nb4
/{b1, . . . , b4})

Nb4
/{b4} → rightof b4,b3

(Nb4
/{b4}, NPb3 /{b3})

Nb4
/{b4} → rightof b4,b3

(Nb4
/{b1, b4}, NPb3 /{b3})

Nb4
/{b4} → rightof b4,b3

(Nb4
/{b1, . . . , b4}, NPb3 /{b3})

NPb4
/{b4} → def b4

(Nb4
/{b4})

NPb4
/{b4} → def b4

(Nb4
/{b1, b4})

NPb4
/{b4} → def b4

(Nb4
/{b1, . . . , b4})

Nw1 /{w1} → windoww1

NPw1 /{w1} → def w1
(Nw1 /{w1})

Figure 2.5: Chart containing derivations for the object b1. This chart is based
on a simplified grammar that does not include [above/below]-of relations
between objects.

25

and realization tasks, this algorithm is the first one to use them for REG.
The computed chart contains all derivations of the grammar correspond-

ing to a given set and, by extension, the set of all possible REs that the
grammar can generate for this set. The chart is represented as a finite tree
automaton (Comon et al., 2007), which is written here as a Context-Free
Grammar whose strings correspond to REs for the given set. An example
chart is given in Figure 2.5, showing an example for the world model from
Figure 2.3 where the above/below relations were removed for simplicity.

Nonterminals in a chart are of the form Nb/{a1, . . . , an}. Each nonter-
minal symbol consist of three parts: a syntactic category given by the syn-
chronous grammar (N), the referent for which the RE is currently being
constructed (b), and the set of objects {a1, . . . , an} to which the entire sub-
tree refers.

Example: Derivation tree for the RE “the blue button”
To generate the RE “the blue button” we follow a bottom-up process.
Our first selected rule is:

Nb1 /{b1, . . . , b4} → buttonb1

The nonterminal symbol of this rule denotes the syntactic category
“Noun” (N), the referent for which the RE is being constructed (b1), and
the set of objects that this subtree actually refers to ({b1, . . . , b4}). That
is: this rule was created while constructing an RE for b1, but the sub-tree
built by this derivation rule (whose string interpretation would be “but-
ton”) actually refers to the set {b1, . . . , b4} of all buttons. Next, we apply
the following rule:

Nb1 /{b1, b4} → blueb1(Nb1 /{b1, . . . , b4})

This rule takes as input a Noun intended for b1 (but actually referring
to {b1, . . . , b4}) and returns an RE referring to {b1, b4}. It’s string inter-
pretation would be “blue button”. We apply the third and last rule:

NPb1 /{b1} → def b1
(Nb1 /{b1, b4})

This rule generates a Noun Phrase (NP), is intended for b1, and re-
turns an RE that refers to b1. The string interpretation of this final tree is,
as expected, “the blue button”.

In addition to showing that a chart of valid REs can be computed, En-
gonopoulos and Koller (2014) introduce a Viterbi-based algorithm for com-
puting REs that maximize the probability of being correctly understood.
This probability is obtained modeling the probability P(b|t) that a listener

26

will resolve the RE t to the object b with a log-linear model.
The log-linear model is defined in term of feature functions f (a, t, M)

representing properties of an object a in the context of a derivation tree t
and a world model M. For example, a feature fround(a, t, M) could return 1
if the root label of t is rounda and a is round in M. Each one of these features
look at information that is local to a specific subtree of the RE and represent
varied properties of objects in the current scene, such as whether an object
is of a certain shape, it is located to the left of another object, or whether the
user is looking in its direction.

2.4 Virtual Environments

Informally, an environment is the context in which a certain action takes
place. Actions and context are in constant interaction: the context limits
which actions can take place at any given time, and the result of an action
is a modified context. Formally, an environment is defined as a tuple of 3
elements (A,S , f), where A is a set of actions that may occur at any time,
S is a set of states, and f : AxS → S is a transition function that applies
an action to a given state and returns a new, modified state3. The transition
function f does not necessarily accept all actions in all states. If an action
is possible in a given state, we say the action is affordable. Deciding how
best to go from one state to a new one is what we call a planning problem, a
topic discussed in detail in Chapter 2.2.

Example: Actions in an Environment
Imagine a subject inside a dark room, standing close to a light switch.
Their position inside the room, the light level, and the light switch’s po-
sition are all components of the state. Pressing the light switch is a possi-
ble action, and the resulting transition would be to a state where the light
switch is pressed and the room is no longer dark.

If the switch were outside the subject’s reach, we would say that
the action press_button is not affordable in the current state. A plan
to achieve the intended state “make the room not dark” could involve
walking towards the light switch, fetching a long stick, or opening a cur-
tain.

A Virtual Environment (VE) is any non-physical environment retaining
the properties of an environment. Interactive 3D worlds are an intuitive
example, but word processors, websites, and role-playing games are also
members of this category. VEs are preferred by researchers because they
significantly lower the barrier of entry that data collection and testing re-
quire in the physical world. A well-designed VE allows researchers to

3For a more detailed definition of Environment, Branavan et al. (2009) presents a formal-
ization suited for Reinforcement Learning tasks

27

closely replicate observed behavior in the real world, making their results
generalizable to the world at large while being simpler to develop, test, and
deploy.

Since VEs retain the critical properties of the Environment they are ab-
stracting, MacMahon and Stankiewicz (2006) suggest classifying them ac-
cording to the same guidelines used to classify real, physical spaces. A
systematic, unified categorization of physical spaces was introduced by
Freundschuh and Egenhofer (1997), classifying spaces based on whether
objects in the space can be manipulated, whether the space requires loco-
motion to be experienced, and the size of the space.

Example: Environment vs Virtual Environment: word processors
A typewriter presents a physical environment: the position of the paper
and the characters on it determine the state, pressing a key performs an
action, and the result of pressing a key is a modified state with either
an extra printed letter or a new position for the cursor on the paper. It’s
virtual counterpart, the word processor, behaves by design in the same
way that a typewriter would, but abstracts away problems such as paper
jams or empty ink ribbons. Correcting errors is also easier.

In the classification of Freundschuh and Egenhofer (1997), the VE
“word processor” presents a small-scale, manipulable object space where
no locomotion is required.

Virtual Environments have aided research for a long time and in a large
array of tasks. They are not typically introduced by themselves, but rather
in the context of a specific task or objective.

Small-scale VEs are of great help for experiments analyzing single, spe-
cific phenomenon. Fernández and Schlangen (2007) uses virtual Pentomino
boards as a VE to explore the type of referring expressions generated in a
scenario of limited interactivity, while Clark and Wilkes-Gibbs (1986) de-
signed a collaborative task over figures from the Tangram board game to
show how the presentation of an object must be accepted by all parties in a
dialogue before it can move forward. Both Lau et al. (2009) and Brana-
van et al. (2009) use web pages as small-scale VEs to present strategies
for the automatic interpretation of human-written instructions. The former
models written how-to instructions as actions over the environment, while
the latter applies automatic instruction understanding to troubleshooting
guides.

In the context of language generation tasks, classical examples of small-
scale VEs are the visual domain of the GRE3D corpus and the TUNA cor-
pus (Viethen and Dale, 2008; van der Sluis et al., 2007). GRE3D represents
simple geometrical shapes in a 3D environment, and it was designed to
evaluate the generation of Referring Expressions that require the use of
referential attributes w.r.t. other objects on the scene. Figure 2.6 shows a

28

sample image.

(a) Image from the visual domain of the
GRE3D corpus

Objects
Attrib d1 d2 d3

Color blue green blue
Shape ball cube ball

Size small large large
Rel be f (d2) beh(d1) nt(d2)

(b) Objects and their attributes for the
sample image

Figure 2.6: Visual domain of the GRE3D corpus and its corresponding at-
tributes. be f =“before”, beh=“behind”, nt=“next to”.

TUNA makes the task more challenging, introducing corpora contain-
ing complex objects (such as furniture and/or pictures of people), more
distractors per scene, and scenes in which the intended RE refers not to a
single object but rather to a set. More recent work explores the descrip-
tion of objects in realistic visual scenes, and/or at a larger scale. Figure 2.7
shows examples from the people and furniture domains.

(a) Furniture domain. Properties de-
fined for each object in the scene: x-
dimension, y-dimension, color, orienta-
tion, type, size.
Reference RE for selected targets: “the
fan and couch on bottom row”.

(b) People domain. Properties per ob-
ject: x-dimension, y-dimension, age, ori-
entation, hairColour, hasSuit, hasShirt,
hasTie, hasBeard, hasGlasses, hasHair.
Reference RE for selected target: “a man
with glasses”.

Figure 2.7: Images and attributes from the TUNA corpus domains

As for medium-sized VE, Wu et al. (2018) introduce an interactive 3D
environment based on human-designed indoor scenes, and which was em-

29

ployed by Das et al. (2017) to design an embodied QA task. In this task,
an agent must navigate the VE and gather information in order to an-
swer questions such as “What color is the car?” VEs presenting immer-
sive experiences in medium-sized, familiar environments have been used
to treat phobias such as fear of spiders, heights, or flying (Glantz et al.,
1997). These environments present subjects with tasks in which they were
asked to pick up virtual spiders in a virtual kitchen, walk across bridges of
varying heights and stability, or virtual flying under different turbulence
conditions. Ilinykh et al. (2018) presents a collaborative task in which two
players navigate a virtual house, with the current room being shown as a
photograph and where participants must indicate once they both believe
to be in the same room. With more general-purpose research in mind, and
on the larger side of the spectrum, Bülthoff and van Veen (2001) developed
a virtual representation of the city of Tübingen for the study of human per-
ception in an immersive VR environment. This VE can be explored freely,
and contains texture maps for over 700 individual houses.

In the specific context of VEs for Instruction Following tasks, Matuszek
et al. (2010) present a system that learns how to follow navigational in-
structions in maps of real environments created with laser range-finder
data, while Chen and Mooney (2011) introduce a similar approach that im-
proves on previous work by leveraging landmark information. Their ap-
proach learns how to interpret navigational instructions on a map from pair
of recorded instructions and map traces, with no prior linguistic knowl-
edge. For a modern extension of this task, de Vries et al. (2018) collected
10k human-human dialogues in which a “tourist” and a “guide” navigate
towards a specific location in a 360 degrees, photographic reconstruction of
New York neighborhoods.

Finally, and in the context of research about multi-agent collaboration in
situated tasks, Byron and Fosler-Lussier (2006) presented annotated, multi-
modal corpora of human partners collaborating on a treasure-hunt style
task. This corpora, collected using the Quake engine, contains recordings
in which a participant must guide another through a sequence of tasks.
The virtual environment comprises around 15 rooms and 2 staircases, and
the task required changing the position of seven objects within the virtual
world. The released corpora contains two movies (one from the point of
view of each participant) and transcriptions of the audio. This research
would be later expanded by Stoia et al. (2008) when releasing the SCARE
corpus, a similar corpus containing the necessary required resources and
aligned data for researchers to fully recreate (rather than just observe) the
games in their own computers. Figure 2.8 shows an example of the corpus
from a player’s point of view.

With the proliferation of human-human task data recorded in VEs, the
next step would be the design a VE where researchers could test and com-
pare automated systems. An influential test bed for this type of research,

30

Figure 2.8: SCARE Corpus - First-Person view and upstairs floor map

and the main VE in this thesis, would be provided by the GIVE Challenge.

2.5 The GIVE Challenge

GIVE (Generating Instructions in Virtual Environments) is the name of the
VE designed for the GIVE Challenge, an NLG task in which a human In-
struction Follower (IF) is paired with an automated Instruction Giver (IG)
in a maze-like 3D world (Koller et al., 2010).

GIVE presents a medium-scale indoor environment where players can
interact with buttons, doors, and alarms. The IF has a 3D view of the en-
vironment, can move forwards and backwards, and is allowed to turn in
360 degrees4. The IG does not have access to the IF’s point of view, having
access instead to a full representation of the environment that includes the
layout of the space, the effect that pressing buttons has on the environment
as a whole, and the current position and angle of the IF.

To successfully complete a game in the GIVE Challenge, the IF and IG
must cooperate to retrieve a trophy locked inside a safe. This safe can only
be unlocked pressing certain buttons in a specific order, but each button
presents its own set of challenges: some of them are behind alarms and/or
closed doors, and pressing a wrong button can cause backtracking or even
an instant loss. Walking over an active alarm also causes the players to
lose the game. The IG communicates with the IF via written instructions,
and the IF can request help pressing the ’H’ key. Figure 2.9 shows both the
design of a GIVE world and a first-person view.

Although the GIVE Environment supports data collection from human-
human pairs, the main objective of the Challenge is to test whether auto-
mated IG systems are capable of guiding humans in the role of the IG. For
this purpose, each instance of the Challenge connected human IFs all over

4Except in GIVE-1, where users move and turn in discrete steps

31

(a) First-person view (b) Map view

Figure 2.9: First-person and Map view of a GIVE world from the 2011 eval-
uation worlds (Striegnitz et al., 2011).

GIVE GIVE 2 GIVE 2.5
(Byron et al., 2009) (Koller et al., 2010) (Striegnitz et al., 2011)

Year 2008-09 2009-10 2011
IG Systems 5 7 8

Games 1143 1825 536
Countries 48 39 34

Table 2.1: Statistics of the GIVE Challenge data

the world and matched them with automated IG systems developed by
various research teams. The data recorded in each game contains the posi-
tion and angle of the IF every few ms, the state of the world at every step,
and the time and text of each instruction that the IG presented to the IG.
Table 2.1 shows the main statistics about the data collected on these Chal-
lenges.

To participate in the Challenge, human IFs must first download the
GIVE Client. This client will contact the Matchmaker, a service that con-
nects human IFs and automated IGs with each other, selects a world for the
task, and records all interactions A more technical description of the entire
pipeline is presented in Chapter 6.2.

Several problems must be solved to develop a mature, automated IG
system for GIVE. Selecting the next best step requires careful automated
planning, guiding the IF requires navigational instructions, and identifying
a single object out of many distractors demands crafting precise REs.

32

2.6 The pragmatics of dialogue, misunderstandings,
and focus

In his book Using Language, Clark (1996) affirms that language is used for
“doing things”. One specific way in which things can get done is through
a dialogue, defined as “a discussion between representatives of parties to a
conflict that is aimed at resolution”.This conflict can be as trivial as figuring
out what time is it, or as complex as a peace treaty. In contrast to a conversa-
tion (defined as “an oral exchange of sentiments, observations, opinions, or
ideas”), a dialogue has an explicit purpose and is not restricted to a spoken
setting. Under Clark’s framework a dialogue, like all instances of language
use, is a form of joint action in which two or more people must coordinate
in order to move their joint task closer to a resolution through their individ-
ual actions. To understand how this coordination takes place we turn to the
theory of illocutionary acts, introduced by Austin (1962) and later expanded
by Searle. Under this theory, a speaker typically performs at least three dif-
ferent kinds of acts: utterance acts (morphemes, sentences), propositional acts
(referring and predicating), and illocutionary acts (stating, questioning, com-
manding, etc) Searle (1969). It follows that sentences, rather than words,
is where our focus should be if we are interested in how a joint action is
moved forward — phonemes and individual words are not enough to un-
derstand how an intention is communicated, because “only in the context
of a sentence do words have meaning”(Frege, 1884). In speaking, notes
Searle,

I attempt to communicate certain things to my hearer by getting
him to recognize my intention to communicate just those things.
I achieve the intended effect on the hearer by getting him to
recognize my intention to achieve that effect, and as soon as
the hearer recognizes what it is my intention to achieve, it is in
general achieved.

We turn to Clark’s writing on construals to explain how a listener rec-
ognizes a speaker’s intention. In social psychology, construals are “how
individuals perceive, comprehend, and interpret the world around them,
particularly the behavior or action of others towards themselves” (Gilovich
et al., 2015). Clark asserts that social events are hard to construe:

I see a fish, and I construe it as a fish, as a trout, or as food for a
grizzly bear. Social events aren’t always so easy. I see a strange
man walking toward me. Is he approaching me by accident, or
by design? Does he want to ask me directions, rob me, or what?

To reach a joint construal between speaker and listener it is often useful
for each party to display their own construals publicly via signals such as

33

verbal confirmation, congratulations, apologies, etc. More often, constru-
als are displayed by the next step each person takes in the social process
they are engaged in. If the listener displays a clear understanding of the
speaker’s proposal, they have accepted the construal and achieved a joint,
verified construal. If the listener reacts in an unexpected way, the speaker
can detect that the listener has misconstrued their proposal and react ac-
cordingly with a correction, an acceptance of the revised construal, or by
narrowing the original construal. The misconstrual might also go unde-
tected, in which case the error may or may not be caught later on.

While this process takes place, both interlocutors establish a common
ground, a shared belief about information they are both aware of. For some-
thing to be part of the common ground the speaker must be aware of it, the
listener must be aware of it, and the speaker must be aware that the lis-
tener is aware of it (and vice-versa). The process of establishing a common
ground is known as grounding.

2.6.1 Misunderstandings

If a single misconstrual goes undetected, we say that a misunderstanding
took place. One source of information for detecting such misconstruals is
the mutual beliefs of the interlocutors about the current situation. Both
speaker and listener share common knowledge that allows them to under-
stand each other such as language, laws, and social norms.

A speaker can spot misconstruals by matching a publicly displayed sig-
nal against the common ground: if the speaker offers the listener a drink,
and the listener responds by saying “thanks” while showing his open palm,
it should be clear to the speaker that the listener is declining the offer in a
polite manner: it is part of their common ground that an open hand is a
symbol of rejection, and they are both aware that each other knows this. At
the same time, a mismatched common ground can also be a source of mis-
construals: a speaker from a different culture where this signal is unknown
would probably assume that the listener is accepting the drink, since they
have not uttered an explicit rejection. The listener assumed incorrectly that
the hand signal was in their common ground, and now the dialogue must
be repaired.

One specific type of misconstrual is the unsuccessful recovery of in-
tended referents. Whenever a speaker refers to an entity, they can do so in a
myriad of ways: the speaker could use a definite expression (“Gabriel Gar-
cía Marquez”), anaphoric pronouns(“him”), noun phrases (“the writer”),
and so on. Following Searle, this work uses the term referring expression
(RE) as short for “any expression which serves to identify any thing, pro-
cess, event, action, or any other kind of ’individual’ or ’particular’ ”Searle
(1969)5.

5Searle writes that “it is by their function, not always by their surface grammatical form

34

2.6.2 Focus

No matter what type of RE the speaker chooses, they believe that the lis-
tener will correctly infer who the intended referent is in accordance with
Grice’s maxim of quantity Grice (1975). For the intended referent of a RE
to be successfully recovered the search space must first be reduced to a
small set of alternatives. The search can be further directed exploiting the
salience of specific discourse referents, what we call the focus structure of
the utterance.

Sanford and Garrod (1981); Garrod and Sanford (1982) introduce the
term focused memory to refer to short-term/working memory, whose con-
tents are similar to a set of discourse referents where some elements are
more prominent than others. The more prominent an element is, the more
ambiguous an RE can be: a highly prominent individual can be identi-
fied by an ambiguous anaphoric personal pronoun such as “he”, while
less prominent individuals might require full definite noun phrases such
as “my older brother”.

The elements present in what Sanford and Garrod call focused memory
can be mapped to what Smith and Lieberman (2013) calls a context set,
namely, the viable candidates for an interpretation process, which evolves
over the course of dialogue. An in-depth discussion of short-term mem-
ory from a psycholinguistics perspective can be found in Chapter 5, and a
detailed analysis of context sets is presented in Chapter 7.

Another factor in this referring process is the use of stress. It has been
long documented that stress and intonational markers affect how REs are
resolved Akmajian and Jackendoff (1970). The question of how does marked-
ness help a listener recover an intended referent is approached by Bosch
(1988) who suggests that, in general, markedness is a property of those
choices that deviate from the default choice in a given situation. This is not
the only use of markedness, according to Bosch: in a scenario where there
is a unique expectable referent, markedness can be used to confirm that this
is indeed the intended one.

It is clear that markedness is a device that a speaker can use to prevent
misconstruals in REs. If a speaker believes that a listener will interpret their
next utterance in a way that they do not intend, they can add stress to the
utterance and direct the listener’s focused memory in the correct direction

2.7 Conclusion

This Chapter introduced the task of Instruction Following, presenting the
required background that we need to understand what a typical task looks

or their manner of performing their function, that referring expressions are to be known”,
but refines this definition further to “singular definite expression used for referring to par-
ticulars”. This work follows the same convention.

35

like, which roles are involved, and how are common sub-tasks performed.
Taking our early example, “a daughter explains to his father over the phone
how to use the printer”, we can now say that . . .

• . . . the daughter takes the role of Instruction Giver, and the father
takes the role of Instruction Follower.

• . . . the task takes place in a Virtual Environment, where objects can be
manipulated (i.e., buttons can be clicked), the space requires locomo-
tion (i.e., the IF must “navigate” to specific windows), and the space
is of considerable size (i.e., the sum of all possible windows that the
IF could visit).

• . . . the task requires careful planning: before selecting the correct printer
from a list, the IF must open the window listing all printers.

• . . . the IG must carefully choose descriptions that the IF can under-
stand: whether “click the printer icon” is more effective than “click
the third button from left to right in the toolbar” depends on the task
at hand, the experience of the IF, and the common ground between
both. In either case, both REs are more likely to be successful for this
task than “click the button that’s 31mm to the left and 26mm from the
top”.

• . . . the IG must account for misunderstandings: if the IF clicks on the
“Export” button instead of the “Print” button, then it’s the IF’s job to
detect that a misunderstanding took place, decide on a plan to correct
for it, and present the new plan to the IF. Even better, the IF should ac-
count for the similarity between both buttons and minimize the pos-
sibility of a misunderstanding to begin with.

With this frame of reference in mind, we now have a clearer picture
of all the components that are presented in this thesis: generating effec-
tive Referring Expressions that maximize the probability of being correctly
understood, detecting whether a misunderstanding took place, and gener-
ating contrastive REs to correct these misunderstandings are the building
blocks of an automated IG system for (Navigational) Instruction Following
in Virtual Environments.

Going from theory to practice, the next Chapter introduces our first
main research results built around a simple question: is following instruc-
tions really that hard? And if so, why?

2.8 Further reading

For a larger overview of Virtual Environments, van Deemter (2016) presents
a detailed analysis of several VEs in the context of different Referring Ex-

36

pression generation tasks.
Detailed surveys on Natural Language Generation are regularly pub-

lished and updated. Reiter and Dale (1997, 2000) are the most cited surveys
to date, while Gatt and Krahmer (2018) present an updated and expanded
view on the topic.

Each instance of the GIVE Challenge has released detailed reports on
the task, the performance of individual systems, and aggregated data from
the competition (Byron et al., 2009; Koller et al., 2010; Striegnitz et al., 2011).
In addition to this aggregated data, each system is accompanied by its own
paper with developer insights.

3

Following instructions

In an ideal world, a Referring Expression that uniquely identifies a tar-
get would never cause a misunderstanding. But Section 2.6 has shown us
that this position is unrealistic: even if human language where not am-
biguous, which it is, the process according to which common ground is es-
tablished is rife with opportunities for misconstruals to occur undetected.
We can easily picture the following situation: Max follows instructions in
his phone to reach the library, and suddenly the instruction “go South”
shows up. If Max takes a different path than the expected one, how diffi-
cult would it be to get him back on track? If he didn’t pay attention to the
question, then repeating it should be enough. Or maybe he doesn’t know
where “South” is, and we would prefer a reformulation. Perhaps we don’t
even need to say anything - how do we know that a simple “no, try again”
wouldn’t be enough?

Before we move forward with our plan of preventing misunderstand-
ings, we need to focus on these questions to obtain a better sense of how
hard the problem really is – in other words, we need to establish a baseline
of what a reasonable interaction between Instruction Follower and Instruc-
tion Giver should be, and then focus in those areas where this baseline falls
short. Presenting a system to take as our baseline is the purpose of this
Chapter.

This Chapter is divided in three main Sections. The first Section is ded-
icated to explain the design choices that we took when designing a simple

This Chapter is based on the publications “Corpus-based Interpretation of Instruc-
tions in Virtual Environments” and “Interpreting Natural Language Instructions using Lan-
guage, Vision, and Behavior” (Benotti et al., 2012, 2014).

37

38

Instruction Following system capable of following instructions and react-
ing to misunderstandings. When presented with an instruction, this system
compares the instruction to recorded human behavior data and selects the
previously-observed behavior that more closely matches the current situa-
tion. How to formalize “previously-observed behavior” is the main topic
of Section 3.2.1, while several approaches to what it means to be a “close
match” are presented in Section 3.2.2. Keeping this approach simple, this
system can be implemented in several Virtual Environments in a straight-
forward way and requiring little to no manual data annotation.

The second Section of this Chapter details the results we obtained after
applying this system to data collected from the GIVE Challenge. Results
show that our system provides competitive accuracy to human annotators,
supporting our choice of this system as a baseline for the study of misun-
derstandings.

Finally, and closing this Chapter, we take a deep look at those scenarios
in which our baseline system fails and identify its weak points. Identifying
the scenarios in which our baseline system has no difficulties provides us
with a foundation for the types of difficult problems that a simple approach
cannot solve. Performing an error analysis on our system gives us a chance
to understand why this system cannot be extended to other domains with-
out significant changes, what should be changed, and which assumptions
can we make regarding instruction following misunderstandings. These
assumptions will accompany us throughout the remaining chapters.

3.1 A simple strategy for instruction following

We intend to create a simple Instruction Follower (IF) that can both under-
stand instructions and recover from misunderstandings. The key idea for
our approach is straightforward: given a corpora containing instructions
and the subsequent recorded human reactions, we first classify them ac-
cording to what was said, in which location, and with which result. Once this
data was processed, our automated IF is ready: whenever the IF receives an
instruction, it searches for the pair (instruction, location) that more closely
matches a previous interaction, and reacts in the same way the human IF
did. Similar approaches has been successfully applied in NLP tasks, and it
is considered a good approach for fast and semi-automated prototyping of
Dialog systems Chen and Mooney (2011); Haponchyk et al. (2018).

Example: Underspecified instructions
Imagine there are two Instruction Followers (IF) —one human, one au-

tomated. They are both inside a room with several color buttons, trying
to reach a specific goal. The situation is illustrated as follows:

39

The human IF attempts the task first: standing in the room, they re-
ceive the (somewhat underspecified) instruction “red left of chair”. They
press the button that’s located to the left of the chair from their point of
view, and they can now move forward to the next step of their task.

Now it’s the automated IF’s turn. This IF is standing in the same po-
sition where the human IF was and receives the same instruction. What
should the automated IF do? Clearly, the automated IF should press the
same button even if there is no mention of a button in the instruction, because
that’s what the human did after receiving the same instruction under the
same circumstances.

3.2 Implementing our IF

Implementing our IF requires two major steps: identifying suitable data
and annotating it automatically, and implementing the IF system that would
make use of it.

3.2.1 Data collection and segmentation

Our first major task was obtaining a corpus of user interactions. This cor-
pus should contain data from human IFs completing the tasks that we ex-
pect our IF to fulfill.

Given that we require no manual annotation, recording enough data to
reconstruct all interactions that took place inside a VE is straightforward:
our corpus must include the IF’s position, the state of the VE at instruc-
tion time, and all interactions with the environment. Given that the IF acts
in reaction to instructions, the content of these instructions should be also
recorded.

It is not unreasonable to assume that the Instruction Giver’s (IG) in-
structions follow a certain plan. While not strictly necessary, it is a good
idea to also store the plan’s objective for each step, as it will allow us to rea-
son about the IF and IG’s intentions. Asserting that “according to the plan,

40

I must generate a instruction that leads the IF to X” associates each individual
interaction with a specific intention.

Once all data has been collected, it is split into episodes. An episode
comprises a single interaction between IG and IF1, and can be understood
as a 4-tuple (pos0, world, inst, reaction), where

• pos is the position of the IF at instruction time

• world is the state of the world at instruction time

• inst is the text of the instruction

• resp is the reaction to the instruction

The “reaction” field resp requires that we make a decision regarding
what should be considered the canonical reaction to an instruction. Going
back to our example in Figure 3.1: imagine that, after receiving the instruc-
tion “go through the door on the left”, the human IF went through the door,
turned right, walked into the main hall, and stopped in front of a statue.
How many of these steps were taken as a direct reaction to the instruction,
and how many were taken by the IF on their own?

The answer to this question dictates how many of these interactions we
must take into account, and how many should be discarded. In this work,
we differentiate between two possible segmentation strategies: Visibility-
based segmentation (Vis) and Behavior-based segmentation (Bhv).

The Vis segmentation strategy collects only the first action performed
by the IF, and discards the rest. The argument is as follows: the first action
performed by the IF is the most likely to have taken into account the context
that was visible to the IF at instruction time. To imitate the recorded human
behavior, our automated IF could be optimized to interpret instructions
based only on features of the current, visible environment.

The Bhv segmentation strategy collects all actions performed by the IF,
up until the beginning of the next episode.

Whether we decide to use Vis or Bhv, we need to define what an “ac-
tion” is. In our approach we discretize the recorded behavior resp with the
help of a planner. Using an automated planner and a planning representa-
tion of the task, the planner calculates the optimum sequence of states that
connect the state of the world world at the beginning of the episode and the
state of the world at the beginning of the next episode. In our example the
planner would include steps such as “walk through the door” and “enter
the Main Hall”, but would remove superfluous steps such as “give one step
forward”, “turn 90 degrees”, and so on.

Doing so, we arrive at the definition of a canonical reaction cr. If Sk is the
state of the world when instruction ik was presented to the IF, and Sk+1 is

1Note that later chapters use a similar notion of Episode, but it is not identical

41

the state of the world when the reaction ends, then the canonical reaction
cr to the instruction ik is either the sequence of actions determined by the
planner that lead from state Sk to state Sk+1 (if using Bhv) or the first action
of the sequence (if using Vis). cr substitutes resp in our segmented data.

Using the pair (pos, cr) as keys, we have now collected our training
corpus for our IF system.

3.2.2 Interpretation

Our IF interprets instructions from the IG in the following way: once the
IG presents an instruction instk, the IF located at position posk in the VE re-
trieves from the corpus all episodes taking place in the same location posk.
These episodes are then clustered together according to their canonical re-
action crk, yielding clusters of the form (posk, crk, I = {inst0, inst1, . . .})
where I is the set of all recorded instructions instk that where presented
in location posk and elicited a canonical reaction crk.

The IF must then decide which canonical reaction crk is appropriate for
the instruction instk, selecting the cluster with instructions that are the most
similar to the current instruction.

Example: Choosing an action cluster
The IF receives the instruction instk=“click the red button to the left of
the chair” in the situation shown in the following picture:

walk down the passage
nowgo to the pink room
back to the room with the plant
red left of chair
press the one behind u
go through opening with yellow
wall paper

red left of chair
press the one behind u

walk down the passage
press middle button
in group of 3, hit middle one
counting from right, 2nd one

When previous players encountered themselves in the current posi-
tion posk, they did one out of three things: they left the room (1), they
clicked a button out of a set of two (2), or they clicked a button out of a
set of three (3). These are the possible canonical reactions for the current
position. We would expect our IF to select cluster 2: although the literal
text of the new instruction is not contained in this cluster, instk is more
similar to the instructions in this cluster than to those in clusters 1 and 3.

The IF algorithm can be described as follows:

42

Require: instruction 6= ””
1: procedure INTERPRET(instruction, player_pos)
2: clusters← {x : record ∈ corpora|x.position = player_pos}
3: best_cluster ← argmax

x∈clusters
similar(x.instructions, instruction)

4: per f orm(best_cluster.reaction)
5: end procedure

We now face the problem of deciding what the similar(x, y) function
should be. We treat the problem of deciding which set of instructions is
most similar to the new instruction as a classification problem. We com-
pared six different algorithms, divided in three different methods: word
similarity measures (implementing Levenshtein, Jaccard, and Overlap mea-
sures), machine translation (using BLEU), and machine learning (imple-
menting both Decision Trees and SVMs).

3.2.3 Group selection by word similarity

The first methods use nearest neighbor classification with three different
similarity metrics.

Our first two metrics are Jaccard and Overlap. Both measure the degree
of overlap between two sets, differing only in the normalization of the final
value (Nikravesh and Bensafi, 2005). The Jaccard coefficient is defined as:

Jaccard(A, B) =
|A ∩ B|
|A ∪ B| (3.1)

while the Overlap coefficient is defined as:

Overlap(A, B) =
|A ∪ B|

min(|A|, |B|) (3.2)

We obtained the similarity between two sentences by turning them first
into bags of words.

The third metric implements the Levenshtein distance over words (Lev-
enshtein, 1966). This metric segments both instruction into sequences of
words and returns the minimum number of operations (insertion, deletion,
and substitution) required to convert one sentence into the other. Although
this metric can also be applied over characters rather than words, this al-
ternative performed poorly in early tests and was discarded.

In all cases, the similarity score between an instruction inst and a clus-
ter containing a set of instructions I = {inst0, inst1, . . .} is defined as the
average similarity between inst and all inst ∈ I:

∑i coe f f (inst, insti)

|I| , coe f f ∈ {jaccard, overlap, levenshtein} (3.3)

43

3.2.4 Group selection with machine translation methods

We also approached the group selection problem from a machine trans-
lation perspective, using BLEU as a score function (Papineni et al., 2002).
Given an input sentence SI , BLEU evaluates how good a specific translation
Tnew of SI is in relation to a set of reference translations T = {T1, . . . , Tn} of
SI . Informally, we can imagine that T is a set of human translations of SI ,
Tnew is a translation generated by a machine translation system, and BLEU
indicates how “good” the translation Tnew is when compared to previous
ones. BLEU computes an n-gram overlap similarity between Tnew and the
set of reference translations according to the equation

BLEUn =
∑

t∈T
∑

n−gram∈t
Countclip(n−gram)

∑
t′∈T

∑
n−gram′∈t′

Count(n−gram′)

where Countclip = min(count, max count of this n-gram
in any reference text)

(3.4)

For our system, we model the situation assuming that all instructions
instk in a cluster are reference translations T of the same unknown sentence
SI , and the new instruction inst is our new candidate translation Tnew. The
cluster that achieves the highest BLEU score is considered as the cluster
that better correlates with both the new sentence and our hypothetical un-
known sentence.

BLEU has been shown to correlate well with human judgment for auto-
matic translation. It has been used in several areas of NLP and, despite
criticisms regarding its appropriateness as a metric in modern NLP, re-
mains one of the most popular metrics for automatic evaluation (Sulem
et al., 2018).

3.2.5 Group selection with machine learning

We also approached this classification problem from a machine learning
(ML) perspective. We modeled our data as a classification problem, where
data features include the IF’s position, visible areas, and a bag-of-words
representation of the newest instruction, and the output class is the canon-
ical reaction. This setup provides these classifiers with more fine-grained
data than in previous approaches, and therefore we expect them to perform
better.

We trained both a Support Vector Machine (SVM) with a radial kernel
(Cortes and Vapnik, 1995) and a decision tree (DT) classifier with the C4.5
algorithm (Murthy, 1998). The former is provided by the LIBSVM pack-
age (Chang and Lin, 2011), while the latter was provided by the WEKA
workbench under the name “J48” (Hall et al., 2009).

44

An SVM is a supervised classifier that finds the maximum-margin bound-
ary between classes in a binary classification problem. If the input data
is linearly separable, SVMs identify the hyperplane that keeps the max-
imum separation or margin between the two data classes. SVMs can be
trivially extended to a multiclass classification problem employing n clas-
sifiers in a one-vs-all configuration. More important, SVMs can be used for
non-linear classification problems using what’s been called the kernel trick,
in which non-linearly separable features are mapped into a higher feature
space, making the modified feature space linearly separable.

The C4.5 algorithm, on the other hand, selects for given training data
the feature with the lowest entropy — or, equivalently, the feature with the
largest information gain. It then partitions the data on this feature, and re-
cursively applies the algorithm to every subset. The result is a tree where
every node is a decision based on the value of a specific feature, and the
leaves are output classes. Unlike its predecessor ID.3, C4.5 can handle con-
tinuous data (finding an appropriate threshold and splitting data according
to it) and can deal with missing values.

3.2.6 Corrections

Our simple system assumes a clueless user that does whatever they are
told. And because our user is clueless, it is to be expected that it will even-
tually misunderstand our instruction and choose an incorrect canonical re-
action. To keep our automated IF on track, we add a virtual button to it
reading “in case of misunderstanding press this button”. This button will
bring the automated IF back to the previous position, and ask it to try again.
Knowing that it has made a mistake, the automated IF has to choose a new
canonical reaction. It is clear that they should not choose the same reaction
as before, but which reaction should be chosen next?

As a baseline, our automated IF can choose literally any other reaction
at random. However, since most of the strategies we have seen produce
a score over all possible reactions, we could choose instead the next best
ranked one. But we can do better: Purver (2004) shows that repeating the
exact same instruction is not how humans behave - more than 80% of the
corrections in this study are presented as rephrases of the original instruc-
tion. As a result, our IF receives also a new instruction from the same clus-
ter. This is in line with our earlier point that, after a misunderstanding, we
should not say the same thing that lead to it.

This strategy will trivially improve our accuracy, because the system
has now one less target to select from. We can show, however, that a system
with a good strategy will perform much better than random chance, and
that the final system will rarely require more than one correction.

45

3.3 Experiments and Results

With our system implemented, we tested it on data taken from the GIVE
Challenge. Since the GIVE Challenge contains data from both IFs and IGs,
our experiments evaluate the performance of our automated IF when re-
acting to instructions given by a human IG.

We selected a subset of data consisting of instructions and reactions
recorded over six virtual worlds. The IG’s instructions are recorded with
their timestamps, while the IF’s actions and positions were recorded every
200 ms.

Our subset of data comprises two different corpora. The Cm corpus
Gargett et al. (2010) contains instructions given by several IGs, with inter-
actions recorded in either English or German. The data was collected from
15 German-speaking pairs and 21 English-speaking pairs. All 30 German-
speaking participants were native speakers of German — 17 were female
and 13 male. Of the 42 English-speaking participants (16 female, 26 male),
35 were native English speakers; the remaining participants self-rated their
English skills as near-native or very good.

The German corpus obtained in this way consists of 2,763 instructions,
spread over 45 games. On average, each game contained 61.4 instructions
(standard deviation SD=24.0) and took about 752 seconds (SD=245.8). The
English corpus consists of 3,417 instructions over 63 rounds. Games con-
sisted on average of 54.2 instructions (SD=20.4) and took about 553 seconds
(SD=178.4).

The Cs corpus Benotti and Denis (2011) was gathered using a single IG;
it is divided into 63 games spanning 3417 instructions, and records 6:09hs
of interactions collected over the internet. Each game consisted on average
of 54.2 instructions (SD = 20.4) and lasted about 553 seconds (SD=178.4).
We used this corpus to measure the effect that reduced variability on the
IG’s instructions would have on our IF.

We evaluated our system with both Vis and Bhv as segmentation strate-
gies, using 5-fold training and evaluation. The plan actions required for
segmentation were obtained using the classical planner FF (Hoffmann and
Nebel, 2001). Table 3.1 shows average accuracy results for the Cm corpora.
Jaccard is the best word-similarity method, outperforming all others and
BLEU. It is however outperformed by the ML methods, with SVM outper-
forming all the rest. This is not surprising given that the input data for the
ML algorithms contains more information about the context of the instruc-
tion. When comparing results over the Cm corpus with the Cs corpus, we
found an average accuracy improvement of 3.6 points, but this improve-
ment was found to be not-significant.

We performed a human evaluation on the English corpus. Two human
annotators were given the same information available to the ML algorithms
(instruction, position at instruction time, and visibility area), and asked to

46

select the proper Vis canonical reaction. Their average accuracy with re-
spect to the IF’s recorded reaction is 81%, and a Cohen Kappa of 0.75, which
is considered very good (Carletta, 1996). The annotators’ disagreements
were found to be highly correlated (.88) with the same instructions that our
best algorithm failed to understand correctly.

Our error analysis found that typical misinterpreted instructions re-
quired a more detailed context and/or made references to previous actions.
Examples of such instructions are “yes”, “click it”, “go back”, “keep going”,
“exit the way you entered”, and “press the green button again”.

Our second set of experiments concerns corrections. More precisely, we
measured accuracy as a function of the average number of required correc-
tions for each strategy. We define an episode to be “successful at n tries“ if it
takes n instructions for the IF to select the proper canonical reaction. There-
fore, we define “accuracy at n tries” at the number of successful episodes
that required no more than n instructions.

100

90

80

70

60

50

A
cc

u
ra

cy
 (

%
)

1 try 4 tries2 tries 3 tries

Number of attempts

SVM

BLEU

Decision Tree
Jaccard

Levenshtein

Figure 3.1: Accuracy values as a function of the number of corrections

The accuracy of the Vis segmentation strategy is further explored in
Figure 3.1. The poor performance of our baseline strategy shows that accu-
racy for a bad strategy increases linearly, as expected, while a good correc-
tion strategy rarely requires more than one correction. Our best algorithm
achieves 92% accuracy at 2 tries.

Algorithm English - Bhv English - Vis German - Bhv German - Bhv
Levenshtein 34% 52% 43% 54%

Overlap 44% 70% 51% 69%
Jaccard 45% 70% 53% 69%

BLEU 44% 67% 54% 66%
DT 48% 73% 57% 70%

SVM 50% 77% 59% 74%

Table 3.1: Accuracy comparison between Bhv and Vis, both in the English
and German corpora

47

3.4 Lessons learned

The main weaknesses of our system are its inability to keep track of its
context and its greedy approach where only the last received instruction is
taken into account.

There are two main lessons to be learned from this experiment: the role
of grounding in a collaborative task, and the importance of a Context Set.

Regarding Grounding, our system does not establish a real dialogue
with the IG. When our system receives an instruction it makes a shallow
word-level analysis, chooses an action, and forgets everything else. We
have seen the downsides of this strategy: the highest source of errors in our
experiments are those cases where the IG attempts to refer to the common
ground between both. Adding memory to our system alleviates this prob-
lem, and even a short, one-instruction-long memory improves accuracy. A
system with a medium-term memory could reasonably assume that an IF
remembers a previous situation and make a shorter, more precise RE that
establishes a direct link between old events and the current situation.

As for the role of a Context Set, the nature of our human-collected data
provides the system with information about the affordabilities of the current
context, and as a result our system quickly discards a large set of distractors
improving its accuracy. The remaining objects, however, are considered
equally likely.

A human IF would not assign probabilities to every affordability in this
way: pressing the light switch should not be as likely as activating the fire
alarm. Assigning probabilities to every affordability and selecting the most
likely ones is a mechanism reminiscent of the attention that an IF pays to ev-
ery object. These probabilities can be influenced by a multitude of factors,
some of which we will explore in subsequent chapters.

3.5 Conclusion

The system presented in this Chapter performs with good accuracy, requir-
ing no manually annotated data. Given that training data can be easily
obtained by recording humans interacting with the VE in an unscripted
way, the system is well suited for rapid prototyping and simple domains.
Results show a simple strategy can achieve good results, with a greedy
strategy making the right choice in 80% of all cases. Having now a clear
picture of how to deal with typical mistakes, accounting for the remaining
20% is where our next steps will focus.

The main weakness of our system is modeling an Instruction Following
task as a sequence of individual, one-shot attempts at identifying a target.
A good IG system must explicitly model a link between past events and the
current situation, in a process that vaguely resembles the collaborative con-

48

struction of a common ground. The system’s inability to refer to previously
established landmarks is a key component in a collaborative task, and an
aspect that we will exploit for the correction of misunderstandings. A sec-
ond weakness of our system: it is missing a model of listener’s understand-
ing. Our automated IF uses a simple binary model in which some actions
are either uniformly likely or not possible at all, but a human IF would as-
sign individual probabilities to each possible course of action. And those
probabilities would change over time.

Finally, our system confirms that merely presenting a correction helps,
but it is not enough — good corrections do make a difference. Random
corrections may eventually lead us somewhere, but good corrections will
drastically reduce our error rate. Rephrasing the original instruction is a
good first step that we explore in detail in later Chapters, leading finally to
the development of an algorithm for contrastive feedback.

We have now seen the performance that can be expected from a system
that does not stop an IF from making mistakes. Rather than letting them
happen, our next Chapter presents a robust strategy for detecting them.

4

Detecting

misunderstandings

On a typical Instruction Following task, an Instruction Giver (IG) and
an Instruction Follower (IF) are paired in order to complete a task: the IG
knows which steps have to be completed and in which order, while the IF
is the one who performs the steps. To succeed, the IG guides the IF through
both navigational instructions and Referring Expressions (RE). A key prob-
lem in this scenario are misunderstandings: even if the IG’s instructions
are technically correct, there are several factors that could lead to the IF
performing a different action that the one intended by the IG.

Misunderstandings in Instruction Following tasks are common and even
expected. A familiar case from the GPS navigation task is the now-defunct
term “recalculating”, used by GPS’s until 2013 to indicate that the driver
had deviated from the established plan and a new route was needed. The
term became so familiar as to enter popular culture, highlighting that mis-
takes happen to everyone even in mundane circumstances. Mistakes can
happen for a multitude of reasons: studies have shown that our decisions
are regularly affected by factors as diverse as first impressions, the order
in which alternatives are presented, overconfidence in our intuition, exces-
sive optimism, attempting multiple simultaneous tasks, amounts of sleep,
familiarity with the task, and many more (Hallinan, 2009). And they can
be costly: no amount of recalculation on the GPS’s part can undo a head-on

This Chapter is based on the publication “Predicting the resolution of referring expres-
sions from user behavior” (Engonopoulos et al., 2013).

49

50

collision caused by a wrong turn.
Detecting a misunderstanding once it took place is trivial; detecting that

a misunderstanding is about to happen is a more challenging task, and this
Chapter is dedicated entirely to our research on whether is it possible to
detect misunderstandings early enough to stop it from taking place. We
model this problem with a statistical approach: we train a probabilistic
model with recorded interactions from the GIVE Challenge, teaching our
model to predict which object in a scene is more likely to be selected given
both the text of a specific instruction and the observed behavior of IFs in
response to it. We decompose this model into two: a Semantic model that
makes predictions based on the text of the instruction alone, and an Obser-
vational model whose predictions are based on the observed behavior of an
IF. We then test our models for accuracy (both individually and combined)
at several points before the interaction, looking for the best trade-off be-
tween time to interaction (how early can we predict that a given object will
be selected) and accuracy (how reliable that prediction is).

The insight gained from these models will be a strong foundation for
subsequent Chapters: once we know how to detect misunderstandings, we
can focus on preventing and correcting them.

4.1 Definitions

Before moving forward, we need to define some key terms and concepts
that will be used throughout this thesis.

A GIVE world can be understood as a collection of interconnected rooms
in the GIVE Virtual Environment (VE). This world is populated with ob-
jects, some of which are interactive (buttons, alarms) and some of which
are merely decorative (lamps, chairs, windows).

In order to successfully navigate the GIVE world, the IG will guide the
IF with utterances. Most utterances in a GIVE game can be classified as
either navigational or manipulation instructions. Navigational instructions
lead the IF from one object to another, while manipulation instructions ask
the IF to interact with a specific object in the current environment.

Manipulation instructions typically refer to a specific object. In this sit-
uation, we will call this object the intended object of the utterance, while
all other objects (interactive or not) are considered distractors. These in-
structions often take the form of a verb followed by an RE in the form of a
definite NP, such as “press the green button”.

We define an Episode as an interaction that begins with a manipula-
tion instruction and ends up with the IF manipulating an object, with no
other instructions in between. Each Episode will be represented as a triple
(r, s, σ), where r is the text of the manipulation instruction, s is the state
of the VE when receiving the instruction, and σ = σ1 . . . σn is a sequence

51

of states or frames of the VE in chronological order1. The time interval be-
tween two successive states σi, σi+1 is 500ms. Figure 4.1 illustrates these
concepts.

Figure 4.1: Anatomy of an episode

Episodes can be either successful or unsuccessful. A successful Episode
ends with the IF interacting with the intended object of the utterance r,
while an unsuccessful Episode ends with the IF interacting with any other
object. An Episode can also be easy or hard, depending on the number of
visible objects in s. An Episode is considered easy if there are no more than
three visible objects in s, and hard otherwise.

4.2 A model of listener’s understanding

In order to predict how an RE is understood by an IF, we model the ground-
ing process in terms of probabilistic models

When a user receives an RE r in a world state s, the user resolves the RE
to the object a and moves towards it exhibiting behavior σ. We assume the
probability P(a|r, s) of resolving the RE r to a in world state s to be indepen-
dent of the probability P(σ|a) of exhibiting behavior σ when attempting to
interact with the object a.

Given this assumption of independence, we can now model our prob-
ability P(a|r, s, σ) that a user who received the RE r in a world state s and
exhibits behavior σ will interact with the object a. According to the defini-
tion of conditional probability and our assumption of independence,

P(a|r, s, σ) = P(a,σ|r,s)
P(σ|r,s)

= P(σ|a)P(a|r,s)
P(σ|r,s)

(4.1)

Using Bayes’ theorem,

P(σ|a)P(a|r,s)
P(σ|r,s) = P(a|σ)P(σ)P(a|r,s)

P(σ|r,s)P(a)

∝ P(a|σ)P(a|r,s)
P(a)

(4.2)

1Under this definition, s = σ1

52

We assume for simplicity a uniform P(a), arriving to our final model

P(a|r, s, σ) ∝ P(a|σ)P(a|r, s) (4.3)

As a result, we represent P(a|r, s, σ) as the product of two probabilistic
models, a semantic model PSem(a|r, s) and an observational model PObs(a|σ).
The semantic model PSemmodels the understanding of the RE r by the IF,
while the probabilistic model PObsmodels the most likely understood target
a based on the observed behavior σ. The probability P(a|r, s, σ) is approxi-
mated by the product of both models, in a model we’ve named PComb.

4.2.1 The Principle of Maximum Entropy and log-linear models

In a statistical classification problem we estimate a probability p(a|b) of a
“class” a occurring with “context” b. For example, we might want to decide
whether the word that is a determiner in a given sentence, or whether the
phoneme /’ðe@/ in a sentence should be understood as the word there, their,
or they’re.

We often lack enough information to fully specify p(a|b), and yet we
need to select one of the infinite number of probability distributions capable
of explaining the available evidence.

The Principle of Maximum Entropy states that the correct distribution
p(a|b) is that which maximizes entropy, or “uncertainty”, subject to the
available evidence Jaynes (1957); Ratnaparkhi (1997). Out of all possible
distributions, this Principle states that we should pick the distribution that
explains the available evidence making the least amount of assumptions.
Entropy as a concept was originally introduced in thermodynamics, but it
was Shannon who introduced the term in the context of information theory.
The entropy H(X) of a discrete variable X is defined as

H(X) = − ∑
x∈X

p(x)log p(x) (4.4)

Entropy reaches its maximum value when p(x) = c∀x ∈ X, i.e., when
we have no reason to prefer any value x over any other and all values are
equally likely.

Adding evidence to our model reduces entropy. Given the set A of all
classes and the set B of all contexts, the available evidence is represented
as feature functions or features f : AxB→ R2.

Using the Principle of Maximum Entropy, we can combine our feature
functions into a log-linear model

2Early work on Maximum Entropy Models required the image of a feature function to
be the set {0, 1}. Subsequent work extended this definition to continuous features in R (Yu
et al., 2009).

53

p(a|b) = 1
Z(b) ∏k

j=1 α
f j(a,b)
j

Z(b) = ∑a ∏ j = 1kα
f j(a,b)
j

(4.5)

where k is the number of features f j, Z(b) is a normalizing factor, and
αj > 0 corresponds to a “weight” for feature f j. The weights αj that best fit
the training data can be obtained through maximum likelihood estimation
Ratnaparkhi (1998).

The resulting model is an instance of a log-linear model, a function whose
logarithm equals a linear combination of the parameters of the model. Its
general form is

exp(c + ∑
i

wi fi(X)) (4.6)

where c and wi are the model parameters. The PSemand PObsmodels dis-
cussed in the next section are log-linear, and so are the models introduced
in Chapter 5.

The PSemand PObsmodels defined in this Chapter are log-linear, and there-
fore defined in terms of feature functions. Since both models capture re-
lated but not identical information, their feature functions are also simi-
lar. The Semantic Model PSem estimates for every target a in a scene s the
(initial) probability PSem(a|r, s) that the IF will understand a given RE r
as referring to a. Therefore, the domain of its features is the tuple (r, s).
The Observational Model PObs estimates for every target a the probabil-
ity PObs(a|σ) that the IF will select a based on observed behavior σ(t) =
(σ1, . . . , σn). The domain of its features is σ(t).

The features presented here are the result of a selection process in which
we trained a more complex model and removed features that did not show
a significant impact on accuracy (Berger et al., 1996). All log-linear models
were trained using the L-BGFS algorithm provided by the Mallet software
package McCallum (2002).

4.2.2 Feature functions for PSem

The first set of features attempt to encode whether r is a good description of
a. They are called Semantic features. These feature functions are defined
as follows: IsColorModifying evaluates to 1 if the color of object a appears in
r as an adjective modifying the head noun in r, such as “the red button”. Is-
RelPosModifying evaluates to 1 if a’s relative position to the IF is mentioned
in r as an adjective, as in “the left button”.

Let Adjh(r) be the set of adjectives that modify the head noun of r. Then,
these two features are defined as:

54

IsColorModi f ying(a, r, s) =
{

1 color(a) ∈ Adjh(r)
0 otherwise

(4.7)

IsRelPosModi f ying(a, r, s) =
{

1 rel_position(a, s) ∈ Adjh(r)
0 otherwise

(4.8)

Instead of looking for specific adjectives with a specific semantic role,
we can look for these adjectives in the entire text of r. We theorize that a
positive value for these new features could identify sources of confusion:
a description such as “the button above the red button” when both but-
tons are red can lead the user to resolve r to the lower red button. These
expanded features are called Confusion features.

Let Adj(r) be the set of all adjectives in r. Then, these two features are
defined as:

IsColorModi f yingCon f (a, r, s) =
{

1 color(a) ∈ Adj(r)
0 otherwise

(4.9)

IsRelPosModi f yingCon f (a, r, s) =
{

1 rel_position(a, s) ∈ Adj(r)
0 otherwise

(4.10)
Salience features are closely related to the concepts of affordabilities

and visual salience: given all objects on the VE only some of them are af-
fordable, and the visually salient remaining targets are more likely to be
resolved from r to a. IsInRoom evaluates to 1 if the IF and a are in the same
room, while IsVisible evaluates to 1 if a is visible to the IF in s.

IsInRoom(a, s) =
{

1 IF and a are in the same room in s
0 otherwise

(4.11)

IsVisible(a, s) =
{

1 visible(a)
0 otherwise

(4.12)

IsTargetInFront evaluates to 1 if the angular distance, the absolute angle
between the camera direction and a straight line from the IF to a, is less
than π

4 in s.

IsTargetInFront(a, s) =
{

1 angular_dist(a, s) < π
4

0 otherwise
(4.13)

Finally, VisualSalience approximates the visual salience algorithm given
by Kelleher and van Genabith (2004), a weighted count of the number of
pixels in which a is rendered.

55

In Kelleher’s algorithm, an object is first rendered onto a screen. Once
rendered, said object is understood as a collection of pixels, and its visual
salience is a weighted sum over them. The weight of each pixel is given
by the formula 1− P

M+1 , where P is the distance to the center of the screen
and M is the maximum possible distance — namely, the distance from the
center to a corner of the screen. A detailed theoretical background on this
feature is presented on Chapter 5.1.1.

In our specific architecture the rendered screen is not available to the
IG, and it is also not part of the context s. Re-rendering the scene is an
option, but one that is too slow for our purposes of real-time prediction.
As a compromise, VisualSalience approximates this value creating a virtual
screen, dividing it into virtual pixels, and computing salience over them
instead. The algorithm projects the set of coordinates in 3D space, projects
them into the virtual screen in 2D space, and calculates salience over this
approximation.

Assuming a virtual screen of width 1 and height 1/2, an object’s hori-
zontal position is sin(angle to player), and its size can be fixed to 0.13. M
can be shown to be equal to

√
5

2 .
The object’s horizontal size projection by distance and angle is given by

the equation

size′ = 2.arctan(
size

2dist
) (4.14)

giving the object horizontal coordinates in the virtual screen in the range

le f t = max(−1, sin(angle_to_player)− size′
2)

right = min(1, sin(angle_to_player) + size′
2)

(4.15)

The vertical angle of the GIVE Challenge camera is fixed, and therefore
we can simplify the equations by ignoring distortions over this axis. As a
result, the object’s vertical coordinates are in the range

[top, bottom] = [max(−1,
size′

2
), min(1,

size′

2
)]. (4.16)

The procedure for calculating VS is then given by the weighted sum
over all points contained within this virtual square:

4.2.3 Feature functions for PObs

Linear distance features assume that the IF will interact with the closest
affordable target a.
IsInRoomSeq returns the number of frames σi in σ in which the IF and a are
in the same room. With IsInRoom as defined by equation 4.11,

3All buttons in the GIVE Challenge have the same size, and only buttons are interactive

56

1: procedure VISUALSALIENCE(button)
2: salience← 0
3: for i← le f t; i < right; i← i + step do
4: for j← bottom; i < top; j← j + step do
5: pointh ← i + step

2
6: pointv ← j + step

2

7: P←
√

point2
h + point2

v

8: salience← salience + 1− (P
M+1)

9: end for
10: end for
11: salience← salience ∗ step2 . step2 is the area of a virtual pixel
12: end procedure

IsInRoomSeq(a, σ) = max(1, #(σi ∈ σ|IsInRoom(a, σi)) (4.17)

ButtonDistance returns the distance between the IF and a at σn (divided
by a normalizing constant):

ButtonDistance(a, σ) =

{
distanceσn (IF,a)

max_world_length a affordable
1 otherwise

(4.18)

Angular distance features look for patterns in the direction the IF is
looking and/or how their orientation changes over time.
TargetInFrontSeq returns the angular distance towards a at σn, or 1 if a
is not affordable. AngleToTarget returns the normalize angular distance
between the IF and the target a at σn.

With IsTargetInFront defined as in Equation 4.13,

TargetInFrontSeq(a, σ) = IsTargetInFront(a, σn) (4.19)

AngleToTarget(a, σ) =
angular_dist(a, σn)

π
(4.20)

There is one Combined distance feature that measures both linear and
angular distance in a single metric: the feature DistanceK returns a weighted
sum of linear and angular distance between the player and a. This feature
is called overall distance in Koller et al. (2012).

DistanceK(a, σ) = turningDistance+walkingDistance
c

where turningDistance = 0.5 ∗ angular_dist(a, σn)
walkingDistance = dist(a, σn)

c = normalizing constant

(4.21)

57

LinearRegAngleTo applies linear regression to the recorded angular dis-
tances to a over each frame of σ, and returns the slope of this regression. A
negative value is correlated with the IF turning towards a, and vice versa.
If a is not affordable in σi, the angular distance is set to π.

LinearRegAngleTo(a, σ) = lin_reg(seq_angles).slope
where seq_angles = map(λx.ang_dist(x), σ = σ1, . . . , σn)

ang_dist(x) =

{
angular_dist(x) x a f f ordable

π otherwise
(4.22)

Salience features track the evolution of an object’s visual salience dur-
ing an Episode. Using the visual salience algorithm defined in page 56,
VisualSalienceSeq performs linear regression over all frames in the Episode,
and returns the slope of the regression. A positive value is correlated to in-
creased attention towards the given object, and vice versa.

VisualSalienceSeq(a, σ) = lin_reg(seq_vs).slope
where seq_vs = map(λx.VisualSalience(x), σ = σ1, . . . , σn)

(4.23)
LastVisualSalience simply returns the value of the visual salience value

of the most recent frame.

VisualSalienceSeq(a, σ) = VisualSalience(σn) (4.24)

Finally, VisualSalienceSum returns the sum of all visual salience values
in σ, but where the most recent value is multiplied rather than summed. We
expect the latest value to have the higher impact but we still take into ac-
count the entire observed behavior (unlike LastVisualSalience, where only
the most recent frame counts).

VisualSalienceSum(a, σ) = VisualSalience(σn) ∗
n

∑
2

VisualSalience(σi)

(4.25)
The last group is composed of binary features which look for specific

behavior patterns. IsCloseSeq simply returns 1 when the player is less than
1 unit away from the object in the last frame. 1 unit in GIVE is roughly
equivalent to 1m. Similarly, IsVisibleSeq returns 1 when the object is visible
in the last frame.

IsCloseSeq(a, σ) =

{
1 dist(a, σn) ≤ 1
0 otherwise

(4.26)

IsVisibleSeq(a, σ) =

{
1 a is visible in σn
0 otherwise

(4.27)

58

4.3 Experimental setup and evaluation

We tested our model using data collected from the GIVE-2 and the GIVE-
2.5 Challenges (Koller et al., 2010; Striegnitz et al., 2011). The raw data
includes 1833 games for GIVE-2 and 687 games for GIVE-2.5.

To show that our models can generalize to unseen environments, we
used the GIVE-2.5 Episodes for training and GIVE-2 Episodes for testing.
The data in each dataset was generated with different NLG systems and
users. Feature selection was performed over a third dataset Koller et al.
(2012).

We preprocessed the data by retaining only valid games, as defined in
Koller et al. (2010). In the context of the GIVE-2 and GIVE-2.5 datasets, a
game is considered valid if . . .

. . . the game result is “success”, “canceled”, “lost”, or “timeout”, and

. . . the client did not crash, and

. . . the game is not a test game (checked via IP, questionnaire answer, and
start time), and

. . . the player finished the tutorial section of the game

We extracted all Episodes from this data according to the definition in
Section 4.1. We then removed all Episodes that took place during the tuto-
rial part of the game, and all Episodes with a duration of less than 200ms
(since it’s clear that the button press could not be a result of following the
instruction of the Episode). Training data for PObswas further refined by
only using Episodes of length 2s or bigger, fixing n = 4, and ensuring
that σn took place 1s before the button press. Training data for PSemwas
refined by using only those Episodes where the instruction s contains an
RE, removing instructions such as “yes” or “try again”. Testing data was
not filtered according to either of this constraints. As a result, the final
set of training Episodes comprises 6478 training instances for PObsand 3414
instances for PSem. The final testing set comprises 5028 Episodes for both
models. We chose GIVE-2 as test set because the mean Episode length is
higher (3.3s vs. 2.0s), making the evaluation more challenging.

We evaluated our models on two dimensions. We evaluated our model’s
Prediction accuracy as the ability to predict to which target a has the IF re-
solved an RE, and our model’s Feedback appropriateness as the ability to pre-
dict that a user misunderstood an RE.

4.3.1 Prediction accuracy

Given an Episode containing data < r, s, σ, a >, we compare the object
returned by argmaxa p(a|r, s, σ) to the one manipulated by the IF.

59

Our experiments included several models and baselines. Semantic, Ob-
servational, and Combined are the predictions of the PSem, PObs, and PComb
models respectively. Random visible is a baseline that randomly chooses one
target among those that are visible in s, and KGSC is an implementation of
the DistanceK feature that assumes the IF will choose the button with the
minimal overall distance. This metric was used in Koller et al. (2012) by the
“movement-based system”, and was considered a competitive baseline.

(a) All Episodes (b) Hard Episodes

Figure 4.2: Prediction accuracy as a function of time

We evaluated each model and baseline at time 3s, 2s, 1s, and 0s before
the button press. Figure 4.2a shows the results for each system, based on
evaluation over the 2094 test instances with an episode length of at least 3s.
As expected, accuracy increases as the difference between prediction time
and button press time decreases. The Combined model PCombsignificantly
outperforms not only the baselines, but also each of its individual compo-
nents, indicating that each one of its component models contributes com-
plementary information. Random visible does not approach 1 at button press
time, suggesting that multiple buttons are often visible and confirming that
the task is not trivial.

We further tested our models focusing on the 125 unsuccessful Episodes
in our dataset, with results shown in Figure 4.2b. These are the hardest
Episodes and, as expected, accuracy decreases for all models and baselines.
Even then, we observe that PCombstill outperforms both its individual com-
ponents and all baselines.

4.3.2 Feedback appropriateness

In our second set of experiments we tested how good our models are at
detecting that the IF has misunderstood the RE r. We designed an ex-
periment in which we considered a misunderstanding to be detected if
p(a′)− p(a) > θ for some object a′ 6= a, and where θ is a confidence thresh-
old (θ = 0.1 in our experiments).

We evaluated our models in the 848 test episodes of length 3s or more

60

Figure 4.3: Feedback F1 measure as a function of time

where the IG NLG system logged the intended object a for the RE r. We
measured precision as the number of Episodes in which the IF pressed the
wrong button among the instances in which the model indicates that feed-
back should be given; Recall is measured as the proportion of Episodes in
which the model indicated that feedback was necessary over the Episodes
where the IF selected an incorrect target. Fig. 4.3 shows the results in term
of F1 measure.

Our results show the same tendency we’ve seen before, with PComb out-
performing all models and baselines. This difference is pronounced at an
early stage, meaning that our system would not only accurately detect mis-
understandings, but it would do it early enough that stopping the IF from
making a mistake becomes feasible.

4.4 Conclusion

This Chapter introduces two log-linear, probabilistic models of listener’s
understanding that, when combined, are capable of accurately predicting
which target will be selected by a user a couple seconds before the actual
interaction. This prediction provides us with a double benefit: if the pre-
dicted object does not match our intended object we have detected that a
misunderstanding took place, and we also know which specific object is the
one that was misunderstood. This second piece of information is critical if
we intend to correct the misunderstanding, a topic that we explore in detail
in Chapters 7 and 8. This model can also be used as a component for al-
gorithms that explicitly model understanding. The most direct application
of this concept is the REG algorithm of Engonopoulos and Koller (2014),
which details how to use such a model to generate REs that maximize the
probability of being correctly understood.

Of all the features presented in this Chapter, Visual Salience features
are most surprising. Our implementation of these features does not ana-
lyze the actual pixels on scene as originally intended in the algorithm of
Kelleher and van Genabith (2004), but rather return values based on an

61

approximation of what the image on screen might look like. Although we
would expect this process to show a high loss of precision for these fea-
tures, Visual Salience features make it through the feature selection process
of both PSemand PObs. These results encourage further research in two pos-
sible directions. The most intriguing line of research is whether features
based in our abstraction can solve a long standing problem in Instruction
Following tasks in the real world: the inability of modern computing de-
vices for capturing the environment in a discrete and comfortable way. An
algorithm capable of obtaining a reasonable approximation of the visual
salience of an object without the use of cameras would definitely be of in-
terest for researchers dealing with real-world tasks.

A second line of research is to ask whether our models could perform
better if they used real Visual Salience instead of our approximation. This
is a question that will remain open: instead of analyzing the effect of ab-
stracted visual behavior that “proper” Visual Salience would provide, our
research in the following Chapter is dedicated to the design of features ca-
pable of integrating recorded human gaze into our models.

62

5

Tracking attention

The previous Chapter introduced our PCombmodel of listener’s under-
standing as a product of the Semantic model PSemand the Observational
model PObs, log-linear models expressed as a combination of feature func-
tions with weights learned during training over recorded data. The final
set of features for each model is the result of a feature selection process that
removed redundant and/or unhelpful features proposed at earlier research
stages.

Both models include features based on our approximation to Visual
Salience in their final feature set. To understand why this specific feature
performs so well we need to rely on both pragmatics and psycholinguis-
tics: the former tells us that non-linguistic aspects are just as relevant to a
dialogue as the words being uttered, while the latter explains the relation
between our observed physiological behavior and cognitive processes. Ac-
cording to our theory, Visual Salience captures behavior related to gaze,
and by extension detects which objects have captured the Instruction Fol-
lower’s Visual Attention. If these features are a proxy to the Instruction
Follower’s attention, it would explain why these features are so important
for each model.

In this scenario a straightforward improvement for our PObsmodel would
include not only Visual Attention, but rather actual human gaze. Develop-
ing features that leverage gaze information and integrating them into our
existing models is a challenge that we tackle as an extension to our current

This Chapter is based on the publication “The Impact of Listener Gaze on Predicting
Reference Resolution” (Koleva et al., 2015).

63

64

research. Whether gaze information by itself is powerful enough to replace
all previous features is a second question that this Chapter attempts to an-
swer.

This Chapter explores the importance of visual features, introducing
an extended PObsmodel called EPObsthat uses eye-tracking features. These
features are inspired in psycholinguistic research on visual attention, where
eye-movement and attention have been shown to be correlated. As a result
of including these new features, the extended model outperforms PObsin
accuracy for hard Episodes.

We open the Chapter with an exploration of the meaning of “attention”
from a psycholinguistic perspective. Section 5.1 answers what does it mean
for an object to “capture an IF’s attention”, and how we progress from “this
is what the IF is seeing” to “this is how this RE has been resolved”. Section
5.2 introduces the new, gaze-based features of the EPObsmodel, the experi-
ments we performed, and an analysis of the results.

5.1 Attention and Visual Attention

When we talk about attention, we talk about the process according to which
we allocate perceptual or cognitive resources to a task or object. These re-
sources are finite, and therefore allocating them to the task comes at the
expense of not allocating them to something else (Harris and Jenkin, 2001).
The process that we call “to attend” comprises then a dual function: it is
both the cognitive process of deciding that available resources should be
allocated to inspect an object, and the physical act of allocating those re-
sources.

Example: Eyes as a resource
When a person looks at an object, they perform eye movements that
align this object of interest with the central fovea of the retina. This spe-
cific type of attention is called “overt attention”, and is but one of many
mechanisms in which our limited resources are allocated (Folk, 2015).

The central fovea has finer spatial resolution than the peripheral retina,
but is limited to a range of approximately 2 degrees from the center of
the visual field. Therefore, to look at an object implies allocating the lim-
ited resource “visual acuity” to a specific object in detriment of all other
objects on the scene.

It should be clear that our eyes are a finite resource, that their alloca-
tion is strictly dependent on biological characteristics, and that turning
our head to the left implies losing sight of objects to the right. To “pay
attention” comprises both the decision to align an object with the central
fovea, and the physical eye movement that does so.

65

To understand attention, we need to understand what these limited re-
sources are and how are they allocated. This has been the focus of exten-
sive psycholinguistic literature, and this Chapter will focus on two main as-
pects: the early vs. late selection debate that cemented the basis for modern
attention theory (and, therefore, the basis of this Chapter), and the emer-
gence of computational models, to which our research is closely related.

In 1958, Broadbent (1958) introduced a “filter model” according to which
the perceptual system has limited capacity, and it is the job of an atten-
tion filter to exclude irrelevant information as soon as a first, rudimentary
analysis of the input is complete. This model would be later known as an
“early selection” model, based on its thesis that the filtering step took place
at an early stage of the perception process. Later developments would cast
doubt on this model, proposing instead a “late selection” model, accord-
ing to which information is perceived fully and only filtered at a later stage
(Deutsch and Deutsch, 1963). Both positions were debated for well over
forty years. A middle point between these two positions was proposed
by load theory, according to which early or late selection occurs in relation
with the load imposed by the current task: a task that reaches the limits
of perceptual processing forces the perceptual system to apply early selec-
tion, while tasks with low perceptual load allow for the processing of other,
task-irrelevant items as proposed by late selection models (Lavie and Dal-
ton, 2014).

When restricted to visual attention alone, the debate over attention shifts
to “visual search”, defined as “the collection of processes that allow us to
find what we are looking for by using spatial attention to combine the fea-
tures of objects” (Vecera and Behrmann, 2001). Here, the more general early
vs late selection debate focuses on whether object selection (“find what we
are looking for”) takes place before or after perceptual recognition (“com-
bine the features of objects”). Just as load theory places itself in between
the theories of early and late selection, we can reconcile both views with
the help of the Theory of Visual Attention (TVA). This theory postulates
that both recognition and selection of objects in the visual field occur at the
same time.

In TVA, all possible visual categorizations compete to be encoded into
visual short-term memory (VSTM) before it fills up. This competition is
biased by attentional weights and perceptional biases, making certain ob-
jects and categories more likely to be consciously perceived (Bundesen and
Habekost, 2014). This model was proposed by Bundesen (1990), and finds
itself in line with what would be later called the “biased competition” prin-
ciple introduced by Desimone and Duncan (1995). While the specific char-
acteristics of VSTM vary from person to person, the capacity of VSTM is
assumed to be around 4 objects (Luck and Vogel, 1997). This is one of TVA’s
main parameters, and can be tuned from person to person.

Based on this model, we can now introduce a working definition of

66

“attention”: we say that an object has captured an IF’s visual attention if the
object has been encoded into the VSTM.

5.1.1 Visual Saliency

TVA is a computational approach to visual attention. Unlike a theoretical
model, a computational model is a model that can process any visual stimu-
lus, and make predictions “that can be compared to human or animal be-
havior or physiological responses elicited by the same stimulus” (Itti and
Borji, 2014).

Computational models are classified either as bottom-up (or stimulus
driven) or as top-down (or goal-driven). Bottom-up models assume that a
certain visual input will provoke a certain reaction on an individual, while
top-down models operate on the premise that an individual will only scan
a visual image in search of an object that satisfies their intrinsic motiva-
tions. In a top-down model, and given an image, it is possible to assert
which object in the scene will capture an individual’s attention. A bottom-
up model, on the other hand, asserts that a human will fixate on a jar of jam
when it is the next object required to make a sandwich (Land and Hayhoe,
2001). The top-down/bottom-up dichotomy is ultimately artificial, as both
models depend on each other: a top-down model requires a model of all
objects on the environment that can only be obtained in a bottom-up fash-
ion, while bottom-up models ignore an individual’s own motivations and
desires. Computational models like TVA are more tractable than pure top-
down models, and as such have received more attention in recent years.

Both TVA and bottom-up models share their reliance on a saliency map,
a topographical map presenting a “biased view” of an input image empha-
sizing interesting locations regardless of why those locations are interesting
(Koch and Ullman, 1985). Figure 5.1 shows an example of such a map (Itti
et al., 1998). The algorithm presented on page 54 is based on such a map,
following the research of Kelleher and van Genabith (2004). In this ap-
proach, the the saliency of each object is computed based on the number of
pixels that an object occupies on screen once it has been rendered, plus the
individual distance of each pixel to the center of the screen.

Taking TVA as our model for visual attention, we can now explain the
usefulness of our visual salience features used in experiments both in the
previous and current chapters: TVA postulates that, in a computational
model that can be successfully compared to human behavior, visual atten-
tion is driven by the saliency of currently visible objects. This saliency is
captured by saliency maps, such as the one provided by our visual salience
feature. This map was designed around the observed behavior of individ-
uals, and is roughly equivalent to a TVA model with tuned weights and
biases. Knowing which object captured the IF’s attention acts here as a
proxy to the IF’s understanding of a RE — if the IF resolved an RE to a

67

Figure 5.1: Input images and their corresponding saliency maps

certain object, it is expected that they’ll focus their attention on it. Their
subsequent actions (centering the object in their visual field and walking
towards it) will increase the saliency of the resolved object, an increase that
will be captured in the saliency map and exploited by our models.

The PSemand PObsmodel paint a final, more complete picture of why our
PComb model is a reasonable proxy to the user’s attention: if PSem provides
a top-down model of a user’s interests and PObsprovides a collection of
bottom-up features, the end result PCombmodels the same principles pre-
sented by TVA. Our model takes into account both the IF’s own goals, and
the effect that different scene stimuli will have on the IF’s attention includ-
ing (but not restricted to) a model of the IF’s visual attention.

5.1.2 Eye-tracking

Salience maps are important for computational models, but they are only
an approximation to the actual eye-movement observed in human subjects.

Researchers suspected a relationship between attention and gaze-control
since at least the Late 1800s. Posner (1980) introduced the “spotlight metaphor”
according to which our limited cognitive resources focus on a small area or
object at the time, with eye movements following the mental spotlight. Un-
der this model, saccades (“quick, simultaneous movement of both eyes be-
tween two or more phases of fixation in the same direction” (Cassin et al.,
1984)) and attention are linked: it is possible to direct attention to a spot
without making an eye movement, but it is impossible to make a saccade
without shifting attention first to the target location (Theeuwes, 2014). Per-
ceptual performance has also been shown to increase when perception and

68

Figure 5.2: Recording user data with an eye-tracker. The image shows the
eye-tracker equipment on the bottom right, the player’s point of view, and
circles (not shown to the player) indicating the recorded user’s gaze on the
current scene.

saccade are directed to the same object (Bichot, 2001).
Monitoring gaze can then be used as a proxy to an individual’s at-

tention. An optical eye-tracker is a device capable of measuring an indi-
vidual’s eye position, pupil diameter, saccade events, and gaze direction,
among others. The faceLab 5 device used by Staudte et al. (2012) reports an
average margin of gaze direction error of less than 1◦. Data from such a de-
vice can improve (and even replace) saliency-map features, as this Chapter
shows. Figure 5.2 shows their data collection setup in action.

5.2 Eye-tracking and Extended Probabilistic model

Knowing that our PObsmodel is an accurate reflection of bottom-up atten-
tion features, we can show that replacing our approximation to a visual
map with a more accurate, eye-tracking-based measure can only improve
on our previous results. This section details how we created new sequential
features that make use of eye-tracking information as an additional source
of data. The resulting model is called Extended PObs (EPObs).

The eye-tracking information is encoded as a single, bidimensional point
on the screen where the IF’s gaze was fixated at any moment during an
Episode. We call this on-screen location the gaze cursor.This cursor by it-
self is not sufficient to determine exactly what an IF was looking at: even
accounting for the slight noise introduced by the eye-tracker, human eyes
rarely remain fixated on a single point – even if a single object captures an
individual’s undivided attention, the gaze would constantly move around
the object to better discern its features. For this reason, our experiments use
the term fixated object to refer to the object that is closest to the gaze cursor at

69

any specific moment in time, as illustrated by Figure 5.3. Should the closest
object be more than 50px away from the gaze cursor, we say that no object
was fixated at this point in time.

(a) Scene from the GIVE Challenge (b) Gaze cursor and nearby objects

Figure 5.3: Gaze cursor and fixated targets in the GIVE Challenge

5.2.1 New features

Being an extension of the Observational Model PObs, the EPObsmodel also
estimates for every target a the probability EPObs(a|σ) that the IF will select
a based on observed behavior σ(t) = (σ1, . . . , σn), where σi is defined as
the same behavior captured in the previous Chapter plus additional eye-
tracking data. For simplicity, we use the same notation from the previous
Chapter. Under this convention, the domain of all features is again σ(t),
with the caveat that σ(t) now contains additional eye-tracking data.

LookedAt counts the number of frames in which the IF has fixated on a.
LongestSeq returns the longest continuous sequence of frames in which the
IF fixated on a.

LookedAt(a, σ) = ∑i Fixated(σi)

where Fixated(f) =

{
1 if the IF fixated on a in frame f
0 otherwise

(5.1)

LongestSeq(a, σ) = max{|s| ⊆ σ : Fixated(σi)∀σi ∈ s} (5.2)

We define the linear distance to a as the euclidean distance in pixels be-
tween the gaze cursor and the center of a. The LinearDist feature returns
an average of the linear distance to a over all frames in σ. InvSquaredDist
also returns an average, but using the inverse squared linear distance to a
instead.

LinearDist(a, σ) = 1/n ∑n
i linear_dist(a, σi)

where linear_dist(a, s) =
√
(ax − sx)2 + (ay − sy)2 (5.3)

70

InvSquaredDist(a, σ) =
1

1 + LinearDist(a, σ)2 (5.4)

Finally, UpdatedFixedObjects counts the number of frames in which the
target was either fixated or less than 50px away from the gaze cursor. This
feature can be understood as the proportion of time in an Episode when
the IF was interested in a specific target.

UpdatedFixedObjects(a, σ) = ∑i SemiFixated(σi)

where SemiFixated(f) =

1 if the IF fixated on

or 50px around a in frame f
0 otherwise

(5.5)

5.2.2 Time to interaction

When evaluating the PCombmodel in the previous chapter, we trained our
model with features evaluated 1 second before the interaction took place.
We then evaluated the prediction accuracy of the model with varying time
intervals between the prediction of a target manipulation and the actual
manipulation.

For this Chapter we decided to perform a more detailed analysis, eval-
uating the effect that both parameters have in the trained model. Altering
the time before interaction we can paint a more detailed picture of the be-
havior of our trained model. We denote the interval chosen for training as
dtrainand the different testing intervals as dtest. We can then say that our
PCombmodel was trained at dtrain = −1s and evaluated at −3s ≤ dtest ≤
−1s.

5.3 Experimental setup and evaluation

In order to evaluate EPObs, we compared its accuracy to that of PObsin a
series of tests designed to replicate the experiment presented in the previ-
ous chapter. For our baselines, we included two single-feature log-linear
models.

InRoom is a model whose only feature function InRoom is the defined
as in Equation 4.17. This model gives equal probability to all targets in the
same room as the IF, and therefore it was chosen as an appropriate ran-
dom measure for our task. VisualSalience implements the sequential Visual
Salience feature of Equation 4.23, and was chosen as a baseline to measure
the degree of improvement that can be obtained when replacing an atten-
tion estimator with an attention measure. Finally, we also implemented a
fifth model GazeOnly composed exclusively of feature functions introduced

71

in this chapter. This model was designed to test whether gaze features
alone can replace all other previously studied features.

We trained all models with −6s ≤ dtrain ≤ −2s and evaluated them at
times dtrain ≤ dtest ≤ 0s before manipulation.

The evaluation took place over a subset of GIVE 2.5 data containing
recorded eye-tracking data. This dataset was collected by Staudte et al.
(2012), involving worlds created by Gargett et al. (2010) designed to eval-
uate the performance of IG systems in situations of varying levels of com-
plexity.

This corpus provides recorded eye-tracking data, collected with a face-
Lab eye tracking system remotely monitoring participants’ eye movements
on a 24” screen. Participants were told that their gaze would be recorded,
and a calibration session took place before the actual game. Each partici-
pant played three complete games, each one in a different world and with
a different IG system.

Following the definition of valid games presented in Chapter 4.3 and
extending it to eye-tracking data, we only kept games where the client did
not crash, was not marked by the developers as a test game, and the player
completed the tutorial. We then used the eye-tracker calibration data to
remove games where the eye-tracker data was not properly calibrated. Fi-
nally, following Staudte et al. (2012), we only kept interactions for which
the eye-tracker calibration detected inspection of either the target or an-
other button object in at least 75% of all referential scenes in an interaction.

The final corpus includes 75 games, with a combined length of 8 hours.
We extracted 761 episodes, for a combined total of 47m 58s of recorded
interactions and an average length of 3.78 seconds (σ = 3.03s) per Episode.
261 Episodes are shorter than 2s, 207 are located in the 2–4s range, 139 are
located in the 4–6s range, and 154 Episodes are longer than 6s.

This dataset is not only smaller than the dataset from the previous chap-
ter, but also recorded for a single challenge. Therefore, we replaced the
cross-corpora-challenge setup from the previous experiment with a 10-fold
cross-validation setup. To keep the folds balanced, we first removed all
Episodes of length less than max(dtrain, dtest). The remaining Episodes were
classified as easy or hard, depending on the number of visible objects at test
time. An Episode was classified as easy if no more than three objects were
visible at that point in time. For dtest=0, 59.5% of all Episodes were consid-
ered hard, a value that increased to 72.7% for dtest=-6.

5.3.1 Results

For each pair of the 25 possible (dtrain, dtest) pair of values, we extracted all
Episodes fulfilling the length criteria. After segmenting them into training
and testing folds, we trained all models over the resulting training set.

72

We compared the accuracy values for PObsand EPObsover all combina-
tions of the (dtrain, dtest) parameters using a paired samples t-test. The test
indicated that the accuracy of the EPObsmodel (M = 83.72, SD = 3.56) is
significantly higher than the accuracy of the PObsmodel (M = 79.33, SD =
3.89), (t(24) = 9.51, p < .001, Cohen′s d = 1.17). These results indicate that
our eye-tracking features are particularly helpful when it comes to predict
which object will be selected by the IF in a hard scene. Figure 5.4 shows
results for all models except GazeOnly, segmented into easy and hard in-
stances. GazeOnly did not outperform any of the other models, and was
removed from the graph for clarity.

Figure 5.4: Accuracy as a function of training and testing time

Our results also show a peak in accuracy around the -3 seconds mark.
We created a 2x2 contingency table to contrast correct and incorrect predic-
tions for PObsand EPObs, and filled it with data from all Episode judgments
for −6s ≤ dtrain ≤ −3s and dtest = −3s. McNemar’s test showed that the
marginal row and column frequencies are significantly different (p < 0.05).
Seeing how close this peak is related to the average Episode length (and,
by extension, to the average required time between an utterance and the
resulting manipulation), this result show that our model is more accurate
precisely at the point in time when we expect the fixation to an object to
take place.

5.4 Conclusion

In this chapter, we have improved the accuracy of our model of listener’s
understanding developing feature functions that analyze the IF’s gaze. As
we have seen in our literature review in Section 5.1, gaze fixation, dura-

73

tion, and movement are closely related to an IF’s attention. This suggests
a plausible explanation for why the Visual Salience features of Chapter 4
are so relevant for the model’s success: because they work as a proxy for
our model to understand what the IF is paying attention to in a more direct
way than, for instance, the speed at which they walk towards a target.

In a GIVE game we would expect the user’s visual attention to provide
valuable information about the IF’s current goal, and our results are consis-
tent with our expected improvements: for the prediction of RE resolutions,
our EPObsmodel outperforms our previous PObsmodel in hard referential
scenes, with significant accuracy improvements in early stages of an inter-
action. Accurate predictions at early stages give us time to correct a misun-
derstanding before the IF makes a mistake, saving both the IF and IG the
trouble of repairing from a potentially costly mistake.

Even though gaze features improve the accuracy of our model, we have
also established that these features are not powerful enough by themselves
to outperform even the simplest baseline. To successfully use these fea-
tures, a model must be combine them with other, simpler features that cap-
ture other pragmatic phenomena taking place during an Episode.

With these results, we are now confident in our design choices regard-
ing the use of log-linear models for the prediction and detection of misun-
derstandings. We now explore practical considerations regarding crowd-
sourcing in Chapter 6, followed by our first approach to the correction of
misunderstandings in Chapter 7.

74

6

Crowdsourcing and

cheating detection

The experiments in previous Chapters were performed over recorded data.
Live data was not required because detecting misunderstandings does not
alter the behavior of the person following instructions, and the role of the
misunderstanding detection system is entirely passive. Correcting a mis-
understanding, on the other hand, requires an active collaboration between
the Instruction Given system and an Instruction Follower.

Performing laboratory experiments is the most common approach for
obtaining results on interactive tasks like these, but planning laboratory
experiments is not without difficulties: recruiting participants is often an
expensive process, both in time and money. It is also not trivial to show
how experimental results generalize when the test population is composed
almost entirely of highly-educated students from a single University.

Although there is no silver bullet that can dispel all of these concerns,
crowdsourcing promises comparable results to those obtained in the labo-
ratory at a lower cost. Crowdsourcing is a practice in which a number of
participants or workers from all over the world are recruited over the inter-
net to complete typically short tasks or HITs that are easy for humans to
solve but difficult for computers. It has become a popular mechanism for
both academics and industry to collect experimental data, as it can be done
quickly and cheaply.

There is no argument that the monetary cost of crowdsourcing is lower:
crowdsourced workers are typically paid less than students, and perform-
ing multiple experiments in parallel drastically reduces the time required

75

76

to obtain results. But there is a hidden cost: development time. In addi-
tion to the overload that planning an online experiment requires (includ-
ing knowledge of computer networks for experiments requiring more than
a simple questionnaire), crowdsourced workers have a motivation to cheat
that is typically absent in laboratory participants. Despite the existence of
guidelines and best practices, there is no single approach that works for ev-
ery single experiment. Our experiments are particularly ill-suited for stan-
dard cheating detection techniques: there is no “gold standard of human
behavior” that we can use to detect that a player is exploring the Virtual
Environment in a “dishonest” manner, and the excessive length (by crowd-
sourcing standards) of a typical GIVE experiment (about 10 min) makes
our task a particularly attractive target for cheating behavior.

This Chapter explores the countermeasures we took for our experiments
and the rationale behind them, presenting a view inspired both by best
practices in security research and by psychology research on the motiva-
tions of crowdsourced workers. We also explore whether the cost of these
extra steps still make crowdsourcing a viable alternative for typical labora-
tory experiments.

6.1 Cheating

This chapter uses the term “cheating” for two distinct but related situations:

Malicious cheating A player attempts to get paid for completing a HIT
without following our instructions, done in an intentional manner.

Unintentional cheating A player behaves in such a way that no rule is
technically violated, but where the resulting data (if any) is not fit for
analysis.

Example: What constitutes malicious behavior
Players were told that they could only play the game once. A player
that disguises his IP address in order to play more than once (and get
paid for each one) is a malicious cheater, while a player that restarts the
game because his web browser hung up (believing, perhaps, that the
first attempt doesn’t “count”) is an unintentional cheater.

Even though the theoretical/moral implications for each type are dif-
ferent, the practical concerns are ultimately the same: whether a worker
should be paid, and whether the quality of our data is high enough to be
analyzed. Therefore, we treat both cases mostly as one (for a more de-
tailed analysis, Gadiraju et al. (2015) present a more detailed taxonomy
of untrustworthy workers).

77

We make a strong distinction between cheating and bias: in our experi-
ments for Chapter 8 we observed that our collected data was skewed. This
phenomenon is known as “presentation order bias”, and it is to be expected
from honest workers in certain situations (Buchholz and Latorre, 2011). We
had to design our experiment in such a way as to prevent this bias from
altering our results, and yet it should be clear that exhibiting this bias is not
the same as cheating.

6.1.1 The security mindset

Schneier (2008) introduced the idea of the “security mindset”. Under this
approach, a security professional “can’t walk into a store without noticing
how they might shoplift” because they approach every situation wonder-
ing how they could make it fail. Schneier argues that this mindset (or the
lack of it) is the source of many security failures: the designers are so fo-
cused on making the system work, that they forget to account for how it
could be made to fail.

When it comes to detecting and preventing cheating, this mindset is
crucial. In their paper, Berinsky et al. (2012) affirm that “[Crowdsourcing]
is, in short, extremely inexpensive relative to nearly every alternative other
than uncompensated students”. Although our experience agrees with their
finding, it is important to remember that there’s more to the cost of an ex-
periment that its monetary value. A typical laboratory experiment assumes
a cooperative relation, in which test subjects are invested in the experi-
ment and do their best. In contrast, a crowdsourced task should be bet-
ter approached as a partially adversarial relation, where a single dishon-
est participant could derail an entire experiment: given that workers use
forums to tell each other both about well-paid tasks and easily-cheatable
ones, a weakness in the experimental setup can derail the entire experiment
(Vaughan, 2018; Buchholz and Latorre, 2011).

Conti and Caroland (2011) assert that “the dissonance between how our
adversaries operate and how we teach our students puts our students at
a distinct disadvantage when faced with real world adversaries who in-
evitably do not play by the rules”. This scenario comes into play when
we deal with anonymous internet users who would derive monetary gain
from our failures to properly secure the experiment. It should be clear that
a properly designed crowdsourced experiment requires a a security mind-
set, and appropriate checks and tools to support it.

This is the extra price that experimenters must pay when crowdsourc-
ing a task, requiring a new approach to typical laboratory tasks. The counter-
measures detailed in this chapter are inspired by this mindset, presenting
a case-study on how we adapted our existing infrastructure for a crowd-
sourcing setup.

78

6.1.2 Related work

The subject of cheating in crowdsourcing has received increased scrutiny
in recent years, centered primarily around two questions: why do workers
cheat, and what can be done to ensure that the collected data is “honest”.

Studies have long asserted that the reliability of data collected via crowd-
sourcing can be comparable to that of data collected in a laboratory (Gadi-
raju et al., 2017). That doesn’t mean that cheating does not occur. Suri
et al. (2011) asked workers to roll a number of dice and self-report their
results, concluding that “while few cheated a lot, many cheated a little”.
Other studies have reported nonsensical answers (Corrigan-Gibbs et al.,
2015; Gadiraju et al., 2015) and the use of automation tools (Eickhoff and
de Vries, 2013; Dreyfuss, 2018). For an extreme case of dishonesty, Ste-
fanovitch et al. (2014) performed a detailed analysis of active attackers ef-
fectively disrupting a crowdsourced system in a document-reconstruction
competition; the “multiple attackers” described in the article were later re-
vealed to be just two disgruntled competitors (Harris, 2015). This incident
serves as a cautionary tale of the damage that can be done to a task in the
absence of appropriate quality checks.

On the topic of “why do workers cheat”, the literature research per-
formed by Corrigan-Gibbs et al. (2015) details such disparate factors as
tiredness, being a darkened room, being previously primed with a text
about philosophical determinism, time to contemplate their own actions,
self-control, and being previously treated unfairly as causes for an increase
in cheating rates. Their findings suggest that honor codes are ineffective at
curbing cheating and suggest warnings about the negative consequences
as a better alternative. They also found that the probability of cheating is
negatively correlated with the age of a worker, and positively correlated
with how long a worker has been a member of the platform. Suri et al.
(2011) found that a change in the average gain that workers could earn by
cheating did not significantly impact the levels of dishonesty, and found
no significant correlation between cheating and gender, college education,
income, nor ethnicity.

Mazar et al. (2008) affirm that, when deciding whether to cheat or not,
a person finds a balance between two forces: a cost-benefit analysis on the
reward of cheating and the likelihood of being caught, and the effect that
cheating will have on their own self-image. The first factor is rooted in stan-
dard economic theory (Allingham and Sandmo, 1972), while the second
is inspired by psychological studies on intrinsic motivation (Mazar et al.,
2008).

Detecting cheating is very task-specific, and therefore no one-fits-all
solution exists. IP addresses have repeatedly shown to be an unreliable
method for identifying workers, given the evidence of multiple workers
using a single address (Corrigan-Gibbs et al., 2015; Berinsky et al., 2012)

79

to either use multiple parallel accounts and/or conceal their real demo-
graphics. Gold-standard questions are the default control method but they
are not available for all tasks, and are particularly inadequate for surveys.
Gadiraju et al. (2015) has raised further questions regarding their effective-
ness, asserting that gold-standards might not be enough to guarantee the
reliability of the data since workers classified as smart deceivers have be-
come adept at spotting them. Corrigan-Gibbs et al. (2015) detect cheaters
via a combination of honeypots, IP address check (when possible), and
plagiarism-detection techniques. Suri et al. (2011) performed a statistical
analysis on the aggregate data of dice throws, and concluded the presence
of cheating due to the statistical unlikeliness of the collected data. Buchholz
and Latorre (2011) detect cheating using additional data about the task,
checking whether workers that claimed to listen to an audio sample actu-
ally did it. Eickhoff and de Vries (2013) introduced agreement with results
from other workers and checks for anomalies in task completion times.

6.2 Pipeline

In order to understand the quality checks we have implemented, this sec-
tion presents a brief overview of our data collection tasks and the corre-
sponding pipeline.

The experiments detailed in Chapter 7 required us to re-run the GIVE
Environment described in Chapter 2.5, this time using crowdsourced play-
ers rather than volunteers.

Figure 6.1: Crowdsourcing pipeline

The data collection pipeline for this task can be seen on Figure 6.1. A
worker finds our task in Crowdflower (1) and reads the instructions of the
task. They click on a link, and this opens a new window to the GIVE Unity
client. The client contacts the GIVE Matchmaker (2), which contacts the
automated IG system (3). The worker and the IG are then connected, and
the Matchmaker monitors the task to log the game in a database (4). Once
the game has ended, the worker returns to the Crowdflower interface (5),

80

and fills a questionnaire about their performance and their general opin-
ions about the game.

6.2.1 The GIVE Matchmaker

In order to connect human IFs over the internet with IG systems from sev-
eral research institutions, the GIVE Challenge provides a service known as
the Matchmaker. This server receives connections from the GIVE Client
(used by human players), selects an IG system, and connects one with the
other. Additionally, the Matchmaker receives periodic update information
from both services and stores them in a centralized database. These logs
contain enough information to reproduce an entire game, and when col-
lected they conform the raw data that experiments based on GIVE require.

After an assessment of the type of cheating that could be realistically
expected, we decided to ignore possible manipulations of the Matchmaker
from the participants: while a determined attacker could theoretically alter
the reported results, the time required to research and perform such and
attack vastly exceeds the cost of both playing the game honestly and other,
more popular cheating strategies.

6.2.2 The GIVE Unity client

The data collected for the GIVE-2 and GIVE-2.5 Challenges was collected
using a web client programmed in Java. This client could be downloaded as
a single file requiring no installation, making it easier for players to join the
Challenge. By the time we considered the collection of extra data, advances
in web technology had made the Java client obsolete. Therefore the client
was rewritten by Nikos Engonopoulos using the Unity web framework,
running directly in the user’s browser and requiring only the install of a
standard browser plugin.

As with the Matchmaker, securing the Unity client was not considered
a priority for our task given the amount of effort that modifying the binary
and/or intercepting communication with the Matchmaker would require.
We did ensure however that no task-critical information would be visible
in the URL bar of the browser, as this information is plainly visible and easy
to modify.

We also accounted for specific behavior in different browsers. Several
workers attempted our task using browsers that were not in the list of ex-
plicitly supported browsers, leading to unexpected behavior such as load-
ing the wrong GIVE world. Browser incompatibility is one of the main
challenges when dealing with online tasks, and for this reason Crowd-
flower does not allow experimenters to reject workers based on this setting.
We solved this problem bundling all parameters inside the binary and seg-
menting the task into several smaller sub-tasks, each one with their own

81

version of the binary.

6.2.3 The GIVE Automated IG

Given that the GIVE Challenge was designed as a web-oriented task, our IG
system was prepared for internet connectivity from the start. Nonetheless,
establishing connectivity between all components of the pipeline presents
challenges that are typical for all but the simplest of crowdsourced experi-
ments. Solving them is a perfect example of the hidden costs mentioned in
this Chapter’s introduction, as they can make the difference when deciding
whether to use crowdsourcing.

At the simplest level, when a computer system connects with another
over a computer network they do so using specific parameters. These pa-
rameters include the IP addresses of one another (a unique identifier of every
computer in the network), the source and destination port numbers, and the
protocol for that communication (TCP and UDP being the most popular).
In a typical situation, a server will listen in a specific port for connections
using a specific protocol. A client contacts the server sending a message to
its IP address and the correct port and protocol. A handshake takes place
to establish communication, and the interchange itself begins. The entire
communication is segmented into packages of fixed size containing, among
other information, both the sender and destination of said package (Tanen-
baum, 1988).

Whether a connection can take place depends on whether both sys-
tems can contact each other and whether package exchange between them
is allowed. In our experience the most common reasons for communica-
tion failure are either network topology problems where at least one of the
computers is inside a private network, or a strict firewall configuration that
blocks connection attempts.

Communication inside a computer network is mediated through routers.
A router receives all packages from computers inside its network and redi-
rects them to its intended destination. If the destination system is con-
nected to the router, then the router delivers the package directly. Other-
wise, the package is forwarded to a different router “closer” to the destina-
tion system, and the process repeats itself.

Even though all computers in a private network have individual IP ad-
dresses, these addresses are often invalid outside this network. To contact
a computer outside the network, the router will often mask itself as the
sender, forward all packages to another router, and will afterwards forward
responses back to the original sender. This is possible because the router,
unlike the sender, is placed in the boundary of two or more networks and
can therefore contact other routers. Figure 6.2 illustrates this situation.

82

Figure 6.2: Network connectivity example. Computers inside a private net-
work can connect with each other, but communication outside must go
through a router. Public computers cannot contact computers inside the
private network directly.

Example: Visiting a website
A typical private network will assign each computer an IP address in
the range 192.168.X.X, where the last two ’X’ are numbers in the [0, 255]
range. These addresses are reserved, meaning that only computers in
private networks can have an IP address in this format. If the computer
with (private) IP address 192.168.1.10 wants to contact the website with
(public) IP address 200.16.30.5, it sends a TCP package to this address
using port 80 (the assigned port for HTTP connections, i.e., web sites).

The router receives this request, and changes the package’s sender
from 192.168.1.10 to its own public IP address — if it didn’t, all pack-
ages would be refused because 192.168.X.X addresses are not allowed on
the public internet. The website in 200.16.30.5 receives this package and
sends a reply back to the router, who finally delivers the reply back to
192.168.1.10.

This process is unidirectional - it is by default impossible to send pack-
ages from the public internet to a private IP address because the package
cannot be addressed: given that the recipient’s IP address is reserved, any
package in the public internet with a private recipient address would be
immediately rejected. The usual solution to this problem is port forwarding,
a configuration option in which the router agrees to forward all packages
directed to a specific, configurable port to a specific computer.

In addition to whether a package can be addressed, routers are often
paired with firewalls which accept and/or reject connections based on a se-
curity policy. In a typical configuration, a firewall may only accept pack-
ages directed to a specific port or coming from a trusted network.

Figure 6.3 illustrates the flow of information in our University network
from a worker’s point of view, as regulated by our institution’s firewall
and router. We placed the GIVE Matchmaker in a server facing the public

83

Figure 6.3: Network connectivity for our pipeline. The GIVE Matchmaker
is on the public internet, while the GIVE Automated IG resides in a pri-
vate network. Port forwarding is requires to allow communication between
them.

internet, allowing for free flow of information to and from the workers’
computers. The Automated IG, on the other hand, was placed inside the
University’s local network. We chose this setup because using our local
computers made it easier to monitor in real time the status of the system.

As expected, placing each computer in a different network led to the
communication problems that we explored in previous paragraphs. We
solved this problem using SSH Tunnels (Ylonen and Lonvick, 2006) as a
mechanism for port forwarding. This mechanism opens an encrypted con-
nection from the Automated IG’s computer to the GIVE Matchmaker’s,
keeps it open, and allows traffic in either direction to pass through. We
then modified the GIVE Matchmaker to contact the Automated IG exclu-
sively through this tunnel, circumventing the limitations of the network
architecture.

Circumventing the firewall added an extra item to our security threat
model: the possibility that an attacker would gain access to our internal
network through it. Computers connected to the internet are under con-
stant probing for vulnerabilities, and our tunnel could allow an attacker
with enough knowledge to reach our internal network. Even though the
likelihood of this event was considered low, we ensured that all tunnels
were closed immediately after the end of an experiment.

This example illustrates the type of problems that must often be ac-
counted for when dealing with crowdsourced projects. Researchers un-
familiar with computer networks might find these steps too complicated
and expensive in time, to the point of making laboratory experiments more
cost-effective.

For these reasons, the experiments in Chapter 8 ran entirely on rented,
cheap internet servers. While more technically challenging to set up, any
potential breach in one of these servers can be easily counteracted by sim-
ply deleting and reinstalling the entire server.

84

started_at When was the task started
created_at When was the task ended
worker_id Crowdflower identifier for this worker

country Country reported by this worker
region State and/or region reported by this worker

city City reported by this worker
ip IP address of this worker

Table 6.1: Metadata provided by Crowdflower for each worker

6.2.4 The Crowdflower interface

The Crowdflower platform is built around the concept of a survey, in which
researchers build standard question forms for workers to complete. A
typical HIT would ask a worker to describe an image, translate a para-
graph, complete a multiple-choice form, or transcribe a short audio record-
ing. Crowdflower also allows researchers to restrict their demographics to
workers from certain countries, workers with a minimum personal rating,
and/or native speakers of a specific language.

Our GIVE games do not fit this pattern, since asking users to play a
short game is not one of the typical crowdsourced tasks, and therefore it
is not officially supported by the interface. To work around this issue, we
implemented our game as a questionnaire: in the instructions of our HIT
we asked users to click on a link, play a game there, and then come back
to Crowdflower and answer some questions about their experience. These
questions were taken from previous GIVE Challenges and, although we
had no immediate use for them, were kept in all tests in case we needed
them in the future.

Deviating from the official use cases came with an important downside:
we lost the ability to use Crowdflower’s quality control measures. In a
typical HIT, researchers can intermix questions with known answers, and
use them as control - a worker that answers these gold-standard questions
incorrectly can be safely removed from the dataset. Our games have no
“right” answer, and there is no communication between the platform and
the GIVE Unity client. Therefore, there is no mechanism in place for us to
indicate Crowdflower that a given answer is “wrong”.

After an experiment has ended, Crowdflower provides a file with all
the collected data. This file includes information from each worker, their
reported answers to our questions, and metadata about both the workers
and the task. A list of the most important metadata fields can be seen in
Table 6.1.

Finally, the interface presented us with the possibility of contacting anony-
mous workers using the platform to judge our task. By asking them to sug-
gest fair judgments for difficult situations, inquiring about the clarity of the

85

instructions, and receiving open feedback in general, we were able to both
verify that our games were fair to workers and to improve those aspects
where workers suggested improvements.

6.3 Quality control

Each part of our pipeline is subject to quality controls. In this way, we can
ensure that every unexpected situation is taken care of.

In classification terms, we want to avoid both false positives (marking
a worker as a cheater) and false negatives (accepting data from a cheater
as valid). False positives make us collect more data than strictly required,
incurring in extra expenses and requiring more time to completion; false
negatives can poison our data, leading to conclusions that do not corre-
spond with reality. For our experiments, we have chosen to prioritize the
detection of false negatives over false positives: collecting more data is still
cheap, while identifying and removing inaccurate data would simply move
the problem to a sub-task as complex as the current one.

Given that the incentives for crowdsourced experiments are different
than those performed in the laboratory, a crowdsourced GIVE game is sub-
jected to extra quality controls than those detailed in Chapters 4 and 5. A
crowdsourced game can only be considered valid if it contains at least one
button press, a duration of at least 3 minutes (to avoid intentional loses),
and it ends in either success, a canceled game, a loss, or a server crash (a
result not contemplated in previous definitions). Games that do not fulfill
these requirements are flagged as either suspicious or invalid, depending
on the discrepancy.

Identifying whether a flagged game should be accepted or not became
a large enough problem that further development was required. We estab-
lished an extra “chain of custody” test in which we would not only identify
whether a discrepancy between recorded and reported data was found, but
would also identify the source of this discrepancy. For each worker in the
Crowdflower-provided dataset, we check a set of conditions:

1. That a game exists in the Matchmaker database with matching IP,
experiment ID, and secret words. This is important to ensure that the
worker has actually started the client, and was critical for discovering
dishonest reports: several players from several countries showed up
with the same IP address, and several players would use the same
pair of secret words for different games.

2. We then contrast the player-reported result with the database-reported
result and, should a disparity arise, investigate its source. Example of
discrepancies resolved in favor of the players would be a secret-word

86

Figure 6.4: Web interface of the cf-thesis project

mismatch for a successful game, games where the connection was in-
terrupted, and games where players were disconnected immediately
before ending the task.

3. An extra check was added here to ensure that players that won the
game did it at their first try. Despite our instructions, many players
would restart the game several times. In those cases, we only used
the first game and discarded the rest.

In order to ensure that this “chain of custody” was respected, we de-
veloped a custom tool for the cross-reference of data (Lisovskaya, 2015). A
screenshot is shown in Figure 6.4.

6.3.1 Payment scale

With payment being one of the worker’s main motivations, we sought a
balance between two opposed interests: we wanted the task to be better
paid than other tasks to entice workers to take their time, while remaining
cheaper than the typical cost of recruiting volunteers on campus.

We decided to implement a two-level pay scale. We set a base price of
US$0.7 per completed game with a bonus of US$0.3 for successfully com-
pleting the task, which we estimated to be as high as European minimum
wage. With typical crowdsourcing tasks paying below this amount (Ross
et al., 2010), we had no shortage of volunteers for our task and each experi-
ment was completed in less than a day. This surplus of volunteers allowed
us to be more liberal when it came to discarding suspicious data.

6.3.2 Secret words

A downside of having a well-paid task was that the incentive for players to
cheat became higher - the fastest they can complete a task, the sooner they

87

can move to another one. If the task can be exploited reliably, they might
also let other workers know.

Our first countermeasure against cheating was adding a pair of random
control words to every game. Players were shown two control words, one
at the beginning and one at the end of a game, and then were asked to write
them when filling the after-game report.

Players who didn’t fill the secret words correctly could be removed
from the dataset, as this would prove evidence that they did not follow
the instructions correctly: either they did not follow the link that starts the
game, did not read the instructions in the questionnaire, or both.

This strategy proved successful at identifying users who weren’t inter-
ested in following the task. Several of the incorrectly entered words re-
vealed players who didn’t read the instructions, didn’t understand them,
and/or directly ignored them. For instance, ...

• . . . workers that played the game several times, always repeating the
same words from the first play

• . . . workers whose computers did not respect our minimum system
requirements, and therefore should have not accepted the task: some
workers reported error messages for this field, where the text of the
error reflected players that did not read/follow the instructions

• . . . workers who made up words, since they were not in the list of
possible secret words

• . . . workers that entered random strings of text

• . . . workers playing under different IP addresses but using the same
keywords

These results are in line with those reported by Eickhoff and de Vries
(2013), who detail that “workers tried to issue made-up confirmation codes,
to resubmit previously generated codes multiple times or to submit several
empty tasks and claim that they did not get a code after task completion”.

6.3.3 Results

The pipeline that we presented here is designed with the goal of identi-
fying data that is as good as data collected in a laboratory. The strategies
that we presented here provided us with an iron-clad argument for identi-
fying players whose data should be excluded from the final set, but it did
not provide us with a reason to refuse payment to workers: according to
Crowdflower’s Terms of Service, all players that complete the question-
naire are entitled to payment for their time, and therefore they had to be
paid regardless of whether their data can be used or not.

88

We also observed that some of our restrictions about workers were not
met. We restricted our participants to workers of specific, English-speaking
countries and with high English proficiency. Our data, however, provides
evidence of workers using proxy servers to access our task from countries
other than their own, and of players claiming good English skills while
displaying a significant amount of grammatical errors in their responses.

According to our estimates, roughly 50% of the data was discarded due
to low quality. After a cost-benefit analysis, we decided that paying all
players regardless of the quality of their data was the best solution: the to-
tal cost of a game factoring discarded data was still below the cost of paid
student volunteers, with the added benefit of fast turnaround between ex-
periments. The dual pay scheme was kept for two reasons: to properly
reward players who did their best, and because we observed a higher sat-
isfaction rating for tasks with this incentive over those without.

As for the issue of controlling for English proficiency, we chose to make
no statement regarding the English skills of our participants. Given that
the original GIVE Challenge made no claims in this regard, simply asking
volunteers to self-evaluate, we decided that dropping any claims about this
issue was the best solution. Researchers making language-specific claims
might decide for a different approach.

The final question is whether we still consider crowdsourced experi-
ments cheaper than a laboratory experiment once all hidden costs are fac-
tored in. For standard tasks that follow the templates provided by crowd-
sourcing platforms, we do believe that the cost is worth it: with the advice
presented here regarding a security mindset and the reduced attack surface
that crowdsourcing platforms offer, it should be possible for researchers to
set up experiments with a reasonable degree of certainty in their results.
For non-standard tasks, however, our assessment is mixed: we would only
recommend it to researchers who are either already familiar with or in-
terested in computer networks, browser compatibility issues, and security.
Otherwise, setting up and debugging a complex crowdsourced experiment
might be too much of a time investment when compared to other, more
familiar setups.

6.4 Conclusion

This chapter introduced a detailed example of an end-to-end crowdsourc-
ing pipeline. While the specific measures detailed here might be too specific
for our use case, we hope future researchers will benefit from the detailed
analysis on how to secure a specific task using an attacker-oriented ap-
proach. Planning our experiments with this mentality enabled us to gather
plenty of usable data at lower costs.

There is no single way to prevent cheating in crowdsourced tasks —

89

each experiment has its own rules and preconditions, and choosing a cheat
detection strategy will always depend on them. But we can still identify
some initial guidelines: giving workers motivation to complete the tasks,
double-checking all data coming from the workers themselves, and using
domain knowledge to filter obviously bad answers can go a long way.

It is also important to remember that the relation between researchers
and workers should not be entirely adversarial, but rather a collaboration:
a successful crowdsourced experiment should pay the workers well, avoid
punishing all workers for the actions of a few “bad apples”, and use all pos-
sible feedback mechanisms to improve the task using workers’ opinions. A
researcher should aim for a balance between rewarding good workers and
defending against ill-intentioned ones.

We have also explored the technical hidden costs that a crowdsourced
task involves. A web-oriented approach like ours requires researchers with
a solid knowledge of computer network basics, and may even require in-
stitutional support regarding access to public servers and modification of
firewall rules. Researchers without this level of technical knowledge are en-
couraged to either partner with other, more technical researchers, or make
use of their crowdsourcing platform’s pre-defined templates and tasks to
simplify the setup process (at the cost of reduced freedom of choice for ex-
perimental setups).

Having established the rationale behind our network architecture, we
now move to the experiments that made extensive use of it: the generation
of Corrective Referring Expressions with an explicit Context Set.

90

7

Correcting

misunderstandings:

reformulation

Once a misunderstanding in a Referring Expression was detected, and the
misunderstood referent has been identified, the next step is to find an ap-
propriate strategy to correct this mistake. The simplest possible approach
would repeat the last utterance, hoping that the mere repetition of an in-
struction will be enough to redirect the user’s attention from the misun-
derstood target to the correct one. This approach is sub-optimal for several
reasons, as we have seen in Chapter 3: a repeated utterance could no longer
apply to a changed context, be less likely to be successful, more complex to
understand, or could simply be dismissed as a technical glitch, among oth-
ers. It is however easy to implement, making it the default first choice for
many implementations.

A more advanced approach would take advantage of what we know
about the Instruction Follower’s attention, namely, which objects have cap-
tured it, and which ones have not. The set of objects that captured at least
part of the Instruction Follower’s attention is called the Context Set, and
whether we can build a robust error correction strategy around it is an open
question that we explore in this Chapter.

In the first half of this Chapter we formalize the notion of a Context
Set (CS) both from a Pragmatics and a Computational point of view. Our
approach leverages both what we know about Context Sets and the prob-
abilistic information about the environment provided by the models of lis-

91

92

tener’s understanding that we developed in previous chapters. We build
several strategies on top of this formalization, presenting Referring Expres-
sion Generation techniques that take advantage of this CS, and tested them
experimentally.

Our main hypothesis suggests that Referring Expressions (RE) that are
only uniquely identifying with respect to the CS could be more effective
that a typical RE, given that they convey the same meaning using shorter
utterances. An Instruction Follower that is undecided between a blue but-
ton and a red one could probably benefit from an RE such as “the red one”
even if there are other red objects in the scene. We therefore present a modi-
fication to the SIG-based generation algorithm to model this feature explic-
itly.

Our experiments on the GIVE Challenge show that this hypothesis by
itself does not present the whole story, and we therefore dedicate the sec-
ond half of this Chapter to an error analysis of our strategy. Researching the
type of situations in which our strategy underperforms (along with those
where it outperforms the baselines) paints a broader picture of how a Con-
text Set is created and modified, and the complex interaction between at-
tention, instructions, and corrections. The lessons we learn in this Chapter
include observations on how to properly account for previously-grounded
objects, the importance of proactive feedback, and the effect that a correc-
tion can have in the content of a Context Set.

7.1 Attention and Context Set

In Chapter 5 we mentioned that the visual short-term memory (VSTM) has
a capacity of around 4 objects, and that all objects in the visual field com-
pete to be encoded into it. We also introduced TVA as a computational
model that explains how are objects in a visual scene encoded into the
VSTM, using weights and biases to model the intrinsic motivations of an
individual.

Visual short-term memory is but one kind of memory. When reading a
novel, for example, our memory will not be filled with letters and numbers
but rather with the characters that populate it. Therefore, we use the more
general term “short-term memory” to denote the set of objects that capture
our attention, regardless of which of our senses (if any) we used to perceive
them.

The concept of attention is intimately related to the concept of com-
mon ground presented in Section 2.6. In the visual attention literature, our
attention is directed both by the saliency of objects in the environment
(bottom-up approach) and by our own biases and motivations (top-down
approach). The common ground, defined as a shared belief about informa-
tion that both interlocutors in a dialogue are aware of, also assumes that

93

specific topics are more readily available than others: to successfully re-
cover the intended referent of expressions such as “her” or “yes, that one”,
the intended referent must be so salient that both interlocutors are aware
of its saliency in the current context, regardless of their own internal biases
and weights. This similarity has been explored by Sanford and Garrod
(1981), who assert that the candidate referents for an interpretation project
are already encoded in short-term working memory.

This set of candidate referents for an interpretation is known in the lit-
erature as the context set (CS) or distractor set, and a formal definition has
always proved difficult. Smith and Lieberman (2013) gives a first defini-
tion as “the viable candidates for an interpretation process, which evolves
over the course of dialogue”. Krahmer and Theune (1998) refine it fur-
ther as “the set of objects speaker and hearer are currently attending to”.
Gotzner (2017) presents a detailed analysis of current theories, conclud-
ing that the set is constructed first with a broad set of alternatives (in line
with the findings of Rooth (1992)), but it’s then narrowed down by factors
such as recency, locality, plausibility, etc. Despite these restrictions, asserts
Gotzner, the end result is broader than what it’s typically assumed in the
literature.

Although the mechanisms that decide whether an object is part of the
context set are not clearly defined, researchers have exploited this concept
in their work and even presented formalizations of the CS that can be ap-
plied to specific domains. DeVault et al. (2004) use a CS to generate REs in
an scheduling application, and remark in their results that the effect that
specific REs have in the CS is not always easy to predict: in their examples,
the expression “Please fill in the cc field of the message” will not only have
the intended effect of adding “the cc field” into the CS, but it will also have
the unintended side-effect of bumping up the saliency of “the message”.
Smith and Lieberman (2013) relies on this concept to disambiguate objects
when their description uses vague descriptions.

7.2 Generating with a Context Set

If we had access to the IFs context set, we could improve our generation
algorithm in several ways: if a RE did not encode our intended object into
it, we could immediately detect that a misunderstanding took place. We
could also optimize our REs, designing them to exploit the most salient
information and making them easier to resolve.

If our intended object is the most salient one in the CS, then feedback
as simple as “yes, that one” can be effective (Koller et al., 2012). If it’s not,
we would expect that REs referring to objects in the CS would be resolved
quicker, because the objects mentioned in the RE would already be loaded
into visual short-term memory (VSTM). But generating REs that only refer

94

to objects in the CS may not always be possible. Depending on the situa-
tion, a CS can either help or hinder our algorithm.

Consider the scene presented in Figure 7.1a, where we want to generate
an RE for b8 with the CS defined as the set {b7, b8, b9}. In this situation,
we would prefer “the blue button underneath the red button” over “the
blue button to the left of the blue button to the left of the blue button”: the
cognitive effort required to interpret an RE as long as the later would be
higher than the effort involved in adding an object with a salient color to
the VSTM. On the other hand, it would be impossible on a scene such as
7.1b to generate REs without even an approximation to a CS – the set of
visible objects being a common one.

(a) Square grid of buttons (b) Buttons around a pillar

Figure 7.1: Example of scenes with color buttons

To strike a balance between both situations, we defined an explicit pol-
icy for the generation of REs: out of all REs referring to our intended object,
our policy considers only those that are uniquely identifying with respect to
the CS. This policy is based on two hypothesis:

• REs that are not uniquely identifying are typically shorter, and shorter
REs are assumed to be easier to understand, following Grice’s Coop-
erative Principle and, specifically, it’s maxim “be brief” (Grice, 1975).

• Discriminating between objects, all of which are already loaded into
short-term memory, should require little effort. Bringing into play
objects that are of no interest for the IF should not help with the reso-
lution of the RE, and therefore should be avoided.

To describe this new property, we added rules to the SIG presented in
page 22, replacing the rule shown in Figure 7.2a with the rules presented
in Figure 7.2b. This change is required to introduce tighter control of am-
biguous REs to the grammar: a not-yet discussed feature of SIGs is the pos-
sibility of marking some rules as final, and requiring all accepted trees to
contain one such rule as their root. The unmodified rule is marked as final

95

for all a ∈ U:
NPa!→ def a(Na)
IS(def a)(w1) = the • w1
IR(def a)(R1) = membera(R1)

(a) Original SIG rule for producing
uniquely identifying NPs

for all a ∈ U:
NPa → def a(Na)
IS(def a)(w1) = the • w1
IR(def a)(R1) = membera(R1)

for all a ∈ U:
N̂Pa!→ hatdef a(Na)
IS(def a)(w1) = the • w1
IR(def a)(R1) = uniqa(cs∩1 R1)

(b) Modified SIG rules for producing NPs
based on the context set

Figure 7.2: SIG rules that were altered to incorporate the CS into the RE
generation process

in the grammar, allowing the generation of vague REs such as “the button”.
In contrast, the two rules in 7.2b introduce a different mechanism: the (non-
final) top rule allows for sub-NPs beginning with “the” even if its semantic
interpretation resolves to a set of more than one object (as in “the button”),
while the bottom final rule introduces productions that are uniquely iden-
tifying when their semantic representation is intersected with the CS. We
can imagine that the top rule introduces REs of the type “a button” while
the bottom rule only generates rules for which “the button” would be un-
ambiguous. While this would be a more syntactically correct approach,
the use of “the” instead of “a” in the first case yields more natural REs.
With these changes, we can generate REs such as “the button above the
blue button” that are uniquely identifying without also requiring the sub-
expression “the blue button” to be uniquely identifying.

We have seen in previous chapters how to compute the probability
P(a|r, s, σ) of a given RE r being resolved to an object a given a context
s and observed behavior σ. This probability is being constantly updated
thanks to the PObsmodel, can be seen as a proxy for the common ground
and, by extension, to the elements present in the CS. In our experiments,
most objects on a GIVE world display a probability close to 0. Those with
non-zero probability were often found to be relevant to the current Episode,
and therefore merit its inclusion in the CS. As a result, our general defini-
tion of a CS for an Episode that starts with the RE r for an intended object a
would be “the set of targets whose probability of being understood as the
intended referent of r is higher than 1 standard deviation over the mean”.

Given such a CS, we can define a distractor a′ 6= a as any object whose
probability of being understood as the intended referent of the RE r is equal
or higher than the probability of a.

Distractorsa = (a′ ∈ CS|P(a′|r, s, σ) ≥ P(a|r, s, σ) ∧ a′ 6= a) (7.1)

96

With this definition, we can now formalize two important concepts: we
will say that a misunderstanding took place if the set Distractorsa is not empty,
and we can define the misunderstood object as the object a′ ∈ Distractors
with the highest probability P(a′|r, s, σ).

7.3 Experimental setup

7.3.1 Strategies for feedback generation

We implemented three RE generation systems to test our feedback strate-
gies.

The Baseline system is a modified P1 system (Garoufi and Koller, 2011b)
that does not give feedback unless the player selects an incorrect object.
This system guides the player towards the intended object using exclu-
sively simple navigation instructions, not generating any other RE beyond
“the door” (as in “go through the door”).

Once the intended object is visible and closer than a certain range, a ma-
nipulation instruction is given in the form “Click < RE >”. If the player
clicks the correct object then an affirmation is given, and the player is di-
rected towards the next object. If the player clicks the wrong object, or if
they leave the room before clicking any object, then the interaction is con-
sidered failed and the player receives a new instruction, be it navigational
(if the player is now too far away from the intended object) or manipu-
lation (if the player is still close enough to interact with the object). This
navigational strategy remains constant for all systems.

The first feedback strategy is named Repeat, and it is more proactive
towards giving feedback. Whenever the system estimates that the player’s
attention is not focused on the intended target (that is, if the CS contains
more than one element), then it repeats the last instruction if the target is
visible, or generates a new navigational instruction otherwise. This system
tests our first hypothesis that even a non tailored feedback RE will perform
better than no feedback at all as long as the timing is correct.

The second feedback strategy, CS_Feedback, follows the steps from the
previous system, generating initially the same kind of REs. Should a mis-
understanding be detected, however, then a corrective RE is generated, this
time taking the CS into account: the new RE is only uniquely identifying
with respect to distractors, as detailed in Section 7.2.

In all cases, players can request help at any moment. When this hap-
pens, a new instruction is given immediately, disregarding the current strat-
egy and the CS (if it applies).

97

7.3.2 Results

The resulting corpora consists of 370 episodes collected from 69 valid games
out of 90 total games from 180 participants. Each player was assigned an
IG system at random, and no player was allowed to play more than once.
Table 7.1 shows the success rate for each strategy.

System Games Won Lost Cancel Success rate
Baseline 24 8 11 5 33.33%

Repeat 18 6 12 0 33.33%
CS_Feedback 27 16 9 2 59.26%

Table 7.1: Accuracy for each RE Generation system.

Our two main measures of interest are resolution accuracy per button
(how many Episodes for each target object were successful) and average
Episode length (also per button), subdivided in easy and hard Episodes
as detailed in page 71. All systems performed extremely well for easy
episodes with accuracy over 97% in the worst case, and therefore are of
no further interest for our analysis. Table 7.2 presents the results for hard
Episodes, at which point the analysis reveals a less promising picture.

Baseline Repeat CS_Feedback
Accuracy Duration Accuracy Duration Accuracy Duration

Button (%) (ms) (%) (ms) (%) (ms)
bblue9 90.00 12 570 93.33 13 063 68.37 13 979
bhall1 93.65 4 887 98.61 6 610 94.50 5 355
bhall6 84.44 11 164 90.29 8 310 73.72 8 958
bhall8 85.71 9 946 92.13 14 520 81.08 11 568
bhall9 57.14 8 343 45.45 7 715 75.00 7 320

Table 7.2: Average accuracy and Episode duration per button and system
(hard episodes)

For hard episodes, the Repeat system outperforms on average both the
Baseline system and the CS_Feedback system on accuracy, but neither sys-
tem achieves statistical significance over the other on a paired t-test. There
is a trend in favor of the Repeat system over the CS_Feedback system, but
ultimately no system gets a clear advantage over each other. Removing
bhall9 from the dataset makes Repeat (statistically) significantly better than
the other two, a result that the next section explores in detail. The aver-
age duration of an Episode for each system show no statistical difference
between any two systems.

98

(a) Top view (b) 3D view

Figure 7.3: Button bhall9 and surrounding environment

7.3.3 Error analysis

The results of our experiment are mixed: CS_Feedback achieves significantly
more completed games, but its REs for hard Episodes are actually harder to
understand. To complicate matters further, the Repeat strategy would show
what we expected from previous chapters (that is, an improvement in per-
button accuracy due to timely feedback), but this effect disappears once we
include results for bhall9.

An analysis of these failures yields a better picture of the kind of be-
havior that is to be expected from human IFs interacting with our system,
and provides insight into the strengths and weaknesses of CS_Feedback. We
focus on three specific research questions:

1. What is special about bhall9 that makes it critical to the overall success
rate of a game?

2. If CS_Feedback generates harder instructions, why is the success rate
per game higher?

3. Why are CS_Feedback’s instructions harder to understand?

To answer the first question, we need to look closer at the environment
surrounding bhall9, as shown in Figure 7.3.

This button is close to an alarm, and players manipulating the button
must pay special attention not to step on it. The REs generated by both
Baseline and Repeat are uniquely identifying w.r.t. the current room and do
not change depending on the visible objects, leading to very precise but
sometimes complicated REs. In our experiments, complex instructions re-
peatedly led IFs to take steps back in order to get a better look at a complete
scene, or to look for other buttons that they could have possibly missed.
It is during this process that many of them step on the alarm and lose,

99

(a) Top view (b) 3D view

Figure 7.4: Buttons in an L-shaped configuration

while those that don’t still spend a substantial amount of time maneu-
vering around it. CS_Feedback does not suffer from this problem because
REs change based on the currently visible objects. While these REs may
be more difficult to understand, their adaptation to a changing visual en-
vironment leads both to higher per-game accuracy (because players don’t
need to walk back as often, and therefore lose less) and higher accuracy for
bhall9 (because the button is eventually clicked, unlike in lost games).

Lesson learned: bhall9 brings to the surface a specific pattern of human
behavior. Explicitly accounting for it goes beyond the scope of either of our
systems, but it is encouraging that CS_Feedback is not negatively affected
by it. �

A similar behavior pattern explains our second question of why does
CS_Feedback achieve a higher success rate if its instructions are harder to
understand. To explain that, we focus on the scenario shown in Figure
7.4a.

In this Episode, the intended object is blue9, while blue7 triggers an
alarm and ends the game. At a distance, all systems generate the RE “the
blue button to the left of the blue button”, as the green button green8 breaks
the “left-of” relation between blue7 and blue9. However, it is clear when
seeing the scene from the IF’s perspective (Figure 7.4b) that this is too strict
an assumption: many players resolve the RE to blue7 and lose.

Both Repeat and CS_Feedback generate feedback seconds before the IF
makes a mistake but, critically, Repeat presents the exact same RE that led to
the mistake. CS_Feedback generates here a new RE that, although possibly
confusing, is different enough to steer players in the correct direction.

Lesson learned: The combination of rephrasing and proactive feed-
back prevents here a costly misunderstanding, even in the presence of sub-
optimal REs. �

With those two questions answered, we can now focus on our main
research interest: why are CS_Feedback’s instructions so confusing, if their

100

timing is correct and rephrasing works? We tackle this question from the
point of view of a specific Episode shown in Figure 7.5. The Episode evolves
as follows:

(a) 2D view (b) 3D view

Figure 7.5: Example of failed Episodes from the IF’s point of view

IG: Click the blue button to the right of the blue button

IF: <Clicks bhall9>

IG: Good!

IG: Now click the blue button to the left of the blue button

IF: <Clicks bhall1>

IG: No, that's not what I meant.

The second RE, “the blue button to the left of the blue button” in the
example is intended to refer to bhall8, and was considered a good RE for
two main reasons: the RE for bhall8 was uniquely identifying w.r.t the IF’s
Context Set, and bhall1 was not considered part of it because it is too far
away and out of focus (as seen in Figure 7.5b).

In this Episode, the IF is likely to ground the first RE “the blue button
to the right of the blue button” as follows:

The blue button to the right of

bhall8︷ ︸︸ ︷
the blue button︸ ︷︷ ︸

bhall9

With bhall8 grounded as “the blue button”, the next RE is likely to be
resolved in the following way:

The blue button to the left of

bhall8︷ ︸︸ ︷
the blue button︸ ︷︷ ︸

bhall1

101

By referring to “the blue button” in the second RE, we observe that IFs
assume that the same RE is used to refer to the same grounded object from
the previous interaction. Our IG system, on the other hand, treats every
Episode as independent, and does not follow these same steps. We are
familiar with this type of error, as we’ve seen it before in our simple IF
system from Chapter 3.

There are several issues at play here. Our first misstep is a definition
of a CS that’s perhaps too strict. Fraundorf et al. (2013) presents the case
that the CS is typically bigger than expected, and that although context
does constrain the set of viable alternatives, it only does so loosely. A sim-
ilar “permissive view” of context sets is supported by Gotzner (2017), who
finds in her experiments that “listeners have access to a broader set of al-
ternatives rather than only the small contextually-restricted set”. Given our
own results, it would be hard to argue against the idea that our context set
may have be too strict.

A second issue with our approach is the effect of contrast by itself Even
if our CS estimation correlates with that of the IF, our model assumes that
the act of presenting a corrective RE is an atomic event, as in:

Original CS→ Correction→ New CS

But there’s psycholinguistic evidence that being suddenly made aware
of the existence of alternatives (which is what presenting a correction does)
might be enough to trigger a re-evaluation of the current scene by the IF
and, by extension, to modify the CS even before reading the explicit text of
the corrective RE. In that case, the process of interpretation of a correction
may be better modeled as:

Original CS→ Awareness of alternatives→ New CS→ Correction

interpretation→ Updated CS

Gotzner et al. (2016) report in their experiments that “focus particles
trigger an active search for alternatives and lead to a competition between
mentioned alternatives, unmentioned alternatives, and the focused element".
In these experiments, a focus particle (only, also, even, etc.) is enough to
trigger a search for alternatives even among elements that were never dis-
cussed before. If the presence of a particle by itself is enough to change
the contents of the IF’s context set, then it is feasible than the presence of a
correction by itself can cause the same effect. If that were the case, the IF
would interpret a corrective RE in the context of the New CS rather than the
expected Original CS, and this mismatch could lead to the confusing REs
that our results report.

Lesson learned: The dynamics of user behavior reflected by our CS are
good but not perfect. Our CS_Feedback strategy does not fully model the
dynamics of human RE interpretation, and the assumption that it does led
to clearly confusing REs. �

102

7.4 Conclusion

In this Chapter we have explored an unsuccessful attempt to model an ex-
plicit Context Set (CS) for our REG strategy. This strategy models a CS
under the assumption that an object in this set would be assigned a high
probability by the PCombmodel, an assumption that our results cannot con-
firm.

Incorporating a model of a CS in our generation strategy in the way we
present here does not generate better REs. CS are reportedly difficult to
model due because their contents are in constant fluctuation, and our CS
model may be too simple to accurately reflect such a dynamic. Further-
more, the act of presenting a corrective RE by itself can change the content
of the Set, a dynamic our model does not account for. Even if our CS con-
tained an accurate reflection of the IF’s internal short-term memory, REs
generated using this information in the way we’ve presented are too frag-
ile and context-dependent to be useful as a general algorithm. How to use
this information as a feature for a different algorithm is a promising topic
for future research.

The lessons we learned from this experiment give us a better under-
standing of the problem, enabling us to design better strategies. We confirm
the importance of proactive feedback and rephrasing, preventing mistakes
even with sub-optimal REs. We also learned that corrective REs that are
not explicitly connected to their original, misunderstood RE can be confus-
ing if the modeling of the environment is less than perfect. We have also
confirmed the flexibility and expressive power of our SIG-based generation
approach, enabling us to model a CS in a straightforward way.

All of these lessons are put to good use in the next Chapter, where we
introduce a difference strategy for corrective REs. This strategy is based on
explicit contrastive feedback, presenting REs with explicit contrast between
a misunderstood object and the intended one.

8

Correcting

misunderstandings:

Contrastive Referring Expressions

No matter how "good" an RE is, there is always a chance that a user will
misunderstand it. Maybe they misread or misheard the RE; maybe they
acted based on a personal belief rather than the actual text of the instruc-
tion, or maybe they just weren’t paying attention. In either case, a robust
REG system should be able to detect and correct these misunderstandings.

The strategy presented in Chapter 7 attempted to generate feedback
that is implicitly contrastive, exploiting properties of both the misunder-
stood and intended objects. That approach assumed that the user would
make a mental connection between two successive REs, an approach that
was ultimately unsuccessful: if a misunderstanding was detected between
a red and a blue button, the system failed to account for the situation in
which a corrective RE such as “the blue button” could make the Instruction
Follower pay attention to a previously unnoticed, also-blue button.

This Chapter generates corrections via contrastive, corrective feedback (“con-
trastive feedback”, for short). In our new approach, the Instruction Giver
corrects a misunderstanding immediately after detection with a new RE
that marks explicit contrast between the intended target and the target the
user understood. Such an RE would say, for instance, “No, not the RED

This Chapter is based on the publication “Generating Contrastive Referring Expres-
sions” (Villalba et al., 2017).

103

104

button, the BLUE button”.Unlike the example from the previous paragraph,
the system we present in this Chapter would not generate the example cor-
rection unless “the blue button” were by itself a good RE for the intended
object. The benefits of this approach are multiple: the new contrastive in-
struction lets the user know that they have made a mistake, guides them
away from their mistake and towards the intended target, and makes the
link between misunderstanding and correction explicit in order to mini-
mize new misunderstandings.

A key component of our new strategy is the reconstruction of a hypo-
thetical RE that the Instruction Follower may have understood. We have
established in previous chapters mechanisms for detecting that an RE for
object os was misunderstood, and was resolved instead by the Instruction
Follower to an object ou. This Chapter identifies also the “misheard” RE ru
defined as the RE from the set of all possible REs for ou that can be derived
from the original RE using the minimum number of edit operations. These
edit operations are part of our modeling assumption, where a misunder-
standing is seen as the result of a message altered by a noisy channel.

Combining theory on edit automatons, SIGs, and edit distance, we can
find both the misunderstood RE ru and the sequence of edit operations that
created it. Applying contrastive focus to all words in the original RE rs that
were either modified or deleted by edit operations, we further generate
contrastive REs for any pair of objects on a scene.

We evaluate our approach with crowdsourced experiments over two
different domains, the GIVE Challenge and the TUNA people corpus. These
experiments present contrast using two possible alternatives: Emphasis ap-
plies contrastive focus as above, while Shortening explores whether it is pos-
sible to generate shorter (but still effective) REs by removing information
that was already correctly understood. Our results for Shortening reflect a
similar pattern to those from Chapter 7, showing that making an RE shorter
does not always make it better. Emphasis, however, significantly outper-
forms both Emphasis and our baselines.

8.1 Contrastive focus

When humans make corrections, they often use contrastive focus (Rooth,
1992; Krifka, 2008) to clarify both the intent of the original RE and the rela-
tion to the new one. In this context, contrastive focus refers to an utterance
with either marked pitch accent (in the case of spoken utterances) or a vi-
sually distinct style like italics, bold font, uppercase, etc. (in the case of
written utterances).

105

Example: Contrastive focus
Imagine that an IG presents the utterance “the big blue button” to an IF,
but the IF interacts with a big green button instead. As a correction, the
IG may present the utterance “No, the big BLUE button”, where “BLUE”
is presented with a marked contrast. This new utterance alerts the IF
that a mistake took place, reiterates the information from the original RE,
and marks explicitly the attribute that the IF must pay attention to. The
contrastive RE makes it evident that the properties “big” and “button”
of the intended object where properly understood, but “blue” requires
extra effort.

Focus has been extensively studied in the literature. Following Rooth
(1992), Krifka (2008) asserts that focus indicates “the presence of alterna-
tives that are relevant for the interpretation of linguistic expressions”. Un-
der this theory, focus not only presents a contrast between two or more
objects, but also alerts the listener that there are alternatives to begin with.
Corrective focus, according to Bornkessel and Schlesewsky (2006), can even
override syntactic requirements on the basis of “its extraordinarily high
communicative saliency”. For a more detailed overview on the theory of
focus, see Rooth (1997); Krifka (2008).

Face-to-face conversation is “the basic and primary use of language, all
others being best described in terms of their manner of deviation from that
base” (Fillmore, 1974). We must then differentiate between focus in speech
and focus in written form. In speech, focus is typically marked through
intonation and pitch accents (Levelt, 1993; Pierrehumbert and Hirschberg,
1990; Steube, 2001), while concepts that can be taken for granted are de-
accented and/or deleted. In contrast, focus in written text can be marked
in several different ways. Print media and style manuals reserve italics for
this purpose (Staff, U.C.P., 2017), but all-uppercase letters are a common
alternative when the underlying medium lacks the capacity of displaying
text in more than a single style. Bold-faced fonts, underlined text, and vi-
sual markers are not unusual. Fraundorf et al. (2013) tested whether font
emphasis benefits memory in the same memory that contrastive pitch ac-
cent does in spoken discourse, finding positive results for both italics and
capitals.

In this Chapter, emphasis will be marked through all-uppercase, bold
text. De-accentuation is not typically marked in written text outside of spe-
cialized notations, and therefore it’s excluded from the rest of this chapter.

The two closest research approaches to contrastive focus and REG are
the work of Milosavljevic and Dale (1996) and Krahmer and Theune (2002).
The former uses contrastive focus for side-by-side comparison of entities
by means of encyclopedic descriptions. Their system pre-empts confusion
between two similar entities by placing contrastive focus in properties that
distinguish those two entities. Both the potential confusing entity and the

106

Figure 8.1: Corruption model

distinguishing properties are manually specified. The latter presents an
extension of the Incremental Algorithm (Dale and Reiter, 1995) to mark
attributes as contrastive. As such, and unlike our statistical approach, this
algorithm creates contrastive REs relying on a fixed attribute order. Neither
of these works evaluate the quality of the generated REs.

8.2 A minimum-distance approach to contrast

We have previously discussed in Chapter 2.6.1 how misunderstandings can
take place, and we have introduced algorithms for detecting them. We now
motivate our approach towards correcting them with a simplified corrup-
tion model.

Let’s say that the IG wants the IF to interact with an intended object os,
and presents the IF with an RE rs. The IF, however, resolves the RE rs to an
unintended object ou. We assume that the reason the RE rs was resolved to
ou instead of os is because the RE rs was sent over a noisy channel, got cor-
rupted, and was received by the IF as a new, different RE ru. This situation
is illustrated in Figure 8.1.

This noisy channel is a simplifying assumption with important benefits:
the root cause of the misunderstanding is found at the string level of an
RE, while remaining flexible enough to permit meaningful corrections for
several types of misunderstandings. It should be clear, however, that there
are many other reasons why an IF would misunderstand an RE: lack of
attention, mismatched common ground, and so on.

We would now like to present the IF with a corrective RE, but we cannot
access ru directly because it exists only inside the IG’s mind. We will instead
reconstruct it, defining the noisy channel in more detail and selecting the
most likely corruption of the original RE.

107

8.2.1 Finding the missing RE

We model the corruption of rs using edit operations at a word level in terms
of the Levenshtein edit distance (Mohri, 2003). An RE is then a sequence of
words over an alphabet Σ, and the noisy channel passes every word in rs
applying either no operation (K), a deletion (D), or substituting the word
with a new symbol a ∈ Σ (Sa). The noisy channel may also insert new
symbols a ∈ Σ at any moment (Ia). Any sequence of such operations that
could apply to rs is known as an edit sequence for rs. If an edit sequence s
maps x to y, we write apply(s, x) = y.

Example: Finding ru (1/3)
The IF and IG find themselves in the following situation:

The IG wants to refer to os = b4, and presents the utterance rs = “the blue
button below the window”. The noisy channel corrupts this RE to ru =
“the yellow button above the window”, which the IF resolves to ou = b2.
The corruption by the noisy channel could correspond, for instance, to
the following edit operation sequence

rs the blue button below the window
edit operations K D Iyellow K Sabove K K

ru the yellow button above the window

But it could also correspond to the following edit sequence

rs the blue button below the window
edit operations K Syellow K Sabove K K

ru the yellow button above the window

Next, we define a probability distribution P(s|rs) over edit sequences s
that the noisy channel might apply to the string rs as follows:

108

P(s|rs) = 1
Z ∏

si∈s
exp(−c(si))

where c(si) = cost for using the edit operation si
Z = normalizing constant, independent of s

(8.1)

We set c(K) = 0, and c(Sa) = c(Ia) = c(D) = C for any a in our alphabet
and fixed C > 0.

Finally, let L be the set of REs that could be resolved to ou. Then the
most probable edit sequence for rs that generates our missing ru ∈ L is
given by:

s∗ = arg max
s : apply(s,rs)∈L

P(s | rs)

= arg min
s

∑
si∈s

c(si)
(8.2)

s∗ is the edit sequence that maps our original RE rs to an RE in L with
minimal cost. We assume that this is the edit sequence that corrupted rs
into ru. All that remains is finding this edit sequence.

Searching for s∗ by enumeration would be impractical: the set L can
be potentially infinite, and the set of possible edit sequences can be very
large. Instead, we will use the chart representation that SIGs provide (see
Chapter 2.3.2) represented as a Context-Free Grammar whose language
L = L(G) consists of these REs. This grammar is then intersected with
a finite-state automaton (FSA) that keeps track of the edit costs, obtaining a
second context-free grammar G′ from which ru can be efficiently obtained:
the minimum-cost syntax tree of G′ is equivalent to the minimum-cost edit
operation that transform rs into ru.

Edit sequences can be compactly represented by a weighted, finite-state
automaton F(rs) called the edit automaton (Mohri, 2003). Each run of the au-
tomaton on a string w yields an edit sequence that transforms rs into w, and
the sum of the transition costs is the cost of that sequence. F(rs) has a state
qi for every position i ∈ rs, with initial state q0 and final state q|rs|. For each i,
the state qi has three transitions from qi to qi+1: the “keep” transition reads
the word at position i with cost 0; the “substitute” transition that reads any
word with cost C, and the “deletion” transition that read the empty string
ε with cost C. In addition, every state has an “insert” transition that loops
back to the state qi with cost C.

Example: Finding ru (2/3)
This is the edit automaton for rs = “the blue button below the window”:

109

Note that every path through the edit transducer corresponds to a spe-
cific edit sequence s, and the sum of the costs along the path correspond
to −logP(s|rs)− logZ.

We obtain G′ intersecting the CFG G and the FSA F(rs) using the Bar-
Hillel construction (Bar-Hillel et al., 1961; Hopcroft et al., 1979). This con-
struction intersects the languages of F(rs) and G but, given that F(rs) ac-
cepts all strings over the alphabet, the languages of G and G′ will be the
same — namely, all REs for ou.

At a glance, the process can be described as follows: for every produc-
tion rule in G we take a corresponding transition in F(rs), combine them
into a new rule in the automaton G′, and assign this rule the right weight
which corresponds with weights on f (rs). We simplify the process assum-
ing that G is in Chomsky Normal Form (CNF), where all rules have ei-
ther the form A → a (where a is a word) or A → BC (where B, C are
non-terminals). We represent non-terminals in the resulting grammar G′

as Nb,A,〈qi ,qk〉, where a, B are as detailed in Chapter 2.3.2 and qi, qk indicate
that the string derived by this non-terminal was generated by editing the
substring of rs from position i to k.

For a production rule Nb,A → a of G, we take a transition t = qi → 〈a :
c〉qk in F(rs), where q and q′ are states of F(rs) and the transition cost is c.
We create a context-free rule Nb,A,〈qi ,qk〉 → a in G′ with weight c. If k = i
we have an Insertion operation (I), while k = i + 1 corresponds to either
Substitution (S) or Keep (K).

With G in CNF, the second type of rules are binary rules Nb,A → Xb1,A1Yb2,A2 .
With qi, qj, qk states of F(rs) and i ≤ j ≤ k, we add a rule Nb,A,〈qi ,qk〉 →
Xb1,A1,〈qi ,qj〉Yb2,A2,〈qj,qk〉 to G′. These rules do not encode any operations, and
therefore their weight is 0.

The next type of rules to account for are those that lead to deletions. If
Nb,A is a nonterminal symbol in G, and qh, qi, qj, qk are states of F(rs) with
h ≤ i ≤ j ≤ k, we add a rule Nb,A,〈qh,qk〉 → Nb,A,〈qi ,qj〉 to G′, which deletes
the substrings both from positions h to i and from positions j to k. The
assigned weight is C((i − h) + (k − j)), which corresponds to the number
of ε transitions.

If Sb,A is the start symbol of g, the start symbol of G′ is Sb,A,〈q0,q|rs |〉. As
we said above, this construction accepts the same language of G, namely,
all REs for ou. Assigning weights as we’ve done it here, the weight for each

110

RE in L(G) is the edit cost of that RE starting from rs. Using the Viterbi
algorithm, we compute the minimal-cost tree of G′, obtain s∗, and obtain
ru = apply(s∗, rs).

Example: Finding ru (3/3)
The following figure illustrates an example tree for the automaton show
in the previous example. From the leaves of this tree, we obtain the string
w = “the yellow button above the window”, which is an RE for ou.

An analysis of the rules in g′ that led to this tree allows us to re-
construct the edit sequence that turned rs into w. “yellow” was created
by an insertion, because the two states of F(rs) in the symbol above are
the same. For “above”, the two states in the preterminal symbol above
it are different, meaning that the operation is either I or K. We disam-
biguate using the weight of the rule, since S operations have weight
C and K operations have weight 0. Finally unary rules indicate dele-
tions, since they “move forward” in rs without adding any new words
to w. As a result, we obtain both w and the corresponding edit sequence
〈K D Iyellow K Sabove K K〉. If w is the minimal-cost tree, then w = ru.

8.3 Generation of contrastive feedback

Having the original RE rs and the corrupted RE ru, we first generate con-
trastive feedback assigning focus to the words in rs that were changed by
the corruption (that is, words to which either a Deletion or Substitution was
applied). This strategy is called Emphasis

Example: Contrastive focus 1/2
For the edit sequence shown in Example 3/3, the words blue and below
were changed by the noisy channel. Therefore, the correction should
read “No, the BLUE button BELOW the window”.

A second strategy attempts to generate shorter REs while retaining con-
trastive focus. We would expect these REs to be preferred by the IFs, since

111

shorter REs that do not violate the Maxim of Quantity are assumed to be
preferred (Grice, 1975; Dale and Reiter, 1995).

Under this strategy, we attempt to remove information from ru that the
IF understood correctly and should no longer need. This strategy is called
Shortening, and can be described as follows.

The REs that our grammar generates are often a combination of an NP
and a PP, such as “blue button (NP) below the window (PP)”. If all errors
are located in the NP, we can drop it entirely and generate a new RE of
the form “the <NP>”, with the NP emphasized as before. If all errors are
located in the PP, we can generate a new RE of the form “the one <PP>”,
with the PP emphasized as before. Finally, if there is either no PP or errors
in both of them, then the result is the same as in Emphasis.

Example: Contrastive focus 2/2
If we assume the intended object to be b4 and rs to be “the blue but-
ton below the window”, we could imagine that the user resolves the RE
to b3 due to the corrupted RE “the yellow button below the window”.
Both REs are a combination of the NP “blue/yellow button” and the PP
“below the window”. Given that the PP is the same for both, it can be
dropped. As a result, Shortening generates the corrective RE “No, the
BLUE button”.

8.4 Experimental setup

We evaluated our strategies against several baselines using crowdsourced
pair-wise experiments. Following Buß et al. (2010), we performed over-
hearer experiments that allowed us to test the effects of contrastive feed-
back without the navigational and timing challenges that a fully interactive
system presents.

We created scenes in two different environments: the first set of scenes
comprised images from the GIVE Challenge, while the second set used
stimuli obtained from the “people” domain of the TUNA Reference Cor-
pus (van der Sluis et al., 2007). The GIVE environment provided us with
a familiar environment in which to test several attributes of an object at
once, namely type of object, color, and spatial relation to other objects. The
TUNA Corpus was chosen because it represents a more challenging do-
main, as the available properties for each object is larger: the corpus con-
sists of photographs of men annotated with up to nine attributes, such as
whether the person is wearing a shirt, a tie, or is looking right. Six of these
attributes were included after preliminary studies showed that human REs
often made use of them.

The test setup was identical for both environments: our crowdsourced
participants were shown marked “before” and “after” screenshots, explain-

112

We wanted our player to select this button:

So we told them: press the red button to the
right of the blue button.

But they selected this button instead:

Which correction is better for this scene?
◦ No, press the red BUTTON to

the right of the BLUE BUTTON
◦ No, press the red button to

the RIGHT of the blue button

(a) A sample scene from Experiment 1.

We wanted our player to select the person
circled in green:

So we told them: the light haired old man in a
suit looking straight.

But they selected the person circled in red
instead.

Which correction is better for this scene?

◦ No, the light haired old man
IN A SUIT LOOKING STRAIGHT
◦ No, the LIGHT HAIRED OLD man

in a suit looking straight

(b) A sample scene from Experiment 2.

Figure 8.2: Sample scenes from our experiments in the GIVE and Tuna do-
mains.

ing that we intended an imaginary player to choose the object in the first
screenshot but they chose the second one instead. After showing our par-
ticipants the text of the original RE, we asked them to choose one out of
two possible corrections as the “better” one, where “better” was left up to
interpretation. Figure 8.2 shows sample scenes from each domain.

In addition to our Emphasis and Shortening strategies, we included two
baselines in our tests. The Repeat strategy presented the same original RE
without any marked focus, to test whether the presence of explicit focus by
itself is enough to prefer a certain RE. The second baseline strategy Random
randomly capitalized adjectives, adverbs, and/or prepositions that were
not capitalized by the Emphasis strategy. This strategy tests the assertion
that, even if our participants were to prefer REs with contrastive focus due
to the presence of focus itself, they would still prefer our main strategies
because they place focus precisely were the subjects would expect it to be.

Following the guidelines detailed in Chapter 6, we included scenes with
a clearly wrong answer (such as REs referring to the wrong target or a non-
existent one) for quality control purposes. Players that either failed one of
these random checks or answered in less than 10 seconds were excluded
from the final set. Our participants were asked to rate up to 12 compar-
isons, shown in groups of 3 scenes at a time. The order in which the pair

113

of strategies were shown was also randomized, to avoid presentation order
bias.

8.4.1 Experiment results

Our first experiment tested all four strategies against each other over the
GIVE domain. Each subject was shown a total of 12 scenes, selected at
random from 16 test scenes. We collected 10 judgments for each possible
combination of GIVE scene and pair of strategies, yielding a total of 943
judgments from 142 subjects after quality control.

The results are shown in Table 8.1a. For each row strategy StratR and
each column strategy StratC, the table value corresponds to the formula

#(StratR preferred over StratC)− #(StratC preferred over StratR)

#(tests between StratR and StratC)
(8.3)

8.4.2 Experiment 2

Significance levels are taken from a two-tailed binomial test over the counts
of preferences for each strategy.

Repeat Random Emphasis Shortening
Repeat – 0.041 -0.570* -0.141

Random -0.041 – -0.600* -0.109
Emphasis 0.570* 0.600* – 0.376*

Shortening 0.141 0.109 -0.376* –

(a) Results for Experiment 1

Repeat Random Emphasis
Repeat – -0.425* -0.575*

Random 0.425* – -0.425*
Emphasis 0.575* 0.425* –

(b) Results for Experiment 2

Table 8.1: Pairwise comparisons between feedback strategies for experi-
ments 1 and 2. A positive value shows preference for the row strategy,
significant at * p < 0.001.

Our results show a significant preference for the Emphasis strategy over
all others, providing evidence that our algorithm places contrastive focus in
the correct places where a human would expect it. Although Shortening is
numerically better than the other baselines, this result is not significant. It is
significantly worse that Emphasis, a surprising result that will be discussed
further in the next section of this Chapter.

114

Our second experiment repeats the same general setup over the TUNA
domain, with minor modifications. The Shortening strategy was not in-
cluded due to its poor performance both in the previous experiment and
in further pilot experiments for this setup. Instead of using two screen-
shots, we presented the participants with a single 3x4 grid of randomly
chosen people. This change was introduced to lower the required over-
head of switching between two cluttered pictures. The REs used two to
five attributes of each individual, but no information about their position
with respect to other objects. We imposed this limitation to keep the length
of the REs comparable to those of Experiment 1, and to avoid taxing our
subjects’ memory with extremely long REs.

We designed 8 different grids, and we obtained 240 judgments from
65 subjects (after quality control). Table 8.1b shows the results for this ex-
periment, which once again confirms the preference of Emphasis over the
baselines even in the presence of a larger number of attributes that could
receive focus.

8.5 Discussion

Our experiments and results confirm that our strategy for computing con-
trastive REs works in practice. This is a welcome positive result, as it
confirms that our simple corruption model can effectively discover which
words need to be emphasized even when performing a shallow analysis at
the word level.

Our results also show that users generally prefer REs with emphasis
over unemphasized REs. This result is more pronounced in the TUNA
corpus, where even Random is significantly preferred over Repeat. Even if
the capitalization makes no semantic sense, we believe it does make prag-
matic sense: the presence of contrastive focus signals publicly that a misun-
derstanding took place, and a correction is required. This behavior agrees
with other linguistic studies. Calhoun et al. (2010) asserts that markedness
encodes whether a word has a salient alternative in the context (contrast)
or not (background). Gotzner et al. (2016) agrees with this interpretation,
making an even stronger assertion: focus forces a listener to re-evaluate
their context, as the presence of focus signals the existence of viable alter-
natives and triggers a “refresh” of the set of viable objects.

The poor performance of the Shortening strategy seems to be rooted on
a similar set of challenges than those presented in Chapter 7.3.3. Our first
instinct would tell us that a shorter RE should always be preferred, follow-
ing the Gricean Maxim of Quantity (Grice, 1975). Our results, however,
show that our shortened REs are too short, removing important informa-
tion. How to shorten an RE without loss of clarity remains an open ques-
tion.

115

8.6 Conclusion

This Chapter introduces Emphasis, a strategy for the generation of con-
trastive, corrective feedback via contrastive focus.

We model misunderstandings as corruptions performed by a noisy chan-
nel causing an original RE rs intended for an object os to be corrupted to an
RE ru that resolves to a mistaken object ou. Reconstructing ru as the RE
which minimizes the corruption performed by the noisy channel, our strat-
egy places contrastive focus in those words in the original RE rs that were
corrupted by the noisy channel. This strategy is shown to be significantly
preferred over other strategies of contrastive focus by human participants,
as shown by crowdsourced preference experiments on scenes from both the
GIVE Challenge and the TUNA people corpus.

The development of Emphasis completes the pipeline that we set to cre-
ate for the prediction, detection, and correction of misunderstandings. The
models of listener’s understanding that we developed in Chapters 4 and
5 are of limited use without an effective way of correcting their predicted
misunderstandings, making our strategy the key component that closes the
feedback loop between Instruction Follower and Instruction Giver.

Unlike the strategies for corrective feedback presented in Chapter 7,
Emphasis does not require a specific theory of mind for the Instruction Fol-
lower. Our strategy makes no assumptions regarding how REs are gener-
ated, requiring only a mechanism for representing all semantically-correct
REs for a given object in a chart. Feedback generated this way is easy to
compute and adapt to all kind of Instruction Giving systems.

Having developed our

116

9

Conclusion

In this thesis we have explored and developed the components of a full,
end-to-end system for the prediction, detection, and correction of misun-
derstandings.

Referring back to our motivating example in Page 1, we observed that
an error correction strategy that waits until a misunderstanding takes place,
ignores the source of the misunderstanding, and generates a completely
new plan of action may be appropriate for cars, but it is sub-optimal when
dealing with pedestrians. The algorithms and strategies we have devel-
oped and validated throughout this thesis would have painted a completely
different picture: our probabilistic model would have reported at an early
stage that Max’ observed behavior does not match the behavior expected of
a correctly resolved RE, revealing that Max is most likely confused. Instead
of letting this mistake pass through, our system would have evaluated his
current environment and behavior to decide which of all distractors is the
most likely one to have captured Max’ attention. Having decided on which
misunderstanding is the most likely culprit for his observed behavior, our
system would have generated a corrective, contrastive RE that would pub-
licly display what their current joint objective is, that there is a possible
mismatch in their common ground, and how to recover from it.

Having developed a robust strategy for dealing with misunderstand-
ings in interactive dialog, this final Chapter briefly summarizes our ap-
proach, our main results, our challenges, and directions of future work.

117

118

9.1 Summary

The first two pillars of this thesis, the prediction and detection of misun-
derstandings, are introduced in terms of probabilistic, log-linear models of
listener’s understanding capable of inferring that a user is about to make
a mistake. Our models can predict a misunderstanding at an early-enough
stage of the interaction, providing an Instruction Giver with enough time
to act on this misunderstanding before the user interacts with the wrong
object. In addition to detecting that an RE was incorrectly resolved, these
models also identify to which object was the RE resolved instead, opening
the door for multiple correction strategies.

We also show that gaze information, obtained with eye-tracking equip-
ment, improves the performance of our models in hard scenes. The results
obtained using recorded gaze as a proxy to attention are doubly reassuring.
The improved performance on hard scenes (but not on easy) are an indica-
tor of our original, approximated features being appropriate for the task,
as they can compete with real, actual measurings in all but the most chal-
lenging scenes. The poor performance of gaze and visual salience alone, on
the other hand, hints at our models capturing more nuanced details of an
interpretation process than those that might be obvious at first.

These topics were presented along detailed reviews of foundational
work in the areas of pragmatics and psycholinguistics: pragmatics inter-
prets misunderstandings as a common ground mismatch, psycholinguis-
tics suggest explanations for the relation between eye gaze and attention,
and both provide the reader with a solid background to understand the
theoretical foundations on top of which our research rests.

The correction of misunderstandings, the third pillar of our work, is
explored from two different perspectives: starting with an unsuccessful
approach based in Context Sets our approach evolved towards Emphasis, a
strategy for the generation of contrastive, corrective feedback that is shown
to be significantly preferred by human participants over several others. The
successes and failures of each one of our systems has been presented in
detail, detailing a set of lessons learned that increase our understanding of
how a user’s focus changes in response to corrections.

Each step of this pipeline has been experimentally verified, and the end
result is a robust combination of theory and practice that will no doubt be
of help for future researchers on interactive dialog.

Furthermore, we have demonstrated how to strengthen the integrity of
crowdsourced experiments with the help of a security mindset, a perspec-
tive that is vital for researchers dealing with anonymous participants over
the internet. Researchers wondering whether crowdsourcing is right for
them will find our analysis of great help.

119

9.2 Future work

The work presented here opens several avenues for further research. One
such research direction, related to our PObs model and our experiments in
Chapters 7 and 8, is the need of further studies on the role of gaze in Instruc-
tion Following. Eye-tracking research would present the ultimate evidence
on the strengths and limitations of our PComb model and, in particular, on
the usefulness of our PObs-based context set. Recording the eye-movements
of human participants and matching them to the probabilities returned
by our log-linear models could precisely measure the contributions of our
model and would be an important addition to the psycholinguistics liter-
ature. Experiments on the eye-movements of subjects after receiving con-
trastive feedback would also shed light on the interplay between a Context
Set, the effect that corrections have on it, and the type and amount of infor-
mation that can be removed from a correction before it becomes confusing.
Refining this idea will surely lead to even shorter, easier to understand cor-
rective REs than those we have developed here.

A second venue of research is the implementation of a new PComb model
that does not require hand-crafted features. An approach based in Deep
Learning, for instance, would focus on the design of a network that can
infer features from the raw data rather than testing plausible features the
way we’ve done it here. Recurrent Neural Networks, with their ability to
deal with sequential input, seem particularly well suited for the task. How
to train and implement a network with higher accuracy and/or more effi-
cient than with our current log-linear models seems like a straightforward
direction for our research to evolve.

Another point of interest for researchers working on indoor and pedes-
trian navigation is improving the VisualSalience feature introduced in Sec-
tion 4.2.2. This feature has proved to be useful for estimating which objects
have captured a user’s attention based on very limited information, and
presents an alternative solution to the problem of giving instructions based
on visual features without forcing a user to hold a camera in front of them.
We look forward to this model being applied in other areas of study in
Human-Computer Interaction, and for more accurate versions of our algo-
rithm to be developed.

Our experimental results have shown that our strategies for shorten-
ing an RE require further work. Whether based on Context Sets or Edit
Operations, our strategies generate REs that users find confusing. How to
properly determine which information can be removed from an instruction
based on both a previous instruction and a model of user understanding, or
whether some crucial piece of information is missing from our hypothesis
are questions for future researchers to answer.

Finally, researchers could adapt the results presented here in the GIVE
Environment to new Virtual Environments. With the rising popularity of

120

creative 3D environments and advances in VR, the results presented here
can enhance Instruction Giving systems in new domains. While our results
are based on the Virtual Environment of the GIVE Challenge, there is no
reason why our models, features, and strategies cannot be ported to other
environments and REG systems.

121

Bibliography

Akmajian, A. and Jackendoff, R. (1970). Coreferentiality and stress. Lin-
guistic inquiry, 1(1):124–126.

Allingham, M. G. and Sandmo, A. (1972). Income tax evasion: a theoretical
analysis. Journal of Public Economics, 1(3):323 – 338.

Altamirano, R., Areces, C., and Benotti, L. (2012). Probabilistic refinement
algorithms for the generation of referring expressions. In Proceedings of
COLING 2012: Posters, pages 53–62, Mumbai, India. The COLING 2012
Organizing Committee.

Appelt, D. and Kronfelt, A. (1987). A computational model of referring. In
Proceedings of the 10th International Joint Conference on Artificial Intelligence
(IJCAI), pages 640–647.

Areces, C., Koller, A., and Striegnitz, K. (2008). Referring expressions as for-
mulas of description logic. In Proceedings of the 5th International Conference
on Natural Language Generation (INLG).

Austin, J. L. (1962). How to Do Things with Words. Clarendon Press.

Bar-Hillel, Y., Perles, M., and Shamir, E. (1961). On formal properties of
simple phrase structure grammars. Zeitschrift für Phonetik, Sprachwis-
senschaft und Kommunikationsforschung, 14:143–172. Reprinted in Y. Bar-
Hillel. (1964). Language and Information: Selected Essays on their Theory and
Application, Addison-Wesley 1964, 116–150.

Benotti, L. and Denis, A. (2011). Cl system: Giving instructions by corpus
based selection. In Proceedings of the 13th European Workshop on Natural
Language Generation, pages 296–301. Association for Computational Lin-
guistics.

Benotti, L., Lau, T. A., and Villalba, M. (2014). Interpreting natural language
instructions using language, vision, and behavior. TiiS, 4(3):13:1–13:22.

Benotti, L., Villalba, M., Lau, T. A., and Cerruti, J. A. (2012). Corpus-based
interpretation of instructions in virtual environments. In The 50th Annual
Meeting of the Association for Computational Linguistics, Proceedings of the
Conference, July 8-14, 2012, Jeju Island, Korea - Volume 2: Short Papers, pages
181–186.

Berger, A. L., Pietra, V. J. D., and Pietra, S. A. D. (1996). A maximum entropy
approach to natural language processing. Comput. Linguist., 22(1):39–71.

Berinsky, A. J., Huber, G. A., and Lenz, G. S. (2012). Evaluating online la-
bor markets for experimental research: Amazon.com’s mechanical turk.
Political Analysis, 20(3):351âĂŞ–368.

122

Bichot, N. P. (2001). Attention, eye movements, and neurons: Linking phys-
iology and behavior. In Jenkin, M. and Harris, L., editors, Vision and At-
tention, pages 209–232. Springer New York, New York, NY.

Bornkessel, I. and Schlesewsky, M. (2006). The role of contrast in the local li-
censing of scrambling in german: Evidence from online comprehension.
Journal of Germanic Linguistics, 18(01):1–43.

Bosch, P. (1988). Representing and accessing focussed referents. Language
and Cognitive Processes, 3(3):207–232.

Branavan, S. R. K., Chen, H., Zettlemoyer, L. S., and Barzilay, R. (2009). Re-
inforcement learning for mapping instructions to actions. In Proceedings
of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language Processing of the AFNLP,
volume 1 of ACL ’09, pages 82–90, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Broadbent, D. (1958). Perception and communication. Pergamon Press.

Buchholz, S. and Latorre, J. (2011). Crowdsourcing preference tests, and
how to detect cheating. In INTERSPEECH, pages 3053–3056.

Bülthoff, H. H. and van Veen, H. A. H. C. (2001). Vision and action in virtual
environments: Modern psychophysics in spatial cognition research. In
Jenkin, M. and Harris, L., editors, Vision and Attention, pages 233–252,
New York, NY. Springer New York.

Bundesen, C. (1990). Theory of visual attention. Psychological review, 97:523–
547.

Bundesen, C. and Habekost, T. (2014). Theory of visual attention (tva). In
Nobre, A. C. K. and Kastner, S., editors, The Oxford Handbook of Attention,
chapter 37, pages 1095–1121. Oxford University Press, Oxford.

Buß, O., Baumann, T., and Schlangen, D. (2010). Collaborating on utter-
ances with a spoken dialogue system using an isu–based approach to
incremental dialogue management. In Proceedings of the Special Interests
Group on Discourse and Dialogue Conference (SIGdial 2010).

Byron, D., Koller, A., Striegnitz, K., Cassell, J., Dale, R., Moore, J., and Ober-
lander, J. (2009). Report on the First NLG Challenge on Generating In-
structions in Virtual Environments (GIVE). In Proceedings of the 12th Euro-
pean Workshop on Natural Language Generation (Special session on Generation
Challenges).

Byron, D. K. and Fosler-Lussier, E. (2006). The osu quake 2004 corpus of
two-party situated problem-solving dialogs. In Proceedings of the 15th
Language Resources and Evaluation Conference (LREC’06).

123

Calhoun, S., Carletta, J., Brenier, J. M., Mayo, N., Jurafsky, D., Steedman,
M., and Beaver, D. (2010). The nxt-format switchboard corpus: A rich
resource for investigating the syntax, semantics, pragmatics and prosody
of dialogue. Language Resources and Evaluation, 44(4):387–419.

Carletta, J. (1996). Assessing agreement on classification tasks: The kappa
statistic. Computational Linguistics, 22(2):249–254.

Cassin, B., Solomon, S., and Rubin, M. (1984). Dictionary of eye terminology.
Triad Pub. Co.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/

libsvm.

Chen, D. L. and Mooney, R. J. (2011). Learning to interpret natural language
navigation instructions from observations. In Proceedings of the 25th Con-
ference on Artificial Intelligence (AAAIâĂŹ11), pages 859–865.

Clark, H. H. (1996). Using Language. Cambridge University Press.

Clark, H. H. and Wilkes-Gibbs, D. (1986). Referring as a collaborative pro-
cess. Cognition, 22:1–39.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M., and Löding, C. (2007). Tree Automata techniques and applica-
tions. published online - http://tata.gforge.inria.fr/.

Conti, G. and Caroland, J. (2011). Embracing the kobayashi maru: Why you
should teach your students to cheat. IEEE Security and Privacy, 9(4):48–51.

Corrigan-Gibbs, H., Gupta, N., Northcutt, C., Cutrell, E., and Thies, W.
(2015). Deterring cheating in online environments. ACM Transactions on
Computer-Human Interactions, 22(6):28:1–28:23.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learn-
ing, 20(3):273–297.

Dale, R. (1989). Cooking up referring expressions. In Proceedings of the
27th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 68–75.

Dale, R. (1992). Generating Referring Expressions: Constructing Descriptions in
a Domain of Objects and Processes. The MIT Press.

Dale, R. and Reiter, E. (1995). Computational interpretations of the Gricean
maxims in the generation of referring expressions. Cognitive Science,
19(2):233–263.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://tata.gforge.inria.fr/

124

Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., and Batra, D. (2017).
Embodied Question Answering. arXiv:1711.11543.

de Vries, H., Shuster, K., Batra, D., Parikh, D., Weston, J., and Kiela, D.
(2018). Talk the Walk: Navigating New York City through Grounded
Dialogue. arXiv:1807.03367.

Desimone, R. and Duncan, J. (1995). Neural mechanisms of selective visual
attention. Annual Review of Neuroscience, 18:193–222.

Deutsch, J. A. and Deutsch, D. (1963). Attention: Some theoretical consid-
erations. Psychological Review, 70(1):1–10.

DeVault, D., Rich, C., and Sidner, C. L. (2004). Natural language generation
and discourse context: Computing distractor sets from the focus stack.
In International Florida Artificial Intelligence Research Symposium (FLAIRS).

Di Eugenio, B. (1992). Understanding natural language instructions: The
case of purpose clauses. In Proceedings of the 30th Annual Meeting on As-
sociation for Computational Linguistics, ACL ’92, pages 120–127, Strouds-
burg, PA, USA. Association for Computational Linguistics.

Dreyfuss, E. (2018). A bot panic hits amazon’s mechanical turk. Wired.
[Online; posted 17-August-2018].

Eickhoff, C. and de Vries, A. P. (2013). Increasing cheat robustness of crowd-
sourcing tasks. Information Retrieval, 16(2):121–137.

Engonopoulos, N. and Koller, A. (2014). Generating effective referring ex-
pressions using charts. In Proceedings of the 8th International Conference on
Natural Language Generation (INLG), Philadelphia.

Engonopoulos, N., Villalba, M., Titov, I., and Koller, A. (2013). Predicting
the resolution of referring expressions from user behavior. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), Seattle, WA.

Fernández, R. and Schlangen, D. (2007). Referring under restricted interac-
tivity conditions. In Proceedings of the 8th SIGdial Workshop on Discourse
and Dialogue.

Fikes, R. and Nilsson, N. (1971). Strips: a new approach to theorem proving
in problem solving. Artificial Intelligence, 2:189–208.

Fillmore, C. J. (1974). Pragmatics and the description of discourse. In
Schmidt, S. J., editor, Pragmatics II, pages 83–104. Wilhelm Fink Verlag,
Munich.

125

Folk, C. L. (2015). Controlling spatial attention: Lessons from the lab and
implications for everyday life. In Fawcett, J. M., Risko, E. F., and King-
stone, A., editors, The Handbook of Attention, chapter 1, pages 3–25. MIT
Press, Cambridge, Massachusetts.

Fraundorf, S. H., Benjamin, A. S., and Watson, D. G. (2013). What hap-
pened (and what didn’t): Discourse constraints on encoding of plausible
alternatives. Journal of Memory and Language, 69(3):196 – 227.

Frege, G. (1884). Die Grundlagen der Arithmetik – Eine logisch mathematische
Untersuchung über den Begriff der Zahl.(GLA). Verlag von Wilhelm Koeb-
ner, Breslau.

Freundschuh, S. M. and Egenhofer, M. J. (1997). Human conceptions of
spaces: Implications for geographic information systems. Transactions in
GIS, 2(4):361–375.

Gadiraju, U., Kawase, R., Dietze, S., and Demartini, G. (2015). Understand-
ing malicious behavior in crowdsourcing platforms: The case of online
surveys. In Proceedings of the 33rd Annual ACM Conference on Human Fac-
tors in Computing Systems, CHI ’15, pages 1631–1640, New York, NY, USA.
ACM.

Gadiraju, U., Möller, S., Nöllenburg, M., Saupe, D., Egger-Lampl, S., Ar-
chambault, D., and Fisher, B. (2017). Crowdsourcing Versus the Labora-
tory: Towards Human-Centered Experiments Using the Crowd, pages 6–26.
Springer International Publishing, Cham.

Gardent, C. (2002). Generating minimal definite descriptions. In Proceed-
ings of the 40th Annual Meeting on Association for Computational Linguistics,
pages 96–103. Association for Computational Linguistics.

Gargett, A., Garoufi, K., Koller, A., and tina Striegnitz, K. (2010). The give-2
corpus of giving instructions in virtual environments. In Chair), N. C. C.,
Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M.,
and Tapias, D., editors, Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10), Valletta, Malta. European
Language Resources Association (ELRA).

Garoufi, K. and Koller, A. (2011a). Combining symbolic and corpus-based
approaches for the generation of successful referring expressions. In
Proceedings of the 13th European Workshop on Natural Language Generation
(ENLG), Nancy.

Garoufi, K. and Koller, A. (2011b). The Potsdam NLG systems at the GIVE-
2.5 Challenge. In GIVE-2.5 Challenge: System descriptions, Nancy.

126

Garrod, S. C. and Sanford, A. J. (1982). The mental representation of dis-
course in a focussed memory system: Implications for the interpretation
of anaphoric noun phrases. Journal of semantics, 1(1):21–41.

Gatt, A. and Krahmer, E. (2018). Survey of the state of the art in natural
language generation: Core tasks, applications and evaluation. Journal of
Artificial Intelligence Research, 61:65–170.

Gilovich, T., Keltner, D., Chen, S., and Nisbett, R. (2015). Social Psychology.
W.W. Norton.

Glantz, K., Durlach, N. I., Barnett, R. C., and Aviles, W. A. (1997). Virtual
reality (VR) and psychotherapy: Opportunities and challenges. Presence:
Teleoperators and Virtual Environments, 6(1):87–105.

Gorniak, P. and Roy, D. (2004). Grounded semantic composition for visual
scenes. Journal of Artificial Intelligence Research, 21:429–470.

Gotzner, Wartenburger, and Spalek (2016). The impact of focus particles
on the recognition and rejection of contrastive alternatives. Language and
Cognition, 8:59–95.

Gotzner, N. (2017). What’s Included in the Set of Alternatives?, pages 103–122.
Springer International Publishing, Cham.

Grice, H. P. (1975). Logic and conversation. In Cole, P. and Morgan, J. L.,
editors, Speech Acts, volume 3 of Syntax and Semantics, pages 41–58. Aca-
demic Press, New York.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten,
I. H. (2009). The weka data mining software: An update. SIGKDD Explor.
Newsl., 11(1):10–18.

Hallinan, J. T. (2009). Why we make mistakes. Broadway Books.

Haponchyk, I., Uva, A., Yu, S., Uryupina, O., and Moschitti, A. (2018). Su-
pervised clustering of questions into intents for dialog system applica-
tions. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2018), pages 2310–2321.

Harris, L. R. and Jenkin, M. (2001). Vision and attention. In Jenkin, M. and
Harris, L., editors, Vision and Attention, pages 1–17. Springer New York,
New York, NY.

Harris, M. (2015). How a lone hacker shredded the myth of crowdsourcing.
Wired. [Online; posted 09-February-2015].

127

Hoffmann, J. and Nebel, B. (2001). The ff planning system: Fast plan gen-
eration through heuristic search. Journal of Artificial Intelligence Research,
14:253–302.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (1979). Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley, Boston, MA,
USA.

Horacek, H. (2004). On referring to sets of objects naturally. In Proceedings
of the 3rd International Conference on Natural Language Generation (INLG),
pages 70–79, Brokenhurst.

Ilinykh, N., Zarrieß, S., and Schlangen, D. (2018). The task matters: Com-
paring image captioning and task-based dialogical image descriptions.
In Proceedings of the 11th International Conference on Natural Language Gen-
eration (INLG 2018), pages 397–402.

Itti, L. and Borji, A. (2014). Computational modelsbottom-up and top-down
aspects. In Nobre, A. C. K. and Kastner, S., editors, The Oxford Handbook of
Attention, chapter 38, pages 1122–1158. Oxford University Press, Oxford.

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(11):1254–1259.

Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. Physical
Review, 106(4):620–630.

Kelleher, J. and Kruijff, G.-J. (2006). Incremental generation of spatial re-
ferring expressions in situated dialogue. In Proceedings of COLING-ACL
2006, Sydney, Australia.

Kelleher, J. and van Genabith, J. (2004). Visual salience and reference
resolution in simulated 3-d environments. Artificial Intelligence Review,
21(3):253–267.

Klein, W. (1982). Local deixis in route directions. In Klein, R. J. . W., editor,
Speech, Place, and Action: Studies in Deixis and Related Topics, pages 161–
182. Wiley, Chichester.

Koch, C. and Ullman, S. (1985). Shifts in selective visual attention: towards
the underlying neural circuitry. Human Neurobiology, 4:219–227.

Koleva, N., Villalba, M., Staudte, M., and Koller, A. (2015). The impact of
listener gaze on predicting reference resolution. In ACL (2), pages 812–
817.

128

Kollar, T., Tellex, S., Roy, D., and Roy, N. (2010). Toward understanding
natural language directions. In Proceedings of the 5th ACM/IEEE Inter-
national Conference on Human-robot Interaction, HRI ’10, pages 259–266,
Piscataway, NJ, USA. IEEE Press.

Koller, A. and Engonopoulos, N. (2017). Integrated sentence generation
with charts. In Proceedings of the 10th International Conference on Natural
Language Generation (INLG), Santiago de Compostela.

Koller, A., Garoufi, K., Staudte, M., and Crocker, M. (2012). Enhancing ref-
erential success by tracking hearer gaze. In Proceedings of the 13th Annual
SIGdial Meeting on Discourse and Dialogue (SIGDIAL), Seoul.

Koller, A. and Stone, M. (2007). Sentence generation as a planning problem.
In Proceedings of the 45th Annual Meeting of the Association of Computational
Linguistics, pages 336–343. Association for Computational Linguistics.

Koller, A., Striegnitz, K., Gargett, A., Byron, D., Cassell, J., Dale, R., Moore,
J., and Oberlander, J. (2010). Report on the Second NLG Challenge on
Generating Instructions in Virtual Environments (GIVE-2). In Proceedings
of the Sixth International Natural Language Generation Conference (Special
session on Generation Challenges).

Koolen, R., Gatt, A., Goudbeek, M., and Krahmer, E. (2009). Need i say
more? on factors causing referential overspecification. In Proceedings of
the CogSci Workshop on the Production of Referring Expressions (PRE-CogSci
2009), Amsterdam.

Krahmer, E. and Theune, M. (1999). Efficient generation of descriptions
in context. In van Deemter, K. and Kibble, R., editors, Proceedings of the
ESSLI Workshop on the Generation of Nominals, volume 99, Utrecht, The
Netherlands.

Krahmer, E. and Theune, M. (2002). Efficient context-sensitive generation
of referring expressions. In van Deemter, K. and Kibble, R., editors, In-
formation Sharing: Reference and Presupposition in Language Generation and
Interpretation, volume 143, pages 223–263. CSLI Publications.

Krahmer, E. and van Deemter, K. (2012). Computational generation of re-
ferring expressions: A survey. Computational Linguistics, 38(1):173–218.

Krahmer, E., van Erk, S., and Verleg, A. (2003). Graph-based generation of
referring expressions. Computational Linguistics, 29(1):53–72.

Krahmer, E. J. and Theune, M. (1998). Context sensitive generation of de-
scriptions. In Proceedings of the 5th International Conference on Spoken Lan-
guage Processing (ICSLP), pages 1151–1154, Sydney, Australia. Interna-
tional Speech Communication Association (ISCA).

129

Krifka, M. (2008). Basic notions of information structure. Acta Linguistica
Hungarica, 55:243–276.

Land, M. F. and Hayhoe, M. (2001). In what ways do eye movements con-
tribute to everyday activities? Vision Research, 41(25-26):3559–3565.

Lau, T., Drews, C., and Nichols, J. (2009). Interpreting written how-to in-
structions. In Proceedings of the Twenty-first International Joint Conference
on Artificial Intelligence, pages 1433–1438.

Lavie, N. and Dalton, P. (2014). Load theory of attention and cognitive
control. In Nobre, A. C. K. and Kastner, S., editors, The Oxford Handbook
of Attention, chapter 3, pages 56–75. Oxford University Press, Oxford.

Levelt, W. J. (1993). Speaking: From Intention to Articulation. ACL-MIT Press
series in natural-language processing. Bradford Books, U.S.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, inser-
tions, and reversals. Cybernetics and Control Theory, 8(10):707–710.

Levit, M. and Roy, D. (2007). Interpretation of spatial language in a map
navigation task. IEEE Transactions on Systems, Man, and Cybernetics, Part
B, 37(3):667–679.

Lisovskaya, A. (2015). Designing an infrastructure for crowdsourcing ex-
periments with a dialog system. Bachelor’s thesis, Potsdam University.

Luck, S. J. and Vogel, E. K. (1997). The capacity of visual working memory
for features and conjunctions. Nature, 390:279–281.

MacMahon, M. and Stankiewicz, B. (2006). Human and automated indoor
route instruction following. In Proceedings of the 28th Annual Conference of
the Cognitive Science Society, Vancouver, BC.

Mast, V. and Wolter, D. (2013). A probabilistic framework for object descrip-
tions in indoor route instructions. In Tenbrink, T., Stell, J., Galton, A.,
and Wood, Z., editors, Spatial Information Theory, pages 185–204, Cham.
Springer International Publishing.

Matuszek, C., Fox, D., and Koscher, K. (2010). Following directions using
statistical machine translation. In Proceedings of the 5th ACM/IEEE In-
ternational Conference on Human-robot Interaction, HRI ’10, pages 251–258,
Piscataway, NJ, USA. IEEE Press.

Mazar, N., Amir, O., and Ariely, D. (2008). The dishonesty of honest peo-
ple: A theory of self-concept maintenance. Journal of Marketing Research,
45(6):633–644.

130

McCallum, A. K. (2002). Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M.,
Weld, D., and Wilkins, D. (1998). Pddl-the planning domain definition
language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center
for Computational Vision and Control.

Milosavljevic, M. and Dale, R. (1996). Strategies for comparison in ency-
clopædia descriptions. In Proceedings of the 8th International Natural Lan-
guage Generation Workshop (INLG 1996).

Mohri, M. (2003). Edit-distance of weighted automata: General definitions
and algorithms. International Journal of Foundations of Computer Science,
14(6):957–982.

Murthy, S. K. (1998). Automatic construction of decision trees from data: A
multi-disciplinary survey. Data Mining and Knowledge Discovery, 2(4):345–
389.

Nikravesh, M. and Bensafi, S. (2005). Soft Computing for Perception-Based
Decision Processing and Analysis: Web-Based BISC-DSS, pages 93–188.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: A method
for automatic evaluation of machine translation. In Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, pages 311–
318, Stroudsburg, PA, USA. Association for Computational Linguistics.

Partalas, I., Vrakas, D., and Vlahavas, I. (2008). Reinforcement learning and
automated planning: A survey. In Vrakas, D. and Vlahavas, I., editors,
Advanced Problem Solving Techniques. IGI Global.

Pednault, E. P. (1987). Formulating multiagent, dynamic-world problems
in the classical planning framework. In Reasoning about actions & plans,
pages 47–82. Elsevier.

Pierrehumbert, J. B. and Hirschberg, J. (1990). The meaning of intonational
contours in the interp retation of discourse. In Cohen, P. R., Morgan, J.,
and Pollack, M. E., editors, Intentions in Communication, chapter 14. MIT
University Press Group.

Portet, F., Reiter, E., Gatt, A., Hunter, J., Sripada, S., Freer, Y., and Sykes, C.
(2009). Automatic generation of textual summaries from neonatal inten-
sive care data. Artificial Intelligence, 173:789–816.

Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental
Psychology, 32(1):3–25.

131

Purver, M. (2004). The Theory and Use of Clarification Requests in Dialogue.
PhD thesis, KingâĂŹs College, University of London.

Ratnaparkhi, A. (1997). A simple introduction to maximum entropy mod-
els for natural language processing. Technical Report IRCS-97-08, Uni-
versity of Pennsylvania.

Ratnaparkhi, A. (1998). Maximum entropy models for natural language
ambiguity resolution. Technical Report IRCS-98-15, University of Penn-
sylvania.

Reiter, E. and Dale, R. (1997). Building natural-language generation sys-
tems. Natural Language Engineering, 3:57–87.

Reiter, E. and Dale, R. (2000). Building Natural Language Generation Systems.
Cambridge University Press.

Rooth, M. (1992). A theory of focus interpretation. Natural Language Seman-
tics, 1:75–116.

Rooth, M. (1997). Focus. In Lappin, S., editor, The Handbook of Contemporary
Semantic Theory, chapter 10, pages 271–298. Blackwell Publishing.

Ross, J., Irani, L., Silberman, M. S., Zaldivar, A., and Tomlinson, B. (2010).
Who are the crowdworkers?: Shifting demographics in mechanical turk.
In CHI ’10 Extended Abstracts on Human Factors in Computing Systems, CHI
EA ’10, pages 2863–2872, New York, NY, USA. ACM.

Rüetschi, U. (2007). Wayfinding in Scene Space: Modelling Transfers in Public
Transport. PhD thesis, University of Zürich.

Russell, S. J. and Norvig, P. (2004). Inteligencia Artificial: Un enfoque moderno.
Prentice Hall, 2 edition.

Sanford, A. J. and Garrod, S. C. (1981). Understanding written language :
explorations of comprehension beyond the sentence. Chichester: John Wiley.

Schneier, B. (2008). Inside the twisted mind of the security professional.
Wired. [Online; posted 20-March-2008].

Searle, J. (1969). Speech Acts: An Essay in the Philosophy of Language. Cam:
Verschiedene Aufl. Cambridge University Press.

Smith, D. A. and Lieberman, H. (2013). Interpreting vague and ambiguous
referring expressions by dynamically binding to properties of the context
set. In Modeling and Using Context: Proceedings of the 8th International and
Interdisciplinary Conference (CONTEXT 2013), pages 15–30, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

132

Staff, U.C.P. (2017). The Chicago Manual of Style. Chicago Manual of Style.
University of Chicago Press.

Staudte, M., Koller, A., Garoufi, K., and Crocker, M. (2012). Using listener
gaze to augment speech generation in a virtual 3D environment. In Pro-
ceedings of the 34th Annual Meeting of the Cognitive Science Society (CogSci),
Sapporo.

Stefanovitch, N., Alshamsi, A., Cebrian, M., and Rahwan, I. (2014). Error
and attack tolerance of collective problem solving: The darpa shredder
challenge. EPJ Data Science, 3(1):13.

Steube, A. (2001). Correction by contrastive focus. Theoretical Linguistics,
27(2-3):215–250.

Stoia, L., Shockley, D. M., Byron, D. K., and Fosler-Lussier, E. (2008). Scare:
A situated corpus with annotated referring expressions. In Proceedings of
the 6th International Conference on Language Resources and Evaluation (LREC
2008), Marrakesh, Morocco.

Striegnitz, K., Denis, A., Gargett, A., Garoufi, K., Koller, A., and Theune,
M. (2011). Report on the Second Second Challenge on Generating In-
structions in Virtual Environments (GIVE-2.5). In Proceedings of the 13th
European Workshop on Natural Language Generation (Special session on Gen-
eration Challenges), Nancy.

Sulem, E., Abend, O., and Rappoport, A. (2018). Bleu is not suitable for the
evaluation of text simplification. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 738–744. Associ-
ation for Computational Linguistics.

Suri, S., Goldstein, D. G., and Mason, W. A. (2011). Honesty in an online
labor market. In Human Computation, pages 61–66, San Francisco, Cali-
fornia, USA. Association for the Advancement of Artificial Intelligence.

Tanenbaum, A. S. (1988). Computer networks. Prentice-Hall software series.
Prentice-Hall.

Theeuwes, J. (2014). Spatial orienting and attentional capture. In Nobre, A.
C. K. and Kastner, S., editors, The Oxford Handbook of Attention, chapter 8,
pages 231–252. Oxford University Press, Oxford.

Thompson, H. S., Anderson, A., Bard, E. G., Doherty-Sneddon, G., New-
lands, A., and Sotillo, C. (1993). The hcrc map task corpus: Natural dia-
logue for speech recognition. In HUMAN LANGUAGE TECHNOLOGY:
Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24, 1993.

133

van Deemter, K. (2002). Generating referring expressions: Boolean exten-
sions of the incremental algorithm. Computational Linguistics, 28(1):37–52.

van Deemter, K. (2016). Computational Models of Referring: a Study in Cogni-
tive Science. The MIT Press, Cambridge, Mass.

van der Sluis, I., Gatt, A., and van Deemter, K. (2007). Evaluating algo-
rithms for the generation of referring expressions: Going beyond toy do-
mains. In Proceedings of the International Conference on Recent Advances in
Natural Language Processing (RANLP 2007).

Vaughan, J. W. (2018). Making better use of the crowd: How crowdsourc-
ing can advance machine learning research. Journal of Machine Learning
Research, 18(193):1–46.

Vecera, S. P. and Behrmann, M. (2001). 6 - attention and unit formation: A
biased competition account of object-based attention. In Shipley, T. F. and
Kellman, P. J., editors, From Fragments to Objects, volume 130 of Advances
in Psychology, pages 145 – 180. North-Holland.

Viethen, J. and Dale, R. (2008). The use of spatial relations in referring
expression generation. In Proceedings of the Fifth International Natural
Language Generation Conference, INGL ’08, pages 59–67, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Villalba, M., Teichmann, C., and Koller, A. (2017). Generating contrastive
referring expressions. In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pages 678–
687. Association for Computational Linguistics.

Vogel, A. and Jurafsky, D. (2010). Learning to follow navigational direc-
tions. In ACL 2010, Proceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, July 11-16, 2010, Uppsala, Sweden, pages
806–814.

Winograd, T. (1972). Understanding Natural Language. Academic Press.

Wu, Y., Wu, Y., Gkioxari, G., and Tian, Y. (2018). Building generalizable
agents with a realistic and rich 3d environment. arXiv:1801.02209.

Ylonen, T. and Lonvick, C. (2006). The secure shell (ssh) connection proto-
col. RFC 4254, RFC Editor.

Yu, D., Deng, L., and Acero, A. (2009). Using continuous features in the
maximum entropy model. Pattern Recognition Letters, 30(14):1295 – 1300.

 Martín Villalba
Friedrich-Ebert-Str 96, 51373, Leverkusen, Germany

+49-179-6567027
villalba@7c0h.com

EDUCATION

Jan. 2013
to Aug. 2019

PhD student in Computational Linguistics
Saarland University, Germany
 Researched and implemented theoretical models of user behavior, and fit
 them to data with Machine Learning techniques
 Taught class on Language theory, coordinated events and group activities
 Selected courses: Advanced NLP, Seminar on modern NLP topics

Mar. 2002
to Feb. 2011

Licentiate in Computer Science (M.Sc. equivalent)
National University of Córdoba, Argentina
 Licentiate Thesis: Aspect-oriented web requirements engineering with
 model transformations
 Selected courses: Artificial Intelligence, Microcontrollers, Programming
 Paradigms, and Operating Systems Implementation

WORK EXPERIENCE

Feb. 2011
to present

PostDoc – Applied Mathematics Group
Bayer AG

Oct. 2011
to Mar. 2012

R&D Internship – Silvergate Group
IBM Argentina

Apr. 2007
to Feb. 2011

System Administration & Software Development
Planning and Institutional Management Ministry, UNC, Argentina

Mar. 2011
to Sep. 2011

Engineering and Development of medical system for image reconstruction
FiMe (Medical Physics)

Oct. 2009
to Jan. 2010

GUI Implementation for VoIP System
FastVoIP

Nov. 2007
to May 2009

Medical system development for classification of skin lesions
FiMe (Medical Physics)

VOLUNTEER WORK

Jan. 2017
to present

ACL Anthology System Administrator
Association for Computational Linguistics
 Installation, daily maintenance, and upgrade of the ACL online Anthology

Sep. 2012
to June 2014

Young Researchers' Roundtable on Spoken Dialog Systems
Independent workshop, co-located and endorsed by SIGDial
 Contact with sponsors, position paper review, and graphic design.

Martín Villalba
villalba@7c0h.com

TECHNICAL SKILLS

Software Skills
Java
PHP
Python
HTML/CSS
Javascript
SQL

C/C++
Haskell

Perl
R
Ruby

Natural Language Processing (NLP)
Knowledge of Natural Language Generation
(NLG), Deep Learning/Neural Networks
(PyTorch), and Automatic Summarization.

General Research
Knowledge of Artificial Intelligence (AI),
Data Processing and Visualization, and
Crowdsourcing experiments.

System Administration
Experience with Linux, Bash scripts, web
servers (Apache, NGINX), databases
(PostgreSQL, MySQL), Exim, and Docker.

OTHER SKILLS

Public communication
Experienced in technical writing (LaTeX),
public speaking, and poster presentations.

Graphic Design
Experience in poster, booklet, logo, and
web design, digital illustration, and image
editing.

LANGUAGES

English
Full Proficiency – Certified by ETS TOEFL

German
B1 level – Certified by Goethe-Institut

Spanish
Native proficiency

SELECTED PUBLICATIONS

Generating Contrastive Referring Expressions
Martín Villalba, Christoph Teichmann, and Alexander Koller
55th Annual Meeting of the ACL – August 2017, Vancouver, Canada

The Impact of Listener Gaze on Predicting Reference Resolution
Nikolina Koleva, Martín Villalba, Maria Staudte, and Alexander Koller
53rd Annual Meeting of the ACL – July 2015, Beijing, China

Predicting the Resolution of Referring Expressions from User Behavior
Nikos Engonopoulos, Martín Villalba, Ivan Titov, and Alexander Koller
EMNLP 2013 – Octover 2013, Vancouver, Canada

Interpreting Natural Language Instructions Using Language, Vision, and Behavior
Luciana Benotti, Tessa Lau, and Martín Villalba
ACM Transactions on Interactive Intelligent Systems (Tiis) – Special Issue on Multiple
Modalities in Interactive Systems and Robots. October 2014, Volume 4 Issue 3

Corpus-based Interpretation of Instructions in Virtual Environments
Luciana Benotti, Tessa Lau, Julián Cerruti, and Martín Villalba
50th Annual Meeting of the ACL – April 2012, Jeju, Korea

	Abstract
	Zusammenfassung
	Table of contents
	List of Figures
	List of Abbreviations
	Introduction
	Challenges
	Challenges in developing for the real world
	Challenges in detection of misunderstandings
	Challenges in correcting misunderstandings
	Published research

	Summary

	Instruction following in Virtual Environments
	Early work on Instruction Following
	Automated planning
	Natural Language Generation
	Referring Expression Generation
	Interpreted Regular Tree Grammars

	Virtual Environments
	The GIVE Challenge
	The pragmatics of dialogue, misunderstandings, and focus
	Misunderstandings
	Focus

	Conclusion
	Further reading

	Following instructions
	A simple strategy for instruction following
	Implementing our IF
	Data collection and segmentation
	Interpretation
	Group selection by word similarity
	Group selection with machine translation methods
	Group selection with machine learning
	Corrections

	Experiments and Results
	Lessons learned
	Conclusion

	Detecting misunderstandings
	Definitions
	A model of listener's understanding
	The Principle of Maximum Entropy and log-linear models
	Feature functions for PSem
	Feature functions for PObs

	Experimental setup and evaluation
	Prediction accuracy
	Feedback appropriateness

	Conclusion

	Tracking attention
	Attention and Visual Attention
	Visual Saliency
	Eye-tracking

	Eye-tracking and Extended Probabilistic model
	New features
	Time to interaction

	Experimental setup and evaluation
	Results

	Conclusion

	Crowdsourcing and cheating detection
	Cheating
	The security mindset
	Related work

	Pipeline
	The GIVE Matchmaker
	The GIVE Unity client
	The GIVE Automated IG
	The Crowdflower interface

	Quality control
	Payment scale
	Secret words
	Results

	Conclusion

	Correcting misunderstandings: reformulation
	Attention and Context Set
	Generating with a Context Set
	Experimental setup
	Strategies for feedback generation
	Results
	Error analysis

	Conclusion

	Correcting misunderstandings: Contrastive Referring Expressions
	Contrastive focus
	A minimum-distance approach to contrast
	Finding the missing RE

	Generation of contrastive feedback
	Experimental setup
	Experiment results
	Experiment 2

	Discussion
	Conclusion

	Conclusion
	Summary
	Future work

	Bibliography
	Martín Villalba
	EDUCATION
	WORK EXPERIENCE
	VOLUNTEER WORK
	TECHNICAL SKILLS
	Software Skills
	Natural Language Processing (NLP)
	General Research
	System Administration

	OTHER SKILLS
	Public communication
	Graphic Design

	LANGUAGES
	English
	German
	Spanish

