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Zusammenfassung
Anwendbarkeit und Korrektheit Polyhedraler Optimierung Hardwarenaher Programme

von Johannes Rudolf Doerfert

Compiler Design Lab
Universität des Saarlandes

Aktuelle und zukünftige Computersysteme zeichnen sich durch verschiedenartige Mehrkernpro-
zessoren, sowie programmierbare und spezialisierte Hardwarebeschleuniger aus. Zudem wird
die Speicherhierarchie tiefer und oft durch Speicher mit niedriger Latenz, oder hoher Bandbrei-
te, erweitert. Der Programmierer kann dieses enorme Potential allein nicht nutzen. Übersetzer
müssen Einblick in das Programmverhalten geben, oder sogar Berechnungen und Daten selbst
verwalten. Für beides brauchen sie eine ganzheitliche Sicht auf das Programm, da auch lokale
Transformationen, die die Ausführungsreihenfolge, die Recheneinheit und das Speicherlayout
unverändert lassen, nicht ausreichen um vielfältige Systeme auszulasten.

Das Polyedermodell, einemathematische Programmdarstellung und ein Transformationsrahmen-
werk, hat große Erfolge bei der Bewältigung verschiedener Probleme imKontext vielfältiger Sys-
teme erzielt. Obwohl die Analyse- und Transformationsfähigkeiten weithin anerkannt sind, wird
auch allgemein angenommen, dass es zu restriktiv ist für Programme aus der Praxis.

In dieser Arbeit verbessern wir die Anwendbarkeit und Rentabilität von Techniken basierend
auf dem Polyedermodell. Unsere Bemühungen garantieren eine korrekte Programmdarstellung
und führen neue Anwendungen ein um die verfügbaren Informationen in der polyedrischen Pro-
grammdarstellung zu nutzen. Diese sind eigenständige Optimierungen und Techniken zur Ablei-
tung von abstrakten Programmeigenschaften.

Diese Arbeit ist in englischer Sprache verfasst.
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Abstract
Applicable and Sound Polyhedral Optimization of Low-Level Programs

by Johannes Rudolf Doerfert

Compiler Design Lab
Saarland University

Computers become increasingly complex. Current and future systems feature configurable hard-
ware, multiple cores with different capabilities, as well as accelerators. In addition, the mem-
ory subsystem becomes diversified too. The cache hierarchy grows deeper, is augmented with
scratchpads, low-latency memory, and high-bandwidth memory. The programmer alone cannot
utilize this enormous potential. Compilers have to provide insight into the program behavior, or
even arrange computations and data themselves. Either way, they need a more holistic view of
the program. Local transformations, which treat the iteration order, computation unit, and data
layout as fixed, will not be able to fully utilize a diverse system.

The polyhedral model, a high-level program representation and transformation framework, has
shown great success tackling various problems in the context of diverse systems. While it is
widely acknowledged for its analytical powers and transformation capabilities, it is also widely
assumed to be too restrictive and fragile for real-world programs.

In this thesis we improve the applicability and profitability of polyhedral-model-based techniques.
Our efforts guarantee a sound polyhedral representation and extend the applicability to a wider
range of programs. In addition, we introduce new applications to utilize the information available
in the polyhedral program representation, including standalone optimizations and techniques to
derive high-level properties.
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Chapter 1

Introduction & Motivation

“ “Begin at the beginning,” the King said gravely,
“and go on till you come to an end; then stop.” ”

Lewis Carroll, Alice in Wonderland, 1899

Two of the main challenges for current and future computing systems [Luc+14] are energy effi-
ciency [FM11] and performant computations on increasingly growing amounts of data [VOE11].
As a consequence, we need to take full advantage of the available hardware, especially because
CPU frequencies stopped their decade long exponential growth [Sut05]. Even though hardware
advances continue, the performance improvement per year for single-threaded floating-point
SPEC benchmarks, shown in Figure 1.1, sunk 2004 from former 64% to 21% afterwards [Pre12].

Figure 1.1: Floating point performance of single-threaded SPEC benchmark results
reported between 1995 and 2011. Source: Preshing [Pre12].



2 Introduction & Motivation

While we need to maximise hardware utilization, a study by Prabhu et al. [Pra+11] revealed that
in practise programs often “run unaltered after an initial implementation on multiple machines
with widely varying architectures” [Pra+11]. This inevitable result of the cumulative complexity
developers face, when confronted with heterogeneous machines [LUH18; Nou+17], highlights
the importance of improved automatic solutions. Program performance prediction, a research
field on its own, is a hard task for experts, and often infeasible for average programmers. Even
after the right algorithm was selected, the implementation can easily underperform if the avail-
ability of a single hardware resource, from floating-point units to memory bandwidth, or the in-
terplay between them, is limiting the overall throughput [Abe+13; Kol+13]. For a highly-tuned
program, developers need to identify and remedy performance bottlenecks. While performance
models and tooling support ease this burden, it is unrealistic to assume programmers could alone
bridge the gap between actual and potential performance on a modern system. Instead, compil-
ers have to increase their effort too. They have to augment local transformations with high-level
schemes that automatically distribute and manage both computation and data [GH16; MF18].

To achieve high utilization on a complex and diverse system, compilers have to aide developers
in various tasks. Parallelization, the distribution of computations across multiple processing el-
ements, is only one of them. However, given the enormous and continuously increasing body
of compiler research on this topic, see Streit [Str17, Chapter 3], as well as the quantity of lan-
guage and library based solutions, it seems clear that solving this task is hard for humans [Pre12]
and compilers alike1. Nevertheless, automatic, semi-automatic, and manual parallelization tech-
niques allowed us to transition our programs from fast single-core processors, to systems with
multiple, less-powerful CPUs, to the massively parallel accelerators which are nowadays avail-
able in commodity machines. While we could make a similar argument for schedule optimiza-
tions, data layout transformations, and other program modifications, we want to stress that the
ever growing requirements on computational power, in high-performance but also general pur-
pose computing, can only be satisfied through continuous improvement of our tools and tech-
niques. To facilitate this development, we have to improve the existing state-of-the-art on multi-
ple fronts, including productivity and applicability.

In this thesis we will take a closer look at the Polyhedral Model [FL11], a promising candidate
to address the performance challenges that come with complex, heterogeneous, and massively
parallel systems. As a high-level program representation and transformation framework, and
with a powerful mathematical foundation, the polyhedral model allows for both structural and
also fine-grained program transformations. Consequently, it is regularly used in automatic and
semi-automatic approaches to improve the utilization of a system through distribution and reor-
ganization of computation, data, or both.

1 Though, in all fairness, expectations, architectures, and requirements are, and will always continue to be, moving
targets for any kind of optimization. This means that even the best techniques for today’s systems and important
problems might be retired with the next programming trend or advance in hardware.
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Based on decades of research with highly successful results, polyhedral-model-backed systems
are on the rise to satisfy the increasing demand for fast computation pipelines in the context of
deep learning and image processing [Bag+18; JB18; Vas+18]. Additionally, polyhedral-model-
based techniques found their way into production compilers for general purpose languages such
as IBM-XL [Bon+10], GCC (through Graphite [Pop+06]), and LLVM [LA04] (through
Polly [GGL12]). While this certainly improved the outreach of such techniques, we regularly
observe reservations when it comes to the application. While the reasons are manifold, there are
several that are widely acknowledged:

- Several components of polyhedral-model-based techniques have a worst case doubly expo-
nential complexity in various input characteristics (ref. [Bas04a, Section 4.3] and [Upa13]).
While this theoretical upper bound is not necessarily reached, we have to ensure that the
time investment is proportional to the benefit for the user. This is especially important for
actively developed projects in which vast amounts of code are continuously compiled to
ensure correctness after each modification.

- Polyhedral-model-based techniques and tools are often complex and hard to comprehend
for non-expert users [Bag+16]. While ignorance can be bliss, a black-box optimization that
cannot be understood, guided, and improved by the user is generally not. It is therefore
crucial to improve feedback and guidance possibilities in a way that is custom to an average
programmer [DGP15].

- Applicability, robustness, and correctness issues are another hurdle when it comes to poly-
hedral optimizations, especially for general purpose applications written or represented in
low-level languages [DGH17]. Only if the code adheres to all syntactic and semantic re-
strictions of the polyhedral model [CGT04; Fea91], which might or might not be checked
prior to the application, the desired transformations are performed and the result is correct.
However, any subtle change to the program, even if it is semantic preserving, can cause us
to miss out on optimizations for seemingly amenable code regions. Even worse, if implicit
assumptions about the input do not hold, silent miscompilations can follow.

In the remainder of this thesis we will present extensions to classical polyhedral tooling which
try to mitigate all of the above reasons that hold back the adaption of polyhedral-model-based
techniques. We will mostly focus on the last one, thus applicable, robust, and sound appli-
cation on programs in a low-level representation. Improvements in this area are important as
they not only allow to apply polyhedral techniques to the enormous existing codebase written in
low-level languages like C and C++, but also enable the same analyses and transformations for
higher-level languages which are at some point lowered during their compilation. In addition to
these extensions, the thesis also contains extensive evaluation results, usability and optimization
improvements, as well as short introductions into our ongoing research.



4 Introduction & Motivation

1.1 Contributions & Structure

The main contributions of this thesis are techniques to improve polyhedral optimization of low-
level programs. The enhancements we describe allow us to reliably create a sound and concise
polyhedral representation of general purpose code written in low-level languages such as C/C++.
In summary, we make the following contributions:

Measuring Applicability, Profitability, and Limitations
In Section 3.1, we discuss new metrics to summarize the applicability of polyhedral ap-
proaches on a large corpus of programs without the shortcomings of existing metrics. Ad-
ditionally, we provide a profitability heuristic that reliably determines if a program region
is actually amenable to polyhedral optimizations, prior to the costly polyhedral analyses.
In Section 3.2, we determine and classify applicability limitations of a modern polyhedral
optimizer through a large study on general purpose code.

Enhancing Applicability and Robustness
We describe several enhancements for polyhedral modeling of low-level programs in Sec-
tions 3.3 – 3.7. For each, we evaluate the applicability effect on a large selection of general
purpose benchmarks (ref. Section 2.3). The proposed techniques eliminate syntactic and
semantic limitations through the use of algorithms tailored to low-level inputs, and runtime
checks synthesized from automatically derived preconditions. The result of our efforts is
a significantly improved applicability on low-level programs.

Ensuring Correct and Concise Representations
In Sections 4.1 – 4.3, we present practical ways to bridge common semantic mismatches
between the high-level polyhedral program repsentation and low-level languages such
as C/C++, or the LLVM intermediate representation (LLVM-IR). The proposed tech-
niques ensure a correct polyhedral representation of low-level programs through automat-
ically synthesized runtime checks. Additionally, our modeling facilitates fast processing
by favoring a concise representation of expected behaviors, over a complete representation
of all possible program behaviors.

Improving Polyhedral Optimizations
Finally, we introduce new applications and optimizations for polyhedral model based tools
on low-level programs. This chapter includes improvements with regards to user interac-
tion in Section 5.1, techniques to determine high-level program properties from the low-
level inputs in Section 5.2, as well as a standalone program optimization to improve the
organization of computations in low-level programs in Section 5.3. The evaluation for the
latter shows that we are on par, or even better, than dedicated state-of-the-art optimization
approaches which are tailored towards the benchmarks we use.
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The thesis is structured as follows: In Chapter 2, necessary background information is presented.
This includes an introduction of the polyhedral model, some mathematical concepts, as well as
details on the polyhedral representation and optimization of programs. Afterwards, we present
the contributions of this thesis in Chapters 3 – 5. The first, Chapter 3, describes our work on
applicability and profitability of polyhedral-model-based techniques. Besidemetrics for both and
an elaborate evaluation on current applicability limitations, we introduce and evaluate different
extensions towards an applicable and robust polyhedral representation of low-level programs. In
Chapter 4, the emphasis is put on correctness issues. While these are often similar to applicability
problems, they can be more subtle. In this chapter we explain how a sound polyhedral program
representation is possible without sacrifices due to unlikely corner cases in the semantics of
the low-level input language. Afterwards, we present new applications and optimizations for
polyhedral techniques in Chapter 5. This chapter includes standalone optimizations as well as
techniques to deduce, and communicate, high-level program properties from low-level programs.
Before we conclude this thesis in Chapter 7, we present ongoing work and interesting directions
for future research Chapter 6.



6 Introduction & Motivation

1.2 Publications

This thesis is based on the followingworks presented at conferences andworkshops. Each section
additionally describes the implementation availability and relevant publications at its beginning.

SPolly: Speculative Optimizations in the Polyhedral Model [Doe+13]
Johannes Doerfert, Clemens Hammacher, Kevin Streit, and Sebastian Hack. International
Workshop on Polyhedral Compilation Techniques (IMPACT), 2013.
The content of this publication overlaps with the bachelor thesis of Johannes Doerfert.

Polly’s Polyhedral Scheduling in the Presence of Reductions [Doe+15]
Johannes Doerfert, Kevin Streit, Sebastian Hack, and Zino Benaissa. International Work-
shop on Polyhedral Compilation Techniques (IMPACT), 2015.

Runtime Pointer Disambiguation [Alv+15]
Péricles Alves, FabianGruber, JohannesDoerfert, Alexandros Lamprineas, TobiasGrosser,
Fabrice Rastello, and Fernando Magno Quintão Pereira. International Conf. on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM, 2015.

Generalized Task Parallelism [Str+15]
Kevin Streit, Johannes Doerfert, Clemens Hammacher, Andreas Zeller, and Sebastian
Hack. ACM Transactions on Architecture and Code Optimization (TACO), 2015.

Assumption Tracking for Optimistic Optimizations [DGP15]
Johannes Doerfert, Tobias Grosser, and Sebastian Pop. LLVM-HPC Workshop, 2015.

Input Space Splitting for OpenCL [MDH16]
Simon Moll, Johannes Doerfert, and Sebastian Hack. International Conference on Com-
piler Construction (CC). ACM, 2016.

Polyhedral Driven Optimizations on Real Code [DH17a]
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Chapter 2

Background

“ My definition of an expert in any field is a person who
knows enough about what’s really going on to be scared. ”

P.J. Plauger, Computer Language, 1983

This chapter provides the necessary background knowledge to comprehend the remainder of this
work. Especially the Polyhedral Model is detailed in Section 2.1, including notation, underlying
concepts, and an introduction into the polyhedral representation and optimization of programs.
In addition, we provide an extensive glossary in Appendix B. It contains definitions of common
terms from the field of compiler construction, (polyhedral) program optimization, as well as gen-
eral terminology we use throughout this thesis. Whenever a term that is listed in the glossary is
used for the first time in a section, it is highlighted by a dotted line, e.g., control flow graph (CFG).
Note that the glossary only provides a brief description of potentially unclear terminology; we
invite the interested reader to consult the provided literature for further information.

In addition to conceptual background, this chapter also contains details on the implementation
and availability of the presented techniques in Section 2.2. The evaluation setup used through-
out Chapter 3 and Chapter 4 is discussed in Section 2.3. The evaluation of the optimization
techniques, presented in Section 5.2 and Section 5.3, is detailed in their respective sections.

Note that we start each section with an introduction of the problem which will generally include
dedicated background information, examples, and additional references to the relevant literature.
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2.1 The Polyhedral Model

Throughout this thesis we consider the Polyhedral Model [FL11] mostly as a mathematical pro-
gram abstraction and optimization framework based on Presburger Arithmetic [Pre31]1. As such
it has been used for decades to analyze and optimize programs with static affine control flow
conditions and access relations [Fea92a; Fea92b; Len93; Pug91a]. Programs, or better program
parts, that fulfill these and other requirement imposed by the polyhedral model (ref. Section 2.1.3
and Section 3.2) are known as static control parts, or SCoPs [CGT04; Fea91]. The polyhedral
representation of a SCoP is oblivious to the actual computation performed by the program, but
instead concerned with the execution order of statement instances. A statement instance is a
pair containing a statement and an iteration vector that identifies iterations of the loops surround-
ing the statement. The extent of a statement in the polyhedral representation depends on the
statement granularity. Common choices for “higher-level” programs, written in Fortran and C-
like languages, are source level statements [BRS10; Bon+08; Fea92b; GL96; VG12]. Low-
level polyhedral tools that work on the control flow graph (CFG) of a program generally use
basic blocks as statements [GGL12; Pop+06]. There are however alternatives which aim to im-
prove applicability [MDH16], optimization freedom [Sto+14], or to reduce compile time costs,
which generally grows exponentially [Upa13] with the number of the statements [MY15]. The
set of instances for which a statement S is executed, is defined by its iteration domainDS in terms
of surrounding loop iterations and parameter values. The order in which statement instances are
executed is determined by the schedule 𝜃 of the SCoP. Both are derived from the input code as
explained in Section 2.1.3 and Section 3.3. Polyhedral statements contain a representation of all
(scalar and memory) accesses that were also contained in the program part represented by the
statement. A memory access m is defined by the accessed array (or pointer) and the piecewise,
quasi-affine access relation 𝑓m. This relation maps an iteration vector i ∈ DS of the statement S
to the array element(s) accessed by m in the loop iteration described by i. Note that the access
relations, the iteration domains, and the schedule may contain references to symbolic, thus un-
known but fixed, parameters of the SCoP. These parameters are commonly function arguments
or scalar variables defined outside of the SCoP. In Section 3.6 we introduce an extension that
also allows global variables to be considered parameters.

The remainder of this section briefly introduces background literature to the polyhedral model
in Section 2.1.1, before Presburger Arithmetic, the mathematical foundation on which modern
implementations of the polyhedral model are rooted, is described in Section 2.1.2. Afterwards,
Section 2.1.3 explains the polyhedral representation of programs in more detail. Readers with
a background in polyhedral optimization may safely skip these parts and consult the glossary in
Appendix B in case terms are unknown or unclear.

1 An annotated English translation of the originally German paper was made available by Stansifer [Sta84].
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2.1.1 Polyhedral Model Literature

With roots dating back more than five decades [CH78; KMW67], and improved by equally sem-
inal contributions since then [AI91; Fea91; Fea92b; GL96], it is safe to say that the polyhedral
model has successfully stood the test of time. The copious body of research on polyhedral-model-
based techniques includes everything from schedule optimizations [Bon+10; DI15; Fea92a;
Fea92b], which change the order of program statement instances, over data-layout transforma-
tions [BBC16; DSV05; DIY16; QR00; YR13], to techniques that distribute both computation
and data across processing units [Dam+15; GH16; MF18; Mik+14; Vas+12; Ver+13]. There
is also an active research community that is continuously improving polyhedral-model-based
techniques and adapting them to new applications. Notable active research directions include
speculative approaches [Caa+17; Doe+13; Jim+13a; Suk+14; SC16], applicability improve-
ments [Bag+13; DGH17; Gro+15; KG18; ZKC18], as well as the application to new prob-
lems, programmingmodels, and architectures [Cla+11; DH17b; GH16; Ham+18; Kur17; MF18;
MDH16; Pra+17; SHS17; SKF18; ZHB18].

2.1.2 Presburger Predicates, Sets, and Relations

Presburger arithmetic is a decidable first-order logic over integers with addition [Pre31]. In the
context of this work, we express Presburger formulae through piecewise defined, quasi-affine
expressions, as well as as logical combinations of equalities and inequalities over such expres-
sions [Ver16, Chapter 4]. A piecewise quasi-affine expression is a set of affine expressions where
each one is defined over a disjunct part of the input space. The input space spans all possible valu-
ations of the variables in the expressions. Formula 1 defines the general shape of an affine expres-
sion. The variables x = (𝑥1, … , 𝑥𝑛) are universally quantified, the variables p = (𝑝1, … , 𝑝𝑚)
are existentially quantified, and c = (𝑐0, … , 𝑐𝑛+𝑚) ∈ Z𝑛+𝑚 are constant integers. As shown here,
we use bold letters to denote vectors and italic letters to indicate variables.

∃p ∶ ∀ x ∶ c⊺ × (1, x,p) = c⊺ × (1, 𝑥1, … , 𝑥𝑛, 𝑝1, … , 𝑝𝑚)
= 𝑐0 + ∑

1≤𝑖≤𝑛
(𝑐𝑖 ∗ 𝑥𝑖) + ∑

1≤𝑖≤𝑚
(𝑐𝑖+𝑛 ∗ 𝑝𝑖) (1)

Quasi-affine expressions additionally allow integer divisions and modulo operations with a con-
stant divisor. Note that both can be reduced to additional existentially quantified variables and
constraints. This reduction is exemplarily shown in the translation from Formula 4 to Formula 5.
The structure of affine, quasi-affine, and piecewise quasi-affine expressions is provided in Fig-
ure 2.1. To improve readability, we generally use the term affine expression, even if we deal with
piecewise defined, quasi-affine expression. The distinction is made explicit only if necessary.
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⟨aexp⟩ ::= ⟨cnst⟩ ∣ ⟨ident⟩ ∣ (⟨aexp⟩) ∣ ⟨aexp⟩ ( + | − ) ⟨aexp⟩ affine expression∣ ⟨cnst⟩ ∗ ⟨aexp⟩ ∣ ⟨aexp⟩ ∗ ⟨cnst⟩⟨qaexp⟩ ::= ⟨aexp⟩ ∣ ⟨qaexp⟩ ( / ∣ mod ) ⟨cnst⟩ quasi-affine expr.⟨pqaexp⟩ ::= ⟨qaexp⟩ ∣ ⟨pqacond⟩ ? ⟨pqaexp⟩ : ⟨pqaexp⟩ pw. quasi-affine expr.⟨pqacond⟩ ::= ⟨pqacond⟩ ( ∧∣∨ ) ⟨pqacond⟩ pw. quasi-affine condition∣ ⟨pqaexp⟩ ( < ∣ > ∣ = ∣ ≠ ∣ ≤ ∣ ≥ ) ⟨pqaexp⟩
Figure 2.1: Grammar for affine, quasi-affine, and piecewise quasi-affine expressions.

For integer sets and relations, we adopt the notation of the integer set library isl [Ver10]. Though,
we omit the definition of existentially quantified variables. All unbound variables are implicitly
existentially quantified. As an example, the variable 𝑁 is existentially quantified in the predicate
∀𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑁 since it is not otherwise bound.

A Presburger set, from here on mostly denoted as integer set, is a subset of the 𝑛-dimensional
integer space Z𝑛 that is defined by a Presburger condition. A value x ∈ Z𝑛 is part of the set,
if and only if there exists an assignment for the unbound, and thereby existentially quantified
variables in the condition, that extends x to a fulfilling assignment of the predicate. An example
for a three-dimensional integer set is given in Formula 2. Note that in this notation universal
quantification is assumed implicitly for all variables left of the bar ∣. Thus, the three variables 𝑖,
𝑗, and 𝑘 are universally quantified while the two unbound variables 𝑁 and 𝑀 are existentially
quantified. Formula 3 shows the explicit representation of the same set.

{ (𝑖, 𝑗, 𝑘) ∣ 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑀 ∧ 𝑖 < 𝑘 < 𝑗 } ⊆ Z3 (2){ (𝑖, 𝑗, 𝑘) ∣ ∃ 𝑁, 𝑀 ∶ 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑀 ∧ 𝑖 < 𝑘 < 𝑗 } ⊆ Z3 (3)

An integer relation maps 𝑛 dimensional integer points to 𝑚 dimensional integer points and it is
also defined by a Presburger condition. While we generally interpret them asmappings, thus with
type Z𝑛 → Z𝑚, we will equivalently treat them as integer sets over the combined space Z𝑛+𝑚. As
an example consider the relation shown in Formula 4 which translates two-dimensional points
into a three-dimensional space. Similar to isl, we denote the two-dimensions on the left as input
dimensions and the three on the right as output dimensions. Also note the simplified notation
to express the equivalence of the first input and the second output dimension. The only other
constraint for this relation states that the sum of 𝑗 and 𝑘 modulo two is equal to 𝑚. The last output
dimension is consequently bounded while all other dimensions are not. The relation is shown
as an equivalent integer set, with explicit quantification and a “desugared” modulo operation, in
Formula 5.

{ (𝑖, 𝑗) → (𝑘, 𝑖, 𝑚) ∣ (𝑗 + 𝑘)mod 2 = 𝑚 } ⊆ Z2
→ Z3 (4){ (𝑖, 𝑗, 𝑘, 𝑙, 𝑚) ∣ ∃ 𝑒 ∶ 𝑙 = 𝑖 ∧ 𝑗 + 𝑘 = 2𝑒 + 𝑚 ∧ 0 ≤ 𝑚 ≤ 1 } ⊆ Z5 (5)
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The isl library provides algorithms to effectively handle integer sets and relations. For a detailed
introduction to the underlying concepts, as well as the capabilities of isl, we recommend the
tutorial by Verdoolaege [Ver16]. In this work we mostly use common mathematical concepts
from set and relation theory explained in the following.

Union and Intersection
For two integer sets or relations of equal dimensionality we construct the union or intersection
by building the conjunction, or, respectively, disjunction of the defining Presburger predicates.
If we take the general integer relations 𝑟1 ≔ { i → j ∣ 𝑐1(i, j) } and 𝑟2 ≔ { i → j ∣ 𝑐2(i, j) },
both subsets of Z𝑛 → Z𝑚, we define the union and intersection as shown in Formulae 6 and 7.

𝑟1 ∪ 𝑟2 ≔ { i → j ∣ 𝑐1(i, j) ∨ 𝑐2(i, j) } (6)

𝑟1 ∩ 𝑟2 ≔ { i → j ∣ 𝑐1(i, j) ∧ 𝑐2(i, j) } (7)

Complement and Projection
For integer sets and relations we define the complement and projection as shown in Formula 8
and 9. Given an integer set 𝑠 ⊆ Z𝑛 of 𝑛-dimensional vectors, the complement set ¬𝑠 contains
all elements of the same dimensionality that were not contained in 𝑠. The projection eliminates
dimensions of 𝑠 such that elements of the result can always be extended to elements of the original
set. Except for Algorithm A.1 on Page 201, we always project onto the parameter space 𝜌. This
operation, denoted as 𝜋𝜌(◦), will eliminate all dimensions and the result will only constrain the
existentially quantified variables that were constrained in the original set. The definitions for
integer relations, which can also be interpreted as sets, are similar to the ones shown.

¬𝑠 ≔ { i ∈ Z𝑛 ∣ i /∈ 𝑠 } ⊆ Z𝑛 (8)

𝜋𝑚(𝑠) ≔ { i ∈ Z𝑚 ∣ ∃ j ∈ Z𝑛−𝑚 ∶ (𝑖1, … , 𝑖𝑚, 𝑗1, … , 𝑗𝑛−𝑚) ∈ 𝑠 } ⊆ Z𝑚 with 𝑚 < 𝑛 (9)

Domain, Range, Inversion, Application, and Composition
The common definitions for the domain and range of an integer relation 𝑟 ⊆ Z𝑛 → Z𝑚 are
provided in Formula 10 and 11. The inversion 𝑟−1 of 𝑟 is defined as the reverse mapping shown
in Formula 12. The application of the relation 𝑟 onto a set 𝑠 ⊆ Z𝑛 is defined in Formula 13.
In the result, the elements of 𝑠 are translated according to the mapping provided by 𝑟. Finally,
two compatible relations can be composed, through application of one relation to the domain or
range of the other. This is denoted as ◦dom or ◦rng and defined in Formula 14 and 15.
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dom(𝑟) ≔ { i ∈ Z𝑛 ∣ ∃ j ∈ Z𝑚 ∶ (i, j) ∈ 𝑟 } (10)

rng(𝑟) ≔ { j ∈ Z𝑚 ∣ ∃ i ∈ Z𝑛 ∶ (i, j) ∈ 𝑟 } (11)

𝑟−1 ≔ { j → i ∣ (i, j) ∈ 𝑟 } ⊆ Z𝑚
→ Z𝑛 (12)

𝑟(𝑠) ≔ { j ∈ Z𝑚 ∣ i ∈ 𝑠 ⊆ Z𝑛 ∶ (i, j) ∈ 𝑟 } (13)

𝑟 ◦ dom 𝑓 ≔ {k → j ∣ (i, j) ∈ 𝑟 ∧ (i,k) ∈ 𝑓 } ⊆ Z𝑝
→ Z𝑚 𝑓 ⊆ Z𝑛

→ Z𝑝 (14)

𝑟 ◦ rng 𝑓 ≔ { i → k ∣ (i, j) ∈ 𝑟 ∧ (j,k) ∈ 𝑓 } ⊆ Z𝑛
→ Z𝑝 𝑓 ⊆ Z𝑚

→ Z𝑝 (15)

2.1.3 Polyhedral Representation And Optimization of Programs

Polyhedral-model-based approaches commonly use the term static control part (SCoP) to refer to
a (maximal) program part that can be represented in the polyhedral model [CGT04; Fea91]. We
additionally use it to denote the polyhedral representation that is consequently constructed for
that program part. Note that common restrictions of SCoPs are discussed in Section 3.2. A SCoP
conceptually comprises a list of statements as well as a schedule relation 𝜃. The statements in a
SCoP are named and contain a description of the accesses as well as an iteration domain. This
domain describes the surrounding loop iterations for which the statement is executed in terms of
iteration vectors. The statement (name) together with an iteration vector is also called a statement
instance. The iteration domainDS of a statement S describes all dynamically executed instances
with regard to the iterations of surrounding loops. Formula 16 and 17 show the (simplified)
iteration domains constructed for the statements P and Q defined in Figure 2.2b.

DP = { (𝑛, 𝑚) ∣ 0 ≤ 𝑛 < 𝑁 ∧ 0 ≤ 𝑚 < 𝑀 } (16)

DQ = { (𝑛, 𝑚) ∣ 0 ≤ 𝑛 < 𝑁 ∧ 0 ≤ 𝑚 < 𝑀 ∧ 𝑛 = 𝑚 }
= { (𝑛, 𝑛) ∣ 0 ≤ 𝑛 < min(𝑁, 𝑀) } (17)

for (i = 0; i < N; i++)
for (j = 0; j < M; j++)

for (k = i + 1; k < j; k++)
S(i, j, k);

(a) Three dimensional loop nest with a single “ab-
stract” statement S. The iteration domain DS of S is
shown in Formula 2 on Page 10. Abstract statements
are used whenever the actual accesses and computa-
tions are not important but only the iteration domains

and schedules are.

for (n = 0; n < N; n++)
for (m = 0; m < M; m++) {

P: A[n][m] = B[n] + C[m];
if (n == m)

Q: A[n][m] *= -1;
}

(b) Two dimensional loop nest with two “con-
crete” statements P and Q. We use examples with
concrete statements if the access relations or the

computations are important.

Figure 2.2: The two code styles used for example programs provided in this thesis.
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The schedule 𝜃 is an integer relation which maps iteration vectors of statement instances to multi-
dimensional timestamps. At runtime, the statement instances are executed according to the lexi-
cographic order of the timestamps associated to them by the schedule. Thus, for two statements S
and P, with respective iteration vectors i ∈ DS and j ∈ DP, the constraint 𝜃 (S(i)) ≪lex 𝜃 (P(j))
implies that S(i) is executed (or scheduled) before P(j). To further improve readability, we use
the names of the loop iteration variables surrounding the statements to denote the dimensions of
the iteration domain as well as the (input) dimensions of the schedule. Given the definition of
i and j above, we would omit the names of the statements and simply write 𝜃 (i) ≪lex 𝜃 (j) to
express the same lexicographic order between the statement instances. Our examples are chosen
such that this naming scheme will usually suffice to uniquely identify statement instances. If
not, we explicitly name all statements and use their respective names as well. To distinguish
consecutive statement instances by their multidimensional timestamps, additional constant di-
mensions are introduced [KP95]. Due to these additional dimensions, a general schedule for a
SCoP with 𝑑 nested loops requires up to 2𝑑 + 1 output dimensions [CGT04]. However, detailed
knowledge about the generation of schedules will not be required in the remainder of this thesis.
Depending on the use case, we either show only the schedule part relevant to a single statement,
or the entire schedule with embedded statement names. To express the original execution or-
der for the statements in Figure 2.2b, we could therefore write 𝜃P = { (𝑖, 𝑗) → (𝑖, 𝑗, 0) } and
𝜃Q = { (𝑖, 𝑗) → (𝑖, 𝑖, 1) }, or alternatively 𝜃 = { P(𝑖, 𝑗) → (𝑖, 𝑗, 0) ; Q(𝑖, 𝑗) → (𝑖, 𝑗, 1) }.
An access m is identified by the accessed array, pointer, or scalar variable and the access rela-
tion 𝑓m. Since scalars are accessed without an offset, we often omit the access relation. For
memory accesses, the array (or pointer) needs to be statically known and invariant in the SCoP.
If that is not the case, or the access relation contains dynamic values, e.g., function calls or mem-
ory loads, the memory access is considered dynamic, or simply non-affine. While the polyhedral
model generally only allows static affine accesses, we discuss extensions for dynamic and non-
affine accesses in Section 3.4 and 3.6. Multidimensional accesses are also (partially) supported
if the dimension sizes can be statically determined [Gro+15]. Finally, we categorize accesses
into write and read as well as may or must accesses. Since the later distinction is a consequence
of approximations, it is further discussed in Section 3.4.

The statement descriptions, and the initial schedule, are derived from the input code. As this the-
sis describes work in the context of the LLVM/Polly optimizer, our implementations generally
assume statements to be basic blocks. However, the techniques are not conceptually restricted
to this choice. To simplify the presentation of our examples, we generally use a C/C++ -like
syntax, potentially with explicitly labeled statements. Depending on the context, we use one of
two naming styles depicted in Figure 2.2. The first one (part 2.2a) is used when the memory
accesses and computations are irrelevant while the second (part 2.2b) makes both explicit.
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Polyhedral optimization is classically concerned with the computation of a new schedule relation
for a given SCoP [Bon+08; Fea92a; Fea92b]. To this end, the polyhedral representation is first
used to derive dependences Γ between statement instances [Fea91]. We generally distinguish
three kinds of dependences2: read-after-write (RAW), write-after-read (WAR), and write-after-
write (WAW). The schedule optimizer, or scheduler, then uses the dependences Γ to compute a
new schedule 𝜃′, which defines a different execution order of the statement instances. The new
schedule 𝜃′ is valid if the order it defines adheres to the dependence relation Γ. Thus, dependent
statement instances (i, j) ∈ Γ have to keep their original order: 𝜃′(i) ≪lex 𝜃′(j). Finally, the
code structure, e.g., the abstract syntax tree (AST) or the control flow graph (CFG), of the under-
lying program is changed according to the new schedule 𝜃′ [AI91; Bas04a; GVC15; QRW00].
Depending on the objective function and the optimization algorithm, the new schedule might
minimize the reuse distance between dependent accesses [Fea92a; Fea92b], expose loop paral-
lelism and tileable dimensions [Bon+08], or improve vectorization [Kon+13; MDH16]. How-
ever, only the techniques described in Section 5.2 and 5.3 influence, or are influenced by, the ac-
tual objective function and optimization algorithm. Hence, the majority of presented techniques
is oblivious and can be used with any existing or emerging polyhedral optimization scheme.

In addition to dependences between statement instances, LLVM/Polly can also compute de-
pendences between instances of accesses. While generally more expensive to compute, these
fine-grained relations are beneficial if the statements are not considered atomic entities. To de-
note a dependence between two specific accesses a1 and a2, we write a1 → a2. Thus, w→r
describes the read-after-write (RAW) dependence between the read r and the write w. If we are
interested in all dependences that are emanating from an access, we substitute the target by an
asterisk, e.g., r→∗ denotes all write-after-read (WAR) dependences originating from the read r.

The interested reader can find a graphical illustration of iteration domains and dependences in
Figure 5.8 on Page 126. We additionally provide a short introduction to the polyhedral optimizer
LLVM/Polly in Section 2.2.2. It features a schematic overview of the optimization pipeline
in Figure 2.3. Readers that look for a more in-depth introduction to the polyhedral model may
consult the Ph.D theses of Bastoul [Bas04b, Part I] and Pouchet [Pou10, Chapter 2].

2.2 Implementation Notes

In this thesis we describe several enhancements over the state-of-the-art in polyhedral program
analysis and optimization. All techniques are publicly available as part of LLVM’s polyhedral
optimizer Polly or in our research prototype. For each enhancement we also discuss the avail-
ability and associated literature in a dedicated box on the first page of the respective section.

2 Depending on the field, RAW dependences are also referred to as flow dependences, similarly WAR dependences
are known as anti dependences, and WAW dependences are also called output dependences.
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2.2.1 The LLVM Compiler Framework

The LLVM compiler framework [LA04] is an open source, industry-strength compiler written
in modern C++. Like most compilers, it consists of front-ends that parse the input languages, a
middle-end that applies (mostly target independent) optimizations, and back-ends that emit the
target dependent machine code. There are several benefits of LLVM that made it very popular in
the research community, including a modular implementation, various front-ends and back-ends,
a single intermediate language (LLVM-IR), and the availability of dozens of analysis passes.

2.2.2 The Polyhedral Optimizer Polly

Polly is the polyhedral loop optimizer of the LLVM compiler framework [GGL12]. It was
initially a port of Graphite [Pop+06], the polyhedral loop optimizer in the GCC compiler
suite. However, over the last couple of years Polly evolved separately [Doe+15; DGH17;
Gro+15; GH16; KG18; Rag11]. The general structure of LLVM/Polly is shown in Figure 2.3.
The entry point for LLVM-IR functions is the SCoP detection. It identifies (maximal) valid
single-entry single-exit (SESE) regions for which Polly can build a polyhedral representation
(ref. Section 3.2). We denote both, the region and the polyhedral representation thereof, as static
control part (SCoP). During SCoPmodeling, the code in the valid SESE regions is analysedmore
thoroughly and the polyhedral representation, here denoted as “SCoP object”, is built. From this
polyhedral representation, the dependence analysis [Fea91] will derive read-after-write (RAW),
write-after-read (WAR), and write-after-write (WAW) dependences between statement instances.
Afterwards, the schedule optimizer will compute a new schedule 𝜃′ that adheres to all depen-
dences, but is optimal according to some objective function [Fea92a]. LLVM/Polly uses the
integer set library isl [Ver10] to represent, handle, and modify integer sets and relations. isl
is also used to compute dependences, derive the optimized schedule, and to generate the op-
timized AST. The optimization algorithm employed by isl is similar to the one described by
Bondhugula et al. [Bon+08]. The polyhedral code generation implemented in isl follows the
approach by Grosser, Verdoolaege, and Cohen [GVC15]. Finally, a code generation step will gen-
erate LLVM-IR based on the optimized AST structure that was computed from the optimized
schedule. The LLVM-IR will also contain alias and dependence annotations that are usable
by later passes, e.g., the LLVM loop vectorizer. If requested, Polly will additionally try to
parallelize loops using the OpenMP [Cla98] runtime library [Rag11]. We refer the interested
reader to the Diploma Thesis of Grosser [Gro11] which contains a slightly outdated, but detailed
introduction of LLVM/Polly as well as some relevant parts of LLVM and LLVM-IR.
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schedule 𝜃′

LLVM-IR Generation

optimized
AST

g(...)
h(...)

f(...) optimized LLVM-IR

Figure 2.3: Schematic overview of LLVM/Polly’s optimization pipeline. Note that we only
depict the major passes; others like dead iteration elimination, are left out.

At the beginning of this work, LLVM/Polly was only able to recognize affine expressions
(⟨aexp⟩ in Figure 2.1), as well as minimum and maximum computations which are special piece-
wise affine computations. Also conditionals were limited to equalities and inequalities over affine
expressions. We added support for quasi-affine expressions (⟨qaexp⟩ in Figure 2.1), conjunctions
∧, and disjunctions ∨. Our Polyhedral Value Analysis (ref. Section 6.4) additionally supports
general piecewise defined expressions ⟨pqaexp⟩ and it is worth to note that all described tech-
niques are conceptually capable of dealing with these as well.
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The domain generation we integrated into LLVM/Polly is described in Section 3.3. It gen-
erates precise iteration domains for any reducible [HU74] control flow graph (CFG) with static
affine control flow conditions. For dynamic or non-affine conditions, we introduced control flow
approximations (ref. Section 3.4.2). While this eliminates common syntax restrictions, e.g., the
use of goto, LLVM/Polly is still limited by the detection of affine expressions. To identify
affine expressions for access relations and control flow conditions, it relies on the Scalar Evo-
lution analysis [BWZ94; PCS05]. With our Polyhedral Value Analysis [DH17b] we proposed
a polyhedral-model-based alternative to Scalar Evolution that is discussed in Section 6.4.

2.2.3 Our Polly Research Prototype

While most techniques presented in this thesis are integrated into the open source version of
LLVM/Polly, some experimental extensions and prototype implementations are only available
in our research prototype. These features are in separate branches of our research prototype
and publicly available online: https://github.com/jdoerfert/polly. The branches are
mostly based on the 6.0 release version of LLVM/Polly and listed in Table 2.4, together with
a reference to the section(s) in which they are mentioned.

Name Section Name Section

metrics Section 3.1 min_dep_dis Section 5.1.1
rejection_reasons Section 3.2 reductions Section 5.2
approximation Section 3.4 expression_propagation Section 5.3
bitops Section 3.2.2 interprocedural Section 6.1 – 6.3

Table 2.4: Feature branches of our research prototype.

2.3 Evaluation Notes

For the evaluation of the presented techniqueswe used the lnt tool as a driver for theLLVMTest
Suite (LLVM-TS)3 as well as different versions of the SPEC benchmark suites3. With this setup
we generated the statistics used to evaluate all techniques presented in Chapter 3 and Chapter 4,
as well as Section 5.1.3. As these statistics are deterministic, we only performed a single run.
The benchmarks that were executed in this configuration are listed in Table 2.5 and 2.6. The
Polly version we executed was based on the 6.0 release. Modifications were only applied to
collect statistics or to evaluate the respective enhancement. However, to improve our baseline we
enabled invariant load hoisting, as described in Section 3.6, for all runs. In case the evaluation
setup differed, e.g., for the optimization techniques in Section 5.2 and 5.3, as well as the compile
time evaluation presented in Section 3.1.6, it is detailed in the respective section.

3 LLVM-TS git version: f9c975a1, SPEC2000/2006/2017 with respective versions: 1.3.1/1.1/1.0.1

https://github.com/jdoerfert/polly
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SPEC2000

164.gzip 175.vpr 176.gcc 177.mesa 179.art 181.mcf
183.equake 186.crafty 188.ammp 197.parser 252.eon 253.perlbmk
254.gap 256.bzip2 300.twolf

SPEC2006

400.perlbench 401.bzip2 403.gcc 429.mcf 433.milc
444.namd 445.gobmk 447.dealII 450.soplex 453.povray
456.hmmer 458.sjeng 462.libquantum 464.h264ref 470.lbm
471.omnetpp 473.astara 482.sphinx3 483.xalancbmk

SPEC2017

500.perlbench_r 502.gcc_r 505.mcf_r 508.namd_r
510.parest_ra 511.povray_r 519.lbm_r 520.omnetpp_r
523.xalancbmk_r 525.x264_r 526.blender_r 531.deepsjeng_r
538.imagick_r 541.leela_r 544.nab_r 557.xz_r
600.perlbench_s 602.gcc_s 605.mcf_s 619.lbm_s
620.omnetpp_s 623.xalancbmk_s 625.x264_s 631.deepsjeng_s
638.imagick_s 641.leela_s 644.nab_s 657.xz_s

LLVM Test Suite — Polybench

correlation covariance atax bicg
cholesky doitgen gemver gesummv
mvt symm syr2k syrk
trisolv trmm durbin dynprog
gramschmidt lu floyd-warshall reg_detect
adi fdtd-2d fdtd-apml jacobi-1d-imper
jacobi-2d-imper seidel-2d

Table 2.5: Tested C/C++ benchmarks in the SPEC b benchmark suites as well as the
Polybench v3.2 benchmarksc that are part of the LLVM Test Suite (LLVM-TS)d.

a The compilation of Library.cpp (473.astar) and parameter_handler.cc (510.parest_r) produced an
error that prevented compile time statistics for this file in the evaluations shown in Chapter 3, Chapter 4,
and Section 5.1.3.

b From the SPEC suites we only used the benchmarks written in C/C++ but not the ones written in Fortran.
There are various technical reasons for this choice but also the believe that the C/C++ programs provide
better insights into general purpose programming. The Table does consequently not list Fortran code.

c Online available at: https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
d Online available at: https://github.com/llvm-mirror/test-suite

https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/llvm-mirror/test-suite
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LLVM Test Suite — TSVC

ControlFlow-dbl ControlFlow-flt ControlLoops-dbl
ControlLoops-flt CrossingThresholds-dbl CrossingThresholds-flt
Equivalencing-dbl Equivalencing-flt Expansion-dbl
Expansion-flt GlobalDataFlow-dbl GlobalDataFlow-flt
InductionVariable-dbl InductionVariable-flt LinearDependence-dbl
LinearDependence-flt LoopRestructuring-dbl LoopRestructuring-flt
Symbolics-dbl Symbolics-flt

LLVM Test Suite — Benchmarks

Halide/bilateral_grid Halide/blur Halide/local_laplacian
ALAC/decode ALAC/encode ClamAV
JM/ldecod JM/lencod SIBsim4
SPASS d kimwitu++
lua obsequi oggenc
sgefa sqlite3 viterbi
7zip ASCI_Purple/SMG2000 Bullet
ASC_Sequoia/AMGmk ASC_Sequoia/CrystalMk ASC_Sequoia/IRSmk
ProxyApps/CLAMR ProxyApps/PENNANT ProxyApps/RSBench
ProxyApps/SimpleMOC ProxyApps/miniAMR ProxyApps/miniGMG
FreeBench/analyzer FreeBench/neural FreeBench/pifft
MallocBench/espresso MallocBench/gs SciMark2-C
McCat/04-bisect McCat/05-eks McCat/18-imp
MiBench/automotive-susan MiBench/consumer-jpeg MiBench/consumer-lame
MiBench/consumer-typeset MiBench/security-sha MiBench/telecomm-gsm
NPB-serial/is PAQ8p Prolangs-C/agrep
Prolangs-C/gnugo Ptrdist/bc Ptrdist/yacr2
VersaBench/beamformer VersaBench/bmm mafft
mediabench/gsm/toast mediabench/jpeg-6a mediabench/mpeg2dec
nbench sim tramp3d-v4
Adobe-C++ BenchmarkGame CoyoteBench
Linpack Misc Misc-C++
Shootout Shootout-C++ Stanford

Table 2.6: C/C++ benchmarks in the LLVM Test Suite (LLVM-TS)a when executed
with the lnt --benchmarking-only option. The Polybench benchmarks that are part

of the LLVM Test Suite are shown in Table 2.5.

a Online available at: https://github.com/llvm-mirror/test-suite

https://github.com/llvm-mirror/test-suite




Chapter 3

Applicability & Profitability

“ C is quirky, flawed, and an enormous success. ”
Dennis M. Ritchie, The Development of the

C Programming Language, 1996

Polyhedral program optimization techniques have been around for decades [Fea92b; Len93].
However, only recently we began to apply these techniques automatically on (a large corpus
of) real-world programs [Bas+03; Bon+10; Doe+13; DGH17; Sim+13]. With the develop-
ment of Graphite [Pop+06] in GCC and Polly [GGL12] in LLVM, the two foremost open
source C/C++ compilers are nowadays equipped with polyhedral optimization capabilities. In
addition, the LLVM compiler framework has become a very popular back-end for emerging
languages such as Julia, Swift or Rust. Furthermore, existing languages, including but not lim-
ited to Ada, Fortran, Java and Haskell, can be lowered to the LLVM intermediate representation
(LLVM-IR). While this eliminates the need for a dedicated polyhedral optimizer per language,
it creates new challenges due to the input diversity that stems from various programming styles
and different code structures.

Even though GCC and LLVM make it easier to enable polyhedral optimization during the com-
pilation of existing and emerging software projects, the lacking applicability as well as robustness
of available tools severely limits the actually observed results. This is especially problematic as
it encourages programmers to manually optimize their loop-heavy code in order to get an instant,
yet short term, benefit. Later on, optimized code increases the maintenance burden, the adaption
cost for new hardware, as well as the analysis efforts required to understand it again.

In this Chapter we will focus on applicability and profitability of polyhedral-model-based tools.
In Section 3.1 we define both terms in detail, discuss the differences and the usefulness in the con-
text of automatic polyhedral optimization. We describe the limitations of polyhedral techniques,
as well as the effect of the here presented advances, in Section 3.2. The remaining Sections 3.3
– 3.7, will introduce several extensions over classical polyhedral modeling techniques that are
designed to improve applicability, precision, and robustness for general purpose applications.
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3.1 Applicability & Profitability Metrics

To evaluate new techniques, and compare them to existing ones, metrics are defined and then
evaluated in a fixed environment. For compiler optimizations the most important evaluation cri-
teria are arguably: performance, code size, and other resource requirement of the compilation.
However, new advances will not always be able to deliver improvements in these metrics, espe-
cially not for all benchmarks. While their contribution is visible to certain metrics, others might
only be affected after several more pieces have been put in place. Consequently, it is not always
beneficial to look only at the immediate impact on e.g., performance. Instead, we might want to
consider other criteria that are impacted now and potentially improve other metrics later on.

No. Metric Description

St
at
ic
/C

om
pi
le
Ti
m
e (1) # SCoPs The number of SCoPs in the program. [Bas+03;

Doe+13; DGH17; GH16]
(2) # depth-n SCoPs The number of SCoPs containing loops of a cer-

tain depth. [Bas+03; Ben+10; Gir+06; GH16]
(3) # n-statement SCoPs The number of SCoPs containing a certain num-

ber of statements. [Bas+03; Gir+06]

D
yn
am

ic
/R

un
tim

e (4) # executed SCoPs The number of SCoPs that were executed.
[DGH17]

(5) # SCoP executions The number of times a SCoP was executed.
[DGH17]

(6) SCoP coverage The time spend in SCoPs. [Gir+06; Sim+13]

Table 3.1: Static and dynamic applicability metrics for polyhedral-model-based ap-
proaches. Note that the definition of SCoPs varies between approaches. Some might not
require statically affine accesses while others do only count “rich” or “profitable” SCoPs
which contain aminimum number of statically affine loops or statements enclosed in such.

Polyhedral optimizations are generally assessed like other compiler techniques, thus by their
impact on performance [AB15; DSH18; Pan+15; Ven+14] or resource requirements [BBC16;
DIY16; Zuo+13]. Though, extensions to polyhedral techniques might not directly impact these
metrics but target, and consequently measure, applicability instead [Bas+03; Ben+10; Doe+13;
DGH17; GH16; Sim+13]. However, there is no de-facto standard for measuring applicability.
Different approaches use different metrics, as listed and described in Table 3.1. Due to the use of

In this section we discuss existing applicability and profitability metrics for polyhedral-
model-based tools. In addition we present new ones that avoid problems we encountered
evaluating several own extensions to polyhedral applicability [Alv+15; Doe+13; DGH17;
DSH18]. The new metrics are available in the metrics branch of our research prototype.
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variousmetrics it is hard to compare different applicability enhancing techniques. Tomake things
harder, there is no single definition for basic underlying concepts. A static control part (SCoP)
might for example be allowed to contain unknown or non-affine memory accesses [Bas+03].
SCoPs might also be required to contain a minimal number of instructions [GH16], at least one
affine loop [Bas+03], or multiple transformable statements or loops [DGH17].

The task to define a single applicability metric is complex due to the amount of characteris-
tics to choose from. All static characteristics can be extracted from either the input program
or the optimized version, both with regards to the actual source code or the polyhedral repre-
sentation thereof. In addition, there are dynamic characteristics, e.g., the time spent in SCoPs,
that can be used. While most choices have their merit, it is important to consider the problems
that come with them: Statistics gathered from the source code are sensitive to the programming
language, syntactic constructs as well as canonicalizations and transformations applied prior to
the polyhedral modeling. Similarly, the polyhedral representation vastly differs depending on the
statement granularity [MY15], e.g., C statements [Bon+08] vs. basic blocks in a CFG [GGL12].
Furthermore, there are other representation choices that heavily impact the structure of the poly-
hedral representation, e.g., dynamic single assignment form (DSA) [Fea88a] or an alternative
elimination of scalar variables [DSH18; KG18]. The optimized program is sensitive to the em-
ployed transformations and code generation schemes. Scheduling choices, e.g., emphasis on loop
fusion vs. fission, loop tiling, as well as complementary optimizations (ref. Section 5.3) have a
vast impact on characteristics of the resulting code, e.g., the number of loops and accesses. Fi-
nally, dynamic statistics do heavily depend on the chosen input data set.

Profitability metrics, in contrast to applicability metrics, determine the optimization potential
of a polyhedral program representation. With regards to polyhedral performance optimization,
profitable SCoPs [DGH17] are code regions that can be optimized in a beneficial way by polyhe-
dral techniques. While the optimization potential differs depending on the optimization scheme,
e.g., schedule optimizations [Bon+08; Bon+10; Fea92b], parallelization [Doe+15; Jim+13b;
PKC12], accelerator offloading [GH16; SHS17; Sud+14; Zuo+13] or memory requirement min-
imization [BBC16; DIY16; QR00], there are always more and less promising candidate regions.
Especially for the automatic application of polyhedral scheduling techniques, profitability met-
rics play a crucial role. If they are expensive or to lenient, compile time is wasted and perfor-
mance is likely to suffer as well. If they are to restrictive, optimization opportunities are missed.
To this end, profitability metrics play an important role in identifying candidates that are likely
to be optimized given the capabilities and optimization goals of the polyhedral tool.
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Profitability metrics are important to predict the impact of automatic polyhedral optimization.
However, this does not render applicability metrics obsolete, especially not if polyhedral tech-
niques do not have to justify program transformations (on their own). If they are used to support
other optimization schemes [Atz+16; Jun15; Str+15], or are augmented by non-polyhedral infor-
mation, e.g., domain [MDH16] or runtime knowledge [BA13; CWC16; Doe+13], applicability
improvements can have a positive impact which is missed by (common) profitability metrics.

3.1.1 Monotone Applicability Metrics

Applicabilitymetrics should bemonotone in the sense that an increased applicability will result in
a higher metric score. Though, none of the metrics listed in Table 3.1 does fulfill this requirement.

To illustrate the problems we provide two examples in Figure 3.2. The first, in part 3.2a, features
three SCoPs, each enclosing one loop (nest)1. If we now increase applicability, we could end
up with a single SCoP that covers all three loops. Assuming we did not give up precision, e.g.,
no approximations were used, a single SCoP is arguably better as it allows for more transforma-
tions, e.g., loop fusion and expression propagation (ref. Section 5.3). However, metrics (1) - (5)
will yield higher, thus better, scores for three smaller SCoPs and the part of the runtime spend
in SCoPs, metric (6), would remain almost the same. In the second example, part 3.2b, three
potential SCoPs are indicated. Using metric (5) will result in more executions if fewer loops
are covered. Metric (6) will again not vary much for all three choices since each contains the
innermost loop. Though, transformations like interchange or tiling are not possible for SCoP 5
and other optimizations, e.g., parallelization or offloading, might be more profitable for SCoP 3.

Existing applicability metrics are not monotone since they treat SCoPs as atomic entities, metrics
(1), (4) - (6), or consider only the maximum value of a property, metrics (2) and (3). In the
first case, changes to properties like the number of affine loops are missed and SCoP expansion
(ref. Figure 3.2a) can consequently harm the score. In the second case, only changes that alter
the maximum value of a property are accounted for. A similar situation arises when we simply
sum up the number of affine loops or statements enclosed in SCoPs. The problems illustrated
by the examples in Figure 3.2 will then still exist, assuming we first remove the intermediate
statements I0 to I3. The number of statements enclosed in affine loops does not change for
the code shown in Figure 3.2b and there is no increase in the number of affine loops if a single
SCoP would cover all three loops in Figure 3.2a. Alternatively, a metric could use a mean to
summarize a certain property, e.g., the number of statically affine loops, with regards to the
number of SCoPs. However, these metrics will decrease for newly detected SCoPs that are below
the current average.

1 For simplicity only one-dimensional loops with single statement loop bodies are shown. However, with regards to
metrics (2) and (3), the same situation can appear for higher-dimensional loops that contain multiple statements.
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for (i = 0; i < N; i++)
S(i);

I0();
for (j = 0; j < N; j++)
P(i);

I1();
for (k = 0; k < N; k++)
Q(i);

SCoP 0

SCoP 1

SCoP 2

(a) Multiple SCoPs that cover one loop
each but in total all three loops.

for (i = 0; i < N; i++) {
I2(i);
for (j = 0; j < M; j++) {
I3(i, j);
for (k = 0; k < L; k++)

R(i, j, k);
}

}

SCoP 5

SCoP 4

SCoP 3

(b)Multiple SCoPs that all include the innermost state-
ment R and up to 3 surrounding loops.

Figure 3.2: Two fabricated examples that show the problems with both static and dy-
namic SCoP applicability metrics (ref. Table 3.1). The static loop coverage for the left
example is 100% since all loops are covered in SCoPs1. The dynamic coverage for the
SCoPs in the right example is similar if metrics (4) and (6) are used. For metric (5) it
is even better to detect a smaller, inner SCoP than a larger one that contains more loops

and consequently allows more transformations.

A good applicability metric should reward SCoP expansion, avoid regression due to new SCoPs,
and additionally take the actual optimization potential into account. To this end, we propose two
symbolic polyhedral applicability metrics, a static one C𝛼 and a dynamic one R𝛽 .

The piecewise affine metric C𝛼 is defined in Formula 1. It determines a score for a given set of
SCoPs based on the number of statically affine loops that are contained in each individual one.

C𝛼 ∶ 2SCoP ⟶ N

C𝛼(𝑆) = ∑
𝑠∈𝑆

max (0, #loops(𝑠) − 𝛼) with 𝛼 > 0 (1)

The maximum guarantees that no SCoP can regress the overall result and that SCoP expansion
will never decrease the score. If a single SCoP 𝑠 subsumes2 a set of SCoPs 𝑆 we know that
C𝛼({𝑠}) ≥ C𝛼(𝑆). The parameter 𝛼 > 0 accounts for the optimization potential of a single
statically affine loop. Given a SCoP with 𝑛 loops, each will contribute 1− 𝛼

𝑛 to the final score. If
𝛼 = 0, the score would be similar tometric (1) in Table 3.1, except that SCoPs are weighted by the
number of contained loops. For 𝛼 = 1, the metric will count how many loops can be combined
with one fixed loop in each SCoP. For 𝛼 > 1, only SCoPs of a certain size will improve the score.
This is similar to metrics (2) and (3) shown in Table 3.1, but it also accounts for transformation
opportunities within one SCoP.

The dynamic metric R𝛽 is defined in Formula 2. Similar to metrics (4) to (6) in Table 3.1, it
measures the potential runtime improvement of polyhedral optimization. Such improvements
are limited by many factors, including the number of statically affine loops. The parameter 𝛽
therefore allows to adjust the score, which looks at the loop count, based on empirical data. As

2 This implicitly assumes that no approximations (ref. Section 3.4) were used to increase the SCoP size.
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an example, 𝛽 should be set to a reasonable SCoP size that might allow for a twofold speedup.
The scaling factor for loops of this size is then 1

2 , and the overall metric result is the sum of the
runtime fraction of each SCoP that optimization could reasonably eliminate.

R𝛽 ∶ 2SCoP ⟶ Q

R𝛽(𝑆) = ∑
𝑠∈𝑆

#loops(𝑠)
#loops(𝑠) + 𝛽 ∗ runtime(𝑠) with 𝛽 > 0 (2)

Note that for both metrics it is plausible, and potentially even beneficial, to replace, or augment,
the number of statically affine loops with the number of represented statements, affine memory
accesses, or other static properties.

3.1.2 Applicability Evaluation

We evaluated the different static applicability metrics listed in Table 3.1 as well as the monotone
one proposed above. The results for the first two metrics ((1) and (2)) are shown in Figure 3.3.
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Figure 3.3: Number of feasible3 SCoPs (upper left) and their respective maximal loop
depth. The benchmark suites as well as the evaluation setup is described in Section 2.3.
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The total number of feasible3 SCoPs per benchmark suite is indicated below the name. For
SPEC2000, there are 110 feasible SCoPs while SPEC2017 contains 1200. In Table 3.4 we put
these absolute numbers into perspective and also show our proposed scores (ref. Formula 1) for
two values of 𝛼. While the number of single-entry single-exit (SESE) regions, which are ana-
lyzed and optimized by LLVM/Polly or GCC/Graphite, varies a lot between the bench-
mark suites, for each ≈ 0.2% of them are valid SCoPs. In contrast to valid regions, SCoPs are
maximal [CGT04]. Thus, expanding the SCoP is either impossible or would cause invalidation.

Benchmarks # regions valid regions # SCoPs3 C0 C1

SPEC2000 47312 662 ( 1.40%) 110 (0.23%) 125 15
SPEC2006 126124 1269 ( 1.01%) 231 (0.18%) 266 35
SPEC2017 584884 5401 ( 0.92%) 1200 (0.21%) 1308 108
LLVM-TS 163974 29203 (17.81%) 417 (0.25%) 610 193

Table 3.4: The number of valid SESE regions and SCoPs compared to the total number
of SESE regions in the different benchmark suites. The last two columns show the static

score according to Formula 1 with 𝛼 = 0 and 1.

Figure 3.6 shows the number of SCoPs with regards to the number of contained statements. To
evaluate metric (3), namely the number of 𝑛−statement SCoPs, all values right of the chosen
size 𝑛 have to be summed up. The small number of single statement SCoPs can be explained by
the profitability heuristics employed by Polly (ref. Section 3.1.4). Namely, SCoPs that contain
only a single statement and a single loop are discarded (reason SSL in Table 3.19 on Page 44).
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Figure 3.5: Loop depth distribution for SCoPs with exactly two loops.

Similar to the number of statements, we visualized the number of SCoPs for a specific loop
count in Figure 3.7. While the small number of single loop SCoP was already explained above,
it is worth to note that the loop distribution is concentrated around SCoPs with two loops. As
illustrated by Figure 3.5, most of the 2-loop SCoPs, especially in the SPEC benchmarks, have
only loop depth one. Thus, the two loops are most often not nested but in sequence. This does
restrict the set of applicable loop transformations as listed in Table 3.8.

3 Only valid and statically feasible SCoPs were counted. Figure 3.43 on Page 76 shows feasibility of all valid SCoPs.
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3.1.3 Profitability Metrics for Automatic Polyhedral Optimization

Profitability metrics for automatic optimization need to consider the achievable benefits but also
the compile time costs as well as alternative optimizations. Table 3.8 lists (mostly loop) opti-
mizations that can be performed by the polyhedral optimizer Polly4 and natively by LLVM.

Optimization lda a # loops # stmts Support in LLVM Type

loop rotation 7 1 1+ full

A
loop peeling 3 1 1+ full
loop unroll 3 1 1+ full
loop fission 3 1 2+ experimental, innermost

loop reordering b
3 2+ 1+ none

B
loop unswitching 3 1+ 1+ invariant conditions

invariant load hoisting 3 1+ 1+ full, but in isolation c

C
runtime alias checks 3 1+ 1+ innermost
dead store elimination 7 1+ 1+ straight line code + patterns
memory propagation d

3 1+ 2+ limited e

loop vectorization 7 1 1+ innermost f
D

loop parallelization 7 1 1+ none

loop interchange 7 2+ 1+ experimental

E
loop fusion 3 2+ 2+ none
loop skewing 3 2+ 1+ none
loop tiling/blocking 7 2+ 1+ none

Table 3.8: Classical (loop) transformations that can be performed by the Polly loop opti-
mizer. The center columns provide a brief summary of the application requirements. The
second to last column describes the support available in the LLVM compiler toolchain.

a Low-dimensional write accesses, e.g., scalar writes, will inevitably cause loop carried dependences without
the use of elaborate techniques [DSH18; Fea88a; VC16; ZKC18] (see also Section 5.3). To indicate the
sensitivity, we use 7 (sensitive → not applicable) and 3 (not sensitive → potentially applicable).

b Loop reordering refers to a change in the order of a sequence of loops not their iteration order.
c In Section 3.6 we show that load hoisting is in practise far more powerful when performed in combination

with runtime alias checks (ref. Section 4.1) as there is a cyclic dependence between both optimizations.
d Memory propagation will forward expression from a store to a load that would otherwise read the expression

result (ref. Section 5.3). The store and the involved memory can be eliminated if they are not live-out
(ref. Section 5.3.6.1).

e Memory propagation, or “store-load-forwarding”, is only performed for dependences of length one in the
innermost loop and for straight line code.

f Extensions for real outer loop vectorization are available [NZ08]. Transformations like unroll-and-
jam [CCK90] allow to emulate outer loop vectorization.

4 Not all optimizations listed in Table 3.8 are available in the upstream version of Polly. Similarly, we did not
consider all extensions and optimizations proposed for Polly or other polyhedral optimizers.
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The transformations are shown with the number of involved loops (# loops) and statements
(# stmts). We grouped them by type, A to E, depending on their complexity, optimization poten-
tial and availability in LLVM. The second column indicates if Polly is impacted by low dimen-
sional accesses (lda), i.a., scalars. However, it is important to note that there are evolved tech-
niques to eliminate such low dimensional access dependences [DSH18; Fea88a; KG18; VC16]
which need to be taken into account (ref. Section 3.1.4). The table illustrates that LLVM is tuned
to optimize single loops in isolation (type A), especially innermost ones. Both observations are
not surprising given that these cases allow for performance benefits with relatively little compile
time overhead and optimization complexity. Polyhedral optimizations classically achieve the
most impressive performance improvements with transformations that involve multiple loops
(type E) or if the precision of data-dependences is crucial for the effectiveness and applicabil-
ity (type C to E). The efficacy of the remaining transformations (type B) is hard to determine,
especially since loop unswitching can be subsumed by loop peeling and loop fission/distribution.

A profitability metric for automatic polyhedral optimization should dismiss SCoPs that can be
otherwise optimized e.g., innermost loops, as well as SCoPs that exclude most transformations
based on their characteristics and the available modeling and optimization techniques [KP16].
Loops with low dimensional write accesses are generally not directly amenable to transforma-
tions that change the iteration order, e.g., parallelization. Transformations like interchange, skew-
ing or tiling will additionally require nested loops. Other optimizations e.g., fusion or reordering,
are only applicable to a sequence of loops that are executed under a common control predicate.
Given these and other constraints it remains to determine how many loops and statements in a
SCoP are amenable to transformations.

3.1.4 Profitability Checks In Polly

In LLVM/Polly, profitability of a SESE region, and later of the generated SCoP, is checked
multiple times throughout the transformation pipeline. Regions without loops, regions with a sin-
gle loop and a single statement as well as regions that only read or write memory are dismissed
early. This eliminates ≈ 47% of all SESE regions prior to polyhedral modeling (ref. Figure 3.20).
After the polyhedral model (or SCoP) is built, the simple heuristic shown in Algorithm 3.9 will
check if multiple loops or statements are amenable to transformations. This step is done twice.
First, scalar accesses are ignored as they might be eliminated during the following SCoP canon-
icalization phase. This phase aims to remove scalar phi nodes and simple scalar accesses. For
the latter, the used technique [KG18] is however not as powerful as our polyhedral expression
propagation [DSH18] explained in Section 5.3. SCoPs that were deemed profitable prior to
canonicalization are checked again afterwards, this time low-dimensional write accesses, though
only scalars, are taken into account. However, the simple heuristic we introduced into upstream
Pollywill not consider control conditions nor dependences caused by low-dimensionalmemory
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write accesses. As both are important for the optimization potential, many SCoPs will be deemed
profitable even though no beneficial transformation can be applied. The two final profitability
checks will determine if the newly computed schedule differs from the original one and if any
beneficial transformation was applied prior to the code generation step. However, these checks
are often too simple to determine canonicalizations that do not necessarily improve performance
but alter the schedule and potentially the generated abstract syntax tree (AST).

1: procedure basicProfitabilityCheck(S : SCoP, PreCanonicalization : bool)

Initialize the counter for the number of optimizable statement dimensions (OSD).

2: OSD ← 0

Prior to canonicalization all loops are considered potentially profitable. After canonicalization
only the loops surrounding statements with array but no scalar writes are counted as optimizable.

3: for stmt in S do
4: if PreCanonicalization then
5: OSD ← OSD + stmt.getNestingDepth()
6: else if stmt.hasArrayWrites() and not stmt.hasScalarWrites() then
7: OSD ← OSD + stmt.getNestingDepth()
8: end if
9: end for

Return profitable only if a minimum of two optimizable statement dimensions was found.

10: return OSD > 1

Algorithm 3.9: The simple SCoP profitability check performed by LLVM/Polly that is
run before and after canonicalization passes tried to eliminate scalar accesses.

3.1.5 Piecewise Polyhedral Profitability Heuristic

The profitability heuristic proposed in the following is based on the piecewise defined, affine
profitability function generated by Algorithm 3.11. This function relates parameter conditions
to the number of loop dimensions, thus loops per statement, that can potentially be transformed
under these conditions. The uncertainty comes from the lack of dependences. Since they are
expensive to compute, we believe it is prudent to construct them only for SCoPs with a reasonable
optimization potential. To this end, we count only transformable loops that might not carry
dependences5. Depending on the configuration of the polyhedral optimizer and the expected
benefit from different transformations, the least number of loops required to apply a beneficial
transformation varies. However, we can specify a lower bound to limit the costly dependence
analysis and scheduling step. Given that LLVM performs well for single loops it is reasonable to

5 If tiling/blocking is enabled and considered aworthwhile optimization for the input code, the piecewise profitability
heuristic will never consider low-dimensional accesses (lda) as problematic.
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require at least two transformable loop dimensions. Hence, only SCoPs that contain a statement
which is surrounded by two transformable loops, ormultiple statements executed under (partially)
the same control conditions surrounded by one transformable loop, are deemed profitable.

To showcase differences between the two heuristics we provide four examples in Figure 3.10.
Assuming that none of the statements contain scalar accesses, all four examples are deemed
profitable by LLVM/Polly. However, even if all contained memory accesses are dependent
on the loop counters, only two of the four example are profitable according to the piecewise
heuristic. The examples in parts 3.10a and 3.10d are dismissed as there are no parameter values
(for N and p) for which both S and P would be executed. For the other two examples such a
context exists. Regarding the loop fission/distribution opportunity for the last two examples, it is
worth to note that LLVM can natively perform loop unswitching for loop invariant conditions.
Thus, LLVM can unswitch the conditional in the unprofitable example (part 3.10d), but not in
the example deemed profitable (part 3.10c).

for (i = 0; i < N; i++)
S(i);

for (j = N; j < 0; j++)
P(j);

(a) Unprofitable SCoP, according to the piece-
wise heuristic, with the profitability function(𝑁 > 0 ? 1 ∶ 0) + (𝑁 < 0 ? 1 ∶ 0).

for (i = 0; p && i < N; i++)
S(i);

for (j = 0; q && j < M; j++)
P(j);

(b) Profitable SCoP, according to the piecewise
heuristic, with the profitable context

𝑝 ∧𝑁 > 0 ∧ 𝑞 ∧𝑀 > 0.

for (i = 0; i < N; i++)
if (i < p)
S(i);

else
P(i);

(c) Profitable SCoP, according to the piecewise
heuristic, with the profitable context 0 < 𝑝 <

𝑁 ∧𝑁 > 0.

for (i = 0; i < N; i++)
if (p)
S(i);

else
P(i);

(d) Unprofitable SCoP, according to the piecewise
heuristic, with the profitability function (𝑁 > 0 ∧

𝑝 ? 1 ∶ 0) + (𝑁 > 0 ∧ ¬𝑝 ? 1 ∶ 0).
Figure 3.10: Four simple examples that, assuming S and P contain only array accesses,
are considered profitable by LLVM/Polly (ref. Algorithm 3.9), but not necessarily by
the piecewise profitability heuristic. The shown profitability functions and profitable

contexts are generated by Algorithm 3.11.

Whilewe evaluated the piecewise profitability heuristic as a replacement of the one currently used
in LLVM/Polly, which is a boolean predicate, it is more than that. Especially for larger SCoPs,
the heuristic can identify profitable parts which should consequently be optimized. However,
it also determines non-profitable parts, or more precise parameter conditions, under which no
profitable optimization is possible. If a SCoP is specialized to profitable inputs (ref. Section 3.5
and Section 6.3), later steps, e.g., dependence analysis, can become less costly.
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1: procedure profitabilityFunctionGeneration(S : SCoP)

Determine the profitability of each statements in the SCoP and summarize the result in the piecewise
defined, affine profitability functionΨ that determines profitability for a parameter context. Initially
Ψ will return 0 for all parameter configurations.

2: Ψ ← 𝜆 𝑐 ∶ 0
3: for stmt in S do

All loops surrounding the statement and part of the SCoP are initially potentially transformable. If
tiling is enabled and considered a worthwhile optimization, these loops are all counted. Otherwise,
loops that are likely to carry dependences are excluded in the following.

4: Loops ← S.getSurroundingLoopsInSCoP(stmt)
5: if not consider tiling then

Exclude loops that will probably carry dependences induced by a write access. To this end, we
only consider loops transformable that are involved in the access function 𝑓w of the write access.

6: foreach write access w in stmt do
7: VaryingLoops ← S.getInvolvedLoopsInSCoP(𝑓w)
8: Loops ← Loops.intersect(VaryingLoops)
9: end foreach

Exclude loops that probably carry dependences induced by a dependent write access. If the defin-
ing write of a read access is not known we optimistically assume no dependences to preserve the
optimization potential.

10: foreach read access r in stmt do
11: if defining write wr is unknown then continue
12: foreach loop l in Loops do
13: if l contains w then
14: Loops ← Loops.remove(l)
15: end if
16: end foreach
17: end foreach
18: end if

Add the number of potentially transformable loops under the statement’s execution context.

19: Ψ ← 𝜆 𝑐 ∶ ((Ψ 𝑐) + (𝑐 ∈ 𝜋𝜌(Dstmt) ? |Loops| : 0))
20: end for

Finally, restrict the profitability function to the assumed context (ref. Section 3.5) which will exclude
all parameter combinations that would violate an assumption taken in order to represent the SCoP.

21: Ψ ← 𝜆 𝑐 ∶ (𝑐 ∈ S.getAssumedContext() ? (Ψ 𝑐) : 0)
22: return Ψ

Algorithm 3.11: Algorithm to determine the profitability function of a SCoP. The resulting
piecewise affine function Ψ maps parameter conditions to the number of potentially trans-
formable loops based on the iteration contexts and access functions of the SCoP statements

as well as the assumptions taken to model the SCoP (ref. Section 3.5).
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3.1.6 Profitability Evaluation

We evaluated the profitability algorithms by inspecting the schedule [Bon+08] and the final
AST [GVC15] generated by LLVM/Polly. A good metric should result in a high percentage
of optimized, or better transformed, SCoPs. For the former we used the same (simple) check as
Polly to determine if two schedules differ. However, canonicalizations of the internal repre-
sentation [Ver+14] can cause differences even though there is no functional change. For ASTs,
a syntactic comparison would yield similar results mostly due to benign variations. To this end,
we compare the AST generated for the original and optimized schedule not just for syntactic
equality but we allow reorderings of loops and statements inside a loop or at the outermost level.

Difference SPEC2000 SPEC2006 SPEC2017 LLVM-TS

Schedule 76.0%/72.0% 48.2%/46.4% 78.4%/77.1% 68.2%/63.7%
AST Structure 18.4%/13.9% 28.7%/26.0% 54.0%/52.8% 43.3%/38.1%

Table 3.12: Percentage of SCoPs with an altered schedule and AST structure after
LLVM/Polly performed schedule optimizations. The two numbers per benchmark

show the impact tiling has on the result (first with, then without tiling).

Table 3.12 shows the percentages of SCoPs with an altered schedule and AST structure after
LLVM/Polly performed schedule optimizations on them. The results are collected with and
without tiling, a transformation which is applied after the common polyhedral schedule optimiza-
tions. Due to the native profitability checks of LLVM/Polly (ref. Section 3.1.4), only SCoPs
with an altered schedule were considered for the AST structure test. The percentage of SCoPs
with an altered AST structure can be as low as 18.4%/13.9%, with and without tiling respec-
tively. Hence, there is much room for improvements with regards to the profitability heuristic.
Early identification of unprofitable loops will save compile time, but falsely pruned SCoPs will
decrease the overall optimization potential. To this end, we want to carefully dismiss more un-
profitable SCoPs early but ensure profitable ones are kept.

For the piecewise profitability heuristic we also relate the prediction for a SCoP with the actual
change in schedule and AST. To make the comparison fair, we evaluated the prediction only for
SCoPs deemed profitable by LLVM/Polly. However, it is important to note that our heuristic
is strictly more restrictive than the one currently used (ref. Algorithm 3.9). In Figure 3.14 the
results for schedules are shown. Because schedules are tested for equality, the number of mispre-
dicted SCoPs is high. Depending on the benchmark suite and configuration, it varies between
34.2% and 58.5%. Though, only SCoPs classified as unprofitable but with an actual different
schedule/AST are problematic since conservative mispredictions6 are not different from the
status quo. For schedules, this number is still high and between 9.8% and 33.0%. The same

6 We denote incorrectly predicted, actually equal schedules/ASTs as conservative mispredictions. Since we focus
on preserving optimization potential, our conservative check will generally assume profitability.
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evaluation for the AST structure is shown in Figure 3.15. Note that we do not test for equality
here but for “functional changes” as explained above. The number of problematic mispredicted
SCoPs, thus the ones we classified as unprofitable but that exhibited non-trivial changes, is now
down to less than 2% in all SPEC configurations and 13.1% for the LLVM Test Suite. Since the
absolute number of these misclassification was only 23 (with and without tiling), we were able
to analyze the AST of each misprediction manually. All but the single one in the SPEC2006
benchmark suite stem from general loop fission/distribution (type A in Table 3.8). The excep-
tion was a loop unswitching transformation that hoisted code out of the loop which was only
executed for the first iteration (type B in Table 3.8). If multiple mispredictions occurred in a
test suite (SPEC2017 and LLVM-TS), their ASTs were all identical. This is a strong indicator
that it was initially one piece of code that was duplicated either manually or through automatic
canonicalization techniques, e.g., inlining or loop unrolling.

Our experiments show that 20.3% to 45.8% of all SCoPs, depending on the configuration, would
be additionally dismissed early as there is little to no chance for an optimized AST. As discussed
above, this would cause only a marginal reduction in optimization potential. Note that the predic-
tion was performed right after the SCoP modeling and canonicalization step, thus before poly-
hedral dependence analysis, schedule, or AST generation. Hence, the piecewise profitability
heuristic would prevent these costly steps completely for a much larger number of unprofitable
SCoPs without loosing significant optimizations in the process.
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Figure 3.13: Compile time impact of the piecewise profitability metric presented in Algo-
rithm 3.11. The baseline, i.e., 0%, is LLVM/Polly and we compared the median of 51 runs.

To quantify the benefit of the piecewise profitability heuristic wemeasured the impact on compile
time for all our benchmark suites (ref. Table 2.5 and 2.6). The results are illustrated in Figure 3.13
as percentage differences compared to our baseline version of Polly (ref. Section 2.3). We
observed an average compile time save of 3.42% and ten benchmarks are improved by more than
10%. There were only 16 out of the 360 benchmarks for which the results deteriorated. In the
worst case, compile time was increased by 3.54%. We believe these exceptions were caused by
the cost of the more evolved profitability checks in a short running compilation process.
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Figure 3.14: Piecewise profitability heuristic results that predicted the equality of the original
and generated schedules. The upper part shows the results with, the lower part without tiling.
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Figure 3.15: Piecewise profitability heuristic results that predicted the equality of the original
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3.2 Applicability Limitations

Applicability, profitability, and performance are crucial in the evaluation of existing polyhedral
approaches. However, we need to understand their limitations to predict the potential for future
extensions and guide the development of polyhedral tools. Only if the applicability restrictions
are well understood, we can determine if and how polyhedral-model-based tools will become
more applicable, leading to automatic and robust optimization of general purpose code. To this
end, we conducted two studies, an early one in 2013 [Doe+13], and a second one in the course
of this thesis, almost five years later. This section describes and interprets the results in order to
provide a better understanding of the limitations of automatically applied polyhedral techniques.

To argue about applicability limitations we require two kinds of information. First, we need to
explore which low-level rejection reasons prevented regions in the input program to be valid
SCoPs. Second, we have to identify in which high-level limitation category these rejection rea-
sons fall, thus if they are caused by implementation artifacts or are inherent to the underlying
model. If used together, this knowledge can guide the development of future extensions to poly-
hedral tools such that the cost-benefit ratio is optimal. Hence, applicability is improved with
minimal developing effort and as little as possible complexity increase.

In addition to our studies there is one by Simbürger et al. [Sim+13] that focuses on the impact of
certain applicability limitations with regards to dynamic SCoP coverage (ref. Table 3.1). While
we are not aware of other dedicated studies, extensions to the polyhedral model do often provide
some insights about applicability limitations by measuring their specific impact.

3.2.1 Rejection Reasons

Rejection reasons are low-level problems that prevented the applicability of polyhedral modeling
techniques, e.g., dynamic or non-affine memory accesses. Our first study [Doe+13] was focused
on understanding these problems and measuring their impact on general purpose code. To this
end, we modified the LLVM/Polly polyhedral optimizer to collect the causes for a SESE re-
gion to be deemed invalid for polyhedral representation. The results of this study are shown
in Table 3.16. It is a ranking of the rejection reasons observed for regions in some SPEC2000
benchmarks. In addition to the number of occurrences of a specific cause as part of the rejection
reasons for a region (#Occur.) and the number of regions only rejected because of a specific

This section discusses and compares two applicability studies we performed with
LLVM/Polly. The first in 2013 [Doe+13], and the second in the context of this thesis,
almost five years later. The detailed enumeration of rejection reasons shown here can be
reproduced using the rejection_reasons branch of our research prototype.
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cause (#Only Reason), we derived accumulative numbers (last column). These allow to reason
about the interplay of the most often occurring rejection reasons. As an example we can look
at potential aliasing, the second to most important rejection reasons. For 18.9% of all regions
rejected due to aliasing it was the sole problem that prevented polyhedral modeling. In an ad-
ditional 27.7%, aliasing and non-affine expressions were cause for dismissal. Based on these
numbers we concluded that non-affinity7, aliasing, and function calls were the biggest limiting
factors with 45.7%, 24.1%, and 11.7% of the counted rejection reasons respectively. However,
while the remaining reasons did not occur as often, they are more clearly defined and thereby
easier to remedy in practise. Thus, if feasibility and the development cost is taken into account,
the most often occurring reasons might not necessarily have the best cost-benefit ration. In the re-
mainder of this thesis we present extensions to the polyhedral model that tackle all of the rejection
reasons collected in this first study. Non-affinity is addressed in Section 3.6, potential aliasing in
Section 4.1, function calls in Section 6.1, complex loop counters in Section 6.4, complex control
flow in Section 3.3, and unsigned comparisons in Section 4.3. In addition, we present different
approximation schemes in Section 3.4 and Section 6.3 which can eliminate various applicability
limitations.

𝑖 Rejection Reason #Occur. #Only Reason #Only Reasons (1 to 𝑖)

1 non-affine expression 1230 84 84
2 potential aliasing 1093 207 510
3 non-affine loop bounds 840 6 660
4 function call 532 72 928
5 complex loop countera 384 0 1174
6 complex CFGb 253 31 1387
7 unsigned comparison 199 0 1586
8 others 1 0 1587

Table 3.16: Rejection reasons for code regions in SPEC2000 benchmarksc as reported
by Doerfert et al. [Doe+13]. The first two columns enumerate and name the reasons in
descending order of their occurrence (#Occur.). If a region was only rejected due to a
single cause, it is included in the count presented in column four (#Only Reason). The
last column shows the accumulated effect of a rejection reason and all preceding ones.

a LLVM/Polly did consider all loop counters that could not be canonicalized as too complex. A canoni-
cal loop counter would start at zero and be incremented by one in each iteration.

b LLVM/Polly did consider non-structured control flow (which is not representable with for/while/if) as
too complex. This included switches and loops with multiple back edges (continue) or exits (break).

c The evaluation environment was based on the Sambamba framework [Str+12] which could only handle
a subset of all SPEC2000 benchmarks at the time, namely: ammp, art, bzip2, crafty, equake, gzip, mcf,
mesa, and twolf. Thus the numbers are only extracted from these benchmarks.

7 We use non-affinity to summarize reasons 1 and 3, thus non-affine or dynamic memory accesses (1) as well as
non-affine or dynamic control flow conditions (3).
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In Section 3.1 we established that the number of SCoPs, thus valid code regions, is not neces-
sarily a good indicator for applicability. A similar reasoning holds for occurrences of rejection
reasons, i.a., a single problem is counted multiple times if it is nested in many SESE regions.
Though, since such nested regions do almost always correspond to nested loops, the multiple
counts could be interpreted as weight for the lost optimization potential. In addition, we believe
that rejection reason counts do still allow to determine general trends. This hypothesis was inde-
pendently validated by the study of Simbürger et al. [Sim+13]. That study came to a consistent
conclusion with regards to the importance of our top four rejection reasons. In contrast to our
work, they measured the dynamic SCoP coverage (ref. Table 3.1) on a large corpus of real world
applications. Their measurements were taken with and without the assumption that the top four
rejection reasons could be eliminated, thus ignored for the purpose of their experiment.

3.2.2 Limitation Categories

In our experience, polyhedral applicability limitations can be divided into the four categories: im-
plementation, representation, conceptual, and profitability limitations. In contrast to low-level
applicability issues (also referred to as rejection reasons), the applicability categories shown in

(I)mplementation limitations are caused by incomplete or not well integrated parts in
the polyhedral toolchain. This category also includes complex data types, e.g.,
library collections, and situations where information is known but not yet available
to the tool, e.g., the possible side-effects of library functions.

(R)epresentation limitations are caused by inputs that do not have an equivalent polyhe-
dral representation but for which the semantic differences can be overcome. This
category includes certain function calls, integer arithmetic, signedness, aliasing
arrays as well as certain kinds of dynamic and non-affine expressions.

(C)onceptual limitations are inherent to the (static) polyhedral model itself whichmakes
them hard to overcome. Instead, approximations as well as non-polyhedral exten-
sions and dynamic techniques are required. This category includes calls to un-
known functions as well as various forms of dynamic and non-affine expressions.

(P)rofitability limitations indicate valid SCoPs that were chosen to be rejected for prof-
itability reasons. In LLVM/Polly, this category includes regions without loops
but also SCoPs with only one kind of memory instruction, either load or store and
SCoPs with a single polyhedral statement contained in a single loop.

Table 3.17: Distinct categories of limitations that require different kinds of future ex-
tensions to improve applicability and robustness of polyhedral tools.
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Table 3.17 are high-level abstractions of the underlying problems. As such, they help to rea-
son about the kind of work necessary to remedy existing limitations and thereby improve poly-
hedral applicability, robustness and profitability. As an example we take a look at non-affine
expressions. If a polyhedral optimizer, e.g., LLVM/Polly, reports a non-affine expression in
an access relation or control flow condition, it is not immediately clear if the problem is an im-
plementation limitation, a representation shortcoming or caused by a semantically non-affine
computation, hence if it is conceptual. Examples for these different kinds of expressions that are,
or were, reported by LLVM/Polly as non-affine are shown in Figure 3.18. The first one (ref.
3.18a) is actually a quasi affine computation, well in the reach ofmodern polyhedral tools [Ver10].
It is not detected and represented as such because the handling of bitwise logical operations (in-
volving a constant) was never integrated into Polly’s codebase8. This implementation limi-
tation would be easily corrected as soon as code containing such a pattern become interesting.
In the second example (ref. 3.18b), the load of the index variable from memory is generally a
dynamic and thereby non-affine value. However, since the address is a constant global variable
it can be treated as a parameter, thus a symbolic constant. LLVM/Polly is able to recognize
and model this situation due to the representation extension we present in Section 3.6. Finally,
the third example (ref. 3.18c) shows a piecewise defined, partially affine access function. While
piecewise defined expressions are generally supported by polyhedral analyses, optimizations and
code on schemes, there is little front-end support for them. Thus, the input code is not properly
translated to a piecewise defined polyhedral representation but instead classified as non-affine
(ref. Section 6.4). Even if piecewise affine expressions would be recognized as such, without fur-
ther knowledge of the function foo, the expression would still be dynamic/non-affine for part of
the inputs, namely for i ≥ M. As dynamic expressions are a conceptual limitationwewould need
to employ approximations (ref. Section 3.4) or represent only the statically affine part (ref. Sec-
tion 6.3). These examples illustrate that a single rejection reason can fall into either category and
even multiple ones depending on the input. While we classify actual rejection reasons into limita-
tion categories in the following evaluation of our second study, we realize that more fine-grained
reason tracking is necessary to determine an injective mapping.

idx = i & 3;
A[idx]++;

(a) A bitwise logical op-
eration with a constant is
a quasi-affine operation8

but often considered non-
affine.

idx = *ConstGlobalVar;
A[idx]++;

(b) A load of a constant global vari-
able is known to be invariant it can
consequently be treated as unknown
but fixed value, thus a parameter

(ref. Section 3.6).

idx = i < M ? i : foo(i);
A[idx]++;

(c) A piecewise defined expression
with a statically affine part and a poten-
tially dynamic part, depending on the
function foo (ref. Section 6.1 and Sec-

tion 6.4).

Figure 3.18: Three access functions that are or were recognized as non-affine by
LLVM/Polly. Note that each example falls into a different limitation categories
(ref. Table 3.17). This indicates that at least this particular reason is too coarse grained
to determine how future extensions have to look like in order to remedy the problem.

8 Support of bitwise logical operations with constants is available in the bitops branch of our research prototype.
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3.2.3 Evaluation

In our second and more elaborate study we answer four specific questions aimed to reveal the
limits of polyhedral tooling, or better LLVM/Polly, on low-level programs today:
1. How did improvement to Polly, partially presented in this thesis, impact rejection causes?
2. Which rejection reasons do provide the best cost-benefit ratio for future extensions?
3. Which combination of rejection reasons prohibit polyhedral modeling the most?
4. How many distinct rejection reason do prevent polyhedral modeling for an average SCoP?

Question 1. To answer the first questions we collected rejection reasons and their occurrences
as we did for the first study. Though, the number of benchmarks, as well as the granularity of the
rejection reasons, is now significantly higher. The results, ordered by occurrences, are shown in
Table 3.19. The first column is short name of the problem while the fourth column provides a
brief description. Columns two and three show the number of affected regions as well as how
many of them were only rejected because of the particular cause. In the last column we placed
the rejection reason into one or more of the limitation categories described in Table 3.17. Note
that LLVM/Polly has preconditions and profitability conditions that have to be fulfilled for a
region to be considered valid. If not, the region is dismissed and the condition is counted as cause.
However, only preconditions are checked in the very beginning while profitability conditions are
checked after a region was deemed valid. Thus, rejections due to preconditions might contain
other violations while regions dismissed due to profitability conditions are in-fact valid regions.

While our early results, shown in Table 3.16, do not account for preconditions and profitability
rejections, we can compare the remaining ones. The former top rejection cause, non-affinity, still
has the most impact today. Though, the new results describe the location of non-affinity better
and they differentiate different kinds of problems that were summarized as non-affine before, i.a.,
variant base pointers (VBP). First note that most instances of unknown loop bounds (LB) had
to be caused by non-affine control flow conditions as the other reasons (IT, IC, and MP) could
only account for ≈ 15% of the instances. This also means that most non-affine control conditions
(≈ 84%) are part of a loop control branches, thus back edge and exit conditions. The reason for
this is twofold. First, the no loop precondition (NL) prevents non-affinity tests for SESE regions
that do not contain loops. Second, our evaluation setup (ref. Section 2.3) does allow control flow
approximations for innermost non-affine conditionals but approximations for non-affine loops are
disabled (ref. Section 3.4.2). After non-affine (loop) control flow, the next most often occurring
rejection reasons are concerned with non-affine and dynamic memory accesses (NAA and VBP).
Since neither function call handling described in Section 6.1 nor function call approximation
presented in Section 3.4.3 were enabled in this experiment, it is hardly surprising that they occupy
a top slot with regards to the number of occurrences. Rejections because of a single reason are
by far lead by function calls, if we exclude preconditions and profitability rejection reasons. The
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runtime alias checks shown in Section 4.1 reduced the number of rejections due to potential
aliasing pointers (PA) significantly. Similarly, the extensions to the control flow representation
described in Section 3.3, as well as the handling of unsigned expressions explained in Section 4.3,
basically eliminated rejection reasons 5 to 7 shown in Table 3.16. However, some complex loop
counters will nevertheless cause non-affinity (NAB and NAA).

Abbr. #Occur. #Only Occ. Description Cat.a

NLb,c 396869 396869 no loop in region (P)
NAB 326563 138 non-affine control flow condition (I,R,C)
LB 310649 0 unknown loop bound (due to IT, IC, MP,

or NAB in a loop control flow condition)
(I,R,C)

NAA 224630 11759 non-affine access (ref. Figure 3.18) (I,R,C)
VBP 188412 3210 variant memory access base pointer (I,R,C)
FC 185142 23204 function call (ref. Section 3.4.3 & 6.1) (I,R,C)
PA 96720 4663 pot. aliasing pointers (ref. Section 4.1) (I,R)
EOc 84359 218 operand in error block (ref. Section 6.3) (I)
TLb 61051 61051 top level region (covering the function) (I)
IC 30993 376 invalid control flow (e.g., cmp. of floats) (R,C)
MPc 19939 1472 multiple pointers in control flow condi-

tion (often implies actual aliasing)
(I,R)

ITP 15575 1564 integer to pointer instruction (I)
NLSd,c 13666 13666 either no loads or no store instructions (P)
SSLd 13125 13125 only single statement in a single loop (P)
EPc 12256 2 phi node operand in error block (see EO) (I)
EIc 1006 0 exception handling (I,R)
AVM 832 0 atomic/volatile memory access (I,R)
NBP 655 24 unknown memory access base pointer (I,R,C)
SA 640 6 stack allocation (I)
UIEb 89 89 unreachable region exit (i.a., exit()) (I)
IR 87 0 irreducible control flow (R)
UI 42 0 unknown instruction (I,R,C)
IT 37 1 no branch nor switch control flow (I)
INF 19 0 obvious infinite loop (ref. Section 5.1.3) (R)

Table 3.19: Rejection reasons collected for the benchmarks shown in Table 2.5 and 2.6.
The number of SESE regions rejected because of them is shown as well as a description

and the limitation categories they fall into. In total 915422 regions were rejected.
a Multiple limitation categories if no single one is plausible (ref. Figure 3.18).
b Precondition for SCoPs enforced by LLVM/Polly. Occurrence implies only rejection reason.
c Not explicitly reported by vanilla LLVM/Polly but only in the rejection_reasons branch.
d Profitability condition for SCoPs enforced by LLVM/Polly. Occurrence implies only rejection reason.
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Question 2. The second question is concerned with the cost-benefit ratio for future extensions.
To this end, we should look at the most frequent rejection causes only categorized as implemen-
tation limitations, namely error blocks operands (EO and EP) and top level regions (TL). As
such, they are perfect candidates for simple, cost effective, applicability extensions. Though, the
latter (TL) is a precondition of LLVM/Polly (ref. Section 6.1) which means the actual benefit
cannot be predicted from these results. Other beneficial improvements that fall either in the im-
plementation or representation category can be found by examining the limitations of the alias
checks (ref. Section 4.1.3), e.g., adding the possibility to represent presumably aliasing point-
ers (MP), as well as various forms of non-affine expressions (ref. Figure 3.18 and Section 6.4).
Rather simple but less beneficial extensions could introduce support for certain integer to pointer
conversions (ITP), stack allocations (SA), as well as atomic and volatile accesses (AVM).
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Figure 3.20: Rejection reasons for all analyzed SESE regions. The most often occurring combi-
nations (part of multiple reasons ) are shown in Figure 3.21.
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Question 3. To answer question three we have to look at the rejection reasons that prohibit
polyhedral modeling on their own, or in combination with other reasons. To this end, we show
the distribution of unique causes for dismissal in Figure 3.20. The unique reasons are domi-
nated by the requirement for loops in the SESE region (NL) with 38.8% to 46.8%. The second
most often occurring unique reason are top level regions (TL) which is also a precondition of
LLVM/Polly. Afterwards, there are profitability limitations, e.g., the requirement for loads
and stores (NLS) as well as multiple statements or loops (SSL), trailing with 1.4% to 7.8%. The
remaining unique rejection reasons are function calls (FC) with 2.3% to 3.5%, non-affine accesses
with 1.4% to 2.2%, and potentially aliasing pointers with up to 1.5%. Since combinations of re-
jection reasons account for ≈ 37% of all dismissals across the benchmark suites, we broke them
down in Figure 3.21.
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Figure 3.21: Combinations of rejection reasons (ref. Table 3.19) that caused an analyzed SESE
region not the be a valid SCoP. Combinations that cause less than 2% of the regions to be rejected

are summarized as and the ones that rejected between 2% and 5% are shown as .
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The variety of different combinations identified in the different benchmark suites is quite large.
Each one features ≈ 1100 different combinations that each caused less than 2% of regions to be
rejected . The number of combinations that rejected between 2% and 5% of the regions
is relatively low and varies between 5 (LLVM-TS) and 11 (SPEC2000). Explicitly listed, and
thereby most important, are the following combinations of rejection reasons:

Non-affine conditions in loop control flow in conjunction with non-affine accesses
with a rejection rate between 12.1% and 17.8%.

Non-affine conditions in loop control flow together with varying base pointers ac-
counting for 5.2% to 7.6% of the rejected regions.

Non-affine conditions in loop control flow in addition to varying base pointers and
function calls dismiss 5.4% to 8.2% of all regions.

Non-affine conditions in conjunction with function calls and non-affine accesses
invalidate 9.9% of the regions found in the LLVM Test Suite (LLVM-TS).

Question 4. Our last evaluation question is concerned with the number of distinct rejection
reasons per region. To this end, we plotted the amount of rejected regions with regards to the
number of distinct causes that were responsible for their dismissal in Figure 3.22. All combina-
tions of rejection reasons that did occur less than 1000 times are uniformly colored at the top
of the bars. Combinations that were present in Figure 3.21, and therefore in the list above, did
retain their coloring and are stacked at the bottom of the bars. The remaining combinations are
randomly but consistently colored and placed in-between.

The distribution for all four benchmark suites is centered around three distinct rejection reasons.
Thus, most regions are dismissed because of a relative low number of reasons. There are only
very few regions that contained eight or more distinct problems and exactly one, in SPEC2006,
with eleven. Instead, the number of different combinations is significant and most of them dis-
miss less than two percent of the regions (ref. Figure 3.21). This fragmentation can be seen for
SPEC2017 in Figure 3.22. Even less significant combinations, which are not explicitly listed in
Figure 3.21, dismiss more than 1000 regions and are therefore uniquely colored (not ).

Conclusion There are several conclusions we can draw from the two studies on the rejection
reasons of LLVM/Polly. First, there are several rejection causes, namely 5 to 7 in Table 3.16,
that our applicability extensions completely eliminated. Second, there are rejection causes, es-
pecially aliasing and non-affine expressions, that were mitigated by our work but not completely
eliminated. Third, advanced applicability can expose new problems that have to be handled,
e.g., control flow conditions involving multiple pointers (MP in Table 3.19) often imply aliasing
pointers and thereby contradic the assumption used to justify runtime alias checks (ref. Sec-
tion 4.1). Lastly, we need to improve and incorporate extensions to deal with function calls
(ref. Section 6.1), as well as expressions currently classified as non-affine (ref. Section 6.4). These
two rejection reasons are, alone and in combination, the most frequent.
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3.3 Control Flow Representation

Polyhedral-model-based tools historically required structured control flow [Bas+03; Fea92a].
Thus, a series of nested for loops and conditionals, which additionally adhere to severe syntac-
tic requirements. The use of goto, continue, break, and switch statements as well as while
loops9 was generally not supported [PCL11]. With the introduction of the polyhedral extraction
tool [VG12] various limitations, including continue, break, and while, have been overcome.
Though the application is limited to high-level languages that are converted to an abstract syn-
tax tree (AST) and for which syntactic requirements are still in place (ref. Section 6.4). While
most restrictions might not limit expert users that want to apply polyhedral optimizations on
properly written program parts, they do hinder automatic polyhedral optimization integrated in
a general purpose optimization pipeline as performed by LLVM/Polly, Graphite [Pop+06]
in GCC or the polyhedral pass in the IBM XL compiler [Bon+10]. The reasons are manifold,
reaching from coding styles, over differences in the input representation, to the effects of other
code canonicalizations/transformations which are potentially oblivious to the user. The input
and output of low-level polyhedral optimizers is not an abstract syntax tree (AST) but instead a
low-level control flow graph (CFG) with basic blocks connected though conditional and uncondi-
tional edges/branches. In this representation, different syntactic loop forms are indistinguishable,
and it is not necessarily possible to determine the presence (or absence) of certain syntactic con-
structs in the input program. However, one can determine if a part of the CFG is expressible as a
sequence of perfectly nested loops and conditionals, hence without the need for goto, break or
continue statements. This is the case if each loop has a unique exiting and back edge. Addition-
ally, each conditional branch has to start a single-entry single-exit (SESE) region. Though, espe-
cially in advanced stages of the compilation pipeline, canonicalization and optimization passes
might (even actively) break these properties as they are restrictive and not necessarily useful. In
addition, there are various inputs that do not have the required properties to begin with begin
with. It is consequently worthwhile to eliminate these left-over syntactic requirements that stem
from the handling of (structured) ASTs in order to improve applicability and robustness on all
kinds of inputs.

This section describes the control flow generation algorithm we integrateda into
LLVM/Polly to eliminate syntactic and structural requirements on the input
control flow graph (CFG). A slightly more general version of this algorithm is also an
integral part of our dedicated polyhedral value analysis [DH17b] described in Section 6.4.
a There are outstanding patches that have not been merged yet, see LLVM bugs 35465, 37576, and 35434.

9 The term “while loop” does in the polyhedral community generally refer to a loop with an unknown trip count and
not the syntactic statement.
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In the remainder of this section, we describe a slightly generalized version of the domain gener-
ation algorithm we integrated into LLVM/Polly. It is free of syntactical requirements on the
structure of the input CFG except, that the SCoP is built for a SESE region and that there is no
irreducible control flow [Hav97] in the represented parts. Note that these two remaining require-
ments are benign as Table 3.19 clearly shows that reducibility is practically always given10 and
Section 3.3.3 describes how multi-entry-multi-exit regions can be (virtually) reduced to SESE
regions. We also support all non-indirect control flow constructs that do not involve exceptions,
thus conditional and unconditional branches, switch statements, as well as return statements.
The domain generation allows for precise modeling as long as the control flow conditions of
conditional branches and switch statements are static-affine. In the presence of non-affine con-
ditions control flow approximations, as described in Section 3.4.2, are employed. To simplify the
algorithms we omitted the explicit handling of switch instructions. However, they can be be seen
as a cascade of conditionals and gotos, thus unconditional branches, as illustrated in Figure 3.23.
In addition to the eliminated syntactic and structural requirements, our modeling does not need
a dedicated loop trip count analysis. Though, it is important to note that LLVM/Polly still re-
lies on an external, non-polyhedral-model-based analysis to identify affine expressions [BWZ94;
PCS05], e.g., for control flow conditions. Consequently, the limitations imposed by this analy-
sis are still decreasing the applicability, especially in the presence of complex, e.g., piecewise
defined, iteration counters. To eliminate this limitation we propose a dedicated polyhedral value
analysis in Section 6.4 which in turn relies on the domain generation presented here.

switch(cond) {
case c0:

A: StmtA();
break;

case c1:
StmtB();
// fall-through

case c2:
StmtC();
break;

default:
StmtD();
goto A;

}

(a) Original code version using switch, break,
goto and a fall-through case.

if (cond == c0) {
A: StmtA();

} else if (cond == c1) {
StmtB();
goto FT;

} else if (cond == c2) {
FT: StmtC();

} else {
StmtD();
goto A;

}

(b) Transformed code version that uses only con-
ditionals and gotos.

Figure 3.23: Syntactic conversion of a switch statement (left) to a cascade of condi-
tionals and gotos (right). Fall-through cases get appended with a goto statement to

the following case, others do not need to be changed.

10 The irreducible control flow rejection reason (IR) shown in Table 3.19 has overall only 87 occurrences.
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3.3.1 Iteration Domain Generation

To generate iteration domains for a reducible sub graph of a CFG we will traverse it twice in
reverse post order. The first traversal callback is illustrated in Algorithm 3.24. The procedure
propagates control conditions to all statically affine successor blocks. Non-affine control regions
(ref. Section 3.4.2) are treated as a single, atomic block (or statement). Thus, we only need to
compute the domain of the entry block which is then used for all blocks inside the non-affine
control region. Iteration domains are collected in the DomainMap. It is initialized with a uni-
verse (=unconstrained) domain of appropriate dimensionality for the entry block of the SESE
region that bounds the SCoP. The iteration domains of all other blocks are initially empty. After
the first CFG traversal all iteration domains have been initialized with straight line control flow
constraints. Loop dimensions are still unbounded at this point. While the reverse post order
traversal ensures that predecessors have already been visited, loop latch blocks are obviously
excluded. The circular dependence between the domain constraints of a loop header and a loop
latch block cannot be resolved in one step. Instead, a second traversal is performed using the call-
back procedure illustrated in Algorithm 3.25. The domain constraints of the predecessor blocks
are unified and then combined with the initial domain built in the first traversal. In addition, loop
exiting constraints are specialized for the iteration that will eventually exit the loop. This cannot
be done in the first step because it requires control flow information from all loop exits.

3.3.2 Related Work

Enhancements for the control flow representation in the polyhedral model follow two distinct
paths. In this section we present a way to remedy implementation limitations (ref. Table 3.17)
that prohibited certain syntactic constructs, e.g., switch statements. In addition, we provide
a iteration domain generation algorithm that eliminates representation limitations caused by all
varieties of reducible, static-affine but unstructured control flow. The closest to our work is the
polyhedral extraction tool by Verdoolaege and Grosser [VG12]. As it is syntax guided and works
with anAST, it is not well suited for low-level polyhedral tools. In addition, the support for break
and continue statements might not be sufficient if the programmer, or canonicalization passes,
introduced goto based control flow, e.g., to exit multiple loops at once. An alternative kind of
control flow representation improvements is concerned with dynamic or non-affine conditions.
Different approximation schemes are known for the general case [Ben+10; GC95; MDH16] as
well as for special loop forms [ZKC18]. Details on these techniques are provided in Section 3.4.

Kumar and Pop [KP16] showed that a different approach to determine and extend analyzed re-
gions can significantly improve the profitability of SCoPs and the compile time. Since the control
flow representation capabilities do limit SCoP detection, it is worthwhile to revisit some initial
preconditions on SCoPs, especially the need for SESE regions (ref. Section 3.3.3), in the future.
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1: procedure propagateBranchConstraints(Block : BB, DomainMap : BB → ISet)
2: Domain ← DomainMap[Block]

Block that are part of a non-affine control region (ref. Section 3.4.2) do not have an associated
domain.

3: if isEmpty(Domain) then return

Determine the set of statically affine control flow successors which either contains the actual suc-
cessor blocks or it is the end of the non-affine control region that hides the emanating control flow.

4: ExitCondition ← getExitControlFlowCondition(Block) ⊆ ISet→ {true, false}
5: if isStaticAffine(ExitCondition) then
6: SuccessorBlocks ← Block.getSuccessors()
7: else
8: SuccessorBlocks ← {Block.getSESE().getExit()}
9: end if

Compute the domain constraints and propagate them to the successor(s). Since a successor might
be surrounded by different loops, the domains have to be adjusted (ref. Algorithm A.1 on Page 201).

10: switch SuccessorBlocks.size() do
11: case 0: return skip return instructions
12: case 1: handle unconditional branch instructions

Skip the block if it is outside the SCoP or reached via a loop back edge.

13: if SCoP.contains(SuccBB) and not SuccBB.dominates(Block) then
14: DomainMap[SuccBB] ← adjustDimensions(Domain, Block,

SuccessorBlocks[0], false)
15: end if
16: return
17: default: handle conditional branch instructions
18: assume SuccessorBlocks.size() == 2
19: SuccBB0, SuccBB1 ← SuccessorBlocks[0], SuccessorBlocks[1]

Handle blocks inside the SCoP which are not reached via a loop back edge.

20: if SCoP.contains(SuccBB0) and not SuccBB0.dominates(Block) then
21: TrueCondition ← Domain ∩ getTrueDomain(ExitCondition)
22: DomainMap[SuccBB0] ← DomainMap[SuccBB0] ∪
23: adjustDimensions(TrueCondition, Block, SuccBB0, false)
24: end if
25: if SCoP.contains(SuccBB1) and not SuccBB1.dominates(Block) then
26: FalseCondition ← Domain ∩ getFalseDomain(ExitCondition)
27: DomainMap[SuccBB1] ← DomainMap[SuccBB1] ∪
28: adjustDimensions(FalseCondition, Block, SuccBB1, false)
29: end if
30: end switch

Algorithm 3.24: First domain generation traversal callback: Forward propagation of con-
trol flow constraints to all statically affine control flow successor blocks. As back edges are

skipped, only straight line control flow constrains are collected.
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1: procedure finalizeIterationDomains(Block : BB, DomainMap : BB → ISet)

We skip all blocks with an empty initial domain as they are either dead or in a non-affine control
region.

2: InitialDomain ← DomainMap[Block]
3: if isEmpty(InitialDomain) then return

If the SCoP entry block is not also a loop header we can skip it as well.

4: PredBlocks = getBlockPredecessorsInScop(Block);
5: if PredBlocks.isEmpty() then return

Collect the union of all predecessor domains and intersect it with the initial domain to obtain an
updated iteration domain.

6: IncomingDomain ← getEmptyDomainForBlock(Block);
7: for PredBB in PredBlocks do
8: PredDomain ← adjustDimensions(DomainMap[PredBB], PredBB, Block, false)
9: IncomingDomain ← IncomingDomain ∪ PredDomain
10: end for
11: DomainMap[Block] ← InitialDomain ∩ IncomingDomain;

If the block is not a loop header the updated domain is at this point final.

12: if not isLoopHeaderInSCoP(Block) then return

A loop header is executed until control flow leaves the loop via an exiting edge. To this end, we
unify all exiting conditions of the loop and remove these iterations, as well as all later ones, from
the header domain.

13: AllExitIterations ← getEmptyDomainForBlock(Block);
14: Loop ← getSurroundingLoopInSCoP(Block)
15: for (ExitingBB, OutsideBB) in Loop.getExitingEdges() do

Get the constrains under which the last execution of ExitingBB transfers control to OutsideBB.

16: EdgeConstraints ← getEdgeConstraints(ExitingBB, OutsideBB)
17: ExitConstraints ← adjustDimensions(EdgeConstraints, ExitingBB,

OutsideBB, /* Last */ true)
18: AllExitIterations ← AllExitIterations ∪ ExitConstraints
19: end for

While exit iterations are still part of the loop, all later iterations are not. To compute them we use a
forward relation that maps an iteration at a specific loop depth to all later iterations in that depth,
e.g., for loop depth 3 the forward relation looks like {[𝑖, 𝑗, 𝑘] → [𝑖, 𝑗, 𝑘′] ∶ 𝑘 < 𝑘′} (see [VG12]).

20: ForwardRelation ← getForwardRelation(Loop.getDepth())
21: AllExitedIterations ← ForwardRelation(AllExitIterations)
22: DomainMap[Block] ← DomainMap[Block] ∩ ¬ AllExitedIterations

Algorithm 3.25: Second domain generation traversal callback: Propagation of domain con-
straints and loop exit conditions across iterations and out of loops.
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3.3.3 Multi-Entry Multi-Exit SCoPs

To be applicable for polyhedral-model-based analysis and optimization the input has to form a
single-entry single-exit (SESE) region. While this is the case for loop nests that only contain
structured control statements, it does not necessarily hold for complex inputs or after transfor-
mations, e.g., jump-threading, have altered the CFG. Since the SESE region restriction does not
stem from limitations of the polyhedral model but is merely enforced to simplify the analysis and
transformation, it can be dropped altogether. This is especially interesting because the modeling
of multi-entry multi-exit regions can be mapped to the modeling of SESE regions as illustrated
in Figure 3.26. The virtual nodes “single entry” and “single exit” are introduced to collect all in-
coming and outgoing edges of the SCoP. The control transfer of both nodes can be realized with
a switch-like construct which can then be represented using conditionals and gotos as illustrated
in Figure 3.23. The input edge conditions shown in Figure 3.26 can only depend on parameters
of the SCoP and are consequently statically affine. The output edge conditions can however be
dynamic or non-affine but this does not prevent the application of the presented scheme.
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Figure 3.26: Encoding of a multi-entry multi-exit region (MEME) (left) as a single-
entry single-exit (SESE) region (right) with two virtual blocks (“single entry” and “sin-
gle exit”). In the polyhedral representation these blocks bundle all control transfer edges

into and out-of the MEME region to create a virtual SESE region.
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3.3.4 Evaluation

To evaluate the extended iteration domain generation, we compared our default configuration
(ref. Section 2.3), which allows unstructured control flow, to one that does not. Thus, the latter
enforces a single loop exit and back edge, as well as a SESE region around each conditional. To
ease the interpretation of the obtained metric scores, we show them in Table 3.27 relative to our
baseline results provided in Figure 3.3 and Table 3.4 on Page 26 and 27. Hence, percentages less
than 100% represent decreased metric scores due to rejected unstructured control flow.

In the current setting, and for most benchmark suites, non-structured control flow has only little
impact on the number of SCoPs, which is only down by 1.7% to 15.5%. Similarly, the monotone
applicability metrics (ref. Section 3.1.1) are decreased by at most 14.7%. One reason for this
is the lacking support for piecewise defined expressions that generally depend on control flow
(ref. Section 6.4). To verify this hypothesis we determined the probability of a region to contain
non-affine branches, depending on the presence of unstructured control flow. Overall, 27.6%
of all regions did contain non-affine branches as as a rejection reason and 11.7% did contain at
least one loop with multiple exits. The probability of a region to contain a non-affine branch
if it already contained an unstructured loop was 82.9% while the probability was only 20.3% if
no unstructured loop was present. Even though not all of these cases will benefit from a more
powerful analysis to determine affine expressions (ref. Section 6.4), it is plausible that such an
analysis will improve the beneficial effect of our extended iteration domain generation.

Unstructured Control FlowAs Rejection Reason We also considered structured control flow
as a SCoP requirement and counted the number of SESE regions that violated it. Since this
changed the set of valid regions which the SCoP detection tries to expand, the numbers are
not fully compatible with the rejection reason results shown in Table 3.19. Though, the order
and magnitudes did not significantly change. In this experiment, unstructured control flow due
to multiple loop exits is the seventh’s most often occurring rejection reason. It is trailed by
unstructured conditionals that do not form a SESE region and potentially aliasing pointers.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 94.5% 97.0% 84.5% 98.3%
# depth 1 SCoPs 93.9% 97.4% 83.6% 97.2%
# depth 2 SCoPs 100.0% 93.9% 93.6% 100.0%
# depth 3 SCoPs 100.0% 100.0% 100.0% 100.0%
# depth 4 SCoPs n/a n/a n/a 100.0%

C0 score 95.2% 96.6% 85.3% 98.9%
C1 score 100.0% 94.3% 94.4% 100.0%

Table 3.27: Applicability results in variousmetrics (ref. Section 3.1) when unstructured
control flow was forbidden. The percentages are shown relative to the baseline results

provided in Figure 3.3 and Table 3.4 on Page 26 and 27.
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3.4 Approximative Polyhedral Program Representation

Two major strengths of a polyhedral-model-based program representation are iteration-wise con-
trol flow information and precise memory access descriptions. Though, both are only possi-
ble if the control flow conditions and access relations can be represented with statically affine
expressions. If that is not the case, polyhedral tools commonly give up on the analyzed code re-
gion. As an alternative, specialized modeling techniques can derive conditionally valid represen-
tations (ref. Section 3.5), or program parts that do not comply with the strict requirements can be
excluded completely (ref. Section 3.7). However, static modeling techniques will always be lim-
ited, and it is often impossible to find static conditions that prevent only the execution of certain
program parts. Instead, an approximative polyhedral representation is often the only practical
alternative, especially for applications which do not only use polyhedral information [Atz+16;
Cha+16], or those that always require a polyhedral representation [MDH16].

Approximations allow polyhedral representation and optimization of partially statically affine
programs [Ben+10; MDH16; PC10; ZKC18]. While sufficient approximation allows to rep-
resent any program, the precision of the representation, and thereby the benefit of having one,
is sensitive to the amount and kind of approximations employed. To enable schedule optimiza-
tions in the presence of approximations it is often necessary to utilize non-polyhedral analyses or
alternatively domain knowledge (ref. Section 5.1.2). While the latter is available if domain spe-
cific languages are used [Bag+15; MDH16; MVB15], the former is especially interesting if the
polyhedral tool is integrated into a compiler framework that provides non-polyhedral analyses.

3.4.1 Non-Affine Accesses

Out = malloc(...);
for (i = 0; i < N; i++)
Out[i] = In[i*i-1] + In[i*i+1];

Figure 3.28: Non-affine accesses to a read-
only array that do not prevent optimizations.

Prior to our work, LLVM/Polly was
able to approximate non-affine or dynamic
memory accesses. In the polyhedral represen-
tation that was built, these accesses may read
or write the entire array. While all approxima-
tions can induce spurious dependences [Ben+10; CBF95], it is less problematic for non-affine
read accesses. Especially if the array is read-only, approximations will not prohibit optimizations.
Thus, the loop in Figure 3.28 can be optimized, e.g, parallelized, despite the non-affine accesses.

This section describes approximations that allow polyhedral representation of partially
polyhedral code. Some approximations were part of our work on Input Space Splitting for
OpenCL [MDH16], while others were developed independently. Note that not all approx-
imations are part of LLVM/Polly but some are only available in the approximation
branch of our research prototype.



Approximative Polyhedral Program Representation 57

for (i = 0; i < N; i++)
S: A[i*N] = ..

for (j = 0; j < N; j++)
P: A[(j+N)*N] = ..

Figure 3.29: Non-affine write accesses
that do not prevent loop fusion if a sym-

bolic range analysis is employed.

To statically tighten approximative values, we uti-
lize constant range information computed by the
Scalar Evolution analysis [BWZ94; PCS05]
(ref. Section 6.4). Since many expressions cannot
be tightly bounded by constant ranges, we addition-
ally implemented a simple, symbolic interval anal-
ysis that is also based on Scalar Evolution.

While the constant range approximation is integrated into LLVM/Polly, the symbolic ranges
are only available in the approximation branch of our research prototype. Note that these
efforts are less sophisticated than other symbolic interval analyses [BE95; RR00]. We do es-
pecially not check for dependences explicitly, but only limit the possible effects of a non-affine
access with the range information. For the example in Figure 3.29, our symbolic range analysis
generates the access approximations shown in Formula 3. Note that the multiplication 𝑁 ∗𝑁 is
considered to be a parameter, and consequently affine, as it only depends on other parameters.

𝑓wS = { 𝑖 → A(𝑜) ∣ 0 ≤ 𝑜 < (𝑁 ∗𝑁) −𝑁 }
𝑓wP = { 𝑗 → A(𝑜) ∣ (𝑁 ∗𝑁) ≤ 𝑜 < 2 ∗ (𝑁 ∗𝑁) −𝑁 } (3)

The polyhedral dependence analysis [Fea91] implemented in isl [Ver10] is able to utilize these
approximated access functions and potentially derive less spurious dependences. However, we
still require the array base pointers to be fixed and statically known.

3.4.2 Non-Affine Control Regions

Non-affine control regions [MDH16] allow to built a polyhedral representation in the presence of
non-affine or dynamic control flow conditions, later often denoted as non-affine branches. The
regions approximate the effects of the non-representable condition by enclosing the subgraph
of the control flow graph (CFG) that is control dependent on it. Since control flow information
inside the region might be dependent on the non-affine or dynamic condition, we cannot express
it in terms of one execution of the static control part (SCoP). Thus, in the polyhedral represen-
tation, a non-affine control region is treated as a single atomic statement, regardless of the con-
tained control flow paths. Since the execution of accesses inside the region can also be control
dependent on the non-affine or dynamic branch, they are generally assumed to be potentially hap-
pening. Hence, contained accesses are, similar to approximated non-affine accesses, modeled as
may accesses. Only if an access is executed regardless of the non-expressible condition, it can
be represented as definitively happening, thus as a must access. The distinction is important to
determine the last write of a memory location and thereby to distinguish between value-based
dependences and memory-based dependences [Fea91; MAL93; PW93].
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for (i = 0; i < N; i++)
if (B[i] > 0.0)

S: A[i] = A[i] + B[i];

(a) Original code version featuring a dynamic
condition to guard a memory update.

#pragma parallel
for (i = 0; i < N; i++)

if (B[i] > 0.0)
S: A[i] = A[i] + B[i];

(b) Symbolically optimized code version with a
parallelized loop.

Figure 3.30: Example program (left) featuring a non-affine conditional in the innermost
loop. A non-affine control region will encapsulate the conditional and the statement S.

Affine memory accesses allow to analyze and parallelize the loop (right).

Figure 3.30a shows a simplified version of an innermost loop that can be found in various real-
world code. The condition B[i] > 0.0 is dynamic as it depends on the content of an iteration-
dependent memory cell. However, the access in the condition as well as the guarded accesses are
all affine and can be precisely represented. Only the control flow is not statically know, thus it
is impossible to predict for which loop iterations statement S is executed. To create a polyhedral
representation of this loop, a non-affine control region is used to encapsulate the conditional. We
depict these regions as dashed rectangles. The associated polyhedral statement will include all
four memory accesses, hence three reads and one write. Note that the accesses to the A array
and the second read access to the B array have to be represented as may accesses while the first
read of B is known to be executed in every iteration. This distinction is important for dependence
calculation but also for transformations like invariant load hoisting (ref. Section 3.6) and expres-
sion propagation (ref. Section 5.3). Since the access functions in our example are precise and
only control flow information is approximated, we can prove the absence of dependences. Con-
sequently, transformations, e.g., the parallelization shown in Figure 3.30b, can be performed.

#pragma parallel
for (i = 0; i < N; i++)

#pragma parallel
for (j = 0; j < M; j++)

for (k = 0; k < i * j; k++)
if (B[j][i] > 0.0)

S: A[k] = A[k] + B[j][i];

(a) Original code version featuring strided ac-
cesses to the B array.

#pragma parallel
for (j = 0; j < M; j++)

#pragma parallel
for (i = 0; i < N; i++)

for (k = 0; k < i * j; k++)
if (B[j][i] > 0.0)

S: A[k] = A[k] + B[j][i];

(b) Optimized code version after interchange of
the two outermost loops.

Figure 3.31: Example program (left) featuring a non-affine loop bound in the innermost
loop. A non-affine control region will encapsulate that loop including the conditional
and the statement S. The domain knowledge (parallel annotations) contained in the
program does however allow to perform a beneficial loop interchange of the two repre-

sented (outermost) loops (right).

In Figure 3.31 a more elaborate use case for non-affine control regions is shown. In this exam-
ple the entire innermost loop is encapsulated as its upper bound is a non-affine combination of
surrounding iteration variables. The iterations of the innermost loop will not be distinguished in
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the polyhedral representation and all dependent accesses, here A[k], have to be approximated
as well. Similar to other non-affine accesses, the ones dependent on a loop that is enclosed in
a non-affine control region might access any element of the array. While we can again employ
non-polyhedral analyses to improve this worst case assumption, the given example also allows
to leverage domain knowledge present in the form of parallel loop annotations. While a detailed
discussion on the effect of such parallel annotations as well as other user assumptions will follow
in Section 5.1.2, it currently suffices to know that parallel loops cannot carry dependences. It is
consequently valid to perform the locality improving loop interchange shown in Figure 3.31b.

3.4.2.1 Limitations & Extensions

for (i = 0; i < N; i++)
if (B[i] != 0.0)

for (j = 0; j < M; j++)
S: A[i][j] /= B[i];

Figure 3.32: Non-affine conditional
that prevents a precise polyhedral rep-
resentation of the affine inner loop.

The implementation of non-affine control regions,
both in LLVM/Polly and our approximation
branch, comes with two major limitations. First, we
always choose the smallest single-entry single-exit
(SESE) region surrounding a problematic branch as
non-affine control region. Note that this implementa-
tion artifact allows for an easy to test, sufficient con-

dition for definitively executed accesses, hence must accesses. If an access dominates the exit
block of the SESE region, it is definitively executed. In general however, any multi-entry multi-
exit region (ref. Section 3.3.3) could be used as non-affine control region as long as it encloses all
blocks control dependent on the non-affine or dynamic branch. The second limitations is the use
of statically affine control flow constraints inside the non-affine control region. Since they can
be represented with regards to one execution of the SCoP, they could be used to improve the de-
scription of contained accesses. For the loop nest in Figure 3.32 we currently loose information
on the multi-dimensional memory interpretation and have to rely on the non-polyhedral analysis
to determine access bounds. Instead, we could derive the access function shown in Formula 4.

𝑓wS = { (𝑖, 𝑗) → (𝑖, 𝑜) ∣ 0 ≤ 𝑜 < 𝑀 } (4)

Alternatively, we would like to model the iterations of the inner loop as if the conditional was
only guarding the statement S. Thus, all loop iterations as well as the access functions could then
be represented as shown in Formula 5 even though the write would still be a may access.

DS = { (𝑖, 𝑗) ∣ 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑀 }
𝑓wS = { (𝑖, 𝑗) → (𝑖, 𝑗) } (5)
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3.4.3 Function Call Approximation

In Section 3.2 we have identified function calls as a major obstacle for polyhedral tools. To
improve the applicability, inlining and precise inter-procedural representation (ref. Section 6.1)
can be used. However, especially external function calls but also complicated internal functions
are not amenable to these techniques. Instead, we rely on static code analysis and programmer
annotations to represent a call as a summary of all possible side-effects. The different summary
effects known to LLVM are shown in Table 3.33. The last two columns indicate if it is possible
to approximate these effects in LLVM/Polly and our research prototype (RP).

Summary Effecta Description Polly RP

no memory access No memory accesses, e.g., “const” in C/C++. 33
b

33

read only Only memory loads, e.g., “pure” in C/C++. 3 3

write only Only memory writes. 7 3

argument read only Only loads of argument pointers. 3 3

argument read/write Only accesses to argument pointers. 3 3

inaccessible read/write Only accesses to memory otherwise not acces-
sible, e.g., internal state of an allocator.

7 7

arg. & inac. read/write Only accesses to argument pointers or mem-
ory otherwise not accessible.

7 7

unknown No restrictions on the accesses. 7 3

Table 3.33: The different summary effects known to LLVM, their support in the Polly,
and in the approximation branch of our research prototype (RP). A 3 indicates approx-

imation support and 33 is used if it is enabled by default.
a Summary effects, in LLVM called “mod/ref” behavior, summarize all possible side-effects of a function.

It can be queried through the alias analysis interface or expressed as a function attribute.
b Already available in Polly prior to this work but incorrect as calls might be dropped.

Function summary effects are used to determine a sound polyhedral approximation for function
calls contained in a SCoP. The different summaries can consequently be used to estimate the
SCoP’s optimization potential ahead of time. Function calls with unknown side-effects or arbi-
trary write effects (write only) behave like optimization barriers because they can write all arrays
that are accessible to the callee. Additionally, the original order between calls with arbitrary read
or write effects has to be kept, even if all arrays accessed explicitly in the SCoP are inaccessi-
ble to these functions. To this end, we augment their representation with an respective access,
thus read or write, to a virtual location. Calls that deal with otherwise inaccessible memory, i.a.,
the internal state of a custom memory allocator, have to be executed in their original order as
well. Though, they do not induce other dependences. Similar to the representation of callees
with arbitrary effects, we would need to add accesses to the virtual location to ensure their order.
Function calls that read or write argument pointers are represented as non-affine read or write
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accesses to the argument pointers. Similarly, read only calls are modeled as non-affine reads to
all arrays accessible to the callee. Finally there are side-effect free calls which are historically
ignored and potentially dropped by Polly. However, it is important to keep them if their impact
on the program termination is not known.

In addition to function summary effects, LLVM allows to distinguish between ordinary, read-
only, and write-only pointer arguments. Provided an aliasing free environment (ref. Section 4.1),
this information allows to reduce the necessary approximations. In contrast to LLVMPolly,
the approximation branch of our research prototype supports pointer-wise annotations. It also
features a simple, intra-procedural analysis to identify function internal base pointers that are
consequently not accessible to callees. The analysis is a slight derivation of the live-out access
analysis discussed in Section 5.3.6.1.

3.4.3.1 Builtin Function Representation

Programming languages and standard libraries commonly provide a variety of builtin functions
such as memcpy, printf and strlen in C/C++. Compilers recognize some of these in order to
employ special declarations, also called intrinsics, that provide additional information to analysis
passes. Since the side-effects of intrinsics are often limited and known, the call approximation
described so far is able to represent them. However, for the most common memory intrinsics,
namely memset, memcpy and memmove, we use specialized, semantic-aware modeling. There
are two benefits to the default call approximation. First, we obtain a precise representation in
the presence of affine arguments, thus there is no approximation for the accessed memory. In
addition, we can derive constraints on the parameter if a pointer passed to a memory intrinsic
is NULL. For such instances the length argument has to be zero whenever the call is executed.
Given a call, i.a., memset(NULL, '\0', 𝑒), in a statement S, we derive parameter constraints
to ensure that for all iterations of S the polyhedral representation 𝑒 will be equal to zero:

𝜋𝜌(DS ∩ {(i) ∶ 𝑒 = 0})
However, the result is only valid under the assumptions that were needed to create the polyhedral
representation 𝑒 and the domain DS. In order to derive independent constraints we have to take
these assumptions, in the following denoted as Λe and ΛS, into account:

𝜋𝜌(DS ∩ Λe ∩ ΛS ∩ {(i) ∶ 𝑒 = 0})
Similar to constraints derived from value ranges (ref. Section 3.5.3) and user provided assump-
tions (ref. Section 5.1.2), we can use the above information to simplify and specialize our poly-
hedral representation. This includes for example profitability functions (ref. Section 3.1.5),
iteration domains, and dependence relations.
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3.4.4 Related Work

There are several techniques to allow approximative polyhedral optimization in the presence of
non-affine or dynamic control flow. Pop and Cohen [PC10] proposed to use a single, atomic ap-
proximative statement for OpenMP tasks that contain non-affine control flow or access functions.
While the idea is the same as for our non-affine control regions, they treat the approximated region
as an actual black box and use only the OpenMP annotations provided by the user to model the
side-effects. For arbitrary while loops, Griebl and Collard [GC95] overestimate the potentially
executed iteration instances statically and generate dynamic predicates that will guard their exe-
cution at runtime. In addition, they describe a predicate to determine the last write to a memory
location if the program was transformed into dynamic single assignment form (DSA) [Fea88a].
Similar approaches target distributed memory machines [GL94] and imperfectly nested loop
nests [GGL99]. Benabderrahmane et al. [Ben+10] describe the necessary steps to deal with ar-
bitrary loops (and conditionals) throughout the whole polyhedral optimization pipeline. Their
approach introduces an explicitly modeled, symbolic upper bound expression (or conditional
predicate) for loops (or conditionals) that lack a statically affine trip count (or condition). The
loop body (or the conditionally executed code) and the synthetic upper bound (or condition pred-
icate) itself are however (transitively) dependent on all preceding instances of the syntactic upper
bound (or condition) expression. Hence, there are dependences that induce a total order on the
iterations of the approximated loop (or conditionals). Zhao, Kruse, and Cohen [ZKC18] handle
the special case of counted loops with dynamic or non-affine bounds which induce less ordering
dependences. Our non-affine control regions are less expressive than these techniques, especially
in the case loops are contained in the non-affine control regions. However, our technique is appli-
cable without modifications to the polyhedral pipeline. Thus, the original dependence analysis,
scheduling and code generation algorithms can be used.

Speculative execution is an alternative to static approximations [Col95; Pra11]. However, spe-
cialized code generation, including a runtime system, is required to detect and recover from mis-
speculations dynamically. Though, the Apollo framework [Caa+17; Jim+13a; Suk+14; SC16]
shows that speculative polyhedral optimization, if combined with appropriate profiling, can be
successfully used to optimize partially affine code regions speculatively at runtime.

To improve dependence accuracy for partially polyhedral code, Collard, Barthou, and Feautrier
[CBF95] introduce a fuzzy extension to the classical dependence analysis [Fea91] employed by
most polyhedral optimizers. Similarly, Baghdadi et al. [Bag+11] propose to combine runtime
dependence tests [DYR02; RP95; RRH02] with optimistic polyhedral optimization at compile
time. These proposals are alternatives to our approximation schemes and can also be used in com-
bination. The code specialization framework presented Section 3.5 is actually a first step in the
direction of a hybrid representation. The statically derived model is an optimistic representation
of the input, together with assumptions that have to be verified at runtime.
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Polyhedral optimizations often require function calls to be pure [GGL12] or inlined prior to
the optimization [Gir+06]. Related inter-procedural approaches to optimize (mainly parallelize)
code in the presence of function call do however exist. Triolet, Irigoin, and Feautrier [TIF86]
approximate the memory effects of function calls with affine ranges in order to find paralleliz-
able loops or asynchronous executable calls. Their technique was later improved by Creusillet
and Irigoin [CI95] in order to determine exact memory effects of functions and also to take “ar-
ray kills” or overwrites, thus privatization opportunities, into account. These approaches are
part of the inter-procedural, source-to-source parallelizer PIPS [IJT91] and consequently in the
Par4All [Ami+12] framework that is built on top. Note that our function call approximation is
not inter-procedural on its own. Their inter-procedural analyses are more closely related to the
inter-procedural SCoP descriptions we present in Section 6.1.

The Pencil intermediate language [Bag+15] allows to provide function effect summaries as affine
descriptions of potentially and definitively read andwrittenmemory locations. Similarly, Bastoul
et al. [Bas+03] rely on expert user to improve conservative analysis results in the presence of
function calls. Both can be seen as user-driven specializations of the function summary effects
(ref. Table 3.33) used by our function call approximation scheme.

3.4.5 Evaluation

To evaluate the applicability impact of non-affine control regions without enclosed loops, we
run two experiments. The results of the first one are shown in Table 3.34a as percentages of the
baseline applicability provided in Figure 3.3 and Table 3.4 on Page 26 and 27. In this experiment
we allowed SCoPs to contain non-affine control regions but we ignored those that did when we
evaluated the applicability metrics (ref. Section 3.1). In the second experiment non-affine control
regions were disallowed already during SCoP detection. The results are shown in Table 3.34b.
We conducted both studies as the greedy and cost unaware SCoP detection might detect alter-
native SCoPs if an extension technique is completely disabled. Since the numbers are basically
identical here, we know that the use of non-affine control regions was the only suitable choice.

The results of both experiments show that the number of valid SCoPs drops by 19.9% - 35.5%,
depending on the benchmark suite. Thus, at least one in five feasible SCoPs contains non-affine
control regions. Since the monotone applicability score for 𝛼 = 0 decreased by the same amount,
we can conclude that the SCoPs with non-affine control regions were of average size, thus con-
tained the average number of affine loops. The applicability score for 𝛼 = 1 did decrease signifi-
cantly less for SPEC2000 and significantly more for SPEC2006, compared to the percentage of
SCoPs that was still detected. This indicates that the former benchmark suite contains non-affine
control regions mostly in smaller SCoPs while the latter features them often in larger SCoPs.
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Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 64.5% 79.7% 65.2% 80.1%
# depth 1 SCoPs 62.2% 84.3% 65.5% 77.4%
# depth 2 SCoPs 77.8% 51.5% 60.6% 81.9%
# depth 3 SCoPs 100.0% 100.0% 71.4% 96.2%
# depth 4 SCoPs n/a n/a n/a 100.0%

C0 score 67.2% 76.3% 64.9% 82.0%
C1 score 86.7% 54.3% 62.0% 86.0%

(a) Relative results when non-affine control regions without enclosed loops were allowed but SCoPs that
contained them are excluded when the metric was evaluated.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 65.5% 80.1% 67.4% 82.3%
# depth 1 SCoPs 63.3% 85.8% 67.9% 79.0%
# depth 2 SCoPs 77.8% 51.5% 61.7% 85.5%
# depth 3 SCoPs 100.0% 100.0% 71.4% 96.2%
# depth 4 SCoPs n/a n/a n/a 100.0%

C0 score 68.0% 77.4% 67.0% 84.3%
C1 score 86.7% 54.3% 63.0% 88.6%

(b) Relative results when non-affine control regions were disallowed.

Table 3.34: Applicability scores in various metrics (ref. Section 3.1) relative to the
baseline numbers presented in Figure 3.3 and Table 3.4 on Page 26 and 27. In the
top part, SCoPs with non-affine control regions were recognized but excluded from the
metric count. The lower part shows the results when SCoPs were not allowed to contain

non-affine control regions.
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3.5 Code Specialization

Programs do often not completely comply with the requirements of the polyhedral model. While
approximations are a suitable alternative for some cases, an accurate model is often crucial to
avoid significant precision loss. Manually operated polyhedral tools [AB15; Bas+03; Ver+13]
are meant to be used by experts. They require source code annotations and impose strict syntactic
limitations. While they might provide feedback, it is up to the user to comprehend the output and
to alter or annotate the code if a problemwas encountered. Fully automatic approaches integrated
in the compilation chain [GGL12; Pop+06] cannot rely on the user. Without iterative code re-
finement, the input program has to fully adhere to the syntactic and semantic requirements of the
polyhedral model or no transformations are applied. Especially if a user expects polyhedral opti-
mizations, as the code is supposed to be amenable, it is unsatisfactory if they are not performed.
However, any semantic mismatch between the input language and the polyhedral model, as well
as prior canonicalizations which are oblivious to the user, can prevent optimizations. While it is
already hard to comprehend the compiler’s choices for classical optimizations, it is even harder to
understand drastic differences in the performance if high-level loop optimizations are prevented
by subtle semantic differences or seemingly benign changes to the program.

double rhs[JMAX][IMAX][5];

for (j = 0; j < grid[0] + 1; j++) {
for (i = 0; i < grid[1] + 1; i++) {

for (m = 0; m < 5; m++) {
rhs[j][i][m] = /* ... */;
/* ... */

Figure 3.35: Simplified excerpta of the
compute_rhs function in the BT benchmark as
provided in the C implementation of the NAS

Parallel Benchmarks (NPB) [SJL11].
a This Figure was first presented by Doerfert,

Grosser, and Hack [DGH17].

To automatically bridge the gap between the
requirements of the polyhedral model and pro-
grams that almost fulfill them we developed
a code specialization framework [Alv+15;
Doe+13; DGH17]. It ensures robust appli-
cability of polyhedral optimizations through
program versioning with runtime checks syn-
thesized from automatically derived precon-
ditions. The overall design of the system is
shown in Figure 3.36. If a semantic mismatch
between the input program and the polyhedral

model is detected or some (corner case) input would prevent effective and efficient optimization,
we derive preconditions that exclude these problematic inputs. We refer to these preconditions
as assumptions and denote them as Λ. To represent the code shown in Figure 3.35 in the poly-
hedral model we will require four distinct assumptions as shown in Figure 3.37a. Note that the

Static code specialization is the basis of ourOptimistic LoopOptimizationwork [DGH17].
This section describes the overall framework, assumption simplification and runtime
check generation while the actual assumptions are discussed in detail later on. In addition,
we contrast static and dynamic specialization. We explored the latter with the SPolly
tool [Doe+13] that was integrated in the Sambamba framework [Str+12; Str+15].
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constructed polyhedral model is only accurate with regards to these assumptions. Thus, if the
assumptions do not hold at runtime, all information provided by the polyhedral representation,
which was derived under these assumptions, is potentially void. After all assumptions have been
collected, the framework will generalize them to refer only to parameters, or inputs, of the ana-
lyzed code region. For our example this would correspond to the code shown in Figure 3.37b. We
choose to represent assumptions as symbolic Presburger formulae to allow a native embedding
within the polyhedral toolchain. Assumption generalization can therefore be achieved by elimi-
nating all loop iteration counters. Hence, we project the assumptions onto the parameter space,
thereby creating generalized versions that hold for all loop iterations. This projection is later
denoted as 𝜋𝜌(◦). Generalization is important as we want to synthesize a single runtime check
(RTC) that can be verified prior to the entire analyzed region (or static control part (SCoP)). Be-
fore the RTC is created, a simplification step prunes redundant assumptions and simplifies the
rest. This will decrease the complexity of the assumptions and the RTC which will consequently
reduce the required verification time. A detailed description of assumption simplification is
provided in Section 3.5.3. In the final step, the RTC is synthesized using common polyhedral
code generation techniques [GVC15] in combination with explicit tracking of integer overflows
(ref. Section 3.5.4). The RTC is then used to version the program. It acts as a guard that dynam-
ically chooses between the optimistically optimized and the original program version based on
the input values at runtime. This construction is shown in the right most part of Figure 3.36.

Section 3.6, 3.7, 4.1, 4.2, 4.3, 5.1.3 Section 3.5.3 Section 3.5.4

Figure 3.36: Architecture overviewa of the code specialization framework. Precondi-
tions, denoted as assumptions (Λ), are generated during the modeling and optimization
steps. After generalization and simplification they are used to synthesize a runtime
check (RTC) that will choose between the original and optimized program version dy-

namically, based on the inputs to the program.

a This Figure was first presented by Doerfert, Grosser, and Hack [DGH17].

The symbolic Presburger formulae that encode optimistically taken assumptions will evaluate
to false for a given combination of program input values, if it was assumed to not occur. The
assumptions can be seen as a sufficient precondition for the generated polyhedral model to be a
sound representation of the program. Initially, all inputs are valid and our assumption is therefore
the trivial formula true. New assumptions, which are added during the SCoP construction, will
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constrain the set of valid inputs. If the assumptions become too complex or statically evaluate
to false, the optimization of the SCoP is aborted. Note that assumptions are already collected
while the polyhedral representation is still under construction in order to minimize the compile
time investment for non-compliant code regions. If the assumption set becomes statically infea-
sible, or if it causes parts of the input to be excluded and thereby make the SCoP unprofitable
(ref. Section 3.1.5), costly steps, like dependence calculation and scheduling, will be skipped.

double rhs[JMAX][IMAX][5];

assume grid[0] != MAX_VALUE; // no integer overflow (ref. Section 4.2)
for (j = 0; j < grid[0] + 1; j++) {
assume grid[1] != MAX_VALUE: // no integer overflow (ref. Section 4.2)
for (i = 0; i < grid[1] + 1; i++) {

for (m = 0; m < 5; m++) {
assume j < JMAX && i < IMAX; // no out-of-bounds [Gro+15][DGH17]
assume &rhs[j][i][m] >= &grid[2] || // no aliasing (ref. Section 4.1)

&rhs[j][i][m + 1] <= &grid[0];
rhs[j][i][m] = /* ... */;
/* ... */

(a) Code shown in Figure 3.35 with explicit assumptions about the program behavior as represented in the
polyhedral model.

double rhs[JMAX][IMAX][5];

assume grid[0] != MAX_VALUE && grid[1] != MAX_VALUE &&
grid[0] + 1 <= JMAX && grid[1] + 1 <= IMAX &&
(&rhs[0][0][0] >= &grid[2] ||
&rhs[grid[0]][grid[1]][5] <= &grid[0]);

for (j = 0; j < grid[0] + 1; j++) {
for (i = 0; i < grid[1] + 1; i++) {

for (m = 0; m < 5; m++) {
rhs[j][i][m] = /* ... */;
/* ... */

(b) Example from Figure 3.37a after generalization of the assumptions to the whole region. This eliminated
all occurrences of the loop counters i, j, and m.

Figure 3.37: Code shown in Figure 3.35 with explicit assumptionsa. The first two
assumptions prevent integer overflow (ref. Section 4.2) in the loop bounds, the third
one out-of-bound accesses [DGH17; Gro+15], and the last one ensures the absence of

overlapping arrays (ref. Section 4.1) and static control (ref. Section 3.6).

a This Figure was first presented by Doerfert, Grosser, and Hack [DGH17].
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3.5.1 Static Specialization

Static (compile time) specialization allows to model programs that are generally applicable to
polyhedral-model-based techniques but might exhibit problematic behavior for corner case in-
puts. Since all specialization techniques increase the code size, compile time, and execution
time on a misspeculation, they have to be used with caution. As static specialization is often per-
formed without knowledge of the (expected) program inputs, it is imperative to be conservative
in order to avoid costly misspeculations. Thus, assumptions taken statically should only restrict
inputs which trigger behavior that happens rarely, if at all, in average program runs. Promising
candidates for static assumptions are binary decisions that depend on the program inputs, e.g.,
the pointers are aliasing or not, and of which one outcome is far more likely than the other.

In our optimistic loop optimization work [DGH17], we present several important use cases for
static specialization. These, and others we added later on, are listed in Table 3.38. Note that a
detailed discussion on the first six assumptions is provided in their respective sections while the
last one, always in-bound accesses, is explained in detail elsewhere [DGH17; Gro+15].

C LLVM-IR Polyhedral Model
Referentially Transparent Expressions (Section 3.6)
not-given not-given required

Complex or Unknown Side Effectsa (Section 6.3)
possible possible not desirableb

Aliasing Arrays (Section 4.1)
possible possible impossible

Expression Evaluation Semantics (Section 4.2)
type-dependent computation-dependent evaluation in Z

Signed & Unsigned Valuesa (Section 4.3)
yes yes no

Always Bounded Loops (Section 5.1.3)
no no preferablec

Always In-bound Accesses [DGH17; Gro+15]
sometimesd no yes

Table 3.38: Semantic differences between C, LLVM-IR and the polyhedral modele.
a Not part of the optimistic loop optimization paper [DGH17].
b Unknown or complex side effects can be approximated (ref. Section 3.4) but might prevent optimizations.
c Unbounded loops, and therefore unbounded polyhedra, are not necessarily supported by the employed

algorithms. If they are, they can cause compile time hazards without real-world benefit.
d Out-of-Bound accesses to constant sized multi-dimensional arrays are undefined [C11, Section 6.5.6].

However, symbolically sized multi-dimensional arrays do not have a defined bound that could be violated.
e Part of this Table was first presented by Doerfert, Grosser, and Hack [DGH17].
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3.5.2 Dynamic Specialization

Dynamic (runtime) specialization is based on information, e.g., actual input values, observed
during the program run. Profiling can be seen as the simplest form of dynamic specialization,
even if the profile information is only used in subsequent compilations. Dynamic information can
prevent the use of static assumptions that are likely to fail at runtime as well as costly polyhedral
optimization on never executed program parts. Additionally, dynamic information allows to take
assumptions for situations which seem plausible at compile time but are not observed in program
runs. If, for example, a parameter value can be predicted fairly accurate, specialization based on
the (few) most likely outcome(s) can enable and improve polyhedral optimization.

for (i = 0; i < N; i++)
for (j = 0; j < i * U; j++)
A[i] = A[i] + B[j];

(a) Non-affine loop bound due to the multiplication
with the parameter U. Specialization with a constant

will allow polyhedral optimization.

for (i = 0; i < N; i++)
A[i] = A[i] + B[i];

for (i = 0; i < M; i++)
B[i] = B[i] * A[j];

(b) Affine loop nests that can be fused without
remainder loops only if N and M have the same

value at runtime.

Figure 3.39: Examples for which parameter specialization can enable or improve poly-
hedral optimization.

With SPolly [Doe+13] we introduced an extension of LLVM/Polly in the Sambamba frame-
work [Str+12; Str+15] to allow dynamic code specialization. SPolly employs a profiling ver-
sion of the loop nest to identify reoccurring parameter values at runtime. For those values, spe-
cialized versions are created where (problematic) parameters are replaced by constant values. A
dispatcher function checks at runtime whether a specialized version for the current parameter
values exists. If so, it is executed, otherwise the original code version is used. For the example
shown in Figure 3.39a, specialization of the parameter U with a commonly occurring constant
makes the multiplication in the loop bound affine. It is therefore representable in the polyhedral
model, and thus amenable for all optimizations implemented in LLVM/Polly.

Replacing parameters with constants can additionally lead to superior code as more information
is available. Thus, even in the case that the code is already amenable to polyhedral optimization,
dynamic specialization can be beneficial if certain parameter valuations are most likely to occur
at runtime. For the example in Figure 3.39b, specialization of N and M allows to perform loop
fusion without the need for two remainder loops. While SPolly is able to specialize for spe-
cific constant values, it is not able to generate generalized versions, e.g., for the case of equal
parameter values. It is important to note that a polyhedral scheduler is capable of generating
such specialized code on its own but not necessarily eager to do so. Without knowledge of the
expected parameter values specializations have little chance of improving performance while
they inevitably increase code size and thereby also compile time.
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3.5.3 Assumption Simplification

The kind and number of assumptions necessary for a sound and concise polyhedral representation
heavily depends on the programming style and the source language. However, their cost is also
determined by their representation and the framework’s capabilities to simplify them. Note that
the cost is not only limited to the size and complexity of the generated runtime check but also the
compile time spend handling the assumptions. To this end, it is crucial to ensure a consistently
small and concise representation.

To incorporate assumptions natively into the polyhedral tool we represent them as symbolic Pres-
burger formulae. This representation allows to handle assumptions and generate runtime checks
with the algorithms and techniques already available in the polyhedral toolchain. We can espe-
cially identify redundant assumptions and find concise, potentially conservatively approximative,
formulations for the remaining ones [Ver10; Ver15a]. However, the complexity of the employed
techniques is most often exponential in various input characteristics. Additionally, the represen-
tation of Presburger formulae itself can become rather complex. To tackle these problems we
employ five explicit simplification strategies described in the following.

Constraint Simplification
There are various established simplification techniques for Presburger formulae that can be used
to simplify assumptions. These techniques include redundant constraint removal, equality detec-
tion [Ver10] and coalescing, thus the combination of multiple constraints into an equivalent set
of smaller size [Ver15a]. As a result, redundancies in large assumption sets are reliably elimi-
nated. As an example, consider the constraints 𝑁 ≥ 0∧𝑁 − 2 > 0∧ (𝑁 > 1∨𝑁 < 0) which
can be simplified to 𝑁 > 2 without loss of precision.

Program Execution Context
Assumptions are used to constrain the set of valid parameter valuations in order to guarantee a
sound polyhedral representation of the input program. Though, if neither the original nor the
optimized version will cause observable side effects for some input, there is no need to explicitly
choose a version. We will use such configurations in order to prune and simplify assumptions.
This is especially useful if all assumptions can be dropped as it will eliminate the need for code
versioning. Note that this simplification comes with two requirements. First, it has to take place
after the polyhedral representation was completely built, and second, it is only applicable if
the entire program is represented in the polyhedral model (ref. Section 3.7 and 6.3). The first
requirement is necessary as we might otherwise prune constraints early while later parts of the
code perform interesting computations under the pruned conditions. The second one is required
because non-represented parts of the input can cause side-effects that need to be preserved.
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Impossible or Undefined Behavior
Parameter configurations that are known to not occur or that inevitably trigger undefined behavior
define implicit preconditions for the input values. To make these explicit we derive Presburger
formulae that describe the possible value ranges of parameters as well as conditions under which
undefined behavior would occur. The former are used to prune assumptions that would require
parameters to assume values outside their value range. As an example, consider the addition
of two boolean parameters that were first promoted to 𝑛-bit integers. Since the value range of
an (unsigned) boolean is {0, 1} we know that the addition cannot cause an integer overflow for
any 𝑛 > 1 (ref. Section 4.2). Conditions that would inevitably trigger undefined behavior are
exploited similarly.

In addition we allow to enrich the source code with information to prevent assumptions. This is
especially useful to avoid out-of-bounds accesses to constant-sized arrays, which are undefined
in C/C++ but, due to the relaxed type and memory model, not (generally) in LLVM-IR. We
altered the front-end to automatically emit explicit annotations which, similar to domain knowl-
edge (ref. Section 5.1.2), restrict the set of valid inputs. Our annotations will ensure that offsets
into constant-sized arrays are in-bounds, thereby eliminating the need to generate in-bounds as-
sumptions [DGH17; Gro+15].

Since this kind of assumption simplification is based on the elimination of constraints that are
already implied by know facts, other sources of information can be easily added. An example is
given in Section 3.4.3.1 where we describe how calls to known library functions allow to derive
constraints on parameters necessary to prevent undefined behavior.

Assumptions vs. Restrictions
For the sake of simplicity we generally describe code specialization with regards to assumptions,
thus constraints on the set of valid parameter configurations. However, their inverse, namely
restrictions or invalid parameter configurations, can be equivalently used. While this choice
does not impact correctness, it can, depending on the implementation of Presburger formulae,
significantly impact the representation efficiency. LLVM/Polly employs isl [Ver10] for the
representation of Presburger sets and isl uses disjunctive normal form (DNF) as canonical rep-
resentation. Assumptions are collected by intersection (conjuction) while new restrictions are
added by computing the union (disjunction). For new assumptions that form a single convex
polyhedron, the intersection corresponds to a concatenation of all constraints. However, if the
assumption is a union of convex polyhedra, distributivity can cause the DNF representation to
grow exponentially. In contrast, the representation size for restrictions always grow linearly. To
this end, our implementation uses assumptions only to ensure in-bounds memory accesses and
restrictions otherwise.
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Conservative Over-Approximation
Our Presburger based assumptions are always as precise as the underlying polyhedral represen-
tation. If no approximations were employed (ref. Section 3.4), the assumptions will define the
weakest preconditions that exclude the unwanted behavior. However, it can be beneficial to
strengthen the preconditions through conservative approximations, in order to reduce the com-
plexity of the constraints and consequently of the runtime check that verifies them. As an exam-
ple, consider the loop in Figure 3.40a. It contains memory accesses to two potentially aliasing
arrays (ref. Section 4.1). Due to the non-unit stride, the precise aliasing runtime checks shown
in Figure 3.40b are rather complicated. To get to the conservatively simplified version shown
in Figure 3.40c, we eliminate all existentially quantified variables from the precise assumption
set. Such variables commonly arise in the presence of non-unit strides and modulo expressions
and they have shown to complicate assumptions without providing a real world benefit. In this
case, the simplification of the runtime check might cause a false positive result if there are less
than (N-1) % 5 elements between the last accessed element of one array and the first accessed
element of the other. Note that during our evaluation (ref. Section 3.5.5.1) we have not observed
any runtime check failure caused by the elimination of existentially quantified dimensions.

for (i = 0; i < N; i += 5) {
A[i+0] += B[i+0];
A[i+1] -= B[i+1];
A[i+2] += B[i+2];
A[i+3] -= B[i+3];
A[i+4] += B[i+4];

}

(a) Loop with potentially aliasing accesses and
a non-unit stride.

&B[N+4 - ((N-1) % 5)] <= &A[0] ||
&A[N+4 - ((N-1) % 5)] <= &B[0]

(b) Precise but complex alias check that prevent over-
lapping accesses to A and B.

&B[N+4] <= &A[0] || &A[N+4] <= &B[0]

(c) Simplified alias check as a sufficient condition for
the absence of overlapping accesses.

Figure 3.40: Precise but complicated runtime alias checks (part 3.40b) and a conserva-
tively simplified version (part 3.40c) for the loop shown in part 3.40a.a

a This Figure was first presented by Doerfert, Grosser, and Hack [DGH17].

3.5.4 Runtime Check Generation

To verify assumptions dynamically, a runtime check (RTC) is synthesized and used as a guard
for the optimized code version. Since the runtime check is an implementation of the assumptions
which in turn are required for the polyhedral model to be sound, it is utterly important that all un-
wanted parameter configurations are filtered out. Thus, if the runtime check succeeds for a given
parameter combination, the underlying assumptions have to evaluate to true as well. Similar to
the assumptions, runtime checks do not need to be complete. Instead, they can conservatively
fail if a precise evaluation would be significantly more expensive. This is especially important
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since assumptions and runtime checks form a circular problem. Assumptions bridge the gap be-
tween the semantics of the input language and the polyhedral model. At the same time, runtime
checks are supposed to encode the semantics of the model effectively, thus natively, in the target
language which can be the same or similar to the input language. In order to resolve this circular
dependence, we strengthened the requirements for the runtime check, hence we make it more
restrictive with regards to valid inputs, hence we disallow more parameter valuations.

For efficient and sound evaluation of runtime checks we have to deal with two challenges. First,
the difference in the expression evaluation semantics used in the polyhedral representation and
in the target language (ref. Section 4.2). Second, the observable side-effects that occur during
the evaluation. Currently, all but invariant load assumptions (ref. Section 3.6) are conceptually
pure11, thus they do not cause observable side-effects. For invariant load assumptions we first
handle the non-pure part explicitly and prior to the runtime check generation as explained in Sec-
tion 3.6.1.2. The difference in the expression evaluation semantics is resolved in the following.

Assumptions, as the rest of the polyhedral model, are based on Presburger arithmetic and there-
fore evaluated with precise semantics, hence in Z. Programming languages commonly use ma-
chine arithmetic, thus wrapping semantics evaluated in Z/nZ, or error semantics, which results
in undefined behavior if the result of a computation is not represented precisely. Note that nei-
ther wrapping nor error semantics can be used to implement precise semantics (ref. Section 4.2).
However, if no integer overflow occurs, all three will yield the same results. Since integer over-
flows are consequently a required condition for a semantic difference, their absence is a sufficient
condition for a precise runtime check. To this end, we track overflows during the evaluation of
the runtime check in order to conservatively abort if one occurred. Since most modern machines
come with built-in overflow detection for arithmetic operations, e.g., an overflow flag that is
automatically set by the hardware, overflow tracking is quite efficient (ref. Section 3.5.5.1).

Overflow tracking can be implemented in different ways, as illustrated by the three examples
shown in Figure 3.41. In our framework we use the first approach, which sets a boolean variable
(here ov) to true if an overflow occurred. The final guard is the runtime check result and the state
of the overflow tracking variable. The second scheme will abort the runtime check evaluation
as soon as an overflow occurs. However, this would require various conditional branches which
can easily degrade performance. The last alternative uses multiple tracking variables in order to
increase the instruction level parallelism (ILP) in exchange for a higher register pressure. Since
our evaluation showed that runtime checks are often not too costly (ref. Section 3.5.5.1), we leave
it up to further investigation to choose the best runtime check overflow tracking implementation.

11 This is not true for divisions and modulo operations which can become part of the assumptions if they behave like
parameters. In this case, the implementation needs to ensure that the divisor is either non-zero or that the operation
would have been executed anyway. Currently, we always generate code to ensure the former.
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ov = false;
t0 = n + 2;
ov |= checkOverflow();
t1 = m - 1;
ov |= checkOverflow();
rtc = !ov && t1 < t0;

(a) Implementation of overflow
tracking for runtime checks we in-

tegrated into LLVM/Polly.

t0 = n + 2;
if (checkOverflow())

goto original;
t1 = m - 1;
if (checkOverflow())

goto original;
rtc = t1 < t0;

(b) Tracking implementation for
runtime checks with early exits

on integer overflows.

t0 = n + 2;
ov0 = checkOverflow();
t1 = m - 1;
ov1 = checkOverflow();
ov = ov0 || ov1;
rtc = !ov && t1 < t0;

(c) Instruction level parallelism
(ILP) concious runtime check
overflow tracking with higher

register pressure.

Figure 3.41: Different possible schemes to track overflows in the runtime check for the
contrived assumption 𝑚 − 1 < 𝑛 + 2.

3.5.5 Evaluation

To evaluate our code specialization framework we performed two studies that measure the effect
on polyhedral applicability. The results are presented in the following but also in parts in the
evaluation sections of the extensions that employ assumptions (ref. Table 3.38).

3.5.5.1 Compile Time and Runtime Effect

In our work on Optimistic Loop Optimization [DGH17], we determined the efficiency of the
generated runtime checks as well as the effect of assumption handling and simplification on the
compile time12. The execution time cost of the generated runtime checks was always less than 4%
of the overall execution time and often vanishingly small. Simplification and modeling choices
(ref. Section 4.2) mostly eliminated compile time hazards. The well known LINPACK [Don87]
benchmark finished in less than three seconds with simplifications enabled but did not terminate
for 500 seconds without. Our evaluation also showed that themisspeculation rates were relatively
low: 10.7% of all SCoP executions in SPEC2000, 1.7% in the LLVM Test Suite (LLVM-TS)
and 0.3% in the SPEC2006 benchmark suite violated one of our statically derived assumptions at
runtime. Interestingly, more than 99.96% of the violations in SPEC2006 were caused by a single
SCoP in the 403.gcc benchmark. The remaining ≈ 0.04% are in fact only six misspeculations in
≈ 5.2 million runtime check evaluations. In the case of 403.gcc, as for most other violations, the
alias check (ref. Section 4.1) failed. For this particular case, two function arguments with pointer
type were identical and therefore aliasing. Coincidentally, the identical pointer arguments did
not induce new dependences but due to the conservative nature of the runtime check a fallback
onto the original code version was required.

12 The numbers presented in this paragraph are taken from the evaluation of our work on optimistic loop optimiza-
tion [DGH17]. In that work we only considered five out of the seven assumptions shown in Table 3.38 and did not
evaluate SPEC2017 but the NAS Parallel Benchmarks (NPB) [SJL11] instead.
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3.5.5.2 Effective Assumptions

The extensions to classical polyhedral optimization presented in this thesis can take assumptions
to ensure statically unknown properties at runtime. While the applicability effect is discussed to-
gether with the respective extension, we are also interested in the assumptions they take. To this
end we captured the number of SCoPs that were affected by the different kinds of assumptions.
It is important to note that, due to our simplification techniques described in Section 3.5.3, not
all assumptions must have an effect. They can be statically fulfilled for all defined and meaning-
ful program inputs or already implied by combinations of other assumptions. The number and
percentage of feasible and profitable SCoPs for which assumptions were necessary is shown in
Table 3.42. The need for assumptions to guard static unknown properties ranges from 1.3% (in-
variant load assumptions ΛRT in SPEC2006) to 78.8% (no-aliasing assumptions in SPEC2006)
of all SCoPs. The differences between the benchmark suites are quite high and reach up to 37.7%
for the no-overflow assumptions (ΛEE) and 35.9% for the bounded loop assumptions. Note that
the impact of invariant load hoisting (ref. Section 3.6) is far greater than the number of times
assumptions were employed by it. This is due to the fact that invariant load assumptions are
often either trivially fulfilled or, as discussed in Section 3.5.5.3, cause the SCoP to be infeasible.

Assumption Λ Sec. SPEC2000 SPEC2006 SPEC2017 LLVM-TS

invariant load ΛRT 3.6 6 ( 5.5%) 3 ( 1.3%) 35 ( 2.9%) 14 ( 3.3%)
error block ΛEB 6.3 14 (12.7%) 15 ( 6.5%) 44 ( 3.7%) 6 ( 1.4%)
no-aliasing ΛAA 4.1 70 (63.6%) 182 (78.8%) 671 (55.9%) 246 (58.9%)
no-overflow ΛEE 4.2 37 (33.6%) 143 (61.9%) 856 (71.3%) 155 (37.1%)
signedness ΛUR 4.3 37 (33.6%) 54 (23.4%) 221 (18.4%) 97 (23.2%)
bounded loop ΛBL 5.1.3 2 ( 1.8%) 87 (37.7%) 117 ( 9.8%) 35 ( 8.4%)
in-bounds ΛIB n/aa 12 (10.9%) 8 ( 3.5%) 271 (22.6%) 60 (14.4%)

Table 3.42: Number (and percentage) of feasible and profitable SCoPs for which as-
sumptions (first two columns) have been taken. Detailed information on the assumption

is provided in the Section shown in the third column.

a In-bounds assumptions are explained elsewhere [DGH17; Gro+15].
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3.5.5.3 Assumption Feasibility
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Figure 3.43: Statistics on the feasibility of SCoPs including the reason for infeasibility. If a
fatal assumption was taken, thus one that caused the set of valid inputs to become empty, it
was counted under the associated assumption name (ref. Table 3.42). If valid inputs existed,
but the SCoP’s execution context did not contain them, we counted it as “exec. context” .
We also counted the number of SCoPs that were unprofitable (ref. Section 3.1.4) and the

ones that violated the (arbitrary defined) complexity bounds .

Effective assumptions reduce the set of valid inputs. It can consequently happen that a SCoP will
not perform any meaningful work for all remaining valid inputs. In this case the SCoP becomes
infeasible and it is dropped. In Figure 3.43 we show the distribution of reasons that cause SCoPs
to become infeasible. While most valid and profitable SESE regions (ref. Section 3.1.4) are also
feasible SCoPs (between 62.8% and 73.8%), more than one quarter is not. The invariant load
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assumptions are most often the reason for infeasibility (up to 23.1%). Since only a few feasible
SCoPs (up to 5.5%, ref. Table 3.42) actually feature non-trivial invariant load assumptions, it is
a strong indicator that the current implementation is too aggressive when it comes to assuming
invariance (ref. Section 3.6). No-alias assumptions eliminate up to 7% of the SCoPs because13

the alias runtime checks would become too complex (ref. Section 4.1.2). In-bounds assumptions
invalidate up to 6.2% of the SCoPs because the presumed dimension sizes [Gro+15] turn

out to be always violated. Due to the late profitability check (ref. Section 3.1.4) another
6.9% to 9.2% of all otherwise valid SCoPs are dropped. The remaining assumptions, partially
summarized as others , always invalidate less than 4% of all SCoPs.

3.5.6 Related Work

We discuss works related to the actual assumptions (ref. Table 3.38) in their respective sections.

In contrast to most precondition based program versioning schemes we provide a general frame-
work to take, simplify, and synthesize checks for assumptions expressed as Presburger formulae.
We use these assumptions to generate a correct polyhedral program abstraction (ref. Chapter 4),
extend the applicability of polyhedral tools (ref. Section 3.6 and 6.3), and to simplify our repre-
sentation (ref. Section 5.1.3 and [DGH17, Section 4.4]).

Our assumptions are taken to prevent unwanted events at runtime. They can be seen as precondi-
tions, a topic well studied over the years [CH78; Cou+13; Hoe+09]. The use of preconditions to
generate runtime checks is common practice, especially in the context of memory bound check
elimination for safe languages [BGS00; Gam+08; Nie+09; QHV02; WWM07]. Approaches
use various methods to generate preconditions that exclude out-of-bound array accesses, similar
to the in-bounds assumptions ΛIB derived within our framework [DGH17; Gro+15].

Several techniques combine polyhedral optimization with runtime version selection, thus the dy-
namic choice between multiple generated or provided program versions. Approaches find the
best candidate with statically generated symbolic selector functions [MDH16; PCL11], or em-
ploy dynamic tests that determine dependence [Caa+17; Jim+13a] or timings [BB14; Jim+12].
In contrast to these schemes we only generate one optimistically optimized program version that
is executed whenever possible. Though, we have shown that adding more program versions is
orthogonal to the assumption-based versioning [MDH16]. One future use for our framework
would be to collect optimization specific assumptions as proposed by Baghdadi et al. [Bag+11].
They describe how assumptions could exclude statically derived conditional dependences in or-
der to increase the scheduling freedom. This is similar to the runtime check hoisting discussed

13 Alias runtime checks have other limitations, e.g., they require affinememory accesses (ref. Section 4.1.3). However,
in our test setting (ref. Section 2.3) these limitations cannot occur.
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in Section 3.7. Alternatively, we can employ assumptions to allow other optimizations such as
vectorization. In the minimal_dependence_distance branch of our research prototype we
use assumptions to ensure that symbolic dependence distances of innermost loops will have a
certain length in order to facilitate vectorized execution (ref. Section 5.1.1).

LLVM [LA04] allows the user and compiler passes to insert flow sensitive boolean facts14 into
the intermediate language. Our framework will automatically use (statically affine) facts to sim-
plify the assumption set (ref. Section 3.5.3 and 5.1.2).

Hoenicke et al. [Hoe+09] use static analysis to identify statements for which there is no valid
execution. Similarly, Cousot et al. [Cou+13] compute “necessary preconditions” that, if violated,
always break a predefined contract. While we did not try to expose programming errors we could
issue warnings, potentially even errors, if certain assumptions, e.g., no-overflow assumptions, are
known to be infeasible (ref. Section 3.5.5.3).

14 In LLVM these facts are actually called “assumptions” and expressed with the llvm.assume(i1 %c) intrinsic.



Invariant Load Hoisting 79

3.6 Invariant Load Hoisting

Statically affine expressions are the corner stone of the polyhedral model. These expressions are
pure as they depend only on unknown but fixed parameter values and loop iteration counters.
Polyhedral scheduling optimizations can therefore evaluate expressions at a different program
point, or loop iteration, with the appropriate modifications to the iteration counters. Statically
affine expressions can also be duplicated or they can be computed once and used repeatedly
instead.

Expressions that cannot be natively translated to the polyhedral model are either dynamic or non-
affine. Each evaluation of a dynamic expressions, e.g., a memory load or function invocation,
could result in a different value, regardless of the loop iteration. Additionally, the evaluation can
cause side-effects ranging from memory modifications to exceptions. However, not all dynamic
expressions show such behavior. There is a certain class of memory loads that, under some
conditions, will evaluate to a single unique value during the execution of a code region. Such
expressions behave like parameters and can therefore be represented as such.

In this section we discuss invariant load hoisting, a technique to represent memory loads as pa-
rameters to allow polyhedral representation and optimization of a code region. We show how
to derive necessary conditions to guarantee correctness, thus invariance of a load, during the
execution of a SCoP. We also discuss the complications that arise from conditionally executed
loads of potentially invalid memory locations as well as the impact of approximated, e.g., as-
sumption based, modeling. The described technique is similar to loop-invariant code motion
(LICM) [ASU86; Cli95] and partial redundancy elimination (PRE) [BGS99; Cho+98; MR79]
as discussed in more detail in Section 3.6.4. Dynamic expressions involving function invocations
are handled as part of the inter-procedural SCoP representation presented in Section 6.1.

Our motivating example is shown in Figure 3.44. It is centered around the use of the compound
“vector view” data type illustrated in part 3.44a. This vector view provides access to an under-
lying data array and, similar to Java or Rust array types, also includes the size of the array. The
indirection through the data pointer allows for fast shallow copies and for multiple instances to
work on a single, shared underlying array. Depending on the pointer and length value, multiple
instances might be used to access overlapping or disjoint parts of the data. For now we will
assume the latter and postpone the discussion of the overlapping case until Section 4.1.

The technique described in this section is called invariant load hoisting or
referential transparent expression generation [DGH17]. It is fully integrated in
LLVM/Polly and enabled in our baseline evaluation configuration (ref. Section 2.3).
Though, it was disabled in recent upstream versions.
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struct VectorView {
unsigned Length;
float *Data;

}

(a) Compound data type, similar to Java or Rust array types, including an array pointer and size.

VectorView &Vec = ...;

for (i = 0; i < Vec.Length; i++)
Vec.Data[i] = ...;

(b) Simple use case for a vector view object. While
Vec.Length and Vec.Data look like unknown
but fixed constants they are memory loads that po-
tentially evaluate to different values in each loop

iteration.

VectorView &Vec = ...;
auto Length = Vec.Length;
auto Data = Vec.Data;
for (i = 0; i < Length; i++)
Data[i] = ...; SCoP

(c) Example code that illustrates the polyhedral
representation which is built under the assump-
tion that the memory loads Vec.Length and
Vec.Data can be hoisted, thus behave like param-

eters.

Figure 3.44: A simplified example (left) to show how subtle memory accesses are in-
troduced in control flow or array access expressions when using global variables, arrays
or compound objects (3.44a). A polyhedral representation can be built if the code can

be interpreted like the one shown on the right.

In Figure 3.44b, a simple use case for a vector view is shown. While the code looks amenable
to polyhedral techniques it is important to note that both Vec.Length as well as Vec.Data are
actually memory loads of the respective member field, hence dynamic expressions. Situations
like this commonly arise if global variables, arrays or indirections are used since they will always
be (first) translated to memory loads. Polyhedral techniques can only create a precise represen-
tation of such inputs if each memory load actually behaves like a parameter. Thus, loads have to
evaluate to the same, statically unknown but fixed constant value throughout the entire execution
of the SCoP. If an assumption can be found under which this is the case, hence the memory loads
are invariant and evaluate to the same value at any position in the SCoP, the code can be repre-
sented as if the memory loads are actually executed prior to the SCoP. For our simple example
the assumption is statically true as there are no writes that might alter the values of the vector
view members inside the loop. Consequently, the polyhedral representation can be built as if the
input looked like the one presented in Figure 3.44c. While such an assumption-based representa-
tion is generally possible for any (non-volatile, non-atomic) memory load, it is only practical for
loads of fixed, not loop iteration dependent locations that are potentially invariant. The reason is
twofold: First, it is cheaper to verify invariance for accesses to fixed locations (ref. Section 3.6.1).
Second, it is generally unlikely for loads of varying locations to have the same value and it is
unpractical to introduce a parameter for each one.

Memory loads are called required invariant if they are part of a control condition or array ac-
cess expression, including the array base pointer expression. While any invariant load can be
hoisted as an optimization, we focus our discussion on required ones since they prohibit precise
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polyhedral representation. As mentioned above, only loads of fixed, not loop iteration dependent
locations15 should be considered invariant. Additionally, we exclude loads that are trivially over-
written inside the SCoP, e.g., based on their dominance relation to a write access with the same
syntactic pointer expression. If a memory load inside a control condition or array access expres-
sion is variant or if the loaded location is iteration dependent, the load will not be represented
as a parameter. Instead, the surrounding expression is either approximated (ref. Section 3.4),
excluded from the SCoP (ref. Section 6.3) or the reason for the SCoP to be dropped altogether.

3.6.1 Correctness

for (i = 0; i < (UseUB ? *UB : 64); i++) {
A[i] = ...;

(a) Guarded invariant memory load (*UB) that cannot be accessed unconditionally. If the guard, here UseUB,
evaluates to false, the pointer UB might be invalid, thus not dereferenceable.

if (2 * P > P)
A[Offset[P] + i] = ...;

(b) Invariant memory load guarded by a condition that
might not be modeled accurately due to the potential inte-

ger overflow (ref. Section 4.2).

for (i = 0; i < *UB; i++) {
if (ShrinkUB) *UB = *UB - 1;

(c)Amemory load (*UB) in the loop bound
that is not necessarily invariant during the

execution of the loop.

Figure 3.45: Example programs to show possible correctness issues arising from in-
variant load hoisting. In the first example (top) the dynamic loop bound is only condi-
tionally accessed and should not be pre-loaded unconditionally. The second example
(left) is similar, though the condition might not be modeled accurately due to a potential
integer overflow. The third example (right) shows a conditionally invariant access in
loop upper bound that cannot be unconditionally assumed to behave like a parameter.

Figure 3.45 illustrates three main correctness issues for invariant load hoisting, conditionally exe-
cuted loads, approximations in the modeling and potentially varying values. In the first example,
3.45a, the value of *UB is always invariant but the access is guarded. Pre-loading it uncondi-
tionally in order to make the value available prior to the loop (ref. Figure 3.44c) is therefore not
necessarily sound. If the guard does never evaluate to true, the pointer might not be dereference-
able and accessing it would cause undefined behavior that will most likely manifest in a program
crash. To ensure correctness we therefore have to determine the conditions under which a mem-
ory load behaves like a parameter and, in addition, when it is safe to access it, e.g., pre-load its
value. Approximations in the modeling can cause accesses to look invariant or unconditionally
executed. An example for the latter is shown in Figure 3.45b. If the potential integer overflow
in the multiplication is ignored, the access could falsely be assumed to happen for all positive
values of the parameter P. Instead, the access will also not be executed for large values of P as

15 A memory location is also considered fixed if it depends on code or loop iterations which are not part of the
analyzed code region (or SCoP) as their value is fixed for each execution of the SCoP.
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discussed in more detail in Section 4.2. Note that other approximations can have a similar effect
and need to be taken into account as well. The last correctness issue is shown in Figure 3.45c.
The load of UB is only conditionally invariant. Only if ShrinkUB is false, the loaded value will
not change during the execution of the loop and therefore be represented as a parameter.

Note that we will discuss the effects of potentially aliasing pointers in Section 4.1. Their interac-
tion with invariant load hoisting is additionally detailed in Section 4.1.4.

3.6.1.1 Invariance Test

To identify invariant loads we will perform a simple invariance test. It is based on the polyhedral
representation which is built under the assumption that all required invariant loads are in fact
invariant. The test is not a boolean predicate by itself. It will instead determine the parameter
conditions, or invariant load assumptions ΛIL, under which the loads behave like parameters.

A read access r in statement S with the access function 𝑓r is invariant if there is no write access
to the read location lr ≔ 𝑓r(DS). The set of all locations written in a SCoP is denoted as W
and defined in Formula 6.

W ≔ ⋃
S ∈ SCoP

⋃
w∈ S

𝑓w(DS) (6)

A read access r is always invariant if lr is never written, thus W ∩ lr = {}. The read is con-
ditionally invariant if there are parameter constraints under which lr is not written. Hence, the
invariant load assumption ΛIL(r) for a single read access is the parameter context of the negated
intersection shown in Formula 7. To obtain this context the projection onto the parameter space
𝜋𝜌(◦) is used.

ΛIL(r) ≔ 𝜋𝜌(¬(lr ∩ W)). (7)

Formula 8 shows the invariant load assumptions ΛIL for the whole SCoP. It is the intersection,
thus the common parameter constraints, of the invariant load assumptions for all required invari-
ant loads R𝑟𝑖𝑙 .

ΛIL ≔ ⋂
r∈R𝑟𝑖𝑙

ΛIL(r) (8)

As mentioned before, there can be potentially invariant loads that are not used in control flow
or access expressions. While we will not require them to be invariant, we will detect and hoist
them if they are always invariant. This optimization does not introduce new assumptions, thus
the inputs for which the polyhedral optimization is valid remains the same.
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3.6.1.2 Execution Context

The execution context Δ of an invariant load contains all parameter combinations under which the
load can be executed safely, hence without introducing undefined behavior that was not present
in the input program. Given a precise polyhedral representation, an invariant access r is executed
under the parameter constraints that will result in a non-empty domain Dr of the surrounding
statement, thus Δr ≔ 𝜋𝜌(Dr). The execution context is not needed, or alternatively equivalent
to the static condition true, if we can prove that an access is always safe. This is especially
important as it allows unconditional pre-loading of most stack and global variables.

An optimistic polyhedral optimizer [DGH17] might employ assumptions to represent iteration
domains and access functions (ref. Section 3.5). If these assumptions are violated, the constraints
under which a load is assumed to be executed, as well as the location that is assumed to be ac-
cessed, could be different. It is consequently not sound to pre-load an access r if the assumptions
Λr that justify the representation of the domainDr, as well as the access function 𝑓r, do not hold.

val_r1 = *r1;
val_r2 = getZeroForType(val_r2);
if (notEmpty(𝜋𝜌(Λr2 ∩ Δr2)))

val_r2 = *r2;

// RTC and optimized SCoP
// which use to the pre-loaded
// values val_r1 and val_r2.

Figure 3.46: Two pre-loaded invari-
ant accesses r1 and r2. The former is
loaded unconditionally while the latter
is guarded by a check of the execution
context Δr2 and the required assump-

tions Λr2 .

To make the values of invariant loads available at
runtime, they are either loaded on-demand or pre-
loaded once. We implemented the latter option as
illustrated in Figure 3.46. Before the runtime check
(RTC), the values of the potentially invariant ac-
cesses r1 and r2 are determined. For this exam-
ple we assumed that the access to r1 was statically
proven safe and that there were no assumptions
needed to represent the access function 𝑓r1 . For the
access to r2 we assume the opposite. The hoisted
load of r2 is consequently guarded by a check of

the execution context Δr2 and the required assumptions Λr2 . If, at runtime, the condition is false,
either the execution context Δr2 was empty or the required assumptions Λr2 were not fulfilled.
The actual value of r2 is in either case not required. If the execution context Δr2 was empty, the
value is not used in the SCoP, otherwise the RTC will fail and the original, unoptimized code
version is executed. Note that the code for the initialization and control condition (both in italic)
is optimized and generated statically (ref. Section 3.5.3).

Pre-loading invariant loads prior to the SCoP can be seen as an optimization, especially in com-
bination with load coalescing (ref. Section 3.6.2). Additionally, it allows to generate and check
the execution context only once, which decreases the verification overhead at runtime. However,
if invariant loads can be accessed unconditionally, and especially if they are not required by the
RTC, it might be beneficial to pre-load them late in order to shorten their lifetime.
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3.6.2 Load Coalescing

... = ... A[c] ...;
if (c == 0)
... = ... A[c] ...;

Figure 3.47: Simplified situation
in which a control constraint, here
(c == 0), specializes the poly-
hedral access function for one of
two invariant loads with syntacti-

cally equal location.

Our approach coalesces invariant loads of the same loca-
tion. This allows us to explicitly represent their equiva-
lence with a single parameter in the polyhedral representa-
tion. In addition, the preloading and consequently the exe-
cution context check is only done once. There are several
syntactic [ASU86; Cho+98] and semantic ways [Cli95;
CH78] to determine if access locations are equal. How-
ever, since the access function can be specialized by con-
trol constraints (ref. Figure 3.47) we have to use a flow-sensitive comparison to distinguish syn-
tactically equal accesses. In addition we require coalesced accesses to have compatible types,
e.g., int64_t and uint64_t are fine, but int8_t and float are not. The execution context
for a set of coalesced invariant loads is the union of the individual execution contexts as any
access is sufficient to justify dereferenceability for the entire SCoP. However, the assumptions
that justify the correct representation of each access have to be checked regardless.

3.6.3 Evaluation

N = Sizes[0];
for (i = 0; i < N; i++)
S(i);

M = Sizes[1];
for (j = 0; j < M; j++)
P(j);

Sizes[0] = Sizes[1] = 0;
for (k = 0; k < N + M; k++)
Q(k);

SCoP 0

SCoP 1

Figure 3.48: Example code with two mutu-
ally exclusive valid SCoP regions if invariant
load hoisting is enabled. If not, only the re-

gion denoted as SCoP 1 remains valid.

To evaluate the effects of our invariant load
hoisting technique we performed several ex-
periments and determined various metrics de-
scribed in Section 3.1. First, we allowed SCoP
detection to employ invariant load hoisting but
then excluded SCoPs that did contain them
when we evaluated the metrics. The results are
shown in Table 3.49a as relative percentages
of the results achieved for all SCoPs shown in
Figure 3.3 and Table 3.4 on Page 26 and 27. As
these numbers only express how invariant load
hoisting was used when it was enabled, we re-run the experiments with invariant load hoisting
completely disabled16. The results are shown in Table 3.49b, again as relative percentages of the
results achieved for all SCoPs. The difference between the two experiments stems from the cost-
oblivious SCoP detection implementation in LLVM/Polly. The example code in Figure 3.48

16 Our base version of LLVM/Polly provides a switch to disable invariant load hoisting but it does so only partially.
While it prevents the actual hoisting, it does not always force the SCoP detection to fail when loads are required to
be invariant. Instead it collects these required invariant loads as if they would be hoisted later. Since the hoisting
is actually disabled, the SCoP will be built but then classified as statically infeasible (ref. Figure 3.43). In our
evaluation this behavior is corrected and invariant load hoisting is either completely enabled or disabled.
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illustrates this behavior. If invariant load hoisting is enabled, either of the two SCoPs could be
detected. Though, because they overlap and any expansion would statically violate our invari-
ance assumption, only one of the two is recognized. Since there is no cost heuristic involved
it could be either of them, depending on the order LLVM will present the regions to Polly’s
SCoP detection. If however invariant load hoisting was disabled, SCoP 1 is still recognized as a
valid SCoP while SCoP 0 is invalid because it then contains dynamic loop bounds.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 38.2% 43.3% 32.3% 67.5%
# depth 1 SCoPs 33.7% 38.6% 28.6% 51.2%
# depth 2 SCoPs 77.8% 69.7% 72.3% 92.8%
# depth 3 SCoPs 66.7% 100.0% 85.7% 92.3%
# depth 4 SCoPs n/a n/a n/a 100.0%

C0 score 42.4% 47.0% 35.8% 75.6%
C1 score 73.3% 71.4% 74.1% 92.7%

(a) Relative results if required invariant loads were allowed during SCoP detection but SCoPs that contained
them are excluded when the metric was evaluated.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 81.8% 55.4% 70.5% 76.7%
# depth 1 SCoPs 82.7% 48.7% 67.0% 63.1%
# depth 2 SCoPs 77.8% 93.9% 108.5% 97.8%
# depth 3 SCoPs 66.7% 100.0% 114.3% 96.2%
# depth 4 SCoPs n/a n/a n/a 100.0%

C0 score 80.8% 60.5% 73.7% 83.3%
C1 score 73.3% 94.3% 109.3% 97.4%

(b) Relative results if invariant load hoisting was disabled completely.

Table 3.49: Relative scores in various metrics (ref. Section 3.1) compared to the base-
line results shown in Figure 3.3 and Table 3.4 on Page 26 and 27. In the top part, SCoPs
with required invariant loads were recognized but excluded from the metric count. The
bottom part shows the results if invariant load hoisting was completely disabled, thus

SCoP detection was not allowed to require loads to be invariant.

When we compare the results shown in the two parts of Table 3.49 we can see that the applicabil-
ity effect of invariant load hoisting varies significantly between the different benchmark suites.
Though, if disabled, all suites show a decrease in the number of SCoPs, reaching from 18.2% to
44.6%. Similarly, the monotone applicability scores (ref. Section 3.1.1) indicate a decrease in the
SCoPs optimization potential of up to 39.5%. Note that the increase in the number of depth two
and three SCoPs, as well as the applicability score improvement for the SPEC2017 benchmark
suite, is caused by 9 additionally feasible SCoPs. More feasible SCoPs are a consequence of
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the greedy SCoP detection which, if invariant load hoisting was enabled, expanded valid SESE
regions to a point where the assumptions required to ensure a sound polyhedral representation
could not be fulfilled anymore. This is a general implementation problem of LLVM/Polly as
it forces the maximal valid regions, for which a polyhedral representation should be built, to be
determined prior to the modeling. Since an unfeasible combination of assumptions will only be
detected after the polyhedral representation was built, and there is no (simple) way to shrink the
valid region afterwards, subregions with feasible assumptions will not be considered anymore.

SPEC2000 SPEC2006 SPEC2017 LLVM-TS

SC
oP

M
od

el
in
g inv. loads 320 (66.4%) 661 (62.3%) 3631 (72.5%) 962 (43.5%)

req. inv. loads 226 (61.8%) 441 (56.7%) 2084 (67.7%) 618 (32.5%)
coal. inv. loads 47 (13.6%) 120 (14.7%) 1180 (13.3%) 157 (13.9%)

feasible ΛIL 6 ( 5.5%) 4 ( 1.3%) 47 ( 2.9%) 27 ( 3.3%)
infeasible ΛIL 8 22 81 150

C
od

e
G
en
. no preload 27.3% 29.4% 20.8% 40.9%

succ. preload 57.3% 57.6% 63.2% 37.1%
unsucc. preload 3.6% 1.3% 1.8% 3.8%

Table 3.50: Statistics for various invariant load hoisting related events. The percentages
indicate in how many feasible SCoPs the event occured in while the number provides

the total occurrence count.

In addition to the impact invariant load hoisting has on the different applicability metrics, we
provide information on other related events in Table 3.50. Each row provides up to two results
per benchmark suite: First, the number of occurrences of the specific event and second, the
percentage of feasible SCoPs that were affected by the event. The second number is always rel-
ative to the number of feasible SCoPs as reported in Table 3.4 on Page 27. The first three rows
show the number of invariant loads, required invariant loads and coalesced invariant loads as
well as the percentage of SCoPs that contained them. For the SPEC benchmark suites ≈ 5% of
all SCoPs contain invariant loads that were not required while the same holds true for 11% of
the SCoPs in the LLVM test suite. The absolute number of invariant loads is between 41.6%
and 74.2% higher than the number of required invariant loads. Load coalescing is performed
in 13-15% of all SCoPs, consistent across the benchmark suites. Between 14.7% (SPEC2000)
and 32.5% (SPEC2017) of all invariant loads were coalesced. The two center rows report the
number of taken invariant load assumptions ΛIL that were statically feasible/infeasible (ref. Sec-
tion 3.6.1.1). These assumptions are only necessary if a non-read only array contains elements
that were required invariant (ref. Figure 3.45c). This situation occurred in 2.3% (SPEC2006)
to 10.3% (LLVM-TS) of all feasible SCoPs that also contained required invariant loads. The
number of infeasible SCoPs is high because the greedy SCoP detection uses the rather simple
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heuristic described in Section 3.6 to determine if required invariant locations might be overwrit-
ten. Only when the polyhedral representation of a maximal and valid SESE region is built, we
perform the accurate invariance test described in Section 3.6.1.1 to determine if and when re-
quired invariant locations are actually overwritten. However, as already described above, the
implementation of LLVM/Polly does not (easily) allow to shrink a SCoP with statically infea-
sible assumptions. The three bottom rows show for how many SCoPs no invariant loads were
generated or the invariant loads were successfully/unsuccessfully pre-loaded. The sum of these
categories is not 100% since not all feasible SCoPs actually reached the code generation phase17.

The runtime cost and general misspeculation rate of assumptions are provided in Section 3.5.5.1.

3.6.4 Related Work

Several optimizations, including loop-invariant code motion [ASU86; Cli95] and partial redun-
dancy elimination [BGS99; Cho+98; MR79], hoist invariant loads out of loops. Such low-level
transformations commonly try to move loads to predecessor blocks or loop pre-headers if they
can be unconditionally loaded there. In contrast to these techniques we use a high-level perspec-
tive to solve the problem, the polyhedral representation of the program that was built under the
assumption that some loads are invariant. We can utilize it not only to determine the conditions
under which the loads are invariant, e.g., with regards to stores to the same array, but also to
derive constraints that prevent aliasing or overlapping pointers (ref. Section 4.1). Since aliasing
is generally a major limitation whenever memory instructions are moved, it is common for alias
analysis improvements [CH00; DMW98; DMM98] to evaluate their impact on loop-invariant
code motion or (partially) redundant load elimination. In contrast to other approaches [BA98;
KRS98; KRS99] we did not investigate the placement of invariant loads further. Instead, we rely
on LLVM to move hoisted loads to the most suitable location. However, it could be beneficial
to place them directly inside, not in front, of the optimized SCoP. Even if preloaded values are
needed for the runtime check, reloading them later could shorten lifetimes and improve the result
of certain register allocation schemes.

Fitzgerald et al. [Fit+00] extend known invariant load hoisting techniques to Java programs that
can exhibit implicit writes due to synchronization events. Their technique is limited to loads of
addresses that are known to be non-null, thus always accessible. This is similar to universal exe-
cution contexts that do not require runtime checks. Odaira and Hiraki [OH05] hoist instructions
regardless of potential exceptions, e.g. due to null pointers. To ensure correctness if exceptions
occur, they employ special exception handlers that rectify the situation at runtime. Xu, Yan, and
Rountev [XYR12] proposed to go beyond expression or loads and hoist the allocation of complex
but loop-invariant data structures in Java programs.

17 SCoPs are discarded due to complexity or profitability issues (ref. Section 3.1.4) but also implementation artifacts.
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3.7 Runtime Check Hoisting

Runtime checks are used for program versioning by optimistic optimizations (ref. Section 3.5),
but they are also native to programs or implicitly present to guarantee the language semantics.
Developers commonly utilize them to explicitly guard debug or timing statements, e.g., as shown
in Figure 3.51, and to identify error states, as done by the uBLAS linear algebra implementation
in the C++ boost project [WK00]. Additionally, compilers manifest checks implicitly present in
the program, e.g., to guard memory accesses in safe languages like Java, Julia, or Rust. Even for
unsafe languages, such as C/C++, there exists compiler support to emulate this memory safety
for debugging and testing purposes [Ser+12]. To keep the program, as well as such compiler
extensions maintainable, runtime checks are usually placed directly at the potentially offending
operation. This way, a basic front-end pass can introduce out-of-bound checks at each memory
access in the program. Later optimizations are then tasked to simplify, move, or even eliminate
such checks [BGS00; Gam+08; Nie+09; QHV02; WWM07]. However, not all runtime checks
can be eliminated and, if they are placed within loops, they will not only hurt performance but
also induce loop carried dependences that prevent most loop transformations. While languages
like Julia and libraries like uBLAS offer the programmer to omit checks, the guarantees that
come with them are consequently lost, too.

for (j = 1; j <= grid_points[1]-2; j++)
for (i = 1; i <= grid_points[0]-2; i++)

for (m = 0; m < 5; m++)
[...]

if (timeron) timer_stop(t_rhsz);
for (k = 1; k <= grid_points[2]-2; k++)

for (j = 1; j <= grid_points[1]-2; j++)
for (i = 1; i <= grid_points[0]-2; i++)
[...]

Figure 3.51: Excerpt from BT benchmark in the NAS
parallel benchmark suite [SJL11].

The runtime check hoisting we in-
tegrated into LLVM/Polly uses
assumptions and the code special-
ization framework described in Sec-
tion 3.5 to ensures that “error states”
are never reached. In this context,
we treat basic blocks as error states
if they are: (1) not dominating all in-
SCoP predecessors of the SCoP exit
block, (2) directly dominated by a
conditional which is not a loop header, (3) not loop headers themselves, and (4) containing a
call to an unknown, non-pure function. We use these easy to test conditions as a preliminary
heuristic to limit the error state candidates. Condition (1) will ensure that no single error state is
unconditionally executed in the SCoP. The next two conditions try to prevent assumptions that

Runtime check hoisting is a control flow graph (CFG) specialization technique we inte-
grated into LLVM/Polly. While it was initially part of our work on optimistic loop
optimizations [DGH17], it was not described in the paper. In contrast to the more gen-
eral polyhedral program slicing we present in Section 6.3, runtime check hoisting is fully
integrated in LLVM/Polly and also enabled by default.
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would cause loops to be considered error states. Finally, the last condition ensures that error
states would act as an optimization barrier.

To build the error block assumptionsΛEB wefirst determine the set of error statements, denoted as
ErrorStmts, that contain a basic block which is considered an error state. For each such statement
S, we derive the statement error block assumption ΛEB(S), a parameter context that ensures the
statement is never executed. To this end, we project the complement of the iteration domain
DS onto the parameter space 𝜌 (ref. Section 2.1.2). Note that the resulting set of conditions is
only dependent on parameters of the SCoP and it evaluates to true only if statement S is will
not be executed for the parameter valuation at runtime. Formula 9 and 10 show the definition
of statement- and SCoP-wide error block assumptions. The latter ΛEB is the intersection of all
statement error block assumptions for statements that contain an error block.

ΛEB(S) ≔ 𝜋𝜌 (¬(DS)) (9)

ΛEB ≔ ⋂
S ∈ErrorStmts

ΛEB(S) (10)

For the excerpt of the BT benchmark shown in Figure 3.51, the error block assumptions would
be used to ensure the function call timer_stop (and others) are never reached. Thus, at runtime,
the value of timeron has to be false.

3.7.1 Evaluation

To determine the effects of runtime check hoisting on the applicability and profitability of SCoPs,
we performed two separate experiments which are summarized in Table 3.52, 3.53, and 3.54.

SPEC2000 SPEC2006 SPEC2017 LLVM-TS
w/ ΛEB w/o ΛEB w/ ΛEB w/o ΛEB w/ ΛEB w/o ΛEB w/ ΛEB w/o ΛEB

149 148 368 327 1680 1617 649 645

Table 3.52: Number of maximal and valid regions found during SCoP detection with
(w/ ΛEB) and without (w/o ΛEB) runtime check hoisting. Note that this is not the number
of (valid) SCoPs because it also includes regions forwhich the polyhedral representation

was deemed unprofitable or the required assumptions were statically infeasible.

In the first experiment, we ran our baseline version of LLVM/Polly but evaluated the metrics
(ref. Section 3.1) only for SCoPs that did not contain error states. The numbers in Table 3.54a
show that the applicability with regards to the number of SCoPs and also the monotone appli-
cability scores C𝛼 drops for each benchmark suite. Especially the number of depth 2 SCoPs in
SPEC2006 and SPEC2017 was reduced significantly by up to 48.5%. A similar decrease can be
observed for the C1 metric (ref. Section 3.1.1). It determines the optimization potential of SCoPs
with at least two loops, nested or consecutive.
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w/ ΛEB w/o ΛEB

SPEC2000 39 31
SPEC2006 137 96
SPEC2017 480 420
LLVM-TS 232 220

Table 3.53: Number of unprofitable
polyhedral representations and stati-
cally infeasible assumptions with and

without runtime check hoisting.

In the second experiment, runtime check hoisting
was disabled, thus SCoPs could not contain error
states. The results, shown in in Table 3.54b, indi-
cate that this extension often has a negative impact
on the overall applicability. For SPEC2000 and the
LLVM Test Suite, all metrics report higher values
compared to our baseline. This effect can be ex-
plained with the numbers presented in Table 3.53
which show how many polyhedral representations
were built but afterwards ruled unprofitable (ref. Section 3.1.4) or dropped due to statically in-
feasible assumptions (ref. Section 3.5.5.3). Without runtime check hoisting there is a significant
decrease in unprofitable SCoPs and infeasible assumptions. The impact on the metrics is com-
parably small since the number of maximal and valid regions found was increased by a similar
amount. Since these additional regions, quantified in Table 3.52, could not improve our metrics,
we believe error states are identified too aggressively in order to expand already valid SCoPs.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 64.5% 79.7% 65.2% 80.1%
# depth 1 SCoPs 62.2% 84.3% 65.5% 77.4%
# depth 2 SCoPs 77.8% 51.5% 60.6% 81.9%
# depth 3 SCoPs 100.0% 100.0% 71.4% 96.2%
# depth 4 SCoPs n/a n/a n/a 100.0%

C0 score 67.2% 76.3% 64.9% 82.0%
C1 score 86.7% 54.3% 62.0% 86.0%

(a) Relative results if SCoPs containing error states were excluded from the metrics.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 106.3% 100.0% 99.8% 101.9%
# depth 1 SCoPs 107.1% 99.5% 99.5% 101.6%
# depth 2 SCoPs 100.0% 103.0% 103.2% 102.9%
# depth 3 SCoPs 100.0% 100.0% 100.0% 100.0%
# depth 4 SCoPs n/a n/a n/a 100.0%

C0 score 105.6% 100.4% 100.0% 102.0%
C1 score 100.0% 102.9% 102.8% 102.1%

(b) Relative results if runtime check hoisting was disabled completely.

Table 3.54: Relative impact of runtime check hoisting in various metrics (ref. Sec-
tion 3.1) compared to the baseline results in Figure 3.3 and Table 3.4 on Page 26 and
27. In the top part, SCoPs that contain error states were recognized but excluded from
the metrics. The bottom part shows the results if runtime check hoisting was disabled.
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3.7.2 Related Work

The only conceptual difference between the runtime check hoisting and the general polyhedral
program slicing described in Section 6.3 is the eagerness to identify error states. Our implemen-
tation of the former in LLVM/Polly already restricts potential error state candidates to prevent
aggressive SCoP expansion that would employ error block assumptions to generate large, only
sparsely populated SCoPs. Even though this heuristic is far from optimal, it allowed us to enable
this technique by default while keeping the optimization potential consistent.

The memory in-bounds assumptions ΛIB, introduced by Grosser et al. [Gro+15] and extended
later on [DGH17], ensure that the polyhedral representation of multidimensional memory ac-
cesses adhere to the array dimension sizes. However, safe languages and security oriented li-
braries can require explicit runtime checks for all memory accesses. In this case, our runtime
check hoisting can be used to built a polyhedral representation of the input, assuming the in-
bound checks only depend on SCoP parameters. Since the explicit manifestation of such in-
bounds checks blurs the line between in-bounds assumptions ΛIB and error block assumptions
ΛEB, works akin to the former are also related to the latter. However, approaches that deal with
potential out-of-bound memory accesses [BGS00; Gam+08; Nie+09; QHV02; WWM07], are
less general than the presented approach (ref. Figure 3.51).

There are several approaches that perform speculative, polyhedral-model-based parallelization
in the presence of unknown side-effects [Jim+12; Jim+13b; Pra11; Suk+14]. These schemes
ignore dependences emanating from conditionally executed code which was dead during an ini-
tial profiling period. Due to the speculative execution, a runtime verification system has to be in
place that monitors the execution. In case the speculation was successful, the computed results
are finalized. However, misspeculation require a rollback of all effects caused by eagerly exe-
cuted statement instances. To reduce the tracking and rollback overhead, these schemes often
employ chunking, a one-dimensional loop tiling around the speculatively executed condition-
als. While systems like these are more powerful than our runtime check hoisting, they require
far more machinery which can easily introduce a non-trivial overhead [Ham17, Chapter 4]. We
believe that for cases where our static code versioning is applicable, it is be the preferable choice.

There are various non-polyhedral-model-based code specialization techniques that are similar
to our approach as they also determine predicates under which certain code parts are not exe-
cuted [KCB07; MWD00; Oh+13]. However, these schemes perform specialization as an end in
itself and additionally require actual profiling information to identify promising candidates. As
our technique was developed to enable polyhedral schedule optimizations, we have not looked
into its application as a stand-alone optimization. We are also not directly concerned with prob-
lems like code size increase or the benefit of runtime check hoisting. Instead, we expect the poly-
hedral optimizer to determine the profitability of the applied transformations (ref. Section 3.1.5).





Chapter 4

Correctness

“ The most important property of a program is whether it
accomplishes the intentions of its user. ”

C.A.R. Hoare, An Axiomatic Basis for Computer Programming, 1969

General purpose programs do often not completely fulfill the requirements of the polyhedral
model [Doe+13; DGH17; Sim+13]. While improvements in the modeling, e.g., of function
calls (ref. Section 6.1), lower the requirements of polyhedral techniques, and approximations are
appropriate for some cases [Ben+10; MDH16; ZKC18], the polyhedral model is still restrictive.
This is especially true for programs that exhibit different behaviors for corner case inputs. Enu-
merative modeling of these corner case behaviors increases complexity and thereby cause scal-
ability issues. Approximations alternatively introduce spurious behaviors that prevent meaning-
ful transformations. However, any semantic mismatch between the program and the polyhedral
representation can cause silent miscompilations. While manual or semi-automatic optimization
tools shift some responsibly to the user [AB15; Bag+15; Bas+03; Bon+08; Ver+13], fully-
automatic approaches have to guarantee correctness on their own, optimally without sacrificing
applicability.

Chapter 3 dealt with applicability limitations, while very similar to correctness issues, their im-
pact on the polyhedral representation is different. For applicability enhancements, specialized
modeling techniques alter the polyhedral representation to encode the program semantics. For
correctness issues, the default representation is the desired one and already sound for most, but
not all, inputs. While an additional, explicit representation of the corner case semantics is often
possible, it is generally not beneficial. Nevertheless, the model has to be correct for all allowed
inputs, especially if the optimizer is used in an unsupervised fashion on general purpose code.

In this Chapter we describe how a sound polyhedral representation can be built for low-level
input programs. We focus on efficient modeling and optimization of common inputs rather than
a complete representation of all possible corner cases that are covered by the program semantics.
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Nevertheless, we provide sound solutions utilizing the assumption and code specialization frame-
work introduced by Doerfert, Grosser, and Hack [DGH17] and already discussed in Section 3.5.

The example in Figure 4.1a illustrates common correctness issues that occur in general purpose
code. The loop nest averages 2 * NB + 1 neighboring values from the array A and store the re-
sults in the array B. Though, the average is only computed for indices between NB and SIZE - NB,
for all other indices the input is just copied. While the code seems intuitively amenable to various
loop optimizations, the actual semantics depends on the context in which the code is placed. The
programming language and the actual types involved are crucial for an example like this.

While the example may seem contrived, it is based on a bug reported to the LLVM/Polly
project1. Similarly, all correctness issues described in the following have been observed in gen-
eral purpose code that was seemingly amenable to polyhedral optimizations. These situations
illustrate how subtle changes to the input, or its context, can cause vastly different semantics that
have to be accounted for in the polyhedral program representation.

for (i = 0; i < SIZE; i++) {
if (NB <= i && i <= SIZE - NB) {
result = 0;
for (n = -NB; n <= NB; n++)

result = result + A[i+n];
B[i] = result / (NB*2+1);

} else {
B[i] = A[i];

}
}

(a) Original version with two comparisons and a
boolean operator in the if condition.

for (i = 0; i < SIZE; i++) {
if (i - NB <= SIZE - 2 * NB) {
result = 0;
for (n = -NB; n <= NB; n++)
result = result + A[i+n];

B[i] = result / (NB*2+1);
} else {
B[i] = A[i];

}
}

(b) Optimized version of part 4.1a with only one
comparison in the if condition.

Figure 4.1: Two versions, originala and optimized, of a loop nest to average neighbour-
ing values in the center of the array. The optimized version (right) intentionally uses
an underflow in the computation i - NB to reduce the complexity of the if condition.
Note that we do assume the underflow to be well defined here, thus the use of wrapping
semantics as introduced in Section 4.2 and not C/C++ semantics for signed values.

a The example is taken from a Bones tool test cases by Nugteren and Corporaal [NC12].

If we assume a memory-safe language such as Java, Julia or Rust, we have to consider the im-
plicit index out-of-bounds check at each array access (ref. Section 3.7). Such error handling not
only makes static dependence analysis less precise, but, as part of the language semantics, also
prevents transformation. In the example, the iteration order of the loops would be fixed as excep-
tions could reveal an intermediate memory state. A similar situation arises if a memory sanitizer
for unsafe languages such as C/C++ is used.

1 Bug report by Roel Jordan, see https:goo.gl/Gppgyd.

https:goo.gl/Gppgyd
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Another well-known correctness issue are integer overflows, hence computations that require
more bits than available to represent the result exactly. The overflow semantics of C/C++ de-
pends on the types involved. Operations on 𝑛-bit unsigned types use machine arithmetic in which
an overflows will “wrap around”. Thus, only the 𝑛 least significant bits of the result are consid-
ered and the rest is ignored. A programmer or a compiler could exploit this behavior to simplify
the if condition shown in Figure 4.1a to the one in 4.1b, effectively reducing the number of com-
parisons by one. However, this is only sound if the expression i - NBwill actually wrap around
for i < NB. Hence, the unsigned comparison i - NB <= Size - 2 * NB is not equivalent
to i + NB <= SIZE, since the wrapping behavior was not taken into account. In case the sim-
plified if condition is interpret without wrapping semantics, it evaluates to true for all values of
i smaller than SIZE - NB, while the original did so only between NB and SIZE - NB.

Similarly, the programmer could have expressed the loop exit condition as i != SIZE, however
that would not necessarily guarantee SIZE iterations in all languages, i.a., Java. A negative SIZE
would cause a wrap-around and for an 𝑛-bit type, therefore 2𝑛 − ∣SIZE∣ iterations.
Lastly, we have to distinguish between array identifiers and the associated memory. In most
low-level languages the two arrays A and B could alias, thus the memory accessed through A
might overlap with the memory accessed through B. If the offset between pointers is unknown
and aliasing might or might not happen at runtime, there is little chance for any meaningful loop
transformation to take place.
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4.1 Aliasing & Overlapping Arrays

In the context of polyhedral optimizations we call two arrays aliasing, or overlapping, if they are
used to access the same memory cell in one execution of a Static Control Part (SCoP). Aliasing
is one of the main applicability issues of polyhedral optimizers on low-level code [Doe+13].
Since polyhedral tools often require source code annotations, they simply assume an aliasing free
environment, effectively shifting the burden of an alias analysis to the user [Bag+15; Bon+08].
Similarly, (semi-)automatic tools, i.a., PLUTO+ or LLVM/Polly, come with the possibility
to ignore potential aliasing issues. Even though this is useful to evaluate new approaches in a
controlled environment [AB15], it is inappropriate for unsupervised, fully automatic usage.

for (i = 0; i < N; i++)
A[i + P] += B[2 * i]

(a) Example featuring the two possibly
aliasing pointers/arrays A and B with equal

element size.

&A[𝑃] &A[𝑃 +𝑁]

&B[2𝑁 − 1] &B[0]
(b) Two possible memory layouts that will prevent ac-
cesses via A and B to overlap/alias during the execution

of the code shown in Figure 4.2a.

Figure 4.2: Accesses to possibly aliasing arrays in part 4.2a and the memory layouts in
part 4.2b for which every memory cell is only accessed through a single base pointer.

While we almost never observe aliasing at runtime [DGH17; Guo+06], potential aliasing will
nevertheless cause arbitrary dependences between different arrays at compile time. To deal with
cases of potential aliasing that were not precluded statically, we employ runtime alias checks and
code versioning (ref. Section 3.5). The goal is to determine if any memory cell might be accessed
through different base pointers during one execution of the analyzed code region prior to the ex-
ecution. If this might be the case, we will execute the original code, otherwise the optimized
version in which all arrays are known to be alias free. To simplify the runtime checks, hence to
decrease verification time, all accesses to one base pointer are abstracted with ranges [Alv+15;
Doe+13]. While more precise checks are possible, e.g., for strided accesses, range based alias
checks have shown to be sufficient in practice [DGH17; Guo+06]. For the example in Figure 4.2a,
the minimal/maximal accessed locations are &A[𝑃]/&A[𝑃 +𝑁 − 1] and &B[0]/&B[2𝑁 − 2] re-
spectively. To determine if all locations accessed through different pointers are disjoint it suf-
fices to show that the maximally accessed location via one pointer is smaller than the minimally

The extent possible aliasing inhibits polyhedral optimizations has been exposed in our first
applicability study [Doe+13]wherewe also introduced runtime checks to prevent aliasing.
In later works, we extended the applicability, simplified the checks, and evaluated them
more thoroughly [Alv+15; DGH17]. Aliasing checks are enabled in LLVM/Polly.
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accessed location via the other pointer. In our example2 this is true if &B[2𝑁 − 1] <= &A[𝑃] or
&A[𝑃 +𝑁] <= &B[0], thus if the memory layout fulfills the conditions illustrated in Figure 4.2b.

4.1.1 Runtime Alias Check Generation

for (i = 0; i < N; i++)
for (j = i; j < 2 * i; j++)
A[i][j] += B[j][i] + B[i][j];

Figure 4.3: Loop nest with four potentially
aliasing multi-dimensional accesses.

Our runtime alias checks are used when the alias
analyses performed by LLVM3 fail to prove the
absence of aliasing accesses statically. In the first
step, LLVM’s analyses are used to collect sets of
possible aliasing accesses inside the SCoP. These

analyses guarantee the absence of overlapping accesses between different sets, thuswe can handle
each one in isolation. If a set contains only accesses to read-only arrays it is dropped. This is
sound because the potential read-after-read (RAR) dependences between these accesses do not
need to be preserved. Similarly, we ignore sets that only contain accesses to a single array as
the dependences between them will be explicitly computed during the polyhedral dependence
analysis as described by Feautrier [Fea91]. For the example shown in Figure 4.3, there is one set
containing all four multi-dimensional memory accesses as illustrated in Formula 1.

{{ A[𝑖][𝑗] ∣ 0 ≤ 𝑖 < 𝑁 ∧ 𝑖 ≤ 𝑗 < 2 ∗ 𝑖 }, { A[𝑖][𝑗] ∣ 0 ≤ 𝑖 < 𝑁 ∧ 𝑖 ≤ 𝑗 < 2 ∗ 𝑖 },{ B[𝑗][𝑖] ∣ 0 ≤ 𝑖 < 𝑁 ∧ 𝑖 ≤ 𝑗 < 2 ∗ 𝑖 }, { B[𝑖][𝑗] ∣ 0 ≤ 𝑖 < 𝑁 ∧ 𝑖 ≤ 𝑗 < 2 ∗ 𝑖 }} (1)

Accesses to an array are summarized as the range between the lexicographically smallest and
largest accessed array element. To this end, the lexicographic minimum and maximum of each
memory access function over its respective iteration domain is computed. In contrast to the
original accesses, these ranges do not depend on the loop iterations but only involve constants and
parameters. Consequently, they can be compared prior to the SCoP. For our example loop nest in
Figure 4.3, the pairs of minimal and maximal accessed array elements are shown in Formula 2.

{(A[0][0], A[𝑁 − 1][2𝑁 − 2]), (B[0][0], B[2𝑁 − 2][2𝑁 − 2])} (2)

The above range describes accessed array elements but overlappingmight occur on single bytes in
memory. To obtain a range that includes all accessed bytes in memory, the extent of the smallest
or, depending on the memory layout, largest accessed element needs to be taken into account.
Since all bytes till the beginning of the next smaller/larger one are accessed, it is sufficient to
decrement/increment the innermost dimension of the smallest/largest accessed array element by

2 Note that we use C/C++ syntax here but our runtime checks are generated in LLVM-IR. The latter has a defined
semantics for certain features the former prohibits, e.g., relative comparison between pointers to different objects.

3 LLVM provides various alias analyses but not all are enabled by default. Available analyses include the one by
Diwan, McKinley, and Moss [DMM98], Lattner, Lenharth, and Adve [LLA07], and Steensgaard [Ste96].
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one. Assuming the memory addresses grow with the array indices, the largest element needs to
be adjusted and the accessed memory ranges for our example are described by Formula 3.

{(A[0][0], A[𝑁 − 1][2𝑁 − 1]), (B[0][0], B[2𝑁 − 2][2𝑁 − 1])} (3)

The actual checks are generated using common polyhedral code generation techniques [GVC15]
and the dimension sizes derived for the multi-dimensional accesses [Gro+15]. The final runtime
check for the example in Figure 4.3 is sketched as high-level C code in Figure 4.4.

bool AliasFree = &B[2*N-2][2*N-1] <= &A[0][0] || &A[N-1][2*N-1] <= &B[0][0];

Figure 4.4: Runtime alias check for the loop nest shown in Figure 4.3.

4.1.2 Complexity of Runtime Alias Checks

The examples in Figure 4.5 illustrate complexity challenges associated with runtime alias checks.
We first describe the problems and then present practical solutions in Section 4.1.2.1 and 4.1.2.2.

for (i = 0; i < N; i++)
A[i] += B[i + p0] + B[i + p1]

+ B[i + p2] + B[i + p3]
+ B[i + p4] + B[i + p5]
+ B[i + p6] + B[i + p7];

(a) Parametric accesses to the B array cause a
quadratic growth in the representation of themin-

imal/maximal access to that array.

for (i = 0; i < N; i++) {
A[i] += B[i] * C[i];
D[i] += E[i] * F[i];
G[i] += H[i] * I[i];

}

(b)Multiple possibly aliasing arrays cause an ex-
ponential number of comparisons needed to ex-

clude aliasing accesses.

Figure 4.5: Examples to illustrate the two scalability issues for runtime alias checks.
The minimal (or maximal) access to the B array in the left example is a piecewise affine
function with 8 pieces and 8 ∗ (8 − 1) = 56 inequalities. The right code features
nine different and potentially aliasing arrays. To exclude all possible combinations of

aliasing we require 9 ∗ (9 − 1) = 72 comparisons in total.

LLVM/Polly relies on the representation and transformation capabilities of isl [Ver10]. The
isl representation of the minimal and maximal access descriptions grows quadratically with the
number of parameters involved. For the example in Figure 4.5a, this leads to 8 ∗ (8 − 1) = 56
inequalities. The representation of the minimal offset for only four parametric accesses is shown
in Formula 4. It already requires 4 ∗ (4 − 1) = 12 inequalities.

{ 𝑝0 ∣ 𝑝0 ≤ 𝑝1 ∧ 𝑝0 ≤ 𝑝2 ∧ 𝑝0 ≤ 𝑝3 } ∪ { 𝑝1 ∣ 𝑝1 ≤ 𝑝0 ∧ 𝑝1 ≤ 𝑝2 ∧ 𝑝1 ≤ 𝑝3 }∪{ 𝑝2 ∣ 𝑝2 ≤ 𝑝0 ∧ 𝑝2 ≤ 𝑝1 ∧ 𝑝2 ≤ 𝑝3 } ∪ { 𝑝3 ∣ 𝑝3 ≤ 𝑝0 ∧ 𝑝3 ≤ 𝑝1 ∧ 𝑝3 ≤ 𝑝2 } (4)
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The time needed to compute the lexicographic minimum/maximum for a loop nest like the one
in Figure 4.5a is as shown in Table 4.6. It grows super exponentially in the number of involved
parameters and is therefore not feasible in the presence of many accesses parametrized differently.

#P 3 4 5 6 7 8 9 10

sec. 0.002 0.005 0.012 0.034 0.149 0.749 5.181 54.155

Table 4.6: Time in seconds to compute the lexicographic minimum of a Presburger set
depending on the number of involved parameters (#P). Measurements were taken with

islpy version 2016.2.1 on an Intel(R) Core(TM) i7-4800MQ CPU.

The example in Figure 4.5b involves nine potentially aliasing arrays. As indicated in Figure 4.2b,
we need two comparisons per overlap check and one overlap check per pair of pointers. Thus,
given 𝑛 potentially aliasing pointers, we need 𝑛 ∗ (𝑛 − 1) comparisons to exclude overlapping
accesses to different arrays. For the example this would result in 9 ∗ (9− 1) = 72 comparisons.

4.1.2.1 Parametric Memory Accesses

Our runtime alias check implementation in LLVM/Polly [DGH17] avoids the complexity in-
crease due to parametric accesses (ref. Figure 4.5a) with an arbitrary threshold on their number.
Thus, if more than a fixed number of parameters are involved in the access functions of a single
array, we abort the optimization of a SCoP. By default this will happen if more than 8 parameters
are involved. While this solution is often sufficient in practice, it can easily lead to lost optimiza-
tion opportunities for large SCoPs. As an alternative, we designed, implemented and evaluated
a new approach that is described in Section 4.1.3.

4.1.2.2 Alias Groups

For a single set of potentially aliasing pointers, the number of comparisons required to exclude
aliasing grows quadratically with the number of contained arrays. However, for multiple sets it is
only the sum of comparisons required for each individual one. Thus, it is generally beneficial to
split a set of potentially aliasing accesses into multiple smaller sets, whenever it is sound. To this
end, we use precise control flow information to create alias groups that contain only potentially
aliasing accesses that might occur under the same parameter conditions. In addition, alias groups
are split to ensure that at most one read-only array is contained.
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Out = malloc(...);
for (i = 0; i < N; i++) {

S0: Out[i] = R0[i];
if (c)

S1: A[i] = Out[i] + R1[i];
else

S2: B[i] = Out[i] + R2[i];
}

(a) Example featuring six different arrays. Three are
written but one (Out) cannot alias with the others. The

remaining arrays (R0, R1 and R2) are read-only.

ag1 ≔ {(A[0], A[N-1], {𝑐 /= 0},(R0[0], R0[N-1], {true})}
ag2 ≔ {(A[0], A[N-1], {𝑐 /= 0},(R1[0], R1[N-1], {𝑐 /= 0})}
ag3 ≔ {(B[0], B[N-1], {𝑐 = 0},(R0[0], R0[N-1], {true})}
ag4 ≔ {(B[0], B[N-1], {𝑐 = 0},(R2[0], R2[N-1], {𝑐 = 0})}

(b) The four alias groups of size two generated
for the example shown in part 4.7a.

Figure 4.7: Example to show how alias groups are generated depending on the kinds
and execution contexts of memory accesses. The four alias groups of size two shown in
part 4.7b require only 2 ∗ 4 = 8 comparisons to exclude aliasing. A single alias group

with all five pointers would require 5 ∗ 5 − 5 = 20 comparisons instead.

The example in Figure 4.7a features eight memory accesses to five different pointers spread over
three statements. LLVM’s alias analyses can determine that the Out pointer is alias free because
of the allocation just prior to the loop. Since the default analyses are flow insensitive, they will
however put the five remaining accesses into a single set. We utilize the control flow information
available through the iteration domains of the statements surrounding the accesses to split sets
which contain accesses executed under disjoint parameter contexts. For the example, the initial
set is divided into two, each with one write and two read accesses, because the parameter contexts
of S0 and S1 are distinct: 𝜋𝜌(DS0) ∩ 𝜋𝜌(DS1) = {}. Conceptually, this split prevents alias
checks between accesses that are never executed together in one instantiation of the SCoP.

Potential aliases between read-only arrays can only introduce spurious read-after-read (RAR)
dependences. Since they do not impact correctness, we do not need to exclude themwith runtime
checks. To this end, we split alias groups that contain accesses to multiple read-only arrays into
multiple alias groupswith one read-only array each. An alias group ag ≔ {w1, … ,w𝑛, r1, … , r𝑘}
with accesses to arrays that are not read-only (w1, … ,w𝑛, with 𝑛 ≥ 1), and multiple accesses to
read-only arrays (𝑟1, … , 𝑟𝑘, with 𝑘 > 1) is split into 𝑘 alias groups as shown in Formula 5.

ag1 ≔ {w1, … ,w𝑛, r1}, … , ag𝑘 ∶= {w1, … ,w𝑛, r𝑘} (5)

The runtime check to exclude aliasing for the initial alias group ag required (𝑛 + 𝑘)2 − (𝑛 + 𝑘)
comparisons. Hence, it was quadratic in both 𝑙 and 𝑘. The checks for the alias groups ag1 to ag𝑘
can be performed with 𝑘 ∗ ((𝑛 + 1)2 − (𝑛 + 1)) comparisons, thus 𝑘 is now a linear factor.
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4.1.3 Limitations & Extensions

// 𝑓 is a pure function
for (i=0; i < N; i++)
A[𝑓(i)] = ...;

(a) Non-affine access caused by an
unknown index expression.

for (i=0; i < N; i++)
for (j=0; j < i; j++)
A[B[j]] = ...;

(b) Access with a data-
dependent index expression.

for (i=0; i < N; i++)
for (j=0; j < M; j++)
(Ptr[i])[j] = ...;

(c) Access with a data-
dependent base pointer.

Figure 4.8: Examples to showcase the limits of the polyhedral runtime alias checks
described here and employed by LLVM/Polly.

Our runtime alias checks are derived from the polyhedral representation of a program. They
are consequently only as precise as the representation of potentially aliasing accesses is in the
model. It is especially required that potentially aliasing accesses have a fixed, statically known
base pointer, e.g., not as the access to Ptr[i] in Figure 4.8c, and reasonably tight bounds on the
access range. While non-affine accesses generally comply with the first requirement, dynamic
accesses might not. Additionally, it is not always possible to determine bounds on the index range
of non-affine or dynamic accesses (ref. Section 3.4.1). The examples in Figure 4.8 show different
situations for which our technique cannot create a runtime alias check. If such a situation arises,
there are generally three options: Stop the optimization of the SCoP, model the dependences
caused by any potential interleaving of the arrays, or employ a more powerful runtime check, e.g.,
an inspector loop [RP94] or runtime allocation tracking [Alv+15]. Our current implementation
in LLVM/Polly will conservatively choose to reject a single-entry single-exit (SESE) region
for which alias checks are required but cannot be build with the presented technique.

To limit the compile time and runtime spent for accesses involving multiple parameters, a thresh-
old is used (ref. Section 4.1.2.1). Especially for larger, more profitable SCoPs this can easily
cause missed optimization opportunities. Since the complexity arises from the symbolic repre-
sentation of the lexicographicminima/maxima using piecewise defined functions, we can employ
a different representation instead. The idea is that the minimal and maximal accesses do not need
to be determined statically but can also be computed dynamically. Instead of the lexicographic
minimal and maximal accesses, we only need the maximal loop bounds4 to eliminate the induc-
tion variables from the access ranges (ref. Formula 1), and thereby allow a single check prior
to the SCoP. The actual minimal/maximal offset value is determined at runtime using an 𝑛-ary
min/max computation as shown in Formula 6 for the example loop in Figure 4.5a.

{ 0 +min(𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7) }{𝑁 − 1 +max(𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7) } (6)

4 The lower bound is trivial since the loops in our representation are normalized to start with zero.
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4.1.4 Aliasing Checks & Invariant Load Hoisting

for (i = 0; i < *UB; i++)
(*Ptr)[i] = ...;

(a) Simple loop featuring a dynamically loaded
upper bound and base pointer. The values of
*UB and *Ptr are needed to perform runtime
alias checks, though, at the same time alias-
ing has to be excluded to justify invariant load

hoisting.

UBVal = *UB;
if (UBVal > 0)
PtrVal = *Ptr;

if (UBVal > 0 && (&PtrVal[0] >= &Ptr[1]
|| &PtrVal[UBVal] <= &Ptr[0]) &&
(&PtrVal[0] >= &UB[1] ||
&PtrVal[UBVal] <= &UB[0]))

(b)Hoisted invariant loads and runtime alias check for
the example loop shown in part 4.9a.

Figure 4.9: Example to illustrate the interplay between runtime alias checks and invari-
ant load hoisting (ref. Section 3.6). Without a runtime alias check we cannot prove the
loads loop invariant and without invariant loads we cannot create a runtime alias check.

Invariant load hoisting, as described in Section 3.6, assumes an alias free environment. This
improves the applicability and may also enable the generation of runtime alias checks which
ensure the alias free environment that was assumed. Loads in control flow conditions and access
functions need to be assumed invariant to create precise access ranges and consequently alias
checks. At the same time, their invariance is conditioned on not being overwritten by aliasing
accesses. Figure 4.9 illustrates this situation. A precise polyhedral representation is only possible
if both loads are invariant and (conceptually) hoisted. However, that is only sound if the write
does not alias with either of them. To this end, we optimistically assume this to be true, hoist
the loads, and check for invariance and aliasing, using the initially loaded values. Only if the
runtime check rules aliasing out and determines the loads to be invariant, the representation was
actually sound and the optimistically optimized code can be executed.

4.1.5 Related Work

Ramalingam [Ram94] showed that pointer aliasing is an undecidable problem. While different
static alias analysis implementations exist that offer a subset of context-, flow-, type- and field-
sensitive information [DMM98; EGH94; Jeo+17; LLA07; SH97; Ste96], any potential may-alias
still introduces spurious dependences that might prohibit transformations. Since aliasing in pro-
grams, especially SCoPs, almost never manifests at runtime [ADT13; Alv+15; DGH17; FE02;
Guo+06], it is reasonable to guard optimistically optimized code regions with a check that rules
aliasing out dynamically (ref. Section 3.5). Different implementations fur such runtime alias
checks exist. In LLVM, simple innermost loops with static control flow and affine access func-
tion can be guarded to allow vectorization. Similarly, Bernstein, Cohen, and Maydan [BCM94]
proposed dynamic dependence checks for arrays accesses but they restrict themselves to inner-
most loops. Alves et al. [Alv+15] use a variety of techniques, including the one described here.
In addition, they propose a runtime environment that tracks memory allocations to allow dy-
namic aliasing queries. While accesses with data-dependent base pointers (ref. Figure 4.8c) are
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still out of reach, their system could allow polyhedral optimizations in the presence of non-affine
and data-dependent access offsets (ref. Figure 4.8a and 4.8b).

Guo et al. [Guo+06] describe how to reduce the number of required comparisons (ref. Fig-
ure 4.2b) when the base pointer addresses are known, e.g., constant addresses in binaries.

Runtime alias checks can be used for a variety of reasons. Liu, Gorbovitski, and Stoller [LGS09]
employ them to determine if cached results might be invalidated by potentially aliasing accesses.
Wu et al. [Wu+13] describe how to use runtime checks to discover incorrect alias analysis re-
sults andGuo et al. [Guo+06] introduce them to allow instruction rescheduling in dynamic binary
translation. Additionally, there are various approaches that utilize speculative execution as an
alternative to classical runtime checks. Huang, Slavenburg, and Shen [HSS94] use code duplica-
tion to break dependence chains caused by insufficient alias information. Performance is gained
if instruction level parallelism in combination with speculative or conditional execution can exe-
cute the code versions simultaneously. Ahn, Duan, and Torrellas [ADT13] propose an extension
to the transactional memory modern hardware features to allow low-cost alias detection at run-
time. Similarly, Gallagher et al. [Gal+94] introduce a new hardware memory conflict buffer to
detect misspeculation at runtime. Fernández and Espasa [FE02] describe several heuristics to
speculatively answer alias queries, however they do not provide a check and recovery system to
ensure correctness. In contrast to all these local optimization and verification schemes, we need
to exclude aliasing for a sequence of loop nests prior to the execution. If we would recognize
aliasing accesses only when they happen, schedule changes could have caused memory effect
that are invalid in the presence of aliasing. Nevertheless, under the assumption that aliasing will
almost never manifest, a low-cost dynamic check accompanied by a powerful recovery system
could be an alternative to our runtime checks. Hardware and software transactional memory are
a promising candidate for such a recovery system but they often lack either performance or the
necessary granularity for programs with lots of array accesses [Ham+16].

4.1.6 Evaluation

To evaluate the applicability impact of our runtime alias checks we performed two experiments
and show the results in Table 4.10. In both experiments we determined the effect of missing
runtime alias checks compared to the baseline presented in Figure 3.3 and Table 3.4 on Page 26
and 27. For the first experiment (ref. Table 4.10a) we allowed potentially alias pointers to be
contained in a SCoP but then ignored such SCoPs for the metrics. In the second (ref. Table 4.10b)
we disallowed potentially aliasing pointers all together. The differences stem from the greedy
and cost oblivious SCoP detection. For a more detailed explanation see Section 3.6.3 and for
assumption overhead and misspeculation rates see Section 3.5.5.
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The results of both experiments indicate that runtime alias checks provide a significant applica-
bility improvement. The number of valid SCoPs that do not contain potentially aliasing array
accesses is below 50% in all four benchmark suites and it is less than a quarter in SPEC2006.
Even though our implementation comes with certain limitations, the rejection reason statistics
collected with our baseline version (ref. Table 3.19) indicate that the severeness of aliasing de-
crease drastically. Before the runtime alias checks were available, 68.9% of all rejected regions
contained potentially aliasing pointers (ref. Table 3.16). Afterwards, only 18.7% of all rejected
regions that did include a loop were rejected because aliasing could not be ruled out.

The monotone applicability scores (ref. Section 3.1.1) decrease roughly the same as the number
of SCoPs, though the latter percentage is often slightly higher. This indicates that SCoPs suf-
fering from aliasing are on average smaller than the ones that do not. Nevertheless, the score
reduction of 33.2% - 60.0% is a strong argument for the use of runtime alias checks when poly-
hedral optimizations are applied to general purpose code.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 36.4% 21.2% 44.1% 41.2%
# depth 1 SCoPs 34.7% 14.7% 44.1% 30.1%
# depth 2 SCoPs 66.7% 57.6% 40.4% 62.3%
# depth 3 SCoPs 0% 100.0% 85.7% 38.5%
# depth 4 SCoPs n/a n/a n/a 0%

C0 score 36.8% 26.3% 44.3% 45.6%
C1 score 40.0% 60.0% 46.3% 54.9%

(a) Relative results when potentially aliasing pointers were allowed but we only considered SCoPs that did
not contain them for the metrics.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 44.5% 23.4% 41.9% 45.6%
# depth 1 SCoPs 44.9% 16.8% 41.9% 31.0%
# depth 2 SCoPs 44.4% 60.6% 39.4% 68.8%
# depth 3 SCoPs 33.3% 100.0% 85.7% 65.4%
# depth 4 SCoPs n/a n/a n/a 0%

C0 score 44.0% 28.6% 42.2% 52.3%
C1 score 40.0% 62.9% 45.4% 66.8%

(b) Relative results when potentially aliasing pointers were disallowed during SCoP detection.

Table 4.10: Results to show the applicability impact of missing runtime alias checks.
The numbers are percentages of the baseline results shown in Figure 3.3 and Table 3.4

on Page 26 and 27.
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4.2 Representation of Integer Arithmetic

Because the polyhedral model is based on on Presburger arithmetic over the space Z of inte-
gers [Fea91; Len93], all computations are conceptually evaluated precise. Hence, expressions
in control flow conditions and access relations are evaluated with arbitrary precision over the
entire range of Z. However, programming languages have to consider machine constraints to
allow for performant programs. Precise expression evaluation is too resource intensive and slow
for everyday use in general purpose programs. Programming languages do consequently impose
evaluation semantics that can be implemented efficiently on machines while precise semantics
is only available through specialized libraries [Fea88b; Pug91a; Ver10]. The most often em-
ployed alternative is wrapping semantics which computes the result modulo the maximal value
representable with the desired bit width. Due to the two’s complement representation of signed
integers in modern machines, wrapping semantics can be implemented by simply discarding all
but the least significant bits. This defined integer wrapping can often hinder optimizations as
their implementation relies on basic arithmetic properties, e.g., monotonicity of addition or mul-
tiplication with a constant. To overcome this issue, low-level languages also use error semantics
which causes undefined behavior if the result of a computation does not fit in the number of as-
sociated bits. Error semantics is consequently only defined if precise and wrapping evaluation
compute the same result. Hence, error semantics can be implemented with both precise and
wrapping semantics but it also allows for more optimizations.

4.2.1 Related Work

Integer wrapping is a reoccurring source of security and reliability problems [Ahm03; Die+12;
Wan+09]. To this end, static analyses are used to identify potentially or definitively wrapping
expressions [CH13; Cou+05; RCP13; Wan+09; Zha+15]. Analyses are often augmented with
instrumentation, i.e., dynamic checks, to ensure complete results [Bru+07; Che+09; Die+12].
Long et al. [Lon+14] derive input filters to prevent integer overflows which are similar to our
expression evaluation assumptions described in Section 4.2.4. While they completely give up on
control flow constraints in favor of performance, we use iteration domains to tighten and simplify
the assumptions that check for potentially wrapping expressions at runtime.

Based on the seminal work by Cousot and Halbwachs [CH78], Simon and King [SK07] and later
Bygde, Lisper, and Holsti [BLH12] describe how integer overflows impact abstract values in a

The representation of integer arithmetic was part of our efforts to make polyhedral op-
timization automatically applicable and sound on general purpose programs [DGH17].
Partially precise expression evaluation (ref. Section 4.2.6), as well as expression evalua-
tion assumptions (ref. Section 4.2.4), are both integrated and enabled in LLVM/Polly.
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polyhedral domain without quasi affine functions. In addition, there are multiple precise rela-
tional program analyses that take the bit width into account [Eld+14; KS10; MS04]. These anal-
ysis derive context-insensitive affine equalities that hold in the presence of machine arithmetic.
Due to the inevitable complexity increase to add inequalities, and given the almost non-existence
of integer overflows in real-world loop nests [DGH17], we believe an optimistic representation,
safeguarded by assumptions, is the most practical option to deal with potentially wrapping ex-
pressions in low-level programs.

The polyhedral extraction tool (PET) [VG12] precisely models integer wrapping of unsigned C
expressions. However, our experiments show that wrapping almost never occurs in practice and
is consequently not worth the increased cost that comes with an exact representation [DGH17].
Alternatively, we optimistically assume all expressions are evaluatedwith error semantics (ref. Ta-
ble 4.11). To ensure correctness, we restrict the possible inputs to parameter valuations that do
not cause control flow conditions or access relations to wrap. This optimistic, assumption-based
modeling allows for a concise representation, without spurious dependences, that is very unlikely
to cause misspeculation at runtime.

4.2.2 Integer Evaluation Semantics

Three integer evaluation semantics relevant for polyhedral optimization of low-level programs are
illustrated in Table 4.11. The first column shows the name of a semantics and the second defines
the result if the semantics is used to evaluate an expression e. In the last column common usages
are listed. Note that programming languages employ different semantics based on the signedness
of types, e.g., in C/C++, or computation attributes, i.a., nsw/nuw in LLVM-IR5.

Semantics Value of e Usage

precise JeK𝑝 ≔ JeKZ PipLib [Fea88b], Omega [Kel+95;
Pug91a], isl [Ver10]

wrapping JeK𝑤 ≔ JeKZ/𝑛Z Java, Julia, C/C++ (unsigned types),
LLVM-IR (without nsw/nuw)

error JeK𝑒 ≔ if JeK𝑝 = JeK𝑤

then JeK𝑝 else undef
C/C++ (signed types), LLVM-IR
(with nsw/nuw)

Table 4.11: Different expression evaluation semantics and examples for their usage.
The value of 𝑛 is the bit width of the expression e. Note that the range of wrapping

semantics is shifted by 2𝑛−1 for signed numbers.

5 The LLVM-IR attributes nsw/nuw are short forms of “no signed/unsigned wrap” and can be attached to operations
that might cause integer overflows, e.g., additions and multiplications, to indicate hat they will not.
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for (i = 0; i <= N; i += 1)
A[2 * i] = A[2 * i + 1];

Figure 4.12: Example loopa with depen-
dences only if wrapping semantics is used. If
i is an 8-bit unsigned value, a loop-carried

dependence is present for N = 27 = 128.
a This Figure was taken from Doerfert, Grosser,

and Hack [DGH17].

To obtain a sound polyhedral representation
of low-level inputs it is crucial to consider
the expression evaluation semantics. While
it is possible to express wrapping semantics
in Presburger arithmetic [VG12], our experi-
ence shows that it has a negative effect on
compile time as well as runtime of the gen-
erated code [DGH17]. Compile time is in-

creased due to the additional existentially quantified dimensions that modulo expressions gener-
ally introduce. The generated code is more complex due to the additional dependences that are
only present in case of wrapping but almost never actually appear in practice. An example for a
loop that is constrained by loop carried dependences if and only if wrapping semantics is used is
shown in Figure 4.12. In general, programmers do not employ integer wrapping intentionally to
implement part of the program semantics. Instead, potential wrapping and the dependences that
come with it are most often only a byproduct of the poor flexibility programming languages offer
when it comes to integer arithmetic or potentially unawareness on the programmers side [Ahm03].
That said, it is still crucial to generate correct code for corner case inputs that trigger integer
under- or overflows, especially in an automatic approach used on general purpose code. If the
polyhedral representation does not take these inputs into account, silently miscompilations are
inevitable and likely followed by data corruption or a program crash.

4.2.3 Potentially Wrapping Expressions

uint64_t a, b, c, d;
uint8_t s;
a = b = ...;
c = a + b;
d = c * c;
s = (uint8_t) d;

Figure 4.13: Example
computations that could
cause an integer under-
or overflows in each of

the last three lines.

There are four conceptual types of potentially wrapping expres-
sions: addition, multiplication, truncation, and division by -1. A
minimal example featuring three of them is shown in Figure 4.13.
The addition of two 𝑛-bit values can create an 𝑛+ 1-bit wide re-
sult. Similarly, a multiplication of two 𝑛-bit values can create a
2𝑛-bit result. In either case the outcome is truncated to fit into
the resulting type which is generally required to be the same as
the operand type. Since all three operations will consider only
the lower bits of a value, the most significant bit, thus the sign
in the two’s complement representation, can potentially change.

In LLVM, the result of an operation that can potentially wrap might be well-defined if it does. To
determine if that is the case, thus to distinguish betweenwrapping and error semantics, we check
for the “no-signed-wrap (nsw)” flag6. Operations that carry this flag are, similar to computations

6 As explained in Section 4.3, LLVM/Polly interprets all values as signed integers, thus nsw flags are considered.
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on signed values in C/C++, are evaluated with error semantics. They are consequently not
allowed to cause a signed overflow. Thus, we can assume that the truncation at the end of the
operation will not change the signed bit as it would otherwise cause undefined behavior that
allows us to model the result as any value. Due to the indirection LLVM/Polly uses to simplify
the generation of a polyhedral representation (ref. Section 6.4), the nsw flags present in the source
code might be hidden. In this case, more computations might be considered potentially wrapping
and needless expression evaluation assumptions will be generated.

4.2.4 Expression Evaluation Assumptions

The expression evaluation assumptions ΛEE constrain the allowed parameter valuations in or-
der to prevent wrapping control flow conditions and access expressions. To identify them, each
expression that influences the polyhedral representation and that could potentially wrap is trans-
lated twice, once with precise and once with wrapping semantics. Given such an expression e,
we use JeK𝑝 to denote the former translation and JeK𝑤 for the latter. Both translate e to a piece-
wise defined affine function over the surrounding iteration variables and program parameters.
Assuming e is contained in a statement S, we can compute the set of all iterations of S for which
e would wrap as shown in Formula 7.

{i ∈ DS ∣ JeK𝑝(i) ≠ JeK𝑤(i)} (7)

A different but equivalent solution to detect iterations that do not cause an 𝑛-bit expression e
to wrap is shown in Formula 8. It is implemented in PET to avoid the representation of iter-
ations that will cause undefined behavior due to wrapping. Here, the precise representation is
compared against the maximal values of the result explicitly. However, a comparison of the two
implementations in LLVM/Polly showed a slightly better compile time for the version shown
in Formula 7 than for the one used by PET.

{i ∈ DS ∣ −2𝑛−1 ≤ JeK𝑝(i) < 2𝑛−1} (8)

To obtain the evaluation assumptions ΛEE(e) for the expression e we have to isolate parame-
ter valuations that do not cause wrapping. To this end, we first project all wrapping iterations
computed in Formula 7 onto the parameter space 𝜌 as shown in Formula 9.

𝜋𝜌( {i ∈ DS ∣ JeK𝑝(i) ≠ JeK𝑤(i)}) (9)

The result does not depend on the surrounding loop variables but only on parameters of the SCoP.
For each contained parameter valuation there is at least one iteration of S for which e does wrap.
Thus, it is empty if and only if there is no iteration of S in which e will under-or overflow. The
complement of the set shown in Formula 9 describes the expression evaluation assumptions
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ΛEE(e). The absence of integer wrapping and thereby a correct polyhedral representation is
ensured under the expression evaluation assumptions of all control flow conditions and access
expressions. If we denote all such expressions contained in the SCoP as ⟨exp⟩, we can compute
ΛEE as shown in Formula 10.

ΛEE ≔ ⋂
e∈⟨exp⟩ΛEE(e) = ⋂

e∈⟨exp⟩¬ 𝜋𝜌( {i ∈ DS ∣ JeK𝑝(i) ≠ JeK𝑤(i)}) (10)

4.2.5 Textual vs. Polyhedral Location of Potentially Wrapping Expressions

It is important to note that the optimistically generated polyhedral representation of the input pro-
gram is not necessarily sufficient to compute the expression evaluation assumptions ΛEE. Due
to referential transparency of expressions in the polyhedral model, it is possible that values are
replaced by their definition, thus altering the domain under which an expression is evaluated.
In Figure 4.14 two programs are shown that are equivalent if expressions are evaluated with pre-
cise semantics but not necessary with wrapping semantics. While the polyhedral representation
of the loops in Figure 4.14a and 4.14b can be equal (Figure 4.14c) the former might exhibit a
wrapping increment while the latter does not. Consequently, it is necessary to utilize the textual
expression and the textual location to compute ΛEE, not a polyhedral representation thereof.

for (i = p + 1; i < 10; i += 1)
S: A[i - 1] = A[i - 1] + 1;

(a) Possibly wrapping increment of p in the ini-
tialization of i.

for (i = p; i < 9; i += 1)
S: A[i] = A[i] + 1;

(b)Non-wrapping increment of i guarded by the
loop bound.

DS = {i ∣ 0 ≤ i ≤ 8 − 𝑝} 𝑓S = {i → (A, (i + 𝑝))}
(c) Possible polyhedral representation of the loops shown in part 4.14a and 4.14b.

Figure 4.14: Two example loops showna in part 4.14a and 4.14b with equal polyhedral
representation, shown in part 4.14c, but different wrapping behavior.

a This Figure was taken from Doerfert, Grosser, and Hack [DGH17].

4.2.6 Explicit Representation of Integer Arithmetic

While our experience and experimental data [DGH17] indicate that most programmers do not
exploit integer wrapping, it is however utilized by compiler passes or programming experts. The
loop nest in Figure 4.1 shows how a compiler pass reduced the complexity of the conditional
expression using an intentional underflow that needs to be represented precisely in the polyhedral
model. If not, the expression evaluation assumptions ΛEE, and thereby the runtime check, will
inevitably fail and the original code version has to be executed. While the behavior therefore
remains sound, the optimization only wasted compile and execution time.
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The challenge is to determine the intention from the code, thus if integer wrapping is the intended
semantics or if it is unintentional and will not be triggered by common inputs. As this is gener-
ally undecidable, we introduced a heuristic to determine if precise modeling might be beneficial
and cause only moderate overhead. The heuristic is derived from programs that caused our as-
sumptions to fail. The examples in Figure 4.15 show such a case where wrapping semantics is
needed. The Scalar Evolution analysis [BWZ94; PCS05], which is used to derive poly-
hedral value representations (ref. Section 6.4), models the if conditions always as an additive
recurrence, thus after the behavior of the scalar variable c in Figure 4.15c. This one bit counter
overflows intentionally every second iteration to alternate between false (0) and true (1).

for (i = 0; i < N; i++)
if (i % 2 == 0)
S(i);

else
P(i);

(a) Conditional with an ex-
plicit modulo computation.

aaaaaaaaaaa

for (i = 0; i < N; i++)
if (i & 1 == 0)
S(i);

else
P(i);

(b) Conditional with an implicit
modulo computation using a bit-

wise operation.

bool c = 0; // 1-bit
for (i = 0; i < N; i++)

if (c++ == 0)
S(i);

else
P(i);

(c) Conditional with an implicit
modulo computation using the

wrapping boolean c.

Figure 4.15: Three different but equivalent versions of a loop. In all versions the state-
ments S and P are executed in an alternating fashion.

Since all three examples in Figure 4.15 are equivalent, we also want their polyhedral representa-
tion to be. However, the overflow in part Figure 4.15c would cause the conservative expression
evaluation assumption 𝑁 < 3. This assumption restricts the optimization to factitious inputs
and the alternating behavior of the code is missed. Alternatively, we can precisely represent the
computation involving the variable c, thus employwrapping semantics for the increment. This is
reasonable as a one-bit variable was very likely intended to wrap. Similarly, we model wrapping
on all small integer types with less than 8 bits. We assume that such computations have been
placed by the compiler as the smallest type available to programmers is generally 8 bits long.

The final expression evaluation function is shown in Formula 11. It takes an expression e and
generates the polyhedral representation as well as a set of assumptions that guarantee correctness.

JeK≔ ⎧⎪⎪⎪⎨⎪⎪⎪⎩ (JeK𝑤, {}) if bits(e) < 8(JeK𝑝, ΛEE(e)) otherwise
(11)

Our initial implementation did only use explicit wrapping for small bit-width expressions that
were zero extended to a larger type (ref. Section 4.3). While the small bit-width constraint is still
enforced, a later patch7 introduced this logic for computations that do not involve type extensions.

7 Patch by Eli Friedman and review discussion are available online: https://reviews.llvm.org/D25287

https://reviews.llvm.org/D25287
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4.2.7 Evaluation

To determine the applicability effect of expression evaluation assumptions on the benchmarks
suites described in Section 2.3, we performed two experiments. The results, shown in Table 4.16,
are relative percentages of the baseline values presented in in Figure 3.3 and Table 3.4 on Page 26
and 27. Note that assumption overhead and misspeculation rates are discussed in Section 3.5.5.

While the number of SCoPs and the monotone applicability scores are lower across all bench-
mark suites, the effect is most significant for SPEC2006 and SPEC2017. If potentially wrapping
expressions are disallowed (ref. Table 4.16b), the number of SCoPs decreased by 88.5% for
SPEC2017. The applicability score for 𝛼 = 1, thus the number of affine loops that can be com-
bined with a fixed one (ref. Section 3.1.1), is down by 89.8%. As this score is always decreased
further than the number of SCoPs, we know that mostly SCoPs with multiple loops did contain
potentially wrapping expressions. Non-nested loops, thus depth 1 SCoPs, are least affected.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 37.3% 20.8% 9.0% 31.7%
# depth 1 SCoPs 37.8% 20.8% 8.6% 29.4%
# depth 2 SCoPs 11.1% 21.2% 13.8% 27.5%
# depth 3 SCoPs 100.0% 0.0% 0.0% 73.1%
# depth 4 SCoPs n/a n/a n/a 100.0%

C0 score 38.4% 20.7% 9.3% 34.6%
C1 score 46.7% 20.0% 12.0% 40.9%

(a) Relative results when potentially wrapping expressions were allowed during the SCoP detection but
SCoPs that contained them were ignored when the metrics were evaluated.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 40.9% 20.8% 11.5% 25.1%
# depth 1 SCoPs 42.9% 21.3% 11.6% 31.7%
# depth 2 SCoPs 11.1% 18.2% 11.7% 15.2%
# depth 3 SCoPs 66.7% 0% 0% 15.4%
# depth 4 SCoPs n/a n/a n/a 0%

C0 score 40.0% 20.3% 11.3% 22.0%
C1 score 33.4% 17.1% 10.2% 15.0%

(b) Relative results when potentially wrapping expressions were considered non-affine.

Table 4.16: Impact of potentially wrapping expressions on the applicability or Polly.
The results are relative to the baseline values shown in in Figure 3.3 and Table 3.4 on

Page 26 and 27.
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4.3 Reconciliation of Signed & Unsigned Values

Programming languages differentiate between signed and unsigned variables to extend the value
range and, in case of C/C++, to allow for different integer wrapping semantics. Program rep-
resentations, like the polyhedral model, consequently have to deal with signdness as well. In
the nowadays ubiquitous two’s complement binary representation the signedness of a variable
will however not influence its bit representation in the shared value range. The example code
sequence in Table 4.17 illustrates this for different signed and unsigned variables. In addition to
their bit representation, their value in both signed and unsigned interpretation, denoted as J ⋅ K𝑠

and J ⋅ K𝑢, is given. The increments in line 3 and 4 illustrate that addition does not differentiate
between the two interpretations. In fact, this is true for all common bit-wise and arithmetic op-
erations except comparisons, divisions, right shifts, and type extensions. To this end, low-level
code representations, e.g., assembly languages like LLVM-IR, do not associate signedness with
a bit string but instead with an operation, if the result depends on the operands interpretation.

Code Bit Repr. Signed Interpr. Unsigned Interpr.

1. int8_t s = 2 - 127; 0b1000011 JsK𝑠 = −125 JsK𝑢 = 131
2. uint8_t u = 4 - 129; 0b1000011 JuK𝑠 = −125 JuK𝑢 = 131
3. int8_t t = s + 1; 0b1000100 JtK𝑠 = −124 JtK𝑢 = 132
4. uint8_t v = u + 1; 0b1000100 JvK𝑠 = −124 JvK𝑢 = 132

Table 4.17: Signed and unsigned uses of the same bit pattern and the associated values
in both representations. Note that both values are equal modulo the maximal repre-

sentable value, here 28 = 256, as explained in Section 4.3.3.

4.3.1 Related Work

Type conversion that change the signedness and value of a variable are often considered pro-
gramming errors due to security concerns [Sun+15]. To this end, various approaches have been
devised to detect these signedness errors. As other integer arithmetic issues (ref. Section 4.2),
signedness errors generally depend on input data. Thus, instrumentation is often needed to detect
them at runtime. The first approaches were complete in the sense that they reported all errors
at runtime [Bru+07; Dan+10; Die+12]. However, follow up work by Pomonis et al. [Pom+14]
and Sun et al. [Sun+15] introduces a differentiation between benign and potentially problematic
signedness errors. The former is identified by static analysis and only the latter is instrumented
to reduce the overhead and false positive rate. While their definition of benign signedness errors

The reconciliation of signed and unsigned value interpretations is an extension to our work
on optimistic loop optimizations [DGH17]. It is integrated in LLVM/Polly to allow
inputs that use unsigned interpretation for control flow conditions or access functions.
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is different from ours, we also identify only certain signedness problems, namely in control flow
conditions and access functions. In contrast to these instrumentation schemes we generalize the
conditions under which signedness errors can occur. This allows to create a single check prior to
the SCoP (ref. Section 3.5) instead of a dedicated check for each potential error source. There are
also pure static techniques to detect [Cou+05; Kan12] and repair [Che16; Che+17] problematic
source code. Similarly, Coker and Hafiz [CH13] use a user-guided C source code analysis to de-
tect potential overflow, truncation and signedness bugs. To remove these security vulnerabilities
they introduce overflow tracking arithmetic, change the variable types or use explicit casts.

The sign-agnostic interval analysis presented by Gange et al. [Gan+14] is based on the super-
position of signed and unsigned interpretation. This is similarly to the dual representation we
propose in Figure 4.3.5 as an alternative for the current polyhedral modeling of low-level inputs.

4.3.2 Signed and Unsigned Interpretation of Values

The three signedness aware operations in LLVM-IR that are important for polyhedral modeling
are: comparisons, divisions and type extensions. While our implementation is focused on the
correct representation of these three operations, we will use C code examples and type casts
to increase readability. Even if not all low-level situations can be accurately translated to such
“high-level” code, they are generally sufficient to illustrate the problems. In addition, it shows
that correct and efficient reconciliation of signed and unsigned interpretation is not dependent
on the association of signedness to either values (C/C++) or operations (LLVM-IR).

for ( int8_t i = 0; i < ( int8_t) N; i++)
S(i);

for (uint8_t i = 0; i < (uint8_t) N; i++)
P(i);

Figure 4.18: Two loops that use N as an upper bound
but interpret it once as a signed and once as an un-
signed value. If this semantic difference is not taken
into account, any value for N that is not equal for
both interpretations will cause an incorrect iteration

domain for one of the statements.

For a consistent polyhedral program rep-
resentation with respect to signedness it
is crucial to interpret values depending on
their use. However, LLVM/Polly inter-
prets all values as signed (ref. Figure 4.3.5).
In order to ensure a correct polyhedral
model, unsigned value uses have to be con-
sidered invalid or reconciled with the other-
wise signed interpretation. An explanatory

example is given in Figure 4.18. If the two loop bounds are translated without the appropriate
adjustment for signed and unsigned interpretation, the iteration domains of statement S and P
would be equal. Though, for values of N that differ in the two interpretations, thus if the signed
bit is set, only the iteration domain of statement S should be empty. Due to signed interpretation
of the second loop bound, the number of iterations in the domain was determined to be JNK𝑠

instead of JNK𝑢, hence 28 = 256 iterations too few. Consistently, an unsigned interpretation of
the first bound will increase the iteration count of statement S by 256 if the signed bit of N is set.
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4.3.3 Transitioning Between Signed and Unsigned Value Representations

Assuming two’s complement representation, the difference of signed or unsigned interpretation
is only the sign of the most significant bit. If this bit is not set, the interpretations do not differ. If
it is set, the signed and unsigned interpretation of an 𝑛-bit string differ by exactly 2𝑛. To transition
between interpretations half of the value space is moved as illustrated in Figure 4.19.

[ − 2𝑛−1 0)
[2𝑛−1 2𝑛)

unsigned to signed: −2𝑛

signed to unsigned: +2𝑛

Figure 4.19: Graphical illustration of the transition between a signed and unsigned
interpretation of an 𝑛-bit value. If the interpretation was signed, each value in the lower
half of the value range, thus [ − 2𝑛−1, 0), is increased by 2𝑛. If the interpretation was

unsigned the values in the upper half, thus [2𝑛−1, 2𝑛), are decreased by 2𝑛.

To translate between signed and unsigned interpretation in the polyhedral model we have to
determine the affine transition functions s2u and u2s such that

s2u (J𝑥K𝑠) ≔ J𝑥K𝑢

and
u2s (J𝑥K𝑢) ≔ J𝑥K𝑠.

In Formula 12 and 13 their implementation as piecewise defined affine functions is shown.

s2u(𝑥) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩ 𝑥 if 𝑥 ≥ 0

𝑥 + 2𝑛 otherwise
(12)

u2s(𝑥) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩ 𝑥 if 𝑥 < 2𝑛−1

𝑥 − 2𝑛 otherwise
(13)

Alternative, quasi affine versions are provided in Formula 14 and 15.

s2u(𝑥) = (𝑥 + 2𝑛)mod 2𝑛 (14)

u2s(𝑥) = ((𝑥 + 2𝑛−1)mod 2𝑛) − 2𝑛−1 (15)
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The correctness of the piecewise defined versions follows from the graphical illustration in Fig-
ure 4.19. To prove the quasi affine functions correct we can distinguish two cases. First we
assume the value of 𝑥 is equal in both interpretations, thus 𝑥 ∈ [0, 2𝑛−1). The s2u function in
Formula 14 will first increase the value of 𝑥 by 2𝑛 such that it is between [2𝑛, 2𝑛 + 2𝑛−1). How-
ever, the modulo operation will then reverse this increase and yield the original value of 𝑥. For
the unsigned to signed transition, hence u2s in Formula 15, the value is increased and decreased
by 2𝑛−1 also yielding the original input. Note that the modulo is not affecting the intermediate
result as 𝑥 is between [2𝑛−1, 2𝑛) after the increment. For the second case we have to determine
the effects if the most significant bit of 𝑥 is set, thus if 𝑥 < 0 or 𝑥 ≥ 2𝑛−1. Here the signed
interpretation of 𝑥 has to be in [ − 2𝑛−1, 0) and the unsigned interpretation in [2𝑛−1, 2𝑛). The
signed to unsigned conversion of the former will only increase the value to the range [2𝑛−1, 2𝑛)
as the modulo operation is not affecting it. For the unsigned to signed transition the modulo
operation on the value of 𝑥 + 2𝑛−1 will yield a result in [0, 2𝑛−1). The final subtraction moves
this range down to [ − 2𝑛−1, 0). Note that for each of the two cases all operations did preserve
the ordering of the values for each of the considered intervals. Thus, if 𝑥 < 𝑦 and both 𝑥 and 𝑦
are in [ − 2𝑛−1, 0) or alternatively in [0, 2𝑛−1), then s2u(𝑥) < s2u(𝑦). Similarly, if 𝑥 < 𝑦 and
both 𝑥 and 𝑦 are in [0, 2𝑛−1) or alternatively in [2𝑛−1, 2𝑛), then u2s(𝑥) < u2s(𝑦).

Code Signed Interpretation

1. int8_t N = ...; 𝑁
2. int8_t s = N - 15; 𝑁 − 15

3. uint8_t u = s;
⎧⎪⎪⎪⎨⎪⎪⎪⎩ 𝑁 − 15 0 ≤ 𝑁 − 15

𝑁 + 241 otherwise

4. uint8_t v = u + 4;
⎧⎪⎪⎪⎨⎪⎪⎪⎩ 𝑁 − 11 0 ≤ 𝑁 − 15

𝑁 + 245 otherwise

5. int8_t t1 = v;

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑁 − 11 −117 ≤ 𝑁 ≤ 138
𝑁 − 276 139 ≤ 𝑁
𝑁 + 245 otherwise

6. int8_t t2 = v; 𝑁 − 11 (simplified)

Table 4.20: Signed polyhedral representation of different signed and unsigned values.
Note that the last representation was simplified using the possible range of N and the

fact that the signed subtraction is not allowed to underflow.

The example code sequence in Table 4.20 illustrates how the polyhedral representation is changed
when values transition between interpretations. The code is shown on the left and the signed
interpreted polyhedral value on the right. In line 3, the signedness of s is changed. This alters
the value depending on the signed bit. If it is not set, hence if 𝑁 − 15 ≥ 0, the value of s is
equal in both interpretations. Otherwise, the value has to be adjusted to account for the different
interpretation of the signed bit which increases it by 28 = 256. The addition in line 4 will
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increment both pieces of the polyhedral representation. With the switch to a signed interpretation
in line 5, the polyhedral representation will distinguish three cases in total. However, it converges
to the single piece shown in line 6 if we employ context information. First note that the type of
N allows to infer its value range, here −128 ≤ 𝑁 < 128. This range can be refined due to the
signed underflow that is not allowed to happen in line 2, thus we can conclude that 𝑁 ≥ −113.

4.3.4 Unsigned Representation Assumptions

int32_t N = ...;
for (i = 0; i < (uint32_t) N; i++)

S(i);

Figure 4.21: Example loop that will
exhibit more than 231 iterations if the

value of N was initially negative.

While the polyhedral model allows precise inter-
pretation of signedness, it is, similar to precise in-
teger arithmetic, often not preferable. For an ex-
ample consider Figure 4.21. If modeled precisely,
the iteration domain for statement S has two pieces.
One describes the case where N was negative prior
to the cast, the other the case where it was not. For the latter case the loop has 𝑁 iterations but
for the former it iterates at least 231 times. If each iteration touches only one new float memory
cell, hence 4 distinct bytes, the loop would iterate through more than 8.5 gigabytes of data. As
this is unlikely to happen for general purpose code we introduce assumptions that prevent the
need for such enormous constants in control flow conditions and access functions. Instead of a
precise transition between signed and unsigned interpretation we derive unsigned representation
assumptions ΛUR that imply equal interpretations. Thus, 𝑛-bit control flow conditions and ac-
cess functions that are at some point interpreted as unsigned will be required to be in the range[0, 2𝑛−1). If we denote these expressions as ⟨uexp⟩, the unsigned representation assumption
ensure that:

∀e ∈ ⟨uexp⟩ ∶ ΛUR(e) ⟹ JeK𝑠 = JeK𝑢

To prevent conservative assumptions (ref. Section 4.2.6) we can alternatively translate unsigned
to signed interpretations instead. This is done for the constant divisor of an unsigned divisions as
well as small bit-with type extensions. For all other unsigned uses of values we will determine
the parameter valuations that will prevent a difference in the interpretations. To this end, all
parameter combinations that result in a negative value for the signed interpretation of a value
e ∈ ⟨uexp⟩ are first isolated and then negated. Note that this is only necessary for the iterations
in which e is executed. If e is contained in statement S we check for which iterations i ∈DS the
signed and unsigned representations would differ, thus the signed interpretation is negative. The
definition of unsigned representation assumptions ΛUR is shown in Formula 16.

ΛUR ≔ ⋂
e∈⟨uexp⟩ΛUR(e) = ⋂

e∈⟨uexp⟩¬ 𝜋𝜌( { i ∈ DS ∣ JeK𝑠(i) < 0 }) (16)
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4.3.5 Limitations & Extensions

sign-less

signed unsigned

Figure 4.22: Weak ordering de-
fined over the three signedness tags:
sign-less, signed and unsigned.

To avoid complexity issues and assumptions, it would
be ideal if signedness would influence the polyhedral
representation only if absolutely necessary. Thus, only
if a value is interpreted as both signed and unsigned in
the analyzed code region or, to be more precise, if a
value is interpreted as both signed and unsigned in one

execution of the analyzed code region. However, to simplify the implementation, polyhedral
optimizers like LLVM/Polly do assume one representation as the default and require the other
to be reconciled with this choice. An alternative, and arguably better, implementation would use
a sign-agnostic interpretation by default and switch to an explicitly signed representation only
if required. This implementation choice would be especially suited for low-level languages that
feature only a few operations which are influenced by the signedness of the operands. Hence,
the polyhedral representation of a value should be considered “signed-less” as long as it is not
determined by an operation. As soon as it is, the value assumes the signedness of the operation
without introducing any additional overhead, thus without complexity increase or assumptions8.
Only if a valuewith an already specified signedness is used in an operation that requires a different
interpretation, a conversion is performed. The conversion can then be done precisely, thus with a
piecewise definition, or optimistically, hence with an assumption about the value. Conceptually,
this can be seen as an additional tag attached to the polyhedral value representation such that the
possible tags (sign-less, signed and unsigned) form the weak ordering shown in Figure 4.22.

A use case for the described principles is showcased by the templated function in Figure 4.23.
An ideal implementation of a polyhedral tool would derive the same concise and assumption free
representation regardless of the signedness of DataTy and CtrTy. However, further studies are
needed to determine the actual benefit of such a more evolved representation scheme.

template<typename DataTy, typename CtrTy>
DataTy sum(DataTy *A, CtrTy N) {
DataTy res = 0;
for (CtrTy i = 0; i < N; i++)
res += A[i];

return res;
}

Figure 4.23: Example to showcase the usefulness of a sign-less polyhedral representa-
tion. If the signedness of a polyhedral value representation is determined on demand
and not specified by default, the polyhedral representation for the shown function is not

influenced by the instantiation of DataTy and CtrTy.

8 Constants are a special case as they can be adjusted without assumptions or a piecewise representation.



118 Correctness

4.3.6 Evaluation

To evaluate the reconciliation of signed and unsigned values we follow the same scheme before,
e.g., in Section 3.3.4. The metric results shown in Table 4.24 are percentages of the baseline
values presented in in Figure 3.3 and Table 3.4 on Page 26 and 27. For the upper part, SCoPs
were allowed to contain unsigned interpreted values but we excluded those when the metrics
were evaluated. For the lower part, SCoP detection forbid unsigned interpreted values.

While the number of SCoPs decreases in both experiments and across all benchmark suites, the
second experiment shows an increase (> 100%) in the monotone applicability score (ref. Sec-
tion 3.1.1). This indicates that the representation of unsigned values causes more smaller and
less larger SCoPs for the SPEC benchmarks. One reason is the complexity increase that comes
with the unsigned representation, and which can cause valid SCoPs to be dropped due to compile
time concerns (ref. Section 3.5.5.3). As this happened only for depth 2 SCoPs, we require the
SCoP counts per depth, or alternative the monotone applicability score for 𝛼 = 1, to identify the
problem. In all other metrics this trend would have gone unnoticed since depth one results over-
shadow it, e.g., the SCoP count is actually 7.3%–21.4% lower without unsigned value support.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 89.1% 86.1% 90.0% 89.4%
# depth 1 SCoPs 86.3% 86.3% 90.9% 90.1%
# depth 2 SCoPs 84.4% 84.8% 85.1% 88.4%
# depth 3 SCoPs 100.0% 100.0% 71.4% 88.5%
# depth 4 SCoPs n/a n/a n/a 100.0%

C0 score 87.2% 86.1% 89.8% 89.2%
C1 score 73.3% 85.7% 83.3% 88.6%

(a) Relative results when SCoPs containing unsigned interpretations were omitted for the metrics.

Metric SPEC2000 SPEC2006 SPEC2017 LLVM-TS

# SCoPs 82.7% 87.0% 90.4% 87.5%
# depth 1 SCoPs 78.6% 82.2% 89.0% 86.1%
# depth 2 SCoPs 122.2% 115.2% 107.4% 89.1%
# depth 3 SCoPs 100.0% 100.0% 85.7% 92.3%
# depth 4 SCoPs n/a n/a n/a 100.0%

C0 score 86.4% 90.6% 91.6% 88.4%
C1 score 133.3% 114.3% 104.6% 90.2%

(b) Relative results when SCoPs were not allowed to contain unsigned interpreted values.

Table 4.24: Applicability results for unsigned value support. The numbers are percent-
ages of the baseline results shown in Figure 3.3 and Table 3.4 on Page 26 and 27.



Chapter 5

Optimizations & Applications

“ The increases in demands on hardware and software will continue:
human expectation grows even faster than hardware performance. ”
Bjarne Stroustrup, Software Development for Infrastructure, 2012

Chapter 3 described techniques to improve the applicability and robustness of polyhedral-model-
based tools. Chapter 4 introduced ways to ensure correctness in the presence of common seman-
tic mismatches between programming languages and the polyhedral model. This chapter puts
these advances to work and describes the application and optimization through polyhedral tools.

One omnipresent complaint about polyhedral techniques is the complexity. In this context, com-
plexity refers not only to the exponential compile time cost but also the usability for non-experts.
To improve both, we present several enhancements that reduce different kinds of complexity in
Section 5.1. One goal of these enhancements was to allow common users to comprehend and
guide polyhedral optimizations by providing easy to understand feedback and the possibility to
augment the information available to the optimizer. Afterwards, we present a polyhedral reduc-
tion detection scheme in Section 5.2. Our technique is centered around the precise, iteration-wise
dependences already computed by a polyhedral optimizer. In contrast to common, mostly syn-
tax based, reduction detection approaches, we leverage the dependence information to recognize
complex memory reductions that are interleaved with other computations in affine loop nests.
Finally, Section 5.3 presents polyhedral expression propagation, an optimization that differs
from classical polyhedral techniques as it does not (principally) alter the schedule, thus iteration
order of statement instances, or the data layout. Instead, it changes the time and place intermedi-
ate results are computed. The goal is to remove dependences and improve hardware utilization.
Though, in the best case, we can additionally eliminate the original storage locations of the former
intermediate results, thereby reducing the memory requirement and potentially even cache con-
tention. This approach combines the precise dependence information and code transformation
capabilities of the polyhedral model with target specific heuristics to generate high-performance
code that would be hard to write and maintain by hand.
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5.1 Complexity Reduction

One limitation of a polyhedral optimizer embedded in a general purpose compiler, is its com-
plexity. This is true for the exponential compile time cost but also for the polyhedral optimizer
tool itself. Especially non-expert users that want to perform polyhedral optimizations on their
code base often need guidance and support. The goal should be an easy to use, fast, and com-
prehensible optimizer which allows casual users to leverage the optimization capabilities of the
polyhedral model. While robust applicability (ref. Chapter 3) and correctness (ref. Chapter 4) are
important steps towards this ambitious goal, we have to ensure that the user is able to understand
and, if necessary, guide the transformations.

5.1.1 AST Level Annotations

#pragma reduction parallel (+ : sum)
for (i = 0; i < N; i++)

for (j = 0; j < P; j++)
#pragma simd
for (k = 0; k < M; k++)
sum[j][k] += i + j + k;

Figure 5.1: Example where the outermost
loop is known to only reduction carry reduc-
tion dependences (ref. Definition 5.13) caused

by the computation of sum.

In order to provide high-level information
to the user, LLVM/Polly offers debug
outputs in various stages of the pipeline.
The easiest to understand are AST level
annotations for the transformed loop nest.
Before our extension, LLVM/Polly was
only able to generate annotations for paral-
lel loops. Now, the minimal dependence dis-
tance as well as the reduction dependences
(ref. Definition 5.13) that limit parallelism can be shown to the user. Two examples that illustrate
the minimal dependence distance annotations are given in Figure 5.2. Similarly, if loops only
carry reduction dependences, annotations like the one shown in Figure 5.1 are produced.

While we introduced minimal dependence distance annotations to inform the user, they can also
justify optimizations. In the minimal_dependence_distance branch of our research proto-
type (ref. Section 2.2.3) we utilize the information to justify vectorized execution of innermost
loops. In case the chosen vector with is only conditionally smaller than the minimal dependence
distance, we employ assumptions to ensure correctness (ref. Section 3.5). For the example in

This Section describes automatic and semi-automatic enhancements towards fast and reli-
able polyhedral optimization that can be understood and guided by non-expert users. The
improvements were mostly developed during our studies on polyhedral optimizations for
data parallel languages [Kur17; MDH16] and our work on Optimistic Loop Optimiza-
tions [DGH17]. The described extension are all available in LLVM/Polly except the
minimal dependence distance guided vectorization (ref. Section 5.1.1) and the language
specific context knowledge (ref. Section 5.1.2.2).
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Figure 5.2a, we derive the assumption 𝑝 ≤ −4∨𝑝 = 0∨𝑝 ≥ 4 which allows vectorization with a
width of 4. To generate it, we assume a loop carried dependence distance less than 4, e.g., for the
RAW dependence { S(𝑖) → S(𝑖− 𝑝) ∣ 𝑝 < 0 ≤ 𝑖 < 𝑁 + 𝑝∧ (i − p) − i < 4 }, project the result
onto the parameter space, and negate it. Similarly, we derive the assumption 𝑁%2 = 0∨𝑁 ≤ 1
to enable vectorized execution of two consecutive iterations for the loop shown in Figure 5.2b.

#pragma min. dep. dis.: max(-p, p)
for (i = 0; i < N; i++)

S: A[i] = A[i + p] + 1;
(a)Loopwith a simple parametric dependence dis-
tance. For p=0 the loop is parallel as there are no

inter-iteration dependences.

#pragma min. dep. dis.: ((N-1)%2)+1
for (i = 0; i < N; i++)
A[i] = A[N - i] + 1;

(b) Loop that carries dependences of various
lengths but source and target are always at least

((N - 1) % 2) + 1 iterations apart.

Figure 5.2: Minimal dependence distance annotations we added to LLVM/Polly.

5.1.2 Leveraging Domain And User Knowledge

The importance of domain and user knowledge for high-performance and productivity can be es-
timated by the enormous success of domain specific languages (DSLs) in both research and indus-
try [Bag+15; Heg+14; Kös+14; MVB15; Rag+12; Rag+13]. Given the complex requirements
code has to fulfill for a sound and precise polyhedral representation (ref. Chapter 3 and 4), it is not
uncommon that approximations and uncertainty about the expected inputs limit the optimization
potential. So far we used optimistic assumptions based on statically predictable choices as well
as dynamically collected information to resolve some uncertainties (ref. Section 3.5). Though,
these techniques are not free in terms of compile time, code size, misspeculation overhead, and
potentially profiling effort. In addition, the runtime verification cost of optimistically assumed
knowledge will grow with the complexity of the assumptions.

5.1.2.1 User Provided Context Knowledge

The assumptions we presented so far are mostly speculative predictions of runtime values that
have to hold for polyhedral optimization (ref. Section 3.5). Since they also have to be verified,
code versioning is used. This will not only increase the code size, and often more importantly
the compile time, but also induce a reoccurring verification cost at runtime.

Generally, we can guide the programmer towards providing additional information if static infor-
mation is insufficient, thus assumption were needed to represent and optimize the code [DGP15].
Any additional information might allow to simplify the assumption set (ref. Section 3.5.3), and
thereby also the synthesized runtime check. In the best case, additional information will not only
allow us to generate more efficient checks but potentially even to remove the checks completely.
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To ask the user for context knowledge, we first issue descriptions of the taken assumption con-
straints, together with their source code location and cause, e.g., no integer overflow assumption
𝑁 < 231 in line 5, column 7. The user may now augment the source code with application
specific knowledge that was not available in the original program but that was instead assumed
during the modeling and optimization steps. In C/C++ programs this is done via calls to the
__builtin_assume function. A statement such as __builtin_assume(N < 32768) would
for example assure the compiler that 𝑁 is always less than 32768 = 215 at this program point.
In all subsequent compilations of the source code, the user provided assumptions are utilized to
simplify the optimistic ones taken automatically (ref. Section 3.5.3). In the best case, application
specific knowledge eliminates the need for runtime checks completely. Though, any information
may result in a reduction of the runtime checks and a simplification of the generated code.

5.1.2.2 Language Specific Context Knowledge

Polyhedral optimizers started to adopt manually annotated C-like programs [Bag+15] and also
specialized DSLs [Bag+18; MVB15; Pra+17; Vas+18] to simplify the extraction of domain
information. Though, we also need to improve the handling of general purpose programming
languages. In Section 3.5.3 we described how impossible and undefined behavior can be used to
simplify the assumption set. As part of this effort we use the annotation capabilities introduced
in Section 5.1.2.1 to automatically generate program annotations in LLVM-IR that represent
otherwise lost high-level knowledge from the source language. These annotations ensure that
accesses to constant-sized arrays stay in-bounds, which is known in C/C++ but not in LLVM-
IR. Similarly, other high-level facts could be communicated to low-level optimizers in order to
simplify the required assumptions and potentially allow for more input specific optimizations.

1: procedure dependenceFilter( S : SCoP, D: IMap, L : Loop)

First determine the relative loop depth of the parallel loop L inside the SCoP S.

2: ld ← S.getRelativeLoopDepth(L)

Then we iterate over all dependences and look for inter-iteration dependence carried by the parallel
loop L. Thus, those that do originate and end up in different iterations of L.

3: for d = {(S(i), T(j)) ∣ 𝑝𝑟𝑒𝑑(i, j)} in D do
4: if S is not in L or T is not in L then continue
5: if i ld = j ld then continue
6: D ← D - d
7: end for
8: return D

Algorithm 5.3: Dependence filter for parallel loops without barriers.
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In our effort to optimize programs written in data parallel languages [MDH16], we used the ex-
isting parallelism information to eliminate conservative dependences induced by approximations
(ref. Section 3.4). This effort led to the dependence filter shown in Algorithm 5.3. The proce-
dure takes the SCoP S, the set of dependencesD, and a parallel loop L. It returns the dependence
subset that will not violate the parallelism constraints known to hold. Kurtenacker [Kur17] later
introduced support for parallel loops which may also contain barriers.

5.1.3 Representation of Partially Infinite Loops

uint8_t i, LB = ..., UB = ...;
for (i = LB; i != UB; i += 2)
S(i);

Figure 5.4: Potentially infinite loop with an
iteration counter i that will wrap around if
UB < LB. The iteration count is only finite if

|UB - LB| % 2 == 0.

The loop trip count is of special importance
for all loop centric optimizations. Some
transformations, e.g., loop unrolling, are
commonly applied if the loop trip count
is low while others, e.g., vectorization, are
more profitability for longer running loops.
However, the trip count is often not a com-

pile time constant and could even be unbounded under certain parameter valuations. In the
context of polyhedral optimizations, Benabderrahmane et al. [Ben+10] introduce modeling and
code generation techniques for unknown loop bounds. Though, their technique introduces spu-
rious dependences that are not well suited to handle a partially unbounded loop as shown in
Figure 5.4. First note that for the example the loop counter i is generally allowed to overflow,
thus wrap around (ref. Section 4.2). If now the difference between LB and UB is not divisible by
the stride, here 2, the loop will not terminate. Figure 5.5 shows a similar but more complicated
partially unbounded loop. The piecewise defined loop counter (ref. Section 6.4) is not allowed to
wrap around but the loop might still not terminate. In practice, as in the shown examples, possi-
bly unbounded loops are often a result of parametric loop bounds with an equality exit condition,
thus == or !=. Such exit conditions can be introduced by programmers but also by canonicalizing
program transformations performed prior to the polyhedral modeling.

signed i = LB;
while (i != UB) {
S(i);
i += (i > UB) ? -3 : 5;

}

Figure 5.5: Partially unbounded
loop with an iteration counter that
has a piecewise defined but affine
evolution (ref. Section 6.4). The
loop terminates only for some val-
ues of LB and UB, i.a., 0 and 8.

For polyhedral-model-based techniques a potentially in-
finite loop results in a partially unbounded iteration do-
main. While this is a precise representation of the input,
it is also a cause for increased compile time and not nec-
essarily supported by all algorithms [Ben+10]. Given
these disadvantages and no immediate benefit for poly-
hedral optimizations, we believe it is reasonable to pre-
vent the representation of unbounded iteration domains,
especially if loops are only partially infinite. To deter-

mine the iteration domain, including the trip counts, many high-level polyhedral tools use the
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polyhedral extraction tool PET [VG12], while low-level compiler optimizations usually rely on a
recurrence based approach. Even though both work reasonably well in their targeted areas, their
advantages are orthogonal, thus leave room for improvement. PET models the domain for loop
nests with affine conditions accurately, even though break, continue, equality exit conditions,
and non-unit strides can easily lead to complex, piecewise defined, and partially unbounded trip
counts. Recurrence based approaches, like the Scalar Evolution analysis [BWZ94; PCS05]
in GCC and LLVM, can only handle bounded loops that have a closed form trip count expres-
sion (ref. Section 6.4), thus not the loop shown in Figure 5.4. In LLVM/Polly we replaced the
use of explicit trip counts with the precise iteration domain generation presented in Section 3.3.
Now we combine the results of that domain generation with bounded loop assumptions ΛBL to
ensure finite and concise iteration domains.

Without bounded loop assumptions, the iteration domain of statement S in Figure 5.4 is shown
in Formula 1. It was generated by the algorithm described in Section 3.3 and expresses the
normalized loop iterations for which S is executed. Given the simplicity of the input loop, the
domain is quite complex. It consists of the three disjuncts shown in separate lines in Formula 1.

DS = { i ∣ ( 0 ≤ i ∧ 2i < UB − LB )
∨ ( 0 ≤ i ∧ (LB + UB)%2 == 1 ∧ 2i > UB − LB )
∨ ( 0 ≤ i ∧ (LB + UB)%2 == 0 ∧ LB ≥ UB + 2 ) } (1)

To keep the iteration domains bounded and concise in the presence of partially infinite loops,
we generate preconditions that exclude all unbounded parts. In our example, all three disjuncts
provide a lower bound for the loop dimension i, but only the first one also bounds it from above.
Thus, a bounded iteration domain is only guaranteed if the two last disjuncts both evaluate to
false. To this end, we first denote the set of unbounded disjuncts in the domain DS as D∞

S . The
bounded loop assumptions ΛBL(S), for a statement S, are then defined as the negated projection
of the unbounded part D∞

S onto the parameter space 𝜌. Because assumptions restrict the set of
valid inputs we have to intersect the result for all statements in the SCoP as shown in Formula 2.

ΛBL ≔ ⋂
S ∈ SCoP

ΛBL(S) = ⋂
S ∈ SCoP

¬𝜋𝜌(D∞
S ) (2)

for (i = 0; ...; ...)
for (j = 0; j < i; ...)
S(i, j);

Figure 5.6: Generic loop nest
with dependent conditionals.

Note that disjuncts can also be bounded by prior dimensions,
as illustrated in Figure 5.6. Here, the constraints 0 ≤ j < i
suffice to bound the inner dimension of statement S.

The number of required bounded loop assumptions is shown
in Table 3.42 on Page 75. Since unbounded loops cannot be
optimized by Polly, these numbers can be interpreted as the applicability impact. Thus, the
number of valid SCoPs would decrease by 1.8%-37.7%, depending on the benchmark suite.
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5.2 Reductions in the Polyhedral Model

Reductions are associative and commutative operations that reduce input data into a reduction
location [Mid12]. A reduction in a loop will consequently induce a loop carried Dependence due
to the reoccurring update of the reduction location. While loop carried dependences generally
prevent transformations, especially parallel execution, the reduction dependences [PW94] inherit
associativity and commutativity from the reduction operations that caused them. Consequently,
reduction dependences do not prevent us from reordering the participating statement instances
as long as we do not introduce non-reduction accesses to the reduction location in-between them.

Since reductions are common to all kinds of programs and their special properties allow par-
allel and vectorized execution of seemingly sequential loops, there has been a lot of research
into their detection and optimization. While reductions were detected mostly statically [GO17;
Jou86; JD89; PP91; PE95; RF93; Str17; SKN96; XKH04] there are also dynamic and specula-
tive approaches with runtime verification [DYR02; Joh+12; RAP95; RP95; YR06]. Other works
mainly focus on the exploitation of reduction properties [Ble89; FG94; GR06; RKC16; RF94].

for (i = 0; i < M; i++)
S: s[i] = 0;

for (j = 0; j < N; j++) {
P: q[j] = 0;

for (k = 0; k < M; k++) {
Q: s[k] = s[k] + r[j] * A[j][k];
R: q[j] = q[j] + A[j][k] * p[k];

}
}

Figure 5.7: BiCG Polybencha kernel ex-
tracted from the BiCGStab linear solver.

a Online: https://web.cse.ohio-state.
edu/~pouchet.2/software/polybench/

In the following we introduce (an extended
version of) our polyhedral-model-based mem-
ory reduction detection [Doe+15]. We also
describe several potential ways to exploit re-
ductions in a polyhedral optimizer. To mo-
tivate this work we can consider the BiCG
kernel shown in Figure 5.7 and its polyhedral
representation graphically illustrated in Fig-
ure 5.8. The innermost 𝑘-loop contains two
statements, Q and R, which both perform a re-
duction computation. Thus, the dependences

induced by Q, which are carried by the 𝑗-loop, as well as the dependences induced by R, which
are carried by the 𝑘-loop, are both reduction dependences. We indicate these reduction depen-
dences in Figure 5.8 through dotted arrows. If parallelization and vectorization of the reduction
computations are desired, there are multiple possibilities. As vectorization is most beneficial for
consecutive memory accesses, we could decide to keep the loops in their original order.

Our earlier approach to detect memory reductions [Doe+15] is available and enabled
in LLVM/Polly. In this section we describe a generalized version which can be
found in the reductions branch of our research prototype. LLVM/Polly does feature
reduction-enabled scheduling while our evaluation [Doe+15] also employs reduction en-
abled code generation (ref. Section 5.2.3). Parts of our research were introduced into the
Sambamba framework [Str+15] and are described in detail in the thesis of Streit [Str17].

https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
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Figure 5.8: Graphical illustrationa of the polyhedral representation build for the BiCG
kernel shown in Figure 5.7. Each coordinate system corresponds to the iteration domain
of one source code statement. The dots represent the statement instances and arrows

denote dependences between them.

a Parts of this figure were first presented by Doerfert et al. [Doe+15].

If we decided to keep the original loop order for the R and Q statements, we would want to
employ coarse-grained parallelism in the outer 𝑗-dimension and vector instructions in the in-
ner 𝑘-dimension. While the associativity and commutativity of reduction dependences allow
us to reorder the participating statement instances, we cannot simply execute them in parallel
because that would create racing updates of the reduction location. Instead we have to employ
either atomic read-modify-write operations or privatize the locations and accumulate the private
copies at the end. The pseudo-code shown in Figure 5.9 illustrates both strategies for the reduc-
tions in the BiCG kernel. While atomic updates are a viable solution in some contexts [YR06],

parfor (j = 0; j < N; j++) {
qpriv[4] = {0, 0, 0, 0}
for (k = 0; k < M; k += 4) {

atomic_vec4_add(&s[k], r[j] * A[j][k:3]);
qpriv[0:3] = qpriv[0:3]+A[j][k:3]*p[k:3];

}
q[j] += qpriv[0]+qpriv[1]+qpriv[2]+qpriv[3];
// Remainder loop
for (k = M - M % 4; k < M; k++) {
atomic_add(&s[k], r[j] * A[j][k]);
q[j] = q[j] + A[j][k] * p[k];

}
}

Figure 5.9: Pseudo-code for a parallelized and vectorized ver-
sion of the BiCG kernel shown in Figure 5.7.

they are generally expensive.
Especially for smaller tasks
the overhead of atomic opera-
tions might outweigh the actual
work [PE95]. Additionally, the
vectorization benefit is lost if
the hardware does not provide
vectorized atomic updates. We
therefore focus our discussion
(ref. Section 5.2.2) and the eval-
uation (ref. Section 5.2.4) on
privatization as it is generally
well-suited for the task at hand.
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5.2.1 Reduction Definition

R(k ): q[j] = q[j] + A[j][k ] * p[k ];

DRAW = DWAW = DWAR ={ R(𝑘) → R(𝑘 + 1) ∣ 0 ≤ 𝑘 < 𝑀 − 1 }
R(k+1): q[j] = q[j] + A[j][k+1] * p[k+1];

D
W
AW

D W
AR

D
RAW

Figure 5.10: Two consecutive instances of the statement R
with regards to the 𝑘-loop shown in Figure 5.7.

The reduction definition used
often in related works and
(high-level) programming, is
syntactic and centered around
a single statement that reads a
value, modifies it with an asso-
ciative and commutative opera-
tion, and stores it back into the
originally read location. The

dependences (RAW, WAR, and WAW) caused by such a reduction inherit the associativity and
commutativity, if, in-between the reduction operations, which are commonly part of a loop, no
other operation reads or writes the reduction location. In our initial work on memory reduc-
tions [Doe+15], we also subjected ourselves to this general idea. To highlight the dependences
caused by a reduction computation we again consider part of the BiCG example shown in the
Figure 5.7. For two consecutive but abstract statement instances of statement R in the 𝑘-loop,
the dependences illustrated in Figure 5.10 manifest. In our earlier work [Doe+15], we first iden-
tified reduction-like computations in a statement (here q[j] = q[j] + ...) and then looked
for dependences that matched the shown pattern1, namely RAW and WAW (and WAR) depen-
dences between two instances of a reduction-like computation. Though, this will fail to detect
reductions that span multiple statements. In Figure 5.11 such situations are shown as high-level
C/C++ examples. However, in the low-level representation that is the input to LLVM/Polly,
all loop carried reductions on a scalar variable will involve multiple “locations” in the form of
SSA instructions: The phi node that translates the value from one iteration to the next, and the
actual associative and commutative operation. Since these can easily be in different polyhedral
statements, thus basic blocks for LLVM/Polly, we have to generalize our reduction definition.

for (k = 0; k < M; k += 4) {
R0: q[j] += A[j][k+0] * p[k+0];
R1: q[j] += A[j][k+1] * p[k+1];
R2: q[j] += A[j][k+2] * p[k+2];
R3: q[j] += A[j][k+3] * p[k+3];

}

(a) Statement R from the example in Figure 5.7
after the innermost loop body was unrolled

four times.

for (i = 0; i <= I; i++) {
for (j = 0; j <= J; j++)

T: sum = sum + A[i][j];
U: result = sum;

for (k = 0; k <= K; k++)
V: sum = sum + B[i][k];

}

(b) Two scalar reductions which in SSA form will
cause phi nodes in the loop headers.

Figure 5.11: Reductions spanning multiple syntactic statements.

1 The paper actually states that either RAW or WAW dependences are sufficient to detect reduction dependences.
However, this is not the case if we allow partial reductions where the read and write access have different but
overlapping access ranges, e.g., Figure 5.15. Our implementation in LLVM/Polly was not affected.
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5.2.1.1 Dependence-Centered Reductions

A good definition for reductions in the polyhedral model should be as general as possible while
ensuring all properties we are interested in. These properties, thus associativity and commutativ-
ity on a dependence level, stem from the binary computations that are performed in the program.

In the following, we will use ⊕ to denote a generic associative and commutative binary operator
and assume each polyhedral statement consists of a single binary operation. While we want to
identify reductions in a general polyhedral program representation, thus with polyhedral com-
pound statements that can contain multiple binary operations as well as write accesses, we will
restrict the setting for now to ensure a single write. This is not a conceptual limitation but allows
us to base our reduction definition completely on dependences and atomic binary computations.
To deal with compound statements we either split them after each write access or employ an
intra-statement dependence analysis similar to the one used in our earlier approach [Doe+15].

Reduction Computation Definition 5.12

A binary computation w = r0 ⊕ r1, with a binary operator ⊕ that is associative and com-
mutative, defines a reduction computation c for each operand. Thus, c0 ≔ (w, ⊕, r0) is a
reduction computation from r0 to w and c1 ≔ (w, ⊕, r1) is a reduction computation from r1

to w, both with the reduction operator ⊕.

A copy assignmentw = r defines a reduction computation c ≔ (w, ⊕, r) for each associative
and commutative binary operator ⊕ that has an identity (or neutral) element.

To define a reduction in the polyhedral model, we first define a single reduction computation
in Definition 5.12. It is a binary computation with an associative and commutative operator or,
alternatively, a copy assignment. In contrast to classical definitions, we do not require the write
w to be equal (syntactically and semantically) to the reads r0 and r1. We also do not specify if
these are scalar accesses or memory accesses.

Reduction computations are not useful on their own but they are later needed to identify reduction
dependences, as defined in Definition 5.13. Reduction dependences are useful as they do not
(directly) cause validity constraints [PW94] which have to be fulfilled by schedule optimization.

Reduction Dependence Definition 5.13

A reduction dependence between two statement instances inherits associativity and commu-
tativity from the underlying computations. Commutativity allows the source and the target
to be executed in any order, and associativity allows parallel execution. Reduction depen-
dences do consequently not directly restrict schedule optimization [PW94] but appropriate
privatization dependences (ref. Section 5.2.2.1) are necessary for polyhedral optimization.
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While Definition 5.13 states the property of a reduction dependence, it is not necessarily helpful
to identify them. To this end, we start by defining a simple predicate for reduction dependences
in Theorem 5.14. Similar to the definition we used in our earlier work [Doe+15], and which was
briefly described in Section 5.2.1, this predicate will identify reductions if they are limited to a
single statement. Note that this is already more general than most syntactic definitions because
the input and output of the reduction computation are not required to be equal. Thus, we detect
partial reductions where the read and write access associated with the input and output of the
reduction computation have different but overlapping access ranges, e.g., Figure 5.15

Simple Reduction Predicate Theorem 5.14

Given a statement S with a reduction computation cS = (w, ⊕, r). All dependent iteration
pairs (S(i), S(j)) are part of a reduction dependence if,

(a) they are part of all self dependences that start and end in the reduction computation,
thus (S(i), S(j)) ∈ (w→r ∩ r→w ∩ w→w), and

(b) there is no read-after-write dependence that starts in iteration S(i) and ends in a read
other than r or a statement instance other than S(j), thus
∀r′ ∶ (S(i), T(k)) ∈ w→r′ ⟹ r = r′ ∧ S(j) = T(k).

Proof.

To proof reduction dependences identified by this predicate adhere to Definition 5.13, hence
that they are commutative, we show that we can swap the source and the target of an arbitrary
dependent iteration pair (S(i), S(j)) without changing the semantics. This assumes there are
no constraints induced by the second input of the reduction computation, denoted as v, that
prevent this change. Note that associativity can be shown similarly.

The dependence relations required by condition (a) ensure that the read and written location
of both reduction computation instances are equal. Thus, the read access r and write access
w in iterations i and j access a single location loc. The presence of a write-after-write relation
ensures that there is no intermediate write to loc. In addition, condition (b) guarantees that
there is no other, e.g., intermediate, read of loc dependent on S(i). The reason is the absence
of an intermediate write and the fact that all outgoing read-after-write dependences are known
to end in r in iteration S(j). Thus, there are no accesses to loc between S(i) and S(j) which
could affect, or be affected by, the swap.

It remains to show that the computation is equivalent after both statement instances were
executed. Initially, the dynamically performed computation (involving loc) is loc = loc⊕ vi
in statement instance S(i) followed by loc = loc ⊕ vj in S(j). Since loc is not accessed
in between, we can forward substitute the first result to get loc = (loc ⊕ vi) ⊕ vj. Due
to the associativity and commutativity of ⊕, we can transform the computation to loc =(loc ⊕ vj) ⊕ vi, which we can then separate again into the computation loc = loc ⊕ vj in
statement instance S(i) followed by loc = loc ⊕ vi in S(j). ■
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for (i = 0; i < N; i++)
for (j = 0; j < M; j++)
A[j + p] = A[j + i] + B[i][j];

Figure 5.15: Partial reductiona that manifests
only in iterations where 𝑝 = 𝑖 = 0.

a This is a slight adaption of a figure presented by
Doerfert et al. [Doe+15].

The simple reduction predicate introduced in
Theorem 5.14 is able to identify the reduction
dependences in our motivating BiCG example
(ref. Figure 5.7), the two reductions through
sum, with regards to the inner 𝑗-loop and 𝑘-
loop, shown in Figure 5.11b, as well as the par-
tial reduction presented in Figure 5.15. The
reductions in the unrolled BiCG example (ref. Figure 5.11a) and the reduction in the outer 𝑖-loop
for Figure 5.11b are missed because they involve multiple statements. At the same time, the “al-
most reductions” shown in Figure 5.16 are correctly dismissed, thus no reduction dependences
are identified even if there are dependences between instances of a reduction computation.

for (i = 0; i < N; i++) {
S: x = x + 1;
P: x = i;

}

(a) Two reduction computations which do not cause
reduction dependences because neither causes a

write-after-write self dependence.

for (i = 0; i < N; i++) {
x = x + x;

}

(b)Two reduction computations of which neither
causes reduction dependences because there are
read-after-write dependences from the write to

both reads.

Figure 5.16: Examples for which our reduction predicates, e.g., Theorem 5.14, properly
determine that the reduction computations (ref. Definition 5.12) do not cause reduction

dependences (ref. Definition 5.13).

5.2.1.2 Multi-Statement Reductions

In Figure 5.11 we introduced reductions that are not isolated computations in a single statement.
In order to identify such cases we have to generalize our reduction notation and identification
predicate. To this end, we take a closer look at the generalized version of the example presented
in Figure 5.11b, that is shown in Figure 5.17a. While both codes are in some sense equivalent,
the latter version is closer to static single assignment form (SSA-form) which is commonly used
for compiler intermediate languages, e.g., LLVM-IR. Even if it is not completely in SSA-form2,
the code induces similar dependences as Figure 5.11b in SSA-form would. This does not mean
the following discussion requires the input to be in any special format, e.g., SSA. On the contrary,
we use this generalized example to show how more complicated situations are handled as well.

Brief descriptions of the dependences that arise for Figure 5.17a are provided in Figure 5.17b.
These descriptions contain all important constraints without specifying unimportant details, e.g.,
unnecessary iteration domains information for the involved statement instances. In addition, we
visualize the RAW / WAW / WAR dependences in Figure 5.17c / 5.17d / 5.17e.

2 In actual SSA-form, t1 and t2 would not be defined twice. Instead, phi nodes would either select the initial value
or the one written in the last loop iteration.
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for (i = 0; i <= I; i++) {
S: t1 = t0;

for (j = 0; j <= J; j++)
T: t1 = t1 + A[i][j];
U: t2 = t1;

for (k = 0; k <= K; k++)
V: t2 = t2 + A[i][k];
W: t0 = t2;

}
E: use(t1);

(a) Almost SSA form version of Figure 5.11b.

𝛾0,𝛾12 = {S(𝑖) → T(𝑖, 0)} 𝛾11 = {S(𝑖) → S(𝑖+1)}
𝛾1,𝛾14,𝛾23 = {T(𝑖, 𝑗) → T(𝑖, 𝑗+1)}
𝛾2 = {T(𝑖, 𝐽)→U(𝑖) ∣𝐽 ≥0} 𝛾13 = {T(𝑖, 𝐽)→S(𝑖+1)}
𝛾3,𝛾16 = {U(𝑖) → V(𝑖, 0)} 𝛾15 = {U(𝑖) → U(𝑖+1)}
𝛾4,𝛾18,𝛾24 = {V(𝑖, 𝑘) → V(𝑖, 𝑘+1)}
𝛾5 = {V(𝑖, 𝐾) → W(𝑖) ∣ 𝐾 ≥0}
𝛾6 = {W(𝑖) → S(𝑖+1)} 𝛾17 = {V(𝑖, 𝐾) → U(𝑖+1)}
𝛾7 = {S(𝑖) → U(𝑖) ∣ 𝐽 <0} 𝛾19 = {W(𝑖) → W(𝑖+1)}
𝛾8 = {U(𝑖) → W(𝑖) ∣ 𝐾 <0} 𝛾20 = {S(𝑖) → W(𝑖)}
𝛾9 = {S(𝐼) → E() ∣ 𝐽 <0} 𝛾21 = {U(𝑖) → S(𝑖+1)}
𝛾10 = {T(𝐼, 𝐽) → E ∣ 𝐽 ≥0} 𝛾22 = {W(𝑖) → U(𝑖+1)}

(b) Brief description of all induced dependences.

for (i = 0; i <= I; i++) {

S: t1 = t0;

for (j = 0; j <= J; j++)

T: t1 = t1 + A[i][j];

U: t2 = t1;

for (k = 0; k <= K; k++)

V: t2 = t2 + A[i][k];

W: t0 = t2;
}

E: use(t1);

𝛾0

𝛾1

𝛾2

𝛾3

𝛾4

𝛾5

𝛾6

𝛾7

𝛾8

𝛾9

𝛾10

(c) Visualized RAW dependences.

for (i = 0; i <= I; i++) {

S: t1 = t0;

for (j = 0; j <= J; j++)

T: t1 = t1 + A[i][j];

U: t2 = t1;

for (k = 0; k <= K; k++)

V: t2 = t2 + A[i][k];

W: t0 = t2;
}

E: use(t1);

𝛾11

𝛾12

𝛾13
𝛾14

𝛾15

𝛾16

𝛾17
𝛾18

𝛾19

(d) Visualized WAW dependences.

for (i = 0; i <= I; i++) {

S: t1 = t0;

for (j = 0; j <= J; j++)

T: t1 = t1 + A[i][j];

U: t2 = t1;

for (k = 0; k <= K; k++)

V: t2 = t2 + A[i][k];

W: t0 = t2;
}

E: use(t1);

𝛾20

𝛾21

𝛾22

𝛾23

𝛾24

(e) Visualized WAR dependences.

Figure 5.17: Generalized version, and its dependences, of the code shown in Figure 5.11b.
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The simple reduction predicate defined in Theorem 5.14 can again identify two reductions with
regards to the innermost loops. Thus, the self dependences 𝛾1, 𝛾14, and 𝛾23 of statement T, as
well as 𝛾4, 𝛾18, and 𝛾24 of statement V, are reduction dependences. To determine that the depen-
dences carried by the 𝑖-loop are also associative and commutative we have to define a generalized
reduction predicate. As a first step we introduce reduction computation chains in Definition 5.18.

Reduction Computation Chain Definition 5.18

A reduction computation c = (w, ⊕, r) in a statement S is by itself a singleton reduction
computation chain C ≔ (w, ⊕, r, i, i) for each statement instance i in the domain DS.

A compound reduction computation chain C ≔ (w1, ⊕0, r0, i0, j1) can be formed from two
reduction computation chains C0 = (w0, ⊕0, r0, i0, j0) and C1 = (w1, ⊕1, r1, i1, j1) if they
are compatible. Two chains are compatible if the following conditions hold:

(a) their binary operators are equal, thus ⊕0 = ⊕1, and
(b) there is a read-after-write dependence w0→r1 from the output of the first one (w0) to

the input of the second one (r1) that connects j0 and i1, thus (j0, i1) ∈ w0→r1.
(c) the only read access dependent on the write w0 in iteration j0 is r1 in iteration i1, thus

∀r ∶ (j0, l) ∈ w0→r ⟹ i1 = l ∧ r1 = r.

Given a reduction computation chain C ≔ (w, ⊕, r, i, j), we call i the start iteration of the
chain and j as its end. Accesses that started or ended a sub-chain are part of the chain.

We further denote a reduction computation chain closed if the location read in the start it-
eration is equal to the location written in the end iteration. Using the above notation and
denoting the access relation as 𝑓, a reduction computation chain is closed if 𝑓𝑟(i) = 𝑓𝑤(j).

A reduction computation chain C = (w, ⊕, r, i, j) describes that a value read by the access r in it-
eration i is onlymodified through associative and commutative operations according to ⊕, until it
is written by the accessw in iteration j. In addition, intermediate results are neither duplicated nor

Reduction Computation Chain Traversed dependences

C0 ≔ (wW,+, rS, (𝑖), (𝑖)) 𝛾0, (𝛾1)∗, 𝛾2, 𝛾3, (𝛾4)∗, 𝛾5

C1 ≔ (wW,+, rS, (𝑖), (𝑖)) 𝛾0, (𝛾1)∗, 𝛾2, 𝛾3, ( 𝛾8, )∗𝛾5

C2 ≔ (wW,+, rS, (𝑖), (𝑖)) 𝛾0, (𝛾7, )∗𝛾2, 𝛾3, (𝛾4)∗, 𝛾5

C3 ≔ (wW,+, rS, (𝑖), (𝑖)) 𝛾0, (𝛾7, )∗𝛾2, 𝛾3, ( 𝛾8, )∗𝛾5

Table 5.19: Minimal closed reduction computation chains for Fig-
ure 5.17a that start in statement S and end in W, together with the

read-after-write dependences that enabled their construction.

do they escape the chain.

From the read-after-write
dependences for the ex-
ample in Figure 5.17a,
shown in Figure 5.17c,
we can identify multi-
ple reduction computa-
tion chains. Most notably
the closed ones listed in Table 5.19 which start with the read of t0 in statement S and end with
the write of t0 in W in the same iteration of the 𝑖-loop which is not the last, thus 𝑖 < 𝐼 .
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To derive associativity and commutativity for a dependence from associativity and commutativ-
ity computations distributed over multiple statements we provide a generalized reduction pred-
icate in Theorem 5.20. While the underlying reasoning is the same as for the simple reduction
predicate introduced in Theorem 5.14, the generalized version employs closed and compatible
reduction computation chains to reason about the flow of a value through multiple computations.

Generalized Reduction Predicate Theorem 5.20

All dependences between accesses which are part of two closed and compatible reduction
computation chains, C0 = (w0, ⊕0, r0, i0, j0) and C1 = (w1, ⊕1, r1, i1, j1), are reduction
dependences. This includes not only the dependence between the initial read and final write,
but also the ones that connect intermediate accesses which are part of the chain.

Proof.

Reduction dependences identified by this predicate adhere to Definition 5.13, hence that they
are associative and commutative if appropriate privatization is used (ref. Section 5.2.2). We
only show commutativity now by arguing the execution order of the statement instances in
the two chains can be swapped without changing the result. This again assumes dependences
induced by read accesses which are not part of the chains will not prevent this change.

If the statement instances which form the second chain C1 are executed before the ones that
form the first, we could potentially violate RAW, WAR, and WAW dependences. As we do
not weaken dependences involving accesses that are not part of the chains, we can restrict the
following discussion to those that are part.

Condition (c) in Definition 5.18 ensures that all intermediate writes of the preceding chain
C0, hence all write access instances until w0 into which the value read by r0 (in iteration i0)
flows, are only read by access instances on that chain. Thus, read access instances not on the
chain C0, including ones on the succeeding chain C1, are not flow-dependent on these writes.
Consequently, the false dependences (WAR and WAW) between the chains can be broken as
long as the chains are not interleaved. Additionally, dependences that end in the first chain
C0, or start in the second chain C1, might require privatization as discussed in Section 5.2.2.

The above reasoning also guarantees that the only read-after-write dependence between the
two chains is w0→r1. Furthermore, condition (b) in the definition of compatible chains en-
sures that w0→r1 contains the iteration pair (j0, i1) and no other pair that starts in iteration
j0. Since both chains are closed and compatible we know that both start in a read, and end in
a write, of the same location loc. Thus, the result of the chain scheduled first and stored in
loc is only read by the chain scheduled second, and later overwritten by that chain. Since all
computations use the same associative and commutative operator, we can employ the same
reasoning as in Theorem 5.14 to argue that the final result in loc is unchanged. ■
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The generalized reduction predicate is able to identify all reduction dependences in the examples
we presented in this section. For the unrolled inner loop from the BiCG example shown in
Figure 5.11a, we can first determine the four minimal and closed reduction chains presented in
Formula 3. Each actually describes a single reduction computation (ref. Definition 5.12) on the
location q[j] in the respective statement.

CR𝑥 ≔ (wq[0],+, rq[0], (𝑘), (𝑘)) for 0 ≤ 𝑥 ≤ 3 (3)

The dependences between the statements are reduction dependences because the first three chains
(CR0 to CR2) are compatible with the succeeding one in the same iteration of the 𝑘-loop, and the
last chain (CR3) is compatible with the first chain (CR0) in the next iteration.

The generalization of the code in Figure 5.11, shown in Figure 5.17a, contains multiple reduc-
tions. First, there are the two innermost reductions that induce the self reduction dependences
𝛾1, 𝛾14, and 𝛾23 of statement T, as well as 𝛾4, 𝛾18, and 𝛾24 of statement V. Additionally, the depen-
dences 𝛾6, 𝛾11, 𝛾13, 𝛾15, 𝛾17, 𝛾19, 𝛾21, and 𝛾22, all carried by the 𝑖-loop, are reduction dependences
due to the compatible chains already shown in Table 5.19. Note that we can identify these reduc-
tion dependences in the original version (Figure 5.11) only after all non-escaping writes of the
variable result have been eliminated. Thus, all but the last instance of statement U have to be
removed to avoid spurious read-after-write dependences ending in U(𝑖) for 0 ≤ 𝑖 < 𝐼 .

5.2.2 Privatizing Reductions

Privatization in the context of reductions commonly describes how the parallelized evaluation
of a reduction is performed on private copies of the reduction location before the results are
accumulated at the end. Thus, every parallel context c𝑖, which might be a thread or a vector
lane, depending on the kind of parallelization, gets its own private location loc𝑖 for the reduction
location loc. Prior to the region executed by 𝑝 parallel threads or vector lanes, the private loca-
tions loc1,⋯, loc𝑝 are allocated and initialized with the identity element of the corresponding
reduction operation ⊕. The parallel instances are modified to perform cheap, non-atomic up-
dates on their own private location loc𝑖 instead of the original location loc. After the parallelized
region, and before the first non-reduction access to loc, accumulation code is placed to join all
intermediate results into loc, thus: loc ∶= loc ⊕ loc1 ⊕⋯⊕ loc𝑝.

Parallel execution of reductions through the use of privatization is legal because the associativity
and commutativity of the reduction dependences (ref. Definition 5.13) guarantees that the final
accumulation generates the same result as sequential execution of the region would have. Note
that the final accumulation can be performed in logarithmic time by parallelizing the accumula-
tion correspondingly [FG94].
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// (A) initialization
for (i = 0; i < N; i++)
// (B) initialization
for (j = 0; j < M; j++)
// (C) initialization
for (k = 0; k < L; k++)
A[j] += Q[i][j] * R[j][k];

// (C) aggregation
// (B) aggregation

// (A) aggregation
(a) Reduction enclosed in multiple loops.

Overhead
Loc. Memory Aggregation

(A) 𝑝 × M (𝑝 × M) × 1
(B) 𝑝 × M (𝑝 × M) × N
(C) 𝑝 𝑝 × (N × M)

(b) Memory and aggregation overhead for the
different privatization locations shown in Fig-
ure 5.21a with respect to the number of parallel

contexts 𝑝 and loop trip counts.

Figure 5.21: Possible privatization locations for the loop nest shown in part 5.21a with
the correspondingmemory consumption and aggregation overhead listed in part 5.21b.a

a This Figure was first presented by Doerfert et al. [Doe+15].

While we can limit the number of parallel contexts, thus the number of parallel threads or the
vector width, we cannot generally bound the number of reduction locations. Furthermore, the
number of necessary locations, as well as the initialization and aggregation work needed, varies
with the placement of the privatization code. Consider the example in Figure 5.21a where the
different possibilities to exploit loop parallelism, potentially through reduction parallelism, are
explicitly marked as (A), (B), and (C). Using location (C) for privatization allows to parallelize
the innermost 𝑘-loop. In this setting, only 𝑝 private copies of the reduction location A[j] are
needed. There is no benefit in choosing location B because 𝑝 × M privatization locations are then
required (we have M different reduction locations modified by the 𝑗-loop and 𝑝 parallel contexts),
but there is no gain in the amount of parallelism because the 𝑗-loop was already parallel. Finally,
choosing location (A) for privatization might be worthwhile. We still only need 𝑝 ×M privatized
values, but can then execute the 𝑖-loop in parallel as well. Additionally, we save aggregations:
While for location (C) 𝑝 values are summed up N × M times, and for location (B) 𝑝 × M values
are aggregated N times, location (C) requires the 𝑝 × M values to be summed up only once.

For locations (A) and (B) in Figure 5.21a, the entire array A has to be privatized. While this can
be the only possibility to exploit parallelism, e.g., for the BiCG example in Figure 5.7, assuming
we do not distribute statements Q and R into separate loop nests, there are several downsides:

- Privatization overhead grows with the problem size.
- The shared cache is polluted with elements from private arrays.
- Depending on the hardware, memory consumption might become an issue.

In general, a trade-off has to be made between memory consumption, aggregation time and ex-
ploitable parallelism. Finding a good placement is additionally difficult as it depends on hardware
and workload. Furthermore, the choices for privatization code placement in the resulting code
is limited by the schedule. The scheduler should consequently be aware of the implications with
respect to the efficiency of necessary privatization.
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5.2.2.1 Privatization Dependence

S: avg = 7;
for (i = 0; i <= N; i++)

P: avg = avg + 3 * A[i];
Q: avg = avg / N;

Figure 5.22: Reduction and non-
reduction accesses to the location avg.

Non-polyhedral optimizations often exploit re-
duction properties locally and in isolation. Thus,
they change the schedule of the reduction com-
putation, e.g., through parallelization, but keep
it separate from other operations which involve
the reduction location. In this case, privatiza-
tion can be applied as a post-processing step during code generation. However, polyhedral
optimization is generally neither local nor isolated. Instead, polyhedral schedule optimization
involves all statement instances, including the ones that participate in the reduction computa-
tion and the ones that access the reduction location before or after. A new schedule is consid-
ered sound if all validity constraints, constructed from dependences between the instances, are
satisfied [Fea92a; Fea92b]. While associativity and commutativity of reduction dependences
(ref. Definition 5.13) do not impose an ordering of the dependent instances [PW94], we can-
not simply omit the corresponding validity constraints3. If we would, non-reduction operations
involving the reduction location could get interleaved with reduction operations. To show this
situation we can consider the example in Figure 5.22. If we omit the validity constraints for the
reduction dependences { P(𝑖) → P(𝑖 + 1) ∣ 0 ≤ 𝑖 < 𝑁 }, we only restrict the new schedule
through { S() → P(0) ∣ 𝑁 ≥ 0 }, { P(𝑁) → Q() ∣ 𝑁 ≥ 0 }, and { S() → Q() ∣ 𝑁 < 0 }.
Since these dependences do not constrain the instances { P(𝑖) ∣ 0 < 𝑖 < 𝑁 }, they could be
scheduled before S or after Q, either would most likely result in a different final value for avg.

S: avg = 7; p[0:N] = {0,...,0};
for (i = 0; i <= N; i++)

P: p[i] = p[i] + 3 * A[i];
Q: avg = sum(p[0:N]); avg /= N;

Figure 5.23: Implementation that causes
the privatization dependences we add to
ensure correct schedule optimization for

the reduction in Figure 5.22.

While we want to ignore the validity constraints
caused by reduction dependences during sched-
ule optimization, we have to ensure the relative
order between reduction and non-reduction op-
erations is retained. To this end, we introduce
privatization dependences which overestimate
the effect privatization of the reduction compu-
tation would have. In Figure 5.23 we show how
an explicit implementation would look that causes the privatization dependences we introduce
for Figure 5.22. The privatization of avg as p[0:N] is actually a “maximal” expansion [Fea88a].
Together with the additional accesses in statements S and Q, all dependences which only start or
end in the reduction computation, thus which only start or end in { P(𝑖) ∣ 0 ≤ 𝑖 ≤ 𝑁 }, are also
expanded to start, or respectively end, in all reduction instances.

3 Note that we here, as we did throughout this section, assume value-based dependences and not memory-based
dependences [Fea91; MAL93; PW93]. This is important as only the latter contain transitive dependences which
might be conservatively approximated. Though, most modern polyhedral tools employ value-based dependences.
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The computation of privatization dependences 𝛾𝜋 for reductions thatmanifest in a single-statement
instance, e.g., the ones identified by Theorem 5.14 or our earlier work [Doe+15], is shown in
Formula 4. All non-reduction dependences 𝛾𝜈 are transitively extended by all reduction depen-
dences 𝛾𝜌 to ensure the reductions are not interleaved with other computations, including other
reductions, on the same locations.

𝛾𝜋 ≔ (𝛾𝜈 ◦dom (𝛾𝜌)∗) ∪ (𝛾𝜈 ◦rng (𝛾𝜌)∗) (4)

Whenwe transition to multi-statement reductions, as identified by the generalized reduction pred-
icate in Theorem 5.20, we have to modify the privatization dependence definition to account for:
dependent access instances which are part of the chain and which should not be transitively ex-
tended, as well as the possibility of interleaved execution of reduction computation chains. The
first problem can be solved by eliminating all intra-chain dependences from the non-reduction
dependences 𝛾𝜈 before we extend them. If this step is missed, the reduction dependences will
be re-introduced into the validity constraints of the schedule problem. The second problem is
however harder to tackle in a general way, given the existing interface of the most commonly
used schedule optimizer isl. While our goal is to eliminate reduction dependences (ref. Defi-
nition 5.13) in order to allow free reordering of reduction computation chains, we cannot allow
two chains to be interleaved. If we would, intermediate values could be overwritten prior to their
use, causing a different final result. Since we cannot provide a general answer to this problem, or
show how an extended interface for the isl scheduler should look like, we restrict our evaluation
to single-statement instances and leave this task open for future exploration.

5.2.3 Exploiting Reduction Properties

Reduction properties, hence the associativity and commutativity of the reduction dependences,
often enable parallel execution of otherwise sequential loops. In non-polyhedral approaches,
this use case is arguably the most prominent one. Though, polyhedral schedule optimization
can exploit reduction properties also in other ways already hinted at in Section 5.2.2.1. In the
following we briefly describe the three main schemes that allow polyhedral optimizers to exploit
reductions which we already introduced in our earlier work [Doe+15].

Reduction-Enabled Code Generation
Similar to non-polyhedral-based approaches, a polyhedral optimizer can exploit reductions
during the code generation. This non-invasive method does not require modification of the
polyhedral representation and dependences. Schedule optimization can consequently be
performed with the validity conditions of the reduction dependences in place. During the
code generation, loops which only carry reduction dependences are parallelized through
the use of privatization (ref. Section 5.2.2) or atomic accesses to the reduction location.
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Reduction-Enabled Scheduling
To increasing the freedom for polyhedral schedule optimization, the validity conditions
caused by reduction dependences can be eliminated. As discussed in Section 5.2.2.1, this
approach requires privatization dependences to be introduced to ensure soundness.

Reduction-Aware Scheduling
Exploiting reductions through privatization or atomic access induces a non-trivial cost
(ref. Section 5.2.2). The objective function used during schedule optimization should be
aware of this cost in order to select an appropriate transformation and to determine the
optimal use and placement of reductions. While this scheme subsumes reduction-enabled
scheduling, it requires non-trivial modifications to the scheduler and objective function.

At this point it is important to note that current state-of-the-art polyhedral schedulers, e.g., the one
in LLVM/Polly, do not directly determine if and where parallelism should be exploited. The
schedulers only ensure parallel dimensions to be present in the final schedule. Consequently, a
reduction-enabled code generation is always necessary to enable parallel execution of reductions.

for (i = 0; i <= N; i++)
for (j = 0; j <= M; j++)

S: A[j] = A[j] + a * C[ i][j];
for (k = N; k >= 0; k--)

for (l = 0; l <= M; l++)
P: B[l] = B[l] + b * C[N-k][l];

(a) Loop nest that allows for loop fusion, inter-
change and parallelization.

#pragma parallel for
for (jl = 0; jl < M; jl++)

for (ik = 0; ik < N; ik++) {
S: A[jl] = A[jl] + a * C[ik][jl];
P: B[jl] = B[jl] + b * C[ik][jl];

}

(b) Possible result after reduction-aware scheduling
transformed the loop nests shown in Figure 5.24a.

Figure 5.24: Example to showcase how
reduction-enabled and reduction-aware
scheduling can improve the result of polyhe-

dral schedule optimization.

We can use the example in Figure 5.24a
to showcase how reduction-enabled and
reduction-aware scheduling can improve
the result of polyhedral schedule optimiza-
tion. Assuming we want to exploit coarse
grained parallelism, the scheduler could in-
terchange the loops surrounding both state-
ments, potentially also fusing the then outer
𝑗-loop and 𝑙-loop. However, as long as re-
duction dependences are present, the execu-
tion order of the 𝑖-loop and 𝑘-loop have to re-
main unchanged. While reduction-enabled
scheduling does not impose reduction de-
pendence constraints, and thereby allows to
fuse the 𝑖-loop and 𝑘-loop after one is re-
versed, it also does not model the cost of
privatization. Consequently, the initial loop
interchange, which moves the native parallelism in the 𝑗 and 𝑙 dimension to the outer level, is not
required for outermost, coarse grained parallelism. Instead, the reduction carrying dimension(s)
could be kept outermost in this scheme, requiring privatization of the entire A and B array later
on. Only with reduction-aware scheduling all transformations, namely the interchanges and fu-
sions after one loop reversal, would become beneficial to the scheduler. The loop nest shown in
Figure 5.24b illustrates how the result could then look like.
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5.2.4 Evaluation

In the following, we present the evaluation of our earlier work [Doe+15] which was done with a
then current version of LLVM/Polly. Since the conclusions are only partially transferable to
a now current version, we augmented the original discussion to help interpret the results today.

Throughout this section, we described an extension of our earlier work on memory reductions
in the polyhedral model [Doe+15]. Especially the generalized reduction predicate provided in
Theorem 5.20 is a novel advancement. While the simple reduction predicate in Theorem 5.14 is
described in the same fashion, it is very similar to the reduction detection presented in our earlier
approach. Most importantly, the reduction dependences that can be identified are basically the
same. A simplified form of the reduction detection presented in our earlier work is available in
LLVM/Polly, and a prototype implementation of the generalized reduction predicate can be
found in the reduction branch of our research prototype (ref. Section 2.2.3).

An often raised issue with the implementation was the use of transitive dependences. While the
transitive closure of an integer relation can be imprecise and costly to compute, our experience
in LLVM/Polly, as well as the discussion by Pugh [Pug91b], indicate that the implementation
is sufficient in practise. Pugh and Wonnacott [PW94] even argue that the transitive closure of
value-based reduction dependences in real programs can be computed in an easy and fast way.

We implemented reduction-enabled code generation as well as reduction-enabled scheduling
and evaluated the effects on compile time and runtime for the Polybench 3.2 benchmark suite on
an Intel(R) core i7-4800MQ quad core machine with the default benchmark inputs.

The reduction identification, which is very similar to the simple reduction predicate described in
Theorem 5.14, is able to identify 52 arithmetic reductions performed on memory locations dis-
tributed over the 30 benchmarks. This is however only the case for older Polybench versions, and
if Polly is run early in the optimization pipeline. Newer benchmark versions, as well as opti-
mization passes in the LLVM pipeline, replace the memory reductions with reductions on scalar
variables which are not detected. One reason is that scalar reductions in static single assignment
form (SSA) can easily involve multiple locations as discussed in Section 5.2.1.2. Another is the
fact that the LLVM/Polly version at the time did force all communication between polyhedral
statement instances to be performed through memory locations. Thus, scalar reductions were
demoted to stack allocations prior to the polyhedral modeling.

The detection of reduction-like computations, which are basically reduction computations as
defined in Definition 5.12, is actually performed in basic blocks, hence compound polyhedral
statements that might contain more than just the reduction computation. As our reduction defi-
nition is centered around dependences (ref. Section 5.2.1.1), we can either perform a local, intra-
statement dependence analysis, or we virtually split polyhedral compound statements that con-
tain more than a single computation. We choose the latter because it allows to use the general
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polyhedral dependence analysis [Fea91] and treat all discovered dependences (intra- and inter-
statement) alike. However, this approach increases the complexity of the dependence analysis
and consequently the compile time. To measure the effect, we timed this particular part of the
compilation for each of the benchmarks and compared:

- the default dependence computation between statement instance ,
- a completely access-wise dependence analysis , and
- our hybrid dependence analysis , which isolates reduction computations (ref. Defini-
tion 5.12) but keeps non-reduction accesses in compound statements.

As shown in Figure 5.25a our hybrid dependence computation takes up to 5× as long (bench-
mark lu) than the default statement-wise dependence computation but in average only 85%more.
Access-wise dependence computation however is up to 10× slower than the default and takes in
average twice as long as our hybrid approach. Note that both fine-granular approaches do not
only compute the dependences (partially) on the access level but also the reduction and priva-
tization dependences as explained in Section 5.2.1 and Section 5.2.2.1. It is also worth to note
that LLVM/Polly nowadays splits compound statements by default to increase the scheduling
freedom for the contained computations.

Figure 5.25b shows the speedup of the reduction-enabled code generation as well as reduction-
enabled scheduling compared to the a reduction-unaware Polly. The additional scheduling
freedom causes speedups for the data-mining applications (correlation and covariance) but
slowdowns especially for the matrix multiplication kernels (2mm, 3mm, and gemm). This is due to
the way Polly generates vector code. The deepest dimension of the new schedule that is parallel
(or now reduction parallel) will be strip-mined and vectorized. Hence the stride of the contained
accesses, crucial to generate efficient vector code, is not considered. However, we do not believe
this to be a general shortcoming of our approach as there are existing approaches to tackle the
problem of finding a good vector dimension [Kon+13] that would benefit from the additional
scheduling freedom as well as knowledge of reduction dependences. Another fact that needs
to be considered is the immense native parallelism already present in the evaluated benchmarks.
Most loop nests contain already at least one parallel loop, even without reduction parallelism. We
can consequently not expect significant speedups when reduction awareness allows to parallelize
even more loops as one is generally sufficient to exploit the available resources.
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(b) Performance of Polly with reduction-enabled code generation and reduction-enabled scheduling nor-
malized to a Polly version without both.

Figure 5.25: Evaluation results for Polybench 3.2 benchmarks.
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5.2.4.1 BiCG Case Study

While Polybench is a collection of inherently parallel programs, there is one, the BiCG kernel
shown in Figure 5.7, that requires reduction support to expose parallelism if the two statements
are not separated. To study the effects of parallelization combined with privatization of mul-
tidimensional reductions in this kernel we compared two parallel versions to the non-parallel
code Polly would generate without reduction support. The first version “Outer” has a parallel
outermost loop and therefore needs to privatize the whole array s. The second version “Tile”
parallelizes the second outermost loop. Due to tiling, only “tile size” (here 32) locations of the
q array need to be privatized. Table 5.26 shows the speedup compared to the sequential version
for both a quad core machine and a 8 × 4-core server. As the input grows larger the threading
overhead as well as the inter-chip communication on the server will cause the speedup of Tile
to stagnate, however on a one chip architecture this version generally performs best. Outer on
the other hand will perform well on the server but not on the 4-core machine. We therefore be-
lieve the environment is a key factor in the performance of reduction-aware parallelization and
a reduction-aware scheduler is needed to decide under which run-time conditions privatization
becomes beneficial.

Input Size
210 × 210 212 × 212 214 × 214 215 × 215

Outer 0.19 0.55 2.31 0.75 3.91 0.72 2.19 0.96
Tile 0.03 1.10 0.32 1.54 0.10 1.60 0.16 2.21

Table 5.26: BiCG run-time results. The values are speedups compared to the sequential
Polly version, first for the 32-core machine, then for the 4-core machine.

5.2.5 Related Work

The following discussion of related work is in large parts taken from our previous work [Doe+15],
and only augmented with a discussion of more recent approaches.

Reductions are a long lasting research topic, mainly in the context of loop parallelization. Various
approaches to detect, model, and optimize reduction computations have been proposed. As our
work intersects with all three parts we will discuss them in separation.

5.2.5.1 Detection

Reduction detection started with pattern-based approaches on source statements [JD89; PE95;
RP95; RF93; RF00] and evolved into more elaborate techniques using program dependency
graphs [PP91; Str+15; Str17], symbolic evaluation [FG94], data dependency graphs [SKN96],
or constraint solving [GO17] to find candidates for reduction computations.
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For functional programs, Xu, Khoo, andHu [XKH04] introduced a type system to deduce parallel
loops including pattern based reductions. Their typing rules are similar to the conditions we
check for in the reduction predicates (ref. Theorem 5.14 and Theorem 5.20).

Sato and Iwasaki [SI11] describe a pragmatic system to detect and parallelize reduction and scan
operations based on the ideas introduced by Matsuzaki, Hu, and Takeichi [MHT06]: the repre-
sentation of (part of) the loop as a matrix multiplication with a state vector. They can handle mu-
tually recursive scan and reduction operations as well as maximum computations implemented
with conditionals, but they are restricted to innermost loops and scalar accumulation variables.
As an extension Zou and Rajopadhye [ZR12] combined the work with the polyhedral model and
the recurrence detection approach of Redon and Feautrier [RF93; RF00]. This combination over-
comes many limitations, e.g., multidimensional reductions (and scans) over arrays are handled.
However, the applicability is still restricted to scans and reductions representable in State Vector
Update Form [KS73].

In our setting we identify actual reductions utilizing the already present dependence analysis,
an approach very similar to the what Suganuma, Komatsu, and Nakatani [SKN96] proposed to
do. However, we only perform the expensive, access-wise dependence analysis for reduction
candidates, and not for all accesses in the SCoP. Nevertheless, both detections do not need the
reductions to be isolated in a separate loop as assumed by Fisher and Ghuloum [FG94] or Pot-
tenger and Eigenmann [PE95]. Furthermore, we allow the induced reduction dependences to be
of any form and carried by any subset of outer loop dimensions. This is similar to the nested Re-
cur operator introduced by Redon and Feautrier [RF93; RF00]. Hence, reduction dependences
are not restricted to a single loop dimension, as in other approaches [FG94; JD89; SI11], but can
also be carried by multiple loops in a subset of their iterations.

5.2.5.2 Modeling

Modeling reductions was commonly done implicitly, e.g., by ignoring the reduction dependences
during a post parallelization step [JD89; PP91; PE95; RP95; RF93; Ven+14; XKH04]. This is
comparable to the reduction-enabled code generation described in Section 5.2.3. However, we
believe the full potential of reductions can only be exposed when the effects are properly modeled
on the dependence level.

The first to do so, namely to introduce reduction dependences, where Pugh and Wonnacott
[PW94]. Similar to most other approaches [GR06; RF93; RF94; RF00; SI11; SKN96; ZR12],
the detection and modeling of the reduction was performed only on C-like statements and uti-
lizing a precise but costly access-wise dependence analysis (ref. Figure 5.25a). In their work,
they utilize both memory and value-based dependence information to identify statements with
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an iteration space that can be executed in parallel, possibly after transformations like array ex-
pansion [Fea88a]. They start with the memory-based dependences and compute the value-based
dependences as well as the transitive self-dependence relation for a statement in case the state-
ment might not be inherently sequential. This is very similar to the privatization dependences we
introduced in Section 5.2.2.1 to enforce the integrity of a reduction during schedule optimization.

Stock et al. [Sto+14] describe how reduction properties can be exploited in the polyhedral model.
However, they do not mention how reductions are detected, nor how omitting reduction depen-
dences may affect other statements (ref. Section 5.2.2).

In the work of Redon and Feautrier [RF94], as well as the extension by Gupta, Rajopadhye,
and Quinton [GRQ02], reduction modeling is performed on a system of affine recurrence equa-
tions (SAREs) and after array expansion [Fea88a] was applied. Thus, after all false dependences
(WAR and WAW), caused by memory reuse, were eliminated. In this setting, the possible inter-
ference between reduction computation and other statements is simplified. Though, it might not
be practical for general purpose compilers due to memory constraints. As an extension to these
scheduling approaches on SAREs we introduced privatization dependences in Section 5.2.2.1.
These ensure the integrity of reduction computations without the need for any preprocessing of
the input. Only due to the privatization dependences we can allow general polyhedral schedule
optimization, involving statement instances that access a location as part of a reduction compu-
tation as well as others that access the same location outside of a reduction.

5.2.5.3 Optimization

Optimization in the context of reductions is twofold. There is parallelization of the reduction as it
is given in the input, and transformation as well as possible parallelization of the input with aware-
ness of the reduction properties. The former is very similar to the reduction-enabled code genera-
tion as described in Section 5.2.3. In different variations, innermost loops [SI11], loops contain-
ing only a reduction [FG94; PE95] or recursive functions computing a reduction [XKH04] were
parallelized or replaced by a call to a possibly parallel reduction implementation [Ven+14]. The
major drawback of such optimizations is that reductions have to be computed either in isolation
or with the statements that are part of the source loop that is parallelized. Thus, the reduction
statement instances are never reordered or interleaved with other statement instances, even if it
would be beneficial. In order to allow powerful transformations in the context of reductions, their
effect, hence the reduction dependences, as well as their possible interactions with all other state-
ment instances must be known. The first polyhedral scheduling approach which optimally, e.g.,
with regards to latency, schedules reductions together with other statements was presented by
Redon and Feautrier [RF94]. It assumed that all reduction operations are computable in a single
time step. With such atomic reduction computations there are no reduction statement instances
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which could be reordered or interleaved with other statement instances. Gupta, Rajopadhye, and
Quinton [GRQ02] extended that work and lifted the restriction on an atomic reduction computa-
tion. As they schedule the instances of the reduction computation together with the instances of
all other statements their work can be seen as a reduction-enabled scheduler (ref. Section 5.2.3)
that optimally minimizes the latency of the input. Most recently, Prajapati [Pra18] extended this
work on non-atomic polyhedral reduction scheduling. The extension contains a reduction aware
tiling scheme which is an important step towards a reduction-aware scheduler.

To speed up parallel execution of reductions the runtime overhead needs to be minimized. Pot-
tenger and Eigenmann [PE95] proposed to privatize the reduction locations instead of locking
them for each access and Suganuma, Komatsu, andNakatani [SKN96] described howmultiple re-
ductions on the same memory location can be coalesced. If dynamic reduction detection [RP95]
was performed, different privatization schemes to minimize the memory and runtime overhead
were proposed by Yu and Rauchwerger [YR06]. While the latter is out of scope for a static
polyhedral optimizer, the former might be worth investigating once our approach is extended
to multiple reductions on the same location. In contrast to these prior works, we are the first
to describe the privatization dependence constraints for reductions (ref. Section 5.2.2.1) which
allow general polyhedral schedule optimization involving statement instances participating in
reduction computations and ones that do not.

In contrast to polyhedral optimization or parallelization, Gupta andRajopadhye [GR06] exploited
reduction properties in the polyhedral model to decrease the complexity of a computation in the
spirit of dynamic programming. Their work on reusing shared intermediate results of reduction
computations is completely orthogonal to ours.

While array expansion[Fea88a] is not a reduction optimization, it is similar to the privatization
step of any reduction handling approach (ref. Section 5.2.2). However the approaches differ in
the number of privatized copies introduced, the accumulation of these private copies, as well as
the kind of dependences that are removed. While privatization only introduces a new location
for each parallel context, e.g., parallel thread or vector lane, general array expansion introduces
a new location for each write to the location. In terms of dependences, array expansion will
remove false dependences (WAR and WAW) that are introduced by the reuse of memory while
reduction dependences are made up of all kinds of dependences including flow (RAW) depen-
dences. Because of the actual reuse of formerly computed values, reduction privatization also
requires a more elaborate accumulation scheme to combine all private copies.
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5.3 Polyhedral Expression Propagation

Polyhedral expression propagation statically replaces uses of scalar variables or memory loads
with their defining expression. The goal is to eliminate flow (RAW) and anti (WAR) dependences
to enable more scheduling transformations. At the same time, propagation can independently
improve cache utilization if the defining expression does not introduce new cache misses. Ad-
ditionally, the propagation of all uses of a non live-out location allows to eliminate the original
definition including the associated computation. If the definition caused output (WAW) depen-
dences they are removed as well. Furthermore, if the location was temporary it might be unused
after propagation and thereby subject to elimination. Thus, expression propagation can not only
eliminate different kinds of dependences but also the memory requirements. However, it is a
double-edged sword. Duplicating a defining expression or moving it into a deeper nested loop
can easily increase the code size as well as the overall computation. Nevertheless, we show that
the trade-off between recomputation and memory as well as dependence reduction can be bene-
ficial, especially if the program is memory-bound or further loop optimizations can be enabled.

In terms of classical polyhedral optimizations, expression propagation does not fall into the two
main categories that describe most approaches. While scheduling optimizations change the time
and place at which statement instances are executed [Bon+08; Bon+10; Fea92b; Len93; LCL99]
and memory optimizations alter the storage locations of intermediate results [ABD07; BBC16;
DSV03; LF98; QR00; Str+98; WR96], expression propagation will instead modify the expres-
sions that compute (intermediate) results. As it is thereby (mostly) orthogonal to schedule and
memory optimizations, it can be used as a standalone transformation but also in conjunction with
existing techniques for which it acts as a canonicalization and simplification step.

A real world example to illustrate the different uses cases of polyhedral expression propagation
is shown in Figure 5.28. The scalar definitions in statements S0, Q0, Q1, and Q2 will all be elim-
inated after the defining expressions, here indicated with dotted and dashed rectangles, have re-
placed the scalar uses. This already eliminates spuriousWAR andWAW dependences that would

Polyhedral Expression Propagation [DSH18] was developed outside the LLVM/Polly
project and is available in the expression_propagation branch of our research pro-
totype. We proposed an initial, less powerful version to the LLVM/Polly community
which was, in parts, accepted for integrationa but never upstreamed. LLVM/Polly orig-
inally had a basic, non-polyhedral, scalar expression propagation (ref. [Gro11, Section
5.6.2]) that was later removed. In a different project [MDH16] we used a similar, but more
aggressive version, to avoid scalar dependences crossing synchronization barriers. Re-
cently, a new simple scalar forwarding technique was added to LLVM/Polly [KG18].
a Online review: https://reviews.llvm.org/D13611

https://reviews.llvm.org/D13611
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u[k][j-1][i ][1];
u[k][j-1][i ][2];
u[k][j-1][i ][4];
u[k][j ][i-1][0];
u[k][j ][i-1][2];
u[k][j ][i ][0];
u[k][j ][i ][1]
u[k][j ][i ][2];
u[k][j ][i+1][0];
u[k][j ][i+1][2];
u[k][j+1][i ][1];
u[k][j+1][i ][2];
u[k][j+1][i ][4];

Figure 5.27: All accesses to
the array u in the third and
last loop of Figure 5.29.

have prevented LLVM/Polly from parallelizing the en-
closing loop nests. Since expression propagation is rooted on
the iteration-wise, polyhedral memory dependences, we are
not limited to intra-iteration expression propagation but can
also eliminate all accesses to the temporary array vs. Sim-
ilar to the scalar variable cases, the defining expression re-
places the uses. However, this time the expression has to be
adjusted to account for the loop nest change and the differ-
ences in the index functions used to access the array cells. Fi-
nally, the defining expression for the elements of rhs shown
in statement P0 can be propagated to statement Q4, but only
if the definition in statement P0 is afterwards eliminated. If
it would not be, the effect of the self-overwrite in statement

P0 would be applied twice which would falsify the result. After expression propagation was ap-
plied as described here, the code looks like the one shown in Figure 5.29. All scalar definitions,
the temporary array, and the intermediate self-overwrite have been removed after their effect was
propagated into their users. Note that this simplified the first two loop nests but complicated the
third one. The effect of the propagation is therefore often dependent on hardware specifications
such as the number of available (vector) registers and the cache dimensions with regards to the
memory footprint. In this example, propagation mostly introduced already existing, or similar,
accesses to the array u into the third loop body. Thus, the number of cache misses can even de-
crease. In Figure 5.27 all accesses to the array u after expression propagation (ref. Figure 5.29)
are shown in order. If the cache hierarchy can hold two complete rows in the i dimension, or
alternatively hardware prefetchers are able to pick up on the access patterns, only seven other
memory locations are accessed in one iteration of the innermost loop in the last loop nest. How-
ever, we only show parts of the original BT code in these examples and the full code would
require even more registers to hold all values loaded in one iteration. If insufficient registers are
available, spilling has to be performed which can again decrease the performance.

In the remainder of this Section we will first define propagation expressions and propagation
dependences in Section 5.3.1. The former are the expressions which actually replace uses and
the latter are dependences that identify the connections between definitions and uses which allow
propagation. Afterwards, we look at non-surjective propagation dependences in Section 5.3.2.
Hence, connections between definitions and some, but not all, instances of a use in the target
statement. In Section 5.3.3 the complexity of expression propagation is discussed before we
introduce limitations and extensions in Section 5.3.4. Prior to the evaluation in Section 5.3.7,
we introduce several heuristics in Section 5.3.5 and implementation choices in Section 5.3.6,
including our live-out access analysis to identify temporary memory.
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static double vs[KMAX][JMAXP+1][IMAXP+1];

for (k = 0; k <= grid_points[2]-1; k++) {
for (j = 0; j <= grid_points[1]-1; j++) {

for (i = 0; i <= grid_points[0]-1; i++) {
S0: rho_inv = 1.0/u[k][j][i][0];
S1: rho_i[k][j][i] = rho_inv;
S2: vs[k][j][i] = u[k][j][i][2] * rho_inv;

// [...]
}

}
}
for (k = 1; k <= grid_points[2]-2; k++) {

for (j = 1; j <= grid_points[1]-2; j++) {
for (i = 1; i <= grid_points[0]-2; i++) {

P0: rhs[k][j][i][2] = rhs[k][j][i][2] + dx3tx1 *
(u[k][j][i+1][2] - 2.0*u[k][j][i][2] +
u[k][j][i-1][2]) + xxcon2 * (vs[k][j][i+1] -
2.0*vs[k][j][i] + vs[k][j][i-1]) - tx2 *

(u[k][j][i+1][2]*up1 - u[k][j][i-1][2]*um1);
// [...]

}
}

}
for (k = 1; k <= grid_points[2]-2; k++) {

for (j = 1; j <= grid_points[1]-2; j++) {
for (i = 1; i <= grid_points[0]-2; i++) {

Q0: vijk = vs[k][j][i];
Q1: vp1 = vs[k][j+1][i];
Q2: vm1 = vs[k][j-1][i];
Q3: rhs[k][j][i][1] = rhs[k][j][i][1] + dy2ty1 *

(u[k][j+1][i][1] - 2.0*u[k][j][i][1] +
u[k][j-1][i][1]) + yycon2 * (us[k][j+1][i] -
2.0*us[k][j][i] + us[k][j-1][i]) - ty2 *

(u[k][j+1][i][1]*vp1 - u[k][j-1][i][1]*vm1);
Q4: rhs[k][j][i][2] = rhs[k][j][i][2] + dy3ty1 *

(u[k][j+1][i][2] - 2.0*u[k][j][i][2] +
u[k][j-1][i][2]) + yycon2*con43 *

(vp1 - 2.0*vijk + vm1) - ty2 *
(u[k][j+1][i][2]*vp1 - u[k][j-1][i][2]*vm1 +
(u[k][j+1][i][4] - square[k][j+1][i] -
u[k][j-1][i][4] + square[k][j-1][i]) * c2);

// [...]
}

}
}

Figure 5.28: Excerpt from the C implementation of the BT benchmark [SJL11] that
is part of the NAS parallel benchmark suite [Bai+91]. The dotted and dashed lines
indicate propagation opportunities. In addition, the definition in statement P0 can be

propagated to read access rhs[k][j][i][2] in statement Q4.
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for (k = 0; k <= grid_points[2]-1; k++) {
for (j = 0; j <= grid_points[1]-1; j++) {

for (i = 0; i <= grid_points[0]-1; i++) {
S1: rho_i[k][j][i] = 1.0/u[k][j][i][0]; // rho_inv

// [...]
}

}
}
for (k = 1; k <= grid_points[2]-2; k++) {

for (j = 1; j <= grid_points[1]-2; j++) {
for (i = 1; i <= grid_points[0]-2; i++) {
// [...]

}
}

}
for (k = 1; k <= grid_points[2]-2; k++) {

for (j = 1; j <= grid_points[1]-2; j++) {
for (i = 1; i <= grid_points[0]-2; i++) {

Q3: rhs[k][j][i][1] = rhs[k][j][i][1] + dy2ty1 *
(u[k][j+1][i][1] - 2.0*u[k][j][i][1] +
u[k][j-1][i][1]) + yycon2 * (us[k][j+1][i] -
2.0*us[k][j][i] + us[k][j-1][i]) - ty2 *
(u[k][j+1][i][1] *
(u[k][j][i+1][2] * 1.0/u[k][j][i+1][0]) - // vp1
u[k][j-1][i][1] *
(u[k][j][i-1][2] * 1.0/u[k][j][i-1][0])); // vm1

Q4: rhs[k][j][i][2] = (rhs[k][j][i][2] + dx3tx1 *
(u[k][j][i+1][2] - 2.0*u[k][j][i][2] +
u[k][j][i-1][2]) + xxcon2 * (
(u[k][j][i+1][2] * 1.0/u[k][j][i+1][0]) - // vs[k][j][i+1]
2.0*(u[k][j][i][2] * 1.0/u[k][j][i][0]) + // vs[k][j][i]
(u[k][j][i-1][2] * 1.0/u[k][j][i-1][0]) - // vs[k][j][i-1]
tx2*(u[k][j][i+1][2]*up1-u[k][j][i-1][2]*um1)) +
dy3ty1 * (u[k][j+1][i][2] - 2.0*u[k][j][i][2] +
u[k][j-1][i][2]) + yycon2*con43 *

((u[k][j][i+1][2] * 1.0/u[k][j][i+1][0]) - // vp1
2.0*(u[k][j][i][2] * 1.0/u[k][j][i][0]) + // vijk

(u[k][j][i-1][2] * 1.0/u[k][j][i-1][0])) - // vm1
ty2 * (u[k][j+1][i][2] *
(u[k][j][i+1][2] * 1.0/u[k][j][i+1][0]) - // vp1
u[k][j-1][i][2] *
(u[k][j][i-1][2] * 1.0/u[k][j][i-1][0]) + // vm1

(u[k][j+1][i][4] - square[k][j+1][i] -
u[k][j-1][i][4] + square[k][j-1][i]) * c2);

// [...]
}

}
}

Figure 5.29: The code snippet shown in Figure 5.28 after expression propagation was
performed. All scalars have been eliminated as well as the temporary array vs.
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5.3.1 Propagation Expressions and Dependences

Conceptually, expression propagation replaces read accesses with the expressions last written to
the read location. These expressions are consequently evaluated later, at a program point where
they are needed, as an alternative to earlier evaluation followed by communication of their result.
To perform expression propagation we require propagation expressions, that will replace read
accesses, and propagation dependences, that relate read and write statement instances.

A propagation dependence w⇀r is a subset of a read-after-write (RAW) dependence w→r for
which a propagation expression ⇀ew exists. The propagation expression has to evaluate at the
target statement instance j to the same value that was written in the dependent source statement
instance i. Thus, if we denote the defining expression written at instance i as ew, Formula 5 and
6 define sufficient conditions for both propagation dependences as well as expressions.

w⇀r ⊆ w→r (5)

∀(i, j) ∈w⇀r ∶ J ew K i = J⇀ew K j (6)

Figure 5.30 provides an example for expression propagation together with the propagation depen-
dences and expressions. The original program, shown in part 5.30a, features two read accesses
of array A, r0 and r1, both in statement T. The values that are read have been written by the access
w in statement S. The propagation dependences, w⇀r0 and w⇀r1, are shown in part 5.30c (left).
In this example they are equal to the read-after-write (RAW) dependences w→r0 and w→r1. The
propagation expressions, ⇀ew0 and ⇀ew1 , are illustrated in part 5.30c (right). They are derived from
the original source expression ew ≔ (i+1)*i written in statement S and adjusted to evaluate to
the same value that would have been read by r0 and r1 in statement T. After propagation, thus in
part 5.30b, the writes in statement S are obsolete if they are not live-out (ref. Section 5.3.6.1).

for (i = 1; i < 2*N-1; i++)
S: A[i] = (i+1)*i;

for (j = 1; j < N; j++)
T: B[j] = A[2*j] + A[2*j-1];

(a) Input program with one write w and two
reads, r0 and r1, of array A.

for (i = 1; i < 2*N-1; i++)
S: A[i] = (i+1)*i;

for (j = 1; j < N; j++)
T: B[j] = 8*j*j;

(b) Program after propagation and simplification
of the expression in statement T.

w⇀r0 ≔ w→r0 = {(i, j) ∣ i = 2 ∗ j }
w⇀r1 ≔ w→r1 = {(i, j) ∣ i = 2 ∗ j − 1 } ⇀ew0 ≔ ((2*j)+1)*(2*j)

⇀ew1 ≔ ((2*j-1)+1)*(2*j-1)

(c) Propagation dependences w⇀r and expressions ⇀ew for the two read accesses in part 5.30a.

Figure 5.30: Propagation examplea for the input program in part 5.30a. The propaga-
tion dependences and expressions are shown in part 5.30c. The result after propagation

and expression simplification is illustrated in part 5.30b.

a A similar Figure was first presented by Doerfert, Sharma, and Hack [DSH18].
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5.3.1.1 Semantic Preserving Expression Propagation

Expression propagation preserves the semantics if the evaluation of the propagation expression
⇀ew is equal to the value loaded by the access r, for all iterations in the range of the propagation
dependence w⇀r. Thus, soundness is guaranteed if Formula 7 holds.

∀(i, j) ∈ w⇀r ∶ J⇀ew K j = J r K j (7)

If we apply the definition of propagation expressions (Formula 6) we get Formula 8.

∀(i, j) ∈ w⇀r ∶ J ew K i = J r K j (8)

Formula 5 defines propagation dependencesw⇀r as subsets ofRAW dependences [Fea91]. Thus,
ew written by w in iteration i is the value read by r in iteration j, for all (i, j) ∈ w⇀r ⊆ w→r.

5.3.1.2 Propagation Dependences

Propagation dependences and expressions, as defined in Formula 5 and 6, depend on each other.
To determine a non-trivial propagation dependencew⇀r for a RAW dependencew→rwe require
some information on the propagation expression ⇀ew . Only then it becomes possible to exclude
iteration pairs for which Formula 6 does not hold. While there are infinitely many possible propa-
gation expressions to choose from, we restrict ourselves in two important ways. First, we ensure
that the propagation expression ⇀ew will have the same structure as the original expression ew.
Second, a propagation expression ⇀ew will access exactly the same scalar and memory locations
as ew did. Given these restrictions, the maximal propagation dependence is the maximal subset
of the RAW dependence for which the evaluation of all contained read accesses does not change
between related iterations. Thus, if R (ew) denotes the locations read by ew, we can can define
the maximal propagation dependence w⇀r as shown in Formula 9.

w⇀r ≔ {(i, j) ∈ w→r ∣ ∀ rew ∈ R (ew). J 𝑟ew K i = J 𝑟ew K j } (9)

A practical and sufficient condition for a read access to evaluate to the same value in two different
statement instances is the absence of an intermediate write to the same location. Our reload test
will determine conditions for the absence of intermediate writes for each read in the propagation
expression, thus ∀ rew ∈ R (ew). Afterwards we restrict the original RAW dependence with
regards to all these conditions in order to get a valid propagation dependence. While it can
potentially be smaller than the maximal one defined in Formula 9, we believe it is reasonable to
expect that writes generally alter the values stored in the written location.
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Reload Test
The reload test determines conditions that exclude intermediate writes to locations read by the
propagation expression ⇀ew , or equivalently, by the original expression ew. These conditions will
later restrict a RAW dependencew→r to a valid propagation dependence w⇀r as they ensure that
each read access evaluates to the same value in the propagation source as well as target iteration
instance. Thus, the reload test derives conditions RT on the propagation target instances j such
that Formula 10 holds for all read access rew ∈ R (ew). It is important to note that is only true
due to the constraints on the propagation expression. These ensure that the location accessed by
rew ∈R (ew) in iteration i is equal to the one accessed by ⇀rew in iteration j for (i, j) ∈ w⇀r ⊆ w→r.

∀(i, j) ∈ w→r. j ∈ RT(rew) ⟹ JrewKi = J⇀rewKj (10)

To determine RT, we first relate the iteration instances of potential intermediate writes (PIW) to
instances of the propagation target. An access is potentially intermediate, if it is the first suc-
ceeding write to a location read in the propagation expression. To identify potential intermediate
writes we follow all WAR dependences emanating from the read accesses in the propagation ex-
pression. The targets of the WAR dependences are then related to the statement instances of the
propagation target that will read the same location. The PIW relation for a propagation expres-
sion read rew ∈ R (ew) is shown in Formula 11. It is the application of the RAW dependences
onto the invertedWAR dependences of rew . Thus, PIW relates write instances l, that overwrite the
instance i of rew , with the instances j of the propagation target that will access the same location.

PIW (rew) ≔ (rew→∗)−1 ◦ (w→r)
= {(l, j) ∣ ∀ i. (i, j) ∈ w→r ∧ (l, i) ∈ rew→∗ } (11)

An intermediate write exists, if and only if the write, hence the first component of PIW(rew),
precedes the reload, thus the second component. If it does not, the write will be executed after
the propagation source as well as target instances and it will consequently not interfere with the
propagation. To determine the order of the accesses we employ the schedule 𝜃 and the lexico-
graphic ordering of statement instances ≪lex. In addition we will require that ≪lex does order
accesses inside a single statement to prevent overwrites that happen in the same statement and
iteration. However, if the statement granularity ensures a single write per statement, e.g., C/C++
statements without the assignment operator, this is trivially fulfilled. Formula 12 shows the set
of overwritten instances OR for a read access rew in the propagation expression. Only these in-
stances change between the propagation source and target instance, as only for these instances
there is an intermediate write. Thus, these read instances cannot be reloaded at the target.

OR(rew) ≔ rng(PIW(rew) ∩ { (l, j) ∣ 𝜃(l) ≪lex 𝜃(j) })
= { j ∣ (l, j) ∈ PIW(rew) ∧ 𝜃(l) ≪lex 𝜃(j) } (12)
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The reload test conditions RT that exclude intermediate writes and thereby ensure that a read in
the propagation expression can be reloaded at the propagation target is shown in Formula 13.

RT(rew) ≔ ¬OR(rew)
= { j ∣ (l, j) /∈ PIW(rew) ∨ 𝜃(j) = 𝜃(l) ∨ 𝜃(j) ≪lex 𝜃(l)} (13)

This allows to define the propagation dependence w⇀r as shown in Formula 14. It is the subset
of a RAW dependence w→r, for which the target instances j fulfill the reload test conditions RT
of every read rew in the original, or alternatively, the propagation expression.

w⇀r ≔ ⋂
rew∈R (ew) (w→r ∩rng RT(rew))

= {(i, j) ∈ w→r ∣ ∀ rew ∈ R (ew). j ∈ RT(rew) } (14)

Intra-IterationWAR Dependences

for (i = 0; i < N; i++)
A[i] = A[i] + A[i-1];

Figure 5.31: Example featuring
a loop carried inter-iteration RAW
dependence as well as an intra-

iteration WAR dependence.

Propagation dependences are sensitive to intermediate
writes that occur between iterations related through a
RAW dependence. To determine the existence of inter-
mediate writes our reload test uses the same WAR de-
pendences that are computed for common polyhedral
scheduling optimizations. Since most optimizations do

not require intra-iteration dependences, only inter-iteration dependences are computed [Fea91].
The subtle difference is illustrated in Figure 5.31. The only inter-iteration dependence is the
loop carried RAW dependence of length one. Due to the absence of inter-iteration WAR de-
pendences we could falsely assume propagation is sound. However, the self-overwrite, or the
consequent intra-iteration WAR dependence, should prevent propagation. To ensure soundness
we therefore compute intra-iterationWAR dependences ourselves and use them in the reload test.
Intra-iteration WAR dependences are computed as shown in Formula 15. For each statement S
in the SCoP, the union of all read access functions is inverted and applied to the union of the
inverted written access functions. Afterwards, all intra-iteration dependences, thus identities, are
extracted.

intra-WAR ≔ ⋃
S ∈ SCoP

⎛⎜⎝ (⋃
r∈ S

𝑓r)−1

◦ ( ⋃
w∈ S

𝑓w)−1 ⎞⎟⎠ ∩ { (i, i) } (15)

At this point it is important to note that intra-iteration dependences are only propagation prevent-
ing if the location is live-out. If not, the write is eliminated after propagation and can therefore not
overwrite the propagated read accesses. This special case is needed to propagate the rhs array
accesses from statement P0 to statement Q4 in the motivating example shown in Figure 5.28
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5.3.1.3 Propagation Expressions

One task for expression propagation is to identify a valid propagation expression and propagation
dependence for a given RAW dependence. Once the propagation expression was determined, the
valid part of the RAW dependence becomes the propagation dependence and expression propa-
gation can be applied. However, there are indefinitely many different syntactic expressions. In
order to effectively identify propagation expressions we therefore limit ourselves to the ones that
can be constructed from the original expression via induction variable adjustment. This is usually
a necessary step as their scope is limited and their values change when the loop progresses.

Expression Rewriting
To derive the propagation expressions we traverse the written expression ew recursively and
rewrite all induction variables iv ∈ ew according to RAW relation w→r. The goal is to construct
a new expression ⇀iv that depend on the iteration vector of the target and that evaluates to the
same value there as iv evaluated to in the source for dependent iterations.

Without loss of generality we assume iv is the induction variable of the 𝑘-th out of 𝑛 loops
surrounding the source statement. The affine function that provides the value of iv for an iteration
i of the source statement is defined as

𝑣(iv) ≔ {(i, iv )} = {((𝑖1, … , 𝑖𝑛), iv )} = {((𝑖1, … , 𝑖𝑛), 𝑖𝑘)}.

Since w→r is an affine relation between instances of the statements surrounding w and r it can
be written as

{(i, j) ∣ 𝑓(i, j)} = {((𝑖1, … , 𝑖𝑛), j) ∣ 𝑓((𝑖1, … , 𝑖𝑛), j)}
where 𝑓 is a Presburger formula that defines the constrains under which the dependence exists.
To obtain the function 𝑣(⇀iv) we apply the dependence w→r to the domain of 𝑣(iv):

𝑣(⇀iv) ≔ 𝑣(iv) ◦ w→r = {(w→r(i), iv ) ∣ 𝑓(i, j)} = {(j, iv ) ∣ 𝑓 ′(j, iv )} (16)

The new Presburger formula 𝑓 ′ relates instances of the target statement j to the value of iv = 𝑖𝑘

of the source statement.

Using common polyhedral code generation techniques [GVC15] we can generate the expression
⇀iv from 𝑣(⇀iv) which can then be evaluated in the target statement.

To derive the complete propagation expressions ⇀ew we use the rewrite procedure presented in
Algorithm 5.32 on the original expression ew and the RAW dependence w→r.
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1: procedure rewrite( ew ∶ ⟨rexp⟩, w→r : RAW)
2: switch ew do
3: case 𝑐 : ⟨constant⟩: return 𝑐
4: case 𝑝 : ⟨param⟩: return 𝑝
5: case iv: ⟨iv⟩: return ⇀iv see equation (16)
6: case l ⊙ m : ⟨rexp⟩ × ⟨rexp⟩: ⊙ is a binary operator
7: return rewrite(l,w→r) ⊙ rewrite(m,w→r)
8: case A[𝑒1][...][𝑒𝑛] : ⟨acc⟩:
9: 𝑓𝑘 ← rewrite(𝑒𝑘, w→r) 1 ≤ 𝑘 ≤ 𝑛
10: return A[𝑓1][...][𝑓𝑛]
11: end switch

Algorithm 5.32: Expression rewrite algorithma that translates the originally written expres-
sion ew according to the RAW dependence w→r to the propagation expression ⇀eww .

a This Figure was first presented by Doerfert, Sharma, and Hack [DSH18].

5.3.2 Syntactic Read Replacement

We now established that the read access of a propagation dependence can be replaced by the
propagation expression for all iterations in the range of the propagation dependence. In order to
allow syntactic replacement of the access we additionally require the propagation dependence to
be surjective with regards to the iteration domain of the target statement, thus rng(w⇀r) = Dr.

for (i = 0; i < N; i++)
if ((i/2)*2 == i)

S: A[i] = 𝑓(𝑖);
for (j = 0; j < N; j++)

T: B[j] = A[j];

(a) Program with a propagation opportunity for
even elements of A but not for odd ones.

for (i = 0; i < N; i++)
if ((i/2)*2 == i)

S: A[i] = 𝑓(𝑖);
for (j = 0; j < N; j++)

if ((j/2)*2 == j)
T': B[j] = 𝑓(𝑗);

else
T: B[j] = A[j];

(b) Resulting program after propagation of 𝑓(𝑖) to
statement T' which was split of from T.

Figure 5.33: Statement splitting and syntactic read replacement for a non surjective
propagation dependencesa.

a This Figure was first presented by Doerfert, Sharma, and Hack [DSH18].

It is always possible to achieve a surjective propagation dependence by splitting the target state-
ment in two parts as illustrated in Figure 5.33. One part is completely reached by the dependence,
here T' in Figure 5.33b, and one is not reached at all. All accesses, as well as the dependences
involving the accesses, will be duplicated and then restricted to the domain of the respective part.
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5.3.3 Complexity Analysis

Maximal expression propagation is NP-hard as it can be used to solve 𝑘-CNF-SAT formulae.
The polynomial encoding for a CNF formula into a program in our input language is sketched
in Figure 5.34. The outer conjunction is translated to an (arbitrary) operation referencing the
results of all disjunctive clauses c1, … , c𝑛 as illustrated in Figure 5.34a. The expression result is
stored in the only non live-out variable named UNSAT. Afterwards, all clause results are overwrit-
ten. Consequently, propagation of UNSAT is possible if and only if prior propagation happened
for all c1, … , c𝑛. Each clause result c𝑖 is defined as an (arbitrary) operation on the contained
(negated) literals l1, … , l𝑘 as shown in Figure 5.34b. Propagation of a clause result c𝑖 is only
possible if there exits a witness literal lwit𝑖 , which was replaced by its definition and of which
the definition does not access the False array at position 𝛾(lwit𝑖). Note that wit𝑖 is a parameter
and 𝛾(⋅) a constant valued, injective enumeration function for literals that is not present in the
code but used only for the construction. We define a literal l𝑖 as x+ if it is a positive use of x and
as x− if it is a negated use. In Figure 5.34c the positive and negative occurrences of a literal x
are encoded as a constant value and an access to the False array depending on the parameter A𝑥

which determines the assignment of x. Both literal forms can be propagated to the definition of
a clause but only the form that was assigned a constant can justify the propagation of the clause.

UNSAT = c1 ⊕ ... ⊕ c𝑛;
c1 = 0; ...; c𝑛 = 0;
SAT = !UNSAT;

(a) Encoding of the conjunc-
tion 𝑐1 ∧… ∧ 𝑐𝑛. UNSAT can
only be propagated if all dis-
junctions have been replaced.
If that is the case, the formula is
satisfiable, otherwise it is not.

c𝑖 = l1 ⊕ … ⊕ l𝑘;
if (wit𝑖 == 1)
False[𝛾(l1)] = 0, l1 = 0;

else if (wit𝑖 == 2)
...
else if (wit𝑖 == k)
False[𝛾(l𝑘)] = 0, l𝑘 = 0;

(b) Encoding for a disjunction
𝑐𝑖 = 𝑙1 ∨… ∨ 𝑙𝑘 that can only be
propagated if the (negated) literal
at position wit𝑖 does not access the

False array.

x+ = 1; x− = 1;
if (A𝑥)

x− = False[𝛾(x−)];
else
x+ = False[𝛾(x+)];

(c) Encoding for a literal x in
positive (x+ ≔ x) and nega-
tive (x− ≔ ¬ x) form. The
condition A𝑥 is a parameter that
determines the assignment of x.

Figure 5.34: Encoding rulesa for a 𝑘-CNF-SAT formula as a program that allows max-
imal polyhedral expression propagation to solve satisfiability. All variables except
UNSAT are live-out. The 𝛾(⋅) function is a constant valued, injective enumeration for
literals 𝑙𝑖 which can be positive x+ or negative x− uses of a variable x, thus 𝛾(⋅) is not

present in the final program.
a This Figure was first presented by Doerfert, Sharma, and Hack [DSH18].

Maximal expression propagation will explore all possible assignment combinations by splitting
statements based on the values of the parameters A𝑥 and wit𝑖. Though, only the literals with a
constant value are able to justify the propagation of a clause c𝑖 under the condition that wit𝑖 is
equal to such a literals position in the clause. If and only if there exists an assignment of the liter-
als such that all disjunctions can be propagated, the UNSAT value, representing the conjunction,
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can be eliminated as well. Each fulfilling variable assignment is determined by the parameter
values of A𝑥 in the iteration domains of the statement splits in which UNSAT was made obsolete
after propagation. To this end, we assume the propagation algorithm will record all iteration
domains for which the non live-out variable UNSAT can be eliminated and thereby also record all
fulfilling assignments.

Note that the encoding has to happen first for all literals (ref. Figure 5.34c), then for all disjunc-
tions (ref. Figure 5.34b) and then for the conjunction (ref. Figure 5.34a).

5.3.4 Limitations & Extensions

The definition of propagation dependences and propagation expressions (ref. Formula 5 and
6) are kept general on purpose. Later extensions to our technique can thereby easily reuse our
framework and theoretical results. Especially the following two current limitations could be
tackled in the future to extend the applicability and benefit of polyhedral expression propagation:

1. Propagation expressionswill read exactly the samememory locations as the original source
expression. We especially do not introduce new memory locations or reuse existing ones
to communicate overwritten values as needed to eliminate the array tmp in Figure 5.35a.

2. Propagation dependences are determined using the given schedule which is not altered
during the process. While expression propagation can still be applied before or after poly-
hedral schedule optimization, we did not explore the possibility to use schedule changes
to eliminate propagation prohibiting WAR dependences as illustrated in Figure 5.35b.

tmp[0] = 1; tmp[1] = 1;
for (i = 2; i < N; i++)
tmp[i] = tmp[i-1] + tmp[i-2];

out = tmp[N];
(a) Naive Fibonacci computation that requires two
new scalar variables to hold intermediate results in
order to allow propagation and consequent elimina-

tion of the temporary array tmp.

for (i = 0; i < N; i++)
tmp[i] = A[i];

for (j = 0; j < N; j++) {
S: A[j] = 0;
T: B[j] = tmp[j];

}
(b) Propagation prohibiting overwrite in state-
ment S that could be avoided by an inter-

change of statement S and T.

Figure 5.35: Examplesa illustrating the limitations of the propagation expression and
dependence construction as described in Section 5.3.1.3 and Section 5.3.1.2.

a This Figure was first presented by Doerfert, Sharma, and Hack [DSH18].

Note that both limitations can limit propagation on general purpose code, but neither impacted
our evaluation on the image processing pipelines which never reuse temporary memory locations
(ref. Section 5.3.7). Also the propagation of scalar variables in static single assignment (SSA)
programs is consequently not affected by them.
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5.3.5 Propagation Heuristics & Algorithm

While expression propagation, as presented here, will never increase the memory requirements
or introduce new dependence, it can easily cause performance degradation. An increased cache
miss rate, due to additional memory accesses, and additional computations, caused by the re-
evaluation of defining expressions, are the most common causes. Furthermore, statement split-
ting can introduce complex loop structures that are hard to execute efficiently. In order to de-
termine if propagation will be beneficial we devised several heuristics to guide our propagation
algorithm. The heuristics and the actual propagation algorithm are explained in the following.

5.3.5.1 Propagation Heuristics

In our evaluation, expression propagation is only performed if all five heuristics described in the
following deem it beneficial. However, dependent application on a broader class of code will
require more tuning effort and a more evolved cost model.

Non Live-Out Memory Heuristic
The optimization potential of expression propagation stems mainly from the elimination of non
live-out, e.g., temporary or overwritten, memory accesses. If all RAW dependences emanating
from such accesses have been eliminated, the original computation, as well as the write accesses,
become obsolete. Access elimination can also lead to fewer WAR and WAW dependences. Ad-
ditionally, the overall memory requirement and cache contention might decrease. While propa-
gation of live-out accesses is not harder, there is generally less performance to gain. To this end,
we will optimistically assume that only propagation of non live-out memory is beneficial.

Cache Miss Heuristic
The goal of the cache miss heuristic is to limit the number of required cache lines per iteration.
To this end, we conservatively approximate this number under two assumptions. First, the cache
is approximated for one iteration in isolation. Second, each access is located in the middle of
a cache line. Consequently, only subsequent accesses to close-by memory locations will cause
cache hits. We take these assumptions as the final schedule, and thereby actual memory access
order also with regards to other statements, is not necessarily determined when the heuristic is
evaluated. However, all accesses contained in the statement are known to be executed in order.
For the example shown in Figure 5.36, all locations between A[i-3] and A[i+3] are assumed
to be cached after A[i] was accessed. The heuristic will then iterate order over all memory ac-
cesses contained in the target statement in lexicographic, assuming propagation already replaced
all reads to one array with their respective propagation expressions. The number of cache lines
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needed per iteration is then equal to the number locations which are accessed but were not as-
sumed to be already in the cache. Note that only if an access is considered a cache miss, the
locations surrounding the access will be assumed cached for all accesses to come.

cache line size

A[i-3] A[i] A[i+3]

Figure 5.36: Memory locations that are assumed to be cached (gray) after A[i] (dark
gray, center) was accessed. The cache line size is here 8 times the element size of A.a

a This Figure was first presented by Doerfert, Sharma, and Hack [DSH18].

The number of required cache lines computed by our heuristic is not only approximative but there
is additionally a hardware dependent component caused by prefetchers and tolerable misses due
to computation latencies. We therefore determined a cache miss limit for each architecture using
measurements similar to the ones shown in Section 5.3.7.1.

Code Complexity Heuristic
A key advantage of our propagation scheme is the ability to propagate expressions to some, but
not all, iterations of a statement (ref. Section 5.3.2). However the required statement splitting can
not only increase the number of statements, but also the number of dependences, exponentially.
Additionally, splits can severely increase the complexity of the generated code. In the worst case
a loop is split into three parts if the specialization happens in the middle iteration(s) of a loop
dimension. The resulting loops, before and after the specialized iteration(s), are less often vector-
ized, due to a smaller trip-count, and can also increase the synchronization overhead, if they are
separately parallelized. To limit code complexity we restrict single instance specialization in the
following way: Instances are only specialized for a single, thus fixed, iteration if the specialized
iteration will not create two non-fixed, thus loop dimensions, at the same nesting depth.

Two examples to showcase a different code complexity increase are illustrated in Figure 5.37.
In the first part (ref. Figure 5.37a), the complexity is only slightly increased as the fixed single
iterations will be the outermost ones of statement T. In the second example (ref. Figure 5.37b),
propagation will increase the complexity more as the iteration domain of statement Twill be split
into two parts with M/2 iterations each and a third one for the remaining N-M iterations.

for (i = 1; i < N; i++)
tmp[i] = In[i-1] + In[i+1];

for (j = 0; j <= N; j++)
T: Out[j] = tmp[j];
(a) Little complexity increase after specialization of

all but the outermost iterations of statement T.

for (i = M/2; i < M; i++)
tmp[i] = In[i]*i;

for (j = 0; j < N; j++)
T: Out[j] = tmp[j];
(b) Large complexity increase after specialization

of M/2 out of N iterations of statement T.

Figure 5.37: Examples to showcase differences in code complexity increase that would
arise from expression propagation with statement splitting.
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Vectorization Heuristic
Loop vectorization is nowadays crucial to achieve good performance. However, expression prop-
agation can propagate accesses, e.g., data dependent ones, that prevent (efficient) vectorization
from one to multiple locations. To limit this effect propagate expressions is not allowed if it de-
creases the vectorization potential. Thus, no propagation shall increase the number of loops with
non-vectorizable accesses, scaled by their nesting depth. Though, we take into account that the
target statements might already contain non-vectorizable accesses and that the source statement
could be eliminated after propagation.

Arithmetic Complexity Heuristic
If expressions are propagated into a deeper nested loop, the arithmetic complexity of the program
is increased. Since this is generally not advantages, we do not allow the target to be deeper nested
than the source. However, if the target domain would be specialized (ref. Section 5.3.2), then the
number of remaining non-fixed, thus loop, dimensions is compared against the number of source
statement loop dimensions.

5.3.5.2 Propagation Algorithm

To this point, we discussed expression propagation as an optimization performed per RAW, or
propagation dependence. However, that could lead to the situation where only some of the out-
going RAW dependences of the writes to a non live-out location get propagated, while the rest
is considered not beneficial. Since only the elimination of all non live-out write accesses allows
to eliminate temporary memory completely, we want to avoid such partial propagations. To this
end, we applied the heuristics and consequently also the propagation, not to a single dependence
at a time, but always to the set of RAW dependences emanating from all writes to a non live-out
array or scalar location4. Propagation is therefore only performed if it is possible and deemed
beneficial for all RAW dependences involving a temporary location. Consequently, propagation
will always allow to remove all writes to the temporary location afterwards.

To keep the algorithmic complexity low, we only try to propagate each non live-out array or
scalar location once. The order in which the locations are visited is described below.

Propagation Order
Since our heuristics are checked for each non live-out location only once, the order in which they
are visited is of special importance. This is true since propagation can change the heuristic results
for later locations but potentially even their legality. In Figure 5.38, both effects are illustrated.

4 Common scalar variables in a static single assignment (SSA) program have only one definition. However, our
polyhedral representation of a phi node uses one write per incoming edge to emulate the assignment on the edge.
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In the first example, Figure 5.38a, the propagation of the scalar s0 and the scalar s1 are mutually
exclusive. Once either was propagated, the other cannot be, due to theWAR dependence between
the two accesses to the array A. In the second example, Figure 5.38b, propagation of either scalar,
t0 or t1, will increase the number of required cache lines for statement S to three. If our heuristic
only allows four cache misses per statement, the second scalar will not be propagated into S.

For our implementation we chose to propagate the temporary location first that cause the least
number of different arrays accessed in the target statements. If there are multiple locations for
which this number is equal, the one with the least amount of outgoing RAW dependences is
chosen. If there is still no unique location, we pick the one with less: source statements, read
accesses, dimensions and then number of incoming RAW dependences. The final tie breaker is
the syntactic ordering in the source.

s0 = A[i];
s1 = s0 + B[i];
A[i] = ...;
C[i] = s1;

(a) Propagation of one scalar, s0 or s1, prohibits
propagation of the other one.

t0 = A[i] + C[i];
t1 = B[i] + D[i];

S: Out[i] = t0 + t1;

(b) Propagation of one temporary location, t0 or
t1, prevents beneficial propagation for the other

one if only 4 cache misses are allowed.

Figure 5.38: Examplesa illustrating the impact of the propagation order on propagation
legality (part 5.38a) and the cache miss heuristic (part 5.38b).

a This Figure was first presented by Doerfert, Sharma, and Hack [DSH18].

5.3.6 Implementation Details

Our expression propagation prototype is implemented in LLVM’s polyhedral loop optimizer
Polly but it uses a fine-grained statement granularity which is also employed by high-level
polyhedral optimizers such a Pluto [Bon+08]. To maximize performance in the presence of
propagated expressions and statement splits we additionally had to augment LLVM and Polly
as described below.

Loop Parallelization
Polly is capable of parallelizing loops using OpenMP [Rag11]. If enabled, the outermost par-
allel loop is chosen to be executed in parallel, even if the loop trip count prevents full utilization
of the machine. To avoid undersubscription we decided to parallelize outermost loops with small
loop trip counts only if there is no suitable nested loop available. This can lead to paralleliza-
tion of innermost loops, something Polly will not do by default. Finally, we also allow to
parallelize loops with non-affine write accesses, if parallel annotations present in the benchmark
sources guaranteed the absence of dependences (ref. Section 5.1.2).
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Scheduling and Tiling
Polly does perform polyhedral scheduling and tiling [GGL12] optimizations as described by
Bondhugula et al. [Bon+08]. However, it cannot perform smart loop fusion [Bon+10], choose
suitable tile sizes [BPB12; Ham+17; Ham+18; Yuk+10] or do a combination thereof [MVB15].
Instead, the default scheduling choice will perform aggressive loop distribution/fission and loops
are always tiled rectangularly with the default tile size of 32. In our experiments we regularly
noticed performance regressions when tiling was done with the default tile size. Additionally, the
default scheduling scheme did decrease the execution time when statements splits were placed
into multiple loop nests.

To avoid these performance artifacts we disabled loop tiling altogether and modified the schedul-
ing objective. While Polly tries to create independent loop nests for each statement, including all
statement splits, we fuse all write accesses to the same array into one loop nest. This scheduling
choice is similar to the naive inputs [MVB17]. However, our scheduling and tiling choices are
far from optimal and they need to be revisited. Nevertheless, the evaluation in Section 5.3.7.3
shows that they almost always result in better performance than Polly’s defaults.

Higher-Order Recurrences
Recurrences are scalar variables that communicate values from one iteration to the next [Kev90].
In order to employ recurrences, we augmented Polly’s code generation to recognize consec-
utive accesses in the innermost loop that have been replaced by propagation expressions. Gen-
erally, all consecutive read accesses can be communicated via recurrences into the next iter-
ation. Though, we decided to keep memory reads because they will most definitively cause
low-level cache hits while recurrences will inevitably increase the register pressure of the whole
loop. Higher-order recurrences, i.e., recurrences that communicate values across multiple loop
iterations, are especially useful to avoid recomputation. An example in which higher-order re-
currences reduce the number of evaluations of the function 𝑓 after propagation was performed is
shown in Figure 5.39. To vectorize higher-order recurrences we had to extend the LLVM loop
vectorizer as it is by default limited to single-level recurrences only.

for (i = 0; i <= N; i++)
tmp[i] = 𝑓(i);

for (j = 1; j < N; j++)
Out[j] = tmp[j-1] + tmp[j]

+ tmp[j+1];
(a) Consecutive accesses that can be eliminated

by propagation.

t0 = 𝑓(0); t1 = 𝑓(1);
for (j = 1; j < N; j++) {

t2 = 𝑓(2);
Out[j] = t0 + t1 + t2;
t0 = t1; t1 = t2;

}
(b)Higher-order recurrences used to communicate the

result of 𝑓 across two loop iterations.

Figure 5.39: Use of higher-order recurrences to reduce computation overhead after ex-
pression propagation was performeda. Naive code generation would triple the number
of instances of 𝑓 , but recurrences allow propagation with only one evaluation of 𝑓 .

a This Figure was first presented by Doerfert, Sharma, and Hack [DSH18].
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5.3.6.1 Live-Out Access Analysis

A live-out access analysis [RM88] determines if a write access can potentially change the values
read after a certain program point. If so, a write is called live-out. Non live-out write accesses
can be omitted if the stored value is also not read prior to the program point in question. Thus,
if all reads of a non live-out location inside a SCoP can be eliminated through propagation, the
write, and thereby the original computation, can be omitted as well.

Due to the lack of a suitable analysis in the LLVM framework we implement one ourselves5. It
detects the following non-live out locations with regards to the currently optimized SCoP.

Scalar Locations
In static single assignment (SSA) programs a scalar is only live-out if it is used outside the SCoP.

Stack Memory Locations
Stack locations are only accessible during the current function invocation. If a stack memory
location does not escape, thus its address is never stored in a global variable or passed to an-
other function, it can consequently only be used inside the defining function. We identify stack
locations as non live-out if they do not escape and there is no user reachable from the SCoP.

Global Memory Locations
Global memory locations are only considered non live-out if their address is not taken, all known
uses are inside the SCoP and their declaration is “internal” to the optimization unit, e.g., static
allocations in C/C++.

Unknown Memory Locations
A heap memory location or one with unknown origin, e.g., a pointer argument, is generally
considered live-out. However, if we can determine that the content cannot legally be read6 or the
first reachable outside user post-dominates the SCoP and also deallocates the memory, we can
conclude the memory is not live-out.

Overwritten Memory Locations
If a write to any location is overwritten inside the SCoP it is not live-out. To this end, we use
the write-after-write (WAW) dependences that are already computed during the polyhedral de-
pendence analysis [Fea91] to identify all overwritten locations.

5 The identification of all but overwritten memory locations was implemented by Shrey Sharma.
6 LLVM employs special lifetime intrinsics to mark memory that can be assumed dead.
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5.3.7 Evaluation

Polyhedral expression propagation is evaluated on the seven benchmarks listed in Table 5.41 and
on the four architectures listed in Table 5.40. The different architectures allow to showcase both
scalability (4−20 threads) as well as portability with regards to the cache size, ISA, and execution
model, thus In-Order vs. Out-of-Order (OoO). The benchmarks were first used to evaluate the
PolyMage tool [MVB15] and are available online [MVB17] in a naive parallel and an optimized
version. Note that the input for the LLVM/Polly based schemes was always the naive version
of the benchmark. We compare expression propagation to the following polyhedral-model-based
but scheduling-centric optimizations:

- vanilla7 Polly, the polyhedral optimizer of the LLVM/Clang compiler which is also
the basis for our approach,

- optimized code versions generated by PolyMage [MVB15], the state-of-the-art polyhedral
optimization tool for concatenated stencil computations,

- Halide [Rag+13], a state-of-the-art DSL for schedule optimizations on process pipelines,
- our Polly fork8 that was modified as described in Section 5.3.6 but without expression
propagation, and

- our Polly fork with automatic expression propagation, as explained in Section 5.3.5.2,
and guided by the heuristics presented in Section 5.3.5.1.

LLVM/Polly based approaches, as well as PolyMage, were compiled with the same LLVM9

version (close to v4.0.110). We choose this setup to compare the effects caused by the specific
optimizations rather than artifacts that arise due to different vectorization or register allocation
schemes employed by the compilers. Additionally, we present PolyMage results compiled with
GCC9 (v7.2.0) and ICC9 (v18.0.1 20171018) on the Xeon E3-1225v3 CPU in Table 5.42.

CPU #Cores / Threads Vec. Bits L1 Cache LLC Exec. Model

Cortex A53 4 / 4 128 16KiB 0.5MiB In-Order
Cortex A57 4 / 4 128 24KiB 2MiB OoO
Xeon E3-1225v3 4 / 4 256 128KiB 8MiB OoO
Core i9-7900X 10 / 20 512 320KiB 13MiB OoO

Table 5.40: Architecture detailsa including the CPU, number of cores and threads, vector
size in bits, first (L1) and last level cache size (LLC) as well as the execution model.

a This Table was first presented by Doerfert, Sharma, and Hack [DSH18].

7 Modifications to the SCoP detection and modeling were necessary to represent and optimize the benchmarks.
8 Our Polly fork, including expression propagation, and evaluation scripts are available online at

https://github.com/cdl-saarland/PolyhedralExpressionPropagation.
9 LLVM/Clang and GCC were invoked with the options: “-fopenmp -ffast-math -march=native -O3”.

ICC was run with the options: “-qopenmp -fp-model fast=1 -ftz -xhost -O3”.
10 Our LLVM/Clang is a slightly modified version (ref. Section 5.3.6) based on git commit 1aa4ba7.

https://github.com/cdl-saarland/PolyhedralExpressionPropagation
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5.3.7.1 Heuristics Comparisons

While a comparison of the different optimization schemes will follow in Section 5.3.7.3, we first
want to discuss the effects of the heuristics we employed (ref. Section 5.3.5.1), but also of the ones
we eventually discarded. In addition to the heuristics we described before, we experimented with
others, including an approximation of the number of required registers and propagation based
on the number of accesses. We also altered the propagation orders based on these and similar
factors. While some combination of heuristics did result in performance improvements of up
to 20% for individual benchmarks, the overall results were always inconclusive. To provide
a better intuition, we illustrated the results of an extensive search over the optimization space
graphically in Figure 5.43. The four plots showmeasurements taken after expression propagation
of randomly chosen combinations of temporary arrays for the Xeon E3-1225v3 architecture. The
size of the combinations varied between 1 and 31. If the benchmark allowed it we generated up
to 31 unique sets of temporary arrays for each size. Expression propagation was then asked to
propagate all RAW dependences that were caused by accesses to these temporary arrays without
regards for any heuristic. If that was possible, the temporary array was afterwards removed. The
data points in the plot report the median runtime results of 31 runs for each combination with
regards to different static properties of the resulting code. The lines are linear regressions over
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Figure 5.43: Correlationa between the runtime on the Xeon E3-1225v3 architecture
and the number of: arrays (upper left), statements (upper right), accesses (lower left),
and instructions (lower right). The marks indicate experimental results and the lines
show the linear regression per benchmark. A positive regression line slope indicates
that minimizing the number generally improves performance. However, the absolute

value of the slope is highly dependent on the scaling and the shown range.
a This Figure was first presented by Doerfert, Sharma, and Hack [DSH18].
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all benchmark results. Note that we are interested in the sign of the regression line slope not the
absolute value as the latter is heavily impacted by the scaling of the plot and the shown range.

The two graphs in the top row show the runtime with regards to the number of arrays and state-
ments. The regression lines in these plots indicate that propagation, and the consequent array
and statement elimination, has a positive impact on the performance. All benchmarks, except
interpolate (6), generally perform better when expression propagation reduces the number of
arrays and statements. Interpolate is different because propagation can easily cause too many
statement splits that might reduce the number of arrays but complicate the schedule and thereby
increase the runtime. If the number of statements is minimized (ref. second graph), propagation
is beneficial. As a lesson of these findings we took the general assumption that propagation, and
consequent elimination, of temporary arrays is beneficial if not deemed otherwise by a heuristic.

The two bottom graphs show that neither the number of static accesses nor the number of static in-
structions have a clear impact on the performance. Three of the seven benchmarks show speedups
even though the number of accesses increases. The same holds true for two benchmarks with
regards to the number of instructions. Consequently, we did not employ heuristics that reasoned
about the number of static instructions or array accesses.

In Table 5.44 we provide the performance results of the naive parallel version, the heuristic
guided polyhedral expression propagation we evaluated against other approaches, as well as the
best and worst observed version in aforementioned experiment. The numbers provide two inter-
esting insights about expression propagation and the heuristics we chose. First, if an unfavorable
selection of temporary arrays was removed, performance regressed for each benchmark. The
resulting slowdown reached from 1.05× for bilateral grid (3) up to 17.8× for interpolate (6). Sec-
ond, even though a large number of combinations was tried, only camera pipe (4) performed
better than our heuristic guided propagation. Since the search was exhaustive for the smaller
benchmarks (1)-(3), we know that our heuristics worked perfectly for them on the tested archi-
tecture. For the remaining two benchmarks, pyramid blending (5) and interpolate (6), the random
search got close to the results of our heuristic guided propagation but it did not quite reach it.

Version \ Benchmark (1) (2) (3) (4) (5) (6)

naive implementation 47.8 82.1 24.5 40.4 114.0 72.1
expression propagation 8.5 7.2 16.3 10.5 53.7 26.5
rnd. propagation best 8.5 7.2 16.3 8.4 55.2 33.2
rnd. propagation worst 59.0 98.6 25.7 149.4 138.6 1285

Table 5.44: Performance resultsa (in ms) including the limits observed in the random
propagation tests shown in Figure 5.43. See Table 5.41 for the benchmark names.

a This Table was first presented by Doerfert, Sharma, and Hack [DSH18].
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To determine the effectiveness of the heuristics we chose to use (ref. Section 5.3.5.1), we per-
formed several experiments. While the benchmarks only allow for propagation of non live-out
memory, we did try different thresholds for the cache miss heuristic and also rerun our experi-
ments without the code complexity heuristic.

Figure 5.45 shows the effects of different cache miss limits for three of the tested architectures.
While the two smallest benchmarks, unsharp mask (1) and harris (2), performed best after prop-
agation of all temporary arrays, others showed different behaviors. Especially bilateral grid (3)
and pyramid blending (5) are interesting in this experiment because they are not restricted by
the code complexity heuristic. Instead, the performance changes if an increased cache miss limit
allows more propagations. Depending on the architecture, the performance either improves or
regresses if more propagations are performed. For bilateral grid (3), the best performance is
achieved for a cache miss limit between 20 and 48 on the Intel architectures (Core i9 and Xeon),
while on the ARMCortex A57 the performance drops already after a cache miss limit of 24. The
reason is the different amount of available resources, e.g., registers, issuing ports and prefetcher
streams. On the ARM architecture we can observe slight improvements for much higher cache
miss limits because array elimination generally decreases the runtime while the resource con-
tention does not necessarily increase. Pyramid blending (5) shows steady runtime improvements
for higher cache miss limits on the Core i9 architecture, the most resource rich CPU we tested.
However, on the Xeon CPU the runtime flattens out and on the Cortex A57 the performance
is significantly worse when the cache miss limit exceeds 32. Our heuristic guided expression
propagation uses a cache miss limit of 32 for the Intel CPUs and 22 for both ARM architectures.

Expression propagation without the code complexity heuristic has a similarly negative effect as
a very large cache miss limit, though mainly interpolate (6) and local laplacian (7) are affected.
Without the complexity restriction the performance of interpolate varies significantly on theXeon
CPU. Depending on the cachemiss limit we see a speedup of up to 3.6× but also slowdowns of up
to 17.8×, both with regards to the native parallel version. As a comparison, our default heuristics
achieve a speedup of 2.7×. These number show again the vast performance differences that can
be caused by expression propagation, even for a fixed benchmark and architecture. Consequently,
the heuristics, including the propagation order (ref. Section 5.3.5.2), have to be chosen carefully
and potentially tuned to the architecture in order to prevent regressions. At the same time it
is crucial to account for other factors, e.g., tiling and scheduling and the use of recurrences
(ref. Section 5.3.6), since they have a non-trivial impact on the profitability of a propagation.

We learned from these studies that a good performance model for expression propagation is a
challenging task and a research topic on its own. To this end, we chose the relatively simple
combination of heuristics explained in Section 5.3.5.1 to demonstrate the potential of expression
propagation without regressions. Though, to maximize performance it is crucial to use a more
elaborate cost model and to revisit the scheduling and tiling choices.
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Figure 5.45: Effect of different cache miss limitsa (Section 5.3.5.1) on the runtime for
the Intel Core i9-7900X, Intel Xeon E3-1225v3 and, ARM Cortex A57 architectures.

a Parts of this Figure were first presented by Doerfert, Sharma, and Hack [DSH18].
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5.3.7.2 Memory Requirement and Code Complexity

Expression propagation is not only a performance optimization but, as it can eliminate temporary
memory locations, also a memory optimization. In Table 5.41 the number of parametric sized ar-
rays before and after expression propagation is shown, together with other static properties of the
optimized program. Both PolyMage [MVB15] and expression propagation decrease the number
of parametric sized arrays for each benchmark. However, expression propagation completely
eliminates temporary arrays while PolyMage often replaces them with smaller, constant-sizes,
ones that hold the intermediate results for one tile at a time.

As noted earlier, two of the benchmarks perform best if all temporary arrays have been removed.
While this is certainly not true for the three largest benchmarks, it already does not hold for the
rather small bilateral grid (3) implementation. This benchmark performs best if only two of the
three temporary arrays are eliminated and one is kept. Such effects are not the only problem
when minimal memory usage is used to guide expression propagation. As shown in Table 5.41,
there is a significant increase in the number of accesses per statement for each benchmark. While
the cache miss heuristic does indirectly limit this number, we already observe a notable growth
that causes an even bigger increase in the number of dependences. These dependences do not
only limit later schedule optimizations but also increase the compile time for all subsequent steps.
Consequently, expression propagation purely guided by array elimination does not scale well for
programs above the size and complexity of pyramid blending (5) or interpolate (6).

5.3.7.3 Automatic Expression Propagation

In Figure 5.46 the performance of all five optimizations schemes is shown for each evaluated ar-
chitecture. The graphs are normalized to the results of a naive parallel implementation generated
by PolyMage and available online [MVB17]. This naive parallel implementation12 is also the
input for all three Polly-based optimization schemes. Measurements were taken 51 times and
the median result is reported. The PolyMage version [MVB15] was optimized for a processor
similar to the Xeon E3-1225v3 and it was not specialized for the other architectures. However, it
is important to note that vanilla Polly does not employ target dependent tile sizes and that our
Polly fork, as well as expression propagation, do not perform tiling at all (ref. Section 5.3.6).

Except for bilateral grid (3) on the ARM Cortex A53, our Polly fork performs consistently
better than vanilla Polly. For this benchmark and architecture the tiling employed by vanilla
Polly improves the performance. At the same time, our Polly fork only performs better than
the heuristic guided expression propagation for local laplacian (7) on the ARM Cortex A57.

12 We stripped OpenMP pragmas from the input to allow Polly’s SCoP detection to recognize the loop nests.
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Figure 5.46: Performancea of different schemes (ref. Section 5.3.7) normalized with
regards to the naive parallel version generated by PolyMage. The vanilla Polly bar
is missing for benchmark (7) due to a code generation issue. The bars for on the Cor-
tex A53 are missing due to insufficient main memory. For Halide, only the results for
benchmarks available in the tested release (https://github.com/halide/Halide/

tree/release_2017_05_03/apps) are reported.
a This Figure was first presented by Doerfert, Sharma, and Hack [DSH18].

https://github.com/halide/Halide/tree/release_2017_05_03/apps
https://github.com/halide/Halide/tree/release_2017_05_03/apps
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PolyMage is faster than the expression propagation optimization in 7 cases and consistently better
for local laplacian (7). Expression propagation outperforms PolyMage in 18 cases and is, except
for local laplacian on the ARM Cortex A57, consistently faster than the naive implementation.
The highest speedups are achieved for the rather simple harris (2) benchmark. Though, depend-
ing on the system, either the tiled PolyMage code with two constant sized temporary arrays or
our fully propagated version performs best.

Halide [Rag+13] results are only available for the benchmarks contained in the 2017/05/03 re-
lease13. While the performance for camera pipe (4) is consistently the best among all optimiza-
tion schemes, our approach comes close on the Core i9 architecture. The performance of the
remaining benchmarks is comparable to expression propagation and it depends on the platform
which one performs best. However, it is important to consider that Halide and PolyMage perform
more complex optimizations, including tiling and (non-trivial) scheduling. Both have not been
explored in this work (ref. Section 5.3.6). Note that all expression propagation speedups are only
due to the elimination of temporary arrays. There is especially no increase in parallelism, e.g.,
due to propagated scalars, in these benchmarks.

Real World Application
Expression propagation is often limited by the available live-out information (ref. Section 5.3.6.1).
In real world code, scalars are often the only known non live-out values. Nevertheless, propaga-
tion of scalars is important to eliminate false dependences (WAR and WAW) which can decrease
scheduling freedom. For the SPEC2000/2006 benchmark suites, expression propagation is able
to eliminate 63%/60% of all scalar read accesses in SCoPs found by our Polly fork.

5.3.8 Related Work

Polyhedral optimization techniques perform iteration domain splitting to facilitate specialized
schedule optimization and code generation for the different statement splits [GFL99; MDH16].
In contrast, we only split statements to enable syntactic read replacement (ref. Section 5.3.2)
and did not further investigate the effects on scheduling. Alternatively, we even ensure that all
statement splits are fused into a single loop nest (ref. Section 5.3.6). The idea to split iteration
domains to create surjective (propagation) dependences was already used byWonnacott [Won00]
as well as Vanbroekhoven, Corporaal, and Catthoor [VCC03].

The benefit of recurrences to avoid recomputation of values in subsequent loop iterations is well
known [Kev90]. In contrast to most classical techniques, we only use recurrences to communi-
cate expressions that replaced consecutive read accesses in the innermost loop (ref. Section 5.3.6).

13 Online: https://github.com/halide/Halide/tree/release_2017_05_03/apps

https://github.com/halide/Halide/tree/release_2017_05_03/apps
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While we could employ recurrences for consecutive innermost read accesses that were not re-
placed by a propagation expression, the recomputation cost of a single load is significantly less
than for an arbitrary complex propagation expression.

Writes that do not change the values of any subsequent read are dead assignments which can
be eliminated (ref. Section 5.3.6.1). Different techniques exist to identify, and consequently
remove, non live-out scalar assignments [KRS94] as well as non live-out array writes [Ver15b].
In contrast to such elaborate approaches, we do not iterate the detection of dead assignments in
order to identify transitively dead ones. While this might become necessary for more complex
programs it was not needed for our evaluation.

As polyhedral scheduling optimizations are limited by the dependences that have to be preserved,
there are various techniques that aim to identify and eliminate spurious and redundant ones. Es-
pecially false dependences (WAR and WAW) do not always need to be fulfilled to preserve the
observable behavior of a program. To this end, approaches commonly identify situations where
dependences exist which can be broken, or relaxed, in order to increase the scheduling free-
dom [Bag+13; Cal+97; Doe+15; MY16]. Expression propagation explicitly removes only true
(RAW) dependences. Though, it implicitly eliminates false dependences as well, if they are
caused by non live-out definitions that can be propagated. As an example consider the motivat-
ing example in Figure 5.28. The scalar definitions in statements S0, Q0, Q1, and Q2 all induce
spurious false dependences which would enforce the original loop iteration order. In addition,
propagation of the array writes in statements S2 and P0 remove the dependences between the
loop nests, potentially allowing us to execute them in parallel [Rac16].

Programs, especially if they have a precise polyhedral representation, can be translated into
dynamic single assignment (DSA) form to eliminate all false dependences [Fea88a; Van+07].
In DSA form, every memory location is written at most once, which prohibits both WAR and
WAW dependences. In contrast to other propagation techniques [Heg+14; Mul+16; Rag+12;
VCC03], we do not require the program to be in DSA form. Instead, we take possible interme-
diate writes into account when we construct the propagation dependences (ref. Section 5.3.1.2).
An example for which the original program version contains intermediate writes that prohibit
propagation while the DSA form program would not is shown in Figure 5.35b on Page 157.

Transforming a program into DSA form will generally increase the memory requirement. To
alleviate this increase, memory reduction techniques [BBC16; DSV03; DIY16; LF98; WR96]
are often used after all DSA based optimizations have been applied. These memory reduction
techniques perform employ polyhedral scheduling techniques on the memory access functions
in order to reuse locations for different intermediate results. In contrast, expression propagation
never changes the accessed memory but only the “time and place” where intermediate results
are computed. Since our heuristics ensure that propagation removes all users of a non live-out
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definition we can eliminate it afterwards. If all definitions of a scalar or array have been re-
moved, the actual location becomes obsolete. To this end, expression propagation can be used as
a pre-processing step to reduce the amount of temporary memory locations while keeping all in-
termediate computations manageable for the target hardware (ref. Section 5.3.5.1). Future work
could also combine memory scheduling techniques and expression propagation to overcome lim-
itations such as the one illustrated by Figure 5.35a.

PolyMage [MVB15] and Halide [Mul+16] perform, among other things, a limited form of ex-
pression propagation. In contrast to our technique, both will require that there is a single user of a
temporary location and that the loop surrounding the user is fused with the loop surrounding the
definition. Additionally, PolyMage requires both access functions to be equal. If it is possible to
generate a schedule to equalize the access functions and to fuse the loops containing the value
producer and consumer, expression propagation becomes a redundant load optimization limited
to a single loop iteration. If the loops are fused but the access functions are not equalized, there
are alternative techniques that perform redundant load elimination across different iterations of
a single loop [DGS93; Rag+13]. The Julia language [Bez+12] even offers syntax to force loop
fusion, but it relies on the underlying compiler to eliminate redundant loads afterwards.

Compared to existing techniques that propagate scalars or array definitions, polyhedral expres-
sion propagation is more powerful and provides a set of dedicated heuristics (ref. Section 5.3.5.1)
as well as code generation improvements (ref. Section 5.3.6). Due to the lack of precise depen-
dence information, many techniques are limited to programs in DSA form [Heg+14; Mul+16;
Rag+13]. Others restrict propagation expressions to special cases such as constants [RHR05;
SK98; Won99], single array reads [VCC03; Won00], or pure scalar definitions that do not read
from memory [KG18]. In the case of constants or array reads in DSA form program [Heg+14;
Mul+16; Rag+13; VCC03], propagation dependences are trivially equal to the RAW depen-
dences. For scalar definitions [KG18], propagation dependences are identical to def-use chains.
As an alternative to prior verification, Wonnacott [Won00] proposed to perform propagations
and to verify them afterwards by comparing the initial and resulting flow dependences.



Chapter 6

Ongoing & Future Work

“ Even though the future seems far away,
it is actually beginning right now. ”

Mattie Stepanek

In this chapter we provide brief descriptions of our ongoing research after we present interesting
opportunities for future work. The former were not included in the other chapters because these
approaches and results are preliminary. This is also the reason why we omit detailed evalua-
tions and elaborate discussions of related work. Instead, we focus on general ideas and describe
the current state of our prototype implementations. We believe this to be worthwhile as our on-
going work nicely augments the theme of the thesis, namely automatic, applicable, and sound
polyhedral optimizations for real world programs.

While our ongoing research is actually tightly connected, we present it as four separate ideas.
The first one is the inter-procedural static control part (SCoP) representation described in Sec-
tion 6.1. In this section we briefly discuss the problems that can accompany function calls and
how flow-sensitive access summaries can be built to improve the approximation scheme pre-
sented in Section 3.4.3. Afterwards, Section 6.2 discusses a novel polyhedral-model-driven in-
lining scheme. It is required to reuse the our intra-procedural loop optimization frameworks to
perform transformations on loops that are spread out over multiple functions. In contrast to clas-
sical inlining heuristics, our approach will inline a function only if the polyhedral optimization
potential (ref. Section 3.1.5) of the surrounding SCoPs is thereby increased. In Section 6.3, we
introduce polyhedral program slicing, a generalization of the runtime check hoisting described
in Section 3.7. In contrast to the latter, polyhedral program slicing is more liberal when it comes
to the identification of error states. This allows us to build a (partial) polyhedral representation
when non-affine loops, unknown function calls, or complexity issues would have otherwise pre-
vented it. Our last ongoing effort is the polyhedral value analysis presented in Section 6.4. The
idea behind this analysis is to apply techniques used to built the polyhedral program representa-
tion in a generalized way to low-level programs. There are several advantage over the polyhedral
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modeling used today, including: the support for complex loop iterators and control flow, demand
driven analysis of interesting code parts, and variable scoping in combination with an optimistic
representation that eases bilateral connection with non-polyhedral analyses. At the core of the
polyhedral value analysis are closed form expressions for scalar variable which, under some con-
dition, have a piecewise defined, affine evolution in a loop.

Before we discuss ongoing work, we want to elaborate on other interesting research opportunities
in the context of automatic, applicable, and sound polyhedral optimization.

Representation and Optimization Granularity
The granularity of a polyhedral program representation is determined by the statement
granularity as well as the statement instance that are precisely represented. A fine-grained
representation generally allows for more transformations while a coarse-grained model
will decrease compile time. So far there is little research on the potential choices and their
respective benefits. Instead, approaches usually determine the granularity out of conve-
nience [Bon+08; Fea92b; GGL12] or as a means to an end [MY15; MDH16; Sto+14]. We
believe that statements should be built based on the properties of the referenced accesses.
Similarly, a polyhedral representation might not need to distinguish the iterations of all
loops and schedule optimization could be applied to parts of the model at a time.

Target and Input Specific Optimizations
Throughout this thesis we used statically taken and dynamically verified assumptions to
ensure applicability and soundness (ref. Section 3.5). However, the diversity of modern
architectures as well as the varying input sizes in real world applications provide perfect
opportunities for further program versioning and specialization. One of the main disad-
vantages of code versioning, namely the binary size increase, is nowadays often less prob-
lematic. As a consequence it is time to investigate how aggressive specialization can be
used to improve performance based on dynamic properties like the available hardware, the
input sizes, or the current workload of the system [BB14].

Cooperation of Polyhedral and Non-Polyhedral Analyses
Polyhedral tools were historically applied as pre-optimizations prior to the actual compi-
lation. As such they not only had limited access to existing program analyses but also
were limited in the information they could pass on to later transformations. Graphite in
GCC and Polly in LLVM are two examples of polyhedral optimizers that already em-
ploy non-polyhedral analyses. The latter even annotates the optimized code to improve the
results of following passes. However, neither provides a clean interface that would enable
non-polyhedral analyses and transformations to take advantage of the precise, high-level
information available. Similarly, non-polyhedral optimizations often employ highly tunes
heuristics that could augment the objective function used for schedule optimizations.
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6.1 Inter-Procedural SCoP Representation

The presence of function calls is one of the most severe limitation for polyhedral-model-based
approaches (ref. Section 3.1.2). If the side-effects of a function call are unknown, it acts as
an optimization barriers. Thus, there is not much to gain through approximations (ref. Sec-
tion 3.4.3) because the induced (conservative) dependences will prevent transformations to move
any side-effect that was initially executed prior to the call after it, and vise versa. Even if the side-
effects of a function call are known, or can be tightly approximated, control flow conditions and
access relations have to be considered dynamic (or non-affine) if they reference it. The third
downside to algorithms that are distributed over multiple functions is the separation of loops.
Classically, loop optimizations are applied intra-procedurally to a sequence of loop nests. How-
ever, if the loops are spread out over multiple functions, one cannot simply perform the same
transformations without solving additional problems, e.g., the effect on outside callers. The
inter-procedural static control part (SCoP) representation we briefly describe in the following
deals only with the first of these three problems. Thus, a tight representation of side effects for
calls to known (partially) polyhedral functions. The second problem is dealt with by the poly-
hedral value analysis described in Section 6.4 and a solution to the transformation difficulties is
presented in Section 6.2.

void foo(float *A, float *B, int N) {
if (!update)

return;
for (int i = 0; i < N; i++)

if (reverse)
B[i] += A[i];

else
A[i] += B[i];

}

Figure 6.1: Example function with an early
exit and a path that reads both, but writes
only one of the arrays passed as arguments.

Function call approximations, as presented in
Section 3.4.3, summarize side-effects in terms
of reads and writes to entire arrays. While
this is acceptable for certain situations, it lacks
range information and it is not well suited if ac-
cesses are only performed conditionally. To
enable transformations for real world applica-
tions, we often require flow-sensitive access
summaries. As an example consider the code
shown in Figure 6.1. Depending on the value

of the global variables update and reverse, either no side-effects occur, or alternatively on
of the arrays is written and both are read. Though, in the latter case, only elements between
&A[0]/&B[0] and &A[N-1]/&B[N-1] are accessed. To exploit these facts at the call sites of
the function foo, we build a polyhedral representation for the entire function. In contrast to
the default mode of LLVM/Polly, this function SCoP representation is not meant to be used

In this section we discuss the problems that come with function calls and presents our
initial prototype for an inter-procedural static control part (SCoP) representation. This
is a joint effort with Sebastian Hack, Tobias Grosser, and Torsten Hoefler. The current
implementation is available in the interprocedural branch of our research prototype.
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for schedule optimizations but instead as an intermediate step for a flow-sensitive access sum-
mary. Note that our prototype implementation can only build access summaries if the whole
function is represented by a single SCoP. Consequently, we enable all applicability extensions of
LLVM/Polly and disable profitability restrictions that would otherwise be enforced (ref. Sec-
tion 3.2.2). Especially for real world applications, a function wide polyhedral representation
might not be possible. In this case, we can employ polyhedral program slicing, a generalization
of the runtime check removal (ref. Section 3.7), which is detailed in Section 6.3.

void inc(int LB, int UB) {
for (int i = LB; i < UB; i++)

A[i]++;
}

Figure 6.2: Contrived example func-
tion with a memory access that is affine
in the scope of the function but might
not have an affine access relation in the

context of the caller.

Even if we can construct a function SCoP, the pre-
cision additionally depends on the call site. To il-
lustrate the problem we provide a minimal exam-
ple function, inc in Figure 6.2, for which a precise
polyhedral representation can be built. However,
the memory accesses which are affine in the con-
text of inc, might not be in a larger scope. Only
if the values passed as LB and UB are affine expres-
sions in the SCoP surrounding the call site, the access summary of inc can be precisely modeled
in the context of the caller. In fact, all parts of the polyhedral function representation might
become non-affine or invalid in a larger scope. This especially includes access relations and
iteration domains, but also the assumptions that were taken during themodeling (ref. Section 3.5).
To determine the representation at the call site, we have to instantiate the function parameters
that occur (as part of) SCoP parameters in the callee representation with the values passed as
arguments at the call site. In our prototype, an access summary is only build if all instantiations
result in affine expressions. We additionally need to deal with other issues, e.g., the invariance
of loads that are represented as parameters (ref. Section 3.6).

for (int j = 0; j < N; j++)
S: inc(j/2, j); // Figure 6.2

Figure 6.3: Quasi-affine call site for
the code illustrated in Figure 6.2.

To derive the actual read and write effects of a call,
we compose [Ver16, Chapter 4.3.4] the access re-
lation ranges of the memory accesses in the callee
with a call site translation function 𝑓𝑐 . This step
will instantiate the parameters and additionally transition the access relations to the context of
the statement S that contains the call. To achieve the second part, we set the domain of 𝑓𝑐 to the
iteration domainD𝑆 of S and the range to the parameter space 𝜌 of the callee. Thus, the call tran-
sition function maps statement instances of S to the parameters of the callee, or 𝑓𝑐 ⊂ DS → 𝜌.
For the first part, we equate each parameter of the callee with its polyhedral value in the context
of the caller based on the argument-parameter relation at the call site. For the example call in
Figure 6.3, this would result in the call transition function shown in Formula 1.

𝑓𝑐 ≔ { 𝑗 → (LB,UB) ∣ 0 ≤ 𝑗 < 𝑁 ∧ LB = ⌊𝑗/2⌋ ∧ UB = 𝑗 } ⊂ DS → 𝜌 (1)
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The relation into the memory space 𝑀 is achieved by reinterpreting the access relation range
rng(𝑓𝑚) of each memory access 𝑚 in the callee. Since the range is a parametric subset of 𝑀 , it
is also a relation from the parameter space 𝜌 to the accessed memory locations. For the memory
accesss in our example inc, this interpretation is denoted as 𝑓𝑀 and illustrated in Formula 2.

𝑓𝑀 ≔ { (LB,UB) → A(o) ∣ LB ≤ 𝑜 < UB } ⊂ 𝜌 → 𝑀 (2)

In the final step, the memory space relation 𝑓𝑀 is applied to the range of the call transition
function 𝑓𝑐 . The result maps instances of the call to the memory locations accessed in that
invocation. For our example this final access relation is shown in Formula 3. Since the read
and write access in inc have equal access relations, it identifies the memory cells of the array A
that are both read and written. Since the call transition relation contained equations for all callee
parameters, here LB and UB, they can be eliminated from the result. This simplification, show in
Formula 4, ensures that the access relations for the call only depend on parameters of the caller,
here N.

𝑓𝑀 ◦rng 𝑓𝑐 ≔ { 𝑗 → 𝑙 ∣ (𝑗, 𝑝) ∈ 𝑓𝑐 ∧ (𝑝, 𝑙) ∈ 𝑓𝑀 }
= { 𝑗 → A(o) ∣ 0 ≤ 𝑗 < 𝑁 ∧ LB = ⌊𝑗/2⌋ ∧ UB = 𝑗 ∧ LB ≤ 𝑜 < UB } (3)

= { 𝑗 → A(o) ∣ 0 ≤ 𝑗 < 𝑁 ∧ ⌊𝑗/2⌋ ≤ 𝑜 < 𝑗 } ⊂ DS → 𝑀 (4)

Note that our implementation builds the polyhedral representations in a bottom-up traversal of
the call graph. While additional context-sensitivity could further improve the results, e.g., when
a constant passed at a call site would allow for an affine representation in the callee, it would also
increase the already substantial compile time required to build the polyhedral representations.
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6.2 Polyhedral-Model-Driven Inlining

At its core, polyhedral-model-driven inlining is simply an inline heuristic. However, in contrast
to commonly used schemes that consider various features including code size, the number of calls
sites, and branch probabilities, our scheme is selective to the polyhedral optimization potential.
The heuristic should guarantee two important properties: First, inlining a call site will not inval-
idate the surrounding static control part (SCoP)1. Second, inlining increases the profitability of
the surrounding SCoP such that more non-trivial transformations are potentially possible. Since
existing analysis and transformation passes in LLVM, e.g., the ones used by and implemented
in LLVM/Polly, are intra-procedural, an inlining approach is required. While more general
inter-procedural SCoP representation, e.g., one that represents the callee SCoP precisely and not
only as a summary, could enhance the inlining choices, it cannot easily substitute inlining itself.

void pos(int N) {
for (int i = 0; i < N; i++)
S(i);

}
void neg(int N) {

for (int j = N; j < 0; j++)
P(j);

}
void non_profit(int N) {
pos(N);
neg(N);

}
void profit(int N) {
non_profit(N);
non_profit(-N);

}

Figure 6.4: Multiple functions that
only allow for non-trivial loop trans-
formations if all are inlined into the

profit function.

We first want to demonstrate how the polyhedral-
model-driven inlining approach can selectively in-
line functions to enable polyhedral optimizations.
The simple example in Figure 6.4 features the two
statements S and P. Each is surrounded by an affine
loop and contained in its own function. As indicated
by theirs names, the pos function will only execute
the statement S for positive values of the argument
N while the neg function will do the same for P if
N is negative. In addition, there are two loop-less
functions, non_profit and profit, that either di-
rectly or indirectly call pos and neg. Given this situ-
ation, we are not able to perform any interesting loop
transformations as there is no intra-procedural static
control part (SCoP) that contains at least two loops.
Even if we inline the calls in the non_profit func-
tion, the result would be a SCoP with two statements of which at most one would be executed
for any given value of N. However, if we inline the non_profit calls in the profit function
and afterwards also the pos and neg calls that thereby emerge in profit, we created an intra-
procedural SCoP with four statements of which always two are executed for non-zero values
of N. Polyhedral-model-driven inlining will therefore only perform the last inlining sequence,
consequently leaving the non_profit function untouched.

In this section we describe when function call inlining is beneficial and when not. This
is a joint effort with Sebastian Hack, Tobias Grosser, and Torsten Hoefler. The current
implementation is available in the interprocedural branch of our research prototype.

1 Due to implementation artifacts this is currently not guaranteed by our prototype.
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To define the actual inline heuristic with the properties described above, we rely on the inter-
procedural SCoP representation (ref. Section 6.1) and the profitability function Ψ that we intro-
duced in Section 3.1.5. While the initial use case for this function was to generate a boolean
predicate, we now employ it to determine if inlining will increase the potential for non-trivial
loop transformations. To this end, we iterate over the call sites in a valid but potentially unprof-
itable SCoP, take the profitability functions of the callee SCoPs, and combine them with the
initial profitability function of the caller. Afterwards, the result is checked for profitability as
described already in Section 3.1.5. Thus, we determine for which parameter valuations a prede-
termined minimal number of affine loops, represented in our models, will be executed. If the
threshold is never reached, the caller SCoP is deemed unprofitable. However, if parameter valu-
ations meet the requirements for profitability, we have to identify the call sites that contributed
affine loops and inline them to expose these loops to our intra-procedural transformations.

In the following we denote the caller SCoP as S, the set of contained call sites as Calls, a specific
call site as cs, the iteration domain of the statement containing the call as Dcs, the callee SCoP
as Scs, and the profitability function of a callee as Ψcs. We also make use of the call transition
function 𝑓cs which relates callee parameters to the caller context. This transition function and
its application is described in Section 6.1

1: procedure recursiveProfitabilityFunctionGeneration(S : SCoP)

Get the initial profitability function that does not take the call site potential into account.

2: ΨS ← profitabilityFunctionGeneration(S, false) see Algorithm 3.11 on Page 34

Then iterate over the call sites directly contained in the SCoP S and combine theirs profitability
function with the one for S. To this end, we first have to transition the callee profitability to the
caller context as described in Section 6.1. The final call profitability relation Ψcs

S , is then defined
as the callee profitability function, transitioned to the caller context, specialized to the iteration
domain of the call, and projected onto the parameter space 𝜌 (to eliminate loop constraints).

3: for cs in Calls do
4: Ψcs ← recursiveProfitabilityFunctionGeneration(Scs)
5: Ψcs

S ← 𝜋𝜌 (Dcs ∩ (Ψcs ◦rng 𝑓𝑐𝑠))
6: ΨS ← 𝜆 𝑐 ∶ (ΨS 𝑐 ) + (Ψcs

S 𝑐 )
7: end for

Return the final profitability relation that would hold if all call sites were transitively inlined.

8: return ΨS

Algorithm 6.5: Algorithm to determine the profitability function of a SCoP under the as-
sumption all call sites, including transitive ones, have been inlined. The resulting piecewise
affine function ΨS maps parameter valuations to the number of represented and potentially

transformable loops that are executed for the given input.



182 Ongoing & Future Work

Tomake an educated inlining decision we first construct the profitability function ΨS of the caller
under the assumption that all call sites, also transitive ones in the callees, were inlined. To this
end, we apply the recursive profitability function generation presented in Algorithm 6.5 to the
currently analyzed SCoP S. In this step, the initial profitability function of S (ref. Section 3.1.5) is
combined it with the recursively computed profitability information of the SCoPs that are directly
called by S. Note that this process, similar to the inter-procedural SCoP representation, does not
allow (transitively) recursive functions, thus strongly connected components in the call graph.

From the function ΨS, which describes the profitability after aggressive transitive inlining, we
determine all parameter conditions under which non-trivial loop transformations can be applied.
As already in Section 3.1.5, we define non-trivial as involving at least two affine loops. Thus, we
are interested in the parameter context 𝑃 for which ΨS evaluates to a value greater than one.

𝑃 ≔ { 𝑐 ∣ (ΨS 𝑐) > 1 } (5)

While the context 𝑃 , as defined in Formula 5, allows to determine when non-trivial transforma-
tions are possible, it is not sufficient to identify call sites that need to be inlined. We additionally
require the call profitability relation Ψcs

S as define in line 5 of Algorithm 6.5. Only if this call
site specific profitability relation is non-zero for a parameter valuation that is also considered
profitable, it is beneficial to inline the call. If not, the call is keep and represented by an access
summary as described in Section 6.1. Thus, a direct call site cs in the analyzed ScoP S is inlined
only if the set defined in Formula 6 is not empty.

Ψcs
S (𝑃 ) ∩ { 𝑐 ∣ 𝑐 > 0 } ⊂ N (6)

As shown in the example in Figure 6.4, the affine loops we are looking for might be contained
in functions further down the call chain. We consequently need to apply the above reasoning
recursively for all call sites contained in functions we decided to inline.

The final caveat is the order in which the SCoPs are traversed and also the inlining is performed.
The two obvious choices, thus top-down or bottom-up traversal of the call graph, are both subop-
timal: An inlining decision that improved the profitability of a function does not have to improve
the profitability of the callers. Thus, if we traverse the call graph in a bottom-up fashion, early
inlining decisions will be propagated to callers, regardless of the benefit to them. However, if
we traverse it top-down, we potentially analyze and, if appropriate, inline every single call site
multiple times. As we currently do not have access to enough empirical data to make an educated
decision, we leave the traversal and inlining order unspecified for now.
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6.3 Polyhedral Program Slicing

Programs are often comprised of various path, some of which are more, others less amenable to
polyhedral optimization. While the use of approximations for function calls, non-affine control
flow conditions and memory access expressions (ref. Section 3.4) often allows for a polyhedral
representation to be built, the usefulness can vary gravely. Approximations often increase the
complexity of, and the uncertainty inherent in, the polyhedral representation. Consequently, the
compile time required to build, analyze and optimize the program is increased. Since approx-
imations can easily introduce optimization barriers, they also might not allow more program
transformations. Finally, applicability improvements through aggressive approximations can, in
addition to compile time, also increase the number of required assumptions, thus cause more re-
strictions on the set of valid input parameter valuations. Consequently, there is a higher chance
of statically infeasible assumptions (ref. Section 3.5.5.3) that prevent optimizations all together
as well as misspeculations only detectable at runtime (ref. Section 3.5.5.1).

Since the goal is most often the optimization of a program and not a complete polyhedral rep-
resentation, we can focus on program parts that are, to some degree, amenable to polyhedral
modeling. While the simplest way to do so is to disable or limit approximations, it will cause us
to miss out on optimizeable program paths that are entangled with non-optimizeable ones. Al-
ternatively, we propose to slice the program into a part that is represented and optimized in the
polyhedral model and a part that is not. This can be beneficial if the programs parts not suited to
polyhedral representation are unlikely to be executed. In this context, unsuitable parts might in-
clude optimization barriers, e.g., approximations of unknown function calls or non-affine loops,
as well as iteration domains or access relations which are too complex for precise analysis and
representation.

As an example consider the control flow graph (CFG) of the muxha function from the SPEC2006
462.libquantum benchmark that is shown in Figure 6.6 (Doerfert and Hack [DH17a] presented a
similar example). Note that the presented state is a result of prior polyhedral inlining (ref. Sec-
tion 6.2) and makes use of inter-procedural SCoP representation (ref. Section 6.1). As shown in
the legend, we use different shapes and colored patterns to indicate different kinds of basic blocks
which are generally equal to our polyhedral statements. Green blocks with a horizontal stripes
identify basic blocks that contain memory writes. Gray blocks without pattern are those that do
not. Control flow is determined by the nodes with octagon shape and all nodes with a double

Polyhedral program slicing is an ongoing research project in cooperation with Sebastian
Hack, Tobias Grosser, and Torsten Hoefler. It is an extension of the runtime check elim-
ination we described in Section 3.7. The implementation of polyhedral program slicing
is available in the interprocedural branch.
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border contain function calls. Note that we used the inter-procedural SCoP analysis presented
in Section 6.1 to allow calls to functions with a partial polyhedral representation. Thus, a non-
recursive call to the shown muxha function would also be representable. We indicate loops with
a gray background and non-affine control regions (ref. Section 3.4.2) with dashed lines. Finally,
red nodes with diagonal stripes are so called error blocks for which we cannot built a precise
polyhedral representation. In this CFG, error blocks are caused by function calls to unknown
functions or transitively, if all predecessors, or successors, are already considered error blocks.

For the muxha function, as well as various otherss in the 462.libquantum benchmark [DH17a],
we can create a precise polyhedral representation of all loops, However, there is no SESE region
which containsmultiple loops but no error blocks, i.e., optimization barriers induced by unknown
function calls. The profitability relation of this function, as described in Section 3.1.5, is piece-
wise defined and consists of at least five pieces. Each represents a different path that can be
taken from the first control flow inducing block that directly succeeds the function entry. Since
the left two paths do not contain (affine) loops, they are deemed unprofitable. However, the oth-
ers contain up to three affine loops and are therefore worth to consider. Note that this scheme
only works if the control flow conditions that precede error blocks are statically affine. If not,
the whole non-affine control region that is built around them has to be considered an error block
as well. This will again require a statically affine control flow condition further up the CFG. If
none is found, there is no statically known parameter context which would guarantee that only
represented, thus non-error blocks, are executed. In contrast to the runtime check hoisting, we
propagate error block information already during the SCoP detection and not only in the mod-
eling step (ref. Figure 2.3). This allows us to identify SCoPs early that would execute an error
block on every path. While runtime check hoisting generates statically infeasible assumptions
for these situations, our program slicing scheme will discard the analyzed region and continue
with smaller subregions instead.

For the functions in the 462.libquantum benchmark we can find a context that ensures no error
block will be reached. It constraints the values of assumed invariant loads (ref. Section 3.6) that
occur both in the optimized function and also transitively in the represented calls. This context
is then combined with the other assumptions that were necessary to model the SCoP and used to
version the code (ref. Section 3.5).

The schedule optimization algorithm employed by LLVM/Polly lacks a loop fusion heuris-
tic and instead distributes loops by default. However, there are various methods that improve
this scheme [Bon+10; MVB15]. For our experiment we simply enforced loop fusion through
a command line option. We achieved a speedup of 1.96× for 462.libquantum on the reference
input and an Intel Core i7-4800MQ CPU. The described technique was applied to five SCoPs
in the test_sum function as well as the function SCoPs (ref. Section 6.1) we built for muxfa,
muxfa_inv, muxha, muxha_inv, madd_inv, and addn_inv.
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block containing a memory writes
block without memory writes
error block, not represented
block with multiple successors
block containing a function call

Figure 6.6: The control flow graph (CFG) of the muxha function, part of the SPEC2006
462.libquantum benchmark, after polyhedral inlining (ref. Section 6.2) was performed.
All nodes represent basic blocks. The red nodes with a diagonal pattern are considered
error blocks and consequently not part of the SCoP. The green nodes with horizontal
stripes contain memory write accesses while the gray nodes without pattern do not.
Nodeswith a double border contain function calls (ref. Section 6.1). Loops are indicated
by a gray background and non-affine subregions (ref. Section 3.4.2) are marked with

dashed lines.
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6.4 Polyhedral Value Analysis

The polyhedral value analysis (PVA) [DH17a; DH17b] is our latest endeavor to improve the
applicability and robustness of polyhedral techniques on low-level code. It is intended to fulfill
two distinct purposes. First, as a replacement of the Scalar Evolution analysis [BWZ94;
PCS05] in polyhedral tools like LLVM/Polly and GCC/Graphite. As such it especially
allows us to derive polyhedral representations for piecewise defined, quasi-affine expressions.
Second, it is designed to integrate well with non-polyhedral analyses and transformations. Due
to various design choices explained in the following, it can be easily used to augment information
derived from Scalar Evolution or other sources. The goal is to finally provide polyhedral
information to the non-polyhedral parts of an industry strength compilation pipeline.

In a nutshell, PVA performs two entangled tasks which are in LLVM/Polly divided into mul-
tiple steps and partially outsourced to Scalar Evolution. The first, and arguably main func-
tion of the PVA is to derive a polyhedral representation for the value of a LLVM-IR instruc-
tion. This step requires also the second task which is the generation of iteration domains for
basic blocks. We require these iteration domains to generate precise piecewise expressions, e.g.,
for phi nodes which have different values depending on the control flow edge that was traversed
to reach them. Since we require the polyhedral representation of control flow conditions to build
iteration domains (ref. Section 3.3), the two functionalities of the PVA depend on each other.

As LLVM/Polly also has to perform the tasks implemented in the PVA , we used existing code
and concepts as a starting point. We especially rely on the generic iteration domain generation
that we added to LLVM/Polly and described in Section 3.3. In addition, we inherit the concept
of an assumed context for which the representation is actually valid (ref. Section 3.5), as well as
the techniques to ensure a correct representation of low-level operations presented in Section 4.2
and 4.3. However, in contrast to LLVM/Polly, all parts of the PVA are demand driven and
optimistic, meaning that a non-affine or dynamic operand of an expression e will not cause us
to give up, but instead it will become a parameter in the polyhedral representation of e. This is
desirable as PVA users might be able to substitute these parameters with a value (range) derived
from other sources (ref. Section 3.4.1) or even prove their invariance (ref. Section 3.6). The PVA
can itself eliminate such parameters as described during in the discussion of Figure 6.9.

The polyhedral value analysis [DH17a; DH17b] is a polyhedral-model-backed alternative
to the Scalar Evolution analysis [BWZ94; PCS05] available in GCC and LLVM.
The development is a cooperation with Tina Jung, Alexander Matz, and Sebastian Hack.
Conceptually, it is similar to the inter-procedural polyhedral analysis developed in the
bachelor thesis of Jung [Jun15]. The implementation is available in the pva branch of our
LLVM fork: https://github.com/jdoerfert/llvm.

https://github.com/jdoerfert/llvm
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In the following we will focus on the polyhedral representation of LLVM-IR instructions as it-
eration domain generation is similar and the general concepts were already shown in Section 3.3.

In addition to an instruction I, the PVAwill require the user to specific the scope and use location,
both in terms of a loop. The scope s determines up to which point the PVA will try to build a
polyhedral representation. All (transitive) operands outside the scope become parameters. The
use location specifies the program point at which the value of I is sought-after. Thus, the PVA
will try to create a piecewise quasi-affine expression eI which describes the value of I at the use
location l with regards to iterations of loops surrounding l and values defined outside of s. Note
that a scope can also be the entire function but it always has to contain the use location. If it is a
function, the parameters of eI will only be arguments and non-affine or dynamic instructions.

i = 5;
do {
j = i;
do {
x = 3*j + i;
S(x);

} while (j++ < 2*i);
P(x);

} while (i++ < N);
Q(x);

Figure 6.7: Example to show how
scope and use location change the de-

rived polyhedral representation.

To illustrate how the scope and use location change the
result we provide a simple example in Figure 6.7. The
scalar variable x is defined as an affine expression of
the surrounding loop iterations variables 𝑖 and 𝑗. It is
then used three times, once in each loop nesting depth.
The different polyhedral representations computable
by the PVA are shown in Table 6.8. If we for exam-
ple take the 𝑖-loop as a scope, thus represent the value
in one fixed iteration of this loop, we can compute two
different integer relations that represent the value of x.
The first, { (𝑗) → (𝑥) ∣ 𝑥 = 4i + 3𝑗 }, is computed

for the use location S and depends on the loop iteration of the 𝑗-loop. Note that we use different
fonts to indicate that i is here an existentially qualified parameter which represents the value of
the variable i and not the iteration of the outer loop which is denoted as 𝑖 and starts at zero not
five. Since P, the second possible use location if we keep the 𝑖-loop as a scope, is not surrounded
by the 𝑗-loop, the polyhedral representation of x at this point will not depend on its iteration.
Instead, we have to determine the value of x in the last iteration of the 𝑗-loop. To do this we first
determine the relation for the same scope and the 𝑗-loop use location. To be more precise, we
are interested in the use location for the innermost loop that surrounds the definition of the scalar
variable, here x. In addition we require the iteration domain of the basic block that contains
this definition. In the following we denote the former as ex = { (𝑗) → (𝑥) ∣ 𝑥 = 4i + 3𝑗 }
and the latter as Dx = { (𝑗) ∣ 0 ≤ 𝑗 ≤ i }2. To derive the value in a different loop, here the
𝑖-loop, we compute the lexicographic maximum of the dimensions of Dx that are not shared by
the definition and the use location. If we intersect the relation ex with the result and project out
the now fixed inner dimensions we end up with a representation that describes the value only in

2 Note that the inner loop iterates i + 1 times because j is incremented after the exit condition j<2*i is evaluated.
This also means that x is last defined with j=2*i, thus in the last iteration x is equal to 3*(2*i)+i.
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terms of shared loop iterations. For our example the lexicographic maximum in the 𝑗-dimension
with regards to the 𝑖-loop scope is { (𝑗) ∣ 𝑗 = i }. The intersection with the domain of ex will
result in { (𝑗) → (𝑥) ∣ 𝑗 = i ∧ 𝑥 = 4i + 3𝑗 }, and after we eliminate the now fixed input
dimension we get { () → (𝑥) ∣ 𝑥 = 7i }. It is worth to note that the lexicographic maximum
can be piecewise defined, especially if the loop has multiple exit edges. This is important as the
instantiation will then account for the case that the variable we are interested in was (under some
conditions) not defined in the last loop iteration. Similarly, if the loop has multiple back edges,
the use of the iteration domain of the containing basic block will ensure that the lexicographic
maximum describes the last statement instance for which the variable was actually defined.

scope/use S (𝑗-loop) P (𝑖-loop) Q (function)

𝑗-loop {() → (𝑥) ∣ 𝑥 = i + 3j} n/a n/a
𝑖-loop {(𝑗) → (𝑥) ∣ 𝑥 = 4i + 3𝑗} {() → (𝑥) ∣ 𝑥 = 7i} n/a
function {(𝑖, 𝑗) → (𝑥) ∣ 𝑥 = 4𝑖 + 3𝑗 + 20} {(𝑖) → (𝑥) ∣ 𝑥 = 7𝑖 + 5} { () → (7𝑁 − 7) }

Table 6.8: Different polyhedral representations for the value of x in Figure 6.7, depending
the loops used as scope (rows) and use location (columns).

To make the PVA easily compatible with non-polyhedral passes we designed the interface after
the one provided by Scalar Evolution. This includes functions to compare, modify, and
evaluate polyhedral expressions, as well as functionality to derive high-level information, e.g.,
loop trip counts from the iteration domains of loop headers. To alleviate compile time costs the
PVA is, similar to Scalar Evolution, demand driven and caching. The main advantage of
the PVA is the ability to represent piecewise defined values. Combined with the natural flow and
iteration sensitivity of the polyhedral model, as well as an optimistic representation of values,
this enables the PVA to generate partial piecewise representations for scalar variable with (par-
tially) statically quasi-affine definitions. While both analyses incorporate non-representable or
dynamic values as “parameters” into their respective representation, only the piecewise defini-
tion employed by the PVA allows to eliminate them later on to derive independent information.

assume p < u;
do {
v = *p;
if (v < pivot)
p++;

else
*(u--) = v;

c = (p == u);
} while (!c);

Figure 6.9: Example to show how a
dynamic value is first incorporated
into and later eliminated from the

polyhedral representations.

The code shown in Figure 6.9 demonstrates how an op-
timistic, piecewise defined representation can improve
analysis results. The loop, which executes until the
pointers p and umeet, could be part of the partition rou-
tine in a sorting algorithm like quick sort. Since in each
iteration either p is incremented or u is decremented,
we should be able to infer that the loop iterates u - p
times. However, due to the data-dependent conditional,
neither Scalar Evolution nor LLVM/Polly are
able to make this conclusion. The key advantage of the
PVA is the optimistic representation of both pointers at
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their use in the definition of c. These representations, shown with loop scope in Formula 7 and 8,
both reference the data-dependent value v. If we interpret the equality in the definition of c as a
difference between the two operands, thus (u - p) == 0, we can eliminate this data-dependent
parameter. The loop trip count can then be derived from the result for two consecutive iterations,
thus the evolution of the exit condition. However, our implementation is not yet able to perform
this last reasoning step.

ep = { () → (𝑥) ∣ 𝑥 = (v < pivot ? p + 1 ∶ p) } (7)

eu = { () → (𝑥) ∣ 𝑥 = (v < pivot ? u ∶ u − 1) } (8)

As mentioned earlier, the PVA implementation is based on code for alike functionalities in
LLVM/Polly. Especially, the transitioning from most LLVM-IR instructions to polyhedral
values is very similar. If an operation is encountered, the representations of the operands are
recursively built and afterwards combined to a piecewise defined, quasi-affine relation. While
this process is similar in the PVA and LLVM/Polly for all binary operations3, the PVA has to
deal with phi nodes itself whereas LLVM/Polly relies completely on Scalar Evolution
to build a closed form additive recurrence. Scalar Evolution can do so for variables with
a polynomial evolution in a loop nest, but it is not well suited to handle phi nodes that have a
piecewise defined value. This especially includes phi nodes after conditionals, if they are not
recognized as minimum or maximum computations, as well as phi nodes in the header blocks of
more complicated loops.

i = 0;
if (skipfirst)
i = 1;

for (; i < N; i+=2)
B(i);

Figure 6.10: Example to
show how the polyhedral
value analysis determines
closed form expressions
for piecewise defined
loop iteration variables.

The PVA is generally superior to Scalar Evolution if a
loop iteration variable has different constant strides, the corre-
sponding phi has different initial values4, or the loop contains
complicated affine control flow conditions that guard loop back
and exiting edges. To explain how the PVA computes closed
form expression for loop iteration dependent values, and to
showcase one of the advantages over Scalar Evolution,
we can consider the code presented in Figure 6.10. To deter-
mine the trip count of the loop, the PVA requires the iteration

domain DH of the header block in a scope that subsumes the loop. Since we reuse the methods
described in Section 3.3, we can compute this domain using the conditions under which the loop
is entered and the ones under which it is left. Though, while the former do not depend on values
changed by the loop in question, the latter most often do.

3 In the PVA we replicated the detection of various bit-manipulation patterns already available in the Scalar
Evolution analysis. These allow us to create the same polyhedral representation for various syntactic forms of
an expression. Examples that illustrate such a case are shown in Figure 4.15 on Page 110.

4 While this is uncommon in the initial SSA-form representation generated by a language front-end, it can easily oc-
cur in high-level source code and after the low-level program has been optimized, e.g., through “jump-threading”.
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P: i = 0;
if (skipfirst)

S: i = 1;
do {

H: c = i < N;
if (!c) break;

B: i += 2;
} while (true);

(a) Code shown in Figure 6.10 in a version
close to the control flow graph (CFG) repre-

sentation.
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(b) Control flow graph (CFG) for the code
shown in Figure 6.11a.

Figure 6.11: The top shows the exam-
ple from Figure 6.10 in a version that is
close to the control flow graph (CFG)
representation outlined in the bottom.

To facilitate the following explanation, we provide
the example code shown in Figure 6.10 in a low-
ered form again in Figure 6.11a. This represen-
tation is closer to the input of the PVA, thus the
control flow graph (CFG) of the program which
we sketched in Figure 6.11b. The PVA will cre-
ate a polyhedral representation of a loop carried,
thus recursively defined, value in two steps. First
note that we cannot simply recurs on the operands
and combine the result as we do with other opera-
tions. However, if we restrict the analysis scope to
the loop in question, we can determine the evolu-
tion of a phi node in one single iteration via recur-
sion on the values assigned on the back edges. For
our example, the PVA will compute { () → (𝑥) ∣
𝑥 = (i+ 2) } as the new value of i. While we are
especially interested in the constant part, as it de-
scribes the evolution of the variable, we also have
to ensure that the factor of the loop carried phi is
either minus one, zero, or one. If it is not, the vari-
able evolves polynomially, hence non-affine. If we
restrict5 us for now to a unit factor and a single con-
stant offset 𝑐, we can describe the evolution in the
loop with the relation { (𝑖) → (𝑐 ∗ 𝑖) }. After-
wards, we analyze the entering edges to identify the
initial values. For our example, the PVA constructs
the piecewise defined relation { () → (𝑥) ∣ 𝑥 =(skipfirst ? 1 ∶ 0) } based on the definitions on
the incoming edges. In the last step we add the two
intermediate results to obtain the final representation of a loop carried phi. For the variable i in
our example, the result of the PVA is consequently { (𝑖) → (2𝑖 + 𝑥) ∣ 𝑥 = (skipfirst ? 1 ∶
0) }. With this precise representation we can compute the loop exit conditions as explained in
Section 3.3. Afterwards, the loop header domain is determined from which we then derive the
precise loop iteration count: skipfirst ? ⌊(𝑁 + 1)/2⌋ ∶ ⌊𝑁/2⌋.
While this short introductionmissed caveats, details, and features of the polyhedral value analysis,
we hope that the descriptions were sufficient to get an impression of capabilities and restrictions.

5 Our PVA prototype can also deal with alternating evolutions (a factor of minus one) as well as strongly connected
phi node chains. The support for multiple constants strides is under development.
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Conclusion

“ There is no real ending.
It’s just the place where you stop the story. ”

Frank Herbert

The ever-growing complexity of architectures, especially with regards to the memory subsystem
aswell as the number and diversity of processing units, putsmore andmore pressure on compilers.
The era in which local optimizations applied to the user provided algorithms were sufficient to
achieve high utilization of the hardware are almost over. Modern machines come with many,
potentially different, cores, accelerators, and flavors of memory. As a consequence, we need
to constantly customize our algorithms and data to take full advantage of this diversity. Since
manual adaption will become more and more infeasible, compiler optimizations need to advance.
However, the required transformations are only possible with a holistic view of the program and
the ability for structural but also fine-grained program changes.

The polyhedral model, as a mathematical program representation and transformation framework,
is well equipped to deal with many challenges presented by modern algorithms and architectures.
It is consequently not surprising that many new domain specific optimizers use polyhedral rep-
resentations and techniques to generate high-performance code [Bag+15; Bag+18; MVB15;
Pra+17; Vas+18]. Since these approaches often come with a domain specific language (DSL)
that was designed with the polyhedral model in mind, it can be easily applied. However, it is unre-
alistic to expect a large portion of the existing software to be rewritten in such new programming
languages. There are many reasons for this, most notably correctness concerns and the required
effort. Manually changing code is an error-prone task on its own, but rewriting complex soft-
ware, while keeping high confidence in the functionality, is significantly harder. There are two
solutions to this problem. First, one can automate (parts of) the code rewriting process in order
to reduce the code base that needs to be trusted effectively to the rewriter tool. Alternatively, one
can reimplement (parts of) the domain specific optimizations for existing, low-level languages



192 Conclusion

which would allow optimization through “mere” recompilation. Though, in either case, we need
applicable, robust, and correct polyhedral analyses suitable for low-level languages to begin with.

In this thesis we describe several advances towards automatic, applicable, and sound polyhedral
representation and optimization of low-level code. Our efforts, which are all publicly available
and often already integrated into LLVM/Polly, make it possible to apply polyhedral analysis
and transformations to existing programs without rewriting them. The presented techniques al-
low us to handle inputs that do not satisfy the strict syntactic (ref. Section 3.3 and Section 6.4)
and semantic (ref. Section 3.4, Section 3.6, and Chapter 4) requirements polyhedral-model-based
tools often entail. At the core of our correctness assuring and many applicability enhancing tech-
niques is a code versioning framework that is natively embedded into the polyhedral pipeline
(ref. Section 3.5). The use of Presburger formulae based assumptions has proven to be well
suited to cope with the lack of static information which is often a limiting factor when it comes
to a holistic program representation and structural program transformations. While various sim-
plification techniques allow us to keep the runtime verification cost of our assumptions low, we
additionally welcome information provided by the program, either statically, through code an-
notations (ref. Section 5.1.2), or dynamically, via profiling (ref. Section 3.5.2). The evaluations
of the proposed enhancements on real world applications clearly show a significant increase
across various applicability metrics (ref. Section 3.1). These improvements allow polyhedral
optimizers to cope not only with scientific code, that were written by experts to be amenable to
high-level optimizations, but also legacy applications. With the BT benchmark from the NAS
parallel benchmark suite (ref. Figure 3.37 and Figure 5.28) and the 462.libquantum benchmark
from SPEC2006 (ref. Figure 6.6), we showcased two examples that already required almost all
presented extensions to be represented and optimized in the polyhedral model. In order to ad-
vance the latter, we investigated how reduction dependences can be effectively identified and
exploited by polyhedral tools (ref. Section 5.2). Finally, we presented a polyhedral-model-based
optimization that alters the time and place intermediate results are computed (ref. Section 5.3).
This transformation not only eliminates dependences, which improves the scheduling freedom,
but it can also improve hardware utilization and decrease the memory requirements of a program.

We hope that our efforts, both concluded and ongoing, will eventually contribute to the adoption
of polyhedral-model-based techniques for a larger variety of code. While we believe that our
results already indicate the feasibility of such a development, we acknowledge that we have yet
to reach the point where polyhedral techniques will become standard in the analysis and opti-
mization of general purpose applications.



List of Algorithms, Figures, and Tables

1.1 SPEC floating point performance as reported by Preshing [Pre12]. . . . . . . . 1

2.1 Grammar for affine, quasi-affine, and piecewise quasi-affine expressions. . . . . 10
2.2 The two code styles used for example programs provided in this thesis. . . . . . 12
2.3 Schematic overview of LLVM/Polly’s optimization pipeline. . . . . . . . . . 16
2.4 Feature branches of our research prototype. . . . . . . . . . . . . . . . . . . . 17
2.5 C/C++ benchmarks in the SPEC benchmark suites as well as the Polybench v3.2

benchmarks that are part of the LLVM Test Suite. . . . . . . . . . . . . . . . 18
2.6 C/C++ benchmarks in the LLVM Test Suite except Polybench. . . . . . . . . 19

3.1 Static and dynamic applicability metrics for polyhedral approaches. . . . . . . 22
3.2 Two fabricated examples that show the problems with both static and dynamic

SCoP applicability metrics (ref. Table 3.1). . . . . . . . . . . . . . . . . . . . 25
3.3 Number of feasible SCoPs and their respective maximal loop depth. . . . . . . 26
3.4 The number of valid SESE regions and SCoPs compared to the total number of

SESE regions in the different benchmark suites. . . . . . . . . . . . . . . . . . 27
3.5 Loop depth distribution for SCoPs with exactly two loops. . . . . . . . . . . . 27
3.6 Number of SCoPs with regards to the number of contained statements. . . . . . 28
3.7 Number of SCoPs with regards to the number of contained loops. . . . . . . . . 29
3.8 Classical transformations that can be performed by the Polly loop optimizer. . 30
3.9 The simple SCoP profitability check performed by LLVM/Polly. . . . . . . . 32
3.10 Four simple examples that are considered profitable by LLVM/Polly (ref. Al-

gorithm 3.9), but not necessarily by the piecewise profitability heuristic. . . . . 33
3.11 Algorithm to determine the profitability function of a SCoP. . . . . . . . . . . . 34
3.12 Percentage of SCoPs with an altered schedule or AST after LLVM/Polly per-

formed schedule optimizations. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.13 Compile time impact of the piecewise profitability metric in Algorithm 3.11. . . 36
3.14 Piecewise profitability heuristic results that predicted the equality of the original

and generated schedules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.15 Piecewise profitability heuristic results that predicted the equality of the original

and generated AST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

193



194 List of Algorithms, Figures, and Tables

3.16 Rejection reasons for code regions in SPEC2000 benchmarks. . . . . . . . . . 40
3.17 Distinct categories of limitations that require different kinds of future extensions

to improve applicability and robustness of polyhedral tools. . . . . . . . . . . . 41
3.18 Three examples with access functions that are or were categorized as non-affine

by LLVM/Polly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.19 Rejection reasons collected for the benchmarks shown in Table 2.5 and 2.6. . . 44
3.20 Rejection reasons for all analyzed SESE regions. . . . . . . . . . . . . . . . . 45
3.21 Combinations of rejection reasons (ref. Table 3.19) that caused an analyzed SESE

region not the be a valid SCoP. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.22 Distribution of rejection reason combinations. . . . . . . . . . . . . . . . . . . 48
3.23 Syntactic conversion of a switch statement to a cascade of conditionals and gotos. 50
3.24 First domain generation traversal callback procedure. . . . . . . . . . . . . . . 52
3.25 Second domain generation traversal callback procedure. . . . . . . . . . . . . . 53
3.26 Encoding of amulti-entrymulti-exit region (MEME) as a single-entry single-exit

(SESE) region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.27 Relative scores in various metrics for unstructured control flow. . . . . . . . . . 55
3.28 Non-affine accesses to a read-only array that do not prevent optimizations. . . . 56
3.29 Non-affine write accesses that do not prevent loop fusion if a symbolic range

analysis is employed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.30 Example program that features a non-affine conditional in the innermost loop. . 58
3.31 Example program that features a non-affine loop bound in the innermost loop. . 58
3.32 Non-affine conditional that prevents a precise polyhedral representation of the

affine inner loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.33 The different summary effects known to LLVM, their support in the Polly,

and in the approximation branch of our research prototype. . . . . . . . . . . 60
3.34 Applicability scores in various metrics for our approximations. . . . . . . . . . 64
3.35 Simplified excerpt of the compute_rhs function in the BT benchmark as pro-

vided in the C implementation of the NAS Parallel Benchmarks. . . . . . . . . 65
3.36 Architecture overviewof the code specialization framework. . . . . . . . . . . . 66
3.37 Code shown in Figure 3.35 with explicit assumptions. . . . . . . . . . . . . . . 67
3.38 Semantic differences between C, LLVM-IR and the polyhedral model. . . . . 68
3.39 Examples for which parameter specialization can enable or improve polyhedral

optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.40 Precise but complicated, and conservatively simplified, runtime alias checks. . . 72
3.41 Different possible schemes to track overflows in the runtime check for the con-

trived assumption 𝑚 − 1 < 𝑛 + 2. . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.42 Number of feasible and profitable SCoPs for which assumptions have been taken. 75
3.43 Statistics on the feasibility of SCoPs including the reason for infeasibility. . . . 76



List of Algorithms, Figures, and Tables 195

3.44 Example to show how memory accesses are introduced in control flow or array
access expressions when global variables, arrays or compound objects are used. 80

3.45 Examples where correctness issues may arising from invariant load hoisting. . . 81
3.46 Code generated two preload two invariant accesses. . . . . . . . . . . . . . . . 83
3.47 Simplified situation in which a control constraint specializes the polyhedral ac-

cess function for one of two invariant loads with syntactically equal location. . 84
3.48 Example code with two mutually exclusive valid SCoP regions. . . . . . . . . . 84
3.49 Relative scores in various metrics for invariant load hoisting. . . . . . . . . . . 85
3.50 Statistics for various invariant load hoisting related events. . . . . . . . . . . . 86
3.51 Excerpt from BT benchmark in the NAS parallel benchmark suite [SJL11]. . . 88
3.52 Number of maximal and valid regions found during SCoP detection with and

without runtime check hoisting. . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.53 Number of unprofitable polyhedral representations and statically infeasible as-

sumptions with and without runtime check hoisting. . . . . . . . . . . . . . . . 90
3.54 Relative impact of runtime check hoisting in various metrics. . . . . . . . . . . 90

4.1 Example for intentional integer wrapping introduced by code optimizations. . . 94
4.2 Accesses to possibly aliasing arrays in part and the memory layouts for which

every memory cell is only accessed through a single base pointer. . . . . . . . . 96
4.3 Loop nest with four potentially aliasing multi-dimensional accesses. . . . . . . 97
4.4 Runtime alias check for the loop nest shown in Figure 4.3. . . . . . . . . . . . 98
4.5 Examples to illustrate the two scalability issues for runtime alias checks . . . . 98
4.6 Time in seconds to compute the lexicographic minimum of a Presburger set de-

pending on the number of involved parameters. . . . . . . . . . . . . . . . . . 99
4.7 Example to show how alias groups are generated depending on the kinds and

execution contexts of memory accesses. . . . . . . . . . . . . . . . . . . . . . 100
4.8 Examples to showcase the limits of the polyhedral runtime alias checks described

here and employed by LLVM/Polly. . . . . . . . . . . . . . . . . . . . . . . 101
4.9 Example to illustrate the interplay between runtime alias checks and invariant

load hoisting (ref. Section 3.6). . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.10 Results to showcase the applicability impact of missing runtime alias checks. . 104
4.11 Different expression evaluation semantics and examples for their usage. . . . . 106
4.12 Example loop with dependences only if wrapping semantics is used. . . . . . . 107
4.13 Example computations that could cause an integer under-or overflows. . . . . . 107
4.14 Two example loops shown with equal polyhedral representation but different

wrapping behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.15 Three different but equivalent versions of a loop which all execute the contained

statements in an alternating fashion. . . . . . . . . . . . . . . . . . . . . . . . 110
4.16 Impact of potentially wrapping expressions on the applicability or Polly. . . . 111



196 List of Algorithms, Figures, and Tables

4.17 Signed and unsigned uses of the same bit pattern and the associated values in
both representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.18 Two loops with the same upper bound that interpreted once as a signed and once
as an unsigned value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.19 Graphical illustration of the transition between a signed and unsigned interpreta-
tion of an 𝑛-bit value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.20 Signed polyhedral representation of different signed and unsigned values. . . . 115
4.21 Example loop that will exhibit more than 231 iterations if the value of N was

initially negative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.22 Weak ordering of the three signedness tags: sign-less, signed and unsigned. . . 117
4.23 Example to showcase the usefulness of a sign-less polyhedral representation. . 117
4.24 Results to show the applicability impact of unsigned value interpretation. . . . 118

5.1 Example where the outermost loop only carries reduction dependences. . . . . 120
5.2 Minimal dependence distance annotations we added to LLVM/Polly. . . . . 121
5.3 Dependence filter for parallel loops without barriers. . . . . . . . . . . . . . . . 122
5.4 Potentially infinite loop with an iteration counter that can wrap around. . . . . . 123
5.5 Partially unbounded loop with an iteration counter that has a piecewise defined

but affine evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6 Generic loop nest with dependent conditionals. . . . . . . . . . . . . . . . . . 124
5.7 BiCG Polybench kernel extracted from the BiCGStab linear solver. . . . . . . . 125
5.8 Graphical illustration of the polyhedral representation build for the BiCG kernel

shown in Figure 5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.9 Pseudo-code for a parallelized and vectorized version of the BiCG kernel shown

in Figure 5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.10 Two consecutive instances of the statement R with regards to the 𝑘-loop shown

in Figure 5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.11 Reductions spanning multiple syntactic statements. . . . . . . . . . . . . . . . 127
5.15 Partial reduction that manifests only certain iterations. . . . . . . . . . . . . . . 130
5.16 Examples for which our reduction predicates properly determine that the reduc-

tion computations do not cause reduction dependences. . . . . . . . . . . . . . 130
5.17 Generalized version, and its dependences, of the code shown in Figure 5.11b. . 131
5.19 Minimal closed reduction computation chains. . . . . . . . . . . . . . . . . . . 132
5.21 Possible privatization locations for a loop nest together with the corresponding

memory consumption and aggregation overhead. . . . . . . . . . . . . . . . . 135
5.22 Reduction and non-reduction accesses to the location avg. . . . . . . . . . . . 136
5.23 Implementation that causes the privatization dependences we add to ensure cor-

rect schedule optimization for the reduction in Figure 5.22. . . . . . . . . . . . 136



List of Algorithms, Figures, and Tables 197

5.24 Example to showcase how reduction-enabled and reduction-aware scheduling
can improve the result of polyhedral schedule optimization. . . . . . . . . . . . 138

5.25 Evaluation results for Polybench 3.2 benchmarks. . . . . . . . . . . . . . . . . 141
5.26 BiCG run-time results. The values are speedups compared to the sequentialPolly

version, first for the 32-core machine, then for the 4-core machine. . . . . . . . 142
5.27 All accesses to the array u in the third and last loop of Figure 5.29. . . . . . . . 147
5.28 Excerpt from the C implementation of the BT benchmark [SJL11] that is part of

the NAS parallel benchmark suite [Bai+91]. . . . . . . . . . . . . . . . . . . . 148
5.29 The code snippet shown in Figure 5.28 after expression propagation was per-

formed. All scalars have been eliminated as well as the temporary array vs. . . 149
5.30 Complete expression propagation example for a simple input program. . . . . . 150
5.31 Example featuring a loop carried inter-iteration RAW dependence as well as an

intra-iteration WAR dependence. . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.32 Expression rewrite algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.33 Statement splitting and syntactic read replacement for a non surjective propaga-

tion dependences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.34 Encoding rules for a 𝑘-CNF-SAT formula as a program that allowsmaximal poly-

hedral expression propagation to solve satisfiability. . . . . . . . . . . . . . . . 156
5.35 Examples illustrating the limitations of the propagation expression and depen-

dence construction as described in Section 5.3.1.3 and Section 5.3.1.2. . . . . . 157
5.36 Memory locations that are assumed to be cached after a memory access was

performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.37 Examples to showcase differences in code complexity increase that would arise

from expression propagation with statement splitting. . . . . . . . . . . . . . . 159
5.38 Examples illustrating the impact of the propagation order on propagation legality

and the cache miss heuristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.39 Use of higher-order recurrences to reduce computation overhead after expression

propagation was performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.40 Architecture details including the CPU, number of cores and threads, vector size

in bits, first and last level cache size as well as the execution model. . . . . . . 164
5.41 Benchmark details including the number of arrays, loops, statements and ac-

cesses for the Naive, Polly, PolyMage and Expression Propagation version. . 165
5.42 Raw performance results for the Xeon E3-1225v3 architecture. . . . . . . . . . 165
5.43 Correlation between the runtime on the Xeon E3-1225v3 architecture and the

number of: arrays, statements, accesses, and instructions . . . . . . . . . . . . 166
5.44 Performance results including the limits observed in the random propagation

tests shown in Figure 5.43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.45 Effect of different cache miss limits (Section 5.3.5.1) on the runtime for the Intel

Core i9-7900X, Intel Xeon E3-1225v3 and, ARM Cortex A57 architectures. . . 169



198 List of Algorithms, Figures, and Tables

5.46 Performance comparisons of different optimization schemes including polyhe-
dral expression propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.1 Example to showcase flow-sensitive access behavior. . . . . . . . . . . . . . . 177
6.2 Example to showcase how affinity depens on the scope. . . . . . . . . . . . . . 178
6.3 Quais-affine call site for the code illustrated in Figure 6.2. . . . . . . . . . . . . 178
6.4 Example to showcase polyhedral-model-driven inlining. . . . . . . . . . . . . . 180
6.5 Algorithm to determine the profitability function of a SCoP under the assumption

all call sites, including transitive ones, have been inlined. . . . . . . . . . . . . 181
6.6 The CFG of the muxha function, part of the SPEC2006 462.libquantum bench-

mark, after polyhedral inlining (ref. Section 6.2) was performed. . . . . . . . . 185
6.7 Example to show how scope and use location change the derived polyhedral

representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.8 Different polyhedral representations depending on the use location and scope. . 188
6.9 Example to show how a dynamic value is first incorporated into and later elimi-

nated from the polyhedral representations. . . . . . . . . . . . . . . . . . . . . 188
6.10 Example to show how the polyhedral value analysis determines closed form ex-

pressions for piecewise defined loop iteration variables. . . . . . . . . . . . . . 189
6.11 CFG and lowered representation of Figure 6.10. . . . . . . . . . . . . . . . . . 190

A.1 Dimensionality adjustment procedure for domain constraints. . . . . . . . . . . 201
A.3 CFG that features edges which leave an arbitrary number of loops. . . . . . . . 202



Appendices

199





Appendix A: Dimensionality Adjustment
The dimensionality of iteration domains depends on their loop nesting depth within the SCoP.
As an edge from a basic block to a successor block might change the loop nesting depth, the
dimensionality of the propagated control flow constraints has to be changed too. The adjustment
is performed by the adjustDimensions procedure shown in Algorithm A.1. It takes domain
constraints constructed for the loop nesting depth of the Old basic block and adjusts them to the
nesting depth of the New block. If the Last flag is set, the loop dimensions that are left, and
consequently projected out of the constraint set, are first specialized to refer the lexicographic
last iteration in these dimensions.

1: procedure adjustDimensions(Dom : ISet, Old : BB, New : BB, Last : bool)

Get the innermost affine loops that are part of the SCoP to determine the necessary adjustment.

2: OldLoop ← getSurroundingLoopInSCoP(Old)
3: NewLoop ← getSurroundingLoopInSCoP(New)

If the immediate surrounding loop did not change no adjustment is necessary.

4: if OldLoop == NewLoop then return Dom

If the loops changed we distinguish three cases based on the difference in the loop depth. Note that
the CFG edge from Old to New implies that at most one new loop was entered but at the same time
multiple ones can be left (ref. Theorem A.2).

5: DepthDiff ← getDepth(NewLoop) - getDepth(OldLoop)
6: if DepthDiff == 0 then one loop was left, one loop was entered
7: Dom ← Dom.projectOutDimension(1, Last)
8: return Dom.appendDimensions(1)
9: else if DepthDiff > 0 then no loop was left, one loop was entered
10: assume DepthDiff == 1
11: return Dom.appendDimensions(1)
12: else if DepthDiff < 0 then at least one more loop was left than entered
13: if not NewLoop or NewLoop.contains(Old) then only left loops
14: return Dom.projectOutDimension(-DepthDiff, Last)
15: else 1+|DepthDiff| loops left and one new loop entered
16: Dom ← Dom.projectOutDimension(1 - DepthDiff, Last)
17: return Dom.appendDimensions(1)
18: end if
19: end if

Algorithm A.1: Dimensionality adjustment procedure for domain constraints. The given
Dom was constructed for the loop nesting depth of Old and will be adjusted to the nesting
depth of New. The Last flag indicates if the loop dimensions that were left, and which are
consequently projected out of the constraint set, should be specialized to the lexicographic

last iteration.
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Loop Nesting Depth Adjustment Theorem A.2

Given a reducible control flow graph (CFG) [HU74] with nodes V and edges E.
An edge e ∶= (s, t) ∈ E ⊆ V × V can
1) potentially leave any number of loops that surround s, but
2) enter at most one loop which contains t but not s.

Proof.

Part 1.

To prove that an edge can leave any number of loops we provide a construction for a CFG
with 𝑘 loops in which there is an edge that leaves 𝑙 loops, for each 0 ≤ 𝑙 ≤ 𝑘. The general
scheme is presented in Figure A.3. Each of the 𝑘 nested loops contains a conditional jump to
the label R. Note that the node for R has loop depth 0 and no outgoing edges. For each loop
depth 𝑙 the jump to R leaves exactly 𝑙 loops. At the same time the control flow is reducible
since each loop has a unique entry, or header, node [HU74].

Part 2.

Given a reducible CFG, we know that each loop has a distinct and identifying loop header
block [HU74]. Entering such a reducible loop can only happen through this header block.
Since t cannot be the header block of more than one loop, there is at most one loop that could
have been entered when traversing e, namely the one of which t is the header block.

■

The domain adjustment algorithm makes use of the reducibility property we require for all loops
in the analyzed region as well as Theorem A.2. While reducibility also guarantees that two loops
are either disjoint or properly nested, Theorem A.2 states that any number of loops can be left,
but at most one loop can be entered when an edge in a reducible CFG is traversed. Note that we
did not investigate the possibility to enforce reducible control flow [HU74] through duplication
as it seems of little practical use (see the IR rejection reason in Table 3.19 on Page 44).

for (i1 = 0; i1 < N; i1++) {
if (p1) goto R;
[...]
for (ik = 0; ik < N; ik++)

if (pk) goto R;
[...]

}
R: return;

for
if

for
if ⋱

R: return;

i1<N

i1>=N

¬p1

p1

i2<N

i2>=N

p2

Figure A.3: CFG construction scheme that features edges which leave an arbitrary
number of loops. The high-level code representation is sketched on the left and the

corresponding CFG is shown on the right.



Appendix B: Glossary
This glossary provides brief definitions of commonly used terms. References to appropriate
literature and thesis sections are provided if applicable. In contrast to the rest of the thesis, all
occurrences of terms contained in the glossary are highlighted in the definitions that follow.

Access
Accesses are reads or writes of scalar variables (scalar access) or (multidimensional) mem-
ory locations (memory access) contained in a statement. In the polyhedral model, com-
munication, and thereby dependences, between any two different statement instances is
only possible through accesses. Scalar accesses are identified solely by the scalar variable
while memory accesses are defined by the accessed array (or pointer) and the access offset
which is expressed as an access relation. A memory access is static affine if the accessed
array is statically known and the access relation is statically affine.

Access Relation
Each memory access has an access relation that maps iterations of the loops surrounding
the containing statement to offsets into the accessed array. Thus, a memory access m to an
𝑛-dimensional array which is contained in the statement S with the iteration domain DS

has an access relation 𝑓m which is a subset of DS → Z𝑛.

Affine Expression
An affine expression is a linear expression with a constant offset. An affine expression over
the variables 𝑥1, … , 𝑥𝑛 and with constant integers (𝑐0, … , 𝑐𝑛) ∈ Z𝑛+1 can be written as:

𝑐0 + ∑
1≤𝑖≤𝑛

(𝑐𝑖 ∗ 𝑥𝑖)
Note that we regularly use the term affine expression for historical (and brevity) reasons
but actually allow piecewise defined, quasi-affine expressions.

Aliasing
Aliasing, or array overlapping, occurs if differently named arrays (or pointers) share the
same (physical) memory locations (ref. Section 4.1). Aliasing is especially common in low-
level languages such as C/C++ and LLVM Intermediate Representation (LLVM-IR).

Assumption Λ
We use the term assumption to denote a context that contains all parameter combinations
which we allow to occur during program execution. Assumptions can consequently be
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interpreted as preconditions specified by the compiler to enable program optimizations
(ref. Section 3.5). The complement of an assumption is a restriction.

Basic Block
Basic blocks are the nodes in a control flow graph (CFG). They consist of an ordered list
of instructions without intermediate control-flow. Thus, all instructions are executed in
their order of appearance, every time the block is executed.

Context
A context is an integer set that only refers to program parameters. The “known context”
contains parameter constraints derived from the input program, e.g., from type ranges.
Assumptions and restrictions are examples for generated contexts (ref. Section 3.5).

Control Flow Condition
A control flow condition is the condition of a branch or switch instruction that is evaluated
in order to determine which basic block is executed next.

Control Flow Graph (CFG)
A control flow graph (CFG) is a program representation often employed in compilers. The
nodes of a CFG are basic blocks which are connected through a directed control flow edge
if the blocks can potentially be executed directly after another. If a block has multiple
successors in the CFG, the dynamic value of the control flow condition will determine
which one is executed next.

Dependence
A dependence is a connection between two statements, or statement instances, that indi-
cates a potential flow of information, e.g., values. Dependences can be divided into control
and data dependences. In the polyhedral model, the former are implicitly captured through
the schedule, while the latter are explicitly computed on a statement instance basis [Fea91].
There are three important kinds of data dependences, read-after-write (RAW), write-after-
read (WAR), and write-after-write (WAW).

Dominance & Post-Dominance
Dominance and post-dominance are strict, partial orders defined over the nodes in a flow
graph [LM69; Pro59]. Given a control flow graph (CFG) and two basic blocks A and B,
we say that A dominates B if and only if every path from the entry (=source) node of the
CFG to B also contains A. Similarly, B post-dominates A if and only if every path from A
to an exit (=sink) node of the CFG contains B.

Dynamic (Runtime)
We use dynamic, or runtime, to refer to facts that are only known during program execution.
In contrast, facts that are known beforehand are statically known.
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Dynamic Single Assignment (DSA)
In contrast to static single assignment (SSA), dynamic single assignment (DSA) ensures
that each memory location is written at most once at runtime [Fea88a; Van+07]. The
accesses in a DSA program can consequently only induce read-after-read (RAR) and read-
after-write (RAW) dependences.

Integer Set
We denote symbolic subsets of the 𝑛-dimensional integer space Z𝑛 as integer sets if they
are defined by a Presburger predicate 𝑐 with 𝑛 free variables. An integer vector x ∈ Z𝑛

is included in the set, if only if, 𝑐(x) is true. We denote integer sets as shown below and
describe operations on them in Section 2.1.2.{ (𝑥1, … , 𝑥𝑛) ∈ Z𝑛 ∣ 𝑐(𝑥1, … , 𝑥𝑛) } = { (x) ∣ 𝑐(x) } ⊆ Z𝑛

Integer Relation
We call a symbolic relation between Z𝑛 and Z𝑚 an integer relation if it is defined by a
Presburger predicate 𝑐 with 𝑛+𝑚 free variables. As such it can also be seen as integer set
in the integer space Z𝑛+𝑚. We write integer sets as shown below and describe operations
on them in Section 2.1.2.{ (𝑖1, … , 𝑖𝑛) ∈ Z𝑛

→ (𝑗1, … , 𝑗𝑚) ∈ Z𝑚 ∣ 𝑐(𝑖1, … , 𝑖𝑛, 𝑗1, … , 𝑗𝑚) } ⊆ Z𝑛
→ Z𝑚

Integer Wrapping
Integer wrapping occurs if the result of an operation, e.g., addition, requires more bits than
provided by the target location or variable. A detailed discussion on integer wrapping can
be found in Section 4.2.

Iteration Domain
The iteration domainDS of a statement S is an integer set that contains all iteration vectors
for which S is executed. Examples for iteration domains are provided in Section 2.1.3 and
the iteration domain generation of LLVM/Polly is described in Section 3.3.

Iteration Vector
An iteration vector i is an element of an iteration domain DS for a statement S. The di-
mensionality of i is equal to the loop depth of S relative to the static control part (SCoP).
Iteration vectors are mostly used to identify loop iterations but they can potentially also
constrain the parameters of the SCoP. We write iteration vectors in bold but use italics for
the elements, e.g., i = (𝑖1, … , 𝑖𝑛).

LLVM
LLVM is a compiler framework that combines various language front-ends, a unified
middle-end comprising analyses and optimizations, as well as machine-code generation
for multiple target architectures [LA04]. See also Section 2.2.1.
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LLVM Intermediate Representation (LLVM-IR)
The LLVM intermediate representation (LLVM-IR) is an assembly-like language in
static single assignment (SSA) form [Adv+03]. It is used by analyses and optimizations in
the middle-end of the LLVM compiler. The language documentation can be found online:
https://llvm.org/docs/LangRef.html

Live-Out
A variable (or memory location) is considered live-out with regards to a region R, if the
(stored) value can potentially be used outside of R. In our setting R is most often the extent
of the static control part (SCoP). (ref. Section 5.3.6.1)

Memory Access
A memory access is a polyhedral access to a memory location.

Parameter
Scalar variables that are invariant during the execution of a static control part (SCoP) are
called parameters. Note that we consider computations that are pure, and only involve
parameters, also as parameters.

Polly
Polly is the polyhedral loop optimizer integrated into the LLVM compiler [GGL12].
Polly can automatically detect, model, and optimize all static control parts (SCoPs) present
in a function. The input and output of Polly are functions in the LLVM-IR, the low-
level intermediate language of LLVM. The techniques presented in this thesis were all
implemented for Polly. To explicitly refer to the open source version of Polly, and not
our research prototype (ref. Section 2.2.3), we generally write LLVM/Polly.

Polyhedral Model
The polyhedral model is a mathematical program abstraction for static control parts that
is based on Presburger arithmetic [FL11]. Its name stems from the fact that conjunctions
over affine expressions define polyhedra, thus convex geometrical shapes. However, due
to disjunctions and piecewise defined affine expressions we can actually deal with unions
of polyhedra. In case quasi-affine expressions are allowed, each polyhedron might addi-
tionally contain regularly occurring holes.

Presburger Arithmetic
Presburger arithmetic is a decidable first-order logic over integers with addition first de-
scribed by Presburger [Pre31] 1. It is the mathematical foundation the polyhedral model
and briefly explained in Section 2.1.2.

1 Note that an annotated English translation of the originally German paper was made available by Stansifer [Sta84].

https://llvm.org/docs/LangRef.html
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Presburger Condition, Predicate, and Formula
A Presburger condition, predicate, or formula is an expression in Presburger arithmetic
which, given an assignment for the free variables, can be proven true or false. We generally
assume Presburger conditions to be logical combinations of equalities and inequalities over
piecewise defined, quasi-affine expressions as described in Section 2.1.2.

Quasi-Affine Expression
A quasi-affine expression is an affine expression that additionally allows division and mod-
ulo operationswith a constant divisor [Fea91; Qui84]. The general structure of quasi-affine
expression is explained in Section 2.1.2.

Referential Transparency
We call the definition of a variable referentially transparent if the program behavior is not
changed if all variable uses, that would otherwise evaluate to the result of the defining
expression, are syntactically replaced by the defining expression.

Restriction
Complementary to assumptions, restrictions express constraints on program parameters
which are assumed to never occur during program execution. The differentiation can be
beneficial due to the representation of integer sets (ref. Section 3.5.3).

Scalar Access
A scalar access is an access that does not involve memory but a scalar variable.

Scalar Variable
Unlike arrays, scalar variables are containers for a single value of their respective type.

Schedule
The schedule 𝜃 is an integer relation that maps statement instances to multidimensional
timestamps which define their execution order. A brief introduction of schedules is pro-
vided in Section 2.1.3.

Schedule Optimization
Schedule optimizations are transformations of the program that involve a change in the ex-
ecution order of the statement instances, thus their schedule. Polyhedral optimizers classi-
cally use integer linear programming to compute a new schedule relation with properties
superior to the original [Bon+08; Fea92a; Fea92b; Kon+13].

Single-Entry Single-Exit (SESE) Region
A single-entry single-exit (SESE) region is a connected sub graph of a CFG defined by
two distinct basic blocks: The entry, that dominates all blocks in the SESE region, and the
exit, which post-dominates all of them.
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Statement
We mostly use the term statement to refer to polyhedral statements which are part of
the polyhedral representation of a static control part (SCoP) and identified by their name.
Statements comprise an iteration domain and a list of accesses. Alternatively, statements
can also denote source code statements.

Statement Granularity
Statement granularity describes the extent of polyhedral statements. Common choices
are usually syntactically defined, e.g., source code statements [BRS10; Bon+08; Fea92b;
GL96; Ver15b] or basic blocks in a control flow graph (CFG) [GGL12; Pop+06]. How-
ever, semantic choices, e.g., one memory write access per statement or alternatively larger
compound statements, are interesting to simplify algorithms [Doe+15], reduce compile
time [MY15], extend applicability [MDH16], or increase the scheduling freedom [Sto+14].

Statement Instance
A statement instance is a dynamic execution of a statement. It is described by the statement
(name) and an iteration vector that identifies iterations of the surrounding loops.

Static (Compile Time)
We use the term static to distinguish the compile time of a program from the dynamic in-
vocation at runtime. We also use it to denote the fact that variables are unknown but fixed
during one invocation, e.g., of a static control part (SCoP). Since the polyhedral model
is a static program abstraction we allow pointers and parameters with unknown but in-
variant values. The uncertainty that is thereby induced makes it harder to reason about
the semantics, e.g., potential aliasing of arrays (ref. Section 4.1), as well as the benefit of
transformations, e.g., parallelization.

Static Control Part (SCoP)
A static control part is a maximal program part that can be represented in the polyhe-
dral model [CGT04; Fea91]. In this thesis we also use the term SCoP to denote to the
polyhedral representation that is built for such a program part. SCoPs consist of a list of
statements and a schedule as explained in Section 2.1.3. Common restrictions on SCoPs
are detailed in Section 3.2.

Static Single Assignment (SSA)
Programs in static single assignment (SSA) form come with two important properties: A
scalar variable is defined exactly once and each use of a scalar variable is dominated by
the unique definition. SSA form is commonly used for compiler intermediate languages
because it simplifies certain analyses with moderate precision loss [Boi+08; HG06]. To
convert conventional programs into SSA form phi-nodes are placed at points where multi-
ple definitions of a live variable converge [Bra+13; Cyt+89].
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