
Optimization Landscape of Deep Neural Networks

A dissertation submitted towards the degree

Doctor of natural science

of the Faculty of Mathematics and Computer Science of

Saarland University

by

Quynh Nguyen

Saarbrücken, April 2019





Day of Colloquium 18.10.2019

Dean of the Faculty Prof. Dr. Sebastian Hack

Examination Committee

Chair Prof. Dr. Makus Bläser

Reviewer, Advisor Prof. Dr. Matthias Hein

Reviewer Prof. Dr. Marius Kloft

Reviewer Prof. Dr. Matus Telgarsky

Academic Assistant Dr. Pavel Kolev





Abstract

It has been empirically observed in deep learning that the training problem of deep over-parameterized
neural networks does not seem to have a big problem with suboptimal local minima despite all hardness
results proven in the literature. In many cases, local search algorithms such as (stochastic) gradient
descent frequently converge to a globally optimal solution. In an attempt to better understand
this phenomenon, this thesis studies sufficient conditions on the network architecture so that the
landscape of the associated loss function is guaranteed to be well-behaved, which could be favorable
to local search algorithms. Our analysis touches upon fundamental aspects of the problem such as
existence of solutions with zero training error, global optimality of critical points, topology of level
sets and sublevel sets of the loss. Gaining insight from this analysis, we come up with a new class of
network architectures that are practically relevant and have a strong theoretical guarantee on the
loss surface. We empirically investigate the generalization ability of these networks and other related
phenomena observed in deep learning such as implicit bias of stochastic gradient descent. Finally, we
study limitations of deep and narrow neural networks in learning connected decision regions, and
draw connections to adversarial manipulation problems. Our results and analysis presented in this
thesis suggest that having a sufficiently wide layer in the architecture is not only helpful to make the
loss surface become well-behaved but also important to the expressive power of neural networks.





Zusammenfassung

Es wurde empirisch beobachtet, dass beim Trainieren von überparametrisierten tiefen, neuronalen
Netzen keine Probleme mit lokalen Minima auftreten, trotz den Schwerheits-Resultaten in der Liter-
atur. In vielen Fällen konvergieren lokale Suchalgorithmen wie (stochastischer) Gradientenabstieg oft
zu einer global optimalen Lösung. In einem Versuch dieses Phänomen besser zu verstehen, diskutiert
diese Arbeit hinreichende Bedingungen an die Netzwerkarchitektur, so dass die Funktionslandschaft
der assozierten Verlustfunktion sich garantiert gut verhält, was günstig für lokale Suchalgorithmen ist.
Unsere Analyse bezieht sich auf grundlegende Aspekte des Problems wie z.B. Existenz von Lösungen
mit null Trainingsfehlern, globale Optimalität der kritischen Punkte und Topologie der Niveau-
und Unterniveau-Mengen der Verlustfunktion. Aus den in dieser Analyse gewonnenen Erkenntnisse
entwickeln wir eine neue Klasse von Netzwerkarchitekturen, die praxisrelevant sind und die starke
theoretische Garantien über die Oberfläche der Verlustfunktion erlauben. Wir untersuchen empirisch
die Generalisierungsfähigkeit dieser Netzwerke und anderer verwandter Phänomene, die beim tiefen
Lernen beobachtet wurden, wie z.B. der implizite Bias des stochastischen Gradientenabstiegs. Weiter
diskutieren wir Einschränkungen tiefer und schmaler neuronaler Netze beim Lernen von miteinander
verbundenen Entscheidungsregionen und stellen eine Verbindung zum Problem der bösartigen Manip-
ulation her. Unsere Ergebnisse und Analysen, die in dieser Arbeit vorgestellt werden, legen nahe, dass
eine ausreichend breite Schicht in der Architektur nicht nur hilfreich ist, damit die Verlustoberfläche
wohlbehalten ist, aber auch wichtig ist für die Ausdrucksstärke von neuronalen Netzen.
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Chapter 1

Introduction

Deep learning LeCun et al. (2015); Schmidhuber (2015) has led to breakthroughs in many application
domains such as computer vision, natural language processing and speech recognition, yet the
theoretical understanding of deep learning still lags far behind. To date, theoretical studies on
deep learning mainly focus on three different topics: expressivity, optimization and generalization.
Expressivity refers to the ability of neural networks to represent or approximate a function class,
whereas optimization refers to the ability of practical learning algorithms such as (stochastic) gradient
descent in finding a solution to fit the training data, and generalization is about understanding the
performance of those models learned in this way on the new unseen data. This thesis contributes to
the theory of the two former topics, with the main focus on optimization.

In terms of expressivity, universal approximation theorems Cybenko (1989); Hornik et al. (1989)
state that any continuous function can be approximated to arbitrary precision on a compact set by
a single hidden layer network with sufficient number of hidden neurons. It has been shown that
this holds for neural networks with every non-polynomial activation function Leshno et al. (1993).
This great expressive power of neural networks is further stressed in the regime of deep learning. In
particular, several recent work Delalleau and Bengio (2011); Telgarsky (2016); Eldan and Shamir
(2016); Cohen et al. (2016) have shown that there exist functions which can be computed efficiently
by deep neural networks of linear or polynomial size but require exponential size for shallow networks
to represent or approximate. More recently, Lin and Jegelka (2018) have shown that any Lebesgue
integral function in d dimension can be uniformly approximated by a deep residual network with
ReLU activation function and layers of alternating size 1 and d. This is in contrast to the standard
feedforward neural networks as they cannot be universal function approximators if the widths of all
hidden layers are not larger than the input dimension Johnson (2019); Beise et al. (2018).

However, merely knowing that a neural network can approximate any function is not sufficient to
guarantee that popular algorithms such as (stochastic) gradient descent can always find a globally
optimal solution on a fixed finite dataset in reasonable time. In fact, the problem of training neural
networks has been shown to be NP-Hard, even when the network has just one or a few neurons
(Sima, 2002; Blum and Rivest., 1989). Moreover, due to its non-convexity nature, the loss function
can have potentially many distinct local minima (Auer et al., 1996), and so even if the learning
algorithm is guaranteed to converge in polynomial time, it is hard to tell at the end of learning where
the algorithm lands and what is the quality of the returned solution.

Surprisingly, despite all these hardness results, (stochastic) gradient descent algorithms still achieve
excellent performance in practice Zhang et al. (2017), especially for training highly over-parameterized
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Figure 1.1: An example feedforward neural network with L = 6 layers and d = 4,m = 3.

networks 1. Of course these successes are also fueled by massive amount of data and computational
powers, but from an optimization perspective, it is still considered as perhaps one of the greatest
mysteries in deep learning why such simple algorithms can frequently succeed in minimizing the
highly non-convex function without facing any big problem with suboptimal local minima. This
apparent gap between theory and practice seems to indicate that the training problem of practical
deep networks is still very far from the worst-case scenario where it is known to be NP-Hard. This
leads us to the question that whether these networks have any special structure which makes their
associated loss function become favorable to local search algorithms like (stochastic) gradient descent?
If so, can one identify several sufficient conditions on their architecture so that this is guaranteed?
This is the kind of thinking that we would like to adopt in this thesis to overcome the problem of
NP-Hardness and non-convexity.

This thesis focuses on the loss landscape of deep (convolutional) neural networks where one of
the hidden layer is wide enough. We will analyze the global optimality of critical points of the
loss function as they represent attractive solutions for gradient descent methods. Then we study
connectivity and unboundedness of level sets and sublevel sets of the loss to gain more insights
into the underlying geometric structure of the problem. Motivated by these results, we come up
with a new class of convolutional neural network architectures that are more practically relevant
and provably have a well-behaved loss surface. Lastly, we complement these results by studying
limitations of neural networks in the regimes where our key conditions are (severely) violated.

As a foundation for the following chapters, we first briefly introduce below feedforward neural
networks and their optimization problem. Then we give an overview of related work. We conclude
this chapter with the summary of our main contributions to the recent advancements on theoretical
understanding of deep over-parameterized neural networks.

1.1 Introduction to feedforward neural networks

A feedforward neural network consists of neurons that are ordered into multiple layers, as shown
in Figure 1.1. The first layer and the last layer are refered to as the input layer and output layer
respectively, and all the layers in between are called the hidden layers. The transformation between
two consecutive layers is implemented by first performing an affine transformation on the output of
the previous layer and then applying an elementwise nonlinear activation function on the outcome of
that operation. The mathematical formulation of the network is described below.

Let L be the number of layers, d the input dimension, m the output dimension and nk the number
of neurons at the hidden layer k for every 1 ≤ k ≤ L − 1. By convention we assume that n0 = d

1These are the networks which have more parameters than necessary to fit the training data.
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and nL = m. Let σ : R→ R be a continuous activation function. Amongst the most successful and
popular activation functions in deep learning are the following ones

1. ReLU: σ(x) = max(0, x)

2. Leaky-ReLU: σ(x) = max(αx, x) for some α ∈ (0, 1)

3. Sigmoid: σ(x) = 1/(1 + e−x)

4. Softplus: σ(x) = 1
α ln(1 + eαx) for some α > 0

5. Exponential linear units: σ(x) =

{
ex − 1 x < 0

x x ≥ 0

It is worth mentioning that ReLU and Leaky-ReLU are not differentiable at zero whereas the
remaining functions are everywhere differentiable. Let Wk ∈ Rnk−1×nk and bk ∈ Rnk be the weight
matrix and bias vector of layer k. Let fk : Rd → Rnk be the function which maps every input x ∈ Rd

to the output at layer k defined as

fk(x) =


x k = 0

σ(WT
k fk−1(x) + bk) k ∈ [1, L− 1]

WT
L fL−1(x) + bL k = L.

In the above formula and throughout this thesis, every (activation) function is applied elementwise.
When σ is a linear function, e.g. σ(x) = x for every x ∈ R, the network is called a linear network
since in this case the function computed by the network, given by fL(x), is just a linear function.
In other cases, the network is called a nonlinear one. Let (xi)

N
i=1 be the set of N training samples

where xi ∈ Rd. Let X = [x1, . . . , xN ]T ∈ RN×d. By stacking the outputs of layer k for all the training
samples into a matrix, we have

Fk = [fk(x1), fk(x2), . . . , fk(xN )]T ∈ RN×nk .

It follows from the above definition of fk that

Fk =


X k = 0

σ(Fk−1Wk + 1Nb
T
k ) k ∈ [1, L− 1]

FL−1WL + 1Nb
T
L k = L.

Let θ := (Wl, bl)
L
l=1 be the set of all parameters of the network. By convention, we write Fk(θ) to

denote the output of the network at layer k as a function θ, but sometimes we drop the argument
and write just Fk if it is clear from the context. The output of the network is given by FL(θ).

Fully connected networks and Convolutional neural networks. A feedforward neural net-
work is called fully connected if every neuron on every hidden layer is connected to all neurons from the
previous layer and the next layer. For instance, the network shown in Figure 1.1 is a fully connected
one. On the other hand, if the neurons between two layers are only sparely connected and the weights
of those connections are shared according to a special rule then we have a convolutional neural
network (CNN). In this case, the sparsity patterns and weight sharing conditions are determined by
a discrete convolution, that defines how the output of the previous layer is transformed to the next
layer. A simple way to describe a CNN is to enforce the above weight matrices Wk to be sparse with
shared coefficients. We note that in this case Wk only lies on a small subset of Rnk−1×nk due to the
additional structures, whereas in the case of fully connected networks Wk lies on the full space. In
this thesis, a CNN is considered to be more general than a fully connected network since it might
contain both convolutional layers and fully connected layers in the same architecture. In Chapter 2
we will give a more detailed description of CNNs as we analyze their optimization landscape.
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1.1.1 Empirical risk minimization

The training problem of a deep network is usually framed as the following optimization problem

min
θ∈Ω

Φ(θ)

where Ω denotes the parameter space and Φ : Ω→ R the empirical risk defined as

Φ(θ) = ϕ(FL(θ))

where ϕ : RN×m → R is a convex loss function defined on the output of the network. In particular,
for all the results in this thesis, if not stated otherwise, ϕ satisfies the following assumption.

Assumption 1.1.1 The loss function ϕ : RN×m → R is convex.

Assumption 1.1.1 implies that the loss Φ is convex w.r.t. the output of the network FL(θ). Since FL
is an affine function of (WL, bL), it follows that Φ is also convex w.r.t. (WL, bL). However, we note
that the loss Φ is generally non-convex w.r.t. all parameters of the network θ = (Wl, bl)

L
l=1. Typical

loss functions in machine learning which satisfy Assumption 1.1.1 include:

1. The cross-entropy loss (for classification tasks)

ϕ(G) =
1

N

N∑
i=1

− log
( eGiyi∑m

k=1 e
Gik

)
, (1.1)

where (xi, yi)
N
i=1 is the training data with yi being the ground-truth class of xi.

2. The standard square loss (for classification/regression tasks)

ϕ(G) =
1

2
‖G− Y ‖2F , (1.2)

where Y ∈ RN×m is the ground-truth matrix.

3. The multi-class Hinge-loss (for classification tasks)

ϕ(G) =
1

N

N∑
i=1

maxj 6=yi max(0, 1− (Giyi −Gij)),

where (xi, yi)
N
i=1 is the training data with yi being the ground-truth class of xi.

1.2 Related work

It is well known that the optimization problem of neural networks can have exponentially many local
minima (Auer et al., 1996) and is in general NP-Hard (Blum and Rivest., 1989; Sima, 2002; Livni
et al., 2014; Shamir, 2017; Shalev-Shwartz et al., 2017). However, it has been empirically observed
(Dauphin et al., 2014; Goodfellow et al., 2015; Zhang et al., 2017) that the training problem of
practical networks, which are often over-parameterized, is not hampered by suboptimal local minima.

In order to explain this apparent gap between hardness results and practical performance, many
theoretical results have been recently developed in the literature. We can divide these work into two
main categories. The first line of work is concerned with proving convergence guarantees for learning
algorithms such as (stochastic) gradient descent and tensor power methods, which we review below
in Section 1.2.1. The second line of work tries to characterize the structure of the loss function such
as global optimality of critical points and/or local minima, topological properties of level sets and
sublevel sets etc, which we refer to as the optimization landscape approach. This approach is more
specific to the topic of the thesis which we review under Section 1.2.2.
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1.2.1 Convergence theory of neural networks

Researches in this direction can be grouped into three different categories based on the network
which they analyze: one hidden layer networks, deep linear networks and deep nonlinear networks.

Convergence results for one hidden layer networks Andoni et al. (2014) study shallow
neural networks and show that randomly initialized gradient descent can learn any low degree
polynomial given sufficiently many hidden units. Li and Liang (2018) study the learning problem of
a two-layer over-parameterized ReLU network for multiclass problem where the data comes from
well-separated distributions, and show that randomly initialized stochastic gradient descent with
high probability will be biased towards a global minimum with better generalization error. Using the
similar observation of Li and Liang (2018) that most of the pre-activation outputs do not change
their signs over iterations, Du et al. (2019) show that gradient descent converges (with probability at
least 1− δ) to a solution with zero training error if the number of hidden neurons scales as Ω(N6/δ3).

Instead of using gradient descent algorithms with random initialization like above, there are also
work which use tensor initialization schemes Arora et al. (2014); Sedghi and Anandkumar (2015). In
particular, Gautier et al. (2016) show that a particular class of feedforward neural networks with a
regularized objective can be trained globally optimal with linear convergence rate using nonlinear
spectral methods. Other work use optimal transport theory Chizat and Bach (2018) and mean field
theory Mei et al. (2018); Nguyen (2018) to analyze the dynamics of (stochastic) gradient descent on
over-parameterized models. Recently, Wang et al. (2018) propose a novel stochastic gradient descent
algorithm to train one hidden layer ReLU networks with arbitrary number of hidden neurons to
global optimality, despite the presence of potentially many bad local minima and saddle points. The
authors claim that this is one of the first results of its kind which does not require any assumptions
on the data distribution, network size or initialization.

There is a whole line of researches whose theoretical results are built upon the assumptions that
the input distribution is Gaussian and the label is generated according to a planted neural network.
Based on these (unrealistic) assumptions, they are able to show that (stochastic) gradient descent
can recover the solution of the planted model. More specifically, Tian (2017) show that randomly
initialized gradient descent can learn the underlying model for a two-layer ReLU network of the
form x 7→

∑K
i=1 max(0, 〈wi, x〉) with sufficiently number of hidden neurons. Brutzkus and Globerson

(2017) consider a one hidden layer network with a single non-overlapping convolutional filter and
ReLU activation function, and show that the problem is in general NP-Complete, but when the
input distribution is Gaussian, gradient descent converges to the global optimum in polynomial time.
Soltanolkotabi (2017) studies the problem of learning a ReLU network of the form x 7→ max(0, 〈w, x〉)
in the regime where the number of samples are less than the dimension of the weight vector w.
By considering Gaussian inputs and a planted weight vector, they show that projected gradient
descent, when initialized at zero, converges at a linear rate to the planted model. Li and Yuan (2017)
consider a two-layer residual network of the form x 7→

∑d
i=1 max(0, xi + 〈wi, x〉) and show that if

the inputs are Gaussian then randomly initialized gradient descent converges in polynomial time
to the solution of a planted model. Going beyond Gaussian input distribution, Du et al. (2018b)
show that (stochastic) gradient descent with random initialization can learn a single convolutional
filter in polynomial time. Zhang et al. (2018) study the empirical risk of a one hidden layer ReLU
network and show that gradient descent using a specific tensor initialization method can converge to
the planted model at a linear rate given sufficiently large sample size. Similar study has also been
done by Zhong et al. (2017) for smooth activation functions.

Convergence results for deep linear networks. Arora et al. (2018b) show that depth can
accelerate the training of deep linear networks. Bartlett et al. (2018) study a particular class of
deep linear networks similar to Hardt and Ma (2017) in which all the layers have the same width.
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They show that if all the weight matrices are initialized to be the identity matrix, then gradient
descent can converge to a global minimum with linear rate if the objective value at starting point
is sufficient close to a global minimum, or a global minimum is attained when the product of all
layers is positive definite. The follow-up work of Arora et al. (2019) has extended this results to more
general deep linear networks. In particular, they show that gradient descent converges to a global
minimum at linear rate if all the following conditions hold: 1) the dimensions of all hidden layer are
not smaller than both the input and output dimension, 2) layers are initialized to be approximately
balanced and 3) the initial loss is smaller than any loss obtainable with rank deficiencies. Ji and
Telgarsky (2019) study the implicit regularization of gradient descent and gradient flow on linearly
separable data. For logistic loss, they show that 1) every weight matrix asymptotically converges to
its rank-1 approximation, 2) adjacent rank-1 weight matrix approximations are aligned and 3) the
linear function induced by the network, namely the product of all weight matrices, converges to the
same direction as the maximum margin solution.

Convergence results for deep nonlinear networks. Recently, Allen-Zhu et al. (2018a); Zou
et al. (2018); Du et al. (2018a) have extended the result of Li and Liang (2018) to multiple layer
networks of various architectures such as fully connected nets, convolutional neural nets and residual
networks. Basically, they show that if the number of neurons of every hidden layer of a deep network
scales as poly(N,L), where N denotes the number of training samples and L the number of layers,
then (stochastic) gradient descent will converge to a global minimum in polynomial time. In terms of
the settings, while Du et al. (2018a) concentrates on gradient descent with square loss and smooth
activation functions, the other two papers can deal with stochastic gradient descent, ReLU activation
and different loss functions such as cross-entropy loss. On the other hand, Du et al. (2018a) can
analyze the training of all layers in the network, whereas the work of Allen-Zhu et al. (2018a); Zou
et al. (2018) fix the weights of the first hidden layer and/or the output layer, and only train the
other hidden layers. In terms of the number of hidden neurons required for the result to hold, in the
case of fully connected networks, Du et al. (2018a) require Ω(N42O(L)) neurons per layer, whereas
Allen-Zhu et al. (2018a) require Ω(N30L30) and this is Ω(N26L38) for Zou et al. (2018).

In summary, convergence theory for training algorithms of neural networks is a very active research
area, and recent theoretical advancements along this research direction have certainly improved our
theoretical understanding on how deep learning algorithms work under various scenarios. However,
most of theoretical results so far are still quite limited in the sense that they often require prior
knowledge about the data distribution, a modification of network structure and objective function,
or they are for quite restricted networks, mostly one hidden layer networks. Interestingly, a few
recent papers Allen-Zhu et al. (2018a); Zou et al. (2018); Du et al. (2018a) could show that gradient
descent converges to a global minimum for certain deep nonlinear networks, but unfortunately these
results require that the number of neurons “per hidden layer” has to grow polynomially large with
the number of training samples and the depth.

At a high level, it’s also unlikely that a pure convergence analysis of local search algorithms like
gradient descent can help us explain the true reason why they succeed if there is no further information
on the loss, especially given that the problem is highly non-convex. In many cases, it remains unclear
whether this success comes from some special property of the algorithm, the loss function itself, or
both. At this point, we believe that a comprehensive understanding of neural networks optimization
landscape would shed light on this problem and help us understand better deep learning. There are
a number of recent work in this direction which we review in the following.

1.2.2 Optimization landscape theory of neural networks

Theoretical work in this direction can be further divided into two smaller categories depending on
the type of network architectures which they analyze: linear networks vs. non-linear networks.
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Loss surface of linear networks. For linear neural networks, one has recently achieved a quite
complete picture of the loss surface as it has been shown that every local minimum is a global
minimum and every critical point that is not a global minimum is a saddle point. The result is first
proved by Baldi and Hornik in 1988 for a one hidden layer autoencoder-decoder Baldi and Hornik
(1988) with standard square loss and then extended to multiple layer networks by Kawaguchi (2016)
under certain conditions on the training data. Since then there have been a series of follow-up work
which try to improve this result or provide alternative (usually shorter) proofs. In particular, Lu
and Kawaguchi (2017) simplify the proof of Kawaguchi (2016) and relax certain conditions on the
training data. Hardt and Ma (2017) study deep linear networks (constant width per layer) with
residual connections and show that every local minimum of an expected square loss for which the
spectral norm of all the weight matrices is sufficiently small is a global minimum. Later, Yun et al.
(2017) revise the work of Kawaguchi (2016) and provide necessary and sufficient conditions for a
critical point to be a global minimum, which yields a simple checkable test for global optimality. The
follow-up work of Zhou and Liang (2018) characterize the analytical forms of all critical points and
global minima of deep linear networks with square loss. More recently, Laurent and v. Brecht (2018)
extend the result of Kawaguchi (2016) to arbitrary convex differentiable loss using no assumption
on the training data. Although all of these results are interesting from an optimization perspective,
especially as the problem is still known to be non-convex Kawaguchi (2016), deep linear neural
networks are not very helpful in practice as they learn just a linear classifier.

Loss surface of nonlinear networks. For one hidden layer networks, Yu and Chen (1995) show
that if the activation function is sigmoid and the number of hidden neurons is N − 1 then every local
minimum is a global minimum. However, it seems that this result is not true in general given the
recent findings of Yun et al. (2019) that bad local minima can exist for one hidden layer networks
with generic training data and sigmoid activation. Soudry and Hoffer (2018) show that for piecewise
linear activation functions, scalar output, quadratic loss, and standard normal distribution inputs,
if the number of training samples N goes to infinity then the volume of differentiable regions of
the empirical loss containing a suboptimal differentiable local minimum vanishes exponentially fast
compared to the same volume of global minima.

For deep non-linear networks, the analysis of the optimization landscape becomes much more
challenging and much less is known in the literature compared to the case of linear networks, or
one hidden layer networks. Under this setting, the property that “every local minimum is a global
minimum” does not hold anymore. In particular, Yun et al. (2019); Zhou and Liang (2018); Safran
and Shamir (2018) have shown that bad local minima can exist for moderate-sized one hidden layer
networks with many activation functions such as sigmoid, tanh and ReLU. Similar to above, merely
knowing that a bad local minimum exists does not necessarily imply that (stochastic) gradient descent
always converges to this solution, especially if the local minimum has very small basin of attraction
and due to noise/stochasticity of the algorithm. At this point, we think that a better understanding
of the loss landscape might be helpful. We review below some important prior work on the loss
surface of deep nonlinear networks, which is the main topic of this thesis.

To our knowledge, one of the first work which analyze the loss surface of nonlinear and fully connected
feedforward networks is the paper by Gori and Tesi (1992). They show that if the training data
are linearly independent, that is rank(X) = N, and the network width is non-increasing from the
first hidden layer to the output layer (i.e. n1 ≥ . . . ≥ nL), and activation functions are continuously
differentiable with non-zero derivative (e.g. sigmoid, softplus), then every critical point of the standard
square loss for which all the weight matrices (Wl)

L
l=2 have full rank is a global minimum. This is a

very neat result but relies on a strong assumption on the training data. In particular, the condition
rank(X) = N above implies that we cannot have more training samples than the input dimension
(i.e. N ≤ d), which is usually not the case in practice. In Chapter 2 we will show how to remove this
condition by assuming that the network has a sufficiently wide hidden layer. Moreover, our results
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can be applied to convolutional neural nets, which is one of the most successful architectures in deep
learning and covers the fully connected nets of Gori and Tesi (1992) as a special case.

Choromanska et al. (2015a) studies the connection between the loss function of a fully connected
feedforward neural network with ReLU activation function and the Hamiltonian of the spherical spin
glass model from theoretical physics. By randomizing the nonlinear part of the network, the authors
show that the critical values of the random loss function are located in a well-defined band lower
bounded by the global minimum, and the number of bad local minima outside that band decreases
exponentially with the size of the network. This is an inspiring result but is based on a number of
unrealistic assumptions, which the authors have left as an open problem (Choromanska et al., 2015b),
e.g. the condition that the activation outputs of all hidden neurons are independent from each other.

Safran and Shamir (2016) study fully connected networks with ReLU activation function and shows
that under certain conditions there exists a continuous descent path between a pair of points in
parameter space. In particular, let Φ : Ω→ R be the objective and θ1, θ0 ∈ Ω with Φ(θ0) > Φ(θ1) so
that there is a continuous path θ(λ), λ ∈ [0, 1] from θ0 to θ1 which satisfy the following conditions:

1. Φ(θ0) > Φ(0)

2. For some ε > 0 and any λ ∈ [0, 1], there exists cλ ≥ 0 such that Φ(cλθ(λ)) ≥ Φ(θ0) + ε

Under above conditions, the authors show that there is a continuous path from θ0 to some other
point θ2 where Φ(θ2) = Φ(θ1) and the loss Φ is strictly monotonically decreasing along the path.
They further show that if the number of hidden neurons of the last hidden layer goes to infinity
and one draws the weights θ0 of the network under a spherically symmetric distribution such as the
standard normal distribution then the probability that the first condition is satisfied can be made
close to 1/2. One limitation of this result is that for cross-entropy loss and θ1 having zero training
error, the second condition is not fulfilled, which means that the result cannot tell us whether there
is a continuous path from θ0 to a solution with arbitrarily small objective value. To see that, by
continuity of Φ there exists a sufficiently small neighborhood of θ1 such that every point in this
neighborhood also has zero training error and the objective value is smaller than θ0. Now every
continuous path from θ0 to θ1 mush go through some point θ2 in this neighborhood. Since θ2 has
zero training error, the corresponding feature representations at the last hidden layer must be linearly
separable. Since ReLU is positively homogeneous, any positive rescaling of θ2 is the same as a positive
rescaling of the output weight matrix, which thus can only lead to a decrease in the objective. That
is, Φ(cθ2) ≤ Φ(θ2) < Φ(θ0) for every c ≥ 0, which violates the second condition. In Chapter 3, by
studying sublevel sets of the loss function, we will show for large-sized networks that a continuous
descent path indeed exists for any pair of points in parameter space and thus the above two conditions,
which are technically hard to check, can be eliminated. In contrast to the probabilistic approach of
Safran and Shamir (2016), all our results are for the deterministic setting (i.e. networks of fixed size).

Haeffele and Vidal (2017) study a special kind of network architectures in which the output of the
network is given by a linear sum of the outputs of multiple parallel subnetworks which have exactly
the same architecture but independent weights. For a class of regularized objective and positively
homogeneous activation functions such as ReLU, the authors show that every local minimum of the
objective for which all the weights of some subnetwork are identically zero is a global minimum.
They further show that if the number of subnetworks is larger than Nm, with N being the number
of training samples and m the output dimension, then there is a continuous descent path from any
point in parameter space to a global minimum. This result has similar flavor to our results in this
thesis in the sense that they both require the network to be sufficiently large compared to the size of
the training set. However, as admitted by the authors in the paper, the conditions which their results
rest upon are not realistic, especially as the result does not apply to standard network architectures.
By checking their proof for the later result (see Theorem 2, Haeffele and Vidal (2017)), we found out
that the proof is flawed since it relies on the fact that there is a continuous descent path from any
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point in parameter space to a local minimum, which is not always true. Indeed, Figure 3.1 shows a
counterexample where one can easily see that there is no such path to a local minimum, not even to
a critical point, if one starts from any point far enough to the left of the negative real axis.

Liang et al. (2018) study the loss surface of fully connected networks with scalar output. Instead of
minimizing the original objective Φ : Ω→ R, they consider the following lifted function,

Φ̃(θ, w, a, b) =

N∑
i=1

l
(
− yi

(
fL(xi) + a exp(wTxi + b)

))
+ λ

a2

2
.

where l : R → R is a polynomial hinge-loss such as l(z) = max(z + 1, 0)p for some p ≥ 3. In this
new objective, the standard output of the network fL(xi) is modified by adding the exponential
term a exp(wTxi + b). By analyzing the first/second order optimality conditions, they show that
every local minimum of the new loss Φ̃ is a global minimum. While this is an interesting result,
it does not give us any insights on the landscape of the original loss function, which is the actual
one used in practice. This can be important because in some cases as shown in Figure 3.1, merely
knowing that “every local minimum is a global minimum” does not increase the chances or guarantee
that gradient descent algorithms will converge to a global minimum. To complement this result, we
study in Chapter 3 and Chapter 4 several sufficient conditions on the network architecture so that
those bad local valleys as given in Figure 3.1 simply do not exist. Moreover, we do not require any
non-standard modifications of the loss function as above.

Venturi et al. (2018) study the relationship between the intrinsic dimension of neural networks and
the presence/absence of spurious valleys. The intrinsic dimension of a one hidden layer network is
defined as the dimension of the following function space

q := dim
{
g(w, ·)

∣∣ w ∈ Rd
}

where w ∈ Rd is the incoming weight vector of a hidden neuron, and g(w, ·) : Rd → R is the function
given by g(w, x) = σ(〈w, x〉) for every x ∈ Rd. They analyze the training problem of one hidden layer
networks with a population risk (assuming D is the data distribution) and standard square loss,

min
W1,W2

E
(x,y)∼D

‖W2σ(W1x)− y‖22 .

The key idea of the paper is that for appropriate choices of σ (e.g. polynomial activations), the above
problem can be transformed into a linear one (for some mapping φ and ψ),

min
W1,W2

E
(x,y)∼D

‖W2ψ(W1)φ(x)− y‖22 .

In particular, by considering (ψ(W1),W2) as the new variables of a linear network, the authors
show that if the number of hidden neurons is greater than q then the loss has no spurious valley,
and if it is greater than 2q then every sublevel set of the loss is connected. This result has similar
flavor to our results in Chapter 3 where we study level sets and sublevel sets of the loss function.
However, their result currently only applies to one hidden layer networks with expected square loss,
and as admitted by the authors in the paper, an extension of their result, in particular the notion of
intrinsic dimension, to multiple layer networks would require the number of hidden neurons to grow
exponentially with depth. In contrast, our results in Chapter 3 are directly for the empirical risk,
multiple layer networks of linear sizes (in terms of number of training samples) and for any standard
convex loss function such as the above square loss, cross-entropy loss and Hinge-loss.

1.3 Summary of main contributions

This thesis consists of four main chapters. The content of each chapter is mainly taken from one of
our publications which we report in the next section.
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• Chapter 2: We analyze the optimization landscape of a class of deep convolutional neural
networks with standard architecture, which include fully connected networks as a special case.
By assuming that the network has a wide hidden layer with more neurons than the number of
training samples, and the activation function is real analytic, we show that the set of training
samples almost always become linearly independent in the feature space associated to the wide
hidden layer, which significantly simplifies the optimization problem. Based on this, we derive
a necessary and sufficient condition for a large subset of critical points to be globally optimal.
Notably, this result is applicable to several existing CNN architectures such as VGG networks
Simonyan and Zisserman (2015). Under a special case of the architecture where the wide layer
is followed by a fully connected layer, we show that almost every critical point is a global
minimum with zero training error, and there are uncountably many of them in parameter space.

• Chapter 3: We study sublevel sets of the loss function of a class of deep over-parameterized
networks with fully connected architecture. We prove that if one of the hidden layers of the
network has more neurons than the number of training samples, then essentially every sublevel
set has to be connected and unbounded. One important consequence of this result is that the
loss surface is well-behaved in the sense that there exists a continuous path from any point in
parameter space on which the loss is non-increasing and gets arbitrarily close to the bottom
of the loss surface. Another implication is that the loss surface has only one global valley, or
equivalently, all global minima (if exist) are connected. Our results hold for standard deep fully
connected networks with arbitrary convex losses, including the ones commonly used in deep
learning such as cross-entropy loss, square loss, and hinge-loss, and a class of piecewise linear
activation functions including Leaky-ReLU.

• Chapter 4: Gaining insights from the previous chapters, we propose in this chapter a new class
of convolutional network architectures which are more practically relevant and provably have a
well-behaved loss surface. The proposed networks can be seen as directed acyclic graphs from
the input layer up to the last hidden layer, and allow for almost arbitrary weight sharing as in
convolutional networks. In particular, we show that if a sufficient number of skip-connections
are added from a random subset of hidden neurons (possibly from multiple hidden layers) to
the output units, then the loss surface has no bad local valleys in the sense that there is a
continuous path from any point in parameter space on which the loss is non-increasing and gets
arbitrarily close to the minimal value of the loss. Our results are supported by experiments on
standard benchmark datasets.

• Chapter 5: In contrary to the previous chapters which show that having a wide hidden layer
in the architecture can help to make the loss landscape become well-behaved, in this chapter
we study limitations of neural networks in terms of expressivity if they do not have any wide
hidden layer. In particular, we show that if none of the hidden layers has more neurons than
the input layer (plus some other mild conditions), then the network can only learn connected
decision regions. This suggests that neural networks in general should be wide enough to
learn disconnected decision regions – one of the aspects of expressivity. We further study the
implication of this result on adversarial manipulation problems in deep learning.

1.3.1 Publication record

We list below all our papers (sorted by date of publication) that are publised during the work of
this thesis. The content presented in the following chapters are mainly taken from the first four
papers which contain our representative results that we have done on optimization landscape and
expressivity of neural networks. The other papers are not presented in this thesis.

1. Q. Nguyen.
On connected sublevel sets in deep learning.



1. Introduction 11

International Conference on Machine Learning (ICML), 2019. Submitted.
See Chapter 3 in this thesis.

2. Q. Nguyen, M. Mukkamala and M. Hein.
On the loss landscape of a class of deep neural networks with no bad local valleys.
International Conference on Learning Representations (ICLR), 2019.
See Chapter 4 in this thesis.

3. Q. Nguyen and M. Hein.
Optimization landscape and expressivity of deep cnns.
International Conference on Machine Learning (ICML), 2018.
See Chapter 2 in this thesis.

4. Q. Nguyen, M. Mukkamala and M. Hein.
Neural networks should be wide enough to learn disconnected decision regions.
International Conference on Machine Learning (ICML), 2018.
See Chapter 5 in this thesis.

5. Q. Nguyen and M. Hein.
The loss surface of deep and wide neural networks.
International Conference on Machine Learning (ICML), 2017.

6. A. Gautier, Q. Nguyen and M. Hein.
Globally optimal training of generalized polynomial neural networks with nonlinear spectral
methods.
Neural Information Processing Systems (NIPS) 2016.

7. Q. Nguyen, F. Tudisco, A. Gautier and M. Hein.
An efficient multilinear optimization framework for hypergraph matching.
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2017.

8. Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein and B. Schiele.
Latent embeddings for zero-shot classification.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.



Chapter 2

Loss surface of fully connected and
convolutional neural networks

2.1 Introduction

In this chapter, we analyze the optimization landscape of deep convolutional neural networks (CNNs),
which cover fully connected networks described in Section 1.1 as a special case. All the main results
in this chapter have been published at Nguyen and Hein (2018). To the best of our knowledge, this is
one of the first work that theoretically analyzes the loss landscape of deep CNNs. CNNs are of high
practical interest as they learn very useful representations with small number of parameters (Zeiler
and Fergus, 2014; Mahendran and Vedaldi, 2015; Yosinski et al., 2015). Previously, we are only aware
of Cohen and Shashua (2016) who study the expressiveness of CNNs with max-pooling layer and
ReLU activation but with rather unrealistic filters (just 1× 1) and no shared weights. In our setting
we allow as well max pooling and general activation functions. Moreover, we can have an arbitrary
number of filters and we study general convolutions as the filters need not be applied to regular
structures like 3× 3 but can be patch-based where the only condition is that all the patches have the
size of the filter. Convolutional layers, fully connected layers and max-pooling layers can be combined
in almost arbitrary order. Moreover, we study in this chapter the loss landscape and expressivity
of a deep CNN where one layer is wide, in the sense that it has more neurons than the number of
training points. While this assumption sounds at first quite strong, we want to emphasize that the
popular VGG (Simonyan and Zisserman, 2015) and Inception networks (Szegedy et al., 2015b, 2016),
see Table 2.1, fulfill this condition. We show that wide CNNs produce linearly independent feature
representations at the wide layer and thus are able to fit the training data exactly (universal finite
sample expressivity). This is even true with probability one when all the parameters up to the wide
layer are chosen randomly1. We think that this partially explains the recent findings of Zhang et al.
(2017) where they empirically show for several existing CNNs that they are able to fit random labels.
Moreover, we provide necessary and sufficient conditions for global minima with zero training loss
and show for a particular class of CNNs that almost all critical points are globally optimal, which to
some extent explains why wide CNNs can be optimized so efficiently.

1for any probability measure on the parameter space which has a density with respect to the Lebesgue measure
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Table 2.1: The maximum width of all hidden layers in several state-of-the-art CNN architectures
compared to the size of ImageNet (N ≈ 1200K) which represents by far one of the largest datasets
in deep learning. All numbers are lower bounds on the true widths. Notations: nk = width of layer
k, e.g. if the output of a convolutional layer has size H ×W × C then nk = HWC.

CNN Architecture M = maxk nk M > N

VGG(A-E) (Simonyan and Zisserman, 2015) 3000K(k = 1) yes
InceptionV3 (Szegedy et al., 2015b) 1300K(k = 3) yes
InceptionV4 (Szegedy et al., 2016) 1300K(k = 3) yes
SqueezeNet (Iandola et al., 2016) 1180K(k = 1) no
Enet (Paszke et al., 2016) 1000K(k = 1) no
GoogLeNet (Szegedy et al., 2015a) 800K(k = 1) no
ResNet (He et al., 2016) 800K(k = 1) no
Xception (Chollet, 2016) 700K(k = 1) no

2.2 Basic mathematical concepts

We start by reviewing some mathematical concepts from real analysis which are essential to the
derivation of our results in this chapter. First is the concept of real analytic activation functions
which will be used with our CNNs.

2.2.1 Real analytic function

Definition 2.2.1 A real-valued function f : Rn → R is called analytic if for every x ∈ Rn the
function f can be represented by a convergent power series in some neighborhood of x.

It is well-known that all the elementary functions such as polynomials, exponential functions,
trigonometric functions, logarithm and power functions are all real analytic. We refer to Krantz
and Parks (2002) for a detailed treatment on this specific class of functions. Typical examples of
activation functions that are real analytic in deep learning include:

1. sigmoid: σ(x) = 1
1+e−x .

2. softplus: σ(x) = 1
α ln(1 + eαx) for some α > 0.

3. tanh: σ(x) = ex−e−x
ex+e−x .

The following standard property of real analytic functions, see e.g. Mityagin (2015); Nguyen (2015),
is particularly helpful for proving our key results (e.g. Theorem 2.4.5).

Lemma 2.2.2 If f : Rn → R is a real analytic function which is not identically zero then the set
{x ∈ Rn | f(x) = 0} has Lebesgue measure zero.

Essentially Lemma 2.2.2 implies that if a real analytic function is constant on any open subset of the
domain then it must be constant on the whole domain.

2.3 Convolutional neural networks

As briefly introduced at the end of Section 1.1, a CNN can be easily obtained from the standard
formulation of feedforward neural networks by enforcing the weight matrices to have a specific sparsity
structure and shared coefficients. However, CNNs employed in practice are often slightly more general
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than that as they might contain pooling layers. To capture this feature, we find it helpful to discuss
CNNs in this chapter using a more refined notation than in Section 1.1, which we briefly introduce
in the following.

Let N be the number of training samples and denote by X = [x1, . . . , xN ]T ∈ RN×d, Y =

[y1, . . . , yN ]T ∈ RN×m the input resp. output matrix for the training data (xi, yi)
N
i=1, where d

is the input dimension and m the output dimension.

Let L be the number of layers of the network, where each layer can be a convolutional layer, max-
pooling layer or fully connected layer. The layers are indexed from k = 0, 1, . . . , L which corresponds
to the input layer, 1st hidden layer, . . ., and the output layer. Let nk be the width of layer k with
the convention that n0 = d and nL = m. Let fk : Rd → Rnk the function that maps every input to a
feature vector at layer k.

Each convolutional layer consists of a number of patches of equal size, where every patch is a subset of
neurons from the same layer. By convention, we assume that all the patches of a convolutional layer
form a cover of the layer, that is, every neuron belongs to at least one of the patches, and that there
exist no pair of patches that contain exactly the same subset of neurons. This implies that if there is
one patch that covers the whole layer then it must be the only patch of the layer. Let Pk and lk be the
number of patches resp. the size of each patch at layer k for every 0 ≤ k < L. For every input x ∈ Rd,
let
{
x1, . . . , xP0

}
∈ Rl0 denote the set of patches at the input layer and

{
f1
k (x), . . . , fPkk (x)

}
∈ Rlk

the set of patches at layer k. Each filter of the layer consists of the same set of patches. We denote
by Tk the number of convolutional filters and by Wk = [w1

k, . . . , w
Tk
k ] ∈ Rlk−1×Tk the corresponding

parameter matrix of the convolutional layer k for every 1 ≤ k < L. Each column of Wk corresponds
to one filter. Furthermore, bk ∈ Rnk denotes the bias vector of layer k and σ : R→ R the activation
function. Note that one can use the same activation function for all layers but we use the general
form to highlight the role of different layers. In this chapter, all functions are applied componentwise,
and we denote by [a] the set of integers {1, 2, . . . , a} and by [a, b] the set of integers from a to b.

Figure 2.1: An example CNN architecture with layer widths d = n0 = 784, n1 = 67600, n2 =

16900, n3 = 2880, n4 = 720, n5 = 100, n6 = m = 10. This network has pyramidal structure from layer
2 till the output layer, that is, n2 ≥ . . . ≥ n6.

Definition 2.3.1 (Convolutional layer) A layer k is called a convolutional layer if its output
fk(x) ∈ Rnk is defined for every x ∈ Rd as

fk(x)h = σ
( 〈
wtk, f

p
k−1(x)

〉
+ (bk)h

)
(2.1)

for every p ∈ [Pk−1], t ∈ [Tk], h := (p− 1)Tk + t.

The value of each neuron at layer k is computed by first taking the inner product between a filter
of layer k and a patch at layer k − 1, adding the bias and then applying the activation function.
The number of neurons at layer k is thus nk = TkPk−1, which we denote as the width of layer k.
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Our definition of a convolutional layer is quite general as every patch can be an arbitrary subset of
neurons of the same layer and thus covers most of existing variants in practice.

Definition 2.3.1 includes the fully connected layer as a special case by using Pk−1 = 1, lk−1 =

nk−1, f
1
k−1(x) = fk−1(x) ∈ Rnk−1 , Tk = nk,Wk ∈ Rnk−1×nk , bk ∈ Rnk . Thus we have only one patch

which is the whole feature vector at this layer.

Definition 2.3.2 (Fully connected layer) A layer k is called a fully connected layer if its output
fk(x) ∈ Rnk is defined for every x ∈ Rd as

fk(x) = σ
(
WT
k fk−1(x) + bk

)
. (2.2)

For some results in this chapter we also allow the network to have max-pooling layers.

Definition 2.3.3 (Max-pooling layer) A layer k is called a max-pooling layer if its output fk(x) ∈
Rnk is defined for every x ∈ Rd and p ∈ [Pk−1] as

fk(x)p = max
(

(fpk−1(x))
1
, . . . , (fpk−1(x))

lk−1

)
. (2.3)

A max-pooling layer just computes the maximum element of every patch from the previous layer.
Since there are Pk−1 patches at layer k − 1, the number of output neurons at layer k is nk = Pk−1.

Reformulation of Convolutional Layers: For each convolutional or fully connected layer, we
denote by Mk : Rlk−1×Tk → Rnk−1×nk the linear map that returns for every parameter matrix
Wk ∈ Rlk−1×Tk the corresponding full weight matrix Uk =Mk(Wk) ∈ Rnk−1×nk . For convolutional
layers, one can see that Uk plays the same role as the weight matrix Wk defined in Section 1.1. If
layer k is fully connected then these two matrices are the same, and thus in this case we define
Uk =Mk(Wk) = Wk. Note that the mappingMk depends on the patch structure of each convolutional

layer k. For example, suppose that layer k has two filters of length 3, that is,Wk = [w1
k, w

2
k] =

a d

b e

c f

,
and nk−1 = 5 and patches given by a 1D-convolution with stride 1 and no padding then:

UTk =Mk(Wk)T =



a b c 0 0

d e f 0 0

0 a b c 0

0 d e f 0

0 0 a b c

0 0 d e f


.

The above ordering of the rows of UTk of a convolutional layer is determined by (2.1), in particular,
the row index h of UTk is calculated as h = (p− 1)Tk + t, which means for every given patch p one has
to loop over all the filters t and compute the corresponding value of the output unit by taking the
inner product of the h-th row of UTk with the whole feature vector of the previous layer. By ignoring
max-pooling layers for the moment, the function fk : Rd → Rnk from above can be written as

fk(x) =


x k = 0

σ
(
gk(x)

)
1 ≤ k ≤ L− 1

gL(x) k = L

where gk : Rd → Rnk is the pre-activation output given as

gk(x) = UTk fk−1(x) + bk, ∀1 ≤ k ≤ L
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By stacking the outputs of layer k for all the training samples into a matrix, we have:

Fk = [fk(x1), . . . , fk(xN )]T ∈ RN×nk ,
Gk = [gk(x1), . . . , gk(xN )]T ∈ RN×nk .

It follows from above that

Fk =


X k = 0

σ(Gk) 1 ≤ k ≤ L− 1

GL k = L

, where Gk = Fk−1Uk + 1Nb
T
k , ∀ k ∈ [1, L]. (2.4)

In the following, we refer to Fk as the output matrix at layer k.

2.3.1 Universal Assumptions

Throughout this chapter we assume that all the convolutional layers satisfy the following condition.

Assumption 2.3.4 (Convolutional Structure) For every convolutional layer k, there exists a
set of convolutional filters, represented by the matrix Wk ∈ Rlk−1×Tk , for which the corresponding
weight matrix Uk =Mk(Wk) ∈ Rnk−1×nk has full rank.

Note that this condition is satisfied if every neuron belongs to at least one patch and there are no
identical patches, which is often the case in practice. As the set of full rank matrices is dense in the
space of all possible matrices, the following result follows immediately.

Lemma 2.3.5 Let Assumption 2.3.4 holds. Then for every convolutional layer k, the set of Wk ∈
Rlk−1×Tk for which Uk =Mk(Wk) ∈ Rnk−1×nk does not have full rank has Lebesgue measure zero.

Proof: Since Uk = Mk(Wk) ∈ Rnk−1×nk and Mk is a linear map, every entry of Uk is a linear
function of the entries of Wk. Let m = min(nk−1, nk), then the set of low rank matrices Uk is charac-
terized by a system of equations where the

(
max(nk−1,nk)

m

)
determinants of all m×m sub-matrices of

Uk are zero. As the determinant is a polynomial in the entries of the matrix and thus a real analytic
function, and the composition of analytic functions is again analytic, we get that each determinant is
a real analytic function of Wk. By Assumption 2.3.4, there exists at least one Wk such that one of
these determinants is non-zero. Thus by Lemma 2.2.2, the set of Wk where this determinant is zero
has Lebesgue measure zero. As all the submatrices need to have low rank in order that Uk has low
rank, we get that the set of Wk where Uk has low rank has Lebesgue measure zero. �

2.4 Main results

The organization of this section is as follows. In Section 2.4.1 we show that if CNNs have a sufficiently
wide hidden layer then the set of training samples almost always become linearly independent in the
feature space associated to this layer. We then discuss an implication of this result on capabilities of
CNNs in memorizing all the training data, which is known as finite sample expressivity. In Section
2.4.2, we apply the above result to derive necessary and sufficient conditions for the global optimality
of a large subset of critical points of the loss function. We further show that if the wide hidden layer
is followed by a fully connected layer then all of these critical points are globally optimal.
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2.4.1 CNNs learn linearly independent features

This sections shows that a class of standard CNN architectures with convolutional layers, fully
connected layers and max-pooling layers plus standard activation functions like ReLU, sigmoid,
softplus, etc are able to learn linearly independent features at every wide hidden layer if it has more
neurons than the number of training samples. Our assumption on training data is the following.

Assumption 2.4.1 (Training data) The patches of different training samples are non-identical,
that is, xpi 6= xqj for every p, q ∈ [P0], i, j ∈ [N ], i 6= j.

Assumption 2.4.1 is quite weak, especially if the size of the input patches is large. If the assumption
does not hold, one can add a small perturbation to the training samples: {x1 + ε1, . . . , xN + εN} . The
set of {εi}Ni=1 where Assumption 2.4.1 is not fulfilled for the new dataset has measure zero. Moreover,
{εi}Ni=1 can be chosen arbitrarily small so that the influence of the perturbation is negligible. Our
main assumptions on the activation function of the hidden layers are the following.

Assumption 2.4.2 (Activation function) The activation function σ is continuous, non-constant,
and satisfies one of the following conditions:

• There exist µ+, µ− ∈ R s.t. lim
t→−∞

σ(t) = µ− and lim
t→∞

σ(t) = µ+ and µ+µ− = 0

• There exist ρ1, ρ2, ρ3, ρ4 ∈ R+ s.t. |σ(t)| ≤ ρ1e
ρ2t for t < 0 and |σ(t)| ≤ ρ3t+ ρ4 for t ≥ 0

Assumption 2.4.2 covers several standard activation functions, as shown by the following lemma.

Lemma 2.4.3 The following activation functions satisfy Assumption 2.4.2:

• ReLU: σ(t) = max(0, t)

• Sigmoid: σ(t) = 1
1+e−t

• Softplus: σα(t) = 1
α ln(1 + eαt) for some α > 0

We note that the softplus function is a smooth approximation of ReLU, in particular:

lim
α→∞

σα(t) = lim
α→∞

1

α
ln(1 + eαt) = max(0, t). (2.5)

One of the key results of this chapter is the following.

Theorem 2.4.4 (Linearly Independent Features) Let Assumption 2.4.1 hold for the training
sample. Consider a deep CNN architecture for which there exists some layer 1 ≤ k ≤ L− 1 such that

1. Layer 1 and layer k are convolutional or fully connected while all the other layers can be
convolutional, fully connected or max-pooling

2. The width of layer k is larger than the number of training samples, nk = TkPk−1 ≥ N

3. σ satisfy Assumption 2.4.2

Then there exists a set of parameters of the first k layers (Wl, bl)
k
l=1 such that the set of feature

vectors {fk(x1), . . . , fk(xN )} are linearly independent. Moreover, (Wl, bl)
k
l=1 can be chosen in such a

way that all the weight matrices Ul =Ml(Wl) have full rank for every 1 ≤ l ≤ k.
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Theorem 2.4.4 implies that a large class of CNNs employed in practice with standard activation
functions like ReLU, sigmoid or softplus can produce linearly independent features at any hidden
layer if its width is larger than the size of training set. Figure 2.1 shows an example of a CNN
architecture that satisfies the conditions of Theorem 2.4.4 at the first convolutional layer. Note that
if a set of vectors is linearly independent then they are also linearly separable. In this sense, Theorem
2.4.4 suggests that CNNs can produce linearly separable features at every wide hidden layer.

Linear separability in neural networks has been recently studied by An et al. (2015), where the
authors show that a two-hidden-layer fully connected network with ReLU activation function can
transform any training set to be linearly separable while approximately preserving the distances of
the training data at the output layer. Compared to An et al. (2015) our Theorem 2.4.4 is derived for
CNNs with a wider range of activation functions. Moreover, our result shows even linear independence
of features which is stronger than linear separability.

We want to stress that, in contrast to fully connected networks, for CNNs the condition nk ≥ N of
Theorem 2.4.4 does not imply that the network has a huge number of parameters as the layers k and
k+1 can be chosen to be convolutional. In particular, the condition nk = TkPk−1 ≥ N can be fulfilled
by increasing the number of filters Tk or by using a large number of patches Pk−1 (however Pk−1 is
upper bounded by nk), which is however only possible if lk−1 is small as otherwise our condition
on the patches cannot be fulfilled. In total the CNN has only lk−1Tk + lkTk+1 parameters versus
nk(nk−1 + nk+1) for the fully connected network from and to layer k. Interestingly, the VGG-Net
(Simonyan and Zisserman, 2015), where in the first layer small 3× 3 filters and stride 1 is used, fulfills
for ImageNet the condition nk ≥ N for k = 1, as well as the Inception networks (Szegedy et al.,
2015b, 2016), see Table 2.1.

One might ask now how difficult it is to find such parameters which generate linearly independent
features at a hidden layer? Our next result shows that once analytic activation function such
as sigmoid and softplus are used, the linear independence of features at layer k would hold with
probability one even if one draws the parameters of the first k layers (Wl, bl)

k totally randomly 2.

Theorem 2.4.5 Let Assumption 2.4.1 hold for the training samples. Consider a deep CNN for
which there exists some layer 1 ≤ k ≤ L− 1 such that

1. Every layer from 1 to k is convolutional or fully connected

2. The width of layer k is larger than number of training samples, that is, nk = TkPk−1 ≥ N

3. σ is real analytic and satisfies Assumption 2.4.2.

Then the set of parameters of the first k layers (Wl, bl)
k
l=1 for which the set of feature vectors

{fk(x1), . . . , fk(xN )} are not linearly independent has Lebesgue measure zero.

Proof: Any linear function is real analytic and the set of real analytic functions is closed under
addition, multiplication and composition, see e.g. Prop. 2.2.2 and Prop. 2.2.8 in Krantz and Parks
(2002). As we assume that the activation function is real analytic, we get that the function fk is
a real analytic function of (Wl, bl)

k
l=1 as it is the composition of real analytic functions. Now, we

recall from our definition that Fk = [fk(x1), . . . , fk(xN )]T ∈ RN×nk is the output matrix at layer k
for all training samples. One observes that the set of low rank matrices Fk can be characterized by a
system of equations such that all the

(
nk
N

)
determinants of all N ×N sub-matrices of Fk are zero. As

the determinant is a polynomial in the entries of the matrix and thus an analytic function of the
entries and composition of analytic functions are again analytic, we conclude that each determinant
is an analytic function of the network parameters of the first k layers. By Theorem 2.4.4, there exists
at least one set of parameters of the first k layers such that one of these determinant functions is not

2for any probability measure on the parameter space which has a density with respect to the Lebesgue measure.
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Table 2.2: The smallest singular value of the output matrix F1 and F3 at the first and second
convolutional layer respectively of the trained network given in Figure 2.1 with varying number of
convolutional filters T1 and number of training samples N = 60000. The rank of a matrix A ∈ Rm×n

is estimated (see Chapter 2.6.1 in Press (2007)) by computing the singular value decomposition of
A and counting the singular values which exceed the threshold 1

2

√
m+ n+ 1σmax(A)ε, where ε is

machine precision. For all filter sizes the output matrix F1 has full rank. Zero training error is
attained for T1 ≥ 30.

T1 size(F1) rank(F1) σmin(F1) size(F3) rank(F3) σmin(F3)

Loss
(×10−5)

Train
error

Test
error

10 N × 6760 6760 3.7× 10−6 N × 2880 2880 2.0× 10−2 2.4 8 151
20 N × 13520 13520 2.2× 10−6 N × 2880 2880 7.0× 10−4 1.2 1 132
30 N × 20280 20280 1.5× 10−6 N × 2880 2880 2.4× 10−4 0.24 0 174
40 N × 27040 27040 2.0× 10−6 N × 2880 2880 2.2× 10−3 0.62 0 124
50 N × 33800 33800 1.3× 10−6 N × 2880 2880 3.9× 10−5 0.02 0 143
60 N × 40560 40560 1.1× 10−6 N × 2880 2880 4.0× 10−5 0.57 0 141
70 N × 47320 47320 7.5× 10−7 N × 2880 2880 7.1× 10−3 0.12 0 120
80 N × 54080 54080 5.4× 10−7 N × 2880 2875 4.9× 10−18 0.11 0 140
89 N × 60164 60000 2.0× 10−8 N × 2880 2880 8.9× 10−10 0.35 0 117
100 N × 67600 60000 1.1× 10−6 N × 2880 2856 8.5× 10−27 0.04 0 139

identically zero and thus by Lemma 2.2.2, the set of network parameters where this determinant
is zero has Lebesgue measure zero. But as all submatrices need to have low rank in order that
rank(Fk) < N , it follows that the set of parameters where rank(Fk) < N has Lebesgue measure zero. �

Theorem 2.4.5 is a much stronger statement than Theorem 2.4.4, as it shows that for almost all
weight configurations one gets linearly independent features at the wide layer. While Theorem 2.4.5
does not hold for the ReLU activation function as it is not an analytic function, we note again that
one can approximate the ReLU function arbitrarily well using the softplus function (see 2.5), which
is analytic function for any α > 0 and thus Theorem 2.4.5 applies. It is an open question if the result
holds also for the ReLU activation function itself. The condition nk ≥ N is not very restrictive as
several state-of-the art CNNs , see Table 2.1, fulfill the condition. Furthermore, we would like to
stress that Theorem 2.4.5 is not true for deep linear networks. The reason is simply that the rank of
a product of matrices can at most be the minimal rank among all the matrices. The nonlinearity of
the activation function is thus critical (note that the identity activation function, σ(x) = x, does not
fulfill Assumption 2.4.2).

To illustrate Theorem 2.4.5 we plot the rank of the feature matrices of the network in Figure 2.1. We
use the MNIST dataset with N = 60000 training and 10000 test samples. We add small Gaussian
noise N (0, 10−5) to every training sample so that Assumption 2.4.1 is fulfilled. We then vary the
number of convolutional filters T1 of the first layer from 10 to 100 and train the corresponding
network with squared loss and sigmoid activation function using Adam (Kingma and Ba, 2015) and
decaying learning rate for 2000 epochs. In Table 2.2 we show the smallest singular value of the
feature matrices together with the corresponding training loss, training and test error. If number of
convolutional filters is large enough (i.e. T1 ≥ 89), one has n1 = 26× 26× T1 ≥ N = 60000, and the
second condition of Theorem 2.4.5 is satisfied for k = 1. Table 2.2 shows that the feature matrices
F1 have full rank in all cases (and F3 in almost all cases), in particular for T1 ≥ 89 as shown in
Theorem 2.4.5. As expected when the feature maps of the training samples are linearly independent
after the first layer (F1 has rank 60000 for T ≥ 89) the training error is zero and the training loss is
close to zero (the GPU uses single precision). However, as linear independence is stronger than linear
separability one can achieve already for T < 89 zero training error. It is interesting to note that
Theorem 2.4.5 explains previous empirical observations. In particular, Czarnecki et al. (2017) have
shown empirically that linear separability is often obtained already in the first few hidden layers of
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the trained networks. This is done by attaching a linear classifier probe (Alain and Bengio, 2016)
to every hidden layer in the network after training the whole network with backpropagation. The
fact that Theorem 2.4.5 holds even if the parameters of the bottom layers up to the wide layer k are
chosen randomly is also in line with recent empirical observations for CNN architectures that one
has little loss in performance if the weights of the initial layers are chosen randomly without training
(Jarrett et al., 2009; Saxe et al., 2011; Yosinski et al., 2014).

As a corollary of Theorem 2.4.4 we get the following universal finite sample expressivity for CNNs.
In particular, a deep CNN with scalar output can perfectly fit any scalar-valued function for a finite
number of inputs if the width of the last hidden layer is larger than the number of training samples.

Corollary 2.4.6 (Universal Finite Sample Expressivity) Let Assumption 2.4.1 hold for the
training samples. Consider a standard CNN with scalar output which satisfies the conditions of
Theorem 2.4.4 at the last hidden layer k = L− 1. Let fL : Rd → R be the network output given as

fL(x) =

nL−1∑
j=1

λjf(L−1)j(x) ∀x ∈ Rd

where λ ∈ RnL−1 is the weight vector of the last layer. Then for every target y ∈ RN , there exists{
λ, (Wl, bl)

L−1
l=1

}
so that it holds fL(xi) = yi for every i ∈ [N ].

Proof: Since the network satisfies the conditions of Theorem 2.4.4 for k = L− 1, there exists a set
of parameters (Wl, bl)

L−1
l=1 such that rank(FL−1) = N. Let FL = [fL(x1), . . . , fL(xN )]T ∈ RN then it

follows that FL = FL−1λ. Pick λ = FTL−1(FL−1F
T
L−1)−1y then it holds FL = FL−1λ = y. �

The work of Cohen and Shashua (2016) is one the first ones which studies expressivity of CNNs. They
show that CNNs with max-pooling and ReLU activation function can approximate any continuous
function if the size of the network is unlimited. However, the number of convolutional filters in
this result has to grow exponentially with the number of patches and they do not allow shared
weights in their result, which is a standard feature of CNNs. In contrast, what is shown by Corollary
2.4.6 is not about capabilities of CNNs in approximating continuous functions, but the ability to
fit a training dataset of fixed (and finite) size. This property is referred to as the universal finite
sample expressivity of neural networks. In this sense, the above corollary implies that even a single
convolutional layer network (i.e. L = 2, k = 1) can already fit the training data perfectly as long as
the total number of neurons of the convolutional layer is at least the number of training samples.

For fully connected networks, universal finite sample expressivity has been studied by Zhang et al.
(2017); Nguyen and Hein (2017), where they show a similar result for one hidden layer networks.
While the number of training parameters of a (scalar-output) one hidden layer CNN with N hidden
neurons is just 2N + T1l0, where T1 is the number of convolutional filters and l0 is the size of each
filter, it is Nd + 2N for a one hidden layer fully connected network with the same width. Now if
we set the width of the CNN as n1 = T1P0 = N in order to fulfill the condition of Corollary 2.4.6,
then the number of training parameters of the CNN becomes 2N +Nl0/P0, which is less than 3N if
l0 ≤ P0 compared to (d+ 2)N for the fully connected case. In practice one almost always has l0 ≤ P0

as l0 is typically a small integer and P0 is on the order of the dimension of the input. Therefore, the
number of training parameters to achieve universal finite sample expressivity for CNNs is significantly
smaller than for fully connected networks.

Of course, in practice it is more important that the network generalizes well to the new unseen
data rather than just being able to fit the training data. By incorporating shared weights and
sparsity structure, CNNs seem to implicitly regularize the model to achieve good performance. Thus
although they can fit random labels or noise (Zhang et al., 2017) due to the universal finite sample
expressivity as shown in Corollary 2.4.6, they seem still to be able to generalize well (Zhang et al.,
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2017). Understanding generalization performance of optimization algorithms in deep learning is an
important and active area, which is however beyond the scope of this thesis.

Now, we know that CNNs are expressive and can fit any finite dataset with enough number of neurons,
why do we need to study the optimization landscape of CNNs? As briefly mentioned in Section 1.2,
merely knowing that the network is able to fit the training data or that a global minimum with zero
training error exists does not imply that the commonly used algorithms such as (stochastic) gradient
descent necessarily converges to an optimal solution. Motivated by this view, we study in the next
section global optimality conditions for the critical points of the loss.

2.4.2 Global optimality of critical points

In this section, we restrict our analysis to the use of least squares loss. However, as we show later
that the network can produce exactly the target output (i.e. FL = Y ) for some choice of parameters,
all our results can also be extended to any other loss function where the global minimum is attained
at FL = Y , such as the standard Hinge loss specified in Section 1.1. Let Ω denote the space of all
network parameters. The final training objective Φ : Ω→ R is defined as

Φ
(

(Wl, bl)
L
l=1

)
=

1

2
‖FL − Y ‖2F (2.6)

where FL is defined as in (2.4), which is also the same as

FL = σ(. . . σ(XU1 + 1Nb
T
1 ) . . .)UL + 1Nb

T
L,

where Ul =Ml(Wl) for every 1 ≤ l ≤ L. We require the following assumptions on the CNN.

Assumption 2.4.7 (CNN Architecture) Every layer in the network is a convolutional layer or
fully connected layer and the output layer is fully connected. Moreover, there exists some hidden
layer 1 ≤ k ≤ L− 1 such that the following holds:

• The width of layer k is larger than number of training samples, that is, nk = TkPk−1 ≥ N

• σ satisfies Assumption 2.4.2. Moreover, σ is strictly monotonic and differentiable

• The network has pyramidal structure starting from layer k + 1, that is, nk+1 ≥ . . . ≥ nL

A typical example of a CNN that satisfies Assumption 2.4.7 with k = 1 can be found in Figure 2.1
where one disregards max-pooling layers and uses e.g. sigmoid or softplus activation function.

In the following, let us define for every 1 ≤ k ≤ L− 1 the subset Sk ⊆ Ω,

Sk =
{

(Wl, bl)
L
l=1

∣∣ Fk, Uk+2, . . . , ULhave full rank
}
.

Basically Sk is the set of all network parameters where the feature matrix at layer k and all the
weight matrices from layer k + 2 till the output layer have full rank. In the following, we examine
global optimality conditions for the critical points inside Sk. The next lemma shows that Sk covers
almost the whole parameter space under an additional mild condition on the activation function.

Lemma 2.4.8 Let Assumption 2.4.1 hold for the training samples and a deep CNN satisfy Assump-
tion 2.4.7 for some layer 1 ≤ k ≤ L− 1. If σ is real analytic, then the complementary set Ω \ Sk has
Lebesgue measure zero.

Proof: One can see that

Ω \ Sk ⊆
{

(Wl, bl)
L
l=1

∣∣ rank(Fk) < N
}
∪
{

(Wl, bl)
L
l=1

∣∣ Ul has low rank for some layer l
}
.
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By Theorem 2.4.5, it holds that the set
{

(Wl, bl)
L
l=1

∣∣ rank(Fk) < N
}
has Lebesgue measure zero.

Moreover, it follows from Lemma 2.3.5 that the set
{

(Wl, bl)
L
l=1

∣∣ Ul has low rank for some layer l
}

also has measure zero. Thus, Ω \ Sk has Lebesgue measure zero. �

In the next key lemma, we bound the objective function in terms of its gradient magnitude w.r.t. the
weight matrix of layer k for which nk ≥ N. For every matrix A ∈ Rm×n, let σmin(A) and σmax(A)

denote the smallest and largest singular value of A. Let ‖A‖F =
√∑

i,j A
2
ij , ‖A‖min := min

i,j
|Aij |

and ‖A‖max := max
i,j
|Aij |. From (2.4), and (2.6), it follows that Φ can be seen as a function of

(Ul, bl)
L
l=1, and thus we can use ∇UkΦ. If layer k is fully connected then Uk =Mk(Wk) = Wk and

thus ∇UkΦ = ∇Wk
Φ. Otherwise, if layer k is convolutional then we note that ∇UkΦ is “not” the true

gradient of the training objective because Uk is not the true optimization parameter but Wk. In this
case, the true gradient of Φ w.r.t. to the true parameter matrix Wk which consists of convolutional
filters can be computed via the chain rule as

∂Φ

∂(Wk)rs
=
∑
i,j

∂Φ

∂(Uk)ij

∂(Uk)ij
∂(Wk)rs

Please note that even though we write the partial derivatives with respect to the matrix elements,
∇Wk

Φ resp. ∇UkΦ are the matrices of the same dimension as Wk resp. Uk in the following.

Lemma 2.4.9 Let a deep CNN satisfy Assumption 2.4.7 for some hidden layer 1 ≤ k ≤ L− 1. Then
the following inequalities hold:

∥∥∇Uk+1
Φ
∥∥
F
≥ σmin(Fk)

( L−1∏
l=k+1

σmin(Ul+1) ‖σ′(Gl)‖min

)
‖FL − Y ‖F ,

∥∥∇Uk+1
Φ
∥∥
F
≤ σmax(Fk)

( L−1∏
l=k+1

σmax(Ul+1) ‖σ′(Gl)‖max

)
‖FL − Y ‖F .

Our next main result is motivated by the fact that empirically when training over-parameterized
neural networks with shared weights and sparsity structure like CNNs, there seem to be no problems
with sub-optimal local minima. In many cases, even when training labels are completely random,
local search algorithms like stochastic gradient descent can converge to a solution with almost zero
training error (Zhang et al., 2017). To understand better this phenomenon, we first characterize in
the following Theorem 2.4.10 the set of points in parameter space with zero loss, and then analyze in
Theorem 2.4.11 the loss surface for a special case of the network. We emphasize that our results hold
for standard deep CNNs with convolutional layers with shared weights and fully connected layers.

Theorem 2.4.10 (Conditions for Zero Training Error) Let Assumption 2.4.1 hold for the train-
ing sample and suppose that the CNN architecture satisfies Assumption 2.4.7 for some hidden layer
1 ≤ k ≤ L− 1. Let Φ : Ω→ R be defined as in (2.6). Given any point (Wl, bl)

L
l=1 ∈ Sk. Then it holds

that Φ
(

(Wl, bl)
L
l=1

)
= 0 if and only if ∇Uk+1

Φ
∣∣∣
(Wl,bl)Ll=1

= 0.

Proof: If Φ
(

(Wl, bl)
L
l=1

)
= 0 then it follows from the upper bound of Lemma 2.4.9 that ∇Uk+1

Φ = 0.

For reverse direction, one has (Wl, bl)
L
l=1 ∈ Sk and thus rank(Fk) = N and Ul has full rank for every

l ∈ [k + 2, L]. Thus it holds σmin(Fk) > 0 and σmin(Ul) > 0 for every l ∈ [k + 2, L]. Moreover, σ has
non-zero derivative by Assumption 2.4.7 and thus ‖σ′(Gl)‖min > 0 for every l ∈ [k + 1, L− 1]. This
combined with the lower bound in Lemma 2.4.9 leads to Φ

(
Wl, bl)

L
l=1

)
= ‖FL − Y ‖F = 0. �

Lemma 2.4.8 shows that the set of points which are not covered by Theorem 2.4.10 has measure zero
if the activation function is real analytic. The necessary and sufficient condition of Theorem 2.4.10 is
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rather intuitive as it requires the gradient of the training objective to vanish w.r.t. the full weight
matrix of layer k + 1 regardless of the architecture of this layer. It turns out that if layer k + 1 is
fully connected, then this condition is always satisfied at a critical point, in which case we obtain
that every critical point in Sk is a global minimum with exact zero training error. This is shown in
the next Theorem 2.4.11, where we consider a standard classification task with m classes, Z ∈ Rm×m

denotes the full rank class encoding matrix e.g. the identity matrix and (X,Y ) the training data
such that Yi: = Zj: whenever the training sample xi belongs to class j for every i ∈ [N ], j ∈ [m].

Theorem 2.4.11 (Loss Surface of CNNs) Let (X,Y, Z) be a training set for which Assumption
2.4.1 holds, the CNN architecture satisfies Assumption 2.4.7 for some hidden layer 1 ≤ k ≤ L− 1,
and layer k + 1 is fully connected. Let Φ : Ω→ R be defined as in (2.6). Then the following holds

• Every critical point (Wl, bl)
L
l=1 ∈ Sk is a global minimum with Φ

(
(Wl, bl)

L
l=1

)
= 0

• There exist infinitely many global minima (Wl, bl)
L
l=1 ∈ Sk with Φ

(
(Wl, bl)

L
l=1

)
= 0

Proof:

1. Consider a critical point in Sk. By first order optimality condition, we have ∇Wk+1
Φ = 0.

Since layer k + 1 is fully connected, it follows that Wk+1 = Uk+1 and thus ∇Uk+1
Φ = 0. This

combined with Theorem 2.4.10 yields the result.

2. One basically needs to show that there exist (Wl, bl)
L
l=1 such that it holds: Φ

(
(Wl, bl)

L
l=1

)
=

0, rank(Fk) = N and Ul =Ml(Wl) has full rank ∀l ∈ [k+2, L] Note that the last two conditions
are fulfilled by the fact that (Wl, bl)

L
l=1 ∈ Sk.

By Assumption 2.4.7, the subnetwork consisting of the first k layers satisfies the condition of
Theorem 2.4.4. Thus by applying Theorem 2.4.4 to this subnetwork, one obtains that there
exist (Wl, bl)

k
l=1 such that rank(Fk) = N . In the following, we fix these layers and show how

to pick (Wl, bl)
L
l=k+1 such that FL = Y. The main idea now is to make the output of all the

training samples of the same class become identical at layer k + 1 and thus they will have the
same network output. Since there are only m classes, there would be only m distinct outputs
for all the training samples at layer L − 1. Thus if one can make these m distinct outputs
become linearly independent at layer L− 1 then there always exists a weight matrix WL that
realizes the target output Y as the last layer is just a linear map by assumption. Moreover, we
will show that, except for max-pooling layers, all the parameters of other layers in the network
can be chosen in such a way that all the weight matrices (Ul)

L
l=k+2 achieve full rank. In the

following, we will present the detailed construction of the proof.

Case 1: k = L− 1

It holds rank(FL−1) = N. Pick bL = 0 and WL = FTL−1(FL−1F
T
L−1)−1Y . Since the output

layer is fully connected, it follows from Definition 2.3.2 that FL = FL−1WL + 1Nb
T
L = Y. Since

rank(Fk) = N and the full rank condition on (Wl)
L
l=k+2 is not active when k = L− 1, it holds

that (Wl, bl)
L
l=1 ∈ Sk which finishes the proof.

Case 2: k = L− 2

It holds rank(FL−2) = N. Let A ∈ Rm×nL−1 be a full row rank matrix such that Aij ∈ range(σ).

Note that nL−1 ≥ nL = m due to Assumption 2.4.7. Let D ∈ RN×nL−1 be a matrix satisfying
Di: = Aj: whenever xi belongs to class j for every i ∈ [N ], j ∈ [m]. By construction, FL−2

has full row rank, thus we can pick bL−1 = 0,WL−1 = FTL−2(FL−2F
T
L−2)−1σ−1(D). Since layer

L− 1 is fully connected, we have by Definition 2.3.2 that FL−1 = σ(FL−2WL−1 +1Nb
T
L−1) = D

and thus (FL−1)i: = Di: = Aj: whenever xi belongs to class j.
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So far, our construction of the first L− 1 layers lead to the fact that all the training samples
belonging to the same class will have identical output at layer L− 1. Since A has full row rank
by our construction, we pick for the last layer bL = 0,WL = AT (AAT )−1Z where Z ∈ Rm×m

is the pre-defined class embedding matrix satisfying rank(Z) = m. One can easily check that
AWL = Z and that FL = FL−1WL + 1Nb

T
L = FL−1WL where the later follows from Definition

2.3.2 as the output layer is fully connected. Now one can verify that FL = Y. Indeed, for every
xi belongs to class j we have

(FL)i: = (FL−1)Ti:WL = (A)Tj:WL = Zj: = Yi:.

Moreover, since rank(Fk) = N and rank(WL) = rank(AT (AAT )−1Z) = m, it holds that
(Wl, bl)

L
l=1 ∈ Sk. Therefore, there exists (Wl, bl)

L
l=1 ∈ Sk with Φ

(
(Wl, bl)

L
l=1

)
= 0.

Case 3: k ≤ L− 3

It holds rank(Fk) = N. Let E ∈ Rm×nk+1 be any matrix such that Eij ∈ range(σ) and Eip 6= Ejq
for every 1 ≤ i 6= j ≤ N, 1 ≤ p, q ≤ nk+1. Let D ∈ RN×nk+1 satisfies Di: = Ej: for every xi
from class j. Pick bk+1 = 0,Wk+1 = FTk (FkF

T
k )−1σ−1(D). Note that the matrix is invertible as

Fk has been chosen to have full row rank. Since layer k+1 is fully connected by our assumption,
it follows from Definition 2.3.2 that Fk+1 = σ(FkWk+1 + 1Nb

T
k+1) = σ(FkWk+1) = D and thus

(Fk+1)i: = Di: = Ej: (2.7)

for every xi from class j.

So far, our construction has led to the fact that all training samples belonging to the same class
have identical output at layer k + 1. The idea now is to see E as a new training data matrix
of a subnetwork consisting of all layers from k + 1 till the output layer L. In particular, layer
k + 1 can be seen as the input layer of this subnetwork and similarly, layer L can be seen as
the output layer. Moreover, every row of E ∈ Rm×nk+1 can be seen as a new training sample
to this subnetwork. One can easily check that this subnetwork together with the new training
data matrix E satisfy all the conditions of Theorem 2.4.4 at the last hidden layer L− 1. In
particular we have that:

• The rows of E ∈ Rm×nk+1 are componentwise different from each other, and thus the
input patches must be also distinct, and thus E satisfies Assumption 2.4.1

• Every layer from k + 1 to L− 1 is convolutional or fully connected by Assumption 2.4.7

• The width of layer L− 1 is larger than the number of samples due to Assumption 2.4.7,
that is, nL−1 ≥ nL = m

• σ satisfies Assumption 2.4.2 by Assumption 2.4.7

By applying Theorem 2.4.4 to this subnetwork and training data E, we obtain that there
must exist (Wl, bl)

L−1
l=k+2 for which all the weight matrices (Ul)

L−1
l=k+2 have full rank such that

the set of corresponding m outputs at layer L − 1 are linearly independent. In particular,
let A ∈ Rm×nL−1 be the corresponding outputs of E through this subnetwork then it holds
that rank(A) = m. Intuitively, if one feeds Ej: as an input at layer k + 1 then one would get
Aj: as an output at layer L − 1. This combined with (2.7) leads to the fact that if one now
feeds (Fk+1)i: = Ej: as an input at layer k + 1 then one would get at layer L− 1 the output
(FL−1)i: = Aj: whenever xi belongs to class j.

Last, we pick bL = 0,WL = AT (AAT )−1Z. It follows that AWL = Z. Since the output layer L
is fully connected, it holds from Definition 2.3.2 that FL = FL−1WL + 1Nb

T
L = FL−1WL.

One can verify now that FL = Y. Indeed, for every sample xi from class j it holds that

(FL)i: = (FL−1)Ti:WL = ATj:WL = Zj: = Yi:.
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Overall, we have shown that Φ = 0. In addition, it holds rank(Fk) = N from the construction
of the first k layers. All the matrices (Ul)

L−1
l=k+2 have full rank by the construction of the

subnetwork from k + 1 till L. Moreover, UL = WL also has full rank since rank(WL) =

rank(AT (AAT )−1Z) = m. Therefore it holds (Wl, bl)
L
l=1 ∈ Sk.

�

Theorem 2.4.11 shows that the loss surface for this class of CNNs has a rather simple structure in
the sense that every critical point lying inside Sk must be a global minimum with zero training error.
Note that if the activation function is real analytic then the complement of Sk has measure zero (see
Lemma 2.4.8), in which case Sk covers almost the whole parameter space. For the critical points
lying outside Sk, it holds that either one of the weight matrices {Uk+2, . . . , UL} has low rank or the
set of feature vectors at layer k is not linearly independent (i.e. Fk has low rank). Obviously, some
of these critical points can also be global minima, but we conjecture that they cannot be suboptimal
local minima due to the following reasons. First, it seems unlikely that a critical point with a low
rank weight matrix is a suboptimal local minimum as this would imply that all possible full rank
perturbations of the current solution must have larger/equal objective value. However, there is no
term in the loss function which favors low rank solutions. Even for linear networks, it has been shown
by Baldi and Hornik (1988) that all the critical points with low rank weight matrices have to be
saddle points and thus cannot be suboptimal local minima. Second, a similar argument applies to the
case where one has a critical point outside Sk such that the features are not linearly independent. In
particular, any neighborhood of such a critical point contains points which have linearly independent
features at layer k, from which it is easy to reach zero loss if one fixes the parameters of the first k
layers and optimizes the loss w.r.t. the remaining ones. This implies that every small neighborhood
of the critical point should contain points from which there exists a descent path that leads to a
global minimum with zero loss, which contradicts the fact that the critical point is a suboptimal local
minimum. All in all, if there are critical points lying outside the set Sk, then it is very “unlikely” that
these are suboptimal local minima but rather also global minima, saddle points or local maxima. In
the next chapter, we will see how the above arguments make sense as we show that there is indeed a
continuous path from any low rank solution in parameter space on which the loss is non-increasing
and gets arbitrarily close to a global minimum.

It remains an interesting open problem if the result of Theorem 2.4.11 can be transferred to the
case where layer k + 1 is also convolutional. In any case whether layer k + 1 is fully connected or
not, one might assume that a solution with zero training error still exists as it is usually the case
for practical over-parameterized networks. However, note that Theorem 2.4.10 shows that at those
points where the loss is zero, the gradient of Φ w.r.t. Uk+1 must be zero as well. A special case of
Theorem 2.4.11 is when all the layers of the network are fully connected, in which case we obtain
a fully connected network and all the results of Theorem 2.4.11 hold without any modification. In
particular, the combination of Theorem 2.4.11 and Lemma 2.4.8 immediately lead to the following
corollary for fully connected networks.

Corollary 2.4.12 (Loss Surface of Fully Connected Nets) Let (X,Y, Z) be a training set as
in Theorem 2.4.11 with distinct training samples, that is, xi 6= xj for every i 6= j. Suppose that a deep
fully connected network has a wide hidden layer k ∈ [L− 1] so that nk ≥ N and nk+1 ≥ . . . ≥ nL,

and the activation function σ : R→ R is real analytic, strictly increasing and satisfies Assumption
2.4.2. Let Φ : Ω→ R be the training objective given by (2.6). Then the following holds

• Every critical point (Wl, bl)
L
l=1 ∈ Sk is a global minimum with Φ

(
(Wl, bl)

L
l=1

)
= 0

• There exist infinitely many global minima (Wl, bl)
L
l=1 ∈ Sk with Φ

(
(Wl, bl)

L
l=1

)
= 0

• Sk covers almost the whole parameter space, i.e. Ω \ Sk has Lebesgue measure zero
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Corollary 2.4.12 shows that if one excludes from the whole parameter space a negligible set of measure
zero then essentially every critical point is a global minimum with zero training error. This indicates
that the loss surface restricted to Sk is rather well-behaved. For every point lying outside Sk, we will
show in the next chapter (though with a slightly different setting) that there exists a continuous
path connecting this point with some other point in Sk so that the loss is constant along the path.

2.5 Summary

We have analyzed the optimization landscape and expressivity of deep CNNs under realistic and
practically relevant settings. For a class of CNNs with real analytic activation functions such as
sigmoid and softplus, we prove that if the network has a sufficiently wide convolutional layer then
for almost all configurations of network parameters, the set of feature representations at the wide
layer for all the training samples are linearly independent. We use this result to derive a necessary
and sufficient condition for a large subset of critical points to be globally optimal. In a special case
where the wide layer is followed by a fully connected layer, we show almost every critical point of
the loss is a global minimum with zero training error. Since state-of-the-art networks fulfill exactly
or approximately our condition to have a wide convolutional layer, we believe that our results have
shed some light on the reason why existing CNN architectures can be trained effectively in practice.

There are currently two limitations of our results. First, they only apply to smooth activation
functions and thus cannot cover ReLU and Leaky-ReLU, which represent by far one of the most
successful activation functions in deep learning. Second, we still lack a rigorous mathematical proof
to address the case where a critical point lies outside of the set Sk as discussed below Theorem
2.4.11. The next chapter will address both of these issues through the analysis of level sets and
sublevel sets. In particular, we will show for a class of fully connected networks with piecewise linear
activation functions that if any given point in parameter space has low rank features or low rank
weight matrices, then it can always be connected with a full-rank solution by a continuous path on
which the loss is constant, and from this new point there exists always a continuous descent path
leading to a global minimum.

2.6 Appendix

2.6.1 Proof of Lemma 2.4.3

• ReLU: It holds for every t < 0 that σ(t) = max(0, t) = 0 < et, and for t ≥ 0 that σ(t) = t < t+1.

Thus ReLU satisfies the second condition of Assumption 2.4.2.

• Sigmoid: It holds that lim
t→−∞

1
1+e−t = 0 and lim

t→∞
1

1+e−t = 1. Thus σ satisfies the first condition
of Assumption 2.4.2.

• Softplus: Since 1 + eαt ≤ 2eαt for every t ≥ 0, it holds for every t ≥ 0 that

0 ≤ σα(t) =
1

α
log(1 + eαt) ≤ 1

α
log(2eαt) =

log(2)

α
+ t.

Moreover, since log(1 + t) ≤ t for t > 0, it holds log(1 + eαt) ≤ eαt for every t ∈ R. Thus
it holds that 0 ≤ σα(t) ≤ eαt

α for every t < 0. Therefore σα satisfies the second condition of
Assumption 2.4.2 for ρ1 = 1/α, ρ2 = α, ρ3 = 1, ρ4 = log(2)/α.
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2.6.2 Proof of Theorem 2.4.4

To prove Theorem 2.4.4, we first show that Assumption 2.4.1 can be transported from the input to
the output layer.

Lemma 2.6.1 Let Assumption 2.4.1 hold for the training sample. Consider a standard deep CNN
architecture which satisfies the following

1. The first layer is either convolutional or fully connected while all the other layers can be
convolutional, fully connected or max-pooling

2. σ is a continuous and non-constant activation function

Then for every layer 1 ≤ k ≤ L, there exist a set of parameters of the first k layers (Wl, bl)
k
l=1 such

that it holds fpk (xi) 6= fqk (xj) for every p, q ∈ [Pk], i, j ∈ [N ], i 6= j. Moreover, (Wl, bl)
k
l=1 can be

chosen in such a way that, except for max-pooling layers, all the weight matrices Ul =Ml(Wl) have
full rank for every 1 ≤ l ≤ k.

Proof: The high-level idea of the proof is the following: since Assumption 2.4.1 holds for the
training inputs, one can first pick (W1, b1) such that one transports the property of Assumption 2.4.1
to the feature maps of the training data at the next layer and thus to all higher layers by induction.

Since our definition of a convolutional layer includes fully connected layer as a special case, it
is sufficient to prove the result for the general convolutional structure. Since the first layer is a
convolutional layer by our assumption, we denote by Q = [a1, . . . , aT1 ] ∈ Rl0×T1 a matrix that
contains the set of convolutional filters of the first layer. Note here that there are T1 filters, namely{
a1, . . . , aT1

}
, where each filter at ∈ Rl0 for every t ∈ [T1]. Let us define the set

S :=
{
Q ∈ Rl0×T1

∣∣ M1(Q) has low rank
}
∪

⋃
i 6=j

p,q∈[P0]
t,t′∈[T1]

{
Q ∈ Rl0×T1

∣∣∣ 〈at, xpi 〉− 〈at′ , xqj〉 = 0
}
.

Basically, S is the set of “true” parameter matrices of the first layer where the corresponding weight
matrixM1(Q) has low rank or there exists two patches of two different training samples that have
the same inner product with some corresponding two filters. By Assumption 2.4.1 it holds that
xpi 6= xqj for every p, q ∈ [P0], i 6= j, and thus the right hand side in the above formula of S is just the
union of a finite number of hyperplanes which has Lebesgue measure zero. For the left hand side, it
follows from Lemma 2.3.5 that the set of Q for whichM1(Q) does not have full rank has measure
zero. Thus the left hand side of S is a set of measure zero. Since S is the union of two measure zero
sets, it has also measure zero, and thus the complementary set Rl0×T1 \ S must be non-empty and
we choose W1 ∈ Rl0×T1 \ S.

Since σ is a continuous and non-constant function, there exists an interval (µ1, µ2) such that σ is
bijective on (µ1, µ2). We select and fix some matrix Q = [a1, . . . , aT1 ] ∈ Rl0×T1 \ S and select some
β ∈ (µ1, µ2). Let α > 0 be a free variable and W1 = [w1

1, . . . , w
T1
1 ] where wt1 denotes the t-th filter of

the first layer. Let us pick

wt1 = αQ:t = αat, (b1)h = β, ∀t ∈ [T1], h ∈ [n1].

It follows that W1 = αQ and thusM1(W1) =M1(αQ) = αM1(Q) asM1 is a linear map by our
definition. Since Q /∈ S by construction, it holds that M1(W1) has full rank for every α 6= 0. By
Definition 2.3.1, it holds for every i ∈ [N ], p ∈ [P0], t ∈ [T1], h = (p− 1)T1 + t that

f1(xi)h = σ(
〈
wt1, x

p
i

〉
+ (b1)h) = σ(α

〈
at, xpi

〉
+ β).
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Since β ∈ (µ1, µ2), one can choose a sufficiently small positive α such that it holds α 〈a, xpi 〉+ β ∈
(µ1, µ2) for every i ∈ [N ], p ∈ [P0], t ∈ [T1]. Under this construction, we will show that every entry
of f1(xi) must be different from every entry of f1(xj) for i 6= j. Indeed, let us compare f1(xi)h and
f1(xj)v for some h = (p− 1)T1 + t, v = (q− 1)T1 + t′ and i 6= j. It holds for sufficient small α > 0 that

f1(xi)h − f1(xj)v = σ
(
α
〈
at, xpi

〉
+ β

)
− σ

(
α
〈
at
′
, xqj

〉
+ β

)
6= 0 (2.8)

where the last inequality follows from three facts. First, it holds 〈at, xpi 〉 6=
〈
at
′
, xqj

〉
since Q /∈ S.

Second, for the chosen α the values of the arguments of the activation function σ lie within (µ1, µ2).

Third, since σ is bijective on (µ1, µ2), it maps different inputs to different outputs.

Now, since the entries of f1(xi) and that of f1(xj) are already pairwise different from each other,
their corresponding patches must be also different from each other no matter how the patches are
organized in the architecture, that is,

fp1 (xi) 6= fq1 (xj) ∀p, q ∈ [P1], i, j ∈ [N ], i 6= j.

Now, if the network has only one layer, i.e. L = 1, then we are done. Otherwise, we will prove via
induction that this property can be translated to any higher layer. In particular, suppose that one
has already constructed (Wl, bl)

k
l=1 so that it holds

fk(xi)h − fk(xj)v 6= 0 ∀h, v ∈ [nk], i, j ∈ [N ], i 6= j. (2.9)

This is true for k = 1 due to (2.8). We will show below that (2.9) can also hold at layer k + 1.

1. Case 1: Layer k + 1 is convolutional or fully connected.

Since (2.9) holds for k by our induction assumption, it must hold that

fpk (xi) 6= fqk (xj) ∀p, q ∈ [Pk], i, j ∈ [N ], i 6= j.

which means Assumption 2.4.1 also holds for the set of features at layer k. Thus one can follows
the similar construction as done for layer 1 above by considering the output of layer k as input
to layer k+ 1. Then one obtains that there exist (Wk+1, bk+1) where Uk+1 =Mk+1(Wk+1) has
full rank so that the similar inequality (2.8) now holds for layer k + 1, which thus implies (2.9)
holds for k + 1.

2. Case 2: layer k + 1 is max-pooling

By Definition 2.3.3, it holds nk+1 = Pk and one has for every p ∈ [Pk]

fk+1(x)p = max
(

(fpk (x))
1
, . . . , (fpk (x))

lk

)
.

Since (2.9) holds at layer k by our induction assumption, every entry of every patch of
fk(xi) must be different from every entry of every patch of fk(xj) for every i 6= j, that is,
(fpk (xi))r 6= (fqk (xj))s for every r, s ∈ [lk], p, q ∈ [Pk], i 6= j. Therefore, their maximum elements
cannot be the same, that is,

fk+1(xi)p 6= fk+1(xj)q

for every p, q ∈ [nk+1], i, j ∈ [N ], i 6= j, which proves (2.9) for layer k + 1.

So far, we have proved that (2.9) holds for every 1 ≤ k ≤ L. Thus it follows that for every layer k,
there exists a set of parameters of the first k layers for which the patches at layer k of different training
samples are pairwise different from each other, that is, fpk (xi) 6= fqk (xj) for every p, q ∈ [Pk], i 6= j.

Moreover, except for max-pooling layers, all the weight matrices up to layer k have been chosen to
have full rank. �
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Proof of Theorem 2.4.4 Let A = Fk = [fk(x1)T , . . . , fk(xN )T ] ∈ RN×nk . Since our definition of
a convolutional layer includes fully connected layer as a special case, it is sufficient to prove the result
for convolutional structure. By Theorem’s assumption, layer k is convolutional and thus it holds by
Definition 2.3.1 that

Aij = fk(xi)j = σ
( 〈
wtk, f

p
k−1(xi)

〉
+ (bk)j

)
for every i ∈ [N ], t ∈ [Tk], p ∈ [Pk−1] and j = (p, t) := (p− 1)Tk + t ∈ [nk].

In the following, we show that there exists a set of parameters of the network such that rank(A) = N

and all the weight matrices Ul =Ml(Wl) have full rank.

First, one observes that the subnetwork consisting of all the layers from the input layer till layer
k − 1 satisfies the conditions of Lemma 2.6.1. Thus by applying Lemma 2.6.1 to this subnetwork,
one obtains that there exist (Wl, bl)

k−1
l=1 for which all the matrices (Ul)

k−1
l=1 , except for max-pooling

layers, have full rank and it holds that fpk−1(xi) 6= fqk−1(xj) for every p, q ∈ [Pk−1], i 6= j. The main
idea now is to fix the parameters of these layers and pick (Wk, bk) such that Uk =Mk(Wk) has full
rank and it holds rank(A) = N . Let us define the set

S=
⋃
i6=j

p∈[Pk−1]

{
a ∈ Rlk−1

∣∣ 〈a, fpk−1(xi)− fpk−1(xj)
〉

= 0
}
.

From the above construction, it holds that fpk−1(xi) 6= fpk−1(xj) for every p ∈ [Pk−1], i 6= j, and thus
S is the union of a finite number of hyperplanes which thus has measure zero. Let us denote by
Q = [a1, . . . , aTk ] ∈ Rlk−1×Tk a parameter matrix that contains all the convolutional filters of layer
k in its columns. Pick at ∈ Rlk−1 \ S for every t ∈ [Tk], so that it holds that Uk =Mk(Q) has full
rank. Note here that such matrix Q always exists. Indeed, Q is chosen from a positive measure set
as its columns (i.e. at) are picked from a positive measure set. Moreover, the set of matrices Q for
whichMk(Q) has low rank has just measure zero due to Lemma 2.3.5. Thus there always exists at
least one matrix Q so that all of its columns do not belong to S and thatMk(Q) has full rank. In
the rest of the proof, the value of matrix Q is fixed. Let α ∈ R be a free parameter. Since σ is a
continuous and non-constant function, there exist a β ∈ R such that σ(β) 6= 0. Let the value of β be
fixed as well. We construct the convolutional filters Wk = [w1

k, . . . , w
Tk
k ] and the biases bk ∈ Rnk of

layer k as follows. For every p ∈ [Pk−1], t ∈ [Tk], j = (p, t), we define

wtk = −αat, (bk)j = α
〈
at, fpk−1(xj)

〉
+ β.

It follows that Wk = −αQ and thus Uk =Mk(Wk) = −αMk(Q) asMk is a linear map. Moreover,
sinceMk(Q) has full rank by construction, it holds that Uk has full rank for every α 6= 0. As α varies,
we get a family of matrices A(α) ∈ RN×nk where it holds for every i ∈ [N ], j = (p, t) ∈ [nk] that

A(α)ij = σ
( 〈
wtk, f

p
k−1(xi)

〉
+ (bk)j

)
= σ

(
α
〈
at, fpk−1(xj)− fpk−1(xi)

〉
+ β

)
. (2.10)

Note that each row of A(α) corresponds to one training sample and that permutations of the rows of
A(α) do not change the rank of A(α). We construct a permutation γ of {1, 2, . . . , N} as follows. For
every j = 1, 2, . . . , N , let (p, t) be the tuple determined by j (the inverse transformation for given
j ∈ [nk] is p =

⌈
j
Tk

⌉
and t = j −

(⌈
j
Tk

⌉
− 1
)
Tk) and define

γ(j) = arg min
i∈{1,2,...,N} \ {γ(1),...,γ(j−1)}

〈
at, fpk−1(xi)

〉
.

Note that γ(j) is unique for every 1 ≤ j ≤ N since at /∈ S. It is clear that γ constructed as above is
a permutation of {1, 2, . . . , N} since every time a different element is taken from the index set [N ].
From the definition of γ(j), it holds that for every j = (p, t) ∈ [N ], i ∈ [N ], i > j that〈

at, fpk−1(xγ(j))
〉
<
〈
at, fpk−1(xγ(i))

〉
.
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We can relabel the training data according to the permutation so that w.l.o.g we can assume that
γ is the identity permutation, that is, γ(j) = j for every j ∈ [N ], in which case it holds for every
j = (p, t) ∈ [N ], i ∈ [N ], i > j that〈

at, fpk−1(xj)
〉
<
〈
at, fpk−1(xi)

〉
. (2.11)

Under the above construction of (Wl, bl)
k
l=1, we are ready to show that there exist α for which

rank(A(α)) = N. Since σ satisfies Assumption 2.4.2, we consider the following cases.

1. Case 1: There are finite constants µ+, µ− ∈ R s.t. lim
t→−∞

σ(t) = µ− and lim
t→∞

σ(t) = µ+ and
µ+µ− = 0.

Let us consider the first case where µ− = 0. From (2.10) and (2.11) one obtains

lim
α→+∞

A(α)ij =


σ(β) j = i

µ− = 0 i > j

ηij i < j

(2.12)

where ηij is given for every i < j where j = (p, t) as

ηij =

{
µ−,

〈
at, fpk−1(xj)− fpk−1(xi)

〉
< 0

µ+,
〈
at, fpk−1(xj)− fpk−1(xi)

〉
> 0

Note that ηij cannot be zero for i 6= j because at /∈ S. In the following, let us denote A(α)1:N,1:N

as a sub-matrix of A(α) that consists of the first N rows and columns. By the Leibniz-formula
one has

det(A(α)1:N,1:N ) = σ(β)N +
∑

π∈SN\{γ}

sign(π)

N∏
j=1

A(α)π(j)j (2.13)

where SN is the set of allN ! permutations of the set {1, . . . , N} and γ is the identity permutation.
Now, one observes that for every permutation π 6= γ, there always exists at least one component
j where π(j) > j in which case it follows from (2.12) that

lim
α→∞

N∏
j=1

A(α)π(j)j = 0.

Since there are only finitely many such terms in (2.13), one obtains

lim
α→∞

det(A(α)1:N,1:N ) = σ(β)N 6= 0

where the last inequality follows from our choice of β. Since det(A(α)1:N,1:N ) is a continuous
function of α, there exists α0 ∈ R such that for every α ≥ α0 it holds det(A(α)1:N,1:N ) 6= 0 and
thus rank(A(α)1:N,1:N ) = N which further implies rank(A(α)) = N. Thus the corresponding
set of feature vectors {fk(x1), . . . , fk(xN )} are linearly independent.

For the case where µ+ = 0, one can argue similarly. The only difference is that one considers
now the limit for α→ −∞. In particular, (2.10) and (2.11) lead to

lim
α→−∞

A(α)ij =


σ(β) i = j

µ+ = 0 i > j

ηij = 0 i < j.

For every permutation π 6= γ there always exists at least one component j where π(j) > j, in
which case it holds that

lim
α→−∞

N∏
j=1

A(α)π(j)j = 0.
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and thus it follows from the Leibniz formula that

lim
α→−∞

det(A(α)1:N,1:N ) = σ(β)N 6= 0.

Since det(A(α)1:N,1:N ) is a continuous function of α, there exists α0 ∈ R such that for every
α ≤ α0 it holds det(A(α)1:N,1:N ) 6= 0 and thus rank(A(α)1:N,1:N ) = N which further implies
rank(A(α)) = N. Thus the set of feature vectors at layer k are linearly independent.

2. Case 2: There are positive constants ρ1, ρ2, ρ3, ρ4 s.t. |σ(t)| ≤ ρ1e
ρ2t for t < 0 and |σ(t)| ≤

ρ3t+ ρ4 for t ≥ 0.

Our proof strategy is essentially similar to the previous case. Indeed, for every permutation
π 6= γ there always exist at least one component j = (p, t) ∈ [N ] where π(j) > j in which case
δj :=

〈
at, fpk−1(xj)− fpk−1(xπ(j))

〉
< 0 due to (2.11). For sufficiently large α > 0, it holds that

αδj + β < 0 and thus one obtains from (2.10) that

|A(α)π(j)j | = |σ(αδj + β)| ≤ ρ1e
ρ2βe−αρ2|δj |.

If π(j) = j then |A(α)π(j)j | = |σ(β)| which is a constant. For π(j) < j, one notices that
δj :=

〈
at, fpk−1(xj)− fpk−1(xπ(j))

〉
can only be either positive or negative as at /∈ S. In this case,

if δj < 0 then it can be bounded by the similar exponential term as above for sufficiently large
α. Otherwise it holds αδj + β > 0 for sufficiently large α > 0 and we get

|A(α)π(j)j | = |σ(αδj + β)| ≤ ρ3δjα+ ρ3β + ρ4.

Overall, for sufficiently large α > 0, there must exist positive constants P,Q,R, S, T such that
it holds for every π ∈ SN \ {γ} that∣∣∣ N∏

j=1

A(α)π(j)j

∣∣∣ ≤ R(Pα+Q)Se−αT .

The upper bound goes to zero as α goes to ∞. This combined with the Leibniz formula from
(2.13), we get limα→∞ det(A(α)1:N,1:N ) = σ(β)N 6= 0. Since det(A(α)1:N,1:N ) is a continuous
function of α, there exists α0 ∈ R such that for every α ≥ α0 it holds det(A(α)1:N,1:N ) 6= 0 and
thus rank(A(α)1:N,1:N ) = N which implies rank(A(α)) = N. Thus the set of feature vectors at
layer k are linearly independent.

Overall, we have shown that there always exist (Wl, bl)
k
l=1 such that the set of feature vectors

{fk(x1), . . . , fk(xN )} at layer k are linearly independent. Moreover, (Wl, bl)
k
l=1 have been chosen so

that all the weight matrices Ul =Ml(Wl), except for max-pooling layers, have full rank for every
1 ≤ l ≤ k.

2.6.3 Proof of Lemma 2.4.9

To prove Lemma 2.4.9, we first derive standard backpropagation in Lemma 2.6.2. In the following
we use the Hadamard product ◦, which for A,B ∈ Rm×n is defined as A ◦ B ∈ Rm×n with
(A ◦B)ij = AijBij . Let δkj(xi) = ∂Φ

∂gkj(xi)
be the derivative of Φ w.r.t. the value of unit j at layer

k evaluated at a single sample xi. We arrange these vectors for all training samples into a single
matrix ∆k = [δk:(x1), . . . , δk:(xN )]T ∈ RN×nk .

Lemma 2.6.2 The following hold:

1. ∆l =

{
FL − Y, l = L

(∆l+1U
T
l+1) ◦ σ′(Gl), 1 ≤ l ≤ L− 1
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2. ∇UlΦ = FTl−1∆l for every 1 ≤ l ≤ L

Proof:

1. By definition, it holds for every i ∈ [N ], j ∈ [nL] that

(∆L)ij = δLj(xi) =
∂Φ

∂gLj(xi)
= fLj(xi)− yij

and hence, ∆L = FL − Y.

For every k + 1 ≤ l ≤ L − 1, the output of the network for a single training sample can be
written as the composition of differentiable functions (i.e. the outputs of all layers from l + 1

till the output layer), and thus the chain rule yields for every i ∈ [N ], j ∈ [nl] that

(∆l)ij = δlj(xi) =
∂Φ

∂glj(xi)
=

nl+1∑
s=1

∂Φ

∂g(l+1)s(xi)

∂g(l+1)s(xi)

∂flj(xi)

∂flj(xi)

∂glj(xi)

=

nl+1∑
s=1

δ(l+1)s(xi)(Ul+1)jsσ
′(glj(xi))

=

nl+1∑
s=1

(∆(l+1))is(Ul+1)
T
sjσ
′((Gl)ij)

and hence ∆l = (∆l+1U
T
l+1) ◦ σ′(Gl).

2. For every k + 1 ≤ l ≤ L− 1, r ∈ [nl−1], s ∈ [nl], one has

∂Φ

∂(Ul)rs
=

N∑
i=1

∂Φ

∂gls(xi)

∂gls(xi)

∂(Ul)rs
=

N∑
i=1

δls(xi)f(l−1)r(xi) =

N∑
i=1

(FTl−1)ri(∆l)is =
(
FTl−1∆l

)
rs

and hence ∇UlΦ = FTl−1∆l.

�

The following straightforward inequalities are also helpful to prove Lemma 2.4.9. Let λmin(·) and
λmax(·) denotes the smallest and largest eigenvalue of a matrix.

Lemma 2.6.3 Let A ∈ Rm×n with m ≥ n. Then σmax(A) ‖x‖2 ≥ ‖Ax‖2 ≥ σmin(A) ‖x‖2 for every
x ∈ Rn.

Proof: Since m ≥ n, it holds that σmin(A) =
√
λmin(ATA) =

√
min xTATAx

xT x
= min

‖Ax‖2
‖x‖2

and thus

σmin(A) ≤ ‖Ax‖2‖x‖2
for every x ∈ Rn. Similarly, it holds σmax(A) =

√
λmax(ATA) =

√
max xTATAx

xT x
=

max
‖Ax‖2
‖x‖2

and thus σmax(A) ≥ ‖Ax‖2‖x‖2
for every x ∈ Rn. �

Lemma 2.6.4 Let A ∈ Rm×n, B ∈ Rn×p withm ≥ n. Then σmax(A) ‖B‖F ≥ ‖AB‖F ≥ σmin(A) ‖B‖F .

Proof: Since m ≥ n, it holds that λmin(ATA) = σmin(A)2 and λmax(ATA) = σmax(A)2. Thus
we have ‖AB‖2F = tr(BTATAB) ≥ λmin(ATA) tr(BTB) = σmin(A)2 ‖B‖2F . Similarly, it holds
‖AB‖2F = tr(BTATAB) ≤ λmax(ATA) tr(BTB) = σmax(A)2 ‖B‖2F . �



2. Loss surface of fully connected and convolutional neural networks 33

Proof of Lemma 2.4.9 We first prove the lower bound. Let Im denotes an m-by-m identity
matrix and ⊗ the Kronecker product. From Lemma 2.6.2 it holds ∇Uk+1

Φ = FTL ∆k+1 and thus

vec(∇Uk+1
Φ) = (Ink+1

⊗ FTk ) vec(∆k+1).

It follows that∥∥∇Uk+1
Φ
∥∥
F

=
∥∥(Ink+1

⊗ FTk ) vec(∆k+1)
∥∥

2
≥ σmin(Fk) ‖vec(∆k+1)‖2 = σmin(Fk) ‖∆k+1‖F (2.14)

where the inequality follows from Lemma 2.6.3 for the matrix (Ink+1
⊗ FTk ) ∈ Rnknk+1×Nnk+1 with

nk ≥ N by Assumption 2.4.7. Using Lemma 2.6.2 again, one has

‖∆k+1‖F =
∥∥(∆k+2U

T
k+2) ◦ σ′(Gk+1)

∥∥
F

≥ ‖σ′(Gk+1)‖min

∥∥∆k+2U
T
k+2

∥∥
F

= ‖σ′(Gk+1)‖min

∥∥Uk+2∆T
k+2

∥∥
F

≥ ‖σ′(Gk+1)‖min σmin(Uk+2) ‖∆k+2‖F

where the last inequality follows from Lemma 2.6.4 for the matrices Uk+2 ∈ Rnk+1×nk+2 and ∆T
k+2

with nk+1 ≥ nk+2 by Assumption 2.4.7. By repeating this for ‖∆k+2‖F , . . . , ‖∆L−1‖F , one gets

‖∆k+1‖F ≥
( L−1∏
l=k+1

‖σ′(Gl)‖min σmin(Ul+1)
)
‖∆L‖F =

( L−1∏
l=k+1

‖σ′(Gl)‖min σmin(Ul+1)
)
‖FL − Y ‖F

(2.15)

From (2.14), (2.15), one obtains

∥∥∇Uk+1
Φ
∥∥
F
≥ σmin(Fk)

( L−1∏
l=k+1

‖σ′(Gl)‖min σmin(Ul+1)
)
‖FL − Y ‖F

which proves the lower bound.

The proof for upper bound is similar. Indeed one has∥∥∇Uk+1
Φ
∥∥
F

=
∥∥(Ink+1

⊗ FTk ) vec(∆k+1)
∥∥

2
≤ σmax(Fk) ‖vec(∆k+1)‖2 = σmax(Fk) ‖∆k+1‖F (2.16)

where the inequality follows from Lemma 2.6.3 Now, one has

‖∆k+1‖F =
∥∥(∆k+2U

T
k+2) ◦ σ′(Gk+1)

∥∥
F

≤ ‖σ′(Gk+1)‖max

∥∥∆k+2U
T
k+2

∥∥
F

= ‖σ′(Gk+1)‖max

∥∥Uk+2∆T
k+2

∥∥
F

≤ ‖σ′(Gk+1)‖max σmax(Uk+2) ‖∆k+2‖F

where the last inequality follows from Lemma 2.6.4. By repeating this chain of inequalities for
‖∆k+2‖F , . . . , ‖∆L−1‖F , one obtains

‖∆k+1‖F ≤
( L−1∏
l=k+1

‖σ′(Gl)‖max σmax(Ul+1)
)
‖∆L‖F =

( L−1∏
l=k+1

‖σ′(Gl)‖max σmax(Ul+1)
)
‖FL − Y ‖F .

(2.17)

From (2.16), (2.17), one obtains that

∥∥∇Uk+1
Φ
∥∥
F
≤ σmax(Fk)

( L−1∏
l=k+1

‖σ′(Gl)‖max σmax(Ul+1)
)
‖FL − Y ‖F

which proves the upper bound.



Chapter 3

Topology of level sets and sublevel
sets of the training loss function

In Chapter 2 we have analyzed the loss surface of CNNs by studying global optimality of critical
points and existence of zero training error solutions. In the conclusion, we have left it as an open
problem how to analyze the loss surface of neural networks with non-smooth activation functions,
and how to deal with situations where the weight matrices have low rank or the set of feature
representations at the wide layer are not linearly independent.

In this chapter, we address both of these problems through the analysis of level sets and sublevel
sets. In particular, for a class of deep fully connected networks, we show that if the network has a
sufficiently wide hidden layer then every sublevel set of the loss is connected. This not only implies
that there is a continuous descent path from any point in parameter space to a global minimum,
but also that all the global minima are connected. In light of the second problem mentioned above,
we show that from any point in parameter space where the feature representations are not full rank
or one of the weight matrices have low rank, there always exists a continuous path to some other
point where all the full-rank conditions are satisfied, and in particular, the loss is constant along the
path. Concerning the first problem, our results in this chapter are directly applicable to a class of
piecewise linear activation functions including Leaky-ReLU, which was not possible before due to the
assumption on real analytic activation functions.

At a high level, our main results in this chapter shed more light on the underlying geometrical
structure of the optimization landscape of deep and wide networks. They complement the results of
the previous work Choromanska et al. (2015a); Haeffele and Vidal (2017); Nguyen and Hein (2018);
Liang et al. (2018) which so far purely focus on the analysis of critical points/local minima and thus
often miss the overall picture of the loss landscape, and extend the previous work of Venturi et al.
(2018) from one hidden layer to arbitrary deep networks with a wide range of convex losses and
activation functions. We refer to Section 1.2 for more details on the previous work. A preliminary
version of our paper which contains the main results of this chapter can be found at Nguyen (2019).

3.1 Introduction

It is commonly observed in deep learning that over-parameterization can be helpful for optimizing
neural networks. Theoretically, several recent work Allen-Zhu et al. (2018b); Du et al. (2018a);
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Zou et al. (2018) have also established convergence of gradient descent for non-linear networks
under excessive over-parameterization regimes. For instance the above work require Ω(N4) neurons
(or more) per hidden layer, where N denotes the number of training samples, to guarantee that
(stochastic) gradient descent converges to a global minimum with zero training error. This is an
inspiring result given the hardness of the problem, but the question that which properties of the loss
underpinning to these successes remains unanswered. We are interested in the following question:

Is there any underlying structure of the loss function that can “intuitively” supports for the success of
local search algorithms like gradient descent under excessive over-parameterization regimes?

In this chapter, we almost settle this question by showing that every sublevel set of the loss function
is connected if the network has a sufficiently wide hidden layer. Our key idea is to show that, for
linearly independent training data and under a relatively mild condition on the architecture, every
sublevel set of the loss is connected and unbounded. This allows us to obtain similar results for deep
and wide neural nets with arbitrary data. In particular, we first show that if one of the hidden layers
has more neurons than the number of training samples, then the loss has no bad local valleys in
the sense that there is a continuous path from anywhere in parameter space on which the loss is
non-increasing and gets arbitrarily close to the minimal value of the loss. In a special case where the
first hidden layer is a wide layer with twice more neurons than the number of training samples, then
we show that every sublevel set is connected, and thus there is a unique global valley. All our results
hold for deep fully connected networks with standard architecture, for arbitrary convex losses and
strictly monotonic and/or piecewise linear activation functions such as Leaky-ReLU.

3.2 Problem setting

We consider a class of feedforward fully connected networks. The extension of our results to
convolutional neural networks as analyzed in Chapter 2 is left for future work. Our basic notations
and definition of the network mostly follow from Section 1.1. For the convenience of the reader, we
briefly review them below, and then introduce some other new notations.

Let L be the number of layers, d the input dimension, m the output dimension and nk the width of
layer k. Throughout this chapter we assume that the network has at least one hidden layer, that
is, L ≥ 2. Let X = [x1, . . . , xN ]T ∈ RN×d be our training data. By convention we assume that
n0 = d and nL = m. Let σ : R→ R be a continuous activation function which we will specify later.
Let Wk ∈ Rnk−1×nk and bk ∈ Rnk be the weight matrix and bias vector of layer k. The function
fk : Rd → Rnk which maps every input x ∈ Rd to the output at layer k is defined as

fk(x) =


x k = 0

σ(WT
k fk−1(x) + bk) k ∈ [1, L− 1]

WT
L fL−1(x) + bL k = L.

Let Fk = [fk(x1), fk(x2), . . . , fk(xN )]T ∈ RN×nk then we have

Fk =


X k = 0

σ(Fk−1Wk + 1Nb
T
k ) k ∈ [1, L− 1]

FL−1WL + 1Nb
T
L k = L.

Let θ := (Wl, bl)
L
l=1 be the set of all parameters of the network. Let Ωl be the parameter space

of layer l ∈ [1, L], and Ω = Ω1 × . . . × ΩL the whole parameter space. Let Ω∗l ⊂ Ωl be the
subset of parameters of layer l for which the corresponding weight matrix has full rank, that is
Ω∗l = {(Wl, bl) | Wl has full rank} . In this chapter, we write Fk(θ) to denote the network output at
layer k as a function θ, but sometimes we drop the argument and just write Fk if it is clear from the
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context. We also use the notations Fk
(

(W1, b1), . . . , (WL, bL)
)
, Fk

(
(W1, b1), (Wl, bl)

L
l=2

)
to denote

the same quantity. The output of the network is given as FL(θ).

The training problem of a deep fully connected network is framed as an optimization problem, in
which one minimizes the empirical loss Φ : Ω→ R defined as

Φ(θ) = ϕ(FL(θ)) (3.1)

where ϕ : RN×m → R is any convex loss function defined on the output of the network, such as the
standard square loss or cross-entropy loss as described in Section 1.1.

In the following, we let
p∗ = inf

G∈RN×m
ϕ(G),

which serves as a lower bound on Φ. Note that p∗ is fully determined by the choice of ϕ(·) and thus
independent of the training data. In this chapter, we make no assumption on p∗ but for most of
practical losses as mentioned above one has p∗ = 0.

3.3 Preliminaries

This section reviews some basic mathematical concepts that are used throughout the chapter.

3.3.1 Connected sets

We first recall the standard definition of connected sets and some basic properties from topology.
This is essential for proving our main results on connectedness of sublevel sets of the loss function.

Definition 3.3.1 (Connected set) A subset S ⊆ Rd is called connected if for every x, y ∈ S, there
exists a continuous curve r : [0, 1]→ S such that r(0) = x and r(1) = y.

The following standard result shows that the image of every connected set under a continuous
mapping is again connected.

Proposition 3.3.2 Let f : U → V be a continuous function. If A ⊆ U is a connected set then the
set f(A) := {f(x) | x ∈ A} is also a connected set.

Proof: Pick some a, b ∈ f(A). Then there must exist some x, y ∈ A such that f(x) = a and
f(y) = b. Since A is a connected set, it holds by Definition 3.2 that there exists a continuous curve
r : [0, 1]→ A such that r(0) = x, r(1) = y. Consider the curve f ◦ r : [0, 1]→ f(A), then it holds that
f(r(0)) = a, f(r(1)) = b. Moreover, f ◦ r is continuous as both f and r are continuous. Thus it holds
that f(A) is a connected set by Definition 3.2. �

The following property follows immediately from the definition of connected sets.

Proposition 3.3.3 The Minkowski sum of two connected subsets U, V ⊆ Rn, defined as U + V =

{u+ v | u ∈ U, v ∈ V }, is a connected set.

Proof: Let x, y ∈ U+V , then there exists a, b ∈ U and c, d ∈ V such that x = a+c, y = b+d. Since U
and V are connected sets, there exist two continuous curves p : [0, 1]→ U and q : [0, 1]→ V such that
p(0) = a, p(1) = b and q(0) = c, q(1) = d. Consider the continuous curve r(t) := p(t)+q(t) then it holds
that r(0) = a+c = x, r(1) = b+d = y and r(t) ∈ U+V for every t ∈ [0, 1]. This implies that every two
elements in U+V can be connected by a continuous curve and thus U+V must be a connected set. �
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3.3.2 Pre-Image

The hierarchical structure of a deep network allows us to write its output as the composition of a
number of linear and nonlinear transformations. In the derivation of our key results (see e.g. Lemma
3.4.6) we need to take the pre-image of a composition function, which we briefly discuss next.

Definition 3.3.4 (Pre-Image) The pre-image of a function f : U → V is the set-valued function
f−1 : V → U defined for every y ∈ V as f−1(y) = {x ∈ U | f(x) = y} . Similarly, for every subset
A ⊆ V , let f−1(A) = {x ∈ U | f(x) ∈ A} .

By definition, it holds that f(x) ∈ A if and only if x ∈ f−1(A). We note that the above definition
does not require V = range(f) := f(U) but the inverse function f−1 is always well-defined. In
particular, we have f−1(y) = ∅ for every y /∈ range(f). Thus it holds for every A ⊆ V that

f−1(A) = f−1(A ∩ range(f)) ∪ f−1(A \ range(f)) = f−1(A ∩ range(f)).

The following proposition shows how to take the pre-image of a composition map.

Proposition 3.3.5 Let f : U → V and g : V → Q. Then it holds (g ◦ f)−1 = f−1 ◦ g−1.

Proof: By definition, it holds for every A ⊆ Q that

(g ◦ f)−1(A) = {x ∈ U | g(f(x)) ∈ A} =
{
x ∈ U

∣∣ f(x) ∈ g−1(A)
}

=
{
x ∈ U

∣∣ x ∈ f−1(g−1(A))
}

= (f−1 ◦ g−1)(A).

�

Similar to above, we have for every A ⊆ Q that

(g ◦ f)−1(A) = f−1
(
g−1

(
A ∩ range(g)

)
∩ range(f)

)
.

As we will see later in the derivation of our results (e.g. Lemma 3.4.6), we can avoid the above
intersection steps by making certain conditions on the network so that these functions have full range.

3.3.3 Level sets and sublevel sets

The key concept studied in this chapter is level sets and sublevel sets of the loss function.

Definition 3.3.6 For every α ∈ R, the α-level set of Φ : Ω → R is the preimage Φ−1(α) =

{θ ∈ Ω | Φ(θ) = α} , and the α-sublevel set of Φ is given as Lα = {θ ∈ Ω | Φ(θ) ≤ α} .

3.3.4 Local valleys and bad local valleys

Besides connectedness of sublevel sets, we also study in this chapter sufficient conditions on the
architecture so that the loss surface is guaranteed to have no bad local valleys.

Definition 3.3.7 A local valley is a nonempty connected component of some strict sublevel set
Lsα := {θ | Φ(θ) < α} . A bad local valley is a local valley on which the training loss Φ cannot be
made arbitrarily close to p∗.

A trivial example of bad local valley is a small neighborhood around a sub-optimal strict local
minimum. More generally, a bad local valley can be any open set of the parameter space where
points on the border have strictly larger objective value than points in the interior. Intuitively, bad
local valleys represent regions where gradient descent with infinitesimal step sizes cannot escape.
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3.4 Main results

The organization of this section is as follows. Section 3.4.2 shows our first motivating result that if
all the training samples are linearly independent and the network has decreasing width from the
first hidden layer till the output layer then every sublevel set of the loss must be connected and
unbounded. The following sections will extend this result to deep and wide networks with “arbitrary”
training data. In particular, Section 3.4.3 shows that if one of the hidden layers has more neurons
than the number of training samples, then the network has no bad local valleys. In Section 3.4.4
we further shows that if the first hidden layer has at least twice more neurons than the number of
training samples then every sublevel set of the loss is connected and unbounded. Finally, Section
3.4.5 shows an extension of our previous results to the case of ReLU activation function.

3.4.1 Assumptions

This section presents all the assumptions on the activation function and training data. We will refer
to each individual assumption accordingly in the next sections where we present our main results.

Assumption 3.4.1 σ is strictly monotonic and σ(R) = R.

Assumption 3.4.1 implies that σ has a continuous inverse σ−1 : R → R. One can see that this is
satisfied by the Leaky-ReLU σ(x) = max(αx, x) where α ∈ (0, 1) but not by ReLU σ(x) = max(0, x).

The following assumption states that the activation function σ cannot be written as a weighted sum
of its shifted variants.

Assumption 3.4.2 There do not exist non-zero coefficients (λi, ai)
p
i=1 with ai 6= aj ∀ i 6= j such that

σ(x) =
∑p
i=1 λiσ(x− ai) for every x ∈ R.

It turns out that Assumption 3.4.2 is satisfied for a large class of non-smooth activation functions,
including ReLU and Leaky-ReLU, as shown by the following lemma. This is also one of the key
advantages of our results in this chapter compared to the previous Chapter 2 where we can only deal
with smooth activation functions such as sigmoid and softplus.

Lemma 3.4.3 Assumption 3.4.2 is satisfied for any continuous piecewise linear activation function
with at least two pieces such as ReLU and Leaky-ReLU, and for the exponential linear unit σ(x) ={
x x ≥ 0

α(ex − 1) x < 0
where α > 0.

Proof: A function σ : R→ R is continuous piecewise linear if it can be represented as

σ(x) = aix+ bi, ∀x ∈ (xi−1, xi), ∀ i ∈ [1, n+ 1].

for some x0 = −∞ < x1 < . . . < xn < xn+1 =∞ and (ai, bi)
n+1
i=1 . Since σ has at least two pieces we

have n ≥ 1. We can assume that all the linear pieces agree at their intersection and there are no
consecutive pieces with the same slope: ai 6= ai+1 for every i ∈ [1, n]. Suppose by contradiction that σ
does not satisfy Assumption 3.4.2, then there are non-zero coefficients (λi, yi)

m
i=1 with yi 6= yj(i 6= j)

such that σ(x) =
∑m
i=1 λiσ(x− yi) for every x ∈ R. We assume w.l.o.g. that y1 < . . . < ym.

Case 1: y1 > 0. For every x ∈ (−∞, x1) we have σ(x) = a1x + b1 =
∑m
i=1 λi(a1(x − yi) + b1) and

thus by comparing the coefficients on both sides we obtain
∑m
i=1 λia1 = a1. Moreover, for every

x ∈
(
x1,min(x1 +y1, x2)

)
it holds σ(x) = a2x+b2 =

∑m
i=1 λi(a1(x−yi)+b1) and so

∑m
i=1 λia1 = a2.

Thus a1 = a2, which is a contradiction.
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Case 2: y1 < 0. By definition, for x ∈ (−∞, x1+y1) we have σ(x) = a1x+b1 =
∑m
i=1 λi(a1(x−yi)+b1)

and thus by comparing the coefficients on both sides we obtain
∑m
i=1 λia1 = a1. Moreover, for every

x ∈
(
x1 + y1,min(x1 + y2, x1, x2 + y1)

)
we have

σ(x) = a1x+ b1 = λ1(a2(x− y1) + b2) +

m∑
i=2

λi(a1(x− yi) + b1)

and thus by comparing the coefficients we have λ1a2 +
∑m
i=2 λia1 = a1. This combined with the first

result above leads to λ1a1 = λ1a2, and thus a1 = a2 (since λ1 6= 0) which is a contradiction.

One can prove similarly for ELU Clevert et al. (2016)

σ(x) =

{
x x ≥ 0

α(ex − 1) x < 0
where α > 0.

Suppose by contradiction that there exist non-zero coefficients (λi, yi)
m
i=1 with yi 6= yj(i 6= j) such

that σ(x) =
∑m
i=1 λiσ(x − yi), and assume w.l.o.g. that y1 < . . . < ym. If ym > 0 then for every

x ∈ (max(0, ym−1), ym) it holds

σ(x) = x = λmα(ex−ym − 1) +

m−1∑
i=1

λi(x− yi) =⇒ ex =
xeym −

∑m−1
i=1 λi(x− yi)eym
λmα

+ eym

which is a contradiction since ex cannot be identical to any affine function on any open interval.
Thus it must hold that ym < 0. For every x ∈ (ym, 0) we have

σ(x) = α(ex − 1) =

m∑
i=1

λi(x− yi) =⇒ ex =
1

α

m∑
i=1

λi(x− yi) + 1

which is a contradiction for the same reason above. �

In the remainder of this chapter, if not stated otherwise we will always assume the following universal
condition on the training data.

Assumption 3.4.4 All the training samples are distinct, that is, xi 6= xj for every i 6= j. Equivalently,
the training data matrix X ∈ RN×d has distinct rows.

3.4.2 Linearly independent data leads to connected sublevel sets

This section presents our key results for linearly independent data, which lays the foundation for
our further results in the next sections where we analyze deep over-parameterized neural nets with
arbitrary data. In this section, we assume that the widths of all the hidden layers are decreasing, i.e.
n1 > . . . > nL. Note that it is still possible to have n1 ≥ d or n1 < d. It turns out that this condition
is quite natural as for many practical architectures (see Table 2.1) the first hidden layer often has the
most number of neurons, and then it starts decreasing towards the output layer, which is helpful for
the network to learn more compact representations at higher layers. For convenience, we introduce
the following property of θ = (Wl, bl)

L
l=1 ∈ Ω and will refer to it later during our presentation.

Property 3.4.5 Wl has full rank for every l ∈ [2, L].

The derivation of our key result relies on several helpful lemmas, which we present next.

First, we show that any changes in the output space of every layer k ∈ [2, L] or any changes in the
weight matrices (Wl)

L
l=2 can also be reflected onto the first layer, as long as these matrices have full
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rank. As shown below, this holds when the training data X has full row rank, and the activation
function is invertible by Assumption 3.4.1, because in which case the network is able to realize
arbitrary outputs at every hidden layer just by adapting the value of (W1, b1). The following lemma
shows that these changes can be done in a continuous manner.

Lemma 3.4.6 Let Assumption 3.4.1 hold, rank(X) = N and n1 > . . . > nL. Given some layer
k ∈ [2, L]. Then there is a continuous map h : Ω∗2 × . . .× Ω∗k × RN×nk → Ω1 which satisfy that:

1. For every
(

(W2, b2), . . . , (Wk, bk), A
)
∈ Ω∗2 × . . .× Ω∗k × RN×nk it holds that

Fk

(
h
(

(Wl, bl)
k
l=2, A

)
, (Wl, bl)

k
l=2

)
= A.

2. For every θ = (W ∗l , b
∗
l )
L
l=1 where all the matrices (W ∗l )kl=2 have full rank, there is a continuous

curve from θ to
(
h
(

(W ∗l , b
∗
l )
k
l=2, Fk(θ)

)
, (W ∗l , b

∗
l )
L
l=2

)
on which the loss Φ is constant.

Proof: We recall that Ωl is the parameter space of layer l and Ω∗l = {(Wl, bl) | Wl has full rank} ⊂
Ωl. For every

(
(W2, b2), . . . , (Wk, bk), A

)
∈ Ω∗2 × . . .× Ω∗k × RN×nk , let us define the value of h as

h
(

(Wl, bl)
k
l=2, A

)
= (W1, b1),

where (W1, b1) is given by the following recursive formula

[
W1

bT1

]
= [X,1N ]†σ−1(B1),

Bl =
(
σ−1(Bl+1)− 1Nb

T
l+1

)
W †l+1, ∀ l ∈ [1, k − 2],

Bk−1 =

(A− 1Nb
T
L)W †L k = L(

σ−1(A)− 1Nb
T
k

)
W †k k ∈ [2, L− 1]

.

By our assumption n1 > . . . > nL, it follows from the domain of h that all the matrices (Wl)
k
l=2 have

full column rank, and so they have a left inverse. Similarly, [X,1N ] has full row rank due to our
assumption that rank(X) = N , and so it has a right inverse. Moreover σ has a continuous inverse by
Assumption 3.4.1. Thus h is a continuous map as it is a composition of continuous functions. In the
following, we prove that h satisfies the two statements of the lemma.

1. Let
(

(W2, b2), . . . , (Wk, bk), A
)
∈ Ω∗2 × . . .× Ω∗k × RN×nk . Since all the matrices (Wl)

k
l=2 have

full column rank and [X,1N ] has full row rank, it holds thatW †l Wl = I and [X,1N ][X,1N ]† = I
and thus we easily obtain from the above definition of h that

B1 = σ
(

[X,1N ]

[
W1

bT1

])
,

Bl+1 = σ(BlWl+1 + 1Nb
T
l+1), ∀ l ∈ [1, k − 2],

A =

{
BL−1WL + 1Nb

T
L k = L,

σ(Bk−1Wk + 1Nb
T
k ) k ∈ [2, L− 1].

One can easily check that the above formula of A is exactly the definition of Fk from (2.4) and
thus it holds Fk

(
h
(

(Wl, bl)
k
l=2, A

)
, (Wl, bl)

k
l=2

)
= A for every

(
(W2, b2), . . . , (Wk, bk), A

)
∈

Ω∗2 × . . .× Ω∗k × RN×nk .
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2. Let Gl : RN×nl−1 → RN×nl be defined as

Gl(Z) =

ZW ∗L + 1N (b∗L)T l = L

σ
(
ZW ∗l + 1N (b∗l )

T
)

l ∈ [2, L− 1].

For convenience, let us group the parameters of the first layer into a matrix, say U = [WT
1 , b1]T ∈

R(d+1)×n1 . Similarly, let U∗ = [(W ∗1 )T , b∗1]T ∈ R(d+1)×n1 . Let f : R(d+1)×n1 → RN×nk be a
function of (W1, b1) defined as

f(U) = Gk ◦Gk−1 . . . G2 ◦G1(U), where

G1(U) = σ([X,1N ]U), U = [WT
1 , b1]T .

We note that this definition of f is exactly Fk from (2.4), but here we want to exploit the fact
that f is a function of (W1, b1) as all other parameters are fixed to the corresponding values of
θ. Let A = Fk(θ). By definition we have f(U∗) = A and thus U∗ ∈ f−1(A). Let us denote

(Wh
1 , b

h
1 ) = h

(
W ∗l , b

∗
l )
k
l=2, A

)
, Uh = [(Wh

1 )T , bh1 ]T .

By applying the first statement of the lemma to
(

(W ∗2 , b
∗
2), . . . , (W ∗k , b

∗
k), A

)
we have

A = Fk

(
(Wh

1 , b
h
1 ), (W ∗l , b

∗
l )
k
l=2

)
= f(Uh)

which implies Uh ∈ f−1(A). So far both U∗ and Uh belong to f−1(A). The idea now is that if
one can show that f−1(A) is a connected set then there would exist a connected path between
U∗ and Uh (and thus a path between (W ∗1 , b

∗
1) and (Wh

1 , b
h
1 )) on which the output at layer k is

identical to A and hence the loss is invariant, which concludes the proof.

In the following, we show that f−1(A) is indeed connected. First, one observes that range(Gl) =

RN×nl for every l ∈ [2, k] since all the matrices (W ∗l )kl=2 have full column rank and σ(R) = R
by Assumption 3.4.1. Similarly, it follows from our assumption rank(X) = N that range(G1) =

RN×n1 . By applying Proposition 3.3.5 to the composition map f , we obtain

f−1(A) = G−1
1 ◦G

−1
2 ◦ . . . ◦G

−1
k (A).

where all the maps G1, . . . , Gk have full range as shown above. Now it holds that

G−1
k (A) =

(A− 1Nb
T
L)(W ∗L)† + {B | BW ∗L = 0} k = L(

σ−1(A)− 1Nb
∗
k

)
(W ∗k )† + {B | BW ∗k = 0} else

which is a connected set in either case due to the following reasons: 1) the kernel of any matrix
is connected, 2) the Minkowski-sum of two connected sets is connected by Proposition 3.3.3,
and 3) the image of a connected set under a continuous map is connected by Proposition 3.3.2.
Once G−1

k (A) is connected, we can repeat exactly the same argument as above for k − 1, . . . , 2

to conclude that V := G−1
2 ◦ . . . ◦G

−1
k (A) is a connected set. Lastly, we have

G−1
1 (V ) = [X,1N ]†σ−1(V ) + {B | [X,1N ]B = 0}

which is also connected by the same arguments above. Thus f−1(A) is a connected set.

Overall, we have shown in this proof that the set of (W1, b1) which realizes the same output at
layer k (given the parameters of other layers in between are fixed) is a connected set. Since both
(W ∗1 , b

∗
1) and h

(
(W ∗l , b

∗
l )
k
l=2, Fk(θ)

)
belong to this solution set, there must exist a continuous

path between them on which the loss Φ is constant.
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Using the previous lemma, we can show that from any point in parameter space where the weight
matrices (Wl)

L
l=2 are potentially low rank, we can find a continuous path which leads to some other

point where all the corresponding matrices obtain full rank, and most importantly, the loss is constant
along the path. This is done by the next lemma.

Lemma 3.4.7 Let Assumption 3.4.1 hold, rank(X) = N and n1 > . . . > nL. Let θ = (Wl, bl)
L
l=1 be

any point in parameter space. Then there is a continuous curve which starts from θ and ends at some
θ′ = (W ′l , b

′
l)
L
l=1 so that θ′ satisfies Property 3.4.5 and the loss Φ is constant on the curve.

Proof: The idea is to make each of the weight matrices W2, . . . ,WL full rank, one at a time (i.e.
keeping other matrices fixed, except W1). At each step, we find a continuous path from the current
starting point to some other point where the rank condition is fulfilled while keeping the loss constant
on the path. We then restart our starting point to the end point of the path and proceed to the next
weight matrix. This is repeated until all the matrices (Wl)

L
l=2 have full rank, which satisfies 3.4.5.

Step 1: Make W2 full rank. If W2 has full rank then we proceed to W3. Otherwise, let rank(W2) =

r < n2 < n1. Let I ⊂ {1, . . . , n1} , |I| = r denote the set of indices of linearly independent rows of
W2 so that rank(W2(I, :)) = r. Let Ī denote the remaining rows of W2. Let E ∈ R(n1−r)×r be a
matrix such that W2(Ī, :) = EW2(I, :). Let P ∈ Rn1×n1 be a permutation matrix which permutes
the rows of W2 according to I so that we can write

PW2 =

[
W2(I, :)
W2(Ī, :)

]
.

We recall that F1(θ) is the output of the network at the first layer, evaluated at θ. Below we drop θ
and just write F1 as it is clear from the context. By construction of P , we have

F1P
T = [F1(:, I), F1(:, Ī)].

The first step is to turn W1 into a canonical form. In particular, the set of all possible solutions of
W1 which realizes the same the output F1 at the first hidden layer is characterized by X†

(
σ−1(F1)−

1Nb
T
1

)
+ ker(X) where we denote, by abuse of notation, ker(X) =

{
A ∈ Rd×n1

∣∣ XA = 0
}
. This

solution set is connected because ker(X) is a connected set and the Minkowski-sum of two connected
sets is known to be connected, and so there exists a continuous path between every two solutions in
this set on which the output F1 is invariant. Obviously the current W1 and X†(σ−1(F1)− 1Nb

T
1 ) are

elements of this set, thus they must be connected by a continuous path on which the loss is invariant.
So we can assume now that W1 = X†(σ−1(F1)− 1Nb

T
1 ). Next, we consider the curve:

W1(λ) = X†
(
σ−1(A(λ))− 1Nb

T
1

)
, where A(λ) = [F1(:, I) + λF1(:, Ī)E, (1− λ)F1(:, Ī)]P.

This curves starts at θ since W1(0) = W1, and it is continuous as σ has a continuous inverse by
Assumption 3.4.1. Using XX† = I, one can compute the pre-activation output (without bias term)
at the second layer as

σ
(
XW1(λ) + 1Nb

T
1

)
W2 = A(λ)W2 = F1W2,

which implies that the loss is invariant on this curve, and so we can take its end point W1(1) as a
new starting point:

W1 = X†
(
σ−1(A)− 1Nb

T
1

)
, where A = [F1(:, I) + F1(:, Ī)E, 0]P.
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Now, the output at second layer above, given by AW2, is independent of W2(Ī, :) because it is
canceled by the zero component in A. Thus one can easily change W2(Ī, :) so that W2 has full rank
while still keeping the loss invariant.

Step 2: Using induction to make W3, . . . ,WL full rank. Let θ = (Wl, bl)
L
l=2 be our current point.

Suppose that all the matrices (Wl)
k
l=2 already have full rank for some k ≥ 2 then we show below how

to make Wk+1 full rank. We write Fk to denote Fk(θ). By the second statement of Lemma 3.4.6, we
can follow a continuous path (with invariant loss) to drive θ to the following point:

θ :=
(
h
(

(Wl, bl)
k
l=2, Fk

)
, (Wl, bl)

L
l=2

)
(3.2)

where h : Ω∗2 × . . .× Ω∗k × RN×nk is the continuous map from Lemma 3.4.6 which satisfies for every
A ∈ RN×nk ,

Fk

(
h
(
(Wl, bl)

k
l=2, A

)
, (Wl, bl)

k
l=2

)
= A. (3.3)

Now, if Wk+1 already has full rank then we are done, otherwise we follow the similar steps as before.
Indeed, let r = rank(Wk+1) < nk+1 < nk and I ⊂ {1, . . . , nk} , |I| = r the set of indicies of r linearly
independent rows of Wk+1. Then there is a permutation matrix P ∈ Rnk×nk and some matrix
E ∈ R(nk−r)×r so that

PWk+1 =

[
Wk+1(I, :)
Wk+1(Ī, :)

]
,Wk+1(Ī, :) = EWk+1(I, :). (3.4)

Moreover it holds

FkP
T = [Fk(:, I), Fk(:, Ī)]. (3.5)

Consider the following curve c : [0, 1]→ Ω which continuously update (W1, b1) while keeping other
layers fixed:

c(λ) =
(
h
(

(Wl, bl)
k
l=2, A(λ)

)
, (W2, b2), . . . , (WL, bL)

)
,

where A(λ) = [Fk(:, I) + λFk(:, Ī)E, (1− λ)Fk(:, Ī)]P.

Since h is continuous, c is also continuous. Moreover, it follows from (3.5) and (3.2) that c(0) = θ.

The pre-activation output (without bias term) at layer k + 1 for every point on this curve is given by

Fk(c(λ))Wk+1 = A(λ)Wk+1 = FkWk+1, ∀λ ∈ [0, 1],

where the first equality follows from (3.3) and the second follows from (3.4) and (3.5). As the loss is
invariant on this curve, we can take its end point c(1) as a new starting point:

θ :=
(
h
(

(Wl, bl)
k
l=2, A

)
, (W2, b2), . . . , (WL, bL)

)
where A = [Fk(:, I) + Fk(:, Ī)E, 0]P.

At this point, the output at layer k+ 1 as mentioned above is given by AWk+1, which is independent
of Wk+1(Ī, :) since it is canceled out by the zero component in A, and thus one can easily change the
submatrix Wk+1(Ī, :) so that Wk+1 has full rank while leaving the loss invariant.

Overall, by induction we can make all the weight matrices W2, . . . ,WL full rank by following several
continuous paths on which the loss is constant, which finishes the proof. �

The following result is due to Evard and Jafari (1994), which later allows us to build connected paths
between solutions in the parameter space where all the weight matrices (Wl)

L
l=2 have full rank.

Proposition 3.4.8 The set of full rank matrices A ∈ Rm×n is connected for m 6= n.
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We are now ready to state our main result in this section.

Theorem 3.4.9 Let Assumption 3.4.1 hold, rank(X) = N and n1 > . . . > nL. Then it holds:

1. Every sublevel set of Φ is connected. Moreover, Φ can attain any value arbitrarily close to p∗.

2. Every non-empty connected component of every level set of Φ is unbounded.

Proof:

1. Let Lα be some sublevel set of Φ. Let θ = (Wl, bl)
L
l=1 and θ′ = (W ′l , b

′
l)
L
l=1 be arbitrary points

in Lα. Let FL = FL(θ) and F ′L = FL(θ′). These two quantities are computed in the beginning
and will never change during this proof. But when we write FL(θ′′) for some θ′′ we mean the
network output evaluated at θ′′. The main idea is to construct two different continuous paths
which simultaneously start from θ and θ′ and are entirely contained in Lα (this is done by
making the loss on each individual path non-increasing), and then show that they meet at a
common point in Lα, which then implies that Lα is a connected set.

First of all, we can assume that both θ and θ′ satisfy Property 3.4.5, because otherwise by
Lemma 3.4.7 one can follow a continuous path from each point to arrive at some other point
where this property holds and the loss on each path is invariant, meaning that we still stay
inside Lα. As θ and θ′ satisfy Property 3.4.5, all the weight matrices (Wl)

L
l=2 and (W ′l )

L
l=2 have

full rank, and thus by applying the second statement of Lemma 3.4.6 with k = L and using the
similar argument above, we can simultaneously drive θ and θ′ to the following points,

θ =
(
h
(

(Wl, bl)
L
l=2, FL

)
, (W2, b2), . . . , (WL, bL)

)
,

θ′ =
(
h
(

(W ′l , b
′
l)
L
l=2, F

′
L

)
, (W ′2, b

′
2), . . . , (W ′L, b

′
L)
)

(3.6)

where h : Ω∗2× . . .×Ω∗L×RN×m → Ω1 is the continuous map from Lemma 3.4.6 which satisfies

FL

(
h
(

(Ŵl, b̂l)
L
l=2, A

)
, (Ŵl, b̂l)

L
l=2

)
= A (3.7)

for every
(

(Ŵl, b̂l), . . . , (ŴL, b̂L), A
)
∈ Ω∗2 × . . .× Ω∗L × RN×nk .

Next, we construct a continuous path starting from θ on which the loss is constant and it
holds at the end point of the path that all parameters from layer 2 till layer L are equal to the
corresponding parameters of θ′. Indeed, by applying Proposition 3.4.8 to the pairs of full rank
matrices (Wl,W

′
l ) for every l ∈ [2, L], we obtain continuous curves W2(λ), . . . ,WL(λ) so that

Wl(0) = Wl,Wl(1) = W ′l and Wl(λ) has full rank for every λ ∈ [0, 1]. For every l ∈ [2, L], let
cl : [0, 1]→ Ω∗l be the curve of layer l defined as

cl
(
λ) =

(
Wl(λ), (1− λ)bl + λb′l

)
.

We consider the curve c : [0, 1]→ Ω given by

c(λ) =
(
h
(

(cl(λ))Ll=2, FL

)
, c2(λ), . . . , cL(λ)

)
.

Then one can easily check that c(0) = θ and c is continuous as all the functions h, c2, . . . , cl are
continuous. Moreover, we have

(
c2(λ), . . . , cL(λ)

)
∈ Ω∗2 × . . . × Ω∗L and thus it follows from

(3.7) that FL(c(λ)) = FL for every λ ∈ [0, 1], which leaves the loss invariant on c.

Since the curve c above starts at θ and has constant loss, we can reset θ to the end point of
this curve, by setting θ = c(1), while keeping θ′ from (3.6), which together give us

θ =
(
h
(

(W ′l , b
′
l)
L
l=2, FL

)
, (W ′2, b

′
2), . . . , (W ′L, b

′
L)
)
,

θ′ =
(
h
(

(W ′l , b
′
l)
L
l=2, F

′
L

)
, (W ′2, b

′
2), . . . , (W ′L, b

′
L)
)
.
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Now the parameters of θ and θ′ already coincide at all the layers, except at the first layer. In the
following, we will construct two continuous paths in Lα, say c1(·) and c2(·), which starts from
θ and θ′ respectively, and then show that they meet at a common point in Lα. Let Ŷ ∈ RN×m

be any matrix so that

ϕ(Ŷ ) ≤ min(Φ(θ),Φ(θ′)). (3.8)

Consider the curve c1 : [0, 1]→ Ω defined as

c1(λ) =
(
h
(

(W ′l , b
′
l)
L
l=2, (1− λ)FL + λŶ

)
, (W ′l , b

′
l)
L
l=2

)
.

Note that c1 is continuous as h is continuous, and it holds:

c1(0) = θ, c1(1) =
(
h
(

(W ′l , b
′
l)
L
l=2, Ŷ

)
, (W ′l , b

′
l)
L
l=2

)
.

It follows from the definition of Φ, c1(λ) and (3.7) that

Φ(c1(λ)) = ϕ(FL(c1(λ))) = ϕ((1− λ)FL + λŶ )

and thus by convexity of ϕ,

Φ(c1(λ)) ≤ (1− λ)ϕ(FL) + λϕ(Ŷ ) ≤ (1− λ)Φ(θ) + λΦ(θ) = Φ(θ),

which implies that c1[0, 1] is entirely contained in Lα. Similarly, we can also construct a curve
c2(·) inside Lα which starts at θ′ and satisfies

c2(0) = θ′, c2(1) =
(
h
(

(W ′l , b
′
l)
L
l=2, Ŷ

)
, (W ′l , b

′
l)
L
l=2

)
.

Till now, we have constructed the curves c1 and c2 which start at θ and θ′ respectively and
meet at the same point c1(1) = c2(1).

To summary, we have shown that starting from any two points in Lα we can find two continuous
curves so that the loss is non-increasing on each curve, and these curves meet at a common
point in Lα, and so Lα has to be connected. Moreover, the point where they meet achieves
the loss value Φ(c1(1)) = ϕ(Ŷ ). From (3.8), ϕ(Ŷ ) can be chosen arbitrarily small, and thus we
conclude that Φ can attain any value arbitrarily close to p∗.

2. Let C be a non-empty connected component of some level set, i.e. C ⊆ Φ−1(α) for some
α ∈ R. Let θ = (Wl, bl)

L
l=1 ∈ C. Similar as above, we first use Lemma 3.4.7 to find a continuous

path from θ to some other point where W2 attains full rank, and the loss is invariant on the
path. From that point, we apply Lemma 3.4.6 with k = 2 to obtain another continuous path
(with constant loss) which leads us to θ′ :=

(
h
(

(W2, b2), F2(θ)
)
, (W2, b2), . . . , (WL, bL)

)
where

h : Ω∗2 → Ω1 is a continuous map satisfying that

F2

(
h
(

(Ŵ2, b̂2), A
)
, (Ŵl, b̂l)

L
l=2

)
= A,

for every point (Ŵl, b̂l)
L
l=1 such that Ŵ2 has full rank, and every A ∈ RN×n2 . Note that θ′ ∈ C

as the loss is constant on the above paths. Consider the following continuous curve

c(λ) =
(
h
(

(λW2, b2), F2(θ)
)
, (λW2, b2), . . . , (WL, bL)

)
for every λ ≥ 1. This curve starts at θ′ since c(1) = θ′. We have F2(c(λ)) = F2(θ) for every
λ ≥ 1 and thus the loss is constant on this curve, meaning that the entire curve belongs to C.
Lastly, the curve c[1,∞) is unbounded as λ goes to infinity, and thus C has to be unbounded.
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�

By the decomposition of sublevel set, Φ−1((−∞, α]) = Φ−1(α) ∪ Φ−1((−∞, α)), it follows that if Φ

has unbounded level sets then its sublevel sets must also be unbounded. We note that the reverse is
not true, e.g. the standard Gaussian distribution function has unbounded sublevel sets but its level
sets are bounded. Given that, the statements of Theorem 3.4.9 together imply that every sublevel
set of Φ must be an unbounded and connected set. While connected sublevel sets of Φ implies that
Φ has a well-behaved loss surface with no bad local valleys, its unbounded level sets could further
imply that all the valleys have to be unbounded, regardless of whether they contain a local/global
minimum or not. Clearly this also implies that Φ has no strict local minima or local maxima.

3.4.3 Large width of one of hidden layers leads to no bad local valleys

In the previous section, we show that if the training samples are linearly independent then every
sublevel set of the loss is connected and unbounded. In this section, we show the first application
of this result in proving absence of bad local valleys on the loss landscape of deep and wide neural
nets with “arbitrary” training data. Same as before, we first prove a few intermediate results before
presenting our main theorem.

In the following, we frequently encounter situations where we are given the product of two matrices
F ∈ RN×n and W ∈ Rn×p and we want to modify some columns of F or rows of W without changing
the value of the product. The following lemma shows that this is always possible when the matrix F
does not have full column rank, that is, rank(F ) < n.

Lemma 3.4.10 Let (F,W, I) be such that F ∈ RN×n,W ∈ Rn×p, rank(F ) < n and I ⊂ {1, . . . , n}
be a subset of columns of F so that rank(F (:, I)) = rank(F ) and Ī the remaining columns. Then
there exists a continuous curve c : [0, 1]→ Rn×p which satisfies the following:

1. c(0) = W and Fc(λ) = FW, ∀λ ∈ [0, 1].

2. The product Fc(1) is independent of F (:, Ī).

Proof: Let r = rank(F ) < n. Since I contains r linearly independent columns of F , the remaining
columns must lie on their span. In other words, there exists E ∈ Rr×(n−r) so that F (:, Ī) = F (:, I)E.

Let P ∈ Rn×n be a permutation matrix which permutes the columns of F according to I so that we
can write F = [F (:, I), F (:, Ī)]P. Consider the continuous curve c : [0, 1]→ Rn×p defined as

c(λ) = PT
[
W (I, :) + λEW (Ī, :)

(1− λ)W (Ī, :)

]
, ∀λ ∈ [0, 1].

It holds c(0) = PT
[
W (I, :)
W (Ī, :)

]
= W. For every λ ∈ [0, 1] :

Fc(λ) = [F (:, I), F (:, Ī)]PPT
[
W (I, :) + λEW (Ī, :)

(1− λ)W (Ī, :)

]
= F (:, I)W (I, :) + F (:, Ī)W (Ī, :) = FW.

Lastly, we have

Fc(1) = [F (:, I), F (:, Ī)]PPT
[
W (I, :) + EW (Ī, :)

0

]
= F (:, I)W (I, :) + F (:, I)EW (Ī, :)

which is independent of F (:, Ī). �

The next lemma will be helpful to prove our main Theorem 3.4.13 where we want to modify the
biases of a subset of neurons at layer k so that the output of this layer (i.e. Fk) achieves full rank.
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Lemma 3.4.11 Given v ∈ Rn with vi 6= vj ∀ i 6= j, and σ : R→ R satisfies Assumption 3.4.2. Let
S ⊆ Rn be defined as S = {σ(v + b1n) | b ∈ R} . Then it holds Span(S) = Rn.

Proof: Suppose by contradiction that dim(Span(S)) < n. Then there exists λ ∈ Rn, λ 6= 0 such
that λ ⊥ Span(S), and thus it holds

∑n
i=1 λiσ(vi + b) = 0 for every b ∈ R. We assume w.l.o.g. that

λ1 6= 0 then it holds

σ(v1 + b) = −
n∑
i=2

λi
λ1
σ(vi + b), ∀ b ∈ R.

By a change of variable, we have

σ(c) = −
n∑
i=2

λi
λ1
σ(c+ vi − v1), ∀ c ∈ R,

which contradicts Assumption 3.4.2. Thus Span(S) = Rn. �

Lastly we recall a standard result from topology (e.g., see Apostol (1974), Theorem 4.23, p. 82).

Proposition 3.4.12 Let f : Rm → Rn be a continuous function. If U ⊆ Rn is an open set then
f−1(U) is also open.

We are now ready to state our main result in this section.

Theorem 3.4.13 Let Assumption 3.4.1 and Assumption 3.4.2 hold. Suppose that there exists a
layer k ∈ [1, L− 1] such that nk ≥ N and nk+1 > . . . > nL. Then the following hold:

1. The loss Φ has no bad local valleys.

2. If k ≤ L− 2 then every local valley of Φ is unbounded.

Proof:

1. The high level idea is that inside every local valley of the loss one can find a point where the
feature representations of all the training samples are linearly independent at the wide layer k,
and thus an application of Theorem 3.4.9 to the subnetwork from layer k to the output layer
yields the result. We present the proof details below. Let C be a connected component of some
strict sublevel set Lsα = Φ−1((−∞, α)), for some α > p∗. By Proposition 5.1.1, Lsα is an open
set and thus C must be open.

Step 1: Finding a point inside C where Fk has full rank. Let θ ∈ C be such that the pre-
activation outputs at the first hidden layer are distinct for all training samples. Note that such
θ always exist since Assumption 3.4.4 implies that the set of W1 where this does not hold has
Lebesgue measure zero, whereas C has positive measure. This combined with Assumption 3.4.1
implies that the (post-activation) outputs at the first hidden layer are distinct for all training
samples. Now one can view these outputs at the first layer as inputs to the next layer and
argue similarly. By repeating this argument and using the fact that C has positive measure,
we conclude that there exists θ ∈ C such that the outputs at layer k − 1 are distinct for all
training samples, i.e. (Fk−1)i: 6= (Fk−1)j: for every i 6= j. Let V be the pre-activation output
(without bias term) at layer k, in particular V = Fk−1Wk = [v1, . . . , vnk ] ∈ RN×nk . Since Fk−1

has distinct rows, one can easily perturb Wk so that every column of V has distinct entries.
Note here that the set of Wk where this does not hold has measure zero whereas C has positive
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measure. From here we conclude that C must contain a point where every vj has distinct
entries. To simplify notation, let a = bk ∈ Rnk , then by definition,

Fk = [σ(v1 + 1Na1), . . . , σ(vnk + 1Nank)]. (3.9)

Suppose that Fk has low rank, otherwise we are done. Let r = rank(Fk) < N ≤ nk and
I ⊂ {1, . . . , nk} , |I| = r be the subset of columns of Fk so that rank(Fk(:, I)) = rank(Fk),

and Ī the remaining columns. By applying Lemma 3.4.10 to (Fk,Wk+1, I), we can follow
a continuous path with invariant loss (i.e. entirely contained inside C) to arrive at some
point where FkWk+1 is independent of Fk(: .Ī). It remains to show how to change Fk(:, Ī) by
modifying certain parameters so that Fk has full rank. Let p = |Ī| = nk−r and Ī = {j1, . . . , jp} .
From (3.9) we have

Fk(:, Ī) = [σ(vj1 + 1Naj1), . . . , σ(vjp + 1Najp)].

Let col(·) denotes the column space of a matrix. Then dim(col(Fk(:, I))) = r < N. Since vj1
has distinct entries and σ satisfies Assumption 3.4.2, Lemma 3.4.11 implies that there must
exist aj1 ∈ R so that σ(vj1 + 1Naj1) /∈ col(Fk(:, I)), because otherwise we have

Span {σ(vj1 + 1Naj1) | aj1 ∈ R} ∈ col(Fk(:, I))

whose dimension is strictly smaller than N and thus contradicts Lemma 3.4.11. So now, we
can pick one such value for aj1 and follow a direct line segment between its current value and
the new value. Note that the loss is invariant on this segment since any changes on aj1 only
affects Fk(:, Ī) which however has no influence on the loss by above construction. Moreover, at
the new value of aj1 the rank of Fk has increased by 1. Since nk ≥ N by assumption, we have
p ≥ N − r and thus one can choose

{
aj2 , . . . , ajN−r

}
in a similar way to increase the rank of

Fk, and finally obtain rank(Fk) = N.

Step 2: Applying Theorem 3.4.9 to the subnetwork above k. Suppose that we have found from
previous step a θ = ((W ∗l , b

∗
l )
L
l=1) ∈ C so that Fk has full rank. Let g : Ωk+1 × . . .× ΩL → R

be the function defined as

g
(

(Wl, bl)
L
l=k+1

)
= Φ

(
(W ∗l , b

∗
l )
k
l=1, (Wl, bl)

L
l=k+1

)
(3.10)

We recall that C is a connected component of Lsα. It holds g
(

(W ∗l , b
∗
l )
L
l=k+1

)
= Φ(θ) ≤ α. Now

one can view g as a loss function for the subnetwork from layer k till layer L where Fk now plays
the role of the training data to this subnetwork. Since rank(Fk) = N and nk+1 > . . . > nL,

an application of Theorem 3.4.9 to this subnetwork yields that g has connected sublevel sets
and g can attain any value arbitrarily close to p∗. Let ε ∈ (p∗, α) and (W ′l , b

′
l)
L
l=k+1 be any

point such that g
(

(W ′l , b
′
l)
L
l=k+1

)
≤ ε. Since both (W ∗l , b

∗
l )
L
l=k+1 and (W ′l , b

′
l)
L
l=k+1 belongs to

the α-sublevel set of g, which is a connected set, there must exist a continuous path from
(W ∗l , b

∗
l )
L
l=k+1 to (W ′l , b

′
l)
L
l=k+1 on which the value of g is not larger than α. This combined

with (3.10) implies that there is also a continuous path from θ =
(

(W ∗l , b
∗
l )
k
l=1, (W

∗
l , b
∗
l )
L
l=k+1

)
to θ′ :=

(
(W ∗l , b

∗
l )
k
l=1, (W

′
l , b
′
l)
L
l=k+1

)
on which the loss Φ is not larger than α. Since C is

connected, it must hold θ′ ∈ C. Moreover, we have Φ(θ′) = g
(

(W ′l , b
′
l)
L
l=k+1

)
≤ ε. Since ε can

be chosen arbitrarily small and close to p∗, we conclude that the loss Φ can be made arbitrarily
small inside C, and thus Φ has no bad local valleys.

2. Let C be a local valley, which by Definition 3.3.7 is a connected component of some strict
sublevel set Lsα = Φ−1((−∞, α)). According the the proof of the first statement above, one can
find a θ = (W ∗l , b

∗
l )
L
l=1 ∈ C so that Fk(θ) has full rank. Now one can view Fk(θ) as the training

data for the subnetwork from layer k till layer L. The new loss is defined for this subnetwork as

g
(

(Wl, bl)
L
l=k+1

)
= Φ

(
(W ∗l , b

∗
l )
k
l=1, (Wl, bl)

L
l=k+1

)
.
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Figure 3.1: Left: an example function with exponential tails where local minima do NOT exist
but local/global valleys still exist. Right: a different function which satisfies every local minimum is
a global minimum, but bad local valleys still exist at both infinities (exponential tails) where local
search algorithms easily get stuck.

By our assumptions, σ satisfies Assumption 3.4.1 and nk+1 > . . . > nL, thus the above subnet-
work with the new loss g and training data Fk(θ) satisfy all the conditions of Theorem 3.4.9, and
so it follows that g has unbounded level set components. Let β := g

(
(W ∗l , b

∗
l )
L
l=k+1

)
= Φ(θ) <

α. Let E be a connected component of the level set g−1(β) which contains (W ∗l , b
∗
l )
L
l=k+1.

Let D =
{(

(W ∗l , b
∗
l )
k
l=1, (Wl, bl)

L
l=k+1

) ∣∣∣ (Wl, bl)
L
l=k+1 ∈ E

}
. Then D is connected and un-

bounded since E is connected and unbounded. It holds for every θ′ ∈ D that Φ(θ′) = β,

and thus D ⊆ Φ−1(β) ⊆ Lsα, where the last inclusion follows from β < α. Moreover, we have
θ =

(
(W ∗l , b

∗
l )
k
l=1, (W

∗
l , b
∗
l )
L
l=k+1

)
∈ D and also θ ∈ C, it follows that D ⊆ C since C is already

the maximal connected component of Lsα. Since D is unbounded, C must also be unbounded,
which finishes the proof.

�

The conditions of Theorem 3.4.13 are satisfied for any strictly monotonic and piecewise linear
activation function such as Leaky-ReLU (see Lemma 3.4.3). We note that for Leaky-ReLU and
other similar homogeneous activation functions, the second statement of Theorem 3.4.13 is quite
straightforward. Indeed, if one scales all parameters of one hidden layer by some arbitrarily large
factor k > 0 and the weight matrix of the following layer by 1/k then the network output will be
unchanged, and so every connected component of every level set (also sublevel set) must extend
to infinity and thus be unbounded. However, for general non-homogeneous activation functions,
the second statement is non-trivial. The first statement of Theorem 3.4.13 implies that there is a
continuous path from any point in parameter space on which the loss is non-increasing and gets
arbitrarily close to p∗. At this point, one might wonder if a function satisfies “every local minimum
is a global minimum” would automatically contain no bad local valleys. Unfortunately this is not
true in general. Indeed, Figure 3.1 shows two counter-examples where a function does not have any
bad local mimina, but bad local valleys still exist. The reason for this lies at the fact that bad local
valleys generally need not contain any critical point though in theory they can have very large volume
or even be unbounded. Thus any pure results on global optimality of local minima with no further
information on the loss would not be sufficient to guarantee convergence of local search algorithms to
a global minimum, especially if they are initialized in such regions. Similar to the second statement
of Theorem 3.4.13, the first statement on one hand can guarantee absence of strict local minima, but
on the other hand cannot rule out the possibility of non-strict bad local minima. This suggests that
it might be desirable to have in practice both properties for the loss surface of neural nets, that is,
there are no bad local valleys and every local minimum is a global minimum. Overall, the statements
of Theorem 3.4.13 altogether imply that every local valley must be an “unbounded” global valley in
which the loss can attain any value arbitrarily close to p∗.
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3.4.4 Large width of first hidden layer leads to connected sublevel sets

In the previous section (see Theorem 3.4.13), we prove that if one of the hidden layers has at least
N neurons then the loss surface has no bad local valleys. In this section, we analyze a special case
of the network where the first hidden layer has at least 2N neurons, that is, n1 ≥ 2N. Under this
regime, we show that every sublevel set of the loss Φ must be connected.

Given two points in parameter space, the first step of our proof is show that there exist two continuous
paths starting from each point separately so that these paths lead us to two new points where the
output matrices at the first hidden layer F1 = σ(XW1 + 1Nb

T
1 ) ∈ RN×n1 have full row rank and the

loss is constant on each path. This step can be done by the following lemma, in which the second
property shows that the pre-activation output at the second layer σ(XW1 + 11b

T
1 )W2 is invariant on

the path and so the loss stays constant.

Lemma 3.4.14 Let (X,W, b, V ) ∈ RN×d × Rd×n × Rn × Rn×p. Let σ : R→ R satisfy Assumption
3.4.2. Suppose that n ≥ N and X has distinct rows. Let Z = σ(XW +1Nb

T )V. There is a continuous
curve c : [0, 1]→ Rd×n × Rn × Rn×p with c(λ) = (W (λ), b(λ), V (λ)) satisfying:

1. c(0) = (W, b, V ).

2. σ
(
XW (λ)) + 1Nb(λ)T

)
V (λ) = Z, ∀λ ∈ [0, 1].

3. rank
(
σ
(
XW (1) + 1Nb(1)T

))
= N.

Proof: Let F = σ(XW + 1Nb
T ) ∈ RN×n. If F already has full rank then we are done. Otherwise

let r = rank(F ) < N ≤ n. Let I denote a set of column indices of F so that rank(F (:, I)) = r and Ī
the remaining columns. By applying Lemma 3.4.10 to (F, V, I), we can find a continuous path V (λ)

so that we will arrive at some point where FV (λ) is invariant on the path and it holds at the end
point of the path that FV is independent of F (:, Ī). This means that we can arbitrarily change the
values of W (:, Ī) and b(Ī) without affecting the value of Z, because any changes of these variables
are absorbed into F (:, Ī) which anyway has no influence on FV. Thus it is sufficient to show that
there exist W (:, Ī) and b(Ī) for which F has full rank. Let p = n − r and Ī = {j1, . . . , jp} . Let
A = XW then A(:, Ī) := [aj1 , . . . , ajp ] = XW (:, Ī). By assumption X has distinct rows, one can
choose W (:, Ī) so that each ajk ∈ RN has distinct entries. Then we have

F (:, Ī) = [σ(aj1 + 1Nbj1), . . . , σ(ajp + 1Nbjp)].

Let col(·) denotes the column space of a matrix. It holds dim(col(F (:, I))) = r < N. Since aj1 has dis-
tinct entries, Lemma 3.4.11 implies that there must exist bj1 ∈ R so that σ(aj1 +1Nbj1) /∈ col(F (:, I)),

because otherwise Span {σ(aj1 + 1Nbj1) | bj1 ∈ R} ∈ col(F (:, I)) whose dimension is strictly smaller
than N , which contradicts Lemma 3.4.11. So it means that there is bj1 ∈ R so that rank(F ) increases
by 1. By assumption n ≥ N, it follows that p ≥ N − r, and thus we can choose

{
bj2 , . . . , bjN−r

}
similarly to obtain rank(F ) = N. �

Given two points θ, θ′ in parameter space where the matrices F1(θ), F1(θ′) have full row rank, our
next step is to make the parameters of the first layer of these two points identical to each other. This
can be done by finding a continuous path from θ to some other point where the weights of the first
layer are equal to that of θ′ and the loss is constant on the path, which is shown next.

Lemma 3.4.15 Let (X,W, V,W ′) ∈ RN×d×Rd×n×Rn×p×Rd×n. Let σ : R→ R satisfy Assumption
3.4.2. Suppose that n ≥ 2N and rank(σ(XW )) = N, rank(σ(XW ′)) = N. Then there is a continuous
curve c : [0, 1]→ Rd×n × Rn×p with c(λ) = (W (λ), V (λ)) which satisfies the following:
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1. c(0) = (W,V ).

2. σ(XW (λ))V (λ) = σ(XW )V, ∀λ ∈ [0, 1].

3. W (1) = W ′.

Proof: We need to show that there is a continuous path from (W,V ) to (W ′, V ′) for some
V ′ ∈ Rn×p, so that the output function, defined by Z := σ(XW )V, is invariant along the path. Let
F = σ(XW ) ∈ RN×n and F ′ = σ(XW ′). It holds Z = FV. Let I resp. I ′ denote the maximum
subset of linearly independent columns of F resp. F ′ so that rank(F (:, I)) = rank(F (:, I ′)) = N, and Ī
and Ī ′ be their complements. By the rank condition, we have |I| = |I ′| = N. Since rank(F ) = N < n,

we can apply Lemma 3.4.10 to the tuple (F, V, I) to arrive at some point where the output Z is
independent of F (:, Ī). From here, we can update W (:, Ī) arbitrarily so that it does not affect Z
because any change to these weights only lead to changes on F (:, Ī) which however has no influence
on Z. So by taking a direct line segment from the current value of W (:, Ī) to W ′(:, I ′), we achieve
W (:, Ī) = W ′(:, I ′). We refer to this step below as a copy step. Note here that since n ≥ 2N by
assumption, we must have |Ī| ≥ |I ′|. Moreover, if |Ī| > |I ′| then we can simply ignore the redundant
space in W (:, Ī).

Now we already copy W ′(:, I ′) into W (:, Ī), so it holds that rank(F (:, Ī)) = rank(F ′(:, I ′)) = N.

Let K = I ′ ∩ Ī and J = I ′ ∩ I be disjoint subsets so that I ′ = K ∪ J. Suppose w.l.o.g. that the
above copy step has been done in such a way that W (:, Ī ∩ I ′) = W ′(:,K). Now we apply Lemma
3.4.10 to (F, V, Ī) to arrive at some point where Z is independent of F (:, I), and thus we can easily
obtain W (:, I ∩ I ′) = W ′(:, J) by taking a direct line segment between these weights. So far, all
the rows of W ′(:,K ∪ J) have been copied into W (:, I ′) at the right positions so we obtain that
W (:, I ′) = W ′(:, I ′). It follows that rank(F (:, I ′)) = rank(F ′(:, I ′)) = N and thus we can apply Lemma
3.4.10 to (F, V, I ′) to arrive at some other point where Z is independent of F (:, Ī ′). From here we can
easily obtain W (:, Ī ′) = W ′(:, Ī ′) by taking a direct line segment between these variables. Till now we
already haveW = W ′.Moreover, all the paths which we have followed leave the output Z invariant. �

We are now ready to state the main result of this section.

Theorem 3.4.16 Let Assumption 3.4.1 and Assumption 3.4.2 hold. Suppose that n1 ≥ 2N and
n2 > . . . > nL. Then the following hold:

1. Every sublevel set of Φ is connected.

2. Every connected component of every level set of Φ is unbounded.

Proof:

1. Let θ = (Wl, bl)
L
l=1, θ

′ = (W ′l , b
′
l)
L
l=1 be arbitrary points in some sublevel set Lα. It is sufficient

to show that there is a connected path between θ and θ′ on which the loss is not larger than α.
The output at the first layer is given by

F1(θ) = σ([X,1N ][WT
1 , b1]T ), F1(θ′) = σ([X,1N ][W ′T1 , b′1]T ).

First, by applying Lemma 3.4.14 to (X,W1, b1,W2), we can assume that F1(θ) has full rank,
because otherwise there is a continuous path starting from θ to some other point where the
rank condition is fulfilled and the loss is invariant on the path, and so we can reset θ to this
new point. Similarly, we can assume that F1(θ′) has full rank.

Next, by applying Lemma 3.4.15 to
(

[X,1N ], [WT
1 , b1]T ,W2, [W

′T
1 , b′1]T

)
, and with the similar

argument above, we can drive θ to some other point where the parameters of the first hidden
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layer agree with the corresponding ones of θ′. So we can assume w.l.o.g. that (W1, b1) = (W ′1, b
′
1).

Note that we do not modify θ′ but θ at this step, and thus F1(θ′) still has full rank.

Once the first hidden layer of θ and θ′ coincide, one can view the output of this layer, say
F1 := F1(θ) = F1(θ′) with rank(F1) = N , as the new training data for the subnetwork from
layer 1 till layer L (given that (W1, b1) is fixed). This subnetwork and the new data F1 satisfy all
the conditions of Theorem 3.4.9, and so it follows that the loss Φ restricted to this subnetwork
has connected sublevel sets, which implies that there is a connected path between (Wl, bl)

L
l=2

and (W ′l , b
′
l)
L
l=2 on which the loss is not larger than α. This indicates that there is also a

connected path between θ and θ′ in Lα and so Lα must be connected.

2. Let θ ∈ Ω be an arbitrary point. Denote F1 = F1(θ) and let I ⊂ {1, . . . , N} be such that
rank(F1(:, I)) = rank(F1). Since rank(F1) ≤ min(N,n1) < n1, we can apply Lemma 3.4.10 to
the tuple (F1,W2, I) to find a continuous path W2(λ) which drives θ to some other point where
the output at 2nd layer F1W2 is independent of F1(:, Ī). Note that the network output at
2nd layer is invariant on this path and hence the entire path belongs to the same level set
component with θ. From that point, one can easily scale (W1(:, Ī), b1(Ī)) to arbitrarily large
values without affecting the output. Since this path has constant loss and is unbounded, it
follows that every level set component of Φ is unbounded.

�

Theorem 3.4.16 shows a stronger result than Theorem 3.4.13 as it not only implies that there are
no bad local valleys but also there is a unique global valley. Equivalently, all finite global minima
(if exist) must be connected. This can be seen as a generalization of previous result Venturi et al.
(2018) from one hidden layer networks and square loss to arbitrary deep networks and convex losses.
Interestingly, recent work Draxler et al. (2018); Garipov et al. (2018) have empirically shown that
different global minima of several existing CNN architectures can be connected by a continuous path
on which the loss has similar values. While our results are not directly applicable to these models, we
consider this as a stepping stone for such an extension in future work. Similar to our main results in
the previous sections, the unboundedness property of level sets as shown in Theorem 3.4.16 implies
that Φ has no bounded local valleys nor strict local extrema.

3.4.5 Extensions to ReLU activation function

In this section, we show an extension of our results from the previous sections to the ReLU activation
function. This is done by removing Assumption 3.4.1 from Theorem 3.4.13 and Theorem 3.4.16.

Theorem 3.4.17 All the following hold under Assumption 3.4.2:

1. If min {n1, . . . , nL−1} ≥ N then the loss function Φ has no bad local valleys.

2. If min {n1, . . . , nL−1} ≥ 2N then every sublevel set of Φ is connected.

Proof:

1. Let θ = (Wl, bl)
L
l=1 be an arbitrary point of some strict sublevel set Lsα, for some α > p∗.

We will show that there is a continuous descent path starting from θ on which the loss is
non-increasing and gets arbitrarily close to p∗. Indeed, for every ε arbitrarily close to p∗ and
ε ≤ α, let Ŷ ∈ RN×m be such that ϕ(Ŷ ) ≤ ε. Since X has distinct rows, n1 ≥ N, and the
activation σ satisfies Assumption 3.4.2, an application of Lemma 3.4.14 to (X,W1, b1,W2)

shows that there is a continuous path with constant loss which leads θ to some other point
where the output at the first hidden layer is full rank. So we can assume w.l.o.g. that it holds
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for θ that rank(F1) = N. By assumption n1 ≥ N and F1 ∈ RN×n1 , it follows that F1 must have
distinct rows, and thus by applying Lemma 3.4.14 again to (F1,W2, b2,W3) we can assume
w.l.o.g. that rank(F2) = N. By repeating this argument to higher layers using our assumption
on the width, we can eventually arrive at some θ = (Wl, bl)

L
l=1 where rank(FL−1) = N. Thus

there must exist W ∗L−1 ∈ RnL−1×m so that FL−1W
∗
L = Ŷ − 1Nb

T
L. Consider the line segment

WL(λ) = (1− λ)WL + λW ∗L, then it holds by convexity of ϕ that

Φ
(

(Wl, bl)
L−1
l=1 , (WL(λ), bL)

)
= ϕ

(
FL−1WL(λ) + 1Nb

T
L

)
= ϕ

(
(1− λ)(FL−1WL + 1Nb

T
L) + λ(FL−1W

∗
L + 1Nb

T
L)
)

≤ (1− λ)ϕ(FL) + λϕ(Ŷ )

< (1− λ)α+ λε

≤ α.

Thus the whole line segment is contained in Lsα. For λ = 1 it follows that
(

(Wl, bl)
L−1
l=1 , (W

∗
L, bL)

)
∈

Lsα. Moreover, it holds Φ
(

(Wl, bl)
L−1
l=1 , (W

∗
L, bL)

)
= ϕ(Ŷ ) ≤ ε. Since ε can be chosen arbitrarily

close to p∗, we conclude that Φ can be made arbitrarily close to p∗ in every strict sublevel set
which implies that Φ has no bad local valleys.

2. Our first step is similar to the first step in the proof of Theorem 3.4.16, which we repeat below
for completeness. Let θ = (Wl, bl)

L
l=1, θ

′ = (W ′l , b
′
l)
L
l=1 be arbitrary points in some sublevel set

Lα. It is sufficient to show that there is a connected path between θ and θ′ on which the loss is
not larger than α. In the following, we denote Fk and F ′k as the output at a layer k for θ and
θ′ respectively. The output at the first layer is:

F1 = σ([X,1N ][WT
1 , b1]T ), F ′1 = σ([X,1N ][W ′T1 , b′1]T ).

By applying Lemma 3.4.14 to (X,W1, b1,W2) and (X,W ′1, b
′
1,W

′
2) we can assume w.l.o.g. that

both F1 and F ′1 have full rank, since otherwise there is a continuous path starting from each
point and leading to some other point where the rank condition is fulfilled and the network
output at second layer is invariant on the path. Once F1 and F ′1 have full rank, we can apply
Lemma 3.4.15 to

(
[X,1N ], [WT

1 , b1]T ,W2, [W
′T
1 , b′1]T

)
in order to drive θ to some other point

where the parameters of the first layer are all equal to the corresponding ones of θ′. So we can
assume w.l.o.g. that (W1, b1) = (W ′1, b

′
1).

Once the network parameters of θ and θ′ coincide at the first hidden layer, we can view the
output of this layer, which is equal for both points (i.e., F1 = F ′1), as the new training data
for the subnetwork from layer 2 till layer L. Same as before, we first apply Lemma 3.4.14 to
(F1,W2, b2,W3) and (F ′1,W

′
2, b
′
2,W

′
3) to drive θ and θ′ respectively to other new points where

both F2 and F ′2 have full rank. Note that this path only acts on (W2, b2,W3) and thus leaves
everything else below layer 2 invariant, in particular we still have F1 = F ′1. Then we can apply
Lemma 3.4.15 again to the tuple

(
[F1,1N ], [WT

2 , b2]T ,W3, [W
′T
2 , b′2]T

)
to drive θ to some other

point where (W2, b2) = (W ′2, b
′
2).

By repeating the above argument to the last hidden layer, we can make all network parameters
of θ and θ′ coincide for all layers, except the output layer. In particular, the path that each θ
and θ′ has followed has invariant loss. The output of the last hidden layer for these points is
A := FL−1 = F ′L−1. The loss at these two points can be rewritten as

Φ(θ) = ϕ
(

[A,1N ]

[
WL

bTL

])
, Φ(θ′) = ϕ

(
[A,1N ]

[
W ′L
b′TL

])
.
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Since ϕ is convex, the line segment

(1− λ)

[
WL

bTL

]
+ λ

[
W ′L
b′TL

]
must yield a continuous descent path between (WL, bL) and (W ′L, b

′
L), and so the loss of every

point on this path cannot be larger than α. Moreover, this path connects θ and θ′ together,
and thus Lα has to be connected.

�

It is clear that the conditions of Theorem 3.4.17 are still far from the practical settings. These
conditions are also significantly stronger than that of Theorem 3.4.16 as they requires all the hidden
layers to be wide enough. Nevertheless, we note that the similar conditions have also been used by
recent theoretical work Allen-Zhu et al. (2018b); Du et al. (2018a) in proving convergence guarantees
of gradient descent methods to a zero-training-error solution. At the moment, we find these results
interesting as they seem to suggest that Leaky-ReLU might lead to a much easier optimization
landscape than ReLU.

3.5 Summary

For deep fully connected networks having a sufficiently wide hidden layer and piecewise linear
activation functions such as Leaky-ReLU, we show that every sublevel set of the loss function is
connected, and every connected component of every level set is unbounded. This leads to several
interesting implications on their optimization landscape such as:

1. There is no bad (or bounded) local valley, no strict local minima nor strict local maxima

2. There is a continuous descent path from any point in parameter space on which the loss is
non-increasing and gets arbitrarily close to the infimum of the loss.

3. There is a unique global valley, and thus all finite global minima (if exist) are connected.

There are two open problems that emerge from this result: 1) how to extend our current analysis to
the case of convolutional neural networks as analyzed in Chapter 2, and 2) whether it is possible to
relax the current critical assumption on the wide layer (i.e. nk ≥ N) and bring it closer to practice?
In the next chapter, we will address the second problem by identifying a new class of network
architectures which are practically relevant and provably have no bad local valleys. By adding
skip-connections from a random subset of N hidden neurons (possibly from multiple hidden layers) to
the output layer, we show that the above critical condition can be relaxed to n1 + . . .+ nL−1 ≥ N.



Chapter 4

CNNs with skip-connections to the
output layer have no bad local valleys

4.1 Introduction

Having gained insights from the previous chapters, we are motivated to come up with a class of
network architectures which are more practically relevant and provably have a nice loss surface.
In this chapter, we identify a family of deep networks with skip connections to the output layer
whose loss landscape has no bad local valleys, that is, there is a continuous path from anywhere in
parameters space on which the loss is non-increasing and gets arbitrarily close to a global minimum.
(see Figure 4.1 for the illustration). Our setting is for the empirical loss and there are no distributional
assumptions on the training data. Moreover, we study directly the standard loss functions such as
cross-entropy loss in deep learning for multi-class problems. There are little assumptions on the
network structure which can be arbitrarily deep and can have convolutional layers (weight sharing)
and skip-connections between hidden layers. From a practical perspective, one can generate an
architecture which fulfills our conditions by taking an existing CNN architecture and then adding
skip-connections from a random subset of N neurons (N is the number of training samples), possibly
from multiple hidden layers, to the output layer (see Figure 4.2 for an illustration). For these networks
we show that there always exists a continuous path from any point in parameter space on which the
loss is non-increasing and gets arbitrarily close to zero. We note that this implies the loss landscape
has no strict local minima, but theoretically non-strict local minima can still exist. Beside that, we
show that the loss has also no local maxima.

Bad local valleys

Global Minimum Global Minimum

Figure 4.1: An example function with bad local valleys (left) and without bad local valley (right).
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Beside the theoretical analysis, we show in experiments that despite achieving zero training error,
the presented class of networks generalize well in practice when trained with stochastic gradient
descent (SGD) whereas an alternative training procedure guaranteed to achieve zero training error
has significantly worse generalization performance and is overfitting. Thus the presented class of
networks offers an interesting test bed for future work to theoretically study the implicit bias of SGD.
All our main results in this chapter have been published at Nguyen et al. (2019).

4.2 Description of network architecture

We consider a family of deep neural networks which have d input units, H hidden units, m output
units and satisfy the following conditions:

1. Every hidden unit of the first layer can be connected to an arbitrary subset of input units.

2. Every hidden unit at higher layers can take as input an arbitrary subset of hidden units from
(multiple) lower hidden layers.

3. Any subgroup of hidden units lying on the same layer can have non-shared or shared weights,
in the later case their number of incoming units have to be equal.

4. There exist N hidden units which are connected to the output nodes with independent weights
(N denotes the number of training samples).

5. The output of every hidden unit j in the network, denoted as fj : Rd → R, is given as

fj(x) = σj

(
bj +

∑
k:k→j

fk(x)uk→j

)
where x ∈ Rd is an input vector of the network, σj : R→ R is the activation function of unit j,
bj ∈ R is the bias of unit j, and uk→j ∈ R the weight from unit k to unit j.

This definition covers a class of deep fully connected and convolutional neural networks with
an additional condition on the number of connections to the output layer. In particular, while
conventional architectures have just connections from the last hidden layer to the output, we require
in our setting that there must exist at least N neurons, “regardless” of their hidden layer, that are
connected to the output layer. Essentially, this means that if the last hidden layer of a traditional
network has just L < N neurons then one can add connections from N − L neurons in the hidden
layers below it to the output layer so that the network fulfills our conditions.

Similar skip-connections have been used in DenseNet (Huang et al., 2017) which are different from
identity skip-connections as used in ResNets (He et al., 2016). In Figure 4.2 we illustrate a network
with and without skip connections to the output layer which is analyzed in this chapter. We note
that several architectures like DenseNets Huang et al. (2017) already have skip-connections between
hidden layers in their original architecture, whereas our special skip-connections go from hidden
layers directly to the output layer. As our framework allow both kinds to exist in the same network
(see Figure 4.2 for an example), we would like to separate them from each other by making the
convention that in the following skip-connections, if not stated otherwise, always refer to ones which
connect hidden neurons to output neurons.

We denote by d the dimension of the input and index all neurons in the network from the input layer
to the output layer as 1, 2, . . . , d, d+ 1, . . . , d+H, d+H + 1, . . . , d+H +m which correspond to d
input units, H hidden units and m output units respectively. As we only allow directed arcs from
lower layers to upper layers, it follows that k < j for every k → j. Let N be the number of training
samples. Suppose that there are M hidden neurons which are directly connected to the output with
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Figure 4.2: Left: An example neural network represented as directed acyclic graph. Right: The
same network with skip connections added from a subset of hidden neurons to the output layer. All
neurons with the same color can have shared or non-shared weights.

independent weights where it holds N ≤ M ≤ H. Let {p1, . . . , pM} with pj ∈ {d+ 1, . . . , d+H}
be the set of hidden units which are directly connected to the output units. Let in(j) be the
set of incoming nodes to unit j and uj = [uk→j ]k∈in(j) the weight vector of the j-th unit. Let
U = (ud+1, . . . , ud+H , bd+1, . . . , bd+H) denote the set of all weights and biases of all hidden units in
the network. Let V ∈ RM×m be the weight matrix which connects the M hidden neurons to the m
output units of the network.

An important quantity in the following is the matrix Ψ ∈ RN×M defined as

Ψ =

 fp1(x1) . . . fpM (x1)
...

...
fp1(xN ) . . . fpM (xN )

 (4.1)

where (xi)
N
i=1 is the set of training samples. As Ψ depends on U , we write ΨU or Ψ(U) as a function

of U . Let G ∈ RN×m be the output of the network for all training samples. In particular, Gij is the
value of the j-th output neuron for the training sample xi. By definition we have

Gij = 〈Ψi:, V:j〉 =

M∑
k=1

fpk(xi)Vkj , ∀i ∈ [N ], j ∈ [m]

4.2.1 Empirical risk minimization

We consider the same general empirical risk as defined in Section 1.1, that is,

Φ(U, V ) = ϕ(G(U, V ))

where G(U, V ) = Ψ(U)V ∈ RN×m represents the output of the network for all training samples
at the given set of network parameters (U, V ), and ϕ : RN×m → R is any loss function satisfying
Assumption 1.1.1 such as the standard cross-entropy loss, square loss and multiclass Hinge-loss.
Similar to the previous chapters, let us define in the following,

p∗ := inf
G∈RN×m

ϕ(G)

which serves as a lower bound on our training objective Φ.
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4.3 Main results

The following conditions are required for our main result to hold.

Assumption 4.3.1 1. All activation functions {σd+1, . . . , σd+H} are real analytic and strictly
increasing

2. Among M neurons {p1, . . . , pM} which are connected to the output units, there exist N ≤M
neurons, say w.l.o.g. {p1, . . . , pN}, such that one of the following conditions hold:

• For every 1 ≤ j ≤ N : σpj is bounded and limt→−∞ σpj (t) = 0

• For every 1 ≤ j ≤ N : σpj is the softplus activation (4.2), and there exists a backward
path from pj to the first hidden layer s.t. on this path there is no neuron which has
skip-connections to the output or shared weights with other skip-connection neurons.

3. The input patches of different training samples are distinct. In particular, let n1 be the number
of units in the first hidden layer and denote by Si for i ∈ [d + 1, d + n1] their input support,
then for all r 6= s ∈ [N ], and i ∈ [d+ 1, d+ n1], it holds xr|Si 6= xs|Si .

The first condition of Assumption 4.3.1 is satisfied for softplus, sigmoid, tanh, etc, whereas the second
condition is fulfilled for sigmoid and softplus. For softplus activation function (smooth approximation
of ReLU),

σγ(t) =
1

γ
log(1 + eγt), for some γ > 0, (4.2)

we require an additional assumption on the network architecture. The third condition is always
satisfied for fully connected networks if the training samples are distinct. For CNNs, this condition
means that the corresponding input patches across different training samples are distinct. This could
be potentially violated if the first convolutional layer has very small receptive fields. However, if this
condition is violated for the given training set then after an arbitrarily small random perturbation
of all training samples it will be satisfied with probability 1. Note that the M neurons which are
directly connected to the output units can lie on different hidden layers in the network. Moreover,
there is no condition on the width of every individual hidden layer as long as the total number of
hidden neurons in the network satisfies n1 + . . .+ nL−1 ≥ N so that our condition M ≥ N is feasible.

Overall, we would like to stress that Assumption 4.3.1 covers a quite large class of interesting network
architectures but nevertheless allows us to show quite strong results on their empirical loss landscape.

The following key lemma shows that for almost all U , the matrix Ψ(U) has full rank.

Lemma 4.3.2 Under Assumption 4.3.1, the set of U such that Ψ(U) has not full rank N has
Lebesgue measure zero.

Proof: We assume w.l.o.g. that {p1, . . . , pN} is a subset of the neurons with skip connections to the
output layer and satisfy Assumption 4.3.1. In the following, we will show that there exists a weight
configuration U such that the submatrix Ψ1:N,1:N has full rank. Using then that the determinant is
an analytic function together with Lemma 2.2.2, we will conclude that the set of weight configurations
U such that Ψ has not full rank has Lebesgue measure zero.

We remind that all the hidden units in the network are indexed from the first hidden layer till the
higher layers as d+ 1, . . . , d+H. For every hidden neuron j ∈ [d+ 1, d+H], uj denotes the associated
weight vector

uj = [uk→j ]k∈in(j) ∈ R|in(j)|, where in(j) = the set of incoming units to unit j.
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Let n1 be the number of units of the first hidden layer. For every neuron j from the first hidden
layer, let us define the pre-activation output gj ,

gj(xi) =
∑
k→j

(xi)kuk→j .

Due to Assumptions 4.3.1 (condition 3), we can always choose the weights {ud+1, . . . , ud+n1
} so

that the output of every neuron in the first layer is distinct for different training samples, that is
gj(xi) 6= gj(xi′) for every j ∈ [d + 1, d + n1] and i 6= i′. For every neuron j ∈ [d + n1 + 1, d + H]

in the higher layers we choose the weight vector uj such that it has exactly one 1 and 0 elsewhere.
According to our definition of network in Section 4.2, the weight vectors of neurons of the same layer
need not have the same dimension, but any subgroup of these neurons can still have shared weights
as long as the dimensions among them agree. Thus the above choice of u is always possible. In the
following, let c(j) denote the neuron below j such that uc(j)→j = 1. This leads to∑

k→j

fk(x)uk→j = fc(j)(x).

Let α := (αd+1, . . . , αd+H) be a tuple of positive scalars. Let β ∈ R such that σpj (β) 6= 0 for every
j ∈ [N ]. We consider a family of configurations of network parameters of the form (αjuj , bj)

d+H
j=d+1,

where the biases are chosen as

bpj = β − αpjgpj (xj) ∀ j ∈ [N ], pj ∈ [d+ 1, d+ n1]

bpj = β − αpjfc(pj)(xj) ∀ j ∈ [N ], pj /∈ [d+ 1, d+ n1]

bj = 0 ∀ j ∈ {d+ 1, . . . , d+H} \ {p1, . . . , pN}

Note that the assignment of biases can be done via a forward pass through the network. By the
above choice of biases and our definition of neurons in Section 4.2, we have

fpj (xi) = σpj

(
β + αpj

(
gpj (xi)− gpj (xj)

))
, ∀ j ∈ [N ], pj ∈ [d+ 1, d+ n1],

fpj (xi) = σpj

(
β + αpj

(
fc(pj)(xi)− fc(pj)(xj)

))
∀j ∈ [N ], pj /∈ [d+ 1, d+ n1],

fj(xi) = σj

(
αjfc(j)(xi)

)
∀j ∈ {d+ n1 + 1, . . . , d+H} \ {p1, . . . , pN} ,

fj(xi) = σj

(
αjgj(xi)

)
∀j ∈ {d+ 1, . . . , d+ n1} \ {p1, . . . , pN} . (4.3)

One notes that the output of every skip-connection neuron pj is given by the first equation if pj lies
on the first layer and by the second equation if pj lies on higher layers. In the following, to reduce
notational complexity we make a convention that: fc(pj) = gpj for every pj lies on the first layer.
This allows us to use the second equation for every skip-connection neuron, that is,

fpj (xi) = σpj

(
β + αpj

(
fc(pj)(xi)− fc(pj)(xj)

))
∀ j ∈ [N ]. (4.4)

Now, since α > 0 and all activation functions are strictly increasing by Assumption 4.3.1, one can
easily show from the above recursive definitions that if pj is a skip-connection neuron which does
not lie on the first hidden layer then one has the relation: fc(pj)(xi) < fc(pj)(xj) if and only if
gqj (xi) < gqj (xj), where qj is some neuron in the first hidden layer. This means if one sorts the
elements of the set

{
fc(pj)(x1), . . . , fc(pj)(xN )

}
in increasing order then for every positive tuple α,

the order is fully determined by the corresponding order of
{
gqj (x1), . . . , gqj (xN )

}
for some neuron

qj in the first layer. Note that this order can be different for different neurons qj in the first layer,
and thus can be different for different skip-connection neurons pj . Let π be a permutation such that
it holds for every j = 1, 2, . . . , N that

π(j) = arg max
i∈{1,...,N}\{π(1),...,π(j−1)}

fc(pj)(xi) (4.5)
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It follows from above that π is fully determined by the values of g at the first layer. By definition
one has fc(pj)(xπi) < fc(pj)(xπj ) for every i > j. Since π is independent of every positive tuple α and
fully determined by the values of g, it can be fixed in the beginning. One can assume w.l.o.g. that π
is the identity permutation as otherwise one can reorder the training samples according to π so that
the rank of Ψ does not change. Thus it holds for every α > 0 that

δij := fc(pj)(xi)− fc(pj)(xj) < 0 ∀ i, j ∈ [N ], i > j (4.6)

Now, we are ready to show that there exists a positive tuple α for which Ψ has full rank. We consider
two cases of the activation functions of skip-connection neurons as stated in Assumption 4.3.1:

• In the first case, the activation functions σpj : R→ R for every j ∈ [N ] are strictly increasing,
bounded and limt→−∞ σpj (t) = 0. In the following, let l(j) denote the layer index of the hidden
unit j. For every hidden unit j ∈ {d+ 1, . . . , d+H} we set αj to be the maximum of certain
bounds (explained later in (4.8)) associated to all skip-connection neurons pk lying on the same
layer, that is,

αj = max

{
1, max

k∈[N ]|l(pk)=l(j)
maxi>k

σ−1
pk

(ε)− β
fc(pk)(xi)− fc(pk)(xk)

}
(4.7)

where ε > 0 is an arbitrarily small constant which will be specified later. There are a few
remarks we want to make for Eq. (4.7) before proceeding with our proof. First, the second
term in (4.7) can be empty if there is no skip-connection unit pk which lies on the same layer
as unit j, in which case αj is simply set to 1. Second, αj ’s are well-defined by constructing the
values fc(pk)(xr), r = 1, . . . , N by a forward pass through the network (note that the network
is a directed, acyclic graph; in particular, in the formula of αj , one has l(c(pk)) < l(pk) = l(j)

and thus the computation of αj is feasible given the values of hidden units lying below the
layer of unit j, namely fc(pk)). Third, if j and j′ are two neurons from the same layer, i.e.
l(j) = l(j′), then it follows from (4.7) that αj = αj′ , meaning that their corresponding weight
vectors are scaled by the same factor, thus any potential weight sharing conditions imposed on
these neurons can still be satisfied.

The main idea of choosing the above values of α is to obtain

Ψij = fpj (xi) ≤ ε ∀ i, j ∈ [N ], i > j. (4.8)

To see this, one first observes that the inequality (4.6) holds for the constructed values of α
since they are all positive. From (4.7) it holds for every skip-connection unit pj that

αpj > max
i>j

σ−1
pj (ε)− β

fc(pj)(xi)− fc(pj)(xj)
∀ j ∈ [N ]

which combined with (4.6) leads to

αpj (fc(pj)(xi)− fc(pj)(xj)) ≤ σ
−1
pj (ε)− β ∀ i, j ∈ [N ], i > j.

and thus using (4.4) we obtain (4.8).

Coming back to the main proof of the lemma, since σpj (j ∈ [N ]) are bounded there exists a
finite positive constant C such that it holds that

|Ψij | ≤ C ∀ i, j ∈ [N ] (4.9)

By the Leibniz-formula one has

det(Ψ1:N,1:N ) =

N∏
j=1

σpj (β) +
∑

π∈SN\{γ}

sign(π)

N∏
j=1

Ψπ(j)j (4.10)
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where SN is the set of allN ! permutations of the set {1, . . . , N} and γ is the identity permutation.
Now, one observes that for every permutation π 6= γ, there always exists at least one component
j where π(j) > j in which case it follows from (4.8) and (4.9) that∣∣∣ ∑

π∈SN\{γ}

sign(π)

N∏
j=1

Ψπ(j)j

∣∣∣ ≤ N !CN−1 ε

By choosing ε =

∣∣∣∏N
j=1 σpj (β)

∣∣∣
2N !CN−1 , we get that

det(Ψ1:N,1:N ) ≥
N∏
j=1

σpj (β)− 1

2

N∏
j=1

σpj (β) =
1

2

N∏
j=1

σpj (β) 6= 0

and thus Ψ has full rank.

• In the second case we consider the softplus activation function which satisfies our Assumption
4.3.1 that there exists a backward path from every skip-connection neuron pj to the first hidden
layer s.t. on this path there is no neuron which has skip-connections to the output or shared
weights with other skip-connection neurons.

We choose all the weights and biases similarly to the first case. The only difference is that for
every skip-connection neuron pj(1 ≤ j ≤ N), the position of 1 in its weight vector upj is chosen
s.t. the value of neuron pj is determined by the first neuron on the corresponding backward
path as stated in Assumption 4.3.1, that is,∑

k→pj

fk(xi)uk→pj = fc(pj)(xi).

For skip-connection neurons we set all {αp1 , . . . , αpN } to some scalar variable α, and for non-skip
connection neurons j we set αj = 1. From (4.4) and equations of (4.3) we have

fpj (xi) = σpj

(
β + α

(
fc(pj)(xi)− fc(pj)(xj)

))
∀j ∈ [N ],

fj(xi) = σj
(
fc(j)(xi)

)
∀j ∈ {d+ 1, . . . , d+H} \ {p1, . . . , pN} . (4.11)

Note that with above construction of u and α, the only case where our weight sharing conditions
can be potentially violated is between a skip-connection neuron (αj = α) with a neuron on a
backward path (αj = 1). However, this is not possible because our assumption in this case
states that there is no weight sharing between a skip-connection neuron and a neuron on one of
the backward paths.

Next, by our assumption the recursive backward path c(k)(pj) does not contain any skip-
connection unit and thus will eventually end up at some neuron qj ∈ [d+ 1, d+ n1] in the first
hidden layer after some finite number of steps. Thus we can write for every j ∈ [N ]

fpj (xi) = σpj

(
β + α

(
fc(pj)(xi)− fc(pj)(xj)

))
,

where

fc(pj)(xi) = σc(pj)(σc(c(pj))(. . . (gqj (xi)) . . .)) ∀ i ∈ [N ].

Moreover, we have from (4.6) that fc(pj)(xi) < fc(pj)(xj) for every i > j. Note that softplus
fulfills for t < 0, σγ(t) ≤ 1

γ e
γt, whereas for t > 0 one has σγ(t) ≤ 1

γ + t. The latter property
implies σ(K)(t) ≤ K

γ + t. Finally, this together implies that there exist positive constants
c1, c2, c3, c4 such that it hods

|
N∏
j=1

Ψπ(j)j | ≤ c1e
−αc2(c3 + α)N−1.
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This can be made arbitrarily small by increasing α. Thus we get

lim
α→∞

det(Ψ1:N,1:N ) =

N∏
j=1

σpj (β) 6= 0

So far, we have shown that there always exist U such that Ψ has full rank. Since every activation
function is real analytic by Assumption 4.3.1, every entry of Ψ is also a real analytic function of
the network parameters where Ψ depends on. The set of low rank matrices Ψ can be characterized
by a system of equations such that all the

(
M
N

)
determinants of all N × N sub-matrices of Ψ are

zero. As the determinant is a polynomial in the entries of the matrix and thus an analytic function
of the entries and composition of analytic functions are again analytic, we conclude that each
determinant is an analytic function of U . As shown above, there exists at least one U such that
one of these determinant functions is not identically zero and thus by Lemma 2.2.2, the set of U
where this determinant is zero has measure zero. But as all submatrices need to have low rank
in order that Ψ has low rank, it follows that the set of U where Ψ has low rank has just measure zero. �

While we conjecture that the result of Lemma 4.3.2 holds for softplus activation function without
the additional condition as mentioned in Assumption 4.3.1, the proof of this is considerably harder
for such a general class of neural networks since one has to control the output of neurons with skip
connection from different layers which depend on each other. However, we note that the condition is
also not too restrictive as it just might require more connections from lower layers to upper layers
but it does not require that the network is wide.

Before presenting our main result, we first recall the following definition of bad local valleys from
Definition 3.3.7.

Definition 4.3.3 A local valley is a nonempty connected component of some strict sublevel set
Lsα := {(U, V ) | Φ(U, V ) < α} . A bad local valley is a local valley on which the training loss Φ cannot
be made arbitrarily close to p∗.

We are now ready the state the main result of this chapter. A solution is called to have zero training
error if it can realize a pre-defined target output Y ∈ RN×m at the output layer of the network.

Theorem 4.3.4 The following holds under Assumption 4.3.1 and Assumption 1.1.1:

1. There exist uncountably many solutions with zero training error.

2. The loss surface of Φ does not have any bad local valley.

3. There exists no suboptimal strict local minimum.

4. For cross-entropy loss (1.1) and square loss (1.2) there exists no local maximum.

Proof:

1. Given an arbitrary target output Y ∈ RN×m. By Lemma 4.3.2 the set of U such that Ψ(U)

has not full rank N has measure zero. Pick a U such that Ψ has full rank, then the linear
system Ψ(U)V = Y has at least one solution V. As this is possible for almost all U , there exist
uncountably many solutions achieving zero training error.

2. Let C be a non-empty, connected component of some strict sublevel set Lsα where α > p∗.

Given any ε ∈ (p∗, α), we will show that C always contains a point (U, V ) s.t. Φ(U, V ) ≤ ε as
this would imply that the loss Φ restricted to C can attain any value arbitrarily close to p∗.
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We note that the strict sublevel set Lsα = Φ−1((−∞, α)) is an open set according to Proposition
5.1.1. Since C is a non-empty connected component of Lsα, C must also be an open set with
non-zero Lebesgue measure. By Lemma 4.3.2 the set of U where Ψ(U) has not full rank
has measure zero and thus C must contain a point (U, V ) such that Ψ(U) has full rank. By
Assumption 1.1.1, ϕ attains its infimum at p∗ < ε, and thus by continuity of ϕ, there exists
G∗ ∈ RN×m such that p∗ ≤ ϕ(G∗) ≤ ε. Since Ψ(U) has full row rank, there always exist V ∗

such that Ψ(U)V ∗ = G∗. Now, one notes that the loss Φ(U, V ) = ϕ(Ψ(U)V ) is convex in V ,
and that Φ(U, V ) < α, thus we have for the line segment V (λ) = λV + (1− λ)V ∗ for λ ∈ [0, 1],

Φ(U, V (λ)) ≤ λΦ(U, V ) + (1− λ)Φ(U, V ∗) < λα+ (1− λ)ε < α.

Thus the whole line segment from (U, V ) to (U, V ∗) is contained in Lsα. Since C is a connected
component of Lsα which contains (U, V ), it follows that (U, V ∗) ∈ C. Moreover, one has
Φ(U, V ∗) = ϕ(G∗) ≤ ε and since ε can be chosen to be arbitrarily close to p∗, we conclude that
the loss restricted to C can always be made arbitrarily close to p∗.

3. Let (U0, V0) be a strict suboptimal local minimum, then there exists r > 0 such that Φ(U, V ) >

Φ(U0, V0) > p∗ for all (U, V ) ∈ B((U0, V0), r) \ {(U0, V0)} where B(·, r) denotes a closed ball
of radius r. Let α = min

(U,V )∈∂B
(

(U0,V0),r
)Φ(U, V ) which exists as Φ is continuous and the

boundary ∂B
(
(U0, V0), r

)
of B

(
(U0, V0), r

)
is compact. Note that Φ(U0, V0) < α as (U0, V0) is a

strict local minimum, and thus (U0, V0) ∈ Lsα. Let E be the connected component of Lsα which
contains (U0, V0), that is, (U0, V0) ∈ E ⊆ Lsα. Since the loss of every point inside E is strictly
smaller than α, whereas the loss of every point on the boundary ∂B

(
(U0, V0), r

)
is greater

than or equal to α, E must be contained in the interior of the ball, that is E ⊂ B
(
(U0, V0), r

)
.

Moreover, Φ(U, V ) ≥ Φ(U0, V0) > p∗ for every (U, V ) ∈ E and thus the values of Φ restricted
to E can not be arbitrarily close to p∗, meaning that E is a bad local valley, which contradicts
the second statement of the theorem.

4. Case 1: cross-entropy loss.

Φ(U, V ) = ϕ(G) =
1

N

N∑
i=1

− log
( eGiyi∑m

k=1 e
Gik

)
where G = Ψ(U)V.

Suppose by contradiction that (U, V ) is a local maximum. Then the Hessian of Φ is negative
semi-definite. However, as principal submatrices of negative semi-definite matrices are again
negative semi-definite, then also the Hessian of Φ w.r.t V must be negative semi-definite.
However, Φ is always convex in V and thus its Hessian restricted to V is positive semi-
definite. The only matrix which is both p.s.d. and n.s.d. is the zero matrix. It follows that
∇2
V Φ(U, V ) = 0. One can easily show that

∇2
V:j

Φ =

N∑
i=1

eGij∑m
k=1 e

Gik

(
1− eGij∑m

k=1 e
Gik

)
Ψi:Ψ

T
i:

From Assumption 4.3.1 it holds that there exists j ∈ [N ] s.t. σpj is strictly positive, and thus
some entries of Ψi: must be strictly positive. Moreover, one has eGij∑m

k=1 e
Gik
∈ (0, 1). It follows

that some entries of ∇2
V:j

Φ must be strictly positive. Thus ∇2
V:j

Φ cannot be identically zero,
leading to a contradiction. Therefore Φ has no local maximum.

Case 2: square loss.

Φ(U, V ) =
1

2
‖Ψ(U)V − Y ‖2F =

1

2
‖(Im ⊗Ψ(U)) vec(V )− vec(Y )‖22

where ⊗ denotes Kronecker product, and Im an m×m identity matrix. The hessian of Φ w.r.t.
V is ∇2

vec(V )Φ = (Im ⊗Ψ(U))T (Im ⊗Ψ(U)). From here we use exactly the same argument as
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above to derive that if (U, V ) is a local maximum then Ψ(U) = 0 which leads to a contradiction
due to Assumption 4.3.1. Therefore Φ has no local maximum.

�

Theorem 4.3.4 shows that there are infinitely many solutions which achieve zero training error, and
the loss landscape is nice in the sense that from any point in the parameter space there exists a
continuous path that drives the loss arbitrarily close to zero (and thus a solution with zero training
error) on which the loss is non-increasing.

While the networks are over-parameterized, we show in the next Section 4.4 that the modification
of standard networks so that they fulfill our conditions leads nevertheless to good generalization
performance, often even better than the original network. We would like to note that the proof of
Theorem 4.3.4 also suggests a different algorithm to achieve zero training error: one initializes all
weights, except the weights to the output layer, randomly (e.g. Gaussian weights), denoted as U , and
then just solves the linear system Ψ(U)V = Y to obtain the weights V to the output layer. Basically,
this algorithm uses the network as a random feature generator and fits the last layer directly to
achieve zero training error. The algorithm is successful with probability 1 due to Lemma 4.3.2. Note
that from a solution with zero training error one can drive the cross-entropy loss to zero by upscaling
to infinity but this does not change the classifier. We will see, that this simple algorithm shows
bad generalization performance and overfitting, whereas training the full network with SGD leads
to good generalization performance. This might seem counter-intuitive as our networks have more
parameters than the original networks but is in line with recent observations in Zhang et al. (2017)
that state-of-the art networks, also heavily over-parameterized, can fit even random labels but still
generalize well on the original problem. Due to this qualitative difference of SGD and the simple
algorithm which both can find solutions with zero training error, we think that our class of networks
is an ideal test bed to study the implicit regularization/bias of SGD, see e.g. Soudry et al. (2018).

4.4 Experiments

The main purpose of this section is to investigate the generalization ability of practical neural
networks with skip-connections added to the output layer to fulfill Assumption 4.3.1.

Datasets. We consider MNIST and CIFAR10 datasets.

• MNIST Lecun et al. is a standard benchmark dataset which is widely used for image classifica-
tion/recognition tasks in machine learning. The dataset contains 55000 training images and
10000 test images. Each image has size 28× 28 pixel, and contains a handwritten digit ranging
from 0 to 9, meaning that there are 10 classes in total.

• CIFAR10 Krizhevsky (2009) is yet another standard dataset in machine learning for image
classification tasks. The dataset consists of 60000 32× 32 color images in 10 classes, with 6000

images per class. Each class can be one of the following objects: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship and truck. The classes are completely mutually exclusive. For
instance, there is no overlap between automobiles and trucks. There are 50000 training images
and 10000 test images.

In all our experiments described below, we do not use any data pre-processing or data-augmentation
techniques. However, some results with data-augmentation are available in the appendix.
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Layer Output size #neurons

Input: 28× 28 28× 28× 1

3× 3 conv − 64, stride 1 28× 28× 64 50176

3× 3 conv − 64, stride 1 28× 28× 64 50176

3× 3 conv − 64, stride 2 14× 14× 64 12544

3× 3 conv − 128, stride 1 14× 14× 128 25088

3× 3 conv − 128, stride 1 14× 14× 128 25088

3× 3 conv − 128, stride 2 7× 7× 128 6272

3× 3 conv − 256, stride 1 7× 7× 256 12544

1× 1 conv − 256, stride 1 7× 7× 256 12544

3× 3 conv − 256, stride 2 4× 4× 256 4096

3× 3 conv − 256, stride 1 4× 4× 256 4096

3× 3 conv − 256, stride 2 2× 2× 256 1024

3× 3 conv − 256, stride 1 2× 2× 256 1024

3× 3 conv − 256, stride 2 1× 1× 256 256

Fully connected, 10 output units

Table 4.1: The architecture of CNN13 for MNIST dataset, with 179, 840 hidden neurons in total.

Network architectures. For MNIST, we use a plain CNN architecture with 13 layers, denoted
as CNN13. We refer to Table 4.1 for the detailed description about this architecture. For CIFAR10
we use VGG11, VGG13, VGG16 (Simonyan and Zisserman, 2015) and DenseNet121 (Huang et al.,
2017). As the VGG models were originally proposed for ImageNet and have very large fully connected
layers, we adapted these layers for CIFAR10 by reducing their width from 4096 to 128. For each
network, we create the corresponding skip-model by adding skip-connections to the output so that
our condition M ≥ N from the main theorem is satisfied. In particular, we aggregate all neurons of
all the hidden layers in a pool and randomly choose from there a subset of N neurons to connect
to the output layer (see Figure 4.2 for an illustration). Since the above CNN architectures have a
large number of feature maps per convolutional layer, the total number of neurons is often very large
compared to number of training samples, and thus it is easy to choose from there a subset of N
neurons to connect to the output. For each network and their skip-variants, we test both sigmoid
and softplus activation function (from Equation (4.2) with γ = 20).

Training procedure. We train all the networks with the standard cross-entropy loss and SGD+Nesterov
momentum for 300 epochs. The initial learning rate is set to 0.1 for Densenet121 and 0.01 for the
other architectures. Following Huang et al. (2017), we also divide the learning rate by 10 after 50%

and 75% of the total number of training epochs. Note that we do not use any explicit regularization
like weight decay or dropout. We report the test accuracy for the original models and the ones with
skip-connections to the output layer. For the latter ones we consider two different training algorithms:
1) standard SGD for training the full network as described above (SGD) and 2) the randomized
procedure (rand). In the second approach, we randomly initialize the weights of the network U up
to the output layer by drawing each of them from a truncated Gaussian distribution with zero mean
and variance 2

d where d is the number of weight parameters and the truncation is done after ±2

standard deviations (standard Keras initialization), and then use SGD to optimize the weights V for
a linear classifier with fixed features Ψ(U) which is a convex optimization problem.

4.4.1 Discussion of generalization performance

Our experimental results are summarized in Table 4.2 for MNIST and Table 4.3 for CIFAR10. For
skip-models, we report mean and standard deviation over 8 random choices of the subset of N
neurons connected to the output.
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Sigmoid activation function Softplus activation function

CNN13 11.35 99.20

CNN13-skip (SGD) 98.40± 0.07 99.14± 0.04

Table 4.2: Test accuracy (%) of CNN13 on MNIST dataset. CNN13 denotes the original architecture
from Table 4.1 while CNN13-skip denotes the corresponding skip-model. There are in total 179, 840

hidden neurons from the original CNN13 (see Table 4.1), out of which we choose a random subset of
N = 55, 000 neurons to connect to the output layer to obtain CNN13-skip.

Sigmoid activation function Softplus activation function

Model Test acc (%) Train acc (%) Test acc (%) Train acc (%)

VGG11 10 10 78.92 100

VGG11-skip (rand) 62.81± 0.39 100 64.49± 0.38 100

VGG11-skip (SGD) 72.51 ± 0.35 100 80.57 ± 0.40 100

VGG13 10 10 80.84 100

VGG13-skip (rand) 61.50± 0.34 100 61.42± 0.40 100

VGG13-skip (SGD) 70.24 ± 0.39 100 81.94 ± 0.40 100

VGG16 10 10 81.33 100

VGG16-skip (rand) 61.57± 0.41 100 61.46± 0.34 100

VGG16-skip (SGD) 70.61 ± 0.36 100 81.91 ± 0.24 100

Densenet121 86.41 100 89.31 100

Densenet121-skip (rand) 52.07± 0.48 100 55.39± 0.48 100

Densenet121-skip (SGD) 81.47± 1.03 100 86.76± 0.49 100

Table 4.3: Training and test accuracy of several CNN architectures with/without skip-connections
on CIFAR10 (no data-augmentation). For every A ∈ {VGG11, VGG13, VGG16, Densenet121},
A-skip denotes the corresponding skip-model in which a subset of N randomly selected neurons are
connected to the output units. For Densenet121, these neurons are randomly chosen from the first
dense block. The names in open brackets (rand/SGD) specify how the networks are trained: rand
(U is randomized and fixed while V is learned with SGD), SGD (both U and V are optimized with
SGD). See Table 4.4 in the appendix for the corresponding results with data-augmentation.

First of all, we note that adding skip connections to the output improves the test accuracy in
almost all networks (with the exception of Densenet121) when the full network is trained with SGD.
In particular, for the sigmoid activation function the skip connections allow for all models except
Densenet121 to get reasonable performance whereas training the original model fails. This effect can
be directly related to our result of Theorem 4.3.4 that the loss landscape of skip-networks has no
bad local valley and thus it is not difficult to reach a solution with zero training error (see Section
4.4.2 for more detailed discussions on this issue, as well as Section 4.4.3 for a visual example which
shows why the skip-models can succeed while the original models fail). The exception is Densenet121
which gets already good performance for the sigmoid activation function for the original model.
We think that the reason is that the original Densenet121 architecture has already quite a lot of
skip-connections between the hidden layers which thus improves the loss surface already so that the
additional connections added to the output units are not necessary anymore.

The second interesting observation is that we do not see any sign of overfitting for the SGD version
even though we have increased for all models the number of parameters by adding skip connections
to the output layer and we know from Theorem 4.3.4 that for all the skip-models one can easily
achieve zero training error. This is in line with the recent observation of Zhang et al. (2017) that
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modern heavily over-parameterized networks can fit everything (random labels, random input) but
nevertheless generalize well on the original training data when trained with SGD. This is currently
an active research area to show that SGD has some implicit bias (Neyshabur et al., 2017; Brutzkus
et al., 2018; Soudry et al., 2018) which leads to a kind of regularization effect similar to the linear
least squares problem where SGD converges to the minimum norm solution. Our results confirm
that there is an implicit bias as we see a strong contrast to the (skip-rand) results obtained by using
the network as a random feature generator and just fitting the connections to the output units (i.e.
V ) which also leads to solutions with zero training error with probability 1 as shown in Lemma 4.3.2
and the proof of Theorem 4.3.4. For this version we see that the test accuracy gets worse as one is
moving from simpler networks (VGG11) to more complex ones (VGG16 and Densenet121) which
is a sign of overfitting. Thus we think that our class of networks is also an interesting test bed to
understand the implicit regularization effect of SGD. It seems that SGD selects from the infinite
pool of solutions with zero training error one which generalizes well, whereas the randomized feature
generator selects one with much worse generalization performance.

4.4.2 Discussion of training performance

As shown in Table 4.3, the training error is zero in all cases, except when the original VGG models
are used with sigmoid activation function. The reason, as noticed in our experiments, is because the
learning of these sigmoidal networks converges quickly to a constant zero classifier (i.e. the output of
the last hidden layer converges to zero), which makes both training and test accuracy converge to
10% and the loss in Equation (1.1) converges to − log(1/10). While we are not aware of a theoretical
explanation for this behavior, it is not restricted to the specific architecture of VGGs but hold in
general for plain sigmoidal networks with depth>5 as pointed out earlier by Glorot and Bengio (2010).
As shown in Table 4.3, Densenets however do not suffer from this phenomenon, probably because
they already have skip-connections between all the hidden layers of a dense block, thus gradients can
easily flow from the output to every layer of a dense block, which makes the training of this network
with sigmoid activation function become feasible.

(a) Softplus, no skip (b) Softplus, with skip (c) Softplus, no skip (d) Softplus, with skip

Figure 4.3: Training progress of a 150-layer neural network with and without skip-connections.
a),b) plots of training error and c),d) plots of training loss.

Skip-connections are helpful for training extremely deep neural networks. Our experi-
mental results from Table 4.3 have shown that skip-connections are helpful for training deep sigmoidal
networks. In this part, we show a similar result for softplus activation function. For the purpose of
illustration, we create a small dataset with N = 1000 training images randomly chosen from CIFAR10
dataset. We use a very deep network with 150 fully connected layers, each of width 10, and softplus
activation. A skip-model is created by adding skip-connections from N randomly chosen neurons
to the output units. We train both networks with SGD. The best learning rate for each model is
empirically chosen from

{
10−2, 10−3, 10−4, 10−5

}
. We report the training loss and training error of

both models in Figure 4.3. One can see that the skip-network easily converge to zero training error
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within 200 epochs, whereas the original network has stronger fluctuations and fails to converge after
1000 epochs. This is directly related to our result of Theorem 4.3.4 in the sense that skip-connections
can help to smooth the loss landscape and enable effective training of very deep networks.

4.4.3 Visualization of the loss surface

(a) Sigmoid, no skip
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(c) Softplus, no skip
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(d) Softplus, with skip

Figure 4.4: Loss surface of a two-hidden-layer neural network with and without skip-connections
on a small MNIST dataset with cross-entropy loss and sigmoid/softplus activation function.

Similar to Li et al. (2018); Goodfellow et al. (2015), we visualize the loss surface restricted to a
two dimensional subspace of the parameter space. The subspace is chosen to go through some
point (U0, V0) learned by SGD and spanned by two random directions (U1, V1) and (U2, V2). For the
purpose of illustration, we train with SGD a two-hidden-layer fully connected network with 784 and
300 hidden units respectively, followed by a 10-way softmax classifier. The training set consists of
1024 images, which are randomly selected from MNIST dataset. After adding skip-connections to
the output, the network fulfills M = N = 1024. Figure 4.4 shows the heat map of the loss surface
before and after adding skip-connections. One can see a visible effect that skip-connections helps
to smooth the loss landscape near a small sub-optimal region and allows gradient descent to flow
directly from there to the lower regions of the landscape with smaller objective value.

4.5 Summary

We have identified a class of deep neural networks whose loss landscape has no bad local valleys.
While our networks are over-parameterized and can easily achieve zero training error, they generalize
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well in practice when trained with SGD. Interestingly, a simple different algorithm using the network
as random feature generator also achieves zero training error but has significantly worse generalization
performance. Thus we think that our class of networks is an interesting test bed for studying the
implicit regularization effect of SGD.

4.6 Appendix

4.6.1 Data-augmentation results for Table 4.3

The following Table 4.4 shows additional results to Table 4.3 where data-augmentation is used now.
For data-augmentation, we follow the procedure as described in (Zagoruyko and Komodakis, 2016)
by considering random crops of size 32× 32 after 4 pixel padding on each side of the training images
and random horizontal flips with probability 0.5. For the convenience of the reader, we also repeat
the results of Table 4.3 in the new Table 4.4.

Sigmoid activation function Softplus activation function

Model C-10 C-10+ C-10 C-10+

VGG11 10 10 78.92 88.62

VGG11-skip (rand) 62.81± 0.39 - 64.49± 0.38 -

VGG11-skip (SGD) 72.51 ± 0.35 85.55 ± 0.09 80.57 ± 0.40 89.32 ± 0.16

VGG13 10 10 80.84 90.58

VGG13-skip (rand) 61.50± 0.34 - 61.42± 0.40 -

VGG13-skip (SGD) 70.24 ± 0.39 86.48 ± 0.32 81.94 ± 0.40 91.06 ± 0.12

VGG16 10 10 81.33 90.68

VGG16-skip (rand) 61.57± 0.41 - 61.46± 0.34 -

VGG16-skip (SGD) 70.61 ± 0.36 86.42 ± 0.31 81.91 ± 0.24 91.00 ± 0.22

Densenet121 86.41 90.93 89.31 94.20

Densenet121-skip (rand) 52.07± 0.48 - 55.39± 0.48 -

Densenet121-skip (SGD) 81.47± 1.03 90.32± 0.50 86.76± 0.49 93.23± 0.42

Table 4.4: Test accuracy (%) of several CNN architectures with/without skip-connections on
CIFAR10 (+ denotes data augmentation). All other notations are similar to Table 4.3.

4.6.2 Additional experiments: how did we deal with pooling layers?

The original VGG Simonyan and Zisserman (2015) and Densenet Huang et al. (2017) contain pooling
layers in their architecture. In particular, original VGGs have max-pooling layers, and original
Densenets have averaging pooling layers. In the following, we will clarify how/if these pooling layers
have been used in our experiments in Table 4.3, and whether and how our theretical results are
appicable to this case, as well as presenting additional experimental results in this regard.

First of all, we note that Densenets Huang et al. (2017) contain pooling layers only after the first dense
block. Meanwhile, as noted in Table 4.3, our experiments with Densenets only use skip-connections
from hidden units of the first dense block, and thus Lemma 4.3.2 and Theorem 4.3.4 are applicable.
The reason is that one can restrict the full-rank analysis of matrix Ψ in Lemma 4.3.2 to the hidden
units of the first dense block, so that it follows that the set of parameters of the first dense block where
Ψ has not full rank has measure zero, from which the results of Theorem 4.3.4 follow immediately.
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However for VGGs in Table 4.3, we kept their max-pooling layers similar to the original architecture
as we wanted to have a fair comparison between our skip-models and the original models. In this
setting, our results are not directly applicable because we lose the analytic property of the entries of
Ψ w.r.t. its dependent parameters, which is crucial to prove Lemma 4.3.2. Therefore in this section,
we would like to present additional results to Table 4.3 in which we replace all max-pooling layers of
all VGG models from Table 4.3 with 2x2 convolutional layers of stride 2. In this case, the whole
network consists of just convolutional/fully connected layers, hence our theoretical results hold.

Sigmoid activation function Softplus activation function

Model C-10 C-10+ C-10 C-10+

VGG11-mp2conv 10 10 74.53 88.80

VGG11-mp2conv-skip (rand) 53.65± 0.66 - 55.51± 0.43 -

VGG11-mp2conv-skip (SGD) 64.45 ± 0.31 80.15 ± 0.59 76.18 ± 0.58 89.93 ± 0.19

VGG13-mp2conv 10 10 74.04 90.37

VGG13-mp2conv-skip (rand) 53.45± 0.23 - 53.33± 0.67 -

VGG13-mp2conv-skip (SGD) 63.53 ± 0.37 82.40 ± 0.23 75.58 ± 0.77 91.04 ± 0.20

VGG16-mp2conv 10 10 74.00 90.38

VGG16-mp2conv-skip (rand) 53.83± 0.30 - 55.34± 0.64 -

VGG16-mp2conv-skip (SGD) 65.77 ± 0.67 83.06 ± 0.34 76.52 ± 0.78 91.00 ± 0.23

Table 4.5: Test accuracy (%) of VGG networks from Table 4.3 where max-pooling layers are
replaced by 2x2 convolutional layers of stride 2 (denoted as mp2conv).

The experimental results are presented in Table 4.5. Overall, our main observations are similar as
before. The performance gap between original models and their corresponding skip-variants are
approximately the same as in Table 4.3 or slightly more pronounced in some cases. A one-to-one
comparison with Table 4.3 also shows that the performance of skip-models themselves have decreased
by 4− 7% after the replacement of max-pooling layers with 2x2 convolutional layers. This is perhaps
not so surprising because the problem gets potentially harder when the network has more layers to
be learned, especially in case of sigmoid activation where the decrease is sharper. Similar to Table
4.3, adding skip-connections to the output units still prove to be very helpful – it improves the result
for softplus while making the training of deep networks with sigmoid activation become possible at
all. Finally, the training of full network with SGD still yields significantly better solutions in terms
of generalization error than the random feature approach. This confirms once again the implicit bias
of SGD towards high quality solutions among infinitely many solutions with zero training error.



Chapter 5

Connectivity of decision regions of
deep neural networks

In Chapter 2 and Chapter 3, we have shown that the loss surface of neural networks is well-behaved
if there is a wide hidden layer with more neurons than the number of training samples. This
condition has been improved and brought closer to practice in Chapter 4 using random and flexible
skip-connections to the output. All of these results so far have highlighted the important benefit of
width in deep learning. In this chapter, we address the following opposite question:

What limitations that neural networks might have if none of their hidden layers is wide enough?

By focusing on standard classification tasks, we prove that if the network does not have any hidden
layer with more neurons than the input dimension, then it can only learn connected decision regions
– which refer to the subsets of the input space where the network predict a specific class. We further
discuss the implication of this result on the adversarial manipulation problem of neural networks.
All our main results of this chapter have been published at Nguyen et al. (2018).

5.1 Introduction

While deep learning has become state of the art in many application domains such as computer vision
and natural language processing and speech recognition, the theoretical understanding of this success
is steadily growing but there are still plenty of questions where there is little or no understanding. In
particular, for the question how one should construct the network e.g. choice of activation function,
number of layers, number of hidden units per layer etc., there is little guidance and only limited
understanding on the implications of the choice e.g. “The design of hidden units is an extremely
active area of research and does not yet have many definitive guiding theoretical principles.” is a
quote from the recent book on deep learning (Goodfellow et al., 2016, p. 191). Nevertheless there is
recently progress in the understanding of these choices.

The first important results are the universal approximation theorems (Leshno et al., 1993; Cybenko,
1989; Hornik et al., 1989) which show that a single hidden layer network with non-polynomial
activation functions can approximate every continuous function on any compact domain. In order
to explain the success of deep learning, much of the recent effort has been spent on analyzing the
representation power of neural networks from the perspective of depth (Delalleau and Bengio, 2011;



5. Connectivity of decision regions of deep neural networks 72

Telgarsky, 2016; Eldan and Shamir, 2016; Safran and Shamir, 2017; Yarotsky, 2016; Poggio et al.,
2016; Liang and Srikant, 2017; Mhaskar and Poggio, 2016). Basically, they show that there exist
functions that can be computed efficiently by deep networks of linear or polynomial size but require
exponential size for shallow networks. To further highlight the power of depth, Montufar et al. (2014);
Pascanu et al. (2014) show that the number of linear regions that a ReLU network can form in the
input space grows exponentially with depth. Tighter bounds on the number of linear regions are
later on developed by Arora et al. (2018a); Serra et al. (2018); Charisopoulos and Maragos (2018).
Another measure of expressivity so-called trajectory length is proposed by Raghu et al. (2017). who
show that the complexity of functions computed by the network on a curve in the input space also
grows exponentially with depth.

While most of previous work can only show the existence of depth efficiency (i.e. there exist certain
functions that can be efficiently represented by deep networks but not effectively represented or even
approximated by shallow networks) but cannot show how often this holds for all functions of interest,
Cohen et al. (2016) have taken the first step to address this problem. In particular, by studying
a special type of networks called convolutional arithmetic circuits – also known as Sum-Product
networks (Poon and Domingos, 2011), the authors show that besides a set of measure zero, all
functions that can be realized by a deep network of polynomial size require exponential size in order
to be realized, or even approximated by a shallow network. Later, Cohen and Shashua (2016) show
that this property however no longer holds for convolutional rectifier networks, which represents so
far the empirically most successful deep learning architecture in practice.

Unlike most of previous work which focuses on the power of depth, (Lu et al., 2017; Hanin and
Sellke, 2017) have recently shown that neural networks with ReLU activation function have to be
wide enough in order to have the universal approximation property as depth increases. In particular,
the authors show that the class of continuous functions on a compact set cannot be arbitrarily well
approximated by an arbitrarily deep network if the maximum width of the network is not larger than
the input dimension d. Moreover, it has been shown recently, that the loss surface of fully connected
networks (Nguyen and Hein, 2017) and for convolutional neural networks (Nguyen and Hein, 2018)
is well behaved, in the sense that almost all local minima are global minima, if there exists a layer
which has more hidden units than the number of training points.

In this chapter we study the question under which conditions on the network the decision regions of
a neural network are connected respectively can potentially be disconnected. The decision region of a
class is the subset of Rd, where the network predicts this class. A similar study has been in Makhoul
et al. (1989, 1990) for feedforward networks with threshold activation functions, where they show
that the initial layer has to have width d+ 1 in order that one can get disconnected decision regions.
On an empirical level it has recently been argued Fawzi et al. (2017) that the decision regions of the
Caffe Network Jia et al. (2014) on ImageNet are connected. In this chapter we analyze feedforward
networks with continuous activation functions as currently used in practice. We show in line with
previous work that almost all networks which have a pyramidal structure up to the last hidden
layer, that is the width of all hidden layers is smaller than the input dimension d, can only produce
connected decision regions. We show that the result is tight by providing explicit counterexamples for
the case d+ 1. We conclude that a guiding principle for the construction of neural networks should be
that there is a layer which is wider than the input dimension as it would be a strong assumption that
the Bayes optimal classifier must have connected decision regions. Interestingly, our result holds for
leaky ReLU, that is σ(t) = max(t, αt) for 0 < α < 1, whereas the result of Hanin and Sellke (2017) is
for ReLU, that is σ(t) = max(t, 0), but “the generalization is not straightforward, even for activations
of the form σ(t) = max(l1(t), l2(t)), where l1, l2 are affine functions with different slopes.” We discuss
also the implications of connected decision regions regarding the generation of adversarial samples,
which will provide another argument in favor of larger width for neural network architectures.

We consider in the following activation functions σ : R → R which are continuous and strictly
monotonically increasing. This is true for most of proposed activation functions, but does not hold
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for ReLU, σ(t) = max(t, 0). On the other hand, it has been argued in the recent literature, that the
following variants are to be preferred over ReLU as they deal better with the vanishing gradient
problem and outperform ReLU in prediction performance He et al. (2015); Clevert et al. (2016). This
is the leaky ReLU Maas et al. (2013) defined as σ(t) = max(t, αt) for 0 < α < 1, where typically
α is fixed, but it has also been optimized together with the network weights He et al. (2015) and
ELU (exponential linear unit) (Clevert et al., 2016) given as

σ(t) =

{
et − 1 t < 0

t t ≥ 0.
.

Note that image of the activation function σ, σ(R) = {σ(t) | t ∈ R}, is equal to R for leaky ReLU
and (−1,∞) for the exponential linear unit.

In the following, we introduce some basic definitions and terminologies used in this chapter. For a
function f : U → V , where dom(f) = U ⊆ Rm and V ⊆ Rn, we denote for every subset A ⊆ U , the
image f(A) as f(A) := {f(x) | x ∈ A} =

⋃
x∈A f(x). Let range(f) = f(U).

We recall the following standard result from topology (see e.g. Apostol, 1974, Theorem 4.23, p. 82).

Proposition 5.1.1 Let f : Rm → Rn be a continuous function. If U ⊆ Rn is an open set then
f−1(U) is also open.

We now recall a standard result from calculus showing that under certain, restricted conditions the
inverse of a continuous mapping exists and is as well continuous.

Proposition 5.1.2 Let f : R→ f(R) be continuous and strictly monotonically increasing. Then the
inverse mapping f−1 : f(R)→ R exists and is continuous.

5.2 Main results

We first recall some basic notations of feedfoward neural networks from Section 1.1 Let L be the
number of layers, d the input dimension, m the output dimension and nk the width of layer k. By
convention we assume that n0 = d and nL = m. Let σ : R→ R be some activation function which
we will specify later. Let Wk ∈ Rnk−1×nk and bk ∈ Rnk be the weight matrix and bias vector of layer
k. The function fk : Rd → Rnk which maps every input x ∈ Rd to the output at layer k is defined as

fk(x) =


x k = 0

σ(WT
k fk−1(x) + bk) k ∈ [1, L− 1]

WT
L fL−1(x) + bL k = L.

Next, we define the deicison region of a class.

Definition 5.2.1 (Decision region) The decision region of a given class 1 ≤ j ≤ m, denoted by
Cj, is defined as Cj =

{
x ∈ Rd

∣∣ (fL)j(x) > (fL)k(x), ∀k 6= j
}
.

The following lemma will be helpful to derive our results. Basically it shows that the pre-image of
an open connected subset under the composition of an affine transformation and an elementwise
nonlinear function is again open and connected. This later on will allow us to transfer the idea easily
to multiple layer networks in a recursive manner.
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Lemma 5.2.2 Let m ≥ n and f : Rm → Rn be a function defined as f = σ̂ ◦ h where σ̂ : Rn → Rn

is defined as

σ̂(x) =

σ(x1)
...

σ(xn)

 , (5.1)

and σ : R→ R is bijective, continuous and σ(R) = R, and h : Rm → Rn is a linear map defined as
h(x) = WTx+ b where W ∈ Rm×n has full rank and b ∈ Rn. Let V ⊆ Rn be an open connected set.
Then f−1(V ) ⊆ Rm is an open connected set.

Proof: By Proposition 3.3.5, it holds that f−1(V ) = h−1(σ̂−1(V )). As σ̂ is a componentwise
function, the inverse mapping σ̂−1 is given by the inverse mappings of the components

σ̂−1 : Rn → Rn, σ̂−1(x) =

σ
−1(x1)
...

σ−1(xn)

 ,

where under the stated assumptions the inverse mapping σ−1 : R→ R exists by Lemma 5.1.2 and
is continuous. Since V ⊆ Rn = dom(σ̂−1), σ̂−1(V ) is the image of the connected set V under the
continuous map σ̂−1. Thus by Proposition 3.3.2, σ̂−1(V ) is connected. Moreover, σ̂−1(V ) is an open
set by Proposition 5.1.1. It holds for every y ∈ Rn that

h−1(y) =

{
∅ y /∈ range(h)

W (WTW )−1(y − b) + ker(WT ) y ∈ range(h),

where the inverse of WTW exists as W has full rank n (note that we assume n ≤ m). As W has full
rank and m ≥ n, it holds that range(h) = Rn and thus

h−1(y) = W (WTW )−1(y − b) + ker(WT ), ∀ y ∈ Rn.

Therefore it holds for σ̂−1(V ) ⊆ Rn that

h−1
(
σ̂−1(V )

)
= W (WTW )−1

(
σ̂−1(V )− b

)
+ ker(WT ),

where the first term is the image of the connected set σ̂−1(V ) under an affine mapping and thus is
again connected by Proposition 3.3.2, the second term ker(WT ) is a linear subspace which is also
connected. By Proposition 3.3.3, the Minkowski sum of two connected sets is connected. Thus
f−1(V ) = h−1(σ̂−1(V )) is a connected set. Moreover, as f−1(V ) is the pre-image of the open set V
under the continuous function f , it must be also an open set by Proposition 5.1.1. Thus f−1(V ) is
an open and connected set. �

Note that in Lemma 5.2.2, if m < n and W has full rank then range(h) ( Rn and the linear equation
h(x) = y has a unique solution x = (WWT )−1W (y − b) for every y ∈ range(h) and thus

f−1(V ) = h−1
(
σ−1(V )

)
= h−1

(
σ−1(V ) ∩ range(h)

)
= (WWT )−1W

(
(σ−1(V ) ∩ range(h))− b

)
.

In this case, even though σ−1(V ) is a connected set, the intersection σ−1(V ) ∩ range(h) can be
disconnected which can imply that f−1(V ) is disconnected and thus the decision region becomes
disconnected. We illustrate this with a simple example, where m = 1 and n = 2 with σ(x) = x3 and

WT =

(
−1

1

)
and b =

(
0

0

)
. In this case it holds that

f(x) = σ̂(WTx+ b) =

(
σ(−x)

σ(x)

)
=

(
−x3

x3

)
. (5.2)
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Figure 5.1: Left: The image of R under the mapping f , denoted as f(R) ⊂ R2 for the toy example
from Equation (5.2) which maps into a lower-dimensional subspace (the diagonal line). Right: The
pre-image f−1(S) ⊂ R of the connected S becomes disconnected.

Figure 5.1 shows that f(R) is a one-dimensional submanifold (in this case subspace) of R2 and
provides an example of a set S ⊂ R2 where the pre-image f−1(S) is disconnected.

We are now ready to state our main result which shows that the decisions regions of a deep neural
network with pyramidal structure and have maximal width at most the input dimension d can only
produce connected decision regions. We assume for the activation function that σ(R) = R, which is
fulfilled by leaky ReLU.

Theorem 5.2.3 Let the width of the layers of the feedforward network network satisfy d = n0 ≥
n1 ≥ . . . ≥ nL−1 and let σ : R→ R be a continuous and bijective activation function with σ(R) = R
and all the weight matrices (Wl)

L−1
l=1 have full rank. Then every decision region Cj is an open and

connected subset of Rd for every 1 ≤ j ≤ m.

Proof: From Definition 5.2.1, it holds for every 1 ≤ j ≤ m

Cj=
{
x ∈ Rd

∣∣ fLj(x)− fLk(x) > 0,∀k 6= j
}

where fLj(x)− fLk(x) = 〈(WL):j − (WL):k, fL−1(x)〉+ (bL)j − (bL)k. Let us define the set

Vj =
{
y
∣∣∣ 〈(WL):j − (WL):k, y〉 > (bL)k − (bL)j ,∀k 6= j

}
then it holds Cj =

{
x ∈ Rd

∣∣ fL−1(x) ∈ Vj
}

= f−1
L−1(Vj). If Vj is an empty set then we are done,

otherwise one observes that Vj is the intersection of a finite number of open half-spaces (or the
whole space), which is thus an open and connected set. Moreover, it holds Vj ∩ σ̂(R) = Vj , where
σ̂ is defined as in (5.1). It follows from Proposition 5.1.1 that Cj must be an open set as it is the
pre-image of the open set Vj under the continuous mapping fL−1. To show that Cj is a connected
set, one first observes that

fL−1 = σ̂ ◦ hL−1 ◦ σ̂ ◦ hL−2 . . . ◦ σ̂ ◦ h1

where hk : Rnk−1×Rnk is an affine mapping between layer k−1 and layer k defined as hk(x) = WT
k x+bk

for every 1 ≤ k ≤ L− 1, x ∈ Rnk−1 , and σ̂ : Rnk → Rnk is the activation mapping of layer k defined
as in (5.1). By Proposition 3.3.5 it holds that

f−1
L−1(Vj) = (h−1

1 ◦ σ̂−1 ◦ . . . ◦ h−1
L−1 ◦ σ̂

−1)(Vj)

Since σ : R→ R is a continuous bijection by our assumption, it follows that σ̂ : Rnk → Rnk is also a
continuous bijection. Moreover, it holds that Wk has full rank and nk−1 ≥ nk for every 1 ≤ k ≤ L− 1
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and Vj is a connected set. Thus one can apply Lemma 5.2.2 subsequently for the composed functions
(σ̂ ◦ hk) for every k = L− 1, L− 2, . . . , 1 and obtains that Cj = f−1

L−1(Vj) is a connected set. Thus
Cj is an open and connected set for every 1 ≤ j ≤ m. �

The next theorem holds just for networks with one hidden layer but allows general activation functions
which are continuous and strictly monotonically increasing, that is leaky ReLU, ELU, softplus or
sigmoid activation functions. Again the decision regions are connected if the hidden layer has maximal
width smaller than d+ 1.

Theorem 5.2.4 Let the one hidden layer network satisfy d = n0 ≥ n1 and let σ : R → R be a
continuous, strictly monotonically increasing function and the hidden layer’s weight matrix W1 has
full rank. Then every decision region Cj is an open connected subset of Rd for every 1 ≤ j ≤ m.

Proof: We note that in the proof of Theorem 5.2.3 the Vj is a finite intersection of open half-spaces
and thus a convex set. Moreover, σ̂(Rn1) is an open convex set (it is just an axis-aligned open box),
as σ is strictly monotonically increasing. Thus it holds

Cj =
{
x ∈ Rd

∣∣ f1(x) ∈ Vj ∩ σ̂(Rn1)
}

= f−1
1

(
Vj ∩ σ̂(Rn1)

)
.

As both sets are open convex sets, the intersection Vj ∩ σ̂(Rn1) is again convex and open as well.
Thus Vj ∩ σ̂(Rn1) is a connected set. The rest of the argument follows then by using Lemma 5.2.2,
noting that by Proposition 5.1.2 σ̂−1 : σ̂(Rn1)→ Rn1 is a continuous mapping. �

Note that Theorem 5.2.3 and Theorem 5.2.4 make no assumption on the structure of all layers in
the network. Thus they can be applied to neural networks with both fully connected layers and
convolutional layers. Moreover, the results hold regardless of how the parameters of the network
(Wl, bl)

L
l=1 have been attained, trained or otherwise, as long as all the weight matrices of hidden layers

have full rank. This is a quite weak condition in practice as the set of low rank matrices has just
Lebesgue measure zero. Even if the optimal weight parameters for the data generating distribution
would be low rank (we discuss such an example below), then it is very unlikely that the trained
weight parameters are low rank, as one has statistical noise by the training sample, “optimization
noise” from the usage of stochastic gradient descent (SGD) and its variants and finally in practice
one often uses early stopping and thus even if the optimal solution for the training set is low rank,
one will not find it.

Theorem 5.2.3 covers activation functions like leaky ReLU but not sigmoid, ELU or softplus. At
the moment it is unclear for us if the result might hold also for the more general class of activation
functions treated in Theorem 5.2.4. The problem is that then in Lemma 5.2.2 one has to compute
the pre-image of V ∩ σ̂(Rn). Even though both sets are connected, the intersection of connected
sets need not be connected. This is avoided in Theorem 5.2.4 by using that the initial set Vj and
σ̂(RnL−1) are both convex and the intersection of convex sets is convex and thus connected.

We show below that the result is tight by giving an empirical example of a neural network with a
single hidden layer of d+ 1 hidden units which produces disconnected regions. Note that our result
complements the result of Hanin and Sellke (2017), where they show the universal approximation
property (for ReLU) only if one considers networks of width at least d+1 for arbitrary depth. Theorem
5.2.3 and Theorem 5.2.4 indicate that this result could also hold for leaky ReLU as approximation
of arbitrary functions implies approximation of arbitrary decisions regions, which clearly requires
that one is able to get disconnected decision regions. Taking both results together, it seems rather
obvious that as a general guiding principle for the construction of hidden layers in neural networks
one should use, at least for the first hidden layer, more units than the input dimension, as it is rather
unlikely that the Bayes optimal decision regions are connected. Indeed, if the true decision regions
are disconnected then using a network of smaller width than d+ 1 might still perfectly fit the finite
training data but since the learned decision regions are connected there exists a path between the
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true decision regions which then can be used for potential adversarial manipulation. This is discussed
in the next section where we show empirical evidence for the existence of such adversarial examples.

5.3 Discussions

In this section we discuss with analytical examples as well as trained networks that the result is tight
and the conditions of the theorem cannot be further relaxed. Moreover, we argue that connected
decision regions can be problematic as they open up the possibility to generate adversarial examples.

5.3.1 Why pyramidal structure is a necessary condition?

In Theorem 5.2.3, if the network does not have pyramidal structure up to the last hidden layer, i.e.
the condition d1 ≥ . . . ≥ dL−1 is not fulfilled, then the statement of the theorem might not hold as
the decision regions can be disconnected. We illustrate this via a counter-example below. Let us
consider a non-pyramidal network with layer widths 2-1-2-2 defined as

WT
3 σ̂(WT

2 σ̂(WT
1 x+ b1) + b2) + b3 (5.3)

where σ(t) = max(0.5 t, t), and W1 =

[
1

1

]
, b1 = 0,W2 =

[
1 −1

]
, b2 =

[
0

0

]
,W3 =

[
2 1

3 2

]
, b3 =

[
0

1

]
.

We can show that this network has disconnected decision regions. Indeed, the decision region of the

(a) V1 (dashed) (b) P (dashed) (c) Q (blue)

−2 2

(d) R (dashed)

−4 2

(e) S (dashed) (f) C1 (dashed)

Figure 5.2: Construction of the decision region C1 for the example given in Equation (5.3).

first class C1 can be computed recursively as

1. V1 :=
{

(y1, y2) ∈ R2
∣∣ y1 + y2 − 1 > 0

}
2. P := σ̂−1(V1)

3. Q := P ∩ range(WT
2 )

4. R := (W2W
T
2 )
−1
W2(Q− b2)

5. S := σ̂−1(R)

6. C1 = W1(WT
1 W1)

−1
(S − b1) + ker(WT

1 )

where the output at each step is illustrated in Figure 5.2. One can easily check that

C1 =
{
x ∈ R2

∣∣ x1 + x2 − 2 > 0 and x1 + x2 + 4 < 0
}

which is thus a disconnected set.

Overall, the above counter-example shows that the pyramidal structure of the network, provided
that other conditions of Theorem 5.2.3, is a necessary condition to get connected decision regions.
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5.3.2 Why full rank weight matrices is a necessary condition?

Similar to Section 5.3.1, we show that if the weight matrices of hidden layers are not full rank while
the other conditions are still satisfied, then the decision regions can be disconnected. The reason is
simply that low rank matrices, in particular in the first layer, reduce the effective dimension of the
input. We illustrate this effect with a small analytical example and then argue that nevertheless in
practice it is extremely difficult to get low rank weight matrices.

Figure 5.3: Left: A training dataset sampled from the distribution given in Equation (5.4). Right:
Decision regions of a trained classifier for the example on the left, which are connected as the learned
weight matrix W1 has full rank.

Suppose that one has a two-class classification problem on R2 (see Figure 5.3) with equal class
probabilities P (red) = P (blue), and the conditional distribution is given as

p(x1, x2|blue) =
1

2
, ∀x1 ∈ [−2,−1] ∪ [1, 2], x2 ∈ [−1

2
,

1

2
]

p(x1, x2|red) = 1, ∀x1 ∈ [−1, 1], x2 ∈ [−1

2
,

1

2
]. (5.4)

Note that the Bayes optimal decision region for class blue is disconnected. Moreover, it is easy to
verify that a one hidden layer network with leaky ReLU σ(t) = max(t, αt) for 0 < α < 1 can perfectly
fit the data with

WT
1 =

(
1 0

−1 0

)
, b1=

(
−1

−1

)
,WT

2 =

(
1 1

0 0

)
, b2=

(
0

−2α

)
Note thatW1 has low rank. Suppose that the first output unit corresponds to the blue class and second
output unit corresponds to the red class. Then it holds (f2)red(x1, x2) = −2α, (f2)blue(x1, x2) =

max(x1 − 1, α(x1 − 1)) + max(−(x1 + 1),−α(x1 + 1)) and thus

(f2)blue(x1, x2)=


(1− α)x1 − (1 + α) x1 ≥ 1

−2α −1 ≤ x1 ≤ 1

−(1− α)x1 − (1 + α) x1 ≤ −1

which implies that (f2)blue(x1, x2) > (f2)red(x1, x2) for every x1 ∈ (−∞,−1) ∪ (1,+∞) and thus the
decision region for class blue has two disconnected decision regions. This implies that Theorems 5.2.3
and 5.2.4 do indeed not hold if the weight matrices do not have full rank. Nevertheless in practice, it
is unlikely that one will get such low rank weight matrices, which we illustrate in Figure 5.3 that
the decision regions of the trained classifier has indeed connected decision regions. This is due to
statistical noise in the training set as well as through the noise in the optimization procedure (SGD)
and the common practice of early stopping in training of neural networks.

5.3.3 Does the result hold for ReLU activation function?

As the conditions of Theorem 5.2.3 are not fulfilled for ReLU, one might ask whether the decision
regions of a pyramidal network with full rank weight matrices can be potentially disconnected for
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ReLU activation function. We show via the following example that this is indeed possible. Let a two
hidden layer network with layer widths 2-2-2-2 be defined as

WT
3 σ̂(WT

2 σ̂(WT
1 x+ b1) + b2) + b3 (5.5)

where σ(t) = max(0, t) and

WT
1 =

[
1 0

0 1

]
,WT

2 =

√
2

2

[
1 1

−1 1

]
,WT

3 =

[
−1 0

0 −3

]
,

and b1 = [0, 0]T , b2 = 1√
2
[
√

2− 1,−3]T , b3 = [1, 0]T . The decision region of C1 is given recursively as

(a) V1 (b) P (c) Q

(d) R (e) S (f) C1

Figure 5.4: Output of each step in the computation of C1 for the example given in Equation (5.5).

1. V1 :=
{
y ∈ R2

∣∣ (WT
3 y + b3)1 > (WT

3 y + b3)2

}
=
{

(y1, y2) ∈ R2
∣∣ y1 − 3y2 − 1 < 0

}
2. P := V1 ∩ range(σ̂) = V1 ∩ R2

+

3. Q := σ̂−1(P )

4. R := (WT
2 )
−1

(Q− b2)

5. S := R ∩ range(σ̂) = R ∩ R2
+

6. C1 = σ̂−1(S)

The output at each step is visualized in Figure 5.4. Note that the ReLU function σ(t) = max(t, 0)

has an inverse, given by σ−1(t) = t for every t > 0 and σ−1(t) = R− for t = 0. By following the
above steps, one can easily check that

C1 =
{
x ∈ R2

∣∣ x1 < 1, x2 < 1, x1 + x2 < 1
}
∪
{
x ∈ R2

∣∣ x2 > 4, 2x1 − x2 + 4 < 0
}

which is a disconnected set as illustrated in Figure 5.4.

In this example, except for the activation function, all the other conditions of Theorem 5.2.3 are
satisfied, that is, the network has pyramidal structure (2-2-2-2) and all the weight matrices (Wl)

2
l=1

have full rank. Thus the statement of Theorem 5.2.3 does not hold for ReLU.
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5.3.4 Are our theorems tight in terms of number of hidden units?

We consider a binary classification task in R2 where the data points are generated so that the blue
class has disconnected components on the square [−4, 4]× [−4, 4], see Figure 5.5 (a) for an illustration.
We use a one hidden layer network with varying number of hidden units, two output units, leaky
ReLU activation function and cross-entropy loss. We then train this network by using SGD with
momentum for 1000 epochs and learning rate 0.1 and reduce the it by a factor of 2 after every 50

epochs. For all the attempts with different starting points that we have done in our experiment, the
resulting weight matrices always have full rank. We show the training error and the decision regions

(a) Training data (b) n1 = 2(122) (c) n1 = 3(72) (d) n1 = 4(45) (e) n1 = 7(12) (f) n1 = 50(0)

Figure 5.5: Decision region of a one hidden layer network trained with SGD for varying number of
hidden units for the toy example as shown in (a). As shown by Theorem 5.2.3 the decision region
for n1 = d = 2 is connected, however already for n1 > d = 2 one gets disconnected decision regions
which shows that Theorem 5.2.3 is tight. The numbers in bracket show the number of misclassified
training points.

of trained network in Figure 5.5. The grid size in each case of Figure 5.5 has been manually chosen
so that one can see clearly the connected/disconnected components in the decision regions. First,
we observe that for two hidden units (n1 = 2), the network satisfies the condition of Theorem 5.2.3
and thus can only learn connected regions, which one can also clearly see in the figure, where one
basically gets a linear separator. However, for three hidden units (n1 = 3), one can see that the
network can produce disconnected decision regions, which shows that both our Theorems 5.2.3 and
5.2.4 are tight, in the sense that width d+ 1 is already sufficient to produce disconnected components,
whereas the results say that for width less than d+ 1 the decision regions have to be connected. As
the number of hidden units increases, we observe that the network produces more easily disconnected
decision regions as expected.

5.3.5 Relation to adversarial manipulation problems

It has been shown by Szegedy et al. (2014) that several machine learning models, including state-of-
the-art deep neural networks are vulnerable to “adversarial examples”. That is, it is possible to fool
a trained classifier by manipulating a correctly classified input with an imperceptible perturbation
so that the classifier now misclassifies this input with high confidence. Adversarial examples have
the potential to be dangerous, especially as they enter critical safety systems such as autonomous
vehicles. In this section, we show empirical evidence indicating that narrow neural networks which
learn connected decision regions are susceptible to adversarial examples.

We use a single image of digit 1 from the MNIST dataset Lecun et al. to create a new artificial dataset
where the underlying data generation probability measure has a similar one-dimensional structure as
in (5.4) but now embedded in the pixel space R28×28. This is achieved by using rotation as the one-
dimensional degree of freedom. We generate 2000 training images for each red/blue class by rotating
the chosen digit 1 with angles ranging from [−5◦, 5◦] for the read class, and [−20◦,−15◦] ∪ [15◦, 20◦]

for the blue class, see Figure 5.6.
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[−20◦,−15◦] [−5◦, 5◦] [15◦, 20◦]

Figure 5.6: Training examples for the digit-1 dataset with two classes. The color red/blue denotes
the class of the corresponding example.

0.99 (S) 0.99(0.1) 0.99(0.2) 0.99(0.3) 0.99(0.4) 0.99(0.5) 0.99(0.6) 0.99(0.7) 0.99(0.8) 0.99(0.9) 0.99 (A)

0.99 (A) 0.99(0.1) 0.99(0.2) 0.99(0.3) 0.99(0.4) 0.99(0.5) 0.99(0.6) 0.99(0.7) 0.99(0.8) 0.99(0.9) 0.99 (T)

Figure 5.7: Digit-1 dataset with two classes. Top row: Trajectory from a source image (S) to an
adversarial image (A) parameterized by λ (shown inside brackets). Bottom row: Trajectory from the
adversarial image (A) to a target image (T). Each number outside bracket shows the confidence level
(from 0 to 1) that the corresponding image was predicted to be in blue class.

Note that this is a binary classification task where the dataset has just one effective degree of
freedom and the Bayes optimal decision regions are disconnected. We train a one hidden layer
network with 784 hidden units which is equal to the input dimension and leaky ReLU as activation
function with α = 0.1. The training error is zero and the resulting weight matrices have full rank,
thus the conditions of Theorem 5.2.3 are satisfied and the decision region of class blue should be
connected even though the Bayes optimal decision region is disconnected. This can only happen by
establishing a connection around the other red class. We test this by sampling a source image from
the [−20◦,−15◦] part of the blue class and a target image from the other part [15◦, 20◦]. Next, we
generate an adversarial image 1 from the red class using the one step target class method Kurakin
et al. (2016, 2017) and consider the path between the source image to the adversarial image and
subsequently from the adversarial image to the target one. For each path, we simply consider the
line segment λs + (1 − λ)t for λ ∈ [0, 1] between the two endpoint images s and t and sample it
very densely by dividing [0, 1] into 104 equidistant parts. Figure 5.7 shows the complete path from
the source image to the target image where the color indicates that all the intermediate images
are classified as blue with high confidence (note that we turned the output of the network into
probabilities by using the softmax function). Moreover, the intermediate images from Figure 5.7
look very much like images from the red class thus could be seen as adversarial samples for the red
class. The point we want to make here is that one might think that in order to avoid adversarial
manipulation the solution is to use a simple classifier of low capacity. We think that rather the
opposite is true in the sense that only if the classifier is rich enough to model the true underlying
data generating distribution it will be able to model the true decision boundaries. In particular, the
classifier should be able to realize disconnected decision regions in order to avoid paths through the
input space which connect different disconnected regions of the Bayes optimal classifier. Now one
could argue that the problem of our synthetic example is that the corresponding digits obviously
do not fill the whole image space, nevertheless the classifier has to do a prediction for all possible
images. This could be handled by introducing a background class, but then it would be even more
important that the classifier can produce disconnected decision regions which naturally requires a
minimal width of d+ 1 of the network.

In Figure 5.8, we show another similar experiment on MNIST dataset, but now for all the 10 image
1This is essentially a small perturbation of an image from the red class which is classified as blue class



5. Connectivity of decision regions of deep neural networks 82

0.99 (S) 0.99(0.1) 0.98(0.2) 0.98(0.3) 0.97(0.4) 0.96(0.5) 0.94(0.6) 0.93(0.7) 0.92(0.8) 0.89(0.9) 0.82 (A)

0.82 (A) 0.55(0.1) 0.45(0.2) 0.54(0.3) 0.68(0.4) 0.83(0.5) 0.91(0.6) 0.96(0.7) 0.98(0.8) 0.99(0.9) 0.99 (T)

Figure 5.8: Standard MNIST dataset with 10 classes. Top row: Trajectory from a source image (S)
to an adversarial image (A) parameterized by λ (shown inside brackets). Bottom row: Trajectory
from the adversarial image (A) to a target image (T). Each number outside bracket shows the
confidence level (from 0 to 1) that the corresponding image was predicted to be in blue class (digit 5)
out of 10 classes.

classes. We train a network with 200 hidden units, leaky ReLU and softmax cross-entropy loss to
zero training error. Once again, one can see that there exists a continuous path that connects two
different-looking images of digit 5 (blue class) where every image along this path is classified as blue
class with high confidence. Moreover this path goes through a pre-constructed adversarial image of
the red class (digit 4).

5.4 Summary

We have shown that deep neural networks need to have in general width larger than the input
dimension in order to learn disconnected decision regions. Moreover, our experiments show that
too narrow networks produce high confidence predictions on a continuous path connecting the true
disconnected components of decision regions, which then could be used to attack these networks using
adversarial manipulation. While our result does not resolve the question how to choose the network
architecture in practice, it provides at least a guideline how to choose the width of the network.



Chapter 6

Summary and outlook

In this thesis, we study the landscape of the empirical risk of deep over-parameterized neural networks
in an attempt to improve our theoretical understanding of why local search algorithms such as
(stochastic) gradient descent can frequently converge to a global minimum in training these networks.
Our analysis touches upon fundamental and important aspects of the problem such as existence of
solutions with zero training error, global optimality of critical points, connectivity and unboundedness
of level sets and sublevel sets, and connectivity of decision regions. We proved several results for
fully connected networks and convolutional neural networks, showing that a sufficiently wide layer in
the architecture is key to ensure both expressive power of the network and well-behaved property of
the loss surface. Finally, we devised a new class of CNN architectures with skip-connections to the
output, which are practically relevant and have a strong theoretical guarantee on the loss landscape.

Our research in this thesis leads to some open problems. First, our current results on well-behaved
loss surface (Chapter 2 and Chapter 3) crucially rely on the key assumption that the network
contains a wide hidden layer with at least N neurons. While this condition has been relaxed to
n1 +. . .+nL−1 ≥ N in Chapter 4 by using random skip-connections, the network still has an implicitly
over-parameterized output layer whose total number of parameters can amount to Nm which can be
problematic if the output dimension m is large. For instance, for ImageNet dataset where N = 106

and m = 1000, the network will have at least 109 parameters just for those skip-connections to the
output units. Thus from a practical point of view, it would be helpful to know if there are other
ways to improve our current condition on the wide layer without using skip-connections as done in
Chapter 4. One approach which we think can be interesting is to extend results from expressivity of
neural networks to optimization landscape. Along this line, Yun et al. (2018) have shown that a three
hidden layer network with 4

√
N + 4m neurons can already memorize arbitrary datasets. However

this result does not mean that local search algorithms like gradient descent can find a global solution
efficiently, as the landscape of the loss function is still unknown. In fact, one can easily construct a
function whose global minima have zero loss but the function itself can have arbitrarily bad local
valleys with large volume where local search algorithms might get stuck. In contrast, while our results
of this thesis require more neurons than necessary (i.e. N neurons at a wide layer), it allows us to
show that the network can not only fit arbitrary datasets but also have a well-behaved loss surface,
which seems to agree with common empirical observations in deep learning Zhang et al. (2017).

Second, while our results on connectivity of sublevel sets from Chapter 3 might shed light on the
geometric structure of the loss function of deep over-parameterized neural nets, it still remains unclear
what these imply for optimization. In particular, while the property of connected sublevel sets might
help us understand why local search algorithms like gradient descent do not easily get trapped at
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bad local valleys, it cannot fully explain why these algorithms work so well in practice as the loss
surface might still contain large plateaus (i.e. the loss is almost flat in a large area) where learning
becomes difficult. At this point, we also want to understand if the continuous trajectory of gradient
descent is (often) a strict descent path, or is it necessary that every continuous path has to cross
some regions with constant loss in parameter space before it can reach a global minimum.

Another interesting direction is to understand the implicit bias of SGD as shown in Section 4.4, as
well as the generalization performance of different (global) solutions with zero training error. In
particular, we have shown that for a class of deep CNNs with enough skip-connections to the output
layer, one can have two training algorithms which both achieve zero training error: 1) a random
feature approach where we randomize and fix all weights of the network during training except
the skip-connection weights which are trained with SGD, and 2) the standard approach where all
parameters are optimized with SGD. In our experiments, both of these algorithms can find solutions
which fit perfectly the training data, but have significantly different test error. In particular, training
the whole network with SGD frequently converges to a global minimum with 10-20% better test error
than the ones found by random feature approach. This is a very strong sign that SGD is implicitly
biased towards the better solutions among infinitely many points with zero training error. In the
literature, there are several recent work which try to understand this phenomenon by showing that
(stochastic) gradient descent might have some implicit regularization under specific settings, such
as for deep linear networks Ji and Telgarsky (2019), deep linear convolutional networks Gunasekar
et al. (2018) and shallow nets with linearly separable data Brutzkus et al. (2018); Soudry et al.
(2018). It remains an interesting open question whether these results could be extended to the case
of deep non-linear networks as analyzed in this thesis, which might help us to understand better
generalization in deep learning.
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