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Zusammenfassung

Diese Arbeit behandelt die theoretische Beschreibung von raumzeitlichen Strukturen in
mit Licht wechselwirkenden atomaren Ensembles. Die Atome befinden sich in einem
Resonator, werden von einem oder mehreren externen Lasern getrieben und emittieren
Photonen in den Resonator. Geordnete Strukturen entstehen für Parameterbereiche, in
denen die emittierten Photonen konstruktiv interferieren. Das Ausbilden von räumlichen
Strukturen kann als Folge einer langreichweitigen Wechselwirkung zwischen den Atomen
verstanden werden, welche durch die mehrfach gestreuten Photonen vermittelt wird. In
dieser Doktorarbeit entwickeln wir Molekularfeldmodelle um die Nichtgleichgewichtsdy-
namik der Atome, unter Einbezug des Einsetzen, der vorübergehenden Dynamik und dem
stationären Zustand der geordneten Strukturen, zu charakterisieren. Dabei identifizieren
wir die Bedingungen für welche die ausbildenden dynamischen Phasen Eigenschaften von
räumlicher Selbstorganisation und Synchronisation zeigen. Wir weisen darauf hin, dass
diese Eigenschaften durch das von dem Resonator abgegebene Licht gemessen werden
können. Schließlich argumentieren wir, dass die statistische Mechanik dieser getriebenen
dissipativen Systeme Schlüsselerkenntnisse über die Dynamik von langreichweitig wech-
selwirkenden Systemen bereitstellt, welche bis heute weitgehend unerforscht sind.
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Abstract

This thesis reports the theoretical description of spatio-temporal pattern forming in
atomic ensembles interacting with photons. The atoms are confined in a cavity, are driven
by one or several external lasers, and scatter or emit light into the resonator. Ordered
structures emerge in parameter ranges where the emitted photons constructively inter-
fere. The formation of spatial patterns can be understood as a consequence of long-range
interactions between the atoms mediated by the multiple-scattered cavity photons. In
this thesis we develop mean-field models to characterize the out-of-equilibrium dynamics
of the atoms including the onset, the transient, and the stationary state of the ordered
structures. Here, we identify the conditions for which the emerging dynamical phases
exhibit features of spatial self-organization and synchronization. We point out that these
features can be measured by observing the light at the cavity output. Finally, we argue
that the statistical mechanics of this driven-dissipative systems provides key insights into
the dynamics of long-range interacting systems, which is to date largely unexplored.
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Introduction

Collective dynamics in nature cannot be fully understood in terms of the sum of the dy-
namics of the individual constituents. Prominent examples are the evolution of galaxy
clusters emerging from gravitational interactions [1], the formation of flocks of birds or
schools of fish [2] and the Hopfield network that describes an associative memory with
collective computational abilities [3]. In quantum optics one of the most prominent ex-
amples is superradiant emission. Here an ensemble of particles interacts with a common
mode of the electromagnetic field and quantum interference leads to a speed up of the
emission process and to an anisotropic modification of the emission pattern [4, 5]. The
quantum interference appears in the emission amplitudes and gives rise to a macroscopic
build up of coherence in the atomic ensemble.

Typically the atomic cloud undergoes superradiant emission for a sufficiently high
optical density. In free space this can be achieved if the interparticle distance is smaller
than the optical wavelength [4, 5]. Another possibility is to trap the light in confined
geometries, such as fibers and optical cavities [5, 6]. In this thesis we consider the case
when many atoms couple to an optical cavity.

An optical cavity typically consists of two mirrors that trap the light while the finite
transmittivity of the cavity mirrors leads to dissipation [7, 8]. To avoid that all cavity
photons are eventually lost one can balance the losses by pumping the cavity with external
lasers through the mirrors or indirectly by driving the atoms that scatter light into it.

Every scattering process of a photon by an atom is accompanied by a change of the
photon’s amplitude and an optomechanical force acting on the atom. Since the cavity
photons normally undergo multiple scattering events, they transfer information and me-
diate interactions between the atoms. For a sufficiently strong interactions this can lead
to spatio-temporal pattern formation such as self-organization [9–13] or synchronization
[14–19]. The onset and stability of these patterns are the object of this thesis.

The coupling between the particles is usually well-described by a long- or even infinite-
range interaction. This draws a connection to the physics of long-range interactions and
allows us to study cavity systems with powerful concepts developed in the framework
of long-range interactions [20–23]. On the other hand an atomic ensemble inside of an
optical cavity provides a promising platform to investigate features of long-range interac-
tions that are usually not observed in short-range interacting systems, such as ensemble
inequivalence, negative specific heat, slow relaxation, and broken ergodicity [23–28].

In a cavity system, moreover, noise and dissipation give rise to long-range friction
and diffusion [29, 30]. These incoherent sources can be tailored such that the atomic
ensemble reaches an out-of-equilibrium steady state in a driven-dissipative setting [13, 31].
Remarkably, even if the cavity decay rate determines the fastest timescale, we will show
that coherences remain for a long time in the ensemble of particles [32, 33].



2 Introduction

Among a rich variety of phenomena and realizations, we focus on the dynamics of
atomic ensembles interacting with an optical resonator, where the mechanical effects
of light can give rise to cooling and formation of spatio-temporal pattern such as self-
organized and synchronized structures.
Content of the thesis
In this thesis we investigate theoretically the collective dynamics of particles confined
in an optical cavity, focusing on the regime in which superradiant photon scattering
establishes long-range interactions between the constituents. This includes the coherent
and dissipative dynamics of the particles. We study the out-of-equilibrium dynamics and
the steady state of the particles’ ensemble and characterize the emerging phases of the
system. This dissertation consists of three chapters.
In Chapter 1 we review the basic concepts at the basis of the theoretical models we
analyze in this thesis. In particular, we discuss the optomechanical forces a single atom
experiences when it interacts with laser light and an optical cavity and discuss basic
properties of superradiant emission by an ensemble of dipoles in an optical resonator.
Chapter 2 is devoted to the theoretical characterization of spatial density patterns which
spontaneously form when polarizable particles interact with the cavity. We determine
the statistical mechanics of these spatial patterns and study relaxation into them after
quenches of the laser parameters. The original contributions to this chapter are pre-
sented in five publications in different subsections where we present a list of the authors’
contributions. In subsection 2.2.2 we include the preprint [34] of the original publication.
2.2.1 Thermodynamics and dynamics of atomic self-organization in an optical cavity
S. Schütz, S. B. Jäger, and G. Morigi, Phys. Rev. A 92, 063808 (2015).
2.2.2 Phases of cold atoms interacting via photon-mediated long-range forces
T. Keller, S. B. Jäger, and G. Morigi, J. Stat. Mech. 6, 064002 (2017).
2.3.1 Mean-field theory of atomic self-organization in optical cavities
S. B. Jäger, S. Schütz, and G. Morigi, Phys. Rev. A 94, 023807 (2016)
2.3.2 Dissipation-Assisted Prethermalization in Long-Range Interacting Atomic Ensembles
S. Schütz, S. B. Jäger, and G. Morigi, Phys. Rev. Lett. 117, 083001 (2016).
2.3.3 Quenches across the self-organization transition in multimode cavities
T. Keller, V. Torggler, S. B. Jäger, S. Schütz, H. Ritsch, and G. Morigi, New J. Phys. 20,
025004 (2018).
In Chapter 3 we extend the dynamics of the previous chapter by including the incoher-
ently driven atomic pseudospins. We explore the onset of superradiant emission and the
coherent and dissipative effects on the atomic motion. The last section of this chapter
consists of two publications in subsections where we also report the authors’ contributions.
3.3.1 Supercooling of Atoms in an Optical Resonator
M. Xu, S. B. Jäger, S. Schütz, J. Cooper, G. Morigi, and M. J. Holland, Phys. Rev. Lett. 116,
153002 (2016).
3.3.2 Semiclassical theory of synchronization-assisted cooling
S. B. Jäger, M. Xu, S. Schütz, M. J. Holland, and G. Morigi, Phys. Rev. A 95, 063852 (2017).
In the end of the thesis we provide some concluding remarks with an outlook.
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Chapter 1

Polarizable particles
interacting with light

In this chapter we discuss basic concepts for the description of
interactions between polarizable particles and light. Our fo-
cus is on the mechanical effects of light on atoms or molecules.
In the first section we introduce the model describing the in-
teraction of a single particle with a laser, for the purpose of
trapping and cooling with optical radiation. In the second
section we investigate the mechanical effects that arise from
the coupling of a dipolar transition of an atom to a single
resonator mode. We then discuss coherent and dissipative
forces of light on the atom. In the last section we analyze su-
perradiance of an ensemble of spins inside an optical cavity.
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Section 1.1

Mechanical effects of light on a
single atom

In this section we provide the underlying concepts of the dynamics of the atoms due to
the mechanical effects of atom-photon interactions. In the end of this section we discuss
the dynamics in terms of light forces and how mechanical effects of light can be used to
trap and cool the particle’s motion [35].

1.1.1 A polarizable particle interacting with a laser

The particle degrees of freedom

We consider a single particle with mass m whose relevant internal degrees of freedom
constitute a dipolar, two-level transition [8] with ground and excited state |g〉 and |e〉,
respectively. The Hamiltonian governing the dynamics of the internal and external degrees
of freedom reads

Ĥat = ~ωaσ̂†σ̂ + p̂2

2m, (1.1.1)

with energy gap ωa between the internal states and kinetic energy p̂2/2m. Here, σ̂ = |g〉〈e|
is the transition matrix from excited to ground state, the operator p̂ = (p̂x, p̂y, p̂z)T is
the momentum and r̂ = (r̂x, r̂y, r̂z)T the position operator of the particle’s center of mass.
They fulfill the canonical commutation relations [r̂i, p̂j] = i~δi,j where δi,j is the Kronecker
delta and i, j = x, y, z.

We assume that the transition from the electronic excited state |e〉 to the ground state
|g〉 is a dipole transition. In this case the electric dipole operator d̂ can be written as

d̂ = degσ̂† + dgeσ̂, (1.1.2)

where deg = d∗ge = 〈e|d̂|g〉 is the transition matrix element between the electronic ground
and excited state.

Interaction between the electric dipole and the electromagnetic field

The atom and the electromagnetic field are assumed to be confined within the volume V .
The interaction between the particle’s dipole d̂ and the electric field Ê(r̂) is described in
the electric-dipole approximation 1 [8]. The Hamiltonian describing the interaction takes
the form

Ĥint = −d̂ · Ê(r̂), (1.1.3)
1This is valid when the size of the bound state of the electron l is sufficiently small compared to optical

wavelength λ of the dipole transition. For atoms interacting with light this is often a good approximation
considering typical values for the size of the bound state l ∼ 10−10 m and for the optical wavelength
λ ∼ 10−7 m.
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where the electric field operator is here quantized and evaluated at the position of the
atom’s center of mass r̂:

Ê(r̂) =
∑
m

√
~ωm
2ε0V

εmfm(r̂)âm + H.c. (1.1.4)

The sum in Eq. (1.1.4) runs over all modes of the electromagnetic field indexed by
m = (km, εm) that consist of a wave vector km and a polarization εm with εm ⊥ km.
We also introduced the frequency of the mth mode ωm with the dispersion relation
ωm = c|km|, the dielectric constant ε0, the quantization volume V and the mode func-
tion fm(r). The operators âm and â†m annihilate and create a photon in the mth mode.
They fulfill the canonical commutation relation [âm, â†m′ ] = δm,m′ . The energy of the
electromagnetic field is given by

Ĥfield =
∑
m

~ωmâ†mâm, (1.1.5)

where we dropped the contribution of the vacuum state since it is not relevant in this
work [36, 37].

Using Eq. (1.1.2) and Eq. (1.1.4) in Eq. (1.1.3) and then applying the rotating wave
approximation2 [8] the interaction Hamiltonian takes the form

Ĥint = −
∑
m

~gm(r)â†mσ̂ + H.c., (1.1.6)

where we have introduced the coupling strength

gm(r) =
√

ωm
2~ε0V

fm(r)∗(dge · ε∗m), (1.1.7)

that has the dimension of a frequency.

Master equation formalism for the description of the particle’s dynamics

For the description of the evolution of the coupled field and particle dynamics we use the
master equation formalism. The master equation is a differential equation for the density
matrix %̂ that describes the temporal state of particle and field. When the dynamics is
purely Hamiltonian, its dynamics is governed by the von Neumann equation [38, 39]

∂%̂

∂t
= 1
i~
[
Ĥ, %̂

]
. (1.1.8)

For the dynamics we consider, where %̂ is the density matrix of the atomic internal and
external degrees of freedom as well as of the electromagnetic field, Ĥ is given by the sum

Ĥ = Ĥat + Ĥfield + Ĥint, (1.1.9)

where the individual operators on the right-hand side are described in Eqs. (1.1.1), (1.1.5),
and (1.1.6).

2This is valid in the regime when the effective coupling between field and dipole is sufficiently small.
This needs that the inequality |ωa + ωm| � |ωa − ωm| must be fulfilled in order to neglect the counter
rotating terms. For optical frequencies this is usually fulfilled since we consider detunings up to |ωa−ωm| ∼
1011s−1 while |ωa + ωm| ∼ 1015s−1 is orders of magnitude larger.
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We now present an effective description for the density matrix of the atomic degrees
ρ̂ = Trfield(%̂), where Trfield( . ) denotes the trace over the electromagnetic field degrees of
freedom. In quantum optics the effective description is given by a Born-Markov master
equation 3 [38, 39], that reads

∂ρ̂

∂t
= 1
i~
[
Ĥeff , ρ̂

]
+ γL[σ̂]ρ̂, (1.1.10)

where the term L[σ̂] is the relaxation superoperator and takes the form

L[Ô]ρ̂sys = −1
2
(
Ô†Ôρ̂sys + ρ̂sysÔ

†Ô − 2Ôρ̂sysÔ
†
)
. (1.1.11)

In Eq. (1.1.10) L[σ̂] describes the incoherent process of spontaneous emission with rate γ
of the atom.4 Spontaneous emission eventually leads the particle to the ground state in
absence of external excitation. In presence of a laser, the corresponding Hamiltonian is
given by

Ĥeff = Ĥat + ĤL, (1.1.12)

where Ĥat is shown in Eq. (1.1.1) and the laser-atom interaction takes the form

ĤL = ~ΩL(r̂, t)†σ̂ + H.c.. (1.1.13)

This description is based on assuming that the laser corresponds to a coherent state of
radiation [41]. The frequency ΩL(r̂, t) includes the information of the spatial dependence
of the intensity and the phase of the coherent light field. For the case of a monochromatic
laser with frequency ωL, ΩL can be written as ΩL(r̂, t) = Ω cos(kL · r)e−iωLt for a standing
wave laser field or ΩL(r̂, t) = Ωe−ikL·r̂e−iωLt for a running wave laser field. Here Ω is the
Rabi frequency and kL is the wave vector that fulfills the dispersion relation kL = |kL| =
ωL/c with c the speed of light.

1.1.2 Elimination of the excited state
In this subsection we derive the steady state of the optical dipole in the regime where
the excited state can be eliminated from the dynamics. This will allow us to describe the
atomic dipole by its classical polarizability and derive a closed equation for the particle’s
mechanical motion.

The steady state of the dipole

In the following we consider the case of a free particle in one dimension driven by a
standing wave laser with frequency ωL. The master equation for the atomic state ρ̂′ reads

∂ρ̂′

∂t
= 1
i~
[
Ĥ ′, ρ̂′

]
+ γL[σ̂]ρ̂′ (1.1.14)

3The Born-Markov approximation is valid for the coupling of the particle to the electromagnetic field
in free space while it usually does not apply for atom-cavity interactions, that we consider in the following
sections and chapters.

4The rate γ is the Einstein coefficient and can be calculated using Fermi’s golden rule [40]. In general
there would also be the absorption process of a thermal photon that we do not include in our description
since for an optical transition this effect is negligible. At room temperature the energy of a photon
~ωa ≈ 10−19 J exceed by orders of magnitude the thermal energy β−1 = kBT ≈ 4× 10−21 J.



Polarizable particles interacting with light 7

and the Hamiltonian is given by

Ĥ ′ = ~ωaσ̂†σ̂ + p̂2

2m + ~Ω cos(kx̂)(σ̂eiωLt + σ̂†e−iωLt), (1.1.15)

where p̂ is the conjugate momentum operator to the position operator x̂. We describe the
system in the frame rotating with the laser frequency ωL defined by the transformation

ρ̂ = eiωLtσ̂
†σ̂ρ̂′e−iωLtσ̂

†σ̂. (1.1.16)

In this reference frame the corresponding master equation for ρ̂ reads
∂ρ̂

∂t
= 1
i~
[
Ĥ, ρ̂

]
+ γL[σ̂]ρ̂, (1.1.17)

where the Hamiltonian takes the form

Ĥ = −~∆aσ̂
†σ̂ + p̂2

2m + ~Ω cos(kx̂)(σ̂ + σ̂†), (1.1.18)

and where ∆a = ωL − ωa is the detuning between the laser frequency and the atomic
frequency.

The dynamics for ρ̂ij = 〈i|ρ̂|j〉, with i, j ∈ {e, g}, is governed by the optical Bloch
equations. The equations of motion of the matrix elements of ρ̂ are given by

∂ρ̂eg
∂t

=
(
i∆a −

γ

2

)
ρ̂eg + 1

i~

[
p̂2

2m, ρ̂eg

]
− iΩ cos(kx̂)ρ̂gg + iΩρ̂ee cos(kx̂), (1.1.19)

∂ρ̂gg
∂t

=γρ̂ee + 1
i~

[
p̂2

2m, ρ̂gg

]
− iΩ cos(kx̂)ρ̂eg + iΩρ̂ge cos(kx̂), (1.1.20)

∂ρ̂ee
∂t

=− γρ̂ee + 1
i~

[
p̂2

2m, ρ̂ee

]
− iΩ cos(kx̂)ρ̂ge + iΩρ̂eg cos(kx̂). (1.1.21)

We first neglect the particle’s motion. In this case the kinetic energy term is dropped
and we treat x̂ as parameter x of the system. The steady state of the internal degrees of
freedom satisfies ∂ρij/∂t = 0 and is given by 5

ρeg = s

1 + 2|s|2 , (1.1.22)

ρgg = 1 + |s|2
1 + 2|s|2 , (1.1.23)

ρee = |s|2

1 + 2|s|2 . (1.1.24)

It solely depends on the parameter s, which reads

s = Ω cos(kx)
∆a + iγ2

(1.1.25)

and where |s|2 is called the saturation parameter [8].
For sufficiently small laser power Ω� |∆a + iγ/2|, therefore |s| � 1, the excited state

population scales with |s|2. It is negligible in first order in s while the coherence ρ̂eg ∝ s.
The low saturation limit is thus characterized by a dipole proportional to the electric field,
like in the classical Lorentz oscillator model of a bound electron [42, 43].

In this limit we will analyze the mechanical effect of light on the center of mass motion
of the particle.

5In this case we write ρij instead of ρ̂ij since it is not an operator of the external degrees.
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1.1.3 Light forces
We derive the equations of motion in the frame moving with the particle

ρ̃ = exp
(
i

~
p̂2

2mt

)
ρ̂ exp

(
− i
~
p̂2

2mt

)
.

In this frame and in the low saturation limit, Eq. (1.1.19) can be approximated by

∂ρ̃eg
∂t

=
(
i∆a −

γ

2

)
ρ̃eg − iΩ cos (kx̂(t)) ρ̃gg + O(|s|2), (1.1.26)

with kx̂(t) = kx̂ + δ̂t where the Doppler shift is δ̂ = kp̂/m. Integrating Eq. (1.1.26) we
obtain

ρ̃eg(t) =e(i∆a− γ2 )tρ̃eg(0)− iΩ
∫ t

0
dτe(i∆a− γ2 )(t−τ) cos (kx̂(τ)) ρ̃gg(τ) + O(|s|2)

=e(i∆a− γ2 )tρ̃eg(0)− iΩ
∫ t

0
dτe(i∆a− γ2 )τ cos

(
kx̂(t)− δ̂τ

)
ρ̃gg(t− τ) + O(|s|2).

(1.1.27)

We may now expand ρ̃gg(t− τ) = ρ̃gg(t)− τ∂tρ̃gg(t) + ... in the integrand in Eq. (1.1.27).
Then, using Eq. (1.1.20), ∂tρ̃gg ∼ O(Ω) therefore in the low saturation limit we may
approximate ρ̃gg(t− τ) ≈ ρ̃gg(t) in Eq. (1.1.27). We obtain

ρ̃eg(t) ≈− iΩ
∫ t

0
dτe(i∆a− γ2 )τ cos

(
kx̂(t)− δ̂τ

)
ρ̃gg(t), (1.1.28)

where we assumed that ρ̃eg(0) = 0. To solve the integral in Eq. (1.1.28) we first rewrite

cos(kx̂(t)− δ̂τ) =e
i(kx̂(t)−δ̂τ) + e−i(kx̂(t)−δ̂τ)

2 .

Then, using that

ei(kx̂(t)−δ̂τ) + e−i(kx̂(t)−δ̂τ)

2 =e
ikx̂(t)e−i(δ̂+ωR)τ + e−ikx̂(t)ei(δ̂−ωR)τ

2
with the definition of the recoil frequency

ωR =

[
kx̂, δ̂

]
2 = ~k2

2m (1.1.29)

we can solve the integral in Eq. (1.1.28) and obtain

ρ̃eg(t) =
eikx̂(t)

2
Ω

∆a − δ̂ − ωR + iγ2
+ e−ikx̂(t)

2
Ω

∆a + δ̂ − ωR + iγ2

 ρ̃gg(t), (1.1.30)

where we assumed times t such that γt� 1.
We consider now the case where the recoil frequency is much smaller then the detuning,

the spontaneous emission rate

ωR � |∆a|, γ, (1.1.31)
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and as the standard deviation of the Doppler shift

ωR �
k∆p
m

, (1.1.32)

with

∆p =
√
〈(p̂− 〈p̂〉)2〉. (1.1.33)

In this case we can drop the dependence on ωR in Eq. (1.1.30).6 The regime where
the inequality (1.1.32) holds is called the semiclassical regime where the single particle
momentum width exceeds the single photon recoil by orders of magnitude

~k � ∆p. (1.1.34)

In this case the single-photon recoil can be treated as infinitesimal momentum step for
the particle’s momentum distribution [44, 45].

In the semiclassical limit Eq. (1.1.30) takes the form

ρ̃eg(t) =
[

Ωeikx̂(t)

2(∆a − δ̂) + iγ
+ Ωe−ikx̂(t)

2(∆a + δ̂) + iγ

]
ρ̃gg(t). (1.1.35)

In the following we will derive the force on the atom by using the result of Eq. (1.1.35). The
force acting on the particle is the derivative of the mean particle momentum 〈p̂〉 = Tr(p̂ρ̃).
Using Eq. (1.1.17) this reads
d〈p̂〉
dt

= 1
i~

Tr ([p̂, ~Ω cos(kx̂(t))] (ρ̃eg(t) + ρ̃ge(t))) = ~kΩTr (sin(kx̂(t))(ρ̃eg(t) + ρ̃ge(t))) .

We can cast the right-hand side as the expectation value of an operator F̂ , that we denote
by force operator. Using Eq. (1.1.35) we can explicitly derive the form of F̂ that we split
into two components F̂1 and F̂2 with

F̂ = F̂1 + F̂2 (1.1.36)

where7

F̂1 =~kΩ sin(kx̂(t)) cos(kx̂(t))
 (∆a − δ̂)Ω

(∆a − δ̂)2 + γ2

4

+ (∆a + δ̂)Ω
(∆a + δ̂)2 + γ2

4

 , (1.1.37)

F̂2 =~kΩ sin2(kx̂(t))
 γΩ

(∆a − δ̂)2 + γ2

4

− γΩ
(∆a + δ̂)2 + γ2

4

 . (1.1.38)

6As a consequence of this approximation the operators eikx̂(t) and Ω/(∆a − δ̂ + iγ/2) commute. This
can be seen using the relation

eikx̂(t) Ω
∆a−δ̂−ωR+i γ2

= Ω
∆a−δ̂+ωR+i γ2

eikx̂(t)

and then applying the approximations

eikx̂(t) Ω
∆a−δ̂−ωR+i γ2

≈ eikx̂(t) Ω
∆a−δ̂+i γ2

as well as
Ω

∆a−δ̂+ωR+i γ2
eikx̂(t) ≈ Ω

∆a−δ̂+i γ2
eikx̂(t).

7These formulas are semiclassical and are only valid in the limit where we can drop ωR. The operators
F̂ , F̂1, and F̂2 are hermitian since we can commute the operators depending on p̂ and x̂ because the
corresponding commutator would be of higher order in ωR/∆a, ωR/γ, and ωR/

√
〈δ̂2〉.



10 Polarizable particles interacting with light

We denote F̂1 by dipole and F̂2 by cooling force, respectively, as it will become clear later
on.

(a) (b)

Figure 1.1: (a) The function f1, Eq. (1.1.40), and (b) f2 ,Eq. (1.1.45), as
a function of δ in units of ∆a. We have chosen the parameter ∆a = −γ/2.

Dipole force

The dipole force reads

F̂1 = ~k sin(kx̂(t)) cos(kx̂(t)) Ω2

∆a

f1(δ̂), (1.1.39)

where f1(δ) contains the dependence on the Doppler shift and reads

f1(δ) =
1− δ

∆a(
1− δ

∆a

)2
+ γ2

4∆2
a

+
1 + δ

∆a(
1 + δ

∆a

)2
+ γ2

4∆2
a

. (1.1.40)

This function is plotted in Fig. 1.1(a) for ∆a = −γ/2. It is symmetric in δ/∆a. For small
values of |δ/∆a| it is positive while for larger values of |δ/∆a| it becomes negative and
then converges to zero.

We analyze f1 in the limit |δ| � |∆a|, γ where the Doppler shift is much smaller than
the detuning.8 In this limit we expand f1 in the lowest order δ/∆a and obtain9

f1(δ) ≈ 2
1 + γ2

4∆2
a

, (1.1.41)

8This is the limit where the particles momentum width is already sufficiently small such that the
internal degrees of freedom evolve much faster than the external degrees of freedom. If we consider a
linewidth γ ∼ 107 s−1 and a recoil energy ωR ∼ 104 s−1 this consideration is justified for a momentum
width of ∆p � 103~k. We want to remark that this still allows the inequality ∆p � ~k to be fulfilled
that is important for the semiclassical approximation.

9The first order in δ/∆a vanishes since f1 is an even function.
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that is independent of δ and positive. This allows us to rewrite the force as derivative of
the standing-wave potential V̂ with

F̂1 = − ∂V̂ (x)
∂x

∣∣∣∣∣
x=x̂(t)

, (1.1.42)

where V̂ is given by

V̂ (x̂) = ~∆aΩ2

∆2
a + γ2

4

cos2(kx̂(t)). (1.1.43)

The motion due to F̂1 is hence conservative in this limit. The sign of this force depends
on the detuning ∆a that determines whether this force is attractive at the antinodes or
nodes of the laser field. For red detuning ∆a < 0 the minima of the potential are the
maxima of field intensity (high-field seeker) while for blue detuning ∆a > 0 the minima
of the potential are also the minima of the intensity (low-field seeker).

Cooling force

We now discuss the motion due to F̂2. This force reads

F̂2 = ~k sin2(kx̂(t)) Ω2

∆a

f2(δ̂), (1.1.44)

where

f2(δ) =
γ

2∆a(
1− δ

∆a

)2
+ γ2

4∆2
a

−
γ

2∆a(
1 + δ

∆a

)2
+ γ2

4∆2
a

. (1.1.45)

The function f2 defined in Eq. (1.1.45) is shown in Fig. 1.1(b) for ∆a = −γ/2. It is odd
in δ: f2 is positive for δ < 0 and negative for δ > 0.

In the limit |δ| � |∆a| we can expand f2 up to first order in |δ/∆a|:

F̂2 ≈ ~k sin2(kx̂(t)) 2∆aγΩ2(
∆2
a + γ2

4

)2 δ̂. (1.1.46)

In this limit F̂2 is proportional to δ̂ and therefore to the velocity of the particle. For the
case of red detuning ∆a < 0 it is a damping force, while for blue detuning it leads to
heating.10

Doppler limit

We now consider the dynamics due to the mechanical forces and consider the equation of
motion for the kinetic energy

d〈p̂2〉
dt

= ~kΩTr ([p̂ sin(kx̂(t)) + sin(kx̂(t))p̂](ρ̃eg + ρ̃ge)) (1.1.47)

10For an increasing momentum width non-linear terms of the Doppler shift in Eq. (1.1.44) become
important and the description by Eq. (1.1.46) becomes invalid.
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in the low saturation limit and the semiclassical regime. Using now the form of ρ̂eg given
in Eq. (1.1.35) we may write

d〈p̂2〉
dt

=
〈
p̂(F̂1 + F̂2) + (F̂1 + F̂2)p̂

〉
+ 〈D̂〉 (1.1.48)

with

D̂ ≈ (~k)2Ω2γ

∆2
a + γ2

4

sin2(kx̂(t)) (1.1.49)

in zeroth order11 in δ̂ and where F̂1 and F̂2 are defined in Eqs. (1.1.37), (1.1.38). The term
D̂ is a diffusion operator that is here position dependent. In absence of a well defined
phase relation between the counter-propagating lasers, the sin2(kx̂(t)) is approximated by
its ergodic average, 〈sin2(kx̂(t))〉 ∼ 1/2, while the dipole force vanishes. This gives

d〈p̂2〉
dt
≈ 4ωr∆aγΩ2(

∆2
a + γ2

4

)2 〈p̂
2〉+ (~k)2

2
Ω2γ

∆2
a + γ2

4

. (1.1.50)

The steady state reads then

〈p̂2〉
2m =

~(∆2
a + γ2

4 )
−8∆a

. (1.1.51)

Using 〈p̂2〉/(2m) = kBT/2, with the Boltzmann constant kB, we obtain the temperature
achieved by Doppler cooling

kBTD =
~(∆2

a + γ2

4 )
−4∆a

. (1.1.52)

It is minimal for ∆a = −γ/2 and is bounded from below by kBTD ≥ ~γ/4.12 This is the
Doppler-cooling limit. This description requires that the inequalities

|∆a|, γ �
k∆p
m
� ωR (1.1.53)

hold. Therefore, we cannot use Eq. (1.1.52) if the linewidth γ approaches the recoil
frequency ωR (Eq. (1.1.29)).

Doppler cooling has been first predicted in Refs. [50, 51]. It is nowadays commonly
realized in labs and the first experimental realization has been reported in Ref. [52].

Laser cooling mechanisms that can reach temperatures that are below ~γ/4 are de-
noted by sub-Doppler cooling. The maybe most prominent example for sub-Doppler
cooling is polarization gradient cooling. With this cooling method the particle can ap-
proach the recoil limit [53]. For their achievements and developments of methods to cool
and trap atoms with laser light C. Cohen-Tannoudji, W. D. Phillips, and S. Chu were
awarded with the Nobel price in physics [54–56].

Radiative cooling of motion can also be achieved by coherent scattering of photons.
This is the case of cavity cooling. In the following we discuss the mechanical effects on a
particle that arise from coherent scattering into a lossy cavity mode.

11A more general result can be found in Ref. [46] that predicts also non-Gaussian distributions such as
Tsallis distributions [47–49].

12For the choice of a transition where γ ∼ 107 s−1 we obtain the temperature TD ∼ 100 µK. We want
to mention that this is consistent with the assumption that the Doppler shift k∆p/m is small compared
to |∆a| and γ.
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Section 1.2

A polarizable particle coupling to a
cavity mode

In this section we discuss the dynamics of a single cavity mode coupling to the dipole of
a particle. We focus on the mechanical effects that arise from this interaction and we will
show that coherent scattering of a polarizable particle in a lossy resonator can cool the
particle’s motion.

1.2.1 A polarizable particle interacting with an optical cavity

The cavity degrees of freedom

An optical standing-wave cavity can be realized by two mirrors facing each other allowing
the electromagnetic field to populate quantized modes [7]. The hard wall condition (for
ideally parallel mirrors) provide a spectrum of modes where the frequency gap scales with
1/L where L is the length of the resonator. For sufficiently small mode volume a single
resonator mode couples quasi-resonantly to a dipole transition of a particle while all other
modes are off resonant.13 This is the typical scenario that we consider in the following.

For the purpose of modeling the cavity dynamics we thus assume a single harmonic
oscillator. The frequency of the single resonator mode is given by ωc. The Hamiltonian
describing this mode reads

Ĥcav = ~ωcâ†â, (1.2.1)

where â and â† are the annihilation and creation operator of a cavity photon that fulfill
the canonical commutation relation [â, â†] = 1 and we discarded the contribution of the
vacuum [36, 37].

The cavity mode couples to the free electromagnetic field external to the resonator via
the finite mirror transmittance. This process can be described by the Hamiltonian [8]

Ĥcav−ff = ~
∑
m

(cmâ†âm + c∗mâ
†
mâ), (1.2.2)

where cm is the coupling of the cavity mode to the mode m of the free electromagnetic
field, and âm and â†m are the annihilation and creation operator of a photon in mode m,
see Eq. (1.1.5). The Hamiltonian in Eq. (1.2.2) describes the coherent processes that a
cavity photon is annihilated and a photon in the electromagnetic field outside the cavity
is created and vice versa.

Like in the case of spontaneous emission, the effect of the finite transmittance of the
cavity mirrors can be described by means of an effective Born-Markov master equation.
This effective master equation for the reduced density matrix ρ̂, that now only describes
the particle and cavity degrees of freedom, reads [8]

∂ρ̂

∂t
= 1
i~

[Ĥeff , ρ̂] + γL[σ̂]ρ̂+ κL[â]ρ̂, (1.2.3)

13For a cavity length L ∼ 10−2 cm [57, 58] the free spectral range is of the order c/(2L) ∼ 103 GHz
and for a cavity length of L ∼ 1 cm [30, 59, 60] the free spectral range is of the order c/(2L) ∼ 10 GHz.
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where the dissipative parts are given by relaxation superoperators defined in Eq. (1.1.11).14

The term γL[σ̂] describes spontaneous emission with rate γ and the term κL[â] describes
the losses of cavity photons through the cavity mirrors. The rate κ is the linewidth of the
cavity.

The coherent part of the master equation in Eq. (1.2.3) is given by the Hamiltonian
Ĥeff that is now written as

Ĥeff = Ĥat + ĤL + Ĥcav + ĤL2 + ĤJC . (1.2.4)

The Hamiltonian Ĥat describes the dynamics of the atomic degrees of freedom (Eq. (1.1.1))
while ĤL describes the coupling of the laser to the atomic dipole (Eq. (1.1.13)). The cavity
degrees of freedom evolve according to the Hamiltonian Ĥcav (Eq. (1.2.1)) and a possibly
additional laser driving of the resonator mode [8]

ĤL2 = ~(η(t)∗â+ â†η(t)). (1.2.5)

For a monochromatic laser field it is given by η(t) = ηe−iωLt where ωL is the laser frequency
and |η|2 is proportional to the laser power.

Jaynes-Cummings Hamiltonian

The coupling between the cavity mode and the particle in the dipole approximation is
described by the Hamiltonian in Eq. (1.1.3) where the electric field is now the electric
field of the cavity. Using the rotating wave approximation [8], the Hamiltonian describing
the coupling between cavity and particle takes the form

ĤJC = ~(g(r̂)â†σ̂ + g(r̂)†σ̂†â), (1.2.6)

that is the celebrated Jaynes-Cummings model [8]. Here g(r̂) is the coupling frequency
of the cavity field to the particle and depends on the mode function of the cavity. For a
standing wave along the x axis it takes the form g(r̂) = g cos(kx̂) where g is the vacuum
Rabi frequency. This Hamiltonian describes the change of the particle’s internal and
external state by emitting or absorbing a cavity photon. 15

1.2.2 Elimination of the internal degrees of freedom
We now aim at deriving a theoretical model for the description of the motion of the
particle in the optical cavity. Our starting point is the Born-Markov master equation for
the density matrix ρ̂′ describing the particle’s and the cavity degrees of freedom

∂ρ̂′

∂t
= 1
i~

[Ĥ ′, ρ̂′] + κL[â]ρ̂′ + γL[σ̂]ρ̂′. (1.2.7)

The master equation includes the spontaneous decay of the particle’s excited state with
rate γ, the decay of cavity photons with rate κ, and the Hamiltonian

Ĥ ′ =~ωaσ̂†σ̂ + p̂2

2m + ~ωcâ†â+ ~g cos(kx̂)(â†σ̂ + σ̂†â)

+ ~Ω(σ̂†e−iωLt + σ̂eiωLt) + ~η(â†e−iωLt + âeiωLt). (1.2.8)
14Here, we have treated the electromagnetic modes coupling to the particle’s dipole and to the cavity

independently. This is only true if the resonator mode and the particle’s dipole couple to different modes
of the electromagnetic field.

15The Jaynes-Cummings model in Eq. (1.2.6) conserves the excitations in field and atom [8]. This
means that it commutes with the operator Ê = â†â+ σ̂†σ̂.
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The first line in the Hamiltonian (1.2.8) includes, from left to right, the energy splitting
of the two-level system, the kinetic energy of the particle in one dimension, the energy
of the cavity photons, and the Jaynes-Cummings coupling. The Jaynes-Cummings term
includes the standing-wave mode function of the cavity field cos(kx), where we defined the
cavity axis to be the x axis. The laser pumps are shown in the second line of Eq. (1.2.8).
The first term is a laser pump of the particle and the second term is a laser pump of the
cavity. Here, we assumed that both lasers have the same frequency ωL. Furthermore,
that the both lasers are phase locked. We note that the spatial mode of the laser pump
is assumed to be constant. Figure 1.2 is a sketch of this physical setup.

Figure 1.2: (a) The dipole of the particle with ground state |g〉 and ex-
cited state |e〉 that couples to the cavity with vacuum coupling g cos(kx)
and is driven by a laser with Rabi frequency Ω. (b) Sketch of the physical
setup: the particle’s dipole is transversally pumped by a laser with Rabi
frequency Ω and couples to the cavity mode. The cavity is pumped by a
second laser (arrow with label η). The model also includes losses of the
cavity with rate κ and spontaneous emission of the dipole with rate γ
into the modes external to the resonator.

In the frame oscillating with the laser frequency and defined by the transformation:

ρ̂ = eiωLt[σ̂
†σ̂+â†â]ρ̂′e−iωLt[σ̂

†σ̂+â†â], (1.2.9)

we obtain the master equation for the density matrix in the rotating frame ρ̂ that reads

∂ρ̂

∂t
= 1
i~

[Ĥ, ρ̂] + κL[â]ρ̂+ γL[σ̂]ρ̂. (1.2.10)

The new Hamiltonian is time independent and takes the form

Ĥ =− ~∆aσ̂
†σ̂ + p̂2

2m − ~∆câ
†â+ ~g cos(kx̂)(â†σ̂ + σ̂†â) + ~Ω(σ̂† + σ̂) + ~η(â† + â).

(1.2.11)

Here, we introduced the detuning between the laser and the atomic frequency ∆a = ωL−ωa
as well as the detuning between the laser and the cavity frequency ∆c = ωL − ωc.

Coherent scattering

We will focus in the regime where the detuning ∆a is much larger than any other char-
acteristic frequency in determining the dynamics in the reference frame of the laser. In
this case the scattering processes of the atom are prevailing coherent. We now use this
assumption and derive the Hamiltonian that is at the basis of our studies in chapter 2.
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To simplify Eq. (1.2.10) we derive the equation of motion for ρ̂eg = 〈e|ρ̂|g〉
∂ρ̂eg
∂t
≈
(
i∆a −

γ

2

)
ρ̂eg + 1

i~

[
p̂2

2m, ρ̂eg

]
− i(Ω + gâ cos(kx̂))ρ̂gg + iρ̂ee(Ω + gâ cos(kx̂)).

(1.2.12)
For this case we can estimate the saturation parameter for a given mean intracavity
photon number n̄, and it reads

|s| ≈ |Ω|+ |g|
√
n̄

|∆a + iγ2 |
. (1.2.13)

For the parameter choice where ∆a exceeds the other characteristic frequencies, |s| � 1.
We can then drop ρ̂ee in Eq. (1.2.12). In this limit Equation (1.2.12) can be formally
integrated to obtain as a final result

ρ̂eg ≈
Ω + gâ cos(kx̂)

∆a

ρ̂gg. (1.2.14)

Using this result, one can derive a master equation for the reduced density matrix, ob-
tained by tracing out the internal degrees of freedom, that reads

∂ρ̂red

∂t
= 1
i~

[Ĥred, ρ̂red] + κL[â]ρ̂red, (1.2.15)

with the effective Hamiltonian [13]

Ĥred = p̂2

2m − ~(∆c − U0 cos2(kx̂))â†â+ ~S cos(kx̂)(â† + â) + ~η(â† + â). (1.2.16)

Here S = Ωg/∆a is the coherent scattering rate of laser photons into the resonator.16

The quantity U0 = g2/∆a scales the dynamical AC Stark shift of the ground state. Both
describe a coupling between the particle’s external state and the cavity field which we
denote by optomechanical coupling.

The term proportional to U0 shifts the resonance of the cavity field depending on the
position of the particle and, in turn, it is an optical lattice for the particle whose depth
is a quantum variable. For a laser frequency that is red detuned to the atomic frequency
(∆a < 0) it lowers the cavity resonance frequency if the particle localizes at the antinodes
of the cavity mode function cos(kx). Therefore if the laser is also red detuned with respect
to the cavity frequency ∆c < 0 a localization at the antinodes shifts the cavity frequency
towards resonance.

When S 6= 0, the corresponding term describes a pump of the cavity field whose
amplitude depend on the particle’s position. The effective scattering rate |S cos(kx)| is
maximal if the particle is at an antinode of the cavity mode.

1.2.3 Elimination of the cavity field
The dynamics described by Eq. (1.2.15) has been studied in Ref. [61] numerically using
a semiclassical approximation for the field and the particle motion. In the following we
want to derive analytical relations in the case where the cavity degrees of freedom can
be eliminated. This will allow us to derive effective light-mediated forces acting on the
particle.

16The coherent scattering rate is usually given in the form S = Ωg∆a/(∆2
a + γ2/4) that simplifies for

large detuning to S = Ωg/∆a. The incoherent scattering rate Sinc = Ωgγ/[2(∆2
a + γ2/4)] is of the order

γ/|∆a| smaller than S and can therefore be neglected.



Polarizable particles interacting with light 17

Steady-state of the field

We calculate now the master equation for the reduced density matrix ρ̂par = Trcav(ρ̂red)
where we defined the trace over the cavity degrees of freedom as Trcav(ρ̂) = ∑∞

n=0〈n|ρ̂|n〉,
with the Fock states |n〉 that fulfill â|n〉 =

√
n|n− 1〉 for n = 1, 2, .... This is done using

Eq. (1.2.15) and tracing over the cavity variables. The resulting equation reads

∂ρ̂par

∂t
= 1
i~

[
p̂2

2m, ρ̂par

]
+ 1
i~
[
~U0 cos2(kx̂),

〈
â†â

〉
cav

]
+ 1
i~
[
~S cos(kx̂),

〈
â† + â

〉
cav

]
,

(1.2.17)

where in the reduced Hilbert space of the atom the cavity relaxation term vanishes. We
defined here 〈Ô〉cav = Trcav(Ôρ̂red), where the time evolution of the operators

〈
â†â

〉
cav

and
〈
â† + â

〉
cav

is governed by the equation of motion derived from Eq. (1.2.15) 17

∂ 〈â〉cav
∂t

=
(
i[∆c − U0 cos2(kx̂)]− κ

2

)
〈â〉cav − i(η + S cos(kx̂))ρ̂par

+ 1
i~

[
p̂2

2m, 〈â〉cav

]
+ 1
i~
[
~U0 cos2(kx̂),

〈
â†ââ

〉
cav

]
+ 1
i~
[
~S cos(kx̂),

〈(
â+ â†

)
â
〉

cav

]
, (1.2.18)

∂
〈
â†â

〉
cav

∂t
=− κ

〈
â†â

〉
cav
− i(η + S cos(kx̂))

〈
â† − â

〉
cav

+ 1
i~

[
p̂2

2m,
〈
â†â

〉
cav

]
+ 1
i~
[
~U0 cos2(kx̂),

〈
(â†â)2

〉
cav

]
+ 1
i~
[
~S cos(kx̂),

〈(
â+ â†

)
â†â

〉
cav

]
. (1.2.19)

Now, 〈â〉cav and
〈
â†â

〉
cav

are operators defined over the particle’s Hilbert space. If we
first treat the position x as a time-independent parameter and we calculate the stationary
state, providing ∂ 〈â〉cav /∂t = 0 and ∂

〈
â†â

〉
cav
/∂t = 0, we obtain

〈â〉cav = η + S cos(kx)
∆c − U0 cos2(kx) + iκ2

, (1.2.20)

〈â†â〉cav = [η + S cos(kx)]2

[∆c − U0 cos2(kx)]2 + κ2

4
. (1.2.21)

In the following we use these expression to eliminate the cavity degrees of freedom. We
assume U0, η, S � ∆c, κ, such that 〈â〉cav � 1, and the population of the cavity field
mode 〈â†â〉cav can be discarded.

1.2.4 Optomechanical dynamics
We now include the particle’s motion. Following the procedure as in subsection 1.1.3, we
move to the reference frame moving with the particle

ρ̃red = exp
(
i

~
p̂2

2mt

)
ρ̂red exp

(
− i
~
p̂2

2mt

)
.

17Note that 〈Ô〉cav is an operator in the Hilbert space of the particle’s external degrees of freedom.
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In the following we will use the notations ρ̃par = Trcav(ρ̃red) and 〈Õ〉cav = Trcav(Ôρ̃red).
Formally integrating Eq. (1.2.18), we obtain

〈ã〉cav (t) ≈e(i∆c−κ)t 〈ã〉cav (0)− i
∫ t

0
dτe(i∆c−κ)(t−τ)[η + S cos(kx̂(τ))]ρ̃par(τ)

− i
∫ t

0
dτe(i∆c−κ)(t−τ)U0 cos2(kx̂(τ)) 〈ã〉cav (τ), (1.2.22)

where we discarded the second order in ε ∼ (η, S, U0)/(∆2
c + κ2/4)1/2. In presence of a

time scale separation between the typical timescale of the particle’s external degrees of
freedom and the timescale of the cavity degrees of freedom we get

〈ã〉cav (t) =
 η

∆c + iκ2
+ eikx̂(t)

2
S

∆c − δ̂ − ωR + iκ2
+ e−ikx̂(t)

2
S

∆c + δ̂ − ωR + iκ2

 ρ̃par(t).

(1.2.23)
We focus on the semiclassical regime, where we discard higher powers of ωR with respect
to ∆c, κ and the Doppler shift. Following the same procedure as in subsection 1.1.3 we
write

〈ã〉cav (t) =
[

η

∆c + iκ2
+ Seikx̂(t)

2(∆c − δ̂) + iκ
+ Se−ikx̂(t)

2(∆c + δ̂) + iκ

]
ρ̃par(t). (1.2.24)

This term is almost equivalent to the term given in Eq. (1.1.35). The first term in
Eq. (1.2.24) represents the coherent cavity field that is created by the laser pump of the
cavity. This term does not include the coupling to motional degrees of the particle since
it is a direct coupling of the laser with the cavity mode. Such a term is not present in
Eq. (1.1.35). The two terms proportional to S describe the scattering of the transversal
light field into the cavity mode. The two terms belong to the different scattering directions
with respect to the particle’s motion. Therefore the scattering amplitude appears with
Doppler-shifted frequencies. 18

In analogy with the procedure shown in subsection 1.1.3 we can use 〈p̂〉 = Tr(p̂ρ̃par)
to define a hermitian force operator F̂ by

d〈p̂〉
dt

= 〈F̂ 〉. (1.2.25)

It can be developed into two terms F̂1 and F̂2 with

F̂ = F̂1 + F̂2, (1.2.26)

which correspond now to the adiabatic and retarded response of the cavity field and read

F̂1 =~kS sin(kx̂(t))

 2∆cη

∆2
c + κ2

4
+ cos(kx̂(t))

 (∆c − δ̂)S
(∆c − δ̂)2 + κ2

4

+ (∆c + δ̂)S
(∆c + δ̂)2 + κ2

4

 ,
(1.2.27)

F̂2 =~kS sin2(kx̂(t))
 κS

(∆c − δ̂)2 + κ2

4

− κS

(∆c + δ̂)2 + κ2

4

 . (1.2.28)

In order to gain insight into the dynamics, we discuss in the following the limit where
the Doppler shift is small compared to ∆c and κ.

18The AC Stark shift U0 is neglected here that is only valid for small cavity photon numbers and for a
small value of U0/∆c. The AC Stark shift can be used for trapping and cooling of particles [30, 61] while
its effect is suppressed in the regime that we use.
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Small Doppler-shift limit

In this limit Eq. (1.1.42) takes the form

F̂1 ≈~kS sin(kx̂(t))2∆c[η + S cos(kx̂(t))]
∆2
c + κ2

4
, (1.2.29)

which is here reported up to first order in the expansion in δ̂/(∆2
c + κ2)1/2. This force is

conservative since it can be written as

F̂1 ≈ −
∂V̂ (x)
∂x

∣∣∣∣∣
x=x̂(t)

, (1.2.30)

with

V̂ (x̂) = ~∆c(2ηS cos(kx̂) + S2 cos2(kx̂))
∆2
c + κ2

4
. (1.2.31)

This potential has an additional term cos(kx̂) with respect to the potential derived in
Eq. (1.1.43). This is due to the direct laser pump of the cavity that interferes with the
laser photons that are scattered by the particles into the resonator.

The component due to the non-adiabatic corrections takes the form

F̂2 ≈ ~k sin2(kx̂(t)) 2∆cκS
2(

∆2
c + κ2

4

)2 δ̂, (1.2.32)

up to first order in δ̂/(∆2
c +κ2)1/2. It vanishes at the antinode of the cavity field intensity.

Because of its linear dependence on the momentum of the particle it can be considered
to be a friction force in the case of red detuning (∆c < 0) and a heating force in the case
of blue detuning (∆c > 0).

The resulting dynamics of the kinetic energy takes the same form as Eq. (1.1.48),
where F̂1 and F̂2 are now given by Eq. (1.2.29) and Eq. (1.2.32), respectively, and the
diffusion coefficient takes the form

D̂ ≈ (~k)2S2κ

∆2
c + κ2

4
sin2(kx̂(t)). (1.2.33)

This equation allows for a steady state for ∆c < 0. In our case the stationary value of the
kinetic energy reads

〈p̂2〉
2m =

~(∆2
c + κ2

4 )
−8∆c

, (1.2.34)

and for the choice of ∆c = −κ/2 it reaches its minimum value 〈p̂2〉/2m = ~κ/8.
Cavity cooling of a two-level system has first been predicted in Ref. [29]. Since cavity

cooling relies on coherent scattering of photons it has been pointed out to be applicable to
cool molecules, which typically do not have closed transitions [30, 62]. Cooling of particles
by means of coherent scattering inside a resonator has been realized for a single atom [57],
a single ion [63], atomic clouds [9, 10, 64], and nanoparticles [65, 66].



20 Polarizable particles interacting with light

Section 1.3

Superradiance in an optical cavity

Superradiance, in quantum optics, describes the collective emission of N emitters inter-
acting with a common mode of the electromagnetic field. It relies on quantum interference
of the emission amplitudes and gives rise to a macroscopic coherence in the atomic en-
semble. As originally predicted by Dicke [4] superradiance appears for a sufficiently high
optical density that can be realized if the interparticle distance of the atomic cloud is
smaller than the optical wavelength [4, 5].

Superradiance can also be observed if dipoles couple to a common single mode of an
resonator that confines the light [5, 33, 67]. This is the setup that we consider in this
section.

1.3.1 Dipoles coupling to a single cavity mode
We study the model of N identical dipoles interacting with a single resonator mode. The
dynamics of the system is given by the Tavis-Cummings model [68, 69] 19

Ĥ = ~ωcâ†â+ ~ωa
N∑
j=1

σ̂†j σ̂j + ~g
N∑
j=1

(â†σ̂j + σ̂†j â). (1.3.1)

Here ωc is the frequency of the cavity mode, ωa is the dipolar transition frequency, and g is
the vacuum Rabi frequency. The operators â, â† are the cavity annihilation and creation
operators and σ̂j = |g〉j〈e| is the transition matrix from the excited state |e〉j to the
ground state |g〉j of the jth atom. We assume that there is no inhomogeneous broadening
of the transition frequency and that the coupling between cavity mode and particle g is
independent of the particle’s position. In a cavity this is realizable by trapping the atoms
at the antinodes of a standing-wave mode function cos(kx) [72].

Collective spin

We now cast the Hamiltonian (1.3.1) in terms of collective spin operators. For this purpose
we introduce σ̂xj = (σ̂†j + σ̂j)/2, σ̂yj = (σ̂†j − σ̂j)/(2i), and σ̂zj = (σ̂†j σ̂j − σ̂jσ̂

†
j)/2. The

collective spin operators are given by

Ŝx =
N∑
j=1

σ̂xj , (1.3.2)

Ŝy =
N∑
j=1

σ̂yj , (1.3.3)

Ŝz =
N∑
j=1

σ̂zj . (1.3.4)

19The Tavis-Cummings model is the Dicke model in the rotating wave approximation. The Dicke model
is known for the Dicke phase transition between a normal and a superradiant phase [70, 71].
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They fulfill the commutation relation [73]

[Ŝn, Ŝm] =
∑

l=x,y,z
iεnmlŜ

l, (1.3.5)

where n,m = x, y, z and εnml is the Levi-Civita Symbol. We can rewrite the Hamiltonian
in Eq. (1.3.1) as

Ĥ = ~ωcâ†â+ ~ωaŜz + ~g(â†Ŝ− + Ŝ+â), (1.3.6)

that is reported apart from the constant term ~ωa/2. Here, we used the raising and
lowering operators Ŝ± = Ŝx ± iŜy.

We will now choose a basis that will allow us to calculate explicitly transition am-
plitudes of Ĥ. Using Eq. (1.3.5) one can show that the squared spin operator Ŝ2 =
(Ŝx)2 + (Ŝy)2 + (Ŝz)2 commutes with Ŝz. Hence, one can find a common eigenbasis that
we denote by |s,ms〉[73]. The eigenvalues of Ŝ2 and Ŝz corresponding to |s,ms〉 are given
by

Ŝ2|s,ms〉 = s(s+ 1)|s,ms〉, (1.3.7)
Ŝz|s,ms〉 = ms|s,ms〉, (1.3.8)

where −s ≤ ms ≤ s and s = N/2 − bN/2c, N/2 − bN/2c + 1, ..., N/2. Here, bxc is the
floor function that maps x to the greatest integer less or equal to x. With this definition
one can verify that

Ŝ±|s,ms〉 =
√
s(s+ 1)−ms(ms ± 1)|s,ms ± 1〉. (1.3.9)

The Hamiltonian Ĥ commutes with Ŝ2 and Ê = Ŝz + â†â. Therefore, the length of
the collective Bloch vector 〈Ŝ2〉 and the total number of excitations 〈Ê〉 are constants of
motion. As a result a state of the form |s,ms;nph〉 = |s,ms〉 ⊗ |nph〉, where |nph〉 is the
Fock state of the cavity mode corresponding to the photon number nph, can only couple
to states where |s′,m′s;n′ph〉 with s′ = s, ms + nph = m′s + n′ph.

Collective emission rate

We consider now the case where the collective Bloch vector 〈Ŝ〉 points along z direction 20

with 〈Ŝz〉 = N/2 and the cavity mode is in the vacuum, such that 〈Ê〉 = N/2. Therefore,
the initial state reads |s = N/2,ms = N/2;nph = 0〉. In this state photon emission leads to
a decrease of the number of particles in the excited states according to 〈Ŝz〉 = N/2−〈â†â〉.

The superradiant enhancement of the emission rate is visible in the scaling with N of
the transition amplitude describing the emission of one photon

〈ms = N/2− 1;nph = 1|Ĥ|ms = N/2;nph = 0〉 = g
√
N. (1.3.10)

We note that |s = N/2,ms = N/2− 1〉 is a coherent superposition of atomic excitations:

|s = N/2,ms = N/2− 1〉 = 1√
N

(|g, e, e, ..., e〉+ |e, g, e, ..., e〉+ ...+ |e, e, e, ..., g〉)

(1.3.11)
20We assume that all particles are in the excited state.
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1.3.2 Superradiant emission in a bad cavity
We now introduce the effect of cavity decay into the dynamics. The master equation for
the density matrix ρ̂ describing the particles’ internal and the cavity degrees of freedom
can be written as

∂ρ̂

∂t
= 1
i~

[Ĥ, ρ̂] + κL[â]ρ̂, (1.3.12)

where Ĥ, given by Eq. (1.3.1), describes the coherent effects and κL[â], shown in
Eq. (1.1.11), describes the dissipation of the cavity mode with rate κ.21

Now, we consider the bad cavity regime, namely the regime when
√
Ng � κ,

hence the dipoles cannot absorb the photon. This parameter regime allows us to eliminate
the cavity degrees of freedom and the evolution can be cast in a Born-Markov master
equation for the reduced density matrix ρ̂red, describing the dipoles’ degrees of freedom,
that reads22

∂ρ̂red

∂t
= 1
i~
[
Ĥeff , ρ̂eff

]
+ ΓcL[Ŝ−]ρ̂eff , (1.3.13)

with

Ĥeff = − ∆
κ/2

~Γc
2 Ŝ+Ŝ−, (1.3.14)

and the single-particle decay rate

Γc = g2κ

∆2 + κ2

4
. (1.3.15)

Details of the derivation are reported in App. A.1. Both, the Hamiltonian (1.3.14) and the
dissipator L[Ŝ−], include coupling terms of the form σ̂†i σ̂j that describe the dipole-dipole
coupling mediated by the cavity field.

Using Eq. (1.3.13) we can derive

d〈Ŝz〉
dt

= −Γc
〈
Ŝ+Ŝ−

〉
= −Γc

[〈
Ŝ2
〉
−
〈
(Ŝz)2

〉
+
〈
Ŝz
〉]
. (1.3.16)

This equation of motion describes the dynamics of 〈Ŝz〉. It couples to the second moment
〈(Ŝz)2〉. The equation for the second moment of Ŝz in turn, couples it to higher moments.
In order to solve this hierarchy of equations, we make the mean-field approximation
〈(Ŝz)2〉 ≈ 〈Ŝz〉2. In this case we can solve Eq. (1.3.16) using the separation of variables
and obtain ∫ 〈Ŝz(t)〉

〈Ŝz(t0)〉

dx

(s+ x)(s+ 1− x) = −Γc(t− t0),

that can be rewritten after elementary transformation as

s+ 〈Ŝz(t)〉
s+ 1− 〈Ŝz(t)〉

= s+ 〈Ŝz(t0)〉
s+ 1− 〈Ŝz(t0)〉

e−Γc(2s+1)(t−t0). (1.3.17)
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(a) (b)

Figure 1.3: The projection of the Bloch vector on the z axis 〈Ŝz〉 (a) and
the intracavity photon number 〈â†â〉 (c) as function of time t (in units of
(NΓc)−1). The dashed lines correspond to N = 200 and the solid line to
N = 1000. We have chosen s = N/2 for both curves and 〈Ŝz(t0)〉 = s/2,
t0 = 0. The curves are derived under the assumption 〈(Ŝz)2〉 = 〈Ŝz〉2
using Eq. (1.3.17) and Eq. (1.3.20).

The solution 〈Ŝz(t)〉 of Eq. (1.3.17) is shown in Fig. 1.3(a) as a function of time. At
t = 0 the particles are initialized in the state where all particles are in the excited
state 〈Ŝz〉 = N/2. The steady state of the system is reached after sufficient long time
t � 1/(NΓc). The time axis is rescaled with N such that the decay appears approxi-
mately in the same time interval. However, the two curves for N = 1000 and N = 200
are slightly displaced. This can be understood by solving Eq. (1.3.17) in the limit N � 1.
The solution reads

〈Ŝz〉 ≈ N

2

[
Ne−ΓcNt − 1
Ne−ΓcNt + 1

]
= N

2 tanh
[
NΓc

2 (t− tD)
]
, (1.3.18)

where [5]

tD = log(N)
NΓc

. (1.3.19)

This time tD scales the duration of the superradiant emission process and explains the
deviation of both curves in Fig. 1.3(a).

Figure 1.3(b) shows the intracavity field photon number 〈â†â〉 as function of time.
This curve has been calculated using Eq. (1.3.12) where we extract the solution

〈â†â〉 ≈ Γc
κ
〈Ŝ+Ŝ−〉 (1.3.20)

in the limit κ �
√
Ng. We observe an exponential increase of the photon number, after

which it reaches its maximum value at time t = tD and decreases to zero. The maximum
of the intracavity photon correlates with the collective Bloch vector pointing in the x, y
plane. This orientation supports superradiant emission into the cavity field.

21Although this is a dissipative system it conserves the length of the Bloch vector. However, it does
not conserve the total number of excitations.

22This is a special case of the master equation for superradiance [5].
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Chapter 2

Self-organization of particles in
an optical cavity

In this chapter we investigate the formation and the prop-
erties of self-organized spatial structures interacting with an
optical cavity. It is divided into three sections. Section 2.1
contains an introduction to self-organization of particles in
optical cavities. The theoretical description is based on a
semiclassical model, which is used to simulate the dynam-
ics. In section 2.2 we discuss steady-state properties of self-
organized systems. Section 2.3 treats the relaxation dynam-
ics of the system into the stationary state. The concluding
section 2.4 summarizes the chapter.



26 Self-organization of particles in an optical cavity

Section 2.1

Semiclassical description of
self-organization of particles in
optical cavities

In this section we present the semiclassical model for the description of transversally
pumped particles inside a cavity. We will introduce the theoretical tools that are used
throughout this chapter to describe and simulate self-organization of particles which op-
tomechanically couple to a standing wave mode of a high-finesse cavity. In the end of this
section we provide a short overview of work that is related to this chapter and the recent
work that is done in this field.

2.1.1 The model of single-mode self-organization
We consider N polarizable particles with massm in an optical resonator that are transver-
sally pumped by a laser and coherently scatter photons into a single cavity mode. For
the case of red detuning ∆c = ωL − ωc < 0 when the laser frequency ωL is smaller than
the frequency of the cavity mode ωc the particles undergo superradiant scattering for
a sufficiently high driving-laser intensity. This superradiant scattering occurs when the
atoms form a Bragg grating. The Bragg grating, on the other hand, can be stabilized by
the mechanical effects of light of the intracavity field. Superradiance can then lead to the
spontaneous formation of spatially ordered structures which support, in turn, superradi-
ant scattering into the cavity mode. This effect is referred to as atomic self-organization in
optical cavities [9] and is analyzed by means of a semiclassical description in this chapter.

Master equation

The dynamics of the system can be described by means of a master equation

∂ρ̂

∂t
= 1
i~

[Ĥ, ρ̂] + 2κL[â]ρ̂, (2.1.1)

where we used the definition of Eq. (1.1.11). The Hamiltonian Ĥ in Eq. (2.1.1) describes
the coherent dynamics1 and is given by

Ĥ =
N∑
j=1

p̂2
j

2m − ~∆câ
†â+

N∑
j=1

~S cos(kx̂j)(â† + â). (2.1.2)

Here p̂j and x̂j are the momentum and position operator of the jth particle with mass
m fulfilling the commutation relation [x̂j, p̂j] = 1. The operators â and â† are the cavity
mode annihilation and creation operator with the commutation relation [â, â†] = 1. The
mode function of the cavity mode is here cos(kx) where k = 2π/λ is the wavenumber of
the scattered photons, λ is the wavelength, and S is the coherent scattering rate. The

1This is the many-atom version of the Hamiltonian presented in Eq. (1.2.16), where we neglect here
the dynamical AC Stark shift and we do not consider a direct pump of the cavity mode [13].
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model is described in a frame rotating with the laser frequency ωL where ∆c = ωL − ωc
is the detuning between the laser frequency ωL and the frequency of the cavity mode ωc.
The incoherent dynamics is governed by the cavity decay process 2κL[â]ρ̂ where κ is the
linewidth of the cavity mode.

In the following subsection we will specify the parameter regime that we are working
with. This will allow us to derive a semiclassical picture where the cavity degrees of
freedom are eliminated. For details we refer the reader to Ref. [74], where this derivation
has been first reported.

2.1.2 Elimination of the cavity degrees of freedom and semiclas-
sical dynamics

We consider the parameter regime where the cavity degrees of freedom evolve much faster
than the particles degrees of freedom. This is the case when the cavity detuning ∆c and
decay rate κ are by far the largest frequencies in the coupled system that have to be much
larger than the average Doppler shift k∆p/m and the recoil frequency ωR = ~k2/2m:

|∆c + iκ| � k∆p
m

, ωR. (2.1.3)

In our approach we consider that the single particle momentum width ∆p exceeds the
single photon recoil ~k such that

∆p� ~k. (2.1.4)

The regime of validity of this inequality corresponds to the semiclassical approximation
for the particles’ motion [45, 75].

The inequalities (2.1.3) and (2.1.4) are not completely independent from each other
but they are consistent in the case where the following inequality holds2

ωR �
k∆p
m
� |∆c + iκ|.

Wigner representation and Fokker-Planck equation

In order to derive an equation of motion for the semiclassical limit, we use a phase-
space representation for the external degrees of freedom. The density matrix in Wigner
representation reads

Ŵ (x,p) = 1
(2π~)N

∫
dξe−

i
~p·ξ〈x + ξ/2|ρ̂|x− ξ/2〉,

where p = (p1, ..., pN), x = (x1, ..., xN), ξ = (ξ1, .., ξN) and p · ξ is the standard scalar
product in Rn. Note that we adopt the convention

∫
dξ =

∫∞
−∞ dξ1 ...

∫∞
−∞ dξN . The Wigner

transformation is applied to both sides of the master equation in Eq. (2.1.1). Particularly
interesting is the transformation of the position-dependent operators. They give∫
dξe−

i
~p·ξ〈x + ξ/2| cos(kx̂i)ρ̂|x− ξ/2〉

(2π~)N =
eikxiŴ

(
x,p− ~k

2 ei
)

+ e−ikxiŴ
(
x,p + ~k

2 ei
)

2 .

(2.1.5)
2For typical setups we consider κ, |∆c| is of the order of 106 s−1 [58], the Doppler shift is of the order

of 105 s−1 and the recoil frequency of the order of 104 s−1. In that case all frequencies differ by an order
of magnitude.
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Here ei denote the N dimensional unit vector whose ith entry is equal to one while all
other entries are equal to zero.

The semiclassical approximation (see Eq. (2.1.4)) for the operator in Eq. (2.1.5) can
be understood as a coarse graining of the momentum axis where we can treat the change
in the momentum variable p by ~k/2 as infinitesimal since it is much smaller than the
momentum width ∆p of the distribution. This allows to approximate

Ŵ

(
x,p− ~k

2 ei
)
≈ Ŵ (x,p)− ~k

2
∂

∂pi
Ŵ (x,p) + (~k)2

8
∂2

∂p2
i

Ŵ (x,p) , (2.1.6)

where we neglect terms with an order of magnitude larger than (~k/∆p)2. We use
Eq. (2.1.5) and Eq. (2.1.6) and obtain

∂Ŵ

∂t
= 1
i~

−~∆câ
†â+ ~S

N∑
j=1

cos(kxj)(â+ â†), Ŵ
+ 2κL[â]Ŵ

+ LkinŴ −

~k
2 S

N∑
j=1

sin(kxj)(â+ â†)∂Ŵ
∂pj

+ H.c.


− i~k2

8 S
N∑
j=1

[
cos(kx̂j)(â+ â†), ∂

2Ŵ

∂p2
j

]
, (2.1.7)

and the kinetic term

LkinŴ = −
∑
j

pj
m

∂Ŵ

∂xj
. (2.1.8)

The next step is to use the separation of timescales that allows us to eliminate the cavity
degrees of freedom from the equations of motion of the atoms and to derive an effective
equation of motion for the particles’ external degrees of freedom. For this purpose we
describe the dynamics of the atoms on a coarse-grained timescale with timesteps ∆t
where we derive an effective evolution that is governed by a Fokker-Planck equation for
the particles’ Wigner function f(x,p).

For this purpose we choose the timestep ∆t sufficiently long compared to the typ-
ical relaxation time of the cavity degrees of freedom TC ∼ |∆c + iκ|−1 but sufficiently
short compared to the typical timescale of the particles motion TS ∼ (k∆p/m)−1. This
corresponds to assuming

TC � ∆t� TS. (2.1.9)

The Fokker-Planck equation for the particles’ Wigner function can than be derived by
integrating Eq. (2.1.7) on the timesteps ∆t. To do this we consider the frame that moves
with the particles’ velocities in the time interval [t0, t0 + ∆t]

ˆ̃W (x,p) = eLkinτŴ = Ŵ (x + pτ/m,p), (2.1.10)

where τ = t−t0 < ∆t and t0 is an arbitrary instant of time. Using TS � ∆t we can expand
cos(kxj + kpjτ/m) and sin(kxj + kpjτ/m) to find the following equations of motion

∂ ˆ̃W
∂t

= L0
ˆ̃W + L1(t) ˆ̃W + L2

ˆ̃W. (2.1.11)
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Here the individual terms are defined as

L0
ˆ̃Wt = 1

i~

−~∆câ
†â+ ~S

N∑
j=1

cos(kxj)(â+ â†), Ŵ
+ 2κL[â], (2.1.12)

L1(t) ˆ̃Wt = i

~
τ

N∑
j=1

[
pj
m
F̂j,

ˆ̃Wt

]
− 1

2

N∑
j=1

[(
∂

∂pj
− τ

m

∂

∂xj

)
ˆ̃Wt, F̂j

]
+
, (2.1.13)

L2
ˆ̃Wt = i~

8

N∑
j=1

[
∂2

∂p2
j

ˆ̃Wt,
∂

∂xj
F̂j

]
, (2.1.14)

where F̂j = ~kS sin(kxj)(â+ â†) is the force operator, [Â, B̂]+ = ÂB̂+ B̂Â is the anticom-
mutator, and Li collects the terms at order εi with ε ∼ ~k/∆p, k∆p∆t/m and i = 0, 1, 2.

The stationary state Ŵ0 of L0 satisfies L0Ŵ0 = 0. It can be calculated analytically

Ŵ0 = f̃(x,p)|α(x)〉〈α(x)|, (2.1.15)

where function f̃(x,p) is the Wigner function of the particles’ degrees of freedom and
|α(x)〉 is a coherent state of the cavity field with amplitude

α(x) = NS

∆c + iκ
Θ(x) (2.1.16)

and

Θ(x) = 1
N

N∑
j=1

cos(kxj). (2.1.17)

We now use perturbation theory in order to derive a closed equation for the Wigner
function f̃(x,p). For this purpose, we split the Wigner operator into the sum

ˆ̃W = Ŵ0 + ξ̂, (2.1.18)

where ˆ̃ξ = ˆ̃W − Ŵ0 is the correction to Ŵ0 (Eq. (2.1.15)). The equation of motion for
f̃(x,p) at t = t0 can then be derived applying the trace over the cavity degrees of freedom
Trcav on Eq. (2.1.11). This delivers the equation

∂f̃

∂t

∣∣∣∣∣
t=t0

= Trcav(L1(t0)(Ŵ0(t0) + ξ̂(t0))) + Trcav(L2(t0)Ŵ0(t0)). (2.1.19)

The formal integration of Eq. (2.1.11) over the time interval [t0, t0 + ∆t] 3 allows us to
identify the form of the operator ξ̂(t0):

ξ̂(t0) =
∫ ∞

0
dτ
[
eL0τL1(t0 − τ)Ŵ0(t0)− Trcav(eL0τL1(t0 − τ)Ŵ0(t0)

]
. (2.1.20)

Using Eq. (2.1.20) in Eq. (2.1.19) and

∂f̃

∂t
= ∂f

∂t
+

N∑
j=1

pj
m

∂f

∂xj
,

3Notice that the form of L1 given in Eq. (2.1.13) can be used since the timescale ∆t is very long
compared to TC . Therefore the action of eL0τ on L1(t0 − τ)Ŵ0(t0) will be practically zero for longer
times τ > ∆t. This is a result of the timescale separation (2.1.9).



30 Self-organization of particles in an optical cavity

we get the Fokker-Planck equation (FPE) of the Wigner function f(x,p) at the instant
of time t0. This FPE describe the dynamics of the Wigner function on a coarsed grained
timescale and reads

∂f

∂t
+ {f,H} = −n̄Γ

N∑
j=1

∂

∂pj

N∑
l=1

sin(kxj) sin(kxl)
[
pl + m

β

∂

∂pl
+ η̄

β

∂

∂xl

]
f, (2.1.21)

where {a, b} denotes the Poisson bracket

{a, b} =
N∑
j=1

[
∂a

∂xj

∂b

∂pj
− ∂b

∂xj

∂a

∂pj

]
. (2.1.22)

Here we have introduced the Hamilton function

H =
N∑
j=1

p2
j

2m + ~∆cn̄NΘ(x)2 (2.1.23)

and the quantity

n̄ = NS2

∆2
c + κ2 (2.1.24)

is the maximum mean intracavity photon number per particle.
The term on the right-hand side of Eq. (2.1.21) describe the dynamics which cannot

be cast in a Poisson bracket. It is a term containing dissipative forces and diffusion. The
coefficients read

Γ = 8ωRκ∆c

∆2
c + κ2 , (2.1.25)

β = −4∆c

~(∆2
c + κ2) , (2.1.26)

η̄ = κ2 −∆2
c

κ(∆2
c + κ2) . (2.1.27)

The coefficient η̄ is also reported in Refs. [75].

Coherent dynamics

If we neglect the dissipative part, Eq. (2.1.21) reduces to
∂f

∂t
+ {f,H} = 0. (2.1.28)

For Eq. (2.1.28) the energy is conserved and any function of the form

f(x,p) = f̄(H(x,p)) (2.1.29)

is a stationary solution.
We consider the case of red detuning where ∆c is negative therefore the potential

term in Eq. (2.1.23) is negative and to minimize the system’s energy we need to maximize
Θ(x)2. The value of Θ(x)2, that we also call magnetization, is large if the system reaches
one of the configurations where either cos(kxj) . 1 or cos(kxj) & −1 for all j = 1, ..., N .
In that case the particles order in a Bragg grating kxj ≈ 2πnj or kxj ≈ 2πnj + π with
nj ∈ N, such that |xj − xl| ≈ (nj − nl)λ. This spatial structure supports constructive
interference of scattered photons that leads to superradiant scattering into the resonator.
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Steady state

We now analyze the stationary state of the FPE including dissipation. We observe that
f̄ fulfills ∂f̄/(∂t) = 0 assuming η̄ = 0 and

0 =
N∑
j=1

∂

∂pj

N∑
l=1

sin(kxj) sin(kxl)
[
plf̄(H) + m

β

∂H

∂pl

∂f̄

∂H

]
. (2.1.30)

Using that

f̄(H) + 1
β

∂f̄

∂H
= 0

we get as stationary solution a Maxwell-Boltzmann distribution

f(x,p) = Z−1e−βH , (2.1.31)

where the width β−1 is defined in Eq. (2.1.26) and

Z =
∫
dx
∫
dp e−βH

is the partition function. Even though there is no proper thermal bath, the steady state
has the form of a thermal state whose temperature 1/(kBβ), with Boltzmann constant
kB, is controlled by the cavity detuning ∆c and the linewidth κ.

2.1.3 Generalization to multimode cavities
In this subsection we show how the assumptions and methods that we used to describe the
semiclassical dynamics of particles interacting with a single cavity mode can be generalized
to the coupling of the particles to several modes of a cavity.

Master equation

We consider a generalization of the master equation (2.1.1) that reads

∂ρ̂

∂t
= 1
i~

[Ĥ, ρ̂] +
M∑
n=1

2κnL[ân]ρ̂. (2.1.32)

The Hamiltonian Ĥ in Eq. (2.1.32) describes the coherent dynamics and is given by

Ĥ =
N∑
j=1

p̂2
j

2m −
M∑
n=1

~∆nâ
†â+

M∑
n=1

N∑
j=1

~Sn cos(knx̂j)(â†n + ân). (2.1.33)

Here we consider M modes with annihilation and creation operator ân and â†n, n =
1, 2, ...,M , with [ân, â†n′ ] = δn,n′ where δn,n′ is the Kronecker-delta. For the mode functions
we consider here cos(knx)4 and Sn is the single-particle coherent scattering into the nth
mode. The frequency ∆n is the detuning between the laser pump and the frequency of
the nth mode and κn scales the decay of this mode.

4The choice of the mode functions corresponds to orthogonal standing-wave longitudinal modes of the
cavity.
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Fokker-Planck equation

The derivation of a semiclassical theory where the cavity degrees are eliminated is very
similar and can be done following a similar approach as in the single mode case [26, 74].
The generalization of Ŵ0 in Eq. (2.1.15) in this case is

Ŵ0 = f̃(x,p)|α1(x), α2(x), ..., αM(x)〉〈α1(x), α2(x), ..., αM(x)| (2.1.34)

where αn(x) corresponds to a coherent state in the nth mode with

αn(x) = NSn
∆n + iκn

Θn(x). (2.1.35)

Here we defined the generalization of Eq. (2.1.17) that reads

Θn(x) = 1
N

N∑
j=1

cos(knxj). (2.1.36)

The Fokker-Planck equation for the Wigner function f can then be derived in a similar
way and reads

∂f

∂t
+ {f,H} = −

M∑
n=1

n̄nΓn
N∑
j=1

∂

∂pj

N∑
l=1

sin(knxj) sin(knxl)
[
pl + m

βn

∂

∂pl
+ η̄n
βn

∂

∂xl

]
f,

(2.1.37)

with the Hamilton function

H =
N∑
j=1

p2
j

2m +
M∑
n=1

~∆nn̄nNΘn(x)2, (2.1.38)

where we used the maximum intracavity photon number per particle in the nth mode

n̄n = NS2
n

∆2
n + κ2

n

. (2.1.39)

The dissipative dynamics is governed by the quantities

Γn = 8ωR,nκn∆n

∆2
n + κ2

n

, (2.1.40)

βn = −4∆n

~(∆2
n + κ2

n) , (2.1.41)

η̄n = κ2
n −∆2

n

κn(∆2
n + κ2

n) , (2.1.42)

and ωR,n = ~k2
n/(2m). Equation (2.1.37) is the multimode version of Eq. (2.1.21) and

includes as in the single-mode case beside the coherent dynamics governed by H also inco-
herent processes governed by the right-hand side of Eq. (2.1.37). The coherent dynamics
shows now M magnetizations Θm. These are, however, not independent quantities since
they all depend on the particles’ positions x. 5

5This can also be seen as a effective coupling between the cavity degrees of freedom that is mediated
by the motional degrees of the particles.
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2.1.4 Overview and state of the art
We will now present a short overview and a state of the art in self-organization. For a
detailed review we refer to Ref. [13].

Self-organization was first theoretically predicted in Ref. [9] where a semiclassical the-
ory for field and atomic motion is used. One year later self-organization was experimen-
tally observed for a thermal ensemble [10, 76]. A theoretical derivation of the threshold in
the semiclassical regime has been derived for the first time in Ref. [77] and experimentally
confirmed in Ref. [78].

Already in the first description of self-organization the possible extension to a quan-
tum theory was discussed Ref. [9] and the strong coupling of a Bose-Einstein condensate
to a resonator has been realized in Ref. [58, 79]. Using a Gross-Pitaevskii-type equation
self-organization for a Bose-Einstein condensate was theoretical predicted in Ref. [11].
This phase-transition was mapped to the Dicke quantum phase transition [80] and ex-
perimentally observed in Ref. [12]. Superradiance of fermions in a cavity has also been
discussed in literature [81].

Many related theoretical as well as experimental extensions of these setups and the-
oretical models are recently studied. Several studies are focused on cavity setups for the
quantum simulation of many-body phases [82, 83]. By loading a BEC in a 2D optical
lattice inside a cavity different phases of matter have been realized. The physical model
can be mapped to a Bose-Hubbard model with competing long- and short-range interac-
tions [84]. In this case the gas can be in an Mott-insulating phase, a superfluid phase but
also in the two self-organized phases of a charge density wave and a supersolid [85–91].
Further generalizations predict phases like Bose-glasses and Superglasses [84, 92].

The coupling of the atomic to several modes is used to achieve different interactions
between the atoms. This can be done by using a crossed cavity setup [26, 93, 94] whereby
supersolid formation is discussed in the literature [93–95]. Other experiments use different
transversal modes to engineer almost arbitrary interactions [96] that might be useful to
build a quantum simulator for spin models [97, 98].

Different studies, including a part of this thesis, are working on the description of
metastable states in a long-range interacting system [22, 25, 27, 28, 99–102]. These
systems can usually not be described by equilibrium statistical mechanics [23].

The coupling of a cloud of atoms or particles to one or several modes of the cavity is also
used to create effective spin-spin interactions. This can be realized by including effective
interactions between the particles’ internal degrees of freedom. Here spin textures have
been observed [103] and spinor self-ordering has been theoretically predicted and observed
[104, 105]. In similar setups also topological phases have been predicted [106, 107].
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Section 2.2

Steady-state properties in
self-organization

In this section we investigate the steady state of self-organized systems. In every subsec-
tion we provide the reference to the article and the contribution list of the authors.

2.2.1 Thermodynamics and dynamics of atomic self-organization
in an optical cavity
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Abstract:
Pattern formation of atoms in high-finesse optical resonators results from the mechanical
forces of light associated with superradiant scattering into the cavity mode. It occurs
when the laser intensity exceeds a threshold value such that the pumping processes coun-
teract the losses. We consider atoms driven by a laser and coupling with a mode of a
standing-wave cavity and describe their dynamics with a Fokker-Planck equation, in which
the atomic motion is semiclassical but the cavity field is a full quantum variable. The
asymptotic state of the atoms is a thermal state, whose temperature is solely controlled
by the detuning between the laser and the cavity frequency and by the cavity loss rate.
From this result we derive the free energy and show that in the thermodynamic limit self-
organization is a second-order phase transition. The order parameter is the field inside
the resonator to which one can associate a magnetization in analogy to ferromagnetism,
the control field is the laser intensity, but the steady state is intrinsically out of equilib-
rium. In the symmetry-broken phase, quantum noise induces jumps of the spatial density
between two ordered patterns: We characterize the statistical properties of this temporal
behavior at steady state and show that the thermodynamic properties of the system can
be extracted by detecting the light at the cavity output. The results of our analysis are in
full agreement with previous studies; we extend them by deriving a self-consistent theory
which is valid also when the cavity field is in the shot-noise limit and elucidate the nature
of the self-organization transition.



PHYSICAL REVIEW A 92, 063808 (2015)

Thermodynamics and dynamics of atomic self-organization in an optical cavity
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associated with superradiant scattering into the cavity mode. It occurs when the laser intensity exceeds a threshold
value such that the pumping processes counteract the losses. We consider atoms driven by a laser and coupling
with a mode of a standing-wave cavity and describe their dynamics with a Fokker-Planck equation, in which the
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a thermal state, whose temperature is solely controlled by the detuning between the laser and the cavity frequency
and by the cavity loss rate. From this result we derive the free energy and show that in the thermodynamic limit
self-organization is a second-order phase transition. The order parameter is the field inside the resonator to which
one can associate a magnetization in analogy to ferromagnetism, the control field is the laser intensity, but the
steady state is intrinsically out of equilibrium. In the symmetry-broken phase, quantum noise induces jumps
of the spatial density between two ordered patterns: We characterize the statistical properties of this temporal
behavior at steady state and show that the thermodynamic properties of the system can be extracted by detecting
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elucidate the nature of the self-organization transition.
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I. INTRODUCTION

There is ample experimental evidence that electromagnetic
fields can cool matter to ultralow temperatures [1–3]. This
is achieved by tailoring scattering processes, so that the
frequency of the emitted photon is, on average, larger than that
of the absorbed one, the energy balance being warranted by
the mechanical energy which is exchanged between matter and
light [4,5]. When atoms or molecules interact with high-finesse
optical resonators, these processes can be tailored using the
strong coupling with the cavity field [6–13].

A peculiar aspect of light-matter interaction inside optical
cavities consists of the long-range interactions between the
atoms, which are mediated by multiple scattering of photons
[14,15]. The onset of this behavior is observed when the system
is driven by external pumps, whose strength overcomes the loss
rate. Some prominent examples are optomechanical bistability
[16,17], synchronization [18], and spontaneous spatial order-
ing [12,19–23]. Among several setups, spontaneous pattern
formation in standing-wave and single-mode cavities has been
the object of several theoretical and experimental studies [12].
This phenomenon occurs when the atoms are confined within
the resonator and are transversally driven by a laser and
consists of the formation of atomic gratings that maximize
coherent scattering of laser photons into the cavity mode,
as sketched in Figs. 1(a) and 1(b). These “Bragg gratings”
are stably trapped by the mechanical effects of the light
they scatter, provided that the laser compensates the cavity
losses so that the number of intracavity photons is sufficiently
large. It takes place when the laser intensity, pumping the
atoms, exceeds a threshold value depending on, among other
things, the rate of photon losses and the number of atoms
[12,21]. This behavior was first predicted in Ref. [21] and
experimentally demonstrated in several settings, which differ
majorly from the initial temperature of the atomic ensemble:
In Refs. [22,24] the atoms were cooled by the mechanical

effects of the photons scattered into the resonator, while
in Refs. [23,25] the atoms initially formed a Bose-Einstein
condensate, and the mechanical effects of light were giving
rise to conservative forces. As a consequence, matter-wave
coherence was preserved during the experiment. In this regime,
the transition to self-organization can be cast in terms of the
Dicke phase transition [26].

In this work we theoretically analyze the dynamics leading
to the formation of spatial structures and their properties at the
asymptotics. Our analysis is based on a semiclassical treatment
and specifically on a Fokker-Planck equation (FPE) derived
when the atoms are classically polarizable particles and their
center-of-mass motion is along one dimension [27]. The cavity
field, instead, is a full quantum variable, which makes our
treatment valid also in the shot-noise limit [27] and describes
parameter regimes that are complementary to those of the
model in Ref. [28], where the field is a semiclassical variable.
Our formalism permits us, in particular, to consistently
eliminate the cavity variables from the equations of motion
of the atoms, and to analyze the properties of the cavity field
across the self-organization threshold, where the intracavity
field is characterized by large fluctuations.

This work extends and complements the study presented
in Ref. [29]. In particular, we perform a detailed analysis of
the stationary state and obtain an analytic expression, which
allows us to determine the phase diagram of the transition
as a function of the relevant parameters. Drawing from this
result, in addition, we show that the onset of self-organization
in spatially ordered patterns is a second-order phase transition,
associated with a symmetry breaking in the phase of the
intracavity field. This allows us to verify conjectures on the
nature of the self-organization transition, previously discussed
in Refs. [30–32]. We further analyze in detail the effects of the
nature of the long-range interactions mediated by the photons
and report on several features which are analogously found
in the Hamiltonian Mean Field (HMF) model, the workhorse
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FIG. 1. (Color online) (a) Atoms in a standing-wave cavity and driven by a transverse laser can spontaneously form ordered patterns (b)
when the laser intensity � exceeds a threshold value �c, which depends on the rate of photon losses, here due to cavity decay at rate κ . In this
regime the atoms experience a long-range interaction mediated by the cavity photons and their motion becomes strongly correlated. (c) Spatial
ordering of atoms is described by the parameter �, which characterizes the localization of the atoms within the standing-wave mode of the
cavity and is proportional to the cavity field. This parameter undergoes a bifurcation at � = �c, corresponding to two different stable patterns.
The values it takes are the minima of an effective Landau potential, displayed in (d) for some values of �, demonstrating that self-organization
is a second-order phase transition. See text for details.

of the statistical physics with long-range interactions [33].
This article is the first of a series of works devoted to the
semiclassical theory of self-organization.

In the present work we analyze the thermodynamics of
self-organization and the dynamics at the asymptotics, while
in following articles we investigate the dynamics following
sudden quenches across the phase transition [34] and compare
our analysis with a mean-field model that discards some
relevant effects of the long-range correlations [35]. This paper
is organized as follows. In Sec. II the FPE at the basis of our
analysis is reported and discussed. In Sec. III the stationary
properties of the distribution function are characterized both
analytically and numerically. In Sec. IV the correlation
functions of the light at the cavity output are determined. The
conclusions are drawn in Sec. V, while the Appendixes report
details of analytical calculations and of the numerical program
that is used to simulate the FPE.

II. MODEL

The dynamics of N atoms or molecules of mass m inside
a single-mode standing-wave cavity is analyzed when the
particles are transversally illuminated by a laser field, as
illustrated in Fig. 1(a). Laser and cavity couple to a dipole
transition of the scatterers and are assumed to be sufficiently
far-off resonance so that the coupling with the internal degrees
of freedom is described by the particles polarizability. From
now on we assume that the particles are atoms, but the
treatment in this paper can be extended to any ensemble of

linearly polarizable particle that can be confined within the
optical resonator [36].

In this regime the atoms scatter all coherently and the cavity
field Ec is the sum of the fields that each atom scatters. We
assume that the atoms’ center-of-mass motion is confined
along the cavity axis, which coincides with the x axis (we
disregard their motion in the transverse plane), and that the
atoms are uniformly illuminated by the laser field. Denoting
the atomic position by xj and the cavity-mode function by
cos(kx), with k the wave number, then Ec ∝ N�, where

� = 1

N

∑
j

cos(kxj ) (1)

measures the ordering of the atoms within the cavity standing
wave. For N � 1, when the atoms are uniformly distributed,
� ∼ 0 and the field within the cavity vanishes. The intra-
cavity intensity is maximal when the positions are such that
cos(kxj ) = 1 (even pattern) or cos(kxj ) = −1 (odd pattern),
namely, when the atoms form Bragg gratings; see Fig. 1(b).
These gratings are the two possible stable configurations the
atoms can form when the laser pump is above threshold, as
shown in Fig. 1(c).

The formation and stability of the Bragg gratings is
determined by the mechanical effects of photon scattering
on the atoms. In this section we report the basic equations
describing the dynamics of the coupled systems, as well as the
assumptions that lead to a FPE governing the semiclassical
trajectories of N atoms inside the single-mode resonator [27].
The FPE is derived under the assumption that the atomic
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motion is at all times in the semiclassical regime, while the
cavity field adjusts quasi-instantaneously to the atomic density
distribution. In this limit, using a perturbative treatment, the
cavity field can be eliminated by the equations of motion of the
atoms’ external degrees of freedom [37]. Readers interested in
the detailed derivation of the FPE from the full quantum master
equation of atoms and cavity are referred to Refs. [27,37]. An
alternative FPE, where fluctuations of the intracavity field are
treated semiclassically but no time-scale separation between
atoms and cavity dynamics is assumed, is derived in Ref. [28].

A. The cavity field

In our treatment the cavity field is a quantum variable. We
report its equation of motion in the limit in which the atoms
constitute a nonsaturated medium and their internal atomic
transitions are described by the polarizability. Our starting
point is the Heisenberg-Langevin equation for operator â(t),
which annihilates a cavity photon at frequency ωc and wave
number k. The equation is reported in the reference frame
rotating at the laser frequency ωL and reads [38]

∂

∂t
â(t) = −{κ − i[�c − NU B̂(t)]}â(t) − iNS�̂(t) + ξ̂ (t),

(2)

where �c = ωL − ωc is the detuning of the laser from the
cavity frequency, ξ̂ (t) is the Langevin force with 〈ξ̂ (t ′)ξ̂ †(t)〉 =
2κδ(t − t ′), and κ is the cavity decay rate. The cavity field is
a function of the two operators B̂(t) and �̂(t), which, in turn,
are functions of the atomic positions x̂j at time t . In detail,
U is a frequency, U = g2/�a , where g is the vacuum Rabi
frequency at the antinodes of the cavity mode, �a = ωL − ωa

is the detuning of the laser frequency from the atomic transition
resonance ωa , and operator B̂ is defined as

B̂ = 1

N

∑
j

cos2(kx̂j ) (3)

and takes on values between 0 and 1. Its expectation value
B = 〈B̂〉 is the so-called bunching parameter [12]. Operator
�̂(t) is the quantum variable corresponding to the order
parameter in Eq. (1). In Eq. (2) it is scaled by the frequency
S = �g/�a , which is proportional to the laser Rabi frequency
� and corresponds to the scattering amplitude of a laser
photon into the cavity mode by an atom at an antinode, with
S/U = �/g. Equation (2) shows that the pump on the cavity
is maximum when 〈�̂〉 = ±1, corresponding to the situation
in which the atoms form Bragg gratings. Self-organization
occurs when these gratings are mechanically stable, namely,
when the mechanical effects of the scattered light stabilize the
atoms in ordered structures, which, in turn, generate the field.
In order to determine these dynamics one would need to solve
the coupled equations of cavity and atomic motion.

We can further simplify the problem by considering the
regime in which the time scale over which the atomic motion
evolves is much larger than the time scale determining the
evolution of the cavity field. This is typically fulfilled when
kp̄/m � |κ + i�c|, where p̄ =

√
〈p̂2〉 is the variance of the

atomic momentum (the mean value vanishes), under the
condition that the coupling between cavity and atomic motion

is sufficiently weak. This latter condition requires that [39]

√
ωr

√
N |S| � |�c + iκ|3/2, (4)

where ωr = �k2/(2m) is the recoil frequency, scaling the
exchange of mechanical energy between photons and atoms.
At zero order in this expansion the cavity field operator
depends on the instantaneous density and reads

âad(t) = NS�̂(t)

�̂′
c(t) + iκ

, (5)

where the subscript indicates the adiabatic limit and we omitted
to report the noise term. Operator �̂′

c is defined as

�̂′
c = �c − UN B̂. (6)

Its mean value vanishes for certain density distributions,
giving rise to resonances. For |NU | > κ small changes of
�c about the resonance can induce large variations of the
field, resulting in the appearance of optomechanical bistable
behavior [16,17,40]. In this paper we focus on the regime in
which |NU | � κ , and treat this as a small parameter on the
same footing as the retardation term. In this limit, the field,
including the diabatic corrections, reads

â(t) = NS�̂(t)

�c + iκ

[
1 + NU

�c + iκ
B̂(t)

]
+ âret(t), (7)

where

âret(t) = iNS

(i�c − κ)2
˙̂� (8)

accounts for retardation effects and depends on the time
derivative of operator �̂, Eq. (1). The derivative, in particular,
takes the form

˙̂� = − 1

2N

∑
j

{
sin[kx̂j (t)]

kp̂j (t)

m
+ kp̂j (t)

m
sin[kx̂j (t)]

}

and shows that the diabatic correction scales with
(kp̄/m)/|κ + i�c|. When this parameter is small, then one
can perform a coarse graining for the atomic motion, over
which the cavity field fast relaxes.

It is also useful to discuss the mean number of photons
inside the resonator. In the adiabatic limit it is given by

〈n̂〉t,ad = Nn̄〈�̂2〉t , (9)

which is valid in zero order in the delay time. For later
convenience, we introduced the dimensionless quantity

n̄ = NS2

�2
c + κ2

, (10)

such that Nn̄ gives the maximum intracavity photon number,
corresponding to the value 〈�2〉t = 1, namely, when the atoms
form a perfectly ordered Bragg grating. The average photon
number can be different from zero also when the field inside
the resonator has vanishing mean expectation value, since in
this case it is proportional to the fluctuations of the order
parameter.
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SCHÜTZ, JÄGER, AND MORIGI PHYSICAL REVIEW A 92, 063808 (2015)

B. Fokker-Planck equation for N atoms

An equation for the motion of the N atoms within the
resonator is derived under the assumption that at all times
the atomic momentum distribution has width �p = p̄, which
is much larger than the quantum of linear momentum �k

that the atom exchanges with the individual photons (but
sufficiently small so that the atoms are within the velocity
capture range [11]). This assumption is valid for cavities whose
decay rate κ exceeds the recoil frequency ωr : ωr � κ . In fact,
we show that κ determines the minimum stationary width
of the momentum distribution. This regime is encountered in
several existing experiments [17,22,24]. We note that, with this
assumption, the requirement of time-scale separation between
cavity and motion is fulfilled, since the inequality kp̄/m � κ

is consistent with ωr � κ after using p̄2/2m = �κ/2.
Reference [27] reports the detailed steps that lead to the

derivation of a FPE for the distribution f (x, p,t) of the N

atoms positions and momenta x = (x1,x2, . . . ,xN ) and p =
(p1,p2, . . . ,pN ). The FPE can be cast in the form

∂f

∂t
= −

∑
i

pi

m

∂

∂xi

f + S2Lf, (11)

where f ≡ f (x, p,t). The right-hand side (RHS) separates the
ballistic motion from the term proportional to the scattering
rate S and describes the dynamics due to the mechanical effects
of light. This latter term specifically reads

Lf = −
∑

i

∂

∂pi

F0(x) sin(kxi)f

−
∑
i,j

∂

∂pi


0(x) sin(kxi) sin(kxj )pjf

+
∑
i,j

∂2

∂pi∂xj

η0(x) sin(kxi) sin(kxj )f

+
∑
i,j

∂2

∂pi∂pj

D0(x) sin(kxi) sin(kxj )f

+ γ ′

2

∑
i

∂2

∂p2
i

Dsp(xi)f. (12)

Here the first term on the RHS describes the dispersive force
associated with scattering of laser photons into the resonator,
where

F0(x) = (�k)
2�′

c

�′2
c + κ2

(1 + δF )N�. (13)

Its amplitude is proportional to the order parameter � [Eq. (1)],
which is the Wigner representation of operator �̂ [27]. Its
sign is also determined by the frequency shift of the cavity
frequency �′

c(x) from the laser, which takes the same form
as in Eq. (6), now with the corresponding Wigner form
for operator B̂. Coefficient δF is a small correction for the
parameter regime we consider; its general form is given
in Appendix A. The same applies for the coefficients δj

(j = 
,η,D) appearing in the other terms we specify below.
The second term on the RHS of Eq. (12) describes the

damping force due to retardation between the scattered field

and the atomic motion. It depends on the atomic momentum
and is scaled by the function


0(x) = ωr

8�′
cκ(

�′2
c + κ2

)2 (1 + δ
). (14)

The third summand is due to the anharmonicity of the cavity
optical lattice. The function scaling this term has the form

η0(x) = 2�ωr

(−�′2
c + κ2

)
(
�′2

c + κ2
)2 (1 + δη) (15)

and vanishes when �′
c = ±κ .

The last two terms describe diffusion. In particular, the one
scaled by the function

D0(x) = (�k)2 κ

�′2
c + κ2

(1 + δD) (16)

corresponds to the diffusion associated with global fluctua-
tions of the cavity field and is characterized by long-range
correlations, while the term with coefficient Dsp(xi) is instead
due to spontaneous emission of a photon outside the resonator
with γ ′ = γg2/�2

a , where γ is the decay rate of the excited
state. It is the sole term which acts locally, and the dynamics it
implies does not establish correlations between the atoms. Its
explicit form is reported in Appendix A.

C. Dynamics away from the bistable regime

Equation (11) describes the coherent and dissipative dy-
namics associated with the mechanical effects of light on the
atomic motion. In this work we assume that γ ′ is much smaller
than the other rates and discard the effect of spontaneous decay
in the dynamics, so that losses are due to cavity decay. As far as
it concerns the terms due to the cavity, we note their nonlinear
dependence on the bunching parameter, which appears in
the denominator of all coefficients and gives rise to bistable
behavior. Here we focus on the regime in which |NU | � κ .
In this regime the dispersive forces due to the mechanical
effects of light in leading order are due to scattering of laser
photons into the cavity. In this limit, we choose detunings
|�c| ∼ κ so that the motion is efficiently cooled, as we show
below. Correspondingly, the coefficients of the functional in
Eq. (12) are modified so that �′

c � �c and the functions
δF ,δη,δ
,δD ≈ 0. More precisely, we perform an expansion
in first order in N |U |/κ . In this limit, the FPE, Eq. (11), can
be cast in the form

∂tf + {f,H } + n̄
NU

�c

L1f

= −n̄

∑

i

sin(kxi)∂pi

1

N

×
∑

j

sin(kxj )

(
pj + m

β
∂pj

+ η̄

β
∂xj

)
f, (17)

where all terms due to the coupling with the light scale with n̄,
given in Eq. (10). In detail, the left-hand side (LHS) collects
the Hamiltonian terms, expressed in terms of Poisson brackets
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with Hamiltonian

H =
∑

j

p2
j

2m
+ ��cn̄N�2, (18)

as well as the terms scaling with U , summarized in the
functional L1, whose detailed form is given in Appendix A.
The RHS reports terms of different origin, which can be
classified as damping, diffusion, and a third term which scales
cross derivatives in position and momentum. In the order of
this list, they are scaled by the coefficients


 = 8ωrκ�c/
(
�2

c + κ2
)
, (19)

β = −4�c/�/
(
�2

c + κ2
)
, (20)

η̄ = κ2 − �2
c

κ
(
�2

c + κ2
) . (21)

We remark that the term in the FPE scaled by parameter η̄ was
already found in the derivation of Ref. [37]. While its effect is
to date not well understood, we checked that for the parameters
we consider it gives rise to small corrections in the quantities
we evaluate. In the mean-field treatment it can be cast in terms
of a correction of the effective mean-field potential the atoms
experience. In that limit it induces a shift to the critical value
of the pump strength at the self-organization transition [35].

D. Long-range correlations

Let us now make some preliminary remarks on the FPE
discussed this far. We first focus on the Hamiltonian term,
Eq. (18). In addition to the kinetic energy this contains
the cavity-mediated potential, which has been obtained in
zero order in the retardation time. Its sign is determined by
the sign of the detuning �c: When �c < 0, the formation
of Bragg gratings, which maximizes the value of |�|, is
energetically favored. Thus, Eq. (18) summarizes in a compact
way a property which was observed in several previous works
[21,22,29,30].

We note that the Hamiltonian in Eq. (18) exhibits several
analogies with the HMF model [33], whose Hamiltonian reads

HMF =
∑

j

p2
j

2m
+ J

2N

∑
i =j

[1 − cos(θi − θj )], (22)

where θi are angle variables that in our case would correspond
to θi = kxi . The analogy becomes explicit in Eq. (18) by using

�2 =
∑
i,j

{cos[k(xi + xj )] + cos[k(xi − xj )]}/(2N2).

Like Hamiltonian HMF, also Hamiltonian H is extensive as
it satisfies the Kac prescription [33] for the thermodynamic
limit we choose, which keeps n̄ fixed for N → ∞ (see the
next section). In a canonical ensemble, for J > 0 the HMF
exhibits a second-order phase transition from a paramagnetic
to a ferromagnetic phase controlled by the temperature, where
the order parameter is the magnetization M = (Mx,My), with
Mx = ∑

j cos θj /N and My = ∑
j sin θj /N . This suggests

that � identifies with the x component of a two-dimensional
magnetization and creates an expectation of a transition to

order for negative values of the detunings, �c < 0, for which
a nonvanishing interaction potential term tends to minimize
the energy (we mention that the dynamics for �c > 0 has
been recently studied in Ref. [41]).

Differing from the HMF model, the term cos[k(xi + xj )] in
�2 originates from the underlying cavity standing-wave poten-
tial that breaks continuous translational invariance. Moreover,
the cavity coupling at higher order in |NU/�c| gives rise to
deviations from the Hamiltonian dynamics due to further terms
in the LHS of Eq. (17), which for larger values are responsible
for bistable behavior [40] and only in certain limits can be cast
in the form of conservative forces.

We further highlight that long-range correlations can also
be established by the terms on the RHS of the FPE in Eq. (17),
which are usually associated with incoherent processes. In fact,
retardation effects in the scattering of one atom modify the
intracavity potential which traps the whole atomic ensemble.
Photon losses, in addition, give rise to sudden quenches of the
global potential [11,42]. When the density is uniform, the terms
in the RHS can be reduced to a form [27] which is analogous to
the Brownian Mean Field model [43]. However, this mapping
applies only when the system is deep in the paramagnetic
phase. When the atoms form a Bragg grating, instead, damping
and diffusion become smaller, the atoms being localized at the
points where sin(kxj ) ∼ 0. Moreover, when several atoms are
trapped in a Bragg grating, also damping and diffusion of
atoms which are away from the nodes become smaller. These
properties share some analogies with models constructed to
simulate correlated damping [44] and suggest that incoherent
dynamics can endorse coherent effects for transient but long
times [29,34].

III. PROPERTIES AT EQUILIBRIUM

We now discuss the existence and the form of the stationary
state, namely, of the solution of Eq. (17) satisfying

∂tfS = 0.

It is simple to verify that the function of the form

fS = f0 exp(−βH ) (23)

is a stationary solution in zero order in the parameter
UN/κ and η̄, where f0 warrants normalization. Equation
(23) describes a thermal state whose temperature T is solely
controlled by the detuning �c:

kBT = 1/β = �
(
�2

c + κ2
)

−4�c

. (24)

We mention that this result has been reported in Ref. [29] and
was also found in Refs. [30,31,45] using different theoretical
approaches.

In this section, starting from Eq. (23) we analyze the
properties of the system at steady state. We show that Eq. (23)
makes it possible to identify the transition to self-organization
and the corresponding critical value at which it occurs. By
deriving the single-particle free energy in an appropriate
thermodynamic limit, we demonstrate that the transition to
self-organization is a second-order phase transition, whose
order parameter is �. We point out that the treatment here
presented applies concepts of equilibrium thermodynamics
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SCHÜTZ, JÄGER, AND MORIGI PHYSICAL REVIEW A 92, 063808 (2015)

and is strictly valid at the steady state, because it is a thermal
distribution.

This section contains analytical results, extracted from
Eq. (23), and data of numerical simulations, obtained by
integrating the stochastic differential equations (SDEs) which
simulate the dynamics of Eq. (17). These equations have been
reported in Ref. [27] and for completeness are also detailed
in Appendix B . A single trajectory for N atoms corresponds
to integrating the set of coupled equations (B1) and (B2) for
the variables {x�(t); p�(t)} with � = 1, . . . ,N and for a given
initial condition. From this calculation, for instance, we find

�(t) =
N∑

�=1

cos[kx�(t)]/N.

The mean values are numerically computed by taking the
average over n such trajectories, which statistically satisfy
the initial conditions, and deliver quantities such as 〈�2〉t =∑n

i=1 �i(t)2/n, where i now labels the trajectory, i = 1, . . . ,n.
In the simulations we assume an ensemble of 85Rb

atoms with transition wavelength λ = 780 nm (D2 line).
This gives the recoil frequency ωr = 2π × 3.86 kHz. The
transition linewidth is γ = 2π × 6 MHz and the linewidth
of the resonator is κ = 2π × 1.5 MHz. These parameters
correspond to the ones of the experiment of Ref. [23]; they
warrant the validity of our semiclassical treatment based on a
time-scale separation.

A. Self-organization as second-order phase transition

In order to characterize the thermodynamic properties of the
self-organization transition, we first determine the free energy
per particle. Our starting point is the definition of the free
energy F = −kBT lnZ , where Z is the partition function,

Z = 1

�N

∫
x
dx

∫
p
d p exp(−βH ), (25)

and � is the unit phase space volume. For convenience,
we have introduced the notation

∫
x dx ≡ ∫ λ

0 dx1 · · · ∫ λ

0 dxN

and
∫

p d p ≡ ∫ ∞
−∞ dp1 · · · ∫ ∞

−∞ dpN . After integrating out the
momentum variables, Eq. (25) can be cast in the form

Z = (Z0λ/�)N
∫ 1

−1
d�Ω(�) exp(−Nβ�n̄�c�

2). (26)

Here Z0 = (2πm/β)1/2 is a constant which depends on the
temperature. The functional Ω(�) is the density of states at a
given magnetization � and is defined as

Ω(�) =
∫

x

dx
λN

δ

[
� − 1

N

N∑
i=1

cos(kxi)

]
. (27)

For identifying the transition to order, we consider N � 1.
This requires an adequate thermodynamic limit. We choose
a thermodynamic limit for which the amplitude n̄ [Eq. (10)]
remains constant as N increases and warrants that Hamiltonian
in Eq. (18) is extensive. In detail, it corresponds to scale the
vacuum Rabi frequency as g ∼ 1/

√
N , which is physically

equivalent to scale up the cavity mode volume V linearly
with N , being the vacuum Rabi frequency g ∝ 1/

√
V . It

follows that the scattering rates characterizing the dynamics

scale as S ∼ 1/
√

N and U ∼ 1/N as N → ∞ (moreover,
S2η0 ∼ 1/N , but this contribution is here neglected). Such
scaling has been applied in a series of theoretical works
[30,38,40].

With this definition in mind, we determine an explicit form
of the free energy as a function of � by using the method of
the steepest descent. We identify the fixed point �∗, which is
given by the equation

�∗ = I1(y�∗)

I0(y�∗)
, (28)

with y = 2n̄/n̄c and n̄c > 0, while I1 and I0 are modified
Bessel functions of the first kind [46] (the details of the
calculations are reported in Appendix C). Depending on y,
and thus on n̄, Eq. (28) allows for either one or three solutions,
where the two regimes are separated by the value n̄ = n̄c, with

n̄c = κ2 + �2
c

4�2
c

. (29)

Using this result, the free energy per particle in the thermody-
namic limit takes the form

F(�) ≈ F0 + 1

β

[(
1 − n̄

n̄c

)
�2 + 1

4
�4

]
, (30)

with F0 = −kBT ln(Z0λ/�). Equation (30) has the form of
the Landau free energy [47], and shows that the transition to
self-organization is continuous and of second order. Its form
close to threshold for different values of the pump strength,
and thus of n̄, is sketched in Fig. 1(d), where (�/�c)2 = n̄/n̄c.
For n̄ < n̄c, thus, the order parameter vanishes: The atoms
are uniformly distributed in space and one can denote this
phase as paramagnetic invoking the analogy between �

and a magnetization. For n̄ > n̄c, on the contrary, the order
parameter takes a value different from zero, as shown in
Fig. 1(c). By setting the first derivative of the free energy
[Eq. (30)] to zero we also find an analytic expression for
the order parameter above but close to the threshold: � =
±√

2(n̄/n̄c − 1).
We remark that in Ref. [30] it was conjectured that

self-organization in a standing-wave cavity is a second-order
phase transition. In this section we have demonstrated that
this conjecture is correct by performing an explicit mapping
of the free energy into the form of a Landau model [47].
Our theoretical model demonstrates that the steady-state
distribution is thermal; it further naturally delivers the steady-
state temperature and the value of the critical pump strength,
here cast in terms of the quantity n̄c. We observe that the critical
value n̄c is in agreement with the value determined in Ref. [30]
by means of a mean-field model based on a phenomenological
derivation. [This is visible after considering the definition in
Eq. (10), which gives the critical pump strength value �c after
using Sc = g�c/�a as a function of the critical value n̄c of
Eq. (29).] In Ref. [31] the self-organization threshold was
estimated by means of a kinetic theory based on treating the
cavity field semiclassically, finding a value consistent with our
result.

We remark that the typical concept in second-order phase
transition of spatial domains, whose average size increases
with a power-law behavior as the critical value is approached,
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FIG. 2. (Color online) (a) Order parameter |�| and (b) steady-
state temperature as a function of n̄ and �c (in units of κ). The red
line denotes the value n̄c as a function of �c, as reported in Eq. (29).

becomes now invalid: Their energetic cost scales with the
system size due to the long-range cavity-mediated potential.
This is simply understood as two domains with 〈�〉 = +1
and 〈�〉 = −1 generate fields which interfere destructively,
resulting in a vanishing intracavity photon number. This
example illustrates the nonadditivity of long-range interacting
systems. We now analyze more in detail the behavior of the
magnetization.

B. Phase diagram

The magnetization of our model [Eq. (1)] is intrinsically
related to the spatial order of the atoms within the cavity and
thus determines the properties of the signal at the cavity output.
Its stationary value depends on the various physical quantities,
which can be summarized in terms of the single parameter n̄ in
Eq. (10). The detuning �c, which also enters in the definition of
n̄c, determines the temperature of the steady state; see Eq. (24).

Figure 2(a) displays the phase diagram of the magnetization
as a function of n̄ and �c: The white region is the paramagnetic
phase, the dark region the ferromagnetic one, and the scale
of gray indicates the value of |�|. We note that the lines at
constant �c correspond to constant asymptotic temperatures
and to a well-defined threshold value of n̄c(�c). Following
one such line, the value of |�| is zero for n̄ < n̄c, while
above n̄c it grows monotonically until unity as n̄ → ∞. The

magnetization as a function of n̄ and at �c = −κ is shown in
Fig. 1(c).

Keeping n̄ fixed and varying �c instead consists of varying
the temperature. However, not for all values of n̄ there
is a temperature at which the transition to ferromagnetism
is observed. In fact, if n̄ < min(n̄c) = 1/4, the phase is
paramagnetic for all values of �c. For n̄ > 1/4, instead,
there exists a critical value of �c(n̄) at which the transition
to self-organization occurs. In this case, above threshold the
magnetization monotonically grows with �c. The temperature
of the atoms is shown in Fig. 2(b): Here it is clearly visible that
the temperature is independent on n̄ and is solely a function of
�c. In particular, it reaches a minimum at �c = −κ , as one can
verify using Eq. (24). The corresponding minimal temperature
is kBTmin = �κ/2.

C. Dynamics of the magnetization at steady state

The mapping of the free energy to the Landau model
allows one to draw an analogy between self-organization and
ferromagnetism. Due to the long-range interactions, however,
the symmetry-breaking transition does not occur through
the spatial formation of magnetized domains of increasing
size, rather through the observation of Bragg gratings during
long periods of time, whose mean duration increases as the
pump strength is increased above threshold. This property was
already reported in Refs. [21,30] and is also found in the HMF
[33]. The behavior close to threshold is instead to large extent
unexplored, as it is characterized by large fluctuations of the
cavity field and thus requires a theoretical model that treats
the cavity field as a quantum variable, which our model does.
Our analysis focuses on the statistical properties of these time
intervals and, more generally, of the autocorrelation function
of the magnetization across the transition. In this section
we discuss this temporal behavior by analyzing trajectories
of the magnetization evaluated by means of the SDE as in
Appendix B . We set �c = −κ and N |U |/κ = 0.05.

1. Stationary magnetization for finite N

In order to perform the numerical analysis, we first
benchmark the statistical properties for a finite number of
trajectories. Typical trajectories at the steady state are shown
in Fig. 3 for different values of n̄.

They show �(t), obtained by averaging over the instanta-
neous positions of 50 atoms within the resonator. Fluctuations
about the mean value are visible: Their size increases below
threshold as n̄ is increased and depends on the number of
atoms, as one can see in Fig. 4 (see below). In order to extract
the order parameter from the numerical data, we thus need to
estimate the size of the fluctuations about the mean value as a
function of N . For this purpose we determine the probability
distribution PN (�0) of finding � = �0 at the stationary state,
which we define as

PN (�0) = P0

∫ 1

−1
d�δ(� − �0)Ω(�) exp(−β��cn̄N�2),

(31)

where Ω(�) is given in Eq. (27) and the parameter P0 =
(Z0λ/�)N/Z warrants normalization:

∫ 1
−1 d�0PN (�0) = 1.
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FIG. 3. (Color online) Order parameter as a function of time (in
units of κ−1) at the asymptotics of the dynamics and for different
values of n̄ (see inset). Each trajectory corresponds to a numerical
simulation with N = 50 atoms.

For a given detuning �c this probability distribution depends
on n̄ and on the atom number N . We determine PN (�0) using
our analytical model and performing the integral by means of
the Metropolis algorithm [48].

The results are displayed in Fig. 4 for different atom
numbers N and pumping strengths n̄. The curves clearly show
that the size of the fluctuations about the mean value decrease
with N . We also observe that, for N fixed, the fluctuations
about the mean value increase with n̄ as it approaches the
threshold value from below. For atom numbers of the order
of 50 and larger we verified that PN (�0) converges to the
form exp(−N �4

0/4) for n̄ = n̄c, in agreement with the result
found in the thermodynamic limit. Above threshold, on the
contrary, the distribution exhibits two peaks whose centers
converge towards the asymptotic values of Eq. (28) for large
N and whose widths decrease as n̄ is increased. We compare
these results with the data obtained after integrating the SDE

(circles) and verify the convergence of the numerical results
with increasing N to the predictions at the thermodynamic
limit.

Figure 5(a) displays �(t) as a function of time obtained
by integrating the SDE for N = 20 atoms and n̄ = 0.01 n̄c,
thus well below threshold. The distribution PN (�0) that we
extract after averaging over the time and over 100 trajectories
of this sort is given by the circles in Fig. 5(b). The curve is in
excellent agreement with a Gaussian distribution centered at
�0 = 0 (dashed curve) whose explicit derivation is reported
in Appendix D and which reads

P theo
N (�0) = 1√

2πσ 2
N

exp

(
− �2

0

2σ 2
N

)
, (32)

with

σN = 1/
√

2N. (33)

From this result we identify the width σN with the statistical
uncertainty in determining the value of �0. Figure 5(c)
displays a trajectory �(t) for n̄ = 1.4 n̄c, thus above threshold;
the corresponding distribution PN (�0) is given by the circles in
Fig. 5(d). The trajectory exhibits jumps between the two values
of the Bragg gratings, the duration of the time intervals during
which the atoms are trapped in a Bragg grating determines the
size of the fluctuations about the two peaks of the probability
distribution, and the finite rate at which these jumps occur
is the reason for the nonvanishing value of the probability at
�0 ∼ 0.

2. Autocorrelation function

We now analyze the autocorrelation function for the
magnetization,

C(τ ) = lim
t→∞〈�(t)�(t + τ )〉, (34)

FIG. 4. (Color online) Probability distribution for the order parameter at steady state, PN (�0) as in Eq. (31), for N = 5,8,20 atoms with
�c = −κ and n̄/n̄c = 0.01, 0.7, 1, 1.4 (from left to right). The dots correspond to the probability distribution PN (�0) extracted from numerical
simulations at steady state, performed by means of the SDE. The dashed vertical lines in (d) indicate the asymptotic value �0 = ±�∗ [Eq. (28)]
for n̄ = 1.4 n̄c.
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FIG. 5. (Color online) (Top panels) Magnetization � as a func-
tion of time (in units of κ−1), obtained from a simulation of the SDE
for N = 20, �c = −κ , and n̄ = 0.01 n̄c (a) and n̄ = 1.4 n̄c (c). The
black dashed lines are located at ±σN = ±√

1/(2N ) and indicate the
statistical uncertainty in the determination of the value of �0. Subplots
(b) and (d) display the corresponding probability distribution PN (�0)
obtained after averaging over time and over 100 trajectories �(t)
(circles). The dashed line in (b) is the theoretical prediction in Eq. (32).
The dashed line in (d) corresponds to the distribution obtained by
numerically integrating Eq. (31) using a Metropolis algorithm [48].

which we extract from the trajectories evaluated using the
SDE. Figure 6 displays C(τ ) for different values of n̄. For
all values of the pump strength a fast decaying component is
always present whose temporal width seems to be independent
of n̄. One also notices the contribution of a slowly decaying
component whose decay rate decreases as n̄ increases.

In order to gain insight, we first analyze the autocorrelation
function below threshold for n̄ = 0.01 n̄c. For this case we
can reproduce the numerical result by means of an analytical
model, reported in Appendix D . This model assumes that
the atoms are homogeneously distributed in space and form a
thermal distribution at the temperature determined by Eq. (20),
which corresponds to the stationary solution of the FPE in
Eq. (17) well below threshold [27]. Starting from this state,
their motion is assumed to be ballistic and is thus calculated
after setting n̄ = 0 in Eq. (17). The resulting autocorrelation
function reads

Cfree(τ ) = σ 2
N exp

[−(
τ/τ free

c

)2]
, (35)

where the correlation time is

τ free
c =

√
�β/ωr . (36)

FIG. 6. (Color online) Autocorrelation function C(τ ) =
limt→∞〈�(t)�(t + τ )〉 [Eq. (34)] as a function of the time τ (in
units of κ−1) for N = 20 atoms, �c = −κ , and various values of n̄

(see inset). The curves are obtained by determining �(t) with the
numerical data (SDE).

Its excellent agreement with the numerics is visible in Fig. 7.
This result shows that below threshold the fluctuations are
mostly due to thermal motion, while the effect of the cavity
forces, which tend to localize the atoms, is negligible. By
considering the analogy between the different curves in Fig. 6,
we conjecture that thermal fluctuations are responsible for the
short-time behavior of the autocorrelation function.

We now turn to the long-time behavior of the autocorrela-
tion function for increasing values of n̄. Inspection of typical
trajectories close and above threshold, shown in Figs. 3 and
5(c), shows that this is related to the time scales over which the
atomic ensemble forms a Bragg grating. The system can take
on values for the collective parameter � clearly exceeding the
value of σN for times which are orders of magnitude larger than

FIG. 7. (Color online) Autocorrelation function C(τ ) =
limt→∞〈�(t)�(t + τ )〉 as a function of the time τ (in units of κ−1)
for N = 20 and N = 50 atoms (see inset). The circles correspond to
numerical simulations performed with n̄ = 0.01 n̄c and �c = −κ .
The line shows the analytical estimate using Eq. (35).
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the correlation time τc characteristic of thermal fluctuations, as
visible in Fig. 5(c). We call these finite time intervals trapping
times, corresponding to configurations in which (part of) the
atoms are trapped in Bragg gratings.

In order to analyze the statistics of the trapping times, we
first introduce the following criterion: the atoms are forming
a Bragg grating when |�(t)| > σN . This criterion alone,
however, also includes fluctuations that can also happen well
below threshold, as visible in Fig. 5(a). For this reason we
set an infrared cutoff for the trapping times, such that they
shall exceed τ free

c . Herewith, we thus find a trapping time
of length τtrap with starting point t and end point t + τtrap

if |�(t + t ′)| > σN for t ′ ∈ [0,τtrap] and τtrap > 10 τ free
c . It is

important to note that this sets a rather strict criterion on the
trapping times as we explain now. In Fig. 5(c), one can see
that even if the atoms seem to be trapped in a grating, the
order parameter can take on values |�(t)| < σN for times of
the order of τ free

c . We choose to ignore these events when they
are not associated with a sign change of �. We perform the
statistics of the trapping times by evaluating the probability
density Ptrap(τ ) of finding a trapping time of length τ , and then
using this quantity to determine the cumulative distribution
F (τtrap), defined as

F (τtrap) =
∫ ∞

τtrap

dτ ′Ptrap(τ ′). (37)

Distribution F (τtrap) thus gives the probability that the trapping
time is larger than τtrap. Figure 8 displays F (τtrap), as we
extracted it for N = 20 atoms and different values of n̄: It
is clearly visible that the trapping times are shifted towards
higher values as n̄ increases. The distribution exhibits long
tails, which suggests that this dynamics is characterized by
the existence of rare events with very long trapping times.
In order to better understand this behavior, we determine the
mean trapping time 〈τtrap〉n. This is numerically found for a
given interval of time ttot, in which n trapping intervals of
length τ

(i)
trap are counted (i = 1, . . . ,n), and reads

〈τtrap〉n =
n∑

i=1

τ
(i)
trap/n. (38)

In Fig. 8(b) we plot 〈τtrap〉n as a function of the number of
counts for N = 20 and various values of n̄ above threshold.
The mean trapping time 〈τtrap〉n, in particular, seems to
converge to a finite value for sufficiently long integration times.
We argue, however, that this can be an artifact of the finite
integration time ttot, which we choose to be ttot ≈ 106κ−1:
This conjecture is supported by the rather steep decay of
the cumulative distribution at t > 105κ−1 visible in Fig. 8(a).
Hence, our results do not exclude the existence of a power-law
decay of the distribution F (τ ). This discussion clearly shows,
nevertheless, that the trapping times are responsible for the
long tails of the autocorrelation function.

We now study the statistics of the events which lead to
jumps between two Bragg gratings. These events are visible,
for instance, in Fig. 5(c) and are characterized by a time
scale which we now analyze. We denote these finite times
by jumping times. More precisely, we define a jump of time
length τjump as the interval of time [0,τjump] within which
|�(t + t ′)| < σN for t ′ ∈ [0,τjump]. We further impose that

FIG. 8. (Color online) Statistics of the trapping times, evaluated
numerically by averaging over 100 trajectories of N = 20, �c =
−κ , and total evolution time ttot ≈ 106κ−1. The curves correspond
to different values of n̄ above threshold (see inset). (a) Cumulative
distribution F (τtrap) for the trapping times [Eq. (37)]. Higher pumping
strengths lead to longer trapping times. Subplot (b) displays the mean
trapping time 〈τtrap〉n [Eq. (38)] as a function of the number of counts
n. The inset shows the values of 〈τtrap〉 as a function of n̄, which we
extrapolate from the curves, like the ones shown in the onset.

at the starting and the end points of the jumps the order
parameter � has a different sign, such that the configuration
has switched, for instance, from an even pattern (� > σN ) to an
odd one (� < −σN ). We identify jump events in Fig. 5(c) with
the green segments. An exception is the event at κt ∼ 3000,
which does not fulfill the criteria we impose and thus does not
qualify. We numerically determine the probability distribution
Pjump(τjump) for the jumping times at a given value of n̄ > n̄c.
Figure 9(a) displays the probability distribution Pjump(τjump)
for n̄ = 1.4 n̄c. We observe that it exhibits the features of
exponential decay with time. Further information is extracted
from the mean jumping time 〈τjump〉n, which we evaluate as

〈τjump〉n =
n∑

i=1

τ
(i)
jump/n, (39)

with τ
(i)
jump the jumping time for the ith jump and i = 1, . . . n.

Figure 9(b) displays 〈τjump〉n for different pumping strengths.
The mean values 〈τjump〉n do not differ much for different
pumping strengths, in agreement with the conjecture that ther-
mal fluctuations are responsible for the short-time behavior of
the autocorrelation function. Nevertheless, we see indications
that the mean jumping time decreases as n̄ increases; thus, at
large pump strengths the atoms reorganize in Bragg gratings
over shorter time scales.

Insight into the dynamics underlying a jump in the order
parameter can be gained by considering the corresponding
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FIG. 9. (Color online) Statistics of the jumping times, evaluated
numerically by averaging over 100 trajectories of N = 20, �c =
−κ , total evolution time ttot ≈ 106κ−1. (a) Probability distribution
Pjump(τjump) for n̄ = 1.4 n̄c. (b) Mean jumping time 〈τjump〉n [Eq. (39)]
as a function of the number of counts n and for several values of n̄

above threshold (see inset).

individual atomic trajectories. A simulation for N = 5 atoms
is shown in Fig. 10(a) for the choice of a pump strength
above threshold n̄ = 1.4 n̄c. At a given instant of time, the
atomic positions are, in general, at distances which are integer
multiples of the cavity wavelength, thus localized either at the
even or the odd sites of the spatial mode function, thus forming
one of the two possible Bragg gratings. When this occurs,
the atoms perform oscillations about these positions. The
amplitude of these oscillations does not remain constant, and
one can observe an effective exchange of mechanical energy
among the atoms. This can lead to a change of the potential
that can untrap atoms. The onset of this behavior seems to be
the precursor of the instability of the whole grating, as one
can observe by comparing these dynamics with the one of the
corresponding order parameter in subplot (b). The oscillations
about the grating minima, moreover, are responsible for the
damped oscillation observed in the autocorrelation function in
Fig. 6 for values of n̄ above threshold.

3. Power spectrum

Complementary information to the temporal behavior of the
autocorrelation function can be gained by studying its Fourier
transform. We thus numerically compute the power spectrum
of �(t), which we define as

S̃(ω) = 〈|�(ω)|2〉, (40)

where

�(ω) =
∫ t

0
dτ exp(−iωτ )�(τ ) (41)

FIG. 10. (Color online) (a) Individual atomic trajectories and (b)
corresponding order parameter as a function of time (in units of
κ−1) for N = 5 atoms, �c = −κ , and n̄ = 1.4 n̄c. The black dashed
horizontal lines in (a) indicate the position of the even sites of the
cavity spatial mode function. The trajectories have been numerically
evaluated taking the stationary state as the initial distribution.

is the Fourier transform of the order parameter. Figure 11
displays the spectrum of the autocorrelation function for
different values of n̄ (a) below and (b) above threshold.

One clearly observes two different kinds of behavior,
depending on whether n̄ is below or above threshold: For
n̄ < n̄c we observe a rather broad spectrum about ω = 0,
whose breadth increases as n̄ approaches the critical value
from below. The emergence of a flat broad structure can
be associated with the creation of (unstable) Bragg gratings
and is related to the broadening of the distribution PN (�0)
visible in Figs. 4(b) and 4(c). Above threshold, for n̄ > n̄c, the
width of the component centered at zero frequency becomes
dramatically narrower and narrows further with n̄, indicating
that the atoms become increasingly localized in a Bragg
pattern. The width of this frequency component is determined
by the inverse of the mean trapping time, namely, the rate at
which jumps between different Bragg gratings occur.

Above threshold sidebands of the central peak appear,
which correspond to the damped oscillations of the autocor-
relation function. The central frequency of these sidebands
increases for higher pumping strength, while their width
decreases. We understand these features as the onset of oscil-
lations about the minima of the Bragg grating, which one can
also observe in the trajectories of Fig. 10(a). This conjecture is
supported by a simple calculation of the oscillation frequency
as a function of n̄, assuming that the potential about their
minima is approximated by harmonic oscillators. Even though
the estimated frequency is higher, this estimate qualitatively
reproduces the dependence of the sidebands’ central frequency
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FIG. 11. (Color online) Spectrum of the autocorrelation function
S̃(ω) [Eq. (40)] and in arbitrary units, as a function of the frequency
(in units of κ) for different n̄, and evaluated from the numerical data of
�(t) for 100 trajectories of N = 50 atoms, �c = −κ , and evolution
time ttot = 104κ−1. The subplots show the spectrum for n̄ below (a)
and above (b) threshold (see insets).

with n̄ above threshold, as visible in Fig. 12. This plot further
shows that the behavior between the two parameter regions,
below and above threshold, are qualitatively very different. The
results of our simulations suggest that the transition in Fig. 12
at n̄c becomes sharper as the atom number is increased.

IV. PHOTON STATISTICS AND COHERENCE OF THE
FIELD AT THE CAVITY OUTPUT

Since the photons scattered by the atoms into the resonator
carry the information about the density of the atoms within the
cavity spatial mode function, then detection of the light at the
cavity output allows to monitor the state of the atoms during
the dynamics. This is an established method in experiments
with atoms and ions in cavities [22,49–52], and it is at the
basis of proposals for detecting nondestructively the quantum
phase of ultracold atoms [53,54].

Formally, the field at the cavity output âout(t) is directly
proportional to the intracavity field â via the relation âout(t) =√

2κâ − âin(t), where âin(t) is the input field, with zero mean
value and [âin(t),âin(t ′)†] = δ(t − t ′) [55]. The intracavity field
is, in turn, given by the solution of the coupled atoms-field
dynamics, and under the assumption of time-scales separation
it can be cast in the form given in Eq. (7), which expresses an
effective operator resulting from the coarse-grained dynamics.
Equation (7) shows that in leading order the intracavity field is

FIG. 12. (Color online) Contour plot of the spectrum of the
autocorrelation function S̃(ω) [Eq. (40)] as a function of n̄ and of
the frequency (in units of κ). The other parameters are the same as
in Fig. 11. The red dashed line corresponds to an estimate deep in
the organized regime assuming the atoms are trapped in a harmonic
potential with frequency ω̃ = √

2ωrκn̄/n̄c.

proportional to the magnetization �(t); therefore, the features
of the magnetization we identified thus far shall be visible
also in the photon statistics at the cavity output. In addition,
there is a retardation component, which gives rise to cooling
and that in our parameter regime is a small correction. We
now report the analysis of the intracavity photon number,
and of the first- and second-order correlation functions as a
function of the pump strength n̄. Throughout this analysis
we consider that the system has reached the stationary state
at �c = −κ , corresponding to the minimum temperature of
the atoms. Analytically, all averages are taken assuming the
atomic distribution is stationary. Numerically, this consists of
assuming that the trajectories are evolved starting from the
stationary distribution.

A. Intracavity photon number

The intensity of the emitted light is proportional to the mean
intracavity photon number

ncav = lim
t→∞〈â†(t)â(t)〉. (42)

Figure 13(a) displays ncav as a function of n̄ for different atom
numbers. The circles correspond to the mean photon number
evaluated by numerical simulations using Eq. (7), whereas the
dot-dashed lines show the adiabatic solution, Eq. (9), evaluated
with the steady-state solution of Eq. (23). For n̄ < n̄c the mean
photon number is below unity: Therefore, in this regime shot
noise is dominant. Above threshold, ncav rapidly increases with
N and n̄. For the parameters we choose its value is essentially
determined by the adiabatic component of the cavity field,
while the contribution due to retardation is negligible (it is
less than 0.1%). Thus, the intracavity photon number provides
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FIG. 13. (Color online) (a) The mean intracavity photon number
ncav at steady state is displayed as a function of the pump strength
n̄ (in units of n̄c) and for different atom numbers (see inset). The
circles correspond to the numerical data obtained by using Eq. (7)
and integrating the SDE. The dot-dashed lines correspond to the
adiabatic limit ncav|ad = Nn̄ limt→∞〈�(t)2〉, where the average is
performed over the stationary state in Eq. (23). (b) Contour plot of
ncav|ad as a function of N and n̄. The color code is in logarithmic scale.
The horizontal lines correspond to the dot-dashed curves shown in
subplot (a).

direct access to the autocorrelation function at zero-time delay,
〈�2〉. The numerical data, represented by the circles, follow
very closely the curves corresponding to the adiabatic solution
ncav|ad = Nn̄ limt→∞〈�(t)2〉. The difference between the two
curves is indeed small and due to the effect of the dynamical
Stark shift scaling with the parameter U , which in the numerics
is systematically taken into account. This nonlinear shift of the
cavity frequency is maximum when the atoms are localized in
a grating and for the chosen sign (U < 0) it tends to increase
the value of ncav.

Figure 13(b) displays the contour plot of ncav as a function
of n̄ and N using the adiabatic solution [Eq. (9)] and the
steady-state solution in Eq. (23). We observe that well below
threshold ncav depends solely on n̄ and is independent of N . In
this regime, in fact, the atoms are homogeneously distributed;
there is no collective effect in photon scattering and thus no
superradiance. Using the assumption of a homogeneous spatial
distribution and n̄ � n̄c we can derive an analytical estimate
of ncav which is independent of N (see Appendix D ):

ncav|n̄�n̄c
≈ n̄/2.

As n̄ approaches and then exceeds the threshold value, instead,
the dependence of the mean intracavity photon number on N

becomes evident.

B. Spectrum of the emitted light

We now turn to the first-order correlation function at steady
state, g(1)(τ ) = limt→∞〈â†(t + τ )â(t)〉. At zero-time delay,
τ = 0, it corresponds to the intracavity photon number. For
finite delays τ it is proportional to the power spectrum of the
autocorrelation function. In addition, it contains the nonlinear
contribution of the cavity frequency shift and the retarded
component of the cavity field. We discuss here the spectrum
of g(1)(τ ),

S(ω) = lim
t→∞

1

2π

∫ ∞

−∞
dτe−iωτ 〈â†(t + τ )â(t)〉, (43)

which we then compare with the result obtained for the power
spectrum of the magnetization. The spectrum S(ω) is displayed
in Fig. 14 for N = 50 atoms and different values of the
pumping strength.

The behavior is very similar to the spectrum of the
autocorrelation function of the magnetization in Fig. 11. Below
threshold [Fig. 14(a)] we observe a broad frequency spectrum,
while above threshold [Fig. 14(b)] we notice the emergence
of sidebands whose frequency increases with n̄. In general,
the spectrum of the emitted light has the same form as the
power spectrum of the magnetization and thus allows to extract
information about the thermodynamics of self-organization.
The contour plot is very similar to the corresponding one
of the autocorrelation function, Fig. 12. A distinct feature is
found in a small asymmetry between the red (ω < ωL) and the
blue (ω > ωL) sidebands in Fig. 14(b). The asymmetry seems
to be due to the contribution of the diabatic component of
the cavity field, given in Eq. (8). Remarkably, the spectrum
qualitatively agrees with the one observed in experiments
analyzing self-organization of ultracold atoms in single-mode
standing-wave resonators [52], thus outside the regime of
validity of the semiclassical treatment. In particular, sideband
asymmetry above threshold was also reported in Ref. [52].

C. Intensity-intensity correlations

The intracavity photon number below and close to threshold
is smaller than unity, and is thus characterized by large photon
fluctuations. We now study the properties of these fluctuations
by determining the intensity-intensity correlation function,

g(2)(τ ) = lim
t→∞

〈â†(t)â†(t + τ )â(t + τ )â(t)〉
〈â†(t)â(t)〉2

. (44)

with t → ∞ indicating the steady-state, and focus on its value
at zero-time delay, g(2)(0), as a function of n̄ for gaining
insight in the photon statistics. Figure 15(a) displays the
correlation function g(2)(0) as a function of n̄ and for different
atom numbers. The circles show g(2)(0) extracted from
numerical simulations using Eq. (7), while the dot-dashed lines
correspond to the adiabatic solution g(2)(0)|ad = 〈�4〉/〈�2〉2

using the steady-state solution in Eq. (23). Both curves are in
good agreement. We observe a crossover from g(2)(0) ≈ 3 to
g(2)(0) ≈ 1 when tuning the pumping strength from below to
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FIG. 14. (Color online) Spectrum of the intracavity field inten-
sity S(ω) [Eq. (43)] and in arbitrary units at steady state. In (a) the
curves correspond to values of n̄ � n̄c and in (b) they correspond
to values of n̄ > n̄c. The data have been numerically evaluated for
N = 50 atoms and over the interval of time (−104 : 1 : 104) κ−1.

above the threshold, which sharpens as N grows. The value
above threshold is associated with coherent radiation, which is
what one expects when the atoms are locked in a Bragg grating.
The behavior below threshold can be reproduced by means of
an analytical model valid for n̄ � n̄c, in the limit in which the
atoms form a homogeneous distribution. In Appendix D we
show that in this limit we can write

g(2)(0) = 3 − 3/(2N ), (45)

which asymptotically tends to 3 as N increases. This result
qualitatively agrees with experimental measurements with
ultracold atoms performed below threshold [52]. While this
value is also found for squeezed states, in our case we could not
find any squeezing in the field quadratures and thus attribute
the behavior of g(2)(0) below threshold to thermal fluctuations.

Figure 15(b) displays g(2)(0) for different pumping
strengths and number of atoms, evaluated using the adiabatic
solution g(2)(0) = 〈�4〉/〈�2〉2 and the steady state in Eq. (23).
The dashed horizontal cuts correspond to the dot-dashed

FIG. 15. (Color online) (a) The intensity-intensity correlation at
zero-time delay g(2)(0) [Eq. (44)] is shown as a function of the
pump strength n̄ (in units of n̄c) and for different atom numbers
N (see inset). The circles correspond to the data extracted from
numerical simulations, the dot-dashed lines are evaluated using the
steady state in Eq. (23) and the adiabatic solution, where the field
is proportional to the instantaneous value of the magnetization:
g(2)(0)|ad = 〈�4〉/〈�2〉2. (b) Contour plot of the adiabatic component
of the intensity-intensity correlation function at zero-time delay
g(2)(0)|ad vs n̄ and N . The horizontal cuts correspond to the dot-dashed
lines in subplot (a).

curves shown in subplot (a). One clearly observes the crossover
from g(2)(0) ≈ 3 to g(2)(0) ≈ 1 when n̄ exceeds n̄c, while the
transition sharpens for increasing atom numbers.

V. CONCLUSIONS

Atoms can spontaneously form spatially ordered structures
in optical resonators when they are transversally driven by
lasers. In this paper we have characterized the stationary
solution, which emerges from the interplay between the
coherent dynamics due to scattering of laser photons into the
resonator and the incoherent effects associated with photon
losses due to cavity decay. We assumed that these dynamics
are characterized by a time-scale separation, such that the
cavity field relaxes on a faster time scale to a local steady
state depending on the atomic density. This assumption is
valid when the cavity loss rate κ exceeds the recoil energy
ωr scaling the mechanical effects of light, and it is fulfilled
in several existing experiments [17,22,24]. Retardation effects
are small, but important in order to establish the stationary
state.
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Starting from a FPE, which has been derived by means of
an ab initio theoretical treatment [27], we have shown that the
stationary state is thermal, with a temperature that is solely
determined by the detuning between cavity and laser. From
this result, we could determine the free energy and thus show
that atomic self-organization in a standing-wave cavity mode
is a second-order transition of Landau type. Our model allows
us to determine the phase diagram for the self-organization
transition and delivers the critical value of the pump strength in
a self-consistent way. This value is in agreement with previous
estimates [30,31]. An interesting further step is to connect this
theory with quantum-field theoretical models which analyze
self-organization in the ultracold regime [32,45,56], thus
extending the validity of our model to the regime in which
quantum fluctuations in the atomic motion cannot be treated
within a semiclassical model.

We further remark that, while our analysis focuses on a one-
dimensional model, we expect that from our predictions we can
extrapolate the stationary behavior in two spatial dimensions.
This can be calculated by means of a straightforward extension
of the treatment in Ref. [27] to two dimensions. Differing from
one dimension, in the symmetry-broken phase the atoms will
form a checkerboard pattern as found in Ref. [23], as long
as the atomic gas is uniformly illuminated by the laser and
the coupling with the resonator can be treated in the paraxial
approximation. The effect of the dimensionality can modify
the specific form of friction and diffusion. Moreover, in two
dimensions the effect of correlations is expected to be more
relevant, so that the statistical properties will be modified.

Photodetection of the emitted light allows one to reveal the
thermodynamic properties of the atoms. Our results show that
they exhibit several remarkable analogies with experimental
results obtained with ultracold atomic ensembles inside of
resonators [52]. While our theory is not generally applicable
to these systems, it is not surprising that the field at the cavity
output does not depend on the presence (or absence) of matter-
wave coherence, as it solely depends on the atomic density.
Nevertheless, it would be interesting to identify observables
for the cavity field output, if possible, that provide information
about quantum coherent properties of matter, in the spirit of
matter-wave homodyne detection discussed in Ref. [57]. This
could be possible when the cavity spectroscopically resolves
the many-body excitations, as is verified in the parameter
regime of the experimental setup reported in Ref. [58].

This work is the first of a series analyzing the effect of the
long-range cavity-mediated interaction. Here we focused on
the dynamics at steady state. In Ref. [35] we will compare
the results here reported with a mean-field solution, which
is systematically derived from this treatment after making a
mean-field ansatz, and discuss its validity in the perspective of
developing a BBGKY hierarchy for self-organization in optical
resonators [33]. In Ref. [34] we will analyze the dynamics of
the full distribution after quenches across the phase transition,
expanding on the results presented in Ref. [29].
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APPENDIX A: PARAMETERS OF THE
FOKKER-PLANCK EQUATION

In this Appendix we give the explicit form of the parameters
appearing in the coefficients of Eq. (12):

δF = NU�

�′
c

cos(kxi), (A1)

δ
 = cos(kxj )
NU�

�′
c

3�′2
c − κ2

�′2
c + κ2

+ cos(kxi)
NU�

�′
c

+ 4 cos(kxi) cos(kxj )
(NU�)2

�′2
c + κ2

,

(A2)

δη = (2NU�)2

�′2
c + κ2

cos(kxi) cos(kxj )

+ 2NU��′
c

−�′2
c + κ2

{
3κ2 − �′2

c

�′2
c + κ2

cos(kxj ) − cos(kxi)

}
, (A3)

δD = 4NU�

�′2
c + κ2

cos(kxj )[�′
c + cos(kxi)NU�]. (A4)

The diffusion coefficient for the spontaneous decay term reads

Dsp(xi) = (�k)2

{
N2S2�2

�′2
c + κ2

[sin2(kxi) + u2 cos2(kxi)]

+ su2

[
2NS��′

c

�′2
c + κ2

cos(kxi) + s

]}
,

where s = �/g and u2 determines the momentum diffusion
due to spontaneous emission recoils projected on the cavity
axis (dipole pattern of radiation).

Finally, the correction scaling with NU/κ in Eq. (17) reads

L1f = 2�k�c�
∑

i

sin(kxi)

[
�2

c − κ2

�2
c + κ2

B + � cos(kxi)

]
∂pi

f

(A5)

and is systematically taken into account in our calculations.

APPENDIX B: STOCHASTIC DIFFERENTIAL EQUATIONS

The FPE given in Eq. (17) for |NU | � |�c| can be
simulated by SDEs, which in our case read

dxj = pj

m
dt + dXj , (B1)

dpj = �k
2S2�c

�2
c + κ2

sin(kxj )

[
N∑

i=1

cos(kxi)

]
δUdt

+ 8ωrS
2�cκ(

�2
c + κ2

)2 sin(kxj )

[
N∑

i=1

sin(kxi)pi

]
dt + dPj ,

(B2)
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with

δU = 1 + NU

�c

[
�2

c − κ2

�2
c + κ2

B + � cos(kxj )

]
, (B3)

where j = 1, . . . ,N labels the atoms and dPj denote the
momentum noise terms, which are simulated by means of
Wiener processes. In particular, 〈dPj 〉 = 0 and 〈dPidPj 〉 =
2Dijdt , with

Dij = (�k)2S2 κ

�2
c + κ2

sin(kxi) sin(kxj ) (B4)

the element of the diffusion matrix when spontaneous emission
is neglected.

For �c = −κ , we additionally take into account position
noise dXi , which shows cross-correlations with momentum
diffusion 〈dPjdX�〉 = ηj�dt , with

ηj� = 2�ωrS
2 sin(kxj ) sin(kx�)

κ2 − �2
c(

�2
c + κ2

)2 . (B5)

These terms can only be simulated when adding terms as
〈dXidXj 〉 = 0 to the FPE.

For the numerical simulations, we use the Heun method
[59], which is a second-order Runge-Kutta scheme with a
Euler predictor.

APPENDIX C: DETERMINATION OF THE FREE ENERGY

The equilibrium state reads

f (x, p) = 1

Z�N
exp(−βH ), (C1)

where Z is the partition function, � is the unit phase space
volume, and Hamiltonian H is given in Eq. (18). The canonical
partition function Z takes the form

Z =
(

λ

�

)N ∫ 1

−1
d�Ω(�)

∫ ∞

−∞
dp1 · · ·

∫ ∞

−∞
dpN exp(−βH )

=
(

Z0λ

�

)N ∫ 1

−1
d�Ω(�) exp(−β��cn̄N�2), (C2)

with Z0 = √
2mπ/β and

Ω(�) = N

2π

∫ ∞

−∞
dω exp (iωN�)J0(ω)N, (C3)

where Jn(w) = 1/(inλ)
∫ λ

0 dx cos(nkx) exp[iω cos(kx)] is the
nth-order Bessel function [46]. In order to compute Eq. (C3),
we rewrite it as

Ω(�) = N

2π

∫ ∞

−∞
dω exp [Nh(ω)], (C4)

where we introduced the function

h(ω) = iω� + ln [J0(ω)]. (C5)

We can now compute the integral in Eq. (C4) using the method
of steepest descent. For this purpose, we derive the stationary
condition for Eq. (C5). This reads

i� − J1(ω0)

J0(ω0)
= 0,

which we can rewrite as

� = q(γ0) = I1(γ0)

I0(γ0)
(C6)

after defining ω0 = iγ0 and using that J1(ω0)
J0(ω0) = i

I1(γ0)
I0(γ0) . The

function q : R → (−1,1) with y �→ I1(y)
I0(y) is bijective, such that

there is a unique solution satisfying the equation

γ0 = q−1(�). (C7)

With the method of steepest descent, we get

Ω(�) ∼ N

2π

√
2π

N |h′′(ω0)| exp[Nh(ω0)]

=
√

N

2π
C(�) exp(N{ln[I0(q−1(�))]−q−1(�)�}),

(C8)

with

C(�) =
∣∣∣∣�2 − I0(q−1(�)) + I2(q−1(�))

2I0(q−1(�))

∣∣∣∣
− 1

2

.

Using Eq. (C8) in Eq. (C2), at leading order in N we can cast
the canonical partition function into the form

Z =
(

Z0λ

�

)N ∫ 1

−1
d�

√
N

2π
C(�) exp[−βNF(�)],

where F(�) is the free energy per particle,

β[F(�) − F0] = β��cn̄�2 + q−1(�)� − ln[I0(q−1(�))],

(C9)

and −βNF0 = N ln(Z0λ/�). After performing a Taylor
expansion of Eq. (C9) for small values of the order parameter,
close to � = 0, we obtain

β[F(�) − F0] ≈ (1 − n̄/n̄c)�2 + 1
4�4, (C10)

which shows that close to the instability the free energy can be
cast into the form of a Landau potential [47]. This shows that
the system undergoes, in the considered limit, a second-order
phase transition at the critical value n̄ = n̄c with

n̄c = κ2 + �2
c

4�2
c

. (C11)

We use the method of steepest descent to minimize F(�) in
Eq. (C9) and find that the free energy is stationary if the order
parameter solves the equation

� = q

(
2

n̄

n̄c

�

)
. (C12)

APPENDIX D: ANALYTICAL ESTIMATES

Several quantities of relevance can be analytically deter-
mined in the limit of small pumping strength, specifically
when n̄ � n̄c. In this limit we assume that the atoms move
ballistically and their spatial distribution is homogeneous. The
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steady state then reads

fs(x, p) = 1

λN

(
β

2πm

)N/2

exp

(
−β

∑
i

p2
i

2m

)
,

which is a homogeneous distribution for the atoms, while the
momentum distribution is thermal with β defined in Eq. (20).
The mean value of the order parameter for this distribution
vanishes 〈�〉 = 0, while fluctuations scale as

〈�2〉 =
∫

dx
∫

d pfs(x, p)�2 = 1

2N
. (D1)

Here we used that the cross terms in �2 =∑
i,j cos(kxi) cos(kxj )/(N2) vanish for a homogeneous

distribution. For the standard deviation �� =
(〈�2〉 − 〈�〉2)1/2 we thus find

�� =
√

1

2N
, (D2)

which shows that the width ��0 for the distribution function
PN (�0) in Eq. (31) decreases with N−1/2 for very low
pumping strengths. We checked that for n̄ � n̄c the Gaussian
assumption is a good approximation for low values of |�0|
and sufficiently large atom number. This result is reported in
Eq. (32).

In Sec. IV cavity field properties such as mean photon
number 〈â†â〉 and intensity-intensity correlations at zero-time
delay g(2)(0) are discussed. By adiabatically eliminating the
cavity field, i.e., using Eq. (9), and neglecting the dynamical
Stark shift, we can give the following estimate for the mean
photon number

〈â†â〉 = Nn̄〈�2〉 = n̄/2 = n̄c

2

n̄

n̄c

(D3)

under the assumption of a homogeneous spatial distribution.
As long as the spatial distribution remains homogeneous,
the mean photon number thus scales with the ratio n̄/n̄c

independent on the atom number N . This result is discussed

in Sec. IV A and gets evident in Fig. 13(b). Under the same
conditions, far below threshold, we get

〈�4〉 =
∫

dx
∫

d pfs(x, p)

[∑
i

cos(kxi)/N

]4

= 1

N4

[
N

I(4)

2π
+ 3N (N − 1)

I 2
(2)

(2π )2

]
= 3(N − 1)

8N3
,

(D4)

with I(2) = ∫ 2π

0 dx̃ cos2(x̃) and I(4) = ∫ 2π

0 dx̃ cos4(x̃). For the
intensity-intensity correlations at zero-time delay

g(2)(0) = 〈�4〉/〈�2〉2, (D5)

using Eqs. (D1) and (D4), we thus find

lim
n̄→0

g(2)(0) = 3 − 3

2N
. (D6)

This function tends towards the value of 3 for increasing atom
numbers, as can be seen in Fig. 15.

When assuming ballistic expansion, which is justified
whenever the forces on the atoms due to cavity backaction are
small, i.e., far below threshold, we can also derive an analytical
estimate for the correlation function C(τ ) = 〈�(t)�(t + τ )〉
at steady state,

lim
n̄→0

〈�(t)�(t + τ )〉

= 〈�2〉t
(

β

2πm

)1/2 ∫
dp exp

(
−β

p2

2m

)
cos

(
k

p

m
τ
)

= 〈�2〉t exp

(
− ωr

�β
τ 2

)
= 〈�2〉t exp

[−(
τ/τ free

c

)2]
, (D7)

with τ free
c = √

(�β/ωr ), where β is the inverse temperature
defined in Eq. (20) and 〈�2〉t = 1

2N
according to Eq. (D1).

The result is reported in Eq. (35).
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2.2.2 Phases of cold atoms interacting via photon-mediated long-
range forces
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whose effective temperature is controlled by the laser parameters. In this work we show
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erties and phases of the Generalized Hamiltonian Mean Field model in the canonical
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photons, and exhibits a steady state for certain parameter regimes. In standing-

wave cavities the atoms can form stable spatial gratings. Moreover, their asymptotic

distribution is a Maxwell-Boltzmann whose effective temperature is controlled by the

laser parameters. In this work we show that in a two-mode standing-wave cavity

the stationary state possesses the same properties and phases of the Generalized

Hamiltonian Mean Field model in the canonical ensemble. This model has three

equilibrium phases: a paramagnetic, a nematic, and a ferromagnetic one, which here

correspond to different spatial orders of the atomic gas and can be detected by means

of the light emitted by the cavities. We further discuss perspectives for investigating in

this setup the ensemble inequivalence predicted for the Generalized Hamiltonian Mean
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Phases of cold atoms interacting via photon-mediated long-range forces 2

1. Introduction

Atomic ensembles in optical resonators offer a promising platform for studying the

physics of long-range interacting systems [1]. The long-range interaction here originates

from multiple scattering of cavity photons, which carry the information about the

positions of the scattering atoms and thus mediate an optomechanical interparticle

potential [2]. In a single-mode cavity the photons are coherent over the cavity mode

volume, which makes the interaction range as large as the system size. Therefore,

the energy is non-additive like in gravitational and Coulomb systems in two or more

dimensions [1, 3, 4].

In equilibrium statistical mechanics, consequences of non-additivity are for instance

the super-linear scaling of thermodynamic quantities with the system size and the

inequivalence of the statistical ensembles [4], one manifestation of which are negative

specific heats in the microcanonical ensemble [4, 5, 6]. Differing from these systems,

however, the dynamics of atomic gases in optical cavities is typically dissipative and non-

trivial effects can only be observed if either the atoms or the cavity are pumped by light

[2, 7]. The steady state, when it exists, results from the dynamical interplay between

drive and losses and its properties thus depend on the drive and on the cavity parameters.

It is therefore often not possible to draw a direct connection with equilibrium statistical

mechanics of long-range interacting systems.

In this context it is remarkable that for some parameter regimes the dynamics

of atoms’ spatial selforganization in an optical resonator can be mapped to long-range

interacting systems at equilibrium [2, 8, 9]. Selforganization of the atomic gas in ordered

spatial patterns occurs in a single-mode standing-wave resonator when the atoms are

driven by lasers whose intensity exceeds a threshold value, which depends also on the

cavity decay rate [2, 8, 9, 10, 11]. By suitably tuning the laser frequency, moreover, a

stationary state exists which is characterised by a Maxwell-Boltzmann distribution of

the atomic momentum. In Ref. [11] it was shown that the stationary dynamics can

be mapped to the one of the Hamiltonian-Mean-Field model in a canonical ensemble

[4, 12] and in particular that the transition to spatial order can be described in terms of a

Landau second-order phase transition. The dynamics leading to equilibrium, moreover,

exhibits a slow relaxation that is due to the interplay between the conservative and

dissipative cavity-mediated long-range forces [7].

In this paper we extend the model of Ref. [11] and consider a gas of cold atoms

that interact with two cavity modes and are transversally driven by lasers. A possible

setup is illustrated in Fig. 1. We determine the parameter regimes where the dynamics

asymptotically tends to a stationary state and show that its phase diagram as a function

of the lasers’ and of the cavity parameters can be mapped to the one of the Generalized

Hamiltonian Mean Field model (GHMF) in a canonical ensemble [13, 14, 15]. This

model describes the dynamics of N particles with canonically conjugated variables pj,

θj constrained on a circle that interact via competing long-range forces. In the form
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studied in Ref. [13, 15] its Hamiltonian reads

H =
∑

j

p2
j

2
+

1

2N

∑

i,j

(1−∆ cos θij − (1−∆) cos 2θij) , (1)

where θij = θi − θj ∈ [0, 2π) and ∆ is a dimensionless parameter that can vary

continuously in the interval [0, 1]. The phase diagram as a function of the temperature

and ∆ is characterised by (i) a paramagnetic, (ii) a nematic, and (iii) a ferromagnetic

phase, with first and second-order transitions. In our case the phases correspond to

density modulations of the atoms at different periodicity and can be detected through

the light emitted by the cavity. Our motivation draws from ongoing experimental

investigations [16]. Theoretical studies of this system focused on the dynamics leading to

equilibrium and reported the existence of several metastable states [17]. These properties

are at the basis of proposals for using these systems to simulate a quantum Hopfield

associative memory scheme [18, 19]. The determination of the condition for a stationary

state of the setup in Fig. 1 and the analysis of the corresponding phase diagram is the

main result of the present manuscript. The mapping to the GHMF model shows that

Cavity Quantum Electrodynamics (CQED) setups offer a versatile platform for studying

the statistical mechanics of systems with long-range interactions.

This article is organised as follows. In Sec. 2 we introduce the physical model

and sketch the derivation of a Fokker-Planck equation governing the dynamics of the

atoms’ external variables in the semiclassical limit. We then determine the parameters’

regime for which the Fokker-Planck equation allows for a stationary state which is a

Maxwell-Boltzmann distribution. In Sec. 3 we define the free energy, which we can

associate to the stationary state, and introduce an appropriate thermodynamic limit.

We then show that the free energy can be mapped to the one of the GHMF model.

We determine the phase diagram as a function of the system’s parameters and identify

the observables which allow one to measure the predicted phases. In Sec. 4 we discuss

possible implementations of the setup which could correspond to the realization of the

microcanonical ensemble of the GHMF model, for which ensemble inequivalence has

been predicted [15], and identify the parameters regimes for which it could be measured.

2. Semiclassical dynamics of an atomic gas in an optical cavity

The system we consider consists of a gas of N cold atoms of mass m, whose motion is

confined to occur along one dimension parallel to the unit vector ex. We denote by x̂j
and p̂j the canonically conjugated position and momentum operators (j = 1, . . . , N),

such that [x̂i, p̂j] = i~δij. The atoms experience the optomechanical forces due to the

interaction with the lasers and with the quantized fields of two high-finesse cavities in

the setup of Fig. 1. Specifically, the axes of the two cavities are in the x− y plane, the

wave vector k1 of cavity 1 forms an angle ϕ with the x-axis and thus the force the atoms

experience is the projection of the mechanical force along x, while the wave vector k2

of cavity 2 is parallel to ex. The laser fields are linearly polarised and propagate in
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Figure 1. (a) A gas of cold atoms is confined to move along the x-axis and interacts

with the modes of two optical cavities, whose wave vectors form the angle ϕ. The

cavities emit photons at rate κ1 and κ2, respectively, and are pumped via coherent

scattering of laser photons by the atoms. The atoms, in turn, experience the optical

potential and the dissipative forces which result from the mechanical effects of the two

cavity fields. Inset: Linearly-polarized lasers propagate along the direction orthogonal

to the plane defined by the two cavity wave vectors. We assume that cavity 1(2)

couples with the electronic transition |g〉 → |e1〉 (|g〉 → |e2〉), as illustrated in subplot

(b). The electronic transitions are also driven by the laser fields at Rabi frequency Ωp,j

(j = 1, 2). The cavity and laser fields are far-off resonance from the dipolar transition

they couple to and quasi resonant with each other. In this limit the scattering is

prevailingly coherent.

the direction orthogonal to the plane, they pump the cavity fields by means of coherent

scattering via the atoms. The amplitude of coherent scattering, in turn, is maximal when

the atoms form Bragg gratings, whose stability depends on the mechanical forces of the

cavity light. As we will show, a nematic phase corresponds to a stable Bragg grating

which supports the build-up of the field of only one cavity mode. In the ferromagnetic

phase, instead, the atoms form stable Bragg gratings for both modes.

Below we describe the setup in detail and introduce the master equation for the

density matrix ρ̂ of atoms and cavity fields which governs the system’s dynamics. We

then sketch the derivation of a Fokker-Planck equation for the motion of the atoms’

external degrees of freedom, which is valid when the atomic variables can be treated

as semiclassical variables and the cavity fields can be eliminated from the equations of

motion in a coarse-grained time scale. We finally determine the stationary state of the

atoms and identify the regime in which it is a thermal state.

2.1. Master equation

The state of the atoms’ external degrees of freedom and of the cavity modes is described

by the density operator ρ̂, whose dynamics is governed by a Born-Markov master
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equation of the form:

∂

∂t
ρ̂ =

1

i~

[
Ĥ0, ρ̂

]
−
∑

n=1,2

κn
(
â†nânρ̂+ ρ̂â†nân − 2ânρ̂â

†
n

)
, (2)

where Ĥ0 is the Hamiltonian of the system, which we introduce below, and the second

term of the right-hand side describes photon emission by the cavity modes at rate κn
(n = 1, 2). Here, â†n and ân denote the creation and annihilation operators of a photon of

the standing-wave cavity mode n (n = 1, 2), with wave vector kn, frequency ωc,n = c|kn|,
and linear polarization in the x− y plane. The commutation relations are

[
âi, â

†
j

]
= δij.

Hamiltonian Ĥ0 describes the optomechanical coupling between atoms’ degrees of

freedom and cavity modes. It is an effective Hamiltonian derived in the limit where

the atoms’ internal degrees of freedom can be adiabatically eliminated, such that the

scattering processes are coherent and the relevant parameters of the atomic internal

structure is the atoms’ polarizability [20]. Here, cavity mode n couples with the

electronic transition |g〉 → |en〉 at frequency ωa,n with vacuum Rabi frequency gn. We

further assume that the coupling of mode 1 (2) with |g〉 → |e2〉 (|g〉 → |e1〉) is off-

resonance by orders of magnitude and can be discarded (nonetheless, the wave numbers

are assumed to be |k1| ≈ |k2| = k). In this limit cavity n is pumped by coherent

scattering of the laser, which couples to the transition |g〉 → |en〉 with Rabi frequency

Ωp,n and frequency ωp,n. The condition for adiabatic elimination of the internal excited

state is given by the inequality |ωa,n − ωp,n|, |ωa,n − ωc,n| � Ωp,n, gn
√
n̄c,n, |∆n|, where

n̄c,n is the mean intracavity photon number in cavity n and ∆n = ωp,n − ωc,n is the

detuning of the laser from the cavity mode it pumps [3]. In this regime Ĥ0 reads:

Ĥ0 =
N∑

i=1

p̂2
i

2m
− ~

∑

n=1,2

(
∆n − Un

N∑

i=1

cos2(knx̂i)

)
â†nân

+ ~
∑

n=1,2

Sn

N∑

i=1

cos(knx̂i)
(
â†n + ân

)
, (3)

and is here reported in the frame where each atomic transition and cavity mode rotates

at the corresponding laser frequency. Beside the kinetic energy of the atoms, it contains

the resonators’ energy, which is shifted by the dynamical Stark shift with amplitude Un
induced by the coupling between cavity mode and the atoms at the position xi within

the cavity spatial mode function cos(knx̂i). This term is also a periodic potential for the

atoms whose depth is a dynamical variable. The last term on the right-hand side, finally,

describes coherent scattering by the atoms between laser and cavity mode with coupling

strength Sn = gnΩp,n/(ωp,n − ωa,n). It is an effective pump of the resonator whose

amplitude is maximal when the atoms form Bragg gratings maximizing the expectation

value of the operator
∑N

i=1 cos(knx̂i).

Note that in Eq. (3) we introduced the notation k1 ≡ |k1 · ex| = k cosϕ and

k2 ≡ |k2 · ex| = k. In the following we will set ϕ = π/3, thus k1 = k/2.
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2.2. Fokker-Planck equation for the atoms’ external variables

We now discuss the assumptions at the basis of the derivation of a Fokker-Planck

equation (FPE) for the dynamics of the atomic external variables. A semiclassical

description of the atoms’ center-of-mass motion is justified when the width ∆p of the

single-atom momentum distribution is much larger than the linear momentum ~k carried

by a cavity photon ∆p� ~k [21]. In this limit it is convenient to use the Wigner function

ftot(x,p, t) for the atomic variables x = (x1, . . . , xN), p = (p1, . . . , pN):

ftot(x,p, t) =

∫
dNy

(2π~)N
e−

i
~y·p Tr

{
|x− 1

2
y〉 〈x +

1

2
y| ρ̂(t)

}
, (4)

with y = (y1, . . . , yN). We further assume that the cavity field relaxes very fast to

a local steady state depending on the atomic distribution, which is verified when the

inequality k∆p/m� |κn + i∆n| is fulfilled, namely, when the dimensionless parameter

ε =
k∆p/m

|κn + i∆n|
(5)

is small. This allows us to identify a coarse-grained time scale ∆t that is infinitesimal

for the external degrees of freedom but over which the cavity degrees of freedom can

be eliminated from the equations of the atomic dynamics. In particular, ftot(x,p, t) =

f(x,p, t) + fna(x,p, t), where f(x,p, t) is the term in zero order in the retardation

effect, corresponding to the cavity field following adiabatically the atomic motion, and

fna(x,p, t) represents the non-adiabatic corrections scaling with ε. The latter can be

expressed in terms of f(x,p, t) using perturbation theory [22, 23]. The derivation is

lengthy but is also a straightforward extension of the derivation for a single-mode cavity,

which is extensively reported in Ref. [23]. We thus refer the interested reader to this

work and present here the resulting FPE, which reads

∂

∂t
f(x,p, t) + {f(x,p, t), H(x,p)} =

N∑

i,j=1

∑

n=1,2

∂

∂pi

[
sin(knxi) sin(knxj)

(
Dn

∂f(x,p, t)

∂pj
− Γnpjf(x,p, t)

)]

+
N∑

i,j=1

∑

n=1,2

∂

∂pj

[
ηn sin(knxi) sin(knxj)

∂

∂xi
f(x,p, t)

]
. (6)

In detail, Hamiltonian (7) results from the adiabatic component of the dynamics and

describes coherent long-range, two-body interactions which are mediated by the cavity

photons:

H(x,p) =
N∑

i=1

p2
i

2m
−N

∑

n=1,2

γnΘ2
n , (7)

where γn is a scalar and

Θ1 =
1

N

N∑

i=1

cos(kxi/2) ; Θ2 =
1

N

N∑

i=1

cos(kxi) . (8)
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The quantities Θn are order parameters for spatial selforganization. In fact, they vanish

for homogeneous spatial distributions, they are both different from zero when the atomic

density forms spatial gratings with periodicity 4π/k, while Θ1 = 0 and Θ2 6= 0 when

the spatial grating has periodicity 2π/k, as illustrated in Fig. 2. The cavity mode

field amplitudes En = 〈ân〉, in turn, are proportional to Θn and in leading order in the

expansion in ε read [11]

En =
NSnΘn

∆n + iκn
. (9)

The Bragg gratings can be stable provided that γn > 0. The sign of γn is here controlled

by the detuning ∆n, and hence by the frequency of the pumping laser. For later

convenience we write γn = αn/βn with

αn =
4NS2

n∆2
n

(∆2
n + κ2

n)2
, (10)

βn =
−4∆n

~(∆2
n + κ2

n)
. (11)

Friction and diffusion are instead due to retardation effects between atoms and cavity

dynamics and describe cross-correlations between the atoms, which can play a relevant

role in stabilizing the system in non-thermal metastable states [7]. Their coefficients

take the form

Dn = (~kn)2S2
n

κn
∆2
n + κ2

n

, (12)

Γn =
~k2

n

m
S2
n

4∆nκn
(∆2

n + κ2
n)2

, (13)

ηn =
(~kn)2

m
S2
n

κ2
n −∆2

n

(∆2
n + κ2

n)2
, (14)

and are here reported in the limit |∆n| � NUn, where we neglected the contribution of

the dynamical Stark shift to the dynamics.

2.3. Existence of a stationary state

The FPE (6) allows for a stationary solution satisfying the condition ∂tfst(x,p, t) = 0.

We first consider two limiting cases, in which only one cavity mode is pumped. These

situations correspond to the dynamics of atoms in a single-mode standing-wave cavity

investigated in Refs. [3, 11, 23, 24].

Let us first assume that S1 = 0 but S2 6= 0. In this case a stationary state exists

provided that ∆2 < 0 and the stationary distribution reads fst = C2 exp(−β2H|γ1=0),

with normalization constant C2 and β2 = −mΓ2

D2
given in Eq. (11) ‡. Vice versa, when

S1 6= 0, S2 = 0, and ∆1 < 0, the stationary state is fst = C1 exp(−β1H|γ2=0) with

β1 = −mΓ1

D1
from Eq. (11).

‡ In this discussion we neglect the terms of Eq. (6) that scale with ηn. This is exact if ∆n = −κn.

In general, these terms give rise to corrections to the coherent dynamics that scale with 1/N in the

thermodynamic limit we use in Sec. 3, see Ref. [24] for details.

60 Self-organization of particles in an optical cavity



Phases of cold atoms interacting via photon-mediated long-range forces 8

Figure 2. Periodic potential of cavity 1 (blue line) and cavity 2 (red line) along the x-

axis and as a function of q = kx/2. The spatial configurations leading to non-vanishing

values of Θ1 and/or Θ2 are illustrated by the bullet points along each horizontal line.

As we show below, configurations where Θ1 = 0 while Θ2 6= 0 correspond to the

nematic phase of the GHMF. Configurations where both Θ1,Θ2 6= 0 are ferromagnetic

phases. Each configuration gives rise to different cavity field amplitudes and can thus

be detected by monitoring the fields at the cavities’ outputs.

When both resonators are pumped, a stationary solution can be found provided

that ∆1,∆2 are negative and β1 = β2, namely:

∆1

∆2
1 + κ2

1

=
∆2

∆2
2 + κ2

2

. (15)

This is the situation we consider in the following. In particular, β1 = β2 = β, where

β−1 =
~(∆2

n + κ2
n)

−4∆n

. (16)

The detunings and cavity loss rates thus determine an effective temperature Teff = kB/β

characterizing the stationary state. The stationary state is given by

fst = C exp(−βH) . (17)

3. Mapping to the generalized Hamiltonian Mean Field model

We now consider the stationary state of Eq. (17) and draw a formal analogy to a

canonical ensemble at equilibrium. For this purpose we define the thermodynamic

limit, according to which αn ∝ NS2
n is constant. This assumption warrants that the

energy is extensive, it is thus equivalent to Kac scaling [4] and physically corresponds

to scaling the cavity mode volume linearly with the number of particles [10, 25]. In this

thermodynamic limit we obtain an explicit expression of the free energy per particle

which allows us to perform a mapping of the steady state in Eq. (17) to the canonical

ensemble realization of the GHMF.
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We determine the free energy per particle F using the relation F = − ln(Z)/(Nβ),

where Z is the “canonical” partition function and reads:

Z =
1

hN

∫ λ

0

dx1 . . .

∫ λ

0

dxN

∫ ∞

−∞
dp1 . . .

∫ ∞

−∞
dpNe

−βH(x,p), (18)

with λ = 4π/k. We integrate over the momenta p and apply the Hubbard-Stratonovich

transformation to eliminate Θ2
n(x), obtaining

Z =
N
√
α1α2

π (π~ωrβ)
N
2

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2 exp

[
−N

{
α1y

2
1 + α2y

2
2 − ln (I(y1, y2))

}]
,

with qi = kxi/2, ωr = ~k2/(2m), and

I(y1, y2) =

∫ 2π

0

dq exp [2 (α1y1 cos(q) + α2y2 cos(2q))] . (19)

In the thermodynamic limit N → ∞ we perform a saddle-point approximation, which

leads to the expression for the free energy

F(y1, y2) =
ln (π~ωrβ)

2β
+

1

β
inf
y1,y2

{
α1y

2
1 + α2y

2
2 − ln (I(y1, y2))

}
. (20)

This expression coincides, apart for irrelevant constants, with the mean free energy of

the GHMF model in the canonical ensemble [15]. In particular, the extrema y∗n of the

free energy fulfill the relation

y∗n =

∫ 2π

0
dq cos(nq) exp [2(α1y

∗
1 cos(q) + α2y

∗
2 cos(2q))]

∫ 2π

0
dq exp [2(α1y∗1 cos(q) + α2y∗2 cos(2q))]

, (21)

their values lie in the interval y∗n ∈ [−1, 1] and they can be identified with the variables

Θn: y∗n = 〈cosnq〉. This shows that Θ1,Θ2 are analogous to the magnetization in the

GHMF model. By means of this mapping, moreover, we connect the lasers and cavity

parameters with the dimensionless parameter ∆ of the GHMF in Eq. (1): α1/β → ∆

and α2/β → (1−∆). Therefore, varying the lasers’ amplitudes would allow one to span

over the values of ∆ in Eq. (1), while the effective temperature can be tuned varying

the detunings ∆1 and ∆2, and thus the lasers’ frequencies (provided condition (15) is

fulfilled).

The phase diagram is obtained following the same analysis as in Ref. [15] and it is

illustrated in Fig. 3. The system exhibits second and first order phase transitions (see

Appendix A for details), which are found for the same corresponding values of the phase

diagram as in Ref. [15]. The phases can be measured by monitoring the amplitude and

the phase of the fields at the cavity output, since these are proportional to the order

parameters Θ1 and Θ2, as visible in Eq. (9).

4. Discussion and outlook

The mapping of the stationary dynamics of Eq. (6) to the canonical GHMF shows that

cavity QED can be a versatile platform for studying equilibrium statistical mechanics

of long-range interacting systems. In this perspective it is important to identify the
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Figure 3. Canonical phase diagram as a function of α1 and α2. The phases are

identified by numerically determining the global minima of the free energy of Eq. (20).

The system shows second-order and first-order phase transitions (see inset). In the

inset: P denotes paramagnetic, F ferromagnetic, and N nematic phase. The dark and

light gray areas, labeled by A and B, respectively, indicate the parameter regions where

ensemble inequivalence is expected. In A (B) the microcanonical ensemble exhibits

three (two) phases [15].

parameter regimes for which this setup could simulate the microcanonical GHMF model.

This would allow one to experimentally investigate the ensemble inequivalence that has

been predicted for the GHMF [15].

Within the validity of the semiclassical description, the microcanonical GHMF

could be realised in the regime where the parameter ε, Eq. (5), becomes smaller than the

small parameter ~k/∆p of the semiclassical expansion. This would require one to choose

the detunings |∆n| � κn [25]. In this limit there is a well defined time scale over which

the dynamics is coherent and solely dominated by Hamiltonian (7), while the right-hand

side of the FPE (6), which scales with ε, can be discarded. Moreover, in order to prepare

the system in a microcanonical ensemble, the atomic gas shall be in the asymptotic

Boltzmann-Gibbs distribution of the corresponding Hamiltonian dynamics [4, 14]. By

identifying the mean energy per particle in the canonical ensemble 〈E/N〉 = ∂(βF)/∂β

with the constant energy ε in the microcanonical ensemble, we obtain the relation

ε =
1

2β
− 1

β

(
α1Θ2

1 + α2Θ2
2

)
, (22)

which allows us to directly compare the results obtained in both ensembles. Ensemble

inequivalence is predicted in the regions where the three phases meet and is indicated

by the shaded area in Fig. 3. In an experimental realization it would become evident by

detecting different phases in the canonical and microcanonical realizations for the same

values of α1 and α2 [15]. It would be interesting to identify observables of this system

which provide a measure of the specific heat, thus allowing one to determine whether it
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may become negative in the microcanonical ensemble. This is an open question which

we will address in future work.
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Appendix A. Determination of the canonical phase diagram

For the calculation of the phase diagram in Fig. A1 we numerically calculated the global

minimum of the free energy, Eq. (20), for each pair α = (α1, α2). The global minimum

describes a paramagnetic phase when Θ1(α) = Θ2(α) = 0. The phase is nematic when

Θ1(α) = 0 and Θ2(α) 6= 0 and ferromagnetic when Θ1,Θ2 6= 0. A phase transition

occurs where the properties of the minimum change by varying α. The order of the

transition is determined by calculating numerically the first derivatives of F(α) with

respect to α1 and α2: If they are discontinuous at the phase transition the transition

is of first order, while if they are continuous the transition is of second order. This

determines the phase diagram in Fig. A1.

We also checked our results by analytically calculating the Hessian matrix of the free

energy, Eq. (20), at the extrema where Eq. (21) is fulfilled. We note that Θ1 = Θ2 = 0

is always a solution of Eq. (21). It is a minimum when the following inequalities hold:

α1 < 1 , α2 < 1 . (A.1)

The thin black dashed line in Fig. A1 delimitates the region α1, α2 < 1, where the

paramagnetic phase is a local minimum of the free energy. We now consider the nematic

phase, set Θ1 = 0 in Eq. (21) and obtain the equation for Θ2:

Θ2 =
I1 (2α2Θ2)

I0 (2α2Θ2)
, (A.2)

where In(x) is the modified Bessel function of order n. The Hessian matrix is positive

definite when the following inequalities are fulfilled:

α1 <
1

1 + Θ2

, (A.3)

1 < α2 <
1

1−Θ2
2

. (A.4)

One can show that imposing Θ2 6= 0 in Eq. (A.2) is equivalent to Eq. (A.4). Inequality

(A.3) determines an upper threshold α1,c = 1/(1 + Θ2) on α1 above which the nematic

configuration is no longer a minimum of the free energy. The thin black solid line in

Fig. A1 shows α1,c in the α-plane. Note that α1,c < 1 (α1,c > 1) for Θ2 > 0 (Θ2 < 0).

In the limit α2 → ∞, Eq. (A.2) delivers Θ2 → 1 and Θ2 → −1, giving α1,c → 1/2 and

α1,c →∞, respectively.

We note that the conditions we determine analytically do not overlap for all values of
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α1, α2 with the numerically calculated phase transition lines (see Fig. A1). For instance

there is an area where the inequalities (A.1) hold but the global minimum is in the

ferromagnetic phase. Moreover the condition in Eq. (A.3) predicts a parameter region

where the nematic phase with Θ2 < 0 is a local minimum but the global minimum is a

ferromagnetic phase.

Figure A1. The canonical phase diagram as in Fig. 3 and the results of our analytical

analysis. The dashed black lines delimitate the region determined by the inequality

Eq.(A.1), where a paramagnetic phase (Θ1 = 0 = Θ2) is a local minimum of the free

energy. The area below the solid black line (determined by the inequality Eq.(A.3) )

is the region where a nematic phase (Θ1 = 0, Θ2 6= 0) is a local minimum of the free

energy.
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[10] J. K. Asbóth, P. Domokos, H. Ritsch, and A. Vukics, Phys. Rev. A 72, 053417 (2005).
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Section 2.3

Out-of-equilibrium dynamics in
self-organization

This section deals with the dynamics and relaxation of the system when it is driven
across the self-organization phase transition. Every subsection starts with a reference to
the peer-reviewed article and the contribution list of the authors.

2.3.1 Mean-field theory of atomic self-organization in optical
cavities

Physical Review A 94, 023807 (2016)
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thors.

Abstract:
Photons mediate long-range optomechanical forces between atoms in high-finesse res-
onators, which can induce the formation of ordered spatial patterns. When a transverse
laser drives the atoms, the system undergoes a second-order phase transition that sep-
arates a uniform spatial density from a Bragg grating maximizing scattering into the
cavity and is controlled by the laser intensity. Starting from a Fokker-Planck equation
describing the semiclassical dynamics of the N -atom distribution function, we system-
atically develop a mean-field model and analyze its predictions for the equilibrium and
out-of-equilibrium dynamics. The validity of the mean-field model is tested by compari-
son with the numerical simulations of the N -body Fokker-Planck equation and by means
of a Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. The mean-field theory
predictions well reproduce several results of the N -body Fokker-Planck equation for suffi-
ciently short times and are in good agreement with existing theoretical approaches based
on field-theoretical models. The mean field, on the other hand, predicts thermalization
time scales which are at least one order of magnitude shorter than the ones predicted
by the N -body dynamics. We attribute this discrepancy to the fact that the mean-field
ansatz discards the effects of the long-range incoherent forces due to cavity losses.
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Photons mediate long-range optomechanical forces between atoms in high-finesse resonators, which can
induce the formation of ordered spatial patterns. When a transverse laser drives the atoms, the system undergoes
a second-order phase transition that separates a uniform spatial density from a Bragg grating maximizing scattering
into the cavity and is controlled by the laser intensity. Starting from a Fokker-Planck equation describing the
semiclassical dynamics of the N -atom distribution function, we systematically develop a mean-field model and
analyze its predictions for the equilibrium and out-of-equilibrium dynamics. The validity of the mean-field
model is tested by comparison with the numerical simulations of the N -body Fokker-Planck equation and by
means of a Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. The mean-field theory predictions
well reproduce several results of the N -body Fokker-Planck equation for sufficiently short times and are in good
agreement with existing theoretical approaches based on field-theoretical models. The mean field, on the other
hand, predicts thermalization time scales which are at least one order of magnitude shorter than the ones predicted
by the N -body dynamics. We attribute this discrepancy to the fact that the mean-field ansatz discards the effects
of the long-range incoherent forces due to cavity losses.

DOI: 10.1103/PhysRevA.94.023807

I. INTRODUCTION

Optically dense atomic ensembles offer a formidable
framework to study collective effects induced by atom-photon
interactions [1–3]. Correlations are established by multiple-
photon scattering [4,5], which can give rise to phenomena such
as synchronization [6,7], optomechanical bistability [8,9], and
spontaneous spatial ordering [2,3,10–12]. Envisaged applica-
tions for these systems range from sensors [13] to quantum-
enhanced metrology [14] and quantum simulators [12,15].

Single-mode cavities, furthermore, mediate strong long-
range interactions between the atoms [16–18], similar to
gravitational and Coulomb potential in two or more dimen-
sions [19]. In view of this analogy, it is relevant to study the
dynamics of these systems at and out of equilibrium to test
in a laboratory conjectures and predictions, such as ensemble
inequivalence and the existence of quasistationary states [16].
The realization in quantum optical setups, like the one sketched
in Fig. 1(a), brings additional peculiar features. In fact, these
systems are intrinsically lossy, so that nontrivial dynamics
can be observed only in the presence of a pump. On the one
hand, the conservative potential mediated by the cavity photons
shares several analogies with the one of the Hamiltonian
Mean Field model [17,19–21], of which several features are
well reproduced by a mean-field description [19,20]. On the
other hand, cavity losses give rise to damping and diffusion,
which are characterized by a spatial structure, thus establishing
long-range correlations between the atoms [17,22]. These
correlations, in turn, cannot be captured by a mean-field
description.

In this work we systematically develop a mean-field model
for cold atoms in a standing-wave resonator in the setup
illustrated in Fig. 1(a) and test its validity by comparing its
predictions with the ones of the Fokker-Planck equation for
the N -atom distribution [22]. This work completes a series of
papers which analyze the equilibrium and out-of-equilibrium
dynamics of spatial self-organization of atomic ensembles in
a single-mode resonator. Our analysis is based on a semi-

classical treatment, specifically on a Fokker-Planck equation
(FPE) for the N -atom distribution, derived when the atoms
are classically polarizable particles and their center-of-mass
motion is confined to one dimension [22]. The cavity field,
instead, is a full quantum variable. This makes our treatment
applicable also in the shot-noise limit [22] and gives access to
regimes that are complementary to those based on the model
in Ref. [23], where the field is a semiclassical variable.

Our formalism permits us to consistently eliminate the
cavity variables from the equations of motion of the atoms
and to investigate the properties of the cavity field across
the self-organization threshold, where the intracavity field is
characterized by large fluctuations. Starting from this model
in Ref. [21] we analyzed the stationary state of the N -body
FPE and showed that (i) this is a thermal state whose
temperature is determined by the linewidth of the resonator
and (ii) the transition to self-organization is a Landau-type
second-order phase transition, as illustrated in Figs. 1(b)
and 1(c). In Ref. [21] we also determined the corresponding
phase diagram as a function of the physical parameters and
predicted the corresponding features in the light emitted by the
resonator. In Ref. [24] we investigated the dynamics following
sudden quenches across the phase transition and found that
the interplay between long-range conservative and dissipative
forces gives rise to prethermalization dynamics, where the
long-range nature of dissipation plays an essential role.

In this work we derive a mean-field treatment from our
N -atom FPE. We then benchmark the limits of validity of the
mean-field ansatz by means of numerical simulations using
the full N -body FPE and by means of a Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy. The results we
obtain are compared with existing literature on spatial self-
organization in single-mode cavities for both the semiclassical
treatment [25–28] and the case in which the atomic quantum
statistics is assumed to be relevant [15,28–33].

This work is organized as follows. In Sec. II the Fokker-
Planck equation at the basis of our analysis is reported,
and the corresponding mean-field equation is derived. In
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FIG. 1. (a) Atoms in a standing-wave cavity and driven by a
transverse laser can spontaneously form ordered patterns when the
amplitude of the laser coupling � exceeds a threshold value �c, which
depends on the rate of photon losses, here due to cavity decay at rate κ .
In this regime the system undergoes a second-order phase transition
which is characterized by the parameter �, indicating spatial ordering
of the atoms in Bragg gratings and defined in Eq. (4). Its expectation
value in the mean-field description is denoted as �MF. (b) and
(c) The thermodynamic potential below and above threshold. The
bottom panels are schematic pictures of the single-particle density
distribution f1(x,p) in phase space with x in units of the inverse
wave number k−1 and p in units of the width �p of the momentum
distribution. In (b) the atomic density is uniform; in (c) it is localized
at the even or odd sites of the cavity standing wave, [cos(kx) = 1 or
−1, respectively]. In this work we derive and discuss a mean-field
theory for the dynamics of f1(x,p).

Sec. III the stationary properties of the mean-field FPE
distribution function are analytically determined. The mean-
field predictions are compared with the ones of the N -body
FPE and with further existing theoretical works. In Sec. IV
the Vlasov equation, which describes the short-time dynamics
of the mean-field FPE, is derived. Its predictions are then
determined by means of a stability analysis, and the analytical
results are compared with the numerical simulations of the
mean-field FPE. Section V reports a critical analysis of
the limits of validity of the mean-field treatment. In Sec. VI the
conclusions are drawn, while in the Appendix calculations are
reported that complement the material presented in Sec. III.

II. DERIVATION OF THE MEAN-FIELD MODEL

In this section we derive the mean-field model starting from
the FPE describing the dynamics of an atomic ensemble in the
optical potential of a high-finesse resonator of Ref. [22]. The
atoms are N and have mass m, and their motion is assumed

to be confined along the x axis, which also coincides with
the axis of a high-finesse cavity within whose mirrors the
atoms are spatially trapped. In the following we denote their
canonically conjugated positions and momenta by xj and pj

(j = 1, . . . ,N). The atomic dipole strongly couples to one
cavity mode and is transversally driven by a laser, as sketched
in Fig. 1(a). The parameter regime is such that the atoms
coherently scatter photons into the cavity mode, and their
external motion is determined by the light forces associated
with these processes. The light forces are periodic, and their
period is determined by the cavity-mode standing wave, whose
spatial mode function is cos(kx), with k being the cavity-mode
wave number.

A. Basic assumptions

Before reporting the FPE which governs the dynamics of
the N -body distribution function, we summarize the main
approximations behind its derivation and the corresponding
physical parameters.

One basic assumption of our model is that the only relevant
scattering processes are coherent. This regime can be reached
when the cavity mode and laser frequencies are tuned far off
resonance from the atomic transition [34,35]. We denote by
�a = ωL − ω0 the detuning between laser (ωL) and atomic
(ω0) frequencies and assume that this is the largest parameter of
the problem. It is thus larger than the coupling strengths for the
interaction between the dipole and fields. It is also larger than
the detuning �c = ωL − ωc between laser and cavity-mode
frequencies, whose wave numbers are, to good approximation,
denoted by the same parameter k. This allows us to eliminate
the internal degrees of freedom of the atoms by a perturbative
expansion in the lowest order of the small parameter 1/|�a|.

The cavity field is treated as a quantum-mechanical vari-
able, and the dynamics can be cast as an optomechanical
coupling between atomic motion and cavity field [10,23].
The parameter regime we assume gives rise to a time-scale
separation, such that the cavity degrees of freedom evolve on
a faster time scale than the motion. This is warranted when
the cavity linewidth κ , which determines the relaxation rate of
the resonator state, is much larger than the recoil frequency
ωr = �k2/(2m), which scales the exchange of mechanical
energy between light and atoms. In this limit the cavity field
is eliminated from the equations of motion of the atomic
external degrees of freedom in a perturbative expansion to first
order in the small parameter 1/κ , implementing a procedure
first applied in Ref. [36]. The hierarchy of time scales is set
by the inequalities |�a| � κ � ωr . This is also consistent
with a semiclassical treatment since the kinetic energy of the
atoms at steady state scales with �κ , thus warranting that the
width �p of the single-atom momentum distribution is large
in comparison to the linear momentum �k carried by each
photon [10,17,21].

B. Collective motion of N atoms in a cavity field

The approximations discussed above are at the basis of the
theoretical procedure which connects the master equation of
atoms in a quantized cavity field with the FPE for the Wigner
function fN = fN (x1, . . . ,xN ; p1, . . . ,pN ; t) describing the
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positions and momenta of the N atoms at time t . The derivation
is detailed in Ref. [22], and the resulting FPE reads

∂fN

∂t
= −

N∑
i=1

∂

∂xi

pi

m
fN + S2L[fN ], (1)

where the second summand on the right-hand side (RHS) is
due to mechanical effects of the cavity field on the atoms and
scales like S2. Here, S = �g/�a is the scattering amplitude
between the laser and cavity mode, and it is proportional to the
laser strength � and to the cavity vacuum Rabi frequency g,
which scale the interaction between the dipole and laser and
between the dipole and cavity, respectively. Operator L[fN ]
takes the form

S2L[fN ] = ∂fN

∂pi

∂V (x1, . . . ,xN )

∂xi

(2a)

− S2
∑
i,j

∂

∂pi

�0 sin(kxi) sin(kxj )pjfN (2b)

+ S2
∑
i,j

∂2

∂pi∂pj

D0 sin(kxi) sin(kxj )fN (2c)

+ S2
∑
i,j

∂2

∂pj∂xi

η0 sin(kxi) sin(kxj )fN . (2d)

Each line on the RHS of Eq. (2) has a physical meaning.
The first term describes the dynamics due to the conservative
potential

V (x1, . . . ,xN ) = ��c

κ2 + �2
c

S2N2�(x1, . . . ,xN )2, (3)

where

�(x1, . . . ,xN ) = 1

N

N∑
j=1

cos(kxj ), (4)

so that the potential mediates long-range interactions between
the atoms. Parameter 〈|�|〉N is the order parameter of
self-organization, where 〈·〉N denotes the expectation value
taken over the normalized distribution fN . Specifically, when
the atoms form Bragg grating, then 〈|�|〉N → 1, and the
potential depth is maximal. When the atoms are instead
uniformly distributed in space, then 〈|�|〉N � 0, and the
potential vanishes. We note that the Bragg gratings minimize
the potential when �c < 0; otherwise, the uniform distribution
is energetically favored. We will here denote 〈|�|〉N by
magnetization due to the mapping of the self-organization
transition to a ferromagnetic model [21].

For later convenience, we define the parameter

F0 = (�k)
2�c

κ2 + �2
c

, (5)

such that V = F0(NS�)2/(2k).
The second term on the RHS [Eq. (2b)] describes a

dissipative force and is scaled by the coefficient �0:

�0 = ωr

8�cκ(
κ2 + �2

c

)2 . (6)

This term is due to nonadiabatic corrections in the dynamics
of the cavity field.

The term in (2c) corresponds to diffusion due to fluctuations
of the cavity field associated with losses. The diffusion matrix
is the dyadic product of the vector (sin(kx1), . . . , sin(kxN ))
with itself and scales with the coefficient

D0 = (�k)2 κ

κ2 + �2
c

. (7)

Therefore, besides the diffusion due to the diagonal elements,
which is a single-particle effect, we also expect that term (2c)
establishes long-range correlations.

The last line, (2d), contains cross derivatives and scales
with the coefficient

η0 = 2�ωr

κ2 − �2
c(

κ2 + �2
c

)2 , (8)

whose sign depends on whether the ratio |�c/κ| is smaller
or larger than unity, while it vanishes for |�c/κ| = 1. An
analogous term has also been reported in the semiclassical
description of cold atoms in optical lattices [36], where it
has been neglected under the assumption of uniform spatial
densities. Such an assumption cannot be applied in the self-
organized regime; nevertheless, we will show that this term
can be consistently discarded in the thermodynamic limit we
apply, which warrants Kac’s scaling [19].

C. Mean-field ansatz

To derive a mean-field FPE we assume that the Wigner
function is factorized into single-particle distribution functions
according to the prescription

fN (x1, . . . ,xN ; p1, . . . ,pN ; t) =
N∏

i=1

f1(xi,pi ; t), (9)

where f1(xi,pi ; t) denotes the distribution for particle i at time
t and is thus defined on the phase space of this particle. We
use then Eq. (9) in the FPE (1) and integrate out all particles’
variables but one. In this way we derive the mean-field FPE,
which reads

∂f1

∂t
= − ∂

∂x

p

m
f1 + S2L[f1] (10)

and has same structure as the FPE in Eq. (1). Operator L
describes, as L, the mechanical effects of light. However, it is
now a nonlinear operator of f1 and takes the form

L[f1] = − ∂

∂p
F0{cos(kx) + (N − 1)�MF[f1]} sin(kx)f1

(11a)

− ∂

∂p
�0{sin(kx)p + (N − 1)
MF[f1]} sin(kx)f1

(11b)

+ ∂2

∂2p
D0 sin2(kx)f1 (11c)

+ ∂2

∂p∂x
η0 sin2(kx)f1, (11d)
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where we have introduced the functionals

�MF[f1] = 1

λ

∫ λ

0
dx

∫ ∞

−∞
dp cos(kx)f1, (12)


MF[f1] = 1

λ

∫ λ

0
dx

∫ ∞

−∞
dp sin(kx)pf1. (13)

The mean-field order parameter �MF is the expectation value
〈cos(kx)〉, where 〈·〉 indicates the average taken over the
single-particle distribution function f1(x,p). The terms on the
RHS in (11a) and (11b) have a different origin but a similar
structure, which can be recognized by analyzing the form of
the two summands within the respective inner brackets. The
first summand in each line describes the interaction of the atom
with itself, mediated by the cavity field. The second summand
in each line emerges from the interaction between the atom
and all other N − 1 atoms.

We further notice that the term in (11a) can be cast in terms
of a conservative force originating from the potential

V1[f1](x) =F0

2k
S2[cos2(kx) + 2(N − 1)�MF[f1] cos(kx)]

+ �0

k
(N − 1)S2
MF[f1] cos(kx) (14)

and contains a term whose corresponding term in Eq. (1) has
dissipative nature [see (2b)]. Using this result, we can rewrite
Eq. (11) in the compact form

L[f1] = ∂V1

∂x

∂f1

∂p
− ∂

∂p

(
�0p − ∂

∂p
D0 − ∂

∂x
η0

)
sin2(kx)f1,

which allows us to simply read out the physical meaning of
the other terms; they are, in fact, the diagonal component of
friction, diffusion, and the cross-derivative term in Eq. (1).

III. STATIONARY STATE OF THE MEAN-FIELD
EQUATION

The stationary properties of the mean-field distribution are
analyzed by means of the single-particle distribution fst(x,p)
that solves Eq. (10) with

∂tfst(x,p) = 0. (15)

In the following we determine fst(x,p) and then analyze its
predictions for relevant physical quantities.

A. Derivation of the steady-state solution

In order to solve Eq. (15) we consider the ansatz

fst(x,p) = f0 exp[a(x) + b(p)],

where a(x) and b(p) are functions which depend only on
position and momentum, respectively, and f0 is the normal-
ization constant. Using this ansatz in Eq. (10), we obtain
differential equations for a(x) and b(p), whose solutions read
b(p) = −βp2/(2m) and

a(x) = (Y/2 − 1) ln[1 + Z sin2(kx)] − (N − 1)Y�MF[fst]

×
√

Z

1 + Z
arctanh

(√
Z

1 + Z
cos(kx)

)
, (16)

with Y = F0/(kη0), Z = βη0S
2, and

β = −�0m

D0
= −4�c

�
(
κ2 + �2

c

) . (17)

Therefore,

fst(x,p) = F(cos kx) exp

(
− β

p2

2m

)
, (18)

withF(cos kx) = f0 exp[a(x)]. Equation (18) describes a ther-
mal distribution provided that �c < 0: In this limit parameter
β, Eq. (17), plays the role of an inverse temperature at steady
state. This temperature coincides with the value found by
solving the steady state of the N -body FPE, Eq. (1), as shown
in Refs. [17,21].

We note that the function F(cos kx) depends on �MF[fst],
which leads to the fixed-point equation

�MF ≡ 〈cos(kx)〉 =
√

2πm

β

1

λ

∫ λ

0
dx cos(kx)F(cos kx).

(19)

Its solution is, in general, not transparent, but it gets simpler in
an appropriately defined thermodynamic limit. This consists
of scaling the coupling strength g ∼ 1/

√
N as the number

of atoms is increased, leading to the scaling relation S ∝
1/

√
N [37,38]. In this limit function a(x), Eq. (16), can be

cast into the form

a(x) = 2
n̄

n̄c

�MF cos(kx), (20)

with

n̄ = NS2

κ2 + �2
c

(21)

and

n̄c = κ2 + �2
c

4�2
c

. (22)

This leads to a compact form of the stationary distribution in
the mean-field limit:

fst(x,p) = f0 exp

[
− β

(
p2

2m
+ ��cn̄�MF cos(kx)

)]
, (23)

with

f −1
0 =

√
2mπ

β
I0

(
2

n̄

n̄c

�MF

)
,

where Ij is the modified Bessel function of j th order [39].
We thus see that in the thermodynamic limit the effect of

the cross derivatives vanishes. For finite N , parameter η0 is
small but finite, and in the stationary state it gives rise to a
correction to the effective potential term, as seen in Eq. (16).

B. Stationary properties in the thermodynamic limit

The mean-field distribution, Eq. (23), allows one to an-
alytically determine several properties of the steady state.
First, functional �MF in the exponent has to be determined
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FIG. 2. Plot of q(2n̄ζ/n̄c), Eq. (25), as a function of ζ and for
different values of n̄. The intersection points with the curve y = ζ

(dashed line) give the solutions of Eq. (24). Stable points are at the
crossing where q ′ < n̄c/(2n̄) and are the equilibrium values of the
order parameter �MF. Inset: The resulting stable solution �̄ � 0 as a
function of n̄ (in units of n̄c).

self-consistently. Using Eq. (20) in Eq. (19) gives the relation

�MF = q

(
2

n̄

n̄c

�MF

)
, (24)

where q is a function of the form

q

(
2

n̄

n̄c

ζ

)
=

I1
(
2 n̄

n̄c
ζ
)

I0
(
2 n̄

n̄c
ζ
) (25)

and is plotted in Fig. 2 for values of n̄ below, at, and above
n̄c. The solutions of Eq. (24) are the crossing between the
curve y = ζ and y = q(2n̄ζ/n̄c) [see Eq. (25)]. For n̄ < n̄c this
equation allows for one solution, corresponding to �MF = 0.
For n̄ > n̄c, there are three solutions, two of which are stable
and one of which is unstable. The stable solutions give �MF =
±�̄, with 0 � �̄ < 1, and correspond to the self-organized
state. Close to, but above, the critical point the value �̄ can be
analytically determined and reads

�̄ =
√

2(n̄/n̄c − 1). (26)

The value n̄ = n̄c, with n̄c defined in Eq. (22), hence
determines a critical point at which the transition to self-
organization occurs and that is controlled by the detuning from
the cavity field and the cavity loss rate for the thermodynamic
limit we chose. The results we have obtained so far for
the stationary mean-field distribution are in full agreement
with the ones found for the stationary distribution of Eq. (1)
(see Ref. [21]). The stationary mean-field distribution in
Eq. (23) corresponds to the one that is found from the
stationary N -particle distribution after integrating out the other
N − 1 position and momentum variables and then taking the
thermodynamic limit. The equation for the order parameter,
Eq. (24), agrees with the one obtained for the N -particle case
and obtained by means of a saddle-point approximation. This
agreement is found also for the critical value of Eq. (22) and

for the temperature of Eq. (17). Hence, the mean-field model
predicts the same phase diagram as the N -body FPE.

It is also instructive to consider the value of the bunching
parameter B as a function of n̄. This is defined as

B = 〈cos2(kx)〉 (27)

and gives a measure of localization of the particles at the
minima of the mechanical potential [21,25]. Using Eq. (20),
we obtain

B =
{

1/2, n̄ � n̄c,

1 − n̄c/(2n̄), n̄ > n̄c,
(28)

in the stationary state. Therefore, below threshold the atoms are
uniformly distributed, while above threshold they increasingly
localize at the minima of the Bragg potential. In particular,
when the atoms are tightly bound at the minima, the above-
threshold expression in Eq. (28) delivers the amplitude of the
fluctuations, namely,

k2〈x2〉 ≈ n̄c

2n̄
, (29)

showing that these are inversely proportional to the laser
intensity.

C. Comparison with existing literature

The results obtained so far by means of the mean-field
model show a remarkable agreement with the predictions of
the stationary solution of the N -particle FPE, Eq. (1). It is
further worthwhile to compare the results derived here with
the results obtained in the literature by means of different
approaches.

We first discuss Ref. [25], where, among other studies,
a mean-field approach is developed based on plausible con-
jectures. Here, the mean-field potential is calculated, and the
threshold of self-organization is determined by (i) assuming
that the stationary state is thermal, with temperature given
by the linewidth of the cavity, and (ii) performing a stability
analysis of the uniform density distribution. By means of
this study a threshold value for self-organization is identified,
which agrees with the prediction in Eq. (22), which becomes
evident after defining the threshold amplitude Sc such that

NS2
c

�2
c + κ2

≡ n̄c.

In particular, the quantity η∗ in [25] is in our notations Sc�a/g

calculated for the case �c = −κ .
The stationary state of self-organization was first derived in

Refs. [26,27] by means of a FPE as a function of the atomic
and field variables. This description assumes that the field
fluctuations are small and thus cannot reliably reproduce the
field correlation functions below and at threshold. It predicts,
nevertheless, that the atoms’ steady state is thermal and its
temperature coincides with the inverse of Eq. (17), apart from
corrections of the order ωr/κ that are systematically neglected
in our approach because they are of higher order. It further
predicts the same behavior of the order parameter as in Eq. (26)
above, but close to, the threshold.

It is also interesting to compare our results with a series of
other theoretical studies which focus on self-organization of
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ultracold atomic ensembles in cavities but discard retardation
effects: In these works only the conservative part of the cavity
potential is considered, while the temperature at steady state
is due to the coupling to an external heat bath [15,28–33].
Even though the conditions seem quite different from our
case, remarkable agreement is found in the appropriate limits.
References [15,29] analyze the self-organization transition of
an ultracold gas of bosonic atoms and derive the mapping to
the Dicke model. Here, the recoil energy plays a role analogous
to the temperature, and the threshold which is derived agrees
with the threshold in Eq. (22) after setting

NS2
c = 1

β

κ2 + �2
c

−�c

, (30)

with β = 4/�ωr . By means of this prescription, the threshold
also agrees with the one calculated in Ref. [28]. Furthermore,
it also coincides with the one evaluated in Ref. [33] when using
the Boltzmann distribution for the atoms statistics.

Another quantity which has been determined in these works
is the photon flux, which corresponds to the intracavity photon
number in our treatment. In Refs. [28–31] the photon flux
scales as 1/|n̄ − n̄c| below threshold, while at threshold it
diverges as

√
N . These predictions are in perfect agreement

with the results we find when taking the stationary distribution
of Eq. (1) [see Eqs. (A4) and (A5)]. In particular, the intracavity
photon number at threshold, Eq. (A5), coincides with the
one calculated in Ref. [28] after substituting in their equation
ωz = (ω2

0 + κ2)/ω0 for the temperature, with ω0 = −�c. The
result for the intensity-intensity correlations at zero time delay
and below threshold, Eq. (A11), further agrees with the result
derived in Refs. [30,31].

IV. MEAN-FIELD DYNAMICS

We now study the dynamics predicted by the mean-field
FPE. We focus on the Vlasov equation, which we derive from
Eq. (10) by taking the thermodynamic limit, according to our
prescription. The Vlasov equation for our problem reads

∂f1

∂t
+ p

m

∂f1

∂x1
− ∂V0[f1](x)

∂x

∂f1

∂p
= 0, (31)

with

V0[f1](x) = 2��cn̄ cos(kx)�MF[f1]

− �2k

m
n̄βκ cos(kx)
MF[f1], (32)

and it corresponds to the potential in Eq. (14) after neglecting
the self-reaction term, which is of order 1/N . Therefore,
the validity of the predictions we will extract is limited to
sufficiently short time scales for which the corrections can be
discarded. We will quantify this statement in the next section.

A. Preliminary considerations: Energy conservation

We first analyze whether Eq. (31) warrants energy conserva-
tion. We consider a class of functions for which 
MF[f1] = 0.
This includes the stationary solution of Eq. (23). For these
solutions, the energy of one particle takes the form

ε(t) = 〈p2〉
2m

+ ��cn̄�2
MF. (33)

In order to determine ε̇(t) we thus calculate �̇MF and ˙〈p2〉.
This gives

�̇MF = − k

m

MF,

˙〈p2〉
2m

= 2
�
m

n̄(k�c�MF − ωrκβ
MF)
MF,

and therefore, we get for the derivative of the energy

ε̇ = −2
�
m

n̄ωrκβ
2
MF.

These derivatives hence vanish when 
MF = 0, and thus, for
the class of distribution fulfilling this condition, energy, with
the potential term given in Eq. (33), is conserved. Fluctuations,
on the other hand, can give rise to finite values of 
MF. The
purpose of the next section is to analyze the stability and short-
time dynamics of solutions of the Vlasov equation, Eq. (31),
after quenches of the laser parameters.

B. Stability analysis of spatially homogeneous distributions

We now analyze the short-time dynamics described by
Eq. (31), assuming that at t = 0 the distribution is thermal
and has uniform spatial density; thus, f1(x,p,0) = f1(p,0)
and �MF|t=0− = 0, with

f1(p,0) =
(

2mπ

β0

)− 1
2

exp

(
− β0

p2

2m

)
, (34)

where β0 is the inverse temperature. This distribution is a
stable solution of the Vlasov equation after setting n̄ = 0.
At t = 0 the laser strength is quenched above threshold, so
that parameter n̄ takes a finite value larger than n̄c. We then
let evolve the distribution of Eq. (34) by taking this value
n̄ in Eq. (31). Figure 3 shows the results of the numerical
integration of Eq. (31) for different values of n̄. We analyze
these results, keeping in mind that they are strictly valid for
short times since the Vlasov equation discards effects, such
as diffusion, which are crucial in determining the stationary
state. In Fig. 3(a) the order parameter evolves from zero to a
finite value, about which it oscillates. This value is smaller than
the one predicted by the stationary solution of the mean-field
FPE. It is reached after an initial dynamics characterized by
an exponential increase, whose slope is steeper the larger n̄

is. Figures 3(b) and 3(c) display the corresponding evolution
of the quantities 
2

MF [see Eq. (13)]. This quantity emerges
from the retardation effects of the dynamics; it is thus a
signature of memory effects and mathematically corresponds
to the buildup correlations between momentum and position
that cannot be factorized. The initial distribution, Eq. (34), is
chosen so that 
MF = 0, and we observe that the dynamics give
rise to a buildup of a finite value of 
2

MF, with an exponential
increase that leads to a maximum where the curve for �MF

reaches the plateau. Then, it oscillates like �MF (one can
well understand the behavior of these oscillations observing
that 
MF is proportional to the time derivative of �MF) and
is exponentially damped to zero. In the initial phase, the
exponential growth of 
2

MF increases with n̄; as in the second
phase of the dynamics, where �MF oscillates about a finite
mean value, the amplitude of the oscillations of 
2

MF is also
larger the larger n̄ is.
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FIG. 3. Time evolution of (a) the order parameter �MF, Eq. (12), and (b) and (c) parameter 
2
MF, Eq. (13), calculated by numerical integration

of the Vlasov equation (31) for different values of n̄ and for �c = −κ . The initial distribution is given in Eq. (34) with β0 = 2/(�κ).

We now analyze the initial exponential increase, which
is in the regime where the Vlasov equation is a reliable
approximation of the full dynamics, as we also verified in
Ref. [24]. In order to do so, we use a standard procedure,
which is also detailed in Refs. [19,40]. For short times t after
the quench, we write the distribution as

f1(x,p,t) = f1(p,0) + δf1(x,p,t), (35)

where δf1 describes small fluctuations which can be due to
the finite size of the system and thus scale with 1/

√
N . Using

Eq. (35) in the Vlasov equation (31) and neglecting the terms
of order 1/N , we obtain the linearized Vlasov equation

∂δf1

∂t
+ p

m

∂δf1

∂x
− ∂δV

∂x

∂f1(p,0)

∂p
= 0, (36)

where δV = V [δf1(x,p,t)] and we dropped the argument of
function δf1. We look for solutions of Eq. (36) by means of the
ansatz of Fourier waves with frequency ω and wave number k:

δf1 = g1(p)ei(ωt−kx) + g−1(p)ei(ωt+kx), (37)

δV = 2A cos(kx)eiωt , (38)

where A ∝ 1/
√

N is some constant and the amplitudes
g1(p) and g−1(p) are sole functions of the momentum p.
The dispersion relation ω = ω(k) can be derived after using
Eqs. (37) and (38) in the linearized Vlasov equation (36). By
equating the coefficients of exp(ikx) and exp(−ikx) we get
expressions for the functions g1(p) and g−1(p). With those
expressions one finds the dispersion relation by using the
definition δV = V [δf1] and Eqs. (32) and (38):

0 = 1 +
(

��c + i
�κ

2
�ωβ

)
n̄

1

2

×
∫ ∞

−∞
dp

(
−k

pk

m
+ ω

+ −k
pk

m
− ω

)
∂pf1(p,0). (39)

This relation holds for any initial distribution that describes a
uniform spatial density. We now use the Gaussian distribution
in Eq. (34) and obtain

0 = 1 +
(

��c + i
�κ

2
�ωβ

)
n̄β0

×
[

1 − ā exp(−ā2)

(
i
√

π − 2
∫ ā

0
du exp(u2)

)]
, (40)

where we defined ā = √
β0/(2m)(mω/k). We then introduce

b̄ = iā and

γ = iω

and cast Eq. (40) in the form

0 = 1 +
(

��c + �κ

2
�γβ

)
n̄β0

×
[

1 − b̄ exp(b̄2)

(
√

π −
∫ b̄

−b̄

du exp(−u2)

)]
, (41)

where b̄ ∝ γ . It can be shown that parameter γ , which solves
Eq. (41), is a real number. Therefore, ω is an imaginary number.
In particular, if γ < 0, both Eqs. (37) and (38) describe
fluctuations which are exponentially damped, and therefore,
f1(x,p,t) will tend to the initial distribution, which is stable.
If, instead, the solution of Eq. (40) gives γ > 0, the initial
distribution is unstable against fluctuations. The value γ = 0
separates the two regimes. After setting γ = 0 in Eq. (41), we
thus get the critical condition

1 = −��cn̄β0, (42)

which connects �c, n̄, and the initial temperature 1/β0, which
is an external parameter. If β0 coincides with the value in
Eq. (17), then Eq. (42) corresponds to the same relation as
in Eq. (22), which defines the critical value of n̄ for self-
organization. For the values of the parameters for which γ > 0,
the uniform distribution is unstable and tends to form a grating
at the wave vector k of the resonator with exponential increase,
giving rise to a violent relaxation. Parameter γ gives the rate
at which the amplitude of this density modulation grows.

Figure 4 compares the value of γ extracted by fitting the
exponential increase of �MF in the first phase of the dynamics
of Fig. 3 and for different values of n̄ with the one determined
by Eq. (41), showing very good agreement. In particular, we
note that in the limit |�c| � |γ |, Eq. (41) can be reduced to
the form [41]

γ = ω0(1 − pχ )
ln

(
χ

1.135

) − ln(1 − pχ )

1.4(1 − pχ ) + �κβω0/(2|�c|) , (43)

with χ = �|�c|n̄β0 = (n̄/n̄c)(β0/β), ω0 = √
2ωr/(�β0), and

p = 27/227.
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FIG. 4. Slope γ of the initial increase of �MF. The dots are
extracted by fitting the curve obtained from the numerical simulations
in Fig. 3, the dashed line is the value predicted by Eq. (43), which
agrees well with Eq. (41) (solid line). For these parameters the
threshold for the Vlasov stability, Eq. (42), reads 1 = n̄/n̄c.

V. VALIDITY OF THE MEAN-FIELD ANSATZ

The mean-field treatment is based on the assumption
that the distribution function for the N particles can be
approximated by the product of the single-particle distribution.
This ansatz thus discards interparticle correlations which
emerge from the photon-mediated interactions: the factorized
ansatz is very different from the form of the distributions one
obtains from the full N -particle FPE [17,21]. Nevertheless,
the assumption still captures essential features of the short-
time dynamics of distributions, which initially have the
form of Eq. (9). We will follow the procedure illustrated
in Refs. [19,42] and study the validity of the mean-field
ansatz within a BBGKY hierarchy, which we derive from
the N -particle FPE, Eq. (1). We will particularly focus on
the dynamics of two-particle correlations and determine the
characteristic time scale of their dynamics.

For convenience, we introduce the vectors x =
(x1, . . . ,xN )T and p = (p1, . . . ,pN )T , and define fN (x; p; t) ≡
fN (x1, . . . ,xN ; p1, . . . ,pN ; t).

A. BBGKY hierarchy of the photon-mediated
Fokker-Planck equation

For the derivation of the BBGKY hierarchy we assume that
the energy of the system is finite. This corresponds to assuming
that the following limit holds,

lim
|p|→∞

fN (x; p; t) = 0, (44)

where |p| =
√∑N

i=1 p2
i , and that expectation values of all

moments exist. Furthermore, fN is periodic with wavelength
λ in every xi , which implies

fN (x + λz; p; t) = fN (x; p; t) (45)

for every z ∈ ZN . The distribution function fN is invariant
under particle exchange, which we can express by means of
the permutation matrix P, such that

fN (Px; Pp; t) = fN (x; p; t), (46)

where each row and column of P contain only one entry
different from zero and equal to 1.

In order to derive the BBGKY hierarchy of the FPE in
Eq. (1) we first define the l-particle distribution function:

fl =
∫ λ

0

dxl+1

λ

∫ ∞

−∞
dpl+1 · · ·

∫ λ

0

dxN

λ

∫ ∞

−∞
dpNfN, (47)

where fl inherits the three properties in Eqs. (44), (45), and (46)
from fN . Index l takes the value l = 1, . . . ,N , such that for l =
1 the distribution fl is the single-particle phase-space function,
and for l = N it describes the N -particle state. The evolution
of fl is found from Eq. (1) after integrating out the other N − l

particle variables and can be cast in the form

∂fl

∂t
=

l∑
j=1

(
L(l)

j fl + G(l)
j [fl+1]

)
, (48)

where the first operator on the RHS solely depends on the
variables of the l particles and reads

L(l)
j fl = − ∂

∂xj

pj

m
fl

− S2 ∂

∂pj

l∑
i=1

[F0 cos(kxi) + �0 sin(kxi)pi] sin(kxj )fl

+ S2 ∂

∂pj

l∑
i=1

(
D0

∂

∂pi

+ η0
∂

∂xi

)
sin(kxi) sin(kxj )fl.

(49)

The second operator, instead, depends nonlinearly on the (l +
1)-particle distribution function. This term vanishes when l =
N , while for l < N it describes the dynamics of correlations,
which are established by the interparticle potential. It reads

G(l)
j [fl+1] = −S2(N − l)

∂

∂pj

sin(kxj )

× (F0�l[fl+1] + �0
l[fl+1]), (50)

where

�l[fl+1] =
∫ λ

0

dxl+1

λ

∫ ∞

−∞
dpl+1 cos(kxl+1)fl+1, (51)


l[fl+1] =
∫ λ

0

dxl+1

λ

∫ ∞

−∞
dpl+1 sin(kxl+1)pl+1fl+1, (52)

while �0[f1] = �MF and 
0[f1] = 
MF. Note that when the
factorization ansatz of Eq. (9) holds, �1[f2] = �MFf1 and

1[f2] = 
MFf1. A closed set of equations for fl can thus be
strictly obtained for l = N , giving Eq. (1), or for S = 0, hence
in the absence of the cavity field.
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B. The Lenard-Balescu equation

For l = 2 we can generally decompose the distribution
function into two terms:

f2(x1,x2,p1,p2) = f1(x1,p1)f1(x2,p2) + g2(x1,x2,p1,p2),

(53)

where the first term on the RHS is the mean-field term
and the second term describes all corrections beyond mean
field. When at t = 0 the distribution function is factorized
in a form like Eq. (9), the dynamics beyond mean field
will tend to build correlations which are described by g2.
We obtain the mean-field FPE, Eq. (10), by performing the
approximation G(1)

1 [f2] → G(0)
1 [f1]f1. In the following we

analyze the regime in which this approximation is justified by
studying the equation describing the evolution of the function
g2 under some approximation, which permits us to truncate the
BBGKY hierarchy to second order. This equation is known
in the literature as the Lenard-Balescu equation [19], and it
will allow us to identify a time scale where the mean-field

treatment provides reliable predictions. In order to derive the
Lenard-Balescu equation we first consider the distribution
function for l = 3. Using the same type of decomposition as
in Eq. (53), this can be written as

f3(x1,x2,x3,p1,p2,p3)

= f1(x1,p1)f1(x2,p2)f1(x3,p3)

+
3∑

i,j,k=1

|εijk|f1(xi,pi)g2(xj ,pj ,xk,pk)

+ g3(x1,x2,x3,p1,p2,p3),

where εijk is the Levi-Civita tensor and g3 describes all three-
body correlations which cannot be written as a function of f1

and/or f2. We assume now that g3 is of higher order (from
the treatment below we will see that g3 ∝ 1/N2) and drop g3

in the equation describing the dynamics of f2, Eq. (48). By
means of this assumption we obtain two coupled equations
for f1 and f2, which can then be cast into the Lenard-Balescu
equations for f1 and g2 using Eq. (53) and read

∂f1

∂t
= L(1)f1 + G(1)[f1]f1 + G(1)[g2], (54a)

∂g2

∂t
= − ∂

∂x1

p1

m
g2 − ∂

∂x2

p2

m
g2 − S2

2∑
j=1

∑
i �=j

∂

∂pj

F0 sin(kxj ){cos(kxi) − �MF[f1]}f1f1

− S2
2∑

j=1

∑
i �=j

∂

∂pj

�0 sin(kxj ){sin(kxi)pi − 
MF[f1]}f1f1 + S2
2∑

j=1

∑
i �=j

∂

∂pj

sin(kxj )

(
D0

∂

∂pi

+ η0
∂

∂xi

)
sin(kxi)f1f1

−NS2F0

2∑
j=1

∑
i �=j

∂

∂pj

sin(kxj ){�1[g2]if1(xj ,pj ) + �MF[f1]g2} − NS2�0

2∑
j=1

∑
i �=j

∂

∂pj

sin(kxj ){
1[g2]if1(xj ,pj )

+
MF[f1]g2}, (54b)

where we specified the arguments when necessary and intro-
duced the notation �1[g2]i and 
1[g2]i to indicate that these
are functions of (xi,pi).

The validity of the mean-field FPE, Eq. (10), relies on
whether one can discard the term G(1)[g2] on the RHS of
Eq. (54a). Let us recall the thermodynamic limit for which
S2 ∼ 1/N . If we now assume that g2 is of order 1/N with
respect to f1, then the termG(1)[g2] is of order 1/N with respect
to G(1)[f1]f1. A detailed analysis of Eq. (54b) shows that, if
g2 ∼ 1/N at t = 0, this scaling is preserved by the dynamics.
In fact, (i) the first two terms on the RHS of Eq. (54b) give a
scaling with 1/N because they are proportional to g2, while all
other quantities are independent of N ; (ii) the last term in the
first line and the terms in the second line are all proportional
to S2 ∼ 1/N , and (iii) the last two lines scale with NS2g2 ∼
1/N . Therefore, for sufficiently short times the contribution
of g2 to the dynamics in the mean-field equation can be
neglected.

We note that in Eq. (54a) the term L(1)f1 also has
components which scale with 1/N . If one consistently neglects
all terms scaling with 1/N , then Eq. (54a) reduces to the

Vlasov equation (31) and therefore also neglects the diffusion
processes leading to equilibrium. Figure 5 illustrates the
order of magnitude of the corrections to the Vlasov and
Lenard-Balescu equations, as well as the types of correlations
that these describe.

FIG. 5. Illustration of the order of magnitude of the corrections
of the Vlasov and of the Lenard-Balescu equations and of which type
of correlations they include.
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FIG. 6. Time evolution of the squared order parameter evaluated
by numerically simulating the mean-field FPE, Eq. (10) (dash-dotted
lines), and the N -particle FPE of Eq. (1) (solid lines). The curves
correspond to different particle numbers N = 20 (top two brown
curves), N = 50 (middle two green curves), and N = 200 (bottom
two blue curves) and are calculated taking �c = −κ and n̄ = 2n̄c.
The number T of trajectories taken for the N -body FPE is T = 1000
for N = 20, T = 500 for N = 50, and T = 100 for N = 200 (see
Refs. [21,22] for details on the simulations). The horizontal dotted
line indicates the asymptotic value of the squared order parameter.
The inset shows the curves of the onset with the time axis rescaled
by N . Note that the initial distribution of the full N -body FPE is the
one which statistically corresponds to a spatially uniform distribution
with the same temperature as the asymptotic one. Therefore, the value
of 〈�2〉N at t = 0 does not vanish due to finite-size effects. In order to
compare these dynamics with the mean-field FPE, we have taken into
account these finite-size effects in the initial mean-field distribution
given by f̃0(x,p) = [1 + δN cos(kx)]f1(p,0), where f1 is given in
Eq. (34) and δN is a spatial modulation depending on N .

C. Mean-field versus full N-atom dynamics

In order to complete our analysis of the limits of validity of
the mean-field ansatz, we now compare its predictions with the
ones obtained by numerical simulations of the N -particle FPE
of Eq. (1). The latter are performed by means of stochastic
differential equations (see Refs. [21,22] for details). We focus
now on the evolution of the expectation value of �2, which
explicitly depends on two-particle correlations and scales the
strength of the conservative many-body potential. We recall
the definition 〈·〉N in order to indicate the mean value of an N -
particle observable taken over the N -particle distribution fN .

Figure 6 compares the N -particle description where
the evolution of fN is governed by FPE (1) (solid
line) and the mean-field description, where fN (x; p; t) =
f1(x1,p1; t) · · · f1(xN,pN ; t) and the evolution of f1 is gov-
erned by the mean-field FPE (10) (dash-dotted line). The
curves are plotted as a function of time and for different particle
numbers, N = 20,50,200, where the parameter S2 has been
rescaled according to our thermodynamic limit to warrant
a threshold n̄c which is independent of N . The parameters
have been fixed so that, initially, the distribution is spatially
uniform, while the momentum distribution is a Gaussian
whose width coincides with the asymptotic temperature of

the dynamics, Eq. (17). The strength of the field is such that
n̄ = 2n̄c; therefore, the asymptotic spatial distribution is a
Bragg grating with |�MF| ∼ 0.83. The dynamics we observe
is the one which leads to the formation of the Bragg gratings
starting from a uniform spatial distribution and exhibit three
stages, which have been extensively discussed in Ref. [24]:
a violent relaxation, a prethermalized phase, and a slow
approach to equilibrium. The solid lines are simulations of
the full FPE, and the dash-dotted lines are the corresponding
mean-field prediction, which indeed qualitatively reproduces
the three-stage dynamics.

The violent relaxation is a stage of the dynamics where
there is good agreement between the mean-field and N -body
FPEs. This is the short-time regime where the Vlasov equation,
Eq. (31), is valid, and the behavior of the N -body FPE is
reproduced by the one observed by numerically integrating
the Vlasov equation [see Fig. 3(a)]. This has also been verified
in Ref. [24]. The prethermalized regime is also predicted
by the Vlasov equation [see Fig. 3(a)]. The mean-field
FPE, however, provides a more accurate description and
qualitatively reproduces the N -body FPE. Nevertheless, a clear
difference between mean-field and N -body dynamics is found
at the onset of the prethermalized stage: In fact, the oscillations
are damped at a faster rate in the N -body FPE. Apart from
this difference, there is a qualitative agreement between the
mean-field and N -body FPEs also for this stage.

While both mean-field and N -body FPEs agree in the
asymptotic value, we observe a striking difference between
the two results in the relaxation to equilibrium after prether-
malization. This is the stage where the role of dissipation
and diffusion becomes relevant, as shown in Ref. [24] by
comparing this behavior with the one where the dynamics is
due to only the Hamiltonian term. In particular, the relaxation
time scale predicted by the full simulation is about one
order of magnitude larger than the corresponding mean-field
prediction. This becomes even more evident by plotting the
curves rescaling the time axis with N , which is visible in the
inset. The curves of the mean-field FPE collapse to one curve,
whereas the ones of the N -body FPE collapse to a significantly
different curve.

Let us now summarize these results. First, the short-time
behavior of the fluctuations of the order parameter are well de-
scribed by the mean-field equation, in particular by the Vlasov
equation. This is well understood in terms of the typical contri-
butions to the dynamics: For short times the dominant contribu-
tions are indeed the terms of Eq. (31), and interparticle correla-
tions are small, as we argued in the previous section. Discrep-
ancies are due to finite-size effects. The prethermalized regime,
moreover, exhibits good agreement between mean-field and
full dynamics. This regime is dominated by the Hamiltonian
dynamics, and the results show that Hamiltonian dynamics
with long-range interactions is well reproduced by the mean-
field description. Big deviations instead appear for long times,
where the mean-field ansatz is expected to fail, and at the time
scales dominated by relaxation to the stationary state.

VI. CONCLUSIONS

In this work we have systematically developed a mean-field
description of the self-organization dynamics of atoms in a
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high-finesse cavity. The predictions of the mean-field model
have been explored at equilibrium and out of equilibrium;
its limits of validity have been tested by comparing them
with those of the N -body FPE. We have found that the
mean-field equation provides an excellent description of the
dynamics when the latter is prevailingly Hamiltonian. It
further describes the equilibrium properties of single-particle
observables, including the asymptotic temperature and the
order parameter. It fails, however, to reproduce the long-time
out-of-equilibrium dynamics.

Despite these differences, this analysis shows that from
the mean-field model one can analytically extract several
predictions of the system dynamics. It is, indeed, remarkable
that several predictions reproduce in the corresponding limits
the ones obtained by means of other theoretical treatments,
some of which start from a fully quantum mechanical treatment
of the atoms. This, on the one hand, leads us to conjecture
that quantum fluctuations play a marginal role in determining
the steady-state properties of the cavity field. It further urges
one to develop a full quantum kinetic theory, analogous to
the full N -body semiclassical theory, which will overcome all
limitations of simplifying theoretical assumptions performed
so far. Only such a model, in fact, can give full access to the
dynamical interplay between matter waves and cavity photons.
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APPENDIX: CAVITY-FIELD CORRELATION FUNCTION
AT STEADY STATE

Experimentally accessible quantities are the correlation
functions of the field at the cavity output, which allows
one to monitor the atoms’ state and is proportional to the
intracavity field. In our formalism, the intracavity field is
closely connected to the atomic state by the relation Ecav ∝√

Nn̄�; therefore, the correlation functions of the cavity
field are proportional to the correlation functions of the
magnetization � [21,22]. In the following we determine the
autocorrelation function of the magnetization, which can be
detected by means of the first-order correlation function of
the field and the fourth-moment of the magnetization 〈�4〉N .
As we showed in Ref. [21], in fact, 〈�4〉N delivers the value
of the intensity-intensity correlation of the field at zero-time
delay and at zero order in the retardation effects.

1. Field intensity across the transition

We first determine the intracavity photon number ncav at
steady state for n̄ below, at, and above threshold. For this
purpose we use the relation [21,22]

ncav = Nn̄〈�2〉N, (A1)

which, by introducing α = n̄/n̄c, can be cast in the form (see
also the Sec. A 3)

ncav = 1

2
n̄c + n̄

∂

∂α
G(α), (A2)

where

G(α) = ln

(∫ ∞

−∞
dy exp {− N{αy2 − ln[I0(2αy)]}}

)
. (A3)

We then analyze the prediction of this expression close to
threshold for n̄ ∼ n̄c and thus α ∼ 1. For this purpose we
expand the exponent of G(α) about the value y = 0 and
consider the behavior of ncav for α → 1− and hence for n̄ < n̄c

but sufficiently close to the transition point that the truncation
of the expansion is valid. In this limit we find

ncav ≈ n̄2
c/2

n̄c − n̄
, (A4)

where the details of the derivation are reported in Sec. A 3.
The value at the transition point is reported at leading order in
N and reads (see Sec. A 3)

ncav ≈ 2
√

Nn̄c

�
[

3
4

]
�

[
1
4

] , (A5)

where �[x] denotes the gamma function [39].
The value of the intracavity photon number above threshold

is found after observing that the exponent of function G(α) has
two minima that are given by the nonvanishing solutions of the
fixed-point equation (24), which we denote by �MF = ±�̄,
with �̄ given in Eq. (26). Therefore, it holds that

ncav = Nn̄�̄2 ≈ 2N (n̄ − n̄c),

sufficiently close to the critical point. In particular, the mean
number of photons increases linearly with n̄. We analyze now
some properties of the first-order correlation function of the
intracavity field, g(1)(τ ) = limt→∞ Re〈Ecav(t + τ )Ecav(t)〉N .
This function has been extensively studied in Ref. [21] by
numerically solving the N -particle FPE. Here, we will use
the mean-field ansatz in order to better understand the two
sidebands of its Fourier transform, at which it exhibits maxima
above threshold. For this purpose we first notice that the
correlation function is proportional to the autocorrelation
function C(τ ) of the magnetization by the relation g(1)(τ ) =
Nn̄C(τ ) and

C(τ ) = lim
t→∞〈�(t)�(t + τ )〉N . (A6)

We want to derive C(τ ) in the mean field, and hence, the mean
value now has to be taken over the factorized distribution as
in Eq. (9) with the stationary mean-field distribution given in
Eq. (23). We calculate C(τ ) by solving the equations of the
mathematical pendulum

ẋ = p

m
,

(A7)
ṗ = 2�k�cn̄�̄ sin(kx),

with initial conditions x(0) = x0 and p(0) = p0. The value �̄

is here the positive stable solution of Eq. (24). In the limit of
small oscillations, these equations describe harmonic motion
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FIG. 7. Contour plot of the spectrum of the autocorrelation
function S̃(ω) as a function of n̄ and of the frequency (in units of
κ) evaluated from the numerical data of �(x1, . . . ,xN ), Eq. (4), by
integrating the N -particle FPE, Eq. (1), for 100 trajectories of N = 50
atoms, �c = −κ , and evolution time ttot = 104κ−1 (see Ref. [21]).
The lines are analytical estimates of the spectrum maximum for n̄ >

n̄c. The dashed line corresponds to the frequency of the corresponding
harmonic oscillator in Eq. (A8). The solid line is at the frequency
extracted by solving Eq. (A7) for a mathematical pendulum and in
good agreement with the peak position of the numerically evaluated
spectra.

at the frequency

ω0 =
√

−4ωr�cn̄�̄. (A8)

The mean frequency, however, is the result of the possible
trajectories of the mathematical pendulum weighted by the
probability density function fst(x0,p0). For x0 �= 0 and p0 �= 0
the oscillation period turns out to be larger than 2π/ω0, and
this prediction fits quite well the maximum found numerically
by integrating the coupled equations of N particles, as shown
in Fig. 7.

2. Intensity-intensity correlations at zero time delay

The intensity-intensity correlation function at zero time
delay g(2)(0) provides a direct measurement of the fourth
moment of the magnetization when retardation effects are
sufficiently small [21]:

g(2)(0) = 〈�4〉N/〈�2〉2
N . (A9)

Above threshold 〈�n〉N = �̄n + O(1/N ), with �̄ being the
solution of Eq. (24). Therefore, for n̄ > n̄c we obtain

g(2)(0)n̄>n̄c
= 1, (A10)

which corresponds to coherent light and is valid at leading
order, with an error that scales with 1/N . In the mean field for
the factorized distribution, Eq. (9), we get

〈�2〉N = 1

N
B + N − 1

N
�̄2

and

〈�4〉N =N (N − 1)(N − 2)(N − 3)

N4
�̄4

+ 6N (N − 1)(N − 2)

N4
�̄2B + 3N (N − 1)

N4
B2

+ 4N (N − 1)

N4
�̄〈cos3(x)〉 + N

N4
〈cos4(x)〉.

Notice that above threshold for �̄ �= 0 we can again write
〈�4〉N = �̄4 + O(1/N ). Hence, we get the same value for
g(2)(0) = 1 (above threshold) in the thermodynamic limit
N → ∞. Below threshold, in Sec. A 3 we show that the
expression takes the value

g(2)(0)n̄<n̄c
= 3, (A11)

which corresponds to super-Poissonian light. Corrections
scale with 1/N . This also holds for the calculation with the
factorized ansatz. Below threshold we get

〈�2〉N = 1

N
B

and

〈�4〉N = 3

N2
B2 + O

(
1

N

)

and therefore the same value of g(2)(0) = 3 (below threshold)
as for the N -particle description. Finally, at threshold we obtain

g(2)(0)n̄=n̄c
≈ 1

4

(
�

[
1
4

]
�

[
3
4

]
)2

, (A12)

with corrections scaling with 1/
√

N , thus giving a slower
convergence than the one found for the values above and
below threshold. We want to mention here that the mean-
field description cannot reproduce the value in Eq. (A12).
Figure 8 displays the mean-field predictions for g(2)(0) at the
thermodynamic limit and as a function of n̄. These curves are
compared with the mean-field calculation at finite N and with
the corresponding one of the N -particle FPE. Even though
the mean-field curve at finite N is tendentially closer to the
thermodynamic limit than the N -particle FPE prediction, they
both converge to the values of Eqs. (A10), (A12), and (A11),
depending on whether n̄ < , = , > n̄c for N → ∞.

3. Useful relations

In order to demonstrate Eq. (A2) we first consider the
relation

∫ ∞

−∞
dy exp

⎡
⎣−αN

(
y − 1

N

N∑
i=1

cos(kxi)

)2
⎤
⎦ =

√
π

αN

and cast it into the form∫ ∞

−∞
dye−αNy2

exp

(
2αNy

1

N

N∑
i=1

cos(kxi)

)

=
√

π

αN
exp[αN�(x)2].
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FIG. 8. Intensity-intensity correlation function at zero time delay
g(2)(0), Eq. (A9), as a function of n̄ for (a) N = 50 atoms and
(b) N = 200 atoms. The solid blue lines are the curves evaluated
using in Eq. (A9) the mean-field steady state (23). The dashed
lines are calculated for the corresponding full N -particle distribution
given in [17]. The horizontal black solid lines are the values
at the thermodynamic limit given at n̄ < n̄c by Eq. (A11) and
at n̄ > n̄c by Eq. (A10). The point at n̄ = n̄c is at the value
of Eq. (A12). The discrepancy between the mean-field curve
and the full N -particle predictions decreases as N → ∞, where
they both converge to the value given by the thermodynamic
limit.

From these relations, it follows

ln

{
1

λN

∫
dx exp[αN�(x)2]

}

= 1

2
ln

(
N

π
α

)

+ ln

(∫ ∞

−∞
dy exp {−N{αy2 − ln[I0(2αy)]}}

)
.

We use it for evaluating expression (A1) and obtain

ncav = n̄
∂

∂α
ln

{
1

λN

∫
dx exp[αN�(x)2]

}

= n̄

(
1

2α
+

∂
∂α

∫ ∞
−∞ dy exp {−N{αy2 − ln[I0(2αy)]}}∫ ∞

−∞ dy exp {−N{αy2 − ln[I0(2αy)]}}

)
,

(A13)

which leads to Eq. (A2) by using definition (A3).
In order to determine the intracavity photon number close

to threshold, we expand the exponent of Eq. (A3) about y = 0
to fourth order:

αy2 − ln[I0(2αy)] = α(1 − α)y2 + α4

4
y4 + O(y6).

For n̄ < n̄c, the coefficient of the quadratic term is positive,
and we thus discard the fourth-order term. Expression (A2)
takes the form

ncav ≈ n̄

(
1

2α
+

∂
∂α

∫ ∞
−∞ dy exp

[−Nα(1 − α)y2
]

∫ ∞
−∞ dy exp

[−Nα(1 − α)y2
]

)

= n̄

(
1

2α
+ 2α − 1

2α(1 − α)

)
= n̄

2(1 − α)
.

Using the explicit value of α,

ncav = n̄n̄c

2(n̄c − n̄)
≈ n̄2

c/2

n̄c − n̄
, (A14)

which thus gives Eq. (A4).
At the transition point n̄ = n̄c the integral in Eq. (A2)

diverges in the limit N → ∞. We determine its value for finite
N and keep the leading order. Moreover, since the coefficient
of the quadratic term in the expansion in y vanishes, we include
the fourth order and evaluate the integral at α = 1, obtaining

ncav ≈ n̄c

(
1

2
+

∫ ∞
−∞ dy(Ny2 − Ny4) exp

[ − N
4 y4

]
∫ ∞
−∞ dy exp

[ − N
4 y4

]
)

≈ n̄c

2
√

N�
[

3
4

]
�

[
1
4

] ,

which is the expression in Eq. (A5).
To calculate g(2)(0) below and at threshold we notice that

N2〈�4〉N − N2〈�2〉2
N = ∂2

∂α2
ln

{
1

λN

∫
dx exp[αN�(x)2]

}

= N
∂

∂α
〈�2〉N

holds. Below threshold for α < 1 we calculated in leading
order that

∂

∂α

1

2(1 − α)
= 1

2(1 − α)2
,
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which then delivers the expression

g(2)(0)n̄<n̄c
=

1
2(1−α)2 + 1

4(1−α)2

1
4(1−α)2

= 3

and thus Eq. (A11). In order to calculate the value at threshold
we use

N2〈�4〉N − N2〈�2〉2
N ≈N − 4N

(
�

[
3
4

]
�

[
1
4

]
)2

, (A15)

which is valid in leading order and which gives Eq. (A12).
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[25] J. K. Asbóth, P. Domokos, H. Ritsch, and A. Vukics, Phys. Rev.

A 72, 053417 (2005).
[26] W. Niedenzu, T. Grießer, and H. Ritsch, Europhys. Lett. 96,

43001 (2011).
[27] T. Grießer, W. Niedenzu, and H. Ritsch, New J. Phys. 14, 053031

(2012).
[28] E. G. Dalla Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P.

Strack, Phys. Rev. A 87, 023831 (2013).
[29] D. Nagy, G. Szirmai, and P. Domokos, Phys. Rev. A 84, 043637

(2011).
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Abstract:
We theoretically characterize the semiclassical dynamics of an ensemble of atoms after a
sudden quench across a driven-dissipative second-order phase transition. The atoms are
driven by a laser and interact via conservative and dissipative long-range forces mediated
by the photons of a single-mode cavity. These forces can cool the motion and, above a
threshold value of the laser intensity, induce spatial ordering. We show that the relaxation
dynamics following the quench exhibits a long prethermalizing behavior which is first
dominated by coherent long-range forces and then by their interplay with dissipation.
Remarkably, dissipation-assisted prethermalization is orders of magnitude longer than
prethermalization due to the coherent dynamics. We show that it is associated with the
creation of momentum-position correlations, which remain nonzero for even longer times
than mean-field predicts. This implies that cavity cooling of an atomic ensemble into the
self-organized phase can require longer time scales than the typical experimental duration.
In general, these results demonstrate that noise and dissipation can substantially slow
down the onset of thermalization in long-range interacting many-body systems.
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The quest for a systematic understanding of non-
equilibrium phenomena is an open problem in theoretical
physics for its importance in the description of dynamics
from the microscopic up to astrophysical scales [1–3].
Aspects of these dynamics are studied in the relaxation of
systems undergoing temporal changes (quenches) of the
control field across a critical point [4–6]. Quenches
across a nonequilibrium phase transition provide further
insight into the interplay between noise and external
drives on criticality and thermalization [7,8]. In this
context, photonic systems play a prominent role, thanks
to their versatility [9–15].
Polarizable particles in a high-finesse cavity, like in the

setup illustrated in Fig. 1(a), offer a unique system to study
relaxation in long-range interacting systems. Here, multiple
photon scattering mediates particle-particle interactions
whose range scales with the system size in a single-mode
cavity [15–18]. In this limit, atomic ensembles in cavities
are expected to share several features with other long-range
interacting systems such as gravitational clusters and non-
neutral plasmas in two or more dimensions [3,16,19]. The
equilibrium thermodynamics of these systems can exhibit
ensemble inequivalence [3,20], while quasistationary states
(QSSs) typically characterize the out-of-equilibrium
dynamics [3,21–23]. QSSs are metastable states in which
the system is expected to remain trapped in the thermo-
dynamic limit; they are Vlasov-stable solutions and thus
depend on the initial state. So far, however, evidence of
QSSs has been elusive. It has been conjectured that noise
and dissipation can set a time scale that limits the QSS
lifetime [24–27] and possibly gives rise to dynamical phase
transitions [25]. In Ref. [28], it was shown that, in the
presence of dissipation due to viscous damping or local

inelastic collisions, the relaxation dynamics of long-range
interacting systems can be cast in terms of so-called scaling
QSSs, which are solutions of the kinetic mean-field
equation and asymptotically tend to a unique QSS [28].
Accordingly, one would expect to observe QSSs in cavity
systems [19]. In Ref. [16], however, we found no evidence
of the typical superlinear dependence on N of the QSS time
scale [3], which we attributed to the effect of noise and
dissipative processes. Nonetheless, the dissipative dynam-
ics is here due to retardation effects in the coupling between
the atoms and a global variable, the cavity field, and can
also establish long-range correlations [29,30] whose influ-
ence on the relaxation dynamics is still unexplored.
In this work, we characterize the interplay between

dissipative and conservative long-range forces in the semi-
classical dynamics of N polarizable particles (atoms)
confined within a high-finesse single-mode cavity and
transversally driven by a laser [16,31–33] [see Fig. 1(a)].
The particles’ motion is along the cavity axis (x axis), and
the dynamics results from their optomechanical coupling
with the cavity mode at wave number k and spatial mode
function cosðkxÞ. We focus on the regime where the laser
frequency ωL is smaller than the cavity frequency ωc, such
that Δc ¼ ωL − ωc < 0. Here, the dynamics is character-
ized by a thermal stationary state, which can exhibit a
second-order driven-dissipative phase transition (spatial
self-organization) as a function of the laser intensity and
of Δc [31]. This transition is due to the interplay between
the dispersive and the dissipative forces: The dispersive
forces tend to order the atoms in gratings for which the
order parameter Θ ¼ P

N
j¼1 cosðkxjÞ=N → �1, with xj the

particles’ positions, and the intracavity photon number is
maximum. The dissipative forces, instead, are due to
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retardation effects in the dynamics of atoms and field:
For Δc < 0, they cool the atoms into a thermal state whose
effective temperature Teff is determined by Δc and by the
cavity loss rate κ: kBTeff ¼ ℏðΔ2

c þ κ2Þ=ð−4ΔcÞ, with kB
the Boltzmann constant [30–32,34–37]. Teff determines the
threshold Sc of the coherent laser scattering amplitude S per
atom at which spatial self-organization occurs, such thatffiffiffiffi
N

p
Sc ¼ 2kBTeff=ℏ [31,34,38], and separates the regime

where the spatial distribution is uniform and Θ≃ 0 from
the symmetry broken phase in which the atoms form Bragg
gratings, as shown in Fig. 1(b).
We analyze the semiclassical dynamics of the atoms

after a quench across the transition using a Fokker-
Planck equation (FPE) for the phase space distribution
fðx1;…; xN ;p1;…; pN ; tÞ at time t and as a function of the
atoms’ positions xj and the momenta pj. The FPE is valid
when the cavity linewidth κ exceeds the recoil frequency
ωr ¼ ℏk2=ð2mÞ and the width of the momentum distribu-
tionΔp is larger than the photon linear momentum ℏk [30].
It reads [31,39]

∂tf ¼ fH; fg þ n̄Lβf þOðU0Þ; ð1Þ

where Hamiltonian H ¼ P
N
j¼1 p

2
j=ð2mÞ þ ℏΔcn̄NΘ2

determines the coherent dynamics and is a realization of
the anisotropic Hamiltonian Mean Field model (HMF)
[16,21,40]. The dimensionless parameter n̄¼NS2=
ðκ2þΔ2

cÞ scales the depth of the conservative potential.
It also scales the dissipator Lβ, describing the effective
long-ranged friction and diffusion [30,31]:

Lβf ¼
XN
i

Γ
N

XN
j

sinðkxiÞ∂pi
sinðkxjÞ

�
pj þ

m
β
∂pj

�
f;

ð2Þ

with Γ ¼ 2ωrℏκβ and β ¼ ðkBTeffÞ−1. For Δc < 0, the
incoherent dynamics drives the system into the stationary
state fSðβ; n̄Þ ¼ f0 expð−βHÞ, where f0 warrants normali-
zation. This state is well defined in the thermodynamic
limit we choose, according to which, as N is increased, the
quantity NS2 (and thus n̄) is kept constant. This choice
warrants that the Hamiltonian satisfies Kac’s scaling [3].
The relaxation dynamics following a sudden quench at

t ¼ 0 is numerically evaluated by means of stochastic
differential equations (SDE). Averages are taken over
several trajectories, sampling the dynamics of N atoms
according to the given initial distribution [30,41]. Before
the quench is performed (t < 0), we assume that the system
has reached the equilibrium solution fSðβ; n̄iÞ of the FPE at
a given value of n̄ ¼ n̄i and Δc. At t ¼ 0, the value of n̄ is
quenched from n̄i < n̄c, deep in the disordered phase, to
n̄f > n̄c, well inside the ordered phase. This corresponds to
the horizontal path A of Fig. 1(b), keeping Δc, and hence
the asymptotic temperature, constant. We evolve the initial
state setting n̄ ¼ n̄f in Eq. (1). In what follows, we focus on
quenches from the disordered to the ordered phase along
path A; nevertheless, the essential features of the dynamics
we will report on characterize also the quenches in the
opposite direction as well as along paths of type B, which
connects points with different asymptotic temperatures (see
Supplemental Material [42]).
The time evolution of the modulus of the order parameter

hjΘji is displayed in Fig. 2(a) for different values of n̄f:
hjΘji tends towards an asymptotic value that is closer to
unity the larger is n̄f. Before reaching the steady state, the
dynamics go through different stages, which we classify as
follows: (i) A fast relaxation towards an intermediate value
of the magnetization with time scale t≲ 102κ−1; this time
scale decreases with n̄f. (ii) A transient regime where hjΘji
seems to grow logarithmically with time. (iii) Finally, the
dissipation becomes dominant and brings the system to the
asymptotic value, which is exponentially approached over
time scales of the order of 106κ−1. These time scales are
illustrated in Fig. 2(a) and here reported for N ¼ 50
particles but generally depend on N, as we discuss later on.
We first observe that, being Δc negative, the growth of

hjΘji [Fig. 2(a)] corresponds to a monotonic decrease of
the potential energy, V ¼ ℏΔcn̄NΘ2. In the fast relaxation
stage (i), this decrease is well fitted by an exponential and is
associated with a corresponding decrease of the relative
fluctuations (see the inset), indicating that the cavity field
exponentially grows and creates a mechanical potential,
which increasingly localizes the atoms at its minima.
The exponential potential depth growth is due to this

FIG. 1. (a) Atoms interact with the standing-wave mode of a
cavity and are transversally driven by a laser. The laser amplitude
(Ω) and/or frequency (Δc) are suddenly quenched across the
threshold, above which the atoms organize in regular spatial
patterns at the steady state. The coherent scattering amplitude per
atom, S, is tuned by the laser, S ∝ Ω, and the resonator dissipates
photons at rate κ. (b) Phase diagram of the second-order self-
organization transition as a function of n̄ (proportional to S2) and
Δc=κ (that determines the asymptotic temperature). The black
line separates the homogeneous phase (with order parameter
Θ ¼ 0) from the self-organized one (with Θ → �1). The red
dashed lines A and B illustrate the initial and final values,
respectively, of the sudden quenches we analyze.
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nonlinearity: The more the atoms become localized in the
Bragg grating, the larger is the scattering amplitude and,
thus, the potential depth. The increasing localization
correspondingly augments the kinetic energy, as visible
in Fig. 2(b). In this regime, thus, the total energy is
conserved, and the dynamics is coherent and consists in
a transfer of energy from spatial into momentum fluctua-
tions. Correspondingly, the single-particle momentum dis-
tribution becomes increasingly nonthermal, as visible by
inspecting the time evolution of the kurtosis, K ¼
hp4i=hp2i2, shown in the inset in Fig. 2(b):K exponentially
deviates from the value of the initial Gaussian (“thermal”)
state, for which Kgauss ¼ 3. We have verified that this
dynamics is well described by a Vlasov equation for the
single-particle distribution f1ðx; p; tÞ, which we derive
assuming fðx1;…; xN ;p1;…; pN ; tÞ ¼

Q
N
j¼1 f1ðxj; pj; tÞ,

integrating out the N − 1 variables from Eq. (1) for the
initial uniform distribution and taking the thermodynamic

limit (see Supplemental Material [42] and Ref. [43]).
Figure 3(a) compares the result of the FPE with the
predictions of the Vlasov equation (red curve), showing
an excellent agreement in the fast relaxation regime.
Numerical and analytical results show that the time scale
of this dynamics depends on N only through the parameter
n̄ (and is thus constant when Kac’s scaling applies); see also
Supplemental Material [42].
After this fast relaxation, the growth in the order

parameter and in the kinetic energy seems logarithmic in
time. This transient regime (ii) is of Hamiltonian origin:
It exhibits damped oscillations, which can be understood as
oscillations of the atoms at the minima. Energy is periodi-
cally transferred from the kinetic to the potential energy.
Since the potential energy depends on a global variable,
energy is exchanged between the particles by means of
elastic collisions, hence damping the oscillations.
Correspondingly, the kurtosis starts to increase towards
the Gaussian value, showing that the sample starts to
equilibrate. In order to verify this hypothesis, in Fig. 3(a),
we compare the predictions of the full simulation (black

(a)

(b)

FIG. 2. Numerical simulation of the dynamics following a
sudden quench along path A using the SDE [31]. At t ¼ 0, the
atoms are in the stationary state of Eq. (1) for n̄i ¼ 0.01n̄c with
Δc ¼ −κ, and n̄ is quenched to the value n̄f > n̄c [see the legend
in (a)]. (a) The modulus of the order parameter hjΘji and (b) the
single-particle kinetic energy hp2=ð2mÞi (in units of ℏωr) as a
function of time (in units of κ−1) for N ¼ 50. The corresponding
insets display the time evolution of the relative localization
δΘ=hjΘji, where δΘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΘ2i − hjΘji2

p
, and of the kurtosis K.

The initial values hjΘjit¼0 ≃ 1=
ffiffiffiffiffiffiffi
πN

p
≈ 0.08 in (a) are due to

finite N [31]. Here, κ ≈ 390ωr and NjU0j ¼ 0.05κ. The three
relaxation stages are indicated by the labels (i), (ii), and (iii).

(a)

(b)

FIG. 3. Dynamics following a sudden quench along path Awith
n̄f ¼ 2n̄c and N ¼ 200. At t ¼ 0, the atoms are in the stationary
state of Eq. (1) for n̄i ¼ 0.01n̄c and Δc ¼ −κ. Subplot (a) com-
pares the evolution of hjΘji and K (inset) obtained by integrating
Eq. (1) (black line) with the one found after setting Γ ¼ U0 ¼ 0
(blue line). The red line is the fit obtained by a stability analysis of
the homogeneous Vlasov solution, the dashed-dotted line by a
mean-field model (see Supplemental Material [42]). (b) Time
evolution of the QSS observable ϕ11 [Eq. (3)] corresponding to
the curves in (a).
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curves) for the order parameter and kurtosis with the ones
obtained after setting Γ ¼ 0 in Eq. (1) (blue curves): In the
transient regime, the curves nearly overlap for t≲ 104κ−1.
Noise and dissipation, however, lead to a discrepancy
between the predictions of the Hamiltonian and of the
full FPE. This discrepancy becomes increasingly evident
at longer time scales: When the dynamics is solely
Hamiltonian, in fact, the kurtosis increases monotonically
towards the Gaussian value. Because of the analogy with the
Hamiltonian dynamics, some of the features of the transient
regime are reminiscent of the HMF, where for a similar
quench a violent relaxation is observed and then followed by
prethermalization in a QSS [21,40]. In our case, for Γ ≠ 0,
as in Ref. [16], we do not find evidence of a superlinear
scaling withN of the QSS lifetime. The QSS lifetime, in fact,
is limited by the dissipative effects, which have the same
physical origin as the long-range conservative forces and
whose characteristic time scale is linear in N (see
Supplemental Material [42] and Ref. [43]). Note that at
the end of this stage the atoms are localized, but their
temperature is hotter than Teff .
In stage (iii), when the effect of dissipation becomes

relevant, the atoms are cooled and further localized at the
minima. The kurtosis, however, further decreases till
reaching a minimum, before increasing again towards
the Gaussian value. We first compare this behavior with
the predictions of a mean-field (MF) model, which we
extract from Eq. (1) by means of the factorization ansatz;
see Supplemental Material [42]. The gray lines in Fig. 3(a)
and its inset show the MF predictions as a function of time
and indicate that, even though MF reproduces qualitatively
the dynamical features, it fails to give the correct time scale
by at least one order of magnitude. Further insight is
provided by the observable for QSSs [28], which we here
define as

ϕ11 ¼
hj sinðkxÞpji

hj sinðkxÞjihjpji − 1: ð3Þ

When ϕ11 ≠ 0, the distribution is not factorizable into a
kinetic and a potential term. Figure 3(b) displays the time
evolution of ϕ11 for the Hamiltonian, mean-field, and full
dynamics. In stages (i) and (ii), the three models predict
approximately the same behavior. Instead, in stage (iii), ϕ11

evolves differently: For both MF and full FPE it exhibits a
minimum, however reached at different times, which seems
to possess the features of a scaling QSS, namely, a
sequence of QSSs with identical correlations [28]. Its
nature could be understood in terms of the onset of
collective oscillations which are (almost) decoupled from
noise and dissipation. Analogous behaviors have been
reported for the case of atomic arrays in a cavity
[29,44]. Since the trajectories of ϕ11 are different for the
three types of simulations, the corresponding QSSs are
expected to not be the same. In particular, the discrepancy

between full FPE and MF in stage (iii) remains of the
same order when scaling up the system, while instead
Hamiltonian prethermalization tends towards the corre-
sponding mean-field prediction. Figure 4 displays the
relaxation time scales for the MF and the full FPE: The
two curves suggest a linear increase with N for both cases;
nevertheless, they run parallel, thus showing that the
discrepancy is a scalable effect. We deduce that this
discrepancy is due to the momentum-position correlations
due to noise, which are otherwise discarded in the MF
treatment.
This prethermalization is not related to the critical

slowing down observed in Ref. [45] but is due to the
creation of correlations between momentum and position
and is reminiscent of kinetic-stop dynamics [46]. It implies
that cavity cooling of a large sample of atoms into the
self-organized phase, corresponding to a sudden quench
along path B, can be very slow and thus inefficient (see
also Ref. [34]). Our analysis sets the stage for the develop-
ment of a kinetic equation that is valid in the full quantum
regime [47–51].
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1

Supplemental Material for
Dissipation-Assisted Prethermalization in Long-Range Interacting Atomic Ensembles

Mean-Field equation and Vlasov limit

The mean-field equation is derived from Eq. (1) in the main text by assuming f (x1, . . . , xN ; p1, . . . , pN ; t) =
∏N

j=1 f1(x j, p j; t),
and integrating out the N − 1 variables. It reads

∂t f1 ={HMF[ f1], f1} + n̄Lβ,MF f1 (S1)

where the mean-field Hamiltonian HMF[ f1] is given by

HMF[ f1] =
p2

2m
+

2~∆cn̄
N

(
1
2

cos(kx) + (N − 1)〈cos(kx′)〉 f1 −
~kβκ
2m∆c

(N − 1)〈p′ sin(kx′)〉 f1

)
cos(kx) ,

with 〈A(x′, p′)〉 f1 =
λ∫

0
dx′

∞∫
−∞

dp′A(x′, p′) f1(x′, p′) and A a phase space function. Furthermore the mean-field dissipator Lβ,MF

is defined as

Lβ,MF f1 =
Γ

N
sin2(kx)∂p

(
p +

m
β
∂p

)
f1 .

The dissipator Lβ,MF is responsible for the relaxation of the system to the thermal stationary state with temperature β−1 =

kBTeff = ~(∆2
c + κ2)/(−4∆c) [S1–S3]. Since the dissipator decreases with N−1 (for increasing N), the mean-field predicts a

relaxation timescale that extends linearly with N. Although the relaxation for the full FPE, Eq. (1) in the main text, is orders of
magnitudes slower (see Fig. 4 in the paper), the corresponding growth of the timescale with N is almost indistinguishable from
a linear one.
In order to make some statements for the short time dynamics we derive the Vlasov equation. This equation is derived from Eq.
(S1) after performing the limit N → ∞ with NS 2 =const. and reads

∂t f1 +
p
m
∂x f1 − ∂xV[ f1]∂p f1 = 0 , (S2)

where the Vlasov potential V[ f1] is

V[ f1] = 2~∆cn̄
(
〈cos(kx′)〉 f1 −

~kβκ
2m∆c

〈p′ sin(kx′)〉 f1

)
cos(kx) .

The stability analysis of Eq. (S2) shows that a spatially homogeneous distribution is unstable against small fluctuations δ f when
n̄ f > n̄c. The fluctuations exhibit exponential growth at rate γ, which monotonously increases with n̄ f and is a solution of the
equation

[
1 − 2κγ/(∆2

c + κ2)
]
F(γ)n̄ f /n̄c = 1 , (S3)

with F(γ) = 1 − √πb exp(b2)erfc(b), b2 = ~γ2β/(4ωr) and erfc is the complementary error function. The solution (red line in
Fig. 3(a) in the main text for a fixed value of n̄ f ) well fits the numerical result in the fast relaxation regime. Thus, this initial
behaviour is analogous to the violent relaxation observed in the HMF and has mainly Hamiltonian origin.

Quenches along path B

Figure S1 displays a sudden quench in the detuning ∆c while keeping Ω, hence the laser amplitude, constant. This quench
corresponds to path B of Fig. 1(b) in the paper and alters both n̄ and β in Eq. (1), namely both the asymptotic order and
temperature. We consider quenches from the disordered (with ∆c = −4κ) to the ordered phase (with ∆c = −κ), and vice versa,
assuming that the initial state is the asymptotic state of the parameter choice before the quench. Also in this case the three
regimes can be identified. Remarkably, for the quench from the ordered to the disordered phase, the system remains for long
times trapped in an ordered pattern. The pattern stays stable due to the long-range forces. This transient is further accompanied
by a momentum distribution that is narrower than the initial and the asymptotic value, as visible in the inset of subplot (b). On
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FIG. S1: Numerical simulation of the dynamics for N = 50 atoms following a sudden quench along path B, where ∆c is varied but the laser
intensity is kept fixed. The black line corresponds to the results for the evolution when the value of the detuning is suddenly quenched from
∆c = −4κ with n̄i ≈ 0.44 n̄c to ∆c = −κ with n̄ f = 2 n̄c. The grey line displays the case where initial and final points are swapped. (a) and (b):
Time evolution of 〈|Θ|〉 and ∆p (inset) as a function of time (in units of κ−1). Subplot (c) displays the behaviour of the kurtosis K .

the other hand, the momentum distribution is markedly non-Gaussian, as visible in (c). This behaviour shows that, even if the
final value of the parameter n̄ is well below threshold and the asymptotic number of intracavity photons 〈â†â〉 ≈ Nn̄〈Θ2〉 is small,
yet there is a metastable regime in which the number of intracavity photons is significantly larger, due to the metastable atomic
patterns which support superradiant scattering of photons into the resonator until they decay.

[S1] S. Schütz and G. Morigi, Phys. Rev. Lett. 113, 203002 (2014).
[S2] S. Schütz, S. B. Jäger, and G. Morigi, Phys. Rev. A 92, 063808 (2015).
[S3] S. B. Jäger, S. Schütz, and G. Morigi, Phys. Rev. A 94, 023807 (2016).
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Abstract
Acolddilute atomic gas in anoptical resonator canbe radiatively cooledby coherent scatteringprocesses
when thedriving laser frequency is tuned close tobutbelow the cavity resonance.When the atomsare
sufficiently illuminated, their steady state undergoes aphase transition fromahomogeneousdistribution to
a spatially organizedBragggrating.Wecharacterize thedynamics of this self-orderingprocess in the semi-
classical regimewhendistinct cavitymodeswith commensuratewavelengths arequasi-resonantlydrivenby
laserfields via scatteringby the atoms.The lasers are simultaneously applied anduniformly illuminate the
atoms; their frequencies are chosen so that the atomsare cooledby the radiative processes, and their
intensities are either suddenly switchedor slowly rampedacross the self-ordering transition.Numerical
simulations fordifferent rampprotocols predict that the systemwill exhibit long-livedmetastable states,
whoseoccurrence stronglydependson the initial temperature, rampspeed, and thenumberof atoms.

1. Introduction

Laser light creates an attractive optical potential for cold atomswhen far detuned below an optical transition.
Such potential can be significantly enhanced if the light is confined by an optical resonator [1–4]. In addition, if
the laser illuminates the atoms, trapping is induced by a dynamical optical potential emerging from the
interference between the scattered light and the laser, which tends to order the particles at themaxima of the
intensity [4, 5]. The interference contrast and thus the trapping depends on the relative positions of the
scattering atoms. Therefore, this phenomenon can be also understood in terms of an effective long-range force,
which ismediated by the collectively scattered photons [5–9]. This force also has a dissipative component, which
is due to the dissipative nature of the resonator andwhich cools the atomswhen the pump is tuned below the
cavity resonance [3, 10]. Theoretical studies with single-mode resonators have predicted that this dissipation can
establish long-range correlations and support the onset ofmetastable ordered structures [11, 12].

In amultimode cavity and for several illumination frequencies, competing ordering processes are present
and lead to richer phase dynamics. In a two-mode cavity, like the one depicted infigure 1(a), the transition to
self-organization can be a phase transition of the first or second order depending on the laser intensities and on
their relative strength [13]. The corresponding self-ordered phases can exhibit superradiant scattering either in
one or in both cavitymodes, as illustrated infigure 1(b), while the asymptotic distribution of the atoms can be
thermal provided that the lasers’ frequencies are suitably chosen [13]. In our example the particles can order in a
lattice at a given length scaleλ and/or on a lattice with half the period l 2. For these settings we numerically
analyze the semi-classical dynamics following sudden quenches or slow ramps of the laser intensities across the
thresholds separating the homogeneous fromone of the self-organized phases.We describe the evolution by
stochastic differential equations, which correspond to the Fokker–Planck equation derived in [14] for a similar
system.Wefind that even at very long times the atoms’ spatial distribution strongly depends on the initial
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temperature, ramp speed, and quench protocol, such that the system gets trapped in long-livedmetastable
states. In particular, for quenches startingwith ensembles at low temperatures, the buildup of long-range order
requires longer times than that for higher initial temperatures does.

Ourwork is organized as follows: in section 2we introduce the system and the semi-classical equations
describing the dynamics. The atoms’ stationary properties are then summarized in a phase diagram,which is
derived from [13]. In section 3we numerically study the real-time dynamics when the parameters are varied
within the phase diagram according to different quench protocols. In section 4we analyze the dynamics of the
distributions from the spatially homogeneous to the organized oneswith differentmomentumwidths. In
section 5we compare the predictions of the stochastic differential equationswe employwith an extended
approach including the dynamical evolution of the fieldmodes introduced in [15, 16]. Conclusions are drawn
and future perspectives are discussed in section 6.

2. Semi-classical dynamics

The systemwe consider consists of a gas ofN cold atomswithmassm, which are trapped inside a high-finesse
optical resonator and coherently scatter laser light into the cavitymodes. The atomicmotion is confined along the
cavity axis (here the x axis)by a tight external dipole trap [17, 18] and is here described in the semi-classical limit.

The geometry of the setup is illustrated infigure 1. Lasers with (rescaled) intensity an propagate in a
direction orthogonal to the cavity axis and are quasi-resonant with the standingwave cavitymodes ( )nkxcos
with frequency w nc, andwave number nk ( =n 1, 2)5. The lasers have frequency w np, and linear polarization,
which is parallel to that of the corresponding cavitymode. Each pair of laser and cavitymode couples to an
atomic dipolar transition at frequency w na, , where W np, and gn are the laser and vacuumRabi frequency,
respectively. Spontaneous scattering processes are suppressedwhen the absolute value of the detuning

w wD = -n n na, p, a, exceeds the coupling strength and the detuning w wD = -n n np, c, between the laser and
cavitymode by orders ofmagnitude: D W D∣ ∣ ∣ ∣g, ,n n n na, p, . The relevant dissipative process is given by cavity
decay, andwe denote by kn the loss rate of cavitymode =n 1, 2.

In the so-called bad cavity limit, assuming that the cavity field loss rates are faster than the rate of the
dynamics of the atomicmotion, one can eliminate the cavity field variables from the equations ofmotion of the
atoms bymeans of coarse graining in time. This gives rise to an effectivemodel, where the atoms experience a
long-range interactionmediated by the cavity photons, while retardation effects and fluctuations of the cavity
field are responsible for friction forces and diffusion. In the semi-classical limit one can derive a Fokker–Planck
equation for the atoms’ position andmomentumdistribution, assuming that the single-atommomentum
distribution has awidthDp which, at all instants of time, is orders ofmagnitude greater than the photon recoil
k: D p k [13, 14, 20]. The corresponding stochastic differential equations read as

Figure 1. (a)Cold atoms are confinedwithin an optical cavity andmove along the cavity axis (x axis). They coherently scatter photons
from transverse lasers with rescaled amplitudes a1 and a2 into the (correspondingly) resonant cavitymodes with spatialmode
functions ( )kxcos (red) and ( )kxcos 2 (green) and loss rates k1 and k2, respectively. (b) Sketch of the atomic density distribution ( )n x
along the cavity axis (in units of k1 ) for the four possible stationary self-organized orders. On the right we report the corresponding
values of the quantitiesQ1 andQ2, which signal the Bragg order inmodes 1 and 2, respectively. See text and [13] for details.

5
This can be realised by assuming w w w= º2 2c,2 c,1 c, which yields = ºk k k2 22 1 . Another possible realisation, where w w»c,1 c,2, has

been discussed in [13]; it uses two optical single-mode cavities crossing at an angle of 60°. For a similar experimental setup see also [19].
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quantifies the Bragg ordering of the atoms in the cavitymodewithwave number nk. In particular, Q =∣ ∣ 1n

when the atoms are localized either at themaxima or at theminima of ( )nkxcos , which is the configuration
whichmaximizes the intracavity field intensity.We identifyQn with the order parameter for self-organization in
the corresponding cavitymode [13]. Below,we denote by ‘long-wavelength order’ any configurationwith a non-
vanishing value ofQ1, corresponding to a Bragg gratingwith period l p= k2 . Similarly, ‘short-wavelength
order’ refers to a configurationwithQ ¹ 02 , corresponding to a Bragg gratingwith l 2. Note that here and in
the rest of the paper we discard the dynamical Stark shift of the cavity frequency assuming that this ismuch
smaller than the cavitymode linewidth kD ∣ ∣Ng

n n n
2

a, . For details refer to [13].

2.1. Stationary states
Analysis of the Fokker–Planck equation on the basis of equation (1) allows one to identify the conditions for the
existence of a stationary state. This state exists provided thatD < 0n and b b b= º1 2 (see equation (5)). In this
case the atoms’ distribution in the steady state reads as [13]
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with l p= k2 and pD = 2 as the single particle unit phase space volume. In the followingwe assume that the
cavity decay rates are equal,

k k k= ≕ ( ), 111 2

so that the condition for the existence of the stationary state in equation (8) becomes

D = D D <≕ ( )0. 121 2 c

The phase diagramof the system can be determined by using the steady state, equation (8), in the formof a
thermal state. On the basis of this observationwe introduce the temperatureT of the stationary state, which is
defined as

3
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with kB as the Boltzmann constant. The steady-state temperatureThas the same functional dependence onDc

andκ as for a single-mode cavity [7, 14].We can further define the free energy per particle  using formal
equivalencewith the canonical ensemble of equilibrium statisticalmechanics [7]:
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Here w = ( )/k m2r
2 is the recoil frequency.We determine the value of  in an appropriately defined

thermodynamic limit, which consists in keeping an constant for  ¥N . The globalminima of F are the
resulting stationary phases. The corresponding points q q( ),1,min 2,min where F achieves itsminimumare the
stationary values for the order parameters qQ =1 1,min and qQ =2 2,min; they are determined by a1 and a2.
When thefields are sufficiently weak, thenQ = Q = 01 2 , the density is homogeneous and there is no structural
order.We call this phase paramagnetic, borrowing the notation of the generalizedHamiltonianmean-field
model (GHMF) [21–23] towhich thismodel can bemapped. The possible ordered phases in the steady state are
illustrated infigure 1(b) and take one of four sets of values. In particular, the ferromagnetic phase is characterized
by (i)Q > 01 ,Q > 02 , and (ii)Q < 01 ,Q > 02 , exhibiting Bragg order in both cavitymodes. In contrast, the
nematic phases, (iii) and (iv), are characterized by no order in the long-wavelengthmode,Q = 01 , whileQ2 can
be either negative or positive.

We note that the spatial distributions depicted infigure 1(b) corresponding to phases (i), (ii), (iii), and (iv) are
only possible configurations out ofmany. For example configuration (i) can also correspond to all atoms sitting
at one site =kx 0. Order here refers to Bragg gratings corresponding to the long- and short-wavelengthmodes.
No long-wavelength order is found in the case ofQ = 01 , where photons scattered into the long-wavelength
mode destructively interfere. However,Q1 cannot givemore detailed information about the positions of the
atoms in the long-wavelengthmode. The same is true for short-wavelength order andQ2.

The resulting phase diagram in the a a-1 2 plane, shown infigure 2, reproduces that in [13]. The phases are
separated by eitherfirst- or second-order transitions, which have been determined using Ehrenfestʼs criterion
[23]. The shaded areas show stability regions inwhich the free energy has a localminimum that corresponds to
the paramagnetic (dark gray region) and nematic (light gray region) phases. Examples of the free-energy
landscape in theQ - Q1 2 plane are shown in subplots (b) and (c). Subplot (b) corresponds to the parameters of
the red bullet labeled (b) in subplot (a): Here, the free energy exhibits two symmetric globalminimawhich
correspond to the ferromagnetic phase. In subplot (c), which corresponds to the parameters of the red bullet
labeled (c), there is an additional localminimumcorresponding to a nematic phase. In the latter there is only
ordering in the short-wavelength lattice, whileQ = 01 .We call this region bistable, which refers to the existence
of a second,metastable state inwhich the system can be dynamically trapped.

3.Dynamics of self-organization

Wenow examine the dynamics of the systemwhen the values of a1 and a2 are varied as a function of time.
Experimentally, this corresponds to varying the pump laser intensities or their detuningwith respect to the
cavitymode frequencies. At time t=0we assume that the system is prepared in the stationary state of a
paramagnetic phase, described by the distribution in equation (8), by setting a a=  1n ni in equation (9)
( =n 1, 2). The values an appearing in the equations ofmotion (1) are then varied in time, by performing either
(i) a sudden quench, i.e. a sudden switching of the values to a1f and a2f , or (ii) a slow quench, which consists in
varying a ( )tn monotonically and continuously in time towards the final values a1f and a2f .We choose thefinal
values anf in the ferromagnetic phase. The quench protocols we consider are illustrated by the green lines in
figure 2(a): for sudden quenches, the initial andfinal values are two points connected by a green line. A slow
quench sweeps across the intermediate points along the line.We are interested in determining the dynamics
leading to the steady state.

4
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Inwhat followswe performnumerical simulations of equation (1) using the parameters of a gas of 85Rb
atoms. In particular, we take p l=k 2 with l = 780 nm as thewavelength of theD2 line. The corresponding
recoil frequency is w p= ´2 3.86 kHzr . The cavity linewidth is taken to be k p= ´2 1.5 MHz, so that
k w» 388.6 r. A possible realization of the two-mode setup here considered has been discussed in [13, 19].

3.1. Sudden quench into the ferromagnetic phase
Wefirst consider sudden quenches from a a,1i 2i in the paramagnetic phase to a a,1f 2f in the ferromagnetic
phase, keeping a a a a= = 51i 2i 1f 2f . The initial values are vanishingly small and the atoms are at the
corresponding stationary distribution, which is a thermal distribution at the temperature determined by the
corresponding detuning, equation (13), with homogeneous density. The detuning before and after the quench is
taken to be equal; thus it is expected that the atoms reach a thermal distributionwith the same temperature as the
initial state.

Figure 3 shows the distribution  Q( )t for order parametersQ1 andQ2 as a function of time for
a a =( ) ( ), 2.5, 0.51f 2f . It is defined as a time sequence of normalized histograms:

 Q =
# Q Î Q - D Q + D

# ´ D
Q Q

Q
( ) ( ) [ ] ( )ttrajectories with 2, 2

trajectories
, 18t

whereΘ is calculated on each trajectory of the simulationswith the stochastic differential equations and its value
is determined according to the precisionDQ of the grid inΘ.We observe that at a given time scale of the order of

k102 ,  Q( )t 1 splits into two branches corresponding to twopossible orders in the long-wavelength lattice. This
symmetry breaking is well known from the single-mode case [5]. The order parameter of the short-wavelength
modeQ2, which is weakly pumped, substantially grows to a positive value long after the symmetry breaking. The
fact that  Q( )t 2 vanishes for negativeQ2 values comes from the ordering of the atoms close to the anti-nodes of
the dominant long-wavelengthmodefield ( )kxcos (see figure 1).

The distributions  Q( )n at the asymptotics are reported in the right panels offigure 3. They are obtained by
averaging  Q( )t n over times  kt 106 , where a stable configuration is reached. Formally

Figure 2. (a)Phase diagramof the stationary phases, corresponding to the globalminima of equation (16), in plane a a-1 2. Blue
(yellow) lines indicate second (first) order phase transitions. The light gray area (dark gray area)within the ferromagnetic phase
indicates the parameter regionwhere the nematic (paramagnetic) phase is the localminimumof the free energy. The red circles
labeled (b) and (c) indicate the parameters forwhich the contour plots of free energy in subplots (b) and (c) are shown in theQ - Q1 2

landscape. The free energy in subplot (b) exhibits two globalminima atQ = 0.921 andQ = 0.73;2 in (c) the two globalminima of
the ferromagnetic phase are atQ = 0.971 andQ = 0.882 , and the localminimum in the nematic phase is atQ = 01 and
Q = -0.832 (the contour of  is below a convenient threshold). The green dash–dot lines in subplot (a) illustrate the paths of the
quench protocols discussed in section 3. Circle (d) indicates the parameters of the quench discussed in section 3.3.
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whereNt is the number of instants of times at which the distribution is sampled in the interval [ ]t t,1 f , with
k=t 101

6 and = >t t tNf 1t
. Comparing thewidths of the distributions in the right panels offigure 3 one

observes that after sufficiently long times the long-wavelength order parameter fluctuates less than the short-
wavelength order parameter.

Figures 4(a)–(b) display the dynamics of themean absolute value of the order parameters for different values

ofN. Figure 4(c) shows the time evolution of the fluctuations of the order parameters dQ = áQ ñ - á Q ñ∣ ∣n n n
2 2

forN=100 particles. The order parameters asymptotically tend to the values predicted by the free energy,
indicated by the horizontal dashed lines, for a time scale of the order of k106 .Meanwhile thefluctuation dQ1

relaxes to amuch smaller value than the asymptotic value of dQ2 reproducing thewidths of the distributions in
the right panels infigure 3. The time evolution of á Q ñ∣ ∣1 , in particular, is reminiscent of the one observed for
quenches into the ferromagnetic phase in a single-mode resonator [11]. It can be separated into three stages
whichwe call (in order of their temporal appearance) (i) violent relaxation, which corresponds to an exponential
increase of the absolute value of the order parameter á Q ñ∣ ∣ ;1 (ii) transient dynamics, which corresponds to
power-law scaling with time; and (iii) the relaxation phase, where themean values tend exponentially towards
the asymptotic value. Violent relaxation can be described by amean-fieldmodel [12]; in the transient stage
coherent dynamics prevails, while the relaxation stage is dominated by dissipation [11]. The transient and
relaxation stages are characterized by time scales which increase withN but have different functional
dependence [12]. The time scale k106 can here be identified as the one at which the asymptotic state is reached
for N 200, while for larger numbers of particles longer time scales shall be considered.

Interestingly, in the transient phase there is ordering only in the long-wavelengthmode of the cavity, while
ferromagnetic order isfinally established by dissipation on a longer time scale. Themetastable phase of the
transient dynamics can therefore be denoted by ‘nematic’: its lifetime increases withN and for ~N 200 it is of
the order of k~t 104 . However, thismetastable nematic state cannot be understood in terms of the landscape
of the free energy, but rather seems to exhibit the features of a quasi-stationary state due to long-range coherent
dynamics analogous to that reported in [22]. This conjecture is also supported by the behavior of the single-
particle kinetic energy and of the kurtosis  = á ñ á ñp p4 2 2, which are shown infigure 5. The latter quantifies the
deviation of themomentumdistribution fromaGaussian one, for which it takes a value of = 3Gauss . For these
quantities we observe that in themetastable nematic phase the kinetic energy grows, while the distribution is
non-thermal. Ordering in the second, short-wavelength lattice is accompanied by cooling into a thermal
distribution.

Wenow compare the numerical results with the analytic theory for different quenches with the same initial
values of a a , 11i 2i but with different endpoints a a,1f 2f .We take different endpoints from the paramagnetic
to the ferromagnetic phase, under the constraint a a = 51f 2f . The circles infigure 6 correspond to the
numerical results for 100 particles at time k>t 10f

6 , wherewe expect the system to reach the steady state.

Figure 3.Dynamics following a sudden quench from a a , 11i 2i to a = 2.51f , a = 0.52f with the detuning kept constant
kD = -c . The left panels display the contour plots of distribution  Q( )t (equation (18)) forQ = Q1 andQ = Q2 as a function of

time (in units of k1 ). The distribution is extracted fromnumerical simulations using equation (1) forN=100 atoms and 1000
trajectories. The grid inΘ for the left panels has aminimum step D =Q 2 111; the grayscale gives the relative weight. The right panels
display the distributions  Q( )1 and  Q( )2 as a function ofQ1 andQ2, respectively (see equation (19)). Here, the time average is
obtained for =N 113t instants of time chosen between k=t 101

6 and k= ´t 3.77 10f
6 . The vertical dashed lines in the left

panelsmark the instant of time k=t 101
6 .
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These are in good agreement with the analytical results (dashed lines) based on an evaluation of the
corresponding observables at the globalminimumof the free energy. The interval where á Q ñ∣ ∣n grows
monotonically from~ N1 to the value of the ferromagnetic phase is expected to shrink asN is increased, in
agreementwith a second-order phase transition at the thermodynamic limit. Further information on the onset
of this ferromagnetic order can be gained by the probability Q <( )P 0t 2 thatQ2 is negative at t:

òQ < = Q Q
-

( ) ( ) ( )P 0 d . 20t t2
1

0

2 2

Wenote that in the paramagnetic phase (homogeneous spatial distribution)we expect Q < ( )P 0 0.5t 2 . In
contrast, due to the givenmode structure we expect that Q < ( )P 0 0t 2 for long-wavelength ordering in the
ferromagnetic phase. Indeed, as a1f increases across the critical value, Q <( )P 0t 2 quickly drops down to zero.

3.2. Sudden quenches into the bistable phase
Wenow turn to the dynamics following sudden quenches from the paramagnetic to the ferromagnetic phase but
following the right path offigure 2(a), which consists in equal effective pumping a a a a= = 11i 2i 1f 2f . In this
parameter region (the bistable phase) the free energy exhibits a localminimum,which is nematic. As in the

Figure 4.Dynamics of (a) á Q ñ∣ ∣1 , (b) á Q ñ∣ ∣2 , and (c) theirfluctuations dQ = áQ ñ - á Q ñ∣ ∣n n n
2 2 as a function of time (in units of k1 ).

The parameters and quench protocol are the same as in figure 3; the curves are however evaluated for different numbers of atoms and
of trajectories. In (a) and (b) the data correspond to =N 25, 50, 100, 200 particles (see legends for color code) and respectively
1000, 500, 250, 125 trajectories. The horizontal dashed lines indicate the values predicted by the globalminimumof the free energy in
equation (16). Thefinite values of the order parameters at t=0 are due to finite size effects, pá Q ñ =∣ ( )∣ N0 1n . The curves in (c)
are calculated forN=100 and 250 trajectories.
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previous case, the initial values a a,1i 2i are vanishingly small and the atoms are at the corresponding stationary
distribution, whose temperature is determined by the detuningDc andwhose spatial density is homogeneous.
The quench is performed by switching the laser powerwhile keeping the detuning constant; thus the atoms
should reach a thermal distributionwith the same temperature as the initial state.

Figure 7 shows the time evolution of the trajectories’Θ-distribution for a a= = 21f 2f and kD = -c . In
contrast to the previous section, here a finite fraction of trajectories gets trapped in the nematic phase with a
vanishing value ofQ1 and afinite probability thatQ2 takes negative values. This is visible in the small extra peaks
in  Q( )1 and  Q( )2 (right panels). The trapping occurs at the time scale of the violent relaxation, and it seems
stable over times of the order of k106 .We conjecture that it also persists at asymptotic times. Infigure 8 the
time evolution of themean absolute value of the order parameters is shown for different numbers of particles.
While á Q ñ∣ ∣2 reaches the same stationary value (in reality its value decreases slightly withN), the asymptotic value

Figure 5.Dynamics of (a) the single-particle kinetic energy á ñp m22 (in units of wr) and (b) kurtosis  = á ñ á ñp p4 2 2 for
=N 25, 50, 100, 200 particles (see legends) and respectively 1000, 500, 250, 125 trajectories. The other parameters and quench

protocol are the same as in figure 4. The horizontal dashed line in (a) indicates the asymptotic value predicted by equation (13).

Figure 6.Asymptotic values of á Q ñ∣ ( )∣t1 f , á Q ñ∣ ( )∣t2 f , and Q <( )P 0t 2f , equation (20), as a function of a1f . The quenches start from the
same initial values in the paramagnetic phase (a a , 11i 2i and kD = -c ) and end upwith different values a a,1f 2f with a a= 51f 2f

(lying along the left green line infigure 2(a)) and kD = -c . The circles correspond to the results of the numerical simulations at
k= ´t 3.77 10f

6 withN=100 particles and 250 trajectories. The dashed lines indicate the predictions of the globalminima of
equation (16).
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of á Q ñ∣ ∣1 decreases asN grows. This suggests that the probability that the dynamics gets trapped in the local

minimum increases with the number of particles. The asymptotic value of dQ = áQ ñ - á Q ñ∣ ∣1 1
2

1
2 in subplot

(c) reflects the contribution of these trajectories.
Themean single-particle kinetic energy and kurtosis are shown infigure 9. From their behaviorwe infer that

themetastable nematic state does not significantly deviate from a thermal distributionwith the expected
asymptotic temperature (equation (13)).

Peculiar features of these dynamics become visible when inspecting the probability Q <( )P 0t 2 at the
asymptotics and as a function of a1f infigure 10. As infigure 6, it vanishes upon leaving the paramagnetic phase,
but increases again as the a a,1f 2f chosen are deeper into the bistable phase offigure 2(a). Correspondingly,
á Q ñ∣ ∣1 starts to decrease as a1f increases, which suggests that from this point on the depth of the localminimum
grows. The value of the order parameter á Q ñ∣ ∣2 at which Q <( )P 0t 2 starts to grow again signifies a threshold,
abovewhich the localminimum is sufficiently deep to stably trap particles.

3.3. Slow ramp into the bistable phase
Wenow consider linear ramps of a ( )tn across the transition region separating the paramagnetic from the
bistable region. The ramp protocols have duration τ and sweep between the values e a[ ], nf , with e  1. In
particular, a e a= +

t
( )tn n

t
f if tÎ [ ]t 0, , while for t>t , a ( )tn is constant and equal to anf . Note that a

sudden quench is the limit t  0 of a linear quench.We choose to vary the values of a ( )tn along the rightmost
green line in figure 2(a), so that a a=( ) ( )t t1 2 at all instants of time, with anf in the bistable phase.We further
keepDc constant, and vary only the pump intensity. Thismeans that the asymptotic temperatures at each value
of an are equal.

Figure 11 shows the dynamics of themean absolute value of the order parameters for a a= = 21f 2f for
linear rampswith different durations τ. The dynamics following the sudden quench (figures 8(a) and (b)) is
shown for comparison (blue curve).We observe that the dynamics of the order parameters exhibits an
exponential increase which occurs almost simultaneously for both á Q ñ∣ ∣1 and á Q ñ∣ ∣2 . This behavior seems to be
initiated at the instant of timewhen the parameters a ( )tn cross the critical point of the phase diagram.
Moreover, for sufficiently slow ramps á Q ñ∣ ∣1 approaches the asymptotic value of the free energyʼs global
minimum, signaling stationary long-wavelength order.

We further note that for t k103 the order parameters undergo a three-stage dynamics, as for the sudden
quench (we attribute the fluctuations to the statistics of the trajectories). For slower ramps, themean value of the
order parameters tends exponentially towards the steady state, which approaches the free energyʼs global
minimum in equation (16) for t k> 104 .We believe that this behavior is determined by the rampduration τ
with respect to the time scale of the transient dynamics, and thus by the time the parameters a ( )tn spend close to
the transition point. This conjecture is supported by the analysis of the time evolution of the single-particle
kinetic energy shown infigure 12, which corresponds to the curves infigure 11. For faster ramps it is similar to
the sudden quench, exhibiting first a violent relaxation followed by a time interval when the dynamics is
predominantly coherent, and then an exponential decay to the steady-state value due to cavity cooling. In

Figure 7.Dynamics following a sudden quench from a a , 11i 2i to a a= = 21f 2f with the detuning kept constant kD = -c (red
circle (c) infigure 2(a)). The left panels display the contour plot of the distribution  Q( )t (equation (18)) forQ = Q1 andQ = Q2 as a
function of time (in units of k1 ). The distribution is extracted from the numerical simulations using equation (1) forN=100 atoms
and 1000 trajectories. The right panels display distributions  Q( )1 and  Q( )2 as a function ofQ1 andQ2, respectively (see
equation (19)). See figure 3 for further details.
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contrast, upon increasing the rampduration towards slower ramps this transient regime disappears. In
particular, for the slowest ramp considered here, dissipation leads to quasi-adiabatic dynamics. Figure 13 shows
order parameters á Q ñ∣ ( )∣t1 and á Q ñ∣ ( )∣t2 at k= ´t 3.77 106 , where the curves offigure 11 reach an
asymptotic behavior. Self-organization in the long-wavelength grating depends on the ramp duration τ and is
found for t k> 104 . Note that short-wavelength order quantified by á Q ñ∣ ( )∣t2 only slightly depends on the
rampduration.

On amicroscopic scale, it seems that the reason for better long-wavelength ordering after slower ramps is
thatmore time is spent close to the transition line (a a= ~ 11 2 ), where the localminimumof the free energy is
not deep enough to stably trap the system. In order to test this conjecture, we consider a two-step quench
protocol which splits the sudden quench of section 3.2 into two subsequent quenches. One occurs at t=0 from
a paramagnetic to a ferromagnetic bistable phase, but close to the transition line: a a= = 1.11int 2int . This
quench shows a vanishing value of Q <( )P 0t 2 for sufficiently long times as infigure 10. The second sudden
quench occurs after an elapsed time τ and goes from this intermediate point to a a= = 21f 2f . The detuningDc

is kept constant during the evolution.

Figure 8.Dynamics of (a) á Q ñ∣ ∣1 , (b) á Q ñ∣ ∣2 , and (c) theirfluctuations dQ = áQ ñ - á Q ñ∣ ∣n n n
2 2 as a function of time (in units of k1 ).

The parameters and quench protocol are the same as in figure 7; the curves are evaluated for different numbers of atoms and of
trajectories. In (a) and (b) the data correspond to =N 25, 50, 100, 200 particles (see legends for color code) and respectively
1000, 500, 250, 125 trajectories. The horizontal dashed lines indicate the values predicted by the globalminimumof the free energy in
equation (16). Thefinite values of the order parameters at t=0 are due to finite size effects, pá Q ñ =∣ ( )∣ N0 1n . The curves in (c)
are calculated forN=100 and 250 trajectories.
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Figure 14 shows the time evolution of themean absolute values of the order parameters for different time
intervals τ between the two quenches. The order parameters undergo an initial violent relaxation at t=0, when
thefirst sudden quench occurs, and a second one immediately after the second quench (which looks like a jump
in logarithmic scale). As expected, the longer the time between the two quenches, the closer the asymptotic value
to that of the globalminimum. Inspecting the dynamics of the kinetic energy infigure 15we observe that for
large τ the atoms are cooled into the stationary state at a ~ 1n . At this point of the phase diagram the free energy
has two ferromagnetic globalminima, while the nematic localminimum is very shallow. The system thus gets
cooled close to the globalminima of the free energy at a = 2n , and remains trapped there after the second
quench.

Figure 16 shows themean absolute values of the order parameters, as extracted from the numerical data at
k= ´t 3.77 106 , as a function of the time between the two quenches. These values are compared to the

Figure 9.Dynamics of (a) the single-particle kinetic energy á ñp m22 (in units of wr) and (b) the kurtosis  = á ñ á ñp p4 2 2 for
=N 25, 50, 100, 200 particles (see legends) and respectively 1000, 500, 250, 125 trajectories. The other parameters and initial

conditions are the same as infigure 8. The horizontal dashed line in (a) indicates the asymptotic value predicted by equation (13).

Figure 10.Asymptotic values of á Q ñ∣ ( )∣t1 f , á Q ñ∣ ( )∣t2 f , and Q <( )P 0t 2f , equation (20), as a function of a1f . The quenches start from
the same initial values in the paramagnetic phase (a a , 11i 2i and kD = -c ) and end upwith different values a a,1f 2f with
a a=1f 2f (lying along the right green line infigure 2(a)) and kD = -c . The circles correspond to the results of the numerical
simulations at k= ´t 3.77 10f

6 withN=100 particles and 250 trajectories. The dashed lines indicate the predictions of the global
minima of equation (16).
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predictions of the globalminimumof the free energy at a a= = 21 2 and kD = -c . The behavior is quite
similar to that observedwhen performing a linear rampof corresponding duration (figure 13). Dynamical
ordering in the long-wavelengthmode thus seems to require that the atoms are initially cooled close to the global
minima. This is realized bymeans of sufficiently long time τ spent close to the transition point.

4. Cooling into organized structures

Wenow analyze sudden quenches of the parameter an startingwith different initial single-particlemomentum
widths. A possible realization is a quench in the detuning sinceDc controls the steady-state temperature (see
equation (13)). Using thesewe consider quencheswhich could lead to either heating or cooling of the system to
the stationary temperatureT0,

Figure 11.Mean value of order parameters (a) á Q ñ∣ ∣1 and (b) á Q ñ∣ ∣2 as a function of time (in units of k1 ) forN=100 and kD = -c ,
evaluated numerically with 250 trajectories. The curves are the time evolution during and after linear ramps of duration t = 0 (blue),
t k= ´5.5 102 (red), t k= ´6.8 103 (yellow), t k= ´8.5 104 (purple), and t k= ´2 106 (green). The ramps occur from
the paramagnetic to the bistable phase, specifically from a a e= =  11i 2i to a a= = 21f 2f . As before, at t=0 the initial state of
the atoms is the steady state, equation (8), for a a=n ni and kD = -c . The dashed horizontal lines show the steady-state values of the
globalminima of the free energy, equation (16).

Figure 12.Mean value of the single-particle kinetic energy á ñ( )p m22 (in units of k=E 4kin,0 ) as a function of time (in units of
k1 ) for the same parameters and color codes as infigure 11.
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k
= ( )k T

2
, 21B 0

namely, theminimal temperature achieved by cavity cooling, which is equivalent to setting kD = -c .
Therefore, we also consider initial thermal distributionswhich are spatially uniform and have a temperature

<T Tini 0. The initialmomentumdistributions we consider areGaussian and their width isD =p mk T2
B ini.

Figure 17 shows the time evolution of themean absolute values of the order parameters for different values
ofTini ranging from T0.1 0 up to T5 0. The asymptotic value of á Q ñ∣ ∣1 increases with the initial temperature: The
hotter the system is initially, the smaller the fraction of trajectories which remain trapped in themetastable,
nematic state is. The corresponding time evolution of themean kinetic energy per particle is displayed in
figure 18 and it shows that for =T T2ini 0 (and evenmore for =T T5ini 0) the system stays relatively hot over time

Figure 13.Values of á Q ñ∣ ( )∣t1 f (blue) and á Q ñ∣ ( )∣t2 f (red) at k= ´t 3.77 10f
6 and as a function of the ramp duration τ (in units of

k1 ) for the same parameters as infigure 11. The dashed horizontal lines show the steady-state value predicted by the free energy,
equation (16).

Figure 14.Dynamics of á Q ñ∣ ∣1 and á Q ñ∣ ∣2 as a function of time (in units of k1 ) for the two-step quench protocol. Here, the
parameters an suddenly ramp at t=0 from the initial values a a , 11i 2i to a a= = 1.1;1int 2int after a time interval τ, there is a
second quench from a a= = 1.11int 2int to a a= = 21f 2f . The parameters are kD = -c ,N=100with 250 trajectories, and
t k= 1 (blue), k10 (red), k102 (yellow), k103 (purple), k104 (green), k105 (light blue) and k106 (dark red). The dashed
horizontal lines show the values predicted by the globalminimumof the free energy, equation (16), at a a= = 21 2 and kD = -c .
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scales of the order of k104 . For lower initial temperatures, the system is instead heated by the energy released by
the sudden quench before relaxation cools the atoms.

As shown infigure 17, for initially cold samples a long-wavelength Bragg grating is formed faster than for
hotter samples. In this case we recognize a three-stage dynamics like the one observed for sudden quenches of
the laser intensity, when a transient long-range order is established for times k>t 10 and k<t 103 . For

k>t 103 dissipation becomes significant and á Q ñ∣ ∣1 increases to a stationary value. This relaxation stage is also
present for sampleswith initial temperatures higher thanT0; however, in this hotter case it is significantly faster.
Taking a threshold value á Q ñ =∣ ∣ ∣ 0.51 thres , we observe that buildup of long-wavelength order can be up to a
hundred times shorter than for a cold initial state. This is reminiscent of theMpemba effect in supercooledwater
[24–28]. Its origin could be traced to a suppression of long-wavelength order if short-wavelength order is already
established on amuch shorter time scale, as shown in figure 17(b).

Infigure 17(a)we observe that thefinal value of á Q ñ∣ ∣1 does not coincidewith its predicted stationary value
even after very long cooling times. This can also be seen infigure 19, which shows themean absolute value of the
order parameters at k= ´t 3.77 106 as a function of the initial temperature for =N 100, 200. Onewould
expect that á Q ñ∣ ∣1 should have reached a constant value corresponding to the stationary state. Apparently this is
not the case and even forfiniteN a significant fraction of trajectories converge to and remain in the local
minimum. This behavior getsmuch less pronouncedwhen the initial temperature lies above a certain threshold
set by the energy released by the quench itself.

5. Comparison of numerical approaches

The discussion in this paper is based on results obtained by numerical integration of stochastic differential
equations (1) and on their comparisonwith the corresponding analyticalmodel. Both rely on the validity of the
so-called bad cavity limit, where cavity damping is the shortest time scale, and particularly on treating
retardation as a small parameter in the dynamics. This regime allows one to systematically describe quantum
fluctuations of the cavity degrees of freedomby eliminating the cavity variables from the equations ofmotion of

Figure 15.Mean kinetic energy per particle á ñp m22 (in units of the asymptotic value k=E 4kin,0 ) as a function of time (in units of
k1 ) for the same parameters and color codes as infigure 14.

Figure 16.The symbols correspond to á Q ñ∣ ( )∣t1 f (blue) and á Q ñ∣ ( )∣t2 f (red) at k= ´t 3.77 10f
6 as a function of the time between

the two quenches, τ (in units of k1 ), for the same parameters as infigure 14. The dashed horizontal lines show the steady-state values
predicted by the globalminimumof the free energy, equation (16), at a a= = 21 2 and kD = -c .
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the external degrees of freedom.Wenow compare these predictionswith those of the stochastic differential
equations derived in [15], where the cavity degrees of freedom are treated in the semi-classical limit but included
at all orders of retardation expansion. These stochastic differential equations are here extended to our setup
composed of two cavitymodes [16]:

= ( )x
p

m
t ad d , 22j

j

 å=
=

( ) ( )p nkS nkx t bd 2 sin d , 22j
n

n n j
1,2

,r

  k x= -D - +( ) ( )t cd d d , 22n n n n n n,r ,i ,r ,r

  k x= D - - Q +( ) ( )NS t dd d d , 22n n n n n n n n,i ,r ,i ,i

where  = { }Ren n,r and  = { }Imn n,i are the real and imaginary parts of the positive-frequency component
of the cavityfieldmode =n 1, 2. TheWiener processes x xd , dn n,i ,r have a vanishing firstmoment,

Figure 17.Dynamics of (a) á Q ñ∣ ∣1 and (b) á Q ñ∣ ∣2 as a function of time (in units of k1 ) after a sudden quench at t=0 from
a a= = 01i 2i and Tini to a a= = 21f 2f and kD = -c (corresponding to the asymptotic temperatureT0) forN=100 and 250
trajectories. The different curves correspond to =T T5ini 0 (blue), T2 0 (red),T0 (yellow), T0.5 0 (purple) and T0.1 0 (green). The dashed
horizontal lines show the steady-state values predicted by the globalminimumof the free energy, equation (16).

Figure 18.Mean kinetic energy per particle á ñp m22 (in units of k=E 4kin,0 ) as a function of time (in units of k1 ) for the same
parameters and color codes as in figure 17. The horizontal dashed line corresponds to the asymptotic value á ñ =p m E22

kin,0.
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x xá ñ = = á ñd 0 dn n,i ,r , while the secondmoments fulfill x x d ká ñ = td d 2dn m nm,i ,i , x x d ká ñ = td d 2dn m nm,r ,r ,
and x xá ñ =d d 0n m,r ,i .

The results of the simulations based on the two approaches for a single-mode cavity show good agreement.
For the two-mode cavity we generally find qualitative agreement. Quantitative discrepancies are found in
general for themomentumdistribution: The simulations based on equation (22) predict for certain parameters
samples whose temperatures are 10%hotter than the ones obtainedwith equation (1). Small differences are also
found for the order parameters after the quenches into the bistable phase.

Figure 20 shows a representative result of the discrepancies found after the quench protocol discussed in
section 3.2. The two simulations predict different stationary values for both the kinetic energy and the order
parameters.We believe that this discrepancy is due to retardation effects, which are neglected in the approach of
equation (1) and become relevant when the atoms are trapped at tightminima.

In order to test our conjecturewe use the prediction of the kinetic theory of [29, 30], where the temperature
of the stationary thermal distributionwas corrected by the contribution from the atoms’ localization at the
minima of the self-organized lattice,
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Here, w0 is the frequency of oscillation about the latticeminima in the harmonic approximation. It can be
estimated by using equation (22b) and imposing the equality
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wherewe use equation (4). For the parameters of the quench infigure 20, with kD = -c and a a= = 21 2 , we
obtain »˜k T k T1.1B B 0, whereT0 is the temperature given in equation (21). Indeed, this corrected value of the
final temperature is in good agreementwith the discrepancy observed infigure 20(a).

This hypothesis is also consistent with the discrepancy observed in the asymptotic values of the order
parameters. In fact, the stationary temperature and the final values of the order parameters are related: the
stationary values of the order parameters are determined by the parameters a a,1 2 [13] and thus depend on both
field intensities and detunings (see equation (4)). According to this hypothesis, the asymptotic values of the order
parameters for the simulation using equation (22) should be the ones corresponding to the systemʼs parameters
with the corrected temperature T̃ ; hence we shallminimize the free energy of equation (16) using b =˜ ( ˜ )k T1 B ,
equation (23), instead of ( )k T1 B 0 . This is equivalent to rescaling the phase diagram infigure 2(a) using the
prescription a a a= <˜ ˜T Tn n n0 , and results in a smaller stationary value of the order parameter, which is
consistent with the discrepancies visible infigures 20(b) and (c).

Figure 19.The symbols correspond to the values of á Q ñ∣ ( )∣t1 f (blue, yellow) and á Q ñ∣ ( )∣t2 f (red, purple) at k= ´t 3.77 10f
6 as a

function of Tini (in units ofT0) for the same parameters as infigure 14 but forN=200 particles (125 trajectories). See inset for the
color code. The dashed horizontal lines show the steady-state values predicted by the globalminimumof the free energy, equation (16).
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6. Conclusions

In this workwe have studied the semi-classical dynamics of atoms interactingwith two cavitymodes after
quenches of the intensity and/or frequency of the pumping lasers. In the quench protocols the laser parameters
were varied across transition lines separating a disordered phase from an ordered self-organized phase.We
could verify numerically that the states reached at the asymptotics of the dynamics correspond to theminima of
the free energy of a corresponding thermodynamic description developed in [13]. This picture is further
confirmed by the comparisonwith numerical simulations based on different initial assumptions. This analysis
shows, in particular, that trapping of the system in the localminima of the free energy crucially depends on the
initial temperature and on the cooling rate.

We observe, in addition, that the system can be trapped inmetastable configurations for transient times
which cannot be understood in terms of the effective thermodynamic description. For hundreds of particles the
lifetime of these states is about four orders ofmagnitude longer than the cavity lifetime, and is expected to
increase withN. They share analogies withmetastable configurations found in theGHMFwhen performing
quenches in themicrocanonical ensemble [22]. Since the phase diagrams of theGHMFand themodel here
considered can be formallymapped onto each other [13], we conjecture that thesemetastable configurations

Figure 20.Dynamics of (a) single-particle kinetic energy (in units of Ekin,0), (b) á Q ñ∣ ∣1 , and (c) á Q ñ∣ ∣2 as a function of time (in units of
k1 ) following a quench at t=0 from a a=  11i 2i to a a= = 21 2 for kD = -c andN=100. The blue (red) lines correspond to

simulations using equation (1)(equation (22)). The black dashed lines denote the values of the order parameters obtained by the free
energy, equation (16). In (a) the blue (red) line corresponds to 250 (500) trajectories. In (b) and (c) the blue and red lines correspond to
1000 (500) trajectories. Note that a quench from a a,1 2 as performed in section 3.2 forfixed kD = -c corresponds for the simulation
of equation (22) to a quench in the pumping strength Sn such that a k=NSn n

2 2. At k= ´t 3.77 10f
6 we observe that 16.9%

(15.4%) of the trajectories are in the nematic phase using equation (1)(equation (22)).
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could be due to the coherent dynamics. This conjecture can be tested bymeans of amean-field analysis such as
the one performed in [12] for a single-mode cavity.

Interestingly, when the initial temperature of the atomic ensemble is different from the stationary
temperature of cavity cooling, we observe that thefinalmagnitude of asymptotic order changes. In particular
when the initial temperature is even lower than the predicted cavity cooling temperature, the probability that the
system remains trapped inmetastable configurations is further increased. This is similar to the behavior of
supercooledwater [24–28].

Here we consider the very special case of two commensuratemodes.While this already highlightsmany
generic properties of the dynamics, future considerations certainly should include the case inwhich the
wavelengths of the cavitymodes are incommensurate [31], so that the orderingmechanisms aremuchmore
intensely competing and amultitude ofmetastable states can form. A further interesting direction is operation
withmuch colder temperatures or in the side-band resolved cooling regime [32]. Here it is intriguing to consider
inwhich formmetastable states survive deep in the quantum regime. Besides diffusion they could be depleted via
tunneling and atom–field entanglement plays an important role in this dynamics [33], a process which should
also be relevant in closely related schemes of simulated quantum annealing [34].

Acknowledgments

The authors thankTobiasDonner, SebastianKrämer, and Francesco Rosati for stimulating and helpful
discussions. This workwas supported by theGermanResearch Foundation (DFG,DACHproject ‘Quantum
crystals ofmatter and light’) and by the EuropeanCommission (ITN ‘ColOpt’). V T andHR are supported by
Austrian Science FundProject No. I1697-N27. TK andVT contributed equally to this work.

ORCID iDs

Helmut Ritsch https://orcid.org/0000-0001-7013-5208

References

[1] Horak P,HechenblaiknerG,Gheri KM, StecherH andRitschH 1997Phys. Rev. Lett. 79 4974
[2] Domokos P andRitschH2003 J. Opt. Soc. Am.B 20 1098
[3] BlackAT, ChanHWandVuletićV2003Phys. Rev. Lett. 91 203001
[4] BaumannK,Guerlin C, Brennecke F and Esslinger T 2010Nature 464 1301
[5] Asbóth J K,Domokos P, RitschH andVukics A 2005Phys. Rev.A 72 053417
[6] Schütz S andMorigi G 2014Phys. Rev. Lett. 113 203002
[7] Schütz S, Jäger S B andMorigi G 2015Phys. Rev.A 92 063808
[8] O’Dell DH J,Giovanazzi S andKurizkiG 2003Phys. Rev. Lett. 90 110402
[9] Münstermann P, Fischer T,Maunz P, Pinkse PWHandRempeG2000Phys. Rev. Lett. 84 4068
[10] VuletićVandChu S 2000Phys. Rev. Lett. 84 3787
[11] Schütz S, Jäger S B andMorigi G 2016Phys. Rev. Lett. 117 083001
[12] Jäger S B, Schütz S andMorigi G 2016Phys. Rev.A 94 023807
[13] Keller T, Jäger S B andMorigi G 2017 J. Stat.Mech. 6 064002
[14] Schütz S,HabibianH andMorigi G 2013Phys. Rev.A 88 033427
[15] Domokos P,Horak P andRitschH2001 J. Phys.B 34 187
[16] Torggler V andRitschH 2014Optica 1 336
[17] Brennecke F, Donner T, Ritter S, Bourdel T, KöhlM and Esslinger T 2007Nature 450 268
[18] Landig R,Hruby L,DograN, LandiniM,Mottl R,Donner T and Esslinger T 2016Nature 532 476
[19] Léonard J,Morales A, Zupancic P, Esslinger T andDonner T 2017Nature 543 87
[20] Dalibard J andCohen-Tannoudji C 1985 J. Phys.B 18 1661
[21] CampaA,Dauxois T andRuffo S 2009Phys. Rep. 480 57
[22] Teles TN, Benetti F P dC, Pakter R and Levin Y 2012Phys. Rev. Lett. 109 230601
[23] PikovskyA, Gupta S, Teles TN, Benetti F P dC, Pakter R, Levin Y andRuffo S 2014Phys. Rev.E 90 062141
[24] AuerbachD 1995Am. J. Phys. 63 882
[25] Brownridge JD 2011Am. J. Phys. 79 78
[26] TaoY, ZouW, Jia J, LiW andCremerD2017 J. Chem. Theory Comput. 13 55
[27] Jin J andGoddardWA III 2015 J. Phys. Chem.C 119 2622
[28] ZhangX et al 2014Phys. Chem. Chem. Phys. 16 22995–3002
[29] NiedenzuW,Grießer T andRitschH 2011Europhys. Lett. 96 43001
[30] Grießer T,NiedenzuWandRitschH 2012New J. Phys. 14 053031
[31] HabibianH,Winter A, Paganelli S, RiegerH andMorigi G 2013Phys. Rev. Lett. 110 075304
[32] Krämer S andRitschH2014Phys. Rev.A 90 033833
[33] Maschler C, RitschH,Vukics A andDomokos P 2007Opt. Commun. 273 446
[34] Torggler V, Krämer S andRitschH2017Phys. Rev.A 95 032310

18

New J. Phys. 20 (2018) 025004 TKeller et al

Self-organization of particles in an optical cavity 109



110 Self-organization of particles in an optical cavity

Section 2.4

Summary

In this chapter we derived and studied the spatial self-organization of atoms coupling
dispersively to an optical resonator.

In the first section 2.1 we derived a Fokker-Planck equation describing the semiclas-
sical dynamics of the particles where the cavity degrees of freedom can be eliminated.
We showed that the multiple-scattered cavity photons mediate long-range coherent and
dissipative forces between the atoms.

By these means we analyzed steady-state properties of self-organization in section 2.2.
Here, we showed that the stationary state can be mapped to the canonical ensemble of
models from physics of long-range interactions [23, 31]. These models can exhibit phase
diagrams with various phases and features such as ensemble inequivalence, that are usually
not realizable by short-range interactions [23, 26, 108, 109].

In section 2.3 we studied out-of-equilibrium properties of spatial self-organization.
We investigated the dynamics after quenches across phase transitions and the relaxation
towards the stationary state. We determined mean-field properties and show in particular
that mean field can describe the dynamics on short timescales while it fails to predict the
correct relaxation timescales [22, 25]. Furthermore, we discussed the role of dissipation
that stabilizes metastable states of the system [25] and we investigated the nature of
metastable states after quenches into different phases in multimode cavities [27].
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Chapter 3

Optomechanical effects in
steady-state superradiance

The main focus of this chapter is the study of optomechan-
ical effects in steady-state superradiance. In section 3.1 we
present the model and provide a short overview of steady-
state superradiance without optomechanical effects. We then
analyze optomechanical effects in steady-state superradiance
in section 3.2 using a mean-field theory to describe the mo-
tion of the particles in the ultra-cold as well as in the thermal
realm. In section 3.3 we focus on the semiclassical dynamics
of the atoms and study the cooling of the external degrees
of freedom in the superradiant regime. The last section 3.4
summarizes this chapter.
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Section 3.1

Introduction to steady-state
superradiance

In this section we introduce the model of incoherently-driven quasispins coupling to a
resonator. We present a mean-field description of this model and discuss the analogies
with the Kuramoto model that describes the effect of synchronization in an ensemble of
coupled oscillators. In the end of this section we give a short overview of past and current
work that is connected to the studies that we present in this chapter.

3.1.1 The model of steady-state superradiance
We consider N particles with mass m that can be effectively described by dipoles con-
sisting of an excited state |e〉j and ground state |g〉j with j = 1, ..., N . Every particle
can emit photons into a common mode of the resonator. In this setting, an ensemble
of particles can superradiantly emit photons into the resonator mode (see section 1.3).
This is an interference effect that gives rise to a macroscopic build up of coherence in
the collective dipole. In the regime where the cavity decay rate determines the fastest
timescale, typically, excitations are lost on a timescale that is proportional to the inverse
of the collective linewidth of the dipole.

In this section we include an incoherent pump of the particles that balances the losses
of excitations. We will show that the rate of the incoherent pump can be tuned such that
superradiance persists even at steady state. This effect of steady-state superradiance ap-
pears in the regime where the incoherent pump is larger than the single particle linewidth,
in order to obtain population inversion, but smaller than the collective linewidth such that
coherences are not immediately destroyed by the incoherent driving.

In what follows we will present the theoretical model and derive its prediction.

Master equation

We describe the evolution in terms of a master equation for the density matrix ρ̂ including
the internal and external degrees of freedom of the N particles and the cavity degrees of
freedom. This master equation is given by

∂ρ̂

∂t
= 1
i~

[Ĥ, ρ̂] + w
N∑
j=1
L[σ̂†j ]ρ̂+ κL[â]ρ̂, (3.1.1)

where the coherent dynamics is governed by the Hamiltonian

Ĥ =
N∑
j=1

p̂2
j

2m + ~∆â†â+
N∑
j=1

~
g

2 cos(kx̂j)(â†σ̂j + σ̂†j â). (3.1.2)

The first term in Eq. (3.1.2) is the kinetic energy of the particles with momentum operator
p̂j. The second term is the energy of the cavity field in the frame rotating with the atomic
transition frequency ωa such that ∆ = ωc−ωa is the detuning between the cavity frequency
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ωc and the atomic transition frequency ωa. For the description of the cavity mode we use
the photon annihilation and creation operators, â and â† with [â, â†] = 1. The coupling
between every atom and the cavity mode is governed by the vacuum Rabi frequency g and
the mode function cos(kx̂). Here, x̂j is the position operator fulfilling the commutation
relation [x̂j, p̂l] = i~δj,l with the momentum operators. The interaction between the
mode and the dipole is described by the Jaynes-Cummings term where σ̂j = |g〉j〈e| is
the lowering operator for the internal state of the jth particle. The incoherent part
of the dynamics in Eq. (3.1.1) is governed by wL[σ̂†j ] and κL[â] using the definition of
Eq. (1.1.11). Here, we introduced the cavity decay rate κ and the rate of incoherent
pumping w. The spontaneous decay of the excited state is neglected here since we assume
the excited state |e〉 to be metastable.

Effective Master equation

If we assume that the cavity decay rate κ and the detuning ∆ are much larger than the
repump rate w, the collective coupling

√
Ng, the recoil frequency ωR = ~k2/(2m) and

the Doppler shift k∆p/m, where ∆p denotes the single-particle momentum width, we can
eliminate the cavity degrees of freedom as we present in App. A.1. The elimination of the
cavity degrees of freedom allows us to derive an effective Born-Markov master equation
for the reduced density matrix ρ̂N describing the atomic degrees of freedom. This master
equation reads

∂ρ̂N
∂t

= 1
i~
[
Ĥeff , ρ̂N

]
+ w

N∑
j=1
L[σ̂†j ]ρ̂N + ΛL[X̂]ρ̂N , (3.1.3)

with the effective Hamiltonian

Ĥeff =
N∑
j=1

p̂2
j

2m − ~NΛ∆
κ
X̂†X̂, (3.1.4)

and the collective coupling Λ = NΓc. The single particle linewidth Γc is defined as

Γc = g2κ

κ2 + 4∆2

and the collective dipole X̂ takes the form

X̂ = 1
N

N∑
j=1

σ̂j cos(kx̂j). (3.1.5)

Due to the elimination of the cavity degrees of freedom there are now two terms in the
master equation that describe effects mediated by the long-range dipole-dipole interac-
tions. The operator ~NΛ(∆/κ)X̂†X̂, in the effective Hamiltonian (Eq. (3.1.4)), describes
a coherent interaction while ΛL[X̂], in the master equation (3.1.3), describes a decay of
the collective dipole X̂.1

1Notice that retardation effects between atomic and cavity degrees of freedom give rise to other
couplings that we do not report here since we assume that they are negligibly small in the limit where

w,Λ, k∆p/m� κ,∆.
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We call a state ρ̂N superradiant if the expectation value 〈X̂†X̂〉, with 〈Ô〉 = Tr(Ôρ̂N)
for an operator Ô, does not vanish in the limit N → ∞. Therefore, in order for ρ̂N to
be superradiant, it describes a macroscopic, coherent superposition of excited and ground
states. Steady-state superradiance describes the effect that superradiance is observed at
steady state, namely for a state that fulfills ∂ρ̂N/(∂t) ≈ 0 using Eq. (3.1.3).2 It appears in
the regime where the incoherent pump w is larger than the single-particle linewidth Γc but
smaller than the collective linewidth Λ = NΓc. In the following we review steady-state
superradiance neglecting the motion of the particles.

3.1.2 Dynamics of the spins
In this subsection we discard the optomechanical coupling to the external degrees of
freedom assuming the spins are pinned. We review basic results from Refs. [32, 110, 111]
using a mean-field theory, as they provide an important basis for the studies presented in
section 3.2.

Threshold of superradiant emission

The equations of motion for 〈σ̂j〉 and 〈σ̂zj 〉 can be derived from Eq. (3.1.3). They read

d〈σ̂j〉
dt

=− w

2 〈σ̂j〉 − i
Λ
2 α
∗〈σ̂zj X̂〉, (3.1.6)

d〈σ̂zj 〉
dt

=w(1− 〈σ̂zj 〉)− [iαΛ〈X̂†σ̂j〉+ H.c.], (3.1.7)

where α = 2∆/κ−i. We will use a mean-field description of Eqs. (3.1.6), (3.1.7) that relies
on factorizing expectation values of products of operators for the case N � 1 3. Using
mean-field and assuming that the state of the spins is symmetric in particle exchange we
derive two coupled non-linear differential equations for X = 〈σ̂j〉 and Z = 〈σ̂zj 〉 that read

dX

dt
=−

(
w

2 − iα
∗Γc

2

)
X − i(N − 1)Γc

2 α∗XZ, (3.1.8)

dZ

dt
=(w + Γc)

(
w − Γc
w + Γc

− Z
)
− 2(N − 1)Γc|X|2. (3.1.9)

Stationary solutions of Eq. (3.1.8) and Eq. (3.1.9) that fulfill d|X0|2/dt = 0 and dZ0/dt = 0
are

X0 =0, (3.1.10)

Z0 =w − Γc
w + Γc

. (3.1.11)

Since 〈X̂†X̂〉 = |X0|2 = 0, this steady state describes a non-superradiant state. However,
this solution is not necessarily stable. A small perturbation δX can give rise to the

2For us it is sufficient that the collective dipole remains coherent for a sufficiently long time scale
that might also be described by a metastable state of the system. In this case we will still use the term
“steady-state superradiance”.

3The approaches that are used in Refs. [32, 110, 111] are beyond mean-field and take into account at
least two-particle correlations. We will motivate the mean-field approach in subsection 3.2.3.
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onset of a superradiant emission. This small perturbation follows on short timescales the
differential equation

dδX

dt
=−

(
w

2 − iα
∗Γc

2

)
δX − i(N − 1)Γc

2 α∗Z0δX

=
[
−(w + Γc) + (N − 1)ΓcZ0

2 + i
∆
κ

(Γc − (N − 1)ΓcZ0)
]
δX,

that is derived by linearizing Eq. (3.1.8). The perturbation will exponentially increase if

(N − 1)ΓcZ0 > w + Γc, (3.1.12)

and therefore a small perturbation δX will give rise to an initial superradiant emission.
The inequality (3.1.12) can only be fulfilled if Z0 > 0 that implies, using Eq. (3.1.11),

Γc < w. (3.1.13)

This is the lower threshold for superradiant emission.
On the other hand assuming a strong incoherent pump w � Γc, we get Z0 ≈ 1

using Eq. (3.1.11), that is the case of a saturated ensemble of dipoles. In this case the
inequality (3.1.12) leads to a second threshold for the repump rate

w < NΓc, (3.1.14)

in order to observe superradiance.
Collecting the two results in Eqs. (3.1.13) and (3.1.14) we conclude that superradiance

is expected in the regime

Γc < w < NΓc. (3.1.15)

For this choice of w we can calculate the stable steady states of Eq. (3.1.8) and Eq. 3.1.9
that read

|X|2 = w + Γc
2(N − 1)Γc

, (3.1.16)

Z = w + Γc
2(N − 1)Γc

(
w − Γc
w + Γc

− w + Γc
(N − 1)Γc

)
, (3.1.17)

providing that d|X|2/dt = 0 and dZ/dt = 0. For the choice of w ∝ N this state describes
superradiance at steady state since 〈X̂†X̂〉 = |X|2 6= 0 in the limit N →∞.

In Fig. 3.1 we plot the steady state of |X|2 in subplot (a) and the steady state of Z
in subplot (b) for N = 104, respectively. The superradiant phase is visible in Fig. 3.1(a)
where |X|2 is different from zero. We see that |X|2 increases with w until it reaches a
maximum at w ≈ NΓc/2 and then decreases again. In Fig. 3.1(b) the two thresholds
given by Eq. (3.1.15) are visible as discontinuities of Z. Here, we observe that Z < 0 for
values w < Γc while for w > Γc we observe population inversion, Z > 0. The value of Z
increases monotonically until w ≈ NΓc where the ensemble of dipoles is saturated, Z = 1.
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(a) (b)

Figure 3.1: The stable steady state of |X|2 (a) and Z (b) for N = 104 as
a function of w in units of Γc derived from Eqs. (3.1.8) and (3.1.9).

Synchronization of the spins

In the following we want to review analogies between steady-state superradiance and the
Kuramoto model. The latter is probably the most studied model exhibiting synchroniza-
tion in a network of coupled oscillators [18, 19, 112–114]. The Kuramoto model for N
oscillators is described by the equations

dθi
dt

= ωi + K

N

N∑
j=1

sin(θj − θi), (3.1.18)

where θi is an angle, ωi is the frequency, K is the coupling, and i = 1, 2, ..., N . In this
case if the dynamics of the N oscillators is decoupled, K = 0, every oscillator oscillates
with its own frequency ωi. Introducing the collective variable

reiψ = 1
N

N∑
j=1

eiθj ,

where r ∈ [0, 1] measures the coherence and ψ is the collective phase of the oscillators, we
may rewrite Eq. (3.1.18) as

dθi
dt

= ωi +Kr sin(ψ − θi). (3.1.19)

This shows that the coupling of the single oscillators with each other can be understood
as a coupling of the single oscillator to a collective oscillator. In the differential equa-
tion (3.1.19) of θi there are now two terms that compete: the first term, ωi, forces the
oscillator to rotate with frequency ωi, the second term, Kr sin(ψ−θi), tries to synchronize
the phase to the phase of the collective oscillator ψ by minimizing the difference ψ − θi.
The Kuramoto model predicts a synchronized phase with the signature of a non-vanishing
coherence r and a collective phase ψ for K > Kc > 0, where Kc is a threshold value and
depends on the distribution of the frequencies ωi.4

4This is a very simplified statement, in fact, there can be very different synchronization phenomena
depending on the coupling and the frequency distribution [19, 115–117]. The presented statement is true
for a homogeneous coupling and an unimodal frequency distribution [19]
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To show the analogies of the Kuramoto model and the model of steady-state super-
radiance we use a mean-field description. We assume 〈X̂σ̂zi 〉 ≈ 〈X̂〉〈σ̂zi 〉 and ∆ = 0. In
this case we derive the dynamics of the single-particle effective spin using Eq. (3.1.3) that
reads

d〈σ̂i〉
dt

= −w2 〈σ̂〉i −
Λ
2 〈X̂〉〈σ̂

z
i 〉. (3.1.20)

Defining now phase and coherence of the ith dipole using 〈σ̂〉i = rie
iθi and phase and

coherence of the collective dipole with 〈X̂〉 = reiψ, we may rewrite Eq. (3.1.20) as

dri
dt
eiθi + irie

iθi
dθi
dt

= −w2 rie
iθi + Λ

2 re
iψ〈σ̂zi 〉. (3.1.21)

The corresponding equations for real and imaginary part can be cast in the forms

dri
dt

=− w

2 ri + Λ
2 r cos(ψ − θi)〈σ̂zi 〉, (3.1.22)

dθi
dt

=Λ
2
r

ri
sin(ψ − θi)〈σ̂zi 〉. (3.1.23)

Equation (3.1.23) is very similar to Eq. (3.1.19) and shows the same coupling of the
single particle phase to the collective phase. In order to reach synchronization one needs
a sufficiently large positive coupling and therefore 〈σ̂zi 〉 > 0. Population inversion is
reached when the incoherent repump rate w exceeds the dipole relaxation Γc, w > Γc.

3.1.3 Overview and state of the art
Steady-state superradiance was first theoretically analyzed in Ref. [32]. For a realization
with ensemble of earth-alkali metal atoms in a bad resonator, it was predicted that the
light field can have a linewidth that can be as narrow as a few mHz [32]. Theoretical
studies applied cumulant and Monte Carlo methods for characterizing steady-state su-
perradiance [32, 110, 111, 118]. The first experimental realization of a superradiant laser
is presented in Ref. [33] with Rubidium atoms. Realizations with strontium atoms are
presented in Refs. [119, 120]. Ongoing work also investigates the crossover from lasing
to steady-state superradiance [119, 121, 122] and related setups have lately also been
proposed to study dissipative time crystals [114, 123, 124].

In the following we analyze the effect of the optomechanical coupling on the dynamics
towards steady-state superradiance.
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Section 3.2

Mean-field theory for superradiance

In this section we discuss the mean-field description of steady-state superradiance includ-
ing optomechanical effects.

3.2.1 Dynamical phase transitions to optomechanical superra-
diance

This subsection reports text and results that are published in Ref. [125]. We discuss the
interplay between superradiant emission and quantum fluctuations due to the recoiling
atoms, when the atoms’ dipolar transitions couple to the mode of a lossy standing-wave
resonator. In contrast to Refs. [12, 80, 126–128], here the atoms are incoherently pumped,
as shown in Fig. 3.2, and therefore no coherence is established by the process pumping
energy into the system. The system parameters are in the regime where stationary super-

Figure 3.2: (a) An atomic gas initially forms a Bose-Einstein condensate
and is confined within a standing-wave resonator, which emits photons
at rate κ. (b) The metastable atomic transition |g〉 → |e〉 couples to
the cavity mode and is incoherently pumped at rate w. After the first
superradiant decay (c) the atoms form density gratings. (d) The emitted
field X(t) (here in the reference frame of the atomic frequency) becomes
coherent for sufficiently large values of w, such that one grating is me-
chanically stable.

radiant emission (SSR) is predicted [32, 33, 110, 111, 121, 122]: In a homogeneous medium,
SSR consists in the buildup of a stable macroscopic dipole, that acts as a stationary source
of coherent light. The dynamical properties can be understood in terms of a peculiar time
crystal [114], which locks at a frequency determined by the incoherent pump rate w. In a
homogeneous medium the transition from normal to SSR fluorescence is controlled by w
when the superradiant decay rate is larger than the rates characterizing other incoherent
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processes. Here, we show that in the presence of the optomechanical coupling with the
external degrees of freedom SSR corresponds to spatio-temporal long-range order and is
reached when the characteristic rates exceed the recoil frequency, scaling the mechanical
energy exchanged with radiation. When instead the recoil frequency becomes compara-
ble with the pump or the superradiant decay rate, then the superradiant emitted light
can become either chaotic or incoherent. The chaotic phase, in particular, characterizes
the asymptotic phase of an incoherent dynamics, it emerges from the interplay between
quantum fluctuations, noise, and global interactions mediated by the cavity field, and
is thus qualitatively different from chaos reported in quantum dynamics of Hamiltonian
global-range interacting systems [129, 130].

When κ and ∆ are the largest rates the dynamics of the N incoherently-driven bosonic
atoms with mass m can be cast in terms of long-range dipolar and optomechanical inter-
actions in the atoms’ Hilbert space. Then, the cavity field follows adiabatically the atomic
motion, â ∝ X̂ [131, 132] and the dynamics is governed by Eq. (3.1.3). For N � 1 the
quantum dynamics is numerically intractable due to the adverse Liouville space scaling.
We neglect single-atom radiative decay at rate Γc, assuming time scales t < 1/Γc and
N � 1. Since 1/Γc = N/Λ, this time scale can be stretched to t → ∞ in a thermo-
dynamic limit N → ∞ where Λ is kept constant [129, 132]. Under these assumptions
we finally obtain the mean-field master equation for the single-particle density matrix ρ̂1
(assuming that ρ̂N is a product state at t = 0):

∂ρ̂1

∂t
= Lmf [ρ̂1]ρ̂1 = 1

i~
[Ĥmf(ρ̂1), ρ̂1] + wL[σ̂†]ρ̂1, (3.2.1)

where ρ̂1 = TrN−1{ρ̂N} is obtained by tracing out N − 1 atoms. The details of the
calculation are shown in subsection 3.2.3. Now the incoherent evolution is due entirely to
the incoherent pump and the interactions with the resonator are given by the mean-field
Hamiltonian:

Ĥmf = p̂2

2m −
~Λ
2
(
αX{ρ̂1}∗σ̂ + α∗X{ρ̂1}σ̂†

)
cos(kx̂), (3.2.2)

with α = 2∆/κ − i. Here, the Rabi frequency is proportional to the mean-field order
parameter

X{ρ̂1} = Tr{σ̂ cos(kx̂)ρ̂1}, (3.2.3)

and thus depends on the global macroscopic dipole. Note that X generates the intracavity
field and within the mean-field treatment determines the field’s coherence properties. By
neglecting the diffusion due to the incoherent pump, Eq. (3.2.1) can be reduced to a
Vlasov equation with a potential that depends on the macroscopic dipole of the initial
state, and whose stable solutions are metastable states of the out-of-equilibrium dynamics
[23, 133].

Stability of an arbitrary stationary state

The short timescale is governed by the stability of a stationary state of the mean-field
master equation (3.2.1). The stability of a stationary state ρ̂0, with ∂tρ̂0 = 0, is determined
by the initial dynamics of a density matrix ρ̂ = ρ̂0 + δρ̂ where δρ̂ is a small perturbation
[23]. If this perturbation is amplified over time we can state that ρ̂0 is unstable, otherwise
ρ̂0 is stable.
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Using the mean-field master equation (3.2.1) we derive an equation of motion for δρ̂
that takes the form

∂δρ̂

∂t
= i

Λ
2
(
αδX∗[Ĵ1, ρ̂0]− H.c.

)
+ Lmf [ρ̂0]δρ̂. (3.2.4)

Here we have defined α = 2∆/κ− i and used the definition

Lmf [ρ̂0]δρ̂ = 1
i~

[Ĥmf [ρ̂0], δρ̂1] + wL[σ̂†]δρ̂, (3.2.5)

with Ĵ1 = σ̂ cos(kx̂) and δX = X{δρ̂}. In Eq. (3.2.4), we have included only first
order perturbations in δρ̂ and we have discarded the second order. Applying the Laplace
transform L[f ](s) =

∫∞
0 dt e−stf(t) we derive the following equation

D(s)
(

L[δX](s)
L[δX∗](s)

)
=
Tr

(
Ĵ1[s− Lmf [ρ̂0]]−1δρ̂(0)

)
Tr
(
Ĵ†1 [s− Lmf [ρ̂0]]−1δρ̂(0)

)
with

D(s) =
(

1 + C11(s) C12(s)
C21(s) 1 + C22(s)

)
. (3.2.6)

The entries of the matrix take the forms

C11 =− iΛ2 α
∗Tr

(
Ĵ1 (s− Lmf [ρ̂0])−1 [Ĵ†1 , ρ̂0]

)
, (3.2.7)

C12 =− iΛ2 αTr
(
Ĵ1 (s− Lmf [ρ̂0])−1 [Ĵ1, ρ̂0]

)
, (3.2.8)

C21 =− iΛ2 α
∗Tr

(
Ĵ†1 (s− Lmf [ρ̂0])−1 [Ĵ†1 , ρ̂0]

)
, (3.2.9)

C22 =− iΛ2 αTr
(
Ĵ†1 (s− Lmf [ρ̂0])−1 [Ĵ1, ρ̂0]

)
. (3.2.10)

Inverting D(s) and applying the inverse Laplace transformation, we obtain the dynamics
of δX. In order to derive the dynamics we need to know the poles of the matrix D(s)−1.
These are roots of the dispersion relation

D(s) = det(D(s)) = 0. (3.2.11)

The complex solution γ of Eq. (3.2.11) with the largest real part Re(γ) gives the dominant
contribution to the dynamics of δX. Therefore this determines whether the stationary
solution ρ̂0 is stable or not. If Re(γ) > 0 the perturbation δρ̂ will exponentially grow and
thus ρ̂0 is an unstable stationary solution. Otherwise, if Re(γ) ≤ 0, ρ̂0 is stable.

We will now use this result in order to derive the stability of an incoherent stationary
state ρ̂0 with X{ρ̂0} = 0. Such a state is of the form

ρ̂0 = |e〉〈e| ⊗ ρ̂mom, (3.2.12)

where ρ̂mom is a state describing the external degrees of freedom and fulfills [p̂2, ρ̂mom] = 0.
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Stability of the incoherent state

Since X{ρ̂0} = 0 we observe that the matrix in Eq. (3.2.6) becomes diagonal. Therefore,
if we want to find the zeros of the dispersion relation in Eq. (3.2.11) it is sufficient to solve
the equation

1 + C11(s) = 0. (3.2.13)

Using the duality of the Schrödinger and Heisenberg pictures we obtain

C11 =− iΛ2 α
∗Tr

(
Ĵ1 (s− Lmf)−1 [Ĵ†1 , ρ̂0]

)
=− iΛ2 α

∗
∫ ∞

0
dte−stTr

(
Ĵ1e
Lmft[Ĵ†1 , ρ̂0]

)
=− iΛ2 α

∗
∫ ∞

0
dte−st〈[Ĵ1(t), Ĵ†1(0)]〉ρ̂0 . (3.2.14)

Here we use the definition that for an operator Â the expectation value is defined as
〈Â〉ρ̂ = Tr(Âρ̂).

In the homogeneous case, we calculate Ĵ1(t), and it takes the form

Ĵ1(t) = σ̂(0)e−w2 t cos (kx̂(t)) , (3.2.15)

with x̂(t) = x̂(0) + kp̂(0)t/m. Using Eq. (3.2.15) in Eq. (3.2.14) we obtain

C11 = i
Λ
2 α
∗
∫ ∞

0
dte−(s+w

2 )t 〈cos(kx̂) cos (kx̂(t))〉ρ̂mom
, (3.2.16)

where we explicitly used the fact that all particles are in the excited state and therefore
〈σ̂σ̂†〉 = 0 holds. From the identity

eikx̂+ikp̂/mt = eikx̂eikp̂/mteiωRt

and eikx̂|p〉 = |p+ ~k〉 we can show that

I =
∫
dp

〈
p

∣∣∣∣∣ cos(kx̂)e
ikx̂eikp̂/mt + e−ikx̂e−ikp̂/mt

2 ρ̂mom

∣∣∣∣∣p
〉

= 1
4

∫
dp〈p|ρ̂mom|p〉(eikp/mt + e−ikp/mt)

+ 1
4
(
〈~k

∣∣∣ρ̂mom| − ~k〉+ 〈−~k
∣∣∣ρ̂mom|~k〉

)
e−i2ωRt, (3.2.17)

with ωR = ~k2/(2m) the recoil frequency. In Eq. (3.2.17) we used 〈p|ρ̂mom|p′〉 = 0 for
p′ 6= ±p. This is true since ρ̂mom commutes with p̂2. Using

C11 = i
Λ
2 α
∗
∫ ∞

0
dte−(s+w

2 −iωR)tI (3.2.18)

and Eq. (3.2.17) we get

C11 =iΛy4 α∗
∫ ∞
−∞

dp
〈p|ρ̂mom|p〉

y2 +
(
kp
m

)2

+ i
Λ
8 α
∗ 〈~k

∣∣∣ρ̂mom| − ~k〉+ 〈−~k
∣∣∣ρ̂mom|~k〉

y + i2ωR
, (3.2.19)

with y = s+ w/2− iωR.
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Stability of a thermal state

In the following we analyze the stability of a thermal state ρ̂(0)
1 = |e〉〈e|⊗exp(−βp̂2/2m)/Z,

with inverse temperature β and partition function Z. This is an incoherent state with
X{ρ̂(0)

1 } = 0. Using ρ̂0 = |e〉〈e| ⊗ ρ̂mom with

ρ̂mom = 1√
2πp2

0

exp
(
−β p̂

2

2m

)
, (3.2.20)

the dispersion relation in Eq. (3.2.13), can be simplified to

1 + i
Λy
4 α∗

∫ ∞
−∞

dp

√
β

2mπ
exp

(
−β p2

2m

)
y2 +

(
kp
m

)2 = 0, (3.2.21)

where we used y = s + w/2 − iωR. Using the substitution p =
√
m/β̃u, with β̃−1 =

~Λ2/(2ωR), we can rewrite Eq. (3.2.21) as

1 + iα∗
y

4Λ

∫ ∞
−∞

du

√
β

2πβ̃
exp

(
−β

β̃
u2

2

)
(
y
Λ

)2
+ u2

= 0. (3.2.22)

From Eq. (3.2.22) we calculate the value γ that corresponds to the solution s = y −
w/2 + iωR with the largest real part. This exponent will be dominant for the time
evolution of the thermal state. The short-time dynamics is determined by this exponent

Figure 3.3: Contour plot of the rate γ of the first superradiant emission
as a function of the incoherent pump rate w (in units of Λ) and of the
atomic gas temperature 1/β (in units of β̃−1 = ~Λ2/(2ωR)). The solid
line separates the regime in which the atoms undergo superradiant decay
from the one where thermal fluctuations suppress superradiance (stripes).

as a function of w and β. No superradiant emission is found when X{ρ̂(0)
1 } = 0 is
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stable to small fluctuations. If instead it exponentially increases as X ∼ exp(γt) with
Re(γ) > 0, then the system undergoes superradiant decay with rate Re(γ). Figure 3.3
shows the contour plot of the exponent Re(γ) as a function of both w and β. We find a
threshold temperature kBTc ≈ 0.1~Λ2/(2ωR). For T > Tc thermal fluctuations suppress
superradiance. For T < Tc superradiance is found for a finite interval of the pump rate
0 < w ≤ wmax(β), which increases with the ratio η = β/β̄ = Tc/T . For η →∞ the upper
bound is wmax = Λ/2, it coincides with the value found for a homogeneous medium [132].

Dynamics of an ultracold atomic ensemble

We now study the dynamics of an ensemble of atoms in the zero-temperature limit, when
the atoms initially form a Bose-Einstein condensate (BEC). We neglect onsite interactions
and analyze the dynamics of the external degrees of freedom on the closed family of
momentum states |Ψ0〉 = |0〉 (the BEC) and |Ψn〉 = (|n~k〉+ |−n~k〉)/

√
2 (n = 1, 2, . . .).

These states are coupled by absorption and emission of cavity photons; their energy
Ekin,n = n2~ωR is an integer multiple of ωR. The asymptotic behavior of Eq. (3.2.1) is
strictly defined in the thermodynamic limit and is determined by means of a recursive
procedure that we explain in the following.

Using Eq. (3.2.1) one can show that

d

dt
〈Ĥmf〉 = d

dt

(
〈p̂2〉
2m −

~Λ∆
κ/2 |X|

2
)

=Tr
(
Ĥmf

∂ρ̂1

∂t

)
+ Tr

(
∂Ĥmf

∂t
ρ̂1

)

=~Λ∆
κ

w|X|2 − ~Λ
2

(
α∗
dX

dt
X∗ + c.c

)
. (3.2.23)

Explicitly denoting the amplitude and phase X = |X|eiφ we obtain

d

dt
〈Ĥmf〉 = ~Λ∆

κ
w|X|2 + ~Λ|X|2dφ

dt
− ~Λ∆

κ

d|X|2

dt
. (3.2.24)

Now, assuming that there exists a stationary state with d〈p̂2〉/dt = 0 and d|X|2/dt = 0,
we arrive at

dφ

dt
= −w∆

κ
. (3.2.25)

Therefore to find a stationary solution for the system we need to solve

Lmf [ρ̂1] ρ̂1 = 1
i~

[
~w∆
κ

σ̂†σ̂, ρ̂1

]
. (3.2.26)

This is equivalent to calculating the stationary state in the frame rotating with the fre-
quency shown in Eq. (3.2.25). To characterize and numerically determine this solution
we use the order parameter X. For the numerical calculation of the stationary state
we start from an order parameter X > 0 and find ρ̂0 to recalculate the new value of
X = Tr(σ̂ cos(kx̂)ρ̂0). We iterate this step until ρ̂0 and X converge. In the case when
there is a solution of Eq. (3.2.26) with X 6= 0 we know that there is a coherent stationary
state. However, this state does not need to be stable. To calculate the stability we use
the dispersion relation in Eq. (3.2.11).
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Figure 3.4: Phase diagram in the w/ωR–Λ/ωR plane when the atoms
initially form a Bose-Einstein condensate at T = 0. The phases are
labeled by the coherence properties of the emitted light. The emitted field
is given by X(t) and is obtained by solving Eq. (3.2.1) at the asymptotic
dynamics. Path A (Path B) shows the parameters of Fig. 3.5 (Fig. 3.6).
In the striped region superradiant decay is suppressed (it corresponds to
the region at T = 0 and w > Λ/2 in Fig. 3.3).

In Fig. 3.4 we report the converged values of X and therefore the coherence properties
of the emitted light in a w − Λ phase diagram. We first note the normal (striped) phase
with w > Λ/2, where there is no superradiant emission. The transition from normal to
superradiant phase (without optomechanical coupling) has been discussed in the literature
[32, 110, 111, 114, 134]. Within the regime where SSR is expected, we now find that
the optomechanical coupling gives rise to three phases which we denote by incoherent,
coherent, and chaotic, corresponding to the coherence properties of the emitted light.
In the incoherent phase only the solution with X = 0 is stable and collective effects are
suppressed. In the coherent phase there is one stable solution withX 6= 0. As visible in the
phase diagram, the condition for the appearance of this phase is that the superradiant
linewidth exceeds a minimum value determined by the recoil frequency, Λ > Λc with
Λc ∼ 6ωR. Finally, the chaotic phase is found for Λ > Λc, when the pump rate is below a
threshold wc(Λ). Here, both solutions with X 6= 0 and X = 0 are unstable.

We verified these predictions by numerically integrating Eq. (3.2.1) with the initial
state ρ1(0) at T = 0 on the grid of momentum states p = 0,±~k, . . . ,±15~k. Figure 3.5(a)
displays three evolutions of |X(t)| for different values of Λ along Path A of Fig. 3.4, where
a direct transition occurs from an incoherent to a coherent (SSR) phase. For all values the
intracavity field |X(t)| first grows exponentially, and subsequently reaches a maximum
at a time scale τc ∼ 1/Λ. After this time scale: (i) For Λ < Λc the intracavity field
|X(t)| decays to zero. This dynamics is accompanied by the formation of a statistical
mixture of states |e,Ψ2n〉 and |e,Ψ2n+1〉, which dephases the macroscopic dipole and
leads to suppression of superradiant emission. (ii) For Λ ∼ Λc the field undergoes fast
oscillations and then slowly decays to zero. (iii) For Λ > Λc the field oscillates about
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a finite asymptotic value and the atoms form a stable spatial pattern. This dynamics
exhibits the general features of a dynamical phase transition, which occurs after the
first superradiant emission at t ∼ τc. After τc the macroscopic dipole X decays to zero
or oscillates about a finite metastable value. We denote the asymptotic value of the
order parameter by Xst(Λ), which we determine by numerical evolution of |X(t)|, taking
|Xst(Λ)| = |X(tf)|, where at tf the dipole |X(t)| has reached a constant value. We compare
this result with the asymptotic solution ρ̂st of Eq. (3.2.1), calculated using the iterative
procedure. Along Path A this iterative procedure always converges to either Xst = 0 for
Λ < Λc and Xst > 0 for Λ > Λc. As visible in Fig. 3.5(b), the predictions obtained by
numerical integration (circles) and by the iterative procedure (dashed line) qualitatively
agree and exhibit the features of a second-order phase transition. We also present a
measure for the entanglement between the internal and external degrees of freedom. Since
the system relaxes to an incoherent state for Λ < Λc, all particles are in the excited state
and therefore the system has no entanglement between internal and external degrees
of freedom. However, if the system is in the coherent phase, for Λ > Λc, we observe
entanglement between internal and external degrees. This claim can be verified by an
analysis of the partial transpose ρ̂PPT

st of the stationary state ρ̂st [135]. The matrix ρ̂PPT
st is

calculated from ρ̂st by applying the transpose on the internal degrees of freedom only. In
the case where internal and external degrees of freedom are not entangled ρ̂PPT

st is a positive
matrix. On the other hand if ρ̂PPT

st is not positive we know that there is entanglement. To
check whether the internal and external degrees of freedom are entangled in the coherent
phase we calculate the minimum eigenvalue

λmin = min{λ|λ is eigenvalue of ρ̂PPT
st }. (3.2.27)

If this eigenvalue is negative we know that the system is entangled. The numerical calcu-
lated values for λmin are shown in Fig. 3.5(c). Its behavior shows that at the buildup of
SSR internal and external degrees of freedom become entangled.

The transition separating the coherent from the chaotic phase occurs for Λ > Λc as a
function of w: The properties of the emitted light dramatically depend on whether w is
smaller or larger than a critical value wc(Λ). Figure 3.6(a) displays the numerical results
for the real and the imaginary part of X(t) for a fixed time interval for (i) w < wc, where
the dynamics is chaotic, (ii) w ' wc where the dynamics is mainly characterized by the
appearance of two subharmonics, and (iii) for w > wc, where the dynamics is evidently
coherent. The spectrum of the emitted light is displayed in Fig. 3.6(b) as a function of
w and for the parameters of Path B of Fig. 3.4. The transition from regular oscillations
to chaos occurs at a value wc where two sidebands appear. We analytically determine
wc by means of a stability analysis. This analysis also delivers the frequencies of the
sideband at w = wc and the Lyapunov exponent γL = Re(γ). As is visible in Fig. 3.6(c),
γL changes sign at w = wc and is positive for w < wc. The trajectory of subplot (a)-(i)
corresponds to the value of w where the spectrum is dense: In this parameter regime the
stability analysis predicts the transition from chaotic to incoherent dynamics. Numerical
simulations show that for w < wc the density grating becomes unstable and the system
jumps back and forth between a prevailing occupation of the set of states corresponding
to an even grating, {|e,Ψ2n〉, |g,Ψ2n+1〉, n = 0, 1, 2, ...}, and of the ones corresponding
to an odd grating, {|e,Ψ2n+1〉, |g,Ψ2n〉, n = 0, 1, 2, ...}. While the states within each set
are coupled by coherent processes, the two sets are only coupled to each other by the
incoherent pump: For w < wc the long-range optomechanical interactions tend to form a
grating, which locks the phase of the field, while the incoherent pump induces quantum
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Figure 3.5: The incoherent-coherent transition for the parameters of Path
A of Fig. 3.4 (w = Λ/4 and ∆ = κ/2). Subplot (a), from left to right: Dy-
namics of X for Λ = 4, 6.5, 9ωR. (b) The asymptotic value for the mean-
field order parameter |X(tf)| and (c) the minimum eigenvalue λmin of the
partial transpose of the asymptotic density matrix, signalling entangle-
ment between external and internal degrees of freedom, as a function of Λ
(in units of ωR). Black circles: Numerical results at time tf = 4×104ω−1

R ;
Dashed lines: Steady-state values from the iterative solution of ∂tρ1 = 0,
Eq. (3.2.1).

jumps between different gratings. An analysis of the entanglement is possible only from
the coherent side, where the non-linear master equation has one stationary solution, and
shows that internal and external degrees of freedom are entangled for w > wc. For
the transition from chaotic to coherent the analysis needs to be adjusted. Therefore we
introduce a time-averaged minimum eigenvalue

λ̄min = 1
tend

∫ tend

0
λmin(t)dt, (3.2.28)

with simulation time tend. To find λ̄min we need to calculate λmin(t) as a function of time

λmin(t) = min{λ|λ is eigenvalue of ρ̂(t)PPT}. (3.2.29)

We plot λ̄min in Fig. 3.7(a) where we observe that λ̄min < 0 for the shown interval of
w. The minimal eigenvalue calculated with the iterative method is shown as the gray,
dashed line. While the results of both methods agree in the coherent phase w > wc we
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Figure 3.6: The chaotic-coherent transition for the parameters of Path
B of Fig. 3.4 (Λ = 15ωR and ∆ = κ/2). (a) From left to right: Real
and imaginary part of X for w = 1, 1.5, 2.5ωR (here for the time interval
t ∈ [9.8× 103, 104]/ωR). (b) Contour plot of the spectrum of the emitted
light F (ω) (arbitrary units) as a function of w and of the frequency ω
(in units of ωR). Here, F (ω) ∝

∣∣∣∫ tend
0 eiωtX(t)dt

∣∣∣ is found by integrating
Eq. (3.2.1) until tend = 104ω−1

R . (c) The real (solid) and imaginary part
(dashed) of the exponent γ (in units of ωR) giving the stability of the sta-
tionary solutions. The vertical dashed lines indicate the critical pumping
strength wc(Λ), where Re(γ) changes sign and the sidebands appear, the
circles mark the corresponding frequencies.

observe large discrepancies in the chaotic phase. For completeness we also report the
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(a) (b)

Figure 3.7: (a) The time-averaged minimum eigenvalue λ̄min calculated
using Eq. (3.2.28) (black circles) with tend = 104ω−1

R as a function of w
in units of ωR. The gray, dashed line corresponds to the value of λmin
calculated using the coherent stationary state. (b) The time-averaged
mean-field order parameter |X|av (black circles) with tend = 104ω−1

R and
the asymptotic result (gray, dashed line) as a function of w in units of
ωR. The vertical dashed lines in subplot (a) and (b) show the critical
pumping strength wc(Λ). The equations are integrated in the momentum
interval [−15~k, 15~k] for Λ = 15ωR and ∆ = κ/2.

time-averaged mean-field order parameter

|X|av = 1
tend

∫ tend

0
|X(t)|dt (3.2.30)

in Fig. 3.7(b). The time-averaged mean-field order parameter |X|av and the asymptotic
result agree in the coherent phase while |X|av is larger in the chaotic phase. Notice that
the discrepancies in the chaotic phase are expected since here the asymptotic state is not
a stable state and the description in terms of a single stationary state fails. We remark
that in the coherent phase the frequency of the oscillator depends on the incoherent pump
rate, ωa+∆w/κ, showing that this spatio-temporal self-organization exhibits the features
of time crystals [114].

Finally, we conclude that the phase diagram can be observed by tuning the super-
radiant linewidth and the pump rate across values of the order of the recoil frequency
ωR, the phases are signaled by the first-order correlation function of the emitted light.
These dynamics can be realized when the resonator linewidth κ exceeds by several orders
of magnitude ωR and when other incoherent processes can be discarded over the time
scales where the dynamical phase transition occurs. Specifically, the spontaneous decay
of the dipolar transition shall be orders of magnitude smaller than the recoil frequency,
which can be realized using a Raman transition between metastable hyperfine states, as
for instance in Refs. [33, 103, 105].
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3.2.2 Superradiance and thermal noise
In the following we will use the mean-field approach to describe the time evolution of a
thermal gas. In particular we are interested to study the effects of thermal noise on steady-
state superradiance. We simulate the mean-field master equation (3.2.1) decomposing the
Hilbert space of the external degrees of freedom into different momentum families as we
report in App. A.2.

Onset of superradiance

We want to show that the value of γ found using Eq. (3.2.22) is compatible with the
numerical integration of the mean-field master equation (3.2.5). We choose the parameters
Λ = 40ωR, ∆ = κ/2, and β−1 = 20~ωR such that β̃−1 = 800~ωR and β̃/β = 1/40. For
these parameters the ensemble will undergo superradiant emission whenever w < wc with
wc . 0.4Λ. Figure 3.8(a) shows the dynamics of the order parameter |X(t)| for four
different values of w as a function of time. The black line corresponds to w = 10ωR, the
green (dark gray) line to w = 6ωR, the blue (gray) line to w = 3ωR and the violet (light
gray) line to w = ωR. The time axes are rescaled with the exponents Re(γ) that are
calculated using Eq. (3.2.22).

(a) (b)

Figure 3.8: (a) The absolute value of the mean-field order parameter
|X(t)| and (b) the second moment of momentum 〈p̂2〉 as function of time
in units of Re(γ(w))−1. The black lines corresponds to w = 10ωR, the
green (dark gray) lines to w = 6ωR, the blue (gray) lines to w = 3ωR and
the violet (light gray) lines to w = ωR. For every value of w we calculated
γ(w) using Eq. (3.2.22) and rescaled the time axis by Re(γ(w)). The
remaining parameters are ∆ = κ/2, β−1 = 20~ωR, and Λ = 40ωR. For
the simulations we used a momentum cut off at pmax = 16~k.

All four lines agree on a timescale of the order Re(γ)−1, thus showing that the linearized
master equation (3.2.4) is valid and the exponential increase of |X(t)| with exponent Re(γ)
can explain the dynamics. However, on a longer timescale we observe that the curves show
different behavior.

The onset of synchronization is not only visible in the coherences of the system but
also in the motional degrees of freedom. One example is the kinetic energy that is shown
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in Fig. 3.8(b) with the same color scheme as the ones in subplot (a). After a transient, we
observe a decrease of the kinetic energy whose gradient increases with w. This decrease
of the kinetic energy can be understood deriving the time evolution of the kinetic energy
using Eq. (3.2.5). We get

d

dt

〈p̂2〉
2m =~Λ

2

[
w

∆
κ/2 |X(t)|2 + 2Im

(
dX(t)
dt

X(t)∗
)]

=~Λ
[
w

2
∆
κ/2 + dφ

dt

]
|X(t)|2, (3.2.31)

where we used X(t) = |X(t)|eiφ(t). From this equation we see that dφ/dt determines
the growth of the kinetic energy. For our parameters choice, at short time scales (when
δX(t) ≈ |δX(t)|eiIm(γ)t holds), the system loses kinetic energy since

w

2
∆
κ/2 <

dφ

dt
≈ Im(γ).

This fits to the initial behavior visible in Fig. 3.8(b).
We want to discuss now the dynamics of the system towards a metastable state.

Dynamics towards a metastable state

On a longer timescale the dynamics of the order parameter |X(t)| can change for different
values of w. In Fig. 3.9 we plot the dynamics of |X| and 〈p̂2〉 up to t = 400ω−1

R . We

(a) (b)

Figure 3.9: (a) The absolute value of the mean-field order parameter
|X(t)| and (b) the second moment of momentum 〈p̂2〉 as function of time
in units of ω−1

R . The black lines corresponds to w = 10ωR, the green
(dark gray) lines to w = 6ωR, the blue (gray) lines to w = 3ωR and the
violet (light gray) lines to w = ωR. We used a cut-off at pmax = 16~k.
The remaining parameters are the same as in Fig. 3.8 and the simulation
time is t = 400ω−1

R

observe that for w = 10ωR (black curve) and w = 6ωR (green, dark gray curve) |X|
and 〈p̂2〉 reach a constant value. The asymptotic values depend on w. The dynamical
behavior of |X| and 〈p̂2〉 changes significantly for the values w = 3ωR (blue, gray curve)
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and w = 1ωR (violet, light gray curve). For w = 3ωR we observe an oscillation of the
order parameter as well as of the mean kinetic energy. These oscillations seem to have
an almost well-defined frequency. In the case of w = ωR, instead, we observe oscillations
that appear chaotic.

To analyze this dynamics we calculate the absolute value of the Laplace transform on
the imaginary axis

F (ω) ∝
∣∣∣∣∫ tend

0
dteiωtX(t)

∣∣∣∣ , (3.2.32)

where tend denotes the time over which we integrate the dynamics. For every value of
w we normalize F (ω) with its maximum value such that F (ω) ≤ 1 and F (ω) = 1 at
the maximum. The results are plotted in Fig. 3.10. For large enough values for w

Figure 3.10: The function F (ω) as defined in Eq. (3.2.32). Here we used
tend = 1200ω−1

R , Λ = 40ωR, and ∆ = κ/2. The dashed black line cor-
responds to the frequency of the steady-state superradiance ω0 = −w/2
(see Eq. (3.2.25)). The dashed-dotted gray horizontal line corresponds
to a stability line of the stationary state. The circles correspond to the
imaginary part of γ found by the stability analysis. For the simulations
we used a cut-off at pmax = 16~k.

we observe a single peak of F (ω). This peak appears at the frequency ω0 = −w/2,
corresponding to the case of steady-state superradiance. It is the frequency for that
d〈p̂2〉/dt = 0 in Eq. (3.2.31). If w becomes smaller than w ∼ 3ωR, we observe the
appearance of sidebands in F . When w is further decreased, more sidebands appear, until
the spectrum becomes almost continuous. This is also reflected in the dynamics of |X|
where the oscillations become chaotic. The onset of the oscillation can also be understood
by calculating the stability of the stationary state using the methods of the previous
subsection 3.2.1 (Eq. (3.2.11)). The dashed-dotted gray horizontal line at wt ≈ 3.1ωR
corresponds to a transition where Re(γ) changes its sign. This agrees with the threshold
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for the oscillations. The value of γL = Re(γ) can be seen as a Lyapunov exponent that
describes the transition from a steady-state superradiant to a chaotic phase. Moreover, we
found two solutions γ± of the dispersion relation at w = wt = 3.1ωR that changed there
sign. The corresponding imaginary parts of γ± are depicted by circles on the dashed-
dotted line. They are compatible with the frequencies that occur at the threshold.

We want to study now the asymptotic state of the system. In Fig. 3.11 we plotted in
subplot (a) the values of |X| and in (b) the values of 〈p̂2〉 at t = 400ω−1

R . The dashed
line corresponds to the coherent stationary state. For w > 3.1ωR we see that numerical

(a) (b)

Figure 3.11: (a) The mean-field order parameter |X(t)| at t = 400ω−1
R

(circles) and the average |X|av using Eq. (3.2.30) for tend = 1200ω−1
R

(stars). (b) the second moment of momentum 〈p̂2〉(t) at t = 400ω−1
R

(circles) and the average 〈p̂2〉av calculated using Eq. (3.2.33) for tend =
1200ω−1

R (stars). The dashed lines are the stationary values. The gray
vertical lines at w = wt = 3.1ωR are the stability threshold for the
stationary state. For all calculated values we used a cut-off at pmax =
16~k and ∆ = κ/2.

and analytical results are in very good agreement. Below this threshold, the values of |X|
and 〈p̂2〉 oscillate. To provide some insight into the asymptotic dynamics of the system
we calculate the time-averaged variables |X|av, defined in Eq. (3.2.30), and

〈p̂2〉av = 1
tend

∫ tend

0
dt〈p̂2〉(t). (3.2.33)

The corresponding results are shown in Fig. 3.11 for tend = 1200ω−1
R . For values w >

wt = 3.1ωR we observe the final values of |X(t)| and the averaged values |X|av agree.
Furthermore both are in agreement with the calculated stationary state. We may thus
assume that the simulation time was long enough such that the time averaged variable
in Eq. (3.2.30) and Eq. (3.2.33) coincide with the stationary values. For values w < wt
we observe discrepancies between all three quantities. The oscillations in X and 〈p̂2〉 lead
to the deviations between the averaged values and the ones calculated at a fixed time.
Moreover, we observe that even the time-averaged quantities differ from the calculated
stationary values. The time-averaged value |X|av is slightly larger than the stationary
value while the time-averaged kinetic energy 〈p̂2〉av is smaller than the corresponding
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stationary value. With these results we conclude that chaotic light emission of the atomic
ensemble is stable and can also be observed in the thermal regime.

The next subsection is dedicated to a discussion of the validity of the mean-field
approach.

3.2.3 Correlations in steady-state superradiance
In the following we will derive a hierarchy of coupled master equation5 for the l-particle
density matrix with l = 1, 2, ..., N . From this we will show how one can derive a consistent
mean-field theory that relies on discarding two- and higher-number particle correlations
in determining the dynamics of steady-state superradiance.

Evolution of the l-particle density matrix

We start with the full dynamics of N particles. Their Hilbert space is the tensor product
H⊗N of the single-particle Hilbert space H. We denote the N -particle density matrix by
ρ̂N and define the l-particle density matrix ρ̂l by tracing out N − l particles degrees of
freedom, such that TrN−l(ρ̂N) = ρ̂l. Using this definition we can now derive a dynamical
equation for ρ̂l that can be calculated by applying TrN−l on Eq. (3.1.3). The time evolution
for ρ̂l for 1 ≤ l ≤ N − 1 may then be written as

∂ρ̂l
∂t

= 1
i~

[Ĥl, ρ̂l] +Dlρ̂l + Ll[ρ̂l+1], (3.2.34)

with

Ĥl =
l∑

j=1

p̂2
j

2m −
~∆
κ

Λ
N
Ĵ†l Ĵl, (3.2.35)

Dlρ̂l =− Λ
2N

(
Ĵ†l Ĵlρ̂l + ρ̂lĴ

†
l Ĵl − 2Ĵlρ̂lĴ†l

)
−

l∑
j=1

w

2
(
σ̂jσ̂

†
j ρ̂l + ρ̂lσ̂jσ̂

†
j − 2σ̂†j ρ̂lσ̂j

)
, (3.2.36)

and

Ll[ρ̂l+1] =i
(

1− l

N

)
Λ
2 α[Ĵl, X̂ ∗l [ρ̂l+1]] + H.c. , (3.2.37)

and where α = 2∆/κ− i. Furthermore we assumed that the density matrix ρ̂N does not
change under particle permutation and introduced

X̂l[ρ̂l+1] = Tr(l+1) (σ̂l+1 cos(kx̂l+1)ρ̂l+1) , (3.2.38)

for 1 ≤ l ≤ N − 1 and

Ĵl =
l∑

j=1
σ̂j cos(kx̂j), (3.2.39)

5This approach is similar to the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon)-Hierarchy that
has been applied to long-range interacting systems [23, 136].
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for 1 ≤ l ≤ N . Here Tr(k) denotes the trace over the kth Hilbert space H in the tensor
product. For a trace class operator Ô over the Hilbert space H⊗m, m > k, with basis
states |i1, p1〉 ⊗ |i2, p2〉 ⊗ ... ⊗ |im, pm〉, internal states il ∈ {g, e}, external states pl ∈ R,
l = 1, ...,m, the partial trace Tr(k) is defined as

Tr(k)(Ô) =
∫ ∞
−∞

dpk
[
〈ek, pk|Ô|ek, pk〉+ 〈gk, pk|Ô|gk, pk〉

]
.

The terms in Eqs. (3.2.35) and (3.2.36) describe the dynamics of the system inside the
space of l particles. The term in Eq. (3.2.37), instead, couples the l-particle density matrix
and the l + 1-particle density matrix.

We will now use Eq. (3.2.34) to describe the coupled dynamics of the mean-field density
matrix ρ̂1 to higher-number particle correlations and discuss when they can be discarded.

Coupled dynamics of mean-field and two-particle correlations

To derive the mean-field master equation we use Eq. (3.2.34) for l = 1 and decompose
the two-particle density matrix into a factorizable density matrix ρ̂1⊗ ρ̂1 and two-particle
correlations ĝ2 such that [23]

ρ̂2 = ρ̂1 ⊗ ρ̂1 + ĝ2. (3.2.40)

The equation of motion for the two-particle correlations ĝ2 can be written

∂ĝ2

∂t
= ∂ρ̂2

∂t
− ∂ρ̂1

∂t
⊗ ρ̂1 − ρ̂1 ⊗

∂ρ̂1

∂t
. (3.2.41)

Now explicitly using Eq. (3.2.34) for l = 1 and l = 2 and Eq. (3.2.40) we can derive6

∂ρ̂1

∂t
=Lmf [ρ̂1]ρ̂1 + L1[ĝ2], (3.2.42)

∂ĝ2

∂t
=Â1 + Â2, (3.2.43)

where we used the definitions

Â1 = 1
i~

[Ĥ2, ρ̂2]− 1
i~

[Ĥ1, ρ̂1]⊗ ρ̂1 −
1
i~
ρ̂1 ⊗ [Ĥ1, ρ̂1]

+D2ρ̂2 − (D1ρ̂1)⊗ ρ̂1 − ρ̂1 ⊗ (D1ρ̂1) (3.2.44)

and

Â2 = L2[ρ̂3]− L1[ρ̂2]⊗ ρ̂1 − ρ̂1 ⊗ L1[ρ̂2]. (3.2.45)

The term Lmf is the mean-field master equation

Lmf [ρ̂1]ρ̂1 = 1
i~

[Ĥmf , ρ̂1] + LΛ/N [σ̂ cos(kx̂)]ρ̂1 + Lw[σ̂†]ρ̂1, (3.2.46)

with the mean-field Hamiltonian

Ĥmf = p̂2

2m −
~Λ
N

∆
κ
σ̂†σ̂ cos2(kx̂)− ~Λ

2
(
αX(ρ̂1)∗σ̂ + α∗X(ρ̂1)σ̂†

)
cos(kx̂). (3.2.47)

6This is similar to the Lenard-Balescu equation while the mean-field equation without the coupling
to ĝ2 can be seen as a Vlasov equation [23].
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Here we defined

X(ρ̂1) = Tr(σ̂ cos(kx̂)ρ̂1). (3.2.48)

We can simplify Â1 in Eq. (3.2.44) to obtain the following form

Â1 = 1
i~

[Ĥ2, ĝ2] +D2ĝ2 + i
Λ

2N
(
α[Ĵ1, ρ̂1]⊗ ρ̂1Ĵ

†
1 + αρ̂1Ĵ

†
1 ⊗ [Ĵ1, ρ̂1]− H.c.

)
. (3.2.49)

For the calculation of Â2 we need an expression for the three-particle density matrix and
this will include three-particle correlations. We write

ρ̂3 = ρ̂1 ⊗ ρ̂1 ⊗ ρ̂1 +
3∑

i,j,k=1
|εijk|ĥij,k + ĝ3,

where ĥij,k describes two-particle correlations between i and j but no correlations between
i and k and between j and k with i, j, k ∈ {1, 2, 3}. The three particle correlations are
characterized by ĝ3 and εijk is the Levi-Cevita tensor. The final form of Â2 reads

Â2 =− i Λ
2N [αX∗0 Ĵ2 + α∗Ĵ†2X0, ρ̂1 ⊗ ρ̂1] + i

(1− 2/N)Λ
2 [αX∗0 Ĵ2 + α∗Ĵ†2X0, ĝ2]

+ i
(1− 2/N)Λ

2
(
αX̂ ∗1 [ĝ2]⊗ [Ĵ1, ρ̂1] + α[Ĵ1, ρ̂1]⊗ X̂ ∗1 [ĝ2]− H.c.

)
− i Λ

2N
(
α[Ĵ1, X̂ ∗1 [ĝ2]]⊗ ρ̂1 + αρ̂1 ⊗ [Ĵ1, X̂ ∗1 [ĝ2]]− H.c.

)
+ L2[ĝ3]. (3.2.50)

From Eq. (3.2.49) and (3.2.50) we see that when we assume that ĝ2 = 0 and ĝ3 = 0 at
t = 0 then ĝ2 will remain small on a timescale T that is sufficiently small compared to
NΛ−1. Therefore on a timescale

T � NΛ−1 (3.2.51)

we may assume that mean-field is valid and we can neglect the contribution of ĝ2 to the
mean-field master equation (3.2.46).
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Section 3.3

Synchronization-assisted cooling

In this section we discuss cooling effects in presence of steady-state superradiance using a
semiclassical approach. In both subsections we show published and peer-reviewed articles
and provide a contribution list of the authors.

3.3.1 Supercooling of Atoms in an Optical Resonator
Physical Review Letters 116, 153002 (2016)
c©2016 American Physical Society - published 15 April 2016
DOI: 10.1103/PhysRevLett.116.153002

Authors: Minghui Xu1,2, Simon B. Jäger3, S. Schütz3, J. Cooper1, Giovanna Morigi3, and
M. J. Holland1,2

1JILA, National Institute of Standards and Technology and Department of Physics, Uni-
versity of Colorado, Boulder, Colorado 80309-0440, USA
2Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309,
USA
3Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany

With kind permission of the American Physical Society.

Author Contributions:
The theoretical model was developed by M. Xu, S. Schütz, G. Morigi, and M. J. Holland.
Numerical simulations were performed by M. Xu, S. Schütz, and S. B. Jäger. Analytical
calculations were performed by M. Xu, S. B. Jäger, and J. Cooper. The results were
checked and discussed by all authors. The article was mainly written by M. Xu and
M. J. Holland.

Abstract:
We investigate laser cooling of an ensemble of atoms in an optical cavity. We demonstrate
that when atomic dipoles are synchronized in the regime of steady-state superradiance,
the motion of the atoms may be subject to a giant frictional force leading to potentially
very low temperatures. The ultimate temperature limits are determined by a modified
atomic linewidth, which can be orders of magnitude smaller than the cavity linewidth.
The cooling rate is enhanced by the superradiant emission into the cavity mode allowing
reasonable cooling rates even for dipolar transitions with ultranarrow linewidth.
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We investigate laser cooling of an ensemble of atoms in an optical cavity. We demonstrate that when
atomic dipoles are synchronized in the regime of steady-state superradiance, the motion of the atoms may
be subject to a giant frictional force leading to potentially very low temperatures. The ultimate temperature
limits are determined by a modified atomic linewidth, which can be orders of magnitude smaller than the
cavity linewidth. The cooling rate is enhanced by the superradiant emission into the cavity mode allowing
reasonable cooling rates even for dipolar transitions with ultranarrow linewidth.

DOI: 10.1103/PhysRevLett.116.153002

The discovery of laser cooling [1] has enabled new
areas of quantum gas physics and quantum state engineer-
ing [2]. Laser cooling is an essential technology in
many fields, including precision measurements, quantum
optics, and quantum information processing [3–5].
Doppler laser cooling [6,7] relies on repeated cycles of
electronic excitation by lasers followed by spontaneous
relaxation, reaching temperature limits determined by
the atomic linewidth. Only specific atomic species can
be Doppler cooled because they should possess an
internal level structure that allows for closed cycling
transitions.
Cavity-assisted laser cooling [8,9] utilizes the decay of an

optical resonator instead of atomic spontaneous emission for
energy dissipation. It is based on the preferential coherent
scattering of laser photons into an optical cavity [10,11].
Temperatures that can be achieved in this way are limited by
the cavity linewidth. Since the particle properties enter only
through the coherent scattering amplitude, cavity-assisted
cooling promises to be applicable to any polarizable object
[12–20], including molecules [17,18] and even mesoscopic
systems such as nanoparticles [19,20].
The many-atom effects of cavity-assisted cooling were

theoretically discussed by Ritsch and collaborators [21]
and experimentally reported [22,23]. The cavity-mediated
atom-atom coupling typically leads to a cooling rate that is
faster for an atomic ensemble than for a single atom. Self-
organization may occur and is observed as patterns in the
atomic distribution that maximize the cooperative scatter-
ing. Recently, it has been shown that the long-range nature
of the cavity-mediated interaction between atoms gives
rise to interesting prethermalization behavior [24]. In spite
of the intrinsic many-body nature, the underlying cooling
mechanism shares much with the single-atom case, and
indeed the final temperature observed in these systems is
limited by the cavity linewidth.

In this Letter, we demonstrate that the mechanical action
of the atom-cavity coupling takes on a dramatically new
character for atoms in the regime of steady-state super-
radiance [25–30]. Specifically, the frictional force on a
single atom is significantly enhanced, and the final temper-
ature is much lower than the temperature that can be
achieved in cavity-assisted cooling [10,11]. Furthermore,
as the atom number increases, the cooling may become
faster due to the increasing rate of superradiant collective
emission. We show that ability to achieve much lower
temperatures than for single-atom cavity-assisted cooling
derives from the emergence of atom-atom dipole correla-
tions in the many-body atomic ensemble.
Steady-state superradiant laserswereproposed inRef. [25]

as possible systems for generatingmilliHertz linewidth light,
and demonstrated in a recent experiment using a two-photon
Raman transition [27]. In steady-state superradiance, the
cavity decay ismuch faster than all other processes and plays
the role of a dissipative collective coupling for the atoms that
leads to the synchronization of atomic dipoles [29,30]. The
emergence of a macroscopic collective dipole induces an
extremely narrow linewidth for the generated light [25,30].
The optimal parameters are in the weak-coupling regime of
cavity QED [31], which is opposite to the strong-coupling
situation usually considered in cavity-assisted cooling [8,9].
Superradiant lasers require weak-dipole atoms (e.g., using
intercombination lines or other forbidden transitions) con-
fined in a high-finesse optical cavity.
We consider an ensemble of N pointlike two-level

atoms with transition frequency ωa and natural linewidth
γ, interacting with a single-mode cavity with resonance
frequency ωc and linewidth κ, as shown in Fig. 1. The
atoms are restricted to move freely along the direction
of the cavity axis (x axis) and are tightly confined in the
other two directions. The atom-cavity coupling is given
by g cosðkxÞ, where g is the vacuum Rabi frequency at the
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field maximum, and cosðkxÞ describes the one-dimensional
cavity mode function [32]. The atoms are incoherently
repumped at rate w, providing the photon source.
The Hamiltonian in the rotating frame of the atomic

transition frequency is given by

Ĥ ¼ ℏΔâ†âþ
XN
j¼1

p̂2
j

2m
þ ℏ

g
2

XN
j¼1

ðâ†σ̂−j þ σ̂þj âÞ cosðkx̂jÞ;

ð1Þ
where Δ ¼ ωc − ωa. We have introduced the bosonic
annihilation and creation operators, â and â†, for cavity
photons. The jth atom is represented by Pauli pseudospin
operators, σ̂zj and σ̂

−
j ¼ ðσ̂þj Þ†, and position and momentum

x̂j and p̂j, respectively.
In the presence of dissipation, the evolution of the system

is described by the Born-Markov quantum master equation
for the density matrix ρ̂ for the cavity and atoms,

d
dt
ρ̂¼ 1

iℏ
½Ĥ; ρ̂� þ κL½â�ρþw

XN
j¼1

Z
1

−1
duNðuÞL½σ̂þj eiuk0x̂j �ρ;

ð2Þ
where L½Ô�ρ̂ ¼ ð2Ô ρ̂ Ô† − Ô†Ô ρ̂−ρ̂Ô†ÔÞ=2 is the
Linbladian superoperator describing the incoherent proc-
esses. The term proportional to κ describes the cavity decay.
The repumping is the term proportional to w and is modeled
by spontaneous absorption with recoil [33]. The recoil is
parametrized by the normalized emission pattern NðuÞ and
wave vector k0. We neglect free-space spontaneous emission,
since the natural linewidth γ is assumed to be extremely small
for atoms with an ultraweak-dipole transition.

In the regime of interest, the cavity linewidth is much
larger than other system frequencies, and the cavity field
can be adiabatically eliminated, resulting in phase locking
of the cavity field to the collective atomic dipole [26,29,30].
In order to correctly encapsulate the cavity cooling mecha-
nism, the adiabatic elimination of the cavity field must
be expanded beyond leading order. This includes retarda-
tion effects between the cavity field and atomic variables.
As shown in the Supplemental Material [34], in the large κ
limit [35],

âðtÞ ≈ −i g
2
Ĵ−

κ=2þ iΔ
þ

d
dt ði g2 Ĵ−Þ

ðκ=2þ iΔÞ2 −
2i

ffiffiffiffiffiffi
ΓC

p
g

ξ̂ðtÞ þO½κ−3�;

ð3Þ

where Ĵ− ¼ P
N
j¼1 σ̂

−
j cosðkx̂jÞ is the collective dipole

operator, ΓC ¼ g2κ=4ðκ2=4þ Δ2Þ is the spontaneous emis-
sion rate through the cavity, and ξ̂ðtÞ is the quantum noise
originating from the vacuum field entering through the
cavity output.
The dipole force on the jth atom is given by the gradient

of the potential energy, which takes the form

Fj ¼
d
dt

p̂j ¼ −∇jĤ ¼ 1

2
ℏkg sinðkx̂jÞðσ̂þj âþ â†σ̂−j Þ: ð4Þ

We maximize the single-atom dissipative force by working
at the detuning Δ ¼ κ=2 [34], and in that case by
substituting Eq. (3) into Eq. (4), we find

d
dt
p̂j ≈−

1

2
ℏkΓC sinðkx̂jÞðð1þ iÞσ̂þj Ĵ− þ ð1− iÞĴþσ̂−j Þ

−
1

2
ηΓC sinðkx̂jÞ

XN
l¼1

ðσ̂þj σ̂−l þ σ̂þl σ̂
−
j Þ

1

2
½sinðkx̂lÞ; p̂l�þ

þ N̂ j: ð5Þ

Here the anticommutator is ½Â; B̂�þ ¼ Â B̂þB̂ Â. We have
defined η ¼ 4ωr=κ, which characterizes the likelihood that
a photon emission into the cavity mode will be in the same
direction as the motion, in terms of the recoil frequency
ωr ¼ ℏk2=2m. The three terms on the right-hand side of
Eq. (5) can be interpreted as the conservative force, the
friction, and the noise-induced momentum fluctuations,
respectively.
For temperatures above the recoil temperature, the

motion is well described by a semiclassical treatment.
A systematic semiclassical approximation, to make the
mapping hx̂ji → xj and hp̂ji → pj, where xj and pj are
classical variables, is based on the symmetric ordering of
operator expectation values. In order to accurately incor-
porate the effects of quantum noise, we match the equations
of motion for the second-order moments of momenta
between the quantum and semiclassical theories so that

FIG. 1. Atoms with ultranarrow transition jgi ↔ jei are con-
fined to the axis of a standing-wave mode of an optical cavity.
Different implementations of pumpingmay be considered [25,27].
In the simplest scenario shown, a transition is driven from the
ground state jgi to an auxiliary state jai that rapidly decays to the
excited state jei. In this way jai can be adiabatically eliminated
and a two-state pseudospin description in the fjgi; jeig subspace
used, with repumping corresponding to an effective ratew from jgi
to jei. If the repumping laser is directed normal to the cavity axis,
the absorption does not modify the momentum.Momentum recoil

is induced by the on-axis component of the wave vector ~k0 of the
dipole radiation pattern for the jai ↔ jei transition.
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we obtain the correct momentum diffusion [34]. This
procedure yields Ito stochastic equations,

d
dt

pj ≈ ℏkΓC sinðkxjÞðIm½hσ̂þj Ĵ−i� − Re½hσ̂þj Ĵ−i�Þ

− ηΓC sinðkxjÞ
XN
l¼1

Re½hσ̂þj σ̂−l i� sinðkxlÞpl þ ξpj ;

ð6Þ
where ξpj is the classical noise and hξpj ðtÞξpl ðt0Þi ¼
Djlδðt − t0Þ with diffusion matrix

Djl ¼ ℏ2k2ΓC sinðkxjÞ sinðkxlÞRe½hσ̂þl σ̂−j i�
þ ℏ2k02wū2hσ̂−j σ̂þl iδjl; ð7Þ

involving the geometrical average ū2 ≡ R
1
−1 u

2NðuÞdu and
Kronecker delta δjl. The momentum evolution is paired
with the usual equation for xj,

d
dt

xj ¼
pj

m
: ð8Þ

We first consider the case in which the effect of recoil
associated with the repumping is neglected; i.e., we set
k0 ¼ 0. This determines the ultimate temperature limit imp-
osed by the vacuum noise due to the cavity output. For the
one-atom case, we can then find the friction (α) and diffusion
(D) coefficient from Eq. (6) and Eq. (7). The steady-state
temperature T for the single atom (labeled by 1) is

kBT ¼ hp2
1i
m

¼ D
2mα

¼ ℏκ
4
; ð9Þ

since

D ¼ ℏ2k2ΓCsin2ðkx1Þhσ̂þ1 σ̂−1 i;
α ¼ ηΓCsin2ðkx1Þhσ̂þ1 σ̂−1 i: ð10Þ

Note that this is precisely the same temperature limit
previously found in the cavity-assisted cooling case where
the system is operating in the strong coupling cavity-QED
region. Here the rate of the decay into the cavity mode is
proportional to ΓChσ̂þ1 σ̂−1 i, which is applicable to the weak
coupling regime of cavity QED [31]. In Fig. 2(a), we show a
numerical simulation of the cooling trajectory of a single
atom as a function of time.As expected, the final temperature
kBT asymptotes to ℏκ=4 and the cooling rate is well
approximated by RS ¼ ηΓChσ̂þ1 σ̂−1 i.
The cooling in the many-atom case exhibits a

distinctly different character. A feature of this model is
the pseudospin-to-motion coupling of the atoms. In order to
close the evolution equations of the atomic motion as
described by Eq. (6) and Eq. (8), it is necessary to solve the
pseudospin dynamics. For this purpose, we derive in the
Supplemental Material [34] the quantum master equation
for the pseudospins,

d
dt

ρ̂ ¼ 1

iℏ
½Ĥeff ; ρ̂� þ ΓCL½Ĵ−�ρ̂

þ w
XN
j¼1

Z
1

−1
duNðuÞL½σ̂þj eiuk0x̂j �ρ; ð11Þ

where the effective Hamiltonian Ĥeff ¼ −ℏΓCĴ
þĴ−=2

describes the coherent coupling between atoms, and the
collective decay [term proportional to ΓC in Eq. (11)]
leads to dissipative coupling. It is the dissipative coupling
that gives rise to dipole synchronization and steady-state
superradiance [25–30]. The full pseudospin Hilbert space
dimension scales exponentially with the atom number.
To solve Eq. (11), we employ a cumulant approximation
that is applicable to many atoms [26,29,30]. All nonzero
observables are expanded in terms of hσ̂þj σ̂−j i and hσ̂þj σ̂−l i
(j ≠ l), describing the population inversion and spin-spin

FIG. 2. Time evolution of the average momentum square (red
dots) evaluated from 4000 trajectories simulated by integrating
Eqs. (6) and (8) for 1 (a), 20 (b), and 60 atoms (c). The blue solid
line is a fit to an exponential decay. The parameters are
Δ ¼ κ=2 ¼ 100, ΓC ¼ 0.1, and ωr ¼ 0.25. The repumping rates
are chosen such that the average atomic population inversion in
all cases is the same [w ¼ 0.15 (a), 0.28 (b), 1.3 (c)]. Insets show
the momentum statistics. The blue solid line is a fit to a Gaussian
distribution.
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correlations, respectively. Their equations of motion are
derived in the Supplemental Material [34].
Simulations of the cooling dynamics for many atoms are

shown in Figs. 2(b) and 2(c). Remarkably, we find the
collective atomic effects lead to a more rapid cooling
rate, and, simultaneously, to a lower final temperature.
Figure 3 shows the cooling rate (a) and the final momentum
width (b) as a function of the atom number. We note that the
cooling rate exhibits two kinds of behavior, hinting towards
the existence of an N-dependent threshold; see Fig. 3(a).
For N ≲ 20, the cooling rate is independent of N, while for
N ≳ 20, it increases monotonically. Correspondingly, in
this regime, the momentum width reaches a minimum
independent ofN; see Fig. 3(b). When the final temperature
gets closer to the recoil temperature, the momentum
distribution is no longer Gaussian, rendering the notion
of temperature invalid. The semiclassical treatment predicts
a uniform distribution in the momentum interval [−ℏk,ℏk]
corresponding to the recoil limit, as shown in the inset of
Fig. 2(c). We note that sub-Doppler temperatures for a
similar setup have been reported in Refs. [36–38], where
spontaneous decay was assumed to be the fastest incoher-
ent process. Differing from that regime, the recoil limit is
here reached thanks to the small spontaneous decay rate.
When the temperature approaches the recoil temperature,
however, the validity of the semiclassical treatment of
atomic motion is questionable and a full quantum model is
necessary in order to determine the asymptotic energy.
These results demonstrate that not only is the cooling more
efficient due to the rapid rate of superradiant light emission,
but also the final temperature is determined by the
relaxation rate ΓC of the atomic dipole, and not by the
cavity linewidth.
The principal new feature is that spin-spin correlations

between atoms develop due to the cavity-mediated coupling.
In order to measure the extent of this effect, we introduce
hσ̂þσ̂−iE defined as averaged spin-spin correlations,

hσ̂þσ̂−iE ¼
�
hĴþĴ−i −

XN
j¼1

hσ̂þj σ̂−j icos2ðkxjÞ
�
=½NðN − 1Þ�:

ð12Þ

Figure 3(b) shows hσ̂þσ̂−iE as a function of the atomnumber.
The equilibrium temperature decreases as the collective spin-
spin correlation emerges. This is reminiscent of the linewidth
of the superradiant laser, where the synchronization of spins
leads to a significant reduction of the linewidth to the order of
ΓC [25,30]. The establishment of spin-spin correlations is a
competition between dephasing due to both cavity output
noise and repumping, and the dissipative coupling between
atoms which tends to synchronize the dipoles [30]. Since the
coupling strength scales withN, a sufficient atom number is
required to establish strong spin-spin correlations [30].
Further characterizing the ultimate temperature limits,

Fig. 4(a) shows the final momentum width as a function of
ΓC. We see that as ΓC is decreased, the final temperature
reduces in proportion to ΓC until it hits the recoil limit. This
effect is consistent with a significantly increased friction
coefficient providing a reduction of the order of the final
temperature from the one to many atom case from κ to ΓC.
So far our discussion has neglected the recoil associated

with repumping. We have done that because its effect on the
final temperature will depend crucially on specifics of its
implementation, including factors such as the polarizations
and directions of repump lasers, the atomic system, and the
transitions used. However, in the specific repumping model
shown in Fig. 1, the magnitude of k0 controls the recoil
effect of the repumping on the momentum diffusion.
Figure 4(b) shows the final momentum width as a function
of repumping for k0 ¼ 0 and k0 ¼ k. Again, in the region of
small and large repumping, where spin-spin correlations
are very small, the final temperature is high. When the
recoil due to repumping is included, the final temperature
becomes higher and is eventually determined by wū2.
However, for weak repumping, with w not significantly
larger then ΓC it is still possible to achieve temperatures not
much higher than that predicted when pump recoil was
neglected. This is especially promising for the implemen-
tation of supercooling in realistic experimental systems.
Note that k ¼ k0 is more or less a worst case scenario, since
by using a dipole allowed transition for the relaxation from
the auxiliary state to the excited state, one could, in

FIG. 3. (a) Cooling rate (in units of the single atom cooling rate
RS) as a function of atom number. (b) Final momentum width
(Δp ¼

ffiffiffiffiffiffiffiffiffi
hp2i

p
, blue squares) and spin-spin correlation (red dots)

as a function of atom number. The parameters are the same as
those in Fig. 2.

FIG. 4. (a) Final momentum width as a function of ΓC for
40 atoms. The parameters are Δ ¼ κ=2 ¼ 200, w ¼ NΓC=4, and
ωr ¼ 0.25. (b) Final momentum width as a function of repumping
strength for 40 atoms without (k0 ¼ 0, blue squares) and
with recoil associated with repumping (k0 ¼ k, red dots). The
parameters are Δ ¼ κ=2 ¼ 200, ΓC ¼ 0.5, and ωr ¼ 0.25.

PRL 116, 153002 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

15 APRIL 2016

153002-4

140 Optomechanical effects in steady-state superradiance



principle, use a much reduced frequency with correspond-
ingly small recoil.
In conclusion, we have proposed supercooling of the

atomic motion along the axis of an optical cavity. The
superradiant emission was observed to lead to an enhanced
cooling rate and extremely low final temperature. The
ultimate temperatures were constrained by the relaxation of
the atomic dipole, and may be orders of magnitude lower
than for single atom cooling where temperatures are limited
by the cavity linewidth. From a broader viewpoint, we have
demonstrated an example of many-body laser cooling in
which all motional degrees of freedom of a collective
system are simultaneously cooled, and in which macro-
scopic spin-spin correlations are essential and must develop
for the cooling mechanism to work.
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1

Supplemental Material for
Supercooling of Atoms in an Optical Resonator

I. ADIABATIC ELIMINATION OF THE CAVITY MODE

The regime of steady-state superradiance is defined by a timescale separation between the single cavity mode and the atomic
degrees of freedom. The typical relaxation time of the cavity mode is of the order of TC ∼ |κ + i∆|−1, while the one of the atoms
is given by TA ∼

(
max

{√
Nn̄g,w, k

√〈
p2〉/m

})−1
, where n̄ is the mean photon number in the cavity. In order to eliminate the

cavity field quasiadiabatically we need the relaxation time of the cavity to be much shorter than the timescale on which the atoms
are evolving, namely TA ≫ TC . To this end, we start with the quantum Langevin equation for the cavity field according to the
quantum master equation [Eq. (2) in the paper],

d
dt

â = − κ
2

â − i∆â − i
g
2

Ĵ− +
√
κξ̂(t) , (S1)

where ξ̂(t) is the quantum white noise and 〈ξ̂(t)ξ̂†(t′)〉 = δ(t − t′). The formal solution to Eq. (S1) is

â(t) = e−(κ/2+i∆)∆tâ(t0) − i
g
2

∫ ∆t

0
dse−(κ/2+i∆)s Ĵ−(t − s) + F̂ (t) , (S2)

where F̂ (t) =
√
κ
∫ ∆t

0 dse−(κ/2+i∆)sξ̂(t − s) is the noise term and ∆t = t − t0. Under the approximation of coarse grain-
ing (TA ≫ ∆t ≫ TC), the first term on the right-hand side (RHS) of Eq. (S2) vanishes, and it can be shown that

〈F̂ (t)F̂ †(t′)〉 ≈ e−κ|t
′−t|/2−i∆(t−t′) ≈ κ

κ2/4 + ∆2 δ(t − t′) . (S3)

It would be convenient to choose F̂ (t) = −i
√
ΓC

g/2 ξ̂(t), with

ΓC =
g2κ/4
κ2/4 + ∆2 . (S4)

Furthermore, the integral in Eq. (S2) can be expanded in powers of 1/(κ/2 + i∆). As a result we obtain

â(t) ≈ −i g
2 Ĵ−

κ/2 + i∆
−

d
dt (−i g

2 Ĵ−)
(κ/2 + i∆)2 + F̂ (t) + O[(κ/2 + i∆)−3] . (S5)

As can be seen from Eq. (S5), the retardation effects between the cavity field and atomic variables are included.

II. EXTERNAL MOTION OF ATOMS

In this section we derive the force for the external degrees of freedom, including friction and noise. We will end up with
a classical description of the particles’ external degrees of freedom and derive a Langevin equation for the momenta of the
particles.

The force on the j-th atom F̂ j is given by

F̂ j =
d
dt

p̂ j = ~k sin(kx̂ j)
g
2

(σ̂+j â + â†σ̂−j ) + N̂pump
j , (S6)

where N̂pump
j represents the random force due to recoil of the incoherent pumping process.

Substituting Eq. (S5) into the above equation , we have

d
dt

p̂ j ≈ ~k sin(kx̂ j)
ΓC

2

(
−iσ̂+j Ĵ− + iĴ+σ̂−j

)
− ~k sin(kx̂ j)

Γ∆

2

N∑

l=1

cos(kxl)
(
σ̂+j σ̂

−
l + σ̂

+
l σ̂
−
j − β1σ̂

+
j

d
dt
σ̂−l − β∗1

d
dt
σ̂+l σ̂

−
j

)

− sin(kx̂ j)
ΓC

2

N∑

l=1

η

2
[
sin(kx̂l), p̂l

]
+

(
σ̂+j σ̂

−
l + σ̂

+
l σ̂
−
j + β2σ̂

+
j σ̂
−
l + β

∗
2σ̂
+
l σ̂
−
j

)
+ N̂ j ,

(S7)
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2

where
[
Â, B̂

]
+
= ÂB̂ + B̂Â is the anticommutator and the coefficients are

Γ∆ =
g2∆/2
κ2/4 + ∆2 , β1 =

κ

κ2/4 + ∆2 + i
κ2/4 − ∆2

∆(κ2/4 + ∆2)
, β2 = i

κ2/4 − ∆2

κ∆
, η =

4ωr∆

κ2/4 + ∆2 . (S8)

Here N̂ j = N̂cav
j + N̂pump

j is the sum of the noise processes originating from the cavity output N̂cav
j and repumping N̂pump

j .
In the first line of equation (S7) we neglect β1 because in the steady state superradiance regime it holds that |β1|〈σ̂+j d

dt σ̂
−
l 〉 ∼

w
κ 〈σ̂+j σ̂−l 〉 ≪ 〈σ̂+j σ̂−l 〉. This has also been checked numerically. Therefore we get

d
dt

p̂ j =
d
dt

p̂0
j + N̂ j , (S9)

where we define the force without noise as

d
dt

p̂0
j ≈ ~k sin(kx̂ j)

ΓC

2

(
−iσ̂+j Ĵ− + iĴ+σ̂−j

)
− ~k sin(kx̂ j)

Γ∆

2

N∑

l=1

cos(kxl)
(
σ̂+j σ̂

−
l + σ̂

+
l σ̂
−
j

)

− sin(kx̂ j)
ΓC

2

N∑

l=1

η

2
[
sin(kx̂l), p̂l

]
+

(
σ̂+j σ̂

−
l + σ̂

+
l σ̂
−
j + β2σ̂

+
j σ̂
−
l + β

∗
2σ̂
+
l σ̂
−
j

)
.

(S10)

We work at the detuning ∆ = κ/2 so that η is maximized and β2 vanishes. As a result we obtain

d
dt

p̂0
j ≈ ~k sin(kx̂ j)

ΓC

2

(
−iσ̂+j Ĵ− + iĴ+σ̂−j − σ̂+j Ĵ− − Ĵ+σ̂−j

)
− sin(kx̂ j)

ΓC

2

N∑

l=1

η

2
[
sin(kx̂l), p̂l

]
+

(
σ̂+j σ̂

−
l + σ̂

+
l σ̂
−
j

)
. (S11)

The first term on the RHS of Eq. (S11) represents forces originating from the adiabatic component of the cavity field, while
the second term represents the frictional force arising from retardation effects. The noise term N̂ j in equation (S9) gives rise to
momentum diffusion due to quantum noises associated with incoherent processes. So we derive the equations of motion for the
second moments of momenta,

d
dt

〈
p̂ j p̂l

〉
=

〈
p̂0

j

dp̂0
l

dt

〉
+

〈dp̂0
j

dt
p̂0

l

〉
+ ΓC~

2k2〈sin(kx̂ j) sin(kx̂l)σ̂+j σ̂
−
l 〉 + wδ jl~

2k′2u2〈σ̂−j σ̂+l 〉 , (S12)

where δ jl is the Kronecker delta, and u2 is the second moment of the dipole radiation pattern, i.e.,

u2 =

∫ 1

−1
duN(u)u2 =

2
5
, (S13)

where we have taken the dipole pattern N(u) = 3
2 |u|
√

1 − u2.
We treat the external atomic motion classically under the assumption that the momentum width of the particles

√〈
p2〉 is larger

than the single photon recoil ~k. So we make the mapping 〈p̂ j〉 → p j and 〈x̂ j〉 → x j. As a result this leads to

d
dt

p j =
d
dt

p0
j + ξ

p
j , (S14)

with

d
dt

p0
j = ~k sin(kx j)ΓC

(
Im[〈σ̂+j Ĵ−〉] − Re[〈σ̂+j Ĵ−〉]

)
− sin(kx j)ΓC

N∑

l=1

ηRe[〈σ̂+j σ̂−l 〉] sin(kxl)pl , (S15)

where ξp
j is the classical noise acting on the momentum of j-th atom and 〈ξp

j (t)ξp
l (t′)〉 = D jlδ(t − t′). The diffusion matrix D jl

can be computed by making quantum-classical correspondence for the second moments. According to Eq. (S14),

d
dt
〈p j pl〉 =

〈
p0

j

dp0
l

dt

〉
+

〈dp0
j

dt
p0

l

〉
+ D jl . (S16)

We use symmetric ordering of quantum operators for the quantum-classical correspondence, i.e., 1
2

〈[
p̂ j,

dp̂l
dt

]
+

〉
→

〈
p j

dpl
dt

〉
.

Matching Eq. (S12) and Eq. (S16), we get

D jl = ΓC~
2k2 sin(kx j) sin(kxl)Re[〈σ̂+l σ̂−j 〉] + wδ jl~

2k′2u2〈σ̂−j σ̂+l 〉 . (S17)
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Therefore, we could simulate the external motion of atoms with Eq. (S14) and the equation of motion for x j

d
dt

x j =
p j

m
. (S18)

The classical noises ξp
j with diffusion matrix D jl make sure that we have the right second order moments for momenta.

III. INTERNAL DYNAMICS OF ATOMS

For the complete simulation of the atomic variables we also need to derive an equation for the internal degrees of freedom.
In this section we will derive the equations of motions for the spins in which we drop third-order cumulants. For the internal
dynamics of atoms in a superradiant laser, it is sufficient to keep the first order term in Eq. (S5),

â(t) ≈ −i
ΓC

g
Ĵ− − Γ∆

g
Ĵ− + F̂ (t) . (S19)

Here, retardation effects are not included because they give rise to corrections that are of higher order and their contribution is
negligible. This was also checked numerically. The adiabatic elimination of the cavity field leads to an effective quantum master
equation for the atomic spins only

d
dt
ρ =

1
i~

[Ĥeff , ρ] + ΓCL[Ĵ−]ρ + w
N∑

j=1

∫ 1

−1
duN(u)L[σ̂+j ei~k′·~x j]ρ , (S20)

where the Hamiltonian Ĥeff = − ~Γ∆2 Ĵ+ Ĵ− describes the coherent coupling between each pair of atoms, and the collective decay
[term ΓCL[Ĵ−] in Eq. (S20)] leads to dissipative coupling. We want to emphasize that this atomic master equation is not sufficient
for the external degrees of freedom, which are treated in section II separately, and for which retardation effects are not negligible.

The spin degrees of freedom of atoms scale exponentially with the number of atoms. To solve Eq. (S20), we thus use a
semiclassical approximation that is applicable to large atom numbers in the steady-state superradiance [S1, S2]. Cumulants for
the expectation values of spin operators are expanded to second order. Because of the U(1) symmetry, 〈σ̂±j 〉 = 0. Therefore, all
nonzero observables are expanded in terms of 〈σ̂+j σ̂−j 〉 and 〈σ̂+j σ̂−l 〉 ( j , l). Their equations of motion can then be found from
the effective master equation,

d
dt
〈σ̂+j σ̂−j 〉 = w(1 − 〈σ̂+j σ̂−j 〉) −

1
2

(ΓC + iΓ∆) cos(kx̂ j)〈Ĵ+σ̂−j 〉 −
1
2

(ΓC − iΓ∆) cos(kx̂ j)〈σ̂+j Ĵ−〉,
d
dt
〈σ̂+j σ̂−l 〉 = −w〈σ̂+j σ̂−l 〉 +

1
2

(ΓC + iΓ∆) cos(kx̂ j)〈Ĵ+σ̂−l σ̂z
j〉 +

1
2

(ΓC − iΓ∆) cos(kx̂l)〈σ̂z
l σ̂
+
j Ĵ−〉

≈ −
(
w + (ΓC + iΓ∆) cos2(kx̂ j)〈σ̂+j σ̂−j 〉 + (ΓC − iΓ∆) cos2(kx̂l)〈σ̂+l σ̂−l 〉

)
〈σ̂+j σ̂−l 〉

+
1
2

(ΓC + iΓ∆) cos(kx̂ j)(2〈σ̂+j σ̂−j 〉 − 1)〈Ĵ+σ̂−l 〉 +
1
2

(ΓC − iΓ∆) cos(kx̂l)(2〈σ̂+l σ̂−l 〉 − 1)〈σ̂+j Ĵ−〉,

(S21)

describing the population inversion and spin-spin correlation respectively. In deriving Eq. (S21), we have dropped the third-order
cumulants. In the simulations we integrate (S14), (S18) and (S21) simultaneously.

[S1] D. Meiser and M. J. Holland, Phys. Rev. A 81, 033847 (2010); ibid. 81, 063827 (2010).
[S2] Minghui Xu, D. A. Tieri, E. C. Fine, J. K. Thompson, and M. J. Holland, Phys. Rev. Lett. 113, 154101 (2014).
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We analyze the dynamics leading to radiative cooling of an atomic ensemble confined inside an optical cavity
when the atomic dipolar transitions are incoherently pumped and can synchronize. Our study is performed in
the semiclassical regime and assumes that cavity decay is the largest rate in the system dynamics. We identify
three regimes characterizing the cooling. At first hot atoms are individually cooled by the cavity friction forces.
After this stage, the atoms’ center-of-mass motion is further cooled by the coupling to the internal degrees
of freedom while the dipoles synchronize. In the latest stage dipole-dipole correlations are stationary and the
center-of-mass motion is determined by the interplay between friction and dispersive forces due to the coupling
with the collective dipole. We analyze this asymptotic regime by means of a mean-field model and show that the
width of the momentum distribution can be of the order of the photon recoil. Furthermore, the internal excitations
oscillate spatially with the cavity standing wave forming an antiferromagnetic-like order.

DOI: 10.1103/PhysRevA.95.063852

I. INTRODUCTION

Radiative cooling is based on tailoring the scattering cross
section of photons from atoms, molecules, and optomechanical
structures. It achieves a net and irreversible transfer of
mechanical energy into the modes of the electromagnetic
field by means of a coherent process followed by dissipation,
which in atomic and molecular media is usually spontaneous
emission [1,2]. By these means ultralow temperatures have
been realized, paving the way to unprecedented levels of
quantum control of the dynamics from the microscopic [3,4]
up to the mesoscopic realm [5–7].

Despite this remarkable progress, radiative cooling of
optically dense atomic or molecular ensembles to quantum
degeneracy remains a challenge. Here cooperative effects of
light scattering usually hinder the laser cooling dynamics,
because of the enhanced probability of reabsorbing the spon-
taneously emitted photons [8–10]. Among possible strategies
[11] and implementations [12], one promising scheme uses
elastic scattering into the mode of a high-finesse resonator
for avoiding spontaneous emission, while the irreversible
mechanism leading to dissipation is provided by cavity decay
[13–16]. In this regime the width of the asymptotic momentum
distribution is typically limited by the resonator line width
[15]. In single-mode standing-wave cavities, moreover, the
dispersive mechanical forces of the cavity induce a stationary
density modulation, which appear when the intensity of the
transverse laser driving the atoms exceeds a threshold value
[17–20].

Self-trapping and cooling of atoms in cavities are also
expected when the atoms are incoherently pumped [21–23].
In setups where the dipoles can synchronize [24], a cavity-

*Present address: icFRC, IPCMS (UMR 7504) and ISIS (UMR
7006), University of Strasbourg and CNRS, 67000 Strasbourg,
France.

assisted cooling mechanism was recently identified whose
dynamics exhibit giant friction forces [25]. Figure 1 schemati-
cally illustrates the setup: the atomic dipolar transitions are
transversally driven by an external incoherent pump and
strongly couple with the high-finesse mode of a standing-wave
resonator, whose decay rate exceeds by orders of magnitude
the incoherent pump rate. The numerical analysis performed
in Ref. [25] showed that the medium could reach ultralow
asymptotic temperatures that were orders of magnitude smaller
than the cavity line width.

The purpose of this paper is to perform a detailed analysis
of the semiclassical dynamics of the synchronization-assisted
cooling mechanism of Ref. [25]. Our study extends the work
in Ref. [25] and builds a consistent theoretical framework from
which we can extract analytical predictions on the dynamics.
We show that the cooling dynamics is essentially determined
by the three stages we illustrate in Fig. 2(a): initially hot atoms
are cooled by the resonator until the time scale of the external
degrees of freedom becomes of the order of the time scale
of the internal degrees of freedom. In the second stage the
dipoles synchronize and establish correlations with the atoms’
spatial distribution. In the final stage dipole-dipole correlations
are stationary and the motion is cooled down to temperatures
that are determined by the pump rate, providing this is chosen
within the interval of values allowing synchronization. Even
though the steady state exhibits no density modulations,
synchronization leads to correlations between the internal and
the external degrees of freedom and in the asymptotic limit the
atomic excitations oscillate in space with the intensity of the
intracavity field, as shown in Fig. 2(b).

The dynamics we discuss complements the studies per-
formed in Refs. [21–23], where the incoherent pump rate
was instead the fastest rate of the dynamics. We argue that
the resulting regimes are essentially different: for example, in
our case at steady state the atoms are not spatially localized
and the mean-field character of dipole-dipole correlations is
dominant.

2469-9926/2017/95(6)/063852(15) 063852-1 ©2017 American Physical Society
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(a)

(b)

FIG. 1. (a) Atoms are transversally driven by an incoherent pump
at rate w and strongly couple with the mode of a standing-wave cavity.
(b) The relevant internal states are the two metastable states |g〉 and
|e〉, which can be the ground and excited states of the intercombination
line of an alkali-earth metal atom or two sublevels of a hyperfine
multiplet. The dipolar transitions strongly couple to the cavity mode
with position-dependent strength g cos(kx), with g the vacuum Rabi
frequency and k the cavity wave number. The cavity decay rate is the
largest parameter of the dynamics, i.e., κ � g,w.

This article is organized as follows. In Sec. II we start
from the Heisenberg-Langevin equations of atoms and cavity
and derive a semiclassical model for the external degrees of
freedom. In Sec. III we determine a mean-field model and test
the validity of its predictions. We then use the mean-field model
to analyze the steady state and estimate the final temperature.
The conclusions are drawn in Sec. IV, while the appendices
provide details of the calculations of Secs. II and III.

II. SEMICLASSICAL MODEL OF
SYNCHRONIZATION-INDUCED COOLING

The system we consider consists of N atoms of mass m

that are confined within a high-finesse optical resonator and
are constrained to move only along the cavity axis, which
we denote by the x axis. The setup is illustrated in Fig. 1.
The atomic dipolar transition is incoherently driven by a
transverse pump (directed orthogonal to the cavity axis) at
rate w. Each atom is composed of two metastable states, |g〉
and |e〉, and strongly couples to a mode of the cavity with
position-dependent strength g cos(kx), with g the vacuum
Rabi frequency and k the cavity wave number. We discard
the instability of the excited state, so that atomic emission
only occurs into the cavity mode. This can be realized when
|g〉 and |e〉 form the intercombination line of alkali-earth
metals [26] or when they are two substates of the hyperfine
multiplet coupled by a two-photon transition, of which one
dipole transition is coupled with the resonator [24]. In either
case the atomic transition frequency ωa is determined by the
energy splitting between the two levels, while the mechanical
effects of light scale with the recoil frequency ωR = h̄k2/(2m).

(a)

(b)

FIG. 2. (a) Example of the time evolution of the one-particle
momentum width �p and schematic overview of the regimes
characterizing the dynamics of synchronization-assisted cooling.
The width �p determines the characteristic time scale Te of the
atoms’ external motion, which is inversely proportional to the mean
Doppler shift k�p/m. The time scales of reference are determined
by cavity decay, TC ∼ κ−1, and by the spins pump rate, Ti ∼ 1/w.
Initially, Te � Ti and the atoms’ center-of-mass motion is cooled
by the cavity forces. When the atoms are sufficiently cold that Te

becomes comparable to Ti , the cooling dynamics is determined by the
nonadiabatic coupling of the external motion with the spin dynamics.
The final stages are characterized by the regime Te � Ti and exhibit
temperatures that are orders of magnitude smaller than κ . (b) The
correlations between internal and external degrees of freedom give
rise to a position-dependent expectation value of population inversion
(solid line) that oscillates with the cavity intensity cos2(kx) and is
maximum at the nodes.

To good approximation, this is determined by the wave number
k of the cavity mode.

In this section we start from the Heisenberg-Langevin
equations of motion for the cavity, electronic, and center-
of-mass degrees of freedom, and derive the equations in the
limit in which the atoms’ center-of-mass motion can be treated
semiclassically. The parameter regime we consider is the one
of synchronization: The cavity decay rate κ is the fastest rate
of the dynamics and the value of the incoherent pump rate
w is chosen within the lower and the upper synchronization
thresholds [27], as we specify below. The recoil frequency
ωR is typically the smallest parameter of the dynamics, so
that ωR < w � κ , which is consistent with the validity of the
semiclassical treatment we apply in this work.

A. Heisenberg-Langevin equations

We denote by â and â† the annihilation and creation
operators of a cavity photon at frequency ωc and wave number
k. The atoms are assumed to be distinguishable and are labeled
by j (j = 1, . . . ,N). Their canonically conjugated position
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and momentum are denoted by x̂j and p̂j and the lowering,
raising, and population-inversion operators by σ̂j = |g〉j 〈e|,
σ̂
†
j = |e〉j 〈g|, and σ̂ z

j = |e〉j 〈e| − |g〉j 〈g|, respectively.
The Hamiltonian governing the coherent dynamics in the

frame rotating at the frequency ωa reads

Ĥ = h̄�â†â +
N∑

j=1

p̂2
j

2m
+ h̄

g

2

N∑
j=1

[â†σ̂j cos(kx̂j ) + H.c.],

(1)

with � = ωc − ωa the detuning between cavity and atomic
transition frequency.

The Heisenberg-Langevin equations for the relevant op-
erators include the cavity damping at rate κ , the incoherent
pump at rate w, and the corresponding Gaussian input noise
operators âin and σ̂in,j , respectively, and read

d

dt
x̂j = p̂j

m
, (2)

d

dt
p̂j = h̄k

g

2
[â†σ̂j sin(kx̂j ) + H.c.], (3)

d

dt
σ̂j = − w

2
σ̂j + i

g

2
cos(kx̂j )σ̂ z

j â − √
wσ̂ z

j σ̂
†
in,j , (4)

d

dt
σ̂ z

j = w
(
1 − σ̂ z

j

)+ [igâ†σ̂j cos(kx̂j ) + H.c.]

+ 2
√

w(σ̂in,j σ̂j + σ̂
†
j σ̂

†
in,j ), (5)

d

dt
â =

(
−i� − κ

2

)
â −

N∑
j=1

i
g

2
σ̂j cos(kx̂j ) + √

κâin. (6)

Here,〈σ̂in,j (t)〉 = 0 = 〈âin(t)〉, 〈σ̂ †
in,j (t)σ̂in,j ′ (t ′)〉 = 0 = 〈â†

in(t)

âin(t ′)〉, 〈âin(t)â†
in(t ′)〉 = δ(t − t ′), and 〈σ̂in,j (t)σ̂ †

in,j ′ (t ′)〉 =
δjj ′δ(t − t ′). The expectation values 〈·〉 are taken over the
tensor product between the initial density matrix of system and
external Markovian environment with vanishing mean number
of photons [28].

B. Coarse-grained dynamics

We derive an effective model by assuming that the decay
rate of the resonator κ is the largest rate of the dynamics.
This allows us to identify a coarse-grained time scale �t that
is infinitesimal for the internal degrees of freedom but over
which the cavity degrees of freedom can be eliminated from
the equations of the atomic dynamics.

The coarse-grained cavity field operator is given by the time
average ¯̂a(t) = 〈â(t)〉�t , where 〈ζ̂ (t)〉�t ≡ ∫ t+�t

t
dt ′ζ̂ (t ′)/�t .

It takes the form

¯̂a(t) ≈ −i
Ng

2

i� + κ/2

(
〈X̂〉�t − 1

i� + κ/2

〈
d

dt
X̂

〉
�t

)
+ F̂(t)

(7)

and is here expressed in terms of the synchronization order
parameter X̂ of Ref. [25]:

X̂(t) = 1

N

N∑
l=1

σ̂l cos(kx̂l). (8)

It is possible to provide a physical interpretation of the various
terms on the right-hand side (RHS) of Eq. (7). The first term
is the adiabatic component, where the cavity field follows
instantaneously the atomic state given by X̂(t). The second
term depends on the time derivative of X̂, and thus on memory
effects of the internal and external degrees of freedom in lowest
order. It is hence a nonadiabatic correction. Finally, the third
term on the RHS gives the contribution of the quantum noise,
whose explicit form is reported in Appendix A.

Before we proceed, we observe that the characteristic time
scales of the atomic motion, and thus of X̂, are determined by
the incoherent pump rate w for the internal degrees of freedom,
Ti ∼ 1/w, and by the mean kinetic energy Ekin = 〈p2〉/(2m)
for the external degrees of freedom, as illustrated in Fig. 2(a).
More specifically, the characteristic time of the external motion
scales with Te ∼ 1/RDoppler, where RDoppler ≈ 2

√
ωREkin/h̄

is the mean Doppler shift. When the atoms are sufficiently
hot, it is necessary to include nonadiabatic corrections when
eliminating the cavity field. However, since Ti is typically
orders of magnitude larger than TC for the parameters of
interest, only the retardation effects of the external degrees
of freedom can be relevant over the time scale �t , hence in
Eq. (7) we shall use〈

d

dt
X̂

〉
�t

≈ 1

N

N∑
j=1

〈
σ̂j

d

dt
[cos(kx̂j )]

〉
�t

. (9)

On the basis of these considerations, in the coarse-grained
time scale the dynamics of the internal degrees of freedom is
solely determined by the adiabatic component of the cavity
field. The corresponding equations read (from now on the
operators are assumed to be in the coarse-grained time scale
and we omit to write 〈 · 〉�t ):

d

dt
σ̂j = − w

2
σ̂j + N�C

2
(−iα∗) cos(kx̂j )σ̂ z

j X̂ − √
wσ̂ z

j σ̂
†
in,j ,

(10)

d

dt
σ̂ z

j = w
(
1 − σ̂ z

j

)− [N�C(iα)X̂†σ̂j cos(kx̂j ) + H.c.]

+ 2
√

w(σ̂in,j σ̂j + σ̂
†
j σ̂

†
in,j ), (11)

where

�C = g2/4

�2 + κ2/4
κ (12)

is the effective atomic line width while

α = �

κ/2
− i

is a dimensionless parameter, which is purely imaginary when
� = 0.

Retardation effects are instead important for the dynamics
of the external degrees of freedom in the initial stage of the
dynamics. By keeping the nonadiabatic corrections to the
cavity field, according to the prescription of Eq. (9), their
dynamics read

d

dt
p̂j = F̂

(0)
j + F̂

(1)
j + N̂j . (13)
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Here F̂
(0)
j and F̂

(1)
j are force operators that describe the

adiabatic and nonadiabatic contribution of the cavity field, re-
spectively, while N̂j describes a position-dependent Gaussian
noise:

F̂
(0)
j = − h̄k

N�C

2
αX̂†σ̂j sin(kx̂j ) + H.c. (14)

F̂
(1)
j = − N�C

2

ωRκ

�2 + κ2/4
iα2

× 1

2N

N∑
l=1

[sin(kx̂l),p̂l]+σ̂
†
l σ̂j sin(kx̂j ) + H.c.,

(15)

N̂j = h̄k
g

2
F̂(t)†σ̂j sin(kx̂j ) + H.c., (16)

where [A,B]+ = AB + BA. The nonadiabatic component
F̂

(1)
j scales with the ratio RDoppler/

√
κ2/4 + �2 with respect to

the adiabatic component. It can be discarded in the later stages
of the dynamics, that is when the atoms are sufficiently cold
so that RDoppler ∼ w corresponding to Te ∼ Ti .

It is important to emphasize the motivation for the definition
of the synchronization order parameter X̂ in Eq. (8). This
definition generalizes the collective spin ĵ− = (

∑N
i=1 σ̂i)/N ,

which has a nonvanishing expectation value in the synchro-
nized phase [27]. Operators X̂ and ĵ− in fact coincide when the
atoms are localized at the positions where 〈cos(kx̂j )〉 = 1 for
all atoms. In the generalized form, the synchronization order
parameter X̂ depends explicitly on the correlations between the
internal degrees of freedom and the atomic positions within
the cavity optical lattice. We will see that this property can
lead to cooling when the dipoles synchronize.

C. Semiclassical dynamics of the external degrees of freedom

We now assume that the width �p of the single atom
momentum distribution is �p � h̄k at all stages of the
dynamics, where h̄k is the linear momentum carried by a cavity
photon. In this limit the recoil frequency ωR is assumed to be
the smallest frequency scale and a semiclassical description of
the atomic center-of-mass motion is justified [29]. By means
of this description the equation of motion for the atomic
momentum reads

d

dt
pj = F + ξ

p

j , (17)

where F = F
(0),sc
j + F

(1),sc
j and

F
(0),sc
j = − h̄k sin(kxj )

N�C

2
α〈X̂†σ̂j 〉 + H.c. , (18)

F
(1),sc
j = − N�C

2

ωRκ

�2 + κ2/4
iα2 sin(kxj )

× 1

N

N∑
l=1

sin(kxl)pl〈σ̂ †
l σ̂j 〉 + H.c. (19)

In Eq. (18) we use 〈X̂σ̂j 〉 =∑N
l=1 cos(kxl)〈σ̂ †

l σ̂j 〉/N . The
stochastic variable ξ

p

j describes the properties of the Gaussian

noise, 〈ξp

j (t)ξp

l (t ′)〉 = Djlδ(t − t ′) with

Djl = �Ch̄2k2 sin(kxj ) sin(kxl)Re[〈σ̂ †
l σ̂j 〉]. (20)

According to this semiclassical model, the dynamics is
determined by these equations together with the equations
ẋj = pj/m and the quantum mechanical equations for the
internal degrees of freedom (10) and (11). The latter, in
particular, now depend on the semiclassical variables xj .

Figures 3 and 4 display 〈p2〉 and the corresponding
correlations 〈X†X〉 as a function of time, assuming that there
are initially no correlations between the dipoles and that at
t = 0 the atoms’ motion is in a thermal state at a given
temperature T (the subplots from top to bottom correspond
to decreasing values of T ). The solid curves have been
numerically evaluated by integrating Eqs. (10) and (11), after
performing a second order cumulant expansion for the spins as
shown in Appendix B, together with the stochastic differential
equation (17) [30]. For the parameter choice we considered
the semiclassical dynamics predict the exponential decrease
of the kinetic energy towards an asymptotic value which is
of the order of the recoil energy. Comparison with the time
evolution of the correlations 〈X†X〉 shows that these reach
the asymptotic value at a rate comparable with the initial
cooling rate. These correlations can be measured by detecting
the intracavity photon number, since 〈â†â〉 ∝ N2〈X̂†X̂〉, and
signify the build-up of spin-spin correlations and of correla-
tions between the spins and their external positions within the
cavity lattice. We denote by synchronization-induced cooling
the cooling dynamics that is intrinsically connected with the
buildup of these correlations and thus of the intracavity field.

D. Unravelling the semiclassical dynamics

In order to gain insight into the mechanisms which lead
to the observed behavior, we compare these curves with the
corresponding predictions obtained by either only considering
the cavity friction component of the force given in Eq. (19),
thus setting F = F

(1),sc
j in Eq. (17) (dotted line), or by only

considering the component of the force given in Eq. (18), thus
setting F = F

(0),sc
j in Eq. (17) (dashed line). The resulting

curves in Figs. 3(b)–3(c) and of Figs. 4(b)–4(c) show that
F

(0),sc
j is primarily responsible for the build-up of spin-spin

correlations and for the cooling dynamics when the atomic
initial temperature is sufficiently low [the friction force tends
instead to heat the distribution in (c)].

A different behavior is observed in Figs. 3(a) and 4(a):
Although the friction force contributes to the buildup of the
cavity field, none of the individual components reproduce
the full semiclassical dynamics. In particular, the adiabatic
component leads to a larger asymptotic value of the mean
kinetic energy, while the cavity friction force cools the
motion at a significantly slower rate. Figure 5 displays the
momentum distribution that each of these dynamics predict
at t ≈ 2 × 103ω−1

R . Remarkably, they qualitatively agree for
small momenta, as visible in subplot (a). In (b), however,
we observe discrepancies at large momenta. The distribution
due to the adiabatic component of the force exhibits atoms at
large momenta. These atoms, instead, are cooled by the cavity
friction force. We further note that the momentum distribution
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FIG. 3. Dynamics of the width 〈p2〉 of the single-atom momen-
tum distribution [in units of (h̄k)2] as a function of time (in units of
1/ωR). The solid curves are determined by integrating Eqs. (10),
(11) (using the cumulant expansion, see Appendix B) and (17)
assuming that initially all atoms are in the excited state and are
uniformly spatially distributed, while their momentum distribution
is thermal with width (a) 〈p2(0)〉 = 500(h̄k)2; (b) 〈p2(0)〉 = 50(h̄k)2;
(c) 〈p2(0)〉 = 5(h̄k)2. The dashed and dotted lines are the correspond-
ing simulations obtained by integrating the equations after setting
in Eq. (17) F = F

(1),sc
j (dotted line) and F = F

(0),sc
j (dashed line).

The parameters are N = 100, κ = 780ωR , N�C = 40ωR , � = κ/2,
w = N�C/4.

is approximately flat in the momentum interval [−h̄k,h̄k],
suggesting that the stationary state is nonthermal.

We further characterize the dynamics by inspecting the time
evolution of the kurtosis K(t), which is defined as

K(t) = 〈p(t)4〉/〈p(t)2〉2,
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FIG. 4. Correlation 〈X̂†X̂〉 as a function of time (in units of 1/ωR).
This quantity signifies the occurrence of synchronization. Subplots
(a)–(c) respectively correspond to the dynamics of subplots (a)–(c)
of Fig. 3.

with 〈p(t)n〉 the nth moment of the single particle distribution
at time t . The kurtosis for a Gaussian distribution is 3, so
that deviations from this value signal that the distribution is
nonthermal. Figure 6 shows the kurtosis K(t) for the dynamics
reported in Fig. 3(a). The distribution is nonthermal at all times,
including the asymptotic limit, where it tends towards the value
2. The large value it reaches during the evolution is attributed
to the existence of tails of the momentum distribution at large
p. These components are cooled by the cavity friction force
at a later stage of the dynamics, as visible by comparing these
dynamics with the one in which the cavity friction force is set
to zero (dashed line). When instead the initial temperature is
very low, the kurtosis is well described by the sole effect of
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FIG. 5. (a) Momentum distribution fst(p) as a function of p (in
units of h̄k) and resulting from the dynamics of Fig. 3 (a) at time
t  2000ω−1

R . The solid and dashed lines illustrate the momentum
distributions obtained by considering the full force and only the
adiabatic component, respectively, in Eq. (17). Subplot (b) shows
the momentum distribution (in logarithmic scale) over the full initial
range of values, demonstrating the existence of long tails. These are
responsible for the discrepancy observed in the asymptotic limit of
the corresponding curves in Fig. 3(a).

the adiabatic component of the force, as visible in the inset of
Fig. 6.

This analysis suggests that the friction and the adiabatic
forces have very different velocity capture ranges, and in
particular the cavity friction forces precool the atoms until
a regime in which retardation effects become very small.

FIG. 6. Kurtosis K = 〈p4〉/〈p2〉2 as a function of time for the
dynamics of Fig. 3(a). The inset shows the kurtosis for the parameters
as in Fig. 3(c): Both curves relax to approximately the same value
K ≈ 2.

In this regime, we will show that synchronization-induced
cooling efficiently concentrates the atoms in a narrow velocity
distribution that can be of the order of the recoil frequency. The
time scales associated with these dynamics are illustrated in
Fig. 2 and are at the basis of the theoretical treatment presented
in what follows.

III. LOCAL MEAN-FIELD MODEL

We now analyze the dynamics in the regime where the
dipoles have synchronized, corresponding to the stage where
the correlations 〈X†X〉 have built up. We perform our study by
means of a mean-field approximation, namely, by assuming

〈σ̂j 〉 = sj , (21)〈
σ̂ z

j

〉 = zj , (22)

where sj ,zj are scalars. This consists of approximating
〈σ̂ †

j σ̂i〉 ≈ s∗
j si for i �= j . Within this treatment, the synchro-

nization order parameter reads

X = 〈X̂〉 =
N∑

j=1

sj cos(kxj )/N. (23)

It is worth emphasizing that we keep the correlations between
the internal and the external degrees of freedom, but assume
that particle-particle correlations are of mean-field type.

In the mean-field approximation Eqs. (10) and (11) take the
form

dsj

dt
= − w

2
sj − N�C

2
iα∗X cos(kxj )zj , (24)

dzj

dt
= w(1 − zj ) + 2N�CIm{αX∗sj } cos(kxj ), (25)

where the noise due the incoherent pump is neglected.
Furthermore we also neglect the nonadiabatic force given in
Eq. (19). This is reasonable assuming that the atomic ensemble
has a small single particle momentum width as visible in Figs. 3
and 4. The corresponding mean-field equations for the external
degrees of freedom read

dxj

dt
=pj

m
, (26)

dpj

dt
= − h̄k sin(kxj )N�CRe{αX∗sj }, (27)

where the force is the adiabatic component, Eq. (18), and
consistent with the mean-field treatment we have discarded
cavity shot noise.

A. Comparison between mean-field and semiclassical model

We now test the predictions of the mean-field equations
by comparing the mean-field dynamics with ones obtained
integrating the semiclassical equations (10), (11), and (17).
Since the mean-field treatment should more faithfully repro-
duce the full dynamics for increasing number of particles,
we perform simulations for N = 100 and N = 1000 particles.
In doing so we rescale the coupling strength g so to keep
Ng2 and thus N�C constant [compare with Eq. (12)]. This
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FIG. 7. Dynamics of 〈p2(t)〉 (in units of h̄2k2) as a function of
time (in units of ω−1

R ) for (a) N = 100 and (b) N = 1000 atoms.
The solid lines are obtained by numerically integrating Eqs. (10) and
(11) (using the cumulant expansion), and (17), whereas the dashed
lines are the predictions of the mean field model in Eqs. (24), (25),
and (27). The other parameters are the same as in Fig. 3(a). Note
that N�C = 40ωR . Accordingly, we rescale the value of �C when
increasing N .

implies that the upper synchronization threshold, w = N�C

[27], is a constant for this thermodynamics limit, while the
lower threshold w = �C [27] in this case scales with 1/N and
thus vanishes for N → ∞.

Figure 7 displays the dynamics of 〈p2(t)〉 predicted by
the semiclassical model (solid line) and by the mean-field
model (dashed lines) for 〈p2(0)〉 = 5 (h̄k)2. The two curves
qualitatively agree. Moreover, their behavior at short times
almost coincides and the time interval over which this occurs
increases with N . A striking difference is the small frequency
oscillation, which seems to solely characterize the mean-field
dynamics. However, this oscillation becomes visible at time
scales at which the mean-field and the semiclassical dynamics
start to be quantitatively distinct. The fast oscillations, instead,
are also reproduced by the semiclassical equations at N =
1000. They are also visible in the dynamics of the expectation
value of 〈X̂†X̂〉, as shown in Fig. 8. We note that the mean-
field and full semiclassical dynamics predict approximately
the same stationary values of the correlations.

Figure 9 displays the spectral analysis of the two curves in
Fig. 8(b). In detail, it illustrates the Laplace transform S(iω),
defined as

S(iω) =
∫ ∞

0
eiωt [〈X̂†X̂〉(t) − 〈X̂†X̂〉st]dt, (28)
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FIG. 8. Dynamics of 〈X̂†X̂〉 as a function of time (in units of ω−1
R

for (a) N = 100 and (b) N = 1000, corresponding to the subplots of
Fig. 7.

where 〈X̂†X̂〉st = limt→∞〈X̂†X̂〉(t). The spectrum of the
mean-field data (dashed-dotted curve) and of the data predicted
by the semiclassical model (solid curve) exhibits two side-
bands at ω  ±3ωR , which we attribute to the oscillations in
the potential confining the atoms (see next section). The mean-
field simulations predict also two low-frequency sidebands at
a frequency of the order of a fraction of the recoil frequency,
which correspond to the slow oscillations observed in Fig. 8(b).
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FIG. 9. Absolute value of the Laplace transform S(iω), Eq. (28),
in arbitrary units and as a function of ω (in units of ωR) for the curves
in Fig. 8(b). The Laplace transform is evaluated over the same time
interval as in Fig. 8(b).
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B. Dynamics at the asymptotic limit

Using the mean-field model we now investigate the dy-
namics at the asymptotic limit. In particular, we assume that
the atoms are sufficiently cold so that at this stage Ti � Te.
It is therefore justified to adiabatically eliminate the internal
degrees of freedom from the equations of motion of the atoms’
external variables. The procedure is detailed in Appendix C
and leads to the stationary values s

(0)
j and z

(0)
j , which read

s
(0)
j = ξ (xj )

1 + 2|ξ (xj )|2 , (29)

z
(0)
j = 1

1 + 2|ξ (xj )|2 , (30)

and thus depend on the atomic position xj through the quantity

ξ (xj ) = N�C

w
X cos(kxj ). (31)

This quantity is proportional to the ratio N�C cos(kxj )/w.
It plays an analogous role to the saturation parameter in
the dynamics of a driven dipole [31], but its source is of a
completely different nature: it depends on the synchronization
order parameter X, which is found by solving self-consistently
the equation

1

N

N∑
j=1

|ξ (xj )|2
1 + 2|ξ (xj )|2 = N�C

w
|X|2. (32)

Concise solutions, which are limiting cases, can be found
by assuming that the atoms are tightly confined in a lattice,
thereby fixing cos(kxj ) = ±δ. For δ = 0, for instance, the only
solution is X = 0. For δ �= 0, instead, one finds

|X|2 = w

2N�C

(
1 − w

δ2N�C

)
. (33)

From this equation it follows that |X|2 = 0 both when w = 0
and also when w � N�Cδ2, namely, when w takes the value
of the upper synchronization threshold for the corresponding
configuration. In particular, the upper synchronization thresh-
old is maximum when δ = 1, which corresponds to the value
reported in Ref. [27].

When instead the atoms are uniformly distributed over the
cavity wavelength, Eq. (32) can be recast in the form

N�C

w

1

2π

∫ 2π

0
dθ

cos2 θ

1 + 2(N�C/w)2|X|2 cos2 θ
= 1. (34)

By using

1

2π

∫ 2π

0
dθ

cos2 θ

1 + 2(N�C/w)2|X|2 cos2 θ

= 1

1 + 2(N�C/w)2|X|2 +
√

1 + 2(N�C/w)2|X|2
,

we get

|X|2 = w

2N�C

[
1 − w

N�C

(
1

2
+
√

N�C

w
+ 1

4

)]
. (35)

From Eq. (35) one obtains that the upper synchronization
threshold for particles that are homogeneously distributed over
the cavity wavelength is given by w = N�C/2.

(a)

-π -π/2 0 π/2 π

kx

-2

-1

0

1

2

s(
x
)/
X

(b)

-π -π/2 0 π/2 π

kx

0

0.2

0.4

0.6

0.8

1

z
(x
)

FIG. 10. Spatial dependence of (a) the dipole moment s(x)
[Eq. (29)] and (b) the population inversion z(x) [Eq. (30)] for w =
N�C/4 and |X|2 ≈ 0.055. The dashed and dotted lines correspond
to the excited state e(x) = [1 + z(x)]/2 and ground state g(x) =
[1 − z(x)]/2 population, respectively. The x axis is in units of 1/k.
We verified that this behavior is also predicted by the semiclassical
model.

We now use this result to determine the spatial dependence
of the dipole moment s

(0)
j and of the population inversion

z
(0)
j . These two quantities are plotted in Figs. 10(a) and 10(b),

respectively, where we have used the definition s
(0)
j → s(x)

[z(0)
j → z(x)] in the continuum limit. We observe that at

the nodes of cos(kx) the polarization s(x) changes its sign
where the population inversion is maximum. In turn, the
population inversion is minimal close to the antinode where
the polarization reaches its maximum absolute value. If
one associates a well-defined magnetic moment to the two
electronic states, then the resulting behavior corresponds to an
effective antiferromagnetic order.

C. Effective Hamiltonian

In the adiabatic limit, where one neglects retardation effects
in the coupled dynamics between spin and center-of-mass
motion, it is possible to derive an effective Hamiltonian for the
atomic external variables. For this purpose we use Eqs. (29)
and (30) in Eq. (27) to obtain

ṗj = −h̄kw
�

κ/2
tan(kxj )

|ξ (xj )|2
1 + 2|ξ (xj )|2 .
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For N � 1 we can write this equations as ṗj = −∂Veff/∂xj

where Veff is an effective potential of the form

Veff = −
N∑

j=1

h̄w

4

�

κ/2
ln[1 + 2|ξ (xj )|2]. (36)

The corresponding mean-field Hamiltonian, Hmean, reads

Hmean = p2

2m
− h̄w

4

�

κ/2
ln[1 + 2|ξ (x)|2]. (37)

The potential minima are at the positions x where cos(kx) =
±1. At these points the atoms would be trapped should
their asymptotic temperature be smaller than the potential
depth −h̄�w/(2κ) ln(1 + 2N�C |X|21/w) (here |X|1 is the
synchronization order parameter when the atoms are confined
at cos(kx) = ±1). Correspondingly, the atoms would form an
antiferromagnetic spin chain, where the spins swap their ori-
entation so to keep sj cos(kxj ) = 1. In order to verify whether
this is the stationary state of the synchronization dynamics,
one needs first to determine the asymptotic temperature. Part
of this analysis is performed in the next section, where we
determine the friction force due to the nonadiabatic coupling
with the internal degrees of freedom.

D. Dissipative mean-field dynamics

Retardation effects in the dynamics of the spins following
the motion give rise to friction. The steady state results from
the interplay between the friction and the dispersive force
due to the effective potential. We now determine the friction
forces in the last cooling stage. For this purpose we perform an
expansion of the spin variables including terms to first order
in the small parameter RDoppler/w:

s = s(0) + kp

mw
s(1), z = z(0) + kp

mw
z(1).

We then use the prescription d/dt → ∂/∂t + p/m∂/∂x in
Eqs. (24) and (25) and determine the corresponding stationary
state (see Appendix D for details).

The friction force is the component of the force in Eq. (27)
that depends on the retarded component,

Fret = −(h̄k2/m)p sin(kx)(N�C/w)Re{αX∗s(1)},
and takes the form

Fret = −8ωRp
|ξ (x)|2 tan2(kx)

[1 + 2|ξ (x)|2]3

�

κ/2
F�(|ξ (x)|2) (38)

with

F�(|ξ (x)|2) = 1 − 2|ξ (x)|2
1 + ( �

κ/2

)2 − 2|ξ (x)|4.

This equation shows that the friction force depends on the
atomic position. It vanishes at the minima of the mean-field
potential, where sin(kx) = 0, but tends to pull out the atoms
from these points, being positive about x = nπ/k for � > 0.
The friction coefficient is instead negative for values of ξ (x)
such that

|ξ (x)|2 � 1

2|α|2 (
√

2|α|2 + 1 − 1). (39)

FIG. 11. Phase space histogram of the asymptotic dynamics of
N = 1000 particles, the x axis is in unit of 1/k and the trajectories
are reported modulus the wavelength; the p axis is in units of h̄k.
The parameters are the same as in Fig. 7(b), the time is of the
order of t ≈ 50ω−1

R . Subplot (a) reports 100 trajectories calculated
using stochastic differential equations [30] simulating the dynamics
of Eqs. (10), (11), and (17). Subplot (b) reports the corresponding
mean-field simulations of Eqs. (24), (25), and (27). The black dashed
line indicates the trajectory at energy E0, Eq. (40).

The equality holds at the positions x0, where the force changes
sign. Hence, at the positions x where cos2(kx) < cos2(kx0)
the friction force is negative. Remarkably, these positions are
close to the maxima of the mean-field potential.

Figure 11(a) displays the trajectories in phase space
at steady state obtained by integrating the semiclassical
equations, while subplot (b) shows the corresponding
prediction of the mean-field model. Comparison between
subplots (a) and (b) shows that the resulting trajectories
form rings centered at p = 0 and at the points x = nπ with
n denoting any integer number. The rings are connected
and the trajectories are indeed close to the separatrix. The
separatrix represents the separation of the trajectories where
the atoms are bound at the mean-field potential minima from
the trajectories where the atoms are unbound. The dashed line
indicates in particular the trajectory where the kinetic energy
vanishes at the roots x0 (namely, where the nonconservative
force changes sign). Its energy is given by

E0 = − h̄w

4
ln[1 + 2|ξ (x0)|2]. (40)

A careful comparison between subplots (a) and (b) shows that
cavity shot noise [included in the simulation of (a)] tends to
suppress the trajectories with energy below E0. Figures 12(a)
and 12(b) report the corresponding momentum and position

063852-9

154 Optomechanical effects in steady-state superradiance



JÄGER, XU, SCHÜTZ, HOLLAND, AND MORIGI PHYSICAL REVIEW A 95, 063852 (2017)

-2 -1 0 1 2

p/(h̄k)

0

0.2

0.4

0.6(a)

(b)

f s
t(
p
)

-π/2 -π/4 0 π/4 π/2

kx

0

0.2

0.4

0.6

g s
t(
x
)

FIG. 12. (a) Momentum distribution fst(p) as a function of p (in
units of h̄k) and (b) position distribution gst(x) as a function of x

(in units of 1/k and modulus the wavelength) corresponding to the
distribution in Fig. 11. The brown solid line shows the prediction of
the semiclassical simulation [corresponding to Fig. 11(a)]; the green
dashed line shows the prediction of the mean-field model [Fig. 11(b)].

distributions, respectively. The momentum distribution,
Fig. 12(a), is almost flat over the interval [−p0,p0], such
that p2

0 ∼ 2mE0 (these points are indicated by the vertical
dashed lines). The semiclassical simulations predict at these
specific points two peaks, which are otherwise absent in the
mean-field prediction. Instead, mean field and semiclassical
simulations deliver very similar position distributions, as
shown in Fig. 12(b). Here the two peaks of the distribution
are located about the positions x0 where the nonconservative
force vanishes.

E. Asymptotic temperature

We now estimate the asymptotic temperature by means
of the fluctuation-dissipation theorem. The validity of the
theorem is limited, since the stationary momentum distribution
is not thermal, but allows us to gain insight into the dependence
of the momentum distribution on the physical parameters. In
what follows we extract the friction coefficient γ from the
force in Eq. (38):

γ (x) = 8ωR

|ξ (x)|2 tan2(kx)

[1 + 2|ξ (x)|2]3

�

κ/2
F�[|ξ (x)|2]. (41)

The calculations for the diffusion coefficients include spin
noise due to the incoherent pump; their derivation is involved
and reported in Appendix E. The resulting diffusion coefficient
D(x) is given in Eq. (E5). The final width of the momentum

distribution is found after integrating D(x) and γ (x) over
the asymptotic atomic spatial density distribution, which for
convenience we assume to be uniform. This is a strong
assumption since the spatial distribution that we observe in the
actual simulations is not uniform and a more general treatment
is required [32]. Denoting by D̄ and γ̄ the corresponding
average values, we obtain

〈p2〉∞ = D̄

γ̄
, (42)

where 〈p2〉∞ = limt→∞〈p2(t)〉. Figure 13(a) displays the ratio
of Eq. (42) as a function of the pump rate w and for � = κ/2.
The minimal width is reached at a value between w = N�C/10
and w = N�C/2. For w = N�C/2, in particular,

〈p2〉∞
2m

= h̄w

8
= h̄N�C

16
.

Figure 13(b) shows the value of the pump rate which
minimizes the momentum width as a function of �. The
corresponding temperature is shown as a function of � in
subplot (c) and is minimized at � ≈ κ/2. The results suggest
that lower temperatures can be reached by decreasing N�C

(as long as this value is larger than the recoil frequency,
consistently with the semiclassical treatment here applied).

F. Discussion

The setup we analyze in this work is the same as the
one discussed in Ref. [23]; nevertheless the studies in those
papers focus on different parameter regimes, which lead to
substantially different dynamics. These works predict lasing
as well as spatial localization of the atoms in steady state when
the atoms are incoherently pumped from the side. The model of
Ref. [23], in particular, focuses on the dynamics of an atomic
ensemble. It includes spontaneous emission and assumes that
the rate of the incoherent pump is the largest parameter of the
dynamics. With this choice population inversion is achieved.

A key point is that the faster time scale of the dynamics in
Refs. [21–23] is determined by the pump rate and spontaneous
decay. For this reason the regime is reached where the atomic
internal degrees of freedom follow adiabatically the coupled
dynamics of the external and of the resonator degrees of
freedom. This is warranted when the atoms are localized in
the antinodes of the cavity standing wave.

In Ref. [23] it is assumed that N2〈X̂†X̂〉 = 〈∑i,j σ̂
†
i σ̂j

cos(kxi) cos(kxj )〉 can be approximated by 〈∑i σ̂
†
i σ̂i

cos2(kxi)〉 discarding terms such as 〈σ̂ †
j cos(kxj )σ̂i cos(kxi)〉

for i �= j . This is reasonable in the large repumping rate regime
where synchronization between the dipoles of different atoms
does not develop. This assumption leads to the scaling of the
intracavity photon number with the number of atoms in the
excited state and thus essentially with N (see Appendix F for
further details).

In contrast, here we consider the regime in which the cavity
decay κ sets the fastest time scale. Moreover, we choose
the values of the pump rate for which synchronization is
expected. As a result, the dynamics we predict is intrinsically
due to collective effects, since it is dominated by mean-field
correlations 〈X̂†X̂〉 ≈ 〈X̂†〉〈X̂〉, thus they are prevailingly
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FIG. 13. (a) Stationary momentum width 〈p2〉∞ [in units of p̄2 =
(h̄k)2N�C/(2ωR)] as a function of w (in units of N�C) and for
� = κ/2. Subplot (b) shows the value of the pumping strength wmin

(in units of N�C) that minimizes the temperature for each value of the
detuning � (in units of κ/2). Subplot (c) reports the corresponding
value of the minimum width 〈p2〉min (in units of p̄2) as a function of
� (in units of κ/2).

described by correlations of each dipole with all others [the
corresponding terms are N (N − 1)]. The field, in turn, scales
with the synchronization order parameter X̂, and thus the
maximal intracavity photon number scales with N2. In the
setup of Refs. [21–23] a lasing phase is described which can
be identified with a large intracavity photon occupation. In
contrast, our parameter choice lies in the superradiance regime
where the cavity state is near vacuum. Explicitly, the ratio
between the photon number 〈â†â〉 and the atom number N , i.e.,
N�C〈X̂†X̂〉/κ , is much smaller than unity. For a more detailed

study of the similarities and differences between superradiance
and lasing we refer to Ref. [33]. In this sense the regime studied
in Refs. [21–23] is complementary to the regime analyzed in
this paper.

Finally, both models, the one of Ref. [23] and our model,
predict stationary momentum distributions whose width is not
determined by the width of the resonator. In our model, in
particular, the lower bound is determined by the collective line
width N�C and is ultimately bound by the recoil energy in
order to keep the treatment consistent with the semiclassical
approximation.

IV. CONCLUSIONS

In this manuscript we have analyzed the semiclassical
dynamics of the atomic external degrees of freedom in the
parameter regime where the dipoles synchronize. We have
shown that the large friction forces predicted in Ref. [25]
are accompanied by the onset of an antiferromagnetic-like
order, where internal and external degrees of freedom become
correlated.

Minimal temperatures are found when the parameters
are chosen so that the pump rate is in the synchronization
regime, w = N�C/4. In this regime the incoherent pump rate
indeed determines the asymptotic width of the momentum
distribution. Our results suggest the possibility that subrecoil
temperature could be achieved by reducing N�C , as long as
this value is larger than the rate of spontaneous decay. Testing
this conjecture requires a full quantum mechanical treatment
of the dynamics in order to explore the ultimate limits. This
is not straightforward due to the many-body character of the
laser-cooling system presented here.
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APPENDIX A: ELIMINATION OF THE CAVITY FIELD

The formal solution of the Heisenberg-Langevin equation
(6) reads

â(t) = e−(i�+κ/2)t â(0) − i
g

2

∫ t

0
dτe−(i�+κ/2)(t−τ )

×
N∑

j=1

cos[kx̂j (τ )]σ̂j (τ )

+√
κ

∫ t

0
dτe−(i�+κ/2)(t−τ )âin(τ ), (A1)
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with â(0) the operator at time t = 0. To eliminate the cavity
field we have to substitute the operator â(t) and â†(t) in
the Heisenberg-Langevin equations for the atomic degrees of
freedom [Eqs. (3), (4), and (5)] with an averaged field

¯̂a(t) = 1

�t

∫ t+�t

t

dτ â(τ ),

where we average over the time interval �t . If we now assume
that TC � �t � Te,Ti we may assume that ¯̂a(t) is stationary
and thus

0 ≈ d

dt
¯̂a(t) = â(t + �t) − â(t)

�t
. (A2)

Equation (A2) together with Eq. (A1) can be cast into the form

â(t) ≈Â(t) + √
κ

∫ t+�t

t

dτe−(i�+κ/2)(t+�t−τ )âin(τ )

with

Â(t) = −i
Ng

2

∫ t+�t

t

dτe−(i�+κ/2)(t+�t−τ )X̂(τ ).

Here we used the definition of the synchronization order
parameter X̂ in Eq. (8) and that the time step �t fulfills
TC � �t . With the substitution u = t + �t − τ and renaming
u with τ again we get

Â(t) ≈ − i
Ng

2

∫ ∞

0
dτe−(i�+κ/2)τ X̂(t + �t − τ ),

where the upper integration limit can be set to infinity because
of e−(i�+κ/2)�t ≈ 0. By using a Taylor expansion we can
rewrite Â as

Â(t) = −i
Ng

2

∞∑
k=0

dkX̂(u)

duk

∣∣∣∣
(u=t+�t)

(−1)k

(i� + κ/2)k+1
.

If we now use that �t � Te,Ti and TC � Te we can neglect
all summands corresponding to k � 2. The k = 0 term is
the adiabatic cavity component whereby the k = 1 term is
a retardation effect.

Under the discussed assumption the equation for the
averaged cavity field annihilation operator reads

¯̂a(t) ≈ −i
Ng

2 〈X̂〉�t

i� + κ/2
− −i

Ng

2

〈
d
dt

X̂
〉
�t

(i� + κ/2)2
+ F̂(t). (A3)

We have introduced an effective Gaussian noise defined on the
time scale of the atomic dynamics, which reads

F̂(t) =
√

κ

/[(
κ

2

)2

+ �2

]
¯̂ain(t), (A4)

with

¯̂ain(t) = 1

�t

∫ t+�t

t

dτ âin(τ ).

The time derivative of X̂ in Eq. (A3) contains the nonadiabatic
corrections to the cavity field, one can explicitly evaluate its
form:

d

dt
X̂ = 1

N

N∑
j=1

cos(kx̂j )
d

dt
σ̂j + 1

N

N∑
j=1

d

dt
[cos(kx̂j )]σ̂j .

APPENDIX B: NUMERICAL SIMULATIONS OF THE
SEMICLASSICAL EQUATIONS

In order to perform the integration of Eqs. (10) and (11) we
perform a second-order cumulant expansion and simulate the
matrix (〈σ̂ †

j σ̂l〉)1�j,l�N with

d

dt
〈σ̂ †

j σ̂j 〉 = w(1 − 〈σ̂ †
j σ̂j 〉) + N�CIm(α〈X̂†σ̂j 〉) cos(kxj ),

(B1)

and for l �= j

d

dt
〈σ̂ †

j σ̂l〉 ≈ − {w + �C(iα) cos2(kxj )〈σ̂ †
j σ̂j 〉

+ �C(iα)∗ cos2(kxl)〈σ̂ †
l σ̂l〉}〈σ̂ †

j σ̂l〉

+ N
�C

2
(iα) cos(kxj )(2〈σ̂ †

j σ̂j 〉 − 1)〈X̂†σ̂l〉

+ N
�C

2
(iα)∗ cos(kxl)(2〈σ̂ †

l σ̂l〉 − 1)〈σ̂ †
j X̂〉.

(B2)

The simulations are performed with N = 100 particles, the
data correspond to the average taken over 1000 trajectories.
The initial state is a thermal distribution at a fixed temperature
T that is spatially homogeneous, with all atoms are prepared
in the excited state:

ρ̂0 = C�N
j=1 exp

(
− β

p2
j

2m

)
⊗N

j=1 |e〉j 〈e|. (B3)

Here C is a normalization constant and β = (kBT )−1 with the
Boltzmann constant denoted by kB.

APPENDIX C: ADIABATIC ELIMINATION OF THE
INTERNAL DEGREES OF FREEDOM IN THE

MEAN-FIELD MODEL

In order to eliminate the internal degrees of freedom we
observe that for both Eqs. (24) and (25), the second summands
are invariant under the transformation sj → s̃j = sj e

−iω0t .
Performing this transformation Eqs. (24) and (25) take the
form

dsj

dt
=
(

iω0 − w

2

)
sj − i

N�C

2
α∗X cos(kxj )zj , (C1)

dzj

dt
= w(1 − zj ) + 2N�CIm{αX∗sj } cos(kxj ). (C2)

We determine the stationary state by finding ω0 self-
consistently. For the stationary values s

(0)
j and z

(0)
j of Eqs. (C1)

and (C2), we find

s
(0)
j = N�Cα∗

2ω0 + iw
X cos(kxj )z(0)

j .

We apply this result to determine the synchronization order
parameter by using the expression

X =
N∑

j=1

s
(0)
j cos(kxj ) = N�Cα∗

2ω0 + iw
X

N∑
j=1

cos2(kxj )z(0)
j .
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FIG. 14. (a) Dynamics of cos(arg(X)) as a function of time
(in units of ω−1

R ).The time evolution of the order parameter X

has been determined using the mean-field model for the same
parameters as in Fig. 8(b). Subplot (b) shows the Laplace transform
F (iω) = ∫∞

0 dteiωt cos{arg[X(t)]} as a function of the frequency (in
units of ωR). Two well-defined sidebands are visible at frequency
ω ≈ ±5ωR = ±w/2.

The latter can be recast in the form

N�Cα∗

2ω0 + iw

N∑
j=1

cos2(kxj )z(0)
j = 1. (C3)

This expression leads to the condition N�Cα∗/(2ω0 + iw) ∈
R, which is valid providing that

ω0 = w�

κ
. (C4)

We numerically checked this result by calculating cos(arg(X))
using mean-field simulations, see Fig. 14(a). It was observed
that X oscillates with a well defined frequency, as visible in
the Laplace transform of the signal; see Fig. 14(b). For the
considered parameters w/2 ≈ 5ωR . With this result for ω0

it is possible to obtain the stationary states s
(0)
j and z

(0)
j in

Eqs. (29) and (30), respectively.

APPENDIX D: CALCULATION OF THE FRICTION FORCE
DUE TO THE COUPLING WITH THE SPINS

To calculate retardation effects in the elimination of the
spins we replace d/dt → ∂/∂t + p/m∂/∂x and identify the
stationary state with

s = s(0) + kp

mw
s(1), z = z(0) + kp

mw
z(1).

We do not use the index j , instead we employ x and p since
the whole approach is valid for all particles when we work in
the limit N → ∞. If we now use the equations for s(0) and z(0)

in Eqs. (29) and (30), this leads to the following equations for
s(1) and z(1):

∂s(0)

∂x
= ik

1

2
α∗s(1) − ik

1

2

N�C

w
α∗X cos(kx)z(1),

∂z(0)

∂x
= −kz(1) + 2kIm

(
N�C

w
αX∗s(1)

)
cos(kx).

The solutions are

s(1) = ξ (x)z(1) + 2
1

iα∗ tan(kx)ξ (x)
2|ξ (x)|2 − 1

[1 + 2|ξ (x)|2]2
,

z(1) = − tan(kx)
4|ξ (x)|2

[1 + 2|ξ (x)|2]3

+ 4
1 − ( �

κ/2

)2
1 + ( �

κ/2

)2 tan(kx)|ξ (x)|2 2|ξ (x)|2 − 1

[1 + 2|ξ (x)|2]3
.

APPENDIX E: CALCULATION OF THE DIFFUSION
COEFFICIENT

To calculate the diffusion coefficient we use [34]

2D =
∫ ∞

0
dτ

[
1

2
〈F (0)F (τ ) + F (τ )F (0)〉ρ̂st

− 〈F (0)〉ρ̂st
〈F (τ )〉ρ̂st

]
, (E1)

where the force

F (τ ) = h̄k

2
sin(kx)wξ ∗σ̂ (τ ) + H.c.

is obtained after adiabatic elimination of the cavity [see
Eq. (18)]. The expectation values are calculated with the
stationary density matrix ρ̂st and 〈. 〉ρ̂st

= Tri(. ρ̂st) where Tri
is the trace over the internal degrees of freedom. As we can see
in Eqs. (10) and (11) the motion of σ̂ , σ̂ †, and σ̂ z is coupled.
We define the vector

v =
⎛
⎝ σ̂

σ̂ †

σ̂ z

⎞
⎠

and write the equations of motion for the spins as

dv

dt
= �v + b + S, (E2)

where the matrix � is defined as

� =

⎛
⎜⎝

i w
2 α∗ 0 −i w

2 α∗ξ

0 −i w
2 α i w

2 αξ ∗

−iwαξ ∗ iwα∗ξ −w

⎞
⎟⎠,

and the vector b reads

b =
⎛
⎝0

0
w

⎞
⎠.
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The noise S(τ ) = (S−(τ ) S+(τ ) Sz(τ ))T is defined by

〈S(τ )ST (τ ′)〉 =

⎛
⎜⎝

0 0 0

1 0 −2〈σ̂ †(τ ′)〉ρ̂st

−2〈σ̂ (τ ′)〉ρ̂st
0 2[1 − 〈σ̂ z(τ ′)〉ρ̂st

]

⎞
⎟⎠

× δ(τ − τ ′).

The formal solution of Eq. (E2) is

v(τ ) = e�τ v + (e�τ − 1)�−1b +
∫ τ

0
dτ ′e�(τ−τ ′)S(τ ′).

(E3)

If we apply the limit τ → ∞ for Eq. (E3) we get the stationary
states for σ̂ , σ̂ †, and σ̂ z which define the stationary density
matrix

ρ̂st =
⎛
⎝ 1+|ξ |2

1+2|ξ |2
ξ∗

1+2|ξ |2
ξ

1+2|ξ |2
|ξ |2

1+2|ξ |2

⎞
⎠. (E4)

If we now use the general solution [Eq. (E3)] together with
the density operator in Eq. (E4) to calculate the diffusion
coefficient [Eq. (E1)] we obtain

2D = (h̄k)2

2
w tan2(kx)|ξ |2

⎧⎨
⎩1 +

2
(

�c

κ/2

)2|ξ |2
1 + 2|ξ |2 − 2

(
�c

κ/2

)2
1 + ( �c

κ/2

)2

× |ξ |2
[1 + 2|ξ |2]2

5 + ( �c

κ/2

)2 + 4
[(

�c

κ/2

)2 + 1
]|ξ |2

1 + 2|ξ |2

⎫⎬
⎭.

(E5)

APPENDIX F: DETAILED COMPARISON WITH THE
RESULTS OF REF. [23]

An interesting example highlighting the complementarity
of the two approaches is found by comparing the expectation
value of population inversion. In the adiabatic limit (in the
thermodynamic limit Ng2 = const) the population inversion
we calculate reads

〈z〉 ≈
〈

1

1 + 2|ξ (x)|2
〉
,

which implies that there is always population inversion 〈z〉 �
0. Note that if all particles are in the excited state then 〈z〉 =
1, thus X = 0 and the atoms are not synchronized. Hence
synchronization requires a nonvanishing expectation value of
the dipole. This is not the case for the parameters of Ref. [23],
where the expectation value of the dipole vanishes at steady
state.

We now show that also in Ref. [23] all particles are in the
excited state if one takes the equations of motion there defined,
neglects spontaneous emission and performs the limit N → ∞
with Ng2 = constant, taking κ as the largest parameter. For
this purpose we take the formula for the population inversion
zN in Eq. (25) of Ref. [23], and report it using our notations
giving

zN =κw + N�w − w
√

[κ + N�]2 − 4κN�

2N�w
. (F1)

We already neglected spontaneous emission γ = 0 and applied
the limit g2 ∝ N−1 with N → ∞. In Eq. (F1) the frequency
� is the emission rate defined as � = wg2/(w2 + �2). From
this expression one can verify that when κ is chosen to be the
largest frequency then zN = 1.
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Section 3.4

Summary

In this chapter we studied the interplay between external and internal degrees of freedom
for an ensemble of atoms in determining the emission properties into the mode of an
optical cavity. Our objective was to analyze how the mechanical effects of light affect the
dynamics of steady-state superradiance.

We introduced, in section 3.1, the model of steady-state superradiance in the regime
where the cavity degrees of freedom can be eliminated. We reviewed the effect of steady-
state superradiance and discussed analogies with synchronization.

In section 3.2 we derived a mean-field model for steady-state superradiance where
we include the optomechanical effects. We showed that quantum fluctuations due to
the recoiling atoms can give rise to dynamical superradiant phases that can lead to a
dephasing or a chaotic emission of the collective dipole [125].

After that, in section 3.3, we studied the dynamics of the atoms by means of a semi-
classical model in the regime where cooling of the atomic motion emerges from the op-
tomechanical coupling. We demonstrated that collective emission gives rise to a speed
of the cooling process [131]. Furthermore we analyzed the relaxation dynamics and the
stationary state of the atoms where we observed limit cycles [132].
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Concluding remarks

In this thesis we investigated the optomechanical dynamics of an atomic vapor coupled
to an optical cavity. We identified the regime, where one could observe the emergence of
spatio-temporal patterns and when these patterns are stable.

These dynamics emerge from atom-atom interactions mediated by cavity photons.
These interactions are long-range and their strength can be tuned by changing the fre-
quency and the intensity of the driving lasers. Such setups are ideal to study the out-of-
equilibrium dynamics of long-range interacting systems [23, 28].

One direction might be to use adiabatic changes of the interaction strength to transfer
kinetic energy into potential energy and therefore efficiently lower the particles’ tem-
perature. This is similar to a retrap-release method [137] that has recently been used
to laser-cool particles to quantum degeneracy [138]. For the systems considered in this
thesis, however, the trapping of the particles would be due to cooperative effects.

Moreover the cavity is intrinsically lossy and therefore dissipation plays a crucial role
in the dynamics of the particles. The presence of dissipation might for example increase
or decrease the relaxation time of the atoms and therefore give rise to dissipation-assisted
metastable states. Features of such states have been found in Ref. [22, 25] by quenching
the laser parameters. Their dynamics is though still unexplored.

Another direction is the study of new phases of matter by coupling the atoms to several
modes [26, 27, 96, 139]. This might also be interesting for building a quantum annealer
that is able to simulate almost arbitrary spin models [98].

Spin systems can also be implemented in an optical resonator where the emission of
the cavity photon gives rise to a change of the internal state, e.g. by Raman scattering.
This allows one to study spin textures, spinor self-ordering, spin-glasses, and quantum
magnetism with long-range interactions [103–107, 140].

In the absence of motion the coherent dynamics of atomic spins in a cavity has also
been studied for squeezing of the collective spin [72, 141–144] and metastability in pres-
ence of interactions [134]. This is in particular of interest for advances in frequency and
time standards. Further studies should include the particles’ motion since thermal and
quantum fluctuations might limit these effects and can give rise to new superradiant
dynamical phases [125].

Finally, a quantum model for the atomic variables should allow to study dynamical
quantum phase transitions [145] and other out-of-equilibrium effects. Furthermore it can
be used to describe dissipative effects, such as cooling, in the regime where quantum
fluctuations are important.
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Chapter A

Appendix

In appendix A.1 we provide additional information about the
adiabatic elimination of the cavity field and the derivation of
Eq. (1.3.13) and Eq. (3.1.3). We also present the decompo-
sition of the momentum basis into momentum families that
is used in subsection 3.2.2 for the numerical simulation of
the mean-field master equation (3.2.1). This is shown in ap-
pendix A.2.



166 Appendix

Section A.1

Elimination of the cavity-field mode

In this appendix we want to show a systematic method to eliminate the cavity degrees of
freedom in the case where the decay rate κ and the detuning ∆ = ωc − ωa determine the
fastest timescales in the dynamics governed by Eq. (1.3.12) and Eq. (3.1.1).

We first rewrite the dynamics of the density matrix ρ̂ in Eq. (3.1.1) as

∂ρ̂

∂t
= LF ρ̂+ LAρ̂+ Lcρ̂,

the three terms take the forms

LF ρ̂ = 1
i~
[
~∆â†â, ρ̂

]
+ κL[â]ρ̂, (A.1.1)

LAρ̂ = 1
i~

 N∑
j=1

p̂2
j

2m, ρ̂

+
N∑
j=1

wL[σ̂†j ]ρ̂, (A.1.2)

Lcρ̂ = 1
i~

 N∑
j=1

~
g

2 cos(kx̂j)(â†σ̂j + σ̂†j â), ρ̂
 . (A.1.3)

The Lindbladian LF describes dynamics of the cavity degrees of freedom while LA de-
scribes the dynamics of the external and internal degrees of freedom of the atoms. The
last term Lc is a coupling between cavity and atomic degrees of freedom.

We define the projector P ρ̂ = |vac〉〈vac|ρ̂|vac〉〈vac| on the vacuum state of the cavity
field |vac〉 with â|vac〉 = 0 and the projector Q = 1−P to its orthogonal space. We define
further the matrices v̂ = P ρ̂ and ŵ = Qρ̂. Applying now these projectors onto the master
equation we obtain two coupled equations for v̂ and ŵ that can be written

∂v̂

∂t
=PLF ŵ + PLAv̂ + PLcŵ, (A.1.4)

∂ŵ

∂t
=QLF ŵ +QLAŵ +QLc(v̂ + ŵ). (A.1.5)

We used here that LF v̂ = 0 and that LA commutes with the corresponding projectors.
The elimination of the cavity degrees of freedom can be done using a formal integration of
Eqs. (A.1.4) and (A.1.5) and including effects of LA and Lc only up to second order. That
means that κ,∆c are much larger then the incoherent pumping rate w and the Doppler
shift k∆p/m where ∆p is the single particle momentum width. All frequency are taken
in reference to κ,∆ and thus we use that LF is of zeroth order

LF ρ̂ ∼O(1).

Using ε as the small parameter we may conclude that LA is of first order such that

LAρ̂ ∼O(ε),
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where ε ∼ k∆p/m/κ,w/κ is very small. If we furthermore assume that the coupling
between cavity and atomic degrees of freedom is weak we may write

Lcρ̂ ∼O(ε).

Here we used that ε ∼ g
√
n̄/κ where n̄ denotes the mean intracavity photon number.

Hence a large photon number would break this assumption. We derive now a master
equation for v̂ that is correct up to order in ε2.

We formally integrate Eq. (A.1.5) over the interval [t0, t] and obtain

ŵ(t) = eQ(LF+LA+Lc)∆tŵ(t0) +
∫ ∆t

0
dτ eQ(LF+LA+Lc)τQLcv̂(t− τ). (A.1.6)

We assume now that the timestep ∆t is sufficienlty long such that the cavity degrees
already relaxed but sufficiently short such that the particles did not evolve. This means
that the following inequalities need to be fulfilled

κ−1, |∆|−1 � ∆t� (k∆p/m)−1, w−1, (g
√
n̄)−1. (A.1.7)

Insert Eq. (A.1.6) in Eq. (A.1.4) and using the inequalities in (A.1.7) we obtain

∂v̂

∂t
≈PLAv̂(t) + P(Lc + LF )

∫ ∞
0

dτ eQ(LF+LA+Lc)τQLcv̂(t− τ). (A.1.8)

We observe that the integration over τ includes terms where v̂ is evaluated at points in
the past (t − τ). Since we assume that ∆t is essentially large such that κ∆t � 1 but
small enough that v̂(t− τ) ≈ v̂(t) 1 for τ ∈ [0,∆t] we may write

P(Lc + LF )
∫ ∞

0
dτ eQ(LF+LA+Lc)τQLcv̂(t− τ) ≈ P(Lc + LF )

∫ ∞
0

dτ eQ(LF+Lc)τQLcv̂(t).

Using this relation and applying the trace over the cavity degrees of freedom where we
define ρ̂N = Trcav(v̂) in Eq. (A.1.8) leads to the effective master equation that describes
the evolution of the reduced density matrix ρ̂N for the particles degrees of freedom.

1This is possible since the evolution corresponding to LA is already of order ε and therefore v̂ evolves
slowly. A correction corresponding to the first derivative in the expansion v̂(t − τ) = v̂(t) − τ ∂v̂(t)

∂t + ...
would correspond to a third order in ε term.
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Section A.2

Decomposition of the momentum basis

In this section we want to show how we can simulate the dynamics of a thermal gas, that
occupies many momentum states, efficiently. Since cos(kx̂) in Eq. (3.2.2) couples only
momentum states |p〉 and |p± ~k〉 we can conclude that the Projectors

1̂q =
∑
n∈Z
|q + n~k〉〈q + n~k| (A.2.1)

for −0.5 < q ≤ 0.5 are conserved quantities of the evolution governed by Eq. (3.2.5). The
operators in Eq. (A.2.1) are a partition of unity that fulfill 1̂ =

∫ 0.5
−0.5 dq 1̂q, where 1̂ is the

unity and 1̂q1̂q′ = δq,q′ 1̂q. The projectors 1̂q can be used to define projectors on a subspace
of matrices by

Pqρ̂ = 1̂qρ̂1̂q. (A.2.2)

Using these projectors we can rewrite Eq. (3.2.5) as

∂Pqρ̂1

∂t
= PqLmf [ρ̂1]Pqρ̂1 (A.2.3)

for every −0.5 < q ≤ 0.5. The latter equations for different values of q are not completely
decoupled since Lmf [ρ̂1] depends of ρ̂1 and every Pqρ̂1 couples to the mean field

X =
∫ 0.5

−0.5
dqXq (A.2.4)

with

Xq = Tr(σ̂ cos(kx̂)Pqρ̂1). (A.2.5)
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