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Summary 
 

α-Amino-3-hydroxy-5-methyl-4-isoxazole propionate type receptors (AMPARs) are 

ligand-gated cation channels that reside at glutamatergic synapses throughout the vertebrate 

central nervous system and play a prominent role in excitatory synaptic transmission. 

Regulated plasma membrane delivery and reuptake of AMPARs are critical for synaptic 

receptor accumulation, synaptic homeostasis, and neurotoxicity. While AMPARs are thought to 

continuously cycle between plasma membrane and intracellular compartments via exocytosis 

and endocytosis (Ehlers*, 2000; Yudowski et al., 2007), many organizational and regulatory 

aspects of AMPAR turnover are still unclear to this date. Here, we have analyzed AMPAR 

dynamics in dendritic and somatic areas of cultured hippocampal neurons in live cell imaging, 

taking advantage of genetically encoded tags for the visualization of receptors. 
To study the membrane delivery of AMPAR from transport organelles, GRIA1 subunits 

were N-terminally fused with the pH-dependent GFP derivative superecliptic pHluorin, which 

is quenched in the acidic lumen of transport organelles but regains its full fluorescence in a 

neutral environment during exocytosis. In a basic characterization of our model system, we 

show that AMPARs are predominantly (>80% of all events) inserted from recycling endosomes 

into adjacent plasma membrane areas. Interestingly, AMPAR delivery was associated with 

fluorescence transients that exhibit considerable variation, ranging from fast flickers to long-

lasting events, in accord with previous work (Jullie et al., 2014; Yudowski et al., 2007). These 

varying signal types likely represent mechanistically different fusion events, with the 

fluorescence decay frequently reporting reacidification of recycling endosomes after transient 

membrane merger rather than an actual receptor dispersion on the plasma membrane. To 

analyze receptor uptake, we employed genetically-encoded self-labelling tags that allow for 

pulse-chase assays. Using an N-terminal HaloTag-GRIA1 fusion protein, we established an 

acute staining procedure to label the surface pool of AMPAR in neurons. For this purpose, 

HaloTag-GRIA1-expressing neurons were incubated with membrane-impermeable 

fluorescently-labelled ligands for short intervals, resulting in covalent attachment of the 

fluorophores to the HaloTag domain due to its enzymatic activity. By using fluorescently-

labeled synaptic markers, we could specifically follow the progressive uptake of labelled 

HaloTag-GRIA1 at synaptic as well as extrasynaptic sites. 
It has become evident during recent years that native AMPARs are generally associated 

with auxiliary subunits, which modulate channel function and facilitate forward trafficking 

from the ER towards the plasma membrane. Two prominent auxiliary subunits, TARPɣ8 and 
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CKAMP44a, have been shown to govern AMPAR function in hippocampal neurons 

(Khodosevich et al., 2014; Rouach et al., 2005). While auxiliary subunits putatively contribute 

to the synaptic anchorage of AMPARs via C-terminal interactions with scaffolding proteins, 

little is known about the influence of these auxiliary subunits on the local dendritic turnover of 

AMPARs. Here, we have investigated how changes in the abundance of TARPɣ8 or 

CKAMP44a affect the trafficking of AMPAR under basal conditions. For this purpose, we 

overexpressed each type of auxiliary subunit and investigated AMPAR behavior in live cell 

imaging experiments. Strikingly, we found that overexpression of TARPɣ8 or CKAMP44a did 

not significantly change surface expression of AMPAR but exerted profound effects on 

receptor cycling: First, the fusion rate of AMPAR-containing transport organelles with the 

plasma membrane appeared dramatically reduced when assayed by pHluorin-GRIA1 after 

overexpression of TARPɣ8 or CKAMP44a. This change was accompanied by a reduced pool 

of AMPAR in recycling endosomes, pointing to an overall reduced recycling of AMPARs. 

Second, the endocytic reuptake of receptors was significantly reduced in cells overexpressing 

either auxiliary subunit, as indicated by a decelerated constitutive incorporation of labelled 

HaloTag-GRIA1-containing receptors under basal conditions. This effect was specific for the 

extrasynaptic receptor pool, excluding the possibility that enhanced synaptic anchorage of 

receptors led to an apparent stabilization of the surface receptor pool. A similarly reduced 

receptor uptake in the presence of the auxiliary subunits was also observed, when endocytosis 

of AMPARs was directly stimulated by application of insulin, suggesting that the effect on 

endocytosis is not restricted to constitutive turnover. These novel data indicate that association 

with auxiliary subunits protects AMPARs from rapid recycling processes, in effect stabilizing 

the extrasynaptic receptor pool. Noteworthy, TARPɣ8 and CKAMP44a exhibit a similar 

capacity to increase surface lifetime of AMPARs, suggesting that they employ a similar 

mechanistic avenue to inhibit endocytosis despite belonging to different protein families. 

In summary, we provide here new insight into the local dendritic turnover of AMPAR 

in hippocampal neurons, demonstrating that association of receptors with auxiliary subunits 

affects their propensity to be rapidly incorporated and recycled. It will be highly interesting to 

explore how auxiliary subunits mechanistically delay endocytosis in future experiments.
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Zusammenfassung 
 

 

Glutamat gesteuerte AMPA Rezeptoren (AMPAR, α-amino-3-hydroxy-5-methyl-4-

isoxazole propionate auf englisch genannt) bilden Kationenkanäle, die sich in glutamatergen 

Synapsen im zentralen Nervensystem von Wirbeltieren befinden. AMPA Rezeptoren sind 

hauptsächlich für die schnelle Komponente des postsynaptischen Stroms verantwortlich. Die 

regulierte Bereitstellung des AMPA Rezeptors auf der Zelloberfläche und die entsprechende 

Wiederaufnahme in die Zelle sind wichtige Prozessen für die synaptische Akkumulation von 

Rezeptoren, die synaptische Homöostase und Neurotoxizität. Der regulierte Transport an die 

Plasmamembran und die Wiederaufnahme des AMPA Rezeptors sind für die synaptische 

Akkumulation von Rezeptoren, die synaptische Homöostase, und Neurotoxizität entscheidend. 

Auch wenn grundsätzlich beschrieben ist, dass AMPA Rezeptoren in einem ständigen Zyklus 

zwischen Plasmamembran und intrazellulärem Bereich durch Exo- und Endozytose wechseln 

(Ehlers*, 2000; Yudowski et al., 2007), sind viele Fragen über die Dynamik und Regulierung 

dieses Prozesses ungelöst. Die vorliegende Arbeit beschäftigt sich im wesentlichen mit der 

Dynamik von AMPA Rezeptoren im dendritischen und somatischen Bereichs von 

hippokampalen Neuronen der Maus in Kultur. Dazu wurden mit bildgebenden Verfahren (live 

cell imaging) und unter Verwendung genetischer Marker (englisch: Tag) die AMPA 

Rezeptoren visualisiert und ihre Membranrecycling als Zeitverlauf gemessen und analysiert. 

Um den Transport der AMPA Rezeptoren (Glutamate Ionotropic Receptor AMPA 

subtype1 (GRIA1)) in Transportorganellen zu untersuchen, haben wir GRIA1 (Untereinheit des 

AMAPA Rezeptors) mit pH-abhängigem Green Fluorescent Protein (GFP), auch 

Superecliptic Phluorin (SEP) genannt, N-Terminal fusioniert. SEP Fluoreszenz ist im saueren 

Medium der Transportorganellen unterdrückt, emittiert jedoch zunehmend Licht, wenn der pH 

Wert des Mediums ansteigt, was während der Exozytose der Fall ist. Es zeigte sich, dass die 

Mehrheit der AMPA Rezeptoren (>80 %) von Recycling Endosomes in nahliegende Abschnitte 

der Plasmamembran durch Exozytose eingefügt werden. Interessanterweise konnten wir 

beobachten, dass die Exozytoseereignisse, bestimmt als Fluoreszenzzunahme, sehr variabel 

sowohl im zeitlichen Verlauf als auch der Intensität der Fluoreszenz waren, was auf 

verschiedene Fusionstypen hinweist. Auffällig war ein häufig auftretender Fluoreszenzabfall 

unmittelbar nach Exozytose, den wir als Reazidifizierung nach Endozytose des zuvor 

exozytierten Vesikels (recycling Endosome) interpretieren. Um diese Hypothese zu prüfen, 

haben wir selbstmarkierende Tags für Pulse-Chase Experimente kloniert. Mit Hilfe des N-
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Terminalien HaloTag-GRIA1 Fusionsproteins, haben wir eine akute Färbungsprozedur etabliert 

um den Bestand an Oberflächen- AMPA Rezeptoren in Neuronen zu markieren. HaloTag-

GRIA1 exprimierende Neurone wurden kurzzeitig mit fluoreszierenden Membranimpermeblen 

Liganden inkubiert. Durch die entstehende kovalente Bindung zwischen Tag und Ligand 

entsteht eine spezifische Färbung. Gleichzeitig wurde ein Fluoreszenz markierter Synapsen-

Marker benutzt. So konnte das Schicksal von markiertem HaloTag-GRIA1 sowohl in den 

Synapsen als auch im extrasynaptischen Bereich verfolgt werden. 
Es hat sich über die letzten Jahre gezeigt, dass native AMPA Rezeptoren generell mit 

auxiliar (Helfer) Untereinheiten assoziieren, die die Kanal Funktion modulieren und den 

vorwärts Transport des Proteins vom endoplasmatisches Retikulum zur Plasmamembran 

fördern. Es wurde gezeigt, dass zwei bekannte auxiliare Untereinheiten, TARPɣ8 und 

CKAMP44a, die Funktion der AMPA Rezeptoren in hippokampalen Neurone modulieren 

(Khodosevich et al., 2014; Rouach et al., 2005). Anscheinend helfen diese Untereinheiten bei 

der Verankerung der AMPA Rezeptoren in den Synapsen. Wenig ist hingegen über den 

Einfluss der Helferuntereinheiten auf das lokale Recycling der Rezeptoren bekannt. Deshalb 

haben wir den Effekt der beiden Helferuntereinheiten auf den Transport der AMPA Rezeptoren 

bei basale neuronaler Aktivität untersucht. Wir haben die Helferuntereinheiten zu diesem 

Zweck überexprimiert und das Verhalten der AMPA Rezeptoren mit Live Imaging beobachtet. 

Überraschenderweise war die Oberflächenexpression der AMPA Rezeptoren mit der 

Überexpression der TARPɣ8 oder CKAMP44a nicht verändert, wohingegen das Rezeptor 

Recycling stark beeinflusst war. Erstens war die Fusionsrate von AMPA Rezeptor enthaltenden 

Transportorganellen mit der Plasmamembran stark verringert. Diese Veränderung war mit einer 

reduzierten Anzahl von Recycling Endosomen verbunden, was ein reduziertes Recycling der 

AMPA Rezeptoren nahelegt. Zweitens konnten wir beobachten, dass die Endozytose der 

AMPA Rezeptoren bei Überexpression der Helfer Untereinheiten ebenfalls stark reduziert war, 

was durch die verlangsamte Internalisierung der HaloTag-GRIA1 unter basale Bedingungen 

gezeigt werden konnte. Die Effekte der Helferuntereinheiten waren auf die extrasynaptischen 

Bereiche beschränkt, was synapsenspezifische Effekte, wie eine stärkere Verankerung der 

AMPA-Rezeptoren, als Ursache des reduzierten Recyclings ausschließt. Die 

Helferuntereinheiten entfalteten ihre Effekte nicht nur bei basaler neuronaler Aktivität. Bei 

Stimulation mit Insulin trat die gleiche inhibitorische Wirkung auf das Recycling von AMPA 

Rezeptoren auf, was dafür spricht, dass Helferuntereinheiten eine Rolle in aktivitätsabhängiger 

als auch in konstitutiven Endozytose spielen. Unsere Ergebnisse sprechen dafür, dass die 

Assoziierung von auxiliar Untereinheiten die AMPA Rezeptoren vor einer schnellen 
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Endozytose schützen, um auf diese Weise das extrasynaptische Rezeptorenangebot zu 

stabilisieren. Obwohl TARPɣ8 und CKAMP44a zu zwei verschiedene Proteinfamilien gehören, 

zeigen sie eine vergleichbare Fähigkeit die Lebensdauer der AMPA Rezeptoren auf der 

neuronalen Oberfläche zu vergrößern. 
Zusammenfassend lässt sich sagen, dass wir einen Einblick in das lokale Recycling von 

AMPA Rezeptoren in den Dendriten der hippokampalen Neurone gewonnen haben. Wir 

konnten zeigen, dass mit Hilfe der auxiliar Untereinheiten das Recycling von AMPA 

Rezeptoren verlangsamt wird. In der Zukunft wird es sehr interessant sein, die Mechanismen, 

die hinter der verzögerten Endozytose von AMPA Rezeptor liegen zu entschlüsseln. 
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1. Introduction 
 

1.1 General background 
 

The last two centuries have brought an enormous revolution in the study of brain 

function, greatly expanding our knowledge of molecular neurophysiology. The brain is 

probably the most complex matter in the universe. Cajal showed that a brain is composed of 

distinct neurons, a realization that initiated the birth of modern neuroscience (Cajal, 1899, 

1904). It has been estimated that the human brain contains around 105 billion neurons that 

interact with each other in an organized way (Andersen et al., 1992). Nerve cells communicate 

with each other and organize in functional circuits that enable motor behaviors, such as 

walking, but also more complex actions like cognition, learning, and memory. The basic 

concept of localized brain function originated nearly two centuries ago by the German 

neuroanatomist Franz Joseph Gall (1758-1828). Neurons coordinate and communicate through 

highly specialized connections known as synapses (Foster and Sherrington, 1887). A chemical 

synapse is a complex structure that conveys information between neurons by transient 

conversion of electrical activity into chemical signals. A chemical synapse consists of a 

presynaptic and a postsynaptic specialization, where the latter contains receptors that receive 

the output message of the former as a released chemical substance called neurotransmitter 

(glutamate, GABA, dopamine etc.) (Otto Loewi, 1921; and John Eccles, 1951). Furthermore, it 

has been realized that correlated neuronal activity in neuronal network may affect the strength 

of synaptic connections and thus define functional circuits, as experimentally supported by the 

phenomenon of synaptic plasticity (Bliss and Lomo, 1973) and theoretically predicted by the 

Canadian neuroscientist Donald Hebb in 1940. One of the determinants of synaptic identity, in 

addition to neuronal strength, is the composition of receptors that reside on the postsynaptic 

site. Glutamate receptors represent the majority throughout the mammalian brain and are 

responsible for the main excitatory neurotransmission (Monaghan et al., 1989). Glutamate 

receptors are part of a protein complex that belongs to the postsynaptic density (PSD) protein 

family. Trafficking of glutamate receptors to the postsynaptic membrane involves members of 

the PSD protein family. I am studying in my thesis the turnover of glutamate receptors 

[Glutamate receptor 3ionotropic AMPA type subunit (GRIA) 1-containing receptors] to the 

postsynaptic membrane and the involvement of underlying PSD auxiliary proteins. 
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1.2 Glutamate receptors 
 

lutamate receptors are predominantly found in the central nervous system of 

vertebrates, but are also located at neuromuscular junctions in invertebrates. They 

are present in neuronal and non-neuronal cells and mediate the most excitatory 

neurotransmission. Glutamate receptors have been divided into two principle families, 

ionotropic glutamate receptors “iGluR” and metabotropic glutamate receptors “mGluR”. 

Ionotropic glutamate receptors are ligand-gated ion channels permeable to cations, and 

metabotropic glutamate receptors are G-protein coupled receptors that get activated upon 

glutamate binding (Collingridge and Lester, 1989; Curtis et al., 1960; Sugiyama et al., 1987). 

Metabotropic glutamate receptors are membrane proteins with seven transmembrane 

spanning domains which activate a downstream signaling through the G-protein subunits upon 

glutamate binding. They have eight isoforms that are divided into three classes according to 

their amino acid sequence, signal transduction, and channel pharmacology (Nakanishi, 1994). 

Class I receptors are adenylyl cyclase activator whereas class II and class III are inhibitors of 

adenylyl cyclase machinery (Cartmell and Schoepp, 2000) (Table 1). They have a broad range 

of electrophysiological effects, and are mainly involved in the inhibition of voltage gated 

calcium and potassium channels although activation of non-selective cationic channels may 

also occur (Anwyl, 1999). Mammalian ionotropic glutamate receptors are encoded by 18 

genes, and are divided according to their pharmacology and physiology into three subtypes: α-

amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, N-methyl-D-aspartate 

(NMDA) receptors, and kainate (KA) receptors. Each subtype constitutes several subunits 

where AMPARs include GRIA1-4, NMDARs include GRIN1, GRIN2A-D, and GRIN3A-B, 

and KARs include GRIK1-5 (Table 1). 

Initially glutamate receptors were known as 

NMDARs and non-NMDARs according to 

their kinetic and pharmacological properties. 

Although all three subtypes bind glutamate 

neurotransmitter, their permeability to calcium 

(Ca2+) is different.  However, sodium (Na+) 

and potassium (K+) permeability is quite 

similar among subtypes (Figure 1) 

(Dingledine et al., 1999). Different subunits of 

the same subtype can assemble and form 

G 

Figure 1. Glutamate receptor activated by 

glutamate neurotransmitter 
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various conformations. Functional NMDARs assemble as GRIN1 dimer with either GRIN2 or 

GRIN3 dimers (Monyer et al., 1992). NMDARs are calcium permeable channels that are 

primarily blocked by magnesium (Mg2+) ions. In addition, activation of NMDARs requires the 

binding of glycine and glutamate molecules. GRIN1 and GRIN3 contain the glycine binding 

sites, and GRIN2 contains a glutamate binding site (Furukawa et al., 2005; Johnson and 

Ascher, 1987; Yao et al., 2008). Knowing that more than two subtypes can assemble to form a 

channel, ionic conductance is dependent on the different subunit make up (Traynelis et al., 

2010). It is well known that NMDAR channels are the main initiators of neuronal plasticity, 

which is an increased synaptic activity producing short and long-term potentiation (STP and 

LTP, respectively). Synaptic potentiation may last for hours where AMPAR recruitment to the 

site of activation is critical for such plastic changes. LTP is divided into three phases known as 

LTP1 (early-LTP phase), LTP2 (late-LTP phase), and LTP3 phase that involves transcription. 

All synaptic potentiation require NMDARs; however, each phase is dependent on different 

subunit assembly (Benke et al., 1998; Bliss and Collingridge, 1993; Collingridge et al., 1983; 

Reymann and Frey, 2007; Volianskis et al., 2013).  

  

 

 

 

 

 

 

 

 Unlike NMDARs, KARs and AMPARs share structural similarities that renders them 

sensitive to both kainate and AMPA; however, their functional role is distinct. KARs activate 

downstream second messengers, and mediate currents as AMPARs do. Plenty of evidences 

show that KARs are ubiquitous and present on the pre- and postsynaptic sites of neurons 

(Rodriguez-Moreno et al., 1997). KARs assemble as homomers or heteromers from GRIK1, 

GRIK2, and GRIK3 subunit, and GRIK1, GRIK2, and GRIK3 can form heteromers with 

GRIK4 or GRIK5 subunits. Similar to AMPARs, KARs are non-selective cationic channels 

with moderate permeability to calcium ions, but they have a slower kinetic decay and rise time 

than AMPARs (Lerma, 2006; Perrais et al., 2010). However, kainate receptors, like NMDARs 

and AMPARs, may also play a role in synaptic plasticity (Rebola et al., 2007). Kinetic 

Ionotropic receptor Metabotropic receptor 

AMPA NMDA Kainate Class Ι Class ΙΙ Class ΙΙΙ 

GRIA1 GRIN1 GRIK5 GRM1 GRM2 GRM4 

GRIA2 GRIN2A GRIK6 GRM5 GRM3 GRM6 

GRIA3 GRIN2B GRIK7   GRM7 

GRIA4 GRIN2C GRIK1   GRM8 

 GRIN2D GRIK2    

 GRIN3A     

Table 1. Classification of glutamate receptors   
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properties and subunit assembly of AMPARs will be detailed in the next paragraph. Generally, 

glutamate receptors play different roles according to their sites of expression in the brain, 

spinal cord, retina, and even in the peripheral nervous system (Curtis and Watkins, 1960; 

Davidson and Carlton, 1998). A consequence of dysfunction of any of these receptors, leads to 

various neurodegenerative diseases like epilepsy, Alzheimer’s and Parkinson’s diseases, or 

psychiatric disorders like schizophrenia or depression, may arise (Johnson et al., 2009; Mattson 

et al., 1992; Russo et al., 2013). Glutamate receptors met the interest of many researchers in the 

field of neuroscience due to their importance in memory and learning. The property of 

information storage has been strongly attributed to synaptic plasticity and potentiation, even 

though it is not fully understood (Bliss and Lomo, 1973; Harvey and Svoboda, 2007; Shaib et 

al., 2018). Trafficking of glutamate receptors to and from synaptic membranes and changing 

synaptic activity plays a crucial role in the process of potentiation in addition to their important 

roles at normal homeostatic activity. Glutamate receptor synaptic targeting and trafficking is a 

tightly controlled process which underlying mechanisms still need to be clarified. 

 

1.3 AMPA receptors 
 

AMPA receptors (AMPARs), also known as “Quisqualate” receptors,   mediate 

predominantly fast excitatory neurotransmission. As mentioned previously, AMPARs include 

four different subunits GRIA1, 2, 3, and 4 with GRIA1 and 2 being most abundant. AMPAR, 

as well as KAR and NMDAR, have a quaternary structure that consists of four large subunits 

forming ligand gated ion channels. Tetrameric complexes of AMPARs are made of dimers of 

dimers with either identical or different subunits and form homomers or heteromers, 

respectively (Safferling et al., 2001; Sobolevsky et al., 2009). This complex assembly of 

different subunits adds structural as well as functional diversity to the signaling machinery of 

the synapse. The type of subunit assembly determines the distinct biophysical properties as 

well as the conductivity of the channel (Gan et al., 2015), which will be detailed next. 

Moreover, subunit composition and recruitment of AMPARs is changed according to the 

synaptic activity (Wang et al., 2012). Out of the three iGluR subtypes, AMPARs are known for 

their highly dynamic trafficking to and from synapses (Benke et al., 1998). 

The different AMPA receptor subunits have similar size of around 900 amino acids and 

share 68-73% sequence similarity (Hollmann and Heinemann, 1994). An AMPAR subunit 

consists of four distinct domains having a structure similar to other ligand-gated ion channels 
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like ɣ-amino butyric acid 

receptors (GABAR), 

however; a GABAR has 

four real transmembrane 

domains unlike AMPARs 

(Olsen and Sieghart, 

2008). Each AMPAR 

subunit contains an 

extracellular N-terminal 

domain (NTD), also 

known as an amino-

terminal domain (ATD), 

an extracellular ligand-

binding domain (LBD), a 

membrane spanning 

transmembrane domain 

(TMD), and a C-terminal 

domain (CTD) in the 

cytoplasmic region. The 

major variation among 

the four subunits lies in the cytoplasmic region of AMPARs. The extracellular domain, on the 

other hand, represents the biggest part of the receptor (Figure 2). Within the extracellular part, 

the N-terminal region has been recently shown to play an important role in AMPAR subunit 

assembly and receptor anchorage at synapses (Jin et al., 2009; Watson et al., 2017). Large parts 

of the extracellular region also contribute to the ligand-binding domain (LBD) of the receptor, 

which is essential for binding of glutamate and the induction of the conformational changes 

leading to channel opening. The polypeptide chain of all GRIA subunits contains four 

membrane-embedded sections (M1, M2, M3, and M4), with M2 not forming a regular 

transmembrane domain (TMD) but establishing a re-entrant loop that does not pass through the 

membrane. The LBD is assembled out of a segment of the N-terminal subunit loop (S1) and a 

segment of the extracellular loop connecting M3 and M4 (S2) (Figure 3) (Armstrong and 

Gouaux, 2000; Wo and Oswald, 1995). The membrane-spanning regions M1, M3, and M4 of 

all subunits within a tetramer arrange into a channel structure in the lipid bilayer, which is lined 

by the M2 loop at its inner core. The C-terminal domain has a variable sequence and length 

Figure 2. Three-dimensional structure of AMPAR tetramer and its 

different domains  

(A) Schematic drawing of AMPAR tetramer with its D1 and D2 ligand-binding 

domain (upper), and a membrane AMPAR structure in a with its different 

domains (lower). (B) Organization of domains in an AMPAR tetramer in a three 

dimensional structure (NTD: N-terminal domain, LBD: ligand binding domain, 

TMD: transmembrane domain). (C-E) Association of AMPAR dimers in the 

NTD (UL: upper lobe, LL: lower lobe), in the LBD, and in the TMD. (Greger et 

al., 2017)       

 



INTRODUCTION   

6 
 

among the four subunits, which has been 

shown to play significant roles in AMPAR 

trafficking, stabilization at synapses, and 

channel gating. This domain has various 

binding sites for intracellular proteins some 

of which are scaffold proteins that 

phosphorylate/dephosphorylate amino acid 

residues upon different signal transduction 

pathways. Extensive studies have shown 

that Protein Kinase A (PKA) and 

calcium/calmodulin (CaM)-dependent 

protein kinase II (CaMKII) phosphorylate 

the C-terminal domain at Ser845 and Ser831 amino acid residues, respectively, and enhance 

synaptic plasticity. Phosphorylation of Ser845 by PKA has shown to increase the open 

probability of homomeric GRIA1 channels, and to be involved in AMPAR surface trafficking 

(Banke et al., 2000; Esteban et al., 2003; Hosokawa et al., 2015; Lee et al., 2003; Roche et al., 

1996). Phosphorylation of Ser831 by CaMKII also increases channel conductance of 

homomeric GRIA1 receptors by enhancing the open probability (Derkach et al., 1999). 

Furthermore, it has been shown that 

transmembrane proteins form complexes with 

AMPARs and play crucial roles in their 

trafficking, membrane targeting and stabilization 

although it is not fully clear how this regulation 

occurs (Boehm et al., 2006; Granger et al., 

2013). The role of transmembrane proteins will 

be expanded later.   Native hippocampal 

AMPARs primarily (~ 80%) consist of 

GRIA1/GRIA2 heteromers, with the residual 

population being made up by GRIA2/GRIA3 

heteromers. Hippocampal pyramidal neurons express GRIA4 only predominantly in early 

developmental stages (Zhu et al., 2000). In addition, all surface receptors on the post-synapse 

contain a GRIA2 subunit (Lu et al., 2009). AMPARs are cationic channels mainly permeable 

to sodium (Na+) and potassium (K+) ions (Boulter et al., 1990), and to a lesser extend to 

calcium (Ca2+) ion (Figure 4). The presence of GRIA2 subunits in a receptor complex 

Figure 3. Association of S1 and S2 domains in an 

AMPAR subunit in the plasma membrane  

Extracellular S1 and S2 associate to form the ligand- 

binding domain of the receptor.  

Figure 4. Ion permeability of AMPAR channel  

Heterotetramers of AMPARs containing GRIA2 

subunit have low permeability to calcium ions. 
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critically determines the calcium permeability of a channel. GRIA2 are calcium impermeables, 

and they gain this specificity during RNA editing. RNA editing is especially prominent in the 

M2 transmembrane domain of GRIA2, where the RNA modification causes a glutamine  

arginine substitution (Q/R editing) (Sommer et al., 1991). It has been shown that mice lacking 

Q/R editing suffered from epileptic seizures and died early after birth (Brusa et al., 1995). 

AMPAR channels containing the GRIA2 subunit, which is the case for the majority of 

hippocampal pyramidal neurons, are Ca2+ impermeable (CI-AMPAR), and AMPARs lacking 

GRIA2 are Ca2+ permeable (CP-AMPAR). Calcium permeable AMPAR channels constitute a 

minority, yet play an important role in the activity of synapses in neurons (Toth and McBain, 

1998). 

 

1.4 AMPA receptor assembly and exit from ER 
  

Transcription of the messenger RNAs (mRNAs) for AMPAR subunits is largely limited 

to neurons and some glial cells. Interestingly, mRNA editing plays an important role in 

subsequent receptor complex formation and targeting (Greger et al., 2002). It has been also 

shown that mRNA is abundant in dendrites and at synaptic sites to ensure “on site” protein 

synthesis (Grooms et al., 2006). AMPA receptor trafficking starts after protein synthesis with 

the maturation of the subunits and receptor assembly in the endoplasmic reticulum (ER). 

Identical subunits emerging from polyribosomes first form homodimers due to high affinity of 

their NTDs (Herguedas et al., 2016). A subsequent assembly of different dimers (dimer of 

dimers) leads to the formation of tetrameric complexes, involving interactions of all subunit 

domains (Sobolevsky et al., 2009). A proper assembly and conformational topology of the 

subunits trigger a signal for AMPARs to leave the ER for their subcellular destination. Dimers 

that fail to associate with their corresponding partners in heterotetramers accumulate in the ER 

and cannot be exported (Coleman et al., 2006). It has also been shown that glycosylation of the 

first part of an AMPAR N-terminus is important for ER export to the Golgi apparatus and for 

their further transport (Greger et al., 2002). 

The export of AMPAR from the ER has been well studied, and several critical factors 

have been identified. Two important ER chaperons, immunoglobulin-binding protein (BiP) and 

calnexin, have been shown to play a role in AMPAR folding and ER retention (Rubio and 

Wenthold, 1999). Auxiliary proteins, some of which will be discussed in detail later, have also 

been shown to contribute to ER sorting, export, and even AMPAR folding and assembly. 
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Auxiliary proteins include transmembrane AMPA receptor regulatory proteins (TARPs) like 

TARPγ2, γ3, γ4, and γ8, and cornichons. TARPs, cornichons, synapse-associated protein 97 

(SAP97), in addition to other receptor interacting proteins bind AMPARs either directly or 

indirectly and regulate their modification and exit from the ER compartment (Brockie et al., 

2013; Leonard et al., 1998; Vandenberghe et al., 2005). It has also been shown that TARPγ2 

binds at the C-terminal of nPIST (neuronal isoform of protein interacting specifically with 

TC10), a protein enriched in the Golgi apparatus, and facilitates AMPAR exit from the Golgi 

network. It is still unclear how these different proteins regulate AMPAR transport from the ER, 

but impairing these interacting proteins dramatically increased ER retention and diminished 

surface expression. Taking for example TARPγ8, its impairment causes an increased retention 

of AMPARs in the ER and Golgi network of hippocampal neurons (Rouach et al., 2005). 

 

1.5 AMPAR trafficking 
 

The recruitment of AMPARs to 

postsynaptic sites is dynamically 

regulated and requires a network of 

intricate protein interactions (Anggono 

and Huganir, 2012; Greger et al., 2017; 

Kessels and Malinow, 2009; Luscher et 

al., 1999). AMPARs are enriched in the 

postsynaptic structure, but their synaptic 

residence depends on a continuous 

recruitment of “new” receptors to 

compensate for the ongoing loss of 

receptors due to a high turn over rate 

(Heine et al., 2008). Interestingly, postsynaptic aggregation and/or liberation of receptors are 

believed to be subject to activity-dependent regulation during synaptic plasticity (Bredt and 

Nicoll, 2003). Local exocytosis and endocytosis near spines as well as lateral diffusion 

represent the key mechanisms determining AMPAR trafficking at synapses. According to 

current ideas, these processes are under precise regulation by AMPAR interacting proteins and 

auxiliary subunits: One of the first identified binding partners of AMPAR were scaffolding 

proteins containing PDZ (PSD-95/Discs-large/ZO-1) domains. PDZ domains constitute 

Figure 5. AMPAR stabilization by PSD95 protein 

Schematic figure showing AMPAR/TARP complex stabilized 

by PSD95 protein in the synaptic membrane after trafficking of 

the complex to the synapse. (Tomita, 2010)           
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common interaction domains of 80 to 90 amino acid residues, which recognize short (up to 7 

aa) C-terminal PDZ-binding motifs and may be categorized in several classes due to specificity 

(Tonikian et al., 2008). As PDZ domains are frequently found in multiple copies within 

structural proteins, they are able to form large protein complexes (Doyle et al., 1996). 

Membrane-associated guanylate kinases (MAGUK) represent a prominent PDZ protein family, 

which includes several members that are found at postsynaptic sites and interact with glutamate 

receptors. In particular, PSD95 (post-synaptic density protein 95), PSD93 (post-synaptic 

density protein93), SAP102 (synapse-associated protein102), and SAP97 (synapse-associated 

protein97) have been proposed to interact with the C-termini of glutamate receptor subunits 

(El-Husseini et al., 2000; Leonard et al., 1998; Muller et al., 1996; Parker et al., 2004). The 

MAGUK PSD-95 is among the most abundant proteins in the postsynaptic density (Chen et al., 

2005) and possesses three PDZ domains apart from a non-functional guanylate-kinase domain 

(Tavares et al., 2001). Electron microscopic tomography showed a clear reduction in clustering 

of PSD proteins when PSD93, PSD95, and SAP102 were knocked down, in line with a role of 

these MAGUKs in organizing glutamate receptors in the PSD (Chen et al., 2015). Interestingly, 

none of the MAGUKs in the PSD -except SAP97- were found to directly interact with AMPA 

subunits. SAP97, however, interacts with the PDZ-binding at the C-terminus of GRIA1 subunit 

and is thought to chaperon it from the endoplasmic reticulum for actin based trafficking (Wu et 

al., 2002). PSD95, PSD93, and SAP102 bind AMPARs indirectly through auxiliary subunits 

like members of the transmembrane AMPA receptor regulatory protein (TARP) family. TARP 

proteins also have a PDZ binding motif and can bind to PSD95 as an intermediate between 

AMPARs and PSD95 (Chen et al., 2000) (Figure 5). 

Other PDZ-containing proteins include glutamate receptor-interacting protein 

(GRIP)/AMPAR binding protein (ABP), and Protein Interacting with C Kinase1 (PICK1) that 

bind to GRIA2 and GRIA3 subunits at their C-terminal domain and regulate their expression at 

the synapse (Dong et al., 1997; Xia et al., 1999). Two homologous GRIP isoforms exist, 

GRIP1 and GRIP2 that are differentially expressed in the different developmental stages of the 

rat brain. GRIP1 is expressed in earlier stages of the embryonic development whereas GRIP2 is 

expressed in later stages (Dong et al., 1999). The later identified ABP has been identified as a 

shorter splice variant of GRIP2. Moreover, GRIP1, GRIP2, and ABP have been found to form 

homo and heterodimers (Srivastava et al., 1998). Unlike the MAGUK family, GRIP/ABP have 

seven PDZ domains, and bind GRIA2 and GRIA3 through the fourth and fifth PDZ motif 

although GRIA subunits do not have PDZ binding domains. GRIP/ABP complex targets and 

stabilizes AMPARs at a synapse and is involved in synaptic formation upon increased 
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expression of GRIA2 subunit (Dong et al., 1999). GRIP/ABP play a role in synaptic up scaling 

as well, where the complex counteracts synaptic deprivation by increasing synaptic AMPARs 

and enhances synaptic activity (Gainey et al., 2015). On the other hand, PDZ-containing 

PICK1 protein has only one PDZ motif and also binds GRIA2 and GRIA3 at their C-terminal 

domains (Xia et al., 1999). However, unlike GRIP/ABP, PICK1 direct interaction to GRIA2 

leads to long term depression (LTD) (Kim et al., 2001). PICK1 competes with GRIP/ABP to 

internalize AMPARs from the synapse. Calcium increase and activated Protein kinase C (PKC) 

promote the dissociation of GRIP1 and N-ethylmaleimide-sensitive factor (NSF) from GRIA2, 

and on the other hand increased binding of PICK1 and β-SNAP (vesicle fusion protein) lead to 

the internalization of membrane AMPARs (Hanley and Henley, 2005; Hanley et al., 2002).  

Other types of proteins have been identified that bind AMPARs and regulate their clustering at 

synapses. Neuronal activity-regulated pentraxin (NARP) and neuronal pentraxin1 (NP1) are 

known to interact with all AMPAR subunits and involved in AMPAR recruitment and synapse 

formation. However, NARP and NP1 do not contain PDZ domains; and NARP was the first 

identified protein that binds the AMPARs at their N-terminal domains (O'Brien et al., 1999). 

Non-PDZ domain containing proteins also include the prominent AMPAR auxiliary proteins 

that are being heavily studied and investigated due to their crucial roles in AMPAR trafficking 

and regulation. 

 

1.6 Exocytosis and membrane insertion of AMPARs 
 

AMPA receptors subunits are synthesized by ribosomes at the endoplasmic reticulum 

(ER), wherein they assemble into functional tetramers before being transported to the Golgi 

network for further modification (Hanus and Ehlers, 2008). In dendrites, local synthesis of 

AMPAR subunits has been reported to occur at zones of increased ER complexity near 

dendritic branch points, which also frequently house Golgi-like outposts (Horton and Ehlers, 

2003), thus allowing the local transition of the assembled receptors into the secretory pathway 

and delivery to the plasma membrane in the direct vicinity (Cui-Wang et al., 2012). 

Noteworthy, recent work also suggested that glutamate receptors may alternatively transit from 

the ER-Golgi intermediate compartments (ERGIC) to recycling endosomes (RE), thus 

bypassing the canonic pathway via Golgi-compartments (Bowen et al., 2017). In this scenario, 

ERGIC and RE would together form a satellite secretory compartment in most parts of the 

dendrites, while stack-like GM-130-positive Golgi outposts are mostly restricted to dendritic 
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shafts (Hanus and Ehlers, 2008; Horton et al., 2005; Pierce et al., 2001). Following the canonic 

pathway, glutamate receptors enter the Golgi apparatus in the soma, undergo sorting in the 

trans-Golgi-network, and head for the plasma membrane in transport organelles. There is 

evidence that exocytosis of the transport vesicles delivers AMPARs to extrasynaptic regions on 

the plasma membrane (Adesnik et al., 2005; Araki et al., 2010; Lin et al., 2009), to dendritic 

shafts near spines (Makino and Malinow, 2009; Yudowski et al., 2007), or directly in spines 

close to postsynaptic structures (Gerges et al., 2006; Kennedy et al., 2010) possibly at 

syntaxin-4-positive exocytotic zones. AMPARs at extrasynaptic sites laterally diffuse on the 

surface of the cell, which allows for their dynamic capture at synaptic sites, resulting in a 

recruitment of AMPARs to the postsynaptic density (Ashby et al., 2006; Makino and Malinow, 

2009; Rosendale et al., 2017). Recent receptor tracking experiments suggest that synaptic 

receptor accumulation is at least in part due to activity-dependent diffusional trapping of 

receptors (Ehlers et al., 2007).  

AMPARs are subject to a constant turnover cycle, wherein some receptors are degraded 

and others are transported to dendritic recycling endosomes for reuse (Ehlers*, 2000). 

Interestingly, it has been shown that receptors in this resting intracellular pool can be rapidly 

shuttled to the plasma membrane in an activity-dependent manner, which is essential for 

different forms of synaptic plasticity including long-term potentiation (Park et al., 2004). The 

frequency of exocytotic receptor delivery depends on the subunit composition of the AMPAR 

cargo, with GRIA1-containing receptors being inserted in activity-dependent fashion (Araki et 

al., 2010; Makino and Malinow, 2009; Passafaro et al., 2001). Specific interactions of the 

different AMPAR subunits via their C-terminal tails may account for the different behavior in 

receptor turnover. In particular, it has been shown that NSF binding to GRIA2 is important for 

efficient insertion of new AMAPRs into the plasma membrane (Araki et al., 2010). Moreover, 

phosphorylation of serine 816 (S816) and S818 residues on GRIA1 C-terminal tail by PKC 

enhance the binding of 4.1N protein that mediates activity dependent GRIA1 membrane 

insertion. In addition, impaired 4.1N protein decreases long term potentiation as a result of 

reduced AMPAR surface expression (Lin et al., 2009). Live Cell imaging using fluorescently 

labeled GRIA subunits revealed the existence of two kinetic categories for AMPAR insertion 

events (Jullie et al., 2014; Yudowski et al., 2007). On the one hand, ‘transient’ or ‘short burst’ 

fluorescence signals were observed, wherein fluorescently-labeled receptors remain for ~ 1 s or 

less within a small membrane area before rapidly dispersing on the surface. In the second 

group, fluorescently labelled receptors appeared to rest for roughly 5-10 s at the insertion site, 

resulting in a ‘persistent’ or ‘long display’ event. Interestingly, it has been shown that 
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fluorescently-marked transferrin receptors (TfR) exhibit a similar behavior to tagged 

AMPARs, indicating that the different event types may reflect different fusion modes of 

recycling endosomes (Jullie et al., 2014). Still, the specific type of cargo clearly influences the 

fusion kinetics, as different cognate 7-TM receptors exhibited ‘long display’ events with 

different frequency (Jullie et al., 2014; Yu et al., 2010) analyzed fusion pore dynamics during 

‘persistent display’ events by application of a (low pH) quencher solution testing access to the 

pHluorin-tagged cargo in the vesicular lumen. Interestingly, this delivered evidence that ‘long 

display’ events primarily represent kiss-and-run fusion of the recycling endosome, in which the 

fluorescence decay reports re-acidification of the resealed organelles rather than cargo 

dispersion on the plasma membrane. In agreement with this conclusion, another study recently 

demonstrated that bafilomycin-treatment, which prevents the re-acidification of vesicles, 

indeed altered the decay kinetics of ‘persistent’ events (Roman-Vendrell et al., 2014).   

 

1.7 Endocytosis of AMPARs 
 

Endocytosis is the first step of recycling where AMPARs are internalized and sorted 

afterwards into different organelles (Glebov et al., 2015). Intracellular sorting of AMPARs is 

quite dependent on the way the receptors are endocytosed in neurons (Hausser and Schlett, 

2017; Parkinson and Hanley, 2018). The classical mode of receptor endocytosis is clathrin-

dependent requiring the action of the clathrin adaptor protein 2 (AP2) and the GTPase 

dynamin. AMPARs destined to be endocytosed associate with AP2, and clathrin coated pits 

with the help of dynamin mediate the membrane invagination and pinching off of vesicular 

organelles containing the receptors (Carroll et al., 1999; Cosker and Segal, 2014; Mukherjee et 

al., 1997). Clathrin-dependent endocytosis of AMPARs is activity dependent and is up 

regulated during long-term depression (LTD) (Ashby et al., 2004; Man et al., 2000). It has 

been shown that insulin treatment of CA1 hippocampal neurons induced clathrin dependent 

GRIA2 internalization. Insulin exists in the CNS, and neurons exhibit insulin receptors that 

regulate neuronal activity by inducing LTD upon increased AMPAR insertion (Man et al., 

2000). When internalized, AMPAR organelles are uncoated via Rab5 protein and driven 

towards the early endosome (EE) (Brown et al., 2005). In addition, Rab5 bound organelles 

bind EE antigen 1 (EEA1) that associates phosphatidylinositol-3-phosphate (PI3P) and 

facilitate the fusion of endocytic vesicle into EE (Gaullier et al., 2000; Murray et al., 2016). 

Early endosomes continue either towards becoming recycling endosomes (RE) (van der Sluijs 
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and Hoogenraad, 2011) via Rab11 or towards late endosome (LE) via Rab7 and end up in 

lysosomal compartments (Hu et al., 2015; Parkinson and Hanley, 2018). Receptors destined to 

be recycled back to the synaptic surface are packaged in recycling endosomes (RE) that fuse 

again with the membrane upon signaling and LTP (Park et al., 2004; Parkinson and Hanley, 

2018). Upon LTD, AMPAR intracellular retention increases and is directed towards 

degradation through the lysosomal pathway (Fernandez-Monreal et al., 2012). On the other 

hand, AMPAR constitutive trafficking and homeostatic downscaling are thought to be 

mediated by clathrin-independent endocytosis (Glebov et al., 2015). Experiments have shown 

that alteration of F-actin protein disrupts endocytosis under basal activity, and suggested that 

F-actin and Rac1 proteins are required for clathrin-independent endocytosis (Glebov et al., 

2015). Unlike clathrin-dependent endocytosis, clathrin-independent requires Rab4, Rab7, and 

Rab11 for the sorting, late, and recycling endosomes, respectively (Gu et al., 2016b; Hausser 

and Schlett, 2017). Not only Rab11, but also Rab4 can target AMPARs, precisely GRIA2, 

towards the surface membrane (Gu et al., 2016b). It is not clear whether AMPARs are 

endocytosed in spines, or migrate through lateral diffusion to extrasynaptic sites and then get 

endocytosed although most evidences are in favor of AMPAR internalization at the 

extrasynaptic site (Ashby et al., 2004; Luscher et al., 1999; Petrini et al., 2009). Since 

AMPARs are stabilized by interaction with PSD scaffolding proteins of the MAGUK family 

Figure 6. Endocytosis and exocytosis of AMPARs at the postsynaptic membrane  

AMPARs are synthesized in the endoplasmic reticulum (ER) and transported to the surface membrane 

through recycling endosomes (REs). AMPARs are internalized in early endosomes (EEs) through 

endocytosis to be recycled back in REs or become degraded in lysosomes.  
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like PSD95 at synaptic sites (Chen et al., 2015; Daw et al., 2000), it is likely that endocytosis 

occurs in extrasynaptic regions as it was stated before (Ashby et al., 2004). AMPARs in 

extrasynaptic site, unlike synaptic sites, are highly mobile and diffusive (Ashby et al., 2004; 

Borgdorff and Choquet, 2002). Yet, another active region, termed the endocytic zone (EZ), has 

been defined to contain mobile AMPARs and is responsible for endocytosis as well (Petrini et 

al., 2009). EZs are positioned near the postsynaptic density region of neurons. It has been 

suggested that receptors diffuse from the PSD domain once released from PSD proteins, like 

auxiliary subunits and PSD95, and move to the EZ for endocytosis. AMPARs endocytosed 

from EZs are thought to be recycled back to the synaptic region when needed (Figure 6) 

(Blanpied et al., 2002; Petrini et al., 2009).  

 
 

1.8 AMPAR auxiliary subunits 
  

 The subunit composition critically determines the functional properties of AMPARs. 

However, the “opening and closing”-kinetics of AMPAR channels is additionally modulated by 

a variety of associated cytosolic/ transmembrane proteins. Binding of these factors to AMPARs 

in many cases also regulate their initial export from the ER and transport to the plasma 

membrane (Schwenk et al., 2012). AMPAR binding proteins may either transiently interact or 

tightly bind to an AMPAR. Core interacting proteins that stay bound to AMPARs have been 

called AMPAR auxiliary subunits. The most prominent auxiliary subunits identified to play 

crucial roles in AMPAR regulation in mammalian brains include TARP (Transmembrane 

AMPA receptor regulatory proteins) family (Tomita et al., 2003), CKAMP (Cystine-Knot 

AMPAR modulating proteins) family (von Engelhardt et al., 2010), CNIH (cornichon) family 

(Schwenk et al., 2009), a recently identified protein called GSG1L (Germ Cell-Specific Gene 

1-Like) (Shanks et al., 2012), and SynDIG1  (Synapse Differentiation Induced Gene I) (Diaz, 

2010) (Figure 7). In addition, SOL-1 and NETO were also identified as auxiliary subunits that 

are expressed in C. elegans binding the GLR1 glutamate receptor or responsible for regulating 

kainate type- glutamate receptors, respectively (Figure 7) (Zhang et al., 2009; Zheng et al., 

2006). 

 Although it is generally accepted that auxiliary proteins positively regulate AMPAR 

trafficking and enhance channel kinetics like TARP, CKAMP, and CNIH proteins at synapses, 

recently found GSG1L is shown to negatively regulate these processes. Auxiliary subunits 

generally represent transmembrane proteins that exhibit a differential expression pattern within 
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the vertebrate brain. Moreover, 

AMPARs being part of a proteome, 

which is a large protein complex of 

around thirty proteins, that comprises 

auxiliary subunits as well as soluble 

proteins, accounts for the diversity of 

these macromolecules on synapses 

(Schwenk et al., 2012). The structure 

of AMPAR complex consists of a core 

that includes TARPs, CNIHs, and 

GSG1L subunits that define the 

function of the AMPAR, and a 

periphery that includes CKAMP 

transmembrane proteins and soluble 

proteins of the MAGUK family for 

example (Schwenk et al., 2012; 

Schwenk et al., 2009; Shanks et al., 

2012; Tomita et al., 2003). Although it 

has been previously thought that TARP 

subunits dominate the binding of 

AMPARs, recent identification of 

CNIH1 and CNIH2 showed that these 

auxiliary subunits are more abundantly 

distrubuted and bind more AMPARs in the rat brain (Schwenk et al., 2009). CNIHs are closely 

related to a conserved family of a Drosophila transmembrane protein designated by Cni, which 

is responsible for the recruitment of Gurken, an EGF-like protein, into COPII vesicles. Without 

Cni, export of Gurken from the endoplasmic reticulum (ER) is defected (Bokel et al., 2006). 

CNIHs, as will be detailed later for the TARPs as well, increase surface expression of 

AMPARs and transport receptors from the ER similar to Cni protein (Brockie et al., 2013). On 

the other hand, SynDIG1 has also been shown to interact with AMPARs as well as NMDARs, 

but its effect on AMPAR showed controversy among studies. Some studies state that the 

absence of SynDIG reduces AMPAR content in developing synapses (Diaz, 2010; 

Kalashnikova et al., 2010) whereas others prove no effect on AMPARs in the synapses when 

tested in slices (Lovero et al., 2013). The variety of roles that these auxiliary subunits play in 

Figure 7. Schematic structures of most prominent AMPAR 

auxiliary subunits  
GRIA (iGluR) and AMPAR transmembrane auxiliary proteins 

presented on the surface membrane of neurons. (Haering et al., 

2014) 
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terms of AMPAR regulation determines the basic features of these receptors and adds a bit 

complexity to the synaptic system of neurons. Our focus was mainly on TARP and CKAMP 

proteins, in addition to GSG1L in which we are going into details next.   

 

1.8.1 TARP auxiliary proteins 
  

 Transmembrane AMPA receptor regulatory proteins (TARPs) were the first family of 

AMPAR auxiliary subunits that was found in the mammalian brain. The most prominent 

member of the TARP family, “stargazin” or TARPγ2, was identified in the mutant strain of 

stargazer mice (Chen et al., 2000) which suffer from absence epilepsy and cerebellar ataxia 

(Noebels et al., 1990). Neurophysiological studies showed that the phenotype of stargazer 

mice results from a reduced surface expression of AMPAR in cerebellar granule cells 

(Hashimoto et al., 1999), highlighting the essential role of stargazin in intracellular transport of 

receptors. TARPγ2 belongs to a larger protein family that includes TARPγ3, γ4, γ5, γ7, and γ8 

(also known as Cacng2, 3, 4, 5, 7, and 8) which have a homology to the voltage gated calcium 

channel (VGCC) “γ1” subunit (Klugbauer et al., 2000) of the skeletal muscle calcium channel 

subunit and the integral membrane claudin proteins. γ1 is closely related to “γ6” where both 

lack the PDZ binding motif (Chu et al., 2001). Claudin proteins are cell adhesion molecules of 

epithelial cells forming tight junctions (Morita et al., 1999). Neuronal TARPs may also be part 

of membrane calcium channels, thus possibly serving a dual function. TARPs, as their name 

says, are proteins exhibiting tetraspan transmembrane domains, with two extracellular domains 

(loops) known as EX1 and EX2, and a cytoplasmic N- and C-terminal domain. It has been 

shown that the first extracellular domain (EX1) controls channel properties and thus regulating 

desensitization and gating of AMPARs (Tomita et al., 2005b). The second loop EX2 contains a 

PDZ interacting motif at its intracellular C-terminal domain that interacts directly with PSD95 

and increases the number of synaptic AMPARs (Schnell et al., 2002). TARPs are divided 

according to their structure and function into two main types, type Ⅰ and type Ⅱ (Figure 8). 

Type Ⅰ includes TARPγ2, γ3, γ4 and γ8 subunits, whereas type Ⅱ includes TARPγ5, and γ7 

subunits. Type I TARPs show a higher degree of slowdown of deactivation and desensitization 

than type II TARPs, whereby it should be mentioned that type II TARPs exhibit unique 

properties. In this context, TARPγ5 was shown to only interact and increase peak whole cell 

current of AMPARs containing GRIA2 subunit unlike type I TARPs, which do not show this 

distinction. AMPAR glutamate affinity is also reduced in the presence of TARPγ5  (Kato et al., 

2008). TARPγ7 also does not show this distinction among GRIA subunits yet it shows a rapid 
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and sustained desensitization of AMPARs, and it augments glutamate affinity to the receptors. 

Upon coexpression of GRIA and TARPγ7, glutamate evoked currents rapidly desensitize and 

show a unique feature of prolonged large steady state current (Kato et al., 2007). Generally, 

glutamate and kainate affinity and gating of AMPARs is regulated by the EX1 domain of 

TARPs that is more pronounced in type I than in type II subunits (Milstein et al., 2007). 

Another prominent difference between type I and type II TARP subunits, is the PDZ binding 

domain in the C-terminal domain that is in the form of T-T-P-V and S/T-S-P-C amino acid 

sequence in type I and II, respectively. The PDZ binding motif of type I matched the PDZ 

domain of PSD95 and related proteins whereas the PDZ binding motif of type II binds weakly 

to PDZ domains. Moreover, type I TARPs mediate AMPAR trafficking whereas type II do not 

(Tomita et al., 2005a). Furthermore, type Ⅰ is divided according to sequence and function into 

two subfamilies: type Ⅰa and Ⅰb. Type Ⅰa includes TARPγ2 and γ3, and type Ⅰb includes 

TARPγ4 and γ8. Functional analysis shows that TARPγ4 and γ8 slowdown deactivation and 

desensitization of AMPARs to a higher degree than TARPγ2 and γ3 (Milstein et al., 2007). 

 TARP proteins are heterogeneously expressed throughout the brain, although some may 

be co-expressed in the same neuronal subtypes. Analysis of mRNA content by in situ 

hybridization of developing and adult mouse brain revealed that TARPγ2 and γ7 are highly 

expressed in the cerebellar cortex and precisely in the Purkinje and granule cells of the adult 

brain. In addition, TARPγ3 and γ8 are mainly expressed in the telencephalon, with TARPγ8 

being predominantly expressed in the hippocampus. TARPγ4 is significantly expressed in the 

olfactory bulb, striatum, thalamus and hypothalamus, and TARPγ5 is profoundly present in the 

olfactory bulb, hippocampal CA2 region, thalamus, inferior colliculus and Bergmann glia cells 

of the adult brain. In the embryonic brain, expression of TARPγ2, γ5, γ7, and γ8 is spatially 

Figure 8. Structure of type I and type II TARP auxiliary proteins  

(A) Extracellular domain (EX1) of type I is bigger than type II of TARP subunit. Type I has a more 

frequent PDZ binding domain (T-T-P-V) than in type II (S/T-S-P-C) in its C-terminal domain. Type I 

exclusively has an arginine/serine rich sequence (RS domain) that plays a role in synaptic plasticity. 

(Kato et al., 2010)          
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well preserved whereas TARPγ3 and γ4 are respectively up and down regulated (Fukaya et al., 

2005).   

 

1.8.1.1 TARPγ8 protein 
  

 TARPγ8 is preferentially expressed in hippocampal 

neurons (Tomita et al., 2003). It has high sequence 

homology to other TARPs, especially to the prototypic 

group I TARP stargazin, but possesses an elongated C-

terminal tail (Burgess et al., 2001). Among all TARPs, the 

C-terminus of TARPγ8 possesses three unique stretches of 

amino acids that are not present in other TARP subunit (Chu 

et al., 2001; Milstein and Nicoll, 2009). Multiple studies 

have shown that TARPγ8 directly modulates the function of 

GRIA1, 2, and 3-containing receptor channels. It has even 

been shown to differentially modulate the gating of channels 

containing homomers or heteromers, or even the flip or flop 

splice variants of GRIA subtypes. Enhanced kainate 

response and steady state currents have been recorded in 

GRIA1/GRIA2 heteromers than in GRIA1 or GRIA2 

homomers (Cho et al., 2007; Kott et al., 2007; Tomita et al., 

2003). In heterologous cells, coexpression of AMPAR 

channels with TARPγ8 especially decelerated 

desensitization and deactivation, thus increasing overall charge transfer during receptor 

activation (Cho et al., 2007). TARPγ8, similar to other TARPs, binds the AMPAR channel at 

its extracellular N-terminal domain (NTD) and regulates its gating (Figure 9). The role of the 

AMPAR distal N-terminus is not well known; however, the N-terminus with part of the ligand 

binding domain (LBD), connected via a N-glycosylated linker of ~17 amino residues, forms a 

binding site for TARPs mediating the gating of the channels. In case of TARPγ8, mutation of 

this linker results in a slowdown of recovery from desensitization due to the NTD acquiring a 

different position and reducing the interaction with the TARPγ8 (Cais et al., 2014).  

Figure 9. Possible function of TARP 

on AMPAR channel  

AMPAR shown in its resting state and 

open state when bound to glutamate. 

S1-S2 domain closes like a clam-shell 

when bound to glutamate to open the 

channel pore (upper figure). Clam-

shell closes more when TARP (blue) is 

bound to the AMPAR to efficiently 

open the channel (lower figure) 

(Nicoll et al., 2006).       

 

.       



INTRODUCTION   

19 
 

In analogy to other members of the TARP family like stargazin/TARPγ2 

(Vandenberghe et al., 2005), TARPγ8 is believed to be involved in ER export and forward 

trafficking of GRIAs (GRIA2/3 or GRIA1). Indeed, elimination of TARPγ8 in a KO mouse 

model not only resulted in a decreased overall cellular pool of AMPARs but also led to an 

increased population of receptors with immature glycosylation in intracellular compartments 

(Rouach et al., 2005). Intriguingly, the stoichiometry of AMPAR and TARPγ8 is variable 

where AMPARs are functional with four, two, or even no TARPγ8. The number of associating 

TARPγ8 depends on the region and expression level in the brain. It has been shown that native 

AMPARs may associate with four TARPγ8, a saturated state of assembly, in the pyramidal 

neurons of the CA1 region whereas less than four associate with the receptors in the granule 

cells of the dentate gyrus. The variability in stoichiometry is related to the mechanistic role 

played in the different regions (Shi et al., 2009). A later study showed that the number of 

assembled TARPγ8 to the AMPAR is controlled by CNIH2 suggesting a modulating effect of 

the AMPAR channel gating and pharmacology (Gill et al., 2011). Precisely, GRIA1 containing 

AMPARs can bind TARPγ8 and CNIH2 simultaneously, and non-GRIA1 containing AMPARs 

are prevented from CNIH2 binding by TARPγ8 explaining 

why not all AMPARs have the same number of associated 

TARPγ8 subunits (Herring et al., 2013). In addition, it was 

reported that glycosylation of TARPγ8 itself is critical for 

the transport of GRIA1-containing receptors to the plasma 

membrane, as a reduced surface/total receptor expression 

and a changed glycosylation status of GRIA1-receptors was 

observed in neurons expressing non-glycosylated TARPγ8 

(Zheng et al., 2015a). Interestingly, TARPγ8 loss reduces 

the synaptic receptor population much less than 

extrasynaptic receptors, which are almost abolished in KO 

neurons (Rouach et al., 2005). The persistence of synaptic 

AMPAR localization likely reflects a compensatory action 

of other auxiliary subunits that can still efficiently recruit 

AMPARs to synaptic sites, even if overall receptor 

abundance is dramatically low. While TARPγ8 is clearly 

not essential for synaptic localization of AMPARs, its C-terminal PDZ binding motif still is 

involved in normal postsynaptic aggregation of receptors, as C-terminal truncation of TARPγ8 

in a corresponding knock-in mouse model (TARPγ84) significantly decreased AMPA EPSC 

Figure 10. AMPAR trafficking is 

regulated by TARP auxiliary 

subunit 

TARP subunit conveys AMPARs early 

in trafficking (1), insertion in the 

postsynaptic membrane (2), and 

stabilization at the synapse via PSD95 

protein (3). (Nicoll et al., 2006)      
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amplitude (Sumioka et al., 2011). The synaptic receptor aggregation has been attributed to the 

disruption of C-terminal interactions of TARPγ8 with PDZ domains of PSD95 (Figure 10) 

(Sumioka et al., 2011), similar to the role of PDZ interactions of other group I TARPs in 

synaptic anchorage (Schnell et al., 2002). Elimination of TARPγ8 abolishes expression of long 

term potentiation (LTP) (Rouach et al., 2005). Given the strong reduction in the extrasynaptic 

receptor population, this functional deficit might be a simple consequence of hampered 

receptor recruitment. However, elimination of the PDZ binding motif in TARPγ84 did not 

interfere with the expression of LTP, even though TARP-mediated synaptic receptor 

aggregation is compromised (Sumioka et al., 2011). Upon LTP initiation and calcium increase, 

CaMKII phosphorylates TARPγ8 at its S277 and S281 residues to increase the binding 

between PSD95 and TARPγ8, a process necessary to enhance AMPAR trapping on the 

postsynaptic membrane (Park et al., 2016). Recent work identifies new routes of AMPAR 

trafficking from the dendritic ER to the surface. Unlike somatic ER, AMPARs originating from 

dendritic ER do not pass through the Golgi apparatus, which makes the transport of receptors 

faster to the dendritic surface. Half of the surface GRIA1 and GRIA2 exist in a mannose 

glycosylated state indicting that these subunits did not pass through the glycosylation process 

in a the Golgi apparatus (Bowen et al., 2017). On the other hand, it has been shown that 

TARPγ8 has a complex glycosylation when present on the surface membrane (Zheng et al., 

2015a) suggesting that AMPARs and TARPγ8 have different maturation routes before arriving 

to the dendritic surface. Therefore, other auxiliary subunits, like CNIHs and SynDIG4, have 

been proposed to assist the transport of AMPARs originating from the dendritic ER (Buonarati 

et al., 2019; Matt et al., 2018; Schwenk et al., 2009). These findings show that a lot of work 

has to be done to understand the role of TARPγ8 in AMPAR trafficking and local recycling in 

the dendrites.         

 

 

1.8.2 CKAMP44 protein 
 

In hippocampal neurons, especially in granule cells of the dentate gyrus, AMPARs are 

associated with a second type of auxiliary subunit called cystine-knot AMPAR modulating 

protein 44 kDa (CKAMP44) (von Engelhardt et al., 2010). CKAMP44 (alternative 

nomenclature: Shisa9) belongs to a subgroup of the Shisa adaptor protein family (Pei and 

Grishin, 2012), which also comprises the brain-specific isoforms CKAMP39, 52, and 59 

(Farrow et al., 2015). All CKAMPs represent type Ⅰ transmembrane proteins with only one 
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transmembrane domain, an extracellular N-, 

and an intracellular C-terminal domain 

(Figure 11) (Farrow et al., 2015). As its 

name-giving feature, CKAMPs possess a 

conserved cysteine rich motif (eight 

cysteines), with six cysteine residues that 

likely form disulfide bridges similar to the 

cysteine knot found in ꞷ-conotoxin (Farrow 

et al., 2015; von Engelhardt et al., 2010). 

CKAMP44 contains 424 amino acids and 

exists in two splice variants, CKAMP44a 

and CKAMP44b, which differ by 48 base 

pairs (von Engelhardt et al., 2010). 

CKAMP44 has a pronounced C-terminal domain of 253 amino acids and contains a type Ⅱ 

PDZ, which putatively binds to PSD95. CKAMP44 binds to AMPARs without apparent 

subunit-specificity, involving a short juxtamembrane part of its cytosolic domain (Khodosevich 

et al., 2014). 

On the functional level, CKAMP44 promotes surface expression of AMPARs, slows 

down deactivation of AMPAR channels, and increases apparent glutamate affinity, very similar 

to the effects of TARPγ8. Unlike the effects of TARPγ8; however, in the presence of 

CKAMP44, receptor desensitization is more pronounced showing a decreased desensitization 

time constant and increased recovery time constant. Mutation of the cysteine residues in 

CKAMP44 renders the protein fully non-functional, despite a persistent binding of the mutant 

to GRIA1-containing AMPAR. Interestingly, almost the full C-terminal tail (except the 

juxtamembrane region) of CKAMP44 could be truncated without any functional consequences 

in hippocampal neurons, derogating its mechanistic requirement (Khodosevich et al., 2014). 

However, a recent study showed that the C-terminal domain binds PKC, and phosphorylation 

of C-terminus is modulated by PICK protein indicating a possible role of the C-terminal 

domain in synaptic plasticity (Kunde et al., 2017). Moreover, screening the eight PDZ binding 

domains of the C-terminus showed that PSD95 is a binding partner which assembly enhances 

the anchoring of AMPARs on the surface membrane (Karataeva et al., 2014). The CKAMP44-

mediated modulation of AMPAR channel properties also seem to significantly affect short 

term plasticity (STP), highlighting how CKAMP44 function determines synaptic physiology 

(Khodosevich et al., 2014; von Engelhardt et al., 2010). In contrast to TARPs, loss of 

Figure 11. Schematic structure of CKAMP auxiliary 

subunit  

CKAMP auxiliary subunit has an extracellular N-terminal 

domain with a cysteine-rich sequence (dark red), an 

intracellular C-terminal domain, and one transmembrane 

domain (TMD). 
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CKAMP44 however did not affect synaptic plasticity. Interestingly, it has been recently shown 

that TARPγ8 and CKAMP44 can be present in the same receptor complex in hippocampal 

neurons to differentially fine tune AMPAR channel and synaptic activity in addition to their 

role in forward trafficking of AMPARs to the surface membrane (Khodosevich et al., 2014). In 

addition to CKAMP44, related CKAMP39 (shisa8), CKAMP52 (shisa6), and CKAMP59 

(shisa7) also modulate AMPAR function. However, unlike CKAMP44 that is expressed in the 

majority of the brain regions as well as in embryonic stages (von Engelhardt et al., 2010), the 

novel CKAMPs’ expression is region and age specific specific. CKAMP39 was exclusively 

found in the olfactory bulb and cerebellum. CKAMP52 is expressed in the hippocampus, 

cerebellum, and septum, and CKAMP59 is expressed in the cortex and olfactory bulb as well 

as in the hippocampus. On the embryonic level, only CKAMP59 is strongly expressed in 

contrast to CKAMP39 or CKAMP52, which are completely absent and weakly expressed, 

respectively (Farrow et al., 2015). On the structural level, CKAMPs differ in the length of their 

extracellular signal peptide being 22, 23, 30, and 36 amino acids for CKAMP59, 44, 52, and 

39, respectively. All CKAMPs interact with GRIA1 and GRIA2, but they differentially 

modulate the channel gating and according to the subunit composition of the AMPAR. When 

CKAMP39 and 52 were coexpressed with either GRIA1 or GRIA2 in heterologous systems, 

they increased deactivation and reduced desensitization of GRIA2-mediated currents but did 

not affect GRIA1-mediated currents. When testing the recovery from desensitization, 

CKAMP39 had similar effects as CKAMP44 suggesting that CKAMP39 also mediates STD 

(Farrow et al., 2015; von Engelhardt et al., 2010). Although CKAMP59 did neither change 

deactivation nor desensitization of GRIA1 or GRIA2-mediated currents, a recent study showed 

that CKAMP59 knockout slows AMPAR decay kinetics without affecting amplitude or 

frequency (Farrow et al., 2015; Schmitz et al., 2017). Furthermore, overexpression of 

CKAMP44 in oocytes showed no change in GRIA1 surface expression (von Engelhardt et al., 

2010) in contrast to CKAMP39 and CKAMP59 where GRIA1 and GRIA2 surface expression 

was reduced and in CKAMP52 was increased in HEK293/T17 cells (Farrow et al., 2015). 

These different findings suggest that CKAMPs differentially modulate forward trafficking and 

AMPAR stabilization on the dendritic surface.      
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1.8.3 GSG1L protein 
 

GSG1L (Germ Cell-Specific Gene 

1-Like) protein is an auxiliary subunit that 

has been recently identified and shown to 

form a stable complex with AMPARs 

(Shanks et al., 2012). According to its 

topology, GSG1L is also related to the 

claudin protein family, and has a high 

similarity to TARP proteins. As for TARP 

proteins, GSG1L also has a tetraspan 

transmembrane domain with two 

extracellular loops, and an intracellular N- 

and C-terminal domain. GSG1L is 

expressed in the hippocampus, striatum, and the cortex. However, it is unique in its functional 

properties among the four core auxiliary subunits of AMPARs although it has a structural 

similarity to TARPs (Figure 12) (Shanks et al., 2012). In contrary to other auxiliary subunits, 

GSG1L negatively regulates AMPAR trafficking and synaptic transmission in glutamatergic 

synapses of hippocampal neurons. GSG1L is known to reduce the single channel conductance 

and calcium permeability of calcium permeable AMPARs (CP-AMPARs) as it has been shown 

in the cerebellar and hippocampal neurons. Absence of GSG1L showed an increase in inward 

rectification and mEPSCs in cerebellar neurons and increased mEPSC amplitude in 

hippocampal neurons, respectively (McGee et al., 2015). In line with that, a recent study 

showed via cryo-electron microscopy (EM) that GSG1L stabilizes the closed conformation 

structure of the AMPAR channel (Twomey et al., 2017). Thus, GSG1L suppresses synaptic 

currents and fastens deactivation and desensitization in CA1 hippocampal neurons. Its effect on 

the AMPAR is mediated by the first extracellular loop and the C-terminus (Gu et al., 2016a). 

Coexpression of Cre with GRIA1 and GSG1L showed a reduction in forward trafficking of 

AMPARs to the synapses in hippocampal neurons, and overexpression of GSG1L also resulted 

in reduced surface expression of AMPARs in neurons (Gu et al., 2016a). Interestingly, GSG1L 

knockout reduced AMPAR endocytosis and increased its forward trafficking which 

consequently enhanced LTP. Furthermore, it was shown that the extrasynaptic pool of 

AMPARs was greatly increased in GSG1L knockout hippocampal neurons which is in 

agreement with the concept that LTP requires an extrasynaptic AMPAR reserve pool (Gu et 

Figure 12. Schematic structure of GSG1L auxiliary 

subunit  

GSG1L auxiliary subunit has an intracellular N- and C-

terminal domain, and four transmembrane domains 

(TMDs).  
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al., 2016a). The fact that GSG1L inhibits the function of other auxiliary subunits like CNIH2 

and mediates a negative role on AMPAR trafficking and channel gating, indicates that GSG1L 

indeed ensures a balance in neuronal activity (Gu et al., 2016a). It is worth mentioning that in 

contrast to CA1 hippocampal neurons, absence of GSG1L in hippocampal dentate granule 

neurons did neither affect LTP nor deactivation or desensitization of the AMPAR channel, 

indicating a region specific role of GSG1L (Mao et al., 2017).  
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Aims of study 
 

1. AMPAR trafficking to and from the surface membrane of neurons is a dynamic process, but 

its precise mechanism is still not clear. Our first aim was to characterize the trafficking 

system of AMPARs. Therefore, GRIA1 subunits were N-terminally fused with the pH-

dependent GFP derivative superecliptic pHluorin (SEP) to track AMPARs during their 

surface insertion via exocytosis in hippocampal neurons. By using SEP-GRIA1 construct, 

we were also able to detect intracellular trafficking organelles storing AMPARs and 

quantify their content. We also aimed to identify the type of AMPAR trafficking organelles; 

therefore, we cotransfected hippocampal neurons with endosomal markers like the 

transferrin receptor (TfR)- fused to tagRFPt to stain recycling endosomes. 

 

2. Our second aim was to study the activity dependent regulation of AMPAR surface delivery 

in the soma of hippocampal neurons. By chronically depressing the activity of mouse 

hippocampal neurons using TTX or using Snap25-/- neurons having a disabled exocytotic 

machinery, we studied the exocytosis rate of SEP-GRIA1 in an activity dependent manner. 

 

3. AMPARs are known to associate with several proteins that regulate their trafficking and 

channel properties. We aimed to study the impact of two prominent auxiliary proteins, 

precisely TARPγ8 and CKAMP44a, on AMPAR trafficking mainly under basal activity. 

Using SEP-GRIA1, we examined the effect of both auxiliary subunits on AMPAR surface 

expression and local recycling. For the local recycling, we studied the exocytosis rate and 

intracellular stores of SEP-GRIA1 in dendrites upon auxiliary subunit overexpression. To 

further elucidate the effect of auxiliary subunits on AMPAR trafficking, we studied the 

basal AMPAR endocytic rate in extrasynaptic and synaptic sites that were differentiated 

using the synaptic marker PSD95-tagRFPt. Moreover, using the self-labelling HaloTag-

GRIA1, we aimed to stain exclusively the surface membrane of dendrites with a cell 

impermeable ligand tagged to a fluorescent dye to observe a gradual uptake of fluorescence 

indicating GRIA1 endocytosis.  
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2. Materials and Methods  
 

2.1 Solutions 
 

2.1.1 Hippocampal neuron - glial sandwich co-culture  

(Gary Banker Culture) 

 

Poly-D-Lysine (Poly-D-Lysine Hydrobromide, Sigma P6407) 

- MW: 70000-150000 Da   

- Concentration: 0.227 mg/ml dissolved in Borate buffer 

 

Borate buffer 

- H3BO3 (Sigma B-0252): 0.05 M 

- B4O7.10H2O (Merck A688908): 0.024 M 

- Components are dissolved in double distilled water (ddH2O), and pH is adjusted to 

8.5 with NaOH. Solution is then stored at 4 °C after filtration. 

 

Collagen, Rat Tail (Corning, 90 % purity, Product No. 35426) 

- Concentration: 1 mg/ml,  

- Diluted in ddH2O  

- Stored at 2 to 8 °C 

 

Enzyme Solution 

- 250 ml DMEM (gibco, 31966-021), 50 mg L-Cysteine (Sigma, C7352), 2.5 ml CaCl2 

(100 mM), 2.5 ml   Ethylenediaminetetraacetic acid (EDTA, pH=8.5) (50 mM) 

(Sigma, E1644) 

- Stored at -20 °C 
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Inactivation Solution 

- 225 ml DMEM, 25 ml FBS (gibco, 10270-106), 625 mg Bovine Serum Albumin 

(BSA) (Sigma, A7906), 625 mg Trypsin Inhibitor (Sigma, T9253) 

- Stored at -20 °C 

 

Papain (Worthington, CAT #: LS003126) 

- Concentration: 20 U/ml in enzyme solution 

- Stored at 4 °C  

 

Neurobasal A (NBA) medium with supplements 

- 250 ml NBA (gibco, 10888-022), 5 ml B27 (gibco, 17504-044), 2.5 ml Glutamax 

(gibco, 35050-038), 0.5 ml penicillin and streptomycin (Pen/Strep) (ThermoFisher, 

15140122) 

 

Dulbecco’s modified Eagle medium (DMEM) with supplements 

- 225 ml DMEM, 25 ml FBS (10 %), 0.5 ml Pen/Strep, 250 µl MITO (Corning, 

355006)  

 

Hank's Balanced Salt Solution (HBSS) (gibco, 24020-091)  

- With calcium and magnesium 

 

Dulbecco’s Phosphate Buffered Saline (DPBS) (gibco, 14190-094) 

- With calcium and magnesium 

 

Trypsin-EDTA enzyme (10x) 

- Trypsin enzyme (ThermoFisher, 15400054) is diluted 10 times with DPBS to obtain a 

concentration of 0.05 %  
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Astrocyte inhibitor 

- 5 - Fluoro - 2’ deoxyuridine (Sigma, F0503): is a thymidylate synthase inhibitor: 3.2 

mM  

- Uridine (Sigma, U3003): 79.8526 mM    

 

All media were stored at 4 °C. 

 

2.1.2 Other materials  
 

- Culture Coverslips (VWR, 25 mm) 

- Paraffin Wax (Fischer Scientific UK, P/0600/90): sterilized by autoclaving  

- Six-well plates (Fischer scientific, 10799541)  

- T-25 culture flasks   

- Cell strainer (100 µm, Easy strainer, greiner bio-one)  

 

2.1.3 Calcium phosphate transfection of hippocampal neurons 
 

- Plasmid DNA in H2O 

- CaCl2 (2.5 M) 

- Sigma H2O 

- Fresh DMEM 

- 2xHeBS (HEPES Buffered Saline) (Sigma, H7523) 

 

For 50 ml (2xHeBS) 

 NaCl:  0.8 g 

 KCl:   0.0355 g 

 Na2HPO4.2H2O: 0.013 g 

 D-Glucose:  0.135 g (Sigma, G6152) 

 HEPES:  0.5 g 

Three HeBS solutions with pH 7.06, 7.1, and 7.14 are prepared by adjusting the pH with NaOH 

solution. Neurons are then transfected with the three different HeBS solutions, and the one with 

the highest transfection efficiency is stored (-20 °C) for further transfections.     
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2.1.4 Extracellular solution  
 

 NaCl:  145 mM 

 KCl:  2.4 mM 

 MgCl2:  1 mM 

 CaCl2:  2 mM 

 HEPES:  10 mM 

 D-Glucose: 10 mM 

pH≈7.4 

 

2.1.5 Ammonium chloride solution (modified extracellular solution 

with ammonium chloride)   
 

 NaCl:  95 mM 

 NH4Cl:  50 mM 

 KCl:  2.4 mM 

 MgCl2:  1 mM 

 CaCl2:  2 mM 

 HEPES:  10 mM 

 D-Glucose: 10 mM 

pH≈7.4 

 

2.1.6 Low pH solution (5.5) (modified extracellular solution with low 

pH=5.5) 
 

 NaCl:  95 mM 

 KCl:  2.4 mM 

 MgCl2:  1 mM 

 CaCl2:  2 mM 

 HEPES:  10 mM 

 D-Glucose: 10 mM 

pH≈5.5 
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2.1.7 Insulin solution (modified extracellular solution with insulin) 
 

 NaCl:  145 mM 

 Insulin:  50 µM (Sigma, 11376 497 001, human recombinant) 

 KCl:  2.4 mM 

 MgCl2:  1 mM 

 CaCl2:  2 mM 

 HEPES:  10 mM 

 D-Glucose: 10 mM 

pH≈7.4 

 

2.1.8 Patch clamp intracellular solution 
 

 potassium-gluconate 137.5 mM   

 NaCl    11 mM   

 MgATP   2 mM 

 Na2GTP   0.2 mM 

 EGTA   1.1 mM 

 HEPES   11 mM 

 D-glucose  11 mM 

pH was adjusted with KOH to 7.3 

2.1.9 Patch clamp extracellular solution 
 

 NaCl:  145 mM 

 KCl:  2.4 mM 

 MgCl2:  1 mM 

 CaCl2:  2 mM 

 HEPES:  10 mM 

 D-Glucose: 10 mM 

 D-APV 50 μM (Tocris, 0106) 

 TTX 1 µM (Abcam, ab120055) 

pH≈7.4 
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2.1.10 Immunocytochemistry 
 

- PBS (1x)  

For 1L: 

 NaCl:   8 g 

 KCl:   0.2 g 

 Na2HPO4.2H2O:  1.78 g 

 KH4PO4:  0.24 g 

pH≈7.4 

 

- PFA (4 %)  

For 50ml: 

 PFA:   2 g (MERCK, 1040051000) 

 PBS(1x):  50 ml 

pH≈7.4; pH measured with a litmus paper 

 

- Blocking Buffer 

For 200ml: 

 BSA:   6 g 

 TritonX100:  0.3 g (MERCK, 1 08603 1000) 

 PBS(1X):  200 ml 

 

- Quenching Buffer 

For 40 ml: 

 NH4Cl:  0.1 g 

 PBS(1X):  40 ml 

 

 

2.2 Preparation of culture coverslips  

2.2.1 Acid wash  
 

Coverslips were first put in 37 % HCl acid solution for 2 to 3 h, and then washed three 

times with ddH2O each time for 1 h. A second acid wash with 65 % HNO3 was done in the 

same manner as with HCl solution. Acid washing of coverslips increases the cleanliness and 

etches the surface allowing for a better neuron attachment. In case 3 h is not enough for acid 

treatment, coverslips can be left in HCl or HNO3 overnight. After the last washing step with 

ddH2O, the coverslips were washed with 70 % and 100 % ethanol for 2 to 3 h. Coverslips can 
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also be left in ddH2O, 70 %, or 100 % ethanol overnight. Eventually, the coverslips are put in a 

glass petri-dish and dried at 153 °C for 2 h. Coverslips are eventually exposed to UV light 

before use, for sterilization. 

If the coverslips were used for neuron-glial sandwich culture (Gary Banker culture), 

three paraffin dots (wax dots) were added on the edge of a coverslip in a triangle. Wax dots 

serve as spacers between neurons and astrocyte feeding layer (Figure 15). 

 

2.2.2 Poly-D-Lysine coating of acid washed glass coverslips 

In order to enhance neuron cell adhesion to solid substrates, culture coverslips are 

coated with Poly-D-Lysine. Poly-D-Lysine is a positively charged amino acid polymer that 

binds negatively charged ions on cell membranes. 

Poly-D-Lysine was dissolved in Borate buffer and aliquots were stored at -20 °C. 

Coverslips, in six-well plate, were coated with 100 µl of Poly-D-Lysine overnight. The six-well 

plates were then covered with parafilm to prevent dryness of coverslips. On the next day, 

remaining Poly-D-Lysine was removed and coverslips were washed with ddH2O three times 

each time for about 1 h. The coverslips were dried and sterilized prior to use. 

 

2.3 Astro-glial culture preparation 
 

For optimal imaging of neurons, we optimized the 

neuron-glial sandwich culture, which is also known as the Gary 

Banker culture. Astrocytes were prepared at least 8 to 9 days 

before the neuron culture. To prepare an astrocyte primary 

culture, three newborn (P0/P1) C57/Black6 mice (Figure 13) 

were decapitated and the skull was then cut carefully with a 

small surgical micro scissor. The brain was then taken out with 

the help of a small spoon and put in cold HBSS medium. The 

two hemispheres of the brain were pulled apart with two forceps and the hippocampal regions 

were carefully dissected out (Figure 14). All hippocampi were collected and put in a cell 

strainer (pore size of 100 µm) set on a sterile 50 ml falcon tube to mechanically dissociate the 

tissue with a sterile plastic stick. Cells were filtered with fresh and cold DMEM medium into a 

falcon tube until no tissue was visible. Cell suspension was then centrifuged at 1800  rpm for 5 

min. The supernatant was removed and 1 ml of warm DMEM medium (with supplements) was 

added to re-suspend the astrocytes. Finally, 5 ml of warmed DMEM medium was added to the 

Figure 13. Image of a new 

born mouse (P0) 
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cell suspension and mixed slowly then transferred to a collagen coated T-25 culture flask. The 

cells were cultured in a 12 % CO2 incubator at 37 °C for one day.  Then they were fed with 

fresh DMEM medium and left for about a week to grow for confluence. After one week, 

astrocytes were harvested and seeded in six-well plates. To harvest astrocytes, they were 

shortly washed with 5 ml warmed DPBS and detached from their adhesive layer through 

addition of 0.005 % tryspin-EDTA for 5min in 12 % CO2 incubator at 37 °C. About 3 ml of 

warmed DMEM medium (with supplements) were then added to deactivate trypsin and to re-

suspend them with 5 ml pipette. The cell suspension was put in a 15 ml falcon tube and 

centrifuged for 5 min at 1300 rpm at 20 °C. The supernatant was removed and the cell pellet 

was re-suspended in 1 ml DMEM medium (with supplements). With the help of a Neubauer 

hemocytometer chamber astrocytes were counted and an estimate of ≈ 3 x 105 cells were 

calculated for each culture coverslip of a diameter 25  mm of a six-well plate. The astrocytic 

feeding layer was incubated in DMEM medium (with supplements) for two to three days to 

grow 40 % to 60 % confluence before addition of hippocampal neurons.    

 

 

2.4 Hippocampal neuron primary culture preparation 
  

 To prepare neuron primary culture, newborn (P0/P1) C57/Black6 mice were decapitated 

and the skull was then cut carefully with a small surgical micro scissors. The brain was then 

taken out with the help of a small spoon and put in cold HBSS medium. The two hemispheres 

of the brain were pulled apart with two forceps and the hippocampal regions were carefully 

taken out. In the meantime, the enzyme solution containing 20 units (20 U) papain was put in 

an 11 % CO2 incubator for pH adjustment, and culture plates containing treated coverslips were 

Figure 14. Brain and hippocampi of a P0 Mouse  

Dissection of a mouse brain to obtain the hippocampus (right image) for primary culture.  
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sterilized with UV light. DMEM medium (with supplements), NBA medium, and inactivation 

solution were also warmed up (37 °C) to use in later steps. The cleaned hippocampi were put in 

400 µl papain-enzyme solution for ≈ 20 min in a 37 °C water bath under shaking condition. 

Following digestion, the enzyme solution was removed and the tissue was incubated in 400 µl 

inactivation solution and returned back into the shaking water bath for 5 min. The inactivation 

medium was then removed and 600 µl of warm DMEM medium (with supplements) was added 

to the hippocampi. The tissue was carefully dissociated by multiple pipetting. The cell 

suspension was left for 2-3 min for allow non-dissociated cellular tissue to precipitate. The 

600 µl cell suspension was then put in a 1.5 ml eppendorf tube with 400 µl DMEM medium 

and mixed carefully. We then counted the cells using a Neubauer hemocytometer chamber and 

an estimate of about 3 x 104 cells per 25 mm coverslip was calculated. We incubated the plated 

hippocampal neurons for 30 min in 5 % CO2 incubator then added carefully 2 ml warmed 

(37 °C) NBA medium to each well. 

In a case of a continental culture (≈ 6.8 x 104 cells/coverslip), every 3 days a medium 

change was done until use the (9th to 13th day). In case of a low density culture (≈ 3.2 x 

104 cells/coverslip), FUdR astrocyte inhibitor was added on the third day after preparation, to 

block overgrowth of astrocytes. FUdR is a thymidylate synthase inhibitor that blocks DNA 

Figure 15. Gary Banker culture of hippocampal neurons and astrocytes  

A Gary Banker culture is a sandwich culture of astrocytes on a bottom of a well and neurons on coverslips 

facing the astrocytes upside down. Neurons and astrocytes are separated by wax dots that serve as spacers.  
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synthesis. At the second day NBA medium was 

exchanged with a fresh one. In addition, medium 

change (~1 ml) was done every three days to 

maintain the integrity of neurons. Blocking 

astrocytes’ growth was done to allow better 

imaging of overlaying hippocampal neurons. 

For the neuron-glial sandwich culture 

(Figure 15, Figure 16), the medium of cultured 

astrocytes was exchanged with NBA medium for 

pre-conditioning at the day of neuron preparation. 

On the second day, the coverslips containing 

neurons were transferred upside down to the astrocyte feeding layers (Figure 15). At the third 

day, the culture was treated with FUdR astrocyte inhibitor followed by a medium exchange 

every three days as mentioned previously. 

 

2.5 Calcium phosphate transfection of hippocampal neurons 
  

 To transfect hippocampal neurons with a cloned DNA, the cells were washed one time 

with pre-warmed fresh DMEM medium then incubated in 2 ml fresh DMEM medium 

(transfection medium) for 45-60 min at 37 °C in 5 % CO2. Conditioned NBA medium of the 

neurons is preserved to be added again at the end of transfection procedure. In the meanwhile, 

the DNA-calcium phosphate precipitate was prepared. For the precipitate, 34 µl Sigma H2O, 4 

µl CaCl2 (2.5 M), 2 µl DNA (1 µg), and 40 µl of HeBS are required per 25 mm coverslip. First, 

Sigma H2O, CaCl2, and the DNA were gently mixed together, and then it was added dropwise 

to the HeBS and mixed through bubbling with a pipette. The mixture was put in dark for 30-40 

min at room temperature to allow the DNA/calcium phosphate precipitate to build. After ~30 

min, the solution should look somewhat cloudy compared to the HeBS stock solution and ready 

to be added dropwise over the neurons. Eighty microliters of the precipitate solution were 

added in each well during which the six-well plate was moved gently to ensure homogeneous 

distribution of the precipitate on the neurons. Neurons were put back in the incubator with 5 % 

CO2 for 30-35  min to allow transfection to take place whereby fine precipitate was seen after 

~20 min all over the coverslip. Then the transfection medium was removed and coverslips were 

washed with fresh warm DMEM medium two times for 10-15 min. Finally, DMEM medium 

Figure 16. Typical hippocampal primary 

neuron culture  

Image of hippocampal neurons (DIV 9-10) grown 

in a Gary Banker culture  

 



MATERIALS AND METHODS   

36 
 

was exchanged with the conditioned NBA medium and incubated one to two days to allow the 

expression of the desired gene. 

 

2.6 Immunocytochemistry of hippocampal neurons 
 

Hippocampal neurons were fixed with 4 % freshly prepared paraformaldehyde (PFA) 

solution for 20 min on a shaker after a short wash with PBS. PFA is prepared by adding  2 g 

PFA powder to 50 ml PBS (1x), and then put for 1.5 to 2 h in a 65 °C water bath to dissolve. 

PFA was removed, and the cells were washed three times (5 min each) with PBS. Neurons 

were then quenched with the quenching buffer for 10 min followed by one wash with PBS (1x). 

Then blocking buffer was added to the cells for 30-45 min to prevent unspecific binding of 

antibodies. Neurons were then incubated overnight with primary antibody in a wet chamber at 

4 °C. Primary antibody was washed away on the second day with blocking solution (three 

times, 10 min each), and cells were incubated with the secondary antibody in a wet chamber at 

room temperature for 2 h in the dark. Finally, cells were washed with PBS and mounted with 

glycerol on microscope slides for imaging. 

 

 

2.7 Blocking astrocyte growth in hippocampal neuron culture 
  

Since our study was based on imaging primary hippocampal neuron cultures of 9-

12  days old, we had to make sure that astrocytes did not contaminate the neuronal cultures 

with their overgrowth in the coverslips. Hence, astrocytes lying under neurons block imaging 

of soma and/or dendrites making it sub-optimal. To circumvent this problem, we treated the 

neuron-glia culture with an astrocyte inhibitor 5 - Fluoro - 2’ deoxyuridine (FUdR) to block 

astrocytic overgrowth at the time keeping neurons healthy. To identify the optimal day to treat 

the neuron-glial culture with FUdR, we treated cultures on the second (DIV 2) or third (DIV 3) 

day after preparation and fixed and stained astrocytes and neurons to test the effect of FUdR. 

We fixed the cultures on the following day, and immunostained against microtubule-associated 

protein (MAP) and glial fibrillary acidic protein (GFAP) that are neuron and astrocytic 

markers, respectively. Primary antibodies (Ab) against MAP (abcam, Cat.No. ab32454) and 

GFAP were diluted 1:1000 in blocking buffer (anti-MAP: mouse monoclonal; and anti-GFAP: 

rabbit polyclonal). As for secondary antibodies, both were also diluted 1:1000 in blocking 

buffer (secondary Ab against anti-MAP Ab: Alexa 488 nm goat anti-mouse; secondary Ab 
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against anti-GFAP Ab: Alexa 546 nm donkey anti-rabbit). After mounting the coverslips in 

glycerol, they were imaged using confocal microscopy (LSM 780). Interestingly, FUdR treated 

coverslips, on the second (DIV 2) and third (DIV 3) day, showed a clear decrease in astrocyte 

number compared to non-treated coverslips (Figure 17).  

 

  

2.8 Epifluorescence and TIRF imaging 
  

Epifluorescence imaging of transfected neurons was done on two inverted microscopes 

depending on the purpose of the experiment. Olympus IX70 microscope setup with custom 

installments for a wide range of experiments was mostly used for epifluorescence imaging. It is 

equipped with manual and automated perfusion systems that were used during recording. An 

EMCCD camera (Evolve Photometrics, 512) was used for capturing images during recording. 

The camera is connected with a Dual-View (565dcxr) from Optical Insights. Two laser systems 

were used to excite fluorophores. A green 488 nm laser from Spectrophysics, and a red 561 nm 

laser from Melles Riot (model: 85-YCA-615). Laser paths are modulated through an Acousto 

Optical Tunable Filter (AOTF) from Visitron Systems (model VS AOTF-2). The setup is 

equipped with different AHF filters, and we used the green/red filter in our experiments. For 

our imaging purposes a 100x TIRF objective with NA 1.45 Apochromat was used. Data were 

acquired using VisiView software version 2.1.2 from Visitron Systems. 

The same setup was used to do total internal reflection fluorescence (TIRF) microscopy. 

TIRF illumination excites fluorophores that lay in the evanescent field generated through the 

Figure 17. Astrocyte growth inhibition via FUdR treatment  

Hippocampal neuron culture immunostained against microtubule-associated protein (MAP, green) in 

neurons and glial fibrillary acidic protein (GFAP, red) in astrocytes. Culture not treated with FUdR shows 

normal growth of astrocytes (left). Cultures treated with FUdR at DIV 3 and DIV 2 show a noticeable 

reduction in astrocyte growth (middle and right). Images were smoothed for better presentation.    
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total reflection of the 

excitation rays. The 

evanescent field penetrates 

150-180 nm in a sample 

between glass-sample 

interface (Figure 18) (Funatsu 

et al., 1995). TIRF microscopy 

enables the observation of 

fluorescent organelles near the 

membrane with low 

background fluorescence and 

increased signal to noise ratio. 

Additionally, a Carl 

Zeiss Axiovert 200 

microscope with an Evolve 

EMCCD camera (Visitron, 

Germany) and a Zeiss Plan 

Apochromat 40x oil 

immersion objective (NA 1.3) 

was used to measure surface 

expression of fluorophore 

tagged AMPARs. A polychromator (Till Photonics) was used to excite fluorophores with 488 

nm and 561 nm wavelengths. This setup is also equipped with an automated perfusion system 

suitable for our experimental purposes.   

  

2.8.1 Detection of intracellular quenched SEP-GRIA1 organelles and 
image processing    

 

To detect internal AMPAR trafficking organelles in neurites of hippocampal neurons, 

cells were transfected with a pCI expression vector encoding superecliptic pHluorin (SEP)-

GRIA1 (Kopec et al., 2006). SEP is fused to the N-terminus of GRIA1 subunit positioning the 

fluorophore in the extracellular space or the lumen of intracellular organelles, respectively. 

Since SEP is a pH sensitive derivative of GFP (Miesenbock et al., 1998), it is quenched in the 

acidic milieu of secretory organelles, and becomes fluorescent in neutral medium like the 

Figure 18. Epifluorescence and TIRF microscopy   

In epifluorescence mode, whole cell is illuminated that makes all 

fluorophores fluorescent (upper diagram). In total internal reflection 

fluorescence (TIRF) mode, an incident light wave is totally reflected and 

an evanescent wave with a penetration range of 150 - 180 nm illuminates 

fluorophores within this region (lower diagram).      



MATERIALS AND METHODS   

39 
 

extracellular medium. To turn internal acidic organelles neutral, neurons were perfused with 

ammonium chloride (NH4Cl, 45 mM) solution. NH3/NH4
+ application deprotonates organelles 

with acidic pH (e.g: vesicles, recycling endosomes, etc.) and changes the lumen to neutral thus 

unquenching SEP fluorophore and turning it visible (Figure 19) (Roos and Boron, 1981). 

Moreover, NH4Cl unquenches all SEP-GRIA1 corresponding to the total fluorescence in a 

neuron. NH4Cl treatment is reversible and can be washed out with extracellular solution. 

Processing and analysis: We used for all image processing and analysis “Fiji” software 

(ImageJ 1.52e). To obtain images with internal AMPAR organelles only, we first subtracted 

background fluorescence of all images. Then we multiplied the fluorescence intensity of the 

reference image (before NH4Cl treatment) by two. The multiplied reference image was then 

subtracted from the image treated with NH4Cl to obtain a difference image designated by 

“NH4
+ ∆image”. NH4

+ ∆image corresponds to the image containing only the AMPAR internal 

organelles in a dendrite. (Exemplary images shown in the results part) 

Formula after background subtraction: 

Image(AMPAR intrac. organelles) = NH4
+ ∆image = FNH4Cl – 2 x Fbaseline image 

Where F corresponds to the fluorescence intensity of the image. NH4
+ ∆image was then 

thresholded to obtain regions of interest (ROIs) corresponding to the intracellular AMPAR 

trafficking organelles. In experiments where the fluorescence intensity of internal AMPAR 

organelles had to be quantified, simple subtraction of the reference image from the image with 

NH4Cl treatment was done. Then ROIs obtained from the NH4
+ ∆image, were used to quantify 

the intensities of individual puncta. 

Figure 19. NH4Cl unquenches SEP-GRIA1 in trafficking organelles  

Superecliptic phluorin (SEP)-GRIA1 receptors present in vesicles are quenched due to low pH 

medium (left). Addition of NH4Cl to extracellular medium enables NH3 molecules to penetrate 

vesicles and bind protons (H+) to become NH4
+ thus making the medium neutral and SEP-GRIA1 

fluoresces (right).   
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2.8.2 Exocytosis of AMPARs 
 

Exocytosis of SEP-GRIA1 was studied in epifluorescence and in TIRF imaging of 

hippocampal neurons. SEP-GRIA1 proteins are quenched in intracellular organelles due to 

acidic pH, and become fluorescent when they fuse with the plasma membrane due to exposure 

to neutral extracellular medium (Figure 20). The sudden increase in fluorescence intensity is 

captured by an EMCCD camera, and is considered as a fusion event during exocytosis.  

Acquisition: Imaging frequency to acquire SEP-

GRIA1 exocytotic events was 10 Hz with an exposure 

time of 100 ms. 

Processing and analysis: Exocytosis events in a 

movie (stack), were first visually detected and marked 

with ROIs in (ImageJ 1.52e). Then, fluorescence 

intensity variation of every event was further analyzed 

in Igor analysis software (Igor Pro 6) with a custom-

written routine (macro) to confirm the visually 

detected events. Only events with an onset time of 

maximal ~2 s, and an amplitude exceeding four times 

the standard deviation (4 SD) were included in the 

analysis.  

 

 

2.8.3 Discrimination of AMPAR surface fluorescence and image 
processing  

 

In experiments where surface fluorescence had to be quantified, SEP-GIAR1 

transfected neurons were perfused with low pH solution (5.5) during real time recording, and 

then washed out with extracellular solution that was followed by NH4Cl treatment (Figure 21). 

Low pH quenches extracellular surface SEP-GRIA1 rendering only internal unquenched SEP-

GRIA1 visible (like in the endoplasmic reticulum). Moreover, NH4Cl solution was applied to 

obtain the total fluorescence intensities of neurons and calculate the ratio of SEP-GRIA1 

surface to total intensities. Application of NH4Cl or low pH (5.5) solution was for ~3 s 

followed by washing out with extracellular solution. 

Figure 20. Exocytosis event of SEP-GRIA1 

AMPAR  

A trafficking organelle carrying SEP-GRIA1 

becomes fluorescent (green) when fusing with 

the plasma membrane due to exposure to 

extracellular neutral medium after being 

quenched in acidic pH.  
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Processing and analysis: Due to variability in SEP-GRIA1 fluorescence intensities of 

neurons, surface fluorescence was normalized to the total fluorescence. First, background 

fluorescence was subtracted for all images before any processing. To obtain absolute surface 

fluorescence intensities, we took five frames of the reference images (before low pH (5.5) 

application) and averaged the fluorescence intensities. The same was done for five frames 

during low pH (5.5) application. Then, averaged low pH (5.5) image was subtracted from the 

averaged reference image. The result is an image of absolute SEP-GRIA1 surface fluorescence 

of a neuron. On the other hand, five frames during NH4Cl application were averaged to 

normalize the absolute SEP-GRIA1 surface fluorescence to the total fluorescence (image with 

NH4Cl). 

For low pH treatment: after background subtraction and averaging of frames 

Fsurface = Fbaseline image – Flow pH 

 

 

 

Figure 21. Fluorescence change of SEP-GRIA1 upon low pH (5.5) and NH4Cl treatment  

(A) Image showing hippocampal neuron transfected with SEP-GRIA1 in extracellular medium (left), in 

low pH (5.5) that quenches surface fluorescence of SEP protein (middle), and in NH4Cl that unquenches 

all SEP molecules in the neuron (right). (B) Trace showing fluorescence decrease upon low pH (5.5) 

application, and fluorescence increase upon NH4Cl treatment.     
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2.9 Halo-tag staining of AMPARs   
 

To study endocytosis of AMPARs, we designed a construct that stains only surface 

AMPARs. SEP tag of SEP-GRIA1 construct was exchanged with HaloTag sequence 

(HaloTag-GRIA1) that will be positioned in the extracellular space when the receptor is 

expressed on the surface membrane. HaloTag is a relatively new designed recombinant protein 

tag by “Promega Biosciences” that favors flexibility and site specific labeling with the suitable 

synthetic ligands. HaloTag protein is a mutated form and catalytically inactive derivative of a 

hydrolase enzyme. It has a size of 33 kDa and is expressed as a monomeric protein that can be 

fused to N- or C-terminal domains of proteins. HaloTag protein catalyzes the formation of a 

covalent bond with chloroalkane group containing ligand (Figure 22). The covalent bond 

formation is specific, rapid, and irreversible (Urh and Rosenberg, 2012). A HaloTag ligand 

contains a reactive linker and a fluorescent dye, and it may be cell permeable or impermeable. 

We used an impermeable Alexa Fluor 488 ligand (Promega, G1001) for surface staining of 

cultured hippocampal neurons. Transfected neurons were incubated with Alexa Fluor 488 

ligand for 35-40 min at 15 °C and in 5 % CO2, to 

inhibit early endocytosis during incubation. Stacks 

were then acquired using laser scanning microscopy 

(confocal imaging).  

Processing and analysis: Confocal images showed 

clear membrane staining of HaloTag-GRIA1 

receptors in a neuron. Images were acquired every 4 

min over 24 min. At each time point, three slices 

were acquired. Before quantification of fluorescence 

intensities, background fluorescence was subtracted. 

To quantify endocytosis as a function of time, 

scanlines or circle-like ROIs, were defined to 

quantify either extrasynaptic or synaptic 

fluorescence, respectively. For the extrasynaptic site, 

a scanline of length >3.2 µm was defined along a 

neurite during each time point and for every slice. 

The region was straightened to get uniform intensity 

traces through the membrane. All obtained traces 

corresponding to the region under the scanline were 

Figure 22. Concept of HaloTag binding to 

synthetic ligand  

(A) HaloTag bound to a protein of interest 

(POI) catalyzes a covalent bond with a 

synthetic ligand bound to a fluorescent dye. 

(B) Three dimensional structure of a HaloTag 

protein bound to HaloTag ligand. (Urh and 

Rosenberg, 2012)       
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averaged, and the peak value was taken for the analysis. Eventually, fluorescence intensity of 

every chosen region was normalized to the first time point, and normalized intensities of all 

regions for every neuron were averaged to obtain a trace of endocytosis starting from value 

one. As for the synaptic site, all three slices for every time point were summed, and the image 

with PSD95-tagRFPt synaptic marker was thresholded to obtain ROIs corresponding to 

synaptic puncta. ROIs were overlaid on the summed image of HaloTag-GRIA1 for every time 

point, and fluorescence intensity of each synapse was then quantified. Here also, we 

normalized the fluorescence intensities to the first time point, and all values of all synapses in a 

neuron were averaged. (Exemplary images shown in results part)            

 

2.10 Laser scanning microscopy (LSM) 
 

A confocal Carl Zeiss LSM 780 microscope was used to examine live or fixed 

immunostained hippocampal neurons. We used Zeiss Efficient Navigation (ZEN) software, 

which enables a wide variety of controls and configurations of imaging settings to optimize 

acquisition. The microscope is equipped with autofocus option suitable for relatively long time 

imaging experiments. In addition, a heating system is used to condition the environment of the 

container and the head stage where the sample is mounted. Stacks and images were acquired 

with a C-Apochromat 40x oil objective (NA 1.2). Samples were excited with two lasers, an 

Argon 488 nm laser and a 561 nm DPSS (Diode Pumped Solid State) laser. Bright field images 

were also acquired with either wavelength through a T-PMT. In most recordings, a pinhole size 

of 1 AU (Airy Unit) was applied. Digital images were 12- or 16-bit-encoded. Master gain, gain, 

laser intensities, laser spectra, pixel size, and dwell time were determined according to the type 

of experiment and transfection efficiency in neurons. 

We also used a confocal Carl Zeiss LSM 710 microscope for imaging immunostained 

neurons. Settings and features were similar to LSM 780 microscope, and it was also controlled 

by ZEN software.  Measurements were done at room temperature with a 40x oil objective. 

Digital images were 12- or 16-bit-encoded and for multiple color imaging, sequential scanning 

was applied to avoid bleed-through or cross-talk between channels.       

 

2.11 Electrophysiological measurement (Patch Clamp) 
 

Spontaneous synaptic currents in hippocampal neurons (DIV 10-11) were obtained with 

whole cell patch clamp recording. Patch clamp was performed on a Carl Zeiss Axiovert 200 
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microscope with an Evolve EMCCD (Visitron, Germany) camera and a Zeiss Plan Apochromat 

40x oil immersion objective (NA 1.3). To detect transfected neurons (SEP-GRIA1 for 

example), a polychromator (Till Photonics) was used for excitation. Patch pipettes pulled from 

borosilicate glass capillaries were chosen with size 3.5-6 MΩ for successful sealing. Neurons 

were voltage clamped at -70 mV. An EPC10 amplifier (HEKA Electronic) controlled by Pulse 

8.5 software (HEKA Electronic) was used to record miniature excitatory postsynaptic currents 

(miniEPSCs or mEPSCs). mEPSCs were measured in the presence of NMDA receptor blocker 

D-APV (50 µM) and TTX (1 µM) to ensure only AMPAR mEPSC measurement as the drugs 

prevent voltage gated sodium channel and NMDAR activation, respectively. Analyzed cells 

had an average access resistance (Rs) of 8-20 MΩ and 80 % series resistance compensation. 

Leak-current had an average value of 20-150 pA. mEPSCs were acquired with a frequency of 

50 kHz. Data was analyzed using a commercial software (Mini Analysis, Synaptosoft, Version 

6.0.3). To prevent false selection of mEPSC events due to noise fluctuations, a criterion of peak 

amplitude >15 pA and charge >25 fC were set as thresholds for mEPSC event selection below 

which is considered a noise. 

 
 

2.12 Statistical analysis 
  

Data are presented as mean ± SEM (standard error mean), unless otherwise mentioned. 

For data sets with skewed distribution, the median or an average of median was considered for 

a statistical analysis. Normality test was done by Kolmogorov-Smirnov test. Statistical 

significance test was performed by SigmaPlot software by applying student’s two-tailed t-test 

between two groups. To calculate statistical significance among three or more groups, one-way 

analysis of variance (ANOVA) test was applied. Significance level was assessed according to 

the following probability values: (*) p<0.05; (**) p<0.01; (***) p<0.001.  
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3. Results 
 

 

Local AMPAR recycling is a dynamic process wherein receptors are shifted between a 

surface pool and intracellular compartments via endocytosis and exocytosis. Applying several 

imaging methods, we tried to address several aspects of neuronal AMPAR trafficking. In 

particular, we were interested in the properties of the exocytotic events occurring on the 

membrane of a neuron, and in the origin of the intracellular trafficking organelles of AMPARs. 

Furthermore, we investigated the role of AMPAR auxiliary subunits on the trafficking of 

receptors to and from the plasma membrane.        

 

3.1 Visualization of AMPAR delivery to the plasma membrane 

using TIRF microscopy 
  

We used total internal reflection fluorescence (TIRF) microscopy to study the dynamic 

transport of AMPARs in footprint areas of hippocampal neurons cultured on glass coverslips. 

Neurons in low density culture were transfected with pCI expression vector encoding 

superecliptic pHluorin (SEP)-GRIA1 (Kopec et al., 2006) via calcium phosphate precipitation 

at DIV 8-11, and imaging experiments were performed 24-48 h later. SEP is fused to the N-

terminus of GRIA1 subunit positioning the fluorophore in the extracellular space or the lumen 

of intracellular organelles, respectively. As a pH sensitive derivative of GFP (Miesenbock et 

al., 1998), SEP is quenched in the acidic milieu of secretory organelles and becomes brightly 

fluorescent when exposed to neutral medium during exocytosis. Thus, AMPAR insertion to the 

plasma membrane is detected by a local, sudden increase in fluorescence intensity. In order to 

acquire highly resolved images of fusion events, we used an evanescent field with a penetration 

depth of 150 to 180 nm to illuminate footprint areas of neurons. Images were visually 

inspected, and fast, point shaped fluorescence signals (Figure 23B and C) were considered as 

fusion events, when the mean fluorescence increased above 4 SD (standard deviation) of the 

noise within 2 s. Fusion events were bounded by regions of interest (ROIs) with a constant size. 

We found fusion events in proximal dendrites as well as in the soma of hippocampal neurons 

with random distribution (Figure 23A). On average, 8.2±1.14 events were detected within the 

recording time of 6 min (Figure 24A). 
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We analyzed rise-time, amplitude, and decay time constant of fluorescence transients 

putatively reporting exocytosis events. Amplitude corresponds to the peak fluorescence 

intensity, and rise-time reports the time from baseline level to peak fluorescence. The decay 

kinetics was approximated by a monoexponential function, with the time constant (τ) 

corresponding to the time at which ≈ 63 % of the fluorescence intensity vanished (Figure 24B). 

We obtained a median amplitude of 45.685 AU, a median rise time of 0.8 s, and a median 

decay time constant of 11.503 s for putative exocytotic events (Figure 24C, D, and E). 

The fluorescence decay may be due to a dispersion of exocytosed receptors on the 

plasma membrane and/or a re-acidification of the persistent secretory organelle after kiss-and-

run fusion. The notion of a post-fusional dispersion of glutamate receptors is supported by the 

observation that fluorescent transients exhibited a lateral “broadening” on the cell surface. A 

typical example of such a behavior is shown in (Figure 25A). To highlight the expansion of 

fluorescence, two circular regions of different diameters were defined around the position of an 

event (Figure 25B). The temporal profiles of fluorescence intensity were plotted in order to 

Figure 23. AMPAR membrane insertion with TIRF microscopy in real time imaging  

(A) SEP-GRIA1 transfected hippocampal neuron (DIV 11) in TIRF before (t0) and during (t1) an 

exocytosis event in soma (upper left and upper right, respectively) and in dendrite (middle left and 

middle right, respectively) (indicated with a white box). Lower panel shows epifluorescence (left) and 

bright field (right) image of the measured neuron. (B) Time series of exocytotic event in A (upper 

panel). (C) Time course of the fluorescence intensity during the exocytosis event shown in B. Imaging 

frequency is 10 Hz and exposure time is 100 ms. 
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illustrate the signal redistribution. In the narrow region, fluorescence reached its maximum at 

an earlier time point than in the outer region since fluorophores (SEP-GRIA1) diffused from 

the center to the periphery (Figure 25C). Thus, during SEP-GRIA1 insertion receptors disperse 

from their point of insertion to neighboring areas. In addition, using TIRF microscopy for 

detection of SEP-GRIA1 exocytosis is convenient due to its high signal to noise ratio. 

 

 

  

Figure 24. Frequency and kinetic study of SEP-GRIA1 insertion events in neurons in TIRF 

microscopy  

(A) Average absolute number of SEP-GRIA1 insertion events during 6 min in neurons recorded 

with TIRF microscopy (number of events/6 min: 8.2±1.14). (B) Exemplary trace of a SEP-

GRIA1 insertion event indicating its amplitude (AU), onset time (t), and a monoexponential fit of 

the event decay. Dot density plot illustrating distribution and median of amplitude (C), onsets 

(D), and decays (E) of SEP-GRIA1 insertion events. Median of amplitude (AU): 45.685, median 

of onset (s): 0.8, and median of decay (s): 11.503. n=35 cells.  
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Figure 25. Spatial dispersion of AMPAR insertion event seen in TIRF microscopy 

(A) Exemplary TIRF image of hippocampal neuron (DIV 11) transfected with SEP-GRIA1 before (left) and 

during (right) an insertion event (in blue circle). (B) Time series images of the insertion event occurring in 

A (blue circle). Event appears first in small orange circle (t1) then disperses out towards the big blue circle. 

(C) Graph showing event traces in orange and blue circle. Green trace indicates the annulus. Dotted lines 

indicate the margin of event onset (orange and blue) and event maximum (orange). Peak of blue trace goes 

beyond the margin. Size of blue circle=1.92 µm and orange circle=0.96 µm. Imaging frequency is 10 Hz 

and exposure time is 100 ms.    
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3.2 Activity-dependence of AMPAR delivery to the plasma 

membrane 
  

Activity-dependent changes in AMPAR trafficking have been proposed to underlie 

synaptic plasticity (Ehlers et al., 2007; Park et al., 2004). To investigate the role of neuronal 

activity in delivery of AMPARs in our model system, we pharmacologically inhibited action 

potential generation by application of tetrodotoxin (TTX) or disrupted synaptic transmission by 

genetic intervention using neurons derived from Snap25 knockout (KO) mice (Graham et al., 

2002). TTX is a blocker of voltage-gated sodium channels, whose presence at (1 µM) fully 

suppresses evoked synaptic transmission between neurons, but still allows for spontaneous 

miniature release. TTX (1 µm) was chronically added to neuronal cultures 3 days before 

measurement as well as during the measurement. SNAP-25 is an essential part of the SNARE 

complex driving synaptic neurotransmitter release (Chen et al., 1999), and its ablation also 

abolishes evoked synaptic transmission in cultured neurons (Delgado-Martinez et al., 2007; 

Graham et al., 2002; Tafoya et al., 2006). Since Snap25 heterozygous animals (SNAP25 HZ) 

were functionally indistinguishable from wild type (Wt) littermates (Graham et al., 2002), 

neurons from both types of animals were used as controls. As before, control and Snap25 KO 

hippocampal neurons (DIV 8-11) were transfected with SEP-GRIA1 via calcium phosphate 

transfection and used 24-48 h later for TIRF imaging. We compared the frequency of SEP-

GRIA1 insertion events in Wt neurons, TTX-treated Wt neurons, and untreated Snap25 KO 

cells during 6 min recordings. To account for the variability in the size of neurons, the number 

of exocytosis events was normalized to the area of the TIRF footprint. This footprint area of a 

neuron primarily corresponds to the bottom somatic plasma membrane that is involved in the 

glass/cell interface. Interestingly, the event frequency of SEP-GRIA1 delivery was significantly 

reduced when neurons were pretreated with 1 µm TTX, and even more so in Snap25 KO 

neurons (mean event frequency values (x10-4); ctrl without TTX: 6.838±1.605, ctrl with TTX: 

2.629±0.93, Snap25 KO: 1.67±0.396, Figure 26B). 

The decrease in neuronal activity was also reflected in the fusion kinetics of exocytosis 

events. As before, we determined amplitude, rise-time, and decay time constant for all detected 

fusion events in the three experimental groups. Event amplitude was significantly reduced in 

TTX-treated neurons and in Snap25 KO cells (median of amplitude (AU): ctrl without TTX: 

42.996, ctrl with TTX: 32.386, Snap25 KO: 28.253, Figure 26C), as found by statistical 

analysis with ANOVA test. In addition, the decay time constant was significantly higher in 

TTX-treated neurons than in controls, whereas no difference in Snap25 KO neurons was 
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observed (median of decay (s): ctrl without TTX: 7.213, ctrl with TTX: 9.806, Snap25 KO: 

10.118, Figure 26D). These data show that the loss of synaptic/neuronal activity in Snap25 KO 

and TTX-treated neurons clearly influences GRIA1 trafficking. The stronger reduction in 

exocytosis events in Snap25 KO cells than in TTX-treated neurons may indicate that SNAP25 

also plays a role in the fusion machinery mediating the exocytosis of AMPAR-containing 

transport organelles. 

 

Previous studies showed that AMPARs are mainly transported in recycling endosomes 

(REs) (Ehlers*, 2000). To verify that the fusion events detected in our model system indeed 

Figure 26. AMPAR exocytosis detected in TIRF decreases with TTX and in Snap25 knockout neurons  
(A) Average of absolute number of insertion events of SEP-GRIA1 in 6 min. Ctrl without TTX: 

9.333±2.048, ctrl with TTX: 3.2±1.07, Snap25 KO without TTX: 2.058±0.415. (B) Average insertion events 

of SEP-GRIA1 with and without TTX and in Snap25 KO neurons were normalized to surface area of TIRF 

footprint of neuron (x10-4). Data are mean ± SEM. Statistical analysis was assessed with one way ANOVA 

followed by pairwise comparison with the Tukey test. (*p<0.05, **p<0.01). (C) Dot density plot illustrating 

distribution and median of amplitudes(C), decays (D), and onsets (E) of SEP-GRIA1 insertion events. 

Median of onset (s): ctrl without TTX: 1.3, ctrl with TTX: 1.1, Snap25 KO without TTX: 1.2. Statistical 

analysis was assessed with one way ANOVA followed by pairwise comparison with Kruskal-Wallis on ranks 

test. (*p<0.05). Ctrl without TTX: n=18 cells, ctrl with TTX: n=20 cells, and Snap25 KO: n=17 cells.   
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originate from recycling endosomes, we repeated the experiment using a fluorophore-tagged 

transferrin receptor (TfR) as a marker for REs (Mukherjee et al., 1997). For this purpose, we 

cotransfected hippocampal neurons (DIV 8-11) with pCI SEP-GRIA1 and pCDNA3 TfR-

tagRFPt, and investigated the colocalization of internal SEP-GRIA- and TfR-tagRFPt-

containing organelles by TIRF imaging. However, due to the high density of different 

organelles in soma, we were not able to differentiate specific sub-compartments carrying TfR-

tagRFPt (Figure 27). Therefore, we continued our investigation in neuritic structures where 

individual endosomal compartments are more segregated in space. Since neurites are not 

resting flat on the culture coverslips, imaging of neurites in TIRF mode is not feasable. 

Therefore, we switched to epifluorescence imaging of hippocampal neurites to overcome these 

obstacles. 

 

 

 

 

 

 

 

 

Figure 27. TfR-tagRFPt trafficking organelles observed in TIRF microscopy in 

hippocampal neurons 

Epifluorescence image of hippocampal neuron (DIV 8) cotransfected with SEP-GRIA1 

(upper left) and TfR-tagRFPt (lower left). Surface SEP-GRIA1 expression (upper middle) 

and internal TfR-tagRFPt REs (lower middle) of neuron seen in TIRF. Enlarged TIRF 

image of TfR-tagRFPt indicating a RE with a red arrowhead (lower right). Bright field 

image of the neuron (upper right). Exposure time=100 ms 
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3.3 AMPAR membrane insertion captured in real-time under 

epifluorescence imaging in hippocampal neurites 

  

While dendrites of dissociated neurons are not accessible for TIRF microscopy, the 

small dimensions of dendritic structures still allow to resolve local fluorescence transients 

during insertion events by epifluorescence microscopy as illustrated in Figure 28. To 

characterize AMPAR delivery in dendrites, we transfected Wt hippocampal neurons (DIV 8-

11) with SEP-GRIA1 and recorded 6 min long movies of selected dendritic arbors  24 - 48 h 

post transfection. We observed instantaneous fluorescence signals whose kinetic properties 

were largely identical to the signals previously found in TIRF experiments (Figure 28A, B and 

C), in accord with earlier work by Yudowski et al. (2007). As before, we quantified the 

amplitude, rise-time, and decay time constant. Frequency distribution of event amplitude 

showed that the majority of events had an intensity of 52.234 AU. As for the event rise-time, 

most of the events exhibited a time-to-peak 0.3 s. Fusion events differed in their duration from 

short to long, thus exhibiting variable decay time constants ranging between 0.5 and 23 s 

(median of decay time: 9.182 s) (Figure 29A, B and C). 

Figure 28. Membrane insertion of AMPARs detected in real time epifluorescence recording 

(A) Exemplary hippocampal neuron (DIV 11) transfected with SEP-GRIA1 showing accumulation of 

GRIA1 receptors at synaptic sites (yellow arrows) in neurite (left). Soma of the same neuron seen in bright 

field (upper right) and epifluorescence (lower right). (B) Time series of an event. t1 indicates the onset 

of the event shown by a red arrowhead. (C) Exemplary trace of AMPAR insertion event with decay: 

12.94 s. Imaging frequency is 10 Hz with 100 ms exposure time.  
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3.4 SEP-GRIA1 overexpression increases spontaneous synaptic 

transmission (mEPSC) 
 

In the previous experiment, we observed active SEP-GRIA1 receptor insertion in the 

plasma membrane of dendrites and accumulation at synaptic-like structures. To investigate the 

effect of synaptic SEP-GRIA1 accumulation on synaptic transmission upon overexpression in 

hippocampal neurons, we compared miniature excitatory postsynaptic currents (mEPSCs) 

between transfected and non-transfected neurons. Postsynaptic density protein95 (PSD95)-

tagRFPt was cotransfected with SEP-GRIA1 to confirm that AMPARs concentrated on 

synaptses (Figure 30A). Previously, it had been shown that GRIA1 overexpression increases 

channel rectification due to formation of homomers (Granger et al., 2013; Shi et al., 1999). We 

performed whole-cell patch clamp recordings in neurons cultivated for 10-11 days and 

registered mEPSCs for 2 min after breaking in a neuron (Figure 30B, C, and D). Mass cultures 

were acutely treated with TTX (1 µm) during measurement to inhibit spike-mediated synaptic 

transmission. Only green cells corresponding to SEP-GRIA1 transfected neurons were patch 

clamped to be compared afterwards with nontransfected neurons of control cultures. Pipette 

resistance was 3.5-6 MΩ, and cells analyzed had an access resistance between 8 and 20 MΩ. 

Only mEPSCs with peak amplitude >15 pA and charge >25 fC were included in the analysis to 

exclude noise recording. Statistical analysis shows that frequency and amplitude increased 

significantly in transfected neurons compared to non-transfected neurons (frequency (Hz): non-

transfected: 0.915±0.183, SEP-GRIA1: 1.747±0.296; amplitude (pA): non-transfected: 

27.847±2.421, SEP-GRIA1: 38.482±3.553; Figure 30E and F). In addition, SEP-GRIA1 

Figure 29. Fusion kinetics of SEP-GRIA1 insertion in dendritic structures   

Frequency distribution histogram illustrating event amplitude (A), event onset (B), and event 

decay (C) of SEP-GRIA1 transient fusion events in hippocampal neurites (9-11 DIV). n=24 cells  
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overexpression increased the charge of mEPSCs (charge (fC): ctrl: 63.218±5.326, SEP-GRIA1: 

82.772±6.41, Figure 30G). However, decay and rise time were not significantly changed when 

SEP-GRIA1 was overexpressed (Figure 30H and I). Since previous studies showed an effect 

of GRIA1 overexpression on synaptic transmission, abundance of homomers, and channel 

properties (Shi et al., 1999), it is very likely that spontaneous mEPSC frequency and amplitude 

were increased due to increased synaptic clustering.  
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3.5 Dendritic AMPA receptor delivery via recycling endosomes 

 

Following up on our previous experiments in TIRF microscopy, we further investigated 

whether constitutive AMPAR delivery to the dendritic surface is predominantly due to fusion 

of receptor-containing recycling endosomes with the plasma membrane. Organelles belonging 

to the secretory or endosomal pathways are characterized by an acidic pH, and thus the 

fluorescence of SEP-tagged AMPARs in these structures should be quenched. To visualize the 

intracellular AMPAR pool in these compartments, we neutralized the luminal milieu by 

application of ammonium chloride (NH4Cl, 50 mM), which can enter the intracellular 

compartments as NH3 (Figure 31Aa, Ab and Ac). Hippocampal neurons were transfected with 

SEP-GRIA1 on DIV 8-11 and were used for imaging experiments 24-48h later. Difference 

pictures were generated to isolate the intracellular fluorescence signal after SEP-dequenching. 

Fluorescence intensity of the image before NH4Cl application (baseline fluorescence) was first 

multiplied by two (2x baseline fluorescence) and then subtracted from the image during NH4Cl 

treatment (total fluorescence). The resulting image, which we denoted by “NH4
+ ∆image”, was 

thresholded to generate regions of interest (ROIs) corresponding to the individual puncta of 

AMPAR organelles (Figure 31B) (Explained in section 2.8.1 in “materials and methods”). 

A strong contribution of endosomal recycling to the maintenance of the AMPAR 

surface pool was postulated based on previous work (Ehlers*, 2000). To estimate the overlap 

between the AMPAR-containing dendritic organelles and the endosomal recycling system in 

our model system, we cotransfected neurons (DIV 8-11) with SEP-GRIA1 and TfR-tagRFPt 

and visualized internal AMPARs by NH4Cl application as described above. We performed 

colocalization analysis between internal SEP-GRIA1-positive organelles of the “NH4
+ ∆image” 

and TfR-tagRFPt-positive REs (Figure 32A, filled arrowheads indicate colocalized puncta). A 

high colocalization with ~ 79 % between SEP-GRIA1 and TfR-tagRFPt puncta was obtained. 

Figure 30. SEP-GRIA1 overexpression in hippocampal neurons increases mEPSC frequency and 

amplitude 

(A) Exemplary image of coexpressed SEP-GRIA1 and PSD95-tagRFPt in hippocampal neuron. Merged 

image (right) shows colocalization between green SEP-GRIA1 (left) and red PSD95-tagRFPt (middle) 

puncta. (B) Exemplary traces of spontaneous mEPSCs of non-transfected (black) and SEP-GRIA1 

(green) transfected neurons. (C) Representative trace of an average mEPSC event in non-transfected 

(black) and SEP-GRIA1 (green) transfected neurons. (D) Bright field image showing a neuron with a 

patch pipette. (E) Overexpression of SEP-GRIA1 in hippocampal neurons (DIV 9-12) causes a 

significant increase in mEPSC frequency, amplitude (F), and charge (G). mEPSC decay (H) and rise time 

(I) are not significantly changed. Control condition (ctrl) corresponds to non-transfected hippocampal 

neurons. decay (ms): ctrl: 4.555±0.232, SEP-GRIA1: 4.665±0.142; rise time (ms): ctrl: 0.612±0.039, 

SEP-GRIA1: 0.562±0.012. Data are mean ± SEM. Ctrl: n=14, SEP-GRIA1: n=13. (*p<0.05).  
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On the other hand, only ~ 25 % TfR-tagRFPt was colocalized with SEP-GRIA1 puncta 

(Manders’ coefficient: GRIA1 to TfR: 0.79±0.05; TfR to GRIA1: 0.25±0.04, Figure 32B). 

Moreover, a Pearson’s coefficient of 0.46 indicates only a weak linearity between the signal 

intensities of SEP-GRIA1 and TfR-tagRFPt-positive puncta (Pearson’s coefficient: 0.46±0.04, 

Figure 32C). Based on this data, we conclude that most intracellular SEP-GRIA1-positive 

Figure 31. Internal SEP-GRIA1 unquenching and detection of GRIA1-containing organelle 

(A) Epifluorescence images of dendrites of a transfected hippocampal neuron (DIV 13) with SEP-GRIA1 before 

NH4Cl (left), during NH4Cl (middle), and after NH4Cl (right) treatment. Left and right images correspond to 

basal surface fluorescence and middle image correspond to the total fluorescence (surface and internal) of the 

dendritic structure (a). (b) Schematic drawing showing protocol of ammonium chloride treatment. (c) Schematic 

drawing illustrating a quenched SEP-GRIA1 in a trafficking organelle (left) and fluorescent (unquenched) on the 

surface (both) or with NH4Cl (right). SEP tag is bound to the N-terminus of AMPAR. (B) Detection of internal 

GRIA1 trafficking organelles. Image of (2x) surface fluorescence (pre-NH4Cl treatment) (middle) is subtracted 

from the total fluorescence (NH4Cl treated image) (left). The subtracted image, designated by “NH4
+ ∆image” 

shows typical GRIA1 internal trafficking organelles (green puncta) indicated by yellow arrowheads (right). 

Basal surface fluorescence of neurites shown in small white dotted box (middle, scale bar=10 µm). Imaging 

frequency is 10 Hz with 100 ms exposure time. 
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organelles represent recycling endosomes but that GRIA1-marked endosomes only constitute a 

subset of the population of REs in dendrites. 

 

During dual view imaging, we had to make sure that no bleed-through was occurring 

between red (561 nm) and green (488 nm) fluorescent signals. We transfected hippocampal 

neurons either with TfR-tagRFPt or with SEP-GRIA1 and performed imaging experiments on 

the second day after transfection. When TfR-tagRFPt transfected neurons were excited with 

561 nm laser, maximal red fluorescence was seen in the red channel, whereas virtually no 

Figure 32. AMPA-type glutamate receptors are stored in recycling endosomes (REs) 

(A) Exemplary image of SEP-GRIA1 (left, NH4
+ ∆image) and transferrin receptor (TfR-tagRFPt) (middle) 

recycling endosomes in cotransfected hippocampal neurons (DIV 11) with SEP-GRIA1 (green) and TfR-

tagRFPt (red). Image with neurites expressing surface SEP-GRIA1 is shown in yellow box (left, scale bar 

10 µm). Colocalized SEP-GRIA1 REs with TfR-tagRFPt REs are indicated with white filled arrowheads. 

Merged image shows the colocalization of SEP-GRIA1 and TfR-tagRFPt puncta. White open arrowheads 

indicate absence of GRIA1 green puncta in the presence of TfR red puncta (right). (B) Mean Manders’ 

coefficient of GRIA1 to TfR puncta (green bar), and of TfR to GRIA1 puncta (red bar). (C) Quantification 

of Pearson’s coefficient (right). Data are mean ± SEM.  n=11. (NH4
+ ∆image explained in Figure 31) 
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fluorescence was seen in the green channel (normalized fluorescence intensity: 

0.00263±0.00231). In reverse, when TfR-tagRFPt transfected neurons were excited with 488 

nm laser minimal fluorescence was seen in the green channel (normalized fluorescence 

intensity: 0.0795±0.0524). Fluorescence intensities were normalized to the intensity captured in 

red channel with 561 nm excitation in case of TfR-tagRFPt transfected cells (Figure 33A and 

Figure 33. TfR-tagRFPt and SEP-GRIA1 bleed-through is minimal in dual view imaging  

(A) Exemplary image of neurites of transfected hippocampal neuron (DIV 9) with TfR-tagRFPt shows red 

puncta in red channel when excited with 561 nm (left), no fluorescence in green channel when excited with 

561 nm (middle), and also no fluorescence in green channel when excited with 488 nm (right). (B) 

Exemplary image of neurites of transfected hippocampal neuron (DIV 9) with SEP-GRIA1 shows green 

surface fluorescence in green channel when excited with 488 nm (right), no fluorescence in red channel 

when excited with 488 nm (middle), and also no fluorescence in red channel when excited with 561 nm 

(right). (C) Graph of averages of TfR-tagRFPt fluorescence intensities in red and green channel with 561 

nm and 488 nm excitation. Fluorescence intensities were normalized to red fluorescence intensity in red 

channel. (D) Graph of averages of SEP-GRIA1 fluorescence intensities in red and green channel with 

561 nm and 488 nm excitation. Fluorescence intensities were normalized to green fluorescence intensity in 

green channel. Data are mean ± SEM. n=3 in both conditions. Exposure time=100 ms. Statistical analysis 

was assessed with one way ANOVA followed by pairwise comparison with Student-Newman-Keuls test. 

(***p<0.001). 
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C). On the other hand, when SEP-GRIA1-transfected neurons were excited with 488 nm laser, 

maximal green fluorescence was seen in the green channel whereas minimal fluorescence was 

seen in the red channel (normalized fluorescence intensity: 0.0302±0.00376). Very low 

fluorescence intensity was also seen when the same neurons were excited with 561 nm laser in 

red channel (normalized fluorescence intensity: 0.0567±0.0229). Fluorescence intensities were 

normalized to the intensity captured in green channel with 488 nm excitation in case of SEP-

GRIA1 transfected cells (Figure 33B and D). This control experiment shows that negligible 

bleed through effect between red and green fluorescence emission exists when using dual view 

emission filters. 

 
 
 

3.6 AMPAR insertion events occur near SEP-GRIA1-positive 

recycling endosomes 
 

Having independently demonstrated the occurrence of AMPAR insertion events and 

SEP-GRIA1-loaded REs in dendrites of hippocampal neurons, we wondered whether we could 

also directly detect the fusion of AMPAR-containing REs with the surface membrane during 

real-time epifluorescence imaging. Therefore, we investigated the spatial relationship between 

insertion events and internal TFR-positive REs. Again, hippocampal neurons (DIV 8-11) were 

cotransfected with SEP-GRIA1 and TfR-tagRFPt for simultaneous live imaging of both, 

GRIA1 fusion events (green channel) and TfR-positive REs (red channel). To align the position 

of the fusion site with the localization of REs in the dendrites, we selected movie frames 

showing the peak fluorescence signal of each fusion event and analyzed the placements of 

surrounding tagRFPt-marked REs by line-scans (Figure 34A and B). Local maxima in 

longitudinal line scans through the dendrite were considered to really represent REs, if the red 

peak signal was higher than 5 SD of the baseline. RE and fusion event were considered 

colocalized, if the distance between RE signal peak and event fluorescence peak was less than 

1.1 µm. Using this criteria, we found that 82 % of SEP-GRIA1 positive signals were 

colocalized with existing underlying TfR-tagRFPt-positive REs (Figure 34C and D).  

We also investigated potential correlated changes of RE fluorescence during fusion 

events. An increase in local tagRFPt-fluorescence would in fact indicate dynamic alterations in 

the structure/size of REs (which might also affect the SEP-GRIA1 signal), while a decrease in 

tagRFPt-fluorescence reports the transition of TfRs from RE to the plasma membrane or even a 

collapse of the RE during fusion. However, no fluorescence increase in most red traces was 
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observed during green fluorescence increase of SEP-GRIA1 insertion (Figure 34C and D). 

The observation that the tagRFPt- signal persisted in most recordings indicates that REs persist 

after transient fusion, and that the fluorescence decay mostly reports re-acidification of the RE 

lumen after exocytosis. 

  

 

 

  

Figure 34. AMPA receptor membrane insertion comes from local pre-existing recycling endosomes  

(A) Epifluorescence imaging of neurites of hippocampal neurons (DIV 11) cotransfected with SEP-GRIA1 

(green) and TfR-tagRFPt (red). GRIA1 insertion event indicated by a yellow circle (upper left, green). 

Enlarged section of the upper left image at an instant before event occurrence (t0, upper middle), and 

during an event (t1, upper right). Lower right image (red) shows transferrin receptor recycling endosome 

indicated with a yellow circle corresponding to the region of the event in the upper left image. Lower right 

image corresponds to the merged image of green and red (upper left and lower left, respectively) with a 

white line (dotted) drawn over the region where the SEP-GRIA1 insertion event occurred in purpose for line 

intensity analysis. Yellow arrowhead indicates the event. (B) Line intensity analysis to show the 

colocalization between SEP-GRIA1 event and TfR-tagRFPt RE in A (merged image). Quantification 

presented in a graph where SEP-GRIA1 event is indicated in green and TfR-tagRFPt in red. (C) Time 

sequence of a SEP-GRIA1 (green) insertion event (upper row), and its corresponding TfRtagRFPt (red) 

recycling endosome (middle row). Lower row shows the merged time sequence of the green and red 

channel. (D) Exemplary traces of TfR-tagRFPt (red) and SEP-GRIA1 (green) during a SEP-GRIA1 

insertion event. Images in (A) and (C) were smoothed for better presentation. Imaging frequency is 10 Hz in 

both channels with 100 ms exposure time.  
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3.7 Effect of auxiliary subunits on the surface expression of 

AMPARs 
 

Our characterization of the AMPAR trafficking system showed that receptor surface 

insertion is a dynamic process. However, surface expression of AMPARs is highly regulated 

and involves several auxiliary and membrane associated proteins (Bredt and Nicoll, 2003). 

Figure 35. Auxiliary subunits differentially regulate AMPAR surface expression in hippocampal neurons  

(A) Exemplary epifluorescence images of hippocampal neurons (DIV 9-12) transfected with SEP-GRIA1 (green) 

(first row), cotransfected with SEP-GRIA1 (green) and either TARPγ8 IRES NLS-tdTomato (red nucleus) 

auxiliary subunit (second row), CKAMP44a IRES NLS-tdTomato (red nucleus) auxiliary subunit (third raw), 

or GSG1L IRES NLS-tdTomato (red nucleus) auxiliary subunit (fourth raw). Left column corresponds to SEP-

GRIA1 surface fluorescence of neurons, middle column to neurons treated with low pH solution (pH=5.5) 

solution, and right column to neurons treated with NH4CL solution. (B) Schematic diagram illustrating the 

recording protocol with low pH (5.5) and NH4CL treatment. (C) Graph showing SEP-GRIA1 surface expression 

(surface to total ratio) in the different conditions. Data are mean ± SEM. Statistical analysis was assessed with 

one way ANOVA followed by pairwise comparison with Student-Newman-Keuls method test. *p<0.05. Imaging 

frequency is 10 Hz with 100 ms exposure time. Ctrl n=37 cells, TARPγ8 n=31 cells, CKAMP44a n=35 cells, 

GSG1L n=30 cells. 
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Obviously, auxiliary subunit-induced changes in the turnover of AMPARs affect the population 

of surface receptors (Greger et al., 2017; Jackson and Nicoll, 2011). Therefore, we investigated 

total AMPAR surface expression in hippocampal neurons overexpressing either TARPγ8, 

CKAMP44a, or GSG1L (Germ Cell-Specific Gene 1-Like) auxiliary subunits. Neurons were 

cotransfected (DIV 8-11) with SEP-GRIA1 and with each one of the auxiliary subunits, and the 

fluorescence signal of surface receptors was determined by application of a fluorescence-

quenching acidic (pH 5.5) solution. The residual fluorescence of SEP-GRIA1, obtained upon 

treatment with the quenching solution (pH 5.5), was subtracted from the baseline fluorescence 

to yield pure surface fluorescence. Moreover, due to variability in neuron size, surface 

fluorescence was normalized to the total fluorescence, which was obtained by NH4Cl treatment 

(Figure 35A and B). Quantification of the fraction of surface receptors in neurons expressing 

TARPγ8 and CKAMP44a delivered comparable values, thus indicating that the availability of 

either auxiliary subunit is not limiting for the transport of receptors to the cell surface. On the 

other hand, we also expressed the newly identified auxiliary subunit GSG1L, which has been 

associated with facilitated endocytosis (Gu et al., 2016a), and observed that SEP-GRIA1 

surface expression was significantly downregulated, as indicated by a reduced surface 

fluorescence fraction (ctrl: 0.365±0.016, TARPγ8: 0.369±0.015, CKAMP44a: 0.387±0.012, 

GSG1L: 0.31±0.013, and ctrl versus TARPγ8: p=0.867, ctrl versus CKAMP44a: p=0.523, ctrl 

versus GSG1L: p value=0.007, Figure 35C).  

 

 

3.8 TARPγ8 auxiliary subunit reduces the insertion rate of 

AMPARs 
 

The auxiliary subunit TARPγ8, which is preferentially expressed in hippocampal 

neurons (Rouach et al., 2005), is an essential protein for AMPAR trafficking and regulation. 

To examine the role of TARPγ8 in dendritic AMPAR trafficking, we coexpressed TARPγ8 

with tdTomato reporter (pRK5 TARPγ8 IRES NLS-tdTomato) and SEP-GRIA1 in 

hippocampal neurons (DIV 8-11), which are used for imaging 24-48 h later. NLS-tdTomato 

(NLS: nuclear localizing sequence) is a red fluorescent protein that is localized in the nucleus 

due to NLS sequence and reports the presence of the TARPγ8-encoding vector in the 

transfected neuron. 
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Figure 36. TARPγ8 auxiliary subunit reduces AMPAR surface insertion  

(A) Exemplary images of SEP-GRIA1 with and without TARPγ8 IRES NLS-tdTomato transfected neurons 

(DIV9-12). Upper and lower left images represent subtracted images (NH4
+ ∆image) indicating internal GRIA1 

recycling endosomes (RE, green puncta) and GRIA1 insertion events indicated with red circles in neurites (NH4
+ 

∆image explained in Figure 31). Bright field images of neurites (upper and third right). Epifluorescence image 

showing surface SEP-GRIA1 (second and fourth right). Time series of SEP-GRIA insertion event (images in 

upper and lower red rectangles). (B) Average absolute number of insertion events of SEP-GRIA1 in 6 min. (C) 

Average normalized number of SEP-GRIA1 insertion events (in 6 min) to total RE count per field of view. 

***p<0.001. (D) Scatter plot of number of SEP-GRIA1 insertion events versus number of SEP-GRIA1 REs per 

cell. (E) Exemplary image showing a dendritic segment (first and third) and the corresponding internal GRIA1 

REs in control (SEP-GRIA1) and with TARPγ8 IRES NLS-tdTomato overexpression (second and fourth), 

respectively. (F) Quantification of average number of GRIA1 REs per 10 µm length of dendrite in control (SEP-

GRIA1) and with TARPγ8 IRES NLS-tdTomato overexpression. ***p<0.001. Data are mean ± SEM. Statistical 

analysis was assessed with student t-test. Imaging frequency is 10 Hz with 100 ms exposure time. Ctrl n=24 cells, 

TARPγ8 n=22 cells 

 

 

 
 



RESULTS       

64 
 

Constitutive exocytosis was studied in neurites using epifluorescence microscopy, 

assessing the frequency of SEP-GRIA1 insertion events. Intriguingly, we observed a significant 

reduction in the number of events per minute in cells with a high abundance of TARPγ8 in 

comparison with controls (mean frequency of insertion: ctrl: 11.833±1.75, TARPγ8: 

1.045±0.345, p<0.001 Figure 36B). Arguing that the majority of exocytosis events originate 

from transient RE fusion, we also determined the number of SEP-GRIA1-positive REs in the 

field of view by application of NH4Cl and normalized the frequency of fusion events to this 

number (Figure 36A). Still, normalized SEP-GRIA1 insertion events were significantly 

reduced when coexpressed with TARPγ8 in comparison to controls (normalized mean 

frequency of insertion: ctrl: 0.214±0.024, TARPγ8: 0.031±0.01, p<0.001 Figure 36C), 

excluding the possibility that TARPγ8 overexpression indirectly reduces the number of 

exocytotic events by decreasing the number of REs in dendrites.  

To further emphasize that the existing REs putatively fuse with the plasma membrane 

with reduced probability in the presence of high amount of TARPγ8, we plotted the number of 

SEP-GRIA1 insertion events versus the number of REs for each neuron. Indeed, the slope of 

the regression line for TARPγ8 overexpression was clearly smaller than in controls (ctrl: 0.28, 

TARPγ8: 0.057, Figure 36D). In line with that, quantification of the number of GRIA1 REs 

per 10 µm dendrite showed that the RE number was significantly reduced in dendrites of 

neurons with TARPγ8-overexpression (average number of REs per 10 µm dendrite: ctrl: 

0.3±0.0189, TARPγ8: 0.211±0.0133, p<0.001 Figure 36E and F). For the analysis, we chose 

dendrites of length > 20 µm, defined via scanlines, to quantify the number of REs. 

The experiment above showed that TARPγ8 had an effect on AMPAR trafficking and 

the number of REs. We next tested whether AMPAR insertion events in TARPγ8-

overexpressing cells possessed different fusion properties than in controls. Thus, we analyzed 

the kinetic parameters (amplitude, rise-time, and decay time constant) of the fusion events. In 

neurons overexpressing TARPγ8, the amplitude of insertion events was significantly reduced in 

comparison to controls (median of amplitude (AU): ctrl: 52.234, TARPγ8: 23.184, p<0.001). 

Onset and decay of insertion, however, were not significantly changed (median of onset (s): 

ctrl: 0.3, TARPγ8: 0.3, p=0.914; median of decay (s): ctrl: 9.182, TARPγ8: 8.118, p=0.464, 

Figure 37A, B and C). As the reduced fluorescence amplitude of fusion events suggests that 

dendritic storage organelles indeed contain a lower amount of AMPARs, if TARPγ8 abundance 

is high, we also analyzed the SEP-GRIA1-load in the intracellular dendritic structures 

previously visualized by NH4Cl-unquenching. Indeed, fluorescence intensities of these SEP-

GRIA1-positive puncta were significantly reduced in dendrites of TARPγ8-overexpressing 
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neurons (mean of median intensities of REs: ctrl: 1438.236±216.188, TARPγ8: 791.888±99.33, 

p= 0.011, Figure 37D). Thus, both results, the decreased amplitude of fusion events as well as 

the reduced AMPAR content of storage organelles consistently suggest that TARPγ8 

association of receptors changes their recycling pathways. 

 

 

 

While the reduced intracellular pool of SEP-GRIA1-containing receptor in cells 

overexpressing TARPγ8 may indicate specifically altered AMPAR trafficking, general effects 

on formation and function of REs cannot be excluded a priori based on above experiments. To 

test the specificity of the observed changes, we thus co-transfected neurons (DIV 8-11) with 

pCDNA3 CMV TfR-tagRFPt (red), pCI CMV SEP-GRIA1 (green), and pRK5 CMV TARPγ8 

Figure 37. TARPγ8 overexpression reduces AMPAR RE stores and amplitude of insertion 

events  

(A) Dot density plot illustrating distribution and median of amplitudes, onsets (B), and decays 

(C) of SEP-GRIA1 insertion events in control (SEP-GRIA1) and with TARPγ8 IRES NLS-

tdTomato overexpression. (D) Quantification of SEP-GRIA1 recycling endosomes’ fluorescence 

intensities. Graph shows the average of median intensities of REs. Ctrl: n=24 cells, TARPγ8: 

n=22 cells. Data are mean ± SEM. Statistical analysis was assessed with t-test using Mann-

Whitney on ranks. *p<0.5. 
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IRES NLS-tdTomato, in order to visualize the GRIA1-containing subset of endosomal 

compartments in conjunction with all TfR-positive REs. Control cultures were only transfected 

with TfR-tagRFPt and SEP-GRIA1 (Figure 38A). First, we analyzed the fluorescence of TfR-

tagRFPt-positive puncta and found that the load of REs with TfR fluorescence was not altered 

by TARPγ8 overexpression (absolute fluorescence intensities of TfR-tagRFPt REs (x105): ctrl: 

1.05±0.202, TARPγ8: 1.032±0.166, p=0.919, Figure 38B). Moreover, our analysis of the 

number of TfR REs per 10 µm dendrite (as previously described) also did not show a 

difference with increased amount of TARPγ8 (ctrl: 0.191±0.0197, TARPγ8: 0.173±0.0122, 

Figure 38D and E), unlike GRIA1 REs as we showed previously (Figure 36F). Therefore, it is 

unlikely that overexpression of TARPγ8 interferes with the formation or function of TfR REs. 

As previously shown, the vast majority of SEP-GRIA1-positive puncta colocalized with TFR-

containing REs, and thus we calculated the fluorescence ratio unquenched SEP/tagRFPt for 

both conditions as a measure for the GRIA1-content of REs. In line with previous experiments, 

the fluorescence ratio was significantly smaller in the presence of increased amounts of 

TARPγ8 compared to the controls (ratio green/red fluorescence intensity: ctrl: 0.218±0.028, 

TARPγ8: 0.118±0.014, p=0.002, Figure 38C), which suggests that TARPγ8 specifically 

decreases content of SEP-GRIA1 in RE without affecting other types of receptor cargo. 

Overall, our findings show that TARPγ8 abundance dramatically affects the dendritic 

trafficking of GRIA1-containing receptors, reducing the population of GRIA1-containing 

AMPAR in recycling endosomes and their insertion in the plasma membrane. Noteworthy, the 

reduced frequency of detectable RE fusion events might be a consequence of the reduced level 

of SEP-GRIA1 within the organelle.  
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Figure 38. TARPγ8 overexpression reduces AMPAR cargo in REs but not TfR 

(A) Epifluorescence image of SEP-GRIA1 and TfR-tagRFPt transfected hippocampal neurons (DIV 

11) in control (upper) and with TARPγ8 IRES NLS-tdTomato overexpression (lower). Exemplary 

NH4
+ ∆images with internal SEP-GRIA1 REs (green puncta) (upper and lower second image), 

internal TfR-tagRFPt REs (red puncta) (upper and lower third image), and merged images of green 

and red (upper and lower fourth image). Colocalized SEP-GRIA1 REs with TfR-tagRFPt REs are 

indicated with white arrowheads. Smaller images correspond to epifluorescence of dendrites (upper 

and lower first image) (B) Average of median fluorescence intensity of TfR-tagRFPt RE with and 

without TARPγ8. p=0.919. (C) Graph shows ratio of SEP-GRIA1 RE/TfR-tagRFPt RE fluorescence 

intensity. Data represents average medians of ratios of fluorescence intensities of each cell. 

**p<0.01. (D) Exemplary image showing a dendritic segment marked with SEP-GRIA1 (first and 

third) and the corresponding internal TfR REs in control (SEP-GRIA1 and TfR-tagRFPt) and with 

TARPγ8 IRES NLS-tdTomato overexpression (second and fourth), respectively. (E) Quantification 

of average number of TfR REs per 10 µm length of dendrite in control (SEP-GRIA1 and TfR-

tagRFPt) and with TARPγ8 IRES NLS-tdTomato overexpression. Data are mean ± SEM. Ctrl: n=18 

cells, TARPγ8: n=21 cells. Statistical analysis was assessed with student t-test. 
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3.9 The auxiliary subunit CKAMP44a affects dendritic AMPAR 

delivery 

 
CKAMP44a has been recently identified as another AMPAR auxiliary subunit in the 

hippocampus, where it is most prominently expressed in the dentate gyrus granule cells (von 

Engelhardt et al., 2010). Given the observed effects of TARPγ8 overexpression on the fusion of 

AMPAR-containing dendritic REs, we wondered whether this unrelated auxiliary subunit also 

affects AMPAR turnover. To study the effect of CKAMP44a on basal AMPAR surface 

delivery, we cotransfected hippocampal neurons (DIV 8-11) with pRK5 CKAMP44a 

IRES::NLS-tdTomato and pCI SEP-GRIA1 and recorded movies of selected dendritic 

structures, as described above. Dendritic intracellular organelles containing SEP-GRIA1 were 

again visualized by application of NH4Cl and their number was used to normalize insertion 

frequency (Figure 39A). The absolute number as well as the normalized number of constitutive 

fusion events within the 6 min recording interval was significantly reduced in neurons 

overexpressing CKAMP44a compared to controls (ctrl: 7.273±0.914, CKAMP44a: 

1.217±0.397; normalized mean frequency of insertion: ctrl: 0.226±0.043, CKAMP44a: 

0.039±0.011,Figure 39B and C). This strong 6-fold reduction in the delivery frequency for 

CKAMP44a-overexpressing cells is reminiscent of the decreased insertion rate observed for 

TARPγ8 overexpression, possibly indicating a similar impact on AMPAR dendritic trafficking. 

To highlight the role of CKAMP44a in the SEP-GRIA1 insertion probability, we 

plotted the number of SEP-GRIA1 insertion events versus the number of REs for each neuron. 

In a similar fashion to TARPγ8, we observed a reduction in the SEP-GRIA1 insertion 

probability when the number of REs was reduced for CKAMP44a overexpression, as the slope 

of the regression line for CKAMP44a overexpression was clearly smaller than in controls (ctrl: 

0.1675±0.0130, CKAMP44a: 0.068±0.0115, Figure 39D). In line with that, quantification of 

the number of GRIA1 REs per 10 µm dendrite showed a significant reduction in RE number in 

dendrites of neurons with CKAMP44a-overexpression (ctrl: 0.259±0.0200, CKAMP44a: 

0.167±0.0145, Figure 39E and F). The analysis was done as previously described in case of 

TARPγ8 overexpression.   



RESULTS       

69 
 

   

Figure 39. CKAMP44a auxiliary subunit reduces AMPAR surface insertion  

(A) Exemplary images of SEP-GRIA1 with and without CKAMP44a IRES NLS-tdTomato transfected 

neurons (DIV 10-11). Upper and lower left images represent subtracted images (NH4
+ ∆image) with internal 

GRIA1 recycling endosomes (RE, green puncta) in neurites. Bright field image of neurites (upper and third 

right). Epifluorescence images of SEP-GRIA1 (second and lower right). Time series of SEP-GRIA1 

insertion event (images in upper and lower red rectangles). (B) Average of absolute number of insertion 

events of SEP-GRIA1 in 6 min. (C) Average number of SEP-GRIA1 insertion events (in 6 min) normalized 

to the total RE count per cell. (D) Scatter plot of number of SEP-GRIA1 insertion events per cell versus 

number of SEP-GRIA1 REs per cell. (E) Exemplary image showing a dendritic segment (first and third) 

and the corresponding internal GRIA1 REs in control (SEP-GRIA1) and with CKAMP44a IRES NLS-

tdTomato overexpression (second and fourth), respectively. (F) Quantification of average number of 

GRIA1 REs per 10 µm length of dendrite in control (SEP-GRIA1) and with CKAMP44a IRES NLS-

tdTomato overexpression. ***p< 0.001. Data are mean ± SEM. Statistical analysis was assessed with 

student t-test. Imaging frequency is 10 Hz with 100 ms exposure time. 
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Having noted a reduced fusion frequency, we wondered about potential alterations in 

the signal kinetics of the residual events. When CKAMP44a was overexpressed, a slight but not 

significant decrease in event amplitude was observed (median of amplitude (AU): ctrl: 37.243, 

CKAMP44a: 32.569, p=0.468, Figure 40A). Event decay time constant and rise-time were also 

not significantly different (median of rise-time (s): ctrl: 0.5, CKAMP44a: 0.6, p=0.148, median 

of decay time constant (s): ctrl: 10.807, CKAMP44a: 13.213, p= 0.661, Figure 40B and C). In 

addition, we quantified the absolute fluorescence intensities of the intracellular SEP-GRIA1-

containing organelles identified by NH4Cl application and again found a slight tendency 

towards reduced AMPAR content, which was however not significant (ctrl: 693.801±71.201, 

CKAMP44a: 582.899±73.368, Figure 40D). These data show that CKAMP44a overexpression 

exerted a negative effect on the insertion rate of AMPARs from intracellular stores similar to 

the results of our previous experiments with TARPγ8, but that residual fusion events remained 

rather unaffected. That said, it should be considered that the kinetic analysis was based on a 

small number of fusion events and thus might correctly report potential changes.  

Figure 40. SEP-GRIA1 fusion kinetics are not changed with CKAMP44a overexpression   

(A) Dot density plot illustrating the distribution and median of amplitudes, onsets (B), and decays (C) of 

SEP-GRIA1 insertion events. Ctrl n=22 cells, CKAMP44a n=23 cells. Statistical analysis was assessed with 

t-test using Mann-Whitney on ranks. (D) Quantification of SEP-GRIA1 recycling endosomes’ fluorescence 

intensities. Graph shows average of median intensities of REs. Data are mean ± SEM. p=0.285, t-test. 
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In analogy to our experiments with TARPγ8, we also investigated cotransfected 

neurons (DIV 9-12) with pRK5 CKAMP44a IRES NLS-tdTomato, pCDNA3 TfR-tagRFPt, 

Figure 41. CKAMP44a overexpression reduces AMPAR cargo in REs but not TfRs 

(A) Epifluorescence image of SEP-GRIA1 and TfR-tagRFPt transfected hippocampal neuron (DIV 10) in 

control (upper) and with CKAMP44a IRES NLSt-dTomato overexpression (lower). Exemplary NH4
+ 

∆images with internal SEP-GRIA1 REs (green puncta) (upper and lower second image), internal TfR-

tagRFPt RE (red puncta) (upper and lower third image), and merged images of green and red (upper and 

lower fourth image). Colocalized SEP-GRIA1 with TfR-tagRFPt REs are indicated with white filled 

arrowheads. (B) Average fluorescence intensity of TfR-tagRFPt REs with CKAMP44a overexpression 

compared to controls. p=0.297. (C) Graph shows ratio of SEP-GRIA1 RE fluorescence intensity to TfR-

tagRFPt RE fluorescence intensity. Data represents average medians of ratios of fluorescence intensities of 

each cell. *p<0.05. (D) Exemplary image showing a dendritic segment marked with SEP-GRIA1 (first and 

third) and the corresponding internal TfR REs in control (SEP-GRIA1 and TfRtagRFPt) and with 

CKAMP44a IRES NLS-tdTomato overexpression (second and fourth), respectively. (E) Quantification of 

average number of TfR REs per 10 µm length of dendrite in control (SEP-GRIA1 and TfR-tagRFPt) and 

with TARPγ8 IRES NLS-tdTomato overexpression. Data are mean ± SEM. Ctrl n=13 cells, CKAMP44a 

n=12 cells. Statistical analysis was assessed with student t-test.  
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and pCI SEP-GRIA1 to independently address the presence of AMPARs with the recycling 

endosomal compartment (Figure 41A). As before, we quantified the absolute fluorescence 

intensities of TfR-tagRFPt puncta to verify that REs were unchanged in size and density in 

neurons expressing CKAMP44a. Indeed, there was no significant difference between 

CKAMP44a-overexpressing cells and controls (value (x105): ctrl: 2.163±0.489, CKAMP44a: 

3.016±0.641, Figure 41B). However, the fluorescence ratio SEP/tagRFPt for REs was 

significantly reduced for cells expressing CKAMP44a (ratio green/red fluorescence intensity: 

ctrl: 0.087±0.014, CKAMP44a: 0.051±0.009, p=0.045, Figure 41C), indicating that the pool of 

GRIA1-containing receptors in REs was reduced. Clearly, this result is not fully consistent with 

our previous finding that the intensity of the detected intracellular stores was not significantly 

changed (Figure 40D), which might be attributed to a threshold problem in the absence of the 

TfR-marker. Moreover, our analysis of the number of TfR REs per 10 µm dendrite (as 

previously described) also did not show a difference with increased amount of CKAMP44a 

(ctrl: 0.153±0.0166, CKAMP44a: 0.157±0.0140, Figure 41D and E),  unlike GRIA1 REs as 

we showed previously (Figure 39F). 

In sum, our data show that CKAMP44a overexpression exerts an adverse effect on the 

intracellular AMPAR pool. This and other CKAMP44a-dependent mechanisms may reduce the 

apparent frequency of detectable AMPAR insertion events in dendrites. 

 

 

3.10 Auxiliary subunits reduce endocytosis at extrasynaptic but not 

synaptic sites  
  

AMPARs are known to be sorted in different trafficking organelles depending on 

whether they are taken up by constitutive or triggered endocytosis (Glebov et al., 2015). In 

order to study the general turnover of AMPAR in neurons expressing TARPγ8 or CKAMP44a 

auxiliary subunits, we used a GRIA1 variant marked with self-labelling HaloTag. The HaloTag 

sequence was fused to the N-terminus of GRIA1 subunit (HaloTag-GRIA1), replacing the SEP-

fluorophore of the previously used constructs. HaloTag protein is an engineered version of a 

hydrolase whose catalytic function was altered. It catalyzes the formation of a covalent bond 

when a synthetic ligand containing a chloroalkane group is added. The catalytical reaction is 

specific, rapid, and irreversible. The ligand used in our experiments is cell membrane 

impermeable, and contains an “Alexa Fluor 488” fluorescent dye that once added to neurons 

renders HaloTag-GRIA1 receptors on the surface fluorescent (Figure 42A). Transient exposure 
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to the HaloTag-ligand can be used to selectively mark surface receptors and to follow their fate 

in pulse-chase experiments (Figure 42B and C). Staining of surface receptors was done at 

lowered temperature (15 °C) to suppress a premature onset of receptor endocytosis (Chanaday 

and Kavalali, 2018; de Figueiredo and Soares, 2000; Punnonen et al., 1998). Preparatory 

experiments showed that a saturating labelling of the surface pool can be accomplished by 

incubation times between 35 and 40 min, producing very little intracellular staining (Figure 

42B).  

 

Figure 42. Staining of self-labelling HaloTag to mark surface GRIA1 receptors   

(A) Diagram showing the binding of ligand to HaloTag fusion protein. HaloTag enzyme catalyzes an 

irreversible covalent ester bond with the ligand bound to the fluorescent dye Alexa Fluor 488. (B) 

Exemplary confocal image of a hippocampal neuron (DIV 9) expressing HaloTag-GRIA1 which surface 

is stained with the impermeable HaloTag ligand tagged to Alexa Fluor 488. (C) A dendritic membrane 

showing stained surface HaloTag-GRIA1 with the ligand-Alexa Fluor 488 (left), and HaloTag-GRIA1-

ligand-Alexa Fluor 488 complex in recycling endosomes after endocytosis (right).  
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Since postsynaptic AMPAR anchorage has been in part attributed to MAGUK-

interactions of auxiliary subunits (Bats et al., 2007; Nicoll et al., 2006; Stein et al., 2003), we 

were interested to study receptor uptake at synaptic as well as at extrasynaptic sites with 

TARPγ8 or CKAMP44a overexpression under basal conditions. To distinguish between 

extrasynaptic and synaptic domains, we used PSD95-tagRFPt as a synaptic marker in pulse 

chase experiments with HaloTag-GRIA1 (Figure 43A). Accordingly, hippocampal neurons 

(DIV 8-11) were transfected with pCI CMV HaloTag-GRIA1 as well as with pCDNA CMV 

PSD95-tagRFPt, and alternatively also with pRK5 CMV TARPγ8 IRES NLS-tdTomato or 

pRK5 CMV CKAMP44a IRES NLS-tdTomato to investigate the influence of auxiliary 

subunits. As for controls, neurons were cotransfected with pCI CMV HaloTag-GRIA1 and 

pCDNA CMV PSD95-tagRFPt, or transfected with pCI CMV HaloTag-GRIA1 IRES NLS-

tdTomato only. Using confocal laser-scanning microscopy (LSM), we observed fluorescent 

“strands” outlining the dendritic membrane in confocal slices of 1 µm (Figure 43A). The same 

region was scanned every 4 minutes for a total duration of 24 min, and during each time point, 

three slices were acquired. Imaging was performed at 37 °C and with 5 % CO2. We noticed a 

clear colocalization between HaloTag-GRIA1-positive puncta on the surface and the 

intracellular PSD95-tagRFPt signal, allowing us to easily identify synaptic receptor 

accumulations (Figure 43A). To separately quantify the internalization of extrasynaptic and 

synaptic receptors, we either set regions of interest (ROIs) at PSD95-tagRFPt-marked synaptic 

sites or placed scanlines at PSD95-tagRFPt free extrasynaptic membrane sections using 

“ImageJ” software (Figure 43A). As for the synaptic site, to generate ROIs corresponding to 

individual synapses, we summed up all three slices in red channel for each time point, and 

thresholded the summed red image to obtain individual ROIs. These ROIs were then overlayed 

on the summed green image of every time point and fluorescence intensity was quantified. On 

the other hand, to quantify receptor internalization at extrasynaptic sites, every confocal slice 

was separately analyzed over the 24 min. A scanline of length >3.2 µm was set along the 

extrasynaptic membrane, and the region was straightened (Figure 43A and B) to get uniform 

intensity traces through the membrane (Figure 43C). All obtained traces corresponding to the 

region under the scanline were averaged, and the peak value was taken for the analysis (Figure 

43C). Eventually, fluorescence intensity of every chosen region was normalized to the first 

time point, and normalized intensities of all regions for every neuron were averaged. 
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Figure 43. Analysis of membrane fluorescence intensity of HaloTag-GRIA1 at synaptic and 

extrasynaptic site 

(A) Confocal image of a dendrite from a neuron (DIV 11) transfected with HaloTag-GRIA1 (green) and the 

synaptic marker PSD95-tagRFPt (red). Membrane HaloTag-GRIA1 stained with its ligand tagged to Alexa 

Fluor 488. Quantification of HaloTag-GRIA1 fluorescence intensity on synaptic membrane using circle like 

ROIs (white) obtained from the red PSD95-tagRFPt image by thresholding (second and third row). 

Quantification of HaloTag-GRIA1 fluorescence intensity on extrasynaptic membrane using scanline 

(yellow) along non-punctate regions (first and third row). White arrowheads indicate synaptic regions in the 

merged image (lower left). Images were interpolated for better presentation. (B, C, and D) Show a detailed 

procedure of the analysis and quantification of the extrasynaptic fluorescence intensity. (B) Exemplary 

confocal image of a stained dendrite from a neuron (DIV 9) transfected with HaloTag-GRIA1 (ligand-

Alexa Fluor 488). After drawing a scanline (B, right), membrane under the ROI is straitened (C) to obtain 

uniform intensity traces along the whole region (D). Red trace indicates the average intensity of all traces 

along the membrane (D). Pixel size: 0.18-0.21 µm. Confocal imaging is done with green laser of 8 % 

power. Images were interpolated for better presentation. 
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In controls, we observed a progressive fluorescence reduction in membrane sections 

over time, which was more pronounced than the bleaching effects of continuous imaging and 

thus reflecting a putative removal of surface receptors via endocytosis. Comparing images at 

the beginning of a measurement (t0) and after 24 min, an uptake of labelled HaloTag-GRIA1-

containing AMPARs was observed in all four conditions (both controls, TARPγ8, and 

CKAMP44a) especially in the extrasynaptic domains of neurons (Figure 44). With a 

monoexponential fit, we obtained a reduced rate of receptor endocytosis with TARPγ8 and 

CKAMP44a overexpression in the extrasynaptic site (mean of endocytosis rate (min-1): ctrl: 

0.0235±0.00150, ctrl+PSD95-tagRFPt: 0.0256±0.00167, TARPγ8+PSD95-tagRFPt: 

0.0128±0.00161, CKAMP44a+PSD95-tagRFPt: 0.0130±0.00271; and ctrl versus 

TARPγ8+PSD95-tagRFPt: p=0.004, ctrl+PSD95-tagRFPt versus TARPγ8+PSD95-tagRFPt: 

p<0.001, ctrl versus CKAMP44a+PSD95-tagRFPt: p=0.005, ctrl+PSD95-tagRFPt versus 

CKAMP44a+PSD95-tagRFPt: p<0.001, Figure 45A and D). This indicates that the 

internalization rate of GRIA1-containing AMPARs was reduced in TARPγ8 and CKAMP44a-

overexpressing neurons than in control conditions. 

Figure 44. Auxiliary subunit overexpression reduces HaloTag-GRIA1 endocytosis visually assessed 

through fluorescence uptake  

Exemplary confocal image of dendrites from neurons (DIV 10-11) transfected with HaloTag-GRIA1 IRES 

NLS-tdTomato (first row), HaloTag-GRIA1 and PSD95-tagRFPt (second row), HaloTag-GRIA1 with 

PSD95-tagRFPt and alternatively with TARPγ8 IRES NLS-tdTomato (third row) or CKAMP44a IRES 

NLS-tdTomato (fourth row). Left column corresponds to time zero (t0), and right column corresponds to 

images after 24 min. In all fourth conditions fluorescence intensity uptake in observed but with different 

levels. Filled yellow arrowheads indicate synaptic regions. Images were interpolated for better presentation. 
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We then quantified the Alexa Fluor 488 fluorescence intensities of identified synaptic 

puncta of the same neurons, and also saw a gradual decrease in intensities. Comparing the 

fluorescence decay profiles, there was no difference in fluorescence intensities observed among 

TARPγ8 and CKAMP44a overexpressed neurons and controls (HaloTag-GRIA1 and PSD95-

tagRFPt) conditions. With a monoexponential fit, we also did not obtain a difference in 

endocytosis rate in the synaptic site among the three different conditions (mean of endocytosis 

rate (min-1): ctrl+PSD95-tagRFPt: 0.0127±0.00210, TARPγ8+PSD95-tagRFPt: 

0.0141±0.00175, CKAMP44a+PSD95-tagRFPt: 0.00987±0.00170, p=0.333, Figure 45B and 

E).  
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We also compared the decay of the GRIA1-signal in the control conditions (without 

CKAMP44a and TARPγ8 overexpression) at extrasynaptic and synaptic domains, and noticed 

that endocytosis was higher at extrasynaptic than synaptic domains (mean of endocytosis rate 

(min-1): ctrl+PSD95-tagRFPt (extrasynaptic): 0.0256±0.00167, ctrl+PSD95-tagRFPt (synaptic): 

0.0127±0.00210, Figure 45D and E). 

Overall, these findings show that TARPγ8 and CKAMP44a primarily modulated 

internalization of extrasynaptic, GRIA1-containing AMPARs. In contrast, the turnover of 

synaptic receptors is not directly dependent on the abundance of auxiliary subunits and is 

clearly delayed in comparison to extrasynaptic receptors, which possibly indicates that the rate-

limiting step for transport and internalization of these receptors is their dissociation from the 

postsynaptic cluster, but not endocytosis itself. 

 
 

3.11 Induced endocytosis of surface AMPARs is reduced with 

TARPγ8 overexpression  
 

The density of AMPAR on the dendritic surface depends on the dynamic delivery and 

reuptake of receptors by exocytosis and endocytosis, respectively. Our previous experiment 

demonstrated a reduced receptor reuptake under basal conditions, if TARPγ8 was 

overexpressed. To test whether stimulated endocytosis is also affected by the presence of high 

amounts of auxiliary subunits, we studied AMPAR endocytosis in hippocampal neurons by 

acute application of insulin and analyzed the progressive reduction in surface SEP-GRIA1 

Figure 45. TARPγ8 and CKAMP44a auxiliary subunits decrease GRIA1 endocytosis at extrasynaptic 

but not at synaptic sites 

(A) Time course of HaloTag-GRIA1 fluorescence change at extrasynaptic site in control (black and grey) 

and with auxiliary subunit overexpression (blue and red). (B) Time course of HaloTag-GRIA1 fluorescence 

change at synaptic site in control (black) and with auxiliary subunit overexpression (blue and red). (C) 

Traces of total HaloTag-GRIA1 fluorescence change during 24 min. (D) Average rate of HaloTag-GRIA1 

endocytosis at the extrasynaptic site in higher in controls (black and grey) compared with TARPγ8 or 

CKAMP44a overexpression conditions (blue and red). (E) Average rate of HaloTag-GRIA1 endocytosis at 

the synaptic site in similar in control (black) to TARPγ8 or CKAMP44a overexpression conditions (blue and 

red). (F) Bar graph shows total HaloTag-GRIA1 fluorescence intensity at extrasynaptic sites after 24 min (in 

%). Ctrl: 59.1±1.47, ctrl+PSD95: 54.9±2.54, TARPγ8+PSD95: 74.7±2.21, CKAMP44a+PSD95: 73.9±5.34. 

Ctrl vs ctrl+PSD95: p=0.360, ctrl vs TARPγ8+PSD95: **p=0.007, ctrl vs CKAMP44a+PSD95: **p=0.004, 

ctrl+PSD95 vs TARPγ8+PSD95: **p=0.001, ctrl+PSD95 vs CKAMP44a+PSD95: ***p<0.001. (G) Bar 

graph shows total HaloTag-GRIA1 fluorescence intensity at synaptic sites after 24 min (in %). Ctrl+PSD95: 

73.8±3.45, TARPγ8+PSD95: 73.1±1.29, CKAMP44a+PSD95: 77.9±3.58. (H) Percentage of total HaloTag-

GRIA1 fluorescence change after 24 min. Data are mean ± SEM. Ctrl n=7 cells, ctrl+PSD95 n=8, 

TARP+PSD95 n=7, CKAMP44a+PSD95 n=7 (n=6 for synaptic intensity). Statistical analysis was assessed 

with one way ANOVA and with Student-Newman-Keuls pairwise comparison test.  
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fluorescence. Neurons (DIV 8-11) were cotransfected with PCI SEP-GRIA1 and pRK5 

TARPγ8 IRES NLS-tdTomato, and live-cell imaging of dendritic structures was done as 

described above. After recording an initial baseline image series of about 2 min, insulin (50 

µM) was at least 4 min continously applied to the neurons using a local superfusion system (17 

µl/s) until the whole extracellular solution was exchanged with insulin solution. Recording was 

done in the presence of insulin for the rest of the imaging period after application (~10 min) 

(Figure 46A and B). Insulin has been previously shown to induce fast AMPAR endocytosis 

within ~10-15 min (Man et al., 2000). In controls, treatment with insulin led to an exponential 

decay of surface fluorescence, resulting in a 19.5% ± 1.61% reduction of fluorescence within 

10 min.   In contrast, TARPγ8 overexpression significantly limited the extent of endocytosis to 

13.7% ± 1.45% (Figure 46C and D). Note that, the rate of endocytosis (monoexponential fit) 

was not significantly changed (rate of endocytosis (s-1): ctrl: 0.152±0.034, TARPγ8: 

0.142±0.021, Figure 46E), which indicates that a larger fraction of the surface pool is protected 

against induced endocytosis, while mobile receptors are taken up at normal speed. Thus, 

TARPγ8 association may actively shield receptors from triggered endocytosis. 
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Figure 46. Insulin induced AMPAR endocytosis is reduced with TARPγ8 overexpression in 

hippocampal neurons   

(A) Exemplary image showing surface SEP-GRIA1 in dendrites from hippocampal neurons (DIV 10) 

transfected with SEP-GRIA1 (ctrl) (upper and lower panel) or cotransfected with TARPγ8 IRES NLS-

tdTomato (middle panel). Application of insulin solution (50 µM) (upper and middle panel) or with 

normal extracellular solution (mock, lower panel). Left column shows dendrites before treatment 

(t0=0 min) and right column at the end of treatment (tf=10 min). (B) Enlarged section of dendrite from (A) 

before and after treatment in the different conditions. (C) Traces of SEP-GRIA1 fluorescence change 

during insulin and normal extracellular solution application. (D) Graph showing percentage of internalized 

SEP-GRIA1 after 10 min. **p<0.01, ***p<0.001. Statistical analysis was assessed with one way ANOVA 

followed by pairwise comparison with Student-Newman-Keuls. (E) Graph showing rate of SEP-GRIA1 

endocytosis (s-1). p=0.811. Statistical analysis was assessed with two-tailed student t-test. Data are mean ± 

SEM. Ctrl n=18 cells, TARPγ8 n=21 cells, mock n=20 cells. Imaging frequency is 0.1 Hz with 100 ms 

exposure time. Images were interpolated for better presentation. 
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4. Discussion 
 

Trafficking of AMPARs in neurons can be investigated by several experimental 

approaches, including biochemistry, immunocytochemistry, and live-cell imaging. In contrast 

to most antibody-based staining techniques, live-cell imaging allows for a continuous 

observation of the transport of tagged receptors in individual neurons. Here, we used different, 

genetically encoded tags in order to study glutamate receptor transfer from intracellular stores 

to the plasma membrane and in reverse direction. Employing SEP-GRIA1, plasma membrane 

delivery of GRIA1-containing receptors could be detected as local fluorescence increases, 

which report the transition of the pH from the acidic lumen of the secretory organelle to the 

neutral extracellular space. We first used TIRF microscopy to directly visualize receptor 

insertion of SEP-GRIA1 receptors with high resolution in somatic membrane areas, but soon 

realized that epifluorescence microscopy is sufficient to follow insertion events in dendrites 

due to their small dimensions. TIRF and epifluorescence microscopy indeed showed insertion 

events whose accompanying fluorescence signals were qualitatively nearly identical. Generally, 

exocytotic events exhibited a fast onset, but varied in their decay properties, possibly not only 

mirroring receptor dispersion but also reacidification after transient fusion. 

Synaptic receptor accumulation is believed to be dynamically altered by neuronal 

activity, either in a homeostatic fashion to ensure sufficient network activity or to selectively 

change the efficiency of individual synaptic connections in synaptic plasticity (Henley et al., 

2011; Luscher et al., 1999; Malinow and Malenka, 2002). Here, we tested the effects of a 

chronic depression of neuronal activity by addition of TTX or in consequence of disabled 

exocytotic machinery (Snap25-/- neurons). In both cases, we indeed observed that AMPAR 

trafficking at the soma was reduced compared to the control condition, indicating that global 

receptor turnover reacts very sensitive to changes in activity. Given that the majority of 

synapses are localized on dendrites, we focused in most experiments on trafficking AMPARs 

in dendritic/neuritic structures in hippocampal neurons. Intracellular AMPARs in dendrites 

mainly reside in TfR-positive REs, and their mobilization seems to be regulated by different 

factors and proteins. We show here that two prominent auxiliary subunits influence AMPAR 

trafficking in the hippocampus: TARPγ8 and CKAMP44a overexpression significantly reduced 

AMPAR delivery to the dendritic surface. Interestingly, the decrease in exocytosis was 

accompanied by a reduction in the intracellular pool of AMPAR within RE, which at least in 

part may also account for a reduced frequency of detectable events. Total surface expression 

was however not significantly changed, when TARPγ8 and CKAMP44a were overexpressed, 
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pointing to a general slowdown of receptor turnover in the presence of associated auxiliary 

subunits. To address correlated changes in endocytosis, we used a GRIA1-variant fused to self-

labelling HaloTag, which can be used to follow surface receptors in pulse-chase experiments. 

We found that TARPγ8 and CKAMP44a overexpression significantly reduced the uptake of 

receptors at extrasynaptic sites but not at the synaptic site. Promotion of endocytosis by 

application of insulin affected a smaller fraction of surface AMPAR in cells with high TARPγ8 

content. Thus, our data point to a mechanism, in which the presence of auxiliary subunits 

increases the surface lifetime of AMPARs. 

 

 

4.1 Analysis of AMPA receptor delivery in live-cell imaging 

experiments with a pH-dependent fluorophore tag 
 

It is well established that AMPARs are dynamically trafficked between intracellular 

organelles and the surface of neurons (Ehlers*, 2000; Hirling, 2009). While antibody-feeding 

experiments in combination with biochemical assays were very successful in delineating the 

general kinetics of AMPAR turnover (Sans et al., 2003), live-cell imaging experiments allow 

for a more detailed view of individual transport events, especially with respect to incorporation 

of new AMPARs into the plasma membrane (Roth et al., 2017). Using SEP-tagged GRIA1-

subunits in combination with TIRF microscopy, we could observe local fluorescence transients, 

which represent bona fide receptor delivery events to the plasma membrane. While the spatially 

restricted sample illumination in TIRF microscopy allows for resolving small fluorescence 

signals near or on the plasma membrane of cultured hippocampal neurons, imaging is largely 

restricted to membrane sections tightly adhering to the glass coverslip. However, due to the 

small dimensions of dendrites, we could observe SEP signals in dendrites using conventional 

epifluorescence illumination, thus allowing us to extend our view to the dendritic compartment, 

where most of the synapses reside. The fluorescence signals for both experimental approaches 

were qualitatively very similar, as previously noted by Yudowski et al. (2007). This implies 

that the same exocytotic mechanism of receptor insertion is employed throughout soma and 

dendritic compartments. The observed kinetics of putative receptor delivery events is also 

consistent with the results of several other studies that used SEP-tagged glutamate receptor 

subunits (Araki et al., 2010; Lin et al., 2009).  

However, when comparing the frequency of SEP-GRIA1 delivery events in our 

experiments with previous published data, it is notable that the number of exocytotic events per 
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minute was dramatically lower in our TIRF microscopy experiments than in other studies 

(Yudowski et al., 2007). The up to tenfold difference in fusion event frequency might be 

explained by different factors: (1) experimental differences that affect event detection. For 

example, several studies (Araki et al., 2010; Yudowski et al., 2007) used a pre-bleaching 

protocol to increase sensitivity, which was not regularly employed in our recordings. Moreover, 

differences in threshold settings and analysis algorithms may contribute to the overall lower 

count of fusion events in our experiments. (2) Culture conditions and expression levels of SEP-

GRIA1 may also influence the apparent rate of receptor delivery. We used cultures around DIV 

10 for most experiments, while other studies performed experiments on slightly older cultures 

(18-19 DIV (Araki et al., 2010); 12-15 DIV (Lin et al., 2009); 15-20 DIV (Yudowski et al., 

2007)). It might be speculated that older neurons that entertain a large number of synaptic 

contacts, require a more developed recycling infrastructure and thus could exhibit higher 

steady-state delivery rates. In concert with the longer cultivation times also SEP-GRIA1 

expression levels were likely also higher in some studies, especially in the experiments of 

Yudowski et al. (2007) who transfected neurons as early as 5 DIV and performed experiments 

10 days later.  

Independently of the microscopic technique, experiments with SEP-GRIA1-subunits 

showed two principle types of fluorescence signals accompanying putative AMPAR delivery 

events: (1) In the case of “short burst events”, the fluorescence signal rapidly decayed in less 

than one second after an initial fast onset. (2) In contrast, fluorescence signals with a total 

decay time of ~ 2 s and variable kinetics were classified as “long display events”. Both event 

types have been reported in virtually all studies that use pH-dependent fluorophore-tags (Jullie 

et al., 2014; Yudowski et al., 2007), although the criteria for classification slightly varied. For 

example, Yudowski et al. (2007) categorized AMPAR delivery within ~ 1 s as “transient 

events” and signals lasting 5-10 s as “persistent events”. In agreement with that, our 

experiments showed event decay times typically ranging between 0.5 and 25 s, according to 

what was published before included so-called transient (short burst) and persistent (long 

display) events (Yudowski et al., 2007). It stands to reason that the duality of kinetic profiles 

indicates the existence of different delivery pathways or fusion modes. Interestingly, different 

types of receptor cargo (e.g. GRIA1, TfR, and β2 adrenergic receptor) have been observed to 

exhibit similar kinetic profiles in neurons, while long display events were rarely seen in 

astrocytes and fibroblasts (Jullie et al., 2014). That said, there is also a relationship between the 

type of cargo and event kinetics in neurons, as for example, different GPCRs exhibited 

different signal shapes (Yudowski and von Zastrow, 2011). The decay kinetics of fast fusion 
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events may represent a rapid dispersion of AMPARs on the neuronal surface after the transport 

organelle has collapsed into the plasma membrane. Indeed, we could observe several events 

(Figure 25B), in which a clear broadening of the fluorescent signal was found in consecutive 

images, pointing to a lateral diffusion of the freshly inserted receptors as the prime reason for 

the fluorescence decrease at the fusion site. Similar observations have been previously made by 

Yudowski et al. (2007), who estimated the portion of dendritic delivery events that increased 

the fluorescence of neighboring spines to be around 25 % of transient signals. Noteworthy, they 

also report that longer lasting persistent events did not produce a fluorescence increase in their 

experiments. Assuming that the transport organelles can also engage in kiss-and-run fusion 

instead of full fusion (Alabi and Tsien, 2013), a fluorescence decay might alternatively reflect 

the reacidification of the resealed intracellular structures. A systematic analysis by Jullie et al. 

(2014) indeed showed that repeated variation of extracellular pH does not result in correlated 

changes in the long-lasting fluorescence transients accompanying the putative delivery of SEP-

marked receptors from REs, indicating that the compartment has already fully resealed. In line 

with this idea, we show here that TfR-tagRFPt-positive REs persisted after fusion reported by 

SEP-GRIA1 cargo. Thus, it seems that only limited amounts of the receptor cargo are indeed 

delivered to the surface by kiss-and-run fusion. 

It is interesting to note that recent work on large dense core vesicle (LDCV) fusion in 

neuroendocrine chromaffin cells suggested a tight coupling between exocytotic and endocytotic 

processes. Respectively, they allow for a dynamic shrinking and expansion of the organelle in 

the fusion pore (“”) stage, resulting either in the loss of the vesicle or its recovery at 

unchanged or altered size (Chiang et al., 2014). A similar dynamic membrane and cargo flow 

through a dynamic fusion pore may also underlie the delivery of AMPAR via transport vesicles 

and recycling endosomes, thereby explaining the varying kinetic profiles of fusion events. 

 

 

4.1.1 Activity dependent AMPAR surface insertion  
 

While AMPAR exocytosis occurs constitutively, a wealth of experimental evidence has 

suggested that the trafficking of AMPARs onto the plasma membrane and into the postsynaptic 

density is regulated by neuronal activity (Ehlers*, 2000), and may be critical for synaptic 

plasticity (Malinow and Malenka, 2002). By chronically depressing the activity of neurons 

using TTX or utilizing Snap25-/- neurons that have a disabled exocytotic machinery (Sollner et 

al., 1993), we could show that AMPAR trafficking is significantly reduced. Unlike GRIA2 
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subunit which has been often attributed to constitutive surface trafficking, GRIA1 trafficking is 

activity dependent and considered the driving force of receptors to the surface (Passafaro et al., 

2001). By using SEP-GRIA1 in combination with TIRF microscopy, we could show that the 

number of transient exocytotic events was dramatically reduced in both conditions. Our result 

agrees with what was shown before when neurons were treated with a cocktail of inhibitors 

suppressing neuronal activity to study GRIA1 surface insertion (Lin et al., 2009). Considering 

the stronger effect of SNAP25-/- on GRIA1 surface insertion as compared to that of TTX, it is 

possible that SNAP25 SNARE protein plays an additional role in the fusion machinery of 

AMPAR organelles and does not only impair neuronal activity. Indeed, SNARE proteins, like 

Syntaxin-4 and SNAP-23, have been proven to interfere in glutamate receptor trafficking in 

dendrites, and SNAP-25 has been related particularly to NMDA receptor trafficking (Kennedy 

et al., 2010; Lau et al., 2010; Suh et al., 2010). These findings support our hypothesis that 

SNAP25 is involved in the fusion of GRIA1 receptor to the surface membrane. 

In addition to the frequency of exocytosis, we tested whether reduced activity of 

neurons influences the fusion kinetics of SEP-GRIA1. We analyzed the different parameters of 

SEP-GRIA1 membrane fusion and saw that the event amplitude was clearly smaller with 

depressed neuronal activity. This suggests a reduced receptor content in the trafficking 

organelle probably due to a lower recycling rate. However, Yudowski et al. (2007) showed that 

when LTP was induced chemically, the receptor content per vesicle was not increased although 

the exocytotic rate was raised. According to this study, we should not observe a difference in 

RE content when exocytotic events decrease. The discrepancy of analysis and interpretation 

may be a result of the different experimental setup compared to Yudowski’s et al. (2007) study, 

where they used older neurons (DIV 15-20) than we did (DIV 9-12). Moreover, the type of 

analysis done to quantify the different kinetic parameters, like setting thresholds for example, 

may also play a role in the variable outcome. Regardless of the effect on the RE content, the 

change in frequency of exocytosis events upon low activity of neurons in our experiments 

agrees with the published data. Overall, our results reveal that trafficking of AMPAR 

organelles is regulated by neuronal activity.   

 

4.2 AMPAR delivery events in dendrites primarily constitute 

transient fusion of recycling endosomes 
 

The population of surface AMPARs is complemented by a pool of receptors residing in 

different intracellular stores, which are shifted to the plasma membrane in an activity-
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dependent fashion. There is still considerable debate about the specific delivery pathways and 

relative contributions of newly synthesized receptors versus recycled receptors under different 

physiological conditions (Bowen et al., 2017; Hangen et al., 2018; Ju et al., 2004). Indeed, 

recent work by Hangen et al. (2018) demonstrated considerable intracellular vesicular transport 

and surface insertion of freshly synthesized AMPARs in dendrites, which could be modulated 

by chemical induction of LTP and receptor phosphorylation. Fusion of recycling endosomes 

might as well contribute to the receptor delivery process, with recent evidence even pointing to 

direct transport of locally synthesized receptors to this compartment without intermittent 

GOLGI processing (Bowen et al., 2017). As the frequency of dendritic fusion events is 

meaningless without information about the abundance of intracellular stores, we specifically 

visualized AMPAR-containing intracellular compartments taking advantage of the locally 

existing organelles, where synthesized AMPAR might directly represent another “source” of 

AMPAR-containing transport vesicles for the replenishment of the surface pool (Hangen et al., 

2018). While discrete AMPAR organelles were previously detected by antibody labeling 

followed by biochemical permeabilization and fixation (Carroll et al., 1999), we were able to 

visualize local AMPAR intracellular organelles using SEP-GRIA1 in combination with live 

epifluorescence imaging of fine dendritic structures. Plenty of studies have shown that 

membrane trafficking of AMPAR is accomplished through REs in dendrites and triggered by 

synaptic activity to replenish the surface membrane (Brown et al., 2007; Park et al., 2004). 

Specifically, Rab11-dependent REs and Rab8 have been shown to dominate the population in 

the dendritic shaft and spine region for surface delivery and final insertion of receptors (Brown 

et al., 2007; Cooney et al., 2002; Park et al., 2004), although AMPARs may be contained in 

different endocytic compartments in the neuron (Hausser and Schlett, 2017). In agreement with 

the published data, we could show through live dual view imaging that almost all visualized 

intracellular SEP-GRIA1 organelles in dendrites were located in reservoirs of REs that were 

marked with the TfR-tagRFPt recycling endosome marker. However, we cannot rule out that 

other trafficking organelles (newly synthesized AMPARs) and endosomes (early and sorting 

endosomes) exist in the dendrite that we did not mark to visualize (Cooney et al., 2002; 

Ehlers*, 2000; Hangen et al., 2018; Hausser and Schlett, 2017). Unlike dendrites, using TIRF 

microscopy to visualize individual REs in soma was not possible due to the crowdedness of 

endosomes and spatial limitation of the imaging technique. As for dendrites, we further showed 

that SEP-GRIA1 exocytosis events occurred locally at regions of RE stores. We could almost 

correlate all SEP-GRIA1 events (~82 %) to existing REs marked with TfR-tagRFPt. Depending 

on a previous study showing through electron microscopy that several spines share common 
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REs, it can be assumed that AMPAR containing REs are in a continuous dynamic movement to 

locally deliver receptors to the neighboring surface membrane (Cooney et al., 2002). Moreover, 

our result supports recent findings showing that induced release of AMPAR-containing REs 

from dendritic ER by chemical means accumulate locally before surface delivery (Bowen et al., 

2017). Thus, AMPARs stored in dendritic REs undergo local trafficking and subsequently 

release receptors in the neighboring surface membrane.       

 
 

4.3 Impact of TARPγ8 on transient AMPAR exocytosis and 

intracellular trafficking 
 

Auxiliary subunits have been proposed to interact with AMPARs promoting their 

trafficking and regulating the channel properties (Haering et al., 2014). Transmembrane  

AMPA receptor regulatory proteins (TARPs) were the first auxiliary proteins to be identified 

(Burgess et al., 2001; Chen et al., 2000). Predominantly present in the hippocampus, TARPγ8 

has been shown to occupy important roles in the surface expression of AMPAR in addition to 

regulating the channel function (Fukaya et al., 2006; Rouach et al., 2005; Tomita et al., 2003; 

Zheng et al., 2015a). Previously published data showed an increase in AMPAR surface 

expression without affecting the total protein expression when TARPγ8 was overexpressed 

suggesting a shift between surface and total receptor levels (Rouach et al., 2005). We could not 

reproduce this finding by quantifying the surface fluorescence of SEP-GRIA1. In other words, 

we did not obtain increased GRIA1 surface expression with overexpressed TARPγ8. The 

difference with previous result is not due to a mislocalization of SEP-GRIA1 because control 

experiments in which we measured miniEPSC showed a clear increase in spontaneous currents 

when SEP-GRIA1 was overexpressed indicating correctly localized receptors on the surface 

membrane. However, the difference in outcome may be assigned to the difference in 

quantification of surface receptors or to the experimental setup. Rouach et al. (2005) used 

immunofluorescent labelling to assess AMPAR surface expression whereas we obtained 

surface fluorescence by direct subtraction of internal fluorescence in live imaging of SEP-

GRIA1 in hippocampal neurons. It is noteworthy to mention that AMPAR surface level as well 

as total expression was severely reduced when TARPγ8 was knocked out indicating that 

TARPγ8 indeed is involved in AMPAR surface delivery (Fukaya et al., 2006; Rouach et al., 

2005). Interestingly, our negative control, GSG1L overexpression, reduced GRIA1 surface 

expression, which goes in line with previously published studies showing a suppressive role of 
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GSG1L on AMPAR surface delivery (Gu et al., 2016a). Hence, we are confident that our 

method to assess GRIA1 surface expression is correct. In addition, the discrepancy between 

GSG1L and TARPγ8 effect confirms the differential regulation of AMPARs by auxiliary 

subunits (Greger et al., 2017; Haering et al., 2014). Furthermore, to highlight the role of 

TARPγ8 on AMPAR surface delivery, we studied the rate of transient GRIA1 exocytotic 

events in TARPγ8 overexpressing neurons under basal conditions by using SEP-GRIA1 variant 

as previously explained. The primary effect seen through TARPγ8 overexpression was a 

dramatic reduction in GRIA1 exocytosis. To further interpret this result, we quantified the 

dendritic GRIA1 RE stores with TARPγ8 overexpression. Indeed, our detailed quantification of 

GRIA1 intracellular stores showed a strong correlation with the number of GRIA1 exocytotic 

events. High amounts of TARPγ8 went hand in hand with the decreased GRIA1 RE content 

together with the reduced GRIA1 exocytosis rate. Indeed, this result is in agreement with 

previous data showing that impairing TARPγ8 function leads to an increased intracellular 

accumulation of AMPARs (Zheng et al., 2015a), which may explain why with intact TARPγ8 

overexpression we obtain less AMPARs in REs. However, one cannot exclude the possibility 

that the reduction in GRIA1 RE content may influence the detectability of the GRIA1 transient 

fusion events with less intense signals. In other words, SEP-GRIA1 may have fluorescence 

intensities during membrane fusion that lay under the threshold of detection. Therefore, in case 

of TARPγ8 overexpression, some SEP-GRIA1 fusion events may be missed due to smaller 

fluorescence intensity of the RE. Thus, TARPγ8 clearly reduces GRIA1 exocytosis, but the 

technical limitation should be taken into consideration to what extent TARPγ8 affects 

exocytosis. 

In agreement with the decreased GRIA1 RE stores, GRIA1 RE count was also reduced 

in the dendrites when TARPγ8 was overexpressed. Moreover, the number of GRIA1 exocytosis 

events were correlated to the number of REs, explaining why we saw reduced GRIA1 

exocytotic rate with TARPγ8 overexpression. 

The decreased GRIA1 exocytosis and intracellular stores when TARPγ8 is 

overexpressed can be attributed to the reduced recycling of GRIA1 receptors. One reasonable 

explanation for the low recycling rate is the stabilization of GRIA1 receptors by TARPγ8 on 

the dendritic membrane. A similar function on AMPAR stabilization has been recently 

identified for the canonical TARP stargazin/TARPγ2 subunit via cryo-electron microscopy 

(Twomey et al., 2016). Since AMPAR trafficking in REs is important for the replenishment of 

the synaptic site in a constitutive and activity-dependent manner (Gerges et al., 2004; Park et 
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al., 2004), it might be possible that a stabilization of AMPARs on the membrane counteracts 

the forward trafficking of the receptors.              

 Intensive studies have shown a direct role of PSD95 protein in stabilizing AMPARs on 

the postsynaptic membrane through the interaction with TARP proteins at their C-terminal 

domain. Whereas a direct binding between PSD95 and AMPAR is not possible because the 

AMPAR does not have a PDZ binding motifs (Bats et al., 2007; Nicoll et al., 2006; Stein et al., 

2003), a direct assembly between TARP protein and AMPAR has been proven to exist and 

intermediate between PSD95 and AMPAR in several studies (Bats et al., 2007; Kim et al., 

2010; Shi et al., 2009). Accordingly, an increase in TARPγ8 levels would enhance the 

molecular linking between available AMPARs and PSD95, thus leading to more stability of 

receptors on the surface membrane.  

Previous published data shows that TARPγ8 is required for basal AMPAR trafficking 

and neurotransmission (Rouach et al., 2005; Sumioka et al., 2011). In line with that, the 

prominent effect of TARPγ8 on AMPARs we saw in our experiments was also under basal 

condition of neurons. However, TARP proteins, including TARPγ8, are also thought to 

regulate AMPAR trafficking for LTP and neuronal plasticity (Khodosevich et al., 2014; 

Rouach et al., 2005; Tomita, 2010). As with TARPγ8-/- neurons, LTP was impaired in these 

neurons (Rouach et al., 2005). Obviously, TARPγ8 regulates AMPAR trafficking under basal 

and activity-dependent condition but which details still have to be clarified.  

 

 

4.4 AMPAR endocytosis  
 

AMPAR surface expression is dynamically regulated by continuous removal of 

receptors through endocytosis and subsequent insertion of new ones (Carroll et al., 1999; 

Mukherjee et al., 1997; Turrigiano, 2000). While antibody feeding assays and western blots 

were successful in characterizing the endocytosis of AMPARs (Carroll et al., 1999; Zheng et 

al., 2015b), live imaging has added new details to follow the process of endocytosis in real 

time. Using a GRIA1-variant tagged to a self labelling HaloTag sequence (Urh and Rosenberg, 

2012), we were able to stain exclusively the surface membrane of hippocampal neurons with an 

impermeable ligand tagged to Alexa Fluor 488. Confocal imaging allowed us to observe a 

gradual decrease in fluorescence intensity of defined membranous structures indicating 

consequent receptor endocytosis. Employing this technique, we studied basal GRIA1 

endocytosis in dendrites and by using the well-known postsynaptic marker, PSD95 tagged to –
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tagRFPt, we were able to differentiate between synaptic and extrasynaptic receptor 

endocytosis. Although AMPARs are present along the dendrite, our investigation showed that 

receptor uptake by endocytosis was clearly higher in the extrasynaptic site. Our data goes in 

line with a wealth of studies showing that AMPARs become internalized at hot spots of 

extrasynaptic or perisynaptic sites rather than at synapses sites (Ashby et al., 2004; Blanpied et 

al., 2002; Petrini et al., 2009; Tao-Cheng et al., 2011). The exact site of endocytosis is 

debatable. Whereas experiments using electron microscopy show that AMPARs are 

internalized at regions of the dendritic shaft and spine neck (Cooney et al., 2002), single 

particle tracking indicate that AMPARs can be endocytosed from regions laterally near the 

postsynaptic density (PSD) called endocytic zones (EZs) (Petrini et al., 2009; Rosendale et al., 

2017). However, our quantification of surface fluorescence at the synaptic site still showed a 

considerable percentage of GRIA1 uptake (~27 %). Indeed, synaptic AMPARs are also cycled 

in and out, but rather by lateral diffusion to neighboring endocytic sites of the extrasynaptic 

domain for internalization as shown in many studies (Ashby et al., 2004; Ashby et al., 2006). 

Published data shows that AMPAR rapid internalization at extrasynaptic site precedes slow 

removal from the synapse (Ashby et al., 2004), which was also later confirmed by detailed 

studies characterizing the sites of AMPAR endocytosis post-lateral diffusion from the synapse 

for recycling (Petrini et al., 2009; Rosendale et al., 2017). However, we cannot exclude 

completely that AMPARs may be recycled from the synapse, as one study showed that 

AMPARs are inserted in the spine upon LTP (Patterson et al., 2010). Together these results 

show that AMPAR is dynamically recycled on the dendritic membrane with a differential 

endocytic rate between extrasynaptic and synaptic receptors.  

  

 

4.5 Effect of TARPγ8 on basal AMPAR endocytosis 
 

TARPγ8 regulates forward trafficking of AMPARs in hippocampal neurons (Rouach et 

al., 2005; Tomita et al., 2003); however, its role in AMPAR reuptake and endocytosis has not 

been investigated yet. Therefore, to follow up our finding that TARPγ8 reduces GRIA1 

membrane recycling in dendrites, we intended to examine the effect of TARPγ8 overexpression 

on AMPAR endocytosis by using HaloTag-GRIA1 variant to stain the dendritic surface of 

neurons. Moreover, we differentiated between extrasynaptic and synaptic GRIA1 endocytosis 

by using PSD95-tagRFPt synaptic marker as mentioned before. TARPγ8 overexpression did 

not show any additional effect on synaptic GRIA1 endocytosis although we are suggesting that 
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TARPγ8 stabilizes AMPARs on the surface membrane. As discussed earlier, synaptic 

AMPARs are protected from endocytosis and are rather removed from the postsynaptic density 

by lateral diffusion (Ashby et al., 2004). Therefore, the absence of TARPγ8 effect on synaptic 

GRIA1 reuptake can be due to the difficulty to distinguish minor fluorescence changes arising 

from lateral migration of receptors towards the extrasynaptic site. We indeed could assume that 

synaptic AMPAR reuptake should be reduced with TARPγ8 overexpression, knowing that 

TARP protein interacts with the AMPAR and forms an intermediate (TARP/AMPAR) for the 

binding with PSD95 for receptor stabilization (Bats et al., 2007; Nicoll et al., 2006). A study 

supporting this idea showed that disrupting the binding between stargazin/TARPγ2 and PSD95 

increases surface diffusion of AMPARs and impairs synaptic accumulation of receptors (Bats 

et al., 2007). In fact, AMPARs, and unlike NMDARs (Niethammer et al., 1996), do not have a 

PDZ binding motif to bind PSD95. Therefore, an increase in TARPγ8, as a binding 

intermediate, should enhance AMPAR stability. Interestingly, this stabilization was shown to 

occur mainly under basal condition (Bats et al., 2007; Nicoll et al., 2006), which was the case 

in our experiments too, but we did not see a reduced endocytic effect on the synaptic level. 

Furthermore, TARPγ8 plays a role in synaptic potentiation as its absence impaired LTP 

(Khodosevich et al., 2014; Park et al., 2016; Rouach et al., 2005) suggesting that we may find a 

more obvious modulation of synaptic AMPAR internalization if tested under synaptic 

potentiation. In other words, we may have a stronger reduction in AMPAR internalization rate 

when TARPγ8 is overexpressed and neurons are stimulated for LTP. Another possibility could 

be that AMPARs are supposed to be naturally stabilized on the synaptic membrane through 

postsynaptic proteins, including auxiliary subunits, which makes it redundant if TARPγ8 is 

overexpressed especially that we were working with wild type background neurons (Bats et al., 

2007; Nicoll et al., 2006; Stein et al., 2003). Intriguingly, a wealth of studies showed the 

involvement of other proteins in regulating the synaptic anchoring of AMPARs. Among others, 

GRIP1, PICK1, MAGUK proteins, and other AMPAR auxiliary proteins modulate the receptor 

stability on the synaptic membrane (Dong et al., 1997; Greger et al., 2017; Lin and Huganir, 

2007; Xu, 2011). GRIP1 for instance, binds directly and enhances AMPAR accumulation at the 

synapse whereas PICK1 is the antagonist that enhances AMPAR internalization (Dong et al., 

1997; Lin and Huganir, 2007). Obviously, AMPAR stabilization in the synaptic site involves 

several proteins making it complicated to observe the effect of TARPγ8 only especially that 

receptor endocytosis occurs post-lateral diffusion to extrasynaptic sites.  

On the other hand, our findings show a clear reduction in extrasynaptic GRIA1 

endocytosis under basal activity when TARPγ8 was overexpressed. Taking into account that 
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AMPARs are endocytosed in the extrasynaptic domain (Ashby et al., 2004; Blanpied et al., 

2002) and that TARPγ8 is distributed on the dendritic membrane including the extrasynaptic 

site (Fukaya et al., 2006), GRIA1 receptors are presumably stabilized at the extrasynaptic 

membrane upon excessive numbers of TARPγ8. Studies supporting our assumption showed a 

consequent and drastic reduction in extrasynaptic AMPARs as well as in AMPAR mediated 

responses (~90 %) in TARPγ8-/- neurons (Fukaya et al., 2006; Rouach et al., 2005). Moreover, 

the studies emphasizing the notion that internalization of AMPARs mainly occurs in 

extrasynaptic and endocytic zones (EZs) and maintain a mobile pool of receptors (Ashby et al., 

2004; Borgdorff and Choquet, 2002; Petrini et al., 2009) supports our assumption that TARPγ8 

overexpression in our experiment has slowed down receptor mobility thus reducing GRIA1 

endocytosis. The immobilization and accumulation of AMPARs at synapses is a characteristic 

of potentiation to enhance synaptic transmission (Petrini et al., 2009), which may be a role also 

played by TARPγ8 to enhance synaptic activity. Our findings imply that TARPγ8 stabilizes 

AMPARs on the extrasynaptic membrane by shielding their endocytosis.  

Overall, our results demonstrate that TARPγ8 exclusively modulates the stability of 

inserted AMPARs in the extrasynaptic site by reducing endocytosis without showing a clear 

effect on the synaptic AMPARs under basal conditions. Thus, TARPγ8 effect on AMPAR 

endocytosis generally complements the results obtained with AMPAR exocytosis and 

intracellular stores all referring to a role in stabilization on the surface membrane by the 

auxiliary protein.  

 

 

4.5.1 TARPγ8 reduces stimulated AMPAR endocytosis in hippocampal neurons     
  

TARPγ8 role in AMPAR surface expression is prominent under basal activity although 

it has been shown to contribute in an activity dependent manner (Park et al., 2016; Rouach et 

al., 2005; Sumioka et al., 2011). We discussed previously that TARPγ8 reduces AMPAR 

endocytosis under basal activity. In the present study, using SEP-tagged GRIA1-subunits to 

visualize surface fluorescence and inducing GRIA1 endocytosis via insulin treatment in 

hippocampal neurons, we examined the effect of TARPγ8 overexpression on stimulated 

GRIA1 endocytosis. Insulin was shown to accelerate AMPAR endocytosis and induce LTD in 

the past (Man et al., 2000). Indeed, when we acutely applied insulin, we saw an increased 

endocytosis rate of GRIA1 receptors. However, it is important to mention that constitutive and 

regulated endocytosis of AMPARs pass through different pathways and involve different 
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proteins (Man et al., 2000; Rosendale et al., 2017; Zheng et al., 2015b). Activity dependent 

endocytosis of AMPARs involves the classical clathrin-mediated pathway that had been 

generally accepted before (Ehlers*, 2000; Man et al., 2000; Merrifield et al., 2005). Later, a 

clathrin-independent pathway of endocytosis was identified to dominate during basal activity 

(Glebov et al., 2015; Zheng et al., 2015b). According to published data, constitutive AMPAR 

endocytosis is either mediated through two GTPases Arf6 (ADP-ribosylation factor 6) and 

TC10 proteins (Zheng et al., 2015b) or through Rac1 and a pool of F-actin (Glebov et al., 

2015). Interestingly, when we overexpressed TARPγ8, induced SEP-GRIA1 endocytosis by 

insulin was strongly reduced. Our finding indicates that TARPγ8 regulates GRIA1 endocytosis 

in an activity dependent manner as well as under basal activity as we showed before. Although 

our results for GRIA1 constitutive and stimulated endocytosis are similar with TARPγ8 

overexpression indicating reduced endocytosis, the way of endocytosis may be different. 

According to our hypothesis, TARPγ8 stabilizes AMPARs on the surface membrane 

consequently reducing endocytosis. However, TARPγ8 presumably protects AMPARs from 

clathrin mediated endocytosis upon regulated activity (Man et al., 2000) and from clathrin 

independent endocytosis under basal activity (Glebov et al., 2015; Zheng et al., 2015b). 

Interestingly, clathrin dependent AMPAR endocytosis takes place during LTD and is suggested 

to occur during synaptic potentiation (Zheng et al., 2015b). Therefore, TARPγ8 may increase 

AMPAR stabilization upon increased synaptic activity to enhance synaptic transmission. In 

conclusion, our findings reveal that TARPγ8 reduces AMPAR endocytosis upon stimulation as 

well as under basal activity to stabilize receptors on the surface membrane. 

 

 

4.6 Impact of CKAMP44a on AMPAR transient exocytosis and 

intracellular trafficking 
  

Recent studies have identified several AMPAR auxiliary proteins of prominent roles in 

AMPAR channel regulation and surface expression (Greger et al., 2017). The novel CKAMP44 

auxiliary protein, with its “a” and “b” variants, was recently identified as a prominent auxiliary 

subunit that modulates AMPAR trafficking and function in dentate gyrus (DG) granule cells 

and hippocampal neurons (von Engelhardt et al., 2010). Although not expressed in high 

amounts in the hippocampus, CKAMP44 was shown to increase AMPAR surface expression in 

these types of neurons (Khodosevich et al., 2014). However, our data disagrees with this 

outcome, as quantifying the surface fluorescence using SEP-GRIA1 variant we did not obtain 
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increased GRIA1 surface expression when CKAMP44a isoform was overexpressed. As we 

suggested for TARPγ8 auxiliary subunit previously, the difference in outcome may be referred 

to the difference in quantification of surface receptors or to the experimental setup. 

Khodosevich et al. (2014) used impermeable antibody feeding assay to label and assess 

AMPAR surface expression whereas we obtained surface fluorescence by direct subtraction of 

internal fluorescence in live imaging of SEP-GRIA1 in hippocampal neurons. It is not clear 

how CKAMP44 regulates AMPAR surface trafficking, but it is proposed to regulate AMPAR 

delivery through controlling ER exit, which is a known function for the Shisa protein family 

(Nagano et al., 2006; Yamamoto et al., 2005). For example, CKAMP44 overexpression 

increased surface AMPARs in heterologous cells (Khodosevich et al., 2014) thus indicating a 

role in AMPAR surface expression but which details have still to be resolved (von Engelhardt, 

2019). Interestingly, the negative control GSG1L overexpression, compared to CKAMP44a, 

reduced GRIA1 surface expression in our experiments, which agrees with the recent study 

showing a suppressive role of GSG1L auxiliary subunit on AMPAR surface delivery (Gu et al., 

2016a) as we discussed earlier. Our finding about the effect of GSG1L, TARPγ8, and now 

CKAMP44a on GRIA1 surface expression again confirms that auxiliary subunits differentially 

regulate AMPAR trafficking supporting previous studies (Greger et al., 2017; Haering et al., 

2014). Furthermore, to highlight the role of CKAMP44a on AMPAR surface delivery, we 

studied the rate of transient GRIA1 exocytotic events in CKAMP44a overexpressed neurons 

under basal conditions by using SEP-GRIA1 similar to what we did in case of TARPγ8 

overexpression. GRIA1 exocytosis rate was dramatically reduced with CKAMP44a 

overexpression indicating a decreased GRIA1 delivery to the surface membrane. To further 

interpret this result, we quantified the dendritic GRIA1 intracellular RE stores with 

CKAMP44a overexpression. Indeed, our quantification of GRIA1 intracellular stores showed a 

strong correlation to the number of GRIA1 exocytotic events. As with high amounts of 

CKAMP44a, GRIA1 RE content went hand in hand with the reduction of GRIA1 exocytosis 

rate. However, the assumption that the reduction in GRIA1 RE content may influence the 

detectability of the GRIA1 transient fusion events that have less intense signals should also be 

considered in case of CKAMP44a overexpression since we used the same experimental setup 

as in case of TARPγ8. In other words, SEP-GRIA1 may have fluorescence intensities during 

membrane fusion that lay under the threshold of detection. Therefore, in case of CKAMP44a 

overexpression, some SEP-GRIA1 fusion events may be missed due to smaller fluorescence 

intensity exerted by the RE upon exocytosis. Thus, the technical limitation should be taken into 

consideration when interpreting the strong effect of CKAMP44a on GRIA1 exocytosis as we 
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interpreted also for TARPγ8. Moreover, GRIA1 RE number was also reduced with 

CKAMP44a overexpression going in line with the reduction in GRIA1 exocytosis and RE 

content as it was the case for TARPγ8 overexpression. Overall, the overlapping phenotype of 

CKAMP44a overexpression to that of TARPγ8 suggests a similar role in modulating the 

recycling of AMPAR on the surface membrane thus stabilizing them. Previous data supporting 

this idea shows that CKAMP44 deletion reduces surface AMPARs in dendrites, precisely in the 

extrasynaptic and synaptic sites (Khodosevich et al., 2014). However, CKAMP44 is involved 

in short-term plasticity (Khodosevich et al., 2014) whereas TARPγ8 in LTP (Park et al., 2016; 

Rouach et al., 2005) suggesting that both stabilize AMPARs on the surface membrane but 

differentially regulate neuronal activity. Indeed, CKAMP44 modulates the gating of AMPAR 

channel differently from TARPγ8. While TARPγ8 increases the desensitization period and 

decreases the recovery period, CKAMP44 does the opposite (Khodosevich et al., 2014). In fact, 

coimmunoprecipitation experiments show that CKAMP44 associates with TARPγ8 indicating 

that they may exist in the same AMPAR receptor complex to differentially modulate its 

function (Khodosevich et al., 2014). Our findings reveal that CKAMP44a reduces AMPAR 

surface delivery and consequently decreases receptor turnover in purpose to stabilize them as it 

is also attributed for TARPγ8 (Rouach et al., 2005).          

 

4.7 Effect of CKAMP44a on AMPAR endocytosis  
 

CKAMP44a was shown to promote the surface expression of AMPARs in the 

hippocampus (Khodosevich et al., 2014). Moreover, our assumption that CKAMP44a 

presumably stabilizes AMPARs on the surface membrane following the strong impact of 

CKAMP44a on AMPAR exocytosis and intracellular stores led us to study its effect on 

AMPAR endocytosis to further confirm this hypothesis. By using HaloTag-GRIA1 variant to 

stain the dendritic surface of neurons with an impermeable ligand tagged to a fluorescent dye 

and PSD95-tagRFPt synaptic marker to differentiate between synaptic and extrasynaptic 

GRIA1 receptors as we did for TARPγ8 overexpression, we examined the impact of 

CKAMP44a overexpression on basal GRIA1 endocytosis. The absence of CKAMP44a effect 

on synaptic GRIA1 endocytosis was similar to the observed result of TARPγ8 suggesting the 

same interpretation that synaptic AMPAR endocytosis does not occur. Synaptic AMPARs are 

protected from endocytosis through postsynaptic proteins, and any minor receptor reuptake at 

the synaptic site would be difficult to recognize through small fluorescence changes. Indeed, 

CKAMP44 has a preserved PDZ type II binding motif (EVTV) at its C-terminal domain that 
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serves as a binding site for PDZ proteins, like PSD95, to intermediate the stabilization of 

AMPARs (Farrow et al., 2015; Karataeva et al., 2014; Khodosevich et al., 2014; Kunde et al., 

2017; von Engelhardt, 2019) thus preventing reuptake of receptors. In line with that, deleting 

CKAMP44 (CKAMP44-/-) reduces synaptic AMPARs indicating that CKAMP44 enhances 

receptor accumulation on synapses (Khodosevich et al., 2014; von Engelhardt, 2019). 

Therefore, a more detailed analysis using more accurate detection tools to resolve small 

fluorescence changes may indicate a pronounced effect of CKAMP44a on the synaptic 

AMPAR reuptake. As we mentioned earlier, synaptic AMPAR removal occurs through lateral 

diffusion upon release from PSD95 binding (Ashby et al., 2004; Ashby et al., 2006; Bats et al., 

2007), which rate should perhaps decrease with CKAMP44a overexpression. Another 

possibility would be the redundancy of overexpressed CKAMP44a among the existence of all 

other scaffold proteins on the synapse as we also suggested for TARPγ8 overexpression. 

While synaptic AMPAR internalization was absent, extrasynaptic AMPAR endocytosis 

was strongly reduced under basal activity with CKAMP44a overexpression. Interestingly, 

CKAMP44-/- showed a reduction in extrasynaptic and synaptic AMPARs in hippocampal 

neurons (Khodosevich et al., 2014), which suggests that CKAMP44 somehow plays a role in 

extrasynaptic AMPAR expression. However, in contrary to TARPγ8 that localizes on synaptic 

and extrasynaptic site (Fukaya et al., 2006), CKAMP44 has yet only been shown to localize at 

the synaptic site (von Engelhardt et al., 2010), which raises the question how it regulates 

extrasynaptic GRIA1 expression and reduces endocytosis as we obtained. Interestingly, 

CKAMP44 and CKAMP52 have been found to associate with AMPAR complexes containing 

TARPγ8 subunit (Khodosevich et al., 2014; Klaassen et al., 2016). Therefore, it is very 

plausible that CKAMP44 also localizes on the extrasynaptic membrane to stabilize AMPARs 

by reducing their mobility but which has still to be proven. Moreover, the fact that 

internalization of AMPARs mainly occurs in extrasynaptic sites that maintain a mobile pool of 

receptors (Ashby et al., 2004; Borgdorff and Choquet, 2002; Petrini et al., 2009), supports our 

assumption that CKAMP44a overexpression in our experiment has slowed down receptor 

mobility leading to reduced GRIA1 endocytosis similar to TARPγ8 overexpression. The 

immobilization and accumulation of AMPARs at synapses is a characteristic of potentiation to 

enhance synaptic transmission (Petrini et al., 2009), which may be a role also played by 

CKAMP44a to enhance synaptic activity as we also suggested for TARPγ8. However, 

CKAMP44 was shown to enhance short term plasticity (Khodosevich et al., 2014) and not LTP 

as TARPγ8 (Khodosevich et al., 2014; Park et al., 2016; Rouach et al., 2005) thus playing a 

differential role in stabilization of AMPARs.  
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Overall, our results show that CKAMP44a modulates AMPAR recycling by shielding 

endocytosis on the extrasynaptic membrane suggesting a stabilization role without affecting 

synaptic AMPAR endocytosis. Therefore, CKAMP44a regulation of endocytosis, exocytosis, 

and intracellular stores refer to a stabilization effect on the surface membrane as suggested for 

the TARPγ8 auxiliary protein.       

  

4.8 Conclusion and Perspective 
  

AMPARs are dynamic receptors that continuously migrate in and out of the plasma 

membrane to maintain the balance between intracellular and surface receptors for regulated 

synaptic activity. Overall, our study demonstrates some of the properties of AMPAR 

trafficking and the role of prominent auxiliary proteins in the regulation of this trafficking. We 

have first characterized the AMPAR trafficking system in soma and dendrites by examining the 

rate of exocytosis and its kinetics. In addition, we showed in dendrites that AMPARs are 

predominantly stored and delivered in recycling endosomes. 

Later, we studied the regulation of AMPAR trafficking and recycling by AMPAR 

auxiliary proteins. Two prominent auxiliary proteins, TARPγ8 and CKAMP44a, showed a 

regulatory effect on the recycling of AMPARs under basal condition and in an activity 

dependent manner. While surface expression of AMPARs was unchanged with excessive 

amount of TARPγ8 or CKAMP44a, surface delivery of AMPARs under basal conditions was 

strongly reduced indicating decreased exocytosis. Interestingly, the downsized exocytosis rate 

was accompanied with reduced intracellular RE stores implicating a reduced turnover of 

AMPARs with the plasma membrane. Furthermore, AMPAR endocytosis was also decelerated 

upon overexpression of auxiliary subunits in dendrites, precisely at the extrasynaptic site. 

Overall, our findings showed a reduced exocytosis and endocytosis of AMPARs hand in hand 

with the reduced intracellular stores but without affecting the surface expression of receptors 

upon overexpression of auxiliary subunits. Thus, auxiliary subunits presumably stabilize 

AMPARs on the surface membrane by reducing the recycling and consequently leading to a 

prolonged lifetime of surface receptors that regulate neuronal activity (Figure 47). 

Our experiments were done with wild type background neurons to test the effect of 

TARPγ8 and CKAMP44a subunits on AMPAR recycling. It would be interesting to test in the 

future AMPAR exocytosis and endocytosis using our same live imaging methods with either 

TARPγ8 or CKAMP44a knockout neurons. We can also examine the AMPAR intracellular 

stores as well. According to our data, we would expect the opposite in case of auxiliary subunit 
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knockout. In other words, AMPAR endocytosis and exocytosis may increase due to increased 

turnover rate because receptors are then less stabilized on the surface membrane in the absence 

of a prominent auxiliary subunit, which consequently would also increase the intracellular 

AMPAR stores in recycling endosomes. Moreover, to understand the underlying mechanisms 

of the regulation of AMPAR trafficking by auxiliary subunits, it is necessary to mutate the 

domains that constitute the binding sites of TARPγ8 or CKAMP44a with AMPARs. 

Unmasking the details of AMPAR regulation by auxiliary subunits may be important to 

understand central nervous system (CNS) linked disorders. TARPs, for example, have been 

attributed to many diseases like epilepsy, schizophrenia, and neuropathic pain, but it is not clear 

what effect TARPγ8 causes in case of loss or mutation in the hippocampus (Knight et al., 

2008). Therefore, understanding the mechanisms on the molecular level may be helpful to 

understand and treat brain disorders.   

Figure 47. Downregulation of AMPAR recycling by auxiliary subunits  

Schematic figure illustrating the downregulation of AMPAR exocytosis and endocytosis by 

TARPγ8 and CKAMP44a auxiliary subunits. It also shows that AMPARs are trafficked to 

and from the surface membrane by REs.       
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