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Abstract
This dissertation is concerned with new results in the area of parame-
terized algorithms and complexity.

We develop a new technique for hard graph problems that generalizes
and unifies established methods such as Color-Coding, representative
families, labelled walks and algebraic fingerprinting. At the heart of
the approach lies an algebraic formulation of the problems, which is
effected by means of a suitable exterior algebra.
This allows us to estimate the number of simple paths of given

length in directed graphs faster than before. Additionally, we give fast
deterministic algorithms for finding paths of given length if the input
graph contains only few of such paths. Moreover, we develop faster
deterministic algorithms to find spanning trees with few leaves. We
also consider the algebraic foundations of our new method.

Additionally, we investigate the fine-grained complexity of determin-
ing the precise number of forests with a given number of edges in a
given undirected graph. To wit, this happens in two ways. Firstly, we
complete the complexity classification of the Tutte plane, assuming the
exponential time hypothesis. Secondly, we prove that counting forests
with a given number of edges is at least as hard as counting cliques of
a given size.
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Abriß
Diese Dissertation befasst sich mit neuen Ergebnissen auf dem Gebiet
parametrisierter Algorithmen und Komplexitätstheorie.
Wir entwickeln eine neue Technik für schwere Graphprobleme, die

etablierte Methoden wie Color-Coding, representative families, labelled
walks oder algebraic fingerprinting verallgemeinert und vereinheitlicht.
Kern der Herangehensweise ist eine algebraische Formulierung der
Probleme, die vermittels passender Graßmannalgebren geschieht.
Das erlaubt uns, die Anzahl einfacher Pfade gegebener Länge in

gerichteten Graphen schneller als bisher zu schätzen. Außerdem geben
wir schnelle deterministische Verfahren an, Pfade gegebener Länge
zu finden, falls der Eingabegraph nur wenige solche Pfade enthält.
Übrigens entwickeln wir schnellere deterministische Algorithmen, um
Spannbäume mit wenigen Blättern zu finden. Wir studieren außerdem
die algebraischen Grundlagen unserer neuen Methode.
Weiters untersuchen wir die fine-grained-Komplexität davon, die

genaue Anzahl von Wäldern einer gegebenen Kantenzahl in einem
gegebenen ungerichteten Graphen zu bestimmen. Und zwar erfolgt
das auf zwei verschiedene Arten. Erstens vervollständigen wir die
Komplexitätsklassifizierung der Tutte-Ebene unter Annahme der Expo-
nentialzeithypothese. Zweitens beweisen wir, dass Wälder mit gegebener
Kantenzahl zu zählen, wenigstens so schwer ist, wie Cliquen gegebener
Größe zu zählen.
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Preface

Related publications. This thesis compiles the results of several
articles that I authored or coauthored: The first part contains all results
from a joint article with Holger Dell and Thore Husfeldt [BDH18], to
which I made central technical and conceptual contributions, as well as
some results that will appear in [Bra19]. The second part consists of
expository material of known, but scattered results from the literature,
as well as unpublished, new results. These will also appear in [Bra19].
The third part contains those parts of the joint articles with Marc
Roth [BR17] and Holger Dell and Marc Roth [BDR16; BDR19] to
which I have contributed significantly. Note that [BDR19] is the journal
version of [BDR16]. My joint work with Michael Sagraloff [BS16] is not
included in this thesis.

From now on, we will use the grammatical first person in the plural
form for referring to the one author of this thesis.

Organization. The three parts of the thesis are not entirely inde-
pendent of each other, but after reading the preliminaries, each one of
them should at least be understandable without having read the others.
The first part of the thesis is concerned with developing faster al-

gorithms for selected problems on graphs. In particular, we study
the longest path problem, and provide new and sometimes improved
algorithms for different settings in which the problem can be consid-
ered. Other improved algorithms are given for the problem of finding
spanning trees with few inner nodes, and finding colorful matchings.
The second part is about questions in computational algebra that

arise from the results of the first part. In particular, we give an account
of the state-of-the-art for computing with Clifford algebras, as well
as the exterior algebra. This is non-trivial because these results are

1
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scattered across the literature in sometimes quite inaccessible ways.
Additionally, we present new structural results about a related algebraic
object.
The third and final part of the thesis is concerned with questions

in fine-grained counting complexity, both in the exponential-time and
the parameterized setting. We consider the complexity of counting the
number2 of forests in a graph, and show that this is a hard problem,
under two different notions of hardness.

2It has been remarked frequently that one can either compute the number of
objects, or count them, but we use this variant deliberately.
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1. Preliminary Material

We won’t be easy in our minds until everything has been said
once and for all, then we’ll fall silent and we’ll no longer be
afraid of keeping still. That will be the day.

Louis-Ferdinand Céline, Journey to the End of the Night

In this short chapter, we will agree on notation and standard assump-
tions in all basic matters that do not belong specifically to any one part
of the thesis.

We introduce the following notions not necessarily to make the reader
acquainted with them, but to remove any ambiguity in those cases
where the exact properties of the defined objects—such as whether a
ring always has a unity or not (it does), or whether graphs are simple
by default (they are)—are generally not agreed upon in the literature.

1.1. Algorithms and Complexity
Landau Symbols. The symbols o(·), ω(·), O(·),Ω(·) and Θ(·) we use
as usual, with a small exception: To emphasize the presence of the
respective underlying partial orders on functions that these symbols
induce (save for the case of Θ), we will use the symbols “<” and “≤”
as a compromise between the widespread, but blatantly false “=” and
the correct, but blatantly pedantic “∈ .” For instance, we shall come
across expressions such as ω(1) < n ≤ O(n2) or Ω(1) ≤ 561 < o(n).
We will extend the O by using an asterisk in lieu of the phrase “up

to polynomial factors in the input size,” much like the original symbols
might replace an “up to constant factors.” For example, O∗(1) is the
set of all polynomially bounded functions taking naturals to naturals.

3



1. Preliminary Material

Note the importance of the effect of the asterisk being in reference to
the input size, and not the whole argument of the O. To indicate the
latter, we use the notation poly(·), which denotes the class of functions
that are bounded by a polynomial in the entire argument, entailing
poly(1) being the same as O(1), but poly(n) being the same as O∗(1),
where n is the size of the input.

Let k be some computable function that assigns to every instance I
of some computational problem a natural number k = k(I). We call k
the parameter of the instance I. An algorithm for the problem is called
fixed-parameter tractable (fpt) if it solves the problem on instances
of size n with parameter k in time f(k) · poly(n), where f is some
computable function. This will made be more formal when needed.

Problems and Complexity Classes. Complexity classes will be
typeset in sans serif fonts (P,NP,EXP etc.) Problems will, most of the
time, be referred to in prose (“the longest path problem”). When there
are so many different problems that are relevant in the current context
as to make this practice cumbersome, we will give a proper name to
them, and typeset this name in small capitals (Longest Path).

1.2. Combinatorics and Probability
Sets. Whenever X is a finite set and k is a natural number, we write(
X
k

)
for the set of all subsets of X of size k, and we denote with 2X

the power set of X, i.e., , the set of all subsets of X. Note that these
sets conveniently contain

(|X|
k

)
and 2|X| elements, respectively. For any

logical predicate P, we use the Iverson bracket [P ], which evaluates to
one if P is true, and zero otherwise. For instance,

∑2n
i=0 i·[i is odd] = n2.

For a random variable X, we write E (X) for its expectation. For
another random variable Y, Cov (X,Y ) = E (XY )− E (X)E (Y ) is the
covariance of X and Y, and the variance of X is Var (X) = Cov (X,X) .
Observe that Cov is a bilinear form.

4



1.3. Algebra

Graphs. A graph is a pair (V,E), consisting of a set V of vertices or
nodes, and a set E of pairs of nodes, called edges. If the pairs in E are
unordered pairs of the form {u, v} with u, v ∈ V (i.e., sets of size at
most two), we call G undirected. Hence, if E contains ordered pairs of
the form (u, v) with u, v ∈ V, we say that G is directed (or that G is a
digraph), in which case we may refer to the elements of E not as edges,
but as arcs. For any two vertices u and v of a graph, we mean the edge
{u, v} or (u, v) between u and v whenever we juxtapose u and v as uv,
regardless of whether G is directed or not, which will be clear from the
context. In this case, we call the vertices u and v the endpoints of the
edge uv, and for the case of directed graphs, we call u its head and v
its tail. An edge uu is called a loop, and a graph that does not contain
edges of this form is called loopless. Given a graph G, we may write
V (G) and E(G) for its set of vertices and edges, respectively. Graphs
will generally have n vertices and m edges, and in all problems about
graphs, n and m will consistently refer to the number of vertices and
edges in the input graph, respectively.
A subgraph of a graph (V,E) is a graph (V ′, E′) such that all the

edges in E′ have their endpoints in V ′. A walk in a (V,E) is a sequence
of t vertices v1, . . . , vt such that vivi+1 ∈ E holds for all 1 ≤ i < t. If
additionally, the sequence does not contain a vertex repeatedly, it is
called a path. Here, the number t of vertices (not edges) in the sequence
is the length of the walk or path. A walk or path of length t is also
called a t-walk or t-path, respectively. The set of paths or walks of
a graph G we denote as P(G) and W (G), respectively. If the first
and the last vertex of the walk agree, we call the walk a circuit, and
if a circuit without its last vertex is a path, we call it a cycle. Unless
otherwise noted, all graphs are undirected, simple and loopless.

1.3. Algebra
Algebraic structures. A semigroup is a set S together with an
associative binary operation ◦, and a semigroup is called a monoid if
it contains an identity element. A group is a monoid in which every

5



1. Preliminary Material

element is invertible. Groups in which any two elements commute are
called abelian. The group of permutations on n elements is written Sn.

A ring is a set R together with two associative binary operations, +
and ◦, such that R is a monoid with ◦, and an abelian group together
with +. Additionally, ◦ and + have to be compatible in the usual sense.
We call a ring commutative if its multiplication is.

For a field F, an F -algebra A is a ring that is simultaneously a vector
space over F, and the multiplication of the field is compatible with
multiplication in the ring in the usual sense. In particular, 1 · a = a

should hold for all a ∈ A, as well as (λa)b = λ(ab) = a(λb) for all
a, b ∈ A, λ ∈ F.
An algebra is called graded if it admits a direct sum composition

A =
⊕

i∈NAi as a vector space, and in such a way that AiAj ⊆ Ai+j .
An element is said to be of degree i if it is contained in Ai. Consequently,
0 is of degree i for all i.

Computation. We will perform calculations in various algebraic
structures. Unless the context requires further clarifications, additions
and multiplications will be written using the ordinary symbols “+” and
“·”, and we may even drop the “·” and just indicate a multiplication
through a juxtaposition of elements.

In various places of the thesis, we will employ operations over finite
fields of characteristic two. We record here once some important facts
about the algorithms used in this respect, and shall later on use them
rather implicitly, referring to them, correctly, as standard results. Let F
be a finite field of characteristic 2 and of size q = 2`, and let p ∈ Z2[x] be
an irreducible polynomial of degree `. Since p is irreducible, the ideal p
generated by p is maximal and Z2[x]/p is a field containing 2` elements.
Arithmetic in F can then be implemented in time poly(log(q)) = poly(`)
by using naive algorithms for polynomial multiplication and modular
reduction, e.g. Euclid’s algorithm for the latter, modulo p. Constructing
an irreducible polynomial of degree ` (which is necessary in order to
reduce modulo this polynomial later) can as well be performed in time
poly(`): It suffices to choose a random polynomial of degree `, and

6



1.3. Algebra

check it for irreducibility using one of the many algorithms for this task
(cf. the discussion in [Sho94]). To get rid of randomization in fields of
small characteristic (such as two), we can use Shoup’s deterministic
construction [Sho88].
The constant ω ≥ 2 is the exponent of matrix multiplication, i.e.,

ω = inf{α | two n× n matrices can be multiplied in nα time}.

The best known upper bound currently is ω ≤ 2.374 [Sto10; Wil12;
Gal14].

Important Sets. The naturals, integers, rationals, reals and the
complex numbers are written N,Z,Q,R and C, respectively. Given a
commutative ring R and some set X = {x1, . . . , xn} of indeterminates,
the polynomial ring over the indeterminates X is written R[x1, . . . , xn],
or R[X].

7
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Faster Algorithms for
Hard Graph Problems
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2. Introduction

The realistic nature of many graph problems makes it tempting to
motivate their study through humorous or historical examples. The
famous Seven Bridges of Königsberg and their analysis by Leonhard
Euler are often called upon as a specimen of the latter category, and
indeed, this serves as a good justification for the classic concepts of an1

Euler cycle, or Eulerian graphs. On a more entertaining, or at least silly,
note, a Hamiltonian path can be exemplified in the realm of student life
as a pub crawl, and generalizing this to finding paths of given length k
might even be seen as a concession to the severe practical impediments
entailed by the requirement of visiting all nodes during one pub crawl.

More seriously, it is true that graph algorithms are among the most
classic of topics in algorithms research, and a vast body of work has been
dedicated to their study. Indeed, any general textbook on algorithms
will in large part be concerned with these algorithms (cf. the standard
references [Cor+09; KT06; MS08; DPV08]). The textbook examples
of graph algorithms typically solve the respective problem—Eulerian
cycles, shortest paths, minimum spanning trees, and so forth—fast,
in time polynomial, preferrably (quasi)linear, in the input size. By
contrast, in this part, we will be concerned with hard graph problems,
which means that the considered problems are all NP-hard, ruling out
polynomial-time solutions unless P equals NP. The fact that these
problems are formally NP-hard doesn’t mean that we cannot solve
them quickly on some instances, and it is the case that many hard
problems are routinely solved in adequate time on real input instances.
It is therefore of vital interest to give better algorithms even for those
problems where this will never culminate in polynomial-time solvability.

1We ask the non-German reader to resist the urge to pronounce Euler’s name with
anlaut as in you, and instead pretend the name were spelled Oyler.

11



2. Introduction

In Chapt. 3, we give a comprehensive overview of some of the most
prevalent techniques in this area, which will become relevant later,
when we compare the new method we develop in this part to existing
ones.

A prototypical example for such hard problems is the aforementioned
one of finding Hamiltonian paths. Indeed, we will be concerned with
the generalization that was alluded to, namely finding paths that need
not traverse all vertices of a graph, but only at least some number k
of vertices, without hitting any one vertex twice. This is the content
of Chapt. 4, and we refer the reader to this chapter for detailed
background on the problem and a statement of the new results. In
short, we give a faster method to estimate the number of such paths
in a given graph quicker than was previously known. Furthermore, we
give new and fast deterministic algorithms for the case where the input
graph is promised to contain only few paths of a given length. To do so,
we introduce a new method called Extensor-Coding, based on algebraic
objects called extensors, which live in the exterior algebra. We also
show how this technique can be seen as a strict generalization of the
approaches from Chapt. 3.
We furthermore apply this new method to the problem of finding

spanning trees that contain many internal nodes (and hence, few leaves),
which is NP-hard as well, and some other hard graph problems. We pro-
duce new, faster, and elegant deterministic algorithms for the problems.
This is done in Chapt. 5.

12



3. Review: Algorithmic
Techniques

The past casts its shadows into the future.

Hallodrian proverb

In this chapter, we will give a gentle overview over various algorithmic
techniques that are employable to solve a kind of subgraph problem.
A subgraph problem is, informally speaking, the task of detecting the
presence or absence of a certain subgraph, which is typically fixed
beforehand, or even computing the number of occurrences of such a
subgraph, in a given input graph.
We shall mainly be concerned with applying these techniques to a

flagship subgraph problem, for the simplicity with which it can be
described and the research efforts that have gone into its algorithms.
This problem is the longest path problem, and it asks: Given a directed
graph, what is the longest path it contains? Or, in its guise as a decision
problem: Given a directed graph and some number k, is there a path
in the graph of length at least k? This problem is obviously NP-hard,
since it generalizes the problem of detecting a Hamiltonian path in a
graph, i.e., k = n. Since any subpath of a path is again a path, it does
not matter whether we ask for a path of length at least k, or one of
length exactly k, and we will prefer the latter in what follows. When
formulated in this way, this problem is also referred to as the k-path
problem. It is, however, important to note that the techniques laid out
here are by no means limited to this problem, and later on, we will
encounter other applications, such as the problem of finding directed
spanning trees with few inner nodes. All these problems will have in
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common that they are NP-hard, so we will search for solutions in the
realm of fixed-parameter tractable algorithms.

Of course, other relevant techniques have been proposed in the past to
solve this kind of problems. Our selection is motivated by the fact that
these are, in our opinion, the most well-understood and well-studied
ones. The reason why we devote ample space to present well-known
techniques at all is that, later in the thesis, we will generalize and unify
them using our new method of Extensor-Coding. This should allow
readers without close acquaintance with the original works, where the
techniques were introduced, to appreciate the results, and makes this
work more self-contained.

3.1. Color-Coding
Color-Coding was introduced by Alon, Yuster and Zwick in 1994 [AYZ94;
AYZ95]. It is generally considered a breakthrough result, resolving to
the affirmative a conjecture of Papadimitriou and Yannakakis [PY93;
PY96]. Namely, Color-Coding makes it possible to find paths of length
logarithmic in the number of vertices in a given input graph in time
polynomial in the number of vertices. More precisely, it made it possible
to decide the presence of a path of length k in time exp(O(k)) ·poly(n).
We proceed now with a description of the technique, which turns out to
be delightfully simple. Speaking somewhat hyperbolically, the essential
idea is not to solve the problem at all, but instead, solve a much simpler
problem a lot of times, and then extract from the answers to this
simpler problem an answer to the original question, at least with high
probability. The much simpler problem mentioned above is a colored
variant of the k-path problem, which explains the origin of the term
Color-Coding.

3.1.1. The Colorful k-Path Problem

The colorful k-path problem asks: Given an integer k and a graph G
with its vertices colored arbitrarily using t colors, is there a path of
length k in the graph that does not contain any of the colors twice?

14
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We call such a path colorful. A coloring of a graph is here an arbitrary
assignment of colors1 to vertices. In particular, it does not have to
suffice any additional conditions of being a proper coloring or the like.

As for solving this problem algorithmically, this is done in a straight-
forward way using dynamic programming.

Lemma 3.1.1. There is an algorithm that decides the existence of a
colorful k-path in a given directed graph with n nodes and m edges that
is colored using t colors, in time O(2t · (n+m)).

Proof. We record for every subset C of the t colors and every vertex
v ∈ V (G) whether there is a colorful path of length |C| in G that ends
in v and uses only the colors from the subset C. Let us write the truth
value of this condition down in a table P [C, v], for each subset C of
colors, and v ∈ V. Note that the number of colors in a set is equal to
the length of the path under consideration, since any color may appear
at most once. The base cases are the singleton sets of colors, and for
each node v, there is a colorful path ending in v with one vertex if and
only if v has the color that the singleton is comprised of. Formally, this
is

P [{c}, v] = [v has color c], for all v ∈ V (G) .

Now, if we want to decide for a node v and some set C of colors with
|C| > 1 whether there is a colorful path ending in v that uses only the
colors from C, we proceed as follows: Let cv be the color of a vertex v.
Consider the set N−(v) of in-neighbors of v, i.e., the set of vertices u in
V (G) such that uv is an edge in G. There is now a colorful path ending
in v using colors only from C if and only if there is some colorful path
ending in one of the in-neighbors of v, which, in addition to using colors
only from C, does not use the color cv. We formally have therefore

P [C, v] =
∨

u∈N−(v)

P [C − {cv}, u] . (3.1)

The answer to the question of whether there is a colorful path of length
1Despite the colorful language used in this respect, vertex colors are, formally, just
numbers between 1 and t.
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k in G is now the logical or over all sets of colors of size k and all
possible end vertices.

Since every edge is considered exactly once per color subset, and the
same for every vertex, and there are less than 2t subsets of C of size k,
this procedure can be implemented in time O(2t · (n+m)).

It is not immediately clear what we have gained by solving this
superficially similar problem. Of course, if there is a colorful path of
length k in G, then certainly, there is also a simple path of length k
in G. However, the absence of a colorful k-path does not allow us to
conclude that there does not exist a simple k-path: The graph might
just be colored in such a way that all the simple paths received color
assignments that make them non-colorful. As hinted at before, we will
get rid of this by performing a large, but not too large, number of
randomized trials.

3.1.2. Random Colorings

We now take care of the problem that all simple k-paths might become
non-colorful in our chosen coloring of the graph. We can ask ourselves
how probable this unfortunate situation is under a random coloring.
As it turns out, the probability of this not happening, that is, us being
lucky, is only exponentially small in k. Of course, if G does not have a
k-path in the first place, there is nothing we could accidentally make
disappear, so we don’t have to worry about this case.

Lemma 3.1.2. Consider a path of length k, and a random coloring of
its vertices with t ≥ k colors. Then, the probability that the resulting
colored path is colorful is at least e−k+o(1) ·

(
t

t−k

)t−k+1/2
.

Proof. The probability of the path becoming colorful under a random
coloring we can now compute as follows: There are tk colorings of the
k vertices with t colors in total. The colorings that make the k-path
colorful correspond to the injections {1, . . . , k} → {1, . . . , t}, of which
there are t!

(t−k)! , provided t ≥ k. If t > k, the quotient t!
(t−k)!tk can now

be estimated using Stirling’s formula. We do this explicitly using a
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variant due to Robbins [Rob55], who showed that for all naturals s > 0,

s! =
√

2πss+1/2e−s · ers ,

where rs satisfies the inequalities

1
12s+ 1 < rs <

1
12s .

Therefore,

t!
(t− k)! = tt+1/2e−t · ert

(t− k)t−k+1/2ek−t · ert−k
= ert−rt−k−k·

(
t

t− k

)t+1/2
·(t−k)k

and
t!

(t− k)!tk = ert−rt−k−k ·
(

t

t− k

)t−k+1/2
.

Using the bounds on rt and rt−k, this is bounded from below by

e−k+1/(12t+1)−1/(12t−12k) ·
(

t

t− k

)t−k+1/2
,

proving the case of t > k.

If t = k, plugging in the estimates for rk gives again the inequality
from the statement.

Therefore, coloring a path of length k at random using k colors yields
a colorful path with probability at least e−k.

3.1.3. The Algorithm

The algorithm is now very simple: We pick a random coloring of the
graph using t = k colors, and decide using dynamic programming in
time O(2k(n+m)) if there is a colorful k-path in the resulting colored
graph. Repeating this procedure ek times yields constant one-sided
error probability. The running time of this algorithm in total is therefore
O((2e)k · (n+m)), and the procedure is captured in Algorithm CC.

Algorithm CC (Detect k-path using Color-Coding.) Given directed
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graph G and integer k, this algorithm determines if G contains a k-
path.

CC1 (Initialize.) Set j = 1.

CC2 (Set up jth trial.) Color each vertex uniformly at random with
one of the t colors, and obtain a vertex-colored graph G′.

CC3 (Solve colored instance.) Use the algorithm from Lemma 3.1.1 to
solve the resulting instance of the colorful k-path problem on G′. If
the algorithm detects such a path, output ‘yes.’

CC4 (Repeat ek times.) If j < ek then increment j and go to CC2.

CC5 (All trials failed.) Output ‘no.’

Theorem 3.1.3 ([AYZ95]). Algorithm CC decides the existence of a k-
path in a given directed graph with n nodes and m edges in time O((2e)k ·
(n+m)). The algorithm has a constant one-sided error probability of
claiming the absence of such a path in a graph that actually does have
a k-path.

Proof. Correctness and the claim about the error probability follows
from Lemmas 3.1.1 and 3.1.2, and we already discussed the algorithm’s
running time.

Hüffner’s t

While it is already quite satisfying that we can now detect logarithmi-
cally long paths in polynomial time, the degree of this polynomial is
of course dependent on the basis of the exponential appearing in the
running time. Lowering this basis is therefore of significant interest.
In particular, choosing the number of colors t equal to the length of
the sought path k is rather uninspired. Of course, using fewer than
k colors is nonsensical, but using more than k, say t = α · k for some
constant factor α > 1, might enable a tradeoff between the running
time of the dynamic program, which becomes slower as t grows, and
the probability of obtaining a colorful path, which increases as t grows.
Indeed, as observed by Hüffner et al. [HWZ08], this is the case.
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Theorem 3.1.4 ([HWZ08]). There is an algorithm that decides the
existence of a k-path in a given directed graph with n nodes and m edges
in time O(4.312k · (n + m)). The algorithm has a constant one-sided
error probability of claiming the absence of such a path in a graph that
actually does have a k-path.

Proof. Let us consider the term
(

t
t−k

)t−k
, which for t = α · k be-

comes
(

α
α−1

)(α−1)·k
, which is clearly monotone in k for α > 1. The

function 2α · α
α−1

1−α, which is the exponential part of the running
time of the algorithm, has a unique minimizer α∗ on (1,∞), which
satisfies 1.30201 ≤ α∗ ≤ 1.30202, leading to a running time bounded
by O(4.312k · (n+m)). We skip the analytical details of this argument,
which can be found in [Gut+18]. Using αk colors therefore yields an
algorithm of the desired running time, and correctness carries over
directly from the case of t = k.

Approximate Counting

Let us quickly sketch how to employ the method of this section to
approximately count the paths of length k. A slower variant of this
result, using t = k, is presented in [Alo+08], and our presentation of
the result is informed by theirs. Throughout this subsection, let N
denote the quantity we seek to estimate, i.e., the number of k-paths in
the input graph.
First, observe that Eq. (3.1) can be used to count solutions of the

colored problem, just by replacing the logical or with a proper sum. All
that remains is then to estimate the number of k-paths in the original,
uncolored instance, from the number of colorful k-paths, averaged over
all trials. This is accomplished by the following analysis: Let c be
a random coloring of the input graph as produced in step CC2 in
Algorithm CC. Let P be any k-path in the input graph. Denote with
χP (c) the random variable, depending on the coloring c, that is defined
as

χP (c) =

1, if c makes P into a colorful path

0, otherwise.
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Of course, over the various choices of P, the χP are identically (but
certainly not independently) distributed Bernoulli variables with pa-
rameter

p = t!
(t− k)! .

which is therefore the expected value of χP , as argued at some length
before.
Let furthermore

χ =
∑
P

χP

be the sum of the χP , where P varies over all distinct k-paths in the
input graph. By linearity of expectation, the expected value of χ equals

E (χ) = N · p ,

and thus χ/p is an unbiased estimator of the quantity N.
We can sample values of χ(c)/p by choosing colorings c uniformly

at random, computing the number of colorful k-paths in the graph
colored using c and the sum-version of Eq. (3.1), and averaging over
the number of trials.
We are left to prove concentration of χ/p around N, i.e., bound

Var (χ/p) . But this is standard: One readily observes that the expecta-
tion of χPχP ′ (i.e., both P and P ′ are colorful under the same coloring)
for two paths P, P ′ is at most p. Therefore, the covariance

Cov (χP , χP ′) = E (χP · χP ′)− E (χP ) · E (χP ′) ≤ E (χP · χP ′)

is bounded by p as well.
Using the bilinearity of the covariance (and the fact that variance is

the covariance of a variable with itself), we can thus bound the variance
of χ with N2 · p. Chebychev’s inequality then allows to bound the
probability that χ exceeds or falls below its expectation by more than
(an additive term of) ε ·N · p by a constant, and using repeated trials
and a median argument then allows to decrease this probability to an
arbitrarily small constant δ > 0 using O(log(1/δ)) repititions.

20



3.2. Representative Sets

We have the following theorem.

Theorem 3.1.5 ([Alo+08]). There is a randomized algorithm that,
upon input a directed graph G, a natural number k as well as an error
bound2 ε > 0 produces an estimate Ñ of the number N of k-paths in
G, such that with 99% probability,

(1− ε)N ≤ Ñ ≤ (1 + ε)N ,

and this algorithm runs in time O((2e)k · (n+m)ε−2).

3.2. Representative Sets
The idea of representative sets (or families) can be traced back at least
to work of Lovász in 1977 [Lov77], and was algorithmically applied
first by Monien in 1985 [Mon85]. We will lay out the concept of these
families and prove some of their basic properties, and also sketch an
algorithm of how to compute them relatively fast. However, we will not
cover the extremely intricate state-of-the-art as established by Fomin
et al. [Fom+16], and the account given here should provide a good
intuition for the approach. Additionally, to keep our presentation crisp,
we will restrict our attention to uniform matroids.

As in Color-Coding, we will iteratively build up longer and longer
paths, starting with a single vertex. Now, instead of remembering
each and every partial solution, i.e., path of length less than k, that
we already constructed (of which there might be nΩ(k) many), we will
retain only a much smaller subset of them. Namely, our aim is to keep a
subset of partial solutions that is equivalent to the full set with respect
to being augmentable in such a way as to produce a full solution, i.e.,
a path of length k. This intuition guides the following definition.

Definition 3.2.1. Let F ⊆ 2U be a family of subsets of a universe U
with n elements, and let q ≤ n be a natural. Then, a subfamily F ′ ⊆ F

2We avoid needless pedantry in assuming bounds of this kind real. Of course, in
an actual implementation, one might choose to represent them as the reciprocal
of some natural.
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is said to q-represent (or is a q-representant of ) F if the following
condition holds for every subset A of U of size at most q: If there is
some set B ∈ F disjoint from A, then there is a set B′ ∈ F ′ disjoint
from A.

As common sense suggests, we say F ′ represents (or is a representant
of ) F if F ′ q-represents F for some q.

3.2.1. First Properties

Let us note some simple and important consequences of the foregoing
definition.

Proposition 3.2.2. 1. q-representation is reflexive: Every family
q-represents itself, for all q.

2. q-representation is transitive: If F ′′ q-represents F ′, which in
turn q-represents F , then F ′′ q-represents F .

3. q-representation is definite: The empty family 0-represents only
the empty family, and the empty family is represented only by the
empty family.

4. Representation and union commute: If E ′,F ′ q-represent E ,F ,
respectively, then E ′ ∪ F ′ q-represents E ∪ F , and this extends to
arbitrary unions.

Proof. We only demonstrate the proof of the third item: The second
claim is trivial by the condition that F ′ ⊆ F whenever F ′ q-represents
F for any q.

For the other claim, note:3 Let F ⊆ 2U be some family of subsets of
U, and let F ′ 0-represent F . Let A = ∅ be the only subset of U of size
zero. If F 6= ∅, pick B ∈ F . Then A is in particular disjoint from B. In
order to 0-represent F , F ′ has to contain some B′ (and being disjoint
from A = ∅ is automatic for B′). Therefore, F ′ is not empty.

3We spell this out in painstaking detail. The astute reader, to which the statement
of the proposition appears as a blatant triviality, is spot-on.
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For our application to finding long paths in a graph G, unsurprisingly,
the universe U is the just the vertex set of the graph. Now, for i ≤ k a
natural number, and v some vertex of G, let Pvi be the following family:

Pvi = {V (P ) | P is a path of length i in G ending in v} .

Keep in mind that we mean with the length of a path not the number
of its edges, but of its vertices. Put this way, G has a k-path if and only
if Pvk 6= ∅ for some vertex v of G. From Proposition 3.2.2, we might as
well take any family P ′ that 0-represents Pvk , and P ′ 6= ∅ is equivalent
to Pvk 6= ∅. We will now describe how to successively compute such
a 0-representant of Pvk for some fixed v, and then let v vary over all
vertices.

First for some notation: For a set family F and a set S, F ∪̇ S is the
set of all (non-empty) disjoint unions of the form F ∪ S, i.e., such that
F ∈ F and F ∩ S = ∅.

We first observe the following:

Proposition 3.2.3. Let F ⊆ 2U , and let S ⊆ U be of size s ≤ q. If
F ′ q-represents F , then F ′ ∪̇ S (q − s)-represents F ∪̇ S.

Proof. First, note that F ′ ∪̇ S ⊆ F ∪̇ S clearly holds. Let then A be
of size at most q − s. Let B ∈ F ∪̇ S be disjoint from A (if there is
no such B, there is nothing to show). We want to prove existence of
B′ ∈ F ′ ∪̇ S disjoint from A. By definition of ∪̇, B is a union of the
form F ∪S for some F ∈ F disjoint from S. The existence of such B in
particular implies that both F and S are disjoint from A, and moreover
that F is disjoint from A ∪ S, a set of size q. Because F ′ q-represents
F by assumption, there is some B′ ∈ F ′ that is disjoint from A ∪ S. In
particular, since B′ is disjoint from S, B′ ∪ S is an element of F ′ ∪̇ S.
And since B′ is also disjoint from A, and (as argued before) A is disjoint
from S, B′ ∪ S ∈ F ′ ∪ S is disjoint from A.
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3.2.2. Representing Paths

The following insight is akin to Eq. (3.1), for i > 1.

Pvi =
⋃

u∈N−(v)

(
Pui−1 ∪̇ {v}

)
(3.2)

The truth of this equation is evident from the very definition of ∪̇.
With the aid of Proposition 3.2.3 and the other foregoing observations,
we can lift this equation to representative sets: Assume that P ′ui−1
q-represents Pui−1 for some naturals i, q and vertex u. Then, P ′ui−1 ∪̇ {v}
(q − 1)-represents Pui−1 ∪̇ {v}. Let

P ′vi =
⋃

u∈N−(v)

(
P ′ui−1 ∪̇ {v}

)
. (3.3)

Since unions and representation commute (4 in Proposition 3.2.2), P ′vi
actually (q − 1)-represents Pvi . Unfortunately, computing P ′vi directly
with increasing i, as suggested by its definition, will break down after
a few iterations, as the P ′vi might grow roughly with the maximum
degree of G in each iteration. Instead, we seek to compute in every step
a smaller subset P∗vi ⊆ P ′

v
i which inhibits this blowup. This raises the

question of how big representative families can actually become. There
is a surprisingly clear-cut answer to this, whose very elegant proof we
defer to much later in Sect. 4.4.5, when we have introduced the exterior
algebra.

Proposition 3.2.4 ([Lov77]). Let F ⊆
(
U
p

)
, i.e., a set family containing

only sets of size p. Then F has a q-representant of size
(
p+q
p

)
.

For now, suffice it to say that there is a natural way to interpret
sets of size p as elements of a vector space of dimension d =

(
p+q
p

)
for any choice of q. We can do this in such a way that the notion
of F ′ being a q-representant of some set family F translates to the
vectors corresponding to F ′ spanning the same space as the vectors
corresponding to F . Then it is elementary linear algebra that every set
family containing more than d sets, i.e., vectors, has a basis of size at
most d as a subset. What remains to do is to exhibit an algorithm that
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computes small representative families.

3.2.3. The Algorithm

The following is an easy (and of course inefficient) algorithmic variant
of the proof of the preceding proposition, and we will encounter it again,
later on.

Proposition 3.2.5. Let p, q be naturals, and let k = p+ q. There is a
deterministic algorithm that, given a set family F containing sets of
size p over a universe of size n, computes a q-representant F ′ of size(
k
p

)
of F , and takes time exp(O(k)) · poly(|F|, n)).

Proof sketch. As insinuated above, we can interpret sets of size p as
vectors of dimension

(
p+q
p

)
=
(
k
p

)
≤ 2k. Naturally, the set family F

then becomes a set of vectors, say column vectors, which are most
conveniently arranged as a matrix of size |F|×

(
k
p

)
. The entries of these

vectors will have bit lengths bounded polynomially in n, and we can
construct the matrix from the input family in the required time bound.
It is then a standard matter to compute a column basis of such a matrix
in time polynomial in its dimensions, which implies the statement of
the proposition.

The state-of-the-art for accomplishing this task is due to Fomin et
al. [Fom+16]. Note, however, that there is an additional parameter
that controls the running time as well as the size of the solution, and
optimizing this parameter is typically an important step in applying
their result.

Proposition 3.2.6 ([Fom+16, Theorem 4.15]). Let 0 < x < 1, and
p, q be naturals with k = p+ q. There is a deterministic algorithm that,
given a set family F containing sets of size p, computes a q-representant
F ′ of size x−p(1 − x)−q · 2o(k), and takes time O(|F| · log |F + (1 −
x)−q · 2o(k) · logn).

Let us now spell out how to use representative sets to actually solve
the longest path problem. To this end, consider Algorithm RS.
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Algorithm RS (Detect k-path using representative sets.) Given directed
graph G and integer k, this algorithm determines if G contains a k-path.

RS1 (Set up P∗.) Let P∗v1 = {{v}} for all v ∈ V (G). Let i = 2.

RS2 (Compute unions.) Compute P ′vi for each v ∈ V (G) as in Eq.
(3.3).

RS3 (Reduce representants.) Use the algorithm asserted by either of
Props. 3.2.5 or 3.2.6 to compute a (k − i)-representant P∗vi of P ′vi ,
for all v ∈ V (G).

RS4 (Repeat k times.) If i ≤ k, then increment i and go to RS2.

RS5 (Decide.) If P∗v0 is non-empty for some v, then return ‘yes.’
Otherwise, return ‘no.’

Using Proposition 3.2.5 in Algorithm RS allows to immediately deduce
the following:

Theorem 3.2.7. There is a deterministic algorithm that, given a
directed graph G and an integer k, decides whether k has a k-path in
time exp(O(k)) · poly(n).

It requires a lot more care to put Proposition 3.2.6 to efficient use.
A somewhat intricate analysis and a clever choice of the values of x
across the different iterations then allows to prove:

Theorem 3.2.8 ([Fom+16, Sect. 5.5.1]). There is a deterministic
algorithm that, given a directed graph G and an integer k, decides
whether G has a k-path in time O(2.619k ·m logn).

Minimum Weight Paths

The above approach can relatively easily be modified to yield not only
paths of a certain length, but—if the input graph is weighted—to
produce a path of a certain length of minimum (or maximum) weight.
This necessitates extending the notion of a representant to so-called min-
representants, and an algorithm for computing such min-representant.
Otherwise, everything can remain the same; in particular, there are no
malusses in running time.
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Of course, the approach of representative sets was not designed for
handling approximate counting of solutions.

3.3. Labeled Walks
While the previous two approaches, Color-Coding and representative
sets, are of purely combinatorial flavour, we now turn to the first
technique that might be described, at least partially, as algebraic, in that
it encodes combinatorial objects as polynomials, i.e., the epitomes of
algebraic objects. Whenever we speak of a polynomial in this subsection,
we mean a polynomial with coefficients from a field F of characteristic
two and of size to be determined.

The main goal of the labeled walk approach of Björklund et al. [Bjö+17a]
was to give an algorithm for the undirected case running in time
1.66k · poly(n). This is achieved by a method called narrow sieves,
which involves reducing the number of so-called labels used on the
graph. The underlying walk labeling idea itself, however, remains valid
also on directed graphs and when keeping all labels, and then reproduces
the randomized 2k · poly(n) running time bound of Williams [Wil09].
This is nicely laid out in the textbook by Cygan et al. [Cyg+15b,
Section 10.4], and the following presentation is guided by theirs.

3.3.1. Algebraic Encoding of Paths

First, with each directed edge e ∈ E(G), we associate a symbolic
variable ye, and let a vector of variables (x(1)

i , . . . , x
(k)
i )T be associated

with each vertex vi ∈ V (G). The superscript index is referred to as the
label of a vertex in a walk. Consider the following polynomial in the ye
and x(j)

i :

P (x, y) =
∑

w1···wk∈W (G)

∑
`∈Sk

k∏
i=1

ywiwi+1

k∏
i=1

x
`(i)
i . (3.4)

The crucial insight is that over characteristic 2, the sum can be restricted
to paths instead of walks (although the proof of this is again rather

27



3. Review: Algorithmic Techniques

combinatorial):

Lemma 3.3.1. Let P (x, y) be the polynomial defined above, with coef-
ficients in characteristic two. Then,

P (x, y) =
∑

w1···wk∈P(G)

∑
`∈Sk

k−1∏
i=1

ywiwi+1

k∏
i=1

x
`(i)
i . (3.5)

Proof. We will show that for every walk, an even number of copies of
the monomial corresponding to this walk appears in the sum over all
permutations of its labels. To this end, consider a non-simple walk
w1, . . . , wk ∈ W (G), and say that wi = wj for some i 6= j. Fix now
some even permutation `. Then, ` composed with the transposition (ij)
is odd and produces the same monomial. It is also clear that this is a
bijection between even and odd permutations, and it follows that all
summands corresponding to non-simple walks vanish, which is precisely
what we claimed.

In this form, the statement is true only over characteristic two.
However, even over characteristic 0, a similar statement can be made
when taking into account the sign of the permutation `.

With the foregoing Lemma, it is easy to see that the property of
the sum indices being paths, and not walks, allows to reconstruct
the permutation ` as well as the path w1, . . . , wk from a monomial of
the form

∏k−1
i=1 ywiwi+1

∏k
i=1 x

`(i)
i . Since these monomials are trivially

linearly independent for different paths, we immediately obtain:

Proposition 3.3.2. The polynomial P is non-zero (as a polynomial)
if and only if G contains a k-path.

3.3.2. Testing for Zero

Let us state, for completeness, the well-known DeMillo–Lipton–Schwartz–
Zippel Lemma.

Lemma 3.3.3 ([DL78; Sch80; Zip79]). Let f be a non-zero, n-variate
polynomial of total degree at most d, and let ξ1, . . . , ξn ∈ S be chosen
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uniformly at random. Then, the probability that f(ξ1, . . . , ξn) = 0 is at
most d/|S|.

Therefore, if we choose our field F to have at least 4k elements, then
the polynomial P of degree 2k − 1—provided it is non-zero—evaluates
to a non-zero element of F when evaluated at random points from F

with probability at least 1/2.

3.3.3. Evaluating the Polynomial

The only thing left to do is now to describe this evaluation. We again
employ a dynamic programming table, somewhat similar in spirit to Eqs.
3.1 and 3.2. To this end, let v ∈ V (G) be a vertex and X ⊆ {1, . . . , k}
the subset of allowed labels. Define

T [X, v] =
∑

w1,...,w|X|∈W (G),
w|X|=v

∑
`:{1,...,|X|}→X

bijective

k−1∏
i=1

ywiwi+1

|X|∏
j=1

x`wj
(j) . (3.6)

Clearly,
P (x, y) =

∑
v∈V (G)

T [{1, . . . , k}, v] .

Let a = {ajv}j∈{1,...,k},v∈V (G),b = {be}e∈E(G) ∈ F be arbitrary evalu-
ation points for P (x, y). Since evaluation commutes with summation
and addition of polynomials, P (a,b) =

∑
v∈V (G) T [{1, . . . , k}, v](a,b).

We will drop reference to the evaluation points in what follows. Per
definition, T [∅, v] = 0. Furthermore, for ∅ 6= X ⊆ {1, . . . , k} we have

T [X, v] =
∑

u∈N−(v)

buv ·

(∑
l∈X

T [X − {l}, u] · alv

)
. (3.7)

3.3.4. The Algorithm

Taking all this together culminates in the following algorithm.

Algorithm LW (Detect k-path using labeled walks.) Given directed
graph G and integer k, this algorithm determines if G contains a k-
path.
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LW1 (Initialize.) Construct the finite field F having more than 4k
elements. Let j = 0 and T [∅, v] = 0 for all v ∈ V (G).

LW2 (Set up trial.) Pick {alv}l∈{1,...,k},v∈V (G) and {be}e∈E(G) uni-
formly at random from F.

LW3 (Build table T.) Use Eq. (3.7) for each v ∈ V (G) and X ⊆
{1, . . . , k} in ascending cardinality of X to compute all entries of
T [X, v].

LW4 (Decide.) If
∑
v∈V (G) T [{1, . . . , k}, v] = 0, output ‘no.’ Otherwise,

output ‘yes.’

Theorem 3.3.4 (Implicit in [Bjö+17a]). Algorithm LW decides the
existence of a k-path in a given directed graph with n nodes and m

edges in time 2k · poly(k) ·m. The algorithm has a constant one-sided
error probability of claiming the absence of such a path in a graph that
actually does have a k-path.

Proof. Correctness follows from Proposition 3.3.2, the recursive equa-
tion (3.7) and Lemma 3.3.3.
As for the running time, step LW3 can be implemented as follows:

Given the values of T at sets of size |X| − 1, filling T [X, ·] for fixed
X and all vertices can be done in time O(km). In total, LW3 can
be performed in time O(2kkm). The final summation in LW4 takes
time O(n). Finally, construction of (in step LW1) and arithmetic in
F (implicit in the algorithm) is possible by standard methods in time
O(poly(k)).

Using Fewer Labels. The running time of Algorithm LW is obvi-
ously dominated by filling up the table T, which in turn contains n · 2t

entries, where t is the number of labels. Therefore, if there were some
way to use fewer than k labels, the running time would improve by
an exponential factor. In the general directed case, it is not clear how
to do this. However, on bipartite undirected graphs, it is sufficient to
use k/2 labels, in combination with an intricate exchange argument
that allows to pair up non-simple walks, having them cancel out over
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characteristic two. This reduces the running time for the bipartite
case to O∗(2k/2). Also note that while Eq. (3.4) can be extended to
characteristic zero by introducing an appropriate sign factor to the sum
over the permutations, it seems much harder to do so for the bipartite
case.
In their ingenious work, Björklund et al. [Bjö+17a] managed to set

up a similar argument for the non-bipartite undirected case, using a
number of labels that leaves us with a running time of O∗(1.66k).

3.4. Algebraic Fingerprinting
The method of algebraic fingerprinting, studied in the works of Koutis
and Williams [Wil09; Kou08; KW16; KW15] is the first purely alge-
braic technique when it comes to solving subgraph problems. We will
introduce ad hoc several objects that we will encounter again later,
and with more rigor. This was the first method proposed to solve the
problem in randomized time O∗(2k).

3.4.1. Another Algebraic Encoding of Walks

The first of these objects is the multivariate generating function of
walks in a graph, that is somewhat similar (and, as we will see later,
this is far from a coincidence) to the polynomial P (x, y) studied when
using labeled walks. Namely, we associate again with every vertex
v ∈ V (G) a variable xv, and with every edge e ∈ E(G) a variable ye.
Then, we define the formal polynomial

ϕ =
∑

w1,...,wk∈W (G)

k∏
i=1

xwi

k−1∏
j=1

ywjwj+1 . (3.8)

The structural insight here is now the following: If we could somehow
make those monomials disappear that contain a factor x2

v, for some
v ∈ V (G), and simultaneously make sure that the other monomials
yield a non-zero contribution, then the result being non-zero is again
equivalent to G containing a k-path.
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There are now two obstacles to overcome: First, we want to make this
work somehow, i.e., find things to plug into the variables that satisfy
this requirement. Then, we would like to make this work efficiently,
i.e., finding a way how to actually compute the sum in Eq. (3.8).

3.4.2. Computing the Walk-Sum

Let us first get the easiest part of this out of the way, which is the
evaluation of Eq. (3.8) at given algebra elements r1, . . . , rn+m with a
reasonable number of algebra operations:

Proposition 3.4.1. For given r1, . . . , rn+m from some commutative
algebra, the sum F (r1, . . . , rn+m) can be evaluated using O(km) ring
operations.

Proof sketch. This is a straightforward generalization of the well-known
undergraduate exercise of proving that the powers of the adjacency
matrix of a graph enumerate the walks in this graph, and that (given a
sparse representation of the matrix), the final sum over all walks can
be computed using O(km) multiplications and additions.

Of course, this Lemma says nothing about the actual cost of im-
plementing those ring operations using ordinary bit operations. Since
this of course depends quite heavily on the algebra from which the
evaluation points come, we now turn to the first obstacle described
above, namely finding suitable objects to plug in.

3.4.3. Group Algebras

Let F be a field and letM be a monoid with multiplication ∗.We denote
with F [M ] the monoid algebra of M over F . If M is actually a group,
we call F [M ] the group algebra of M over F . That is, F [M ] is the set of
all finite formal linear combinations of elements fromM with coefficients
in F. An element of F [M ] is thus of the form

∑
m∈M rm ·m, with only

finitely many of the rm ∈ F non-zero. Elements from F [M ] admit a
natural point-wise addition and scalar multiplication. Multiplication in
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F [M ], written •, is defined by the distributive law,

(∑
m∈M

cm ·m

)
•

(∑
m∈M

dm ·m

)
=

 ∑
g,h∈G

(cg · dh) · (g ∗ h)

 ,

which is again an element of F [M ].
As the name suggests, the monoid algebra F [M ] is indeed an F -

algebra, and is of dimension |M |. Usually, multiplication and addition
in the ground field F, the monoid M, and the group algebra F [M ] are
all denoted by · and +.

The Group Algebra of Zk2

Denote with Zk2 the additive group of k-dimensional vectors modulo two,
and write χi for the i-th element of the standard basis of Zk2 . Despite
the group being commutative, we stick with multiplicative notation
when referring to the group operations, i.e., for x, y ∈ Zk2 , the product
xy ∈ Zk2 refers to their point-wise addition modulo two, and 1 is the
all-zeroes vector of Zk2 . In a word, we think of Zk2 as {−1, 1}k with
point-wise multiplication as operation.

This might admittedly create some confusion right away, but bearing
with this pay off later to spare us some even more confusing notation.
For a concrete example, if k = 4, then the element (0, 0, 1, 1) ∈ Zk2 can
be written as the product χ3χ4, and in general, if S is the support of
an element Zk2 , then

∏
s∈S χs is the corresponding representation as a

product of the generators χi, and for any such set S we write χS ∈ Zk2
for the vector having one-entries at indices of S, and zeroes everywhere
else. Consequently, for every element χS ∈ Zk2 , we find χ2

S = 1.
Let again F be a field of characteristic two, with a number of elements

that we shall fix later, again with an eye towards applying the DeMillo–
Lipton–Schwartz–Zippel Lemma 3.3.3. Consider the group algebra
F [Zk2 ], which is commutative since Zk2 is. In F [Zk2 ], we can consider
the elements νS = 1 + χS for all χS .4 Observe that, since F is of

4This is now where writing Zk
2 in a multiplicative manner spares us having to

distinguish two entirely different kinds of addition.
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characteristic two, we have ν2
S = 1 + 1 = 0. Trivially, all the νS are

linearly independent over F as S varies. This is already half the battle:
We have found linearly independent elements of some commutative
algebra that square to zero. We might now randomly assign to the xi
in Eq. (3.8) the elements νS for random choices of S, and certainly, ϕ
would evaluate to 0 if G doesn’t have a k-path, as all those monomials
containing a term x2

i (and hence ν2
S for some S) become zero.

It remains to argue that for a random such assignment of sets to
the xi, any product of k distinct xi is non-zero with high probability.
This argument is formally similar to the reasoning during the analysis
of Color-Coding, where we calculated the probability that k distinct
vertices receive k distinct colors. This time, however, we have to argue
what the probability is not only that the “colors,” i.e., elements νS , are
distinct, but that they have non-zero product. As it turns out, this case
is much more benign. But first, let us investigate the exact conditions
of such a product becoming zero, following [Kou08].

Lemma 3.4.2. Let S be a collection of subsets of {1, . . . , k}. If the
vectors {χS}S∈S ∈ Zk2 are linearly dependent over Z2, then∏

S∈S
νS = 0 .

Before the simple proof, recall that we write addition in Zk2 multi-
plicatively.

Proof. Being linearly independent over Z2 just that there is some subset
T ⊆ S such that the vectors corresponding to T sum to 0 ∈ Zk2 , which
translates to multiplicative notation as∏

T∈T
χT = 1 .

For arbitrary U ⊆ T , we can multiply this equation with
∏
D∈T∆U χD
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to obtain ∏
U∈U

χS =
∏

D∈T∆U

χD . (3.9)

Consider now the subproduct∏
T∈T

νT =
∏
T∈T

(1 + χT ) =
∑
U⊆T

∏
U∈U

χU .

Using Eq. (3.9), we find that each of the inner products appear twice
in the outer sum, and—since we work over characteristic two—cancel
out. It follows that the subproduct, and hence the entire product, is
zero, as claimed.

Let us introduce the following shorthand: We write 1 to denote

1 =
∑

S⊆{1,...,k}

χS ,

justified by the fact that 1 ∈ F [Zk2 ], considering F [Zk2 ] ∼= F 2k as a
2k-dimensional vector space over F, is the all-ones vector.

Lemma 3.4.3 ([Kou08]). Let S1, . . . , Sk be a collection of k subsets
of {1, . . . , k}. If the vectors {χSi

}ki=1 are linearly independent over Z2,

then
k∏
i=1

νSi = 1.

Proof. Clearly,

k∏
i=1

νSi =
k∏
i=1

(1 + χSi) =
∑

J⊆{1,...,k}

k∏
j=1

χSj .

Since the dimension of Zk2 over Z2 is k, any k linearly independent
(over Z2) vectors yield a unique way to write every element of Zk2 as a
linear combination of them. Over Z2, a linear combination is just the
sum over some subset of them, and every such subset yields a distinct
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element of Z2. Thus,

∑
J⊆{1,...,k}

k∏
j=1

χSj =
∑

K⊆{1,...,k}

χK = 1 .

To summarize:

Proposition 3.4.4 ([Kou08]). Let v1, . . . , vk ∈ Zk2 be any k vectors.
Then,

∏k
i=1 vi zero if and only if {vi}ki=1 is linearly dependent, and

equal to 1 otherwise.

This raises the question: What’s the probability that k randomly
chosen vectors over Zk2 are linearly independent? The answer to this
question is neither difficult nor long, and we include it for completeness;
Williams [Wil09] gives as reference Lemma 6.3.1 in [BK95].

Lemma 3.4.5. The probability that k randomly chosen vectors in Zk2
are linearly independent is at least 1/4.

Proof. Let us choose v1, . . . , vk one after another. Having picked i

vectors, they span a linear subspace of Zk2 of dimension at most i, i.e.,
it contains at most 2i elements. Therefore, when picking the (i+ 1)st
vector, there are at least 2k−2i choices for vi+1 for it to not be contained
in the subspace spanned by v1, . . . , vi. In total, the probability to obtain
k linearly independent vectors is therefore at least

∏k
i=1
(
1− 1

2k−i

)
,

which is bounded from below by a constant strictly greater than 1/4.
This follows from standard results on the q-analogon of the so-called
Pochhammer symbol.

After collecting all these basic properties, let us now come back to
our initial object, the walk generating polynomial ϕ. Let {vw}w∈V (G)

be any n vectors in Zk2 . Consider the evaluation of ϕ at the {vw}w,
while leaving the ye intact; that is, F ({vw}w, {ye}e). By definition and
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using Proposition 3.4.4, this is equal to ∑
w1,...,wk∈P(G),

{vwi
}k

i=1 are linearly independent

k−1∏
i=1

ywiwi+1

 · 1 (3.10)

If G has at least one k-path, then the probability that at least one of
the products in Eq. (3.10) is non-zero is at least 1/4, by Lemma 3.4.5.
Denote the assignment V → Z2

k, w 7→ vw as α, i.e., α(w) = vw. For
some fixed α, consider now the coefficient Cα of 1 in Eq. (3.10),which
is an element of F [{ye}e], i.e.,

Cα({ye}e) =
∑

w1,...,wk∈P(G),
{vwi

}k
i=1 are linearly independent

k−1∏
i=1

ywiwi+1 ∈ F [{ye}e] .

Of course, since a path in a directed graph is determined by its edges,
the monomials in the ye are linearly independent, so that the polynomial
Cα({ye}e) is non-zero if and only if there is some path whose vertex
variables are mapped to a set of linearly independent vectors. To be
precise:

Lemma 3.4.6. If G has a k-path, let α = {vw}v∈V (G) be such that for
at least one of the k-paths of G, say P, its set of vertices V (P ) is such
that the associated set of vectors {vw}w∈V (P ) is linearly independent.
Then, Cα 6= 0.

Again with the DeMillo–Lipton–Schwartz–Zippel Lemma 3.3.3, we
obtain that if we pick |F | > 4k and Cα 6= 0, then for random
λ1, . . . , λm ∈ F, Cα(λ1, . . . , λm) is non-zero with probability at least
1/2.

Putting all of the above together, we obtain:

Proposition 3.4.7. If G has a k-path, then for v1, . . . , vn ∈ Zk2 and
scalars λ1, . . . , λm all chosen uniformly at random, F (v1, . . . , vn, λ1, . . . , λ,m)
is non-zero with probability at least 1/8.
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This completely deals with the correctness of the approach, and
we will now have to deal with the question of how to implement the
approach in an efficient way.

3.4.4. The Algorithm

We saw in Proposition 3.4.1 that evaluating ϕ can be done using
O(km) operations in the algebra F [Zk2 ]. It remains to prove how to
compute these operations quickly. We can represent each element of
F [Zk2 ] using 2k coefficients, one for each element of the group Zk2 . This
makes addition trivially implementable using 2k field operations. As for
multiplication, it is easy to see (and we will come across this again later)
that multiplication in group algebras of Zk2 is the same as performing a
subset convolution, as studied by Björklund et al. [Bjö+07], and can
be computed using O(k22k) field operations. Finally, representing and
computing with elements of F can be done in time polylogarithmic
in the number of field elements in F by standard methods, adding a
poly(k)-factor to the running time. To summarize:

Proposition 3.4.8. Given x, y ∈ F [Zk2 ] as lists of coefficients, their
sum and product x+y, xy ∈ F [Zk2 ] can each be computed using O(2k poly(k))
bit operations.

In particular, combining this with Proposition 3.4.1, we obtain:

Corollary 3.4.9. Given v1, . . . , vn ∈ Zk2 and λ1, . . . , λm ∈ F, ϕ can
be evaluated at these points in time 2k · poly(k) ·m.

Taking all the results from this subsection together now yields the
following algorithm.

Algorithm AF (Detect k-path using algebraic fingerprints.) Given di-
rected graph G and integer k, this algorithm determines if G contains a
k-path.

AF1 (Initialize.) Construct the field F with more than 4k elements.

AF2 (Set up trial.) Pick v1, . . . , vn ∈ Zk2 and λ1, . . . , λm ∈ F uniformly
at random.
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AF3 (Evaluate ϕ.) Use the algorithm from Corollary 3.4.9, evaluate ϕ
at v1, . . . , vn, λ1, . . . , λm.

AF4 (Decide.) If ϕ evaluated to 0, output ‘no.’ Otherwise, output
‘yes.’

Theorem 3.4.10 ([Kou08; Wil09]). Algorithm AF decides the existence
of a k-path in a given directed graph with n nodes and m edges in time
2k ·poly(k) ·m. The algorithm has a constant one-sided error probability
of claiming the absence of such a path in a graph that actually does
have a k-path.

Proof. Correctness and the error probability are established by Propo-
sition 3.4.7, the running time bound follows from Corollary 3.4.9.

Counting and Determinism

We note here two limitations of the algebraic approaches. Since the
DeMillo–Lipton–Schwartz–Zippel Lemma plays a central rôle in the
algebraic methods, i.e., the group-algebraic approach as well as the
labeled walks (which are arguably combinatorial in flavor, but in the end
rely on polynomial identity testing nonetheless), their derandomization
seems highly non-trivial, and it is by no means clear how to obtain an
algebraic algorithm (i.e., one relying on evaluations of polynomials or
the like—of course, this term is not sharply defined) that can be used
to produce even moderately fast deterministic decision algorithms.
Similarly, the methods seem to require that the ground field have

characteristic two. The fact that 1+1 = 0 in this setting makes counting
become rather futile rather quick, and it is not clear how to circumvent
this limitation. We shall see how to do this in the next chapter.
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Paths

Cancel me not—for what then shall remain?

Stanisław Lem, The Cyberiad

We will now present our new method, generalizing and unifying all
the ones presented so far. Crucially, we will find: A path is just a walk
that does not vanish in the exterior algebra. This observation leads us to
a new approach for algebraic graph algorithms for the k-path problem.
As noted, our approach generalizes and unifies previous techniques in a
clean fashion, including the Color-Coding method of Alon, Yuster, and
Zwick [AYZ95] and the algebraic-fingerprinting idea of Koutis [Kou08].
Color-Coding yields a randomized algorithm for approximately counting
k-paths [Alo+08] that runs in time (2e)k poly(n) (cf. Theorem 3.1.5).
We improve the running time to 4k poly(n), addressing an open problem
in the survey article of Koutis and Williams [KW15]. Our approach
applies not only to paths, but also to other subgraphs of bounded
pathwidth.
In hindsight, it is obvious that the exterior algebra enjoys exactly

the properties needed for the k-path problem. Thus, it seems strange
that this construction has eluded algorithms designers for so long. But
as the eminent combinatorialist Gian-Carlo Rota observed in 1997,
“[t]he neglect of the exterior algebra is the mathematical tragedy of our
century,” [Rot97] so we are in good company.

The exterior algebra is also called alternating algebra, extended alge-
bra, or Grassmann algebra after its 19th century discoverer. It is treated
extensively in any modern textbook on algebra, and has applications
in many fields, from differential geometry and representation theory to
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theoretical physics. Conceptually, our contribution is to identify yet
another entry in the growing list of applications of the exterior algebra,
inviting the subgraph isomorphism problem to proudly take its place
between simplicial complexes and supernumbers.

4.1. Results and Related Work
Longest Path. The Longest Path problem is the optimization prob-
lem to find a longest (simple) path in a given graph. Clearly, this
problem generalizes the NP-hard Hamiltonian path problem [GJ79]. As
before, we consider the decision version, the k-path problem, in which
we wish to decide existence of a path of length k in a given graph G.
It was proved fixed-parameter tractable avant la lettre [Mon85], and a
sequence of both iterative improvements and conceptual breakthroughs
[Bod93; AYZ95; Bjö14; Kne+06; Che+09; Fom+16; Wil09] have lead
to the current state-of-the-art for undirected graphs: a randomized
algorithm by Björklund et al. [Bjö+17a] in time 1.66k · poly(n). For
details on these methods, we refer the reader to Chap. 3. For directed
graphs, the fastest known randomized algorithm is by Koutis and
Williams [KW16] in time 2k · poly(n), whereas the fastest deterministic
algorithm is due to Zehavi [Zeh15] in time 2.5961k · poly(n).

Subgraph isomorphism. The subgraph isomorphism problem gen-
eralizes the k-path problem and is one of the most fundamental graph
problems [Coo71; Ull76]: Given two graphs H and G, decide whether G
contains a subgraph isomorphic to H. This problem and its variants
have a vast number of applications, covering areas such as statistical
physics, probabilistic inference, and network analysis [Mil+02]. For
example, such problems arise in the context of discovering network
motifs, small patterns that occur more often in a network than would
be expected if it was random. Thus, one is implicitly interested in the
counting version of the subgraph isomorphism problem: to compute
the number of subgraphs of G that are isomorphic to H. Through
network motifs, the problem of counting subgraphs has found applica-

42



4.1. Results and Related Work

tions in the study of gene transcription networks, neural networks, and
social networks [Mil+02]. Consequently, there is a large body of work
dedicated to algorithmic discovery of network motifs [GK07; Alo+08;
OSM09; Kas+09; SS05; Che+06; Kas+04; Wer06; Sch+15]. For exam-
ple, Kibriya and Ramon [KR13; Ram+14] use the ideas of Koutis and
Williams [KW16] to enumerate all trees that occur frequently.

Counting subgraphs exactly. The complexity of exact counting
is often easier to understand than the corresponding decision or ap-
proximate counting problems. For instance, the counting version of the
famous dichotomy conjecture by Feder and Vardi [FV93; FV98] was
resolved by Bulatov [Bul08; Bul13] almost a decade before proofs were
announced for the decision version by Bulatov [Bul17] and Zhuk [Zhu17].
A similar phenomenon can be observed for the parameterized complex-
ity of the subgraph isomorphism problem, the counting version of which
is much better understood than the decision or approximate counting
versions: The problem of counting subgraphs isomorphic to H is fixed-
parameter tractable if H has a vertex cover of bounded size [WW13]
(also cf. [KLL13; CM14b; CDM17]), and it is #W[1]-hard whenever H
is from a class of graphs with unbounded vertex cover number [CM14b;
CDM17], and thus it is not believed to be fixed-parameter tractable in
the latter case. In particular, this is the case for counting all k-paths
in a graph. The fastest known general-purpose algorithm [CDM17] for
counting H-subgraphs in an n-vertex graph G runs in time kO(k)nt

∗+1

where k is the number of vertices of H and t∗ is the largest treewidth
among all homomorphic images ofH. For some special choices of the pat-
tern graph H, the branchwidth-based bounds of Austrin et al. [AKK18]
improve over the treewidth bounds of Curticapean et al. In particular,
this is the case for paths of lengths 7, 8 or 9; more generally, whenever
the branchwidth of H is bounded by 2(t+1)/ω, where t is the treewidth
of H.

New Results. For finite directed or undirected graphs H and G, let
Sub(H,G) ∈ N be the number of (not necessarily induced) subgraphs
of G that are isomorphic to H. The main algorithmic result in this
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chapter is a randomized algorithm that computes an approximation to
this number.

Theorem 4.1.1 (Approximate subgraph counting). There is a random-
ized algorithm that is given two graphs H and G, and a number ε > 0
to compute an integer Ñ such that, with probability 99%,

(1− ε) · Sub(H,G) ≤ Ñ ≤ (1 + ε) · Sub(H,G) . (4.1)

This algorithm runs in time ε−2 · 4knpw(H)+1 · poly(k), where H has k
vertices and pathwidth pw(H), and G has n vertices.

Our algorithm works for directed and undirected graphs with the
same running time (in fact, undirected graphs are treated as being
bi-directed). An algorithm such as the one in Theorem 4.1.1 is called
a fixed-parameter tractable randomized approximation scheme (FPT-
RAS) for Sub . The notion of an FPT-RAS was defined by Arvind
and Raman [AR02], who use a sampling method based on Karp and
Luby [KL83] to obtain a version of Theorem 4.1.1 with an algorithm
that runs in time exp(O(k log k)) · ntw(H)+O(1). For the special cases of
paths and cycles, Alon and Gutner [AG09; AG10] are able to combine
the Color-Coding technique by Alon, Yuster, and Zwick [AYZ95] with
balanced families of hash functions to obtain an algorithm for approxi-
mately counting paths or cycles in time exp(O(k log log k))·n logn. Alon
et al. [Alo+08], in turn, use the Color-Coding technique to obtain the
first singly-exponential time version of Theorem 4.1.1, in particular with
an algorithm running in time ε−2 · (2e)k · ntw(H)+O(1). Theorem 4.1.1
was the fastest known algorithm to approximately count subgraphs of
small pathwidth, until very recently, Björklund et al. [Bjö+19] improved
upon our results, and gave a polynomial-space, deterministic algorithm.
It has an almost identical runtime, with the only difference being a
slightly worse dependency on ε. Their algorithm extends to graphs of
bounded treewidth.
When we are promised that G contains not too many subgraphs

isomorphic to H, we obtain the following deterministic algorithm.
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Theorem 4.1.2 (Detecting subgraphs when there are few). There is
a deterministic algorithm that is given two graphs H and G to decide
whether G has a subgraph isomorphic to H, with the promise that G
has at most C ∈ N such subgraphs. This algorithm runs in time
O(C22knpw(H)+O(1)), where the number of vertices of H is k and the
number of vertices of G is n.

Without the promise on the number of subgraphs, Fomin et al.
[Fom+12b] detect subgraphs in randomized time Õ(2kntw(H)+1) and
Fomin et al. [Fom+16] do so in deterministic time 2.619knO(tw(H)). For
C ≤ O(1), or C ≤ poly(n, k) when ignoring polynomial factors, we thus
match the running time of the fastest randomized algorithm, but do so
deterministically, and for C ≤ O(1.144k), our algorithm is the fastest
deterministic algorithm for this problem. For the interesting special
case of paths, the running time of the fastest deterministic algorithm
for undirected or directed k-paths (without promise) is 2.5961k ·poly(n)
by Zehavi [Zeh15], which we improve upon if C ≤ O(1.139k).
Our method also applies to the problem of detecting whether a

multivariate polynomial contains a multilinear term.

Theorem 4.1.3 (Detecting multilinear terms). Given an algebraic
circuit C over Z[ζ1, . . . , ζn] and a number k, we can detect whether the
polynomial C(ζ1, . . . , ζn) has a degree-k multilinear term in randomized
time 4.32k · |C| · poly(n).

Using algebraic fingerprinting with elements from a group algebra,
Koutis and Williams [Kou08; KW16] can do this in randomized 2k ·
poly(n) time for monotone algebraic circuits, that is, circuits that do not
involve negative values. Working over an algebra whose ground field of
characteristic 0, we are able to remove the requirement that the circuit
is free of cancellations in Theorem 4.1.3. To the best of our knowledge,
this was the first fixed-parameter tractable algorithm for the problem
of detecting a k-multilinear term in the polynomial computed by a
general algebraic circuit. Using refined algebraic techniques, Arvind et
al. and Pratt [Arv+18b; Pra18; Pra19] independently improved upon
this, with the current record bound now using 4.08k · poly(n) time, and
polynomial space.
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Our algorithm uses Color-Coding and performs the computation
in the exterior algebra over Qk. To reduce the running time from
2kek · poly(n) to 4.32k · poly(n), we use an idea of Hüffner, Wernicke,
and Zichner [HWZ08], who improved Color-Coding by using 1.3 · k
instead of only k different colors.

Related hardness results. Under the exponential-time hypothesis
(ETH) by Impagliazzo and Paturi [IP01], the running time of the
algorithm in Theorem 4.1.1 is optimal in the following asymptotic sense:
The exponent of n cannot be improved since f(k)no(t) time is impossible
even in the case that H is a k-clique [Che+05], where t = k−1. Likewise,
a running time of the form exp(o(k)) · poly(n) is impossible even in the
case that t = 1, since this would imply an exp(o(n)) time algorithm for
the Hamiltonian cycle problem and thereby contradict ETH [IPZ01].
Moreover, the factor ε−2 in the running time stems from an application
of Chebyshev’s inequality and is unlikely to be avoidable.

4.1.1. The Walk-Sum

We wil now discuss in slightly higher generality an object related to
Eq. (3.8), where we let W = W (G),P = P(G), where G is the input
graph.

Let R be a ring and consider a mapping ξ : V (G) ∪ E(G)→ R. The
walk-sum f(G; ξ) of ξ is defined via

f(G; ξ) =
∑

w1...wk∈W

ξ(w1)ξ(w1w2)ξ(w2) · · · ξ(wk−1)ξ(wk−1wk)ξ(wk) ,

(4.2)

evaluated in R. As a matter of folklore, the walk-sum can be evaluated
with O(kn2) operations over R using using a well-known connection with
powers of the adjacency matrix. This is a reformulation of Proposition
3.4.1. Observe that we do not require R be commutative, in contrast
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to the previously employed polynomial rings.

f(G; ξ) =
(

1 . . . 1
)
·Ak−1 ·


ξ(v1)
...

ξ(vn)

 , (4.3)

where A is the n× n matrix whose vw-entry is given by

avw =

ξ(v)ξ(vw), if vw ∈ E(G);

0, otherwise.
(4.4)

Note that the expression for f(G; ξ) in (4.3) can be evaluated in such
a way that every product in R has the form x · y where y belongs
to the range of ξ (rather than all of R). Moreover, we assume input
graphs to be given as adjacency lists, in which case the expression
in (4.3) can be evaluated with O(k(n+m)) operations over R, since
the product of an m-sparse matrix and a vector can be computed with
O(n+m) operations over R. If ξ : V (G)→ R is a partial assignment, we
silently extend it to a full assignment by setting the remaining variables
to 1 ∈ R.

4.2. The Exterior Algebra

4.2.1. Concrete Definition

We now give an elementary and very concrete definition of the exterior
algebra, and recall the properties of the wedge product. Readers familiar
with this material can skip Sect. 4.2.1.

Let F be a field, k be a positive integer, and let e1, . . . , ek be
the canonical basis of the k-dimensional vector space F k. Every el-
ement a of F k is a linear combination a1e1 + · · · + akek with field
elements a1, . . . , ak ∈ F. We sometimes write a as the column vector
(a1, . . . , ak)T . Addition and scalar multiplication are defined in the
usual way.

We extend F k to a much larger, 2k-dimensional vector space Λ(F k)
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as follows. Each basis vector eI of Λ(F k) is defined by a subset I of
indices from {1, . . . , k}. The elements of Λ(F k) are called extensors.
Each element is a linear combination

∑
I⊆{1,...,k} aIeI of basis vectors.

We turn Λ(F k) into a vector space by defining addition and scalar
multiplication in the natural fashion. For instance, if F is the rationals,
typical elements in Λ(F k) with k = 3 are x = 3e{1,2} − 7e{3} and
y = e{1} + 2e{3} and we have x + 2y = 3e{1,3} + 2e{1} − 3e{3}. By
confusing ei with e{i} for i ∈ {1, . . . , k}, we can view F k as a subspace
of Λ(F k) spanned by the singleton basis vectors. This subspace is
sometimes called Λ1(F k), the set of vectors. The element e∅ is just 1
in the underlying field, so Λ0(F k) = F. In general, Λi(F k) is the set of
extensors spanned by basis vectors eI with |I| = i, sometimes called
i-vectors. Of particular interest is Λ2(F k), the set of blades (also called
bivectors).
To turn Λ(F k) into an algebra, we define a multiplication ∧ on the

elements of Λ(F k). The multiplication operator we define is called the
wedge product (also called exterior or outer product) and the resulting
algebra is called the exterior algebra. We require ∧ to be associative

(x ∧ y) ∧ z = x ∧ (y ∧ z)

and bilinear

x ∧ (a · y + z) = a · x ∧ y + x ∧ z ,

(x+ a · y) ∧ z = x ∧ z + a · y ∧ z ,

for all a ∈ F and x, y, z ∈ Λ(F k). Thus, it suffices to define how ∧
behaves on a pair of basis vectors eI and eJ . If I and J contain a common
element, then we set eI ∧ eJ = 0. Otherwise, we set eI ∧ eJ = ±eI∪J ;
it only remains to define the sign, which requires some delicacy. (The
intuition is that we want ∧ to be anti-commutative on F k, that is, x∧y =
−y∧x for x, y ∈ F k.) Write I = {i1, . . . , ir} and J = {j1, . . . , js}, both
indexed in increasing order. Then we define

eI ∧ eJ = sgn (I, J)eI∪J ,
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where sgn (I, J) is the sign of the permutation that brings the sequence
i1, . . . , ir, j1, . . . , js into increasing order.
For instance, if max I < min J, then there is nothing to permute,

so e1 ∧ e2 = e{1,2}. Consequently, we now abandon the set-indexed
notation e{i1,...,ir} (where i1 < · · · < ir) and just write ei1 ∧ · · · ∧ eir
instead. It is also immediate that e1∧e2 = −e2∧e1. In general, we can
multiply basis vectors using pairwise transpositions and associativity,
e.g., (e1 ∧ e3 ∧ e6)∧ (e2 ∧ e4) = −e1 ∧ e3 ∧ e2 ∧ e6 ∧ e4 = e1 ∧ e2 ∧ e3 ∧
e6 ∧ e4 = −e1 ∧ e2 ∧ e3 ∧ e4 ∧ e6 .

4.2.2. Properties

The wedge product on F k has the following properties:

(W1) Alternating on vectors. By its definition, the wedge product
enjoys anticommutativity on the basis vectors of F k, which is
to say ei ∧ ej = −ej ∧ ei. Employing bilinearity, this directly
translates to any two vectors x, y ∈ F k, meaning x ∧ y = −y ∧ x
holds, whereby x ∧ x vanishes.

(W2) Alternating on decomposable extensors. An extensor x ∈ Λ(F k)
is decomposable if there are vectors v1, . . . , vr ∈ F k satisfying
x = v1 ∧ · · · ∧ vr. Every extensor in Λi(F k) is decomposable
for i ∈ {0, 1, k − 1, k}, but not all extensors are decomposable:
e1 ∧ e2 + e2 ∧ e4 ∈ Λ2(F 4) is an example. The previous property
extends to decomposable vectors: If the extensors x1, · · · , xr are
decomposable and two of them are equal, then it follows from
Property (W1) that their wedge product x1 ∧ · · · ∧ xr vanishes.

(W3) Determinant on F k×k. For k = 2 write x, y ∈ F 2 as column
vectors (x1, x2) and (y1, y2). Elementary calculations show x∧y =
(x1y2 − y1x2) · e1 ∧ e2 , and we recognize the determinant of
the 2 × 2-matrix whose columns are x and y. This is not a
coincidence. Since Λk(F k) is linearly isomorphic to F—indeed,
Λk(F k) = F · (e1 ∧ · · · ∧ ek)—we can understand the map taking
(x1, . . . , xk) to x1 ∧ · · · ∧ xk ∈ Λk(F k) ∼= F as a multilinear form,

49
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which by virtue of the previous properties is alternating and
sends (e1, . . . , ek) to 1. These properties already characterize the
determinant among the multilinear forms. With this, we have
arrived at a fundamental property of the exterior algebra. Let
x1, . . . , xk ∈ F k and write

x1 =


x11
...
xk1

 , . . . , xk =


x1k
...
xkk

 .

The wedge product of x1, . . . , xk exhibits a determinant:

x1 ∧ · · · ∧ xk = det


x11 · · · x1k
...

. . .
...

xk1 · · · xkk

 · e[k] , (4.5)

where we use the shorthand e[k] for the highest-grade basis ex-
tensor e1 ∧ · · · ∧ ek.

To avoid a misunderstanding: Neither of these properties extends to
all of Λ(F k). For instance, if x = e1∧e3+e2 then x∧x = (e1∧e3+e2)∧
(e1∧e3 + e2) = e1∧e3∧e1∧e3 + e1∧e3∧e2 + e2∧e1∧e3 + e2∧e2 =
0− e1 ∧ e2 ∧ e3 − e1 ∧ e2 ∧ e3 + 0 = −2 · e1 ∧ e2 ∧ e3 6= 0.

4.2.3. Representation and Computation

We represent an extensor x ∈ Λ(F k) by its coefficients in the expansion
x =

∑
I⊆{1,...,k} xIeI , using 2k elements xI from F. The sum z = x+ y

is given by coefficient-wise addition zI = xI + yI , requiring 2k additions
in F. The wedge product z = x ∧ y is∑

I⊆K

xIeI

 ∧
∑
J⊆K

yJeJ

 =
∑
I,J⊆K

xIyJ · eI ∧ eJ .

When y belongs to Λj(F k), we can restrict the summation to subsets J
with |J | = j. Thus:
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Name vi 7→ e 7→ Algebra Section

φ Vandermonde (i0, . . . , ik−1)T 1 Λ(F k) 4.3.2, 4.3.3
φ Lifted Vandermonde φ(vi) 1 Λ(F 2k) 4.3.5
β Lifted Bernoulli (±1, . . . ,±1)T 1 Λ(F 2k) 4.3.6
η Edge-variable φ(vi) ye Λ(F k)[Y ] 4.3.7
ρ Random edge-weight φ(vi) Random r ∈ {1, . . . , 100k} Λ(F k) 4.4.1
λ Labeled walks (x(1)

i , . . . , x
(k)
i )T ye Λ(F k)[X,Y ] 4.4.3

χ Color-coding ej , random j ∈ {1, . . . , k} 1 Z(F k) ⊂ Λ(F 2k) 4.4.4

Table 4.1.: Extensor-codings of graphs used in this chapter.

Proposition 4.2.1. For x ∈ Λ(F k) and y ∈ Λj(F k), x ∧ y can be
computed using 2k

(
k
j

)
multiplications in F.

This is the only wedge product we need for our results, and only for
j ∈ {1, 2}.

In particular, Λ(F k) is a ring with multiplication ∧. Then, for a map-
ping ξ : V (G)→ Λj(F k), we can compute the walk-sum f(G; ξ) from
(4.2) using O(n+m)2k

(
k
j

)
field operations, which is (n+m)2k poly(k)

for j = O(1).
For completeness, the case where y ∈ Λ(F k) is a general extensor,

can be computed faster than 4k. By realizing that the coefficient zI is
given by the alternating subset convolution

zI =
∑
J⊆I

sgn (J, I \ J)xJyI\J , (4.6)

we see that x ∧ y can be computed in 3k field operations. By following
Leopardi [Leo+05] and the subsequent analysis of Włodarczyk [Wło16],
this bound can be improved to O∗(2ω k

2 ). This works by making use of an
efficient embedding of a Clifford algebra related to Λ(F k) into a matrix
algebra of dimension 2k/2 × 2k/2, and expressing one product in Λ(F k)
as k2 products in this Clifford algebra. A detailed and streamlined
account of the required arguments are given in Chap. 7. (We never
need this.)
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4.3. Extensor-coding

4.3.1. Walk Extensors

An extensor-coding is a mapping ξ : V (G) → Λ(F k) associating an
extensor with every vertex of G. If W is a walk w1 . . . w` of length `
in G, then we define the walk extensor ξ(W ) as

ξ(W ) = ξ(w1) ∧ · · · ∧ ξ(w`) .

Suppose now that ξ always maps to decomposable extensors. We can
formulate our main insight:

Lemma 4.3.1. If ξ(v) is decomposable for all v ∈ V (G) and W is not
a path, then ξ(W ) = 0.

Proof. Directly follows from Property (W2).

In particular, the (easily computed) walk-sum of ξ over the ring R
with R = Λ(F k) is a sum over paths:

f(G; ξ) =
∑
W∈W

ξ(W ) =
∑
P∈P

ξ(P ) . (4.7)

We can view ξ as the (k × n) matrix Ξ over F consisting of the
columns ξ(v1), . . . , ξ(vn). By (4.5), we have

ξ(w1 . . . wk) = d · e[k] , (4.8)

where d is the determinant of the (k × k)-matrix ΞP of columns
ξ(wi), . . . , ξ(wk). This matrix is a square submatrix of Ξ, and van-
ishes if two columns are the same.

While it is terrific that non-paths vanish, we are faced with the
dangerous possibility that f(G; ξ) vanishes as a whole, even though P

is not empty. There are two distinct reasons why this might happen:
the extensor ξ(P ) might vanish for a path P ∈P, or the sum of non-
vanishing extensors ξ(P ) vanishes due to cancellations in the linear
combination.
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4.3.2. Vandermonde Vectors

To address the first concern, we consider an extensor-coding ξ in general
position, that is, such that ξ(w1 . . . wk) 6= 0 for all k-tuples of distinct
vertices w1 . . . wk. Thus, ξ is in general position if and only if all square
submatrices of Ξ are non-singular. Rectangular Vandermonde matrices
have this property.

Lemma 4.3.2. Let the Vandermonde extensor-coding φ of G be

φ(vi) = (1, i1, i2, . . . , ik−1)T for all i ∈ {1, . . . , n} . (4.9)

If i1, . . . , ik ∈ {1, . . . , n}, then

φ(vi1 . . . vik ) = det ΦP · e[k] ,

where

ΦP =


1 1 . . . 1
i1 i2 . . . ik
...

...
. . .

...
ik−1
1 ik−1

2 . . . ik−1
k

 . (4.10)

In particular,
d = det ΦP =

∏
ia,ib
a<b

(ia − ib) . (4.11)

4.3.3. Baseline Algorithm

Our second concern was that distinct non-vanishing paths might lead
to extensors φ(P ) that cancel in the sum in (4.7). Let us consider a
case where this never happens by assuming that the graph G has at
most one k-path. Then the sum over paths in (4.7) has at most one
term and cancellations cannot occur.
This allows us to establish Thm. 4.1.2 for the special case where H

is the k-path and the number C of occurrences of H in G is either zero
or one.

Algorithm U (Detect unambiguous k-path.) Given directed graph G and
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integer k, such that the number of k-paths in G is 0 or 1, this algorithm
determines if G contains a k-path.

U1 (Set up φ.) Let F = Q. Let φ be the Vandermonde extensor-coding
as in (4.9).

U2 (Compute the walk-sum) Compute f(G;φ) as in (4.4).

U3 (Decide.) If f(G;φ) is non-zero, then return ‘yes.’ Otherwise,
return ‘no.’

Theorem 4.3.3. Algorithm U is a deterministic algorithm for the
unambiguous k-path problem with running time 2k(n+m) poly(k).

Proof. Consider the extensor f(G;φ) computed in Step U2. If G
contains no k-path, then f(G;φ) = 0 holds by (4.7). Otherwise, we
have f(G;φ) = φ(P ) for the unambiguous k-path P in G. Let P =
vi1 . . . vik . By our choice of φ in U1, Lemma 4.3.2 implies f(G;φ) =
d · e[k] with d 6= 0.
The running time of Algorithm U is clearly dominated by U2. As

we discussed in Sec. 4.2.3, the value f(G,φ) can be computed with k ·
O(n+m) operations in Λ(F k), each of which can be done with O(k2k)
operations in F. The Vandermonde extensor-coding φ uses only integer
vectors and the absolute value of f(G,φ) is bounded by npoly(k). In the
usual word-RAM model of computation with words in {−n, . . . ,+n},
we can thus store each number using poly(k) words. We conclude that
Algorithm U has the claimed running time.

4.3.4. Blades and Lifts

The reason that cancellations can occur in (4.7) is that the coeffi-
cients d ∈ F in (4.8) may be negative. We will now give a general
way to modify an extensor-coding in such a way that these coefficients
become d2 and thus are always positive.

Instead of Λ(F k), we will now work over Λ(F 2k). For an extensor x =∑
i∈{1,...,k} aiei ∈ F k ⊆ Λ(F k), we define its lifted version x ∈ Λ2(F 2k)
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as the blade

x =
( ∑
i∈{1,...,k}

aiei
)
∧
( ∑
j∈{1,...,k}

ajej+k
)
. (4.12)

If we let 0 ∈ F k denote the zero vector in F k, we can write this as

x =
(
x

0

)
∧

(
0
x

)
.

Crucially, every x is decomposable, so Lemma 4.3.1 applies.
For an extensor-coding ξ : V (G)→ F k, we define the lifted extensor-

coding ξ : V (G)→ Λ(F 2k) by setting ξ(v) = ξ(v) for all v ∈ V (G). For
a path P ∈P, with P = w1 · · ·wk, the correspondence between ξ(P )
and ξ(P ) is as follows. Consider the k×k matrix ΞP of extensors given
by

ΞP =
(
ξ(w1) . . . ξ(wk)

)
.

From Property (W3), we get

ξ(P ) = (detΞP )e[k] ,

and

ξ(P ) = det
(
ξ(w1) 0 . . . ξ(wk) 0

0 ξ(w1) . . . 0 ξ(wk)

)
e[2k] .

Using basic properties of the determinant, we can rewrite the coefficient
of e[2k] to

(−1)(
k
2) det

(
ξ(w1) . . . ξ(wk) 0 . . . 0

0 . . . 0 ξ(w1) . . . ξ(wk)

)
=

(−1)(
k
2)(detΞP ) · (detΞP ) = (−1)(

k
2)(detΞP )2 .

Thus, we have
ξ(P ) = ±(detΞP )2e[2k] ,
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where the sign depends only on k.
We evaluate the walk-sum over Λ(F 2k) at ξ to obtain:

f(G; ξ) = ±
∑
P∈P

(detΞP )2 · e[2k] . (4.13)

4.3.5. Deterministic Algorithm for Path Detection

As an application of the lifted extensor-coding, let φ : V (G) → F k

be the Vandermonde extensor-coding from Lemma 4.3.2. We imitate
Algorithm U to arrive at a deterministic algorithm for k-path. Our
algorithm slightly improves upon the time bound of 4k+o(k) · poly(n) of
Chen et al. [Che+07; Che+09], but does not come close to the record
bound 2.5961k · poly(n) of Zehavi [Zeh15].

Theorem 4.3.4 (Superseded by [Zeh15]). There is a deterministic
algorithm that, given a directed graph G, checks if G has a path of
length k in time 4k(n+m) poly(k).

Proof. The algorithm is just Algorithm U, except that we evaluate
the walk-sum over Λ(F 2k) and at φ. The correctness of this algorithm
follows from (4.13). Each addition y + z in Λ(F 2k) can be carried out
using O(22k) addition operations in F, and each multiplication y∧x with
elements of the form x for x ∈ F k takes at most O(22kk2) operations
in F, as discussed in Sec. 4.2.3. Overall, this leads to the claimed
running time.

4.3.6. Bernoulli Vectors

We present our algorithm for approximate counting. Now instead of
the Vandermonde extensor-coding as in Lemma 4.3.2, we sample an
extensor-coding β : V (G)→ {−1, 1}k uniformly at random.

The approximate counting algorithm is based on the following obser-
vation: If BP is the k × k matrix corresponding to β(w1), . . . , β(wk),
then all matrices BP are sampled from the same distribution. Thus, the
random variables detB2

P have the same mean µ > 0. The expectation
of the sum of determinant squares is µ · |P|, from which we can recover
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an estimate for the number of paths. Our technical challenge is to
bound the variance of the random variable detB2

P .

Algorithm C (Randomized counting of k-path.) Given directed graph G
and integers k and t, approximately counts the number of k-paths using
t trials.

C1 (Initialize.) Set j = 1.

C2 (Set up jth trial.) For each i ∈ {1, . . . , n}, let β(vi) be a column
vector of k values chosen from ±1 independently and uniformly at
random.

C3 (Compute scaled approximate mean Xj .) Compute Xj with

f(G;β) = Xj · e[2k].

C4 (Repeat t times.) If j < t then increment j and go to C2.

C5 (Return normalized average.) Return (X1 + · · ·+Xt)/(k!t)

We are ready for the special case of Theorem 4.1.1, approximating
Sub(H,G) when H is the k-path. In this case, Sub(H,G) = |P|.

Theorem 4.3.5. For any ε > 0, Algorithm C produces in time (4k/ε2)·
(n+m) · poly(k) a value X such that with probability at least 99%, we
have

(1− ε) · |P| ≤ X ≤ (1 + ε) · |P| .

A matrix whose entries are i.i.d. random variables taking the values
+1 and −1 with equal probability 1

2 is called Bernoulli. We need a
result from the literature about the higher moments of the determinant
of such a matrix.

Theorem 4.3.6 ([NRR54]). Let B be a k× k Bernoulli matrix. Then,

EdetB2 = k! (4.14)

EdetB4 ≤ (k!)2 · k3 . (4.15)

For completeness, we include a careful proof for a slightly different
distribution, later on.
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4. Extensor-Coding Longest Paths

Proof of Theorem 4.3.5. Run algorithm C with t = 100k3/ε2. Set µ =
|P|. Recall from (4.13) that Xj can be written as

Xj = ±(detB2
1 + detB2

2 + · · ·+ detB2
µ) , (4.16)

where for i ∈ {1, . . . , µ}, each Bi is a submatrix of of the k × n matrix
with columns β(v1), β(v2),· · · , β(vn). The sign can be easily computed
and only depends on k; we assume without loss of generality that it
is +1. By our choice of β in Step C2, each Bi is therefore a Bernoulli
matrix, but they are not independent.

By Theorem 4.3.6, we have EdetB2
i = k! for each i ∈ {1, . . . , µ}, so

by linearity of expectation,

EXj = µk! .

We turn to VarXj , which requires a bit more attention. For all
i, ` ∈ {1, . . . , µ}, the matrices Bi and B` follow the same distribution,
so Var detB2

i = Var detB2
` . Thus, using Cauchy–Schwartz, we have

Cov(detB2
i ,detB2

` ) =
√

(Var detB2
i ) · (Var detB2

` ) =√
(Var detB2

i )2 = Var detB2
i ≤ EdetB4

i ≤ (k!)2k3 ,

where the last two inequalities uses VarY ≤ EY 2 with Y = detB2
i and

(4.15) in Theorem 4.3.6 with B = Bi. We obtain

VarXj = Cov(Xj , Xj) = Cov
( µ∑
i=1

detB2
i ,

µ∑
`=1

detB2
`

)
=

µ∑
i,`=1

Cov(detB2
i ,detB2

` ) ≤ µ2 · (k!)2 · k3 .

Now consider the value X returned by the algorithm in Step C5 and
observe X = (X1 + . . .+Xt)/(k!t). By linearity of expectation, we have
EX = tµk!/(k!t) = µ. Recalling that Var (a ·X) = a2 · Var (X) for a
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random variable X and a scalar a, by independence of the Xj , we have

VarX = Var
(

1
k!t

t∑
j=1

Xj

)
= 1

(k!t)2

t∑
j=1

VarXj ≤

1
(k!t)2 tµ

2(k!)2k3 = µ2k3

t
.

Now Chebyshev’s inequality gives

Pr(|X − µ| ≥ εµ) ≤ VarX
ε2µ2 ≤

µ2k3

ε2µ2t
= 1

100 ,

which implies the stated bound.
The claim on the running time follows from the discussion in Sec.

4.2.3 and the representation of the input as adjacency lists.

4.3.7. Edge-Variables

We extend Algorithm U from the unambiguous case to the case where
the number of k-paths is bounded by some integer C. The construction
uses a coding with formal variables on the edges. To this end, enu-
merate E as {e1, . . . , em} and introduce the set Y of formal variables
{y1, . . . , ym}. Our coding maps ej to yj .
We then use the following theorem about deterministic polynomial

identity testing of sparse polynomials due to Bläser et al.:

Theorem 4.3.7 (Theorem 2 in [Blä+09]). Let f be an m-variate poly-
nomial of degree k consisting of C distinct monomials with integer
coefficients, with the largest appearing coefficient bounded in absolute
value by H. There is a deterministic algorithm which, given an arith-
metic circuit of size s representing f, decides whether f is identically
zero in time O((mC log k)2s logH)

To use this result, we need to interpret the walk-sum as a small circuit
in the variables Y with integer coefficients. This requires ‘hard-wiring’
every skew product in the exterior algebra by the corresponding small
circuit over the integers. Algorithm F contains a detailed description.
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4. Extensor-Coding Longest Paths

Algorithm F (Detect few k-paths) Given directed graph G and integer k,
such that the number of k-paths in G is at most C, this algorithm
determines if G contains a k-path.

F1 [Set up η.] Let F = Z and define η : V (G) ∪E(G)→ Λ(F k)[Y ] by
η(v) = φ(v) and η(ej) = yj .

F2 [Circuit K over Λ(F k)[Y ].] Let K be the skew arithmetic circuit
from (4.3) for computing f(G; η) from its input gates labeled by η(v)
for v ∈ V (G) and η(e) for e ∈ E(G).

F3 [Circuit L over Z[Y ].] Create a circuit L with inputs from Z and Y
as follows. Every gate g in K corresponds to 2k gates gI for I ⊆
{1, . . . , k} such that g =

∑
I gI · eI . When g is an input gate of the

form g = φ(vi) the only nonzero gates in L are g{j} = ij , an integer.
When g is an input gate of the form g = yj then the only nonzero
gate is the variable g∅ = yj . If g = g′ + g′′ then gI is the addition
gate computing g′I + g′′I . If g is the skew product g′ · g′′, where g′′ is
an input gate, then gI is the output gate of a small subcircuit that
computes ∑

J⊆I
|J|≤1

sgn (I \ J, J)g′I\Jg′′J .

(This is (4.6), noting g′′J = 0 for |J | > 1.) If g is the output gate of
K then g{1,...,k} is the output gate of L.

F4 [Decide.] Use the algorithm from the above theorem to determine
if L computes the zero polynomial. Return that answer.

We are ready to establish Theorem 4.1.2 for the case where the
pattern graph H is a path.

Theorem 4.3.8. Algorithm F is a deterministic algorithm for the
k-path problem when there are at most C ∈ N of them, and runs in
time C22knO(1).

Proof. Let G be a graph with at most C paths of length k. First, we
argue for correctness of Algorithm F. From (4.2), it follows that the
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circuit K outputs

f(G; η) =
∑
P∈P

(∏
ei∈P

yi

)
· det(ΦP ) · e[k] ∈ Λ(F k)[Y ] ,

where ΦP is the Vandermonde matrix associated with the vertices on P
from (4.10). By the construction of L, the output gate of L computes
the polynomial

∑
P∈P

(∏
ei∈P

yi

)
· det(ΦP ) ∈ F [Y ] ,

which is just an m-variate, multilinear polynomial over the integers.
Note that, by construction, all the appearing determinants are non-
zero. Since all our graphs are directed, any path is already uniquely
determined by the unordered set of edges that appear on it. It follows
that the monomials belonging to the distinct k-paths in a graph, each
formed as the product of the edge variables corresponding to the edges
on the path, are linearly independent. Therefore, the monomials of the
polynomial in Y computed by L are in bijective correspondence with
the k-paths in G. Theorem 4.3.7 thus yields the correct answer.
As for the running time, we see that every gate in K is replaced

by at most 2k(k + 1) new gates to produce L. Since K was of size
O(k(n + m)), the resulting circuit L is of size O(2k(n + m) poly(k))
and can be constructed in this time. Since, as noted, the monomials in
the polynomial computed by L are in bijection with the k-paths in G,
there are at most C many. The application of Theorem 4.3.7 is thus
within the claimed running time bound.

4.4. Connection to Previous Work
In this section, we show how our approach using exterior algebras
specializes to the group algebra approach of Koutis [Kou08] (cf. Sect.
3.4) when the ground field has characteristic two. We also argue that
the combinatorial approach of Björklund et al. [Bjö+17a] (cf. Sect. 3.3)
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4. Extensor-Coding Longest Paths

using labeled walks can be seen as an evaluation over an exterior algebra.
Moreover, we show how Color-Coding [AYZ95] (cf. Sect. 3.1) arises
as a special case, and present the recent approach of representative
paths due to Fomin et al. [Fom+16] (cf. Sect. 3.2) in the language of
exterior algebra.

4.4.1. Random Edge-Weights

We begin with a randomized algorithm for detecting a k-path in a
directed graph, recovering Koutis’s and Williams’s result (cf. Theorem
3.4.10).

Theorem 4.4.1 ([Kou08; Wil09]). There is a randomized algorithm
for the k-path problem with running time 2k(n+m) poly(k).

Proof. The algorithm is the baseline Algorithm U, but with the follow-
ing step replacing U1:

U1′ Enumerate the edges as E = {e1, . . . , em} and choose m inte-
gers r1, . . . , rm ∈ {1, . . . , 100k} uniformly at random. Define the
extensor-coding ρ on V (G) ∪ E(G) by

vi 7→ φ(vi), ej 7→ rj .

The rest is the same, with ρ instead of φ.
The correctness argument is a routine application of polynomial

identity testing: The expression f(G; ρ) can be understood as the result
of the following random process. Introduce a formal ‘edge’ variable ye
for each e ∈ E and consider the expression∑

w1···wk∈P

yw1w2 · · · ywk−1wk
· φ(w1 . . . wk) (4.17)

as a polynomial of degree k in the variables ye1 , . . . , yem . In a directed
graph, every path is uniquely determined by its set of (directed) edges.
Thus, if P 6= ∅ then (4.17) is a nonzero polynomial. The walk-sum
f(G; ρ) is an evaluation of this polynomial at a random point ye1 =
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r1, . . . , yem
= rm. By the DeMillo–Lipton–Schwartz–Zippel Lemma

3.3.3, f(G; ρ) is nonzero with probability 1
100 .

4.4.2. Group Algebras

Let us very quickly recall that group algebras over a group G are the
formal linear combinations of group elements, thus having the group as
a basis, and having the algebra multiplication defined as the bilinear
extension of the group multiplication. For details, see Sect. 3.4.

If F has characteristic two, we can relate the exterior algebra to the
group algebra F [Zk2 ] as follows.

Proposition 4.4.2. Let F be of characteristic two and F k the free
vector space of dimension k with basis {e1, . . . , ek}. Then, the group
algebra F [Zk2 ] is isomorphic to Λ(F k).

Proof. We denote with ei ∈ Zk2 for i ∈ {1, . . . , k} the ith unit vector.
The morphism induced by mapping Λ(F k) 3 ei 7→ (1 + ei) ∈ F [Zk2 ] is
an isomorphism.

Remark 4.4.3. The previous proposition shows that over fields of
characteristic two, our exterior algebras specialize exactly to the group
algebras used by Koutis and Williams [Kou08; Wil09], and therefore, the
approach of using random edge-weights in the coding ρ from Sect. 4.4.1
specializes to Williams’ algorithm [Wil09] over fields of characteristic
two and sufficient size, albeit with deterministically chosen vectors
at the vertices, which of course also could be done randomly without
changing anything about the result.

Exterior Algebras as Quotients of Monoid Algebras

We have seen that the above group algebras are exterior algebras in
characteristic two, and now consider the other direction. For k ∈ N,
consider the free monoid E∗ over the generators E := {e1, . . . , ek, µ, θ},
and impose these relations on E∗: The element θ is a zero, i.e., θx =
xθ = θ for all x ∈ E∗, and µ central, i.e., µx = xµ for all x ∈ E∗,
and we shall have for all i that e2

i = θ. We further demand that
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4. Extensor-Coding Longest Paths

eiej = µejei and µ2 = 1E hold. Let S be the quotient of E∗ by these
relations, and consider F [S]. Let IS be the ideal generated by {θ, µ+1}.
Naturally in F [S]/IS , we have θ = 0 and µ = −1, and hence e2

i = 0 and
eiej = −ejei. Thus, F [S]/IS is precisely the exterior algebra over F k.
Hence, not only are the above-mentioned group algebras a special case
of an exterior algebra, but any exterior algebra arises as a quotient of
some monoid algebra. Note that this representation of exterior algebras
(and, more generally, Clifford algebras) as quotients of certain monoid
(or group) algebras is folklore.

4.4.3. Labeled Walks

Consider now λ, the extensor-coding for labeled walks. That is, let
ye be variables associated with each directed edge e ∈ E(G), and let
a vector of variables (x(1)

i , . . . , x
(k)
i )T be associated with each vertex

vi ∈ V (G). The superscript index is referred to as the label of a vertex
in a walk. Recall from Sect. 3.3 the following polynomial in the ye and
x

(j)
i :

P (x, y) =
∑

w1···wk∈W

∑
`∈Sk

k−1∏
i=1

ywiwi+1

k∏
i=1

x
`(i)
i , (4.18)

and the fact that over characteristic 2, the sum can be restricted to
paths instead of walks:

P (x, y) =
∑

w1···wk∈P

∑
`∈Sk

k−1∏
i=1

ywiwi+1

k∏
i=1

x
`(i)
i . (4.19)

We may now observe that the inner sum is just a determinant of
a suitably chosen matrix, namely the k × k matrix X(w1 · · ·wk) :=
(x(i)
wj )i,j indexed by pairs of numbers and vertices, and we can write

P (x, y) =
∑

w1···wk∈P

k∏
i=1

ywiwi+1 det(X(w1 · · ·wk)) .
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Here, the Matrix X(P ) for a path P ∈P plays precisely the rôle that
the matrix ΦP played in the proof of Theorem 4.3.8, just that this time,
it carries variable entries.

It is now easy to see that this is once again just the evaluation of the
circuit computing the k-walk extensor over characteristic two by the
property of the wedge product expressed in Equation (4.5). In short,
the walk-sum f(G;λ) for the extensor-coding λ achieves

f(G;λ) = P (x, y)

whenever F is of characteristic two.
This gives the connection between λ and ρ from Sect. 4.4.1 over

characteristic two, and by the remark in Sect. 4.4.2, also the connection
between the group-algebra approach, identifying the three techniques
as one.

4.4.4. Color-coding

Let us see how the Color-Coding-technique by Alon, Yuster, and Zwick
[AYZ95] can be seen as a special case of extensor-coding.

Consider a coding with with basis vectors of F k taken uniformly and
independently,

χ(v) ∈ {e1, . . . , ek} .

We may think of the basis vectors as k colors. Note that if P = w1 · · ·wk
is a path then its walk extensor χ(P ) vanishes exactly if the k×k-matrix
whose columns are the random unit vectors χ(w1) · · ·χ(wk) is singular.
Thus,

Pr(χ(P ) = 0) = k!
kk
≤ e−k .

We lift χ to χ : V (G)→ Λ2(F 2k), ensuring χ(P ) = {0 · e[2k], 1 · e[2k]},
to avoid cancellation.
Let us write Z(F k) for the subalgebra of Λ(F 2k) generated by

{e1, . . . , ek}, called the Zeon-algebra. It already made an appearance
in graph algorithms in the work of Schott and Staples [SS11].
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Lemma 4.4.4. Z(F k) is commutative and of dimension 2k, and its
generators ei square to zero. Furthermore, addition and multiplication
can be performed in 2k · poly(n) field operations.

Proof. Directly from the definition of the exterior algebra, ei ∧ ei = 0.
Furthermore,

ei ∧ ej = ei ∧ ei+k ∧ ej ∧ ej+k = −ei ∧ ej ∧ ei+k ∧ ej+k =

ej ∧ ei ∧ ei+k ∧ ej+k = −ej ∧ ei ∧ ej+k ∧ ei+k =

ej ∧ ej+k ∧ ei ∧ ei+k = ej ∧ ei ,

and therefore Z(F k) is commutative. It is readily verified that the
elements eI with I ⊆ [k] form a basis of Z(F k). By renaming ei as, say,
Xi, we recognize Z(F k) as the F -algebra of multilinear polynomials
in variables Xi, 1 ≤ i ≤ k with the relations X2

i = 0 for all 1 ≤ i ≤ k.
Addition is performed component-wise and can be done trivially in the
required bound. By standard methods, such as Kronecker substitution
and Schönhage–Strassen-multiplication (see, e.g., [GG13]), or more
directly, fast subset convolution [Bjö+07], multiplication of multilinear
polynomials modulo X2

i can be performed in Z(F k) in the required
time bound.

Thus, we can evaluate the walk-sum f(G;χ) in time 2k(n+m) poly(k).
Repeating the algorithm ek times we arrive at time (2e)k(n+m) poly(k),
as in [AYZ95].

We apply these constructions in a similar setting in Sect. 4.7.

4.4.5. Representative Paths

The idea to represent the Ω(nkk!) many k-paths in G by a family
of only f(k) poly(n) many combinatorial objects goes back to the
original k-path algorithm of Monien [Mon85]. Recent representative-
sets algorithms [Fom+16; Zeh15], including the fastest deterministic
k-path algorithms, follow this approach, maintaining representative
families of subsets of a linear matroid.
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One of those constructions is inspired by Lovász’s proof of the Two-
Families theorem, which is originally expressed in exterior algebra
[Lov77]. In fact, as pointed out by Marx [Mar09a, Proof of Lemma
4.2], the column vectors in the matroid representation are exactly
Vandermonde extensors. Fomin et al. [Fom+16, Theorem 1] develop
this idea in detail for k-path, but their presentation abandons the
exterior algebra and continues in the framework of uniform matroids.

For completeness, let us now state the deferred proof of Proposition
3.2.4, which we restate for convenience:

Proposition 3.2.4 (restated). Let F ⊆
(
U
p

)
, i.e., a set family contain-

ing only sets of size p. Then F has a q-representant of size
(
p+q
p

)
.

Proof of Proposition 3.2.4. Let U be of size n, enumerated as U =
{u1, . . . , un}, and let F ⊆

(
U
p

)
be a family of p-sets. Let k = p + q.

For ui ∈ U , let v(ui) = (1, i, i2, . . . , ik−1), and associate with A ⊆ U

the wedge product w(A) =
∧
u∈A v(u). Let S = {w(F ) | F ∈ F}, and

let B ⊆ S be a linear basis, composed only of elements of S, of the
subspace in Λp(Rk) spanned by S.

Since Λp(Rk) has dimension
(
k
p

)
, B is at most of size d, with d ≤

(
k
p

)
.

Denote with F ′ the subset of F , such that B is comprised of the
corresponding wedge products, i.e., B = {w(F ) | F ∈ F ′}. We claim
that F ′ q-represents F .
To see this, let A ∈

(
U
q

)
be disjoint to some B ∈ F . The set

{v(u)}u∈A∪B is then linearly independent, and consequently, w(A) ∧
w(B) = ±w(A ∪B) 6= 0. Enumerate F ′ as F ′ = {B1, . . . , Bd}. Since

B = {w(B1), . . . , w(Bd)}

is a basis of the space spanned by S, there are λ1, . . . , λd such that
w(B) =

∑d
i=1 λiw(Bi), and since w(A) ∧ w(B) 6= 0, at least for one i,

w(A) ∧ w(Bi) 6= 0, and therefore A and Bi are disjoint, as desired.

Let us go further than just using this connection to the exterior
algebra once, and then abandoning it alltogether and returning to the
combinatorial point of view: We give a relatively short and complete
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presentation of the representative set approach, entirely formulated
over the exterior algebra and reinterpreting the combinatorial perspec-
tive that was provided in Sect. 3.2 purely algebraically. This has
only expository value; the time bounds in this construction are not
competitive.

For a set R of walks and an extensor coding ξ to Λ(F k) we define
the extensor span 〈R〉 via

〈R〉 = span
(
{ ξ(R) : R ∈ R }

)
,

that is, 〈R〉 is the set of linear combinations over F of extensors viewed
as 2k-dimensional vectors. A set R of walks represents another set
P of walks if ξ(P ) ∈ 〈R〉 for all P ∈P. For p ∈ {1, . . . , k}, we write
Pp
v for the set of length-p paths of G that end in v. We will use the

Vandermonde coding φ for ξ.

Algorithm R (Detect k-paths using representative paths.) Given directed
graph G and integer k, this algorithm determines if G contains a k-path.
For each p ∈ {1, . . . , k} and v ∈ V (G), the algorithm computes a set
Rp
v of paths such that

φ(P ) ∈ 〈Rp
v 〉 for each P ∈Pp

v (4.20)

and
|Rp

v | ≤ 2k . (4.21)

R1 (First round.) Let p = 1. For each v ∈ V (G), set R1
v = {v}, the

singleton set of 1-paths.

R2 (Construct many representative walks.) For each v ∈ V (G), set

Qp+1
v =

{
Rv : R ∈ Rp

u and uv ∈ E(G)
}
. (4.22)

R3 (Remove redundant walks.) For each v ∈ V (G), set Rp+1
v = ∅. For

each Q ∈ Qp+1
v in arbitrary order, if φ(Q) /∈ 〈Rp+1

v 〉 , then add Q
to Rp+1

v . [Now φ(Q) ∈ 〈Rp+1
v 〉.]
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R4 (Done?) If p + 1 < k then increment p and go to R3. Otherwise
return ‘true’ if and only if Rk

v 6= ∅ holds for some v ∈ V (G).

Proposition 4.4.5 (Theorem 1 in [Fom+16]). Algorithm R is a de-
terministic algorithm for k-path with running time exp(O(k)) poly(n).

Proof. We need to convince ourselves that the invariants (4.20) and
(4.21) hold, and that the constructed sets Rp

v only contain paths
from Pp

v . For the size invariant (4.21), it suffices to observe that
〈Rp+1

v 〉 is a subspace of Λ(F k) and thus has dimension at most 2k.
Each element Q was added in Step R3 only if it increased the dimension
of 〈Rp+1

v 〉, which can happen at most 2k times.
We prove (4.20) by induction on p. For p = 1, we have P1

v = R1
v

for all v ∈ V (G) by Step R1. For the induction step, assume that p
satisfies φ(Pp

u) ⊆ 〈Rp
u〉 for all u ∈ V (G). Let v ∈ V (G) and consider a

path Puv from Pp+1
v . To establish the inductive claim, it remains to

show that φ(Puv) ∈ 〈Rp
v 〉 holds. Note that Pu belongs to Pp

u, so the
induction hypothesis implies φ(Pu) ∈ 〈Rp

u〉 . Thus, there are coefficients
a1, . . . , ad ∈ F and paths R1, . . . , Rd ∈ Rp

u such that

φ(Puv) = φ(Pu) ∧ φ(v) =

 d∑
j=1

aiφ(Ri)

 ∧ φ(v) =

d∑
j=1

aiφ(Ri) ∧ φ(v) =
d∑
j=1

aiφ(Riv) . (4.23)

From Ri ∈ Rp
u and uv ∈ E(G) we obtain Riv ∈ Qp+1

v by construc-
tion (4.22). If Riv is not a path, then φ(Riv) = 0 ∈ 〈∅〉 holds, which
implies that Riv is not added to Rp+1

v in Step R3. Thus Step R3 only
ever adds paths, which implies Rp+1

v ⊆Pp+1
v as required. Even if Riv

is path, we may not have Riv ∈ Rp+1
v . Nevertheless Step R3 ensures

that φ(Riv) ∈ 〈Rp+1
v 〉 holds at the end of the construction. Together

with expression (4.23), this shows that φ(Puv) belongs to 〈Rp+1
v 〉, so

that the representation invariant (4.20) holds.
It remains to prove the correctness of the algorithm. If the algorithm

outputs true, then ∅ 6= Rk
v ⊆Pk

v holds, and so there exists a k-path.
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On the other hand, if there exists some k-path, say P ∈ Pk
v , then

φ(P ) 6= 0 follows from Lemma 4.3.1 and the fact that the extensors φ(vi)
are in general linear position. We have φ(P ) ∈ 〈Rk

v 〉 by (4.20), which
implies that dim〈Rk

v 〉 6= 0 and Rk
v 6= ∅ holds. Thus the algorithm

correctly outputs ’true’.
For the running time, computation of Rp

v requires linear algebra on
2k × 2kn matrices over F. This can be done in time exp(O(k)) poly(n).

A more careful analysis of the linear and exterior algebra operations
yields an upper bound of 2ωk poly(n) ≤ 5.19k poly(n) on the running
time of algorithm R.

4.5. Random Determinants
Expressions for the higher moments of determinants of random matrices
are available in the literature since the 1950s, see [NRR54]. Such results
are considered routine, and follow from exercise 5.64 in Stanley [Sta99] or
the general method laid out on page 45–46 in Girko’s book [Gir90], but
we have found no presentation that is quite complete. For a judicious
choice of distribution, the arguments become quite manageable, so we
include a complete derivation.

Let B denote a random k × k matrix constructed by choosing every
entry independently and at random from the set {±

√
3, 0} with the

following probabilities:

Pr(bij = −
√

3) = Pr(bij =
√

3) = 1
6 , Pr(bij = 0) = 2

3 .

It is clear that every matrix entry satisfies Ebij = 0 and Eb2ij = 1
33 = 1

and Eb4ij = 1
39 = 3.

We will investigate the second and fourth moments of detB. By
multiplicativity of the determinant, we can write (detB)r = detBr.

To see
EdetB2 = k! (4.24)
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expand detB by the first row. If we write Bij for B with the ith row
and jth column deleted, we have

E detB2 = E
∑
i,j

(−1)i+jb1ib1j detB1i detB1j .

The sum extends over all choices of i, j ∈ {1, . . . , k}, but the only
nonzero contributions are from i = j. This is because for i 6= j, the
factor b1j detB1i detB1j depends only on variables that are independent
of b1i, and the latter vanishes in expectation. Thus,

EdetB2 =
∑
i

(−1)2iEb21iEdetB2
1i = kEdetB2

11 ,

because the distributions of detB1i for i ∈ {1, . . . , k} are the same.
This can be viewed as a recurrence relation for E detB2 as a function
of the dimension k, which solves to (4.24).

To show
EdetB4 = 1

2 (k!)(k + 1)(k + 2),

we use the same kind of arguments. Write fk for EdetB4. We have
f1 = Eb411 = 3 and can compute f2 = 12. For larger k, we expand the
first row of B to obtain

fk = EdetB4 =

E
∑
i,j,l,m

(−1)i+j+l+mb1ib1jb1lb1m det(B1iB1jB1lB1m) .

As before, if any of {{i, j, l,m}} differs from the others, the corresponding
term vanishes. The surviving contributions are of two kinds. Either
i = j = l = m, in which case the contribution is∑

i

(−1)4iEb41iEdetB4
1i = 3kEdetB4

11 = 3kfk−1 . (4.25)

Otherwise there are 3 ways in which the multiset {{i, j, l,m}} consists of
two different pairs of equal indices. The total contribution from these
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cases is

3
∑
i 6=j

(−1)2i+2jEb21iEb21jEdet(B2
1iB

2
1j) = 3k(k − 1)Edet(B2

11B
2
12) .

(4.26)
We continue by expanding B11 and B12 along their first column. This
is the second and first column, respectively, of the original B. To keep
the index gymnastics manageable, we briefly need the notation BI,J
for B without the rows in I and the columns in J.
The nonzero contributions are

Edet(B2
11B

2
12) = E

k∑
i=2

k∑
j=2

b2i2b
2
j1 detB2

{1,i},{1,2} detB2
{1,j},{2,1} .

We note that both b2i2 and b2j1 appear independently, because the
remaining submatrices avoid the first and second columns of B. Since
their expectations are unity, they can be removed from the expression.
For i = j, both matrices are the same, and the expression collapses to
(k − 1)fk−2. For i 6= j, we introduce the shorthand

Φ = Edet(B2
{1,i},{1,2}B

2
{1,j},{2,1}) (i 6= j) ,

observing that all these distributions are the same. We arrive at

Edet(B2
11B

2
12) = (k − 1)fk−2 + (k − 1)(k − 2)Φ . (4.27)

Combining (4.25), (4.26), and (4.27), we obtain

fk = 3kfk−1 + 3k(k − 1)2(fk−2 + (k − 2)Φ
)
. (4.28)

Using similar arguments from a different starting point, we obtain

fk−1 = EdetB4
11 = 3(k − 1)fk−2 + 3(k − 1)(k − 2)Φ , (4.29)

by expanding B11 along the second column; the manipulations rely on
the fact that in the definition of Φ, the order in which columns 1 and
2 are deleted plays (of course) no role. Combining (4.28) and (4.29)
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yields
fk = k(k + 2)fk−1

which solves to fk = 1
2 (k!)2(k + 1)(k + 2).

Remark 4.5.1. We can use this distribution in Sect. 4.3.6 in place
of the uniform distribution on {+1,−1}. The only thing we have to
keep in mind is that we still have to be able to perform arithmetic
operations in the field. While this is clear for ±1, our use of irrational
numbers here might create some confusion. However, note that we
only have to calculate with values coming from the field extension
Q[
√

3], which can be handled just like complex numbers in spirit (after
all, C = R[

√
−1]) by representing a number a + b

√
3 by the two

rational coordinates a, b, and performing multiplication according to
(a+ b

√
3)(c+ d

√
3) = ac+ 3bd+ (ad+ bc)

√
3.

4.6. Generalization to Subgraphs
In this section, we formally prove Theorem 4.1.1. We use the homomor-
phism polynomial as a tool for the computation, and we will evaluate
this polynomial over a commutative algebra A analogous to how this
was done in Sect. 4.3.6. For two graph H and G, let Hom(H → G)
be the set of all functions h : V (H) → V (G) that are graph homo-
morphisms from H to G. Then the following is the homomorphism
polynomial of H in G: ∑

h∈Hom(H→G)

∏
v∈V (H)

ζh(v) . (4.30)

The variables are ζv for all v ∈ V (G). We first show in §4.6.1 that
this polynomial has small algebraic circuits when the pathwidth or the
treewidth is bounded, and in §4.6.2 we prove Theorem 4.1.1.

4.6.1. Tree Decompositions

Fomin et al. [Fom+12b, Lemma 1] construct an algebraic circuit that
computes the homomorphism polynomial, based on a dynamic program-
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ming algorithm (e.g., [DST02]). We reproduce a proof for completeness.

Lemma 4.6.1. Let H and G be graphs with V (H) = {1, . . . , k} and
V (G) = {1, . . . , n}. There is an algebraic circuit C of size O

(
k ·

ntw(H)+1) (and an algebraic skew-circuit C of size O
(
k · npw(H)+1))

in the variables ζ1, . . . , ζn such that C computes the homomorphism
polynomial of H in G in the variables ζ1, . . . , ζn, that is, we have

C(ζ1, . . . , ζn) =
∑

h∈Hom(H→G)

∏
v∈V (H)

ζh(v) . (4.31)

The circuit can be constructed in time O(1.76k) + |C| · polylog(|C|).

We first need some preliminaries on tree decompositions. A tree
decomposition of a graph G is a pair (T, b), where T is a tree and b is
a mapping from V (T ) to 2V (G) such that, for all vertices v ∈ V (G),
the set { t ∈ V (T ) : v ∈ b(t) } is nonempty and connected in T,

and for all edges e ∈ E(G), there is some node t ∈ V (T ) such that
e ⊆ b(t). The set b(t) is the bag at t. The width of (T, b) is the integer
max{ |b(t)| − 1 : t ∈ V (T ) }, and the treewidth tw(G) of G is the
minimum possible width of any tree decomposition of G.

It will be convenient for us to view the tree T as being directed away
from the root, and we define the following mappings s, c, a : V (T )→
2V (G) for all t ∈ V (T ):

(separator at t) s(t) =

∅ , t is the root of T ,

b(t) ∩ b(s) , s is the parent of t in T ,
(4.32)

(cone at t) c(t) =
⋃

u is a descendant of t
b(u), (4.33)

(component at t) a(t) = c(t) \ s(t). (4.34)

Proof of Lemma 4.6.1. We first compute a minimum-width tree de-
composition (T, b) of H, for example using the O(1.76k) time algo-
rithm by Fomin and Villanger [FV12]. We can assume it to be a
nice tree decomposition, in which each node has at most two children;

74



4.6. Generalization to Subgraphs

the leaves satisfy b(v) = ∅, the nodes with two children w,w′ satisfy
b(v) = b(w) = b(w′) and are called join nodes, the nodes with one
child w satisfy b(v) = b(w) ∪ {x} and are called introduce nodes, or
b(v) ∪ {x} = b(w) and are called forget nodes.
Recall that c(v) is the union of all bags at or below node v in

the tree T. Let S ⊆ V (H) and π ∈ Hom(H[S] → G) be a partial
homomorphism from H to G. To make the inductive definition of
the algebraic circuit easier, we define the conditional homomorphism
polynomial as follows.

hom(H → G | π ) =
∑

h∈Hom(H→G)
h⊇π

∏
v∈V (H)

ζh(v) . (4.35)

The sum is over all homomorphisms h that extend π. With this defini-
tion, it is clear that

hom(H → G) =
∑

π∈Hom(H[S]→G)

hom(H → G | π ) (4.36)

holds. Moreover, if S is a separator of H, the connected components
of H − S conditioned on the boundary constraints π are independent.
More precisely, for all π ∈ Hom(H[S]→ G), we have

hom(H → G | π ) =
∏
i

hom(Hi → G | π ) , (4.37)

where H1, . . . ,H` is a list of graphs such that H1 ∪ · · · ∪H` = H holds,
V (Hi)∩V (Hj) = S holds for all i, j with i 6= j, and Hi−S is connected
for all i.
We will construct the final circuit recursively over the tree decom-

position (T, β). At node v of T, we construct algebraic circuits Cπv for
each π ∈ Hom(b(v)→ G) such that the following holds:

Cπv = hom(H[c(v)]→ G | π ) . (4.38)

Note already here that there are at most n|b(v)| ≤ ntw(H)+1 such
functions π. Since each Cπv represents a gate in our final circuit, and

75



4. Extensor-Coding Longest Paths

we will be able to charge at most a constant number of wires to
each gate, the number of gates and wires of C will be bounded by
O(|V (H)| · ntw(H)+1).

Leaf nodes. Let v be a leaf of T, which has c(v) = ∅, resulting in
the trivial circuit Cπv = 1 for the empty function π : ∅ → V (G). In-
deed, since H[c(v)] has no vertices, the empty function is the unique
homomorphism into G.

Introduce nodes. Let v be an introduce node of T. Let w be its
unique child in the tree. Suppose the vertex x ∈ V (H) is introduced at
this node, that is, b(w) ∪ {x} = b(v). Let π ∈ Hom(H[b(v)]→ G) be a
partial homomorphism at the bag of v. Then we define Cπv using the
circuit Cπ′w where π′ = π �b(w):

Cπv = Cπ
′

w · ζπ(x) . (4.39)

For the correctness, note that the right side of (4.41) is equal to

hom(H[c(w)]→ G | π′ ) · ζπ(x) (4.40)

by the induction hypothesis (4.38). Since x is the unique vertex in
c(v) \ c(w) and π extends π′ on x, the polynomial in (4.40) is equal to
hom(H[c(v)]→ G | π ).

Forget nodes. Let v be a forget node of T. Let w be its unique child
in the tree. Suppose the vertex x ∈ V (H) is forgotten at this node,
that is, b(w) \ {x} = b(v). Then the neighborhood of x is contained in
c(w). Let π ∈ Hom(H[b(v)]→ G). We define Cπv using the circuits Cπ′w
as follows:

Cπv =
∑
π′

Cπ
′

w . (4.41)

The sum is over all π′ ∈ Hom(H[b(w)]→ H) that agree with π on the
intersection b(v) ∩ b(w) of their domains. Since v is a forget node, this
intersection is equal to b(v). For the correctness, note that the right
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side of (4.39) is equal to∑
π′

hom(H[c(w)]→ G | π′ ) (4.42)

by the induction hypothesis (4.38). This is equal to hom(H[c(v)] →
G | π ) due to the conditioning formula (4.36). For the size bound, note
that x is the only vertex in b(w) \ b(v). Thus, the sum in (4.41) has n
terms, and so in this part of the construction we charge at most one
wire to each Cπ′w .

Join nodes. Let v be a join node of T with children w and w′

satisfying b(v) = b(w) = b(w′). Let π ∈ Hom(H[b(v)]→ G). We define
the circuit simply as

Cπv = Cπw · Cπw′ . (4.43)

For the correctness, note that b(v) is a separator for H[c(v)], and so
the induction hypothesis (4.38) together with the conditional inde-
pendence (4.37) yields the correctness. This part of the construction
introduces two wires which we charge to Cπv .
The final circuit is C = C∅r , where r is the root of T, the degen-

erate empty function is ∅, and we assume without loss of generality
that b(r) = ∅. As already discussed, we have O(|V (T )|ntw(H)+1) =
O(|V (H)|ntw(H)+1) gates Cπv , each of which is responsible for O(1)
wires incident to it.

Finally, note that if there are no join nodes, then (T, β) is a path
decomposition of H and the only multiplications occur in (4.39) and
involved at least one variable. Thus, when (T, β) is a minimum-width
path-decomposition, the algebraic circuit C constructed above is skew,
and has size O(knpw(H)+1).

4.6.2. Proof of Theorem 4.1.1 and 4.1.2

Theorem 4.1.1 (restated). There is a randomized algorithm that
is given two graphs H and G, and a number ε > 0 to compute an
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integer Ñ such that, with probability 99%,

(1− ε) · Sub(H,G) ≤ Ñ ≤ (1 + ε) · Sub(H,G) . (4.44)

This algorithm runs in time ε−2 · 4knpw(H)+1 · poly(k), where H has k
vertices and pathwidth pw(H), and G has n vertices.

Proof sketch. Let H, G, and ε > 0 be given as input. Let n be the
number of vertices of G. By Lemma 4.6.1, we can construct an algebraic
skew circuit C that computes the homomorphism polynomial of H in G.
The circuit has size O(knpw(H)+1) and satisfies:

C(ζ1, . . . , ζn) =
∑

h∈Hom(H→G)

∏
v∈V (H)

ζh(v) . (4.45)

Following exactly the setup of §4.3.6, we use the lifted Bernoulli
extensor-coding β : V (G)→ F 2k . We have

C(β(v1), . . . , β(vn)) = ±
∑

h∈InjHom(H→G)

∏
v∈V (H)

β(h(v)) , (4.46)

where InjHom(H → G) is the subset of Hom(H → G) that consists of
all homomorphisms that are injective. Now we use Algorithm C, except
that we replace f(G;β) with C(β(v1), . . . , β(vn)). The rest goes through
as in Theorem 4.3.5. Note that this approach using (4.46) actually
approximates the number of injective homomorphisms, which however
gives rise to an approximation (of the same quality) for Sub(H,G) when
we divide by the size |Aut(H)| of the automorphism group of H. The
size of the automorphism group of H can be computed in advance, in
time O(1.01k), by a well-known poly(k)-time reduction to the graph
isomorphism problem [Mat79], which in turn can be computed in
time exp(poly log k) ≤ O(1.001k) [Bab16]. For the running time of
the modified Algorithm C, note that C is a skew circuit, and skew
multiplication in Λ(F 2k) takes time O(4k). Thus, the overall running
time is O(ε−24k|C|).

Theorem 4.1.2 in the case of paths is established through Theorem
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4.3.8. For the more complicated case of general subgraphs, we can
modify the polynomial (4.30) analogously so that it involves also the
edge variables. By suitable modifications of the dynamic program that
computes the corresponding circuit, Theorem 4.1.2 is established.

4.7. Proof of Theorem 4.1.3
In this section, we prove Theorem 4.1.3. This will follow by an applica-
tion of our algebraic interpretation of color-coding from Sect. 4.4.4. In
particular, we will again make use of the Zeon algebra Z(F k).
The next proposition is a trivial consequence of Lemma 4.4.4.

Proposition 4.7.1. For any integer t > 0, an arithmetic circuit C over
Z[ζ1, . . . , ζn] can be evaluated over Z(Qt) in 2t · |C| · poly(n) operations
over Q.

We are ready for the proof:

Proof of Theorem 4.1.3. We invoke Proposition 4.7.1 with Hüffner et
al.’s [HWZ08] choice of t = 1.3k. One evaluation costs 2.4623k · |C| ·
poly(n) operations over Q. The classical color-coding approach would
evaluate C at the generators ei, where 1 ≤ i ≤ t is chosen uniformly at
random. In this way, all non-multilinear terms will vanish, but distinct
monomials might cancel when being mapped to the same product of
ei. To avoid this, we randomly scale each generator, and plug in αi · ej
at the ith input of the circuit, for random αi ∈ {0, 1, . . . , 100 · k} and
random 1 ≤ j ≤ t. The circuit C then evaluates to some multiple of
et, and the coefficient of et in the result is a multilinear polynomial
in the αi, 1 ≤ i ≤ n. By the DeMillo–Lipton–Schwartz–Zippel Lemma
3.3.3, the polynomial evaluates to something non-zero with constant
probability of 99%. Following Hüffner et al. [HWZ08, Theorem 1] (cf.
Sect. 3.1.3), the probability that some multilinear term maps to a
multiple of the t generators is at least Ω(1.752−k), and we derive the
total running time of 4.32k · |C| · poly(n) operations in Q. Now, if the
circuit can be evaluated over Z in polynomial time (i.e., all numbers
stay of appropriate size), this costs only a polynomial overhead, and
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the claim follows. However, by repeated squaring, the circuit C may
generate numbers of value 22n

, so we calculate modulo some random
prime. Numbers of bitlength O(2n) may have up to O(2n) prime factors,
so choosing a random prime p from the first Ω(n2n) primes, we find
a value for p such that the resulting coefficient doesn’t vanish modulo
p with probability 1 − o(1). By the prime number theorem, the first
n2n primes are of magnitude 2n poly(n), and we can thus randomly
pick a number from {1, . . . , P}, where P = 2n poly(n), until we find
a prime (which can be tested in randomized polynomial time). Then
we perform all the above calculations modulo p (trivially, this can be
done in time poly(n)), and if the result doesn’t vanish, the polynomial
doesn’t vanish over Z. On the other hand, if it vanishes, we might have
had bad luck, but as argued, this only happens with probability 1/n,
which is fine.
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5. Faster Deterministic
Algorithms

5.1. Introduction
We have seen the prime application of Extensor-Coding to the longest
path problem in the previous chapter. Despite yielding an interesting
and conceptually very simple deterministic algorithm for this problem
(cf. Proposition 5.3.4), the technique does not seem to give improve-
ments over the state-of-the-art in this setting.
In this chapter, we will consider a range of problems where the

method does give improved deterministic fixed-parameter tractable
algorithms, or even the first fixed-parameter tractable algorithms at
all.
To this end, we start from a novel and natural variant of the ubiq-

uitous multilinear detection problem on polynomials computed by
arithmetic circuits that is more general than the very well-studied case
of cancellation-free circuits. This leads us to a rather generic approach
of patching, if you will, algorithms involving Color-Coding, by replacing
the Colors used in the algorithm by Extensors, i.e., elements of the
exterior algebra. This then yields an exponential speed-up.

5.1.1. Results

The algorithmic problems we study are the following: The k-internal
out-branching (k-IOB) problem asks for the existence of an out-branching
(also called a directed spanning tree or arborescence, among others)
with at least k internal, i.e., non-leaf, nodes. The k-internal span-
ning (k-IST) tree problem is formulated analogously for undirected
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graphs. A subset of edges in an edge-colored graph is k-colorful if it
contains edges of at least k distinct colors, and the definitions of the
problems k-colorful perfect matching and the k-colorful out-branching
are self-evident.

Our algorithmic advances in these problems are borne by progress in
another domain: The k-multilinear detection (k-MLD) problem has as
an input a multivariate polynomial represented through an arithmetic
circuit, and asks whether the polynomial contains a monomial of degree
k in which no variable appears with degree more than one. We focus
our attention on the restriction of the problem to those instances
where a multilinear monomial may only appear with positive coefficient.
Since there is no known way to efficiently test this property, this
turns the problem into a promise problem. The promise, however,
is typically satisfied in combinatorial applications, where the studied
polynomials are usually multivariate generating functions of the sought
combinatorial objects. The decisive subtlety here is that, while the
polynomial that is computed by the input circuit may not have negative
coefficients in its multilinear part, the circuit itself may very well
contain negative constants and make use of cancellations, and, in
particular, it need not be monotone. We will make heavy use of this
property in the above application problems, and it is decisive here for the
following reason: These problems can be expressed using determinantal
generating functions, and by a theorem of Jerrum and Snir [JS82],
determinants do not have monotone circuits of subexponential size, such
that cancellations are actually crucial for their efficient computation.
To the best of our knowledge, this is the first fixed-parameter tractable
algorithm for the problem.

We prove the following deterministic, exponential-space record time
bounds, and defer the reader to Sect. 5.3 for a formal statement of the
theorem.

Theorem 5.1.1 (Informal). There are deterministic algorithms to
solve

1. the k-internal out-branching problem and the k-internal spanning
tree problem in time 3.21k · poly(n), and
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2. the k-colorful perfect matching problem on planar graphs and the
k-colorful out-branching problem in time 4k · poly(n).

Furthermore, there is a deterministic algorithm that solves the re-
striction of the multilinear detection problem to circuits computing
polynomials with positive coefficients in their multilinear part (as laid
out above) in time 4k · poly(n) on skew arithmetic circuits, and in
time 2ωk · poly(n) < 5.19k · poly(n) on general circuits, where ω is the
exponent of matrix multiplication.

Remark 5.1.2. The bound of 5.19 is not competitive; indeed it is
easy to prove that an exponential basis of 4.312 can be obtained using
a derandomization of Color-Coding, and Pratt [Pra18; Pra19] gives
a randomized algorithm achieving 4.075. Note, however, that our
bound depends on ω, and one can make the point (albeit moot in the
foreseeable future) of this dependency making our bound potentially
competitive.

Remark 5.1.3. Skewness, i.e., the syntactic restriction of each mul-
tiplication gate having an input as an operand seems rather strong
at a first glance. At a second glance, this impression does not hold
up: Without concerning ourselves with the technicalities of algebraic
complexity theory, suffice it to say that the polynomials that can be
computed by efficient skew circuits are precisely those that are efficient
projections of determinants, and determinantal generating functions
are known for a variety of combinatorial objects. Equivalently, they are
those polynomials that are computed by efficient algebraic branching
programs (which is a widely studied and very natural computational
model). Therefore, skew circuits are not as restrictive as it might seem.

The algorithms for the problems of detecting a k-internal as well as
k-colorful out-branching (and spanning tree) are established, as demon-
strated by Björklund et al. , via the Directed Matrix-Tree Theorem
[BKK17]. We reuse the meticulous and very careful analysis of the
parallel monomial sieving technique by Gutin et al. [Gut+18]. We
can relatively easily replace the employed pseudorandom objects by

83



5. Faster Deterministic Algorithms

extensors. This suggests a rather generic way in which to speed up
algorithms based on Color-Coding by instead using Extensor-Coding.
As far as the k-colorful planar matching problem is concerned, as

in [Gut+18], we use a Pfaffian computation. However, we cannot
perform the square root extraction that is necessary to make use of the
determinantal identites for the Pfaffian, but rely on a result of Flarup et
al. [FKL07] for a direct computation of Pfaffians with skew arithmetic
circuits.

5.1.2. Related work

The k-internal out-branching and spanning tree problems have attracted
a significant amount of attention over the last years [Fom+12a; Gut+18;
Bjö+17b; BKK17; Li+17; Zeh17; Zeh15; Fom+13; Dal11; Coh+10;
GRK09; FGR09; PS05]. The current deterministic record bounds for
all the abovementioned graph problems were recently given in Gutin
et al. [Gut+18], using monomial sieving in combination with Color-
Coding and suitable pseudorandom objects. The bounds they obtain
(in the exponential-space setting) for the k-internal out-branching and
spanning tree problems are 3.41k · poly(n), and 4.32k · poly(n) for the
k-colorful perfect matching and out-branching problems.
The detection of k-multilinear terms in polynomials computed by

arithmetic circuits lies at the heart of the design of the fastest ran-
domized algorithms for a host of parameterized problems, such as the
longest path problem, the k-tree problem, the t-dominating set problem
and the m-dimensional k-matching problem, with a record bound of
2k · poly(n) for randomized k-multilinear detection [KW16; Wil09].
The crux is that, for the arithmetic circuits in these algorithms, it is
required that they be monotone, i.e., do not involve any cancellations of
terms. On this class of monotone arithmetic circuits, the k-multilinear
detection problem can be solved deterministically in time 3.85k ·poly(n),
using the combinatorial notion of representative sets [Fom+14].
Recently, the first fixed-parameter tractable randomized algorithms

were developed for the problem on general arithmetic circuits [BDH18],
which has sparked further work in the area, announcing a polynomial-
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space version and 4.08k · poly(n) as a new record bound on general
circuits [Arv+18b; Arv+18a; Pra18; Pra19].

5.2. Monomial Detection Problems
We will first give a rather direct, but very useful application to the
multilinear detection problem in a special case. Recall that the general
problem presents itself as follows: As input, it obtains a multivariate
(and now again commutative) polynomial f ∈ C[X1, . . . , Xn] in n

indeterminates, encoded as an arithmetic circuit. Our task is now to
decide whether or not f contains a monomial of degree k such that no
indeterminate appears twice.
A variation of this is to ask whether f contains a monomial such

that at least k distinct indeterminates appear in it.
In this chapter, we restrict our attention to a semantically defined

subclass of arithmetic circuits: Those that compute a polynomial f
such that every multilinear monomial that appears in f does so with
positive coefficient. It is crucial to note that this does not mean a
monotonicity restriction for the input circuit, and it may well involve
cancellations of terms and negative constants. Let us formally define
the set of circuits we are interested in:

Definition 5.2.1. Let C be an arithmetic circuit. We call C combina-
torial if the polynomial computed by C has non-negative coefficients
on its multilinear part, and C can be evaluated over Z at numbers of
absolute value at most τ using poly(τ) bit operations.

We remark that the last condition of this definition is a barely
concealed crutch to avoid having to think about subtleties regarding
a possible doubly exponential blowup of inputs in general arithmetic
circuits, which are irrelevant in our applications. For a very similar
reason, we only speak about evaluation over Z; namely, in order to
ignore potential issues with representations of complex numbers.
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5.2.1. Multilinear Detection

As promised, we will now start out with an easy application of Extensor-
Coding. Speaking of promises, it is in order to remark that the problems
discussed henceforth are promise problems, in the sense that there is
no known efficient method of checking whether an input circuit satisfies
the condition of being combinatorial.

We state the upcoming Theorem 7.5.2, which we state here without
proof:

Theorem 7.5.2. Given two elements x, y ∈ Λ(Ck) as a list of basis
coefficients, their product x ∧ y ∈ Λ(Ck) as a list of basis coefficients
can be computed using 2ωk/2 · poly(k) arithmetic operations over C.
Additionally, if the size of coefficients of x and y is bounded by 2τ ,

then their product can be computed in 2ωk/2 · poly(τ) bit operations.

This is enough to prove:

Theorem 5.2.2. There is a deterministic algorithm that, given a
combinatorial arithmetic circuit C of size s and an integer k, decides
whether or not the polynomial computed by C contains a multilinear
monomial of degree k in time 2ωk · poly(s) < 5.19k · poly(s).

Proof. Consider the lifted Vandermonde coding φ, and assume that the
polynomial computed by C is n-variate.
The algorithm then simply evaluates C at (φ(1), . . . , φ(n)), and

outputs ‘yes’ if and only if the coefficient of e[2k] in the resulting
element of Λ(V ⊕ V ) is non-zero.

The running time is immediate from the definition and the upcoming
Theorem 7.5.2, and correctness can be seen as follows. We first have
to take care of the fact that our algebra is not commutative, strictly
speaking, but nevertheless we evaluate a commutative polynomial over it.
This is remedied either by a standard degree-k homogenization argument
on C, and, depending on k, a subsequent single sign correction of the
result. Alternatively, one can observe that the signs are consistent
across each degree individually, and monomials of different degrees
are linearly independent, so that the different signature arising when
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evaluating over the image of φ will not make a difference. As a third
alternative, we can instead consider elements φ(c)⊗ φ(c) ∈ Λ(Ck)⊗2,
which generate a commutative subalgebra. This will become important
in Chap. 8.

From the fact mentioned in the discussion about Vandermonde cod-
ings, every monomial containing an indeterminate twice will vanish.
The parts of degree less than k do not enter into the coefficient of e[2k],

and parts of degree more than k will go to zero anyways. Now, let
L be the set of multilinear monomials in the polynomial computed
by f. Each such monomial m identifies a subset of {1, . . . , n}, and by
abuse of notation, we will not distinguish between a monomial and a
subset. Furthermore, we denote with cm the coefficient of m, which
is non-negative by the assumption on C, and let Vm be the 2k × 2k
matrix (φ(i))i∈m. Then the coefficient of ee[2k] can be seen to be equal
to
∑
m∈L cm · det(Vm)2, which is non-zero if and only if one of the

determinants is non-zero. This in turn happens if and only if there
is a multilinear monomial of degree k in the polynomial computed by
C.

We also obtain the more useful skew variant:

Theorem 5.2.3. There is a deterministic algorithm that, given a skew
combinatorial arithmetic circuit C of size s and an integer k, decides
whether or not the polynomial computed by C contains a multilinear
monomial of degree k in time 4k · poly(s).

Proof. Follows verbatim like Theorem 5.2.2 after replacing Theorem
7.5.2 by Proposition 4.2.1.

Remark 5.2.4. Unlike Theorem 5.2.2, this bound is actually compet-
itive, and we are not aware of a possibility to exploit skewness using
other approaches.

5.2.2. k-Distinct Detection

We will now turn to the monomial detection problem that will later on
be used in applications, namely the k-distinct detection problem. Again,
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the input here is an arithmetic circuit, but this time, the task is to
decide whether there exists a monomial containing at least k distinct
indeterminates. Using the folklore trick of replacing every variable xi
by 1 + t · xi with a formal indeterminate t, turning a nilpotent variable
xi into an (almost) idempotent one, and then extracting the coefficient
of tk, we obtain:

Theorem 5.2.5. There is a deterministic algorithm that, given a skew
combinatorial arithmetic circuit C of size s that computes a polynomial
that only has non-negative coefficients, and an integer k, decides whether
or not the polynomial computed by C contains a monomial with at least
k different variables in time 4k · poly(s).

Proof. Add after every input gate xi a gate of the form 1 + txi, where
t is a fresh formal indeterminate commuting with everything. Since
(1 + txi)2 = 1 + 2txi + t2x2

i , when plugging in extensors, we are left
with 1 + 2txi, since the square vanishes. Therefore, in an arbitrary
s-product, when x2

i = 0 for all i, we have

s∏
i=1

(1 + txi) =
∑

S⊆{1,...,s}

t|S|
∏
s∈S

xs

and this is non-zero in t-degree k if and only if there is one term con-
taining at least k different variables. Note that if C was combinatorial,
it will again be combinatorial after applying this modification. Since
all appearing coefficients are positive by assumption, this substitution
will not introduce unwanted cancellations. It also keeps the circuit
skew (or at least, it can be easily made skew again). We can then just
apply the algorithm for multilinear detection from before, noting that
arithmetic in this new ring with t adjoined, for the skew case, can again
be performed in the required time bound.

Equipped with these observations, we may now turn to our application
problems.
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5.3. Graph Problems
We will make use of the classic Directed Matrix-Tree Theorem, following
the presentation in [BKK17]. Let us first define the Laplacian of a
directed graph G = (D,A). To this end, let X = {xa | a ∈ A} be a set
of formal indeterminates labeled with the arcs of a graph, and define
the matrix L = (`uv)u,v∈V through

`uv =


∑
w∈V :wu∈A xwu if u = v

−xuv if uv ∈ A

0 if uv /∈ A

.

After fixing a root r ∈ V, we will consider Lr, the Laplacian punctured
at r, which is defined as the matrix obtained from L by striking row r

and column r. With these definitions in place, we have the following
well-known theorem, and just as [BKK17], we refer to the corresponding
chapter of Gessel and Stanley in the Handbook of Combinatorics [GS95]
for a proof.

Theorem 5.3.1 (Directed Matrix-Tree Theorem). Let G = (D,A) be
a directed graph. For all r ∈ V, the following holds.

detLr =
∑

T = (V,B) is an
out-branching of G

rooted at r

∏
b∈B

xb .

In other words, the determinant of Lr is the multivariate generating
function of the set of out-branchings rooted at r. The important insight
is now the following: All known (randomized) efficient algorithms for
detecting k-multilinear terms—and, by extension, k-distinct terms—in
the polynomial computed by an arithmetic circuit rely on this circuit
not involving cancellations in their computation, i.e., they need to be
monotone.

However, by a theorem of Jerrum and Snir [JS82], computing detLr
using such a monotone circuit requires circuits of exponential size in n.
On the other hand, there are efficient skew arithmetic circuits (this
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time with cancellations) for computing the n× n determinant polyno-
mial:

Theorem 5.3.2 ([Tod92]). There is a family of skew arithmetic circuits
(Cn)n∈N such that Cn computes the n× n determinant polynomial, and
the size s(n) of Cn satisfies s(n) ≤ poly(n). Furthermore, there is an
algorithm that, upon input 1n, outputs a description of Cn in time
poly(n), and every circuit can be evaluated over Z in polynomial time
in the length of the input representation.

In fact, the n×n determinant polynomial is complete—for a suitable
notion of reduction—for the adequately named class VDET of poly-
nomial families computable by poly(n)-sized skew arithmetic circuits,
defined ibid. Importantly, this together with the Matrix-Tree Theorem
5.3.1 also shows that detLr is a combinatorial polynomial.

5.3.1. Out-Branchings

Let us now proceed gently with a first application of what we have
gathered so far.

Theorem 5.3.3. There is a deterministic algorithm that, given a
directed edge-colored graph D on n vertices and an integer k, decides
whether D has a k-colorful out-branching in time 4k · poly(n).

Proof. First, replace every variable xa by a fresh variable corresponding
to its color c(a), say yc(a), and denote the corresponding symbolic matrix
with Lr(y). Since detLr is combinatorial and skew, so is detLr(y),
and we can perform the k-distinct detection from Theorem 5.2.5 in the
claimed running time. The existence of a monomial with k distinct
variables in detLr(y) is now clearly equivalent to the existence of a
k-colorful out-branching in D.

Theorems 5.3.1, 5.3.2 and Theorem 5.2.5 immediately yield a deter-
ministic algorithm for the problem, running in time 4k · poly(n). We
note that this is already a significant improvement over the time bound
of 5.14k · poly(n) on the runner-up algorithm of [Zeh15].
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Proposition 5.3.4 (Superseded by [Gut+18]). There is a deterministic
algorithm that, given a directed graph D on n vertices and an integer k,
decides whether D has a k-internal out-branching in time 4k · poly(n).

Proof. First, replace every variable xuv be a fresh variable corresponding
to its tail, say yu, and denote the corresponding symbolic matrix with
Lr(y). Since detLr is combinatorial and skew, so is the n-variate
polynomial detLr(y), and we can perform the k-distinct detection from
Theorem 5.2.5 in the claimed running time. It has been observed by
Björklund et al. [BKK17] that this is neatly equivalent to the input
instance containing a k-internal out-branching.

To speed this up, we can more or less just plug in an Extensor-Coding
into the analysis from [Gut+18] and set a new record bound for the
k-internal out-branching problem.

Theorem 5.3.5. There is a deterministic algorithm that, given a
directed graph D on n vertices and an integer k, decides whether D has
a k-internal out-branching in time 3.22k · poly(n).

The corresponding results for k-internal spanning trees of undirected
graphs follow immediately by standard reductions to the directed case
(see [Gut+18]).

Proof. We follow very closely the proof of Theorem 9 in [Gut+18], and
refer the reader thither for all necessary definitions and terminology.

There, Gutin et al. iterate over a set of splitters and color a subset of
the variables, (namely the vertices that are not contained in a particular
perfect matching), of the associated Matrix-Tree determinant according
to the current splitter in each iteration.
Then, they apply a monomial sieving argument on the remaining

variables, but do so in an efficient fashion: Instead of iterating through
all of the subset lattice of the set of variables of each considered
monomial every time, one can make use of the union of the subset
lattices having large intersections, and compute the sieving in time
proportional in the number of subsets that are sieved over in total. This
was shown by Björklund et al. [Bjö+10].
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The approach we choose is slightly different: Instead of using a splitter
to color the variables (which are called yi in [Gut+18]), we assign to
those variables values similar to Vandermonde codings, just as we do it
with the inputs of the circuit in our algorithm for k′-distinction in the
proof of Theorem 5.2.5. We leave the remainder of the indeterminates,
which are labelled xi in [Gut+18], intact. The coefficient of e[2k] in
the resulting expression is then again a polynomial in the remaining
variables xi, and we then use the trimmed monomial sieving technique
(i.e., compute the different evaluations of QF (X,Y ) in the language of
[Gut+18]).
The running time analysis from [Bjö+10] then has to be adapted

slightly: Of course, the bounds on the size of Jc are still valid. However,
the factor corresponding to the size of the splitter and 2α?k′ , whose
product is bounded by 4.312k′ , becomes irrelevant. Instead, we have
to take into account the cost of computation when evaluating the QF .
The evaluation of the appearing determinants QF can be performed
in time 4k′ , as argued in Sect. 5.3. Effectively, this replaces the factor
4.312 by a factor of 4, and this leads to the claimed time bound.

5.3.2. Colorful Planar Perfect Matchings

Just like out-branchings, perfect matchings in planar graphs have
an efficiently computable multivariate generating function, namely
the Pfaffian Pf A of a suitable skew-symmetric matrix A. Gutin et
al. [Gut+18] employ a determinantal identity for the Pfaffian, and do so
by evaluating the determinant polynomial in question over the integers
in a black-box fashion. Namely, they exploit that Pf(A)2 = det(A).
In the very last step, this requires a square root extraction, which is
a perfectly viable path over the integers, but not over more general
algebras. Therefore, instead of construing Pf(A) as

√
det(A), we rely on

an observation of Flarup et al. [FKL07], who show that the Pfaffian has
efficient skew circuits. Putting this together, we immediately obtain:

Theorem 5.3.6. There is a deterministic algorithm that, given an
undirected edge-colored planar graph G on n vertices and an integer k,
decides whether G has a k-colorful perfect matching in time 4k ·poly(n).
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6. Introduction

Die Linie ist ein Punkt, der spazieren geht.1

Paul Klee

The algorithms of the first part relied heavily on computations in the
exterior algebra. In this part, we will consider in detail the algebraic
foundations of these algorithms. We will do so in two directions:
On the one hand, we will consider the more general problem of

computing arbitrary wedge products. Despite this operation’s pervading
all of multilinear algebra, to the best of our knowledge, there is no
explicit account of how to perform it quickly. We address this gap
in the literature and give a streamlined account of the best known
method to compute the wedge product. Unfortunately, we are not able
to improve upon the state-of-the-art, and leave this as a challenging
open problem. All this is done in Chapt. 7.
On the other hand, we consider a more specialized algebraic object,

which arises naturally from a more detailed analysis of the Extensor-
Coding method. Namely, this is a subalgebra of the tensor square of an
exterior algebra, generated by certain elements associated with points on
the rational normal curve. We determine precisely the Hilbert function
of this (commutative) subalgebra, and to do so, give a description as
a quotient of a polynomial algebra. We finally sketch some recently
uncovered connections to apolar algebras that are outside the scope of
this thesis. This is done in Chapt. 8.

1“The line is a point taking a walk.”
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Algebra

Generally speaking, the question for the complexity of multiplication
in some fixed algebra is classic within algebraic complexity theory, and
we refer the reader to the equally classic book of Bürgisser, Clausen
and Shokrollahi [BCS97] for a thorough introduction to this field.

In this thesis, we have previously seen a variety of algorithmic appli-
cations of the exterior algebra, all employing Extensor-Coding. One
obstacle to make this technique competitive for a wider range of prob-
lems is the efficient implementation of the multiplication map in the
exterior algebra, which we will now study.

Formally, we will consider the following problem. Let k be a natural
number, and let x, y be two elements of the exterior algebra Λ(Ck), given
as a list of coordinates, such that each coordinate can be represented
using at most τ bits. What is, in terms of k and τ, the complexity
of performing the multiplication in Λ(Ck), i.e., computing the list of
coefficients of the wedge product x ∧ y?
By the sheer input size (recall that x and y have 2k coordinates

each), this complexity bound will be of the form ck · poly(τ) for some
constant c ≥ 2. More precisely, we are mostly interested in determining
a good upper bound for c, and since constant factors are hidden in the
poly(τ)-term, we may without loss of generality assume that k is even,
say with k = 2s.
In this chapter, we will give a streamlined account of the state-of-

the-art for this problem, summarizing and simplifying several related
results. In particular, we will give a unified and explicit account of
the results implicit in the works of Leopardi [Leo+05] and Włodarczyk
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[Wło16].
We will first turn to introducing a new family of algebras related

to the exterior algebra, which are called Clifford algebras, and detail
the algorithms that can be used to permorm multiplication in these
algebras. Then, we will shed some light on this relationship and see
how exterior algebras can be obtained from Clifford algebras. Finally,
we will put this relation to use to obtain the best known algorithms for
performing the multiplication in the exterior algebra, i.e., the wedge
product. Afterwards, we will also spell out the relation between the
well-known and fundamental techniques for computing different kinds
of subset convolutions.

7.1. Complex Clifford Algebras
Let us first introduce a family of algebras, Clk(C) for k ∈ N, the
complex Clifford algebras. There is a rich and very general theory about
these algebras, but we concern ourselves mainly with one special case
that is most relevant in all applications. We will proceed as concretely
as possible with our definition of Clk(C), reminiscient of the way the
exterior algebra was introduced back in Subsection 4.2.1. Since our
algorithms will concern only complex Clifford algebras, we will restrict
our attention to this case. In fact, as a linear space, Clk(C) and
Λ(Ck) are indistinguishable: We again extend Ck with standard basis
{e1, . . . , ek} to a 2k-dimensional vector space Clk(C) by defining the
basis vectors eI of Clk(C) by a subset I of indices from {1, . . . , k}.
By still confusing ei with e{i} for i ∈ {1, . . . , k}, we can view Ck as a
subspace of Clk(C) spanned by the singleton basis vectors.
The way in which Clk(C) is turned into an algebra is very similar

to the case of Λ(Ck). Indeed, we define a multiplication, denoted by
the ordinary symbol · or by juxtaposition of factors, on the elements
of Clk(C) just as in the case of Λ(Ck) (i.e., associative, multilinear
etc.), with only one crucial difference: On a pair of basis vectors
eI and eJ , we set eI · eJ = ±eI∆J , where ∆ is the symmetric set
difference. To determine the sign, note that sgn (I, J), defined as the
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sign of “the” permutation that brings the sequence i1, . . . , ir, j1, . . . , js
into increasing order, is now not well-defined anymore: It can now
happen that it = ju for some t, u, and in this case, we can produce
at least two permutations of differing parity by swapping it and ju.

To this end, we extend the definition of sgn (I, J) for non-disjoint I
and J to refer to what is known as a stable ordering in algorithms: In
the permuted sequence, is is required to appear before jt whenever
it = ju. Then, sgn (I, J) is the parity of the permutation that brings
i1, . . . , ir, j1, . . . , js into this order.
This retains the property of the exterior algebra that e1 ∧ e2 =

−e2 ∧ e1. Altering the example given for the exterior algebra, we can
calculate for instance (e1 · e3) · (e4 · e1) = e1e3e4e1 = −e1e3e1e4 =
e1e1e3e4 = e3e4 .

From a computational point of view, it is trivial to add and scale
elements of Clk(C), just as it was for Λ(Ck), by using component-wise
operations. We record this as a proposition.

Proposition 7.1.1. Let A be any one of Clk(C) or Λ(Ck). For any
two elements x, y ∈ A and λ ∈ C given as a list of basis coefficients, the
sum x+y and the scalar multiple λ ·x can be computed in 2k arithmetic
operations over C

Additionally, if the size of each coefficient of x, y and λ are of bitlength
bounded by τ, then the sum x+ y and the scalar multiple λ · x can be
computed in 2k · poly(τ) bit operations.

In the remainder of this chapter, we will study the question of how
to efficiently multiply two arbitrary elements of Clk(C) or Λ(Ck). To
reiterate, this means mainly determining a good upper bound c for the
running time bound ck · poly(τ) to perform this product on elements
with coefficient length bounded by τ. Trivial exhaustive application of
the distributive law and the rules of multiplying basis elements (of both
Clk(C) and Λ(Ck)) yields c ≤ 4. A slightly less trivial approach can be
used to bring this down to c ≤ 3, by spending roughly 2i time for the
computation of the coefficient of some basis element that is composed
of i generators, and hence

∑k
i=0
(
k
i

)
2i = 3k time in total.
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Improving over this will lead us to considering so-called represen-
tations of Clk(C): As a useful analogy, recall that every finite group
G is isomorphic to a subgroup of the group of permutations on the
symbols G. This goes by realizing that for each fixed g ∈ G, the left
multiplication G→ G, x 7→ gx is itself a permutation on G. Similarly,
every finite dimensional algebra A is isomorphic to a subalgebra of
the full matrix algebra of dimA× dimA matrices, since for each fixed
a ∈ A, the left multiplication map A → A, x 7→ ax is linear, which
yields the sought isomorphism after choosing a basis for A. Note that
the dimension of the full matrix algebra is dim(A)2, i.e., we are actually
constructing an isomorphism to a dimA-dimensional subalgebra of
CdimA×dimA, which, in our case, will turn out to be isomorphic to a
full matrix algebra of matrices of size

√
dimA ×

√
dimA, say via an

isomorphism ρ : A→ C
√

dimA×
√

dimA.

The idea is now to make use of this: We can hope to be able to
compute efficiently the isomorphism ρ and its inverse, meaning in time
roughly linear in dim(A) and the representation length of the input
coordinates. In this case, to multiply two elements with coordinates
of bitlength τ of A given by their basis representation, it suffices to
compute their images in the matrix algebra under ρ, then multiply two
matrices using fast matrix multiplication, and then invert ρ on the result
to get back an element of A as a list of basis coefficients. This takes time
dim(A)ω/2 poly(τ) in total, which in the case of A = Clk(C) results in
an algorithm using 2ωk/2 · poly(τ) bit operations, i.e., c ≤ 2ω/2.

Let us remark that the recent breakthrough result of Umans [Uma19]
on generalized Fast Fourier Transforms can be used to recover, up to
an infinitesimal factor of 2εk in the running time, the algorithms for
Clifford algebras in this section. More precisely, even though Clifford
algebras are not group algebras, they are quotients of group algebras
much in the same way exterior algebras are quotients of monoid algebras
(see Sect. 4.4.2). We nevertheless present the specialized case of Clifford
algebras for concreteness.
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7.2. Explicit Matrix Representations of
Clifford Algebras

Luckily, the representation theory of Clifford algebras is exceptionally
well-understood. There is a well-known (see e.g. [Por81]) isomorphism,
which presents itself particularly simple over the complex numbers.
Namely, recalling that k is even with k = 2s,

Clk(C) ∼= C2s×2s

.

That is, a Clifford algebra of dimension 2k = 22s is indeed isomorphic
to a full matrix algebra of dimension 2s×2s. In the sequel, we construct
these isomorphisms and their inverses explicitly for all even k. There
are similar isomorphisms for the odd case, but since we only need the
claim for even k, we shall concern ourselves only therewith.

First, note that Cl2(C) admits a homomorphism into the full matrix
algebra C2×2, via

µ2 : Cl2(C)→ C2×2, e1 7→

(
0 −1
−1 0

)
, e2 7→

(
−1 0
0 1

)
.

In particular, one checks that

µ(e1)2 = µ(e2)2 = I2, µ(e1e2) = −µ(e2e1) . (7.1)

Let

µ̂ = iµ(e2)µ(e1) =
(

0 i

−i 0

)
,

and consider the following mapping.

µk+2 : Clk+2(C)→ C2s+1×2s+1
,

ei 7→ µ̂⊗ µk(ei) for i ≤ k,

ek+1 7→ µ2(e1)⊗ I2s ,

ek+2 7→ µ2(e2)⊗ I2s .
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Here, A⊗B is the Kronecker product of A and B, defined as a block
matrix with blocks the size of B. Namely (A⊗B)ij = aij ·B. If A is of
dimension n× n and B of dimension m×m, then we will identify this
matrix in the obvious way with the nm× nm-matrix that corresponds
to A⊗B. The Kronecker product can be thought of as a tensor product
of matrices. In particular, (A⊗B)(C ⊗D) = AC ⊗BD.

Proposition 7.2.1. The family of mappings (µi)i∈N is a family of
algebra morphisms.

Proof. We proceed with induction over s. The case of s = 1 was already
treated above in Eq. (7.1), so let s > 1 and assume the claim holds for
all s′ < s, or equivalently, all even k′ < k+ 2. Consider k+ 2 = 2(s+ 1).
Observe that µ̂2 = I2, and by induction hypothesis, µk(ei)2 = I2s .

Recalling the 2 × 2-case above and using the rule for the Kronecker
product, we have for all i that µk+2(ei)2 = I2s+1 . Now, for i 6= j, if both
i, j ≤ k, then again by inductive hypothesis, µk+2(eiej) = −µk+2(ejei).
On the other hand, if i, j ∈ {k + 1, k + 2}, the claim follows from the
case of k = 2. Note that µ̂ anticommutes with either one of µ(e1) and
µ(e2). Therefore, if exactly one of i, j is greater than k, the relations
continue to hold as well.

To make this more concrete, we can expand the Kronecker products
and write first

A1 =
(

0 iµk(ej)
−iµk(ej) 0

)
, A2 =

(
−I2s 0

0 I2s

)
, A3 =

(
0 −I2s

−I2s 0

)
.

Then, we have

µk+2(ej) =



A1 for j ≤ k,

A2 for j = k + 1,

A3 for j = k + 2.

(7.2)
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Let us first work out what µk+2 does to elements x that belong to the
smaller Clifford algebra Clk(C) ⊆ Clk+2(C). To this end, we fix the
following notation. For an element x of any Clifford algebra, x+ and
x− shall denote the projection of x to the basis elements corresponding
to sets of even and odd sizes, respectively.

Lemma 7.2.2. The following holds for all x ∈ Clk(C).

µk+2(x) =
(

µk(x+) iµk(x−)
−iµk(x−) µk(x+)

)
. (7.3)

Proof. Consider first a basis element eS of Clk(C), say eS = ei1 · · · ei|S|
with i1 < . . . < i|S|. By definition and the properties of the Kronecker
product,

µk+2(eS) =
|S|∏
j=1

µk+2(eij ) =
|S|∏
j=1

µ̂⊗ µk(eij ) =

µ̂|S| ⊗

 |S|∏
j=1

µk(eij )

 = µ̂|S| ⊗ µk(eS) .

(7.4)

Since µ̂2 = I2, the left factor of this last expression depends only on
the parity of |S|: It is equal to I2 for even |S|, and µ̂ for odd |S|.

Let now x be an arbitrary element of Clk(C). Of course, x = x+ +x−,
and Eq. (7.4) together with bilinearity of the Kronecker product then
yield:

µk+2(x) =µk+2(x+) + µk+2(x−)

=I2 ⊗ µk(x+) + µ̂⊗ µk(x−)

=
(
µk(x+) 0

0 µk(x+)

)
+
(

0 iµk(x−)
−iµk(x−) 0

)
.

Summing up the last line into one matrix yields the expression from
the statement of the lemma.
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We can now turn to considering a general element

x =
∑

S⊆{1,...,k+2}

αSeS ∈ Clk+2(C) .

Recall that we assume that the coefficients αS are chosen with signs
according to the assumption that the basis element corresponding to a
set S is the product of the basis elements corresponding to its elements
in ascending order.
We can decompose any such element uniquely into four parts, ac-

cording to which elements from {k + 1, k + 2} appear in S:

x< =
∑

T⊆{1,...,k}

αTeT ,
i.e., neither k + 1
nor k + 2 appear in T ,

x1 =
∑

{k+1}⊆U⊆{1,...,k+1}

αUeU−{k+1},
i.e., only k + 1

appears in U ,

x2 =
∑

{k+2}⊆V⊆{1,...,k,k+2}

αV eV−{k+2},
i.e., only k + 2

appears in V ,

x12 =
∑

{k+1,k+2}⊆W⊆{1,...,k+2}

αWeW−{k+1,k+2}
i.e., both k + 1
and k + 2 appear in W.

Observe that x<, x1, x2, x12 ∈ Clk(C). The indices of the basis elements
eS in the summation and the signs of the coefficients αS were chosen
in such a way that the following holds:

x = x< + x1ek+1 + x2ek+2 + x12ek+1ek+2 .

For the sake of readability, we shall define µk(M) to mean an entrywise
application of µk to the matrix entries ofM, and we will write down the
entries ofM without parentheses. Since µk is an algebra homomorphism,
this is compatible with matrix and scalar multiplication. With the
notation in place, we can state:
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Proposition 7.2.3. The following holds for all x ∈ Clk(C).

µk+2(x) =

µk

(
x+
< − x+

1 + i(x−12 − x
−
2 ) −x+

2 − x
+
12 + i(x−< + x+

1 )
x+

12 − x
+
2 + i(x−1 − x

−
<) x+

1 + x+
< + i(x−2 + x−12)

)
.

(7.5)

Proof. On x, the mapping µk+2 has the following effect.

µk+2(x) = µk+2(x<)

+ µk+2(x1)µk+2(ek+1)

+ µk+2(x2)µk+2(ek+2)

+ µk+2(x12)µk+2(ek+1)µk+2(ek+2) .

Plugging in the matrix expressions from (7.2), we obtain:

µk+2(x) = µk+2(x<)

+ µk+2(x1) ·
(
−I2s 0

0 I2s

)

+ µk+2(x2) ·
(

0 −I2s

−I2s 0

)

+ µk+2(x12) ·
(

0 −I2s

I2s 0

)
.

As already noted, x<, x1, x2, x12 ∈ Clk(C), and Eq. (7.3) gives

µk+2(x) = µk

(
x+
< ix−<

−ix−< x+
<

)

+ µk

(
x+

1 ix−1
−ix−1 x+

1

)
·

(
−I2s 0

0 I2s

)

+ µk

(
x+

2 ix−2
−ix−2 x+

2

)
·

(
0 −I2s

−I2s 0

)

+ µk

(
x+

12 ix−12
−ix−12 x+

12

)
·

(
0 −I2s

I2s 0

)
.
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Multipliying this out results in the following identity:

µk+2(x) = µk

(
x+
< ix−<

−ix−< x+
<

)

+ µk

(
−x+

1 ix−1
ix−1 x+

1

)

+ µk

(
−ix−2 −x+

2
−x+

2 ix−2

)

+ µk

(
ix−12 −x+

12
x+

12 ix−12

)
.

Collecting the entries then yields the recursive expression for µk+2 from
the statement of the lemma.

Let us turn to the inverse map of µk+2. Given the established abundance
of sub- and superscripts containing minus signs and ones, we shall, with
some typographical waggishness, simply denote the inverse of µ with
an h, i.e., µ−1

k+2 = hk+2. A priori, it is not clear that an inverse hk+2

even exists. We shall deal with this first, and do so by constructing
explicitly the mapping hk+2, which is helpful for our computational
ends.

Proposition 7.2.4. For all k, µk is an isomorphism.

Proof. We proceed inductively. For the sake of explicitness, let show
the case s = 1. For any complex 2× 2-matrix

Y =
(
y11 y12

y21 y22

)
,

we consider the linear system

Y = λ1µ2(e1) + λ2µ2(e2) + λ12µ2(e1)µ2(e2) + λ0µ2(1) ,
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which, after plugging in the represenations µ2, boils down to(
y11 y12

y21 y22

)
=
(
−λ2 + λ0 −λ1 − λ12

−λ1 + λ12 λ12 + λ0

)
.

This system admits the unique solution

λ1 = −y21 + y12

2 , λ2 = y22 − y11

2 , λ12 = y21 − y12

2 , λ0 = y11 + y22

2 ,

and shows that indeed, µ2 is an isomorphism of algebras.
Now, assume the claim holds true for s > 1, and consider some 2× 2

block matrix Y ∈ C2s+1×2s+1
, say

Y =
(
Y11 Y12

Y21 Y22

)
.

We want to compute hk+2(Y ), that is, construct the unique x ∈
Clk+2(C) with µk+2(x) = Y. Of course, any such x will decompose into
x<, x1, x2 and x12 as before, and the recursion (7.5) then implies that

Y11 =µk
(
x+
< − x+

1 + i(x−12 − x
−
2 )
)

Y12 =µk
(
−x+

2 − x
+
12 + i(x−< + x+

1 )
)

Y21 =µk
(
x+

12 − x
+
2 + i(x−1 − x−<)

)
Y22 =µk

(
x+

1 + x+
< + i(x−2 + x−12)

)
.

Let hij = hk(Yij), which exists by inductive hypothesis. With the aid
of a linear algebra system, or nerves of steel, one then checks that

x< = −ih−12 + 1
2(h+

11 + h+
22) (7.6)

x1 = −i(h−12 + h−21) + 1
2(h+

22 − h
+
11) (7.7)

x2 = i

2(h−11 − h
−
22)− i

4h
+
11 −

1
2(h+

12 + h+
21) + i

4h
+
22 (7.8)

x12 = − i2(h−11 + h−22) + i

4(h+
22 − h

+
11) + 1

2(h+
21 − h

+
12) , (7.9)

and this solution is unique. Therefore, µk+2 is an isomorphism as
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well.

7.3. Fast Computation of Representations
and Inverses

We now put to use computationally the identities proved in the previous
subsection:

Proposition 7.3.1. Given an element x ∈ Clk(C) as a list of basis co-
efficients, the matrix µk(x) can be computed with 2k ·poly(k) arithmetic
operations over C.

Additionally, if the size of coefficients of x is bounded by τ, then
µk(x) can be computed in 2k · poly(τ) bit operations.

Proof. First, compute the four parts µk(x<), µk(x1), µk(x2) and µk(x12)
recursively. From Eq. (7.3), the resulting 2× 2 block matrix in each
case will have the projection to the even part in the top left and bottom
right entries, the odd part, up to a scaling by ±i in the bottom left
and upper right corner. Additions and scalar multiplications of the
resulting matrices can be performed in 2k arithmetic operations over C,
and there are sixteen of those to perform when computing µk+2 from
µk. Therefore, the amount Tµ(k+ 2) of arithmetic operations that have
to be carried out to compute µk+2 is Tµ(k + 2) = 4 · T (k) + 16 · 2k and
therefore Tµ(k) ≤ 2k · poly(k). Clearly, the numbers occurring when
computing µk stay of polynomial size.

Proposition 7.3.2. Given a matrix Y ∈ C2s×2s

, the element hk(Y ) ∈
Clk(C) as a list of basis coefficients can be computed with 2k · poly(k)
arithmetic operations over C.

Additionally, if the size of coefficients of x is bounded by τ, then
hk(x) can be computed in 2k · τ bit operations.

Proof. We first compute the four smaller subproblems hk(Yij), and
with that, obtain also the h±ij . Then, we reconstruct x<, x1, x2, x12

according to Equations (7.6) through (7.9) using a constant number
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of linear combinations (i.e., sums of scalar multiples) of the computed
hk(Yij)±. Each such operation costs at most 2k arithmetic operations
over C, via Proposition 7.1.1. All that is then left to do is to compute
x = x<+x1ek+1+x2ek+2+x12ek+1ek+2. Again, these are four additions,
costing 2k operations each, and multiplication with basis elements ei
corresponds to a basis shift, which also takes 2k bit operations (and
actually, no arithmetic operations). Therefore, the amount of arithmetic
operations Th(k + 2) it takes to compute hk+2(Y ) is Th(k + 2) ≤
4 ·Th(k)+C ·2k and thus Th(k) ≤ 2k ·poly(k) for some constant C > 0.
Again, it is clear that the numbers occurring when computing hk stay
of polynomial size

7.4. General Arithmetic in Clifford
Algebras

The preceding arguments culminate in the following statement, which
was shown for real clifford algebras by Leopardi in [Leo+05]. In fact,
Włodarczyk relies on [Leo+05] to obtain his result.

Theorem 7.4.1. Given two elements x, y ∈ Clk(C) as a list of basis
coefficients, their product xy ∈ Clk(C) as a list of basis coefficients can
be computed using 2ωk/2 poly(k) arithmetic operations over C.

Additionally, if the size of coefficients of x and y are bounded by τ,
then their product can be computed in 2ωk/2 · poly(τ) bit operations.

Proof. The algorithm first computes the two matrices X = µk(x) and
Y = µk(y). Then, we use fast matrix multiplication to obtain Z = X ·Y.
Finally, we compute hk(Z). By Lemma 7.2.4, this hk exists, and by
Lemma 7.2.1, the algorithm is correct. performing two applications of
µk, one matrix multiplication, and one application of hk.
By Propositions 7.3.1 and 7.3.2, computing X,Y and Z can each

be performed well within the required time bound. Furthermore, fast
matrix multiplication takes time 2ωs · poly(n), and 2ωs arithmetic
operations, on matrices of size 2s = 2k/2, which is also within the
required time bound. This proves the theorem.
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The fact that the embedding of a Clifford algebra into a full matrix
algebra and its inverse can be computed in time linear in their dimen-
sion proves in particular the following trivial, but highly important,
connection to matrix multiplication.

Proposition 7.4.2. Two matrices of dimension n×n can be multiplied
in time nc for some constant c, if and only if two general elements of a
Clifford algebra of dimension n can be multiplied in time nc.

7.5. General Arithmetic in the Exterior
Algebra

We now turn to applying the computational insights gained on Clifford
algebras to implement fast arithmetic in the exterior algebra. First,
let us elaborate on the kind of connection that exists between Clifford
algebras and exterior algebras.
To this end, recall that an algebra is called graded if it admits a

direct sum composition A =
⊕

i∈NAi as a vector space, and in such a
way that Ai ·Aj ⊆ Ai+j . It is easy to check that the exterior algebra
admits such a decomposition by degree, i.e., the number of generators
needed to express the linear basis element eS as their product (and this
number is just |S|). However, in the Clifford algebra, the degree-one
element (e1 + e2) squares not to a degree-two element, as would be
required for a grading, but, being 2 + 2e1e2, instead contains also the
element 2 of degree zero.
A weaker condition is being filtered: Here, we demand not that the

sum be direct, i.e., there is a sequence F−1 = {0} = F1 ⊆ F2 ⊆ . . . ⊆ A
of linear subspaces of A such that

⋃
i∈N Fi = A holds, and again

multiplication is compatible with this, i.e., Fi ·Fj ⊆ Fi+j . Of course, all
graded algebras are filtered by letting Fi =

⋃i
j=0Aj , but for example,

while Clk(C) is not graded, it sure is filtered, again letting Fi be the
set of elements of Clk(C) that are composed of products of at most i
generators.
Given some filtered algebra A with filtered parts Fi, we can obtain
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from it its so-called associated graded algebra gr(A) as follows. Let
Qi = Fi/Fi−1 for all i ≥ 0 be the linear quotient space, which means
Qi contains all those elements that are products of exactly i generators,
but not less. Per definition, the sum

⊕
i∈NQi is direct, and we define

gr(A) to be this sum: gr(A) =
⊕

i∈NQi. Let x ∈ Qi, y ∈ Qj , i.e.,
x = a + Fi−1, y = b + Fj−1 for some a ∈ Fi, b ∈ Fj . Then, xy =
(a+Fi−1)(b+Fj−1) = ab+ aFj−1 + bFi−1 +Fi−1Fj−1. Of course, ab ∈
Fi+j , and aFj−1, bFi−1, Fi+j−2 ⊆ Fi+j−1, such that xy is a subset of
ab+Fi+j−1 ∈ Qi+j . Intuitively speaking, this corresponds to performing
the multiplication of x and y in gr(A) separately for each homogeneous
component of x and y of degree i and j, respectively, and then forgetting
those parts of the result that dropped in degree.

It should become clear after a moment’s thought (and is a generally
known fact), that the following holds.

Proposition 7.5.1. The algebras gr(Clk(C)) and Λ(Ck) are isomor-
phic.

In order to multiply two elements u and v in the exterior algebra
Λ(Ck), we first consider the decomposition of u and v into homogeneous
parts, i.e., u = u0 +u1 + · · ·+uk and v = v0 +v1 + · · ·+vk, where ui and
vi are of degree i, and thus uv =

∑k
i,j=0 uivj . Let ι : Λ(Ck)→ Clk(C)

be the natural linear isomorphism between Clk(C) and Λ(Ck), which
satisfies ι(Λ(Ck)i) ⊆ Fi. Let pij = ι(ui)ι(vj). By definition, pij ∈ Fi+j .
We can thus consider the image η(pij) of pij under the canonical
projection η of Fi+j to Qi+j , which just corresponds to forgetting
all low-degree coefficients. Let κ : Qi → Λ(Ck)i be the canonical
isomorphism. We then have:

uv =
k∑

i,j=0
κ(η(ι(ui)ι(vj))) . (7.10)

Włodarczyk [Wło16] formulated this as an observation in a different
language, and termed the phenomenon—or rather, its algorithmic
exploitation—size-grouping.

We can thus re-derive Włodarczyk’s result:
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Theorem 7.5.2 ([Wło16]). Given two elements x, y ∈ Λ(Ck) as a
list of basis coefficients, their product x ∧ y ∈ Λ(Ck) as a list of basis
coefficients can be computed using 2ωk/2 · poly(k) arithmetic operations
over C.

Additionally, if the size of coefficients of x and y is bounded by 2τ ,
then their product can be computed in 2ωk/2 · poly(τ) bit operations.

Proof. The maps ι and κ do not actually have to be computed, and
there is not much to compute in any case. Their application just
indicates that u and v should be understood as elements of a different
algebra.1 Computing the (k + 1)2 products pij is doable within the
required bounds by Theorem 7.4.1. The map η can be computed in time
dim Λ(Ck) = 2k, since, as mentioned, applying η is only a formal way
of saying to forget all those coefficients that resulted from a degree drop
when multiplying in Clk(C). Then by Proposition 7.1.1, computing
the final sum in Eq. (7.10) then takes another (k + 1) · 2k arithmetic
operations, and at most a poly(n) factor additional bit operations.

Remark 7.5.3. Observe that reducing multiplication in exterior alge-
bras to multiplication in Clifford algebras is, in a way, mathematically
perverse: Clifford algebras are much more general objects than exterior
algebras, and the latter arise as a degeneration of the former. It seems
wasteful to compute the product in exterior algebras in this fashion,
and yet, it is not at all clear how to perform multiplication in exte-
rior algebras faster than by this reduction. Failing this, we could of
course try to reduce the exterior product to the Clifford product, and
therefore, in particular in light of Proposition 7.4.2, prove a—possibly
surprising—lower bound on the complexity of multiplication in exterior
algebras.
We will discuss this phenomenon a little more in the next section,

when we relate the problems of this section to the far more well-studied
ones of computing subset convolutions.

1We could also have defined Clk(C) and Λ(Ck) to be identical as sets, but with
two different notations for multiplication, say, ∧ and ∨.
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7.6. Fast Subset Convolution
In this section, we give a quick exposition of the results of Björklund
et al. on the so-called fast subset convolution [Bjö+08]. We will briefly
state the problem in its original formulation and then re-derive the
solution of Björklund et al., highlighting the conceptual connections to
the solution for the fast multiplication in Clifford algebras.
Let us start with the problem definition. Given two functions

f, g : 2{1,...,k} → C on the power set of {1, . . . , k}, define their sub-
set convolution as

f ∗ g : 2{1,...,k} → C, S 7→
∑

U∪̇V=S

f(U) · g(V ) .

We reconcile this combinatorial expression with our previous algebraic
perspective as follows: We will, yet again, define an algebra over the
basis e1, . . . , ek of the space Ck. This time, however, we demand only
that e2

i = 0 hold true for all i, and we impose no anticommutativity
constraint, but instead a commutativity constraint, i.e., eiej = ejei.We
have seen this algebra before, namely in form of the Zeons Z(Ck) of Sect.
4.4.4, and we will keep with this notation also here. Observe that now,
in contrast to the exterior algebra case, squares of vectors, i.e., degree-
one elements, do not vanish anymore. For instance, (ei + ej)2 = 2eiej ,
which is non-zero whenever i 6= j.

Recall that Z(Ck) still has a linear basis of cardinality 2k, and
again, we may index the basis elements using subsets of {1, . . . , k}
as eS =

∏
s∈S es for S ⊆ {1, . . . , k}. Given any two elements x, y ∈

Z(Ck), we can write them consequently as x =
∑
S⊆{1,...,k} αSeS , y =∑

S⊆{1,...,k} βSeS , and these representations are unique. These elements
correspond in the obvious way to functions f, g : 2{1,...,k} → C, taking
each S to the coefficient of eS in x and y, respectively. Let z = xy =∑
S⊆{1,...,k} γSeS be their product in Z(Ck). Then, it is easy to check

that the function h : 2{1,...,k} → C that corresponds to z is precisely
given as h = f ∗ g. Therefore, computing the subset convolutions is
equivalent to computing general products in Z(Ck), and in fact, this was
remarked already in the proof of Lemma 4.4.4 where we in turn referred

113



7. Computing in the Exterior Algebra

to fast subset convolution for implementing arithmetic in Z(Ck).
We give an exposition of how this goes, analogous to the computation

in Clk(C) and Λ(Ck), to which we will refer to as the signed case,
whereas the operations in this section constitute the unsigned case. The
algebra Z(Ck) will play the rôle of Λ(Ck), and the natural analogon of
Clk(C) is defined again as a commutative variant of Clk(C), where we
still demand e2

i = 1, but also eiej = ejei for all i, j. It is easy to see
that this algebra is isomorphic to C[Z2

k], the complex group algebra of
Zk2 , and we shall not invent a name for this algebra, and will denote it
only in this way.
As in the signed case, we can observe that Z(Ck) is naturally a

graded algebra, and that C[Z2
k] is not graded, but filtered by degree.

The degree of a group element corresponds to the number of one-entries
in it, as an element of Zk2 . Similarly, we have a corresponding statement
to Proposition 7.5.1.

Proposition 7.6.1. The algebras Z(Ck) and gr(C[Zk2 ]) are isomorphic.

This makes it possible to apply the exact same reduction in the
unsigned case that was used to reduce computation in the exterior
algebra to computation in the Clifford algebra, and indeed, it is then
obvious that we can implement one multiplication in Z(Ck) using O(k2)
multiplications and additions in C[Zk2 ].

Thankfully, the computation in group algebras—particularly in com-
mutative ones—is well-understood, and can be realized by multidi-
mensional fast Fourier transforms. In essence, this is fast multi-
point evaluation and interpolation at the multiplicative hypercube,
i.e., {−1, 1}k ∼= Zk2 , and this can be performed in time 2k · poly(k).

These arguments are a sketch to prove:

Theorem 7.6.2 ([Bjö+08, Theorem 2]). Let f, g : 2{1,...,k} → C be
two complex-valued functions that take values that can be represented
using τ bits. Then, the subset convolution f ∗ g : 2{1,...,k} (as a table of
2k function values) can be computed in 2k · poly(k, τ) bit operations.

Remark 7.6.3. Let us put this into perspective: Computation of f ∗ g
is multiplication in Z(Ck), which is an unsigned analogon of Λ(Ck).
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The fact that this can be performed in quasilinear time in the dimension
might give us hope that we can somehow adapt the approach to the
signed case, in order to obtain quasilinear running time also there.
Unfortunately, this is already what we do: Also in the unsigned

case, the fastest known way to compute a product is by reducing
to multiplication in a filtered algebra, which actually needs to take
into account many more subproducts than appear the actual graded
algebra we’re interested in. In this sense, the mathematical perversion
of the signed case, referred to in Remark 7.5.3, appears also in the
unsigned case. The only thing that saves us is that, in the unsigned case,
multiplication in the filtered algebra can be performed fast enough.
This observation, in combination with Proposition 7.4.2, make the

case for 2ωk/2 being the correct basis for multiplication in Λ(Ck) more
plausible.
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8. Algebraic Barriers for
Extensor-Coding

Broadly speaking, when aiming towards deterministic decision algo-
rithms, as in Chap. 5, Extensor-Coding essentially works by evaluating
a multivariate polynomial associated with the input over an exterior
algebra. This algebra is of dimension 4k, where k will typically be the
parameter of the input instance (while it formally is half the dimension
of the underlying vector space).
In this way, it is similar to a method introduced by Koutis [Kou08].

It differs, however, in the points at which the polynomial associated
with the input instance is evaluated. While Koutis, and later, Williams
[Wil09], rely on random evaluation points, in [BDH18], certain carefully
constructed vectors are used. One can readily observe that “evaluating a
polynomial” involves, on an arithmetic level, nothing but multiplications
and additions. In particular, if one evaluates a polynomial over any
algebraic structure that is closed under multiplication and addition,
one will always obtain again an element of this algebraic structure
after evaluation. Turning this around, one can always restrict one’s
attention to the closure of (i.e., the substructure generated by) the set
of evaluation points. In particular, it might be far easier to actually
implement the arithmetic operations only over this substructure than
over the entire structure.

In this chapter, we will examine the subalgebra generated by the above
mentioned special evaluation points (i.e., the smallest set closed under
addition, scaling with a field constant, and multiplication containing
all the evaluation points). Note now that the dimension of an algebra
provides a trivial lower bound on the cost of general computation in it,
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simply because one has to write down its elements’ coordinates at some
point. Conversely, the dimension itself can be used to derive a trivial
upper bound for the cost of computation as well, just by a look-up of the
structural constants of the algebra, but this bound is generally far from
optimal. For example, naive multiplication of degree-d polynomials
(which can be modeled as objects of a O(d)-dimensional algebra over
some field) takes around O(d2) field operations, while (over compatible
fields) the Fast Fourier Transform method yields the classic bound of
O(d log d). A running time of the latter form, i.e., quasilinear in the
dimension of the algebra, is of course the best one can hope for.
We prove that, surprisingly (for reasons that will be expanded on

later), the dimension of the subalgebra generated by the evaluation
points used in Extensor-Coding is of dimension exponentially smaller
than 4k, i.e., the dimension of the full algebra. At first, this seems to
open up a tantalizing new point of attack on one of the most prominent
open problems in the area of parameterized algorithms: To exhibit
a deterministic algorithm for the k-path problem that matches the
running time of 2k · poly(n) for the best randomized algorithms [Wil09;
Kou08]. Now, a priori, we could hope for the studied subalgebra to be
of dimension 2k (but not much smaller, by a result of Koutis-Williams
[KW16]). Then, a quasilinear multiplication algorithm would give a
bound of 2k · poly(k) field operations, and (assuming all coefficients
stay of moderate size) hence produce a deterministic algorithm solving
the problem in time 2k · poly(n).

Unfortunately, we share the fate of Tantalos:1 The low-hanging fruit
moves out of reach with our result.

8.1. The Barrier
Let us first elaborate more formally on the fundamental insight that
motivates our result: Let f be a complex polynomial, such as the

1Tantalizing is often liberally used quite synonymously to tempting, alluring,
sometimes even exciting or electrifying. With this rather extravagant piece of
prose, we wish to draw attention to the fact that there is more meaning in this
word, owing to its mythological origin, than is commonly attached to it.
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polynomial computed by a circuit in, say, Theorem 5.2.5. During the
evaluation of this polynomial f (or rather the circuit computing it) at
points from the image of φ, only sums and wedge products of elements
of the image of φ are ever formed.

We can say this rigorously and concisely by stating that during such
an evaluation, all computation may only occur in the subalgebra of
Λ(V ⊕ V ) generated by the image of φ, which is—by definition—the
set of all sum-wedge product combinations of the generating set. It is
precisely the subalgebra generated by these elements φ(c) that we will
study. The fundamental quantity associated with this subalgebra is
its dimension, that is, the dimension of the subalgebra as a complex
vector space. Let us stress again that any potential progress on the
technique in its present form hinges on the dimension of this subalgebra:
It provides both strict lower bounds and a good guide towards the
upper bounds one can hope for when solving problems using Extensor-
Coding. We will also point out possible points of attack to circumvent
the limitations by modifying the technique.

A Family of Related Subalgebras. The decisive property that
makes Vandermonde codings so useful is that any distinct k of them
are linearly independent, which is commonly referred to the set of
Vandermonde vectors being in general position. This, however, is not
only a property enjoyed by Vandermonde vectors. First of all, any finite
random set of vectors is in general position almost certainly.
This suggests that instead of considering the subalgebra generated

by Vandermonde codings, one might as well just take any n random
vectors and proceed with them. Extensive computational experiments
have shown, however, that the expected dimension of this subalgebra
is almost as high as the dimension of the full algebra. Curiously, it
seems to be equal (and in fact this was the only case that ever occurred
during all our experiments) to the k-th Catalan number, which grows
asymptotically faster than 4(1−ε)k for all ε > 0.

It is worth pondering about this phenomenon for a little while. From
a matroid perspective, the Vandermonde codings just correspond to
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a representation of the k-uniform matroid over an n-element universe.
One might now hope that the dimension of the subalgebra generated
by the lifts of the columns of this representation matrix is a matroid
invariant; however, this is not the case. Even more, most representations
are just as bad as the worst case.
Remarkably, the extraordinarily well-behaved case of the Vander-

monde representation transfers quite directly to a related family of
subalgebras. Consider any set P = {p1, . . . , pk} of formal univariate
polynomials that are linearly independent and of degree less than k.
In other words, a basis of the set of polynomials of degree less than k.
We can form, for any n, a k × n evaluation matrix of this set P, where
the i-th row is given as (pi(1), pi(2), . . . , pi(n)). If we pick as P the
standard monomial basis, this is just the Vandermonde representation.
However, we may as well pick any other basis, and the resulting matrix
will again have the property that any subset of k columns is linearly
independent. This works, provided the pi do not have a common root
at the evaluation point. We can take care of this easily by just picking
a different, appropriate set of evaluation points. Note that this set
exists (and in fact, almost certainly, any random set will do) by the
fact that the pi are distinct polynomials. Now, we can again study the
subalgebra of Λ(V ⊕ V ) generated by the lifts of the column vectors
of this evaluation matrix. Surprisingly, the argument for the upper
dimension bound carries over immediately, but we could not find a
corresponding proof for the lower bound. This opens up the exciting
possibility of finding lower-dimensional algebras in this family, that
could lead to even faster algorithms. Note that despite the main mo-
tivation for studying this algebra may stem from the flagship k-path
problem, due to the connection to multilinear detection, finding these
algorithms has impacts for all the problems that reduce to this special
case of multilinear detection, including those studied in this work. Let
us state our result formally.

Theorem 8.1.1. Let V = Ck and let F2k+1 be the (2k+1)th Fibonacci
number. The subalgebra of Λ(V ⊕ V ) generated by the image {φ(c) |
c ∈ C} of φ is of dimension exactly equal to F2k+1.
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Furthermore, for any linear basis P of the univariate polynomials of
degree at most k, denote for c ∈ C with P (c) the column vector obtained
by evaluating all polynomials in P at c. Then, the subalgebra generated
by {P (c) | c ∈ C} is of dimension at most F2k+1.

The rest of this chapter is devoted to a proof of this theorem. First,
we will recall some additional algebraic notions.

Tensor Products and Ideals

For two algebras A and A′, the tensor product A⊗A′ of A and A′ is the
vector space A⊗A′ made into a ring by component-wise multiplication,
i.e., (a ⊗ b) · (a′ ⊗ b′) = (aa′) ⊗ (bb′) for all a, a′ ∈ A, b, b′ ∈ A′. An
ideal I in an algebra is a linear subspace such that ax ∈ I for all x ∈ I.
For an ideal I in A, the quotient space A/I is again an algebra with
multiplication (a + I)(b + I) = ab + I. Given some subset S of an
algebra A, we denote the subalgebra or ideal S generates using round
or angular brackets, respectively. That is, we write (S) or 〈S〉 for the
smallest algebra or ideal, respectively, contained in A that contains S.

Graded Algebras

Recall that an algebra A is graded if, as a vector space, A =
⊕

i∈NAi

and for i, j ∈ N it holds that Ai ·Aj ⊆ Ai+j , where Ai ·Aj is the set of
all products a · b with a ∈ Ai and b ∈ Aj . In this setting, the Hilbert
function hA of A is given by hA : N → N, d 7→ dimAd. An element
contained in any Ai is homogeneous, and a homogeneous ideal is one
that is generated by homogeneous elements. In this situation, A/I
is again a graded algebra, with (A/I)d = Ad/Id. A homomorphism
of algebras is graded if it respects the grading, i.e., the image of the
degree-d part is of degree d. The algebra C[x1, . . . , xn] is the canonical
example for a graded algebra, with the degree of the indeterminates
being 1.

121



8. Algebraic Barriers for Extensor-Coding

8.1.1. The Protagonist Algebras

Let k > 2 be a natural number. We write R = C[t2, . . . , t2k] for the
ring of complex polynomials in 2k − 1 variables, where we set ti = 0
whenever i < 2 or i > 2k.

The central object of study we concern ourselves with in this section
is not directly the algebra Λ(V ⊕ V ) and its subalgebras, but instead
the tensor square Λ(V )⊗ Λ(V ). To unclutter our notation, we define

G = Λ(V )⊗ Λ(V ) .

We remark that the elements of Λ(V )⊗2 are, strictly speaking, not
extensors, but there is an obvious linear isomorphism between this
algebra and Λ(V ⊕ V ). The only difference is, as already explained,
that the result of a multiplication will at times differ in sign in the
two algebras. But this leaves the dimensions of the graded parts, and
thus also the Hilbert functions, intact. The results proved here on
Λ(V )⊗2 therefore carry over directly to Λ(V ⊕ V ), and therefore suffice
to fully prove Theorem 8.1.1. It is but a matter of convenience to use
the former description of the algebra. In particular, it allows us to use
without additional care some notions from commutative algebra, which
we would otherwise have had to adapt quite meticulously to meet our
ends.

Definition 8.1.2. We write ∆ for the set {v⊗ v | v ∈ {
∑k
i=1 c

iei | c ∈
R}} ⊂ G. The moment algebra of V , denoted by M, is the subalgebra
of G generated by ∆, i.e.,

M = ( ∆ ) .

Remark 8.1.3. Even though G is not graded, M is again a graded
algebra with the elements of ∆ being of degree 1. Nevertheless, we will
speak of the degree-d part of G, and mean with it the linear space
generated by those elements eS ⊗ eT such that |S| = |T | = d.

The definition of M as given above has turned out to be rather
unwieldy when it comes to determining hM . For this reason, we will
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proceed to give two different descriptions of M. The first is again a
subalgebra of M.

Definition 8.1.4. For s = 2, . . . , 2k, the s-th skew diagonal ds ∈ G is
defined as

ds =
∑
i+j=s

1≤i,j≤k

ei ⊗ ej .

The subalgebra S of G is generated by all skew diagonals, that is,

S = (ds | 2 ≤ s ≤ 2k), .

As a commutative algebra of finite dimension, M is just a quotient
of a polynomial algebra, namely—as we shall see—the following.

Definition 8.1.5. For s ∈ N with 2 ≤ s ≤ 4k, define elements Cs ∈ R
by Cs =

∑
i+j=s titj , and let IC = 〈Cs | 2 ≤ s ≤ 4k〉. Then, H is

defined as
H = R/IC .

Remark 8.1.6. Since Cs are all homogeneous of degree two, IC is a
homogeneous ideal, and consequently, H is again graded algebra.

8.1.2. A Generalization of M

The definition of M lends itself to the following obvious generalization,
as already sketched before.

Definition 8.1.7. Let A ⊆ V be a subset of V. Then G(A) is defined
as G(A) = (a⊗ a | a ∈ S).

Remark 8.1.8. Informally, it is evident that G(A) will be typically
of dimension much higher than F2k+1. Here, typically can mean, for
example, a set A of n ≥ ω(k) random vectors over a sufficiently large
sample space. Then, the relations imposed by the exterior algebra will
lead to G(A) being of dimension equal to the k-th Catalan number Ck
almost surely as n tends to infinity, where Ck ≥ Ω(4δk) for all δ < 1.
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The last remark notwithstanding, we will now present a special family
of sets A that do not show this behaviour, but instead behave at most
as bad as M. Indeed, M arises as special case in this family, and as one
for which we can also show a lower bound.

Definition 8.1.9. Let P = {p1, . . . , pk} ⊂ R[X] be a set of k linearly
independent univariate real polynomials in X of degree at most k and
without constant terms. Denote V (P ) =

{∑k
i=1 pi(x)ei | x ∈ R

}
, and

let G(P ) = G(V (P )).

Remark 8.1.10. These algebras G(P ) are just as suitable for solving
the longest path problem as is M = G({X,X2, . . . , Xk}): It is easy to
see that when evaluating the k-walk-polynomial f(G) over G(P ), the
equivalence between the vanishing of f(G) and the non-existence of a
k-path continues to hold. This requires that at the points at which the
pi are evaluated when evaluating f(G), none of the pi may vanish, but
this is easy to accomplish.

We will see that any such algebra G(P ) can only ever be of dimension
at most equal to that of M. However, a matching lower bound currently
seems elusive, giving hope that there might exist choices for P that
lead to lower-dimensional algebras and possibly allow to circumvent
the barriers described here.

8.2. The Barriers
The following Theorems prove Theorem 8.1.1.

Theorem 8.2.1. For all d ∈ N,

hM (d) = hH(d) =
(

2k − d
d

)
.

Having equal dimension of course isn’t sufficient for algebras to
be isomorphic. We will however observe rather easily that M is a
homomorphic image of H, which then implies the following.

Corollary 8.2.2. H and M are isomorphic as algebras.
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The combinatorial identity
∑b
a=1

(
b−a
a

)
= Fb+1 and Theorem 8.2.1

imply then:

Corollary 8.2.3. dimH = dimM = F2k+1 .

We finally revisit the definition ofM and prove that the more general
family of related algebras G(P ) behaves at least as nicely as M.

Theorem 8.2.4. Let P = {p1, . . . , pk} be a set of k linearly inde-
pendent univariate real polynomials of degree at most k and without
constant terms. Then, the following holds for all d ∈ N:

hG(P )(d) ≤ hM (d) .

Corollary 8.2.5. dimG(P ) ≤ F2k+1 .

8.3. Proof of Theorem 8.2.1
The procedure of the proof is collected in the following lemmas. They
then immediately yield Theorem 8.2.1 and its corollaries.

Lemma 8.3.1. S = M.

Lemma 8.3.2. For all d ∈ N,

hH(d) ≤
(

2k − d
d

)
.

Lemma 8.3.3. S is a graded homomorphic image of H. In particular,
for all d ∈ N,

hS(d) ≤ hH(d) .

Lemma 8.3.4. For all d ∈ N,(
2k − d
d

)
≤ hS(d) .

We prove each of them in a separate subsection. Before doing so, we
define two further combinatorial objects.
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Definition 8.3.5. We call a monomial m ∈ R a comb monomial if it
is multilinear, and for all i, titi+1 does not divide m. The set of comb
monomials is denoted by X, and the subset of X of degree d is written
Xd.

2

Let us register for later use a simple fact about X.

Proposition 8.3.6. The number of comb monomials of degree d on
a− 1 variables is given by

(
a−d
d

)
.

For any monomial in the ti, we associate with it its vector of exponents,
that is, the 2k− 1 natural numbers corresponding, for each 2 ≤ i ≤ 2k,
to the multiplicity with which ti appears in the monomial. Given such
a vector α, we denote by |α| the sum of its entries, which is simply the
degree of the monomial belonging to α. We now define a total ordering
on the vectors of exponents, and thereby also on the monomials, as
follows.

Definition 8.3.7. Let α and β be the associated vectors of exponents
of two monomials. Then α �grevlex β holds by definition if either

1. |α| > |β|, or

2. |α| = |β| and in addition, the rightmost non-zero entry of α− β
is negative.

This order is called the graded reverse lexicographic monomial ordering.

Some of the notions we employ to prove the theorem, such as the
ordering �grevlex, stem from the theory of Gröbner bases, and for
background on this theory and the borrowed notions, we refer to one
of the many textbooks on the topic, such as the one of Kreuzer and
Robbiano [KR08].

2The Cyrillic X is called and, roughly, pronounced Shah. However, it was chosen
for the iconic rather than phonetic value it carries for representing a comb, an
association that is not totally unheard of: The Dirac comb (which is, rather
unsurprisingly, also called the Shah function) is sometimes denoted in the same
way.
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8.3.1. Equality of S and M

Proof of Lemma 8.3.1. Let U be the linear space generated by all skew
diagonals, and let W be the linear space generated by ∆. It suffices
to show that U = W. First of all, we note that the skew-diagonals are
all linearly independent and thus form a basis for U. Consider then a
generator of M, that is, an element v ⊗ v ∈ ∆, say v =

∑k
i=1 c

iei for
some real non-zero c.
By the properties of the tensor product and after regrouping the

summands by their c-degree, we can rewrite v ⊗ v as

v ⊗ v =
k∑

i,j=1
ci+jei ⊗ ej =

2k∑
s=2

csds . (8.1)

We quickly take note of the fact that this shows that W ⊆ U is true.
To demonstrate that U ⊆W holds, we observe that the coordinates

of v⊗ v with respect to the basis {ds}2≤s≤2k are a scaled Vandermonde
vector. Thereby follows the linear independence of any set of 2k − 1
generators from ∆, provided they all stem from different values of c.
This means that, for each 2 ≤ s ≤ 2k, there exists a set {λ(s)

v }v∈M of
coefficients, only a finite subset of which are non-zero, witnessing∑

v∈M
λ(s)
v v ⊗ v = ds .

Since the left-hand side of this equality obviously lies in W, so does the
right-hand side, and U = W follows.

8.3.2. An upper bound for dim H

Here, we prove Lemma 8.3.2.

Definition 8.3.8. Let f ∈ R be a polynomial. The initial monomial
of f in(f) is the maximum of the monomials appearing in f, with
respect to �grevlex . For an ideal I of R, its initial ideal in(I) is defined
as the ideal generated by all the initial monomials of polynomials in I.
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In symbols,
in(I) = 〈in(f) | f ∈ I〉 .

One quickly observes:

Lemma 8.3.9. Let 2 ≤ s ≤ 2k. Then,

in(Cs) =

t2s/2 if s is even, and

t(s−1)/2 · t(s+1)/2 if s is odd .

Lemma 8.3.10. The comb monomials form a linear basis of R/〈in(Cs) |
2 ≤ s ≤ 4k〉.

Proof. This follows directly3 from the definitions and Lemma 8.3.9.

Lemma 8.3.11. Let G be a subset of an ideal I, and let G′ = 〈in(g) |
g ∈ G〉. Then for all d ∈ N, the following holds.

hR/ in(I)(d) ≤ hR/G′(d) .

Proof. The fact that 〈in(g) | g ∈ G〉 is a subset of in(I) implies the
claim.

The following is a standard fact.

Lemma 8.3.12. Let I be an ideal of R. Then,

hR/I = hR/ in(I) .

Proof of Lemma 8.3.2. Follows from Lemmas 8.3.9, 8.3.10, 8.3.11, 8.3.12
and Proposition 8.3.6.

8.3.3. Bounding dim M by dim H from above

Here, we prove Lemma 8.3.3. Define a homomorphism ϕ through

ϕ : R→ S, ts 7→ ds for 2 ≤ s ≤ 2k (8.2)
3Directly means in particular that this is not an application of the Macaulay Basis
Theorem, since we only consider the initial terms of the ideal generators in the
first place.
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and extend ϕ uniquely to all of R by its universal property. The
following lemma immediately implies Lemma 8.3.3.

Lemma 8.3.13. The algebra homomorphism ϕ is a graded homomor-
phism, and kerϕ ⊇ IC .

Proof. Gradedness of ϕ is evident from the definition. For the inclusion
to hold true, it suffices if for the generators Cq of IC , it holds that

ϕ(Cq) = 0

for all q. By virtue of Theorem 8.3.1, we may do this as well by thinking
of S as M, therefore letting v ⊗ v ∈ ∆, say v =

∑k
i=1 c

iei for some real
c. By the properties of the exterior algebra, it holds for all such v ⊗ v
that (v ⊗ v)2 = 0. Using the representation from Eq. (8.1) of v ⊗ v in
terms of ds, this implies

(v ⊗ v)2 =
( 2k∑
s=2

csds

)2

=
2k∑

r,s=2
cr+sdrds = 0 .

Sorting once again by c-degree, one obtains

4k∑
q=4

cq ·

( ∑
r+s=q

drds

)
= 0 .

The left-hand side in this equation is a univariate polynomial in c of
degree at most 4k, with coefficients from M. Since the choice of c in
the definition of v ⊗ v was arbitrary, we conclude that the equality
in fact holds true for all such c. Of course, a non-zero polynomial of
degree 4k can have at most 4k roots, and we may thus conclude that
the entirety of the coefficients

∑
r+s=q drds must vanish. It is crucial

to bear in mind that, even while the coefficients come from a nilpotent
algebra, this argument refers to c as the indeterminate, and c only ever
assumes real values. If one were to be pedantic, one might say that the
single equation above actually corresponds to hM (2) equations on the
real coordinates of the degree-two part of M, leading to the very same
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conclusion. Namely, that

ϕ(Cq) = ϕ

 ∑
i+j=q

titj

 =
∑
i+j=q

ϕ(ti)ϕ(tj) =
∑
i+j=q

didj = 0

for all q.

8.3.4. A lower bound for dim S

We show that the images of comb monomials under ϕ, as defined
in (8.2), remain linearly independent. To this end, we shall exhibit,
for each degree d, an explicit subspace Ud of dimension

(2k−d
d

)
of the

degree-d part of G such that the set {ϕ(m)}m∈Xd
remains linearly

independent after projecting it onto Ud.
The construction goes as follows. We assume the sets of naturals

appearing in the sequel to be in ascending order, for ease of notation—
which is not to say that they were ordered sets, just that we write them
down in a specific way.
Let S ⊆ {1, . . . , k} be of size d. We say that S has its first upward

gap at i if S is of the form {1, 2, . . . , i − 1, i, j, . . . , s} with j > i + 1.
By convention, sets of the form {j, . . . , s} with j > 1 have their first
upward gap at 0, while {1, . . . , d} has its first upward gap at d.
Analogously, we say that S has its first downward gap at i if S is

of the form {s, . . . , k − j, k − i, k − (i− 1), . . . , k − 1, k}, where again,
j > i+ 1. We make the corresponding conventions for downward gaps.

Definition 8.3.14. Let S, S′ ⊆ {1, . . . , k} be of size d.

1. The ordered pair (S, S′) is gap-compatible if S has its first upward
gap at i, and S′ has its first downward gap at j for some j ≥ d− i.

2. The linear subspace Ud ⊆ G is the subspace generated by all
eS ⊗ eS′ , where (S, S′) is gap-compatible.

Example 1. The following is to make lither the rather bulky definitions
above.
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• Both {1, 2, 3, 6, 7} and {1, 2, 3, 5, 8} have their first upward gap
at 3.

• {1, 2, 4, 5, 8, 9} has its first downward gap at 1 if k = 9, and at 0
if k > 9.

• If S has its first upward gap at d, then (S, S′) is gap-compatible
for every S′.

• If S has its first upward gap at 0, then (S, {k−d, k−d+1, . . . , k})
is the only gap-compatible pair.

For a comb monomial m in R, let us denote with σ(m) the sum of
indices of the generators it is composed of. With some slight abuse of
notation, we also mean, for any basis element eS ⊗ eT of G, the sum of
the elements in S and T whenever we write σ(eS ⊗ eT ). Formally, σ
then becomes a map σ : X∪B → N, x 7→ σ(x), where B the standard
basis of G. For any element x of G, let us write suppx to indicate the
set of standard basis elements that appear in the basis representation
of x with non-zero coefficient.

Lemma 8.3.15. Let m ∈ X, and let b ∈ suppϕ(m). Then, the fol-
lowing holds.

σ(m) = σ(b)

Proof. Let m = ti1 · · · tid ∈X. Consider ϕ(m) = δi1 · · · δid . By defini-
tion, each δij is a sum of basis elements es ⊗ et satisfying s+ t = ij .

Therefore, σ(b′) = ij for each b′ ∈ supp δij . Observe that every ele-
ment in suppϕ(m) is a product consisting of exactly one element from
each supp δij . It is easy to see σ is additive with respect to the prod-
uct of basis elements, provided the result is non-zero, and the claim
follows.

We define a mapping

κ : G 7→ R, x 7→ κ(x) ,

defined on the standard basis B of G through κ(eS ⊗ eT ) = ti1 · · · tid ,
where ij = aj + bj for all j. Here, aj and bj are the respective elements
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of S and T. By convention, we assume that a1 < . . . < ad and b1 <

. . . < bd.

For any s, we define Gsd to be the subspace of the degree-d part of G
generated by those eS ⊗ eT such that σ(eS ⊗ eT ) = s, and analogously
V sd ⊆ R as the space generated by the comb monomials m having
σ(m) = s. Lemma 8.3.15 then implies that the restriction of ϕ to

ϕsd : V sd → Gsd, x 7→ ϕ(x) ,

is well-defined. Furthermore, we set Usd = Gsd ∩ Ud, and denote with

πsd : Gsd → Usd

the projection of Gsd onto Usd , which just corresponds to keeping only a
subset of basis vectors. We write Φs

d for the transpose of the matrix
representing the linear map πsd◦ϕsd over the respective standard bases of
Usd and Gsd. Hence, the rows of Φsd are indexed by Xs

d, and its columns
by the standard basis of Usd .
Let Xs

d be the set of comb monomials m of degree d and having
σ(m) = s, and let Bsd the standard basis of Usd . Letm = ti1 · · · tid ∈Xs

d,

where we assume that i1 < i2 < · · · < id holds. We associate with m
through ιsd : Xs

d → Bsd, b 7→ ιsd(b) the basis element ιsd(m) = eS ⊗ eT ,
where S and T are, in a certain sense, chosen of minimal value with
respect to the numbers they contain, viz.: Letting r be the largest j
with the property that ij ≤ k, S is defined by

S = {1, . . . , r} ∪ {ij − k + d− j}j>r ,

and T is then already determined by this to satisfy

T = {i1 − 1, . . . , ir − r} ∪ {k − d+ j}j>r .

Note that directly from the definitions and Lemma 8.3.15, the image of
ιsd is contained in Usd , so that the mapping is well-defined.

Lemma 8.3.16. The mapping ιsd is an injection, and is inverted on

132



8.3. Proof of Theorem 8.2.1

its image by κ.

Proof. The fact that m is a comb monomial entails that

i1 − 1 < i2 − 2 < . . . < id − d (8.3)

holds. It is clear that the sequence of the ij can be reconstructed from
S and T in the stated way using κ, but only if

∏
s∈S es and

∏
t∈T et

are both non-zero—that is, provided that S and T are actually sets
in that every element appears only once. That this is the case in the
enumeration used to produce the definition of S and T is implied by
(8.3), and ιsd is hence injective.

Lemma 8.3.17. For all d and s, the matrices Φs
d are square, and

consequently, ιsd is a bijection.

Proof. It holds that

dimUd =
d∑
i=0

(
k − i− 1
k − d− 1

)
·
(
k − d+ i

k − d

)
. (8.4)

This can be seen as follows: The sum is sorted by the position of the
first upward gap. For each i,

(
k−i−1
k−d−1

)
is the number of sets having their

first upward gap at i, and
(
k−d+i
k−d

)
is then the number of sets having

their first downward gap at j for some j ≥ d− i.
A variant of the classical Chu-Vandermonde identity then yields:

d∑
i=0

(
k − i− 1
k − d− 1

)
·
(
k − d+ i

k − d

)
=
(

2k − d
d

)
. (8.5)

Combining (8.5) and (8.4) with Lemma 8.3.15 shows that the direct
matrix sum

⊕
s Φsd, i.e., the block diagonal matrix with blocks Φsd, is

square. Lemma 8.3.16 then shows that each of the summand matrices
has at least as many columns as it has rows. These two statements
imply the claim.
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Lemma 8.3.18. Let m be a comb monomial of degree d with σ(m) = s.

Consider the represenation of ϕ(m) in the standard basis of G. Then,
the coefficient of ιsd(m) in this representation equals one.

Proof. We proceed by induction on d, for fixed k. For convenience, we
set ι = ιsd. If d = 1, then the claim is trivially true: ι(m) = e1 ⊗ ei1−1,

or ei1−k ⊗ ek if i1 > k, is the relevant basis element, and it appears per
definition in δi1 with coefficient one. Assume now that d > 1 holds,
and that the claim holds for d− 1. Let m′ = m/tid = ti1 · · · tid−1 . By
inductive hypothesis, m′ contains ι(m′) with coefficient one. We now
will argue two things: (1) ι(m′) can be extended (i.e., multiplied from
the right) by exactly one element of supp δid to yield ι(m), and (2) all
other elements of suppϕ(m′) cannot be extended in the same way.

Towards the first claim, observe that, similar to the case of d = 1, the
element b = ed ⊗ eid−d, or b = eid−k ⊗ ek if id > k, does the trick (this
does not mean that ek can appear more than twice on the right side of
the tensor product, which would make the product vanish): We have
ι(m′) · b = ι(m). This extension b is unique: Take any other element of
supp δid , and it will produce either zero, or some other basis element
that is distinct from ι(m).
Towards the second claim, let S and T correspond to m as in the

definition of ι, and let eQ ⊗ eR be some basis element with eQ ⊗ eR 6=
ι(m′). We assume that id ≤ k. Ignoring the signs, right multiplication
with an element es ⊗ et ∈ supp δid corresponds to disjoint set union
with Q and R, and we seek s and t such that S = Q ∪ {s} and
T = R∪{t}. Therefore, by Lemma 8.3.15, Q = {1, . . . , s−1, s+1, . . . , d}
and R = {i1 − 1, . . . , is−1 − s+ 1, is+1 − s− 1, . . . , id − d}. The sum of
the entries in Q and R is thus d∑

j=1
j

− s+

 d∑
j=1

(ij − j)

− (is − s)

=

 d∑
j=1

ij

− is 6=
 d∑
j=1

ij

− id = σ(m′) ,
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which implies that eQ ⊗ eR /∈ suppϕ(m′) by Lemma 8.3.15. The
argument goes along the same lines if ij ≥ k for some j.

Define a mapping

P : Sd ×Gd → R, (π, eS ⊗ eT ) 7→ ti1 · · · tid ,

where ij = aj + bπ(j) for all j and (aj)j and (bj)j are strictly increasing,
as in the definition of κ. Observe that P (id, ·) = κ, and hence P (id, eS⊗
eT ) ∈X whenever (S, T ) is gap-compatible.

Lemma 8.3.19. Consider an element eS ⊗ eT of the standard basis of
Gd. Assume eS ⊗ eT ∈ suppϕ(m) for some m ∈X. Then, there must
be a permutation π ∈ Sd with P (π, eS ⊗ eT ) = m.

Proof. This follows directly from the definitions of the δj and the
multiplication in G.

Lemma 8.3.20. Consider an element eS ⊗ eT of the standard basis
of Gd. Then, the coefficient of eS ⊗ eT in the standard representation
of ϕ(m) equals zero whenever m �grevlex κ(eS ⊗ eT ).

Proof. Let κS,T = κ(eS ⊗ eT ) = tj1 · · · tjd
. As before, let

S = {a1, . . . , ad}, T = {b1, . . . , bd}

listed in ascending order. With Lemma 8.3.19, it suffices to show that

κS,T �grevlex P (π, eS ⊗ eT ) for all π ∈ Sd with π 6= id .

To this end, let π 6= id be such a permutation. Let f ∈ [d] be the
greatest index such that f is not a fixed point of π, which exists since
π 6= id was assumed. Then, by assumption, for all g > f, we have
π(g) = g and ag + bπ(g) = ag + bg = jg, such that P (π, eS ⊗ eT ) agrees
with κS,T on all indices greater than f. Then, because f is maximal,
π(f) 6= f implies that π(f) < f, and so, since the bi are sorted in
ascending order, it follows that af + bπ(f) < af + bf = jf , so that the
first non-zero entry from the right in the resulting exponent vectors
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will be negative, which is the very definition of being smaller than κS,T
with respect to the order �grevlex .

Lemma 8.3.21. The rows and columns of the matrix Φs
d, which are

indexed by comb monomials and gap-compatible pairs, respectively, can
be permuted such that the resulting matrix is lower-triangular with ones
on the main diagonal, and hence of full rank.

Proof. According to Lemma 8.3.17, Φsd is square. According to Lemma
8.3.20, the columns of Φsd, which are indexed by gap-compatible pairs,
are zero above a certain point, to wit, in all rows indexed by a comb
monomial that is greater than κ(eS ⊗ eT ) with respect to �grevlex .

Furthermore, due to Lemmas 8.3.16 and 8.3.18, they have their topmost
1 all in different rows. Taking these things together, and reordering
columns accordingly, then proves the claim.

Proof of Lemma 8.3.4. Follows immediately from Lemma 8.3.21.

8.4. Proof of Theorem 8.2.4
The theorem follows directly from the following lemma.

Lemma 8.4.1. Let P = {p1, . . . , pk} ⊂ R[X] be a set of k linearly
independent univariate real polynomials in X of degree at most k and
without constant terms. Then, G(P ) is the image of H under a graded
homomorphism.

Proof. Denote the coefficient of Xs in the product pi · pj by csij , that is,
{csij}s is the unique set of reals that witnesses pi·pj =

∑2k
s=2 c

s
ijX

s for all
i, j. Defining now τq =

∑
i,j c

s
ijei⊗ej and, as in (8.2), a homomorphism

ϕP through

ϕP : R→ G(P ), ts 7→ ds for 2 ≤ s ≤ 2k , (8.6)

one can the see that the {τq}q behave very much the same as the {dq}q
did before: The generator v ⊗ v =

∑k
i=1 pi(x)ei for v ∈ S(P ) and such
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that pi(x) 6= 0 for all i, is expressible as

v ⊗ v =
2k∑
s=2

xsτs .

Furthermore, the relation (v⊗v)2 = 0 again proves that kerϕP contains
the generators of IC , and the claim follows.

Remark 8.4.2. The lower bound argument does not extend to G(P ) in
a straightforward way. This is hopeful insofar as it does not immediately
rule out the existence of even smaller algebras than M that possibly
enjoy the properties needed for the longest path problem.

8.5. Extensions
Pratt [Pra19; Pra18] has recently taken a seemingly entirely differ-
ent approach to algebraic algorithms for subgraph detection problems.
Namely, he uses so-called apolar ideals to construct an algebra of di-
mension

√
6.75k < 2.6k that can be used much in the same way to solve

subgraph detection and approximate counting as the algebras studied
here. To wit, this algebra is the apolar algebra of the determinant
polynomial of a generic Hankel matrix. In short, this is the quotient
of the algebra of commuting differential operators by the annihilator
of the generic Hankel matrix under the natural action of differential
operators on polynomials.
It is at first not at all clear what connection, if any, there is, be-

tween these algebras and the objects studied in this chapter. Without
proof and definitions, let us sketch this connection, which will be fully
developed in [Bra]:
The algebras of this chapter are in particular not Gorenstein. In

our setting, this means as much as saying that there are elements in
H of degree i that are annihilated by all elements of degree k − i,
and are, from a computational perspective, therefore somehow useless.
In contrast, apolar algebras are Gorenstein, and MacCaulay’s inverse
systems [Mac94] asserts, roughly, that every (local Artinian) Gorenstein
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algebra arises as an apolar algebra.
The catch is now that, if we consider the ideal generated by all those

aforementioned annihilators in H, and quotient them out, what we
obtain is obviously a Gorenstein algebra, and is in fact isomorphic to
the apolar algebra studied by Pratt.
On the other hand, we can obtain H back from the apolar setting

by not taking the quotient by all differential operators that annihilate
the generic Hankel matrix, but only the quotient by the ideal that is
generated by differential operators in degree two. This algebra is then
not Gorenstein anymore, and is isomorphic to H.
This is interesting from a mathematical perspective: It is a typical

question to ask for apolar ideals whether they are generated in degree
two, and this is indeed the case for generic determinants, permanents,
generic symmetric determinants, and generic symmetric permanents
[Sha13; Sha15]. However, it seems not to be the case for generic Hankel
matrices. Using the isomorphism results from this section allows for
a much more concrete treatment of the appearing algebraic objects.
This, in connection with Conca’s results on spaces of minors of generic
Hankel matrices [Con98], presents a promising approach to proving the
lower bounds missing in Pratt’s work.
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Part III.

Counting Forests and
the Tutte Plane
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9. Introduction

Let me see: four times five is twelve, and four times six is
thirteen, and four times seven is—oh dear! I shall never get
to twenty at that rate!

Alice in Lewis Carroll’s Alice in Wonderland

Counting combinatorial objects is at least as hard as detecting their
existence, and often it is harder. Valiant [Val79] introduced the com-
plexity class #P to study the complexity of counting problems and
proved that counting the number of perfect matchings in a given bipar-
tite graph is #P-complete. By a theorem of Toda [Tod91], we know
that PH ⊆ P#P holds; in particular, for every problem in the entire
polynomial-time hierarchy, there is a polynomial-time algorithm that is
given access to an oracle for counting perfect matchings. This theorem
suggests that counting is much harder than decision.
There are now two possibilities: Either one accepts one’s fate and

tries to make the best out of the situation, by trying to find algorithms
that are maybe not fast, but at least not as bad as the brute force
solution. For problems that are solvable in time 2O(n), for example
(where n is the input size), we might look for algorithms that solve
the problem in time 2o(n). We then want to determine the exponential
complexity of a problem as precisely as possible, i.e., either give better
algorithms, or prove better lower bounds. This is done in the field of
exact algorithms.
On the other hand, we might opt to take a step back and relax

our requirements. One very popular thing to do is to relax these
requirements with respect to the solution quality. For instance, we may
consider approximation algorithms. Another option—and the one we
consider here—is to be content with an algorithm that is sufficiently
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fast only on some instances. Of course, it is very easy to produce
an algorithm that is fast on some arbitrary set of trivial instances
of the problem. In order to make this task non-trivial, one wants
to parameterize the difficulty of instances in some way. This is the
approach chosen by parameterized algorithms and complexity.
At the danger of seeming somewhat heterodox, we collect both

of these approaches under the term of fine-grained algorithms and
complexity. In this part, we will analyze the fine-grained complexity of
the problem of counting the number of forests (i.e.„ all acyclic subsets
of edges) of a given size, which here means the number of edges.

To both approaches, the following definitions are crucial. A k-forest
is an acyclic graph consisting of k edges and a k-tree is a connected
k-forest. We say that two graphs G1 = (V1, E1) and G2 = (V2, E2) are
isomorphic if there is a bijection ϕ : V1 → V2 such that for all u, v ∈ V1,

{u, v} ∈ E1 if and only if {ϕ(u), ϕ(v)} ∈ E2. A k-matching of a graph
G = (V,E) is a subset of k edges such that no pair of edges has a
common vertex.
A weighted graph (G,w) is an undirected graph G in which every

edge e ∈ E(G) has a weight we, which is an element of some ring. We
use the multivariate forest polynomial, defined e.g. by Sokal [Sok05,
(2.14)] as follows:

F (G;w) =
∑

A∈F(G)

∏
e∈A

we . (9.1)

Setting all weights we to the single variable x yields the univariate
forest polynomial:

F (G;x) =
∑

A∈F(G)

x|A| =
|E(G)|∑
k=0

ak(G)xk ,

where ak(G) is the number of forests with k edges in G. For all x ∈
R\{1}, the formal relation between T (G;x, 1) and the univariate forest
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polynomial is given by the identity

T (G;x, 1) = (x− 1)|V |−k(E)
∑

A∈F(G)

(x− 1)−|A|

= (x− 1)|V |−k(E) · F
(
G; 1

x− 1

)
.

(9.2)

The first equality follows from (10.2) and the discussion preceding
it. Thus, evaluating the forest polynomial and evaluating the Tutte
polynomial for y = 1 are polynomial-time equivalent.
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10. The Exponential
Complexity of Counting
Forests

10.1. Introduction
When faced with a problem that is NP-hard or #P-hard, the area of
exact algorithms strives to find the fastest exponential-time algorithm
for a problem, or find reasons why faster algorithms might not exist.
For example, Björklund proved the following.

Theorem 10.1.1 ([Bjö12]). There is an algorithm for counting perfect
matchings in n-vertex graphs in time 2n/2 poly(n).

It has been hypothesized that no 1.99n/2-time algorithm for the
problem exists. But we do not know whether such an algorithm has
implications for the strong exponential time hypothesis, which states:
For all ε > 0, there is some k such that the problem of deciding
satisfiability of boolean formulas in k-CNF on n variables does not have
an algorithm running in time (2− ε)n. However, Dell et al. proved that
the term O(n) in the exponent is asymptotically tight, in the following
sense.

Theorem 10.1.2 ( [Del+14]). Unless rETH fails, there is no exp
(
o(n)

)
-

time algorithm for counting perfect matchings in n-vertex graphs.

would violate the (randomized) exponential time hypothesis (ETH)
by Impagliazzo and Paturi [IP01]. Using the idea of block interpolation,
Curticapean [Cur15] strengthened the hardness by showing that a
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exp
(
o(n)

)
-time algorithm for counting perfect matchings would violate

the (deterministic) counting exponential time hypothesis (#ETH).
We prove hardness results under #ETH for the problem of counting

all forests in a graph, that is, its acyclic subgraphs. In particular, we
show that, if #ETH holds, then this problem does not have an algorithm
running in time exp(o(n)) even in simple n-vertex graphs of bounded
average degree. We use this result to lift two known “FP vs. #P-hard”
dichotomy theorems to their more refined and asymptotically tight “FP
vs. #ETH-hard” variants. Here, FP is the class of functions computable
in polynomial time. Since ETH implies #ETH, our results could also
be stated under ETH.

10.1.1. The Tutte Polynomial under #ETH

The Tutte polynomial of a graph G with vertices V and edges E is the
bivariate polynomial T (G;x, y) defined via

T (G;x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V | , (10.1)

where k(A) is the number of connected components of the graph (V,A).
The Tutte polynomial captures many combinatorial properties of a
graph in a common framework, such as the number of spanning trees,
forests, proper colorings, and certain flows and orientations, but also less
obvious connections to other fields, such as link polynomials from knot
theory, reliability polynomials from network theory, and (perhaps most
importantly) the Ising and Potts models from statistical physics. We
make no attempt to survey the literature or the different applications
for the Tutte polynomial, and instead refer to the upcoming CRC
handbook on the Tutte polynomial [EMon].
Since T (G;−2, 0) corresponds to the number of proper 3-colorings

of G, we cannot hope to compute all coefficients of T (G;x, y) in poly-
nomial time, unless #P = P. Instead, we focus on the complexity of
evaluating the Tutte polynomial at fixed evaluation points. That is, for
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each (x, y) ∈ Q2, we consider the function Tx,y defined as

G 7→ T (G;x, y) .

Jaeger, Vertigan, and Welsh [JVW90] proved that the behavious of
this function is dichotomous: It is either #P-hard to compute, or has a
polynomial-time algorithm—i.e., there are no intermediacies.

In particular, if (x, y) satisfies (x−1)(y−1) = 1, then Tx,y corresponds
to the 1-state Potts model and has a polynomial-time algorithm. If
(x, y) is one of the four points (1, 1), (−1,−1), (0,−1), or (−1, 0), it
also has a polynomial-time algorithm. The most interesting point here
is T (G; 1, 1), which corresponds to the number of spanning trees in G.
A naïve algorithm to compute the Tutte polynomial of a graph

with m edges runs in time exp
(
O(m)

)
. Björklund et al. [Bjö+08] gave

an algorithm running in time exp
(
O(n)

)
, where n is the number of

vertices. Dell et al. [Del+14] proved for all hard points, except for points
with y = 1, that an exp

(
o(n/ log3 n)

)
-time algorithm for Tx,y on simple

graphs would violate #ETH. Distressingly, this result not only left open
one line, but also left a gap in the running time. Curticapean [Cur15]
introduced the technique of block interpolation to close the running
time gap: Under #ETH, there is no exp

(
o(n)

)
-time algorithm for Tx,y

on simple graphs at any hard point (x, y) with y 6= 1.1

We resolve the complexity of the missing line y = 1 under #ETH.
On this line, the Tutte polynomial counts forests weighted in some way,
and the main result is the following theorem.

Theorem 10.1.3 (Forest counting is hard under #ETH). If #ETH
holds, then there exist constants ε, C > 0 such that no exp(εn)-time
algorithm can compute the number of forests in a given simple n-vertex
graph with at most Cn edges.

The fact that the problem remains hard even on simple sparse graphs
makes the theorem stronger. The previously best known lower bound
under #ETH was that forests cannot be counted in time exp(nδ) where

1The conference version of [Cur15] does not handle the case y = 0, but the full
version [Cur18] does.

147



10. The Exponential Complexity of Counting Forests

δ > 0 is some constant depending on the instance blow-up caused by
the known #P-hardness reductions for forest counting; the thesis of
Taslaman [Tas13] shows a detailed proof for δ = 1

8 . Our approach also
yields a #P-hardness proof for forest counting that is simpler than
the proofs we found in the literature, such as the proof appearing in
“Complexity of Graph Polynomials” by Steven D. Noble, chapter 13
of [GM07].2

Combined with all previous results [JVW90; Del+14; Cur15], we can
now formally state a complete #ETH dichotomy theorem for the Tutte
polynomial over the reals.

Theorem 10.1.4 (Dichotomy for the real Tutte plane under #ETH).
Let (x, y) ∈ Q2. If (x, y) satisfies

(x− 1)(y − 1) = 1 or (x, y) ∈
{

(1, 1), (−1,−1), (0,−1), (−1, 0)
}
,

then Tx,y can be computed in polynomial time. Otherwise Tx,y is #P-
hard and, if #ETH is true, then there exists ε > 0 such that Tx,y cannot
be computed in time exp(εn), even for simple graphs.

The result also holds for sparse simple graphs. We stated the results
only for rational numbers in order to avoid discussions about how real
numbers should be represented.

For the proof of Theorem 10.1.3, we establish a reduction chain that
starts with the problem of counting perfect matchings on sparse graphs,
which is known to be hard under #ETH. As an intermediate step, we
find it convenient to work with the multivariate forest polynomial as
defined, for example, by Sokal [Sok05]. After a simple transformation
of the graph, we are able to extract the number of perfect matchings
of the original graph from the multivariate forest polynomial of the
transformed graph, even when only two different variables are used.
Subsequently, we use Curticapean’s idea of block interpolation [Cur15]
to reduce the problem of computing all coefficients of the bivariate
forest polynomial to the problem of evaluating the univariate forest

2For a different and not fully published proof, Jaeger, Vertigan and Welsh [JVW90]
refer to private communication with Mark Jerrum as well as the PhD thesis of
Vertigan [Ver91].
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polynomial on multigraphs where all edge multiplicities are bounded
by a constant. Finally, we replace parallel edges with parallel paths of
constant length to reduce to the problem of evaluating the univariate
forest polynomial on simple graphs.
The exponential time hypothesis (ETH) by Impagliazzo and Pa-

turi [IP01] is that satisfiability of 3-CNF formulas cannot be computed
substantially faster than by trying all possible assignments. The count-
ing version of this hypothesis [Del+14], which is a weaker assumption
(clearly, counting the number of solutions entails deciding existence of
a solution), reads as follows:

(#ETH)
There is a constant ε > 0 such that no deterministic
algorithm can compute #3-SAT in time exp(εn), where
n is the number of variables.

A different way of formulating #ETH is to say no algorithm can
compute #3-SAT in time exp(o(n)). The latter statement is clearly
implied by the formal statement, and it will be more convenient for
discussion to use this form.
The sparsification lemma by Impagliazzo, Paturi, and Zane [IPZ01]

is that every k-CNF formula ϕ can be written as the disjunction of
2εn formulas in k-CNF, each of which has at most c(k, ε)n clauses.
Moreover, this disjunction of sparse formulas can be computed from ϕ

and ε in time 2εn poly(m). The density c = c(k, ε) is the sparsification
constant, and the best known bound is c(k, ε) = (k/ε)3k [CIP06]. It
was observed [Del+14] that the disjunction can be made so that every
assignment satisfies at most one of the sparse formulas in the disjunction,
and so the sparsification lemma applies to #ETH as well. In particular,
#ETH implies that #3-SAT cannot be computed in time exp(o(m)),
where m is the number of clauses.

We also make use of the following result, whose proof is based on
block interpolation.

Theorem 10.1.5 (Curticapean [Cur15]). If #ETH holds, then there
are constants ε,D > 0 such that computing the number of perfect
matchings of G has no exp(εn)-time algorithms on n-vertex graphs G,
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even if G is simple and of maximum degree at most D:

10.2. Counting Forests is #ETH-hard
Let F(G) be the set of all forests of G, that is, edge subsets A ⊆ E(G)
such that the graph (V (G), A) is acyclic. Consider now the definition of
the Tutte polynomial in (10.1). For y = 1, the expression (y − 1) is of
course zero. Conventionally, 0t = 1 if and only if t = 0, and 0 otherwise.
Therefore, the only non-vanishing summands on the right side of (10.1)
are those where (y − 1) appears with an exponent of zero. For a single
summand, this is the case precisely if k(A) + |A| − |V | = 0. This, in
turn, is equivalent to A being a forest, which allows us to conclude:

T (G;x, 1) =
∑

A∈F(G)

(x− 1)k(A)−k(E) . (10.2)

The goal of this section is prove that, for every fixed x 6= 1, computing
the value T (G;x, 1) for a given graph G is hard under #ETH. More
formally, we show the following theorem.

Theorem 10.2.1. Let x ∈ R \ {1}. If #ETH holds, then there exist
ε, C > 0 such that the function that maps simple n-vertex graphs G
with at most Cn edges to the value T (G;x, 1) cannot be computed in
time 2εn.

In particular, this is true for T (G; 2, 1), which is the number of forests
in G. Thus, Theorem 10.2.1 yields Theorem 10.1.3 as its special case
with x = 2.

For a forest A ∈ F(G), let C(A) be the family its connected compo-
nents. A connected component of A is a maximal set U ⊆ V (G) that
is connected in (V (G), A). Clearly C(A) is a partition of V (G), each
element is a (maximal) tree of A, and trees U with |U | = 1 are allowed.

Lemma 10.2.2 (Adding an apex). Let (G,w) be a weighted graph.
Let (G′, w′) be obtained from it by adding a new vertex a and joining it
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with each vertex v ∈ V (G) using edges of weight zv. Then

F (G′;w′) =
∑

A∈F(G)

∏
e∈A

we
∏

U∈C(A)

(
1 +

∑
u∈U

zu

) . (10.3)

Moreover, if we set zv = −1 for all v ∈ V (G) and w′e = w for all
e ∈ E(G), then the coefficient of wn/2 in F (G′;w′) equals the number
of perfect matchings of G in absolute value.

Proof. We first define a projection φ that maps any forest A′ in the
graph G′ to a forest φ(A′) in the original graph G. In particular, φ
simply removes all edges added in the construction of G′, that is, we
define φ(A′) = E(G) ∩A′ for all A′ ∈ F(G′). Clearly, φ(A′) is a forest
in G.

Next we characterize the forests A′ that map to the same φ(A′). Let
A be a fixed forest in G. Then a forest A′ in G′ maps to A under φ if
and only if the set X := A′ \A satisfies the following property:

(P) For every tree U ∈ C(A), at most one edge of X is incident on U.

The forward direction of this claim follows from the fact that A′ is a
forest, and so in addition to the trees U ∈ C(A) it can contain at most
one edge connecting each U to a; otherwise the tree and the two edges
to a would contain a cycle in A′. For the backward direction of the
claim, observe that adding a set X with the property (P) to A cannot
introduce a cycle.
Finally, we calculate the weight contribution of all A′ that map to

the same A. Let A′ be a forest in G, let A = φ(A′) and X = A′ \ A.
The weight contribution of A′ in the definition of F (G′) is

∏
e∈A′ w

′
e.

For all e ∈ A, we have w′e = we. For each e ∈ X, we have e = {a, ve}
for some ve ∈ V (G), and thus w′e = zve

. Summing over all weight terms
for A′ with image A yields

∑
A′∈F(G′)
φ(A′)=A

∏
e∈A

w′e =
∏
e∈A

we ·
∑
X

∏
e∈X

zve
=
∏
e∈A

we ·
∏

U∈C(A)

(
1 +

∑
u∈U

zu

)
.

(10.4)
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The sum in the middle is over all X with the property (P), and the
first equality follows from the bijection between forests A′ and sets X
with property (P). For the second equality, we use property (P) and the
distributive law. We obtain (10.3) by taking the sum of equations (10.4)
over all A ∈ F(G).

For the moreover part of the lemma, we set w′e = w for all e ∈ E(G)
and zv = −1 for all v ∈ V (G), and observe

F (G′;w′) =
∑

A∈F(G)

w|A|
∏

U∈C(A)

(1− |U |) .

The coefficient of wn/2 in F (G′) satisfies

[wn/2]F (G′) =
∑

A∈F(G)
|A|=n/2

∏
U∈C(A)

(1− |U |) . (10.5)

If (V (G), A) is an acyclic graph with exactly n/2 edges, then either it
is a perfect matching or it contains an isolated vertex. If it contains
an isolated vertex v, then {v} ∈ C(A) and thus the product in (10.5) is
equal to zero for this particular A. It follows that A does not contribute
to the sum if it is not a perfect matching. On the other hand, if A is a
perfect matching, then |U | = 2 holds for all U ∈ C(A), so the product
in (10.5) is equal to 1 or −1, depending on the parity of n/2. Overall,
we obtain that [wn/2]F (G′) is equal in absolute value to the number of
perfect matchings of G.

Lemma 10.2.2 shows that computing the coefficients of the multivari-
ate forest polynomial is at least as hard as counting perfect matchings;
moreover, this is true even if at most two different edge weights are used.
Next we reduce from the multivariate forest polynomial with at most
two distinct weights to the problem of evaluating the univariate poly-
nomial in multigraphs. We do so via a so-called oracle serf-reduction,
whose queries are sparse multigraphs in which each edge has at most a
constant number of parallel edges.

Lemma 10.2.3 (From two weights to small weights).
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10.2. Counting Forests is #ETH-hard

Let x and y be two variables, and let z ∈ R \ {0} be fixed. There is an
algorithm as follows:

1. Its input is a weighted graph (G,w) with we ∈ {x, y} for all
e ∈ E(G), and a real ε > 0.

2. It outputs all coefficients of F (G;w), which is a bivariate polyno-
mial in x and y.

3. It runs in time exp(ε|E(G)|).

4. It has access to an oracle that, given w′, returns the real number
F (G;w′).

5. There is a constant Cε ∈ N that only depends on ε such that all
oracle queries w′ made by the algorithm satisfy w′e ∈ {0·z, . . . , Cε ·
z} for every edge e ∈ E(G).

Proof. Let (G,w) with we ∈ {x, y} for all e ∈ E(G) and ε > 0 be given
as input. Define Cε ∈ N as a large enough constant to be determined
later, and let m be the smallest multiple of Cε that is at least |E(G)|.
This implies |E(G)| ≤ m < |E(G)|+ Cε.

By the definition (9.1) of the multivariate forest polynomial, F (G;w)
is a bivariate polynomial over the variables x and y and with total
degree at most m. We partition the edge set E(G) into blocks of size
at most Cε in such a way that edges e and e′ with we 6= we′ never
belong to the same block. Since x and y occur at most m times,
the number of blocks is at most m/Cε. For each block, we introduce
new variables xi and yi, and based on the edge partition, we obtain
a new weight function v with the following properties: If we = x,

then ve ∈ {x1, . . . , xm/Cε
}. If we = y, then ve ∈ {y1, . . . , ym/Cε

}. And
each xi and yi occurs as ve for at most Cε different edges e. With these
weights, the multivariate forest polynomial F (G; v) is a polynomial p
over the 2m/Cε variables {xi, yi : 1 ≤ i ≤ m/Cε } and each variable
has individual degree at most Cε. Moreover, the polynomial F (G;w)
can be recovered from F (G; v) by replacing each xi with x and each yi
with y.

153



10. The Exponential Complexity of Counting Forests

The goal of the desired algorithm is to compute the coefficients of the
bivariate polynomial F (G;w), and it is able to query the values F (G;w′)
for any real vector w′. Since p is a polynomial with

p(x1, . . . , xm/Cε
, y1, . . . , ym/Cε

) = F (G; v) ,

the oracle allows us to query values p(ξ) for real vectors ξ ∈ R2m/Cε .

The resulting vectors w′ that we query satisfy w′e = ξj if e belongs to
block j of the partition. The algorithm is as follows:

1. Given: (G,w) and ε > 0.

2. Construct a vector v over the variables xi and yi as discussed.
[Now F (G; v) is a polynomial p in 2m/Cε variables and with
individual degree at most Cε.]

3. For all points ξ ∈ {0 · z, . . . , Cε · z}2m/Cε , use the oracle to obtain
the value p(ξ).

4. Use multivariate Lagrange interpolation to compute the coeffi-
cients of the polynomial p.

5. Replace each occurrence of xi with x and each occurrence of yi
with y to recover the coefficients of F (G;w).

First note that all resulting oracle queries F (G;w′) are indeed of the
form that is required since each entry of ξ and thus w′ is in {0·z, . . . , Cε ·
z}. In step 3, we evaluate the polynomial F (G; v) on all points of a
(2m/Cε)-dimensional grid dilated by z and with side-length Cε + 1 in
each dimension. The evaluations on such a grid are sufficient to perform
multivariate Lagrange interpolation (see, e.g., [Cur15]) for F (G; v),
which yields the coefficients of the multivariate polynomial F (G; v) and
thus of the bivariate polynomial F (G;w).

The running time of the algorithm is polynomial in the size (Cε + 1)2m/Cε

of the grid. Now, choose Cε large enough, depending on ε, such that
this is at most exp(εm).

The graphs queried by the algorithm can be turned into multigraphs
where each edge has weight exactly z as follows. If an edge e of
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a graph G has weight w′e with w′e = µe · z for some µe ∈ N, then
we can simulate this weight by replacing e with µe parallel edges of
weight z. Doing this for all edges yields a multigraph Gµ such that
F (Gµ; z) = F (G;w′) holds. In particular, F (Gµ; 1) is the number of
forests in Gµ, so Lemma 10.2.3 for z = 1 can be seen as a reduction
from two weights to forest counting in multigraphs where each edge
has at most O(1) parallel copies.
Thus, the combination of Lemma 10.2.2 and Lemma 10.2.3 shows,

for all fixed x 6= 0, that it is hard to evaluate F (G;x) for multigraphs
with at most a constant number of parallel edges. Next we apply a
stretch to make the graphs simple. To this end, we calculate the effect
of a k-stretch on the univariate forest polynomial of a graph.

Lemma 10.2.4 (The forest polynomial under a k-stretch). Let G be
an arbitrary multigraph on m edges, all having the same weight w ∈ R.
Let k ≥ 2 be an integer such that the number gk(w) with

gk(w) = wk

(w + 1)k − wk

is well-defined. Let G′ be the simple graph obtained from G by replacing
every edge by a path of k edges. Then,

F (G′;w) =
(
(w + 1)k − wk

)m · F (G; gk(w)
)
.

Proof. Define a mapping φ that maps forests in G′ to forests in G

as follows: Given a forest A′ of G′, the image φ(A′) contains the
edge e ∈ E(G) if and only if A′ contains all the k edges of G′ that
e got stretched into. These edges then form a forest in G. That is,
subgraphs A′ that only differ by edges in “incomplete paths” are mapped
to the same multigraph by φ.
Clearly, φ partitions F(G′) into sets of forests with the same image

under φ. Let A be a forest in G, and let us describe a way to generate all
A′ with φ(A′) = A. First, for each e ∈ A, add its corresponding path in
G′ of length k to A′. Moreover, for each edge e ∈ E(G) \A, we can add
to A′ any proper subset of edges from the k-path in G′ that corresponds
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to e. Therefore, at each e ∈ E(G) \A independently, there are
(
k
i

)
ways

to extend A′ by i edges to a forest in G′, for i ∈ {0, . . . , k− 1}. A forest
A′ can be obtained in this fashion if and only if φ(A′) = A holds.
For a fixed A, let us consider all summands w|A′| in F (G′;w) with

φ(A′) = A. By the above considerations, the total weight contribution
of these summands is

wk|A| ·

(
k−1∑
i=0

(
k

i

)
wi

)m−|A|
= wk|A| ·

(
(w + 1)k − wk

)m−|A|
by the binomial theorem. These remarks justify the following calculation
for the forest polynomial:

F (G′;w) =
∑

A∈F(G)

∑
A′∈F(G′)
φ(A′)=A

w|A
′| =

∑
A∈F(G)

wk·|A| ·
(

(w + 1)k − wk
)m−|A|

=
(

(w + 1)k − wk
)m
·
∑

A∈F(G)

(
wk

(w + 1)k − wk

)|A|
.

Since the sum in the last line is equal to F
(
G; gk(w)

)
, this concludes

the proof.

We are now in position to formally prove the main theorem of this
section.

Proof of Theorem 10.2.1. Let x ∈ R \ {1}, and let t = (x − 1)−1.

Suppose that, for all ε > 0, there exists an algorithm Bε to compute
the mapping G 7→ T (G;x, 1) in time 2εn for given simple graphs G
with at most C ′εn edges, where C ′ε will be chosen later. By (9.2),
algorithm Bε can be used to compute values F (G; (x− 1)−1) with no
relevant overhead in the running time. Given such an algorithm (or
family of algorithms), we devise a similar algorithm for counting perfect
matchings, which together with Theorem 10.1.5 implies that #ETH is
false.
Let G be a simple n-vertex graph with at most Cn edges. Let G′

be the graph obtained from G as in Lemma 10.2.2 by adding an apex,
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labeling the edges incident to the apex with the indeterminate z, and all
other edges with the indeterminate w. By Lemma 10.2.2, the coefficients
of the corresponding bivariate forest polynomial of G′ are sufficient to
extract the number of perfect matchings of G, so it remains to compute
these coefficients.

To obtain the coefficients, we use Lemma 10.2.3, keeping in mind the
remark following its proof. The reduction guaranteed by the lemma
produces 2εm multigraphs H, all with the same vertex set V (G′).
Moreover, each H has at most Cε|E(G′)| = Cε(|E(G)|+ n) ≤ O(Cεn)
edges, and the multiplicity of each edge is at most Cε. Finally, each
edge of each H is assigned the same weight z, which we will choose
later.

For each H, the reduction makes only one query, where it asks for the
value F (H; z). Our assumed algorithm however only works for simple
graphs, so we perform a 3-stretch to obtain a simple graph H ′ with at
most 3|E(H)| ≤ O(Cεn) edges. Lemma 10.2.4 allows us to efficiently
compute the value F (H; z) when we are given the value F (H ′; t) and
z = g3(t) holds. Since gk is a total function whenever k is a positive
odd integer, and 3 is indeed odd, the value g3(t) is well-defined, and
we set z = g3(t).

Set C ′ε large enough so that E(H ′) ≤ C ′ε · n holds. Tracing back
the reduction chain, we can use algorithm Bε to compute T (H ′;x, 1)
in time 2εn any ε > 0. Using (9.2), we get the value of F (H ′; t) since
x 6= 1. This, in turn, yields the value of F (H; z) since (z + 1)k − zk 6= 0
and g3(t) = z. We do this for each of the 2εm queries H that the
reduction in Lemma 10.2.3 makes. Finally, the latter reduction outputs
the coefficients of the bivariate forest polynomial of G′, which contains
the information on the number of perfect matchings of G.

To conclude, assuming the existence of the algorithm family (Bε)ε>0,

we are able to count perfect matchings in time poly(2εm) for all ε > 0,
which implies via Theorem 10.1.5 that #ETH is false.

Note that the construction from the proof of Theorem 10.1.3 implies
hardness of T (G;x, 1) for tripartite G, and also in the bipartite case
whenever x 6= −1.
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11. The Parameterized
Complexity of Counting
Forests

11.1. Introduction
Parameterized counting complexity has produced results on the hard-
ness of computing the number of paths, cliques and cycles with k edges
in a given graph. One important step was the proof of #W[1]-hardness
for computing the number of k-matchings in a simple graph [Cur13].
This line of research culminated in a classification theorem of Curt-
icapean and Marx [CM14a] for the following problem: Given a graph
H from a class of graphs H and an arbitrary graph G, compute the
number of all subgraphs of G that are isomorphic to H, parameterized
by |V (H)|. They proved that this problem is fixed-parameter tractable
if the vertex cover number of all graphs in H is bounded by a constant1,
and #W[1]-hard otherwise.

This theorem does not cover the problem of counting all occurrences
of all subgraphs of a certain size that are contained in a fixed class H of
graphs. For example, using their theorem, we can classify the problem
of counting all k-cliques in a graph as #W[1]-hard as follows: For the
class H, we take H = {Kn | n ∈ N}. As n goes to infinity, so does
the vertex cover number of Kn, and the hardness follows. Of course,
we might take H to be the set of all trees or all forests, but then the
theorem speaks about the complexity of computing the number of one

1That is, sup{τ(H) | H ∈ H} < ∞, where τ(H) is the size of a minimum vertex
cover of H.
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specific tree or forest in some given graph, instead of counting all trees
or forests of a given size in one specific given graph. It is the complexity
of the problem of counting all forests with a given number of edges in
a given graph that we are concerned with in this chapter.2

Another problem that has yet escaped a parameterized analysis is the
problem of counting bases in matroids. Matroids have been studied over
decades and play a central role in numerous combinatorial applications
(see e.g. [Oxl92]). Although they were treated in the parameterized
world (see e.g. [Cyg+15a, Chap. 12] for an overview), the problem of
computing the number of bases was only addressed from the classical
point of view so far [Ver98; Sno12; Mau76]. It should be noted that
this problem comprises also a generalization of counting forests in a
graph, which gives the connection to the previously mentioned problems.
Building on our results on counting forests, this gap in knowledge is
one we address in the subsequent sections.

11.1.1. Related Work

It is known that computing the number of all (labeled) trees and
computing the number of all forests are #P-hard problems, even on
planar graphs [Jer94; VW92; GO09]. A general theorem of Eppstein
implies their being fixed-parameter tractable on planar graphs [Epp02].
The problem of counting k-independent sets in a binary matroid is

#P-hard. This follows from the well-known fact that the k-forests of a
graph G correspond one-to-one to the k-independent sets of the binary
matroid represented by the incidence matrix of G over GF(2) (see e.g.
[Sno12]). Also, counting the bases of a binary matroid is #P-hard (see
e.g. [Ver98]). On the other hand, the number of bases of a regular
matroid can be computed in polynomial time [Mau76].

2Interestingly, the recent work of Roth [Rot17] covers a broad variety of questions
of similar flavor, but cannot be applied to the case of counting forests with a
given number of edges, either.
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11.2. Parameterized Counting Complexity
We begin with basic definitions of parameterized counting complexity,
following closely Chapt. 14 of the textbook [FG06], which we recom-
mend to the interested reader for a more comprehensive overview of
the topic. Our fundamental object of study is the following. A parame-
terized counting problem (F, k) consists of a function F : {0, 1}∗ → N
and a polynomial-time computable function k : {0, 1}∗ → N, called
the parameterization.
A parameterized counting problem (F, k) is called fixed-parameter

tractable if there is an algorithm A for computing F, a constant c > 0
and a computable function f : N → N such that A is running in
time f(k(x)) · |x|c for all x ∈ {0, 1}∗. We say that such an algorithm
runs in fpt-time. Let (F, k) and (F ′, k′) be two parameterized counting
problems. Then, a function R : {0, 1}∗ → {0, 1}∗ is called an fpt
parsimonious reduction from (F, k) to (F ′, k′) if

1. For all x ∈ {0, 1}∗, F (x) = F ′(R(x)).

2. R runs in fpt-time.

3. There is some computable g : N → N such that k′(R(x)) ≤
g(k(x)) for all x ∈ {0, 1}∗.

An algorithm A with oracle access to F ′ is called an fpt Turing reduction
from (F, k) to (F ′, k′) if

1. A computes F.

2. A runs in fpt-time.

3. There is some computable g : N→ N such that for all x ∈ {0, 1}∗

and for all instances y for which the oracle is queried during the
execution of A(x), k′(y) ≤ g(k(x)).

The parameterized counting problem #k-Clique is defined as follows,
and is parameterized by k: Given a graph G and an integer k, compute
the number of cliques of size k in G. The class #W[1] is defined as the
set of all parameterized counting problems (F, k) such that there is an
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fpt parsimonious reduction from (F, k) to #k-Clique. A parameterized
counting problem (F, k) is called #W[1]-hard if there is an fpt Turing
reduction from #k-Clique to (F, k).
The following was established by Curticapean.

Theorem 11.2.1 ([Cur13]). Given a graph G and a parameter k, it is
#W[1]-hard to compute the number of matchings of size k in G.

11.3. Matroids and Matrices
Given a graph G with vertices v1, . . . , vn and edges e1, . . . , em we define
the (unoriented) incidence matrix M [G] ∈ Mat(n×m,GF(2)) of G by
M [G](i, j) := 1 if vi ∈ ej and 0 otherwise. A subset of columns ofM [G]
is linearly independent (over GF(2)) if and only if the corresponding
edges form a k-forest in G.
A matroid is a pair M = (E, I) consisting of a finite ground set E

and a family I 6= ∅ of subsets of E that satisfies the following axioms:

1. I is downward closed, i.e., if I ∈ I and I ′ ⊂ I, then I ′ ∈ I.

2. I has the exchange property, i.e., if I1, I2 ∈ I and |I1| < |I2|,
then there is some e ∈ I2 − I1 such that I1 ∪ {e} ∈ I.

Note that this entails ∅ ∈ I. The elements of I are called independent
sets, and an inclusion-wise maximal element of I is called a basis of M.

The exchange property warrants that all bases have the same cardinality,
and we call this cardinality the rank ofM, written as rkM. Furthermore
we define (|E|− rkM) as the nullity of M. The pair Mk = (E, Ik) with
Ik = {I ∈ I | |I| ≤ k} is again a matroid, called the k-truncation Mk

of M.

For a field F, a representation of M over F is a mapping ρ : E → V,

where V is a vector space over F, such that for all A ⊆ E, A is
independent if and only if ρ(A) is linearly independent. M is called
representable if it is representable over some field. If there is such a
representation, we callM representable over F , or F -linear, and it holds
that rk(ρ) = rk(M). Conversely, every matrix over a field F induces an
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F -linear matroid on its columns, where sets of columns are independent
if and only if they are linearly independent. A k-truncation of a matrix
is the matrix of a representation of the k-truncation of the corresponding
linear matroid, possibly over a different field. Recently, Lokshtanov
et al. proved that a k-truncation of a matrix can be computed in
deterministic polynomial time (see [Lok+15], Theorem 3.23).3 In the
following we will write GF(q) for the field with q elements.

Given a matroidM = (E, I), the dual matroid M∗ ofM is a matroid
on the same ground set as M, and B ⊆ E is a basis of M∗ if and only
if E \ B is a basis of M. Given a representation of a matroid M, a
representation of M∗ in the same field can be found in polynomial time
(see e.g. [Mar09b]).

In the following, all matroids will be assumed to be representable,
and encoded using a representing matrix ρ and a suitable encoding for
the ground field. Furthermore, we can, without loss of generality, always
assume that ρ has rk(M) rows, because row operations (multiplying
a row by a non-zero scalar, and adding such multiples to other rows)
do not affect linear independence of the columns of ρ. Hence, any ρ′

obtained from ρ through row operations is a representation of M. In
particular, by Gaussian elimination, we may assume all but the first
rk(M) rows of ρ to be zero.

11.4. Counting Forests is #W[1]-hard
In this section, we will prove that counting k-forests is #W[1]-hard.
This result will be used to show hardness of counting matroid bases in
fields of fixed characteristic.

For a forest A in G, let again C(A) be the family of all sets T ⊆ V (G)
such that T 6= ∅ and T is a maximal connected component in A. Adding
an apex, that is, a new vertex that is connected to all other vertices,
to a graph G = (V,E) and labeling each of the new edges with a new
variable z makes the univariate forest polynomial into a bivariate one,

3A slightly weaker version of this result with a simpler proof that still suffices for
our application seems to follow along the lines of Snook [Sno12].
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namely F (G′;x, z), where G′ is the described graph with an added
apex. In the following, G will always be the original graph, and G′ will
be the graph obtained in this way.
Note that F (G′;x, z) ∈ Z[x, z] ∼= (Z[z])[x]. In particular, the coeffi-

cient of xk in F (G′;x, z) is an element of Z[z]. To make this very clear
in the following, we shall refer to this element of Z[z] as the coefficient
polynomial of xk in F (G′;x, z).

Lemma 11.4.1. There is a polynomial-time Turing reduction from
counting matchings of size k in a graph G to computing the coeffi-
cient polynomial of xk of the bivariate forest polynomial F (G′;x, z)
of the graph G′, parameterized by k in both problems. In particular,
this reduction retains the parameter k and is thus even an fpt Turing
reduction.

Proof. The coefficient polynomial Ck(z) ∈ Z[z] of xk in F (G′;x, z) can
be expressed in terms of G through

Ck(z) =
∑

A∈(E
k) acyclic in G

∏
T∈C(A)

(1 + |T |z),

as follows immediately from Lemma 10.2.2 after specializing to x and
z. Since a forest in G with k edges can cover at most 2k nodes of
G, at least n − 2k nodes of G are left uncovered by T, and are thus
present in C(A) as components T with |T | = 1. This shows that the
product

∏
T∈C(A)(1 + |T |z) of each summand (and hence also Ck(z)) is

a multiple of (1 + z)n−2k. Thus, the polynomial quotient

Qk(z) := Ck(z)/(1 + z)n−2k

is a well-defined element of Z[z].
Observe that it is precisely the k-matchings of G that will have

2k covered and n − 2k uncovered nodes, and such a k-matching has
k components with |T | = 2, and n − 2k components with |T | = 1.
Therefore, the summand corresponding to some A in Ck(z) is of the
form (1+z)n−2k(1+2z)k if and only if A is a k-matching. Likewise, the
number of k-matchings is precisely the number of such monomials in
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Ck(z). In all other monomials, the factor (1 + z) is hence present with
degree at least n− 2k+ 1. Denote with Mk the number of k-matchings
in G. After substituting z 7→ y−1 (hence, y = z+1), this can be stated
as follows:

Qk(y) = Ck(y)/yn−2k = Mk · (2y − 1)k + y ·R(y)

for some polynomial R(y). We see that for y = 0, y · R(y) = 0, and
hence, keeping in mind that z = y − 1, it follows

Qk(y = 0) = Qk(z = −1) = Mk · (−1)k .

We now argue why this is an fpt Turing reduction. Note that in the
coordinates yi, the polynomial division is just a shift of coefficients.
Therefore, an oracle to the k-th coefficient polynomial of F (G′;x, z), as
provided in a Turing reduction, yields the polynomial Ck(z). After a
change of basis from z to y−1 and a corresponding shift of coefficients to
perform the division by yn−2k, we can evaluate the resulting polynomial
Qk(y) at y = 0 and obtain Mk · (−1)k and thus Mk. This can clearly
be done in polynomial time in the size of G (and k, for that matter)
once Ck(z) was obtained, and the only oracle query involved does not
alter the parameter and is hence valid for an fpt Turing reduction.

Note that this implies Lemma 10.2.2 as a special case, where k = n/2.
This proves that the coefficient polynomial of xk in the bivariate

polynomial F (G′;x, z) is hard to compute. We now want to show that
this implies that the k-th coefficient (which is a natural number, not
a polynomial) of the univariate polynomial is hard to compute. We
do this by reducing the compution the coefficient polynomial of xk in
F (G′;x, z) to computing the k-th coefficient in a suitable univariate
forest polynomial.

We first show that, although the degree of the coefficient polynomial
Ck(z) (in the bivariate case) is not bounded by f(k), but Ω(n), it
suffices to know O(k) coefficients of the coefficient polynomial Ck(z) in
order to reconstruct the whole coefficient polynomial. This is an easy
application of the Chinese Remainder Theorem for polynomials.
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Lemma 11.4.2. There is an fpt Turing reduction from computing the
coefficient polynomial Ck(z) of xk in F (G′;x, z) to computing the first
k coefficients of univariate forest polynomials on multigraphs.

Combining the above proves:

Theorem 11.4.3. Given a graph G and a number k, it is #W[1]-
hard to compute the number of acyclic subsets of edges of size k in G,
parameterized by k.

Proof. Combining Theorem 11.2.1 with Lemma 11.4.1 and Lemma
11.4.2 yields that computing the first k coefficients of the univariate
forest polynomial of multigraphs is #W[1]-hard. Using Lemma 10.2.4
allows to express the forest polynomial of the multigraphG as F (G;x) =
p(x) · F (G′; g(x)), where p, g : R → R are functions such that g is
invertible and G′ is a simple graph. Now, observe that computing the
mapping G 7→ Fk(G;x) is #W[1]-hard for each fixed x, where Fk(G;x)
is the forest polynomial F (G;x) evaluated at x only over the first k
coefficients: It is easy to see that Fk(G; ax) = Fk(G(a);x), where G
is the graph obtained from G by replacing each edge with a copies of
weight x. By using k different values for a, this would allow polynomial
interpolation of the first k coefficients of F (G;x). Employing now the
equation Fk(G;x) = p(x) · Fk(G′; g(x)) and the properties of g, this
shows that computing the mapping G′ 7→ Fk(G′;x) on simple graphs
G′ is #W[1]-hard for all x, and hence also for x = 1, where it coincides
with counting forests.

11.5. Counting Matroid Bases is
#W[1]-hard

Definition 11.5.1. The problem of computing the number of bases of a
matroid parameterized by its rank (nullity) is denoted as #Rank-Bases
(#Nullity-Bases).
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Lemma 11.5.2. The problem of counting k-forests in a simple graph
is fpt Turing reducible to the problem #Rank-Bases, even when the
matroid is restricted to be representable over a field of characteristic 2.

Proof. Given a graph G = (V,E) with |V | = n and |E| = m and a
natural number k, we want to count the k-forests of G. Therefore we first
construct the incidence matrix M [G] ∈ Mat(n×m,GF(2)) of G. Recall
that the linearly independent k-subsets of columns of M [G] correspond
one-to-one to k-forests in G. In the next step, we compute the reduced
row echelon form of M [G] by applying elementary row operations. As
stated in the beginning, these operations do not change the linear
dependency of the column vectors. Then, we delete the zero rows which
also does not change the linear dependency of the columns. We denote
the resulting matrix as M red[G]. Now, let r be the rank of M red[G],
which equals the rank ofM [G]. Note thatM red[G] ∈ Mat(r×m,GF(2)).
If r < k, then we output 0, as G does not have any k-forests in this
case. Otherwise, we k-truncate M red[G] in polynomial time by the
deterministic algorithm of Lokshtanov et al. [Lok+15] and end up with
the matrix M (k)[G] ∈ Mat(k ×m,GF(2rk)). Observe that the linear
dependency of the column vectors is preserved, i.e., whenever columns
c1, . . . , ck are linearly independent in M [G], they are also linearly
independent in M (k)[G] and vice versa. Therefore, the rank of M (k)[G]
is at least k, since M [G] has rank greater or equal k. As M (k)[G] has
only k rows, it follows that the rank is exactly k, i.e., M (k)[G] has
full rank. Furthermore, the number of linearly independent k-subsets
of columns of M (k)[G] equals the number of k-forests in G. As the
rank of M (k)[G] is full, we conclude that the number of bases of the
matroid that is represented by M (k)[G] equals the number of k-forests
in G. Finally, this matroid is representable over GF(2rk)—a field of
characteristic 2—by construction.

Lemma 11.5.3. The problem of counting k-forests in a simple graph
is fpt Turing-reducible to the problem #Nullity-Bases, even when the
matroid is restricted to be representable over a field of characteristic 2.

Proof. We proceed as in the proof of Lemma 11.5.2. Having M (k)[G],
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we construct its dual matroid M∗[G], which can be done in polynomial
time (see e.g. [Mar09b]). It holds that the number of bases of M∗[G]
equals the number of bases ofM (k)[G]. Furthermore, the rank ofM∗[G]
is n− k, i.e., its nullity is k, which concludes the proof.

Theorem 11.5.4. #Rank-Bases and #Nullity-Bases are #W[1]-
hard, even when restricted to matroids representable over a field of
characteristic 2.

Proof. Follows from Lemma 11.5.2, Lemma 11.5.3 and Theorem 11.4.3.

One might ask whether the same is true for matroids that are repre-
sentable over a fixed finite field. Due to Vertigan [Ver98], it is known
that the classical problem of counting bases in binary matroids is #P-
hard. However, it is fixed-parameter tractable for each fixed finite
field.

Theorem 11.5.5. For every fixed finite field F, the problems
#Rank-Bases and #Nullity-Bases are fixed parameter tractable
for matroids given in a linear representation over F.

of Theorem 11.5.5. We give an fpt algorithm for #Rank-Bases.
For #Nullity-Bases, an algorithm follows by computing the dual
matroid as in the proof of Lemma 11.5.3.
Let s be the size of the finite field, M be the representation of the

given matroid and let k be its rank. We can assume that M only has
k rows. For otherwise, we can compute the reduced row echelon form
and delete zero rows, which does not change the linear dependencies
of the column vectors. If M has only k rows, then there are at most
sk different column vectors. Therefore, we remember the muliplicity
of every column vector and delete multiple occurences afterwards. We
end up with a matrix with at most sk columns. Then, we can check
for every k-subset of columns whether they are linearly independent. If
this is the case, we just multiply the multiplicities of the columns and
in the end, we output the sum of all those terms. The running time of
this procedure is bounded by

(
sk

k

)
· poly(n), where n is the number of

columns of the matrix.
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