
On Some Covering, Partition, and
Connectivity Problems in Graphs

A dissertation submitted towards the degree Doctor of Natural
Science of the Faculty of Mathematics and Computer Science of

Saarland University

by Davis Issac

Saarbrücken / 2019

Day of Colloquium: 09. September 2019
Dean of the Faculty: Prof. Dr. Sebastian Hack

Chair of the Committee:
Reporters

First reviewer: Dr. Andreas Karrenbauer
Second reviewer: Prof. Dr. Kurt Mehlhorn
Third reviewer: Prof. Dr. L. Sunil Chandran

Academic Assistant: Dr. Antonios Antoniadis

ii

Dedicated to the loving memory of my Grandmother Annamma George.

iv

Abstract

Abstract We look at some graph problems related to covering, partition, and connec-
tivity. First, we study the problems of covering and partitioning edges with bicliques,
especially from the viewpoint of parameterized complexity. For the partition problem,
we develop much more efficient algorithms than the ones previously known. In contrast,
for the cover problem, our lower bounds show that the known algorithms are probably
optimal. Next, we move on to graph coloring, which is probably the most extensively
studied partition problem in graphs. Hadwiger’s conjecture is a long-standing open
problem related to vertex coloring. We prove the conjecture for a special class of graphs,
namely squares of 2-trees, and show that square graphs are important in connection
with Hadwiger’s conjecture. Then, we study a coloring problem that has been emerg-
ing recently, called rainbow coloring. This problem lies in the intersection of coloring
and connectivity. We study different variants of rainbow coloring and present bounds
and complexity results on them. Finally, we move on to another parameter related to
connectivity called spanning tree congestion (STC). We give tight bounds for STC in
general graphs and random graphs. While proving the results on STC, we also make
some contributions to the related area of connected partitioning.

Zusammenfassung Wir betrachten einige Graphprobleme mit Bezug auf Abdeckung,
Partition und Konnektivität. Zunächst untersuchen wir Kantenabdeckung und -partition
mit Bicliquen, insbesondere im Hinblick auf parametrisierte Komplexität. Für das Par-
titionierungsproblem entwickeln wir sehr viel effizientere Algorithmen als die bisher
bekannten. Für das Abdeckungsproblem hingegen zeigen unsere unteren Schranken,
dass die bereits bekannten Algorithmen wahrscheinlich optimal sind. Als Nächstes
betrachten wir Graphfärbung, das wahrscheinlich am meisten untersuchte Partitions-
problem in Graphen. Hadwigers Vermutung ist ein seit Langem bestehendes offenes
Problem bezüglich der Knotenfärbung. Wir beweisen diese Vermutung für eine spezi-
elle Graphklasse, nämlich Quadrate von 2-Bäumen, und zeigen, dass Quadratgraphen
wichtig in Bezug auf Hadwigers Vermutung sind. Danach untersuchen wir das Problem
der sogenannten Regenbogenfärbung. Dieses erst kürzlich entstandene Problem liegt im
Schnittpunkt der Probleme Färbung und Konnektivität. Wir untersuchen verschiedene
Varianten der Regenbogenfärbung und zeigen Schranken und Komplexitätsergebnisse.
Schließlich gehen wir über zu einem weiteren Konnektivitätsparameter, der sogenannten
spanning tree congestion (STC). Wir präsentieren scharfe Schranken für STC in allge-
meinen und zufällig generierten Graphen. Unsere Ergebnisse in diesem Bereich leisten
darüberhinaus einen Beitrag zu dem verwandten Gebiet der verbundenen Partitionierung.

vi

Acknowledgments

First of all I would like to thank my advisor Andreas Karrenbauer. I thank him for
accepting me as a PhD student and guiding me through my PhD for the past 4 years. He
has always given me the freedom to follow my own research interests, at the same time
making sure that I don’t go much out of the track. I thank him for his contributions,
technical and otherwise to my thesis.

I was very lucky to have Prof. Sunil Chandran visiting MPI-Informatics during my
PhD term for about 18 months. He has been a co-author in most of my publications and
has had a big effect on my shaping my research outlook. It has been a great pleasure to
collaborate with him.

I thank Erik Jan for all the technical input and for the encouragement he has given
me. I thank Prof. Ragesh Jaiswal, who was my Masters supervisor for being a mentor
at the start of my research career. I thank all my other co-authors Anita, Marco, Juho,
Paloma, Pinar, and Sanming for their contributions. I thank Kurt Mehlhorn, for giving
me the opportunity to be a PhD student at the Algorithms department, and also for
building such an encouraging atmosphere in the group. I thank Pavel, for being the most
friendly and helpful officemate for 4 years. I think I have learned a lot from Pavel. I also
thank the other current and past members of D1: Philip, Syamantak, Daniel, Andreas,
Max, Ruben, Bojana, Michael Dirnberger, Sandy, Paresh, Parinya, Karl, Marvin, Arijit,
Kunal, Attila, Bundit, Saeed, Bhaskar, Gorav, Anurag and others for their words of
encouragement, helpful discussions, friendly chats etc. I thank Christina and Ingrid for
helping with all the administrative stuff.

I thank my loving wife Treesa for all the emotional support, care and encouragement
that she has given me. I thank my parents Issac and Lissy, and my siblings Louis, Anies
and Agnus for their constant care and support for me. I also thank Treesa’s parents for
their well wishes. I thank my grandparents Mariyakkutty Issac, Annamma George and
Edappally George for their love. I thank all my friends in Saarbruecken, especially Vijay,
Saranya, Jacob, Chaitin, Sreekesh, Balu, Rohini, Roshna, Udaykumar, Thyagu, Sourav
and others for the good times I had with them.

viii

Contents

1 Introduction 1
1.1 Biclique Cover and Partition . 2
1.2 Hadwiger’s Conjecture for Squares of 2-Trees 5
1.3 Rainbow Coloring and its Variants . 7
1.4 Spanning Tree Congestion and Connected Partitioning 8
1.5 Structure of the Thesis . 10
1.6 Acknowledgement of Collaboration . 10

2 Notation and Preliminaries 13
2.1 Sets . 13
2.2 Graphs . 13
2.3 Matrices . 17
2.4 Computational Problems . 17
2.5 Complexity Theory . 18
2.6 Other Notations and Conventions . 21

3 Covering and Partitioning Edges with Bicliques 23
3.1 Introduction . 23
3.2 Preliminaries . 29
3.3 Parameterized Algorithm for Binary Rank 33
3.4 Parameterized Algorithm for Approximate Binary Rank 35
3.5 Parameterized Algorithm for Edge Clique Partition 38
3.6 Lower Bounds for Biclique Cover . 41
3.7 Approximation Algorithms for Biclique Cover and Partition 49
3.8 Open Problems . 51

4 Hadwiger’s Conjecture for Squares of 2-Trees 53
4.1 Introduction . 53
4.2 Preliminaries . 56
4.3 Hadwiger’s Conjecture and Squares of Split Graphs 56
4.4 Hadwiger’s Conjecture and Squares of 2-Trees 58
4.5 Hadwiger’s Conjecture for Squares of Generalized 2-Trees 82
4.6 Concluding remarks and Open Problems 83

5 Rainbow Coloring and its Variants 85
5.1 Introduction . 85
5.2 RC and Forest Number . 94
5.3 Bounds on VSRC and SRC . 127
5.4 Hardness Results for VSRC . 130
5.5 Algorithm for VSRC in Cactus Graphs 131
5.6 Other Algorithmic Results for VSRC . 136

5.7 RVC and SRVC in Bipartite graphs and their subclasses 137
5.8 RVC and SRVC in Chordal graphs and their subclasses 141
5.9 Open Problems . 144

6 Spanning Tree Congestion and Connected Partitioning 145
6.1 Introduction . 145
6.2 Preliminaries . 153
6.3 Generalized Győri-Lovász Theorem . 153
6.4 Upper Bounds for Spanning Tree Congestion 161
6.5 Lower Bound for Spanning Tree Congestion 166
6.6 STC of Graphs with Expanding Properties 168
6.7 STC of Random Graphs . 172
6.8 Open Problems . 174

Bibliography 181

x

CHAPTER 1
Introduction

Graphs are simple and elegant structures that can abstract many real world problems.
Consider the Facebook network; we say that every person is a vertex, and, if two people
are friends, they are said to be connected by an edge. One might be interested in finding
a subset of the largest number of people who are all pairwise friends with each other. In
graph theory, we call this the maximum clique problem. Similarly, there are numerous
fields of science and engineering, where the structures and problems arising can easily be
modelled into graph structures and problems. Examples include finding shortest paths in
traffic networks, community detection in social networks, analyzing structures of atoms
and molecules, tracking spread of disease or parasites in species etc.

Graph theory, over the years, has supplied various tools and techniques for analyzing
such structures and finding solutions to such problems. Over the past few decades, graph
theory has developed into a separate branch of mathematics, and as an integral part
of theoretical computer science. As a data structure, graphs are indispensable to any
computer scientist. Moreover, graph theory is an appealing self-contained theory, which
is worth studying just for its combinatorial beauty.

In this thesis, we look at some graph problems, some having practical relevance, and
some of theoretical importance. Some of the problems are algorithmic in nature, whereas
some are structural in nature. The main themes of the thesis are covering, partition, and
connectivity in graphs.

In covering/partition problems, we want to cover/partition a graph using subgraphs
having a particular structural property. One such subgraph that we are interested in
is a biclique, also known as a complete bipartite graph. We will examine covering and
partitioning graphs with bicliques from an algorithmic viewpoint. In particular, the
focus will be on the parameterized complexity aspects of biclique cover/partition and
related problems. Bicliques are inherently related to matrix factorization and matrix
rank, and hence, we will also discuss some related matrix problems.

Some of the most extensively studied partition problems in graphs includes different
kinds of coloring problems. In coloring problems, we want to color vertices/edges such
that each color class induces a graph with some specific structural property. The most
intensively studied coloring problem has been the vertex coloring problem, which is
basically partitioning the graph into independent sets. An independent set is nothing
but a set of vertices that are all pairwise non-adjacent. Some of the deepest theorems
and conjectures in graph theory are related to vertex coloring. We will look at one such
conjecture called the Hadwiger’s Conjecture, and show some interesting results related
to it.

Next, we move onto a graph problem called rainbow coloring, which combines coloring
with connectivity. We study the graph theoretic and algorithmic aspects of rainbow
coloring and some of its variants.

Chapter 1. Introduction

Connectivity is one of the most important topics in graph theory. Various connectiv-
ity problems, such as hamiltonicity and 2-connectivity, have been dealt with extensively
in the literature. An important structural object related to connectivity is a spanning
tree of the graph. A parameter of the spanning tree that is important in many network
applications, is its edge-congestion. We examine the congestion of spanning trees, and
also the related area of connected partitioning. Connected partitioning refers to parti-
tioning the graph such that, each of the parts, is connected, and obeys some specified
cardinality/weight constraints.

We consider both structural and algorithmic aspects in the above areas. Most of
the algorithmic problems we encounter are NP-hard. Being NP-hard implies that these
problems are unlikely to admit an algorithm that is efficient, precise, and that work for all
instances. Some ways to tackle such problems are to aim for an approximate solution, or
to study the problem in specific input instances, or to develop algorithms whose running
times are parameterized by some parameter which we expect to be small in many relevant
instances. The techniques required for these methods have been developed in the fields
of approximation algorithms, theory of graph classes, and parameterized algorithms. We
use techniques from these fields to address the algorithmic problems.

1.1 Biclique Cover and Partition

The first problems that we deal with are the biclique cover and partition problems.
Bicliques, also known as complete bipartite graphs, are interesting graph structures,
which appear in many real-world applications. In the biclique cover/partition problem,
we want to cover/partition the edges of a graph with as few bicliques as possible. The
number of bicliques required is called biclique cover/partition number. We will be most
interested in the case when the input graph is a bipartite graph, as this has parallels
in the area of matrix factorization. More specifically, the biclique cover and partition
problems in bipartite graphs correspond to finding binary and boolean decompositions of
matrices. The biclique cover and partition problems have many real-world applications,
some of which we discuss below.

1.1.1 Applications

Display optimization. One of the applications of biclique cover and partition is in
display optimization. In some type of display monitors known as passive matrix displays,
there is no dedicated switch for each pixel of the monitor. Instead, a switch is responsible
for a whole row or a whole column of the display matrix. For example, if row i and
column j is switched on, then pixel (i, j) glows. Because of this row-wide and column-
wide addressing of the switches, an arbitrary shaped image cannot always be displayed in
a single frame. A single frame can only display a rectangular (need not be a continuous
rectangle) shaped sub-image. It is desirable to minimize the number of frames, as this
helps in reducing the power used by the display. This problem of minimizing frames can
be translated into the problem of finding a minimum biclique partition in a bipartite
graph, as follows. We can map the display matrix of the monitor to a bipartite graph
by taking each row as a left vertex and each column as a right vertex. The edges of the
graph depends on the image to be displayed. Let us say, we want to display a black

2

1.1. Biclique Cover and Partition

and white image. We will put an edge from the i-th vertex on the left side, to the j-th
vertex on the right side if and only if the pixel (i, j) is white in the image. We call this
graph, the image graph. In fact, any sub-image that can be displayed in a single frame
corresponds to some biclique of the image graph. Hence, in order to display the image,
we require a biclique partition of the image graph, and each partition is then addressed
in a separate frame. Thus, in order to minimize the number of frames used, it is sufficient
to find a biclique partition of minimum size of the image graph. The requirement is
biclique partition and not biclique cover because, each white pixel in the image should be
addressed by only one of the frames, in order to obtain an uniform illumination. In some
displays, each pixel is allocated a memory, in which case multiple frames are allowed to
address the same pixel. For such displays, one do not need a biclique partition, but a
biclique cover is sufficient. In that case, the corresponding optimization problem is to
find a minimum biclique cover of the image graph.

Figure 1.1: A representation of a black and white image as a biclique partition. The
white pixels are given colors according to the corresponding bicliques.

Communication complexity. The biclique cover number and biclique partition num-
ber of bipartite graphs are related to the communication complexity in 2-party commu-
nication [89, 101]. The usual setting in 2-party communication is as follows. There is a
function f : {0, 1}n × {0, 1}n → {0, 1}; Alice is given the first n bits of input and Bob is
given the second n bits. So, Alice and Bob need to communicate to find the output of
the function. The communication is carried out according to some protocol. The cost of
a protocol is the maximum of the number of bits required to be communicated over all
possible pair of inputs. The communication complexity of f is the minimum cost over
all protocols computing f . There are 2 types of communication complexity depending
on whether randomness is allowed in the protocol. In deterministic communication
complexity, the protocol is constrained to be deterministic, and in non-deterministic
communication complexity, the protocol is allowed to be randomized (in which case
the protocol needs to compute f successfully with high probability). Now, we describe
the connection to biclique cover and partition. The function f can be represented as a
binary truth table with 2n rows and 2n columns. Hence, it can be easily interpreted as a
bipartite graph, with rows as the left-side vertices and columns as the right-side vertices.

3

Chapter 1. Introduction

The logarithm (to base 2) of the biclique cover number of this graph gives exactly the
non-deterministic communication complexity of f , and the logarithm (to base 2) of
the biclique partition number gives a lower bound on the deterministic communication
complexity.
Data analytics, data mining, data compression, and clustering. Finding small
biclique cover/partitions of bipartite graphs is equivalent to finding matrix decomposi-
tions having low binary/boolean rank. In (approximate) low-rank decompositions, we
represent (an approximation of) a given m×n matrix as the product (over an appropriate
arithmetic, for e.g., binary or boolean arithmetic) of an m×k matrix and a k×n matrix,
for some small k. Low-rank decompositions are of particular interest in data analytics,
data mining, data compression and clustering. Since much of the real-world data has a
binary or boolean nature, binary/boolean decompositions can be helpful in discovering
and analyzing the semantics of the data. Low-rank decomposition of matrices clearly
helps in compression, as instead of mn entries, we need to store only (m+ n)k entries
for some small k. Low-rank decomposition into binary matrices is useful because, for
a lot of real-world binary data, it is desirable to preserve the binary form in the com-
pressed format in order to preserve some features represented by the data. Approximate
matrix decompositions can also be interpreted as clustering with rank-constraints on the
cluster-centers. Hence, approximate low-rank decompositions have applications in many
clustering problems. See [19], for example.

Applications of biclique cover and partition can also be found in the areas of bioin-
formatics [128, 129], computer security [59], database tiling [73], finite automata [78],
and graph drawing [60].

1.1.2 Background

Both biclique cover and partition problems are NP-hard and already appeared in the
book by Garey and Johnson [70]. They also turn out to be very hard to approximate
within reasonably good approximation factors [32].

Hence, we turn to another method of attacking NP-hard problems, that is, from
the parameterized complexity point of view. In many applications, we have that the
cover/partition size is usually much smaller in comparison to the input size, especially
after some preprocessing steps. Hence, we study these problems parameterized by the size
k of the cover/partition. In the matrix world, the parameter corresponds to the rank of
the output matrix. It makes sense to parameterize by the rank because, in binary/boolean
factorization, much of the focus is on obtaining low-rank decompositions.

Both biclique cover and partition problems were already shown to be fixed parameter
tractable. However, there was a lack of reasonably efficient FPT algorithms, as the best
known FPT algorithms were doubly exponential in k. Hence, we focus on developing
more efficient FPT algorithms for the biclique cover and partition problems.

One of the important techniques in parameterized complexity, is called kernelization.
Kernelization algorithms are, in essence, preprocessing algorithms. Preprocessing is
important in connection with biclique cover and partition. In many of the real-world
implementations of algorithms for these problems, the end-computation is done by some
generic ILP solver, like Gurobi or CPLEX. Hence, it becomes very beneficial to do as
much preprocessing as possible, that can reduce the size of the instance, before feeding

4

1.2. Hadwiger’s Conjecture for Squares of 2-Trees

it to the generic solver. Although, the generic solvers have preprocessing mechanisms
of their own, most often they are unable to make use of preprocessing steps based on
structural properties. The techniques in kernelization, usually exploit some structural
properties to give simple and efficient preprocessing rules. Thus, it is worthwhile to
study about the kernelization of the biclique cover/partition problems.

1.1.3 Our Contribution

We come up with a simple algorithm for biclique partition that runs in O∗(2O(k2))-time.
This is a drastic improvement from the previous best known running time of O∗(22k). We
achieve this result by exploiting the binary rank interpretation of the biclique partition
problem in the matrix world and applying some linear algebraic techniques over it. The
main technique that we develop is simple, employs only basic linear algebraic notions,
and may turn out to be useful for other related problems. The core idea is that, we do
not need to enumerate all the rows (or columns) of our target matrix decomposition, but
rather only a set of few rows that can span all the other rows.

For the biclique cover problem, we were not successful in finding better FPT al-
gorithms. Instead, we found that there are fundamental obstructions to getting such
improvements. We demonstrate this by proving a hardness result for biclique cover.
More specifically, we show that an improvement over the doubly exponential algorithm
is not possible for biclique cover, unless the ETH is false. We also prove kernelization
lower bounds for biclique cover, implying that the problem does not admit efficient
preprocessing rules.

Our techniques also lead to improved results for some related problems such as edge
clique partition and low-rank matrix approximation. We discuss the connections with
these problems and show that our results imply novel results for them as well. We also
demonstrate that the known kernelization algorithms for some of the cover/partition
problems can be turned into polynomial-time approximation algorithms, which give
better approximation ratios than the previously known algorithms.

1.2 Hadwiger’s Conjecture for Squares of 2-Trees

The most extensively studied partition problem in graphs has to be the vertex coloring
problem. In this problem, the goal is to partition the vertices into as few independent sets
as possible. Some of the deepest theorems in graph theory, such as the four color theorem
and the perfect graph theorem are related to vertex coloring. Hadwiger’s conjecture is
a far reaching generalization of the well-known four color theorem. It was proposed by
Hugo Hadwiger in 1943 [80] and is as follows.

Conjecture (Hadwiger’s Conjecture). Any Kt+1-minor free graph is t-colorable.

Hadwiger’s conjecture is known to be a challenging problem. Bollobás, Catlin, and
Erdős [26] describe it as “one of the deepest unsolved problems in graph theory”. Even
after years of research and attempts by leading researchers in graph theory, the problem
has seen very slow progress. For general graphs, the conjecture has been proved only for
t = 1, 2, . . . , 5 so far.

5

Chapter 1. Introduction

Similar to other difficult conjectures in graph theory, Hadwiger’s conjecture has
been attempted in many special classes of graphs. The motivation is that proving the
conjecture for some natural graph class may lead to new techniques and reveal some
structure for the general case. So far Hadwiger’s conjecture has been proved for several
classes of graphs, including line graphs [138], proper circular arc graphs [20], quasi-line
graphs [49], 3-arc graphs [162], complements of Kneser graphs [163], and powers of cycles
and their complements [106].

1.2.1 Our Contribution

We continue the research on Hadwiger’s conjecture on special graph classes. We pursue
a direction started by Reed and Seymour [138] and followed up by Chudnovsky and
Fradkin [49]. Reed and Seymour [138] proved Hadwiger’s conjecture for line graphs.
Chudnovsky and Fradkin [49] proved Hadwiger’s conjecture for quasi-line graphs, which
are a generalization of line graphs. A quasi-line graph is a graph for which the neigh-
borhood of every vertex can be written as the union of 2 cliques. We were interested in
investigating Hadwiger’s conjecture for further generalizations of quasi-line graphs. A
natural generalization is d-groupable graphs, which are the graphs for which the neigh-
borhood of every vertex can be written as a union of d many cliques. Since this appeared
to be very hard, we turned our attention to a subclass, namely square graphs of degree-d
bounded graphs, where a square of a graph G is defined as the graph whose vertex set is
same as that of G and the edge set is the set of all pair of vertices that are at a distance
(counted in number of edges) of at most 2 in G. But we found that proving the conjecture
for square graphs has some natural obstructions. We demonstrate this by showing that
Hadwiger’s conjecture for squares of split graphs is as hard as Hadwiger’s conjecture for
general graphs. A split graph is a graph that can be decomposed into a clique and an
independent set.

Theorem. Hadwiger’s conjecture is true for squares of split graphs if and only if it is
true for general graphs.

The above result, aroused our interest in investigating Hadwiger’s conjecture for
square graphs. At first glance, it appears that the above result may not make Hadwiger’s
conjecture any easier. Nevertheless, being able to restrict oneself to square graphs, may
prove advantageous. Proving Hadwiger’s conjecture in the square graphs of some special
classes of graphs may reveal properties useful for the general case.

A k-tree is a graph that can be obtained by starting with a k-clique and applying
the following step any number of times: We pick a clique of size k and extend it to a
clique of size k + 1 by introducing a new vertex. The class of k-trees are a subclass
of chordal graphs. The only difference in the construction of a chordal graph is that
there is no restriction on the size of clique picked; we still extend it by one more vertex.
Chordal graphs are known to be a superclass of split graphs and hence from the above
theorem, we know that Hadwiger’s conjecture for squares of chordal graphs is as hard
as the general case. Hence, it is an interesting question whether there is a value of k,
above which Hadwiger’s conjecture on squares of k-trees becomes very hard to prove? If
so, this might reveal some structural difficulties with respect to Hadwiger’s conjecture.
We kick-start research in this direction by proving the following theorem.

6

1.3. Rainbow Coloring and its Variants

Theorem. Hadwiger’s conjecture is true for 2-trees.

Our proof of Hadwiger’s conjecture for squares of 2-trees can also be considered as
progress in the direction of generalizations of line graphs started by Chudnovsky and
Fradkin [49], in the following sense. The class of 2-simplicial graphs generalizes the class
of quasi-line graphs studied by Chudnovsky and Fradkin [49]. A 2-simplicial graph is
a graph for which there is an ordering of the vertices such that the higher numbered
neighbors can be written as the union of 2 cliques. It is easy to observe that squares of
2-trees are a subclass of 2-simplicial graphs. We also know that squares of 2-trees are not
completely contained in quasi-line graphs. Thus we have proved Hadwiger’s conjecture
for a subclass of 2-simplicial graphs that is not contained in quasi-line graphs.

1.3 Rainbow Coloring and its Variants

Rainbow coloring is a recently emerging area that lies at the intersection of coloring and
connectivity, which are two of the main topics studied in this thesis. The concept of
rainbow connectivity was first introduced by Chartrand et al. [43]. Rainbow colorings
are special types of edge colorings with some connectivity constraints with respect to the
coloring. A path in an edge colored graph is called a rainbow path if the edges of the path
have pairwise distinct colors. An edge colored graph is said to be rainbow connected if
between every pair of vertices there is a rainbow path. A coloring that makes the graph
rainbow connected is called a rainbow coloring. The minimum number of colors needed
for any rainbow coloring of the graph is called its rainbow connection number (rc).

Rainbow coloring has applications in communication networks. Chakraborty et
al. [31] describes the following application: In a network, we want to establish message
paths between every pair of vertices with the requirement that links in any such path
should have distinct channels. And it is desirable to use as few channels as possible.
This clearly maps to the rainbow coloring problem.

Rainbow coloring and its variants have become an important topic in graph theory
with over 300 papers written on it (e.g. see the survey by Li et al. [113]). The interest is
probably due to the rich combinatorial structures associated with the problem, and the
fact that it interconnects coloring and connectivity, two of the most important topics in
graph theory.

Chartrand et al. [43] also introduced a related concept called the strong rainbow
connectivity. Here, the difference is that between every pair of vertices, we require a
shortest path that is also a rainbow path. Compared to rainbow coloring, the strong
version has been less studied, and there are not many bounds known for the strong
rainbow connection number (src).

Krivelevich et al. [100] defined a natural variant of rainbow coloring and strong
rainbow coloring in vertex colored graphs. Here, the constraint is that instead of edges,
the internal vertices of the path are to be distinctly colored.

1.3.1 Our Contribution

Much of the research on rainbow coloring has focused on determining upper bounds for
the rainbow connection number. It is known that rc(G) ≤ n − 1. This can be seen by

7

Chapter 1. Introduction

observing that coloring the edges of a spanning tree with distinct colors makes a graph
rainbow connected. It is conjectured that src(G) ≤ n− 1 and also stronger conjectures
like src(G) ≤ n + 1 − χ(G) and src(G) ≤ f(G) − 1 have been made [102], where χ(G)
is the chromatic number and f(G) is the size of the largest induced forest in G. For
the last two conjectures, the first step would be to prove them for rc(G). We obtain
partial progress for the above conjectures: We show that rc(G) ≤ f(G) + 2 and also that
src(G) ≤ n+ 1− χ(G) for chordal graphs.

In general, there are much fewer bounds known for src compared to rc, especially in
structured graph classes. Hence, we decided to investigate further on src. We observed
that many of the strong rainbow colorings that we discovered, have the additional
property that every shortest path in the graph is a rainbow path. This led us to define
such a restricted version of strong rainbow coloring called very strong rainbow coloring.
We give many upper bounds for vsrc, both in general graphs and in special graph classes.
Some of these bounds also imply previously unknown bounds for src. Further, we show
some preliminary complexity results on the problem of computing the vsrc of a graph.

For the vertex variants, the complexity of computing was not that well-studied. Only
a few basic results were known. We study the vertex variants in the context of two special
graph classes, bipartite graphs and split graphs. We mainly show NP-completeness and
hardness of approximation in these classes. We contrast them with positive results for
some restricted classes such as bipartite permutation graphs, block graphs, and unit
interval graphs.

1.4 Spanning Tree Congestion and Connected Partitioning

In this part of the thesis, we will deal with some connectivity related problems in graphs.
The most fundamental graph structure related to connectivity is a spanning tree of the
graph. A spanning tree can also be used to approximately represent a graph with very
few edges, or in other words, graph sparsification. In flow networks such as transport
networks, an important parameter for any sparsification is its edge-congestion. The
edge-congestion of an edge in the sparsified graph is defined as the number of edges
of the original graph that is routed through that edge. Hence, it is natural to seek a
spanning tree of the graph, whose edges have small edge-congestion.

Graph sparsification problems, in general, are used to represent a graph with a
smaller/sparser graph. In a communication network, a spanning tree of the network is
a minimal subgraph that needs to be maintained so that all pairs of nodes still have a
communication channel in the network. But, any single link should not be overloaded
with too much traffic. Thus, finding spanning trees with small maximum congestion,
where the maximum is taken over all the tree edges, finds applications in network design
problems. The problem also finds applications in the areas of parallel computing and
circuit design. The probabilistic version of the problem, called as probabilistic capacity
mapping, where one is allowed to have a distribution of spanning trees instead of one
spanning tree, finds applications in several important algorithmic graph problems, for
example, the Min-Bisection problem [63].

Another quantity related to congestion is called stretch. It is defined as the length
of the path in the tree, which is used to route an edge. Low-stretch spanning trees
have been well-studied in the literature, and there are efficient algorithms that construct

8

1.4. Spanning Tree Congestion and Connected Partitioning

low-stretch spanning trees [58]. When the objective function is the sum of the congestion
of the edges instead of the maximum congestion over the edges, then it becomes easy to
translate it into the stretch setting and hence this problem has been studied well. But
the maximum congestion problem, which we call the spanning tree congestion (STC)
problem, has been less-studied.

The root of the STC problem dates back to at least 30 years ago [21, 144]. The
STC problem was first formally defined by Ostrovskii [132] in 2004, and since then, a
number of results about it have been published. STC is also interesting as a structural
parameter of a graph. The study of STC of a graph class can reveal many structural
properties of the graph class. Hence, STC has been actively studied recently in spe-
cial classes of graphs, giving many bounds and complexity results for different graph
classes [133, 105, 99, 98, 24]. For general graphs, it has been shown that the STC is at
most O(n

√
n) [119], and that this is tight [132], where n is the number of vertices.

A related topic to spanning tree congestion is the connected partitioning, that is,
partitioning graphs into subsets which induce connected graphs. Usually, there are some
additional size constraints on these subsets, specified during input. Finding a connected
partition is often used as a subroutine to find low-congestion spanning trees. The idea
is to partition a graph into balanced connected parts, and then recurse on each of these
partitions.

Connected partitioning also has other natural applications in networks. Soltan,
Yannakakis, and Zussman [145] describe the following application for power grids. In
power grids, it is desirable to partition the network into small connected islands so that
each island can operate independently for a while. This is called power grid islanding
and is used to avoid cascading failures in power networks. It is also desirable that each
of these islands are large enough. It is easy to see that this task maps to the connected
partitioning of the graph representing the power grid network.

A classic result in connected partitioning is a theorem known as the Győri-Lovász
theorem, proved independently by Győri [79] and Lovász [118] in the 1970s. Informally,
the theorem says that it is possible to partition a k-connected graph into k many con-
nected subgraphs, each of a specified size. The theorem was recently generalized to
vertex-weighted graphs by Chen et al. [46]. We call this generalization as the generalized
Győri-Lovász theorem. The generalized Győri-Lovász theorem is crucially used in some
of our results for the spanning tree congestion.

1.4.1 Our Contribution

For STC of an n-vertex graph, there is a tight bound of Θ(n
√
n) known [119, 132],

as mentioned above. However, when the number of edges m is less than n
√
n, this

upper bound is weaker than the trivial upper bound of m. We obtain refined bounds
on the STC of general graphs in terms of both m and n. We show that STC of any
graph is at most O(

√
mn), which is a factor of Ω(

√
m/n) better than the trivial bound

of m. We present a polynomial-time algorithm that computes a spanning tree with
maximum congestion O(

√
mn · logn). We also present an exponential-time algorithm

for computing a spanning tree with maximum congestion O(
√
mn); this algorithm runs

in sub-exponential time when m = ω(n). We also show that this upper bound is tight by
demonstrating graphs with STC at least Ω(

√
mn), for almost all ranges of the average

9

Chapter 1. Introduction

degree 2m/n.
The STC of random graphs have been studied in the literature, especially by Ostro-

vskii [134]. Ostrovskii posed the question whether random graphs have an STC of Θ(n).
We resolve this open problem here by providing upper and lower bounds on the STC
of random graphs. Our bounds hold for a broader class of graphs than random graphs,
more specifically, graphs which satisfy certain good expanding properties.

Our contribution in the area of connected partitioning is to give the first elementary
and constructive proof for the generalized Győri-Lovász theorem by providing a local
search algorithm with running time O∗ (2n). The proof given by Chen et al. [46] is
non-constructive, and extends the advanced techniques from homology theory, which
was used by Lovász in his proof of the classic version. Our proof on the other hand is
an extension of the simple graph theoretic techniques used by Győri.

1.5 Structure of the Thesis

In Chapter 2, we provide some notations, definitions, conventions and brief descriptions
of basic concepts used throughout the thesis. The Chapters 3, 4, 5, and 6 are the
technical chapters of the thesis. Each of these chapters might have additional notations
and preliminaries. Chapter 3 deals with biclique cover, biclique partition and related
problems; Chapter 4 deals with the Hadwiger’s conjecture; Chapter 5 deals with the
rainbow coloring and its variants; Chapter 6 deals with the spanning tree congestion
and the connected partition. Each chapter has its own introduction section, where
we introduce the problems, give the background and related work, and summarize our
results. Then we proceed to describe the results in detail in the subsequent sections of
the chapter. At the end of each chapter, we dedicate a section for providing some of the
related open problems.

1.6 Acknowledgement of Collaboration

Chapter 3 is based on the following paper:
L. S. Chandran, D. Issac, and A. Karrenbauer. On the Parameterized Complexity

of Biclique Cover and Partition. In 11th International Symposium on Parameterized
and Exact Computation (IPEC 2016), volume 63 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 11:1–11:13, Dagstuhl, Germany, 2017

Chapter 4 is based on the following paper:
L. S. Chandran, D. Issac, and S. Zhou. Hadwiger’s Conjecture for Squares of 2-Trees.

European Journal of Combinatorics, 76:159 – 174, 2019

Chapter 5 is based on the following papers:
L. S. Chandran, A. Das, D. Issac, and E. J. van Leeuwen. Algorithms and Bounds

for Very Strong Rainbow Coloring. In Latin American Symposium on Theoretical
Informatics, pages 625–639. Springer, 2018

P. Heggernes, D. Issac, J. Lauri, P. T. Lima, and E. J. van Leeuwen. Rainbow Vertex
Coloring Bipartite Graphs and Chordal Graphs. In 43rd International Symposium on
Mathematical Foundations of Computer Science (MFCS 2018), volume 117 of Leibniz

10

1.6. Acknowledgement of Collaboration

International Proceedings in Informatics (LIPIcs), pages 83:1–83:13, Dagstuhl, Germany,
2018

L. S. Chandran, D. Issac, J. Lauri, and E. J. van Leeuwen. Rainbow Coloring and
Forest number. Unpublished

Chapter 6 is based on the following paper:
L. S. Chandran, Y. K. Cheung, and D. Issac. Spanning Tree Congestion and

Computation of Generalized Györi-Lovász Partition. In 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018), volume 107 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 32:1–32:14, 2018

11

Chapter 1. Introduction

12

CHAPTER 2
Notation and Preliminaries

In this chapter, we introduce some notations, definitions and concepts used throughout
the thesis. In addition to this, each of the following chapters may introduce some
additional notation and preliminaries.

2.1 Sets

We use R to denote the set of real numbers, R>0 to denote the set of positive real
numbers, Z to denote the set of integers, N to denote the set of positive integers, Z≥0
to denote the set of non-negative integers and Q to denote the set of all rationals. We
write [n] for {1, 2, . . . n}. For a singleton set {u} we may sometimes write just u for
convenience. For a set S, let 2S denote the set of all subsets of S, let

(S
k

)
denote the set

of all subsets of S of size k, and let
(S
≤k
)

to denote the set of all subsets of S of size at
most k. We use the operator t to denote the disjoint union of sets.

2.2 Graphs

A graph G is defined as a pair of sets (V (G), E(G)) where V (G) is called the set of
vertices of G and E(G), the set of edges of G is a multiset of pairs of vertices. A digraph
G is defined as a pair of sets V (G) and E(G) where V (G) is called the set of vertices of
G and E(G), the set of (directed) edges of G, is a multiset of ordered pairs of vertices. A
graph (or digraph) G is called simple if the multiset E(G) is a set. A graph (or digraph)
is called a multigraph (multidigraph) if it is not simple. Whenever we say a graph, we
will mean a simple graph unless explicity stated otherwise. For an edge {u, v} in a graph
we may use uv or vu to denote it, for convenience. We call u and v as the endpoints of
edge uv. If there is an edge (directed edge in case of digraph) e between vertices u and
v, we say that u is adjacent to v and that e is incident on both u and v. A directed edge
−→uv is said to be an incoming edge of v and an outgoing edge of u. We use −→uv to denote a
directed edge (u, v); we may omit the direction and just say uv or vu when the direction
is not significant in the context or if the direction cannot be inferred from the context.

A graph G is called an edge-weighted graph or simply a weighted graph, if there is
a weight function w : E(G) → R on the edges. A graph G is called a vertex-weighted
graph, if there is a weight function w : V (G)→ R on the vertices.

For a graph G and a set S ⊆ V (G), we define its included neighborhood NG[S] :=
{v ∈ V (G) : v ∈ S or ∃u ∈ S such that uv ∈ E(G)}. We also define the excluded
neighborhood NG(S) := NG[S] \ S. The second neighborhoods are defined as: N2

G[S] :=
N [N [S]] andN2

G(S) := N2
G[S]\S. We may choose to omit the subscriptG when the graph

is clear from the context. For vertex sets S1 and S2, we define NS2(S1) := NG(S1) ∩ S2.

Chapter 2. Notation and Preliminaries

For any vertex v in a (di)graph G, the degree of v in G, denoted by degG(v), is defined
as the number of vertices of G that are adjacent to v. If the graph is clear from the
context, we may omit the subscript G. The in-degree and out-degree of a vertex v in a
digraph G is defined as the number of incoming and outgoing edges respectively. For
any graph G, ∆(G) denotes the maximum degree over all vertices in G. A vertex with
degree 0, i.e, a vertex that do not have any edges incident on it is called an isolated
vertex. A vertex with degree 1 is called a pendant vertex.

A graph H is called a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
A graph H is called an induced subgraph of a graph G if V (H) ⊆ V (G) and E(H) =
{uv : u ∈ V (H), v ∈ V (H), uv ∈ E(G)}. For any S ⊆ V (G), we define the subgraph
induced by S on G, denoted by G[S], as a graph H such that V (H) = S and E(H) =
{uv : u ∈ S, v ∈ S, uv ∈ E(G)}. For S ⊆ V (G), we define G \ S := G[V (G) \ S].

An independent set of a graph is a set of vertices that are pairwise non-adjacent to
each other. A coloring of a graph G is a function c : N → V (G). A k-coloring of a
graph G is a coloring c : [k]→ V (G). Given a coloring of the graph, the vertices having
the same color are said to form a color class. A coloring is called a proper coloring if
every pair of vertices having the same color are non-adjacent, i.e., every color class is
an independent set. A proper coloring is called an optimal coloring if there is no proper
coloring of the graph that uses fewer number of colors. The number of colors used by
an optimal coloring is called the chromatic number of G, denoted by χ(G). A graph is
said to be k-colorable if it admits a proper k-coloring. An edge coloring of a graph G
is a function c : N → E(G). A graph together with an edge coloring is called an edge
colored graph. A vertex cover of a graph is a set of vertices S such that any edge has
at least one endpoint from S. An clique of a graph is a set of vertices that are pairwise
adjacent to each other. The clique number of a graph, denoted by ω(G) is the number
of vertices in the largest clique of G. A graph is called a complete graph if the whole
graph is a clique. We use Kt to denote a complete graph on t vertices. A vertex is called
a simplicial vertex if its neighborhood induces a clique.

A graph H is called a minor of a graph G if a graph isomorphic to H can be obtained
from a subgraph of G by contracting edges. An H-minor is a minor isomorphic to H,
and a clique minor is a Kt-minor for some positive integer t, where Kt is the complete
graph of order t. A graph is called H-minor free if it does not contain an H-minor.

A graph is called a bipartite graph if it is 2-colorable. The 2 independent sets
corresponding to the 2 color classes of a bipartite graph are called its bipartitions. For
a bipartite graph G, we denote the two vertex bipartitions by L(G) and R(G). For a
subgraph H of bipartite graph G, L(H) denotes the set of vertices of H that are in L(G),
and R(H) denotes the set of vertices of H that are in R(G). A complete bipartite graph
or biclique is a bipartite graph G such that every pair of vertices u, v such that u is from
L(G) and v is from R(G), is adjacent. We use Ka,b to denote a complete bipartite graph
G such that |L(G)| = a and |R(G)| = b.

A walk of length k in a graph is an alternating sequence of vertices and edges,
v0, e0, v1, e1, v2, . . . , vk−1, ek−1, vk, which begins and ends with vertices such that each
ei is incident on vi and vi+1. We might omit the commas and just write v0e0v1e1v2 . . .
. . . vk−1ek−1vk. In a simple graph, the walk can be specified just by the vertices and we
will just write v0v1 . . . vk. A path is a walk in which all vertices are distinct. A path
on k vertices is called a k-path denoted by Pk. The vertices v1 and vk are called the

14

2.2. Graphs

endpoints of the path and the other vertices are called the internal vertices of the path.
For two paths P1 = v1v2 . . . vk and P2 = w1w2 . . . wr, if vk = w1, we use P1P2 to denote
the path v1v2 . . . vkw2w3 . . . wr. The length of a path is defined as the number of edges in
it, unless otherewise metnioned. For a weighted graph, the length of the path is defined
as the sum of weights of edges in the path, unless otherewise mentioned. For a pair of
vertices, the shortest path between them is a path with smallest length possible. We use
distG(u, v) to denote the length of shortest path between vertices u and v in graph G.
We may omit the subscript G if the graph is clear from the context. The diameter of G,
denoted by diam(G), is the maximum distance between any pair of vertices of G. A cycle
is a walk in which the first and last vertices are same, and all other vertices are distinct.
The length of a cycle is the number of vertices (equivalently, the number of edges) in C.
A k-cycle means a cycle of length k. For a cycle C, we use |C| to denote the length of
C. An odd(even) path/cycle is a path/cycle on odd(even) number of vertices.

A graph is called connected if between any pair of vertices, there is a path. A
connected component of a graph is a maximal subgraph that is connected. Any graph
can be partitioned into a set of connected components. A k-connected graph is a graph
that remains connected after the removal of any k − 1 or fewer of its vertices. A 2-
connected component of a graph is a maximal subgraph that is 2-connected. A cut vertex
of G is a vertex whose removal increases the number of connected components of G. A
k-edge-connected graph is a graph that remains connected after the removal of any k
or fewer of its edges. A bridge of G is an edge whose removal increases the number of
connected components of G.

A forest is a graph which does not have a cycle. A tree is a connected graph which
does not have a cycle. A spanning tree T of a connected graph G is a tree T on vertices
V (G) such that E(T) ⊆ E(G). A maximum induced forest of a graph G is an induced
subgraph F of G that is a forest, such that the number of vertices in F is as large as
possible. The forest number of a graph G, denoted by f(G) is the number of vertices in
any maximum induced forest of it.

Given a graph G, an edge set E′ ⊆ E(G) and 2 disjoint vertex subsets V1, V2 ⊂ V (G),
we let E′(V1, V2) := {v1v2 ∈ E′ : v1 ∈ V1 and v2 ∈ V2}.

2.2.1 Graph Classes

As we will be dealing with graph classes a lot, let us give a brief definition of some graph
classes here. More definitions and properties will be added as needed when we handle
these graphs. A detailed background on these graph classes can be found, for example,
in the book by Brandstädt, Le, and Spinrad [28].

A graph is called a chordal graph if it contains no induced cycles of length at least 4.
A chordal graph has a simplicial ordering, i.e., an ordering in which, for any vertex v,
the neighbors of v that have a higher number than v form a clique. We call a graph G,
a k-simplicial graph, if V (G) has an ordering such that the higher numbered neighbors
of each vertex can be partitioned into at most k cliques. A split graph is a graph whose
vertices can be partitioned into one independent set and one clique. It is known that
every split graph is a chordal graph.

A domino graph (see Figure 2.1) is the bipartite graph G with L(G) = {u1, u2, u3},
R(G) = {v1, v2, v3} and E(G) = {u1v1, u1v2, u2v1, u2v2, u2v3, u3v2, u3v3} . A graph is

15

Chapter 2. Notation and Preliminaries

Figure 2.1: A domino graph

domino free if it does not contain the domino graph as an induced subgraph. A bipartite
graph G is said to be a convex bipartite graph if L(G) (or R(G)) can be enumerated
such that for all v ∈ L(G), the vertices adjacent to v are consecutive.

A graph is called planar, if it can be drawn on plane without any crossing edges.
An equivalent characterization is that they are the class of graphs which do not contain
K5 or K3,3 as a minor. The drawing of a planar graph on a plane is called a planar
embedding of it. Any planar embedding of a graph divides the plane into regions called
faces. A planar graph that has a planar embedding in which there is a face that contains
all the vertices of the graph is called an outerplanar graph. A graph is an apex graph if
it contains a vertex (called an apex) whose removal results in a planar graph.

For any graph G, the line graph of G is defined as the graph H where V (H) := E(G)
and e1e2 ∈ E(H) if and only if the edges e1 and e2 are incident on a common vertex in G.
For any graph G, the square graph of G, denoted by G2, is defined as V (G2) = V (G) and
for each v1, v2 ∈ V (G), v1v2 ∈ E(G2) if and only if dist(v1, v2) ≤ 2. For any graph G, the
p-th power of G, denoted by Gp, is defined as: V (Gp) = V (G) and for each v1, v2 ∈ V (G),
v1v2 ∈ E(Gp) if and only if dist(v1, v2) ≤ p. A graph G is called a bounded degree graph
if ∆(G) is bounded by some constant.

Given a universe U = {x1, x2, . . . , xn} and a family F = {S1, S2, . . . , St} of subsets
of U , the intersection graph G(F) of F has vertex set {v1, . . . , vt}, and there is an edge
between two vertices vi and vj if and only if Si ∩ Sj 6= ∅. We call F , a representation of
G(F). A disk graph is a graph that can be represented as the intersection of disks on an
Euclidean plane. An interval graph is an intersection graph of intervals on the real line.
A set of intervals representing an interval graph is called its interval model. The interval
graph is proper if it has an interval model where no interval is properly contained in
another. An equivalent definition of interval graphs is as follows: a graph is an interval
graph if it is chordal and it contains no triple of non-adjacent vertices such that there is
a path between every two of them that does not contain a neighbor of the third. Hence,
interval graphs are subclasses of chordal graphs. A unit interval graph is an intersection
graph of unit intervals on the real line. The class of unit interval graph and proper
interval graphs turns out to be the same. A circular arc graph is an intersection graph
of arcs of a circle. A chordal graph is an intersection graph of subtrees of a tree.

A block of a graph is a maximal 2-connected component. A block graph is a graph in
which all blocks are cliques. Block graphs are also subclasses of chordal graphs. A cactus
graph is a graph in which each block of the graph is a cycle or an edge; equivalently,

16

2.3. Matrices

every edge belongs to at most one cycle.
Let σ be a permutation of the integers between 1 and n. We define a graph Gσ on

vertex set [n] in the following way. Vertices i and j are adjacent in Gσ if and only if
they appear in σ in the opposite order of their natural order. A graph on n vertices is
a permutation graph if it is isomorphic to Gσ for some permutation σ of the integers
between 1 and n. A graph is a bipartite permutation graph if it is both a bipartite graph
and a permutation graph.

A k-tree is any graph that can be obtained starting from a Kk and then repeatedly
applying the following operation any number of times: pick a Kk in the graph, extend it
to a Kk+1 by adding a new vertex and making it adjacent to all the vertices in the Kk.
A partial k-tree is any graph that is a subgraph of a k-tree. The treewidth of G can be
defined as the smallest k such that G is a partial k-tree. The class of chordal graphs are
related to k-trees as follows: in the definition of k-trees, we only allow to pick same sized
clique in every step, but if we allow to pick cliques of different sizes in different steps
(and extend it to a clique of size one larger), then we get the class of chordal graphs.

An Erdős-Rényi random graph, denoted by G(n, p), is a graph on n vertices, and for
each pair of vertices, an edge between them is included in the graph with probability p,
where the probabilities of different pairs are independent from each other.

Three vertices of a graph form an asteroidal triple if every two of them are connected
by a path avoiding the neighborhood of the third. A graph is AT-free if it does not
contain any asteroidal triple.

2.3 Matrices

We refer to [149] for basic background about matrices and linear algebra. For an m×
n matrix A, we say that the ith row is Ai,:, the jth column is A:,j , and the entry
corresponding to the ith row and jth column is Aij . For I1 ⊆ [m] and I2 ⊆ [n], AI1,I2

denotes the submatrix of A where we pick the rows corresponding to the indices in I1
and the columns corresponding to the indices in I2.

The rank of a matrix over a field F is the number of linearly independent rows or
columns in the matrix. A matrix A ∈ Fm×n has rank r over F if and only if there exist
U ∈ Fm×r and V ∈ Fr×n such that UV = A, where the arithmetic is over the field F.
The real rank of a matrix A is its rank over the real field R.

The `p-norm of a matrix A ∈ Rm×n is defined as (
∑
i∈[m],j∈[n]A

p
i,j)1/p. We use �

operator to denote the matrix product of two binary matrices over the boolean semiring
arithmetic.

The adjacency matrix of a graph G on n vertices is an n× n binary matrix A where
Aij = 1 if and only if there is an edge in G between the ith vertex and the jth vertex.
The node-edge incidence matrix of a graph G on n vertices and m edges is an n ×m
binary matrix A where Aij = 1 if and only if the ith vertex is in the jth edge.

2.4 Computational Problems

Here we define some problems commonly used throughout the thesis. Other problems
will be defined as and when necessary.

17

Chapter 2. Notation and Preliminaries

The canonical NP-hard problem is the boolean satisfiability problem. For defining the
problem, we need to first define some terms in boolean logic. A formula is in conjunctive
normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses,
where a clause is a disjunction of literals; otherwise put, it is an AND of ORs. Such a
formula is called a CNF formula. A boolean formula is called a k-CNF formula if each
clause has at most k literals. An assignment to a boolean formula is an assignment of
True or False values to the variables in the formula. An assignment is called a satisfying
assignment if the formula after the assigning of the values evaluates to True. A formula
is called satisfiable if it has at least one satisfying assignment. The SAT and 3SAT
problems are defined as follows.

SAT
Input: A CNF formula ψ
Output: Is ψ satisfiable?

3SAT
Input: A 3-CNF formula ψ
Output: Is ψ satisfiable?

Another problem that appears throughout the thesis is the vertex coloring problem,
whose decision and optimization versions are defined as follows.

k-Coloring
Input: A graph G
Output: Is G k-colorable?

Coloring
Input: A graph G
Output: The chromatic number of G

2.5 Complexity Theory

We assume familiarity with basics of complexity theory like the classes P and NP, the
asymptotic notation, NP-completeness etc. We refer to [70, 12] for further background
on the topic. We define here a couple of advanced complexity classes that appear in the
thesis.

BPP (Bounded Probabilistic Polynomial Time) is the class of decision problems
solvable by a probabilistic Turing machine in polynomial time with an error probability
bounded away from 1/2 for all instances. BPTIME(f(x)) (Bounded Probabilistic Time)
is the class of decision problems solvable by a probabilistic Turing machine in f(x) time
with an error probability bounded away from 1/2 for all instances, where x is the length
of input encoding.

ZPP (Zero-error Probabilistic Polynomial Time) is the complexity class of problems
for which a probabilistic Turing machine exists with these properties:

• It always returns the correct YES or NO answer.

• The running time is polynomial in expectation for every input.

18

2.5. Complexity Theory

We use the O∗ notation to hide all polynomial factors in input size and Õ to hide
logarithmic factors.

2.5.1 Parameterized Complexity

We refer to [51] for a detailed introduction to the topic. A parameterized problem
is a language L ⊆ Σ∗ × N, where Σ is a fixed, finite alphabet. An instance of the
parameterized problem is given by a pair (I, k) ∈ Σ∗×N. Here k is called the parameter.
An algorithm solves the problem if it can decide whether a given instance (I, k) is in L
or not. A parameterized problem is said to be fixed parameter tractable (FPT), if
there exist an algorithm which can solve the problem in O∗(f(k)) time, where f : N→ N

is any computable function. The class FPT is the collection of all parameterized problems
that are fixed parameter tractable. The most common parameter of a decision problem
is the size of the solution. For example, the problem k-VertexCover is to decide
whether there is a vertex cover of size at most k for a given graph. It turns out that
this problem is indeed fixed parameter tractable, i.e., the problem is in class FPT. But
some problems are not fixed parameter tractable. For example the problem of whether
a graph has a k-coloring is NP-complete for any k ≥ 3 and hence cannot be in FPT.
But NP-completeness may not be the only reason for a problem not being in FPT. For
example, the problem k-Clique, which is to decide whether a given graph has a clique of
size at least k, has no FPT algorithm so far and is believed not to have one. However the
problem does have an algorithm that runs in time nO(k). So the problem is polynomial
time solvable for each fixed value of k but is unlikely to have an FPT algorithm. To
capture such problems, a complexity hierarchy called the W-hierarchy was introduced,
in particular the class W[1]. The formal definition of these classes are through terms in
circuit complexity. For the purposes of this thesis, we are mainly concerned with whether
a problem is W[1]-hard or not. A problem is W[1]-hard if it has an FPT-reduction from
k-Clique, where an FPT-reduction is defined as follows. A parameterized reduction
from problem L1 ⊆ Σ∗1 × N to problem L2 ⊆ Σ∗2 × N is an algorithm that given an
instance (I1, k1) ∈ Σ∗1 ×N produces an instance (I2, k2) ∈ Σ∗2 ×N such that I1 ∈ L1 if
and only if I2 ∈ L2. The reduction is said to be an FPT-reduction if k2 ≤ f(k1) for some
computable function f : N → N and the whole reduction runs in g(k1)h(|I1|) time for
some computable function g : N → N and some polynomial function h : N → N. It is
known that FPT⊆ W[1] but the converse is not known. It is widely believed that FPT 6=
W[1].

Conjecture 2.1. FPT 6= W[1].

Hence, if a problem is W[1]-hard, then it is unlikely to be in FPT. The above
conjecture can be thought of as the equivalent of P 6= NP in the parameterized world.
Another related and stronger conjecture is the Exponential Time Hypothesis (ETH).

Conjecture 2.2 (Exponential Time Hypothesis). There exist a constant c > 0
such that 3SAT on n variables cannot be solved in time 2o(cn).

Some of the lower bounds that we prove will be assuming the ETH.

Kernelization. Kernelization is a type of preprocessing algorithm. An algorithm A is
called a kernelization algorithm or a kernel of a parameterized problem P if it takes as

19

Chapter 2. Notation and Preliminaries

input an instance (I, k) of P and produces as output an instance (I ′, k′) of the same
problem such that |I ′| ≤ f(k) and k′ ≤ g(k) for some computable functions f : N→ N

and g : N→ N. We also call algorithm A an f(k)-kernel. When f(k) is polynomial in k,
we say that A is a polynomial kernel. It is easy to see that every parameterized problem
that has a kernel is in class FPT. The converse also turns out to be true.

Treewidth. A very common parameter used in the area of parameterized algorithms
is treewidth. It can be defined as the smallest k for which the graph is a partial k-tree.
But the more useful definition is through tree decompositions. A tree decomposition
of a graph G is a tree, T , with vertices X1, ..., Xn, where each Xi is a subset of V (G),
satisfying the following properties:

• The union of all sets Xi equals V . That is, each vertex of the graph is contained
in at least one vertex of the tree.

• If Xi and Xj both contain a vertex v, then all vertices Xk of T in the (unique) path
between Xi and Xj contain v as well. Equivalently, the tree vertices containing
vertex v form a connected subtree of T .

• For every edge vw in the graph, there is a subset Xi that contains both v and w.

The width of a tree decomposition is the size of its largest set Xi minus one. The
treewidth tw(G) of G is the minimum width among all possible tree decompositions of
G.

2.5.2 Approximation algorithms

We give a brief overview and refer to [157, 161] for a detailed introduction to the topic. An
α-approximation algorithm is an algorithm for a maximization or minimization problem,
that returns a solution that is worse than the optimum solution at most by a factor of
α . The factor α is called the approximation ratio. For a maximization problem, it is
defined as the maximum ratio of optimum solution to value of the solution returned by
the algorithm over all possible input instances. For a minimization problem, it is defined
as the maximum ratio of value of the solution returned by the algorithm to value of
the optimum solution over all possible input instances. Observe that according to this
convention, the approximation ratio is always greater than 1 and it is desirable to get
as small approximation ratio as possible. We note that some articles in the literature
defines the approximation ratio as the ratio of value of optimum to value of the solution
of the algorithm for minimization problems in which case the ratio can be less than 1
and it is desirable to get as high approximation ratio as possible.

An approximation algorithm is called a polynomial time approximation algorithm
if it runs in polynomial time. A PTAS (Polynomial Time Approximation Scheme) is
an algorithm that for each fixed ε > 0 runs in time polynomial in the input size and
has an approximation ratio of at most (1 + ε). An FPTAS (Fully Polynomial Time
Approximation Scheme) is an algorithm that for each ε > 1 runs in time polynomial
in both the input size and 1/ε, and has an approximation ratio of at most (1 + ε). A
problem is said to belong to the class APX if there is an α-approximation algorithm for
it for some fixed constant α.

20

2.6. Other Notations and Conventions

2.6 Other Notations and Conventions

We assume basic familiarity with fields, rings, semi-rings etc. We will use R to denote the
real field. We denote the Galois Field of size 2 by F2. The boolean semi ring is defined
as the set {0, 1} together with the logical and (∧), or (∨) operators. Whenever we say
log we mean log2 unless otherwise mentioned. For a function f from a set S to a value,
and for any subset S′ of S, we use f(S′) to denote Σx∈Sf(x), unless otherwise specified.
When we say poly(x) we mean some function of x that is asymptotically smaller than
some polynomial function in x. When we say polylog(x) we mean some function of x
that is asymptotically smaller than logc x for some constant c.

21

Chapter 2. Notation and Preliminaries

22

CHAPTER 3
Covering and Partitioning Edges with

Bicliques

3.1 Introduction

A biclique (also known as complete bipartite subgraph) of a graph G is defined as any
subgraph H of it such that H is bipartite, and every vertex in L(H) is adjacent to every
vertex in R(H). We study the problems of covering and partitioning the edge set of
graphs (especially bipartite graphs) with bicliques. The problems are formally defined
as follows.
k-BicCover
Input: a graph G
Output: whether the edges of G can be covered by at most k bicliques

k-BicPart
Input: a graph G
Output: whether the edges of G can be partitioned into at most k bicliques

The corresponding optimization versions of the above decision problems, where we
require to find the cover/partition having minimum number of bicliques, are called Bic
Cover and BicPart respectively. In many of the applications, the input graph is
bipartite. Hence we will focus mainly on the case when the input graph is bipartite.
We will call the decision problems restricted to bipartite graphs as k-BipBicCover
and k-BipBicPart respectively and the optimization problems as BipBicCover and
BipBicPart respectively.

The biclique cover/partition problems have a long history. It was shown by Orlin
in 1977 that k-BicCover is NP-complete [131], even in bipartite graphs. He also
conjectured that k-BicPart is NP-complete, which was later answered in the affirmative
in [87]. The minimum number of bicliques to cover the edges of a graph is also called
the bipartite dimension [65], and Orlin called the minimum k that admits a partition
of the edge set into k bicliques, the bicontent [131]. We prefer the terms biclique cover
number and biclique partition number, respectively, to avoid any confusion.

The notion of biclique cover and partition can be extended to edge-weighted graphs
(we call it biclique weighted cover/partition) in a natural way. We say that an edge having
weight w is covered/partitioned by a set B of bicliques if it is present in at least/exactly w
bicliques in B. We call the edge-weighted versions of the problem as k-BicWtdPart and
k-BicWtdCover respectively, and the respective bipartite versions as k-BipBicWtd
Cover and k-BipBicWtdPart. The weighted problem can also be thought of as the
generalization to multigraphs because we can think of the weights as multiplicities of
the edges (but each biclique is allowed to cover only one multiplicity of each edge).

Chapter 3. Covering and Partitioning Edges with Bicliques

One of the main reason for us focusing on bipartite graphs is that the biclique
cover/partition numbers of bipartite graphs are equivalent to the following important
notions in matrix factorization:

Definition 3.1 (Boolean Rank). Given a matrix A ∈ {0, 1}m×n, the boolean rank of
A is the minimum k for which there exist B ∈ {0, 1}m×k and C ∈ {0, 1}k×n such that
A = B � C, where � denotes the matrix product over the boolean semiring. The pair
(B,C) is called a rank-k boolean decomposition of A.

Note that for boolean rank, the input matrix is constrained to be binary as the
boolean product always result in binary values. But for the following notion of binary
rank we allow the input matrix to be any integer matrix.

Definition 3.2 (Binary Rank). The binary rank of a matrix A ∈ Zm×n over a field F
is defined as the minimum k for which there exist B ∈ {0, 1}m×k and C ∈ {0, 1}k×n such
that A = B ·C where B ·C is the product using the arithmetic over the field F. The pair
(B,C) is called a rank-k binary decomposition of A over F. When we say binary rank
or binary decomposition without specifying the field, we mean the infinite real field R.

For translating the notions between bipartite graphs and matrices we define the
following notions.

Definition 3.3 ((Weighted) bi-adjacency matrix, Equivalent (weighted) graph). For
a bipartite graph G with L(G) = {u1, u2, . . . , um} and R(G) = {v1, v2, . . . , vn}, its bi-
adjacency matrix is given by a matrix A ∈ {0, 1}m×n where Aij = 1 if and only if
uivj ∈ E(G). Also, G is called the equivalent graph of matrix A. If G has edge-weights
w : E(G) → Z≥1, then the weighted bi-adjacency matrix of G is given by a matrix
A ∈ Zm×n where Aij = w(uivj) if uivj ∈ E(G), and 0 otherwise. Also, G is called the
equivalent weighted graph of matrix A.

The following equivalence was proved by Gregory et. al. [77].

Fact 3.4. [77] The biclique cover number of a bipartite graph G is equal to the boolean
rank of its bi-adjacency matrix.

The following equivalence is also easy to see and we give a proof in Section 3.2.3.

Lemma 3.5. The biclique (weighted) partition number of a (weighted) bipartite graph
G is equal to the binary rank of its (weighted) bi-adjacency matrix A. Moreover given a
rank-k binary decomposition of A, a biclique (weighted) partition of G can be constructed
in polynomial time.

We define the parameterized boolean and binary rank problems as below.

k-BoolRank
Input: a matrix A ∈ {0, 1}m×n
Output: whether boolean rank of A is at most k

k-BinRank(F)
Input: a matrix A ∈ Zm×n,
Output: whether binary rank of A over field F is at most k

24

3.1. Introduction

The problem k-BoolRank is equivalent to k-BipBicCover due to Lemma 3.4 and
k-BinRank(R) is equivalent to k-BipBicWtdPart due to Lemma 3.5. The problem k-
BipBicPart is equivalent to the special case of k-BinRank(R) when the input matrix
A is binary. Also note that k-BinRank(F) is polynomial time solvable by gaussian
elimination when F = F2 and input matrix is binary.

We also briefly study the following approximate variant of binary rank problem for
binary matrices.

(k, q)-BinRankApx(F)
Input: a matrix A ∈ Zm×n, a field F and positive integers k and q
Output: whether there exist a matrix A′ ∈ Zm×n such that ||A′ − A||0 ≤ q and
binary rank of A′ over F is at most k

Closely related to k-BicCover and k-BicPart are the following problems about cov-
ering/partitioning edges of a (non-bipartite) graph with cliques. Some of our techniques
can also be applied to these problems as shown later.

k-EdgeCliqCover
Input: a graph G
Output: whether the edges of G can be covered by at most k cliques

k-EdgeCliqPart
Input: a graph G
Output: whether the edges of G can be partitioned into at most k cliques

A set of cliques that cover the edges is called an edge clique cover (ECC) and a set
of cliques that partition the edges is called an edge clique partition (ECP). The
smallest number of cliques needed to cover the edges of G is called the edge clique cover
number and the smallest number of cliques required to partition the edges is called
edge clique partition number of G. We also extend the definitions to the edge weighted
versions k-EdgeCliqWtdCover and k-EdgeCliqWtdPart, in a natural way as in
the biclique problems.

3.1.1 Related Work

k-BicCover was shown to be NP-complete even for bipartite graphs by Orlin in 1977.
He also conjectured the NP-completeness of k-BipBicPart. This conjecture was later
affirmed by Jiang and Ravikumar [87]. They showed NP-completeness of a problem
called Normal Set Basis which is equivalent to k-BipBicPart.

Parameterized Complexity. Gramm et al. [76] gave a 2k-kernel for k-EdgeCliq
Cover, thereby showing that the problem is FPT. Following the same approach, Fleis-
chner et al. [66] showed that k-BicCover and k-BicPart are FPT, by giving kernels
with at most 3k vertices for general graphs and with at most 2k+1 vertices for bipartite
graphs. They also gave an algorithm brute forcing over the kernalized instance, but
they reported incorrect running times of O∗(22k2+3k). This mistake was observed by
Nor et. al. [129] and they pointed out that the correct running time of this algorithm
is O∗(222k log k+3k). For k-BicCover, the latter paper also improved the running time
slightly to O∗(2k2k−1+3k). They also showed improved running times of O∗(22k2+3k) for

25

Chapter 3. Covering and Partitioning Edges with Bicliques

chordal bipartite graphs and O∗(22k2(`−1)+3k) for bipartite graphs that do not have a
crown graph of order ` (see definition 3.36 for a definition of crown graphs) as an induced
subgraph. Fleischner et al. [66] also studied the variants of covering/partitioning vertices
with bicliques and showed that they are NP-complete for every k ≥ 3, even for bipartite
graphs. They also studied the more restricted version of biclique vertex cover/partition
where at least one of the sides contain at most a fixed small number b of vertices, and
showed that this problem is W[1]-hard. Mujuni and Rosamond showed [125] that k-Edge
CliqPart has a k2 kernel. Running a brute force algorithm on the kernelized instance
gives a O∗(2k3) algorithm for k-EdgeCliqPart. Cygan, Pilipczuk and Pilipczuk [52]
showed that k-EdgeCliqCover has no O∗(22o(k))-time algorithm assuming ETH. They
also showed that the same problem does not have a 2δk-kernel for some constant δ unless
P =NP.

Approximation Algorithms. Simon in 1990 [143] showed that BicCover is NP-hard
to approximate within a factor of 2. Gruber and Holzer [78] used the reduction in [143] to
show that BicCover cannot be approximated within factors n1/3−ε and m1/5−ε in poly-
nomial time unless P =NP. Later Chalermsook, Heydrich, Holm and Karrenbauer [32]
improved the inapproximability factors to n1−ε and m1/2−ε 1. Assuming a stronger
hypothesis that NP 6= BPTIME(2polylogn), they were able to show an even better inap-
proximability factor of n/2log

7
8 +ε n. For BicPart, only APX-hardness is known, which

follows due to a reduction from vertex cover given by Jiang and Ravikumar [87]. In [32],
approximation factors of n√

logn were obtained with polynomial time algorithms for both
problems. Bein et al. studied the approximability of the biclique vertex partition vari-
ant, where we want to partition the vertices instead of edges [19]. For this variant they
showed that there is no constant approximation in polynomial time unless P = NP , and
also gave a polynomial time 2-approximation for the case when the optimum is a small
constant. EdgeCliqCover is inapproximable within a factor of n1/2−ε in polynomial
time. This follows easily from a reduction from Coloring by Kou, Stockmeyer and
Wong in 1978 [95].

Low Rank Matrix Approximation. Recently there has been much study in the ap-
proximate variant of boolean/binary matrix rank problems [68, 14, 67], where given a
matrix A ∈ {0, 1}m×n, we want to find matrices B ∈ {0, 1}m×k and C ∈ {0, 1}n×k such
that the matrix B · C (product under the relevant arithmetic) is close to A. In other
words, we want to approximate a given matrix A by a close enough matrix A′ which has a
low rank. Depending on the arithmetic used for product B ·C, we get different problems
such as approximate binary rank, approximate boolean rank etc. The closeness of A′
and A are usually measured in some `p-norm for some p ≥ 0. Ban et al. [14] studied the
generalized binary `0-Rank-k approximation problem where the objective is to minimize
||A′ −A||0 and the product could be using any arithmetic specified during input. They
gave a PTAS for the problem that runs in time (1

ε)2O(k)/ε2
mn log2k n where (1 + ε) is the

approximation factor. They also showed that assuming ETH, the running time cannot
be improved to 21/εo(1) · 2no(1) or 22o(k)2no(1) . The latter lower bound was proved using
Corollary 3.12 from this work. Fomin, Golovach, Lokshtanov, Panolan and Saurabh [67]

1The paper also claimed the same result for BicPart but there was an error in this proof.

26

3.1. Introduction

(independently from Ban et al.) gave an algorithm for the case of boolean rank which
runs in (1

ε)2O(k)/ε2
mn. Fomin, Golovach and Panolan [68] gave a 2O(k2k·

√
q log q)(mn)O(1)

algorithm for approximate boolean rank with absolute error q, i.e., the requirement is
that ||A′ −A||0 ≤ q.

Special graph classes. BicCover and BicPart are known to be polynomial time
solvable in domino-free bipartite graphs [7]. BicCover is known to be polynomial
time solvable in convex bipartite graphs [120, 121, 69]. BicCover was shown to be
NP-complete even for chordal bipartite graphs [126].

Other related problems. Two closely related problems are MaxBiclique and Bal-
ancedBiclique. In MaxBiclique, the objective is to find the biclique in a bipartite
graph with maximum number of edges. The variant where you want to maximize the num-
ber of vertices is polynomial time solvable. In BalancedBiclique, we need to output a
biclique that has equal number of vertices on both sides and the objective is to maximize
the number of vertices. Recently, Manurangsi [122] proved that MaxBiclique and
BalancedBiclique cannot have n1−ε approximation algorithms assuming the small
set expansion hypothesis and that NP 6= BPP. Lin [116] showed that BalancedBi-
clique is W [1]-hard when parameterized by value of optimal solution. Contrastingly
MaxBiclique is in FPT when parameterized by value of optimal solution due to a
O∗(k

√
k) algorithm by Feng et al. [64].

3.1.2 Our contribution

We present an algorithm with better running times for k-BinRank(F) and hence for
k-BipBicWtdPart, in particular for k-BipBicPart.

Theorem 3.6. k-BinRank(F) has an algorithm which runs in O(22k2+2k +mn(logn+
logm)) time.

Corollary 3.7. k-BipBicWtdPart and in particular k-BipBicPart has an algorithm
which runs in O(22k2+2k + |L(G)| |R(G)| (log |L(G)|+ log |R(G)|)) time.

This drastically improves the previous best running time bound [66], which was
O∗(222k log k+3k) [129].2

Remark 3.8. In k-BinRank(F), if the constraints on B and C are relaxed to B ∈ Sm×k
and C ∈ Sk×n for some S ⊆ F, then our algorithm in Theorem 3.6 will still work correctly
but with a running time of O(|S|2k2+2k +mn(logn+ logm)).

We also extend the algorithm to (k, q)-BinRankApx(F).

Theorem 3.9. (k, q)-BinRankApx(F) has an algorithm that runs in O((22kq+22q log q+
2kq+q log q)22kq+2k2+4k(k + log q) +mn(logm+ logn)) time.

We use similar kind of techniques to get the following result for k-EdgeCliqPart.
2Note that the bound reported in [66] is inaccurate as also observed in [129].

27

Chapter 3. Covering and Partitioning Edges with Bicliques

Theorem 3.10. k-EdgeCliqPart has an algorithm which runs in O∗(2k2+2k log k+k)
time.

Here the improvement is a bit less drastic, but still substantial. To the best of our
knowledge, the previous best reported running time is O∗(2k3) by Mujuni and Rosamond.
But the k2-kernel given by them (see Section 3.2.3), in fact implies a O∗(2O(k2 log k)) algo-
rithm for the problem, as we point out it in Section 3.2.3. We remark that our algorithm
for k-EdgeCliqPart does not extend to the k-EdgeCliqWtdPart problem.

The main technique that we use in the above algorithms might be interesting on its
own. The technique is very simple and uses basic linear algebraic notions. The main
idea is that we do not need to enumerate all the rows (or columns) of our target matrix
decomposition, but only need to enumerate a set of few rows which can span all the
other rows.

In contrast to the above positive results, we show that k-BicCover (and hence
k-BicWtdCover and k-BoolRank) is much harder, by giving the following reduction,
which is an adaptation of the reduction for k-EdgeCliqCover by Cygan et al. [52]

Theorem 3.11. There exists a polynomial time reduction that, given a 3-SAT instance
ψ on n variables and m clauses, produces a bipartite graph G with |L(G)| + |R(G)| =
O(n+m) such that there exists a positive integer k = O(logn) for which G has a biclique
cover of size at most k if and only if ψ is satisfiable.

This theorem immediately gives the following running time lower bounds for k-Bic
Cover.

Corollary 3.12. k-BicCover cannot be solved in time O∗(22o(k))-time unless the Ex-
ponential Time Hypothesis is false.

This almost matches the best known upper bound for the running time of k-BicCover,
which is O∗(22k log k+2k+log k/k!) [129].
Another consequence of Theorem 3.11 is the following lower bound on size of the kernel
for k-BicCover produced by any polynomial time algorithm.

Corollary 3.13. There exists a constant δ > 0 such that, unless P = NP , there is no
polynomial time algorithm that produces a kernel for k-BicCover of size less than 2δk.

We also give polynomial time approximation algorithms for BicCover and BicPart
with improved approximation guarantees.

Theorem 3.14. BicCover and BicPart have polynomial time approximation algo-
rithms that gives an approximation factor of |V (G)|/ log3 |V (G)| for an input graph G.
For a bipartite graph G, the approximation factor can be improved to n/ log2 n where
n = min(|L(G)| , |R(G)|).

Finally we give an approximation algorithm for EdgeCliqPart. To the best of our
knowledge, there is no polynomial time approximation algorithm known so far which
achieve an approximation ratio of |V (G)|2−ε or |E(G)|1−ε where G is the input graph
and ε is some positive constant.

Theorem 3.15. EdgeCliqPart has a polynomial time approximation algorithm that
gives an approximation factor of min((ecp(G)2, |V (G)|4/3, |E(G)|2/3) for any graph G.

28

3.2. Preliminaries

3.2 Preliminaries

We use bc(G) and bp(G) to denote the biclique cover number and biclique partition
number respectively of a graph G. It is clear that bc(G) ≤ bp(G) as any biclique
partition is also a biclique cover. We use bool(A) to denote the boolean rank of A. and
binF(A) to denote the binary rank of A over F. We might write bin for binR. We use
ecc and ecp to denote the edge clique cover and partition numbers respectively.

3.2.1 Equivalence between biclique partition and binary rank

Proof of Lemma 3.5: Let L(G) = {u1, u2, . . . , um} and R(G) = {v1, v2, . . . , vm}.
Consider a rank-k binary decomposition (U, V) of A. We show that a biclique weighted
partition of G of size k can be constructed as follows. We construct a set of bicliques
B = {B1, B2, . . . , Bk} as follows: V (Bj) := {ui : Ui,j = 1}∪{vi : Vj,i = 1}. First we prove
that B` indeed induces a biclique for each ` ∈ [k]. Consider ui ∈ L(B`) and vj ∈ R(B`).
Clearly then Ui,` = 1 = V`,j . Then Ai,j = Ui,:V:,j ≥ 1. Hence, edge uivj is present in
G. Now, we prove that each edge is present in exactly as many bicliques as its weight.
Consider an edge uivj with weight w. This means that Ai,j = w. This implies Ui,:V:,j = w.
Since U and V are binary, this means that |I := {` ∈ [k] : Ui,` = 1 = V`,j} | = w. But
ui, vj ∈ V (B`) if and only if ` ∈ I. Hence edge uivj is covered exactly w times by B.

Now, let us prove the other direction. Suppose we are given a biclique weighted
partition B = {B1, B2, . . . , Bk} of G. We show that a rank-k binary decomposition
(U, V) of A can be constructed as follows: Ui,j := 1 if and only if ui ∈ V (Bj) and Vi,j = 1
if and only if vj ∈ V (Bi). Let I = {` ∈ [k] : Ui,` = 1 = V`,j}. But ` ∈ I if and only if
ui, vj ∈ B`. Hence |I| is exactly the number of bicliques which contain edge uivj , which
is equal to w as B is a biclique weighted partition of G. Then Ui,:Vj,: = |I| = w.

3.2.2 Review of the kernels for biclique cover and partition

Here, we briefly review the kernels for biclique cover and partition given by Fleischner,
Mujuni, Paulusma, and Szeider [66]. We use this kernel as a subroutine in our FPT
and approximation algorithms for biclique cover and partition. The kernelization is very
simple and consists of a single reduction rule, which is the removal of twin vertices. For
describing the reduction rule, we first define twin vertices.

Definition 3.16 (Twin vertices). Two vertices v1 and v2 are said to be twins of each
other if and only if N(v1) = N(v2).

The twin reduction rule is as follows.

Reduction rule 3.17 (Twin reduction). If G contains twins v1 and v2, delete v1 (or
v2).

When we say we apply twin reduction to a graph G, we mean to apply Reduction
rule 3.17 exhaustively, i.e., until there are no more twins in G. The twin reduction rule
is very common technique in the area of kernelization. Fleischner et al. [66] used it to get
kernels for biclique cover and partition. The following lemma shows that the reduction
rule is sound with respect to k-BicCover and k-BicPart.

29

Chapter 3. Covering and Partitioning Edges with Bicliques

Lemma 3.18. Let G be a graph, and G′ be the graph obtained after applying twin
reduction on G. Then bp(G) = bp(G′) and bc(G) = bc(G′). Also, given a biclique
cover/partition of G′ of size k, one can construct a biclique cover/partition of G of size
k in time polynomial in the size of G.

Proof. First we prove the statement for a single application of Reduction rule 3.17. If v1
and v2 are twins inG andE(G\v1) can be covered/partitioned with k bicliques, then E(G)
can be covered/partitioned with k bicliques by adding v2 to all the bicliques containing v1.
The converse is easy to see, i.e, if E(G) can be covered/partitioned with k bicliques, then
E(G \ v1) can be covered/partitioned with at most k bicliques. Thus bp(G) = bp(G \ v1)
and bc(G) = bc(G \ v1). Since the twin reduction is a series of applications of Reduction
rule 3.17, it follows that bp(G) = bp(G′) and bc(G) = bc(G′). Also, it is easy to see that
constructing the cover/partition of G can be done in polynomial time once we have the
cover/partition of G′ by traversing each reduction step backwards.

The following lemma gives an upper bound on the size of the reduced instance.

Lemma 3.19 ([66]). For a graph G that do not contain any twins, |V (G)| ≤ 3bc(G) ≤
3bp(G). For a bipartite graph G that do not contain any twins, |L(G)|, |R(G)| ≤ 2bc(G) ≤
2bp(G).

The above lemma completes the 3k-kernel for k-BicCover and k-BicPart because
if |V (G)| ≥ 3k for the graph G after applying twin-reduction, then we can immediately
output that it is a NO instance.

Since we will be dealing with binary rank and boolean rank, which are the equivalents
of biclique cover and partition, we restate the twin reduction in terms of matrices here.

Reduction rule 3.20 (Twin reduction in matrix terms). If matrix A has two
rows/columns that are identical, then remove one of them.

This reduction rule is safe with respect to the k-BinRank(F) and k-BoolRank
problems as shown by the following lemma.

Lemma 3.21. Let A be an m × n integer matrix and A′ be the matrix resulting after
the application of Reduction rule 3.20 exhaustively on A. Then bin(A′) = bin(A) and
bool(A′) = bool(A). (Note that in case of boolean rank assume that A is binary). The
process of reducing A to A′ takes O(mn(logm + logn)) time and given a rank-k bi-
nary/boolean factorization of A′, we can construct a rank-k binary/boolean factorization
of A in O(mn) time.

Proof. First we prove for one step in the reduction. Consider two identical rows in A. Let
the identical rows be A1,: and A2,: without loss of generality. Let B := A[2,m],:. Suppose
(X,Y) is a rank-k binary/boolean decomposition ofB. Note thatX is a (m−1)×k matrix.
Let X ′ be the m × n matrix defined as X ′1,: := X1,:, X

′
2,: := X1,: and for all i ∈ [3,m],

X ′i,: := Xi−1,:. It is easy to see that (X ′, Y) is a rank-k binary/boolean decomposition
of A. Thus if B has a rank-k binary/boolean decomposition then so does A. The other
direction is easy to see as follows. Suppose A has a rank-k binary/boolean factorization
(X,Y). Then (X[2,m],:, Y) is a rank-k binary/boolean factorization of B. Thus if A
has a rank-k binary/boolean decomposition then so does B. Hence bin(A) = bin(B)

30

3.2. Preliminaries

and bool(A) = bool(B). A similar argument can be shown for deletion of columns also.
Since, the whole reduction is a series of such deletions, by transitivity it follows that
bin(A) = bin(A′) and bool(A) = bool(A′).

The reduction procedure can be implemented in O(mn(logn+logm)) time as follows:
first sort all the rows in a lexicographic ordering; now the duplicate rows are in consecutive
rows and one can remove them in linear time; now repeat the same for columns. Note that
the step of deleting a column will not make two non-identical rows identical, because
we keep a column that is identical to the deleted column undeleted, so if the rows
had different entries in the deleted column, they will also have different entries in this
undeleted column. Hence, we have to do the deletion procedure only once for rows and
once for columns. It is clear that this procedure takes only O(mn logn+nm logm) time.

The process of constructing a factorization for A from a factorization of A′ will take
only O(mn) time as this only involves duplicating rows/columns. Note that we need
to do some book-keeping during the reduction so that the reconstruction can be done
efficiently, i.e., when we delete one of the two identical rows/columns, we should keep a
note of which row/colum it was identical to.

The equivalent of lemma 3.19 in matrix terms is as follows.

Lemma 3.22. Consider a matrix A ∈ Zm×n that has all its rows distinct from each
other and columns distinct from each other. Then m,n ≤ 2bin(A), and if A is a binary
matrix then m,n ≤ 2bool(A).

Proof. Let k = bin(A). Then there exist B∗ ∈ {0, 1}m×k and C∗ ∈ {0, 1}k×n such that
B∗C∗ = A. If 2 rows B∗i,: and B∗j,: of B∗ are identical, then Ai,: = B∗i,:C

∗ = B∗j,:C
∗ = Aj,:,

thus making 2 rows of A identical, which is a contradiction. Thus the rows of B∗ are all
distinct. But since rows of B∗ are k-length binary vectors, there can only be 2k distinct
rows in B∗. Hence m ≤ 2k. Similarly it can be shown that n ≤ 2k. If A is binary, the
result for boolean rank follows by replacing the product with boolean product in the
above argument.

We remark that for biclique partition, the kernelization can easily be extended to
the edge-weighted case. In fact, we have shown that the kernelization works for binary
rank of positive integer matrices, which corresponds to the weighted bipartite case. It is
not very hard to see that the kernelization can be extended to the weighted general case
as well, for biclique partition. On the other hand, we could not find a way to extend the
kernelization to edge-weighted biclique cover. One of the reasons is that the boolean rank
problem is only defined for binary matrices, and there is no equivalent matrix problem
corresponding to the weighted bipartite biclique cover.

3.2.3 Review of the kernel for edge clique partition

Here we review the kernel having at most k2 vertices given for k-EdgeCliqPart by
Mujuni and Rosamond [125]. We use this kernel as a subroutine in our FPT and approx-
imation algorithms for edge clique partition. We present the kernelization in a slightly
different way to that in [125], but the core idea remaining the same. Additionally, we
point out that the number of edges in the kernel is at most k3, and that an O∗(2O(k2 log k))
time algorithm for k-EdgeCliqPart is implied by the kernel.

31

Chapter 3. Covering and Partitioning Edges with Bicliques

The kernelization uses only one reduction rule, which is as follows. Recall that a
simplicial vertex is a vertex whose neighborhood induces a clique.

Reduction rule 3.23. If G has a simplicial vertex v, then remove v and the edges
within N [v] from G.

The following lemma proves the soundness of the above rule.

Lemma 3.24. Let v be a simplicial vertex in G. Let G′ be the graph obtained by removing
vertex v and the edges within N [v] from G. Then G has an ECP of size k if and only if
G′ has an ECP of size k − 1. Moreover, if C′ is an ECP of G′, then C = C′ ∪ {N [v]} is
an ECP of G.

Proof. First we prove that if G has an ECP of size k then G′ has an ECP of size at most
k − 1. Let C be an ECP of G. Let Cv be the set of all cliques in C containing v. Note
that |Cv| ≥ 1, assuming that the trivial case where v is an isolated vertex does not occur.
We show that C \ Cv is an ECP of G′. Suppose it is not. Then there is an edge e in
E(G) \E(N [v]) that is not in any clique of C \ Cv. The edge e is not in any clique in Cv
as any clique in Cv only has vertices from N [v]. But then e was not covered by C and
hence C is not an ECP of G, which is a contradiction. Thus G′ has an ECP of size at
most k − 1.

Next, we prove the other direction. Let C′ be an ECP of G′ and let C = C′ ∪ {N [v]}.
We show that C is an ECP of G. Suppose it is not. Then there is an edge e of G that is
not in any clique of C. The edge e is not in E(N [v]) as then it would have been covered
by the clique N [v]. But then e is an edge of G′ that is not covered by C′ and hence C′ is
not an ECP of G′, which is a contradiction. Thus C is an ECP of G.

We can repeat the Reduction rule 3.23 as long as there are simplicial vertices re-
maining. The following Lemma follows by the repeated application of Lemma 3.24.

Lemma 3.25. Let G be a graph and G′ be the resultant graph after applying the Reduction
Rule 3.23 on G sequentially r times . Then ecp(G′) = ecp(G)− r. Also, given an ECP
of size k of G′ we can construct an ECP of size k + r of G in time linear in the size of
G.

Due to the above lemma, given an instance G of k-EdgeCliqPart, we can apply
Reduction rule 3.23 safely on G until there are no simplicial vertices left. The following
lemma proves a bound on the size of such a reduced instance.

Lemma 3.26. Let G be a graph which does not contain any simplicial vertices. Then,
|V (G)| < (ecp(G))2 and |E(G)| < (ecp(G))3.

Proof. Let C be an optimal ECP of G. We first show that each clique in C has size at
most ecp(G)− 1. Suppose there was a clique C ∈ C such that |C| ≥ ecp(G). Since there
are no simplicial vertices in G, each vertex in C has at least 1 neighbor outside C. Thus
each vertex in C has an edge incident on it which is not covered by C. For each vertex v
in C, let ev be such an edge. Let Cv be the clique in C \ C containing ev. Observe that
Cu 6= Cv for any distinct u and v in C because, otherwise the edge uv will be covered twice

32

3.3. Parameterized Algorithm for Binary Rank

in C, once by C and second by Cu = Cv, which means C is not a partition of the edges.
But since |C \C| ≤ ecp(G)−1 and |C| ≥ ecp(G), we arrive at a contradiction by a simple
pigeon hole principle. Thus we conclude that size of each clique in C is at most ecp(G)−1.
It follows immediately that |V (G)| ≤ ecp(G)(ecp(G)− 1). The number of edges in each
clique in C is at most (ecp(G)− 1)(ecp(G)− 2)/2. Since each edge is present in at least
one of the cliques in C, we have that |E(G)| ≤ ecp(G)(ecp(G)− 1)(ecp(G)− 2)/2.

Due to the above lemma, we get a kernel for k-EdgeCliqPart with at most k2 ver-
tices and k3 edges. This is because if after applying the Reduction rule 3.23 exhaustively
on input graph G, it still has more than k2 vertices or k3 edges, then we can straightaway
output that it is a NO instance.

Mujuni and Rosamond also reported an algorithm for k-EdgeCliqPart with running
time O∗(2∆k) which implies a running time of O∗(2k3) as ∆ ≤ k in the above kernel. But,
their kernel in fact implies a better algorithm. For this, we need to use the additional
property satisfied by the kernel that, each clique contains at most k vertices. Thus we
can enumerate all possible solutions in

(k2+1
k

)k
= O∗(2O(k2 log k)) time.

We remark that we could not find a way to extend the above kernelization for edge
clique partition to the weighted case.

3.3 Parameterized Algorithm for Binary Rank

This section is dedicated to the proof of Theorem 3.6 by giving an algorithm for k-
BinRank(F) that runs in time O∗(2k2+k). All the arithmetic operations, binary rank,
and binary decomposition in this section are over the given field F unless otherwise
mentioned.

Let A be the given m× n integer matrix. First we will give an algorithm with the
assumption that, A has distinct rows and columns. Later, we will show how to reduce
the case when there are duplicate rows or columns to this case. Because of Lemma 3.22,
we can safely assume that m,n ≤ 2k (otherwise we know A is a NO instance and we
straightaway output that the binary rank of A is greater than k).

The pseudocode of the algorithm is given in Algorithm 1. If A is a YES instance, we
know that there exist B∗ ∈ {0, 1}m×k and C∗ ∈ {0, 1}k×n such that A = B∗C∗. Note
that the pair B∗, C∗ may not be unique, but we fix some such pair. First, we guess
a set of indices of k rows, I = {i1, i2, . . . ik} of B∗ that span the other rows of B∗ (in
line 1). That is, every other row of B can be expressed as a linear combination of rows
i1, i2, . . . , ik (over the field F). Note that we do not need the rows i1, i2, . . . , ik to be
linearly independent, we just need them to span the other rows. Such k rows should
exist because B∗ has at most k columns and hence its rank in the real field is at most k.
The number of possibilities for this guess is at most

(m
k

)
≤
(2k
k

)
≤ 2k2 . Note that here

we used that m ≤ 2k. Let B̃ and Ã denote the sub-matrix of B∗ and A respectively,
limited to the rows i1, i2, . . . , ik. We also guess the entries of B̃ (also in line 1). Since B̃
is a binary matrix with k rows and k columns, the number of possibilities for this guess
is at most 2k2 .

Next, we find columns c1, c2, . . . , cn of our target C ∈ {0, 1}k×n each independently
(in line 5), such that they are compatible with B̃ and Ã, more specifically, we find a

33

Chapter 3. Covering and Partitioning Edges with Bicliques

Algorithm 1: Algorithm for the kernalized instance of k-BinRank(F)
Input : A matrix A ∈ Zm×n,
Assumption :A has distinct rows and distinct columns
Output : If binary rank of A is at most k then output B ∈ {0, 1}m×k and

C ∈ {0, 1}k×n such that BC = A.
Otherwise report that binary rank of A is greater than k.

1 foreach I = {i1, i2, · · · , ik} ⊆
([m]
k

)
, and B̃ ∈ {0, 1}k×k do // Loop 1

2 Ã← AI,:
3 for j ∈ [n] do
4 By iterating over all k-length binary vectors,
5 find cj ∈ {0, 1}k such that B̃cj = Ã:,j ;
6 if there is no such cj , then go to the next iteration of Loop 1;
7 end
8 let C be the matrix with c1, c2, · · · , cn as the columns;
9 for i ∈ [m] do

10 By iterating over all k-length binary vectors,
11 find bi ∈ {0, 1}k such that bTi C = Ai,: ;
12 if there is no such bi, then go to the next iteration of Loop 1;
13 end
14 let B be the matrix with bT1 , b

T
2 , · · · , bTm as the rows;

15 output B and C and terminate.
16 end
17 report that binary rank of A is greater than k and terminate.

vector cj such that B̃cj = Ã:,j for each j ∈ [n]. We know that for a YES instance such a
cj should exist for all j ∈ [n] as C∗:,j is one such cj .

Next, we find rows bT1 , bT2 , . . . , bTn of our target B ∈ {0, 1}m×k each independently (in
line 11). For a YES instance, such rows should exist as shown by the following lemma.

Lemma 3.27. Let C ∈ {0, 1}k×n be such that B̃C = Ã. Then for each i ∈ [m], there
exists a vector bi ∈ {0, 1}k such that bTi C = aTi .

Proof. We only need to show that at least one such bi exist for each i ∈ [m]. We exhibit
B∗i,: as the required bi. We know

B∗i,:C
∗ = Ai,: (3.1)

and also that there exist λ1, λ2, . . . , λk ∈ R such that

B∗i,: =
k∑
t=1

λtB
∗
it,: (3.2)

Substituting this in (3.1) gives
k∑
t=1

λtB
∗
it,:C

∗ = Ai,: (3.3)

34

3.4. Parameterized Algorithm for Approximate Binary Rank

But B∗it,:C
∗ = Ait,: and substituting this in (3.3) gives

k∑
t=1

λtAit,: = Ai,: (3.4)

Now,

B∗i,:C =
k∑
t=1

λtB
∗
it,:C (3.5)

But we know B∗it,:C = Ait,: for all t ∈ [k] by the selection of c1, c2, . . . , cn. By substituting
this in (3.5), we have

B∗i,:C =
k∑
t=1

λtAit,: (3.6)

= Ai,: (3.7)

where the latter equality follows from (3.4).

Thus if A is a YES instance, then we have found a binary decomposition (B,C) of A
of rank k. If we fail to find such a decomposition (which means that for each possibility
of i1, i2, . . . , ik and B̃, we either failed to find a cj for some j ∈ [n] such that B̃cj = Ã
or we failed to find a bi for some i ∈ [m] such that bTi C = Ai,:), then A has to be a NO
instance and we output in line 17 that the binary rank of A is greater than k. Thus we
have proved the correctness of Algorithm 1.

Next, we prove that Algorithm 1 runs in O(22k2+2k) time. First, let us estimate
the number of iterations of Loop 1 in Algorithm 1. As discussed above, the number of
possibilities for i1, i2, . . . , ik is at most 2k2 and that for B̃ is also at most 2k2 . Hence, the
number of iterations of Loop 1 is at most 2k2 · 2k2 = 22k2 . The two inner loops only have
at most n and m iterations respectively, each of which is at most 2k. Each iteration of
the inner loops takes O(2k) time, as there are only 2k k-length binary vectors. Hence,
the total time taken by Algorithm 1 is in O(22k2+2k).

It remains to take care of the case when A has duplicate rows or columns. We
remove the duplicate rows and columns by applying the Reduction rule 3.20 exhaustively
on A. Let A′ be the resultant matrix. We know all rows of A′ are distinct and all
columns of A′ are distinct. We run Algorithm 1 on A′. If Algorithm 1 returns a rank-
k binary factorization of A′, then we compute a rank-k binary factorization of A as
given in Lemma 3.21. Instead, if Algorithm 1 returns that the binary rank of A′ is
greater than k, then we output that the binary rank of A is greater than k. This is
correct as bin(A) = bin(A′) by Lemma 3.21. The parts except the call to Algorithm 1
takes O(mn(logm+ logn)) time by Lemma 3.21. Hence the whole algorithm takes only
O(22k2+2k +mn(logn+ logm)) time. This completes the proof of Theorem 3.6.

3.4 Parameterized Algorithm for Approximate Binary Rank

In this section, we prove Theorem 3.9 by giving an algorithm for (k, q)-BinRankApx(F).
We assume that all the arithmetic operations, binary rank etc. in this section are over

35

Chapter 3. Covering and Partitioning Edges with Bicliques

the given field F, although we will not explicitly mention it. First we show how to
extend the kernelization rule that we described in Section 3.3 to the approximate version.
The idea is similar, that we remove identical rows and columns, but we need to keep
some extra book-keeping here. The reason is that one row of the reduced matrix may
represent 2 or more entries of the original matrix, say p entries, and making an error in
such an entry actually means making p errors. So we will keep track of the number of
entries represented by an entry Ai,j , which we call the error cost Ei,j . Initially we can
assume that all the error costs are 1. For two matrices A and A′, we define E(A,A′) as∑
i,j:Ai,j 6=A′i,j

Ei,j . We will solve the following more general problem:

(k, q)-BinRankApxCost(F)
Input: A ∈ Zm×n and an error cost matrix E ∈ Zm×n≥1
Output: whether there exist a matrix A′ ∈ Zm×n such that E(A,A′) ≤ q and binary
rank of A′ over F is at most k

The reduction rule for kernelization is as follows:

Reduction rule 3.28. If the ith and jth rows of A are identical, delete jth row from A
and E and set Ei,` := Ei,`+Ej,` for all ` ∈ [n]. Similarly, if the ith and jth columns of A
are identical, delete jth column from A and E and set E`,i := E`,i + E`,j for all ` ∈ [m].

For proving the correctness of the rule, first we need to show that it is fine to make
only identical errors in the identical rows/columns.

Lemma 3.29. Consider a matrix A whose ith and jth rows (or columns) are identical.
If there is a matrix A′ such that E(A′, A) ≤ q, then there is a matrix A′′ such that
E(A′′, A) ≤ q, the binary rank of A′′ is at most the binary rank of A′, and A′′i,: = A′′j,:
(or A′′:,i = A′′:,j resp.).

Proof. We will prove the lemma for rows and the proof for columns follows by symmetry.
Assume without loss of generality that E(A′i,:, Ai,:) ≤ E(A′j,:, Aj,:). Let A′′ be the matrix
obtained by replacing A′j,: with A′i,: in A′. It is easy to see that A′′ has binary rank at
most that of A′ and that E(A′′, A) ≤ E(A′, A).

Consider an instance (A,E) of (k, q)-BinRankApxCost(F). Suppose row i and
row j are identical in A and we delete row j from A according to reduction rule 3.28.
Let Â be the matrix after deletion of row j and let Ê be the new error matrix modified
as given in reduction rule 3.28. Suppose Â′ is a solution for instance (Â, Ê). Let A′
be the matrix obtained from Â′ by copying the ith row and inserting it as the jth row
(increasing the indices of the following rows by 1). We prove A′ has binary rank at
most k as follows. Since Â′ has binary rank at most k, there exist B̂ ∈ {0, 1}m×k and
Ĉ ∈ {0, 1}k×n such that B̂Ĉ = Â′. Let B be the matrix obtained from B̂ by copying the
ith row and inserting it as the jth row (increasing the indices of the following rows by 1).
It is clear that BĈ = A′ and hence A′ has binary rank at most k. By the construction of
Ê and Â, it is easy to see that E(A′, A) = Ê(Â′, Â) ≤ q. Hence a solution of (Â, Ê) can
be converted to a solution of (A,E) in O(n) time. We also need to show that if (Â, Ê) is
a NO instance then so is (A,E). We prove the contrapositive. Suppose A′ is a solution

36

3.4. Parameterized Algorithm for Approximate Binary Rank

to (A,E). We can assume due to Lemma 3.29 that A′i,: = A′j,:. Let Â′ := A′[m]\j,:. Then,

Ê(Â′, Â) = E(A′, A)− E(A′i,:, Ai,:)− E(A′j,:, Aj,:) + Ê(Â′i,:, Âi,:)

= E(A′, A)−
∑

`:Ai,` 6=A′i,`

Ei,` −
∑

`:Aj,` 6=A′j,`

Ej,` +
∑

`:Âi,` 6=Â′i,`

Êi,`

= E(A′, A)−
∑

`:Ai,` 6=A′i,`

Ei,` −
∑

`:Ai,` 6=A′i,`

Ej,` +
∑

`:Ai,` 6=A′i,`

Ei,` + Ej,`

= E(A′, A) ≤ q

Hence, Â′ is a solution to (Â, Ê). Hence the reduction rule is correct. Note that we gave
the argument for only deletion of rows, but it can be shown for columns also similarly.
Also note that we need to do some more book-keeping, i.e. for each deleted row (or
column), we need to remember the row (or column) that was identical to it, so that we
can reconstruct the corresponding row (or column) in B. But this is very straightforward
and the reconstruction procedure takes only O(mn) time. The whole kernelization can
be implemented in O(mn(logm+ logn)) time, the same way as the one in Section 3.3.

After the reduction rule is exhaustively applied, we show that the number of rows
and columns is at most 2k + q. The reason is that there are at most q rows or columns
that can have errors, and hence if we remove those rows from A and A′ the remaining
part of the two matrices should be same. Hence there exist q rows (and columns) of A
whose removal gives a matrix with binary rank at most k. Hence the remaining part can
have at most 2k rows by Lemma 3.19. Thus we have the following lemma.

Lemma 3.30. If (A,E) is a YES instance of (k, q)-BinRankApxCost(F) and A has
all rows and columns distinct then A has at most 2k + q rows and at most 2k + q columns.

Now, we guess the error positions in A. Note that there can be only at most q error
positions as each position has error cost at least 1. Since the total number of positions
is at most (2k + q)(2k + q), we have that the number of possible guesses is at most(

(2k + q)(2k + q) + 1
q

)
= O(22kq + 22q log q + 2kq+q log q)

Once we have guessed the positions of errors, we can compute the required A′ as follows:
The positions where there are no errors, we know A′i,j = Ai,j . It only remains to
compute the entries of the positions where error occurs. Let (B,C) be a k-rank binary
decomposition of A over F. The entry A′i,j is completely determined by Bi,: and C:,j .
Hence the entries at error positions of A′ are completely determined by at most q rows
of B and q columns of C. We guess these rows and columns which adds a multiplicative
factor of at most 22kq to the running time. Now we have completely fixed A′.

Now it only remains to check whether A′ has binary rank at most k. For this
we can just call the algorithm for k-BinRank(F) on (A′, k). This will run in time
O(22k2+2k(2k + q)2 log(2k + q)) according to Theorem 3.6. Thus the total running time
is

O((22kq + 22q log q + 2kq+q log q)22kq+2k2+4k(k + log q) +mn(logm+ logn)).

This completes the proof of Theorem 3.9.

37

Chapter 3. Covering and Partitioning Edges with Bicliques

3.5 Parameterized Algorithm for Edge Clique Partition

The idea for the algorithm is similar to that of k−BicPart. We first reduce k-Edge
CliqPart to a matrix problem and then solve the matrix problem. The algorithm used
for solving the matrix problem is very similar to the one for k-BinRank(F). The core
idea remains the same and there are only small technical differences.

For k−EdgeCliqPart, there is a kernel of size k2 given by Mujuni and Rosa-
mond [125], which we described in Section 3.2.3. Given an instance G of k-EdgeCliq
Part, we apply the Reduction rule 3.23 exhaustively on G. Let G′ be the resulting
instance. Lemma 3.24 implies that G is an YES instance of k-EdgeCliqPart if and
only if G′ is an YES instance of k′ − EdgeCliqPart for some k′ ≤ k. Moreover, given
a clique partition of size at most k′ of G′, in polynomial time one can construct a clique
partition of size at most k of G. Lemma 3.26 implies that G′ has at most k2 vertices
(otherwise we can straightaway output that G has edge clique partition number greater
than k). Hence from now on we will assume that our input graph G is a reduced instance
using the above kernelization, and hence that the number of vertices in G is at most k2.

We remark that the twin reduction rule similar to biclique partition does not work
here. To see this consider vertices a, b such that N [a] = N [b]. Suppose we delete b, and
later put b into all the cliques in which a is contained. If there is an edge between a and
b, then the edge ab will be possibly covered in many cliques, which is not what we want.
If there is no edge between a and b then b cannot be in the same clique as a.

Now, we will translate the problem into a matrix problem. For this we need the
following definitions.

Definition 3.31 (Equal Except in Diagonal, =ED). Two n× n matrices A and B are
said to be equal except in diagonal, denoted by A =ED B if and only if aij = bij for all
i, j ∈ [n] such that i 6= j.

Definition 3.32 (Binary Symmetric Decomposition (BSD)). For a matrix A ∈ Zn×n,
a binary matrix B ∈ {0, 1}n×k is said to be a rank-k binary symmetric decomposition of
A if BBT =ED A.

The following lemma translates the edge clique partition problem into a matrix
decomposition problem.

Lemma 3.33. A graph G has an edge clique partition of size k if and only if its adjacency
matrix A has a rank-k BSD. Moreover, given the rank-k BSD of A one can find an ECP
of G in time polynomial in |V (G)|.

Proof. Let V (G) = {v1, v2, . . . , vn}. Suppose G has an edge clique partition of size k. Let
C1, C2, . . . , Ck be the edge clique partition. Let b1, b2, . . . bk be vectors in {0, 1}n defined
as follows: for all i ∈ [k] and j ∈ [n], (bi)j = 1 if and only if clique Ci contains vertex vj .
Let B be the matrix whose rows are bT1 , bT2 , . . . , bTn . For i 6= j, we have bTi bj = 1, if and
only if vi and vj are in the same clique C` for some ` ∈ [k], which happens if and only if
there is an edge between vi and vj in G. Hence, BBT =ED A.

Now, let us prove the other direction. Suppose B is a rank-k BSD of A. Note that
B is an n × k binary matrix. Define C1, C2, . . . , Ck ⊆ V (G) as Cj := {vi : Bi,j = 1}.
We first prove that each Cj induces a clique in G. Consider some pair of vertices

38

3.5. Parameterized Algorithm for Edge Clique Partition

vi, v` ∈ Cj . We have Ai,` = Bi,:(BT):,` = Bi,:(B`,:)T ≥ 1 where the last inequality is
because Bi,j = B`,j = 1. But since A is binary, we have Ai,` = 1. Thus any distinct pair
of vertices vi, v` in Cj have an edge between them. Thus each Cj induces a clique. It
only remains to prove that every edge appears in some clique Cj . Consider any edge
viv` ∈ E(G). Since Ai,` = 1, we have Bi,:(BT):,` = Bi,:(B`,:)T = 1. So there exist a
j ∈ [k] such that Bi,j = B`,j = 1. But then for such a j, we have vi, v` ∈ Cj . Thus any
edge viv` ∈ E(G) is in one of the cliques Cj for j ∈ [k].

Note that a trivial BSD for an adjacency matrix A is the corresponding node-edge
incidence matrix. This corresponds to an edge clique cover of the graph obtained by
taking each edge as a clique. The rank of this BSD is as large as the number of edges in
the graph or the number of 1’s in A. Nevertheless, this is an easy way to see that any
symmetric binary matrix has a BSD of finite rank.

Now, we give an algorithm (Algorithm 2) that solves k-BSD in O∗(nk2k2+k) time.
We prove the correctness and running time in Lemma 3.34. The proof for Theorem 3.10
follows as : For solving the k-EdgeCliqPart problem, we first run the kernelization
(which takes polynomial time), convert the kernalized instance to a k-BSD instance by
Lemma 3.33, and then run Algorithm 2 on the k-BSD instance. Since for the kernalized
instance |V (G)| ≤ k2, we have n ≤ k2 in the k-BSD instance and hence the total running
time is in O∗(22k log k+k2+k).

Algorithm 2: Algorithm for finding rank-k BSD
Input : A matrix A ∈ {0, 1}n×n,
Output : If A has a rank-k BSD then output a B such that BBT =ED A,

otherwise report that A has no rank-k BSD
1 foreach I = {i1, i2, · · · , ik} ⊆

([n]
k

)
, bi1 ∈ {0, 1}

k , bi2 ∈ {0, 1}
k , . . . , bik do

// loop 1
2 let B̃ be the matrix whose rows are bTi1 , b

T
i2 , . . . , b

T
ik

.
44 if B̃B̃T 6=ED AI,I then go to the next iteration of Loop 1
5 for i ∈ [n] \ I in ascending order do // loop 2
6 By iterating over all k-length binary vectors,
7 find bi ∈ {0, 1}k such that for all j ∈ I ∪ [i− 1], bTi bj = Ai,j ;
8 if there is no such bi, then go to the next iteration of Loop 1;
9 end

10 let B be the matrix with bT1 , b
T
2 , · · · , bTn as the rows;

11 output B and terminate.
12 end
13 report that A has no rank-k BSD and terminate.

Lemma 3.34. Given a matrix A ∈ {0, 1}n×n, Algorithm 2 finds the rank-k BSD of an
input matrix A ∈ n × n if it exists in O∗(nk2k2+k)-time. If A does not have a rank-k
BSD, then the algorithm reports so.
Proof. The core idea is same as that of Algorithm 1. It is clear that Loop 1 has at most
nk2k2 iterations and Loop 2 has at most n iterations each of which takes O(2k) time.
Hence the running time is clear.

39

Chapter 3. Covering and Partitioning Edges with Bicliques

Next we prove the correctness. Suppose A indeed has a rank-k BSD. We show that
then the algorithm will successfully output a rank-k BSD. Since A has a rank-k BSD,
there exist a B∗ ∈ {0, 1}n×k such that B∗B∗T = A′ =ED A for some A′ ∈ {0, 1}n×n.
Note that there can be more than one such B∗ but we fix one. B∗ clearly has a rank (over
standard real arithmetic) of at most k as it only has k columns. Therefore there exist k
rows of B∗ which can span all the other rows. Consider the iteration of Loop 1 for which
the algorithm picks these k row indices as {i1, i2, . . . , ik} = I and also picks (B∗j,:)T as bj
for all j ∈ I. The latter means that B̃ = B∗I,:. Clearly then B̃B̃T = B∗I,:(B∗I,:)T =ED AI,I .
Hence the then part of Line 4 is not executed and we enter Loop 2. We now prove
that, in Line 7, the algorithm will successfully find a vector bi for all i ∈ [n] \ I, with the
specified condition (i.e., the condition that for all j ∈ I ∪ [i − 1], bTi bj = Ai,j). We do
this by induction on i. Assume we were able to find such bt for all t ∈ [i− 1] \ I. Using
this induction assumption, we show we can also find a bi. We will exhibit (B∗i,:)T as the
required bi. We know that

B∗i,:B
∗T = A′i,: and (3.8)

B∗i,: =
∑
`∈I

λ`B
∗
`,: (3.9)

where each λ` ∈ R. Substituting (3.9) in (3.8),

A′i,: = B∗i,:B
∗T = Σ`∈Iλ`B

∗
`,:B

∗T = Σ`∈Iλ`A
′
`,: (3.10)

Taking bi = (B∗i,:)T , we have that for all j ∈ I,

bTi bj = B∗i,:(B∗j,:)T (We are in the iteration where bj = (B∗j,:)T for all j ∈ I) (3.11)
= A′i,j = Ai,j (A′ and A are different only in the diagonal) (3.12)

So it only remains to prove bTi bj = Ai,j for j ∈ [i− 1] \ I. Consider any j ∈ [i− 1] \ I.

bTi bj = B∗i,:bj

= Σ`∈Iλ`B
∗
`,:bj (using (3.9))

= Σ`∈Iλ`b
T
` bj (We are in the iteration where b` = (B∗`,:)T for all ` ∈ I)

= Σ`∈Iλ`A`,j (due to induction assumption)
= Σ`∈Iλ`A

′
`,j (Since j /∈ I)

= A′i,j (Using 3.10)
= Ai,j (A′ and A are different only in the diagonal)

Thus we have exhibited B∗i,: as the required bi. Note that the actual bi that the algorithm
picks might be different than B∗i,:; we only used this to prove the existence of at least one
such bi. Thus by induction, for all i ∈ [n] \ I, the algorithm finds a bi with the required
conditions. In Line 11, the algorithm outputs matrix B with these bT1 , bT2 , . . . bTn as the
rows. Since we satisfied the condition in Line 7, we have that bTi bj = Aij for all i, j ∈ [n]
and i 6= j. Hence, BBT =ED A.

Note that whenever we terminate via Line 11, we successfully produce a rank-k BSD
of A. Hence if A does not have rank-k BSD we will terminate via Line 13 and hence
correctly report that A does not have a rank-k BSD.

40

3.6. Lower Bounds for Biclique Cover

3.6 Lower Bounds for Biclique Cover

In this section, we prove Theorem 3.11, by giving a reduction from 3SAT to k-BicCover
with k = O(logn) where n is the number of variables. The theorem has consequences
for the complexity of k-BicCover as stated in Corollaries 3.12 and 3.13. We prove the
corollaries first and then the theorem.

Proof of Corollary 3.12: If k-BicCover has a O∗(22o(k))-time algorithm, then by
Theorem 3.11 we haveO∗(22o(logn)) = O∗(2o(n))-time algorithm for 3SAT, a contradiction
to ETH.

Proof of Corollary 3.13: We give a proof sketch and refer to [52] for the details
where the authors prove a similar statement for k-EdgeCliqCover. By Theorem 3.11,
we have an algorithm A that takes an instance of 3SAT and gives an equivalent instance
of k-BicCover with parameter k = O(logn). Suppose there is a kernelization algorithm
B that produces a kernel with less than 2δk size for some δ to be fixed later. Since k-Bic
Cover is NP-complete, there exists an algorithm C that takes an instance of k-Bic
Cover and gives an equivalent instance of 3SAT in polynomial time. By composing the
algorithms A, B, and C and fixing the parameter δ appropriately, we get a polynomial
time algorithm D that given a 3SAT instance as input, produces an equivalent smaller
3SAT instance as output. We can apply D repeatedly to solve 3SAT in polynomial
time. Hence, algorithm B cannot exist.

The proof of Theorem 3.11 gives a reduction from 3SAT to k-BicCover, which is
a modification of the one given in [52] from 3SAT to k-EdgeCliqCover.3 The main
difference is that we introduce an additional gadget consisting of log2 n domino graph
gadgets (defined below) in order to make the reduction work for k-BicCover, where n
is the number of variables in the input 3SAT formula.

Definition 3.35 (Domino Graph). A domino graph is the graph G with L(G) =
{u1, u2, u3}, R(G) = {v1, v2, v3} and E(G) = {u1v1, u1v2, u2v1, u2v2, u2v3, u3v2, u3v3}
(See Figure 2.1).

The domino graph gadget replaces the independent set of size log2 n used in [52],
i.e., we replace each vertex there by a domino graph here. We also modify some of the
adjacencies in the construction such that the graph becomes bipartite. Moreover, we
have simplified the reduction of [52] by using a simple trick. The trick is to make one
of the domino graphs special by adding edges between this domino graph and clause
gadgets so that the biclique covering this domino graph corresponds to a satisfying
assignment. For k-EdgeCliqCover, this corresponds to making one of the vertices in
the independent set special by adding edges from it to the clause gadgets. We give the
complete reduction for k-BicCover here for being self-contained.

In [52], the authors use cocktail party graphs as the main gadget in their reduction.
We use the bipartite analogue called crown graphs. A crown graph is basically a complete
bipartite graph minus a perfect matching. It is formally defined as follows.

3A parameter preserving reduction from k-EdgeCliqCover to k-BicCover would have been better
than having to redo the whole reduction from scratch. We could not find any such reduction.

41

Chapter 3. Covering and Partitioning Edges with Bicliques

Definition 3.36 (Crown Graph, Hr). A crown graph on 2r vertices denoted by Hr is
a bipartite graph with bipartitions L(G) = {u1, u2, . . . , ur} and R(G) = {v1, v2, . . . , vr}
such that there is an edge from ui to vj iff i 6= j. In other words, the edges missing
between L(Hr) and R(Hr) form a perfect matching given by {uivi : i ∈ [r]}. (See H = Hn

in Figure 3.1.)

If we pick exactly one vertex from each of the edges of the missing perfect matching
of the crown graph, then we get a maximal biclique provided that we pick at least one
vertex from each of the bipartitions. The complement of this vertex set also forms a
maximal biclique. These pair of bicliques are called duplex bicliques, formally defined
as follows.

Definition 3.37. [Duplex Biclique4] A duplex biclique of a crown graph Hr is defined
as a pair of bicliques {B1, B2} such that L(B1) ∩ L(B2) = ∅, R(B1) ∩ R(B2) = ∅, and
L(B1) ∪ L(B2) = L(Hr), and R(B1) ∪R(B2) = R(Hr).

We go on to define a duplex biclique cover as follows.

Definition 3.38 (Duplex Biclique Cover). A duplex biclique cover of a crown graph is
defined as a set of duplex bicliques that together cover all the edges of the graph. When
we say the size of a duplex biclique cover, we mean the number of bicliques in the cover,
which is twice the number of duplex bicliques.

We prove the following two lemmas about crown graphs.

Lemma 3.39. Hr has a duplex biclique cover of size 2dlog re that can be found in time
polynomial in n.

Proof. We exhibit such a biclique cover. Let ` = dlog2 re. For any x ∈
{

0, 1, . . . , 2` − 1
}

and j ∈ [`], let 〈x〉j denote the j-th bit of the `-bit binary representation of x. For
each j ∈ [`], we define the j-th duplex biclique {T 1

j , T
2
j } as follows: T 1

j is the subgraph
induced by {ui : 〈i− 1〉j = 1} ∪ {vi : 〈i− 1〉j = 0}, and T 2

j is the subgraph induced by
{ui : 〈i− 1〉j = 0} ∪ {vi : 〈i− 1〉j = 1}, where ui and vi are defined as in Definition 3.36.
It is easy to see that {T 1

j , T
2
j } is indeed a duplex biclique. It is also easy to see that any

pair of vertices ui, vj such that i 6= j should be present in at least one of the ` duplex
bicliques.

Lemma 3.40. Given a duplex biclique {B1, B2} of Hr such that |L(B1)| = |R(B1)|, we
can in polynomial time find a duplex biclique cover B of Hr with size 2dlog2 re such that
{B1, B2} is one of the duplex bicliques in B.

Proof. We partition [r] into 2 sets

J1 = {j ∈ [r] : uj ∈ L(B1)(and vj ∈ R(B2))} and
J2 = {j ∈ [r] : uj ∈ L(B2)(and vj ∈ R(B1))} .

Since |L(B1)| = |R(B1)| and |R(B1)| = |L(B2)| (the latter is because B1 and B2 are
duplex bicliques), it follows that |L(B1)| = |L(B2)|. Hence r is even and moreover that

4Duplex Bicliques correspond to Twin Cliques in [52]. We use this name to avoid confusion with twin
vertices.

42

3.6. Lower Bounds for Biclique Cover

|J1| = |J2| = r/2. Without loss of generality, we can reorder the indices of the vertices
such that J1 =

{
1, 2, . . . , r2

}
and J2 =

{
r
2 + 1, r2 + 2, . . . , r

}
. Let ` = log2 r. We define

the duplex biclique {T 1
i , T

2
i } for all i ∈ [`] the same way as in the proof of Lemma 3.39.

It is clear that the duplex biclique {B1, B2} is the same as the duplex biclique {T 1
1 , T

2
1 }.

Thus, the set of bicliques
{
T 1

1 , T
1
2 , . . . , T

1
`

}
∪
{
T 2

1 , T
2
2 , . . . , T

2
`

}
gives the required duplex

biclique cover.

Let ψ be the input 3SAT formula with n variables and m clauses. Let x1, . . . , xn
be the variables of ψ and C1, . . . , Cm be the clauses. Let C1

i , C
2
i , and C3

i denote the 3
literals of clause Ci. For 1 ≤ a ≤ 3, we say that Cai = (xj , 1) if the ath literal in clause
Ci is the variable xj appearing in positive form, and we say Cai = (xj , 0) if the ath literal
in Ci is the variable xj appearing in negated form.

Assumptions about the input 3SAT formula: We assume that the number of
variables n is a power of 2. We also assume that if the instance is satisfiable, then there
is a satisfying assignment A such that half of the variables are assigned true in A and
the other half false. These assumptions can be handled easily by introducing some extra
variables as shown in [52]. Note that this increases the number of variables at most by
a factor of 4.
Let ` be such that 2` = n. We have that ` ∈ Z since n was assumed to be a power of 2.
Before giving the reduction, we give the following useful definition.

Definition 3.41 (Bisimplicial Edge). An edge uv is said to be bisimplicial with respect
to a biclique B iff N(u) ∪N(v) = L(B) ∪R(B).

Now, we give the reduction from 3SAT to k-BicCover.
Construction: Given ψ, we construct a bipartite graph G. See Figure 3.1 for an

illustration of the construction. A vertex with superscript u indicates that it belongs to
L(G), and a superscript v indicates that it belongs to R(G). The edges of G are divided
into two sets, a set of important edges E imp and a set of free edges Efree. The number of
bicliques required to cover E imp will be different depending on whether ψ is satisfiable
or not, whereas the number of bicliques required to cover Efree will depend only on the
number of variables and clauses of ψ but not on whether ψ is satisfiable or not. There
are 5 main gadgets in our construction of G as given below.

(1) A graph H isomorphic to the crown graph Hn: Let the vertices of L(H) be
hu1 , h

u
2 , . . . , h

u
n and that of R(H) be hv1, hv2, . . . , hvn. The edges of H are in E imp.

The vertices hui and hvi correspond to the i-th variable of ψ. hui corresponds to the
variable in positive form and the vertex hvi corresponds to the variable in negative
form.

(2) A set P of clause gadgets P1, . . . , Pm: Each Pi is an induced matching of size 3.
Let L(Pi) = {pui1, pui2, pui3} and R(Pi) = {pvi1, pvi2, pvi3} and let the 3 edges of Pi be
pui1p

v
i1, p

u
i2p

v
i2, and pui3p

v
i3. These edges are in E imp. For all i ∈ [m], Pi corresponds

to the clause Ci in ψ, and the 3 edges in Pi correspond to the 3 literals in the
clause, i.e., edge puiapvia corresponds to literal Cai for a ∈ {1, 2, 3}.

43

Chapter 3. Covering and Partitioning Edges with Bicliques

Figure 3.1: Illustration of the construction of G. The black nodes denote the vertices
in L(G), and the white nodes denote the vertices in R(G). The solid edges represent
edges in E imp, and the dashed edges denote edges in Efree. The edges between P and H
and those between Y and G \ Y are not shown. The edges shown between Si and H are
present for all i ∈ [`− 1], whereas the edges shown between S1 and P are only present
for S1 and not for any Si for i ≥ 2.

44

3.6. Lower Bounds for Biclique Cover

(3) The guard gadget Q: Q is an induced matching of size 2. Let L(Q) = {qu1 , qu2} and
R(Q) = {qv1 , qv2} and let the 2 edges of Q be qu1 qv1 , and qu2 q

v
2 . These edges are in

E imp.

(4) A set S of ` domino graphs S1, S2, . . . , S` that are disconnected with each other:
Let L(Si) = {sui1, sui2, sui3} and R(Si) = {svi1, svi2, svi3}. The edges within each Si are
in E imp.

(5) An induced matching Y of size kf where kf = O(logn) will be fixed later (in
Lemma 3.42): Y consists of edges yu1yv1 , . . . , yukf y

v
kf

, which are in Efree. For all
i ∈ [kf], the edge yui yvi will be made bisimplicial with respect to a biclique B̃f

i ,
which will be defined later. This is done to ensure that we need kf bicliques to
cover the free edges.

We also have the following edges between gadgets.

• Between H and S: For all i ∈ [`] and j ∈ [n], we add the following edges: sui2hvj
and svi2h

u
j to E imp; and, sui1hvj , sui3hvj , svi1huj , and svi3h

u
j to Efree.

• Between Pi and Pj : For all i 6= j ∈ [m], add edges between all pairs of vertices u, v
such that u ∈ L(Pi) and v ∈ R(Pj). These edges are in Efree.

• Between P and Q: For all i ∈ [m], add edges between all pairs of vertices u, v such
that u ∈ L(Q) and v ∈ R(Pi). Similarly, for all i ∈ [m], add edges between all
pairs of vertices u, v such that u ∈ L(Pi) and v ∈ R(Q). These edges are in Efree.

• Between H and P : For all i ∈ [m], j ∈ [n] and a ∈ [3], add edges between puia and
hvj unless Cai = (xj , 1) and between pvia and huj unless Cai = (xj , 0). These edges
are in Efree.

• Between S1 and P : The only vertices in S that will have edges to any Pi are the 4
vertices su11, s

u
12, s

v
11, and sv12. From su11 and su12, add edges to all vertices in R(Pi)

for all i ∈ [m]. Similarly, from sv11 and sv12, add edges to all vertices in L(Pi) for
all i ∈ [m]. These edges are in Efree.

• Between Y and G \ Y : These edges are added in such a way that edge yui yvi is
bisimplicial w.r.t. a biclique that will be defined later. We will give the exact
description of these edges after we define the bicliques Bf

i for i ∈ [kf]. These edges
belong to Efree.

Summary of Eimp: All the edges within H,S, and Q; all edges within each Pi; edges
sui2h

v
j and svi2h

u
j for all i ∈ [`− 1], j ∈ [n].

Summary of Efree: All the edges between Pi and Pj for i 6= j; all edges within Y ; all
edges between Y and G\Y ; edges sui1hvj , sui3hvj , svi1huj , and svi3huj for all i ∈ [`−1], j ∈ [n];
all edges between P and Q, between H and P , and between S1 and P .

First, we show how to take care of the edges in Efree without interfering with the budget
of E imp. Let Ey be the set of all edges of G with at least one end point in L(Y)∪R(Y).

45

Chapter 3. Covering and Partitioning Edges with Bicliques

Lemma 3.42. The edges in Efree \Ey can be covered using kf = 4 log2 n+2dlog2me+6
bicliques of G such that none of these bicliques contains an edge from E imp, and these
bicliques can be found in time polynomial in n+m.

Proof. According to our construction, there are the following types of edges in Efree \Ey.
For each of these types, we show how to cover it in polynomial time using bicliques that
do not contain any edges from E imp such that the total number of bicliques used is at
most kf .

• Edges between H and S: Such edges in Efree can be covered with 2 bicliques,
BHS

1 and BHS
2 defined as follows. L(BHS

1) = L(H), R(BHS
1) = {svi1 : 1 ≤ i ≤ `} ∪

{svi3 : 1 ≤ i ≤ `}, L(BHS
2) = {sui1 : 1 ≤ i ≤ `} ∪ {sui3 : 1 ≤ i ≤ `}, and R(BHS

2) =
R(H). From the construction of G, it is easy to see that both BHS

1 and BHS
2 are

indeed bicliques, and none of them contains an edge in E imp.

• Edges between Pi and Pj for 1 ≤ i < j ≤ m: Such edges in can be covered with
2dlog2me bicliques. Consider the subgraph ofG given by the union of all such edges.
Let this graph be G1. The vertices pui1, pui2, and pui3 are twins (see Section 3.2.2 for
definition) of each other in G1 for all i ∈ [m]. Similarly, the vertices pvi1, pvi2, and
pvi3 are twins of each other in G1 for all i ∈ [m]. Let G2 be the graph obtained by
applying twin-reduction (see Section 3.2.2 for definition) to G1. It is clear that G2
is isomorphic to the crown graph Hm. Hence, E(G2) can be covered by d2 log2me
bicliques in polynomial time by Lemma 3.39. Then, by using Fact 3.18, we can
find d2 log2me bicliques that cover E(G1). Since G1 only contains edges from Efree,
we do not cover any edges in E imp.

• Edges between P and Q: We can cover these edges with 2 bicliques BPQ
1 and BPQ

2 ,
defined as L(BPQ

1) = L(P), R(BPQ
1) = R(Q); and, L(BPQ

2) = L(Q), R(BPQ
2) =

R(P). Since there are no edges of E imp between P and Q, we do not cover any
edges in E imp.

• Edges between H and P : We cover these edges with 4 log2 n bicliques. We will
show how to cover the edges between L(H) and R(P) with 2 log2 n bicliques.
Symmetrically, the edges between R(H) and L(P) can be covered with another
2 log2 n bicliques. For j ∈ [0, n−1], let 〈j〉i denote the ith bit in the log2 n-bit binary
representation of j. We will now give the description of a set of 2 log2 n bicliques
BHP = {BHP

1 , . . . , BHP
log2 n

} ∪ {B̃HP
1 , . . . , B̃HP

log2 n
} covering the edges between L(H)

and R(P). We define L(BHP
i) = {huj : 〈j〉i = 1}, L(B̃HP

i) =
{
huj : 〈j〉i = 0

}
,

R(BHP
i) =

⋂
u∈L(BHPi)N(u) ∩ R(P), R(B̃HP

i) =
⋂
u∈L(B̃HPi)N(u) ∩ R(P). It is

clear that these are indeed bicliques from the definitions of R(BHP
i) and R(B̃HP

i).
Since there are no edges of E imp between H and P , we do not cover any edges in
E imp. We now show that we have covered every edge between L(H) and R(P).
Suppose for the sake of contradiction that the edge huj pvia was not covered. Let pvia
correspond to variable xt. Recall that the only vertex in L(H) that can possibly
not have edge to pvia is hut . Edge huj pvia not being covered by any biclique in B

can happen only if every biclique in BHP that contains huj also contains hut and
if there is no edge between hut and pvia. But if every biclique in B containing huj

46

3.6. Lower Bounds for Biclique Cover

also contains hut , then j = t. This means that there is no edge between huj and pvia,
which is a contradiction.

• Edges between S1 and P : These edges can be covered with 2 bicliques BPS
1

and BPS
2 , which is defined as follows. L(BPS

1) = L(P), R(BPS
1) = {sv11, s

v
12},

L(BPS
2) = {su11, s

u
12} and R(BPS

2) = R(P). Since there are no edges of E imp

between P and S1, we do not cover any edges in E imp.

We fix kf as given by Lemma 3.42. By Lemma 3.42, we know that there are kf
bicliques that together cover all edges in Efree \ Ey and do not cover any edges in E imp.
We will call these bicliques Bf

1 , . . . , B
f
kf

.
Now, we give the description of the edges from Y to G \ Y . Recall that these edges
are contained in Ey ⊂ Efree. For each i ∈ [kf], we add edges from yui to all the vertices
in R(Bf

i) and from yvi to all vertices in L(Bf
i). Observe that now the edge yui y

v
i is

bisimplicial with respect to Bf
i . This together with Lemma 3.42 gives the following

lemma about the edge set Efree.

Lemma 3.43. Let kf = 4 log2 n+ 2dlog2me+ 6.

(1) The edge set Efree can be covered using kf bicliques of G.

(2) Any set of bicliques covering Efree has kf bicliques that do not contain any edges
from E imp.

Proof. From Lemma 3.42, we know that Efree \Ey can be covered by kf bicliques that do
not cover any edges from E imp. Given these kf bicliques Bf

1 , . . . , B
f
kf

, we extend them to
the bicliques B̃f

i , . . . , B̃
f
kf

as follows to cover all the edges of Efree : L(B̃f
i) = L(Bf

i)∪{yui },
and R(B̃f

i) = R(Bf
i)∪{yvi }. It is clear that B̃f

1 , . . . , B̃
f
n are all indeed bicliques, and that

they together cover all edges of Efree.
Since the edges within Y form an induced matching of size kf , no two of them can

be present in the same biclique. Hence, we need at least kf bicliques to cover the edges
in Efree. We now show that if a biclique contains an edge from E imp, it cannot have an
edge from E[Y], which will complete the proof of the lemma. Suppose the edge yui yvi and
an important edge zuzv ∈ E imp are in the same biclique for the sake of contradiction.
But since N(yui) = R(Bf

i) ∪ {yvi }, we have that zv ∈ R(Bf
i). Symmetrically, we can

argue that zu ∈ L(Bf
i). Then, however, Bf

i contains the important edge zuzv, which is
a contradiction.

We set our budget k as kf + 2` + 2, which means a budget of 2` + 2 for the edges
in E imp due to Lemma 3.43. Now, we argue the completeness of the reduction in the
following Lemma.

Lemma 3.44. If ψ is satisfiable, then the edges in E imp can be covered by 2`+2 bicliques
of G. (These bicliques might contain some edges from Efree as well).

47

Chapter 3. Covering and Partitioning Edges with Bicliques

Proof. We know that there exists a satisfying assignment A of ψ such that exactly half
of the variables are assigned true in A. Each clause Ci has at least one literal which
satisfies the clause. For each clause Ci, we fix one such literal. This literal corresponds
to one of the 3 edges of Pi. Let us denote this edge by ei.

We use two bicliques, Bg
1 and Bg

2 , to cover the 2 guard edges of Q and 2 edges from
each Pi. Each of Bg

1 and Bg
2 covers 1 edge from Q and 1 edge from each Pi. It is clear

that this can be done. Now, each Pi has one edge still to be covered. We will assign Bg
1

and Bg
2 such that the edge left uncovered in Pi is ei, i.e., the literal corresponding to

this edge evaluates to true in A.
Let B1 be the biclique defined as follows: L(B1) = {hui : A(xi) = true, i ∈ [n]} and

R(B1) = {hvi : A(xi) = false, i ∈ [n]}. Also, define B̄1 as the biclique defined by the
vertex sets L(B̄1) = L(H) \ L(B1) and R(B̄1) = R(H) \ R(B1). B1 and B̄1 are indeed
bicliques of H because no literal evaluates to both true and false, and thus, the missing
edges corresponding to the missing perfect matching in H are avoided. Likewise, they are
duplex bicliques due to the manner in which B̄1 is defined. Moreover, |L(B1)| = |R(B1)|
since A has half of the variables assigned true and the other half false. Therefore, by
Lemma 3.40, there exist `− 1 other duplex bicliques

{
B2, B̄2

}
, . . . ,

{
B`, B̄`

}
such that

B1, B̄1, B2, B̄2, . . . , B`, and B̄` together cover E(H). Now we extend these bicliques with
additional vertices so that these bicliques together with Bg

1 and Bg
2 cover E imp, which is

done as follows. For 2 ≤ j ≤ `, we define biclique B′j as L(B′j) = L(Bj) ∪
{
suj1, s

u
j2

}
and

R(B′j) = R(Bj) ∪
{
svj1, s

v
j2

}
. For 1 ≤ j ≤ `, we define B̄′j as L(B̄′j) = L(B̄j) ∪

{
suj2, s

u
j3

}
andR(B̄′j) = R(Bj)∪

{
svj2, s

v
j3

}
. B′1 is defined as L(B′1) = L(B1)∪{su11, s

u
12}∪

⋃
i∈[m] L(ei)

and R(B′1) = R(B1)∪{sv11, s
v
12}∪

⋃
i∈[m]R(ei). It is clear that each B′i and B̄′i is indeed a

biclique of G and that the bicliques B′1, B′2, . . . , B′`, B̄′1, B̄′2, . . . , B̄′`, B
g
1 , and Bg

2 together
cover E imp. Hence, E imp can be covered by 2`+ 2 bicliques of G.

Now, we argue the soundness of our reduction in the next Lemma.

Lemma 3.45. If E imp can be covered by using 2`+2 bicliques of G, then ψ is satisfiable.

Proof. The edge set M = {qu1 qv1 , qu2 qv2} ∪
{
suj1s

v
j1 : j ∈ [`]

}
∪
{
suj3s

v
j3 : j ∈ [`]

}
forms an

induced matching of size 2`+2 in G. Recall that all these edges are in E imp. Since no two
edges of an induced matching can be contained in the same biclique, each edge in M has to
be covered by a distinct biclique. Let the biclique that covers qu1 qv1 be Bg

1 and the one that
covers qu2 qv2 be Bg

2 . Let Bj and B̄j be the bicliques covering the edges suj1svj1 and suj3s
v
j3

respectively. Since we have already used our budget of 2`+ 2, all the edges in E imp must
be covered by at least one biclique in B =

{
B1
g , B

2
g

}
∪{B1, B2, · · ·B`}∪

{
B̄1, B̄2, · · · , B̄`

}
.

The only possible bicliques in B that can contain suj2 or svj2 are Bj and B̄j . That means,
edges between suj2 and H and edges between svj2 and H have to be covered by {Bj , B̄j}.
Moreover, they have to be partitioned by

{
Bj , B̄j

}
for the following reason: if the edge

suj2h
v
i appears in both bicliques Bj and B̄j , then the edge svj2hui cannot appear in any of

the two bicliques as there is no edge between hui and hvi ; and symmetrically, if the edge
svj2h

u
i appears in both bicliques Bj and B̄j , then the edge suj2hvi cannot appear in any of

the two bicliques. Combined with the fact that N(
{
suj2, s

v
j2

}
) = L(H) ∪ R(H), we get

48

3.7. Approximation Algorithms for Biclique Cover and Partition

that {B′j , B̄′j} is a duplex biclique, where B′j and B̄′j are the intersection of the bicliques
Bj and B̄j , respectively, with H.

Bg
1 and Bg

2 can each cover at most 1 edge from each Pi. Hence, there is at least 1
edge of each Pi that must be covered by B \

{
B1
g , B

2
g

}
. Let us fix one such edge for each

Pi and call it ei. Since, there are no edges from end points of ei to any Sj for j ≥ 2,
we know that each ei must be covered by B1 or B̄1. But since end points of ei are not
adjacent to su13 and sv13, ei cannot be covered by B̄1. Thus, each ei has to be covered by
B1.

Now, we construct an assignment A according to B1 as follows. For each i ∈ [n], since
{B1, B̄1} is a duplex biclique, B1 contains exactly one among hui and hvi . If hui ∈ L(B1),
then we assign xi = true in the assignment A. Otherwise, i.e, if hvi ∈ R(B1), then we
assign xi = false in A. We claim that A must be a satisfying assignment for ψ, which
can be observed as follows. Consider an arbitrary clause Cj . Let xi be the variable
corresponding to ej . Suppose xi occurs in positive form in Cj . From the construction of
edges between H and P , we know that there cannot be an edge from hvi and end points
of ej . Hence, B1 cannot contain hvi . But, since B1 should contain one of hui and hvi , it
should contain hui . This means that we assigned xi = true in A and hence A satisfies
clause Cj . Symmetrically, we can argue that if xi occurred in the negative form in Cj ,
then we would have assigned xi = false in A. Thus, A satisfies all the clauses of ψ.

Proof of Theorem 3.11: We know that E(G) = Efree ∪ E imp. First we show that if
ψ is satisfiable then we can cover E(G) with k = kf + 2` + 2 bicliques. So, assume ψ
is satisfiable. Then, by Lemma 3.43(1), there is a set of kf bicliques that covers Efree.
By Lemma 3.44, there is a set of 2`+ 2 bicliques that cover E imp. Thus, E(G) can be
covered with k bicliques.

Now, we show that if we can cover E(G) with k bicliques then ψ is satisfiable. So,
assume we can cover E(G) with k bicliques. From Lemma 3.43(2), we know that we
need at least kf bicliques to cover Efree and that at least kf many of the bicliques used
to cover Efree do not cover any edges of E imp. Then, the edges of E imp should have been
covered with at most k − kf = 2` + 2 bicliques. Then, Lemma 3.44 implies that ψ is
satisfiable.

Since k = kf + 2` + 2 = (4 log2 n + 2dlog2me + 6) + 2 log2 n + 2 = O(logn), the
theorem follows.

3.7 Approximation Algorithms for Biclique Cover and Par-
tition

In this section, we prove Theorems 3.14 and 3.15 by giving polynomial time approxi-
mation algorithms for BicCover, BicPart and EdgeCliqPart. First we give an
algorithm that works for both BicCover and BicPart. The main constituent of this
algorithm is the twin reduction described in Section 3.2.2.
Algorithm: Let G be the input graph. First we apply Reduction rule 3.17 (twin
reduction) exhaustively on G. Let G′ be the resulting graph. Assign each edge of G′
arbitrarily to one of the end points. Let Ev be the set of edges assigned to vertex v.
Note that if Ev is not empty, then it forms a star, which is a biclique. The set of all

49

Chapter 3. Covering and Partitioning Edges with Bicliques

such star bicliques forms a biclique partition of G′. Let this biclique partition be B′.
Now, construct a biclique partition B of G with the same size as that of B′ as given in
Lemma 3.18. Note that B is also a biclique cover of G as any cover is also a partition.

Lemma 3.46. The above algorithm correctly finds a biclique partition B of G (which is
also a biclique cover of G) such that |B| ≤ n

log3 n
·bc(G) ≤ n

log3 n
·bp(G), where n = |V (G)|.

In other words, the algorithm is a polynomial time approximation algorithm for Bic
Cover and BicPart, giving an approximation ratio of n

log3 n
.

Proof. First let us prove the correctness, i.e, B is indeed a biclique partition of G. For
this, it is sufficient to prove that B′ is indeed a biclique partition of G′. It is clear that
for each vertex v, if Ev is non-empty then it forms a star which is a biclique; moreover,
each edge of G′ is present in exactly one of the stars.

Next we prove the size bound on B. By Lemma 3.18, |B| = |B′|. The number of
bicliques in B′ is at most |V (G)|. We know that |V (G′)| ≤ 3bc(G) from Lemma 3.19.
Hence,

|B| = |B′| ≤ min{n, 3bc(G)} = min{n, 3bc(G)}
bc(G) · bc(G) ≤ n

log3 n
· bc(G).

The above algorithm can be easily modified for the special case of bipartite graphs to
achieve an approximation ratio of n/ log2 n, where n = min(|L(G)| , |R(G)|). The only
modification required in the algorithm is that while assigning edges to vertices, assign
each edge to the smaller side (i.e. to the endpoint from L(G) or R(G) whichever is
smaller). After twin-reduction, we know that |L(G)|, |R(G)| ≤ 2bc(G) from Lemma 3.19.
Hence, it follows that the number of bicliques in the cover/partition that we output is
at most n

log2 n
· bc(G). This completes the proof of Theorem 3.14.

We remark that for biclique partition, the above approximation algorithm can be
extended to the weighted problem to get the same approximation ratio. This is because
the twin reduction also works for weighted biclique partition. But this is not true for
weighted biclique cover, and hence the approximation algorithm does not extend to
weighted biclique cover.

We now give an approximation algorithm for EdgeCliqPart, achieving an approxi-
mation ratio of min((ecp(G))2, |V (G)|3/2, |E(G)|2/3), and thereby proving Theorem 3.15.
The main constituent of our algorithm is the kernelization described in Section 3.2.3,
developed by Mujuni and Rosamond [125].
Algorithm: Let G be the input graph. First we apply Reduction rule 3.23 (deleting the
included neighborhoods of simplicial vertices) exhaustively on G. Let r be the number
of times we applied the rule. Let G′ be the resulting graph. Picking each edge of G′ as
a clique gives an ECP C′ of G′. Find a clique partition C of G of size |C′|+ r as given by
Lemma 3.25. Output C.

Lemma 3.47. The above algorithm correctly finds an ECP C of G such that |C|
ecp(G) ≤

min((ecp(G))2, |V (G)|4/3, |E(G)|2/3)

50

3.8. Open Problems

Proof. Let α = |C|
ecp(G) . It is clear that C′ is an ECP of G′. Then by Lemma 3.25, we have

that C is an ECP of G with size |C′|+ r = |E(G′)|+ r. We know |E(G′)| ≤ (ecp(G′))3

by Lemma 3.26. Also, we have ecp(G′) = ecp(G) − r by Lemma 3.25. Thus we have
|C| ≤ (ecp(G)− r)3 + r ≤ (ecp(G))3. Hence α ≤ (ecp(G))2. We also know |C| ≤ |V (G)|2.
Hence,

α ≤min
(
|V (G)|2

ecp(G) , (ecp(G))2
)

=⇒ α ≤|V (G)|4/3

Also, |C| ≤ |E(G)|. Hence,

α ≤min
(|E(G)|

ecp(G) , (ecp(G))2
)

=⇒ α ≤|E(G)|2/3

We remark that the above algorithm for EdgeCliqPart cannot be extended to the
weighted case as the kernelization does not extend to the weighted case.

3.8 Open Problems

(1) Is there a polynomial (or even a sub-exponential) kernel for k-BipBicPart? Recall
that the similar problem k-EdgeCliqPart has a k2-kernel [125] (See section 3.2.3).
This kernel is obtained by reducing simplicial vertices. A similar rule in the biclique
case would be to reduce bisimplicial edges, but such a rule turns out to be not
sound.

(2) We showed that one cannot get a 22o(k)-time algorithm for k-BicCover assuming
ETH. But, can we get a constant (or even a log) factor approximation algo-
rithm that runs in O∗(2poly(k)) time? The same question can be also asked for
k-EdgeCliqCover.

(3) Is the 2O(k2) dependence on k in the running time optimal for k-BipBicPart and
k-BinRank(F). Can we improve it or otherwise can we show a matching lower
bound? It is easy to see a lower bound of 2o(k) assuming ETH, due to the reduction
by Jiang and Ravikumar [87].

(4) Is it possible to extend the O∗(2k2)-algorithm for k-BipBicPart to k-BicPart?

(5) For the generalized `0-rank approximation problem, there is a PTAS known which
runs in time (1

ε)2O(k)/ε2
mn [67, 14]. The doubly exponential dependence on k

cannot be improved in general as shown in [14]. But the instance used to prove
this lower bound uses the arithmetic over boolean semi ring. In fact, they use
our lower bound for biclique cover, i.e., Corollary 3.12 to prove this result. It
is interesting whether one can get better dependence on k for arithmetic over a

51

Chapter 3. Covering and Partitioning Edges with Bicliques

field. In particular can we get a 2poly (k) dependence? One way to do this will be
to extend our ideas for the k-BinRank(F) algorithm to the approximate setting.
That is, can we make use of linear dependence in some way to get better algorithm?

(6) We gave O(n/ logn)-approximation algorithms for BicCover and BicPart that
runs in polynomial time. Is it possible to shave of further log factors from the ap-
proximation factor? Note that for CliquePartition, where we want to partition
the vertices into cliques, the best known polynomial time approximation algorithm
has an approximation ratio of O(n(log logn)2/ log3 n) [81].

(7) It is not difficult to see that the 3k-kernel for k-BicPart to k-BicWtdPart. This
shows that k-BicWtdPart is in FPT. But the known kernels for k-BicCover
(even the bipartite version), k-EdgeCliqCover and k-EdgeCliqPart does not
seem to work with edge weights. At least, we could not find a way to make them
work. To the best of our knowledge, these three edge-weighted versions are not
even known to be in FPT. Neither are we aware of any W[1]-hardness for them.
Hence, we ask the question, whether k-EdgeCliqWtdCover, k-EdgeCliqWtd
Part, and k-BicWtdCover are in FPT?

52

CHAPTER 4
Hadwiger’s Conjecture for Squares of

2-Trees

4.1 Introduction

The Hadwiger number of a graph G, denoted by η(G)η(G)η(G), is the largest integer t such that
G contains a Kt-minor. The four color theorem is probably the most popular theorem
in graph theory, and says that every planar graph can be 4-colored. In 1937, Wagner
[159] proved that the four color theorem (which was only a conjecture then) is equivalent
to the following statement: If a graph is K5-minor free, then it is 4-colorable. In 1943,
Hadwiger [80] proposed the following conjecture which is a far reaching generalization
of the four color theorem.
Conjecture 4.1. For any integer t ≥ 1, every Kt+1-minor free graph is t-colorable; that
is, η(G) ≥ χ(G) for any graph G.

Hadwiger’s conjecture is well known to be a challenging problem. Bollobás, Catlin
and Erdős [26] describe it as “one of the deepest unsolved problems in graph theory”.
Hadwiger himself [80] proved the conjecture for t = 3. (The conjecture is trivially true
for t = 1, 2). In view of Wagner’s result [159] mentioned above, Hadwiger’s conjecture
for t = 4 is equivalent to the four color theorem, the latter being proved by Appel and
Haken [10, 11] in 1977. In 1993, Robertson, Seymour and Thomas [140] proved that
Hadwiger’s conjecture is true for t = 5. The conjecture remains unsolved for t ≥ 6,
though for t = 6 Kawarabayashi and Toft [92] proved that any graph that is K7-minor
free and K4,4-minor free is 6-colorable.

Similar to other difficult conjectures in graph theory, attempting Hadwiger’s con-
jecture for some natural graph classes may lead to new techniques and shed light on
the general case. So far Hadwiger’s conjecture has been proved for several classes of
graphs, including line graphs [138], proper circular arc graphs [20], quasi-line graphs [49],
3-arc graphs [162], complements of Kneser graphs [163], and powers of cycles and their
complements [106]. There is also an extensive body of work on the Hadwiger number;
see, for example, [39] and [74].

Reed and Seymour [138] proved that Hadwiger’s conjecture is true for line graphs.
Recently, there have been multiple attempts to generalize this result to graph classes
that properly contain all line graphs. This was typically achieved by identifying some
features of line graphs and using them as defining properties of the super class. An
important super class of line graphs introduced in [50], for which Hadwiger’s conjecture
has been proved [49], is the class of quasi-line graphs, which are graphs with the property
that the neighborhood of every vertex can be partitioned into at most two cliques.

Our research started with an unsuccessful attempt to further generalize the above
result by considering classes of graphs with the property that the neighborhood of every

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

vertex can be partitioned into a small number of cliques. A natural choice for us was the
class of square graphs of bounded degree graphs, where the square of a graph G, denoted
by G2, is the graph with the same vertex set as G such that two vertices are adjacent
if and only if the distance between them in G is equal to 1 or 2. It is readily seen that
in G2, the neighborhood of each vertex v can be partitioned into at most dG(v) many
cliques, where dG(v) is the degree of v in G. However, we soon realized that proving
Hadwiger’s conjecture for square graphs is as difficult as proving it for all graphs. This
is true even for the squares of split graphs, where a graph is split if its vertex set can
be partitioned into an independent set and a clique. This observation is our first result
whose proof is straightforward and will be given in Section 4.3.

Theorem 4.2. Hadwiger’s conjecture is true for all graphs if and only if it is true for
squares of split graphs.

Since split graphs form a subclass of the class of chordal graphs, Theorem 4.2 implies:

Corollary 4.3. Hadwiger’s conjecture is true for all graphs if and only if it is true for
squares of chordal graphs.

Theorem 4.2 and Corollary 4.3 suggest that squares of chordal or split graphs may
capture the complexity of Hadwiger’s conjecture. These are curious results, though they
may not make Hadwiger’s conjecture easier to prove. Nevertheless, the availability of the
property of being square of a split or chordal graph may turn out to be useful. Moreover,
Theorem 4.2 motivates the study of Hadwiger’s conjecture for squares of graphs. In
particular, in light of Corollary 4.3, it would be interesting to study Hadwiger’s conjecture
for squares of some interesting subclasses of chordal graphs in the hope of getting new
insights into the conjecture. As a step towards this, we prove that Hadwiger’s conjecture
is true for squares of a subclass of chordal graphs called 2-trees defined as follows.

Definition 4.4 (2-tree). A 2-tree is a graph that can be constructed by beginning with
the graph K2 and applying the following operation a finite number of times: Pick an edge
e = uv in the current graph, introduce a new vertex w, and add edges uw and vw to the
graph.

The class 2-trees can be considered as the basic case of chordal graphs in the following
sense. Chordal graphs are precisely the graphs that can be constructed by beginning
with a clique and applying the following operation a finite number of times: Choose a
clique in the current graph, introduce a new vertex, and make this new vertex adjacent
to all vertices in the chosen clique. If we begin with a k-clique and choose a k-clique at
each step, then we get the class of k-trees. The simplest case is when k = 2, i.e., the
class of 2-trees.

We call a graph 2-simplicial if its vertices has an ordering such that the higher
numbered neighbors of each vertex can be partitioned into at most 2 cliques. It can be
easily verified that all quasi-line graphs are 2-simplicial graphs, but the converse is not
true. Thus, in view of the above-mentioned result for quasi-line graphs [49], it would
be interesting to study whether Hadwiger’s conjecture is true for all 2-simplicial graphs.
Considering the effort [49] required for quasi-line graphs, resolving Hadwiger’s conjecture
for 2-simplicial graphs is likely to be a difficult task. Moreover, the class of circular arc

54

4.1. Introduction

graphs is a proper subclass of 2-simplicial graphs 1 and as far as we know a lot of effort
has already gone into proving Hadwiger’s conjecture for circular arc graphs, without
success. Therefore, before attempting the entire class of 2-simplicial graphs it seems
rational to start with some different but interesting subclasses of 2-simplicial graphs.
Viewing from the context of the squaring operation of graphs, we asked the following
question: Is there a subclass of 2-simplicial graphs which can be expressed as the square
of some natural class of graphs? If u ∈ V (G) and u1, u2, . . . , ut ∈ NG(u) ∩H(u) (where
H(u) is the vertices of G that are higher numbered than u with respect to the 2-simplicial
ordering), it is clear that in G2, ∪i(H(u)∩NG[ui]) will be a subset of NG2 [u]∩H(u). For
each ui, NG[ui] will form a clique in G2 but there is no reason why NG2 [u]∩H(u) should
be partitionable into at most two cliques, if t ≥ 3. So, we are tempted to consider only
squares of 2-degenerate graphs, since for 2-degenerate graphs, t = |H(u) ∩NG(u)| ≤ 2.
Unfortunately, even squares of all 2-degenerate graphs are not 2-simplicial. If we carefully
analyze the situation, we can see that if the two vertices in H(u) ∩NG(u) are adjacent
to each other, the square of such a 2-degenerate graph will be a 2-simplicial graph. This
subclass of 2-degenerate graphs is exactly the class of 2-trees. Note that though any
2-tree is a 2-degenerate graph, the converse is not always true. The square of any 2-
tree is a 2-simplicial graph (but not necessarily a quasi-line graph), but the square of
a 2-degenerate graph may not be a 2-simplicial graph. Thus 2-trees are a special class
of 2-simplicial graphs that is not contained in the class of quasi-line graphs. We find
squares of 2-trees to be one of the well-structured non-trivial cases to consider.

Our main result is the proof of Hadwiger’s conjecture for 2-trees. We also prove an
additional structural property about the branch sets (for the definition of a branch set
of a minor, see Section 4.2) of the clique minor exhibiting the proof.

Theorem 4.5. Hadwiger’s conjecture is true for squares of 2-trees. Moreover, for any
2-tree T , T 2 has a clique minor of order χ(T 2) for which each branch set induces a path.

Our result in fact holds for a superclass of 2-trees called generalized 2-trees. A
graph is called a generalized 2-tree if it can be obtained by allowing one to join a new
vertex to a clique of order 1 or 2 instead of exactly 2 in the above-mentioned construction
of 2-trees. (This notion is different from the concept of a partial 2-tree which is defined
as a subgraph of a 2-tree).

Corollary 4.6. Hadwiger’s conjecture is true for squares of generalized 2-trees. More-
over, for any generalized 2-tree G, G2 has a clique minor of order χ(G2) for which each
branch set induces a path.

in general, while proving hadwiger’s conjecture for any class of graphs, it is also
interesting to study the structure of the branch sets forming a clique minor of order
no less than the chromatic number. Theorem 4.5 and Corollary 4.6 also provides this
information for squares of 2-trees and generalized 2-trees respectively.

We remark that it is often challenging to establish Hadwiger’s conjecture for squares
of even very special classes of graphs. We elaborate this point for a few graph classes.
Obviously, planar graphs form a super class of the class of 2-trees, but their squares

1Consider an ordering of the vertices of a circular arc graph such that a vertex u with a smaller arc
always gets a smaller number.

55

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

seem to be much more difficult to handle than squares of 2-trees. In fact, the chromatic
number of squares of planar graphs is a very well studied topic in the context of Wegner’s
conjecture [160]; we will say more about this in section 4.6. Another graph class related
to 2-trees is the class of squares of 2-degenerate graphs. Recently, there was an attempt
[16] to prove Hadwiger’s conjecture for squares of a special class of 2-degenerate graphs,
namely subdivision graphs. The subdivision of a graph G, denoted by S(G), is obtained
from G by replacing each edge by a path of length two. The square S(G)2 of S(G)
is known as the total graph of G, and the chromatic number χ(S(G)2) is simply the
total chromatic number of G. Thus, unsurprisingly, Hadwiger’s conjecture for squares
of subdivision graphs is closely related to the long-standing total coloring conjecture,
which can be stated as χ(S(G)2) ≤ ∆(G) + 2, where ∆(G) is the maximum degree of
G. It was shown in [16] that Hadwiger’s conjecture for squares of subdivisions is not
difficult to prove if we assume that the total coloring conjecture is true. The best result
to date for the total coloring conjecture, obtained by Reed and Molloy [124], asserts
that χ(S(G)2) ≤ ∆(G) + 1026. Using this result, it was proved in [16] that Hadwiger’s
conjecture is true for squares of subdivisions of highly edge-connected graphs. However,
it seems non-trivial to prove Hadwiger’s conjecture for squares of subdivisions of all
graphs without getting tighter bounds for the total chromatic number.

In Section 4.2, we give some additional preliminary definitions and notations for the
chapter. In Section 4.3, we prove Theorem 4.2. The proof of Theorem 4.5 is the main
body of the chapter and will be given in Section 4.4. In Section 4.5 we prove Corollary
4.6 using Theorem 4.5. In Section 4.6, we make a few remarks and suggest some future
directions to conclude the chapter.

4.2 Preliminaries

Recall that a graph H is called a minor of a graph G if a graph isomorphic to H can be
obtained from a subgraph of G by contracting edges. An H-minor is a minor isomorphic
to H, and a clique minor is a Kt-minor for some positive integer t, where Kt is the
complete graph of order t. A graph is called H-minor free if it does not contain an H-
minor. An H-minor of a graph G can be thought as a set of t = |V (H)| vertex-disjoint
subgraphs G1, . . . , Gt of G such that each Gi is connected (possibly K1) and the graph
constructed in the following way is isomorphic to H: For each i, group all vertices of Gi
to obtain a single vertex vi, and add an edge between vi and vj if and only if there exists
at least one edge of G between V (Gi) and V (Gj). The vertex set of each subgraph Gi is
called a branch set of the minor H. This equivalent definition of a minor will be used
throughout this chapter.

For a coloring µ of G and an X ⊆ V (G), we define µ(X) := {µ(x) : x ∈ X}; and |µ|
is defined as the number of colors used by µ.

4.3 Hadwiger’s Conjecture and Squares of Split Graphs

In this section, we give the proof of Theorem 4.2. It suffices to prove that if Hadwiger’s
conjecture is true for squares of all split graphs then it is also true for all graphs.

So we assume that Hadwiger’s conjecture is true for squares of split graphs. Let G be

56

4.3. Hadwiger’s Conjecture and Squares of Split Graphs

x1 x2
e1

x3

e2

x4

e3

e4

x5

e5
e6

G

(a) The graph G

vx1

vx2

vx3

vx4

vx5

ve1

ve2

ve3

ve4

ve5

ve6

S C

H

(b) The graph H

Figure 4.1: An example of the construction of the split graph H from a given graph G

an arbitrary graph with at least two vertices. Since, deleting isolated vertices does not
affect the chromatic or Hadwiger number, without loss of generality we may assume that
G has no isolated vertices. Construct a split graph H from G as follows (see Figure 4.1
for an example): For each vertex x of G, introduce a vertex vx of H, and for each edge
e of G, introduce a vertex ve of H, with the understanding that all these vertices are
pairwise distinct. Denote

S = {vx : x ∈ V (G)}, C = {ve : e ∈ E(G)}.

Construct H with vertex set V (H) = S ∪ C in such a way that no two vertices in S are
adjacent, each pair of vertices in C are adjacent, and vx ∈ S is adjacent to ve ∈ C if and
only if x and e are incident in G. Obviously, H is a split graph as its vertex set can be
partitioned into the independent set S and the clique C.

Claim 1: The subgraph of H2 induced by S is isomorphic to G.
In fact, for distinct x, y ∈ V (G), vx and vy are adjacent in H2 if and only if they

have a common neighbor in H. Clearly, this common neighbor has to be from C, say ve
for some e ∈ E(G), but this happens if and only if x and y are adjacent in G and e = xy.
Therefore, vx and vy are adjacent in H2 if and only if x and y are adjacent in G. This
proves Claim 1.

Claim 2: In H2 every vertex of S is adjacent to every vertex of C.
This follows from the fact that C is a clique of H and x is incident with at least one

edge in G.
Claim 3: χ(H2) = χ(G) + |C|.

57

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

In fact, by Claim 1 we may color the vertices of S with χ(G) colors by using an
optimal coloring of G (that is, choose an optimal coloring φ of G and assign the color
φ(x) to vx for each x ∈ V (G)). We then color the vertices of C with |C| other colors,
one for each vertex of C. It is evident that this is a proper coloring of H2 and hence
χ(H2) ≤ χ(G) + |C|. On the other hand, since C is a clique, it requires |C| distinct
colors in any proper coloring of H2. Also, by Claim 2 none of these |C| colors can be
assigned to any vertex of S in any proper coloring of H2, and by Claim 1 the vertices of
S need at least χ(G) colors in any proper coloring of H2. Therefore, χ(H2) ≥ χ(G)+ |C|
and Claim 3 is proved.

Claim 4: η(H2) = η(G) + |C|.
To prove this claim, consider the branch sets of G that form a clique minor of G with

order η(G), and take the corresponding branch sets in the subgraph of H2 induced by
S. Take each vertex of C as a separate branch set. Clearly, these branch sets produce a
clique minor of H2 with order η(G) + |C|. Hence η(H2) ≥ η(G) + |C|.

To complete the proof of Claim 4, consider an arbitrary clique minor of H2, say,
with branch sets B1, B2, . . . , Bk. Define B′i = Bi if Bi ∩ C = ∅ (that is, Bi ⊆ S) and
B′i = Bi ∩ C if Bi ∩ C 6= ∅. It can be verified that B′1, B′2, . . . , B′k also produce a clique
minor of H2 with order k. Thus, if k > η(G)+ |C|, then there are more than η(G) branch
sets among B′1, B′2, . . . , B′k that are contained in S. In view of Claim 1, this means that
G has a clique minor of order strictly bigger than η(G), contradicting the definition of
η(G). Therefore, any clique minor of H2 must have order at most η(G) + |C| and the
proof of Claim 4 is complete.

Since we assume that Hadwiger’s conjecture is true for squares of split graphs, we
have η(H2) ≥ χ(H2). This together with Claims 3-4 implies η(G) ≥ χ(G); that is,
Hadwiger’s conjecture is true for G. This completes the proof of Theorem 4.2.

4.4 Hadwiger’s Conjecture and Squares of 2-Trees

In this section, we prove Theorem 4.5.

4.4.1 Prelude

Recall that a 2-tree is a graph that can be constructed by beginning with the graph K2
and applying the following operation a finite number of times: Pick an edge e = uv in
the current graph, introduce a new vertex w, and add edges uw and vw to the graph.
We call each application of this operation as a step. We say that e is processed in this
step of the construction. We also say that w is a vertex-child of e; each of uw and
vw is an edge-child of e; e is the parent of each of w, uw and vw; and uw and vw are
siblings of each other. An edge e2 is said to be an edge-descendant of an edge e1, if
either e2 = e1, or recursively, the parent of e2 is an edge-descendant of e1. A vertex v is
said to be a vertex-descendant of an edge e if v is a vertex-child of an edge-descendant
of e.

During the construction of a 2-tree, an edge e may be processed in more than one
step. Suppose for edge e we make all the steps that process it consecutive by moving all
the steps that process it to the position where it was processed first. It is not difficult

58

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

to see that the resultant graph remains the same. So without loss of generality we may
assume that for each edge e, all the steps in which e is processed occur consecutively.

We now define a level for each edge and each vertex of a 2-tree as follows. The level
of the first edge, i.e., the only edge in the K2 that we begin with, is defined to be 0.
Also, the level of the end-vertices of this edge are also defined to be 0. Inductively, any
vertex-child or edge-child of an edge with level k is said to have level k + 1. Observe
that two edges that are siblings of each other have the same level.

If there exists a pair of edges e, f with levels i, j respectively such that i < j and
the batch of consecutive steps where e is processed is immediately after the batch of
consecutive steps where f is processed, then we can move the batch of steps where e is
processed to the position immediately before the processing of f without changing the
structure of the 2-tree. We repeat this procedure until no such pair of edges exists. So
without loss of generality we may assume that the edges of level i are processed before
edges of level j whenever i < j. We call this the breadth-first processing.

To prove Theorem 4.5, it is sufficient to prove that for any 2-tree T , the graph T 2

has a clique minor of order χ(T 2) such that each branch set of the clique minor induces
a path. In the simplest case where χ(T 2) = 2, T 2 contains a K2-minor as there is at
least one edge in T 2. Moreover, both branch sets of this K2-minor are singletons (and
hence induces path P1).

Hence it only remains to give the proof for a 2-tree T with χ(T 2) ≥ 3. Let T be
a 2-tree with χ(T 2) ≥ 3. Denote by Ti, the 2-tree obtained after the ith step in the
construction of T as described above. Then there is a unique positive integer i∗ such
that χ(T 2) = χ(T 2

i∗) and χ(T 2
i∗) = χ(T 2

i∗−1) + 1. Define

G := Ti∗ .

We will prove that η(G2) ≥ χ(G2) and G2 has a clique minor of order χ(G2) for which
each branch set induces a path. Once this is achieved, we then have η(T 2) ≥ η(G2) ≥
χ(G2) = χ(T 2) and T 2 contains a clique minor of order χ(T 2) whose branch sets induce
paths, as required to complete the proof of Theorem 4.5.

Denote by `max the maximum level of any edge of G. Then the maximum level of
any vertex in G is also `max. Observe that the level of the last edge processed is `max − 1,
and none of the edges with level `max has been processed at the completion of the i∗-th
step, due to the breadth-first processing of edges. Obviously, `max ≤ i∗.

If `max ≤ 1, then G2 is a complete graph and so χ(G2) = ω(G2) = η(G2). Moreover,
G2 contains a clique minor of order χ(G2) for which each branch set induces the path
P1. Hence the statement is true when `max = 0 or 1. Hence, we assume `max ≥ 2 in the
rest of the proof.

We will prove a series of lemmas that will be used in the proof of Theorem 4.5. See
Figures 4.2 and 4.3 for the dependencies among these lemmas.

4.4.2 Pivot coloring, pivot vertex and its proximity

In this section, first we will fix a special coloring and vertex of the graph G called the
pivot coloring and pivot vertex, denoted by µ and p respectively. Then, we will prove
some lemmas showing the structure of graph G in the proximity of the vertex p in
connection to the coloring µ. These structural insights will be used in the later sections

59

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

4.18

4.17

mate: A to A'

4.14

4.20

4.22

4.25

4.10

4.9

4.7

pivot selection

4.8

4.13

4.15

4.16

4.23

4.24

existence of s

4.11

4.21

4.124.19

A,A' not empty

Figure 4.2: A flowchart of the proof of Theorem 4.5. This figure shows the part in
Section 4.4.2 (proximity of pivot vertex). See Figure 4.3 for the remaining part. A node
with label 4.n denotes Lemma/Corollary 4.n.

60

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

4.18mate: A to A'

4.204.10

4.9

pivot selection

4.8

4.24

existence of s

4.21

4.19

A,A' not empty

4.28

Finale

Construction of branch sets

4.42 4.43

Thm 4.5

Bichromatic paths, Bridging

4.27

4.30

4.31

4.29

4.34

4.36 4.37

4.38

4.41

4.40 4.39

Figure 4.3: A flowchart of the proof of Theorem 4.5. This figure shows the part in
Sections 4.4.3 (bichromatic paths), 4.4.4 (bridging), 4.4.5 (finale) and also the relationship
with previous part (shown in Figure 4.2). A node with label 4.n denotes Lemma/Corollary
4.n

61

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

to construct the branch sets of the required clique minor. The relations between lemmas
in this section is shown in Figure 4.2. We will define some vertex subnets around p in
the process of proving the structural properties. Figure 4.4 shows an illustration of the
different vertex sets that we will use. In Section 4.4.6, we give a list of the definitions of
different sets and also some relations between them for easy reference.

First, we will fix the pivot coloring and pivot vertex. Towards this we prove the
following lemma.

Lemma 4.7. There exist an optimal coloring µ′ of G2 and a vertex p′ of G at level `max
such that p′ is the only vertex with color µ′(p′).

Proof. Let p′ be the vertex introduced in the step i∗. Then p′ has level `max. By the
definition of G = Ti∗ , there exists a proper coloring of T 2

i∗−1 using χ(G2) − 1 colors.
Extend this coloring to G2 by assigning a new color to p′. Let the resultant coloring be
µ′. It is easy to see that µ′ is an optimal coloring of G2 under which p′ has a unique
color.

Note that the pair (µ′, p′) in the proof above was just for exhibiting such a pair.
There may be many candidates for (µ′, p′) satisfying the property in Lemma 4.7. We
select one such pair as the pivot coloring and pivot vertex (µ, p) as follows.
Selection of pivot coloring and pivot vertex (µ, p)(µ, p)(µ, p): Out of all the (coloring,vertex)
pairs (µ′, p′) that satisfy the property in Lemma 4.7, we select a pair (µ, p) such that
the minimum level among the vertices in N(p) is as large as possible; we call µ the pivot
coloring and p the pivot vertex.

From now on, when we say the color of a vertex, we mean the color under the coloring
µ unless stated otherwise.

We define the following in the proximity of p (see Figure 4.4 for an illustration):

• uw := the parent of p;

• t := the vertex such that w is a child of edge ut. Note that the level of ut is `max−2,
and uw and wt are siblings with level `max − 1. The existence of t is ensured by
the fact that `max ≥ 2;

• B := the set of vertex-children of wt;

• C := the set of vertex-children of uw. Note that p ∈ C.

It is clear from the definitions that the vertex sets B,C and {u,w, t} are all distinct
from each other.

Lemma 4.8. All colors used by µ are present in N2[p]. In other words, |µ(N2[p])| =
χ(G2).

Proof. We know that p is the only vertex with color µ(p) under µ from the selection of
µ and p. Hence, if there is a color c used by µ that is not present in N2 [p], then we
can recolor p with c to obtain a proper coloring of G2 with χ(G2)− 1 colors, which is a
contradiction.

62

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

w

C

t

p u

B
Q’ D C’

A

Q A’

Fs

Figure 4.4: Vertex subsets of the 2-tree G around pivot vertex p. Note that there are
possible edges that have not been shown in the figure. A summary of the definitions of
the subsets and relations between them are given in Section 4.4.6 for easy reference.

Lemma 4.9. For any vertex b ∈ B, its neighborhood N(b) = {w, t} and for any c ∈ C,
its neighborhood N(c) = {u,w}.

Proof. Since both bw and bt have level `max, they have not been processed at the time of
completion of the i∗-th step. Hence the only neighbors of b are w and t. Similarly both
cw and ct have level `max and hence have not been processed at the time of completion
of the i∗-th step. Hence the only neighbors of c are w and u.

Lemma 4.10. (1) N(w) = {u, t} ∪B ∪ C.

(2) N2[p] = N [u] ∪B.

Proof. (1) It is clear from the definitions of the vertices that all the vertices in {u, t}∪
B∪C are neighbors of w. It only remains to prove that there are no other neighbors
for w. Suppose for the sake of contradiction that there was a neighbor v of w that
was not in {u, t}∪B∪C. Since v is not an endpoint of the parent edge ut of w, the
only way v can be a neighbor is if it is a vertex descendant of wu or wt. But since
the only vertex descendants of wu and wt are the vertex sets C and B respectively,
we have that v ∈ B ∪ C, which is a contradiction.

(2) From Lemma 4.9 we have N2[p] = N [u] ∪ N [w] and from statement (1) of the
current lemma we have N [w] \N [u] = B. Hence N2[p] = N [u] ∪B.

We now define the following vertex sets (see Figure 4.4):

F := (N(u) ∩N(t)) \ {w}

C ′ := {x ∈ N(t) : µ(x) ∈ µ(C)}

63

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

A := N(t) \ (B ∪ F ∪ C ′ ∪ {u,w}).

Note that µ(C ′) ⊆ µ(C) by the definition of C. Also note that there may exist edges
between F and A ∪ C ′. The following lemma shows that these sets are disjoint from
each other and also from the sets B and C.

Lemma 4.11. The sets B,C, {u,w, t} , F, C ′ and A are all disjoint from each other.

Proof. The fact that B,C and {u,w, t} are disjoint from each other follows directly from
their definitions. From the definition of F , it is clear that F ∩{u,w, t} = ∅. The vertices
in C are not adjacent to t due to Lemma 4.9 and hence C ∩ (F ∪ C ′ ∪A) = ∅. The
vertices in B are not adjacent to u due to Lemma 4.9 and hence B ∩ F = ∅. From the
definition of A, it follows that A ∩ (B ∪ F ∪ C ′ ∪ {u,w, t}) = ∅. From the definition of
C ′, it is clear that t /∈ C ′.

It only remains to prove that C ′ ∩ (B ∪ {u,w} ∪ F) = ∅. Suppose that C ′ ∩
(B ∪ {u,w} ∪ F) 6= ∅ for the sake of contradiction. Let c′ be a vertex in C ′∩(B ∪ {u,w} ∪ F).
Since c′ ∈ C ′, we have µ(c′) ∈ µ(C). Let c be the vertex in C such that µ(c) = µ(c′).
Since (B ∪ {u,w} ∪ F) ⊆ N2(c), we have that c′ ∈ N2(c). Thus c′ and c are adjacent
in G2 and have the same color. Then µ is not a proper coloring of G2, which is a
contradiction.

Lemma 4.12. The sets A,C ′ and B are each disjoint from N [u].

Proof. B ∩N [u] = ∅ by Lemma 4.9. Suppose there is a vertex v ∈ (A ∪ C ′) ∩N [u] for
the sake of contradiction. By the definition of A and C ′, we have v ∈ N(t). If v is also
in N [u], then by definition of F , we have that v ∈ F ∪ {u}. But by Lemma 4.11, the
sets A ∪ C ′ and F ∪ {u} are disjoint, thus giving a contradiction. Hence A ∩N [u] = ∅
and C ′ ∩N [u] = ∅.

Lemma 4.13. µ(A) ⊆ µ(N(u) \ (C ∪ F ∪ {w, t})).

Proof. Let a ∈ A. Clearly, µ(a) /∈ µ(N2(a)). On the other hand, µ(a) ∈ µ(N2 [p]) by
Lemma 4.8. So µ(a) ∈ µ(N2[p] \N2(a)). Since

N2[p] \N2(a) = (N [u] ∪B) \N2(a) (using Lemma 4.10 (2))
⊆ N(u) \ (F ∪ {w, t}),

it follows that µ(a) ∈ µ(N(u) \ (F ∪ {w, t})). Also, µ(a) /∈ µ(C) because, if µ(a) ∈ µ(C)
then a /∈ N(t) (otherwise a is in C ′ by the definition of C ′ and hence not in A by
the definition of A, a contradiction) and hence a /∈ A by the definition of A, giving a
contradiction. Therefore, µ(a) ∈ µ(N(u) \ (C ∪ F ∪ {w, t})).

By Lemma 4.13, for each color c ∈ µ(A), there is a c-colored vertex in N(u) \ (C ∪
F ∪ {w, t}). On the other hand, no two vertices in N(u) can have the same color. So
each color in µ(A) is used by exactly one vertex in N(u). Let

A′ := {x ∈ N(u) : µ(x) ∈ µ(A)}.

The following corollary follows directly from Lemma 4.13 and the definition of A′.

Corollary 4.14. µ(A′) = µ(A).

64

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

Lemma 4.15. A′ is disjoint from the sets C,F, {u,w, t} , B,C ′ and A.

Proof. From the definition of A′, it is clear that u /∈ A′. By Lemma 4.13 and the
definition of A′, we have that A′ ⊆ N(u) \ (C ∪ F ∪ {u,w}). Thus A′ is disjoint from
C,F and {u,w}. By Lemma 4.12, we have that B,C ′ and A are disjoint from N(u).
Hence B,C ′ and A are disjoint from A′.

Since no two vertices in A (A′, respectively) are colored the same, the relation
µ(a) = µ(a′) defines a bijection a 7→ a′ from A to A′, due to Corollary 4.14 and the
definition of A′. We call a and a′ the mates of each other and denote the relation by

a = mate(a′), a′ = mate(a).

Note that a 6= a′ as A and A′ are disjoint by Lemma 4.15.
Define

Q := N(u) \ (A′ ∪ C ∪ F ∪ {w, t}).

Then {A′, Q} is a partition of N(u) \ (C ∪ F ∪ {w, t}). Note that there may exist edges
between F and A′ ∪Q.

Define
Q′ := {x ∈ B : µ(x) ∈ µ(N(u))}

D := B \Q′ = {x ∈ B : µ(x) /∈ µ(N(u))}.

Lemma 4.16. The sets A′, A,C,C ′, D, F,Q,Q′, {u,w, t} are pairwise disjoint.

Proof. The sets A′, A,B = Q′ t D,C,C ′, F and {u,w, t} are pairwise disjoint due to
Lemmas 4.11 and 4.15. By definition, the set Q is disjoint from A′, C, F and {u,w, t}.
Since B,C ′ and A are disjoint from N(u) by Lemma 4.12 and Q ⊆ N(u) by definition
of Q, we have that Q is disjoint from B = Q′ tD,C ′ and A.

Lemma 4.17. Suppose D = ∅. Then η(G2) ≥ χ(G2). Moreover, χ(G2) = ω(G2) and
so G2 contains a clique minor of order χ(G2) for which each branch set is a singleton.

Proof. We know N2[p] = N [u] ∪ B by statement (2) of Lemma 4.10. Since D = ∅, we
have N2[p] = N [u] ∪ Q′. Then by Lemma 4.8, all colors of µ are present in N [u] ∪ Q′.
But, µ(Q′) ⊆ µ(N [u]) by the definition of Q′. Thus, all colors of µ are present in
N [u]. Since N [u] is a clique of G2, it follows that χ(G2) = |N [u]| ≤ ω(G2). Therefore,
χ(G2) = ω(G2) ≤ η(G2).

Due to Lemma 4.17, we know that the statement of the theorem holds in the case
when D = ∅. Hence from now on we assume that D 6= ∅.

Lemma 4.18. For any d ∈ D, no vertex in N2[p] other than d is colored µ(d).

Proof. Suppose for the sake of contradiction that there is a vertex v ∈ N2[p] \ {d} such
that µ(v) = µ(d). Then for µ to be a proper coloring, v ∈ N2[p] \N2[d] We know that
N2[p] = N [u] ∪ B by Lemma 4.10 (2), and that N2[d] ⊇ B ∪ (N [u] \ (Q ∪A′)). Thus
N2[p] \ N2[d] ⊆ Q ∪ A′ and hence v ∈ Q ∪ A′. Since Q ⊆ N(u), we have µ(d) /∈ µ(Q)
by the definition of D. Thus v /∈ Q and hence v ∈ A′. But µ(d) /∈ µ(A′) = µ(A) as
A ⊆ N2[d]. Hence v /∈ A′, which is a contradiction.

65

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

Lemma 4.19. For any b ∈ B, N2[b] = A ∪B ∪ F ∪ C ∪ C ′ ∪ {u,w, t}.

Proof.

N2(b) = N [w] ∪N [t] (Using Lemma 4.9)
= ({u, t} ∪B ∪ C) ∪

(
A ∪B ∪ F ∪ C ′ ∪ {u,w}

)
(using Lemma 4.10 and

the definition of A)
= A ∪B ∪ F ∪ C ∪ C ′ ∪ {u,w, t} .

Lemma 4.20. µ(Q) = µ(Q′).

Proof. We prove µ(Q′) ⊆ µ(Q) first. Suppose for the sake of contradiction that there
exist a q′ ∈ Q′ such that µ(q′) /∈ µ(Q). By the definition of Q′, µ(q′) ∈ µ(N(u)).
Thus µ(q′) ∈ µ(N(u)) \ µ(Q) = µ (C ∪ {w, t, s} ∪A′). But µ(q′) /∈ µ ({w, t, s} ∪ C) as
{w, t, s} ∪ C ⊆ N2(q′). Thus µ(q′) ∈ µ(A′). But since µ(A′) = µ(A) by Corollary 4.14,
we get that µ(q′) ∈ µ(A) ⊆ µ(N2(q′)), implying that µ is not a proper coloring of G2,
which is a contradiction.

Now we prove µ(Q) ⊆ µ(Q′). Suppose for the sake of contradiction that there exist
a q ∈ Q satisfying µ(q) /∈ µ(Q′). Since D 6= ∅ (recall that we assumed so due to
Lemma 4.17), we may take a vertex d ∈ D.

We claim that µ(q) /∈ µ(N2(d)). For the sake of contradiction, suppose otherwise,
i.e., µ(q) ∈ µ(N2(d)). Since µ is a proper coloring of G2, we know that µ(q) /∈ µ(N2(q)).
Thus µ(q) ∈ µ

(
N2(d) \N2(q)

)
. We know from Lemma 4.19 that

N2(d) ⊆ A ∪B ∪ F ∪ C ∪ C ′ ∪ {u,w, t} .

Also observe that

N2[q] ⊇ N [u]
⊇ {u,w, t} ∪ F ∪ C.

Thus

N2(d) \N2(q) ⊆ A ∪B ∪ C ′

= A ∪Q′ ∪D ∪ C ′.

Thus µ(q) ∈ µ(A ∪ Q′ ∪ D ∪ C ′). But µ(q) /∈ µ(A) = µ(A′) as A′ ⊆ N2(q); µ(q) /∈
µ(C ′) ⊆ µ(C) as C ⊆ N2(q); µ(q) /∈ µ(Q′) by our assumption; and µ(q) /∈ µ(D) by the
definition of D. Hence we have a contradiction and hence µ(q) /∈ N2(d).

Since µ(q) /∈ N2(d), we can recolor d with µ(q) without violating the properness of
the coloring in G2. From Lemma 4.18, we know that d was the only vertex in N2[p]
with color µ(d). But since we have recolored d with another color, we can now recolor
p with µ(d) still maintaining a proper coloring of G2. This new coloring does not use
µ(p) as p was the only vertex having color µ(p) due to the property of the pivot vertex
and now we have recolored p with another color. Thus the new coloring is proper and
uses one less color than µ, implying that µ is not an optimal coloring of G2, which is a
contradiction.

66

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

Lemma 4.21. N2[p] = B ∪Q ∪A′ ∪ F ∪ {u,w, t} ∪ C = N [w] ∪Q ∪A′ ∪ F

Proof. We know N2[p] = N [w] ∪ N [u] by Lemma 4.9. By Lemma 4.10, N [w] = B ∪
{u,w, t} ∪ C). Also, N [u] = Q ∪A′ ∪ F ∪ C ∪ {u,w, t} from the definition of Q. Hence,

N2[p] = N [w] ∪N [u]
= B ∪Q ∪A′ ∪ F ∪ {u,w, t} ∪ C
= N [w] ∪Q ∪A′ ∪ F.

Lemma 4.22. Suppose A = ∅. Then η(G2) ≥ χ(G2). Moreover, χ(G2) = ω(G2) and
hence G2 contains a clique minor of order χ(G2) for which each branch set is a singleton.

Proof. From Lemma 4.21, we have that N2[p] = N [w] ∪ Q ∪ A′ ∪ F . Since A = ∅, we
have A′ = ∅ by the definition of A. Hence N2[p] = N [w] ∪Q ∪ F . Since µ(Q) = µ(Q′)
by Lemma 4.20 and Q′ ⊆ N [w], we have that µ(N2[p]) = µ(N [w] ∪ F). By Lemma 4.8,
we know |µ(N2[p])| = χ(G2). On the other hand, N [w] ∪ F is a clique of G2 and so
|µ(N [w] ∪ F)| ≤ ω(G2). So χ(G2) = |µ(N2[p])| = |µ(N [w] ∪ F)| ≤ ω(G2), and therefore
χ(G2) = ω(G2) ≤ η(G2).

Due to Lemma 4.22, we assume henceforth that A 6= ∅. This also implies that A′ 6= ∅
using Corollary 4.14.

Lemma 4.23. A ∩N2[p] = ∅.

Proof. We know N2[p] = B ∪ Q ∪ A′ ∪ F ∪ {u,w, t} ∪ C by Lemma 4.21 and that A
is disjoint from B ∪Q ∪ A′ ∪ F ∪ {u,w, t} ∪ C due to Lemma 4.16. Hence, the lemma
follows.

Lemma 4.24. For any a′ ∈ A′, the vertex a′ is the only vertex in N2[p] with color µ(a′)
under µ.

Proof. Suppose for the sake of contradiction that there is a vertex v ∈ N2[p] such that
µ(v) = µ(a′) but v 6= a′. Let a = mate(a′).

N2(a) ∪N2[a′] ⊇ B ∪Q ∪A′ ∪ F ∪ {u,w, t} ∪ C
⊇ N2[p]. (by Lemma 4.21).

Hence v ∈ N2[{a, a′}]. We already know v 6= a′. Also, v 6= a as A ∩ N2[p] = ∅ by
Lemma 4.23. Thus v is a vertex adjacent to either a or a′ in G2. But then µ is not a
proper coloring as µ(v) = µ(a′) = µ(a) (Recall that mates have the same color). Thus
we have a contradiction.

Lemma 4.25. The following hold:

(a) `max ≥ 3;

(b) the level of u is `max − 2.

67

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

Proof. (a) Suppose `max ≤ 2 for the sake of contradiction. Recall that we have taken
care of the case when `max ≤ 1 and hence have assumed `max ≥ 2. Thus `max = 2. Then
the level of ut is `max − 2 = 0. This means ut is the unique edge with level 0. Moreover,
V (G) = N [{u, t}].

Take a′ ∈ A′ and d ∈ D. (Recall that we have assumed D,A,A′ 6= ∅ due to Lem-
mas 4.17 and 4.22). Let µ′ be the coloring defined as follows: µ′(p) := µ(a′), µ′(a′) = µ(d),
and for every v /∈ {p, a′}, define µ′(v) := µ(v). We know p is the only vertex in N2[p]
with color µ(p) under µ by property of pivot vertex. Hence, the coloring µ′ does not use
color µ(p) by the construction of µ′. Since µ′ does not use any additional color than µ,
we have that µ′ uses fewer colors than µ.
Case 1. µ′ is a proper coloring:
Then µ is not an optimal coloring as it has more colors than µ′. Thus we have a contra-
diction.
Case 2. µ′ is not a proper coloring:
Then there exist vertices v1 and v2 such that µ′(v1) = µ′(v2) and v2 ∈ N2(v1). Since µ
was a proper coloring and µ′ differs from µ only in the colors of p and a′, we can assume
without loss of generality that v1 ∈ {p, a′}.
Case 2.1 v1 = a′:
Then µ′(v2) = µ′(v1) = µ′(a′) = µ(d) and v2 ∈ N2(v1) = N2(a′).
Case 2.1.1. v2 = d:
Then d ∈ N2(a′) and hence a′ ∈ N2[d]. By Lemma 4.19, we know N2[d] = A ∪B ∪ F ∪
C ∪ C ′ ∪ {u,w, t}. Thus a′ ∈ A ∪B ∪ F ∪ C ∪ C ′ ∪ {u,w, t}. But by Lemma 4.16, A′ is
disjoint from A,B, F,C,C ′ and {u,w, t}, and hence a′ /∈ A ∪B ∪ F ∪C ∪C ′ ∪ {u,w, t},
a contradiction.
Case 2.1.2. v2 6= d:
We have v2 /∈ N [u] ⊆ N2[p] because by Lemma 4.18, d is the only vertex in N2[p] with
color µ(d). We also have v2 /∈ N [t] for otherwise two distinct vertices (d and v2) in N [t]
have the same color under µ, contradicting that µ is a proper coloring of G2. Thus,
v2 /∈ N [u] ∪N [t] = V (G), a contradiction.
Case 2.2. v1 = p:
Then µ′(v2) = µ′(v1) = µ′(p) = µ(a′) and v2 ∈ N2(v1) = N2(p). By Lemma 4.24, a′ is
the only vertex in N2[p] with color µ(a′). Hence v2 = a′. Then µ′(v2) = µ′(a′) = µ(d).
Since we already have µ′(v2) = µ(a′), this should mean that µ(a′) = µ(d). Also,
µ(mate(a)) = µ(d) as mates have the same color in µ. But since mate(a) ∈ N2(d),
µ is not a proper coloring. Thus we have a contradiction.

(b) Suppose for the sake of contradiction that level of u is not `max − 2. Then, since
the level of ut is `max−2, the level of t must be `max−2 and the level of u must be smaller
than `max− 2. Take any d ∈ D (Recall that we have assumed D 6= ∅ due to Lemma 4.17).
Denote by µ′ the coloring obtained by starting from the coloring µ and exchanging the
colors of d and p (while keeping the colors of all other vertices same). We will show
that we would have selected (µ′, d) as the pivot coloring and vertex instead of (µ, p) (see
the selection of pivot coloring and pivot vertex in Section 4.4.2), thereby implying a
contradiction. For this, first we prove that µ′ is a proper coloring. By Lemma 4.18,
we know that no vertex in N2[p] other than d is colored with µ(d) under µ. Also, by
property of pivot vertex, we know that p is the only vertex with color µ(p) under µ.

68

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

Hence, by construction, µ′ is a proper coloring of G2. It is also an optimal coloring as
µ′ did not use any color that was not in µ. Observe that d is the only vertex with color
µ′(d) = µ(p) under the coloring µ′. The vertex with minimum level in N(d) is t, whose
level is `max − 2. The minimum level of a vertex in N(p) is smaller than `max − 2 since
the level of u is smaller than `max − 2. Then, we would have selected µ′ and d as the
pivot coloring and pivot vertex respectively instead of µ and p (see the selection of pivot
coloring and pivot vertex in Section 4.4.2), which is a contradiction.

Since `max ≥ 3 by Lemma 4.25, there exist a a vertex s ∈ F such that ut is a child of
st. Note that the level of st is `max− 3, and us is the sibling of ut and has level `max− 2.

4.4.3 Bichromatic paths

In this section, we introduce the concept of bichromatic paths. We will show the existence
of some bichromatic paths in G2. These bichromatic paths will be later crucial in the
construction of branch sets. For proving the existence of bichromatic paths, we use a
common technique in the area of graph coloring called Kempe chain (See [5] for example).

Definition 4.26. Given a proper coloring φ of G2 and two distinct colors r and g, a
path in G2 is called a (φ, r, g)-bichromatic path if each of its vertices is colored r or g
under the coloring φ.

Note that in a (µ, r, g)-bichromatic path, the vertices are colored alternatively with
r and g as two vertices with same color cannot be adjacent.

Lemma 4.27. For any a′ ∈ A′ and d ∈ D, there exists a (µ, µ(a′), µ(d))-bichromatic
path from a′ to mate(a′) in G2.

Proof. Let a = mate(a′). Denote r = µ(a′) (= µ(a)) and g = µ(d). Then r 6= g as
d ∈ N2(a). Consider the subgraph H of G2 induced by the set of vertices with colors r
and g under µ. Let H ′ be the connected component of H containing a′. It suffices to
show that a is contained in H ′.

Suppose for the sake of contradiction that a 6∈ V (H ′). Define

µ′(v) =


µ(v), if v ∈ V (G) \ (V (H ′) ∪ {p})
r, if v = p
r, if v ∈ V (H ′) and µ(v) = g
g, if v ∈ V (H ′) and µ(v) = r.

In particular, µ′(a′) = g. See Figure 4.5 for an illustration of the colorings.
Case 1. µ′ is a proper coloring of G2:
µ′ does not use the color µ(p) as p was the only vertex that was colored with µ(p) under
µ by property of pivot vertex. Hence µ′ uses fewer colors than µ. This implies µ is not
an optimal coloring, which is a contradiction.
Case 2. µ′ is not a proper coloring of G2:
Let µ′′ be the coloring obtained by starting from the coloring µ and exchanging colors r
and g within H ′ (see Figure 4.5(c)). It is easy to observe that µ′′ is a proper coloring.
Also, observe that µ′ and µ′′ differs only in the color of p. Thus, for µ′ to be not a proper

69

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

w

C

t

p u

B
Q’ D C’

A

Q A’

F
s

H’

a’

a

d

(a) Coloring µ

w

C

t

p u

B
Q’ D C’

A

Q A’

F
s

H’

a’

a

d

(b) Coloring µ′

w

C

t

p u

B
Q’ D C’

A

Q A’

F
s

H’

a’

a

d

(c) Coloring µ′′

Figure 4.5: An illustration of the colorings µ, µ′ and µ′′ used in the proof of Lemma 4.27.
The dotted edges represent edges that are in G2 but not in G. Note that we have not
drawn all the edges of G and G2.

70

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

coloring, there should be a vertex v ∈ N2(p) such that µ′(v) = µ′(p) = r.
Case 2.1. v ∈ V (H ′):
In this case, we have µ(v) = g. Then v = d because d is the only vertex in N2[p] with
color µ(d) = g under µ, using Lemma 4.18. But then a is in H ′ as a and d are adjacent
in G2 and µ(a) = r. This is a contradiction to our assumption that a /∈ V (H ′).
Case 2.2. v /∈ V (H ′):
In this case, we have µ(v) = µ′(v) = µ′(p) = r. By Lemma 4.24, we know that a′ is the
only vertex in N2[p] with color r. Hence v = a′ ∈ V (H ′), which is a contradiction.

Lemma 4.28. For any edge e = xy with level `max − 2 and any vertex-descendant z of
e, we have N2(z) ⊆ N [{x, y}].

Proof. Consider an arbitrary vertex v in N2(z). Since the level of e is `max− 2, there are
only two possibilities for z. The first possibility is that z is a vertex-child of e. In this
possibility, either v is a vertex-child of xz or yz, or v ∈ {x, y}, or v ∈ N(x) ∪N(y); in
each case we have v ∈ N [{x, y}]. The second possibility is that z is the vertex-child of
an edge-child of e. Without loss of generality we may assume that z is the vertex-child
of xq, where q is a vertex-child of e. Then either v is a vertex-child of yq or v ∈ N [x]; in
each case we have v ∈ N [{x, y}].

Lemma 4.29. The following hold:

(a) N2(A′ ∪Q) ⊆ N [{u, t, s}];

(b) if v ∈ N2(A′ ∪Q) and µ(v) ∈ µ(B), then v ∈ N({u, s});

(c) if v ∈ N2(A′ ∪Q) and µ(v) ∈ µ(D), then v ∈ N(s).

Proof. (a) Any vertex x ∈ A′∪Q is a vertex-descendant of ut or us. Since the levels of ut
and us are both `max− 2, by Lemma 4.28, if x is a vertex-descendant of ut then N2(x) ⊆
N [{u, t}], and if x is a vertex-descendant of us then N2(x) ⊆ N [{u, s}]. Therefore,
N2(x) ⊆ N [{u, t, s}].

(b) Consider v ∈ N2(x) for some x ∈ A′ ∪ Q such that µ(v) ∈ µ(B). Since v ∈
N [{u, t, s}] by (a), it suffices to prove v /∈ N [t]. Suppose for the sake of contradiction
that v ∈ N [t].
Case 1. v 6∈ B:
Then for µ(v) to be in µ(B), there should be a v′ ∈ B such that µ(v′) = µ(v). But since
both v, v′ ∈ N [t], this implies that µ is not a proper coloring, a contradiction.
Case 2. v ∈ B:
Then N2[v] = A∪B ∪F ∪C ∪C ′ ∪{u,w, t} by Lemma 4.19. We know A′ ∪Q is disjoint
from A,B, F,C,C ′, and {u,w, t} by Lemma 4.16. Thus x ∈ A′ ∪Q is not in N2[v] and
hence v /∈ N2[x], a contradiction.

(c) By (b), every vertex v ∈ N2(A′ ∪Q) with µ(v) ∈ µ(D) must be in N({u, s}) as
D ⊆ B. If v ∈ N(u), then µ(v) ∈ µ(N(u)) and so µ(v) /∈ µ(D) by the definition of D, a
contradiction. Hence v /∈ N(u) and therefore v ∈ N(s).

Define
D′ := {x ∈ N(s) : µ(x) ∈ µ(D)}.

71

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

w

C

t

p u s

B
Q’ D C’

A

D’

LA’bp(L)Q\bp(L)

F

Figure 4.6: Vertex subsets used in the proof of Theorem 4.5. Note that there are
possible edges that have not been shown in the figure. A summary of the definitions of
the subsets and relations between them are given in Section 4.4.6 for easy reference.

Lemma 4.30. The following hold:

(a) µ(D′) = µ (D);

(b) for each a′ ∈ A′ and each d′ ∈ D′, there exists a (µ, µ(a′), µ(d′))-bichromatic path
in G2 from a′ to mate(a′) such that d′ is adjacent to a′ in this path.

Proof. Observe that both statements of the lemma will follow if we can prove the following
statement: For each d ∈ D, there exists d′ ∈ N(s) with µ(d′) = µ(d) such that for each
a′ ∈ A′, there exists a (µ, µ(a′), µ(d))-bichromatic path from a′ to mate(a′) that contains
the edge a′d′. Hence we will devote ourselves to proving this statement. Take any
d ∈ D. For each a′ ∈ A′, let Pa′ denote the (µ, µ(a′), µ(d))-bichromatic path from a′ to
mate(a′) guaranteed by Lemma 4.27. Let da′ be the vertex adjacent to a′ in Pa′ . Note
that da′ 6= mate(a′) as µ(mate(a′)) = µ(a′). Clearly, µ(da′) = µ(d). By Lemma 4.29(c),
the vertex da′ is in N(s). Thus da′ ∈ D′. For distinct a′, a′′ ∈ A′, we have da′ = da′′

because otherwise da′ and da′′ are adjacent in G2 (as both are in N(s)) and have the
same color (µ(d)), thereby implying that µ is not a proper color. Thus there exists a
d′ ∈ D′ such that d′ = da′ for each a′ ∈ A′. Hence, for each a′ ∈ A′, there exists a
(µ, µ(a′), µ(d))-bichromatic path from a′ to mate(a′) containing the edge a′d′. Thus we
have proved the required statement.

Since no two vertices in D (D′, respectively) are colored the same, by Lemma 4.30 we
have |D| = |D′| and every d′ ∈ D′ corresponds to a unique d ∈ D such that µ(d) = µ(d′),
and vice versa. We call d and d′ the mates of each other, written as d = mate(d′) and
d′ = mate(d). Note that for a′ ∈ A′ and d′ ∈ D′, mate(a′) is adjacent to mate(d′) in G2.
Lemma 4.30 also implies the following corollary.

Corollary 4.31. The following hold:

(a) each a′ ∈ A′ is adjacent to each d′ ∈ D′ in G2;

72

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

(b) for any a′ ∈ A′ and d′ ∈ D′, there exists a (µ, µ(a′), µ(d′))-bichromatic path from
d′ to mate(d′) in G2.

4.4.4 Bridging sets, bridging sequences, and re-coloring

Here, we define the concepts of bridging sets and bridging sequences (see Figure 4.7(a)
for an illustration) and prove some lemmas using them. These lemmas will be crucial
for the construction of branch sets in the Finale (Section 4.4.5).

Definition 4.32. An ordered set {x1, x2, . . . , xk} of vertices of G2 is called a bridging
set if for each i, 1 ≤ i ≤ k, xi ∈ N(s) \D′ and there exists a vertex qi ∈ Q such that
µ(qi) = µ(xi) and qi is not adjacent in G2 to at least one vertex in D′∪{x1, x2, . . . , xi−1}.
Denote qi = bp(xi) and call it the bridging partner of xi. We also fix one vertex in
D′ ∪ {x1, x2, . . . , xi−1} not adjacent to qi in G2, denote it by bn(qi), and call it the
bridging non-neighbor of qi. (If there is more than one candidate, we fix one of them
arbitrarily as the bridging non-neighbor.)

In the definition above we have bp(xi) 6= xi for each i, for otherwise bp(xi) would
be adjacent in G2 to all vertices in N(s) and so there is no candidate for the bridging
non-neighbor of bp(xi), contradicting the definition of a bridging set.

In the following we take L to be a fixed bridging set with maximum cardinality. Note
that µ(L) ⊆ µ(Q) by the definition of a bridging set.

Definition 4.33. Given z ∈ D′∪L, the bridging sequence of z is defined as the sequence
of distinct vertices s1, s2, . . . , sj such that s1 = z, sj ∈ D′, and for 2 ≤ i ≤ j, si is the
bridging non-neighbor of the bridging partner of si−1.

By definition of bridging set L, it is evident that the bridging sequence of every
z ∈ D′ ∪ L exists. In particular, for d ∈ D′, the bridging sequence of d consists of only
one vertex, namely d itself.

Lemma 4.34. Let x ∈ L, q = bp(x) and y = bn(q). If there exists v ∈ N2(q) such that
µ(v) = µ(y), then y ∈ L and v = bp(y).

Proof. We know that q ∈ Q and y ∈ D′ ∪ L from the definitions of bridging partner
and bridging non-neighbor. Since µ(L) ⊆ µ(Q) by the definition of a bridging set,
we have µ(v) = µ(y) ∈ µ(D′ ∪ L) ⊆ µ (B). Hence, by Lemma 4.29(b), v must be in
N({s, u}). If v ∈ N(s), then v = y, but this cannot happen as y = bn(q) /∈ N2(q).
Hence v ∈ N(u). This implies µ(v) /∈ µ(D) = µ(D′), from the definitions of D and D′.
Therefore, µ(y) = µ(v) /∈ µ(D′). Since a bridging non-neighbor has to be from D′ ∪ L,
we have that y ∈ L. Thus y has a bridging partner bp(y) in Q with color µ(y). Since
there can be only one vertex in N(u) with color µ(y), we have that v = bp(y).

Definition 4.35. For any vertex z ∈ D′ ∪ L, we define it bridging re-coloring ψz as
follows: Let s1, s2, . . . , sj be the bridging sequence of z.

(a) ψz(bp(si)) := µ(si+1) for 1 ≤ i < j (Note that for 1 ≤ i < j, we have si ∈ L and
hence bridging partner is defined for si);

(b) ψz(x) := µ(x) for each x ∈ V (G) \ {bp(si) : 1 ≤ i < j}.

73

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

(a) Bridging set L = {x1, x2, x3, x4, x5} and the bridging sequence s1, s2, s3, s4, s5 of x5.
The dotted lines between two vertices represents that there is no edge between them in
G2. Here, qi = bp(xi) for all i ∈ [5] and bn(q1) = d1, bn(q2) = x1, bn(q3) = d2, bn(q4) =
x2, bn(q5) = x4.

(b) The bridging recoloring ψx5

Figure 4.7: Bridging set, bridging sequence, and bridging recoloring.

74

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

Observe that for i1 6= i2 we have µ(si1) 6= µ(si2) as both si1 , si2 ∈ N(s). So each
color is used at most once for recoloring in (b) above.

Lemma 4.36. For any z ∈ D′ ∪ L, ψz is an optimal coloring of G2.

Proof. Since ψz only uses colors of µ, it suffices to prove that it is a proper coloring of
G2. Let s1, s2, . . . , sj be the bridging sequence of z. Suppose to the contrary that ψz
is not a proper coloring of G2. Then by the definition of ψz there exists 1 ≤ i ≤ j − 1
such that ψz(bp(si)) ∈ ψz(N2(bp(si))). Denote x = bp(si). Then there exists v ∈ N2(x)
such that ψz(v) = ψz(x) = µ(si+1). Observe x is the only vertex that has color µ(si+1)
under ψz but a different color under µ. Hence, we have µ(v) = ψz(v) = µ(si+1). Since
si+1 = bn(x), by Lemma 4.34 we have si+1 ∈ L and v = bp(si+1). Since si+1 ∈ L, we
have that i+ 1 6= j. Then, ψz(v) = ψz(bp(si+1)) = µ(si+2) 6= µ(si+1) by the definition
of ψz, which is a contradiction.

Lemma 4.37. Let a′ ∈ A′, z ∈ L, r = µ(a′) and g = µ(z). Let c ∈ {r, g}. Then for any
x ∈ V (G), if ψz(x) = c then µ(x) = c.

Proof. For the sake of contradiction, assume that there exist a vertex x such that ψz(x) =
c ∈ {r, g} but µ(x) 6= c. Let s1, s2, . . . , sj be the bridging sequence of z. From the
construction of ψz(x), it is clear that x = bp(si) and ψz(x) = µ(si+1) for some 1 ≤ i < j.
Then clearly c = ψz(x) = µ(si+1).
Case 1. c = r:
Case 1.1. i+ 1 < j:
Then si+1 ∈ L and hence si+1 has a bridging partner bp(si+1). We know bp(si+1) ∈ Q
and µ(bp(si+1)) = µ(si+1) = r from the definition of bridging partner. But then a′ and
bp(si+1) have the same color in µ, which is not possible as they are adjacent in G2.
Case 1.2. i+ 1 = j:
Then si+1 ∈ D′. Hence µ(si+1) ∈ µ(D′). Then µ(si+1) ∈ µ(D) as µ(D′) ⊆ µ(D) by
the definition of D′. Since every vertex in D is adjacent in G2 to every vertex in A,
we have that µ(si+1) /∈ µ(A). Then µ(si+1) /∈ µ(A′) by the definition of A′. This is a
contradiction as µ(si+1) = r = µ(a′) ∈ A′.
Case 2. c = g:
But then si+1 and s1 has the same color in µ, which is not possible as they are adjacent
in G2 (because they have a common neighbor s in G).

Lemma 4.38. For any a′ ∈ A′ and z ∈ L, there exists a (µ, µ(a′), µ(z))-bichromatic
path from a′ to mate(a′) in G2 which contains the edge a′z.

Proof. Let r := µ(a′) and g := µ(z). In view of Lemma 4.37, it suffices to prove that
there exists a (ψz, r, g)-bichromatic path from a′ to a in G2 that uses the edge a′z.
Consider the subgraph H of G2 induced by the set of vertices with colors r and g under
ψz. Denote by H ′ the connected component of H containing a′. Let a = mate(a′).
Case 1. a ∈ V (H ′):
Since a, a′ ∈ V (H ′), there is a (ψz, r, g)-bichromatic path P from a′ to a in G2. It only
remains to show that a′ is adjacent to z in path P . Suppose for the sake of contradiction
that the vertex adjacent to a′ in P is not z but some other vertex v. Then ψz(v) = g,
and by Lemma 4.37, µ(v) = g. By Lemma 4.29(b), v ∈ N({u, s}). Since v 6= z, we

75

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

have v 6∈ N(s). Hence v ∈ N(u), which implies v = bp(z). Since ψz(bp(z)) 6= g by the
definition of ψz, it follows that ψz(v) 6= g, which is a contradiction.
Case 2. a /∈ V (H ′):
We will show that this is not possible by deriving a contradiction. Define a coloring φ of
G2 as follows:

φ(v) =


ψz(v), if v ∈ V (G) \ (V (H ′) ∪ {p})
r, if v = p
r, if v ∈ V (H ′) and ψz(v) = g
g, if v ∈ V (H ′) and ψz(v) = r.

Case 2.1. φ is a proper coloring of G2:
Recall that p is the only vertex in G with color µ(p) under µ by property of pivot vertex.
By the definition of ψz, p remains to be the only vertex with color µ(p) under ψz. Hence
φ uses one less color than ψz as it does not use the color ψz(p) = µ(p). This is a
contradiction because, by Lemma 4.36, ψz is an optimal coloring of G2.
Case 2.2. φ is not a proper coloring of G2:
We know ψz is a proper coloring by Lemma 4.36. Observe that exchanging the two colors
within V (H ′) in the coloring ψz does not violate the properness of the coloring. Then
for φ to be not a proper coloring, there exists a vertex v ∈ N2(p) such that φ(v) = r.
Case 2.2.1. v ∈ V (H ′):
Then ψz(v) = g. This implies µ(v) = g by Lemma 4.37.
Case 2.2.1.1. v = bp(z):
Then ψz(v) = ψz(bp(z)) = µ(bn(bp(z))) 6= µ(z) = g, a contradiction.
Case 2.2.1.2. v 6= bp(z):
Since µ(v) = g = µ(bp(z)), we have that v /∈ N2[bp(z)] ⊇ N [u]. Hence v ∈ N2[p] \N [u].
This implies v ∈ B by Lemma 4.9(2).
Case 2.2.1.2.1. v ∈ D:
Then µ(v) = g ∈ µ(D′) due to Lemma 4.30(a). Let d′ ∈ D be such that µ(d′) = g. But
then z and d′ have the same color under µ and are adjacent in G2 (as both are adjacent
to s in G), thus implying µ is not a proper coloring, a contradiction.
Case 2.2.1.2.2. v ∈ Q′:
Then a ∈ N2(v). Hence, we have a ∈ V (H ′) as a is colored with r and v is colored with
g and both are adjacent in G2. This is a contradiction to the fact that we are in Case 2.
Case 2.2.2. v /∈ V (H ′):
Then ψz(v) = r, and by Lemma 4.37, µ(v) = r. The only vertex in N2[p] with color r
under µ is a′ by Lemma 4.24. Thus v = a′ and hence ψz(v) = ψz(a′) = g 6= r, which is
a contradiction.

The following corollary is immediate from the above Lemma.

Corollary 4.39. Each a′ ∈ A′ is adjacent to each z ∈ L in G2.

We now extend the definition of mate to the set L. Recall that µ(L) ⊆ µ(Q) by the
definition of a bridging set. This also means that µ(L) ⊆ µ(Q′) by Lemma 4.20. For
each q ∈ L, define mate(q) to be the vertex in Q′ with the same color as q under the
coloring µ. We now have the following corollary of Lemma 4.38.

Corollary 4.40. For any a′ ∈ A′ and q ∈ L, there is a (µ, µ(a′), µ(q))-bichromatic path
from q to mate(q).

76

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

Proof. Let a := mate(a′) and q′ := mate(q). From Lemma 4.38, we have a (µ, µ(a′), µ(q))-
bichromatic path a′qv1v2 . . . vra in G2. Since q′ is adjacent to a in G2 and µ(q′) = µ(q),
we have that qv1v2 . . . vraq

′ is a (µ, µ(a′), µ(q))-bichromatic path from q to q′.

Define
bp(L) := {bp(q) : q ∈ L}.

Then bp(L) ⊆ Q, µ(bp(L)) = µ(L), and µ(L ∪ (Q \ bp(L))) = µ(Q) = µ(Q′). See
Figure 4.6 for an updated picture of vertex sets around p including L and bp(L).

Lemma 4.41. For any q ∈ Q \ bp(L), D′ ∪ L ⊆ N2[q].

Proof. Suppose for the sake of contradiction that there exist a q ∈ Q \ bp(L) and
z ∈ (D′ ∪ L) such that z /∈ N2[q].
Case 1. µ(q) ∈ µ(N(s)):
Let x ∈ N(s) be such that µ(q) = µ(x). Then x 6= q for otherwise z ∈ N2[q]. Also,
x /∈ L for otherwise, bp(x) and q are adjacent in G2 but have the same color under µ.
We know that µ(x) /∈ µ(D) from the definition of D. Also µ(D) = µ(D′) by Lemma 4.30.
Thus µ(x) /∈ µ(D′) and hence x /∈ D′. Now observe that L ∪ {x} is a larger bridging set
than L by taking bp(x) = q and bn(q) = z. This is a contradiction since L is a bridging
set with maximum cardinality.
Case 2. µ(q) /∈ µ(N(s)):
Since we have assumed A′ 6= ∅ due to Lemma 4.22, we can take a vertex a′ ∈ A′. Define
a coloring φ of G2 as follows:

φ(v) :=


ψz(v), if v ∈ V (G) \ {q, a′, p}
ψz(z), if v = q
ψz(q), if v = a′

ψz(a′), if v = p

Let c1 := φ(q) = ψz(z), c2 := φ(a′) = ψz(q) and c3 := φ(p) = ψz(a′). From the
construction of ψz, we have that c1 = ψz(z) = µ(z), c2 = ψz(q) = µ(q) and c3 = ψz(a′) =
µ(a′). We know µ(q) 6= µ(a′) as q and a′ are adjacent in G2. Also, µ(q) 6= µ(z) ∈ µ(N(s))
as we are in Case 2. We know µ(z) ∈ µ(D′ ∪ L) ⊆ µ(D ∪ Q) (the latter part follows
using Lemma 4.30 and the definition of L). Then µ(a′) 6= µ(z) as a′ is adjacent in G2 to
every vertex in D ∪Q. Thus c1, c2, c3 are all distinct from each other.

Recall that p is the only vertex in G with color µ(p) under µ by property of pivot
vertex. By the definition of ψz, the vertex p remains to be the only vertex with color µ(p)
under ψz. Hence φ uses one less color than ψz as it does not use the color ψz(p) = µ(p).
Since by Lemma 4.36, ψz is an optimal coloring of G2, φ cannot be a proper coloring of
G2. Hence one of the following three cases must happen.

Case 2.1: There exists v ∈ N2(q) such that φ(v) = φ(q) = c1.
By the construction of φ, the vertex q is the only vertex with color c1 = ψz(z) under φ

that has a different color under ψz. Therefore, since v 6= q, we have ψz(v) = φ(v) = c1 =
µ(z). Since µ(z) is not a color that was recolored to some vertex during the construction
of ψz, we have µ(v) = µ(z). Then by Lemma 4.29(b), v ∈ N({u, s}). If v ∈ N(s),
then v = z, which is a contradiction as z /∈ N2[q]. Thus, v ∈ N(u), which implies
v = bp(z) as bp(z) is the only vertex in N(u) with color µ(z) under µ. However, then
φ(v) = φ(bp(z)) = ψz(bp(z)) = µ(bn(bp(z))) 6= µ(z) = c1, which is a contradiction.

77

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

Case 2.2: There exists v ∈ N2(a′) such that φ(v) = φ(a′) = c2.
By the construction of φ, the vertex a′ is the only vertex with color c2 = ψz(q) under

φ that has a different color under ψz. Since v 6= a′, ψz(v) = φ(v) = c2 = µ(q). Since
µ(q) is not a color that was recolored to some vertex during the construction of ψz, we
have µ(v) = ψz(v) = µ(q). By Lemma 4.29(b), v ∈ N({u, s}). Since we are in Case 2,
we have µ(q) /∈ µ(N(s)) and hence v /∈ N(s). Thus v ∈ N(u) which implies v = q. Then
by the construction of φ, we have φ(v) = φ(q) = c1 6= c2, a contradiction.

Case 2.3: There exists v ∈ N2(p) such that φ(v) = φ(p) = c3.
By construction of φ, the vertex p is the only vertex with color c3 = ψz(a′) under φ

that has a different color under ψz. Since v 6= p, ψz(v) = φ(v) = c3 = µ(a′). Since µ(a′)
is not a color that was recolored to some vertex during the construction of ψz, we have
µ(v) = µ(a′). By Lemma 4.24, the vertex a′ is the only vertex in N2(p) with color µ(a′)
under µ. This implies that v = a′. However, then φ(v) = φ(a′) = c2 6= c3, which is a
contradiction.

4.4.5 Finale

Denote by a′1, a
′
2, . . . , a

′
k the vertices in A′ and by z1, z2, . . . , z` the vertices in D′ ∪ L,

where k = |A′| and ` = |D′ ∪ L|. We will define a set B of branch sets. The set B will
consists of a set of singleton branch sets B1 and a set Bp of path branch sets. Each branch
set in B1 will be a single vertex and each branch set in Bp will form a path in G2.
Case A: k ≤ ` (See Figure 4.8(a) for an illustration).
Take B1 := {{v} : v ∈ N [w] ∪ F}.
By Lemmas 4.30 and 4.38, for each 1 ≤ i ≤ k, there is a (µ, µ(a′i), µ(zi))-bichromatic
path Pi from a′i to mate(a′i). Take Bp := {V (Pi) : 1 ≤ i ≤ k}.
Case B: ` < k (See Figure 4.8(a) for an illustration).
Take B1 := {{v} : v ∈ N [u] \ bp(L)}.
By Corollaries 4.31(b) and 4.40, for each 1 ≤ i ≤ `, there is a (µ, µ(a′i), µ(zi))-bichromatic
path Pi from zi to mate(zi). Take Bp := {V (Pi) : 1 ≤ i ≤ `}.

Note that the paths P1, P2, . . . are pairwise vertex-disjoint because the colors of the
vertices in Pi and Pj are distinct for i 6= j. Therefore, the branch sets in B are pairwise
disjoint.

We can also assume that each Pi is a simple path because if it is not simple, we can
find a subpath that is also the required bichromatic path. We can repeat this until we
finally end up with a simple bichromatic path. Since we have that Pi is a simple path,
we have that the graph induced by V (Pi) in G2 is a path.

Lemma 4.42. Each pair of branch sets in B are joined by at least one edge in G2.

Proof. Consider Case A first. Recall that in Case A, the singleton branchsets B1 consists
of vertices in N [w] ∪ F . We know N [w] = B ∪ C ∪ {u,w, t} from Lemma 4.10. From
this, it can be easily observed that N [w] ∪ F is a clique of G2. Hence the branch sets in
B1 are pairwise adjacent. Also observe that for 1 ≤ i ≤ |A′|, each vertex in N [w] ∪ F is
adjacent to either a′i or mate(a′i) in G2. Hence each branch set in B1 is adjacent to each
branch set in Bp. For 1 ≤ i, j ≤ |A′| with i 6= j, we have a′j ∈ N2[a′i] and thus V (Pi)
and V (Pj) are joined by at least one edge. Hence, the branch sets in Bp are pairwise
adjacent. Thus, all the branch sets in B are pairwise adjacent.

78

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

w

C

t

p u

B
Q’ D C’

A

Q

A’

Fs

D’

L

Singleton Branch sets

Path Branch sets

(a) Case A of the Finale.

w

C

t

p u

B
Q’ D C’

A

A’

Fs

D’

L

Singleton Branch sets

Path
Branch sets

Q\bp(L)

bp(L)

(b) Case B of the Finale.

Figure 4.8: Construction of Branch sets of the required clique minor

79

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

Now consider Case B. Recall that in Case B, the singleton branchsets B1 consists of
vertices in N [u] \ bp(L). Since N [u] \ bp(L) forms a clique in G2, the branch sets in B1
are pairwise adjacent. Now consider a zi for some arbitrary 1 ≤ i ≤ |D′ ∪ L|. We know
N [u] = Q ∪ A′ ∪ C ∪ F ∪ {u,w, t} from the definition of Q. Since mate(zi) ∈ B, it is
adjacent in G2 to all the vertices in C ∪ F ∪ {u,w, t}. By Corollaries 4.39 and 4.31(a),
all vertices in A′ are adjacent to zi in G2. By Lemma 4.41, all vertices in Q \ bp(L) are
adjacent to zi in G2. Thus, every vertex in N [u] \ bp(L) is adjacent in G2 to either zi
or mate(zi). Hence, each branch set in B1 is adjacent to each branch set in Bp. Since
zi ∈ N(s) for 1 ≤ i ≤ |D′ ∪ L|, we have that zi and zj are adjacent in G2 for all
1 ≤ i 6= j ≤ |D′ ∪ L|. Hence, the branch sets in Bp are pairwise adjacent. Thus, all the
branch sets in B are pairwise adjacent.

Lemma 4.43. |B| ≥ χ(G2).

Proof. First let us consider Case A, i.e, when |A′| ≤ |D′ ∪ L|. In this case,

|B1| = |N [w] ∪ F |
= |B ∪ C ∪ ∪{w, t, u} ∪ F | (by Lemma 4.10)

Also, |Bp| = |A′| in this case. Hence,

|B| = |B1|+ |Bp|
= |B ∪ C ∪ F ∪ {w, t, u} |+ |A′|
≥ |B ∪ C ∪ F ∪ {w, t, u} ∪A′|

By Lemma 4.21, we know

B ∪ C ∪ F ∪ {w, t, u} ∪A′ = N2[p] \Q

Then,

µ(B ∪ C ∪ F ∪ {w, t, u} ∪A′) = µ(N2[p] \Q)

Since µ(Q) = µ(Q′) ⊆ µ(B) by Lemma 4.20,

µ(B ∪ C ∪ F ∪ {w, t, u} ∪A′) = µ
(
N2 [p]

)
= χ(G2) (using Lemma 4.8).

Thus,

|B| = |B ∪ C ∪ F ∪ {w, t, u} ∪A′|
≥ |µ

(
B ∪ C ∪ F ∪ {w, t, u} ∪A′

)
|

= χ(G2)

Now consider Case B, i.e., when |D′ ∪ L| < |A′|. In this case,

|B1| = |N [u] \ bp(L)|
= |C ∪ F ∪A′ ∪ (Q \ bp(L)) ∪ {w, t, u} | (by definition of Q)

80

4.4. Hadwiger’s Conjecture and Squares of 2-Trees

Also, |Bp| = |D′ ∪ L| in this case. Hence,

|B| = |B1|+ |Bp|
= |C ∪ F ∪A′ ∪ (Q \ bp(L)) ∪ {w, t, u} |+ |D′ ∪ L|
≥ |C ∪ F ∪A′ ∪ (Q \ bp(L)) ∪ {w, t, u} ∪D′ ∪ L|
≥ |µ

(
C ∪ F ∪A′ ∪ (Q \ bp(L)) ∪ {w, t, u} ∪D′ ∪ L

)
|

We know µ(D′) = µ(D) by Lemma 4.30, µ(L) = µ(bp(L)) by the definition of bridging
partner, and µ(Q′) = µ(Q) by Lemma 4.20. Therefore,

|B| ≥ |µ
(
C ∪ F ∪A′ ∪Q′ ∪ {w, t, u} ∪D

)
|

≥ |µ(N2[p])| (using Lemma 4.21)
= χ(G2) (using Lemma 4.8).

Theorem 4.5 follows immediately from Lemmas 4.42 and 4.43.

4.4.6 A summary of different vertex sets used and relations between
them

• µ, p := the pivot coloring and the pivot vertex respectively. Out of all (coloring,
vertex) pairs that satisfy Lemma 4.7, we select a pair (µ, p) such that the minimum
level of the vertices in N(p) is as large as possible;

• uw := the parent of p;

• t := the vertex such that w is a child of ut, so that the level of ut is `max − 2, and
uw and wt are siblings with level `max − 1 (the existence of t is ensured by the fact
that `max ≥ 2);

• B := the set of vertex-children of wt;

• C := the set of vertex-children of uw;

• F := (N(u) ∩N(t)) \ {w};

• C ′ := {x ∈ N(t) : µ(x) ∈ µ(C)};

• µ(C ′) ⊆ µ(C);

• A := N(t) \ (B ∪ F ∪ C ′ ∪ {u,w});

• A′ := {x ∈ N(u) : µ(x) ∈ µ(A)};

• µ(A′) = µ(A);

• Q := N(u) \ (A′ ∪ C ∪ F ∪ {w, t});

• D := {x ∈ B : µ(x) /∈ µ(N(u))};

81

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

• Q′ := B \D;

• µ(Q) = µ(Q′) unless D = ∅ (the case D = ∅ can be dealt with easily as shown in
Lemma 4.17);

• s := the vertex in F such that ut is a child of st;

• D′ := {x ∈ N(s) : µ(x) ∈ µ(D)};

• µ(D′) = µ (D);

• L := A bridging set (see Definition 4.32) with maximum cardinality;

• µ(L) ⊆ µ(Q).

• µ(bp(L)) = µ(L).

4.5 Hadwiger’s Conjecture for Squares of Generalized 2-
Trees

We now prove Corollary 4.6 using Theorem 4.5. We will use induction on the number
of vertices. It can be easily verified that if G is a generalized 2-tree with small number
of vertices, say at most 4, then G2 has a clique minor of order χ(G2) for which each
branch set induces a path. Our induction assumption is that for some integer n ≥ 5, for
any generalized 2-tree H with at most n − 1 vertices, H2 has a clique minor of order
χ(H2) for which each branch set induces a path. Let G be a generalized 2-tree with
n vertices. If G is a 2-tree, then by Theorem 4.5, the result in Corollary 4.6 is true
for G2. Assume that G is not a 2-tree. Then at some step in the construction of G, a
newly added vertex v is made adjacent to a single vertex u in the existing graph. Then
the vertices which are descendants of v or uv will never be adjacent to any vertices
that were created before v except u. This means that u is a cut vertex of G. Thus
G is the union of two edge-disjoint subgraphs G1, G2 with V (G1) ∩ V (G2) = {u}. If
χ(G2) ≤ NG[u], then we have a clique in G2 of size at least χ(G2) as NG[u] is a clique
in G2. Then we have a clique minor with the branch sets as singletons and hence we are
done. Hence, assume that χ(G2) > NG[u]. Without loss of generality we may assume
χ(G2

1) ≤ χ(G2
2). Observe that G2 is the union of G2

1, G2
2, and the clique induced by

NG[u] in G2. Consider any optimal coloring c1 of G2
1 and c2 of G2

2. So, c1 uses colors
1, 2, . . . , χ(G2

1) and c2 uses colors 1, 2, . . . , χ(G2
2). Denote Ni = NGi(u) for i = 1, 2.

Then in ci, the vertices in Ni need pairwise distinct colors. We can assume without
loss of generality that both c1 and c2 uses color 1 for u (otherwise just swap the color
used on u and 1 everywhere). Similarly, we can also assume without loss of generality
that c1 colors N1 with colors 2, 3, . . . , |N1| + 1 and and that c2 colors N2 with colors
χ(G2

2), χ(G2
2)−1, . . . , χ(G2

2)−|N2|+1. Since χ(G2) > NG[u] = |N1|+|N2|+1 and χ(G2
2) >

χ(G2
1), we have that the colors 1, 2, 3, . . . , |N1|+1, χ(G2

2), χ(G2
2)−1, . . . , χ(G2

2)−|N2|+1
are all distinct with each other. Hence the coloring c where we take c(v) = c1(v) if
v ∈ V (G1) and c(v) = c2(v) if v ∈ V (G2) is a proper coloring of G2. Also, observe
that c uses only χ(G2

2) many colors. Since G2 is a generalized 2-tree, by the induction

82

4.6. Concluding remarks and Open Problems

.....

.....

..........

...
..

Figure 4.9: A 2-tree G with ω(G2) = 2λ+ 5 and χ(G2) = 3λ+ 3.

hypothesis, G2
2 has a clique minor of size χ(G2

2) for which each branch set induces a path.
This clique minor then gives the required clique minor for G2.

4.6 Concluding remarks and Open Problems

We have proved that for any 2-tree G, G2 has a clique minor of order χ(G2). Since large
cliques played an important role in our proof of this result, it is natural to ask whether
G2 has a clique of order close to χ(G2), say, ω(G2) ≥ cχ(G2) for a constant c close to 1 or
even ω(G2) = χ(G2). Since the class of 2-trees contains all maximal outerplanar graphs,
this question seems to be relevant to Wegner’s conjecture [160], which asserts that for any
planar graph G with maximum degree ∆, χ(G2) is bounded from above by 7 if ∆ = 3,
by ∆ + 5 if 4 ≤ ∆ ≤ 7, and by (3∆/2) + 1 if ∆ ≥ 8. For ∆ = 3, this conjecture has been
proved by Thomassen in [154]. In the case of outerplanar graphs with ∆ = 3, a stronger
result holds as shown by Li and Zhou in [114]. In [115], Lih, Wang and Zhu proved
that for any K4-minor free graph G with ∆ ≥ 4, χ(G2) ≤ (3∆/2) + 1. Since 2-trees are
K4-minor free, this bound holds for them. Combining this with ω(G2) ≥ ∆(G), we then
have ω(G2) ≥ 2(χ(G2) − 1)/3 for any 2-tree G. It turns out that the factor 2/3 here
is the best one can hope for: In Figure 4.9, we give a 2-tree whose square has clique
number 2λ+ 5 and chromatic number 3λ+ 3.

In view of Theorem 4.5, the obvious next step would be to prove Hadwiger’s conjecture
for squares of k-trees for a fixed k ≥ 3. Since squares of 2-trees are 2-simplicial graphs,
another related problem would be to prove Hadwiger’s conjecture for the class of 2-
simplicial graphs or some interesting subclasses of it. It is also interesting to work on
Hadwiger’s conjecture for squares of some other special classes of graphs such as planar
graphs.

83

Chapter 4. Hadwiger’s Conjecture for Squares of 2-Trees

84

CHAPTER 5
Rainbow Coloring and its Variants

5.1 Introduction

Graph coloring and graph connectivity are two of the most famous topics in graph
algorithms. Many different types of colorings and connectivity measures have been
considered throughout time. The concept of rainbow coloring brings these two extensively
studied topics together. Rainbow coloring was first defined a decade ago by Chartrand et
al. [43] using edge colorings. Let G be a connected, edge-colored graph. A rainbow
path in G is a path whose edges are all colored with distinct colors. The graph G is
said to be rainbow connected if there is a rainbow path between every pair of its vertices.
The rainbow connection number of a graph G, denoted by rc(G), is the smallest
number of colors needed to color the edges of G such that G is rainbow connected
under this coloring. Such a coloring is called Rainbow Coloring (RC). The resulting
computational problem is as follows.

k-RC
Input: a connected graph G
Output: Is rc(G) ≤ k?

This problem has various applications in telecommunications, data transfer, and
encryption [110, 31, 53] and has been studied rather thoroughly from both graph-theoretic
and complexity-theoretic viewpoints. The rainbow connection number has attracted
much attention, and the exact number is known for a variety of simple graph classes [43,
40, 150] and the complexity of computing this number was broadly investigated [8, 17,
31, 40, 41]. See Section 5.1.4 and also the surveys by Li et al. [110, 113] for specifics.

To prove an upper bound on rc(G), the choice of the path P that is rainbow colored
is crucial. The analysis would seem simpler when we are able to choose P as a shortest
path between its two endpoints. This leads to the definition of the strong rainbow
connection number of a graph. Formally, the strong rainbow connection number
src(G) of a graph G is the smallest number of colors needed such that there exists a
coloring of E(G) with these colors such that, for every pair of vertices, there exists
at least one shortest path P between them, such that P is a rainbow path. We call
such a coloring as a Strong Rainbow Coloring (SRC) of the graph. The resultant
computational problem is defined as follows.

k-SRC
Input: a connected graph G
Output: Is src(G) ≤ k?

Clearly, src(G) ≥ rc(G), and both parameters are at least the diameter ofG. Moreover,
rc(G) = 2 if and only if src(G) = 2 [31]. See section 5.1.4 for further related work on
SRC.

Chapter 5. Rainbow Coloring and its Variants

5.1.1 Rainbow Coloring and Forest Number

While introducing the rainbow coloring parameters, Chartrand et al. [43] also determined
some basic properties and their values for some structured graphs. It is straightforward
to verify that diam(G) ≤ rc(G) ≤ src(G) ≤ m, where m is the number of edges of G. It
is not difficult to see that rc(G) = src(G) = 1 if and only if G is complete. On the other
hand, it holds that rc(G) = src(G) = m if and only if G is a tree. Chartrand et al. [43]
also determined the exact (strong) rainbow connection numbers for cycle graphs, wheel
graphs, and complete multipartite graphs.

It has turned out that domination is a useful concept when deriving upper bounds on
rc(G) (see e.g., [30, 100, 35], see Section 5.1.4 for specifics). In addition to domination,
various authors (see e.g., [30]) have noted trees to be useful in bounding rc(G). More
precisely, it is easy to see that rc(G) ≤ n−1 by coloring the edges of a spanning tree of G
in distinct colors, and assigning an already used color for the remaining edges. Moreover,
Kamčev et al. [90] proved that rc(G) ≤ diam(G1) + diam(G2) + c, where G1 = (V,E1)
and G2 = (V,E2) are connected spanning subgraphs of G and c ≤ |E1 ∩E2|. Lauri [102,
Section 6] suggested bounds on rc(G) and src(G) in terms of other, possibly “tree-related”,
graph parameters. The author used GraPHedron [123], which is a computer-assisted
system for automated conjecture-making. In particular, based on exhaustive enumeration
on all small graphs (typically with at most eight vertices), the system is able to suggest
conjectures in form of inequalities. Two conjectures made by GraPHedron are as follows,
and have been verified for all connected simple graphs with at most eight vertices. Notice
that in both, src(G) can be replaced by rc(G), since rc(G) ≤ src(G).

Conjecture 5.1 (GraPHedron). A connected graph G with n vertices and chromatic
number χ(G) has src(G) ≤ n+ 1− χ(G).

Conjecture 5.2 (GraPHedron). A connected graph G with forest number f(G) has
src(G) ≤ f(G)− 1.

As stated in [102, Section 6], a weaker form of Conjecture 5.1 is that src(G) ≤
n + 1 − ω(G), where ω(G) is the size of a largest clique in G. An even weaker form is
src(G) ≤ n− 1, which does not follow by the same argument we used for showing that
rc(G) ≤ n− 1. To the best of our knowledge, the status of these conjectures are open.

To understand Conjecture 5.2, recall that the forest number of G, denoted by f(G), is
the number of vertices in any maximum induced forest of G. A tightly related parameter
is the size of a largest induced tree in G, denoted by t(G), whose study was initiated
by Erdös et al. [62]. Clearly, as t(G) ≤ f(G), it might be tempting to conjecture that
src(G) ≤ t(G)− 1. However, this statement is disproved by taking H to be a K4 with a
pendant vertex attached to each of its vertices. In this case, src(H) = 4, but t(H) = 4
whereas f(H) = 6.

Our Contribution

We make partial progress towards settling Conjecture 5.2. In particular, we prove the
following weaker form of it in Section 5.2.

Theorem 5.3. A connected graph G with forest number f(G) has rc(G) ≤ f(G) + 2.

86

5.1. Introduction

We also make partial progress towards proving Conjecture 5.1 by showing that
src(G) ≤ n+ 1− χ(G) holds when G is chordal, in Corollary 5.50 of Section 5.3.

5.1.2 Very Strong Rainbow Coloring

Non-trivial upper bounds on src(G) are known for some simple graph classes such as
cycles, wheels, and complete bipartite graphs [43] and block graphs [102]. The recent
survey by Li and Sun [113] mentions only one bound on src(G), which is a bound in
terms of the number of edge disjoint triangles of G [111]. The lack of combinatorial
bounds on src(G) for G in specific graph classes is somewhat surprising compared to the
vast literature for rc(G) (see the surveys [110, 112, 113]). Li and Sun [113] explain this
by the fact that src(G) is not a monotone graph property, and thus investigating src(G)
is much harder than investigating rc(G). Hence, it is a major open question to prove
upper bounds on src(G).

Our Contribution

We make significant progress on the above question. We observe that to prove upper
bounds on src(G), it suffices to prove the existence of a coloring where all edges of not
just one, but of all shortest paths between two vertices receive different colors. Therefore,
we define the very strong rainbow connection number, denoted by vsrc(G), of a
graph G, which is the smallest number of colors for which there exists a coloring of
E(G) such that, for every pair of vertices and every shortest path P between them, all
edges of P receive different colors. We call a coloring that achieves this property a very
strong rainbow coloring (VSRC) of the graph. We also define the corresponding
computational problem as below.

k-VSRC
Input: a connected graph G
Output: Is vsrc(G) ≤ k?

We prove the first combinatorial upper bounds on vsrc(G) for several graph classes.
These immediately imply upper bounds on src(G) for the same graph classes. In partic-
ular, we show upper bounds that are linear in |V (G)| (improving from the trivial bound
of |E(G)|) if G is a chordal graph, a circular arc graph, or a disk graph. The upper
bound on src that we obtain for chordal graphs proves Conjecture 5.1 for the class of
chordal graphs.

Conversely, we prove that a bound on vsrc(G) implies that G should be highly
structured: the neighborhood of every vertex can be partitioned into vsrc(G) many
cliques. For further details, we refer to Section 5.3.

Then, we address the computational complexity of k-VSRC. To start our investiga-
tion, we prove the following hardness result on general graphs. See Section 5.4 for the
details.

Theorem 5.4. 3-VSRC is NP-complete. Moreover, there is no polynomial-time algo-
rithm that approximates vsrc(G) within a factor |V (G)|1−ε for any ε > 0, unless P=NP.

This result implies that k-VSRC is not fixed-parameter tractable when parameterized
by k, unless P=NP. In order to prove the theorem, we show a nontrivial connection to

87

Chapter 5. Rainbow Coloring and its Variants

the clique partition number of a graph.
We remark that, in contrast to the NP-complete 2-Rc and 2-Src problems, 2-

VSRC can be solved in polynomial time (see Section 5.6 for the proof). Together with
Theorem 5.4, this gives a dichotomy result for the complexity of k-VSRC.

Proposition 5.5. 2-VSRC can be decided in polynomial time.

We then study the complexity of determining vsrc(G) for graphs of bounded treewidth.
This is a major open question also for src(G) and rc(G) [102], which are only known to
be solvable in polynomial time on graphs of treewidth 1. We mention that no results for
graphs of higher treewidth are known, even for outerplanar or cactus graphs. However,
for the slightly different problem of deciding whether an already given coloring forms
a (strong) rainbow coloring of a given graph, a polynomial-time algorithm for cactus
graphs and an NP-hardness result for outerplanar graphs are known [155].

With this in mind, we focus on cactus graphs and make the first progress towards
understanding the complexity of rainbow coloring problems, in particular of computing
vsrc(G), on graphs of treewidth 2, with the following result.

Theorem 5.6. Let G be any cactus graph. Then vsrc(G) can be computed in polynomial
time.

Our algorithm relies on an extensive characterization result for the behavior of very
strong rainbow colorings on cactus graphs. Since a cactus graph consists of bridges, even
cycles, and odd cycles, we analyze the behavior of any very strong rainbow coloring of
the graph with respect to these structures. We show that color repetition can mostly
occur only within an odd cycle or even cycle. Odd cycles can repeat some colors from
outside but we characterize how they can be repeated. However, our arguments are not
sufficient to derive a completely combinatorial bound. Instead, we must find a maximum
matching in a well-chosen auxiliary graph to compute the very strong rainbow connection
number. See Section 5.5 for further details.

We also observe that vsrc(G) can be computed efficiently for graphs having bounded
treewidth, when vsrc(G) itself is small. In contrast to known results for the (strong)
rainbow connection number [55], we present an algorithm that does not rely on Courcelle’s
theorem. (See section 5.6 for details.)

Theorem 5.7. k-VSRC is fixed-parameter tractable when parameterized by k + tw,
where tw is the treewidth of the input graph.

5.1.3 Rainbow Vertex Coloring

The intense interest in Rainbow Coloring led Krivelevich and Yuster [100] to define
a natural variant on vertex-colored graphs. Here, a path in a vertex-colored graph H
is a rainbow vertex path if all its internal vertices have distinct colors. We say that
H is rainbow vertex connected if there is a rainbow vertex path between every pair
of its vertices. The rainbow vertex connection number, denoted by rvc(G), of a
graph G is the smallest number of colors needed to color the vertices of G such that
G is rainbow vertex connected under this coloring. Such a coloring is called Rainbow
Vertex Coloring (RVC). The resulting computational problem is as follows.

88

5.1. Introduction

k-RVC
Input: a connected graph G
Output: Is rvc(G) ≤ k?

k-RVC is NP-complete for every k ≥ 2 [48, 47], and remains NP-complete for k = 3
for bipartite graphs [108]. In addition, it is NP-hard to approximate rvc(G) within a
factor of 2 − ε unless P 6= NP, for any ε > 0 [56]. It is also known that k-RVC is
linear-time solvable on planar graphs for every fixed k [102]. Finally, assuming the
Exponential Time Hypothesis, there is no algorithm for solving k-RVC in time 2o(n3/2)

for any k ≥ 2 [102].
A stronger variant of rainbow vertex-colorings was introduced by Li et al. [109]. A

vertex-colored graph H is strongly rainbow vertex connected if between every pair of
vertices of H, there is a shortest path that is also a rainbow vertex path. A coloring
under which G becomes strongly rainbow vertex connected is called a Strong Rainbow
Vertex Coloring (RVC). The resulting computational problem is as follows.

k-RVC
Input: a connected graph G
Output: Is srvc(G) ≤ k?

This definition is the vertex variant of the k-SRC problem. The strong rainbow
vertex connection number of G, denoted by srvc(G), is the minimum k such that G
has a strong rainbow vertex coloring with k colors. k-SRVC is NP-complete for every
k ≥ 2 [55] and linear-time solvable on planar graphs for every fixed k [102]. In addition,
it is NP-hard to approximate srvc(G) within a factor of n1/2−ε unless P 6= NP, for any
ε > 0 [56].

While k-RC has been widely studied in more than 300 published papers, we are
unaware of any further complexity results on k-RVC and k-SRVC than those mentioned
previously. In particular, the complexity of k-RVC and k-SRVC on structured graph
classes is mostly open. This led Lauri [102, Open problem 6.6] to ask the following:

For what restricted graph classes do k-RVC and k-SRVC remain NP-complete?

Our Contribution

We make significant progress towards addressing the above question. In particular, we
study bipartite graphs and chordal graphs, and some of their subclasses, and give hard-
ness results and polynomial-time algorithms for k-RVC and k-SRVC (See Sections 5.7
and 5.8). Our main result is a hardness result for bipartite apex graphs:

Theorem 5.8. Let G be a bipartite apex graph of diameter 4. It is NP-complete to
decide both whether rvc(G) ≤ 4 and whether srvc(G) ≤ 4. Moreover, it is NP-hard to
approximate rvc(G) and srvc(G) within a factor of 5/4− ε, for every ε > 0.

This result is particularly interesting since no hardness result was known on a sparse
graph class (like apex graphs) for any of the variants of rainbow coloring. Moreover, this
result can be considered tight in conjunction with the known result that k-RVC and
k-SRVC are linear-time solvable on planar graphs for every fixed number of colors k [102].
Finally, we observe (like Li et al. [108]) that rvc(G) and srvc(G) can be computed in

89

Chapter 5. Rainbow Coloring and its Variants

linear time if G is a bipartite graph of diameter 3, providing further evidence that this
result is tight.

For general bipartite graphs and for split graphs (a well-known subclass of chordal
graphs), we exhibit stronger hardness results:

Theorem 5.9. Let G be a bipartite graph of diameter 4. It is NP-complete to decide both
whether rvc(G) ≤ k and whether srvc(G) ≤ k, for every k ≥ 3. Moreover, it is NP-hard
to approximate both rvc(G) and srvc(G) within a factor of n1/3−ε, for every ε > 0.

We remark that, previously, it was only known that deciding whether rvc(G) ≤ 3
for bipartite graphs G is NP-complete by the result of [108]. Our construction, however,
is conceptually simpler, gives hardness for every k ≥ 3, and is easily extended to the
strong variant. Moreover, for k-RVC on general graphs, this result implies a considerable
improvement over the previous result of Eiben et al. [56] which only excluded a polynomial-
time approximation with a factor of less than 2 assuming P 6= NP.

Theorem 5.10. Let G be a split graph of diameter 3. It is NP-complete to decide both
whether rvc(G) ≤ k and whether srvc(G) ≤ k, for every k ≥ 2. Moreover, it is NP-hard
to approximate both rvc(G) and srvc(G) within a factor of n1/3−ε, for every ε > 0.

To the best of our knowledge, our results for split graphs give the first non-trivial
graph class besides diameter-2 graphs for which the complexity of the edge and the
vertex variant differ (see e.g, [102, Table 4.2] but note that it contains a typo erroneously
claiming that k-RVC can be solved in polynomial-time for split graphs). In particular,
k-RC can be solved in polynomial time on split graphs when k ≥ 4 [40, 42]. Moreover,
we observe that rvc(G) and srvc(G) can be computed in linear time if G is a graph of
diameter 2, providing evidence that this result is tight.

To contrast our hardness results, we show that both problems can be solved in
polynomial time on several other subclasses of bipartite graphs and chordal graphs.

Theorem 5.11. If G is a bipartite permutation graph, a block graph, or a unit interval
graph, then rvc(G) and srvc(G) can be computed in linear time. If G is an interval graph,
then rvc(G) can be computed in linear time.

Combined, these results paint a much clearer picture of the complexity landscape of
k-RVC and k-SRVC than was possible previously.

5.1.4 Further Related Work

A basic introduction to rainbow coloring can be found in Chapter 11 of the book Chro-
matic Graph Theory by Chartrand and Zhang [43] and we refer to [102, 110] for detailed
surveys on rainbow coloring and its variants. The concept of rainbow coloring was intro-
duced by Chartrand, Johns, McKeon, and Zhang [43] in 2008. The rainbow connection
number and strong rainbow connection number have been studied from both algorithmic
and graph-theoretic points of view. The exact rainbow connection numbers are known
for a variety of simple graph classes, such as wheel graphs, complete multipartite graphs
[43], unit interval graphs [150], and threshold graphs [40].

Much of the research on rainbow connectivity has focused on finding bounds on
the parameters, either in terms of the number of vertices n or some other well-known

90

5.1. Introduction

parameters. For 2-connected graphs, Ekstein et al. [57] showed that rc(G) ≤ dn/2e, and
this is tight as witnessed by e.g., odd cycles. Further, it has turned out that domination is
a useful concept when deriving upper bounds on rc(G) (see e.g., [30, 100, 35]). Specifically,
Chandran et al. [35] proved that rc(G) ≤ 3n

δ+1 + 3, where δ denotes the minimum degree
of G. Moreover, the authors derived that when δ ≥ 2, then rc(G) ≤ γc(G) + 2, where
γc(G) is the connected domination number (see preliminaries in Section 5.1.5). For some
structured graph classes, this leads to upper bounds of the form rc(G) ≤ diam(G) + c,
where c is a small constant. For instance, it follows that rc(G) ≤ diam(G) + 1 where G is
an interval graph with δ ≥ 2, and rc(G) ≤ diam(G)+3, where G is an AT-free graph with
δ ≥ 2. Note that these bounds are almost tight as diam(G) is a lower bound for rc(G).
For a more comprehensive treatment, we refer the curious reader to the books [44, 107]
and the surveys [110, 113].

Rainbow coloring is a notoriously hard problem computationally. It was shown
by Chakraborty et al. [31] that 2-RC is NP-complete, and Ananth et al. [8] showed
that for any k > 2, k-RC is NP-complete. Later, Chandran and Rajendraprasad
[40] strengthened this result to hold even for chordal graphs. Basavaraju et al. [17]
gave an (r + 3)-factor approximation algorithm to rainbow color a graph of radius r.
Chandran and Rajendraprasad [41] proved that there is no polynomial time algorithm
that approximates rainbow connection number of a graph within a factor smaller than
2. On split graphs, k-RC is NP-complete when k ∈ {2, 3}, but solvable in polynomial
time otherwise [40, 42]. It is also solvable in polynomial time on threshold graphs [40].
On bridgeless chordal graphs, there is a linear-time (3/2)-approximation algorithm for
k-RC, however the problem cannot be approximated with a factor less than 5/4 on this
graph class, unless P = NP [41]. Recently, Kowalik et al. showed that for any k ≥ 2,
k-RC cannot be solved in 2o(n3/2) or 2o(m/ logm) time, where n = |V (G)| and m = |E(G)|,
unless ETH fails [97]. Agrawal improved the lower bound to 2o(m) [4].

It was shown in [31] that rc = 2 if and only if src = 2 and hence k-SRC is NP-
complete for k = 2. The problem remains NP-complete for bipartite graphs [8] and split
graphs [103]. In [8], it is shown that the strong rainbow connection number of a bipartite
graph of n vertices cannot be approximated within a factor of n1/2−ε, where ε > 0 unless
NP = ZPP . The same holds for split graphs [103].

For k = 2, it is not difficult to verify that k-RC is equivalent to k-SRC. Not
surprisingly, k-SRC is also NP-complete for k ≥ 2 [8]. In contrast to k-RC, k-SRC
remains hard on split graphs for every k ≥ 2 [102, Theorem 4.1]. Moreover, on n-vertex
split graphs, it is NP-hard to approximate k-SRC within a factor of n1/2−ε for any ε > 0,
while k-RC admits an additive-1 approximation [40]. The former statement also holds
for n-vertex bipartite graphs instead of split graphs [8]. For block graphs, computing
k-SRC can be done in linear time [93], while k-RC on block graphs is conjectured to be
hard (see [102, Conjecture 6.3] or [93]). In general, it appears that despite the interest,
there are fewer complexity-theoretic results on k-SRC. In fact, the same is true when
considering combinatorial results (see [110] for a broader discussion).

Some other variants of rainbow problems have been studied as well. When a coloring
of the edges or the vertices of a graph is already given as input, we can ask whether
the graph is rainbow-connected or rainbow vertex-connected. Both of these problems
are known to be NP-complete even on highly restricted graphs, like interval graphs,
series-parallel graphs, and k-regular graphs for every k ≥ 3 [104, 103, 155]. However,

91

Chapter 5. Rainbow Coloring and its Variants

we stress that these problems are strictly different from k-RC and k-RVC. That is,
complexity results on one problem are not transferable to the other.

5.1.5 Preliminaries

Given a digraph G, we denote by G̃, the underlying undirected (multi) graph of it, by
which we mean that the vertex set is the same and for every directed edge −→uv in G, we
put an undirected edge between u and v in G̃. For any two vertices u, v in a tree T , let
Tuv denote the unique path between u and v in T .

A block of a graph is a maximal 2-connected component. A cactus graph is a graph
in which each block of the graph is a cycle or an edge; equivalently, a cactus graph is a
graph in which every edge belongs to at most one cycle.

For a graph G, let Ĝ denote the graph obtained by adding a new vertex û to G such
that û is adjacent to all vertices of G, i.e., û is a universal vertex in Ĝ. We use cp(G) to
denote the clique partition number (or clique cover number) of G, the smallest number
of subsets of V (G) that each induce a clique in G and whose union is V (G).

We use is(G) to denote the smallest size of the universe in any intersection graph
representation of G, and ecc(G) to denote the smallest number of cliques needed to cover
all edges of G. It is known that is(G) = ecc(G) [139].

We define some natural generalizations of line graphs. A graph is k-perfectly groupable
if the neighborhood of each vertex can be partitioned into k or fewer cliques. It is well
known that line graphs are 2-perfectly groupable. A graph is k-perfectly orientable if
there exists an orientation of its edges such that the outgoing neighbors of each vertex
can be partitioned into k or fewer cliques. Clearly, any k-perfectly groupable graph is
also k-perfectly orientable. Many geometric intersection graphs, such as disk graphs, are
known to be k-perfectly orientable for small k [91].

A d-distance coloring of G is a coloring c of G such that c(u) 6= c(v) whenever
dist(u, v) ≤ d. The minimum number of colors needed for a d-distance coloring of G is
known as the d-distance chromatic number of G, and it is denoted by χd(G). Note that
χd(G) is equivalent to χ(Gd), i.e., the chromatic number of the dth power of G.

The parameter strong rainbow vertex coloring (srvc(G)) was defined by Li et al. [109],
and they also verified that diam(G)− 1 ≤ rvc(G) ≤ srvc(G) ≤ |V (G)| − 2. The following
upper bound was mentioned in [102] (see the same reference for further discussion and
examples).

Proposition 5.12 ([102]). Let G be a connected graph with diam(G) = d ≥ 3. Then

d− 1 ≤ rvc(G) ≤ srvc(G) ≤ χd−2(G).

Proof. There are at least two vertices in G connected by a shortest path of length d.
Clearly, every coloring must use at least d− 1 colors to rainbow-connect this pair. On
the other hand, between every pair of vertices u and v, there is a path of length at most
d, meaning that it contains at most d − 1 internal vertices. As every (d − 2)-distance
coloring colors these internal vertices distinctly, the statement follows.

A dominating set of G is a set D ⊆ V such that every vertex in V \D is adjacent
to at least one vertex in D. If G[D] is connected, then D is a connected dominating set.
The minimum size of a connected dominating set in G, denoted by γc(G), is known as

92

5.1. Introduction

the connected domination number of G. This parameter provides an upper bound on
the rainbow vertex connection number of a connected graph, since G becomes rainbow
vertex-connected by simply coloring all vertices of the connected dominating set distinctly,
and the remaining vertices with any of the already used colors. This observation can be
derived from [100].

Proposition 5.13 ([100]). If G is a connected graph, then rvc(G) ≤ γc(G).

We will use the following notions about bipartite graphs: A strong ordering < of
the vertices of a bipartite graph G consists of an ordering of L(G) and an ordering of
R(G) such that for all pair of edges uv, u′v′ ∈ E, where u, u′ ∈ L(G) and v, v′ ∈ R(G), if
u < u′ and v′ < v, then uv′, u′v ∈ E. A bipartite graph G is a chain graph if the vertices
of L(G) can be ordered as {a1, a2, . . . , ak} such that N(a1) ⊆ N(a2) ⊆ · · · ⊆ N(ak).
Note that if G is a chain graph then R(G) also has an ordering {b1, b2, . . . b`} such that
N(b1) ⊆ N(b2) ⊆ · · · ⊆ N(b`).

Hard Problems

For our hardness reductions we will use some well-known NP-complete problems. The
first among them is called Hypergraph k-Coloring. A hypergraph H = (N, E) with
vertex set N and hyperedge set E is a generalization of a graph, in which edges can
contain more than two vertices. Thus E consists of subsets of N of arbitrary size. The
definition of a (vertex) coloring of a hypergraph is a generalization of the vertex coloring
of a graph. In a colored hypergraph, an edge is called monochromatic if all of its vertices
received the same color. A proper coloring of a hypergraph generalizes a proper coloring
of a graph in a natural way: we require that no hyperedge is monochromatic. To avoid
trivial cases, we can assume from now on that every hyperedge contains at least two
vertices. Thus a proper coloring must always use at least two colors.

Hypergraph k-Coloring
Input: a hypergraph H
Output: Is there a proper coloring of H with at most k colors

Hypergraph k-Coloring is well-known to be NP-complete for every k ≥ 2 [117]. We
repeat the definition of the problem Coloring for easy reference.

Coloring
Input: An undirected graph G
Output: The smallest k such that G has a proper k-coloring

.

Coloring is NP-hard to approximate within a factor of n1−ε for any ε > 0, where n
is the number of vertices [164]. The following problem is known to be NP-complete [71].

Planar 3-Coloring
Input: a planar graph G
Output: Does G have a proper 3-coloring?

93

Chapter 5. Rainbow Coloring and its Variants

5.2 RC and Forest Number

Let G be a connected graph, V = V (G) and E = E(G). Let rc denote the rainbow
connection number of G and f denote the forest number of G. We will prove that
rc ≤ f + 2, thereby proving Theorem 5.3.

5.2.1 Take 1: rc ≤ 3f − 1
In this section, we prove a much easier weaker bound, which is that rc ≤ 3f − 1.

Lemma 5.14. If there is a set D ⊆ V such that G[D] is connected and every vertex in
V \D has at least 2 neighbors in D, then rc ≤ |D|+ 1.

Proof. Since G[D] is connected, it has at least one spanning tree. Pick an arbitrary
spanning tree τ of G[D] and color its edges with distinct colors from 1 to |D|−1. Clearly,
G[D] is now rainbow-connected. We now extend the rainbow-connection to rest of the
graph. Every vertex v ∈ V \D has at least 2 neighbors in D by the second precondition
of the lemma. For each v ∈ V \D, pick any 2 neighbors in D; call them d1(v) and d2(v).
Color the edge vd1(v) with color |D| and vd2(v) with color |D| + 1. Now let us prove
that there is a rainbow path between any u, v ∈ V (G).
Case 1. u, v ∈ V (D): There is a rainbow path between u and v as G[D] is rainbow-
connected via the spanning tree τ .
Case 2. u ∈ V \D and v ∈ D: There is a rainbow path between d1(u) and v via τ and
this path uses only colors from 1 to |D| − 1. Since ud1(u) is colored with color |D|, we
have a rainbow path between u and v.
Case 3. u ∈ D and v ∈ V \D: Similar to case 2.
Case 4. u, v ∈ V \D: There is a rainbow path between d1(u) and d2(v) via τ and this
path uses only colors from 1 to |D|−1. Since ud1(u) is colored with color |D| and vd2(v)
is colored with color |D|+ 1, we have a rainbow path between u and v.

Let F be a maximum induced forest of G. Let F be the set of vertices in F . Let T
denote the set of connected components (trees) of F .

Lemma 5.15. For any maximum induced forest F of G and for any v ∈ V \ V (F),
there exists a connected component (tree) of F such that, v has at least 2 neighbors in T .

Proof. Otherwise, G[F ∪ {v}] is a forest, which contradicts the maximality of F .

Lemma 5.16. There exists a vertex set A ⊆ V \ F of size at most 2|F | − 2 such that
G[F ∪A] is connected.

Proof. Let B be the smallest subset of V \F such that G[F ∪B] has a smaller number of
connected components than G[F]. We show that |B| ≤ 2. From the minimality of B, it
follows that B induces a path in G that connects two trees in T . Let b1, b2, · · · , bk be the
vertices in this path, where b1 and bk are adjacent to distinct trees T1 and T2 respectively.
Due to Lemma 5.15, b2 has an edge to some tree T ∈ T . If T = T1, then B \ {b1} would
also connect T1 and T2. Hence T 6= T1. But then the vertex set {b1, b2} is sufficient to
connect T and T1 and thereby reduce the number of components. This implies k = 2
and hence |B| ≤ 2. Now, we add B to F to reduce the number of connected components

94

5.2. RC and Forest Number

by at least 1. Then we can repeat the process again until we get a single connected
component. At each stage, the currently existing connected components take the role of
the Ti’s. We only need to repeat the process at most |F | − 1 times until we get a single
connected component. Since each repetition adds at most 2 vertices, the total number
of vertices that we add is at most 2|F | − 2.

Lemmas 5.14, 5.15 and Lemma 5.16 together imply that rc ≤ 3f − 1 as follows. By
Lemma 5.16, we have a set A such that G[F ∪A] is connected and |A| ≤ 2|F | − 2. Let
D = F ∪A. By Lemma 5.15, we have that each vertex in V \D has at least 2 neighbors
in D. Thus D satisfies both preconditions of Lemma 5.14 and hence

rc ≤ |D|+ 1 ≤ |F |+ |A|+ 1 ≤ |F |+ 2|F | − 2 + 1 = 3f − 1.

5.2.2 Take 2: rc ≤ 2f + 2
In this section we strengthen the bound to 2f + 2. Many of the concepts and techniques
that we use in the final proof are already introduced here. See Figure 5.1 for an illustration
of this section.

Let F be a maximum induced forest of G. Let F be the set of vertices in F . Let T
be the set of trees (connected components) of F and t = |T | be the number of trees. Let
S := V \ F . We call an edge uv of G a tree-edge if both u and v belong to the same
tree in T ; otherwise the edge is called a non-tree edge.

Let H be the graph obtained from G by contracting each tree in T to a single vertex.
Formally, we define H as follows:

V (H) := VT ∪ S where,
VT := {xT : T ∈ T }

E(H) := E(G[S]) ∪ {uxT : u ∈ S, T ∈ T , u has at least 1 edge to V (T) in G}

We call the vertices in VT , the tree vertices and the vertices in S, the non-tree
vertices of H. Notice that VT is an independent set in H, because there are no edges
in G between any two distinct connected components of F . We divide the edges of H
into two groups as follows:

E1 := E(G[S]) ∪ {uxT : u ∈ S, T ∈ T , u has exactly 1 edge to V (T) in G}
E2 := {uxT : u ∈ S, T ∈ T , u has at least 2 edges to V (T) in G}

We call the edges in E1 as 1-edges and those in E2 as 2-edges. We define a function
fT : VT → T that maps a tree vertex to its corresponding tree, i.e., fT (xT) = T . For
each edge in H, we define its representatives in G as follows. Consider first a 2-edge
e between u ∈ S and xT ∈ VT . By definition of a 2-edge, u has at least 2 edges to V (T)
in G. We arbitrarily choose 2 of these edges as the representatives in G of the 2-edge e
and denote them by (e)1 and (e)2. For a 1-edge e between u ∈ S and xT ∈ VT , there is
a unique edge between u and V (T) in G, by the definition of a 1-edge. We call this edge,
the representative of uxT in G, denoted by (e)1. For a 1-edge e between u ∈ S and v ∈ S,
we call uv itself as the representative in G. For a 2-edge uxT with its representatives in
G as uv1 and uv2, we call the vertices v1 and v2, the foots of uxT in T .

95

Chapter 5. Rainbow Coloring and its Variants

S

tree-edge

non-tree edge

FT 3T 2T 1 T 4

G

(a) A maximum induced forest F of graph G

S

xT 1

xT 2
xT 3

xT 4

H

V T

(b) The graph H obtained by contraction of trees in F . We use two lines to draw a
2-edge and one line to draw a 1-edge.

Figure 5.1: A graph G, a maximum induced forest F of it, the contracted graph H,
the skeleton B, the directed tree B1, and their coloring according to Take 2. The figure
is continued on the next 2 pages.

96

5.2. RC and Forest Number

xT 1

xT 2
xT 3

xT 4
B

root

par (xT 1)
v

Children of

v

v

LS

(c) The skeleton B

xT 1

xT 2
xT 3

xT 4

B1
root

(d) The directed tree B1

97

Chapter 5. Rainbow Coloring and its Variants

S

FT 3T 2

T 1

T 4

G
1

2

15 1310
9

7
11

6

5
4

3

7

10

16

16

15

color giving edge of

T 1

(e) Our rainbow coloring in Take 2 of the maximum induced forest of graph G. Only
the relevant edges of G are shown in the figure. The direction of edges across S and F
shown are according to the direction in B1. Note that the surplus colors are s1(T1) =
7, s2(T1) = 8, s1(T2) = 9, s2(T2) = 10, s1(T3) = 11, s2(T3) = 12, s1(T4) = 13, s2(T4) = 14
and the global surplus colors are g1 = 15 and g2 = 16.

xT 1

xT 2
xT 3

xT 4

B1
root

1 7

10

9

13

(f) Coloring of B1 according to the coloring procedure in Take 2.

98

5.2. RC and Forest Number

A skeleton is defined as a spanning tree of H with one of the nodes in VT fixed as
its root and all the edges of it directed towards the root. Let B be a skeleton such that
the number of 2-edges in B is as large as possible (or equivalently the number of 1-edges
is as small as possible, as the total number of edges in a skeleton is always |V (G)| − 1).
The parent of a non-root vertex v in B, denoted by par(v), is the other endpoint of the
unique outgoing edge from v. The children of v are the other endpoints of the incoming
edges of v. Let LS be the set of vertices of S that are leaves of B and let B1 be the
directed sub-tree of B defined as B1 := B[V (B) \LS]. For a tree T whose outgoing edge
is a 2-edge, we define the color giving edge of T as follows: Let e be the outgoing
2-edge; v1 and v2 be the foots of e in T . We allocate an arbitrary edge in Tv1v2 as its
color-giving edge.

Lemma 5.17. Every vertex in S has at least one 2-edge incident on it in B.

Proof. Suppose v is a vertex in S that has only 1-edges incident on it in B. By
Lemma 5.15, there exist a T ∈ T such that v has at least 2 edges to T in G. Let
C be the connected component of B \ v that contains the vertex xT . Let e be the unique
edge in B between v and C. Removing e from B and adding 2-edge vxT gives a skeleton
with higher number of 2-edges than B. This is a contradiction to the choice of B.

The above lemma has the following corollaries.

Corollary 5.18. For every vertex in LS, the unique edge incident on it in B is a 2-edge.

Corollary 5.19. Every leaf of B1 is a tree vertex.

Proof. Suppose for the sake of contradiction that there is a leaf v of B1 that is a non-tree
vertex. Clearly, v /∈ LS by the definition of B1. Hence v is not a leaf of B. Thus there
must be a vertex u in LS that has an edge to v in B. Since both u, v ∈ S, the edge uv
is a 1-edge. This is a contradiction to Corollary 5.18.

Coloring procedure: We now give a rainbow coloring of G using f + t + 2 ≤ 2f + 2
colors. Since F is a forest with t connected components, the number of edges in F is f−t.
Color all the edges in F with distinct colors 1, . . . , f − t. We call colors g1 := f + t+ 1
and g2 := f + t+ 2 the global surplus colors. We use the global surplus colors to color
the representatives of those edges of B that are incident on the vertices in LS . Each
vertex in LS has only one edge incident on it in B, and this edge is a 2-edge due to
Corollary 5.18. Color the two representatives of this 2-edge, one with g1 and the other
with g2. Now there are 2t colors, i.e. colors f − t+ 1 to f + t that are unused so far. We
allocate 2 each of these colors as the surplus colors of the trees in T . That is, the ith
tree in T is allocated colors f − t+ 2(i− 1) + 1 and f − t+ 2(i− 1) + 2 as its surplus
colors. We denote the two surplus colors of T by s1(T) and s2(T).

Finally, we give a coloring of the edges of B1 and then extend the coloring to their
representatives in G. Whenever we color an edge e in B1 with color c, we also color the
representatives of e in G also with c, though we may not mention this explicitly. Pick
each T ∈ T such that xT is not the root of B and do the following: Let −−→xT v be the
outgoing edge of vertex xT in B, i.e., v = par(xT); let w = par(v) (if parent of v exists,
i.e., if v is not the root) and let z = par(w) (if w exists and parent of w exists, i.e., if w
is not the root).

99

Chapter 5. Rainbow Coloring and its Variants

Case 1: If xT v is a 2-edge: If xT v is uncolored, then we color it with the same color as
that of the color-giving edge of T . Note that the color-giving edge is already colored as
we have colored all edges inside F . If w exists and vw is uncolored, color vw with s1(T),
the first surplus color of T . If z exists and wz is uncolored, color wz with s2(T), the
second surplus color of T .
Case 2: If xT v is a 1-edge: If xT v is uncolored, then color xT v with s1(T). If w exists
and vw is uncolored, then color vw with s2(T).
We prove in Lemma 5.20 that the above procedure in fact colors all the edges of B1. We
extend this coloring of edges of B1 to their representatives in G as mentioned before: for
each edge e of B1 color their representatives (both representatives in case of 2-edges and
the only representative in case of 1-edge) with the color of e.

There might be some edges in G that are still uncolored. We call them irrelevant
edges. They are called irrelevant because when we exhibit rainbow paths between pairs of
vertices later, these edges will not be used. We call the edges of G that are not irrelevant,
relevant edges. Color all the irrelevant edges with any arbitrary color from [f + t + 2],
just to complete the coloring.

Lemma 5.20. All the edges of B1 are colored and they are colored with distinct colors.

Proof. It is easy to see that the colors are distinct as each color is used only once while
coloring B1. It only remains to prove that all edges are colored. Consider any directed
edge −→uv of B1. If u is a tree vertex i.e, if u ∈ T , then it is easy to see that −→uv is colored
by the procedure. Hence assume that u is not a tree vertex. Since u /∈ VT , u is not a
leaf of B1 by Corollary 5.19, and hence has at least one child in B1. Let x be one such
child. If x ∈ VT , then it is also easy to see that −→uv is colored by the procedure. Hence
assume that x /∈ VT . Now, the edge xu is a 1-edge (as both endpoints are in S). Then,
by Lemma 5.21, a child x′ of x is a tree vertex with xx′ being a 2-edge. Then due to
Case 1 of the coloring procedure, edge −→uv gets colored.

Lemma 5.21. For each 1-edge −→uv in B, either u is a tree vertex, or a child u′ of u is a
tree vertex with u′u being a 2-edge.

Proof. Suppose u is not a tree vertex. Then there is an incoming 2-edge on u, because
its outgoing edge is a 1-edge and there has to be at least one 2-edge incident on it due
to Lemma 5.17. Let the other endpoint of this edge be u′. Since at least one of the
endpoints of a 2-edge has to be a tree vertex, u′ is a tree vertex.

Observation 5.22. Consider a tree T and let v1, v2, and v3 be any 3 vertices in T . Let
e be an edge in Tv2v3. Then, either Tv1v2 or Tv1v3 does not contain the edge e.

We are now ready to prove that the above coloring of the edges of G is indeed a
rainbow coloring. We will prove that there is a rainbow path between every pair of
vertices in G. For this, first we prove in Lemma 5.23 that there is a rainbow path
between any pair of vertices in V (G) \ LS and then in Lemma 5.24, we show that there
is a rainbow path between any pair of vertices in V (G).

For a vertex v in V (G), if v ∈ S define h(v) := v, otherwise (i.e., if v ∈ F) define
h(v) := xT , where T ∈ T is the tree containing v.

100

5.2. RC and Forest Number

Lemma 5.23. For any pair of vertices v1, v2 ∈ V (G) \ LS, there is a rainbow path
between v1 and v2 in G that uses only colors in [f + t].

Proof. Now, consider a pair of vertices v1, v2 ∈ V (G) \ LS . We will construct a rainbow
path P from v1 to v2 using only edges of G having colors from [f + t]. From Lemma 5.20,
we know that there is a rainbow path between v′1 := h(v1) and v′2 := h(v2) in B1 whose
edges are completely contained in B1. Let this path be P ′. We will use the path P ′ as a
guide to construct our required rainbow path P in G. First break P ′ into two paths P ′1
and P ′2 as follows: let v′3 be the least common ancestor of v′1 and v′2 in B1; let P ′1 be the
path from v′1 to v′3 and P ′2 be the path from v′2 to v′3.

We will first construct a path P1 in G starting from v1 using the path P ′1 as a guide:
we start with P1 being just the vertex v1. We maintain a current vertex in G, denoted
by vG, which is initialized to v1.

Now, as long as h(vG) 6= v′3, repeat the following step:
Let e be the outgoing edge from h(vG) in B1. Note that e is the next edge in P ′1 that
we have not processed yet.
Case 1. If h(vG) ∈ S: Append (e)1 to P1. Also, update vG to be the other endpoint of
(e)1.
Case 2. If h(vG) ∈ VT : Let xT = h(vG).
Case 2.1. If e is a 1-edge: Let z be the endpoint of e in T . Append the path TvGz to P1.
Now, append (e)1 to P1. Update vG to be the endpoint of (e)1 outside T .
Case 2.2. If e is a 2-edge: Let z1 and z2 be the foots of e in T . Observe that vG ∈ V (T)
as h(vG) = xT . By Observation 5.22, there exist a z ∈ {z1, z2} such that there is a path
from vG to z that excludes the color-giving edge of T . Append this path to P1. Now,
append to P1 the representative of e having one of the endpoints as z. Update vG to be
the endpoint outside T of this representative.

Similarly we also construct P2 starting from v2 using P ′2 as a guide.
If v′3 ∈ S, then we take P := P1P2. Otherwise if v′3 ∈ VT we define P as follows: Let

T = fT (v′3). There are vertices w1, w2 ∈ V (T) that are the ending vertices of P1 and P2
respectively. Let P3 be the path Tw1w2 . Take P := P1P3P2.

By construction, it is clear that P is indeed a path from v1 to v2. It only remains to
prove that P is a rainbow path. First note that we have only used relevant edges with
colors from [f + t] in P . In our coloring of the edges of G, each of the colors 1, 2 · · · , f − t
except the colors of the color-giving edges, have been used only for one relevant edge.
Recall that the color of the color giving edge of a tree T can possibly be repeated on
the representatives of the outgoing edge of xT in B. But when constructing P , we have
taken care not to include the color-giving edge of T in P if P contains a representative
of the outgoing edge in of xT . Also, we have included at most one of the representatives
of the outgoing edge of xT in P . Thus the colors 1, 2, · · · , f − t appear at most once
in P . Each of the colors from f − t + 1 to f + t (surplus colors of the trees) appears
on at most 2 relevant edges. And, if it appears on 2 edges then those 2 edges are the 2
representatives of some 2-edge of B. Since we constructed P in such a way that at most
one representative of any edge in B is included in P , each surplus color appears at most
once in P . Thus P is a rainbow path.

Lemma 5.24. For any pair of vertices v1, v2 ∈ V (G), there is a rainbow path between
v1 and v2 in G.

101

Chapter 5. Rainbow Coloring and its Variants

Proof. Consider any pair of vertices v1, v2 ∈ V (G). If both v1, v2 ∈ V (G) \ LS , then we
are done by Lemma 5.23. Hence assume without loss of generality that v1 ∈ LS . Let
e1 be the edge incident on v1 that is colored g1, and let a be the other endpoint of e1.
If v2 ∈ LS , let e2 be the edge incident on v2 that is colored g2, and let b be the other
endpoint of e2. If v2 /∈ LS , let b = v2. We know that there is a rainbow path P from a
to b that uses only colors in [f + t] due to Lemma 5.23. We define a path P ′ as follows.
If v2 ∈ LS , then P ′ := v1aPbv2; otherwise, i.e., if v2 /∈ LS , then P ′ := v1aPv2. Since
edge v1a is colored with g1 = f + t+ 1, edge bv2 is colored with g2 = f + t+ 2, and path
P uses only colors in [f + t], we have that the path P ′ is indeed a rainbow path between
v1 and v2.

5.2.3 Take 3: rc ≤ f + 2

In Take 2, we gave 2 surplus colors to each tree. Here, we give only 1 surplus color to
each tree and thereby reduce the number of colors used. But the analysis has to be much
more tighter to make the proof work with 1 surplus color per tree. This makes the proof
much more technical and lengthy.

Similar to Take 2, we now fix a maximum induced forest F of G. But here, we
fix a maximum induced forest with an additional property. Let F be the maximum
induced forest that has the smallest number of connected components (trees) out of all
the maximum induced forests of G. Now that F is fixed, we define F, S,H, VT , E1, E2, fT ,
tree vertices, non-tree vertices, 1-edges, 2-edges, representatives, foots, and skeleton the
same way as in Take 2. But the selection of skeleton B is done in a more involved way
here. Given a skeleton B with root r, we define level of each node v (denoted by `B(v))
as its distance (in terms of number of vertices) to r in B. Note that the level of root r
is 1 as per this definition. For a skeleton B, we define its configuration vector as the
following vector:

〈 |E2(B)|,Σv:`B(v)=1degB(v),Σv:`B(v)=2degB(v), · · · ,Σv:`B(v)=|V |degB(v) 〉

where degB(v) is the total degree (in-degree + out-degree) of v in B. We now fix a
skeleton B such that it has the lexicographically highest configuration vector out of all
possible skeletons. We also define LS and B1 the same way as in Take 2, i.e., LS is the set
of vertices in S that are leaves of B, and B1 = B[V (B) \ LS]. Let B̃1 be the underlying
undirected tree of B1. We note that since the first element of the configuration vector
is the number of 2-edges, Lemma 5.17, Corollaries 5.18 and 5.19, and Lemma 5.21 from
Take 2 holds for B here as well.

We define a mapping h from G to H as follows. For a vertex v in V (G), if v ∈ S
define h(v) := v, otherwise (i.e., if v ∈ F) define h(v) := xT , where T ∈ T is the tree
containing v. For a non-tree edge uv in G, we define h(e) to be the edge h(u)h(v). For
a vertex subset U of V (G), we define h(U) to be

⋃
a∈U h(a). For an edge subset E′ of

E(G), we define h(E′) to be {h(e) : e ∈ E′ and e is a non-tree edge}. For a subgraph
G′ of G, we define h(G′) as the subgraph of H with vertex set h(V (G′)) and edge set
h(E(G′)). We also define a mapping g from H to G as follows. For a vertex v in V (H),
we define g(v) to be {v} if v ∈ S, and to be V (fT (v)) otherwise (i.e., if v ∈ VT). For an
edge e in H, we define g(e) to be the set of representatives of e. For a vertex or edge set

102

5.2. RC and Forest Number

A of H, we define g(A) to be
⋃
a∈A g(a). For a subgraph H ′ of H, we define g(H ′) as the

subgraph of G with vertex set g(V (H ′)) and edge set g(E(H ′)) ∪
⋃
xT∈V (H′)∩VT E(T).

Let the palette of colors be {1, 2, · · · , f + 2}. We call colors f + 1 and f + 2 as the
global surplus colors, denoted by g1 and g2. We reserve g1 and g2 to color the edges
incident on LS . Now, we will give a coloring of some edges of G using colors {1, 2, · · · , f}
such that there is a rainbow path between every pair of vertices in V (G) \ LS . We give
our coloring procedure as a list of coloring rules.

For a, b ∈ V (G) \ LS , let Qab denote the unique path in B1 between h(a) and h(b).
For each pair of vertices a, b ∈ V (G) \ LS , we will maintain a subgraph Pab of G. Each
Pab is initialized to ∅. After the application of each coloring rule, we will apply a path
rule for each pair a, b ∈ V (G) \ LS , which may add some new colored edges to Pab. We
say that an edge in B1 is colored, if its representatives in G are colored (we will make sure
that for a 2-edge, either both representatives are colored or both are uncolored at any
point of time). Whenever an edge in B1 gets colored by a coloring rule and if it is in Qab,
we make sure that we add exactly one of its representatives to Pab in the proceeding path
rule (there is one exception in Coloring rule 11 that will be dealt through the addition
of some shortcut edges; this will be explained later in Lemma 5.46). Whenever a tree
T has 2 edges of Pab incident on any 2 vertices u and v in T , we add the path Tuv to
Pab. And, whenever a tree T with a (or b) in T has an edge of Pab incident on a vertex
u of T , we add the path Tua (or Tub) to Pab. And if both a and b are in the same tree T ,
then we add the path Tab to Pab. Thus, when all the coloring rules and path rules have
been applied, we will have that for all a, b ∈ V (G) \ LS , Pab is a path between a and b.
We will prove that Pab is in fact a rainbow path, in Lemma 5.46. Once we have this, the
rainbow connectivity is then extended to the whole of G, using global surplus colors, as
in Take 2.

We will maintain the following invariant so that Pab is a rainbow path at the end of
the coloring procedure.

Invariant 1. For each pair a, b ∈ V (G) \ LS, no two edges in Pab have the same color.

Coloring rule 1. Color all the edges in F with distinct colors 1, 2, · · · , f − t.

Now, we proceed on to give the coloring rules and the path rules.

Path rule 1. For each a, b ∈ V (G) \ LS: If a and b are in the same tree T for some
T ∈ T , then add the path Tab to Pab.

For each tree T ∈ T , we designate a color in [f − t + 1, f] as its surplus color,
denoted by s(T); more specifically, the surplus color of ith tree in T is defined as the
color f − t+ i.

Coloring rule 2. For each 1-edge −→uv in B: if u is a tree vertex, then color (uv)1 with
s(fT (u)); otherwise, i.e., if u is not a tree vertex, by Lemma 5.21, there is at least one
child of u that is a tree vertex; pick one such tree vertex xT and color (uv)1 = uv with
color s(T).

Path rule 2. Do the following for each a, b ∈ V (G) \LS. For each 1-edge e in Qab, add
(e)1 to Pab. Next, we add edges inside some trees as follows.
If for some tree T , a ∈ V (T) and there is a 1-edge uxT in Qab: let w be the foot of edge

103

Chapter 5. Rainbow Coloring and its Variants

Figure 5.2: Illustration of Coloring rule 3 applied on a tree vertex xT with 2-edge
degree 4

uxT in T ; add the path Twa to Pab.
If for some tree T , b ∈ V (T) and there is a 1-edge uxT in Qab: let w be the foot of edge
uxT in T , add the path Twb to Pab.
If for some tree T , there are 2 1-edges uxT and vxT in Qab: let w be the foot of edge
uxT in T and z be the foot of edge vxT in T ; add the path Twz to Pab.

Note that so far, each color is used at most for one edge in G and hence Invariant 1 is
satisfied. We will also maintain the following invariant throughout the coloring procedure.

Invariant 2. For any 2-edge in B, either both representatives of it are colored or both
are uncolored.

Since no representatives of 2-edges have been colored till now, the invariant holds as
of now. We will not explicitly prove this invariant after each rule, as it will be easy to
observe from the coloring rules. A vertex in B1 is said to be completed if all the incident
edges on it in B1 are colored; and is said to be incomplete otherwise. For a colored edge
e ∈ E(G), we define c(e) to be the color of e. For a subgraph G′ of G, we define c(G′)
to be the set of colors used in E(G′). We call the number of 2-edges of B1 incident on
a vertex as the 2-edge degree of it in B1. For vertices u, v, the connected component of
B1 \ u (which is a subtree of B1) containing v is denoted by ST(u, v). For u and v in
B1, the closest (breaking ties arbitrarily) tree vertex to v in ST(u, v) in B̃1 is denoted by
CT(u, v). Note that at least one tree vertex exist in ST(u, v) because all leaves of B1 are
tree vertices by Corollary 5.19. Also note that if v is a tree vertex, then CT(u, v) = v.
We also define STG(u, v) := g(ST(u, v)).

104

5.2. RC and Forest Number

Coloring rule 3. For each tree vertex xT with 2-edge degree at least 4 (see Figure 5.2 for
an illustration): Let w0, w1, w2, · · · , wq−1 be the other end-points of the 2-edges incident
on xT . For i ∈ [0, q−1], let xTi := CT(wT , wi), and let ci := s(Ti). For each i ∈ [0, q−1],
color (xTwi)1 with c((i+2) mod q) and (xTwi)2 with c((i+3) mod q).

The following lemma follows from the way in which we have colored the edges incident
on xT in Coloring rule 3.

Lemma 5.25. For each tree vertex xT on which Coloring rule 3 has been applied as
above, for distinct i, j ∈ [0, q − 1], there is a rainbow path from wi to wj in G using only
the colors from ({c0, c1, · · · , cq−1} \ {ci, cj}) ∪ c(T). Also, for any i ∈ [q − 1] and some
u ∈ V (T), there is a rainbow path in G from u to wi that uses only the colors from
({c0, c1, · · · , cq−1} \ {ci}) ∪ c(T).

Proof. Let ui and vi be the endpoints in T of (xTwi)1 and (xTwi)2 respectively for each
i ∈ {0, 1, . . . , q − 1}. First, we prove that there is a rainbow path from wi to wj with
the required colors as claimed by the lemma. Suppose for the sake of contradiction that
there was no such path. Then the path P := wiuiTuiujujwj is either not a rainbow
path or uses a color that is not in ({c0, c1, · · · , cq−1} \ {ci, cj})∪ c(T). We know that the
path Tuiuj uses only colors from c(T) and is rainbow colored, the edge wiui is colored
c(i+2) mod q, and ujwj is colored c(j+2) mod q. Also c(i+2) mod q 6= c(j+2) mod q as (i+ 2)
mod q 6= (j + 2) mod q for distinct i, j ≤ q and q ≥ 4. Furthermore, c(i+2) mod q 6= ci
and c(j+2) mod q 6= cj as (i + 2) mod q 6= i for i ≤ q and q ≥ 4. Thus the only
possibility is that c(i+2) mod q = cj or c(j+2) mod q = ci. Without loss of generality
assume that c(i+2) mod q = cj . That means (i + 2) mod q = j. We also know that
the path P ′ := wiviTvivjvjwj is either not a rainbow path or uses a color that is not in
({c0, c1, · · · , cq−1} \ {ci, cj}) ∪ c(T). We know that the path Tvivj uses only colors from
c(T) and is rainbow colored, the edge wivi is colored c(i+3) mod q, and vjwj is colored
c(j+3) mod q. Also c(i+3) mod q 6= c(j+3) mod q, c(i+3) mod q 6= ci, and c(j+3) mod q 6= cj .
Furthermore, cj+3 mod q = c(((i+2) mod q)+3) mod q=c(i+1) mod q 6=ci+3 mod q. Thus P ′ is a
rainbow path and uses only the colors in ({c0, c1, · · · , cq−1} \ {ci, cj}) ∪ c(T). Hence, we
have a contradiction.

Next, we prove the second part of the lemma, i.e., we prove that there is a rainbow
path from u to wi with the required colors as claimed by the lemma. Suppose for the sake
of contradiction that there was no such path. Then the path P := wiuiTuiu is either not
a rainbow path or uses a color that is not in ({c0, c1, · · · , cq−1} \ {ci}) ∪ c(T). We know
that the path Tuiu uses only colors from c(T) and is rainbow colored, and that the edge
wiui is colored c(i+2) mod q. Also c(i+2) mod q 6= ci. Thus P is a rainbow path and uses
only the colors in ({c0, c1, · · · , cq−1} \ {ci}) ∪ c(T). Hence, we have a contradiction.

Path rule 3. For each xT on which Coloring rule 3 has been applied as above and for
each a, b ∈ V (G) \ LS such that Qab contains xT (we say that the rule is being applied
on the pair (xT , Pab)):
Case A: xT has 2 2-edges incident in Qab.
Let wi and wj be the neighbors of xT in Qab. Add to Pab, the rainbow path from wi to
wj as given by Lemma 5.25.
Case B: xT has 1 2-edge and 1 1-edge incident in Qab.
Let xTwi be the 2-edge. Let u be the endpoint of the representative of the 1-edge in T .

105

Chapter 5. Rainbow Coloring and its Variants

There is a rainbow path from wi to u as given by Lemma 5.25. Add this path to Qab.
Case C: xT is an endpoint of Qab and has 1 2-edge incident in Qab.
Let wi be the neighbor of xT in Qab. We know one of a or b is in T . From this vertex
(a or b whichever is in T) to wi, there is a rainbow path as given by Lemma 5.25. Add
this path to Pab.

The following lemma follows from Lemma 5.25 and Path rule 3.

Lemma 5.26. Suppose for some a, b ∈ V (G)\LS and for some tree T ′ ∈ T , Pab contains
an edge e that was colored with s(T ′) during the application of Coloring rule 3 on some
tree vertex xT . Then, T ′ 6= T and Qab does not intersect ST(xT , xT ′).

Proof. Since s(T ′) was used during the application of Coloring rule 3 on xT , the vertex xT ′
should have been taken as xTi (in Coloring rule 3) for some i and s(T ′) was taken as ci (in
Coloring rule 3). Since Ti 6= T , it is clear that T ′ 6= T . Suppose Qab intersects ST(xT , xT ′)
for the sake of contradiction. Then the color ci was not used in Path rule 3 according to
Lemma 5.25. That means e was not colored with ci, which is a contradiction.

Lemma 5.27. Invariant 1 is not violated during Path rule 3.

Proof. Suppose Invariant 1 is violated during the application of Path rule 3 on the pair
(xT , Pab) as above. Then there exist edges e and e′ in Pab having the same color. We can
assume without loss of generality that e was colored during the application of Coloring
rule 3 on xT . Then either e ∈ E(T) or e is a representative of wixT for some i ∈ [0, q−1].
Since each color in c(T) have been used only in one edge in G, we have that h(e) = wixT
for some i ∈ [0, q − 1] and hence c(e) = s(Tj) for some j ∈ [0, q − 1] \ i. Also Qab does
not intersect ST(xT , xTj) by Lemma 5.26. Since application of Path rule 3 on (xT , Pab)
added a rainbow path to Pab, the edge e′ was not added during this application. Since
each color in c(F) is used only for one edge in G so far, we also know that e′ was not
added during Path rule 1. Hence the following cases are exhaustive and in each case we
prove a contradiction.
Case I: e′ was added during the application of Path rule 3 on (xT ′ , Pab) for some tree
T ′ 6= T .
Since Pab contains e′, we have that Qab contains h(e′). Since e′ was added during the
application of Path rule 3 on (xT ′ , Pab), either e′ ∈ E(T ′) or h(e′) is incident on xT ′ , and
hence xT ′ is in Qab. Since Qab does not intersect ST(xT , xTj), we have that xT ′ is not in
ST(xT , xTj). Then distB1(xT ′ , xT) < distB1(xT ′ , xTj). But then during the application of
Coloring rule 3 on xT ′ , the color s(Tj) would never be used as xTj 6= CT(xT ′ , v) for any
vertex v. Thus, the color of e′ is not s(Tj). But we know that c(e′) = c(e) = s(Tj), a
contradiction.
Case II: e′ was added during the application of Path rule 2 on Pab.
This means e′ is the representative of a 1-edge and was colored during Coloring rule 2.
Since e′ is colored with s(Tj), we have that h(e′) should either be the outgoing edge of
xTj or the outgoing edge of the parent of xTj , from Coloring rule 2. This implies that
h(e′) is in ST(xT , xTj), as the parent of xTj is a non-tree edge. But then Qab does not
contain h(e′) as Qab does not intersect ST(xT , xTj). Thus Pab does not contain e′, which
is a contradiction.

106

5.2. RC and Forest Number

(a) A scenario in which Coloring rule 4 is applicable on xT

(b) Coloring rule 4: Case 1

Figure 5.3: Illustration of Coloring rule 4 (continued on next page)

107

Chapter 5. Rainbow Coloring and its Variants

(c) Coloring rule 4: Case 2

(d) Coloring rule 4: Case 3: scenario 1 (e) Coloring rule 4: Case 3: scenario 2

108

5.2. RC and Forest Number

Coloring rule 4. For each tree vertex xT with 2-edge degree exactly 3 (see Figure 5.3(a)):
let w1, w2, and w3 be the other end-points of the 3 2-edges incident on xT ; for i ∈ {1, 2, 3},
let xTi = CT(xT , wi), let ui and vi be the foots of xTwi in T , let Pi := Tuivi, and let
ci := s(Ti).
Case 1. (See Figure 5.3(b)) If there exist edge uv in T such that the cut (V1, V2) induced
by uv in T is such that for all i ∈ {1, 2, 3}, |V1 ∩ {ui, vi} | = 1 and |V2 ∩ {ui, vi} | = 1:
Let yi and zi be the foots of xTwi in V1 and V2 respectively for each i ∈ {1, 2, 3}. Let c
be the color of uv. Color y1w1 with c3, z1w1 with c2, y2w2 with c1, z2w2 with c, y3w3
with c, and z3w3 with c.
Case 2. (See Figure 5.3(c)) If there exist distinct edges e1, e2, e3 such that ei ∈ E(Pi)
for each i ∈ {1, 2, 3} : Color both the representatives of xTwi with the color of ei for
each i ∈ {1, 2, 3}.
Case 3. If Case 1 and 2 does not apply: then there exist i, j ∈ {1, 2, 3} such that
E(Pi) ∩E(Pj) = ∅, because otherwise E(P1) ∩E(P2) ∩E(P3) 6= ∅ using the Helly prop-
erty of trees 1 and then any edge in this intersection qualifies as uv of Case 1. So,
without loss of generality assume that E(P1) ∩ E(P2) = ∅. Also, note that E(P3) ⊆
E(P1) ∪ E(P2) because otherwise Case 2 applies. So, without loss of generality assume
that E(P3) ∩ E(P1) 6= ∅. But then P3 ∩ P1 = P1 and P1 consists of a single edge so
that Case 2 does not apply. Let this edge be e1. Note that e1 = u1v1. Furthermore, at
least one of the end-vertices of P1 and P3 coincide so that Case 2 does not apply. Thus,
assume without loss of generality that u1 = u3. Let e2 be any edge in P2. Without loss
of generality assume that v1 is the closer among u1, v1 to path P2 in T . The two possible
scenarios in this case are shown in Figures 5.3(d) and 5.3(e). Color w1u1 and w1v1 with
c(e1), w2u2 and w2v2 with c(e2), w3u3 with c(e2) and w3v3 with c(e1).

The following lemma follows from the way in which we have colored the edges incident
on xT in Coloring rule 4.

Lemma 5.28. For each tree vertex xT on which Rule 4 has been applied as above, for
distinct i, j ∈ {1, 2, 3}, there is a rainbow path from wi to wj in G that uses only the colors
from ({c1, c2, c3} \ {ci, cj}) ∪ c(T). Also, for any i ∈ {1, 2, 3}, and any z ∈ V (T), there
is a rainbow path from u to wi, that uses only the colors from ({c1, c2, c3} \ {ci}) ∪ c(T).

Proof. We demonstrate the required paths in each of the 3 cases of Coloring Rule 4.
Case 1: Between w1 and w2, there is the path w1z1Tz1z2z2w2 that uses only the colors

in c(T) ∪ {c3, c}. Between w1 and w3, there is the rainbow path w1y1Ty1y3y3w3 that
uses only the colors in c(T) ∪ {c2, c}. Between w2 and w3, there is the rainbow path
w2y2Ty2y3y3w3 that uses only the colors in c(T) ∪ {c1, c}.

Now consider any vertex y ∈ V1. Between y and w1, there is the rainbow path
Tyy1y1w1 that uses only the colors in c(T)∪{c2}. Between y and w2, there is the rainbow
path Tyy2y2w2 that uses only the colors in c(T) ∪ {c1}. Between y and w3, there is the
rainbow path Tyy3y3w3 that uses only the colors in c(T) ∪ {c}.

Now consider any z ∈ V2. Between z and w1, there is the rainbow path Tzz1z1w1
that uses only the colors in c(T) ∪ {c3}. Between z and w2, there is the rainbow path

1We use the following Helly property of trees: If T1, T2, . . . , Tk are subtrees of a tree T that pairwise
intersect each other on at least one edge, then there is an edge of T that is common to all of T1, T2, . . . , Tk.

109

Chapter 5. Rainbow Coloring and its Variants

Tzz2z2w2 that uses only the colors in c(T)∪{c}. Between z and w3, there is the rainbow
path Tzz3z3w3 that uses only the colors in c(T) ∪ {c}.

Case 2: First we show the path between w1 and w2. By Observation 5.22, either
Tu1u2 or Tu1v2 does not contain the edge e2. If Tu1u2 does not contain e2, then the path
w1u1Tu1u2u2w2 is a rainbow path and uses only the colors in c(T); otherwise (i.e., if
Tu1v2 does not contain e2) then the path w1u1Tu1v2v2w2 is a rainbow path and uses only
the colors in c(T). The required paths between w2 and w3, and between w1 and w2 can
be shown in a similar way.

Now for any vertex z in T , we show the required path between z and w1. By
Observation 5.22, either Tuu1 or Tuv1 does not contain the edge e1. If Tuu1 does not
contain e1, then the path Tuu1u1w1 is a rainbow path and uses only the colors in c(T);
otherwise (i.e., if Tuv1 does not contain e1) then the path Tuv1v1w1 is a rainbow path
and uses only the colors in c(T). The required paths between w2 and z, and between w3
and z can be shown in a similar way.

Case 3: First we show the required path between w1 and w2. By Observation 5.22,
either Tv1u2 or Tv1v2 does not contain the edge e2. Observe that both Tv1u2 and Tv1v2

does not contain the edge e1 as v1 is closer than u1 to P2 , as mentioned in the Coloring
Rule. Hence, if Tv1u2 does not contain e2, then the path w1v1Tv1u2u2w2 is a rainbow
path that uses only the colors in {c(e2), c(e1)} ∪ c(T); and otherwise (i.e., if Tv1v2 does
not contain e2), the path w1v1Tv1v2v2w2 is a rainbow path that uses only the colors in
{c(e2), c(e1)} ∪ c(T).

Since u1 = u3, there is the path w1u1w3 between w1 and w3 that uses only the
colors in {c(e1), c(e2)}. Next, we show the required path between w3 and w2. By
Observation 5.22, either Tv3u2 or Tv3v2 does not contain the edge e2. Let v′ be the
vertex in {u2, v2} such that Tv3v′ does not contain edge e2. We show that the path
w3v3Tv3v′v

′w2 is the required path between w3 and w2. We know w3v3 is colored c(e1)
and w2v

′ is colord c(e2). So, it is sufficient to show that c(e1) and c(e2) does not appear
in Tv3v′ . For this, it is sufficient to prove that e1 and e2 is not in Tv3v′ . Since we picked
v′ such that Tv3v′ does not contain e2, it only remains to prove that e1 is not in Tv3v′ .
Suppose for the sake of contradiction that e1 is in Tv3v′ . That means both v1 and u1 are
in Tv3v′ . We know that v1 is closer than u1 to P2, as mentioned in the Coloring Rule.
Hence, v1 is closer than u1 to v′ in T . This also implies that v1 is closer than u1 to v′ in
Tv3v′ . Then u1 is closer than v1 to v3 in Tv3v′ and hence also in T . But then P3 contains
edges that are not in both P1 and P2, a contradiction.

Now consider any vertex z ∈ V (T). For each i ∈ {1, 3}, let v′i be the closer vertex
among ui, vi to z. and let Pi be the path Tzv′iv

′
iwi. We show that Pi is the required path

from z to wi for i ∈ {1, 3}. The path from z to v′1 does not contain e1. Also, the edge
w1v

′
1 is colored with c(e1). Hence P1 is a rainbow path from z to w1 that uses only colors

in c(T). Now consider path P3. First consider the case when v′3 = u3 = u1. Then e2 is
not in Tzv′3 , because otherwise either P3 contains edges that are not in P1 ∪ P2 or u1 is
closer than v1 to P2. Since u3w3 is colored c(e2), the path P3 satisfies the requirements.
Now consider the case when v′3 = v1. Then e1 is clearly not in Tzv′3 . Since v3w3 is colored
c(e1), the path P3 satisfies the requirements.

Now we show the required path from z to w3. By Observation 5.22, either Tzv2 or
Tzu2 does not contain the edge e2. Let v′2 be the vertex in {u2, v2} such that Tzv′2 does
not contain edge e2. Then the path Tzv′2v

′
2w2 is the required path between z and w2, as

110

5.2. RC and Forest Number

v′2w2 is colored c(e2).

Path rule 4. For each xT on which Coloring rule 4 has been applied as above and for
each Pab such that Qab contains xT (we say that the rule is being applied on the pair
(xT , Pab)):
Case A. If xT has 2 2-edges incident in Qab:
Let wi and wj be the neighbors of xT in Qab. Add to Pab, the rainbow path from wi to
wj as given by Lemma 5.28.
Case B. If xT has exactly one 2-edge incident in Qab:
Let xTwi be the 2-edge and let z be the endpoint in T of the 1-edge. Add to Pab, the
rainbow path from wi to z as given by Lemma 5.28.
Case C. If xT is an endpoint of Qab and has 1 2-edge incident in Qab:
Let wi be the neighbor of xT in Qab. We know one of a or b is in T . From this vertex
(a or b whichever is in T) to wi, there is a rainbow path as given by Lemma 5.25. Add
this path to Pab.

The following lemma follows from Lemma 5.28 and Path rule 4. The proof is similar
to that of Lemma 5.26 and is omitted.

Lemma 5.29. Suppose for some a, b ∈ V (G)\LS and for some tree T ′ ∈ T , Pab contains
an edge e that was colored with s(T ′) during the application of Coloring rule 4 on some
tree vertex xT . Then, T ′ 6= T and Qab does not intersect ST(xT , xT ′).

Lemma 5.30. Invariant 1 is not violated during Path rule 4.

Proof. Suppose for the sake of contradiction that Invariant 1 is violated during the
application of Path rule 4 on the pair (xT , Pab) as above. Then there exist edges e
and e′ in Pab having the same color. We can assume without loss of generality that
e was colored during the application of Coloring rule 4 on xT . This means e ∈ E′ :=
E(T) ∪ g({w1xT , w2xT , w3xT }). Since, application of Path rule 4 on (xT , Pab) added a
rainbow path to Pab, the edge e′ was not added during this application and hence e′ /∈ E′.
Each color in c(T) have been used only in E′ so far. That means c(e) = c(e′) /∈ c(T).
Hence e ∈ E′ \ E(T) = g({w1xT , w2xT , w3xT }). Without loss of generality assume that
e = w1xT . Now, c(e) = s(Tj) where j ∈ {2, 3}. Without loss of generality assume that
c(e) = s(T2). This also means c(e′) = s(T2). That means e′ was colored during Coloring
rules 2, 3 or 4. Hence the following cases are exhaustive and in each case we prove a
contradiction.
Case I: e′ was colored during the application of Coloring rules 4 or 3 on xT ′ , for some
tree T ′ 6= T .
Since Pab contains e′, we have that Qab contains h(e′). Since e′ was colored during the
application of Coloring rules 3 or 4 on xT ′ , either e′ ∈ E(T ′) or h(e′) is incident on xT ′ ,
and hence xT ′ is in Qab. Since Qab does not intersect ST(xT , xT2) by Lemmas 5.26 and
5.29, we have that xT ′ is not in ST(xT , xT2). Then distB1(xT ′ , xT) < distB1(xT ′ , xT2).
But then during the application of Coloring rule 3 on xT ′ , the color s(T2) would never
be used as xT2 6= CT(xT ′ , v) for any vertex v. Thus, the color of e′ is not s(T2). But we
know that c(e′) = c(e) = s(T2), a contradiction.
Case II: e′ was colored during the application of Coloring rule 2.
This means e′ is the representative of a 1-edge. Since e′ is colored with s(T2), we have that

111

Chapter 5. Rainbow Coloring and its Variants

h(e′) should either be the outgoing edge of xT2 or the outgoing edge of the parent of xT2 ,
from Coloring rule 2. This implies that h(e′) is in ST(xT , xT2), as the parent of xT2 is a
non-tree edge. But then Qab does not contain h(e′) as Qab does not intersect ST(xT , xT2),
by Lemmas 5.26 and 5.29. Thus Pab does not contain e′, which is a contradiction.

Coloring rule 5. For each non-tree vertex u with degree at least 3 in B1 (see Figure 5.4
for examples):
Let q be the number of children of u (note that q ≥ 2 as degree of u is at least 3), let
u1, u2, · · ·uq be the children of u and let xTi be CT(u, ui). Let −→uv be the outgoing edge
from u in B1. If uv is a 1-edge, due to Rule 2, we know that there exist an i ∈ [q] such
that, ui is a tree vertex (and hence Ti = fT (ui)), and uv is colored with s(Ti). Hence,
if uv is a 1-edge, assume without loss of generality that u1 is a tree vertex (and hence
xT1 = u1) and that uv is colored with s(T1).
If u1u is a 2-edge (then u1 is a tree vertex and hence T1 = fT (u1)) and is uncolored, then
color (u1u)1 with s(T1) and (u1u)2 with s(T2). For each 2 ≤ i ≤ q, if uiu is a 2-edge
(then ui is a tree vertex and hence Ti = fT (ui)) and is uncolored, then color both its
representatives with s(Ti). Let −→uv be the outgoing edge from u. If uv is a 2-edge and
uncolored, then color (uv)1 with s(T1) and (uv)2 with s(T2).

Path rule 5. For each non-tree vertex u on which Coloring rule 5 has been applied as
above and for each Pab such that Qab contains u (we say that the rule is being applied
on the pair (u, Pab)):

There are two parts to this rule:
Part 1: If Qab contains edge u1u and u1u is colored during the application of Coloring

rule 5 on u: if the other neighbor (if any) of u in Qab is u2 then add (u1u)1 (which has
color s(T1)) to Pab; otherwise add (u1u)2 (which has color s(T2)) to Pab.

For each i ∈ [2, q], if Qab contains edge uiu and uiu is colored during the application
of Coloring rule 5 on u, add (uiu)1 to Pab.

If Qab contains edge uv and uv is colored during the application of Coloring rule 5
on u: if the other neighbor (if any) of u in Qab is u1 and u1u is a 1-edge, then add (uv)2
(which has color s(T2)) to Pab; otherwise add (uv)1 (which has color s(T1)) to Pab.

Part 2: For each tree vertex xT such that the degree of xT in h(Pab) became 2 during
the addition of above edges in Part 1, let x and y be the endpoints in T of the 2 edges of
Pab incident on T ; add Txy to Pab.

For each tree vertex xT ∈ {h(a), h(b)} such that the degree of xT in h(Pab) became 1
during the addition of above edges in Part 1: Let x be the endpoint in T of the edge of
Pab incident on T . If xT = h(a), add Tax to Pab; otherwise (i.e., if xT = h(b)), add Tbx
to Pab.

Lemma 5.31. Invariant 1 is not violated during Path rule 5.

Proof. Suppose Invariant 1 is violated during the application of Path rule 5 on the pair
(u, Pab) as above. Then there exist edges e and e′ in Pab having the same color. We can
assume without loss of generality that e was colored during the application of Coloring
rule 5 on u. Suppose e was added during Part 2 of Path rule 5. We know the trees
in which we add the path in Part 2 were incomplete before the application of Coloring
rule 5, and hence the colors inside them were not used anywhere else so far. Thus, the

112

5.2. RC and Forest Number

(a) Coloring rule 5: example 1

(b) Coloring rule 5: example 2

Figure 5.4: Three examples of Coloring rule 5. Here ci = s(Ti). The blue edges are
the edges that were already colored before the application of the rule. The figure is
continued on the next page.

113

Chapter 5. Rainbow Coloring and its Variants

(c) Coloring rule 5: example 3

color of e is unique, in particular c(e′) 6= c(e), a contradiction. Thus, the edge e was not
added during Part 2. Then e was added during Part 1 and hence c(e) = c(e′) = s(Ti)
for some i ∈ [q]. Then e′ was colored during one of Coloring rules 5, 4, 3, or 2.
Case I. e′ was colored during the Coloring rule 5
Note that during the application of Path rule 5 on (u, Pab), we have added at most 2
edges to Pab. And, if we have added 2 edges, they are of different color. Thus e′ was
not added to Pab during the application of Path rule 5 on (u, Pab) and hence was not
colored during the application of Coloring rule 5 on u. So, e′ was colored during the
application of Coloring rule 5 on some non-tree vertex u′ 6= u. Notice that for any tree
T ∈ T , s(T) is used during application of Coloring rule 5 only when the rule is applied
to an ancestor of xT in B1. Hence both u and u′ are ancestors of xTi . Without loss of
generality, assume that u′ is closer than u to xTi . Then, u cannot have any tree vertices
as children because otherwise xTi 6= CT(u, ui). Then, the only edges colored during the
application of Coloring Rule 5 on u, are the representatives of uv. Thus h(e) = uv.
Case I.a. e = (uv)2.
Then, the edge (uv)2 is added during application of Path rule 5 on (u, Pab). This implies
that the neighbor of u in Qab is u1, by Path rule 5. Since u′ ∈ Qab, we have that Ti = T1,
and hence c(e) = s(T1). But we know that e = (uv)2 is colored with s(T2) 6= s(T1), by
Coloring rule 5. Thus, we have a contradiction.
Case I.b. e = (uv)1.
Then, the edge (uv)1 is added during application of Path rule 5 on (u, Pab). This implies
that either the neighbor of u in Qab is u2, or uu1 is a 2-edge, by Path rule 5. But uu1
cannot be a 2-edge as both u and u1 are non-tree vertices. (Recall that we said all

114

5.2. RC and Forest Number

children of u are non-tree vertices in the current case). Hence the neighbor of u in Qab
is u2. Since u′ ∈ Qab, we have that Ti = T2, and hence c(e) = s(T2). But we know
that e = (uv)1 is colored with s(T1) 6= s(T2), by Coloring rule 5. Thus, we have a
contradiction.
Case II. e′ was colored during the Coloring rules 4 or 3.
Let T ′ be the tree on which e′ is incident. Then e′ was colored with s(Ti) during the
application of Coloring rules 4 or 3 on xT ′ . Then Qab does not intersect ST(T ′, Ti) due
to Lemmas 5.29 and 5.26. Since xTi = CT(u, ui), ther is no other tree-vertex in the path
from u to xTi . Thus, u is in ST(T ′, Ti). Hence, we have that u is not in Qab. We know
that e is adjacent on u as every edge colored during the application of Coloring rule 5
on u is incident on u. But then e /∈ Pab as u is not in Qab. This is a contradiction.
Case III. e′ was colored during the Coloring rule 2.
This means that e′ is a 1-edge. The only possibility for 1-edge e′ to have color s(Ti) is
either e′ = uv or that Ti = T2 and e′ is on the path between xT2 and u.
Case III.a. h(e′) = uv.
In the case when uv is a 1-edge, we selected u1 during the Coloring rule 5 in such a
way that c(uv) = s(T1). Thus c(e) = c(e′ = uv) = s(T1). That means e = (u1u)1. But
since uv is in Qab, we would have added (u1u)2 and not (u1u)1 to Pab during Path rule 5.
Thus we have a contradiction.
Case III.b. h(e′) 6= uv.
Then Ti = T2, and e′ is on the path between xT2 and u. Since xT2 is not a child of u, the
only possibility for e to have color s(T2) is if e = (u1u)2. We know Qab contains both u1
and u2. In that case, we would have added (u1u)1 and not (u1u)2 to Pab during Path
rule 5.

For a 2-edge e in B incident on tree vertex xT , we define its foot path as the path
between the foots of e in T .

Coloring rule 6. For each incomplete tree vertex xT having 2-edge degree exactly 1:
let e be the only 2-edge incident on xT , pick an edge e1 in the foot path of e, color the
representatives of e with the color of e1.

Path rule 6. For each tree vertex xT on which Coloring rule 6 has been applied as above
and for each Pab such that Qab contains h(e) (we say that the path rule is being applied
on the pair (xT , Pab)):
If a ∈ V (T), let w := a, and if b ∈ V (T) let w := b. (Note that both a and b cannot be
in T as Qab contains h(e)). If a, b /∈ V (T) then there is an edge e2 6= e of Qab incident
on xT ; and since e is the only 2-edge incident on xT , the edge e2 is a 1-edge; let w be
the endpoint of (e2)1 in T . By Observation 5.22, there is a path in T that excludes e1,
from w to one of the foots of e. Let this foot be z. Add the path in T between w and z
to Pab. Also add to Pab, the representative of e, having z as its endpoint in T .

Lemma 5.32. Invariant 1 is not violated during Path rule 6.

Proof. The edges added to Pab during the application of Path rule 6 to (xT , Pab) were all
having colors from c(T). None of the colors in c(T) were used before anywhere outside
T . The path from w to z does not contain e1 and the color of the added representative
of e is c(e1). Thus the edges added were all having distinct colors and these colors were
not used in Pab before.

115

Chapter 5. Rainbow Coloring and its Variants

(a) Coloring rule 7 Case 1. (b) Coloring rule 7 Case 2.

Figure 5.5: Coloring rule 7

Coloring rule 7. For each tree vertex xT such that the 2-edge degree of xT is exactly 2
and T contains at least 2 edges:
Let e1 and e2 be the 2-edges incident on xT , Let w and z be the other end points of e1
and e2 respectively. Let P1 and P2 be the foot paths of e1 and e2 respectively.
Case 1: |E(P1 ∪ P2)| ≥ 2. (See Figure 5.5(a)).
Pick distinct edges e and e′ from P1 and P2 respectively. If (e1)1 and (e1)2 are uncolored,
color them with color of e and if (e2)1 and (e2)2 are uncolored, color them with color of
e′.
Case 2: Case 1 does not hold.(See Figure 5.5(b)).
Clearly then P1 and P2 both are a single edge and they are the same edge. Let this edge
be e = uv. Pick any other edge e′ in T . Without loss of generality assume that e′ is
closer to v than u in T . If uw and vw are uncolored then color them with color of e. If
uz and vz are uncolored, color them with colors of e′ and e respectively.

The following lemma follows straightforward from the above coloring rule.

Lemma 5.33. Consider a tree vertex xT on which Coloring rule 7 has been applied as
above. There is a rainbow path in G from w to z using only the colors in c(T). Also,
from any vertex x ∈ V (T), there is a rainbow path to both w and z using only the colors
in c(T).

Path rule 7. For each tree vertex xT on which Coloring rule 7 has been applied as above
and for each Pab such that Qab contains at least one of e1 and e2 (we say that the path
rule is being applied on the pair (xT , Pab)):
If Qab contains both e1 and e2 then let y1 := w and y2 := z. If Qab contains only e1 and

116

5.2. RC and Forest Number

(a) Coloring rule 8 Case 1. Here
c1 = s(T) and c2 = c(uv).

(b) Coloring rule 8 Case 2. Here
c2 = c(uv) and c3 is the color of
the representative of an arbitrarily
chosen 1-edge incident on xT .

Figure 5.6: Coloring rule 8

not e2 then let y1 := w. If Qab contains only e2 and not e1 then let y1 := z. If a ∈ V (T),
let y2 := a, and if b ∈ V (T) let y2 := b. (Note that both a and b cannot be in T as Qab
contains e1 or e2). If a, b /∈ V (T) and only one of e1, e2 is in Qab then there is an edge
e′′ /∈ {e1, e2} incident on xT in Qab; and since e1 and e2 are the only 2-edges incident
on xT , the edge e′′ is a 1-edge; let y2 be the endpoint of (e′′)1 in T . Add to Pab the path
between y1 and y2 given by Lemma 5.33.

Lemma 5.34. Invariant 1 is not violated during Path rule 7.

Proof. The path added to Pab during the application of Path rule 7 on xT uses only
colors from c(T) and the path added is a rainbow path. The edges colored with colors
from c(T) could not have been added in any application of any path rule so far. Thus
the invariant is not violated.

Coloring rule 8. For each incomplete tree vertex xT having degree at least 3 in B1: We
can assume that Coloring rules 3, 4, 6, 7 are not applicable on xT as otherwise xT would
have been completed. If xT had at least 3 2-edges incident on it, then Coloring rule 3 or
4 would have been applicable on xT . If it had 2-edge degree 1, then Coloring rule 6 would
have been applicable on xT . Hence, we can assume that xT has 2-edge degree exactly 2.
Now, if |E(T)| ≥ 2, Coloring rule 7 becomes applicable on xT . Hence, we can assume
that the tree T is just an edge. Let uv be this edge. Let the 2 2-edges incident on xT be
yxT and zxT .
Case 1: Both yxT and zxT are incoming to xT (see Figure 5.6(a)).
Then the outgoing edge of u in B1 is clearly 1-edge, say −−→xTw. Assume without loss of
generality that its representative is vw. Let c1 = s(T) and c2 be the color of uv. If yu

117

Chapter 5. Rainbow Coloring and its Variants

and yv are uncolored, color them with c1 and c2 respectively. If zu and zv are uncolored,
color both of them with c2.
Case 2: One of the 2-edges, say yxT is outgoing from xT (see Figure 5.6(b)).
Let c2 be the color of uv and c3 be the color of representative of any 1-edge incoming
on xT . Note that at least one such 1-edge exists as the degree of xT is at least 3. If yu
and yv are uncolored, color them with c3 and c2 respectively. If zu and zv are uncolored,
color both of them with c2.

Path rule 8. For each tree vertex xT on which Coloring rule 8 has been applied as above
and for each Pab such that Qab contains at least one of yxT and zxT (we say that the
path rule is being applied on the pair (xT , Pab)):
If Qab contains both yxT and zxT then add yu and uz to Pab. If Qab contains only yxT
and not zxT then let y1 := y. If Qab contains only zxT and not yxT then let y1 := z. If
a ∈ V (T), let y2 := a, and if b ∈ V (T) let y2 := b. (Note that both a and b cannot be in
T as Qab contains yxT or zxT). If a, b /∈ V (T) and only one of yxT , zxT is in Qab then
there is an edge e′′ /∈ {yxT , zxT } incident on xT in Qab; and since yxT and zxT are the
only 2-edges incident on xT , the edge e′′ is a 1-edge; let y2 be the endpoint of (e′′)1 in T .
Add the edge y1y2 to Pab.

Lemma 5.35. Invariant 1 is not violated during Path rule 8.

Proof. Suppose the invariant is violated. Then there exist edges e and e′ in Pab having
the same color. We can assume without loss of generality that e was colored during
the application of Coloring rule 8 on (xT , Pab). We added at most 2 edges during the
application of Path rule 8 on xT and if we added 2 edges we have made sure they have
distinct colors. Thus e′ was not added during the application of Path rule 8 on (xT , Pab).
The colors that are possible for e are c1, c2 and c3 according to Coloring rule 8.
Case I. c(e) = c(e′) = c2.
This is not possible since c2, the color of uv, has not been used to color any other edges
so far.
Case II. c(e) = c(e′) = c1 = s(T). This means e = yu and that Case 1 of Coloring rule 8
(Figure 5.6(a)) was applied on xT . The only coloring rules so far that uses surplus colors
are Coloring rules 8, 5, 4, 3, and 2.
Case II.a. e′ was colored during Coloring rule 2. This means e′ is a 1-edge. Now, the
only way e′ can have color s(T) is if e′ = vw. But, in Path rule 8, we add yu = e to Pab
only when vw is not in Qab. Thus we have a contradiction.
Case II.b. e′ was colored during Coloring rules 4 or 3. Let T ′ be the tree on which e′ is
incident. Since e′ was colored with s(T) during Coloring rules 4 or 3, we know that Qab
does not intersect ST(xT ′ , xT) due to Lemmas 5.29 and 5.26. Then Qab does not contain
xT and hence Pab does not contain e, which is a contradiction.
Case II.c. e′ was colored during Coloring rule 5. Then h(e′) is a 2-edge in the path from
xT to root of B1. But then by Path rule 5, we would have added yv instead of yu = e,
a contradiction.
Case II.d. e′ was colored during Coloring rule 8. The only application of Coloring
rule 8 that uses s(T) is the application on xT . But since e′ was not colored during this
application, we have a contradiction.
Case III. c(e) = c(e′) = c3.

118

5.2. RC and Forest Number

This means e = uy and that Case 2 of Coloring rule 8 was applied on xT .
Let x be the neighbor of xT such that xxT is the 1-edge incident on xT whose represen-
tative is colored with c3. There exist a tree T ′ such that s(T ′) = c3. The only coloring
rules so far that uses surplus colors are Coloring rules 8, 5, 4, 3, and 2.
Case III.a. e′ was colored during Coloring rule 2. This means e′ is a 1-edge. Since xxT
is the only 1-edge with color s(T ′), we have that e′ = xxT . Hence xxT is in Qab. But if
xxT is in Qab, we would have added vy and not uy in Path rule 8. This is a contradiction
to e = uy.
Case III.b. e′ was colored during Coloring rules 4 or 3.
Let T ′′ be such that e′ is adjacent on xT ′′ . Since Pab contains e′ that is incident on xT ′′ ,
we have that Qab contains xT ′′ . Since Pab contains e that is incident on xT , we have that
Qab contains xT . This implies that Qab contains x as x is on the path from xT to xT ′′ .
But then we would have added vy and not uy = e to Pab according to Path rule 8, a
contradiction.
Case III.c. e′ was colored during Coloring rule 5. Then, e′ was colored during the
application of the rule on x. This implies that Qab contains x. But then we would have
added vy and not uy = e to Pab according to Path rule 8, a contradiction.
Case III.d. e′ was colored during Coloring rule 8. Then, e′ was colored during the
application of the rule on T ′, a child of x. This implies that Qab contains x. But then we
would have added vy and not uy = e to Pab according to Path rule 8, a contradiction.

The following Lemma follows from the previous coloring rules.

Lemma 5.36. Consider an edge e in B1 that remains uncolored after the application
of Rules 1 to 8. Let xT and v be the endpoints of e (recall that e is a 2-edge and one of
the endpoints has to be a tree vertex). Then, both xT and v have degree exactly 2 in B1,
both edges incident on xT are 2-edges, and T consists of just a single edge.

Proof. Suppose u ∈ {v, xT } had degree not equal to 2 in B1. First, suppose the degree
was greater than 2. Then Coloring rule 8 or 5 would have been applicable on u, and
hence u would have been completed. Therefore u has degree 1 in B1. By Corollary 5.19,
every leaf of B1 is a tree vertex. Hence u is a tree vertex and hence u = xT . But then
Coloring rule 6 would have been applicable on xT , and xT would have been completed.
Thus e is already colored, which is a contradiction. Hence, xT and v have degree 2 in
B1.

Suppose xT has only one 2-edge incident in B1. Then, Coloring rule 6 would have
been applied on xT and xT would have been completed. Thus, both edges incident on
xT in B1 are 2-edges. If T contained at least 2 edges, Coloring rule 7 would have been
applied on xT and xT would have been completed. Hence T contains only 1 edge.

Coloring rule 9. For each tree vertex xT having exactly 1 uncolored 2-edge incident,
say e: by Lemma 5.36, the tree T is just a single edge, say e′. Color (e)1 and (e)2 with
the color of e′.

Path rule 9. For each tree vertex xT on which Coloring rule 9 has been applied as above
and for each Pab such that Qab contains e (we say that the path rule is being applied on
the pair (xT , Pab)):
If a ∈ V (T), let w := a, and if b ∈ V (T) let w := b. (Note that both a and b cannot

119

Chapter 5. Rainbow Coloring and its Variants

Figure 5.7: Coloring rule 10

be in T as Qab contains e). If a, b /∈ V (T) then there is an edge e2 6= e of Qab incident
on xT ; and since e is the only uncolored edge incident on xT , a representative of the
edge e2 is already in Pab; let w be the endpoint in T of this representative of e2. By
Observation 5.22, there is a path in T that excludes e′ from w to one of the foots of
e. Let this foot be z. Add the path in T between w and z to Pab. Also add to Pab, the
representative of e, having z as its endpoint in T .

Lemma 5.37. Invariant 1 is not violated during Path rule 9.

Proof. The edges added to Pab during the application of Path rule 9 to (xT , Pab) are all
having colors from c(T). None of the colors in c(T) were used before anywhere outside
T . The path from w to z does not contain e′ and the color of the added representative
of e is c(e′). Thus the edges added are all having distinct colors and these colors were
not used in Pab before.

Lemma 5.38. Consider a 2-edge e incident on tree vertex xT that remains uncolored
after the application of Rules 1 to 9. Then, xT has degree exactly 2 in B1, T contains
only one edge, and the other edge incident on xT is an uncolored 2-edge.

Proof. By Lemma 5.36 it follows that xT has degree exactly 2 in B1, T contains only one
edge, and the other edge incident on xT is a 2-edge. If this other 2-edge is colored, then
Coloring rule 9 would have been applied on xT and xT would have been completed.

120

5.2. RC and Forest Number

Coloring rule 10. For each incomplete tree vertex xT whose parent’s outgoing edge
is a 2-edge: (See Figure 5.7 for an Illustration). Let v1 be the parent of xT . From
Lemma 5.38, it follows that xT has degree exactly 2 in B1, has one incoming and one
outgoing 2-edge incident on it, both the 2-edges are uncolored, and the tree T is just a
single edge. Let e1 and e2 respectively be the outgoing and incoming 2-edges of xT . Let
e be the only edge in T . Let v2 be the other end point of e2. Let u1 be the endpoint of
(e1)1 and (e2)1 in T . Let u2 be the endpoint of (e1)2 and (e2)2 in T . From Lemma 5.36,
we know that v1 and v2 have degree exactly 2. Let −−−→v1xT ′ be the outgoing edge from v1
and −−→wv2 be the unique incoming edge on v2 in B1.
Color (e2)1 and (e2)2 with the color of e, and color (e1)1 and (e1)2 with s(T).

Path rule 10. For each tree vertex xT on which Coloring rule 10 has been applied as
above and for each Pab such that Qab contains e1 or e2 (we say that the path rule is being
applied on the pair (xT , Pab)):

Case A. If Qab contains both e1 and e2: Add v1u1 and v1u2 to Pab.
Case B. If Qab contains exactly one edge among e1 and e2: Then either a or b is in

V (T). Also both of them cannot be in V (T). Let z be the one among a or b that is in
V (T).

Case B.1. If Qab contains e1: Add v1z to Pab.
Case B.2. If Qab contains e2: Add v2z to Pab.

Lemma 5.39. Invariant 1 is not violated during Path rule 10.

Proof. Suppose for the sake of contradiction that the invariant is violated. Then there
exist distinct edges d1 and d2 in Pab having the same color. We can assume without loss
of generality that d1 was colored during the application of Coloring rule 10 on xT . We
added at most 2 edges during the application of Path rule 10 on xT , and in the cases
where we added 2 edges, we have made sure that the 2 edges have distinct colors. Thus
d2 was not added during the application of Path rule 10 on xT and hence was not colored
during the application of Coloring rule 10 on xT . The colors that are possible for d1 are
s(T) and c(e).
Case I. c(d1) = c(d2) = c(e).
This is not possible since the color of e has not been used to color any other edges so far.
Case II. c(d1) = c(d2) = s(T). This means h(d1) = v1xT . The only coloring rules so far
that use the surplus colors of trees are Coloring rules 2, 3, 4, 5, 8, and 10. Hence d2 was
colored with s(T) during one of them.
Case II.a. d2 was colored during Coloring rule 2. This means that d2 is a 1-edge. The
only 1-edge that can be colored with s(T) is either the outgoing edge of xT or the
outgoing edge of the parent of xT . However, both of them are 2-edges and hence we
have a contradiction.
Case II.b. d2 was colored during Coloring rules 4 or 3. Let T ′′ be such that d2 is
adjacent on xT ′′ . Then, by Lemmas 5.29 and 5.26, we know that Qab does not intersect
ST(xT ′′ , xT), in particular Qab does not contain xT . This implies Pab does not contain
d1, which is a contradiction.
Case II.c. d2 was colored during application of Coloring rule 5. Then, d2 was colored
during application of Coloring rule 5 on some ancestor v′ of xT such that there are no
other tree vertices in the path from xT to v′. Then, the only possibility for v′ is v1 as

121

Chapter 5. Rainbow Coloring and its Variants

(a) Coloring rule 11: Case 1. The
red color of edge v1v2 is to highlight
that the edge is not in B1. (b) Coloring rule 11: Case 2

the parent of v1 is a tree vertex. However, we know that v1 has degree 2 in B1, and
hence Coloring rule 5 could not have been applied on v1. Thus, we have a contradiction.
Case II.d. d2 was colored during application of Coloring rule 8. From Coloring Rule 8,
this implies that there is a 1-edge with color s(T). The only 1-edge that can be colored
with s(T) is either the outgoing edge of xT or the outgoing edge of the parent of xT .
However, both of them are 2-edges and hence we have a contradiction.
Case II.e. d2 was colored during Coloring rule 10. Since d2 was not colored during
the application of Coloring rule 10 on xT , we have that d2 was colored during the
application of Coloring rule 10 on some xT ′′ 6= xT . But then d2 is not colored with s(T),
a contradiction.

Coloring rule 11. For each incomplete tree vertex xT : From Lemma 5.38, it follows
that xT has degree exactly 2 in B1, has one incoming and one outgoing 2-edge incident
on it, both the 2-edges are uncolored, and the tree T is just a single edge. Let e1 and
e2 respectively be the outgoing and incoming 2-edges of xT . Let e be the only edge in T .
Let v1 be the other end point of e1 and v2 be the other end point of e2. Let u1 be the
endpoint of (e1)1 and (e2)1 in T . Let u2 be the endpoint of (e1)2 and (e2)2 in T . From
Lemma 5.36, we know that v1 and v2 have degree exactly 2. Let −→v1y be the outgoing edge
from v1 and −−→wv2 be the unique incoming edge on v2 in B1. Since Coloring rule 10 was
not applicable on xT , we have that v1y is a 1-edge.
Case 1. There is an edge between v1 and v2 in G. (See Figure 5.8(a) for an illustration).

122

5.2. RC and Forest Number

Color the representatives of e1 and e2 with c(e). Color v1v2 it with c(e). We say that
v1v2 is a shortcut edge. Note that shortcut edges are the only colored edges in G that
are outside of g(B).
Case 2. Case 1 does not apply. (See Figure 5.8(b) for an illustration).
We prove in Lemma 5.44 that wv2 is a 2-edge in this case. Let T ′ = fT (w). Color (e1)1
and (e1)2 with s(T ′) and color (e2)1 and (e2)2 with color of e.

Path rule 11. For each tree vertex xT on which Coloring rule 11 has been applied as
above and for each Pab such that Qab contains e1 or e2 (we say that the path rule is being
applied on the pair (xT , Pab)):

Case A. If Qab contains both e1 and e2:
Case A.1. If v1v2 ∈ E(G): Add v1v2 to Pab.
Case A.2. If v1v2 /∈ E(G): Add v1u1 and v2u1 to Pab.
Case B. If Qab contains exactly one edge among e1 and e2: Then either a or b is in

V (T). Also both of them cannot be in V (T). Let z be the one among a or b that is in
V (T).

Case B.1. If Qab contains e1: Add v1z to Pab.
Case B.2. If Qab contains e2: Add v2z to Pab.

Lemma 5.40. Invariant 1 is not violated during Path rule 11.

Proof. Suppose for the sake of contradiction that the invariant is violated. Then there
exist distinct edges d1 and d2 in Pab having the same color. We can assume without loss
of generality that d1 was colored during the application of Coloring rule 11 on xT . We
added at most 2 edges during the application of Path rule 11 on xT , and in the cases
where we added 2 edges, we have made sure that the 2 edges have distinct colors. Thus
d2 was not added during the application of Path rule 11 on xT and hence was not colored
during Coloring rule 11 on xT . The colors that are possible for d1 are c(e) and s(T ′).
Case I. c(d1) = c(d2) = c(e).
This is not possible since the color of e has not been used to color any other edges so far.
Case II. c(d1) = c(d2) = s(T ′).
This means h(d1) = e1 and that Case 2 of Coloring rule 11 was applied on xT . The only
coloring rules so far that use the surplus colors of trees are Coloring rules 2, 3, 4, 5, 8,
10, and 11. Hence d2 was colored with s(T) during one of them.
Case II.a. d2 was colored during Coloring rule 2.
This means d2 is a 1-edge and h(d2) is either xT ′v2 or v2xT . But since both xT ′v2 and
v2xT are 2-edges (since Case 2 of Coloring rule 11 was applied on xT), this is not possible.
Case II.b. d2 was colored during Coloring rules 4 or 3.
Let T ′′ be the tree such that d2 is adjacent on xT ′′ . By Lemmas 5.29 and 5.26, we know
that Qab does not intersect ST(xT ′′ , xT ′). Then xT is not in ST(xT ′′ , xT ′). This implies
xT ′′ is in the path from xT to xT ′ . But the only vertex in the path from xT to xT ′ is v2,
a non-tree vertex. Thus, we have a contradiction.
Case II.c. d2 was colored during application of Coloring rule 5. Since v2 has degree 2,
s(T ′) could not have been used in Coloring rule 5. This is a contradiction.
Case II.d. d2 was colored during application of Coloring rule 8.
Case II.d.1. d2 was colored during application of Coloring rule 8 Case 1.
Then, d2 was colored during application of Coloring rule 8 on xT ′ .

123

Chapter 5. Rainbow Coloring and its Variants

But the outgoing edge of xT ′ in B1 is a 1-edge. This means that Case 1 of Coloring rule8
could not have been applied on xT ′ , a contradiction.
Case II.d.2. d2 was colored during application of Coloring rule 8 Case 2.
Then, there is a 1-edge having the color s(T ′). But there are no 1-edges having the color
s(T ′), as for xT ′ , both the outgoing edge and the outgoing edge of the parent are 2-edges.
Hence, we have a contradiction.
Case II.e. d2 was colored during application of Coloring rule 10.
Since c(d2) = s(T ′), from Coloring rule 10 we get that d2 was colored during the
applicaiton of Coloring rule 10 on xT ′ . In Lemma 5.45, we prove that Coloring rule 10
was not applied on xT ′ . Thus, we have a contradiction.
Case II.f. d2 was colored during application of Coloring rule 11.
Since c(d2) = s(T ′), from Coloring rule 11, we get that d2 was colored during the
application of Coloring rule 11 on xT . Moreover, h(d2) = e1. Recall that we have
h(d1) = e1 too. Since we picked only one representative of e1 into Pab by Path rule 11,
we have that d1 = d2. This is a contradiction to the fact that d1 and d2 are distinct.

The following lemma follows from our selection of the skeleton using the configuration
vector.

Lemma 5.41. Any non-tree vertex v having degree 2 in B1 has no 2-edge to any vertex
in H except possibly to its 2 neighbors in B1.

Proof. Let z1 and z2 be the neighbors of v in B1 and let z1 be the parent of v. Suppose for
the sake of contradiction that v has a 2-edge in H to a tree vertex xT1 ∈ V (H) \ {z1, z2}.
This means vxT1 is not in B too, as xT1 being a tree vertex, is not in LS . We show
that a skeleton with lexicographically higher configuration vector than B exists, thereby
giving a contradiction.

Case 1.1. xT1 ∈ ST(v, z1): Let −−→zxT1 be the incoming edge of xT1 in B1. Let B′ be
the skeleton obtained by deleting −→vz1 from B and adding −−→vxT1 . Going from B to B′, the
number of 2-edges is non-decreasing, the degree of xT1 increases, degree of z1 decreases,
and degree of all other vertices remains same. Since z1 is at a smaller level than xT1 in
both B and B′, B′ has higher configuration vector than B. Thus we have a contradiction
to the choice of B.

Case 1.2. xT1 /∈ ST(v, z1): Then clearly xT1 ∈ ST(v, z2) as v has degree 2 in B1. Let
−−→xT1z be the outgoing edge of xT1 in B1. Let B′ be the skeleton obtained by deleting −−→xT1z
from B and adding −−→xT1v. Going from B to B′, the number of 2-edges is non-decreasing,
degree of v increases, degree of z decreases, and degree of all other vertices remains same.
Since v is at a smaller level than z in both B and B′, B′ has higher configuration vector
than B. Thus we have a contradiction to the choice of B.

The following corollary is immediate from the above lemma.

Corollary 5.42. Let xT be a vertex on which Coloring Rule 11 is being applied. Let
v1, v2, y, w be as defined in Coloring Rule 11. The vertex v1 has no 2-edge in H to any
vertex in V (H)\{y, xT }. Similarly, v2 has no 2-edge in H to any vertex in V (H)\{w, xT }.

Lemma 5.43. Let xT be a vertex on which Coloring Rule 11 is being applied. Let
v1, v2, y, w, u1, u2 be as defined in Coloring Rule 11. If v1y is a 1-edge, vertex v1 has no

124

5.2. RC and Forest Number

edge in H to any tree vertex except xT (which also implies that y is a non-tree vertex in
this case). Similarly if wv2 is a 1-edge, vertex v2 has no edge in H to any tree vertex
except xT (which also implies that w is a non-tree vertex in this case).

Proof. We prove here only the first claim of the lemma, the second follows similarly.
Suppose v1 has an edge in H to a tree vertex xT1 6= xT . Then v1xT1 is not a 2-edge due
to Corollary 5.42. Thus v1xT1 is a 1-edge. Let F ′ = (F \ {u1}) ∪ {v1}. We prove that
F ′ = G[F ′] is a forest with fewer number of trees than F , which is a contradiction to
the choice of F .

First, we prove that F ′ is indeed a forest. Suppose for the sake of contradiction that
there is a cycle C in F ′. The cycle C has to contain v1 because otherwise C is also
a cycle in F . The cycle C can intersect at most one tree in T as there are no edges
across the trees. Let this tree be T2. Then v1 should have 2 edges to T2 in C in order to
complete the cycle. We know that v1 does not have 2-edges to any tree in T \ {T} due
to Corollary 5.42. Hence T2 = T . But, since |V (T) ∩ F ′| = 1, v can only have one edge
in C to T . Thus, we have a contradiction. Hence, F ′ is indeed a forest.

Now, we show that the number of trees in F ′ is smaller than that of F . Let T1 be
the set of trees in T \ {T} that have an edge from v1 in G. Clearly T1 ∈ T1 and hence
|T1| ≥ 1. The vertex set {u2, v1}∪

⋃
T ′′∈T1 V (T ′′) induces a tree in G. Hence the number

of trees in F ′ is at most |T \ (T1 ∪ {T})|+ 1 ≤ |T | − |T1| ≤ |T | − 1.

Lemma 5.44. Let xT be a vertex on which Coloring Rule 11 is being applied and
suppose the precondition of Case 1 of the rule is not satisfied. Let v1, v2, w be as defined
in Coloring Rule 11. Then, wv2 is a 2-edge.

Proof. Suppose wv2 is a 1-edge. Let F ′ = (F \ {u1} ∪ {v1, v2}). Let F ′ = G[F ′]. We
will show that F ′ is a forest. Then since |F ′| > |F |, we have that F is not a maximum
induced forest, a contradiction.

Suppose for the sake of contradiction that there is a cycle C in F ′.
Case 1. C intersects more than 2 trees of T : Since there are only 2 vertices in F ′

that are not in any tree in T , there have to be 2 vertices in 2 different trees of T that
are adjacent in C. This is a contradiction as the trees are connected components of F
and therefore have no edges between them in G.

Case 2. C intersects exactly 2 trees of T : Let T1 and T2 be the trees that C interesects.
By Lemma 5.43, we have that v1 and v2 does not have edge to any tree vertex in B1
except xT . Hence at least one of T1 and T2 have no edges to both v1 and v2. This means
that there should be an edge in C between T1 and T2. This is a contradiction as T1 and
T2 are connected components of F and therefore have no edges between them in G.

Case 3. C intersects exactly 1 tree of T : Let T1 be the tree that C interesects. By
Lemma 5.43, we have that v1 and v2 does not have edge to any tree vertex in B1 except
xT . Hence T1 = T . Since only one vertex of T is in F ′, v1 and v2 both can have at most
one edge to T in C. This means v1 and v2 should be adjacent in C to complete the cycle.
However, since the precondition of Case 1 of Rule 11 is not satisfied, v1 and v2 are not
adjacent in G. Thus we have a contradiction.

Lemma 5.45. Let xT be a vertex on which Coloring Rule 11 is being applied and
suppose the precondition of Case 1 of the rule is not satisfied. Let v1, v2, T

′ be as defined
in Coloring Rule 11. Then, xT ′ is not a vertex on which Coloring rule 10 was applied.

125

Chapter 5. Rainbow Coloring and its Variants

Proof. Suppose for the sake of contradiction that Coloring rule 10 was applied on xT ′ .
Then xT ′ has degree 2 in B1 and T ′ consists of a single edge. Let this edge be u3u4.
Observe that the representatives of the outgoing edge of xT ′ are u3v2 and u4v2. Let
F ′ = (F \ {u1, u3} ∪ {v1, v2}). Let F ′ = G[F ′]. Note that |F ′| = |F |. We will show that
F ′ is a forest with fewer number of trees than F , thereby showing a contradiction to the
choice of F .

First, we show that F ′ is indeed a forest. Suppose for the sake of contradiction that
there is a cycle C in F ′.

Case 1. C intersects more than 2 trees of T : Since there are only 2 vertices in F ′

that are not in any tree in T , there have to be 2 vertices in 2 different trees of T that
are adjacent in C. This is a contradiction as the trees are connected components of F
and therefore have no edges between them in G.

Case 2. C intersects exactly 2 trees of T : Let T1 and T2 be the trees that C interesects.
By Lemma 5.43, we have that v1 does not have edge to any tree vertex in B1 except xT .
Hence at least one of T1 and T2 have no edges to v1. This means that there should be
an edge in C between T1 and T2 to complete the cycle. This is a contradiction as T1 and
T2 are connected components of F and therefore have no edges between them in G.

Case 3. C intersects exactly 1 tree of T : Let T1 be the tree that C interesects. Since
the precondition of Case 1 of Rule 11 is not satisfied, v1 and v2 are not adjacent in G.
Hence, only one of them is in C.

Case 3.1. v1 is in C: Then, v1 should have 2 edges in C to T1 in order to complete
the cycle. By Lemma 5.43, we have that v1 does not have an edge in H to any tree
vertex in B1 except xT . Hence T1 = T . Since, only one vertex of T is in F ′, v1 can have
at most one edge to T in C. Thus we have a contradiction.

Case 3.2. v2 is in C: Then, v2 should have 2 edges in C to T1 in order to complete
the cycle. By Corollary 5.42, we have that v2 does not have an edge in H to any tree
vertex in B1 except xT and xT ′ . Hence T1 ∈ {T, T ′}. However, since only one vertex of
each T and T ′ is in F ′, v1 can have at most one edge to each of T and T ′ in C. Hence,
v1 has only one edge to T1. Thus, we have a contradiction.

Thus, we have proved that F ′ is indeed a forest. Now, we prove that F ′ has fewer
number of trees than F , which concludes the proof. Let T1 be the set of trees in T \{T, T ′}
that have an edge from v1 or v2 in G. The vertex set {v1, u2, v2, u4} ∪

⋃
T ′′∈T1 V (T ′′)

induces a tree in G. Hence the number of trees in F ′ is at most |T \ (T1∪{T, T ′})|+ 1 ≤
|T | − |T1| − 1 ≤ |T | − 1.

Now, we have colored the representatives of all edges in B1. We have also colored
some additional edges called shortcut edges. We now show that the vertices in B1 are
rainbow connected through these colored edges.

Lemma 5.46. For any pair of vertices v1, v2 ∈ V (G)\LS, Pab is a rainbow path between
v1 and v2 in G and uses only colors in [f].

Proof. Clearly, after Coloring Rule 11 has been exhaustively applied, there are no in-
complete vertices. This means there are no uncolored 2-edges. Also, Coloring Rule 2
colors all 1-edges. Thus, each edge in B1, and hence their representatives in G, have
been colored.

Whenever an edge in B1 is colored by a coloring rule and if it is in Qab, we have
added exactly one of its representatives to Pab in the proceeding path rule, except in

126

5.3. Bounds on VSRC and SRC

Case A.1 in Path rule 11 where we have added a shortcut edge instead. In the case when
a shortcut edge is added, the shortcut edge shortcuts the two consecutive edges in Qab
whose representatives were not added to Pab and hence the path is not broken. Also,
whenever a tree T has 2 edges of Pab incident on it, we have added the path between
the endpoints of the edges in the tree to Pab. And, whenever a tree T with a ∈ V (T)
has 1 edge of Pab incident on it, we have added the path between the endpoints of the
edge and a in the tree to Pab. Similarly, whenever a tree T with b ∈ V (T) has 1 edge
of Pab incident on it, we have added the path between the endpoints of the edge and b
in the tree to Pab. If there is a tree T with a, b ∈ V (T) we added the path between the
endpoints of a and b in the tree to Pab during Path rule 1. It follows that Pab is indeed
a path between a and b in G. Since Invariant 1 holds, we know that Pab is a rainbow
path. Since we have used only the colors from 1 to f so far, the lemma follows.

So, now we only need to worry about how to rainbow connect vertices in LS between
themselves and to the other vertices. For this, we give the following coloring rule.

Coloring rule 12. For each v ∈ LS: let e be the unique 2-edge incident on v (which
exist due to Lemma 5.17); color (e)1 with g1 and (e)2 with g2. (Recall that g1 and g2 are
the global surplus colors f + 1 and f + 2 respectively).

Now, we complete the proof of Theorem 5.3. Consider any pair of vertices a1, a2 ∈
V (G). If a1 ∈ LS , let e1 be the edge incident on a1 that is colored with g1, and let a
be the other end of e1. If a1 /∈ LS , let a = a1. If a2 ∈ LS , let e2 be the edge incident
on a2 that is colored with g2, and let b be the other end of e2. If a2 /∈ LS , let b = a2.
We know there is a rainbow path Pab from a to b that uses only colors in [f] due to
Lemma 5.46. We define path P as follows. If a1, a2 ∈ LS , then P := a1aPabba2. If
a1 ∈ LS but a2 /∈ LS , then P := a1aPab. If a2 ∈ LS but a1 /∈ LS , then P := Pabba2.
Ifa1, a2 /∈ LS , then P := Pab. It is clear from the construction that P is a path between
a1 and a2. Since edge a1a is colored with g1 = f + 1, edge ba2 is colored with g2 = f + 2,
and path Pab uses only colors in [f], the path P is indeed a rainbow path.

5.3 Bounds on VSRC and SRC

We show several upper and lower bounds on vsrc(G), both for general graphs and for
graphs G that belong to a specific graph class. Crucial in our analysis are the connections
between very strong rainbow colorings and decompositions of the input graph into cliques.
The graph Ĝ used in the following lemma (defined in the preliminaries in Section 5.1.5)
is important for our hardness reductions.

Lemma 5.47. Let G be any graph. Then

(1) src(G) ≤ vsrc(G) ≤ cp(G)(cp(G) + 1)/2.

(2) src(Ĝ) ≤ vsrc(Ĝ) ≤ cp(G)(cp(G) + 1)/2.

Proof. Let C = C1, . . . , Cr be the set of cliques in an optimal clique partition of G; that
is, r = cp(G). For a vertex v, let c(v) denote the clique in C that contains v. We define
the set of colors as

(C
1
)
∪
(C

2
)
, the set of subsets of C of size 1 or 2. Note that the size of

127

Chapter 5. Rainbow Coloring and its Variants

this set is at most cp(G)(cp(G) + 1)/2. We color an edge uv ∈ E(G) by {c(u), c(v)}. It
only remains to show that this edge coloring is indeed a very strong rainbow coloring of
G.

For the sake of contradiction, suppose that the edge coloring is not a very strong
rainbow coloring of G. Then there exist two vertices s, t ∈ V (G), a shortest path P
between s and t, and two distinct edges uv,wx ∈ E(P) that received the same color. If
c(u) = c(v), then the color of uv is {c(u)}. Since wx has the same color, we get that
c(w) = c(x) = c(u). This implies that P uses two edges within the same clique. Then
P can be shortcut, contradicting that P is a shortest path between s and t. Hence,
c(u) 6= c(v), implying also that c(w) 6= c(x). Since colors of uv and wx are the same, we
can without loss of generality assume now that c(u) = c(w) and c(v) = c(x). (Note that
it is possible that either u = w or v = x but not both at the same time). Then either
the edge uw or the edge vx will shortcut P , a contradiction.

To see the second part of the lemma, color each edge ûv incident on the universal
vertex û in Ĝ by c(v), in addition to the above coloring of the edges of G. Suppose this
was not a very strong rainbow coloring of Ĝ. Then there exists vertices u, v such that
uûv is a shortest path and uû and vû are colored the same. But then u and v are in the
same clique Ci in C. But then uv can shortcut uûv, a contradiction.

The following lemma is more consequential for our upper bounds.

Lemma 5.48. Let G be any graph. Then vsrc(G) ≤ is(G) = ecc(G).

Proof. Let U = {x1, x2, . . . , xn} be a universe and F = {S1, S2, . . . , Sm} be a family
of subsets of U such that, G is the intersection graph of F and |U| = is(G). Let vi be
the vertex of G corresponding to the set Si. We take U = {x1, x2, . . . , xn} as the set of
colors, and color an edge between vertices vi and vj with any x ∈ Si ∩ Sj . (Note that
this intersection is non-empty because of the presence of the edge vivj). Suppose for the
sake of contradiction that this is not a very strong rainbow coloring of G. Then there
exist two vertices s, t ∈ V (G), a shortest path P between s and t, and two edges vivj
and vavb in P that received the same color. Let x be this color. By the construction of
the coloring, we have that x ∈ Si ∩ Sj ∩ Sa ∩ Sb. Hence, {vi, vj , va, vb} induce a clique in
G. But then the path P can be shortcut, a contradiction.

We remark that a similar result to the above lemma for the case of src(G), was proved
independently by Lauri [102, Prop. 5.3].

Corollary 5.49. Let G be any graph. Then vsrc(G) ≤ min{b|V (G)|2/4c, |E(G)|}.

Proof. Directly from ecc(G) ≤ min{b|V (G)|2/4c, |E(G)|} for any graph [61].

Corollary 5.50. Let G be any graph.

(1) If G is chordal, then src(G) ≤ vsrc(G) ≤ |V (G)| − χ(G) + 1.

(2) If G is circular-arc, then src(G) ≤ vsrc(G) ≤ |V (G)|.

(3) src(L(G)) ≤ vsrc(L(G)) ≤ |V (G)|, where L(G) is the line graph of G.

These bounds are (almost) tight in general.

128

5.3. Bounds on VSRC and SRC

Proof. In each of the three cases, we express the graph as an intersection graph over a
suitable universe. Then, Lemma 5.48 implies that the size of the universe is an upper
bound on the vsrc of the graph. The required result directly follows in each case.

Every chordal graph is the intersection graph of subtrees of a tree [72]. It is also
known that the number of vertices of this tree only needs to be at most |V (G)|−ω(G)+1.
(For completeness, we provide a proof of this in Lemma 5.51 below). Since ω(G) = χ(G)
for chordal graphs, the required statement follows.

For a circular arc graph G, consider any set of arcs whose intersection graph is G. We
now construct a different intersection representation. Take the set of second (considering
a clockwise ordering of points) endpoints of all arcs as the universe U . Take Si ⊆ U as
the elements of U contained in the i-th arc. It is easy to see that G is the intersection
graph of F =

{
S1, S2, . . . , S|E(G)|

}
.

Finally, consider L(G). We construct an intersection representation with universe
V (G). For each uv ∈ E(G), let Suv = {u, v}. Then L(G) is the intersection graph of
F = {Se : e ∈ E(G)}.

The (almost) tightness for all the three cases follow by taking G as a path. For a
path G, we have vsrc(G) = |V (G)| − 1 and vsrc(L(G)) = |V (G)| − 2. Paths are both
chordal and circular-arc.

We now prove Lemma 5.51 used in the proof of Corollary 5.50. We remark that this
lemma is a known fact and the proof is only given for the sake of completeness.

Lemma 5.51. Let G be any chordal graph. Then G can be represented as the intersection
graph of the subtrees of a tree on at most n− ω(G) + 1 vertices.

Proof. Let n = |V (G)|. Since G is a chordal graph, it has a perfect elimination order [75].
In fact, the lexicographic search algorithm that construct a perfect elimination order
implies the existence of such an order v1, v2, . . . , vn such that vn, vn−1 . . . , vn−ω(G)+1
forms a maximum clique. For any i = 1, . . . , n, let Gi = G[vn, vn−1, . . . , vi].

We claim that for n − ω(G) + 1 ≥ i ≥ 1, Gi can be represented as the intersection
graph of subtrees Sn, Sn−1, . . . , Si of a tree Ti on at most n− i− ω(G) + 2 vertices, and
there exists a bijection fi from vertices of Ti to maximal cliques of Gi such that for each
n ≥ k ≥ i, Sk = Ti[u ∈ V (Ti) : vk ∈ fi(u)].

We prove the claim by downwards induction on i. The base case is when i =
n− ω(G) + 1. In this case, the statement follows by taking Ti as a single vertex u and
fi(u) as the clique {vn, vn−1, . . . , vi}.

Now, assuming the statement is true for i, we prove it for i−1. Since vi−1 is simplicial
in Gi−1, NGi−1(vi−1) is a subset of some maximal clique C of Gj . Let t be the vertex in
Tj such that fj(t) = C. If all vertices in C are adjacent to vi−1 in Gi−1, then we take
Ti−1 = Ti, fi−1(t) = fi(t) ∪ {vi−1}, and fi−1(t′) = fi(t′) for all t′ ∈ V (Tj+1) such that
t′ 6= t. It is easy to see that the statement follows in this case. Now suppose that not
all vertices in C are adjacent to vi−1 in Gi−1. Then we take V (Ti−1) = V (Tj)∪ {u} and
E(Ti−1) = E(Ti)∪{u, t} where u is a new vertex introduced with fi−1(u) = NGi−1 [vi−1].
For all u′ ∈ V (Ti−1) such that u′ 6= u, we take fi−1(u′) = fi(u). The statement follows
from this construction.

By taking i = 1 in the statement of the claim, it follows that G can be represented
as the intersection graph of subtrees of a tree with at most n− ω(G) + 1 vertices.

129

Chapter 5. Rainbow Coloring and its Variants

Corollary 5.52. Let G be any k-perfectly orientable graph. Then, src(G) ≤ vsrc(G) ≤
k|V (G)|.

Proof. Consider any orientation of the edges of G such that the outgoing neighbors of
each vertex v can be partitioned into k or fewer cliques. Let C(v) denote these set of
cliques for each vertex v. Let C ′(v) := {S ∪ {v} : S ∈ C(v)}. Note that C ′(v) is also a
set of cliques. Observe that

⋃
v∈V (G)C

′(v) is an edge clique cover of G because, every
edge is outgoing from some vertex v, and will thus be covered by a clique in C ′(v). Hence,
vsrc(G) ≤ ecc(G) ≤ k|V (G)|.

Since any k-perfectly groupable graph is also k-perfectly orientable, the above bound
also applies to k-perfectly groupable graphs. In this context, we prove an interesting
converse of the above bound.

Lemma 5.53. Let G be any graph. If vsrc(G) ≤ k, then G is k-perfectly groupable.

Proof. Consider an optimal very strong rainbow coloring µ of G. Consider an arbitrary
vertex v of G and let c be any color used in µ. Define the set Q(c) = {u ∈ N(v) :
µ(vu) = c}. Suppose there exist two non-adjacent vertices u,w in Q(c). Then uvw is
a shortest path between u and w, and thus uv and vw cannot have the same color, a
contradiction to the definition of Q. Hence, for each color c used in µ, Q(c) is a clique.
Since the number of colors is at most k, the edges incident on v can be covered with at
most k cliques. Hence, G is k-perfectly groupable.

5.4 Hardness Results for VSRC

The hardness results lean heavily on the combinatorial bounds of the previous section.
We will also need the following bound, which strengthens Lemma 5.47.

Lemma 5.54. Let G be any graph. If cp(G) ≤ 3, then vsrc(Ĝ) ≤ 3.

Proof. Let C1, C2, and C3 be three cliques into which V (G) can be partitioned. We
will color Ĝ with three colors, say c1, c2, and c3, as follows: For each edge with both
endpoints in Ci for 1 ≤ i ≤ 3, color it with ci. For each edge vw with v ∈ Ci, w ∈ Cj
such that 1 ≤ i < j ≤ 3, color it with ck, where k ∈ {1, 2, 3} \ {i, j}. Finally, for each
edge ûv with v ∈ Ci for 1 ≤ i ≤ 3, color it with ci.

Suppose, this is not a very strong rainbow coloring of Ĝ. Then, since the diameter of
Ĝ is at most 2, there exists a shortest path xyz with xy and yz having the same color.
However, if xy and yz have the same color, by the construction of the coloring, at least
two of x, y and z are in the same Ci for 1 ≤ i ≤ 3 and the third one is either û or in Ci
itself. Then, we can shortcut xyz by xz, a contradiction. Hence vsrc(Ĝ) ≤ 3.

We will also need the following Corollary of Lemma 5.53.

Corollary 5.55. vsrc(Ĝ) ≥ cp(G).

Proof. If vsrc(Ĝ) ≤ k, then Ĝ is k-perfectly groupable by Lemma 5.53. In particular, the
neighborhood of û (the universal vertex in Ĝ) can be partitioned into at most k cliques.
Since the graph induced by the neighborhood of û in Ĝ is nothing but the graph G, we
have that cp(G) ≤ k.

130

5.5. Algorithm for VSRC in Cactus Graphs

We will now prove Theorem 5.4. We state the theorem here again for convenience.

Theorem 5.4. 3-VSRC is NP-complete. Moreover, there is no polynomial-time algo-
rithm that approximates vsrc(G) within a factor |V (G)|1−ε for any ε > 0, unless P=NP.

Proof. We first prove that 3-VSRC is NP-complete. We will give a reduction from the
NP-hard 3-Coloring problem [70]. Let G be an instance of 3-Coloring. Let H be
the complement of G. We claim that vsrc(Ĥ) = 3 if and only if G is 3-colorable. Indeed,
if vsrc(Ĥ) ≤ 3, then cp(H) ≤ 3 by Corollary 5.55, implying that G is 3-colorable. For
the other direction, note that if G is 3-colorable, then cp(H) ≤ 3, and by Lemma 5.54,
vsrc(Ĥ) ≤ 3.

To prove the hardness of approximation, we recall that, for every ε > 0, there exists a
polynomial-time algorithm that takes a SAT formula ψ as input and produces a graph G
as output such that: if ψ is not satisfiable then cp(G) ≥ |V (G)|1−ε, and if ψ is satisfiable,
then cp(G) ≤ |V (G)|ε [164, Proof of Theorem 2]. Now,

ψ not satisfiable⇒ cp(G) ≥ (|V (G)|)1−ε

⇒ vsrc(Ĝ) ≥ (|V (G)|)1−ε (as vsrc(Ĝ) ≥ cp(G) by Corollary 5.55)

⇒ vsrc(Ĝ) ≥ (|V (Ĝ)| − 1)1−ε

ψ satisfiable⇒ cp(G) ≤ (|V (G)|)ε

⇒ vsrc(Ĝ) ≤ (|V (G)|)2ε (as vsrc(G) ≤ cp(G)2 by Lemma 5.47)
⇒ vsrc(Ĝ) ≤ (|V (Ĝ)| − 1)2ε

The required inapproximability result follows by rescaling ε.

5.5 Algorithm for VSRC in Cactus Graphs

Throughout this section, letG be the input cactus graph. We first prove several structural
properties of cactus graphs, before presenting the algorithm.

5.5.1 Definitions and Structural Properties of Cactus Graphs

We make several structural observations related to cycles. See Figure 5.9 for an illustra-
tion of the concepts introduced in this section. For a vertex v and a cycle C containing
v, we define S(v, C) as the vertices of G that are reachable from v without using any
edge of C.

Observation 5.56. For any cycle C in G, {S(v, C) : v ∈ V (C)} is a partition of V (G).

From Observation 5.56, we have that for any fixed u ∈ V (G) and any fixed cycle
C of G, there exists a unique vertex v ∈ V (C) such that u ∈ S(v, C). We denote that
unique vertex v by g(u,C).

Observation 5.57. Let u ∈ V (G) and let C be a cycle in G. Let w ∈ V (C) and let
x1x2 . . . xr be a path from u to w where x1 = u and xr = w. Let i∗ be the smallest i such
that xi ∈ V (C). Then, xi∗ = g(u,C). In simpler words, any path from u to any vertex
in C enters C through g(u,C).

131

Chapter 5. Rainbow Coloring and its Variants

Observation 5.58. For any cycle C in G and for any uv ∈ E(G) \ E(C), g(u,C) =
g(v, C).

We now focus on even cycles. For an edge uv in an even cycle C, we define its opposite
edge, denoted by eopp(uv), as the unique edge xy ∈ E(C) such that dist(u, x) = dist(v, y).
Note that eopp(eopp(e)) = e. Call the pair of edges e and eopp(e) an opposite pair. Each
even cycle C has exactly |C|2 opposite pairs.

Lemma 5.59. Let C be an even cycle. For any vertex x ∈ V (G) and edge uv ∈ E(C),
either there is a shortest path between x and u that contains uv or there is a shortest
path between x and v that contains uv.

Proof. Let w = g(x,C). Then, w cannot be equidistant from u and v, because otherwise
C is an odd cycle. Suppose that dist(w, u) < dist(w, v). Then a shortest path from w
to u appended with the edge uv gives a shortest path between w and v. Now, due to
Observation 5.57, if we append a shortest path between x and w with a shortest path
between w and v, we get a shortest path between x and v. Thus there is a shortest
path between x and v that contains uv. If dist(w, u) > dist(w, v), then we get the other
conclusion of the lemma.

We now move on to odd cycles. For any edge e in an odd cycle C, there is a unique
vertex in C that is equidistant from both endpoints of e. We call this vertex the opposite
vertex of e and denote it as vopp(e). We call OS(e) := G[S(vopp(e), C)] the opposite
subgraph of e. See Figure 5.9 for an illustration.

Lemma 5.60. Let C be an odd cycle and uv ∈ E(C). For any vertex x ∈ V (G) \
V (OS(uv)), either there is a shortest path between x and u that contains uv or there is
a shortest path between x and v that contains uv.

Proof. Let w = g(x,C). Since x /∈ V (OS(uv)), w 6= vopp(uv). Hence, w cannot be
equidistant from u and v. So, the same arguments as in Lemma 5.59 complete the
proof.

Lemma 5.61. Let e be any edge in an odd cycle of G for which vopp(e) has degree more
than 2. Then OS(e) contains either a bridge, or an even cycle, or an edge e′ in an odd
cycle such that vopp(e′) has degree 2.

Proof. Suppose this is not the case. We define a sequence e1, e2, . . . of edges by the
following procedure. Let e1 = e. Given ei, we define ei+1 as follows. By assumption and
the definition of cactus graphs, ei is contained in an odd cycle, which we denote by Ci,
and vopp(ei) has degree more than 2. Choose ei+1 as any edge incident on vopp(ei) that
is not in Ci. However, observe that OS(ei+1) ⊂ OS(ei) by the choice of ei+1. Hence, this
is an infinite sequence, which contradicts the finiteness of E(G).

5.5.2 Properties of Very Strong Rainbow Colorings of Cactus Graphs

We initially partition the edges of G into three sets: Ebridge, Eeven, and Eodd. The set
Ebridge consists of those edges that are not in any cycle. In other words, Ebridge is the set
of bridges in G. By definition of cactus graphs, each of the remaining edges is part of

132

5.5. Algorithm for VSRC in Cactus Graphs

Figure 5.9: An example of a cactus graph and related definitions.

exactly one cycle. We define Eeven as the set of all edges that belong to an even cycle,
and Eodd as the set of all edges that belong to an odd cycle. Note that Ebridge, Eeven,
and Eodd indeed induce a partition of E(G). We then partition Eodd into two sets: Eopp
and Erem. An edge e ∈ Eodd is in Eopp if vopp(e) is not a degree-2 vertex and in Erem
otherwise. See Figure 5.9. We analyze each of these sets in turn, and argue how an
optimal VSRC might color them.

Two edges e1 and e2 are called conflicting if there is a shortest path in the graph
which contains both e1 and e2. Two conflicting edges must have different colors in any
VSRC. We now exhibit several classes of conflicting pairs of edges.

Lemma 5.62. 2 Any VSRC of G colors the edges of Ebridge with distinct colors.

Proof. Consider uv, xy ∈ Ebridge. We prove that uv and xy are conflicting, i.e. there is a
shortest path in G which contains both uv and xy. Since uv is a bridge, we can assume
without loss of generality that any path between u and y uses the edge uv. Similarly,
since xy is a bridge, we can assume without loss of generality that any path between
y and u uses the edge xy. Hence, the shortest path from u to y uses both uv and xy.
Hence, uv and xy are conflicting.

Lemma 5.63. Let e1 ∈ Ebridge and e2 ∈ Eeven. Then any VSRC of G colors e1 and e2
with different colors.

Proof. Let C be the cycle containing e2. Let e1 = xy and e2 = uv. Since xy is a bridge,
we can assume w.l.o.g. that any path from x to any vertex in C contains xy. Due to
Lemma 5.59, we can assume w.l.o.g. that there is a shortest path from x to v that
contains uv. Thus we have a shortest path which contains both uv and xy, which means
that uv and xy are conflicting.

Observation 5.64. Let e1 and e2 be edges in an even cycle C of G such that e1 6=
eopp(e2). Then any VSRC of G colors e1 and e2 with different colors.

2This lemma holds for any graph, not necessarily cactus

133

Chapter 5. Rainbow Coloring and its Variants

Lemma 5.65. Let e1 and e2 be edges in two different even cycles C1 and C2 of G. Then
any VSRC of G colors uv and xy with different colors.

Proof. Let e1 = uv and e2 = xy. Let z = g(u,C2) andw = g(x,C1). By Observation 5.58,
g(v, C2) = z and g(y, C1) = w. Due to Lemma 5.59, we can assume w.l.o.g. that there
is a shortest path P1 between z and x containing xy and that there is a shortest path
P2 between w and u containing uv. Let P3 be a shortest path between w and z. Then
P1∪P3∪P2 gives a shortest path between u and x that contains both uv and xy. Hence,
e1 and e2 are conflicting.

Lemma 5.66. Let e1 ∈ Ebridge ∪ Eeven and e2 ∈ Erem. Then any VSRC of G colors e1
and e2 with different colors.

Proof. Let e1 = xy and e2 = uv, let C be the odd cycle containing e2, and let w = g(x,C).
By Observation 5.58, w = g(y, C). In other words, x, y ∈ S(w,C). Note that w is not a
degree-2 vertex, because there are at least two vertices in S(w,C). Hence, w 6= vopp(uv)
by the definition of Erem. Hence, by Lemma 5.60, w.l.o.g., there is a shortest path P1
from w to u that contains uv.

We now consider two cases, depending on whether e1 ∈ Ebridge or e1 ∈ Eeven. First,
suppose that e1 ∈ Ebridge. Since xy is a bridge, we can assume w.l.o.g. that any shortest
path from x to w contains xy. Let P2 be such a shortest path. By Observation 5.57,
if we append a shortest path from x to w with a shortest path from w to u, we get a
shortest path from x to u. Thus, P1 ∪ P2 is a shortest path from x to u containing xy
and uv. Hence, e1 and e2 are conflicting.

Suppose that e1 ∈ Eeven. Let C ′ be the even cycle containing e1. Let z = g(v, C ′).
From Lemma 5.59, we can assume w.l.o.g. that there is a shortest path from z to x that
contains xy. Let this shortest path be P3. Let P4 be a shortest path between w and z.
By Observation 5.57, P3 ∪ P4 ∪ P1 is a shortest path between x and u that contains xy
and uv. Hence, e1 and e2 are conflicting.

Lemma 5.67. Let C1 and C2 be two distinct odd cycles and let e1 ∈ E(C1) ∩Erem and
e2 ∈ E(C2) ∩ Erem. Then any VSRC of G colors e1 and e2 with different colors.

Proof. Let e1 = xy and e2 = uv, and let w = g(x,C2). By Observation 5.58, w = g(y, C2).
Let z = g(u,C1). By Observation 5.58, z = g(v, C1). That is, x, y ∈ S(w,C2) and
u, v ∈ S(z, C1). Note that w and z are not degree-2 vertices, because there are at least
two vertices in S(w,C2) and S(z, C1). Hence, w 6= vopp(uv) and z 6= vopp(xy) by the
definition of Erem. Hence, by Lemma 5.60, we can assume w.l.o.g. that there is a shortest
path P1 from u to w that contains uv and there is a shortest path P2 from z to x that
contains xy. Let P3 be a shortest path from w to z. By Observation 5.57, P1∪P2∪P3 is
a shortest path from x to u containing xy and uv. Hence, e1 and e2 are conflicting.

Finally, we prove the existence of some non-conflicting pairs of edges.

Lemma 5.68. For any e1 ∈ Eopp and e2 ∈ OS (e1), e1 and e2 are not conflicting.

Proof. Let e1 = uv, e2 = xy, and let C be the odd cycle containing e1. For the sake of
contradiction, suppose that uv and xy are conflicting. Assume w.l.o.g. that there is a
shortest path P from x to v which contains uv and xy. From Observation 5.57, P contains

134

5.5. Algorithm for VSRC in Cactus Graphs

a subpath P ′ from g(x,C) to v. Clearly, P ′ contains uv. Also, g(x,C) = vopp(uv),
because x ∈ OS(uv). However, recall that vopp(uv) is equidistant from u and v. Hence,
any shortest path from vopp(uv) to v does not contain uv, which contradicts the existence
of P ′.

5.5.3 Algorithm

Based on the results of the previous two subsections, we now describe the algorithm for
cactus graphs. First, we color the edges of Ebridge with unique colors. By Lemma 5.62,
no VSRC can use less colors to color Ebridge.

Next, we color the edges in Eeven using colors that are distinct from those we
used before. This will not harm the optimality of the constructed coloring, because
of Lemma 5.63. Moreover, we use different colors for different even cycles, which does
not harm optimality by Lemma 5.65. We then introduce a set of |C|2 new colors for
each even cycle C. For an opposite pair, we use the same color, and we color each
opposite pair with a different color. Thus we use |C|2 colors for each even cycle C. By
Observation 5.64, no VSRC can use less colors to color C.

Next, we will color the edges in Erem using colors that are distinct from those we
used before. This will not harm the optimality of the constructed coloring, because of
Lemma 5.66. For each odd cycle, we use a different set of colors. This will not harm the
optimality of the constructed coloring, because of Lemma 5.67.

For each odd cycle C: If C is a 3-cycle we construct an auxiliary graph HC for
Erem ∩C as follows. Let V (HC) = Erem ∩C and let E(HC) = {e1e2 : e1, e2 ∈ V (HC); e1
and e2 are not conflicting in G}.

Lemma 5.69. ∆(HC) ≤ 2. Also, HC has no 3-cycle except when G is just a 3-cycle.

Proof. It is easy to observe that in any odd cycle C, for any e ∈ E(C), there are only two
other edges in C that are not conflicting with e. Hence, ∆(HC) ≤ 2. Now, suppose there
is a 3-cycle in G. Then there exist edges e1, e2, e3 in Erem ∩ C that are non-conflicting
with each other. This is only possible if C is just a 3-cycle. Moreover, all the 3 edges in
C are in Erem. But then the whole graph is just C, which is a 3-cycle.

Let MC be a maximum matching of HC . We can compute MC in linear time, since
∆(HC) ≤ 2. For an e1e2 ∈ MC , color e1 and e2 with the same, new color. Then color
each e ∈ Erem ∩ C that is unmatched in MC , each using a new color.

Lemma 5.70. The procedure for coloring Erem ∩ C gives a coloring of the edges in
Erem ∩ C such that no conflicting edges are colored the same. Moreover, no VSRC of G
can use less colors to color Erem ∩ C than used by the above procedure.

Proof. Suppose two conflicting edges e1, e2 ∈ Erem ∩C were colored the same. Then the
corresponding vertices e1 and e2 were matched to each other in MC . Hence, e1 and e2
are adjacent in HC , meaning that e1 and e2 did not conflict each other in G, which is
a contradiction. Hence, we have proved that no conflicting edges were given the same
color by the procedure.

Now, consider any VSRC µ of G which colored Erem ∩ C with fewer colors than by
our procedure. Observe that for any edge e in an odd cycle, there are only two other

135

Chapter 5. Rainbow Coloring and its Variants

edges (say ea and eb) that are not conflicting with e. Moreover, ea and eb are conflicting
with each other as HC does not have any 3-cycle by Lemma 5.69 (we can forget about
the case when G is 3-cycle as this is a trivial instance). This means that µ can use
each color for at most two edges of Erem ∩ C. Suppose there are k1 colors that are
assigned to two edges in Erem ∩ C by µ. Each pair of edges colored the same should
be non-conflicting and hence have an edge between them in HC . So, taking all pairs
colored the same induces a matching of size k1 of HC . Then k1 ≤ |MC |, because MC

is a maximum matching of HC . But then the number of colors used by µ is equal to
k1 + (|Erem ∩ C| − 2k1) = |Erem ∩ C| − k1. The number of colors used by our procedure
is |MC |+ |Erem ∩ C| − 2|MC | = |Erem ∩ C| − |MC | ≤ |Erem ∩ C| − k1. Hence, we use at
most the number of colors used by µ.

Finally, we color the edges of Eopp without introducing new colors. Indeed, for
every e ∈ Eopp, it follows from Lemma 5.61 that there exists an edge e′ ∈ E(OS(e)) ∩
(Ebridge ∪ Eeven ∪ Erem), which does not conflict with e by Lemma 5.68. Since e′ is already
colored, say by color c, then we can simply re-use that color c for e. Indeed, suppose
for the sake of contradiction that there is a shortest path P between two vertices x, y
that contains e and that contains another edge e′′ using the color c. By Lemma 5.68,
e′′ 6∈ OS(e). This implies that e′′ 6∈ Ebridge ∪ Eeven ∪ Erem by the choice of c and the
construction of the coloring. Hence, e′′ ∈ Eopp. However, by a similar argument, e′′ can
receive color c only if e′ ∈ OS(e′′). But then, either OS(e) ⊆ OS(e′′) or OS(e′′) ⊆ OS(e),
and thus e and e′′ are not conflicting by Lemma 5.68, a contradiction to the existence
of P .

Proof of Theorem 5.6: It follows from the above discussion that the constructed
coloring is a very strong rainbow coloring of G. Moreover, it uses vsrc(G) many colors.
Also, it is clear that the coloring can be computed in polynomial time.

5.6 Other Algorithmic Results for VSRC

In this section, we first show that 2-VSRC can be solved in polynomial time. Then
we show that k-VSRC is fixed parameter tractable when parameterized by k + tw(G),
where tw(G) denotes the treewidth of G.

For proving both the results, we use an auxiliary graph G′ defined as follows: add
a vertex ve to G′ for each edge e in G; add an edge between vertices ve1 and ve2 in G′

if and only if edges e1 and e2 appear together in some shortest path of G. The latter
condition can be easily checked in polynomial time. Observe that vsrc(G) ≤ k if and
only if G′ admits a proper k-coloring. Since 2-Coloring is solvable in polynomial
time, this implies that 2-VSRC is polynomial time solvable and hence we have proved
Proposition 5.5.

It is worth noting that the chromatic number of the auxiliary graph G′ constructed
in the above proof always corresponds to the very strong rainbow connection number
of G. However, in the transformation from G to G′, we lose a significant amount of
structural information. For example, if G is a path or a star (tw(G) = 1), then G′ is a
clique (tw(G′) = |V (G′| − 1 = |V (G)| − 2), where we use tw(G) to denote the treewidth

136

5.7. RVC and SRVC in Bipartite graphs and their subclasses

of G. If vsrc(G) ≤ k, then we can prove that |V (G′)| ≤ k(k+1) · (tw(G)+1)(k+1) as shown
below.

Lemma 5.71. Let G be any connected graph and let vsrc(G) ≤ k and tw(G) ≤ t − 1.
Then ∆(G) ≤ kt and |V (G)| ≤ (kt)k+1.

Proof. By Lemma 5.53, the fact vsrc(G) ≤ k implies that G is k-perfectly groupable.
Hence, the neighborhood of each vertex can be partitioned into k or fewer cliques. Since
tw(G) ≤ t−1, each clique of G has size at most t [141]. Hence, ∆(G) ≤ kt. Now observe
that vsrc(G) ≤ k implies that the diameter of G is at most k. Combined, these two facts
imply that |V (G)| ≤ (kt)k+1.

Using the above lemma, we now prove that k-VSRC is fixed parameter tractable
when parameterized by k + tw, thereby proving Theorem 5.7.

Proof of Theorem 5.7: Let vsrc(G) ≤ k and tw(G) ≤ t − 1. We now construct the
auxiliary graph G′ as above. Now, we only need to compute the chromatic number of
G′. We aim to use the algorithm by Björklund et al. [22] which computes the chromatic
number of a graph on n vertices in 2nnO(1) time. To bound |V (G′)|, we observe that by
Lemma 5.71, |V (G)| ≤ (kt)k+1 and ∆(G) ≤ kt. Hence, |V (G′)| = |E(G)| ≤ (kt)(k+2).
Therefore, the chromatic number of G′, and thereby vsrc(G), can be determined in
O(2(kt)(k+2)(kt)O(k+2)) time.

5.7 RVC and SRVC in Bipartite graphs and their sub-
classes

In this section, we show that k-RVC and k-SRVC are hard on bipartite graphs for
k ≥ 3. We complement these results by showing that both problems can be solved in
linear time on bipartite permutation graphs. We first observe that computing rvc(G) or
srvc(G) is easy on bipartite graphs of diameter 3. The same observation was made by
Li et al. [108].

Proposition 5.72 ([108]). If G is a bipartite graph with diam(G) = 3, then rvc(G) =
srvc(G) = 2. Moreover, such a coloring can be found in linear time.

Proof. The statement follows from Proposition 5.12 and the fact that every bipartite
graph has a proper 2-coloring that can be found in linear time.

It turns out that if diam(G) ≥ 4, then rvc(G) and srvc(G) of a bipartite graph G
become much harder to compute, as claimed in Theorem 5.9, which we state here again
for convenience.

Theorem 5.9. Let G be a bipartite graph of diameter 4. It is NP-complete to decide both
whether rvc(G) ≤ k and whether srvc(G) ≤ k, for every k ≥ 3. Moreover, it is NP-hard
to approximate both rvc(G) and srvc(G) within a factor of n1/3−ε, for every ε > 0.

We now prove Theorem 5.9. Towards this, we provide the following construction.
For an illustration of the construction, see Figure 5.10.

137

Chapter 5. Rainbow Coloring and its Variants

a

u1

z1 v1

w1

. . .

u5

z5 v5

w5

x1
e1 x1

e2 x5
e1x5

e2

N ′
1 N ′

5

I ′1 I ′5

u

z v

w
e1

e2

H = (N, E)

Figure 5.10: A hypergraph H = (N, E) (left) transformed into a bipartite graph G
(right) as described in the proof of Lemma 5.73. The dashed rectangle with rounded
corners contains the sets in N ′.

Lemma 5.73. Let H be a hypergraph on n vertices. Then in polynomial time we can
construct a bipartite graph G of diameter 4 and with O(n3) vertices such that for any
k ∈ [n], H has a proper k-coloring if and only if G has a (k + 1)-coloring under which
G is (strongly) rainbow vertex-connected. Moreover, if H is a planar graph, then G is
an apex graph.

Proof. Let H = (N, E) be an arbitrary hypergraph and let n = |N |. We construct
a bipartite graph G := (V,E) where V := {a} ∪ N ′ ∪ I ′, N ′ := N ′1 ∪ · · · ∪ N ′n+1,
N ′i := {vi | v ∈ N}, I ′ := I ′1 ∪ · · · ∪ I ′n+1, I ′i := {xie | e ∈ E} and E := {av | v ∈ N ′} ∪
{vixie | e ∈ E , i ∈ [n+ 1], v ∈ e}. A bipartition of G is given by ({a} ∪ I ′, N ′). Observe
that diam(G) = 4 and that G has O(n3) vertices. Moreover, if H is a planar graph, then
G consists of vertex a plus n + 1 copies of the graph obtained from H by subdividing
each edge of H, and thus G is an apex graph. For an illustration of the construction,
see Figure 5.10.

Consider any proper k-coloring h : N → [k] of H, i.e., no hyperedge of H is monochro-
matic under h. We construct a coloring c : V → [k + 1] in the following way. First, for
every v ∈ N , we give the vertices v1, v2, . . . , vn of G the same color as v, i.e., c(vi) = h(v)
for all v ∈ N and i ∈ [n+ 1]. We give vertex a the color k + 1, i.e., c(a) = k + 1. The
vertices in I all receive the same color, which is any arbitrary color in [k + 1]. Now we
prove that G is strongly rainbow vertex connected under c by showing that there is a
rainbow vertex shortest path between every pair of vertices. The only non-trivial case is
when both vertices of the pair are in I. Consider two distinct vertices xie, x

j
f ∈ I (it is

possible that e = f or i = j but not both). Since e and f are not monochromatic under
h, we can pick two distinct vertices u ∈ e and v ∈ f such that h(u) 6= h(v). It is clear
that the path xieuavx

j
f is a shortest path between xie and xjf and that it is a rainbow

vertex path. Hence, G is strongly rainbow vertex-connected under c.
Conversely, let c be a (k + 1)-coloring of G under which G is (strongly) rainbow

138

5.7. RVC and SRVC in Bipartite graphs and their subclasses

vertex-connected. For each i ∈ [n+ 1], define hi to be the vertex coloring of H such that
hi(v) = c(vi) for all v ∈ N . Let Mi be the set of vertices v ∈ N such that hi(v) 6= c(a).
Let h′i(v) = hi(v) if v ∈Mi and h′i(v) = 1 otherwise. It is clear that each h′i is a k-coloring
of H. We claim that there exists an i ∈ [n + 1] such that h′i is a proper k-coloring of
H. For the sake of contradiction, suppose that h′i is not a proper k-coloring of H for
every i ∈ [n + 1]. For each i ∈ [n + 1], let ei ∈ E be a monochromatic edge under h′i.
Let ci be the color of vertices in ei under h′i. Now, since k ≤ n, there exist distinct
i, j ∈ [n + 1] such that ci = cj . From the construction of h′ and definition of ei, all
vertices in V1 := {vi : v ∈ ei} are colored either c(a) or ci under c. Similarly, all vertices
in V2 := {vj : v ∈ ej} are colored either c(a) or cj = ci under c. Note that V1 is the set
of vertices adjacent to xei and V2 is the set of vertices adjacent to xej . Also, V1 ∩ V2 = ∅
as i 6= j. Consider any (shortest) path from xei to xej . The internal vertices of the path
consists of 3 vertices, one from V1, the vertex a, and one vertex from V2. But these
vertices are all colored with either c(a) or ci = cj . Hence the path is not a rainbow vertex
path and thus c is not a (strong) rainbow coloring. Hence, we have a contradiction.

Proof of Theorem 5.9. For membership in NP, a certificate that rvc(G) ≤ k (or srvc(G) ≤
k) consists of a k-coloring and a list of (shortest) paths, one for every pair of vertices,
that are rainbow vertex connected. For NP-hardness, we observe that the transformation
of Lemma 5.73 implies a straightforward reduction from Hypergraph k-Coloring.
Since Hypergraph k-Coloring is NP-complete for each k ≥ 2, this proves the first
part of the theorem.

For the second part of the theorem, we consider an instance of Coloring that
consists of a graph on ` vertices and apply Lemma 5.73. Note that the total number of
vertices in G is n = O(`3). From the hardness of approximation of Coloring, we know
that for all ε > 0, it is NP-hard to distinguish between the case when H is properly
colorable with `ε colors and the case when H is not properly colorable with fewer than
`1−ε colors [164]. By Lemma 5.73, this implies that it is NP-hard to distinguish between
the case when G is (strong) rainbow vertex colorable with `ε + 1 ≤ nε + 1 colors and the
case when G is not (strong) rainbow vertex colorable with fewer than `1−ε+1 = Ω(n1/3−ε)
colors. The second statement of the theorem follows.

Using the same construction, we now proceed to give a proof of Theorem 5.8, which
we state here again for convenience.

Theorem 5.8. Let G be a bipartite apex graph of diameter 4. It is NP-complete to
decide both whether rvc(G) ≤ 4 and whether srvc(G) ≤ 4. Moreover, it is NP-hard to
approximate rvc(G) and srvc(G) within a factor of 5/4− ε, for every ε > 0.

Proof. The proof follows along the same lines as the proof of the first part of Theorem 5.9.
Instead of Hypergraph k-Coloring, however, we reduce from Planar 3-Coloring,
the problem of deciding whether a planar graph has a proper 3-coloring. This problem
is NP-complete. The NP-completeness follows from Lemma 5.73 because, the graph
resulting from the construction is a bipartite apex graph of diameter 4, when we start
with a planar graph.

For the hardness of approximation, we recall that any planar graph has a proper
4-coloring, and thus the graph G constructed in Lemma 5.73 has a 5-coloring under which
G is rainbow vertex-connected. Hence, Lemma 5.73 combined with the NP-hardness

139

Chapter 5. Rainbow Coloring and its Variants

of Planar 3-Coloring makes it NP-hard to decide whether G has a 5-coloring or a
4-coloring under which G is rainbow vertex-connected. The required hardness result
follows from this.

We now complement the above hardness results with a positive result in the case
when a bipartite graph is also a permutation graph, as claimed in Theorem 5.11. It has
been shown by Spinrad et al. [147] that a bipartite graph is a permutation graph if and
only if it has a strong ordering (see preliminaries in Section 5.1.5 for definition), and
such an ordering can be computed in linear time. The following property of the BFS
tree of a bipartite permutation graph is well-known and easy to deduce from a strong
ordering [156]. In every bipartite permutation graph G, it is possible to find a vertex v
such that the levels L0, L1, L2, . . . of the tree resulting from a BFS starting from v have
the following properties. For all i, L0 = {v}, Li is an independent set and G[Li ∪ Li+1]
is a chain graph (see preliminaries in Section 5.1.5 for definition). Moreover, for each
level i, there exists a special vertex ai ∈ Li such that Li+1 ⊂ N(ai). The vertex v can
be picked as the first vertex of a strong ordering.

Lemma 5.74. For 1 ≤ i ≤ j, and for x ∈ Li and y ∈ Lj, dist(x, y) is either j − i or
j − i+ 2.

Proof. Clearly dist(x, y) ≥ j − i by the property of BFS tree. There is a path of length
j − i+ 2 from x to y, namely the path xai−1aiai+1 . . . aj−1aj . We will now prove that
there is no path of length j − i+ 1 from x to y, thereby completing the proof. Suppose
there was such a path P . Observe that if z2 is the proceeding vertex after z1 in P , then
z2 and z1 cannot be in the same level as each Li is an independent set. Also, z2 cannot
be in a smaller level than z1, as then the path P would have length at least j − i + 2.
But then P has length j − i, a contradiction.

Theorem 5.75. If G is a bipartite permutation graph, then rvc(G) = srvc(G) =
diam(G)−1, and the corresponding (strong) rainbow vertex coloring can be found in time
that is linear in the size of G.

Proof. Let G = (V,E) be a bipartite permutation graph. Let v be a first vertex in a
strong ordering for G. We start by doing a BFS on G with v as the root. Let k be the
number of levels in the BFS tree in addition to level 0. Hence, Li is the set of vertices in
level i of the BFS tree, 0 ≤ i ≤ k, with L0 = {v}. Since dist(v, y) = k for every y ∈ Lk,
we conclude that diam(G) ≥ k. Also, for 1 ≤ i ≤ j, and for any vertices x ∈ Li and
y ∈ Lj , there is a path of length at most j − i+ 2 ≤ k + 1 due to Lemma 5.74. Hence,
diam(G) ∈ {k, k + 1}. We distinguish between these two cases:

Case 1. diam(G) = k.
We construct a strong rainbow vertex coloring c : V → [k − 1] for G in the following

way. If x ∈ Li, we define c(x) = i, for 1 ≤ i ≤ k − 1. We define c(v) = k − 1, and we
give arbitrary colors between 1 and k − 1 to the vertices of Lk. To see that G is indeed
rainbow vertex connected under c, consider any pair x, y ∈ V .

(1) x = v and y ∈ Lj : Then the path va1 . . . aj−1y is shortest and it is a rainbow
vertex path.

140

5.8. RVC and SRVC in Chordal graphs and their subclasses

(2) x ∈ L1 and y ∈ Lk: In this case, dist(x, y) = k − 1, because otherwise we would
have dist(x, y) = k+ 1 due to Lemma 5.74, which contradicts our assumption that
diam(G) = k. Since dist(x, y) = k − 1, every shortest path between x and y is a
rainbow vertex path, as every vertex of such a shortest path has to be in a distinct
level of the BFS tree.

(3) x ∈ L1 and y ∈ Lj with 1 ≤ j ≤ k − 1: If dist(x, y) = j − 1, then again by
the same argument used above, every shortest path between x and y is a rainbow
vertex path. Otherwise, dist(x, y) = j + 1 by Lemma 5.74, and the shortest path
xva1 . . . aj−1y has distinct colors on all its internal vertices. (Note that y might
have the same color as v if j = k− 1, but this is fine since y is the end of the path.)

(4) x ∈ Li and y ∈ Lj with 2 ≤ i ≤ j ≤ k: If dist(x, y) = j − i, then every shortest
path is a rainbow vertex path as there can be only one vertex from each level. If
dist(x, y) = j − i+ 2, the path xai−1ai . . . aj−1y is a rainbow vertex path and has
length j − i+ 2, and it is therefore shortest.

Case 2. diam(G) = k + 1.
We construct a strong rainbow vertex coloring c : V → [k] for G in the following way.

If x ∈ Li, we define c(x) = i, for 1 ≤ i ≤ k−1. We define c(v) = k, and we give arbitrary
colors between 1 and k to the vertices of Lk. To see that G is indeed rainbow-connected
under c, consider any pair x, y ∈ V .

Assume without loss of generality that x ∈ Li and y ∈ Lj , with 0 ≤ i ≤ j ≤ k. If
dist(x, y) = j − i then every shortest path between x and y is rainbow. Otherwise, the
path xai−1ai . . . aj−1y is a rainbow vertex path and has length j − i+ 2, therefore being
shortest by Lemma 5.74.

In both cases, c is a strong rainbow vertex coloring for G with diam(G) − 1 colors.
By Proposition 5.12 we can conclude that rvc(G) = srvc(G) = diam(G)− 1. It is easy to
see from the proof that the coloring can be constructed in linear time.

5.8 RVC and SRVC in Chordal graphs and their subclasses

In this section, we investigate the complexity of k-RVC and k-SRVC on chordal graphs
and some subclasses of chordal graphs. We start by proving that both problems are NP-
complete when the input graph is a split graph, implying that they are also NP-complete
on chordal graphs. On the positive side, we show that k-RVC is polynomial-time solvable
on interval graphs, and both k-RVC and k-SRVC are polynomial-time solvable on block
graphs and on unit interval graphs.

We start by observing that computing rvc(G) or srvc(G) is easy on graphs of diame-
ter 2.

Proposition 5.76 ([100]). If G is a graph with diam(G) = 2, then rvc(G) = srvc(G) = 1.
Moreover, such a coloring can be found in linear time.

Proof. Color each vertex of G with the same color. Since each shortest path between two
vertices contains at most one internal vertex, G is strongly rainbow vertex-connected
under this coloring.

141

Chapter 5. Rainbow Coloring and its Variants

If G is a split graph having diam(G) = 3 (note that split graphs have diameter
at most 3), then rvc(G) and srvc(G) become much harder to compute, as claimed in
Theorem 5.10, which we state again here for convenience.

Theorem 5.10. Let G be a split graph of diameter 3. It is NP-complete to decide both
whether rvc(G) ≤ k and whether srvc(G) ≤ k, for every k ≥ 2. Moreover, it is NP-hard
to approximate both rvc(G) and srvc(G) within a factor of n1/3−ε, for every ε > 0.

Towards proving Theorem 5.10, we prove the following construction, which closely
mimics the construction of Lemma 5.73.

Lemma 5.77. Let H be a hypergraph on n vertices. Then, in polynomial time, we can
construct a split graph G of diameter 3 and with O(n3) vertices such that for any k ∈ [n],
H has a proper k-coloring if and only if G has a k-coloring under which G is (strongly)
rainbow vertex-connected.

Proof. Let H = (N, E) be an arbitrary hypergraph and let n = |N |. We construct
a split graph G = (N ′ ∪ I ′, E) where N ′ = N ′1 ∪ · · · ∪ N ′n+1, I ′ = I ′1 ∪ · · · ∪ I ′n+1,
N ′i := {vi | v ∈ N}, I ′i := {xie | e ∈ E} and E := {uivj | u, v ∈ N, i, j ∈ [n + 1]} ∪
{vixie | v ∈ N, e ∈ E , i ∈ [n + 1], v ∈ e}. Let V = N ′ ∪ I ′. The constructed graph G
is a split graph since G[I ′] is an independent set and G[N ′] is a clique. Observe that
diam(G) = 3 (except when H has a vertex that is contained in all hyperedges, in which
case the diameter is 2; in this case H has an easy proper 2-coloring; so we can assume
that this case does not occur) and that G has O(n3) vertices.

Consider any proper k-coloring h : N → [k] of H, i.e., no hyperedge of H is monochro-
matic under h. We construct a coloring c : V → [k] in the following way. First, for every
v ∈ N , we give the vertices v1, v2, . . . , vn of G the same color as v, i.e., c(vi) = h(v) for
all v ∈ N and i ∈ [n + 1]. The vertices in I all receive the same color, which is any
arbitrary color in [k]. Now, we prove that G is strongly rainbow vertex-connected under
c by showing that there is a rainbow vertex shortest path between every pair of vertices.
The only non-trivial case is when both vertices of the pair are in I. Consider two distinct
vertices xie, x

j
f ∈ I (it is possible that e = f or i = j but not both). Since e and f are

not monochromatic under h, we can pick two distinct vertices u ∈ e and v ∈ f such that
h(u) 6= h(v). It is clear that the path xieuvx

j
f is a shortest path between xie and xjf and

that it is rainbow vertex path.
Conversely, let c be a k-coloring of G under which G is (strongly) rainbow vertex-

connected. For each i ∈ [n + 1], define hi to be the vertex coloring of H such that
hi(v) = c(vi) for all v ∈ N . We claim that there exists an i ∈ [n + 1] such that hi is a
proper k-coloring of H. For the sake of contradiction, suppose that hi is not a proper
k-coloring of H for every i ∈ [n+ 1]. For each i ∈ [n+ 1], let ei ∈ E be a monochromatic
edge under hi. Let ci be the color of vertices in ei under hi. Now, since k ≤ n, there
exist distinct i, j ∈ [n+ 1] such that ci = cj . From the construction of h and definition
of ei, all vertices in V1 := {vi : v ∈ ei} are colored ci under c. Similarly, all vertices
in V2 := {vj : v ∈ ej} are colored cj = ci under c. Note that V1 is the set of vertices
adjacent to xei and V2 is the set of vertices adjacent to xej . Also, V1 ∩ V2 = ∅ as i 6= j.
Consider any (shortest) path from xei to xej . The vertex adjacent to xei in the path
is from V1, and the vertex adjacent to xei in the path is from V2, and they are distinct
as V1 ∩ V2 = ∅. But then both vertices colored with ci = cj . Hence the path is not a

142

5.8. RVC and SRVC in Chordal graphs and their subclasses

rainbow vertex path and thus c is not a (strong) rainbow coloring. Hence, we have a
contradiction.

Proof of Theorem 5.10. The proof follows in exactly the same way as Theorem 5.9,
except that we apply Lemma 5.77 instead of Lemma 5.73.

We now move on to the positive results. As a consequence of the following theorems,
we complete the proof of Theorem 5.11.

Theorem 5.78. Let G be a block graph, and let ` be the number of cut vertices in G.
Then rvc(G) = srvc(G) = `. The corresponding (strong) rainbow vertex coloring can be
found in time that is linear in the size of G.

Proof. Let G = (V,E) be a block graph and {a1, a2, . . . , a`} be the set of cut vertices of
G. We construct a strong rainbow vertex coloring c : V → [`] for G by defining c(ai) = i
for i ∈ [`] and giving the other vertices arbitrary colors between 1 and `. An important
property of block graphs is that there is a unique shortest path between every pair of
vertices. Moreover, each internal vertex of such a path is a cut vertex. Since all the cut
vertices received distinct colors, these shortest paths are all rainbow. The proof follows
by observing that rvc(G) ≥ srvc(G) ≥ ` as well.

Theorem 5.79. If G is an interval graph, then rvc(G) = diam(G) − 1, and the cor-
responding rainbow vertex coloring can be found in time that is linear in the size of
G.

Proof. Let G = (V,E) be an interval graph and I be an interval model for G. The
interval corresponding to vertex v is denoted by Iv. For each interval I ∈ I, we let r(I)
be its right endpoint and `(I) its right endpoint. Let Iu ∈ I be such that r(Iu) ≤ r(I)
for all I ∈ I. Let Iv ∈ I be such that `(Iv) ≥ `(I) for all I ∈ I. Let P = ux1x2 . . . xkv
be a shortest path between u and v in G. Observe that P is a connected dominating set.
Furthermore, since P is a shortest path, k ≤ diam(G)− 1. By the choice of u and v, we
have that N(u) ⊆ N(x1) and N(v) ⊆ N(xk). This implies that the set {x1, x2, . . . , xk}
is also a connected dominating set. By Proposition 5.13, G has a rainbow vertex coloring
c : V → [k] with c(xi) = i, and we can give all the other vertices arbitrary colors.

Recall that an interval graph is a unit interval graph if it has an interval model
in which every interval has the same length (or no interval properly contains another
interval). Unit interval graphs have the same BFS tree structure as that of bipartite
permutation graphs, with the single difference that every level of the BFS tree is a clique
instead of an independent set [83].

Theorem 5.80. If G is a unit interval graph, then rvc(G) = srvc(G) = diam(G) − 1,
and the corresponding (strong) rainbow vertex coloring can be found in time that is linear
in the size of G.

Proof. Let G = (V,E) be a unit interval graph. Let v be the vertex corresponding to a
first interval in an ordering of the intervals in the unit interval model of G by their right
endpoints. Do a BFS on G with v as the root. Let Li be the set of vertices in level i of
the BFS tree for all 0 ≤ i ≤ k, with L0 = {v}. Recall that for 0 ≤ i ≤ k− 1, there exists
a special vertex ai ∈ Li such that Li+1 ⊂ N(ai).

143

Chapter 5. Rainbow Coloring and its Variants

Consider a vertex u ∈ Lk. A shortest path between v and u has k−1 internal vertices,
which implies that diam(G) ≥ k. To construct a strong rainbow coloring c : V → [k− 1],
we assign, for 1 ≤ i ≤ k−1, c(x) = i if x ∈ Li and we give arbitrary colors to the vertices
of Lk and to v.

To see that G is strongly rainbow vertex-connected under c, consider x, y ∈ V . If
both x and y are in the same level of the BFS tree, then they are adjacent. So let us
consider the case when x ∈ Li and y ∈ Lj , with 0 ≤ i < j ≤ k. If there is a shortest
path between x and y each of whose vertices is in a distinct level of the BFS tree, then
this path is rainbow. If this is not the case, we consider the path xaiai+1 . . . aj−1y. In
this case, this path is a shortest path between x and y, and its internal vertices have
distinct colors, since only x and ai belong to the same level of the BFS. This proves that
c is indeed a strong rainbow coloring for G with diam(G)− 1 colors.

5.9 Open Problems

There are a plethora of open questions related to rainbow coloring. We describe a few
ones that are related to our work.

(1) We showed many upper bounds on rc, src, and vsrc. One of the most interesting
open questions in the area of rainbow coloring is to prove the conjecture that
src(G) ≤ n− 1 for any graph G. For the best of our knowledge, even a o(n2) upper
bound is not known.

(2) Can the additive factor of 2 in our bound rc ≤ f + 2 be removed, i.e., is it true
that rc ≤ f?

(3) We showed polynomial time algorithms for computing vsrc of cactus graphs. It
is an interesting question, whether there are polynomial time algorithms for com-
puting src and rc of cactus graphs. Another related question is whether there is a
polynomial time algorithm for computing vsrc of outerplanar graphs, which are an
immediate superclass of cactus graphs.

(4) We have seen that for src, rvc, srvc, and vsrc, there are strong polynomially big
inapproximability results. For rc, the best known inapproximability result is a
(2 − ε)-inapproximability [41]. Is there a polynomial time algorithm that can
approximate rc within a constant factor, or at least a logarithmic factor? As
far as we know, the best know approximation factor in polynomial time for an
n-vertex graph is O(

√
n) which follows from an O(r) approximation algorithm by

Basavaraju et al. [18], where r is the radius of the graph.

144

CHAPTER 6
Spanning Tree Congestion and

Connected Partitioning

6.1 Introduction

Graph sparsification/compression is the transformation of a large input graph into a
smaller/sparser graph that preserves certain feature (e.g., distance, cut, congestion, flow)
either exactly or approximately. The algorithmic significance of such a transformation
is clearly evident, since the smaller graph might be used as a preprocessed input to an
algorithm, so as to reduce subsequent running time and memory requirement. In this
chapter, we focus on a natural problem in graph sparsification, called the spanning tree
congestion (STC) problem. When we represent a graph by a spanning tree of it, each
of the edges of the original graph is now represented by a path in the spanning tree.
The number of such paths that pass through a tree-edge is called the edge-congestion of
the tree-edge with respect to the spanning tree. The edge-congestion of the tree-edge is
also equal to the number of edges of the original graph across the cut induced by the
tree-edge in the spanning tree. Informally, the STC problem seeks a spanning tree of the
input graph such that no tree edge has too much congestion.

The root of this problem dates back to at least 30 years ago [21, 144] with natural
motivations from parallel computing and circuit design applications. The STC problem
was first formally defined by Ostrovskii [132] in 2004, and since then a number of results
about it have been published. The probabilistic version of the STC problem, coined as
probabilistic capacity mapping, where one is allowed to have a distribution of spanning
trees instead of one spanning tree, has also been studied in the literature, for example
by Räcke [136].

Closely related to finding spanning tree with small congestion is the problem of
partitioning the graph into balanced parts such that each of the parts are connected.
The idea is that this allows one to recurse on the connected parts and look for spanning
trees there. This motivated us to study the problem of connected k-partition, where we
need to partition the graph into k parts, each of which are connected, and also each part
has some specified size (or weight).

6.1.1 Connected Graph Partitioning and the Generalized Győri-Lovász
Theorem.

Graph partitioning/clustering is a prominent topic in graph theory/algorithms, and has
a wide range of applications. A popular goal is to partition the vertices into sets such
that the number of edges across different sets is small. While the min-sum objective, i.e.,
minimizing the total number of edges across different sets, is more widely studied, in

Chapter 6. Spanning Tree Congestion and Connected Partitioning

various applications, the more natural objective is the min-max objective, i.e., minimizing
the maximum number of edges leaving each set. The min-max objective is our focus
here. Depending on the application, there are often additional constraints on the sets
in the partition. One such constraint is the balancedness constraint, which requires
that the partitions have roughly equal sizes. Such a constraint often appears in domain
decomposition in parallel computing. Another constraint on the partitions could be that
of induced-connectivity. A partition satisfying this constraint is defined as follows.

Definition 6.1. In a graph G = (V,E), a connected k-partition is a partition of V
into k subsets V1, V2, . . . , Vk, such that for each j ∈ [k], G[Vj] is connected.

One motivation for the induced-connectivity constraint is the divide-and-conquer
approach for spanning tree construction. Such algorithms divide the graph into connected
subgraphs and then recurse on them. Typically, balancedness constraint is also required
by such algorithms, in order to obtain a balanced recursion tree.

Unfortunately, imposing both balancedness and induced-connectivity constraints
simultaneously is not feasible for every graph; for instance, consider the star graph with
more than 6 vertices and suppose we require a balanced connected 3-partition. Thus, it is
natural to ask, for which graphs do partitions satisfying both constraints exist? One such
sufficient condition was given by the following beautiful theorem proved independently
by Győri and Lovász. The theorem in fact allows not just balanced partitions, but
partitions into any specified sizes.

Theorem 6.2 (Győri-Lovász [118, 79]). Let G = (V,E) be a k-connected graph. Given
any k distinct terminal vertices t1, · · · , tk, and k positive integers n1, · · · , nk such that∑k

i=1 ni = |V |, there exists a connected k-partition of V into V1, V2, . . . , Vk, such that
for each j ∈ [k], tj ∈ Vj and |Vj | = nj.

Lovász used advanced techniques from topology and homology theory which were
non-constructive, whereas Győri used elementary graph theoretic techniques which were
constructive. Recently, a generalization of the theorem to vertex weighted graphs were
proved by Chen et al. [46].

Theorem 6.3 (Generalized Győri-Lovász theorem [46, Theorems 25, 26]). Let G =
(V,E) be a k-connected graph. Let w be a weight function w : V → R>0. For any U ⊂ V ,
let w(U) :=

∑
v∈U w(v). Given any k distinct vertices t1, · · · , tk of G, and k positive

integers T1, · · · , Tk such that for each j ∈ [k], Tj ≥ w(tj) and
∑k
i=1 Ti = w(V), there

exists a connected k-partition of V into ∪kj=1Vj, such that for each j ∈ [k], tj ∈ Vj and
w(Vj) < Tj + maxv∈V w(v).

The proof by Chen et al. was an extension of the techniques from homology used
by Lovász, and hence also non-constructive. Hence, the question remained whether
the graph theoretic and constructive proof of Győri can be extended to the generalized
Győri-Lovász theorem. We address this question in this work, and answer it positively.

We remark that the classical Győri-Lovász theorem follows from the generalized
Győri-Lovász theorem by taking w(v) = 1 for all v ∈ V and Tj = nj for all j ∈ [k]. We
note that a perfect generalization where one requires that w(Vj) = Tj is not possible. For
example, there could be a vertex with weight more than all the Tj ’s. Hence an additive
error of wmax, the largest weight, is inevitable in the theorem statement.

146

6.1. Introduction

Theorem 6.3 can turn out to be a powerful tool for connected partitioning. By setting
the weights to different parameters, it might be possible to obtain interesting results
on connected partitioning. We briefly investigate few such immediate consequences of
Theorem 6.3. We use one such consequence in proving one of our results for spanning
tree congestion.

Our Contribution to Connected Partitioning

We give the first graph theoretic and constructive proof for the generalized Győri-Lovász
theorem, by providing a local search algorithm.

Theorem 6.4. (a) There is an algorithm that given a vertex-weighted k-connected
graph, computes a connected k-partition satisfying the conditions stated in Theorem 6.3
(generalized Győri-Lovász Theorem), in O∗ (2n) time.
(b) If we only need a connected (bk/2c+ 1)-partition instead of a connected k-partition,
the running time of the algorithm improves to O∗(2O((n/k) log k)).

The algorithm and its analysis is given in Section 6.3. Our algorithm builds on the
ideas in the graph theoretic approach used by Győri to prove the original Győri-Lovász
theorem. An interesting observation is that the running time of our algorithm does not
depend on the weights. We are not aware of any previous algorithm, even for the original
unweighted version, that runs better than the brute force algorithm which runs over all
possible k-partitions and takes Ω(2nk) time. Although Győri’s proof for the unweighted
version is implicitly algorithmic, no running time analysis of the algorithm has been
done before, to the best of our knowledge.

Since Theorem 6.3 guarantees the existence of the required partition, the problem
of computing such a partition is not a decision problem but a search problem. Our local
search algorithm shows that this problem is in the complexity class PLS [88]; we raise
its completeness in PLS as an open problem (see the open problems section at the end
of the chapter).

We also prove few consequences of Theorem 6.4. First of all, for k-connected graphs,
we obtain a connected k-partition such that the total-degree of each part is upper bounded
by 4m/k. This also implies that the min-max objective, i.e., the number of edges leaving
any part, is also upper bounded by 4m/k. The result is obtained by setting the weight
of each vertex as its degree and applying Theorem 6.3.

Corollary 6.5. Let G be a k-connected graph and t1, t2, . . . , tk be distinct vertices in G.
(a)We can find a connected k-partition of V into ∪kj=1Vj, such that for each j ∈ [k],
tj ∈ Vj and deg(Vj) < 4|E(G)|/k in O∗(2n) time.
(b)We can find a connected (dk/2e+ 1)-partition of V into ∪dk/2e+1

j=1 Vj, such that for each
j ∈ [dk/2e+ 1], tj ∈ Vj and deg(Vj) < 8|E(G)|/k in O∗(2O((n/k) log k)) time.

Due to expander graphs, this bound is optimal up to a small constant factor. We
remark that the above corollary is crucial for achieving one of our upper bound results
for STC. Corollary 6.5 can be generalized to include approximate balancedness in terms
of number of vertices by setting the weight of each vertex to be cm/n plus its degree in
G. This gives the following corollary.

147

Chapter 6. Spanning Tree Congestion and Connected Partitioning

Corollary 6.6. Given any fixed c > 0, if G is a k-connected graph with m edges and n
vertices, then there exists a connected k-partition such that the total degree of vertices
in each part is at most (2c+ 4)m/k, and the number of vertices in each part is at most
2c+4
c ·

n
k .

6.1.2 Spanning Tree Congestion

Given a connected graph G = (V,E), let T be a spanning tree of it. For an edge
e = (u, v) ∈ E, its detour with respect to T is the unique path from u to v in T ; let
DT(e, T) denote the set of edges in this detour. The stretch of e with respect to T is
|DT(e, T)|, the length of its detour. The dilation of T is maxe∈E |DT(e, T)|. The edge-
congestion of an edge e ∈ T is ec(e, T) := |{f ∈ E : e ∈ DT(f, T)}|, i.e., the number of
edges in E whose detours contain e. The congestion of T is cong(T) := maxe∈T ec(e, T).
The spanning tree congestion (STC) of the graph G is STC(G) := minT cong(T), where
T runs over all spanning trees of G.

We note that there is an equivalent cut-based definition for edge-congestion, which
is usually more convenient to use. For each tree-edge e ∈ T , removing e from T results
in two connected components; let Ue denote one of the components; then ec(e, T) :=
|E(Ue, V \ Ue)|. Various types of congestion, stretch and dilation problems have been
studied in computer science and discrete mathematics. In these problems, one typically
seeks a spanning tree (or some other structure) with minimum congestion or dilation.
Three of the well-known problems where minimization is done over all the spanning trees
of the given graph are as follows:

(1) The low-stretch spanning tree (LSST) problem is to find a spanning tree which
minimizes the total stretch of all the edges of G [6]. Note that minimizing the total
stretch is equivalent to minimizing the sum of edge-congestions of the edges of the
spanning tree.

(2) The spanning tree congestion (STC) problem is to find a spanning tree of minimum
congestion [132].

(3) The tree spanner problem is to find a spanning tree of minimum dilation [29].

There are other congestion and dilation problems which do not seek a spanning tree,
but some other structure. The most famous among them are the bandwidth and the
cutwidth problems; see the survey [137] for more details.

Among the problems mentioned above, several strong results were published in
connection with the LSST problem. Alon et al. [6] had shown an Ω(max{n logn,m})
lower bound. Upper bounds have been derived and many efficient algorithms have
been devised; the current best upper bound is Õ(m logn) [6, 58, 1, 96, 2]. Since total
stretch is identical to total edge-congestion, the best upper bound for the LSST problem
automatically implies an Õ(mn logn) upper bound on the average edge-congestion. But
in the STC problem, we concern the maximum edge-congestion; as we shall see, for some
graphs, the maximum edge-congestion has to be a factor of Ω̃(

√
n3/m) larger than the

average edge-congestion.
In comparison, there were not many strong and general results for the STC Problem,

though it was studied extensively in the past 13 years. The problem was formally

148

6.1. Introduction

proposed by Ostrovskii [132] in 2004. Prior to this, Simonson [144] had studied the same
parameter under a different name to approximate the cut width of outer-planar graph.
A number of graph-theoretic results were presented on this topic [133, 105, 99, 98, 24].
Some complexity results were also presented recently [130, 23], but most of these results
concern special classes of graphs. The most general result regarding STC of general
graphs is an O(n

√
n) upper bound by Löwenstein, Rautenbach and Regen in 2009 [119],

and a matching lower bound by Ostrovskii in 2004 [132]. Note that the above upper
bound is not interesting when the graph is sparse, since there is also a trivial upper
bound of m. We come up with a strong improvement to these bounds, whose details
will be given below.

The STC of many graph classes have been investigated as mentioned before. Esti-
mating the STC of a random graph G(n, p) has also been looked at before. Note that
STC is relevant for G(n, p) only when p = Ω(logn

n), because for smaller p, the graph
is disconnected with very high probability. Ostrovskii [134] asked whether the STC of
a random graph is Θ(n)? Pogrow [135] obtained partial progress towards answering
this question by showing that the STC of a random graph is at most O(n polylogn)
when c1 log3 n ≤ p ≤ c2/ logn for some constants c1 and c2. We study the STC of
random graphs further and obtain improved results as mentioned below. In particular,
we completely settle the question asked by Ostrovskii.

Our Contribution to Spanning Tree Congestion

First, we prove a constructive upper bound on the STC of k-connected graphs by using
our Corollary 6.5 from connected partitioning.

Theorem 6.7. The spanning tree congestion of a k-connected graph G is at most
4|E(G)|/k. Moreover, a spanning tree of G having congestion at most 8|E(G)|/k can be
found in O∗(2(|V (G)|/k) log k) time.

We use the above theorem to obtain a constructive upper bound on the STC of
general graphs as follows (see Section 6.4 for the algorithm and the proof).

Theorem 6.8. For any connected graph G = (V,E), there is an algorithm which com-
putes a spanning tree with congestion at most 8

√
mn in O∗

(
2O
(
n
√
n/m log

√
m/n

))
time.

In terms of average degree davg = 2m/n, we can state our upper bound as O(n
√
davg).

Observe that the upper bound is smaller than the trivial bound of m by a multiplicative
factor of Θ

(
1/
√
davg

)
, and smaller than the previous best known upper bound of n

√
n

by a multiplicative factor of Θ
(√

davg/n
)
. Observe that the running time in terms of

davg is O∗
(
2O((n/

√
davg) log

√
davg)

)
. The running time is sub-exponential when davg is

ω(1).
We also show that a spanning tree with only logarithmically worse congestion than

the above upper bound can be constructed in polynomial time (see Section 6.4 for the
algorithm and the proof).

Theorem 6.9. There is an algorithm that given a connected graph G = (V,E), computes
a spanning tree of G having congestion at most 16

√
mn log2 n in time polynomial in the

size of G.

149

Chapter 6. Spanning Tree Congestion and Connected Partitioning

We also give lower bounds that asymptotically match the above upper bound for
STC. For almost all ranges of average degree 2m/n, we demonstrate graphs having
Ω(
√
mn) STC as follows (see Section 6.5 for the proof).

Theorem 6.10. For any sufficiently large n, and for any m satisfying n2/2 ≥ m ≥
max{16n logn, 100n}, there exists a connected graph with N = (3− o(1))n vertices and
M ∈ [m, 7m] edges, and having spanning tree congestion at least Ω (

√
mn).

Next, we show that for graphs with certain good expanding properties, there is a
polynomial-time algorithm that computes a spanning tree with O(n) congestion. For
this, first we introduce a class of graphs called (n, s, d1, d2, d3, t)-expanding graphs.
Definition 6.11. A graph G = (V,E) on n vertices is an (n, s, d1, d2, d3, t)-expanding
graph if the following four conditions are satisfied:

(1) for each S ⊆ V (G) such that |S| = s, |N(S)| ≥ d1n;

(2) for each S ⊆ V (G) such that |S| ≤ s, |N(S)| ≥ d2|S|;

(3) for each S ⊆ V (G) such that |S| ≤ n/2 and for any S′ ⊂ S, |NV \S(S′)| ≥ |S′|− t.

(4) For each S ⊆ V (G), |E(S, V \ S)| ≤ d3|S|.
Then, we develop a polynomial time algorithm for constructing a spanning tree of

an (n, s, d1, d2, d3, t)-expander with small congestion (see Section 6.6 for the algorithm
and its analysis).
Theorem 6.12. There is an algorithm that given an (n, s, d1, d2, d3, t)-expanding graph,
computes a spanning tree of it with congestion at most

d3 ·
[
4 ·max

{
s+ 1 ,

⌈3d1n

d2

⌉}
·
(1

2d1

)log(2−δ) 2
+ t

]
, where δ = t

d1n

and runs in time polynomial in n.
Then, we show that, with high probability, a random graph G(n, p) is an (n, s, d1, d2, d3, t)-

expanding graph with s = Θ(1/p), d1 = Θ(1), d2 = Θ(np), d3 = Θ(np), t = Θ(1/p) (and
hence δ = o(1)). This implies the following upper bound for STC of random graphs (see
Section 6.7 for the proof).
Theorem 6.13. There is an algorithm that given a random graph G = G(n, p) for any
p ≥ 64 log2 n/n, computes a spanning tree of G that has O(n) congestion with probability
at least 1−O(1/n2), and runs in time polynomial in n.

We also give a matching lower bound for the STC of random graphs as follows (see
Section 6.7 for the proof).
Theorem 6.14. If G ∈ G(n, p) where p ≥ 32 log2 n/n, then the spanning tree congestion
of G is Ω(n) with probability 1−O(1/n).

The above two theorems together imply the following corollary.
Corollary 6.15. For a random graph G(n, p) for any p ≥ 32 log2 n/n, the spanning tree
congestion is Θ(n) with probability at least 1−O(1/n).

The above result completely resolves an open problem raised by Ostrovskii [134]
about the STC of random graphs.

150

6.1. Introduction

6.1.3 Further Related Work.

Graph partitioning/clustering is a prominent research topic with wide applications, so
it comes as no surprise that a lot of work has been done on various aspects of the topic;
we refer readers to the two extensive surveys by Schaeffer [142] and by Teng [153]. Kiwi,
Spielman and Teng [94] formulated the min-max k-partitioning problem and gave bounds
for classes of graphs with small separators, which were then improved by Steurer [148].
On the algorithmic side, many of the related problems are NP-hard, so the focus is on de-
vising approximation algorithms. Since the seminal work of Arora, Rao and Vazirani [13]
on sparsest cut and of Spielman and Teng [146] on local clustering, graph partition-
ing/clustering algorithms with various constraints have attracted attention across theory
and practice; we refer readers to [15] for a fairly recent account of the development. The
min-sum objective has been extensively studied; the min-max objective, while striking as
the more natural objective in some applications, has received much less attention. The
only algorithmic work on this objective (and its variants) are Svitkina and Tardos [152]
and Bansal et al. [15]. None of the above work addresses the induced-connectivity
constraint.

The classical version of Győri-Lovász Theorem (i.e., the vertex weights are uniform)
was proved independently by Győri [79] and Lovász [118]. Lovász’s proof uses homology
theory and is non-constructive. Győri’s proof is elementary and is constructive implicitly,
but he did not analyze the running time. Polynomial time algorithms for constructing
connected k-partition were devised for k = 2, 3 [151, 158], but no non-trivial finite-time
algorithm was known for general graphs with k ≥ 4.1 Recently, Hoyer and Thomas [85]
provided a clean presentation of Győri’s proof by introducing their own terminology,
which we use for our constructive proof of Theorem 6.3.

Let BCPk denote the maximum balanced connected k-partition problem and let
WBCPk denote the vertex weighted version. Here the objective function is the bal-
ancedness, which is defined as the size/weight of the smallest partition. Chleb́ıková [86]
gave a polynomial time 4/3-approximation algorithm for WBCP2, and also showed that
there is no n1−ε additive approximation for the problem in polynomial time. Dyer and
Frieze [54] showed BCPk is NP-hard for all k ≥ 2. Chataigner et al. [45] showed that
there is no FPTAS for WBCPk for any k ≥ 2 even on k-connected graphs unless P = NP.
They also gave 2-approximation algorithms for WBCP3 and WBCP4 on 3-connected and
4-connected graphs respectively, and showed that when k is part of the input, BCPk does
not admit a (6/5−ε)-approximation in polynomial time, unless P = NP. Recently Soltan,
Yannakakis, and Zussman [145] studied the problem of doubly balanced connected par-
titioning, where you need balance within a partition with respect to a supply/demand
function on vertices, and also balance among the partitions with respect to the size.

In 1987, Simonson [144] showed that for any outerplanar graph G, one can find in
linear time a spanning tree that has congestion at most ∆(G) + 1. Yosef Pogrow in his
Master’s thesis [135] showed that for edge weighted graphs, the spanning tree congestion
(congestion of an edge is now defined as the ratio of the weight of edges across the cut
and the weight of tree edge) is O(m) and also showed a matching lower bound. He also

1In 1994, there was a paper by Ma and Ma in Journal of Computer Science and Technology, which
claimed a poly-time algorithm for all k. However, according to a recent study [84], Ma and Ma’s algorithm
can fall into an endless loop. Also, Győri said that the algorithm should be wrong (see [127]).

151

Chapter 6. Spanning Tree Congestion and Connected Partitioning

studied the spanning tree congestion of random graphs and showed that a random graph
G(n, p) has STC at most Õ(n) with high probability for c1 log3 n

n ≤ p ≤ c2
logn where c1 and

c2 are constants. If instead of a spanning tree, we need only a tree on the original vertices
(the edges of the tree might not be in the graph), then the well-known Gomory-Hu trees
minimizes the maximum congestion and they can be found in polynomial time [3].

Okamoto et al. [130] gave an O∗(2n) algorithm for computing the exact STC of a
graph. The probabilistic version of the STC problem, coined as probabilistic capacity
mapping, is an important tool for several graph algorithm problems, e.g., the Min-
Bisection problem. Räcke [136] showed that in the probabilistic setting, distance and
capacity are interchangeable, which means that an upper bound for one objective implies
the same upper bound for the other. Thus, due to the above-mentioned results on
LSST, there is an upper bound of Õ(logn) on the maximum average congestion. Räcke’s
result also implies an O(logn) approximation algorithm to the Min-Bisection problem,
improving upon the O(log3/2 n) approximation algorithm of Feige and Krauthgamer [63].
However, in the deterministic setting, such interchanging phenomenon does not hold:
there is a simple tight bound Θ(n) for dilation, but for congestion it can be as high as
Θ(n
√
n). For more background and key results on this topic, we recommend the paper

by Andersen and Feige [9].

6.1.4 Technical Overview

To prove the generalized Győri-Lovász theorem constructively, we follow the same frame-
work of Győri’s proof [79], and we borrow terminology from the recent presentation
by Hoyer and Thomas [85]. But it should be emphasized that proving our generalized
theorem is not straight-forward, since in Győri’s proof, at each stage a single vertex is
moved from one set to other to make progress, while making sure that the former set
remains connected. In our setting, in addition to this, we also have to ensure that the
weights in the partitions do not exceed the specified limit; and hence any vertex that
can be moved from one set to another need not be candidate for being transferred.

As mentioned before, a crucial ingredient for our upper bound results on STC is
Theorem 6.7, which is a direct corollary of our constructive generalized Győri-Lovász
theorem (Theorem 6.4). Theorem 6.7 takes care of the highly-connected cases; for
other cases we provide a recursive way to construct a low congestion spanning tree; see
Section 6.4 for details. For showing our lower bound for general graphs, the challenge is
to maintain high congestion while keeping density small. To achieve this, we combine
three expander graphs with little overlapping between them, and we further make those
overlapped vertices of very high degree. This will force a tree-edge adjacent to the
centroid of any spanning tree to have high congestion; see Section 6.5 for details.

We formulate a set of expanding properties and show that we can construct a span-
ning tree of better congestion guarantee in polynomial time for graphs satisfying those
expanding properties. The basic idea is simple: start with a vertex v of high degree as
the root. Now try to grow the tree by keep attaching new vertices to it, while keeping the
invariant that the subtrees rooted at each of the neighbors of v are roughly balanced in
size; each such subtree is called a branch. But when trying to grow the tree in a balanced
way, we will soon realize that as the tree grow, all the remaining vertices may be seen to
be adjacent only to a few number of “heavy” branches. To help the balanced growth, the

152

6.2. Preliminaries

algorithm will identify a transferable vertex which is in a heavy branch, and it and its
descendants in the tree can be transferred to a “lighter” branch. Another technique is to
use multiple rounds of matching between vertices in the tree and the remaining vertices
to attach new vertices to the tree. This will tend to make sure that all subtrees do not
grow uncontrolled. By showing that random graph satisfies the expanding properties
with appropriate parameters, we show that a random graph has STC of Θ(n) with high
probability.

6.2 Preliminaries

For any subset U ⊆ V , and a weight function w on the elements of V , we define
w(U) :=

∑
u∈U w(u), and wmax := maxv∈V w(v). We use davg to denote the average

degree of a graph.

6.3 Generalized Győri-Lovász Theorem

We prove Theorem 6.4 and its corollaries in this section. Let G = (V,E) be a k-connected
graph on n vertices and m edges, and w : V → R>0 be a weight function.

6.3.1 Key Combinatorial Notions

We first highlight the key combinatorial notions used for proving Theorem 6.4; see
Figures 6.1 and 6.2 for illustrations of some of these notions.

Fitted Partial Partition. First, we introduce the notion of fitted partial partition
(FPP). An FPP A is a tuple of k subsets of V , (A1, . . . , Ak), such that the k subsets are
pairwise disjoint, and for each j ∈ [k]:

(1) tj ∈ Aj ,

(2) G[Aj] is connected and

(3) w(Aj) ≤ Tj + wmax − 1 (we say the set is fitted for satisfying this inequality).

We say that an FPP is a Strict Fitted Partial Partition (SFPP) if A1 ∪ · · · ∪ Ak is a
proper subset of V . We say the set Aj is light if w(Aj) < Tj , and we say that it is
heavy otherwise. Note that there exists at least one light set in any SFPP, for otherwise
w(A1 ∪ · · · ∪ Ak) ≥

∑k
j=1 Tj = w(V), which means A1 ∪ · · · ∪ Ak = V . Also note that

by taking Aj = {tj}, we have an FPP, and hence at least one FPP exists.
Configuration. For a set Aj in an FPP A and a vertex v ∈ Aj \ {tj}, we define the

reservoir of v with respect to A, denoted by RA(v), as the vertices in the same connected
component as tj in G[Aj \ v]. Note that v /∈ RA(v).

For a heavy set Aj , a sequence of vertices (z1, . . . , zp) for some p ≥ 0 is called a
cascade of Aj if z1 ∈ Aj \ {tj} and zi+1 ∈ Aj \RA(zi) for all 1 ≤ i < p. The cascade is
called a null cascade if p = 0, i.e., if the cascade is empty.

A configuration CA is defined as a pair (A,D), where A = (A1, · · · , Ak) is an FPP,
and D is a set of cascades, which consists of exactly one cascade (possibly, a null cascade)

153

Chapter 6. Spanning Tree Congestion and Connected Partitioning

z1

z2

z3

RA(z1)

RA(z2)

tj

RA(z3)

Figure 6.1: The figure shows a cascade (z1, z2, z3) for the heavy set Aj and several
reservoirs of the cascade vertices.
For any z`, note that z` /∈ RA(z`). A cascade vertex z` (except possibly the last cascade
vertex) is a cut-vertex of G[Aj], i.e., G[Aj \ {z`}] is disconnected. The connected
component of G[Aj \ {z`}] containing tj is the reservoir of z`.
We identify tj = z0, but we clarify that a terminal vertex is never in a cascade. Each
epoch between z` and z`+1, and also the epoch above z3, is a subset of vertices B ⊂ Aj ,
where B 3 z` and G[B] is connected. Note that in general, it is possible that there is no
vertex above the last cascade vertex.

for each heavy set in A. A vertex that is in some cascade of the configuration is called a
cascade vertex.

Given a configuration, we define rank and level inductively as follows. (See Figure 6.2).
Any vertex in a light set is said to have level 0. For i ≥ 0, a cascade vertex is said to
have rank i + 1 if it has an edge to a level-i vertex but does not have an edge to any
level-i′ vertex for i′ < i. A vertex u is said to have level i, for i ≥ 1, if u ∈ RA(v) for
some rank-i cascade vertex v, but u /∈ RA(w) for any cascade vertex w such that rank
of w is less than i. A vertex that is not in RA(v) for any cascade vertex v is said to have
level ∞.

A configuration is called a valid configuration if for each heavy set Aj , rank is defined
for each of its cascade vertices and the rank is strictly increasing in the cascade, i.e.,
if {z1, . . . , zp} is the cascade, then rank(z1) < · · · < rank(zp). Note that by taking
Aj = {tj} and taking the null cascade for each heavy set (in this case Aj is heavy if
w(tj) = Tj), we get a valid configuration.

A vertex v of level ` is said to satisfy maximality property if each vertex adjacent
on it is either a rank-(`+ 1) cascade vertex, or has a level of at most `+ 1, or is one of
the terminals tj for some j. For any ` ≥ 0, a valid configuration is called an `-maximal

154

6.3. Generalized Győri-Lovász Theorem

Vertices in all light sets
Level = 0

t1 t3t2

z11, rank = 1 z21, rank = 3 z31, rank = 1

L = 1 L = 1

L = ∞ L = ∞

z12, rank = 2

L = 2

L = 3

z32, rank = 4

L = 4

z22, rank = 5

L = 5

Figure 6.2: An instance of a valid configuration. Every blue segment/curve represent
an edge from a cascade vertex to a vertex in some reservoir or light set.
Every cascade vertex connected to a light set has rank 1, and all vertices in the epoch
immediately below a rank 1 cascade vertex are of level 1. Inductively, every cascade
vertex connected to a vertex of level i has rank i + 1, and all vertices in the epoch
immediately below a rank i cascade vertex are of level i. All vertices above the last
cascade vertex of each cascade has level ∞.

configuration if all vertices having level at most ` − 1 satisfy the maximality property.
Note that by definition, any valid configuration is a 0-maximal configuration.

For a configuration CA = ((A1, . . . , Ak) , D), we define SA := V \ (A1 ∪ · · · ∪Ak). An
edge uv is said to be a bridging-edge2 in CA if u ∈ SA, v ∈ Aj for some j ∈ [k], and
level(v) 6=∞.

A valid configuration CA is said to be `-good if the following conditions are all satisfied:

(1) highest rank of a cascade vertex in CA is exactly ` (if there are no cascade vertices,
then we take the highest rank as 0); note that this implies that the highest level
other than ∞ is exactly `,

(2) CA is `-maximal, and

(3) all bridging-edges uv in CA (if any) are such that u ∈ SA and level(v) = `.

2We avoid the term bridge used by Hoyer and Thomas [85] to avoid confusion with the usual definition
of bridges in graph theory

155

Chapter 6. Spanning Tree Congestion and Connected Partitioning

Note that taking Aj = {tj} and taking the null cascade for each heavy set gives a 0-good
configuration.

Configuration Vectors and Their Total Ordering. For each configuration CA =
(A,D), we define a configuration vector as below:

(LA , N0
A , N1

A , N2
A , . . . , Nn

A),

where LA is the number of light sets in A, and N `
A is the total number of all level-`

vertices in CA.
Next, we define an ordering on configuration vectors. Let CA and CB be configurations.

We say CA >0 CB if

• LA < LB, or

• LA = LB, and N0
A > N0

B.

We say CA =0 CB if LA = LB and N0
A = N0

B. We say CA ≥0 CB if CA =0 CB or CA >0 CB.
We say CA =` CB if LA = LB, and N `′

A = N `′
B for all `′ ≤ `.

For 1 ≤ ` ≤ n, we say CA >` CB if

• CA >`−1 CB, or

• CA =`−1 CB, and N `
A > N `

B.

We say CA ≥` CB if CA =` CB or CA >` CB. We say CA > CB (CA is strictly better than
CB) if CA >n CB.

6.3.2 Proof of Theorem 6.4

We first give two technical lemmas about `-good configurations that we then use to prove
Theorem 6.4.

Lemma 6.16. Given any `-good configuration

CA = (A = (A1, . . . , Ak), DA))

that does not have a bridging-edge, we can find an (`+ 1)-good configuration

CB = (B = (B1, B2, . . . , Bk) , DB)

in polynomial time such that CB > CA.

Proof. Since CA is `-good, CA is also `-maximal. Since CA is `-maximal, any vertex that
is at level `′ < ` satisfies the maximality property. So, for satisfying (`+ 1)-maximality,
we only need to worry about the vertices that are at level `. Let Xj be the set of all
vertices x ∈ Aj such that the following conditions are all satisfied:

(1) x is adjacent to a level-` vertex,

(2) level(x) ≥ `+ 1 (i.e., level(x) =∞ as the highest rank of any cascade vertex in an
`-good configuration is `),

156

6.3. Generalized Győri-Lovász Theorem

(3) x 6= tj , and

(4) x is not a cascade vertex of rank `.

For any j such that Xj 6= ∅ , there is at least one vertex xj such that Xj \{xj} ⊆ RA(xj),
from the definition of reservoir. And this vertex xj can be found in polynomial time,
just by trying out all vertices in Xj . We give the configuration CB as follows: We set
Bj = Aj for all j ∈ [k]. For each heavy set Aj such that Xj 6= ∅, we take the cascade of
Bj as the cascade of Aj appended with xj . For each heavy set Aj such that Xj = ∅, we
take the cascade of Bj as the cascade of Aj . This construction of CB clearly takes only
polynomial time. Note that the rank of cascade vertex xj is ` + 1 and the level of all
vertices in Xj \ {xj} is `+ 1 in CB. Also, all the vertices that had level at most ` in CA
have the same level in CB. Conversely, all the vertices that have level at most ` in CB
had the same level in CA. Also, all the vertices that have level at least `+ 1 in CB had
their level as ∞ in CA. Also, if a vertex was a cascade vertex with rank `′ ≤ ` in CA, so
is it in CB. Conversely, if a vertex is a cascade vertex with rank `′ ≤ ` in CB, so was it
in CA. Also, notice that SB = SA.

First, we claim that CB is (`+1)-good. Suppose otherwise for the sake of contradiciton.
Then, one of the 3 conditions in the definition of `-good configuration should be violated.

Case 1. Condition 1 is violated, i.e., highest rank of a cascade vertex in CB is not
`+ 1: Since all the cascade vertices that we newly introduced (i.e., the xj ’s) have their
rank as ` + 1, there must be no new cascade vertices introduced. This implies that
Xj = ∅ for each heavyset Aj . For each j such that Aj is a heavy set with a non-null
cascade, let yj be the highest ranked cascade vertex in Aj . For each j such that Aj is a
heavy set with a null cascade, let yj be tj . Let Y be the set of all yj such that Aj is a
heavy set. Note that |Y | ≤ k − 1 as A is an SFPP and hence has at least one light set.
Hence Y is not a cutset of G as G is k-connected. Let Z∞ be the set of all vertices in
V \ Y that have level ∞ and Z be the remaining vertices in V \ Y . Since A is an SFPP,
SA 6= ∅, and since all vertices in SA have level ∞, we have that Z∞ 6= ∅. Also, Z is not
empty because there exists at least one light set in A and the vertices in a light set are
in V \ Y . There is at least one edge between Z∞ and Z in G, as Y is not a cutset of
G. Hence, there exists an edge uv such that u ∈ Z∞ and v ∈ Z. If u ∈ SA, then uv
is a bridging-edge which is a contradiction by our assumption that CA does not have a
bridging-edge. Hence u ∈ Aj for some j ∈ [k]. Note that Aj has to be a heavy set, as u
has level∞. We have that u is not a cascade vertex (as all cascade vertices with level∞
are in Y) and u 6= tj (as all tj such that level(tj) =∞ are in Y). Also, v is not of level `
as otherwise, u ∈ Xj but we said that Xj is empty. But then, v has level at most `− 1,
u has level ∞, and there is an edge uv. This means that v does not satisfy maximality
property and hence that CA is not `-maximal, which is a contradiction.

Case 2. Condition 2 is violated, i.e., CB is not (`+1)-maximal: Then, there is a vertex
x of level at most ` that does not satisfy maximality property in CB. Let `′ be the level
of x in CB. Let j be such that x ∈ Bj . By the definition of maximality property, x has
a neighbor y such that : y has level at least `′ + 2 in CB, y is not a rank (`′ + 1)-cascade
vertex in CB, and y 6= tj .

Case 2.1. `′ ≤ `− 2: Then y has level at most ` in CB and hence had the same level
in CA. Thus y has level at least `′+ 2 in CA, y is not a rank (`′+ 1)-cascade vertex in CA,
and y 6= tj , implying that x did not satisfy maximality property in CA, implying that CA

157

Chapter 6. Spanning Tree Congestion and Connected Partitioning

is not `-maximal, which is a contradiction.
Case 2.2. `′ = `− 1: Then y has level at least `+ 1 in CB, y is not a rank-` cascade

vertex in CB, and y 6= tj , implying that y has level ∞ in CA, implying that x did
not satisfy maximality property in CA, implying that CA is not `-maximal, which is a
contradiction.

Case 2.3 `′ = `: Then y has level at least ` + 2 in CB, , y is not a rank-(` + 1)
cascade vertex in CA, y 6= tj , and y is adjacent to a vertex of level `. Then y ∈ Xj by
the definition of Xj . Hence either y has level `+ 1 in CB or y is a cascade vertex of level
`+ 1 in CB, which is a contradiction.

Case 3. Condition 3 is violated, i.e., there is a bridging-edge e from SB to a vertex
having level at most ` in CB. But then e is also a bridging-edge from SA to a vertex
having level at most ` in CA. However, CA has no bridging-edges by the precondition of
the lemma. Thus, we have a contradiction. Hence, CB is (`+ 1)-good.

It only remains to prove that CB > CA. All vertices that had level at most ` in CA
retained their levels in CB. And, at least one level-∞ vertex of CA became a level-(`+ 1)
vertex in CB because there is a rank-(` + 1) cascade vertex in CB. Since CA had no
level-(`+ 1) vertices, this means that CB > CA.

Lemma 6.17. Given an `-good configuration CA = (A = (A1, . . . , Ak), DA) having
a bridging-edge, we can find in polynomial time a valid configuration CB = (B =
(B1, . . . , Bk), DB) such that one of the following holds:

(1) CB > CA, and CB is an `-good configuration, or

(2) CB ≥ CA, and CB is an (`− 1)-good configuration with a bridging-edge.

Proof. Let uv be a bridging-edge where u ∈ SA. Let Aj∗ be the set containing v. Note
that level(v) = ` because CA is `-good. We keep Bj = Aj for all j 6= j∗. But we modify
Aj∗ to get Bj∗ as described below. We will maintain that if Aj is a heavy set then Bj is
also a heavy set for all j, and hence maintain that LB ≤ LA.

Case 1: Aj∗ is a light set (i.e., when ` = 0). We take Bj∗ = Aj∗ ∪{u}. For all j such
that Bj is a heavy set, we take cascade of Bj as the null cascade. We have w(Aj∗) ≤ Tj−1
because Aj∗ is a light set. So, w(Bj∗) = w(Aj∗)+w(u) ≤ (Tj−1)+wmax, and hence Bj∗
is fitted. Also, G[Bj∗] is connected and hence (B1, . . . , Bk) is an FPP. We have CB >0 CA
because either Bj∗ became a heavy set in which case LB < LA, or it is a light set in
which case LB = LA and N0

B > N0
A. The configuration CB is 0-good because, the highest

rank of a cascade vertex is 0 as there are only null cascades, any valid configuration is
0-maximal, and any bridging-edge has to be to a level-0 vertex as there are only levels 0
and ∞ in CB.

Case 2: Aj∗ is a heavy set i.e., when ` ≥ 1.
Case 2.1: w(Aj∗ ∪ {u}) ≤ Tj +wmax− 1. We take Bj∗ = Aj∗ ∪ {u}. For each j such

that Bj is a heavy set (Aj is also heavy set for such j), we set the cascade of Bj the same
as the cascade of Aj . G[Bj∗] is clearly connected and Bj∗ is fitted by assumption of the
case that we are in. Hence B is indeed an FPP. Observe that all vertices that had level
`′ ≤ ` in CA still has level `′ in CB. Since level(v) was ` in CA by `-goodness of CA, u
has level ` in CB; and u had level ∞ in CA. Hence, CB >` CA and thus CB > CA. It only
remains to prove that the configuration CB remains `-good. Suppose CB is not `-good.
We know that the highest rank of a cascade vertex is still ` as we did not change any

158

6.3. Generalized Győri-Lovász Theorem

cascades, and that any new bridging edges introduced have to be to the vertex u that is
at level `. Hence, for CB to be not `-good, it has to be not `-maximal. Then, there is
a vertex x of level at most `− 1 that does not satisfy maximality property in CB. Let
`′ be the level of x in CB. Let j be such that x ∈ Bj . By the definition of maximality
property, x has a neighbor y such that : y has level at least `′ + 2 in CB, y is not a rank
(`′ + 1)-cascade vertex in CB, and y 6= tj . But then y has level at least `′ + 2 in CA,
and y is not a rank (`′ + 1)-cascade vertex in CA. This implies that x does not satisfy
maximality in CA also, implying that CA is not `-maximal, a contradiction.

Case 2.2: w(Aj∗ ∪ {u}) ≥ Tj + wmax. Let z be the cascade vertex of rank ` in Aj∗ .
Note that Aj∗ should have such a cascade vertex as v ∈ Aj∗ has level `. Let R̄ be
Aj∗ \ (RA(z)∪ z), i.e., R̄ is the set of all vertices in Aj∗ \ {z} with level ∞. We initialize
Bj∗ := Aj∗ ∪ {u}. Now, we delete vertices one by one from Bj∗ in a specific order until
Bj∗ becomes fitted. We choose the order of deleting vertices such that G[Bj∗] remains
connected. Consider a spanning tree τ of the connected subgraph G[R̄ ∪ {z}]. Suppose
that R̄ is not empty. Then, the tree τ has at least 2 leaves. Thus τ has at least one leaf
distinct from z. We delete this leaf from Bj∗ and τ . We repeat this process until τ is
just the single vertex z or Bj∗ becomes fitted. If Bj∗ is not fitted even when τ is the
single vertex z, then delete z from Bj∗ . If Bj∗ is still not fitted then delete u from Bj∗ .
Note that at this point Bj∗ ⊂ Aj∗ and hence is fitted. Also, note that G[Bj∗] remains
connected. Hence (B1, . . . , Bk) is an FPP. Bj∗ does not become a light set because Bj
became fitted when the last vertex was deleted from it. Before this vertex was deleted,
it was not fitted and hence had weight at least Tj∗ + wmax before this deletion. Since
the last vertex deleted has weight at most wmax, Bj∗ has weight at least Tj∗ and hence
is a heavy set. Now we branch into two subcases for defining the cascades.

Case 2.2.1: z ∈ Bj∗ (i.e, z was not deleted from Bj∗ in the process above). For each
j such that Bj is a heavy set, the cascade of Bj is taken as the cascade of Aj . Since
a new level-` vertex u is added and all vertices that had level at most ` retain their
level, we have that CB >` CA and hence CB > CA. Also, CB remains `-good, by the same
arguments as that in Case 2.1.

Case 2.2.2: z /∈ Bj∗ (i.e, z was deleted from Bj∗). For each j such that Bj is a heavy
set, we set the cascade of Bj as the cascade of Aj but with the rank ` cascade vertex (if
it has any) deleted from it. We have CB ≥`−1 CA because all vertices that were at a level
of `′ = ` − 1 or smaller, retain their levels. Hence, CB ≥ CA. All the vertices that we
deleted from Bj∗ had no edges to level-`− 2 or lower level vertices in CA, so as to satisfy
`-maximality of CA. Hence there are no bridging-edges in CB to vertices that are at a
level at most `− 2, and all vertices at a level at most `− 2 still maintain the maximality
property. Also, we did not introduce any cascade vertices. Hence, CB is (`− 1)-good. It
only remains to prove that there is a bridging-edge u′v′ in CB such that level(v′) = `− 1.
We know z ∈ SB. Since z was a rank ` cascade vertex in CA, z had an edge to z′ such
that z′ had level `− 1 in CA. Observe that level of z′ is `− 1 in CB as well. Hence, zz′
is the required bridge.

Proof of Theorem 6.4(a): We always maintain a configuration CA = (A,DA) that
is `-good for some ` ≥ 0. We start with the 0-good configuration where Aj = {tj} and
the cascades of all heavy sets are null cascades. If the FPP A is not an SFPP at any
point, then we terminate and we have the required partition. So assume A is an SFPP.

159

Chapter 6. Spanning Tree Congestion and Connected Partitioning

Then, we show that we can find a new configuratoin CB such that CB > CA and CB is
`′-good for some `′ ≥ 0, in polynomial time. We distinguish the two cases when the
current configuration has a briding-edge and when it does not.

If our current configuration CA is an `-good configuration that has no bridging-edge,
then we use Lemma 6.16 to get a configuration CB such that CB > CA andB is (`+1)-good.
We take CB as the new current configuration CA.

If our current configuration CA is an `-good configuration with a bridging-edge, then
we apply Lemma 6.17. Then we get a configuration CB such that either

(1) CB > CA and CB is `-good, or

(2) CB ≥ CA, CB is `− 1 good , and has a bridging-edge.

If the second outcome happens, Lemma 6.17 is again applicable on CB. We apply the
lemma repeatedly until the first outcome happens. Since the second outcome can happen
only for at most ` times (as a (−1)-good configuration is not defined), finally the first
outcome will happen, and hence we end up with an `′-good configuration CB′ for some
`′ ≥ 0 such that CB′ > CA. We take C′B as the new current configuration CA.

Thus, in either case, we get a strictly better configuration that is `′-good for some
`′ ≥ 0 in polynomial time. We call this an iteration of our algorithm. Notice that the
number of iterations possible is at most the number of distinct configuration vectors
possible. Hence let us estimate the number of distinct configuration vectors possible.
First let us fix the first entry of the configuration vector (i.e. the number of light sets)
and estimate the number of such distinct configuration vectors possible. Let N `

i be the
number of distinct configuration vectors with number of light sets as i and the highest
level in the configuration being exactly `. Using basic combinatorics, N `

i ≤
(n
`

)
. Hence,

when the highest level attained throughout the run of the algorithm is at most `, the
number of distinct configurations appearing during the run of the algorithm is at most
k · ` ·

(n
min(`,n/2)

)
. Since the level of any vertex can be at most n, the number of iterations

of our algorithm is at most kn ·
(n
n/2
)
, which is at most nk · 2n. Since each iteration

runs in polynomial time as guaranteed by the two lemmas, the required running time is
O∗(2n).

The proof of Theorem 6.4(b) follows closely with the proof of Theorem 6.4(a), but
makes use of an observation about the rank of a vertex in the local search algorithm,
to give an improved bound on the number of configuration vectors navigated by the
algorithm.

Proof of Theorem 6.4(b): Since any k-connected graph is also (bk/2c+ 1)−vertex
connected, the algorithm will give the required partition due to Theorem 6.4(a). We only
need to prove the better running time claimed by Theorem 6.4(b). For this, we show that
the highest level attained by any vertex during the algorithm is at most 2n/(k−2). This
means the number of distinct configuration vectors is at most nk ·

(n
min(2n/(k−2),n/2)

)
. For

k ≥ 6, we have 2n/(k−2) ≤ n/2. We can assume k ≥ 6 as otherwise the O∗(2n) running
time already implies O∗(2n log k/k) running time. Hence we have that the running time is
O∗(

(n
2n/(k−2)

)
), which is O∗(2O((n/k) log k)), as claimed. Hence, it only remains to prove

that the highest rank is at most 2n/(k − 2).

160

6.4. Upper Bounds for Spanning Tree Congestion

For this, observe that in an `-good configuration, for each 0 ≤ i < `, the union of all
vertices having level i and the set of (bk/2c+ 1) terminals together forms a cutset. Since
the graph is k-connected, this means that for each 0 ≤ i < `, the number of vertices
having level i is at least k/2− 1. The required bound on the rank easily follows.

6.3.3 Some consequences of Theorem 6.8

Proof of Corollary 6.5: Set the weight w(v) of a vertex v to be its degree. Observe
that the total weight is 2|E(G)|. Since G is k-connected, each vertex has degree at least
k. Thus k|V (G)| ≤ 2|E(G)|. This implies that the maximum weight wmax = ∆(G) <
|V (G)| ≤ 2|E(G)|/k. Now, we apply Theorem 6.4(a) with each Tj as 2|E(G)|/k. (We
assume for simplicity that 2|E(G)| is divisible by k, otherwise it can be dealt with easily).
This gives the statement (a) of the corollary. Similarly the statement (b) follows by
applying Theorem 6.4(b) with each Tj as 2|E(G)|/(k/2).

Proof of Corollary 6.6: Let n = |V | and m = |E|. Set the weight w(v) of a vertex
v to be (cm/n) + deg(v). Observe that the total weight is (c+ 2)m. As in the proof of
previous corollary, we have kn ≤ 2m. This implies that the maximum weight wmax =
cm/n+ ∆(G) < cm/n+ 2m/k ≤ (c+ 2)m/k. Now, applying Theorem 6.4(a) with each
Tj as (c+ 2)m/k gives a connected partition

⋃k
j=1 Vj where for each j, we have w(Vj) ≤

(Tj +wmax) ≤ (2c+ 4)m/k. From this we get that deg(Vj) + (cm/n)|Vj | ≤ (2c+ 4)m/k.
This implies deg(Vj) ≤ (2c+ 4)m/k and |Vj | ≤ 2c+4

c (n/k).

6.4 Upper Bounds for Spanning Tree Congestion

In this section, we prove Theorems 6.7, 6.8 and 6.9. The section is organized as follows.
In subsection 6.4.1, we prove Theorem 6.7 regarding the STC of k-connected graphs.
In subsection 6.4.2, we give an algorithmic framework which is used to prove both the
Theorems 6.8 and 6.9. For proving Theorem 6.9, we make use of an algorithm for
confluent flows by Chen et al. [46]. We review confluent flows and the algorithm by Chen
et al. in subsection 6.4.3. In subsection 6.4.4, we complete the proof of Theorem 6.9.
Finally, in subsection 6.4.4, we give the proof of Theorem 6.8.

6.4.1 STC of k-connected graphs

Here, we prove Theorem 6.7. Towards this, let us first prove the following lemma. See
Figure 6.3 for an illustration of the lemma.

Lemma 6.18. In a graph G = (V,E), let t1 be a vertex, and let t2, · · · , t` be any (`−1)
neighbors of t1. Suppose that there exists a connected `-partition ∪`j=1V` of V such that
for all j ∈ `, tj ∈ Vj, and the sum of degree of vertices in each Vj is at most D. Let τj
be an arbitrary spanning tree of G[Vj]. Let ej denote the edge t1tj. Let τ be the spanning
tree of G defined as τ :=

(
∪`j=1 τj

) ⋃ (
∪`j=2 ej

)
. Then τ has congestion at most D.

Proof. Observe that for any edge e in τ , one of the two sets of the cut induced by e in τ
is a subset of some Vj . Since the total number of outgoing edges from Vj is at most D,
the number of edges in the cut is at most D. Thus we have that the congestion of any
edge in τ is at most D.

161

Chapter 6. Spanning Tree Congestion and Connected Partitioning

Figure 6.3: An illustration of Lemma 6.18.

Proof of Theorem 6.7: Follows directly from Corollary 6.5 and the above lemma.

6.4.2 Framework for the algorithms for STC

It remains to prove Theorems 6.8 and 6.9. We give two algorithms, one for Theorem 6.8
and the other for Theorem 6.9. We give a single framework that works for both the algo-
rithms. The framework is described below in Algorithm 3 and illustrated by Figures 6.4
and 6.5. It is a recursive algorithm; the parameters m̂, n̂ are global parameters, where m̂
is the number of edges in the input graph G in the first level of the recursion; and n̂ is the
number of vertices in G. The parameters nH ,mH are local parameters, where mH is the
number of edges in the input graph H in the current level of the recursion; and nH is the
number of vertices in H. The only difference between the two algorithms is in Line 15,
on how this line is executed, with trade-off between the running time T (m̂, nH ,mH) of
the step, and the congestion guarantee D(m̂, nH ,mH). For proving Theorem 6.8, we
use the algorithm given by Theorem 6.7, yielding D(m̂, nH ,mH) ≤ 8mH

√
nH/m̂ and

T (m̂, nH ,mH) = O∗
(
2O(nH logn

H
/
√
m̂/n

H)). For proving Theorem 6.9, we make use
of an algorithm for confluent flow by Chen et al. [46], which yields D(m̂, nH ,mH) ≤
16mH

√
nH/m̂ · lognH and T (m̂, nH ,mH) = poly(nH ,mH).

6.4.3 Review of algorithm for confluent flows by Chen et al.

In this section, we discuss about confluent flows and the algorithm by Chen et al. [46].
We also prove a corollary about connected k-partition and spanning tree congestion
based on their algorithm.

Single-Commodity Confluent Flow In a single-commodity confluent flow problem,
the input includes a graph G = (V,E), a demand function w : V → R>0 and ` sinks
t1, · · · , t` ∈ V . For each v ∈ V , a flow of amount w(v) is routed from v to one of the
sinks. But there is a restriction: at every vertex u ∈ V , the outgoing flow must leave u
on at most 1 edge, i.e., the outgoing flow from u is unsplittable. The problem is to seek
a flow satisfying the demands which minimizes the node congestion, i.e., the maximum
incoming flow among all vertices. Since the incoming flow is maximum at one of the
sinks, it is equivalent to minimize the maximum flow received among all sinks. (Here,
we assume that no flow entering a sink will leave.)

162

6.4. Upper Bounds for Spanning Tree Congestion

Algorithm 3: FindLCST(H, m̂)
Input : A connected graph H = (VH , EH) on nH vertices and mH edges
Output : A spanning tree τ of H

1 if mH ≤ 8
√
m̂nH then

2 return an arbitrary spanning tree of H
3 end
4 k ←

⌈(√
m̂/nH

)⌉
5 Y ← a global minimum vertex cut of H
6 if |Y | < k then
7 X ← the smallest connected component in H[VH \ Y] (See Figure 6.4)
8 Z ← VH \ (X ∪ Y)
9 τ1 ← FindLCST(H[X], m̂)

10 τ2 ← FindLCST(H[Y ∪ Z], m̂); (H[Y ∪ Z] is connected as Y is a global min
cut)

11 return τ := τ1 ∪ τ2 ∪ (an arbitrary edge between X and Y)
12 else
13 t1 ← an arbitrary vertex in VH
14 Pick bk/2c neighbors of t1 in the graph H; denote them by t2, t3, · · · , tbk/2c+1.

Let ej denote edge t1tj for 2 ≤ j ≤ bk/2c+ 1. (See Figure 6.5)
15 Compute a connected (bk/2c+ 1)-partition of H, denoted by ∪bk/2c+1

j=1 Vj , such
that for each j ∈ [bk/2c+ 1], tj ∈ Vj , and the total degree (w.r.t. graph H) of
vertices in each Vj is at most D(m̂, nH ,mH). Let the time needed be
T (m̂, nH ,mH).

16 For each j ∈ [bk/2c+ 1], τj ← an arbitrary spanning tree of G[Vj]
17 return τ :=

(
∪bk/2c+1
j=1 τj

) ⋃ (
∪bk/2c+1
j=2 ej

)
18 end

Single-commodity splittable flow problem is almost identical to single-commodity
confluent flow problem, except that the above restriction is dropped, i.e., now the
outgoing flow at u can split along multiple edges. Note that here, the maximum incoming
flow might not be at a sink. It is well known that single-commodity splittable flow can
be solved in polynomial time. For brevity, we drop the phrase “single-commodity” from
now on. Chen et. al. proved the following theorem:

Theorem 6.19 ([46, Section 4]). Suppose that given graph G, demand w and ` sinks,
there is a splittable flow with node congestion q. Then there exists a polynomial time
algorithm which computes a confluent flow with node congestion at most (1 + ln `)q for
the same input.

We now prove a corollary that follows from Theorem 6.19 and Corollary 6.5.

Corollary 6.20. Let G be a k-connected graph with m edges. Then for any ` ≤ k and
for any ` vertices t1, · · · , t` ∈ V , there exists a polynomial time algorithm which computes
an connected `-partition ∪`j=1V` such that for all j ∈ `, tj ∈ Vj, and the total degrees of

163

Chapter 6. Spanning Tree Congestion and Connected Partitioning

Figure 6.4: The scenario in Algorithm 3 when the graph has low connectivity. The
vertex set Y is a global minimum vertex cut of the graph. The vertex set X is the
smallest connected component after the removal of Y , and Z is the union of all the other
connected components.

Figure 6.5: The scenario in Algorithm 3 when the graph has high connectivity.

vertices in each Vj is at most 4(1 + ln `)m/`. Moreover, we can find a spanning tree of
G with congestion at most 4(1 + ln `)m/` in polynomial time.

Proof. First of all, we set the demand of each vertex in the flow problem to be the the
degree of the vertex in G, and t1, · · · , t` as the sinks in the flow problem.

By Corollary 6.5, there exists an connected `-partition ∪`j=1U` such that for all j ∈ [`],
tj ∈ Uj , and the total degrees of vertices in each Uj is at most 4m/`. With this, by
routing the demand of a vertex in Uj to tj via an arbitrary path in G[Uj] only, we
construct a splittable flow with node congestion at most 4m/`. By Theorem 6.19, one
can construct a confluent flow with node congestion at most 4(1+ln `)m/` in polynomial
time. In the confluent flow, all the flow originating from one vertex goes completely
into one sink. Set Vj to be the set of vertices such that the flows originating from these
vertices go into tj . It then follows that ∪`j=1V` is our desired connected `-partition. Then,
by applying Lemma 6.18, we get the required spanning tree in polynomial time.

164

6.4. Upper Bounds for Spanning Tree Congestion

6.4.4 Proof of Theorem 6.9

The algorithm specified in Theorem 6.9 is obtained from the framework in Algorithm 3
by using the algorithm given by Corollary 6.20 to compute the connected partition in
Line 15 of Algorithm 3. We prove below that this algorithm satisfies the congestion
bound and the running time guarantee given in Theorem 6.9.
Correctness and Congestion Analysis. We view the whole recursion process as a
recursion tree. There is no endless loop, since down every path in the recursion tree,
the number of vertices in the input graphs are strictly decreasing. Note that the leaf
of the recursion tree is resulted either by (i) Line 2, i.e., if the input graph H to that
call satisfies mH ≤ 8

√
m̂nH , (ii) or by Line 13, i.e, if connectivity of H is at least k. An

internal node appears only when the connectivity of the input graph H is lesser than k,
and it makes two recursion calls in that case.

We prove the following statement by induction from bottom-up: for each graph which
is the input to some call in the recursion tree, the returned spanning tree of that call is
indeed a spanning tree and has congestion at most 16

√
m̂nH lognH .

We first handle the two basis cases (i) and (ii). In case (i), FindLCST returns an
arbitrary spanning tree, and the congestion is bounded by mH ≤ 8

√
m̂nH . In case (ii),

by Corollary 6.20, FindLCST returns a spanning tree with congestion at most

4(1 + ln(k/2))mH/(k/2) ≤ 16mH

√
nH/m̂ · lognH ≤ 16

√
m̂nH · lognH .

Next, let H be the input graph to a call which is represented by an internal node of
the recursion tree. Recall the definitions of X,Y, Z, τ1, τ2 in the algorithm. Note that
the connectedness of H[Y ∪ Z] follows from the minimality of cutset Y . It is then easy
to see that τ is indeed a spanning tree in this case.

Let |X| = x. Note that 1 ≤ x ≤ nH/2. Then, the congestion of the returned spanning
tree is at most

max{ congestion of τ1 in H[X] , congestion of τ2 in H[Y ∪ Z] } + |X| · |Y |

≤ 16
√
m̂(nH − x) log(nH − x) +

(√
m̂/nH + 1

)
· x. (6.1)

Viewing x as a real variable, by taking derivative, it is easy to see that the above
expression is maximized at x = 1. Thus the congestion is at most

16
√
m̂(nH − 1) log(nH − 1) +

√
m̂/nH + 1 ≤ 16

√
m̂nH lognH .

Runtime Analysis. At every internal node of the recursion tree, the algorithm makes
two recursive calls with two vertex-disjoint and strictly smaller (w.r.t. vertex size) inputs.
The dominating knitting cost is in Line 5 for computing a global minimum vertex cut,
which is well-known that it can be done in polynomial time. Since at every leaf of the
recursion tree the running time is polynomial, by standard analysis on divide-and-conquer
algorithms, the running time of the whole algorithm is polynomial, which completes the
proof of Theorem 6.9.

165

Chapter 6. Spanning Tree Congestion and Connected Partitioning

6.4.5 Proof of Theorem 6.8

The algorithm specified in Theorem 6.8 is obtained from the framework in Algorithm 3
by using the algorithm given by Theorem 6.7 to compute the connected partition in
Line 15 of Algorithm 3. We now prove that this algorithm satisfies the congestion bound
and the running time guarantee given in Theorem 6.9. Instead of giving the full proof,
we only point out the differences from the proof of Theorem 6.9.

First, in handling the basis case (ii), by Theorem 6.7, we have an improved upper
bound on the congestion of the returned tree, which is 8mH/

√
m̂/nH ≤ 8

√
m̂nH . Thus,

(6.1) can be improved to

8
√
m̂(nH − x) +

√
m̂

nH
· x.

Again, by viewing x as a real variable and taking derivative, it is easy to see that the
above expression is maximized at x = 1. So the above bound is at most

8
√
m̂(nH − 1) +

√
m̂

nH
≤ 8

√
m̂nH , as desired.

Concerning the running time, it is clear that in the worst case, it is dominated by the
calls to the algorithm in Theorem 6.4(b). Note that the number of such calls is at most
n̂, since each call to the algorithm is on a disjoint set of vertices. Hence, the required
running time bound follows.

6.5 Lower Bound for Spanning Tree Congestion

Here, we give a lower bound on spanning tree congestion which matches our upper bound
by proving Theorem 6.10.

We start with the following lemma, which states that for a random graph G(n, p),
when p is sufficiently large, its edge expansion is Θ(np) with high probability. The
proof of the lemma uses only fairly standard probability arguments and is deferred to
Section 6.5.1.

Lemma 6.21. For any integer n ≥ 4 and 1 ≥ p ≥ 32 · logn
n , let G(n, p) denote the

random graph with n vertices, in which each edge occurs independently with probability
p. Then with probability at least 1−O(1/n),
(i) the random graph is connected,
(ii) the number of edges in the random graph is between pn2/4 and pn2, and
(iii) for each subset of vertices S with |S| ≤ n/2, the number of edges leaving S is at
least p

2 · |S| · (n− |S|).

In particular, for any sufficiently large integer n, when n2/2 ≥ m ≥ 16n logn, by
setting p = 2m/n2, there exists a connected graph with n vertices and [m/2, 2m] edges,
such that for each subset of vertices S with |S| ≤ n/2, the number of edges leaving S is
at least m

2n · |S| = Θ(m/n) · |S|. We denote such a graph by H(n,m).
We discuss our construction here (see Figure 6.6) before delving into the proof. The

vertex set V is the union of three vertex subsets V1, V2, V3, such that |V1| = |V2| = |V3| = n,
|V1 ∩ V2| = |V2 ∩ V3| =

√
m/n, and V1, V3 are disjoint. In each of V1, V2 and V3, we

166

6.5. Lower Bound for Spanning Tree Congestion

V1 V3

V2

H(n,m)

H(n,m)

H(n,m)

v1

v3

Figure 6.6: Our lower-bound construction for spanning tree congestion. V1, V2, V3 are
three vertex subsets of the same size. In each of the subsets, we embed expander H(n,m).
There is a small overlap between V2 and V1, V3, while V1, V3 are disjoint. For any vertex
v1 ∈ V1 ∩ V2, we add edges between it and any other vertex in V1 ∪ V2; similarly, for any
vertex v3 ∈ V3 ∩ V2, we add edges (not shown in figure) between it and any other vertex
in V3 ∪ V2.

embed H(n,m). The edge sets are denoted E1, E2, E3 respectively. Up to this point, the
construction is similar to that of Ostrovskii [132], except that we use H(n,m) instead
of a complete graph.

The new component in our construction is adding the following edges. For each
vertex v ∈ V1 ∩V2, add an edge between v and every vertex in (V1 ∪V2) \ {v}. The set of
these edges are denoted F1. Similarly, for each vertex v ∈ V3 ∩ V2, add an edge between
v and every vertex in (V3 ∪ V2) \ {v}. The set of these edges are denoted F3.

Proof of Theorem 6.10: Let G = (V,E) be the graph constructed as above. The
whole graph has 3n− 2

√
m/n vertices. The number of edges is at least m (due to edges

in E1 and E3), and is at most 6m + 2
√
m/n · 2n = 6m + 4

√
mn, which is at most 7m

for m ≥ 16n.
It is well known that for any tree on n vertices, there exists a vertex x called a cen-

troid of the tree such that, removing x decomposes the tree into connected components,
each of size at most n/2. Now, consider any spanning tree τ of the given graph, let u be a
centroid of τ . Without loss of generality, we can assume that u /∈ V1; otherwise we swap
the roles of V1 and V3. Removing u (and its adjacent edges) from τ decomposes the tree
τ into a number of connected components. Any of these components that intersect V1
must contain at least one vertex of V1 ∩ V2; thus the number of components intersecting
V1 is at most

√
m/n, and hence there exists one of them, denoted by Uj , such that

b1 := |U ∩ V1| ≥ n/(
√
m/n) = n

√
n/m.

Let e denote the tree-edge that connects u to U . We distinguish the following three
cases:

Case 1: n
√
n/m ≤ b1 ≤ n − n

√
n/m. Due to the property of H(n,m), the

congestion of e is at least Θ(m/n) ·min{b1, n− b1} ≥ Θ(
√
mn).

167

Chapter 6. Spanning Tree Congestion and Connected Partitioning

Case 2: b1 > n−n
√
n/m and |U ∩V1∩V2| ≤ 1

2 ·
√
m/n. Let W := (V1∩V2)\U .

Note that by this case’s assumption, |W | ≥ 1
2 ·
√
m/n. Due to the edge subset F1, the

congestion of e is at least

∣∣∣F1(W , V1 \W)
∣∣∣ ≥ (1

2 ·
√
m/n

)
· n2 = Θ

(√
mn

)
.

Case 3: b1 > n−n
√
n/m and |U ∩V1∩V2| > 1

2 ·
√
m/n. Let W ′ := U ∩V1∩V2,

and let Z := (V2 \ V1) ∩ U .
Note that b1 > n−n

√
n/m ≥ 9n/10. Suppose |Z| ≥ 6n/10, then |U | > 9n/10+

6n/10 > |V |/2, a contradiction to the assumption that u is a centroid. Thus, |Z| < 6n/10.
Due to the edge subset F1, the congestion of e is at least∣∣∣F1(W ′, V2 \ (W ′ ∪ Z))

∣∣∣ ≥ |W ′| · (n− |W ′| − |Z|)
≥
(1

2 ·
√
m/n

)
·
(
n−

√
m/n− 6n

10

)
= Θ(

√
mn).

6.5.1 Proof of Lemma 6.21

It is well known that the requirements (i) and (ii) are satisfied with probability 1 −
o(1/n). [25] For each subset S with |S| ≤ n/2, by the Chernoff bound,

P
[∣∣∣E(S, V \ S)

∣∣∣ ≤ p

2 · |S| · (n− |S|)
]
≤ e−p|S|(n−|S|)/8 ≤ e−pn|S|/16.

Since p ≥ 32 · logn
n , the above probability is at most n−2|S|. Then by a union bound, the

probability that (iii) is not satisfied is at most

bn/2c∑
s=1

(
n

s

)
· n−2s ≤

bn/2c∑
s=1

ns · n−2s ≤
bn/2c∑
s=1

n−s ≤ 2
n
.

6.6 STC of Graphs with Expanding Properties

Recall the following definition of a (n, s, d1, d2, d3, t)-expanding graph:

Definition 6.11. A graph G = (V,E) on n vertices is an (n, s, d1, d2, d3, t)-expanding
graph if the following four conditions are satisfied:

(1) for each S ⊆ V (G) such that |S| = s, |N(S)| ≥ d1n;

(2) for each S ⊆ V (G) such that |S| ≤ s, |N(S)| ≥ d2|S|;

(3) for each S ⊆ V (G) such that |S| ≤ n/2 and for any S′ ⊂ S, |NV \S(S′)| ≥ |S′|− t.

(4) For each S ⊆ V (G), |E(S, V \ S)| ≤ d3|S|.

168

6.6. STC of Graphs with Expanding Properties

Whenever we say condition (1), (2), (3) or (4) in this section, we mean the correspond-
ing condition in the above definition. We will now prove Theorem 6.12 by presenting a
polynomial time algorithm for finding a spanning tree of an (n, s, d1, d2, d3, t)-expanding
graph that has congestion at most

d3 ·
[
4 ·max

{
s+ 1 ,

⌈3d1n

d2

⌉}
·
(1

2d1

)log(2−δ) 2
+ t

]
, where δ = t

d1n
.

Algorithm. Let G be an (n, s, d1, d2, d3, t)-expanding graph. By Condition (2) in Def-
inition 6.11, every vertex has degree at least d2. Let v0 be a vertex of degree d ≥ d2,
and let v1, · · · , vd be its d neighbors. We maintain a tree T rooted at v0 such that
T = T1 ∪ T2 ∪ · · · ∪ Td ∪ {v0v1, v0v2, . . . , v0vd} where T1, T2, · · · , Td are trees rooted at
v1, v2, . . . , vd respectively. We call the T ′is as branches. (See Figure 6.7). We start with
each branch Ti = vi. In order to minimize congestion, we grow T in a balanced way, i.e.,
we maintain that the Ti’s are roughly of the same size. A branch is called saturated if it
contains at least max

{
s+ 1 , 3d1n

d2

}
vertices.

v1 v2 vd

T1 T2 Td

v0

VT

Figure 6.7: The tree T and its branches

At any point of time, let VT be the set of vertices in T and V̄T be the vertices not in
T . Often, we will move a subtree of a saturated branch Ti to an unsaturated branch Tj
to ensure balance. For any x ∈ VT , let Tx denote the subtree of T rooted at x. A vertex
x of a saturated branch Ti is called transferable (to branch Tj) if x has a neighbor y in
Tj and the tree Tj ∪ {xy} ∪ Tx is unsaturated. (See Figure 6.8.)

The algorithm is divided into two phases which are described below. Throughout
the algorithm, whenever a branch Ti gets modified, T gets modified accordingly, and
whenever T gets modified VT and V̄T gets modified accordingly.
Phase 1: Repeatedly do one of the following two actions, until |VT | ≥ d1n:
(We will prove that the precondition of at least one of the actions is satisfied if |VT | < d1n)

(1) If there exists a b ∈ V̄T such that b has a neighbor a in some unsaturated branch
Ti:
Add the vertex b and the edge ab to branch Ti.

169

Chapter 6. Spanning Tree Congestion and Connected Partitioning

y

x

y

x

Ti∗ Tj Ti∗ Tj

v0 v0

Figure 6.8: Transfer of a subtree from a saturated branch to an unsaturated branch

(2) If there exists at least one transferable vertex: (see Figure 6.8)
Find the transferable vertex x such that Tx is the smallest. Let Ti∗ be the branch
currently containing x, Tj be a branch to which it is transferable, and y be an
arbitrarily chosen neighbor of x in Tj .

(a) Remove the subtree Tx from Ti∗ and add it to Tj with x as a child of y.
(b) Pick a b ∈ V̄T that has a neighbor a (arbitrarily chosen, if many) either in Ti∗

or in Tj . (We will show in the analysis that such b exists). We add vertex b
and edge ab to the branch containing a (i.e. to Ti∗ or Tj).

Phase 2: While V̄T 6= ∅, repeat:
Find a maximum matching of G[VT , V̄T], the bipartite graph formed by edges of G
between VT and V̄T . Let M be the matching. Add all edges of M to T .

In the analysis below, we say that a tree is saturated if it contains at least A vertices;
we will determine the appropriate value of A by the end of the analysis.
Analysis of Phase 1. We claim that during Phase 1, i.e. if |VT | < d1n, the precondition
of either step 1 or step 2 is satisfied. We also show the existence of a vertex b as specified
in step 2b, whenever step 2b is reached. Given these and the fact that a vertex in V̄T is
moved to VT (either in step 1 or in step 2b) during each round of Phase 1, we have that
Phase 1 runs correctly and terminates after a linear number of rounds.

During Phase 1, we will also maintain the invariant that each branch has at most A
vertices; thus, each saturated branch has exactly A vertices. We call this invariant the
balancedness. Note that balancedness is not violated due to step 1, as the new vertex
is added to an unsaturated branch. It is not violated during step 2 as the branches Ti∗
and Tj (as defined in step 2) become unsaturated at the end of the step.

We define the hidden vertices of T (denoted by H ≡ HT) as follows: they are the
vertices which are not adjacent to any vertices outside the tree, i.e., to any vertex in V̄T .
If there is an unsaturated branch with a non-hidden vertex, clearly the precondition of
step 1 is satisfied. So, let us assume that all the vertices in all unsaturated branches are
hidden. In such a case, we show that the precondition of step 2 is satisfied if |VT | < d1n.

We argue that in this case |H| ≤ s: otherwise, take a subset H ′ ⊂ H of cardinality
s, then by condition (2), N(H ′), which is contained in VT , has cardinality at least d1n.
This is a contradiction as |VT | < d1n during Phase 1.

170

6.6. STC of Graphs with Expanding Properties

Since |VT | < d1n, the number of saturated branches is at most d1n/A. To ensure
that at least one unsaturated branch exists, we set A such that d1n/A < d2. Let U
denote the set of vertices in all unsaturated branches. Since all vertices in U are hidden
vertices, |U | ≤ s. Then by condition (2), |N(U)| ≥ d2|U |. Note that the vertices in N(U)
are all in the saturated branches. By the pigeon-hole principle, there exists a saturated
branch containing at least

N(U)/(d1n/A) ≥ Ad2|U |
d1n

vertices of N(U). By setting A ≥ 3d1n
d2

, the above calculation guarantees the existence
of a saturated branch containing at least 3|U | ≥ |U |+ 2 vertices of N(U); let Ti be such
a branch.

In Ti, pick a vertex x ∈ Ti∩N(U) such that Tx does not contain any vertex in N(U),
except x. Then the size of Tx is at most A − |N(U) ∩ Ti| + 1 ≤ A − (|U | + 1). Let
y ∈ U be a vertex which is adjacent to x and Tj be the branch containing y. Since Tj
has at most |U | vertices, x is a transferable vertex (to Tj). Thus precondition of step 2
is satisfied.

We further set A > s so that in each saturated branch, there is at least one unhidden
vertex. In particular, Ti has an unhidden vertex, which is adjacent to some b ∈ V̄T . The
vertex b is either adjacent to a vertex in Tx, or a vertex in Ti \ Tx as required in step 2b.
Analysis of Phase 2. Since G is connected, we have that M is non-empty in each
iteration of Phase 2, and hence Phase 2 terminates in linear number of rounds. At
the end of Phase 2, since V̄T is empty, T is clearly a spanning tree. It only remains
to estimate the congestion of this spanning tree. Towards this, we state the following
modified Hall’s theorem, which is an easy corollary of the standard Hall’s theorem.

Lemma 6.22. Consider a bipartite graph H with |L(H)| ≤ |R(H)|. Suppose that there
exist t ≥ 0 such that for any W ⊆ L(H), we have |N(W)| ≥ |W | − t. Then the bipartite
graph admits a matching of size at least |L(H)| − t.

Recall that Phase 2 consists of multiple rounds of finding a matching between VT
and V̄T . As long as |VT | ≤ n/2, condition (3) (with S = VT) plus the modified Hall’s
theorem (with L = VT and R = V̄T) guarantees that in each round, at least |VT | − t
number of vertices in VT are matched. We now define δ as:

δ := t/(d1n).

Then,

(1− δ)|VT | =
(

1− t

d1n

)
· |VT | ≤ |VT | − t

where the last inequality uses that |VT | ≥ d1n during Phase 2. Thus at least (1− δ)|VT |
vertices from VT are matched in each round. Thus, after at most

⌈
log(2−δ)

1
2d1

⌉
rounds

of matching, |VT | ≥ n/2. After reaching |VT | ≥ n/2, condition (3) (with S = V̄T) plus
the modified Hall’s theorem (with L = V̄T and R = VT) guarantees that after one more
round of matching, all but t vertices are left in V̄T .

171

Chapter 6. Spanning Tree Congestion and Connected Partitioning

By the end of Phase 1, each branch had at most A vertices. After each round of
matching, the cardinality of each branch is doubled at most. Thus, the maximum possible
number of vertices in each branch after running the whole algorithm is at most

A · 2
⌈

log(2−δ)
1

2d1

⌉
+1

+ t ≤ 4A ·
(1

2d1

)log(2−δ) 2
+ t.

and hence the STC is at most

d3 ·
[
4A ·

(1
2d1

)log(2−δ) 2
+ t

]
.

Recall that we need A to satisfy d1n/A < d2, A ≥ 3d1n
d2

and A > s. Thus we set
A := max

{
s+ 1 ,

⌈
3d1n
d2

⌉}
.

6.7 STC of Random Graphs

In this section, we prove that a random graph has an STC of Θ(n) with high probability.
We first present a simple non-constructive proof that a random graph has an STC of
O(n) with high probability, in Theorem 6.23. The proof of Theorem 6.23 uses the upper
bound given by Theorem 6.7 on the STC of k-connected graphs, and the fact that for
random graphs, vertex-connectivity and minimum degree are equal with high probability.
Theorem 6.23 does not give an efficient algorithm; that will be given in Section 6.7.1.

Theorem 6.23. If G ∈ G(n, p) where p ≥ 8 logn/n, then the spanning tree congestion
of G is at most 16n with probability at least 1− o(1/n).

Proof. It is known that the threshold probability for a random graph being k-connected
is same as the threshold probability for it having minimum degree at least k [27]. Since
p ≥ 8 logn/n, using Chernoff bound and taking union bound over all vertices gives
that G has minimum degree at least np/2 with probability at least 1− o(1/n). Hence
G is (np/2)-connected with probability at least 1 − o(1/n). We also have that the
number of edges in G is at most 2n2p with probability at least 1 − o(1/n). Now, by
using Theorem 6.7, we have that with probability at least 1− o(1/n), the spanning tree
congestion is at most 16n.

Next, we give a lower bound of Ω(n) on the STC of random graphs by proving
Theorem 6.14.

Proof of Theorem 6.14: By using Chernoff Bounds and applying union bound, it is
easy to show that with probability 1− o(1/n), every vertex of G has degree at most c1np
for a sufficiently large constant c1. Also, by Lemma 6.21, with probability 1−O(1/n),
properties (i) and (iii) of that lemma holds. The rest of the proof is conditioned on the
above mentioned highly probable events.

Take a spanning tree T of G which gives the minimum congestion. Let u be a centroid
of the tree T , i.e., each connected component of T \ {u} has at most n/2 vertices. If
there is a connected component with number of vertices at least n/4, then define this
connected component as T ′. Else, all connected components have at most n/4 vertices.

172

6.7. STC of Random Graphs

In this case, let T ′ be the forest formed by the union of a minimum number of connected
components of T \ {u} such that |T ′| ≥ n/4. It is easy to see that |T ′| ≤ n/2. Also, the
number of edges in T from V (T ′) to V (T) \ V (T ′) is at most degG(u), which is at most
c1np.

By property (iii) of Lemma 6.21, the number of edges between V (T ′) and V (G)\V (T ′)
is Ω(n2p). Each of these edges in G between V (T ′) and V (G) \V (T ′) have to contribute
to the congestion of at least one of the edges in T between V (T ′) and V (G)\V (T ′). Now
since T ′ sends at most c1np tree edges to other parts of T , it follows that there exists
one edge in T with congestion at least Ω(n2p)/(c1np) = Ω(n), as claimed.

6.7.1 Constructive Upper Bound for STC of Random Graphs

Let G = G(n, p) where p ≥ c0 logn/n, and c0 = 64. We prove Theorem 6.13 by giving a
polynomial time algorithm to find a spanning tree of G that has O(n) congestion. The
following lemmas show that with high probability G is an (n, s, d1, d2, d3, t)-expanding
graph with s = Θ(1/p), d1 = Θ(1), d2 = Θ(np), d3 = Θ(np), t = Θ(1/p) (and hence
δ = o(1)). The proof of the lemmas are deferred to end of this section.

Lemma 6.24. For any S ⊆ V (G) such that |S| = d1/pe, we have |N(S)| ≥ c2n with
probability at least 1− e−n/16, where c2 = 1/25.

Lemma 6.25. For any S ⊆ V (G) such that |S| ≤ 1/p, we have |N(S)| ≥ c3np|S| with
probability at least 1−O(1/n2), where c3 = 1/16.

Lemma 6.26. For all A ⊆ V (G) such that |A| ≤ n/2, and for all S ⊆ A, with probability
at least 1− e−n, S has at least |S| − c4/p neighbors in V (G) \A, where c4 = 12.

Lemma 6.27. For all S ⊆ V (G), the cut size |E(S, V (G) \ S)| is at most np|S| with
probability at least 1− n−c0/4.

Plugging the bounds from above lemmas into Theorem 6.12, we get Theorem 6.13.
Constants. For easy reference, we list out the constants used in this section.

c0 = 64, c2 = 1/25, c3 = 1/16, c4 = 12

Proof of Lemma 6.24: Let S̄ = V (G) \ S. The probability that a fixed vertex in S̄
does not have edge to S is at most (1−p)|S| ≤ (1−p)1/p ≤ e−1. Since |S̄| ≥ n−2/p ≥ n−
2n/(c0 logn) ≥ 31n/32, the expected value of |N(S)| is at least (31/32)n(1−e−1) ≥ n/2.
Hence, using Chernoff bound, the probability that |N(S)| < c2n = n/25 is at most e−n/8.
Since the number of such S is at most n2/p = 22n/c0 ≤ 2n/32, we have the lemma by
applying union bound.

Proof of Lemma 6.25: Let S̄ = V (G) \ S. Since |S| ≤ 1/p ≤ n/ logn, we have
|S̄| ≥ n/2 for sufficiently large n. Divide S̄ into groups of size d1/(p|S|)e. The probability
that such a group does not have edge to S is at most (1 − p)|S|(1/(p|S|)) ≤ 1/e. The
expected number of groups having edge to S is at least (np|S|/2)(1 − 1/e) ≥ np|S|/4.
Thus, by Chernoff bound, the probability that |N(S)| ≤ np|S|/16 is at most e−np|S|/16 ≤
2−c0|S| logn/16 ≤ 2−4|S| logn. The number of sets of size |S| is at most 2|S| logn. Hence,
taking union bound over all S with |S| ≤ 1/p, we get the required lemma.

173

Chapter 6. Spanning Tree Congestion and Connected Partitioning

Proof of Lemma 6.26: First, we prove that for all C,D ⊆ V (G) such that |C| ≥
n/4,|D| ≥ c4/p, and C ∩ D = ∅, there exist at least one edge between C and D with
high probability. The probability that there is no edge between such a fixed C and D is
at most (1− p)(n/4)(c4/p) ≤ e−c4n/4. The number of pairs of such C and D is at most 22n.
Hence, by taking union bound, the probability that for all C and D, the claim holds is
at least 1− e2n−(c4n/4) ≥ 1− e−n.

Using the above claim, we prove that for all S ⊆ A, S has at least |S| − c4/p
neighbors in Ā := V (G) \A with high probability. Suppose there is an S which violates
the claim. Note that we can assume |S| ≥ c4/p, because otherwise the claim is vacuously
true. Let B := Ā \ N(S). There cannot be any edges between S and B. Also, |B| ≥
(n/2) − (|S| − (c4/p)). So, |B| is at least c4/p and when |B| < n/4, |S| is at least n/4.
Hence, using the previous claim, there is an edge between S and B with probability at
least 1−e−n. Hence, we get a contradiction, and hence our claim is true with probability
at least 1− e−n.

Proof of Lemma 6.27: Let C(S) denote |E(S, V (G) \ S)|. For a fixed vertex subset
S, the expected value of C(S) is at most np|S|. Therefore, probability that C(S) >
np|S| ≥ c0|S| logn is at most n−c0|S|/2 using Chernoff bounds. The probability that
C(S) ≤ np|S| for all sets S of size k is at least 1− n−c0k/2+k ≥ 1− n−c0/2+1 using union
bound and using k ≥ 1. The probability that C(S) ≤ np|S| for all vertex subsets S is at
least 1− n−c0/2+2 ≥ using union bound over all k ∈ [n].

6.8 Open Problems

(1) An important open problem with regard to STC is to find good polynomial time
approximation algorithms for STC. Picking any arbitrary spanning tree will give
an approximation ratio of n, the number of vertices. There is no polynomial time
approximation algorithm known that gives a better approximation ratio, to the
best of our knowledge. The best known lower bound for the approximation ratio
is (2− ε) given by Bodlaender et al. [23].

(2) Does there exist polynomial time algorithms for finding the Győri-Lovász partitions
of a k-connected graph? Polynomial time algorithms are only known for k =
2, 3 [151, 158]. There are no lower bounds that forbids polynomial time algorithms.
It is possible that there is a polynomial time algorithm even for arbitrary k. The
problem is a search problem and not a decision problem. We know the required
partition exists. Hence the problem is not NP-complete. Our local search algorithm
shows that the problem is in complexity class PLS. It is believed that PLS-complete
problems do not have polynomial time local search algorithms. It is an interesting
question whether finding the Győri-Lovász partitions is a PLS-complete problem.
It will be also interesting whether it is PPAD-complete as then it will be unlikely
that a polynomial time algorithm exists. PPAD is a class of problems that are
guaranteed to have solutions but finding solutions are believed to be hard, for eg.,
it contains the problem of finding Nash-equilibria.

174

List of Figures

1.1 A representation of a black and white image as a biclique partition. The
white pixels are given colors according to the corresponding bicliques. . 3

2.1 A domino graph . 16

3.1 Illustration of the construction of G. The black nodes denote the vertices
in L(G), and the white nodes denote the vertices in R(G). The solid edges
represent edges in E imp, and the dashed edges denote edges in Efree. The
edges between P and H and those between Y and G \ Y are not shown.
The edges shown between Si and H are present for all i ∈ [`− 1], whereas
the edges shown between S1 and P are only present for S1 and not for
any Si for i ≥ 2. 44

4.1 An example of the construction of the split graph H from a given graph G 57
4.2 A flowchart of the proof of Theorem 4.5. This figure shows the part in

Section 4.4.2 (proximity of pivot vertex). See Figure 4.3 for the remaining
part. A node with label 4.n denotes Lemma/Corollary 4.n. 60

4.3 A flowchart of the proof of Theorem 4.5. This figure shows the part in
Sections 4.4.3 (bichromatic paths), 4.4.4 (bridging), 4.4.5 (finale) and also
the relationship with previous part (shown in Figure 4.2). A node with
label 4.n denotes Lemma/Corollary 4.n 61

4.4 Vertex subsets of the 2-tree G around pivot vertex p. Note that there
are possible edges that have not been shown in the figure. A summary
of the definitions of the subsets and relations between them are given in
Section 4.4.6 for easy reference. 63

4.5 An illustration of the colorings µ, µ′ and µ′′ used in the proof of Lemma 4.27.
The dotted edges represent edges that are in G2 but not in G. Note that
we have not drawn all the edges of G and G2. 70

4.6 Vertex subsets used in the proof of Theorem 4.5. Note that there are
possible edges that have not been shown in the figure. A summary of
the definitions of the subsets and relations between them are given in
Section 4.4.6 for easy reference. 72

4.7 Bridging set, bridging sequence, and bridging recoloring. 74
4.8 Construction of Branch sets of the required clique minor 79
4.9 A 2-tree G with ω(G2) = 2λ+ 5 and χ(G2) = 3λ+ 3. 83

5.1 A graph G, a maximum induced forest F of it, the contracted graph H,
the skeleton B, the directed tree B1, and their coloring according to Take
2. The figure is continued on the next 2 pages. 96

5.2 Illustration of Coloring rule 3 applied on a tree vertex xT with 2-edge
degree 4 . 104

5.3 Illustration of Coloring rule 4 (continued on next page) 107

List of Figures

5.4 Three examples of Coloring rule 5. Here ci = s(Ti). The blue edges are
the edges that were already colored before the application of the rule.
The figure is continued on the next page. 113

5.5 Coloring rule 7 . 116
5.6 Coloring rule 8 . 117
5.7 Coloring rule 10 . 120
5.9 An example of a cactus graph and related definitions. 133
5.10 A hypergraph H = (N, E) (left) transformed into a bipartite graph G

(right) as described in the proof of Lemma 5.73. The dashed rectangle
with rounded corners contains the sets in N ′. 138

6.1 The figure shows a cascade (z1, z2, z3) for the heavy set Aj and several
reservoirs of the cascade vertices.
For any z`, note that z` /∈ RA(z`). A cascade vertex z` (except possibly
the last cascade vertex) is a cut-vertex of G[Aj], i.e., G[Aj \ {z`}] is
disconnected. The connected component of G[Aj \ {z`}] containing tj is
the reservoir of z`.
We identify tj = z0, but we clarify that a terminal vertex is never in a
cascade. Each epoch between z` and z`+1, and also the epoch above z3, is
a subset of vertices B ⊂ Aj , where B 3 z` and G[B] is connected. Note
that in general, it is possible that there is no vertex above the last cascade
vertex. 154

6.2 An instance of a valid configuration. Every blue segment/curve represent
an edge from a cascade vertex to a vertex in some reservoir or light set.
Every cascade vertex connected to a light set has rank 1, and all vertices
in the epoch immediately below a rank 1 cascade vertex are of level 1.
Inductively, every cascade vertex connected to a vertex of level i has rank
i + 1, and all vertices in the epoch immediately below a rank i cascade
vertex are of level i. All vertices above the last cascade vertex of each
cascade has level ∞. 155

6.3 An illustration of Lemma 6.18. 162
6.4 The scenario in Algorithm 3 when the graph has low connectivity. The

vertex set Y is a global minimum vertex cut of the graph. The vertex set
X is the smallest connected component after the removal of Y , and Z is
the union of all the other connected components. 164

6.5 The scenario in Algorithm 3 when the graph has high connectivity. . . . 164
6.6 Our lower-bound construction for spanning tree congestion. V1, V2, V3 are

three vertex subsets of the same size. In each of the subsets, we embed
expander H(n,m). There is a small overlap between V2 and V1, V3, while
V1, V3 are disjoint. For any vertex v1 ∈ V1 ∩ V2, we add edges between it
and any other vertex in V1 ∪ V2; similarly, for any vertex v3 ∈ V3 ∩ V2, we
add edges (not shown in figure) between it and any other vertex in V3 ∪ V2.167

6.7 The tree T and its branches . 169
6.8 Transfer of a subtree from a saturated branch to an unsaturated branch 170

176

List of Algorithms

1 Algorithm for the kernalized instance of k-BinRank(F) 34
2 Algorithm for finding rank-k BSD . 39
3 FindLCST(H, m̂) . 163

177

List of Algorithms

178

List of Acronyms

ECP Edge Clique Partition
ECC Edge Clique Cover
BSD Binary Symmetric Decompositions
ETH Exponential Time Hypothesis
FPT Fixed Parameter Tractable
PTAS Polynomial Time Approximation Scheme
FPTAS Fully Polynomial Time Approximation Scheme
LSST Low Stretch Spanning Tree
STC Spanning Tree Congestion
FPP Fitted Partial Partition
SFPP Semi Fitted Partial Partition
RC Rainbow Coloring
RVC Rainbow Vertex Coloring
SRC Strong Rainbow Coloring
SRVC Strong Rainbow Vertex Coloring
VSRC Very Strong Rainbow Coloring
BFS Breadth First Search
CNF Conjunctive Normal Form

List of Acronyms

180

Bibliography

[1] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low stretch spanning trees.
In FOCS 2008, pages 781–790, 2008. 6.1.2

[2] I. Abraham and O. Neiman. Using petal-decompositions to build a low stretch
spanning tree. In STOC 2012, pages 395–406, 2012. 6.1.2

[3] D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM Journal on Applied
Mathematics, 25(3):403–423, 1973. 6.1.3

[4] A. Agrawal. Fine-grained complexity of rainbow coloring and its variants. In
Proceedings of the 42nd International Symposium on Mathematical Foundations
of Computer Science (MFCS), pages 60:1–60:14, 2017. 5.1.4

[5] M. O. Albertson. You can’t paint yourself into a corner. Journal of Combinatorial
Theory, Series B, 73(2):189 – 194, 1998. 4.4.3

[6] N. Alon, R. M. Karp, D. Peleg, and D. B. West. A graph-theoretic game and its
application to the k-server problem. SIAM J. Comput., 24(1):78–100, 1995. (1),
6.1.2

[7] J. Amilhastre, M.-C. Vilarem, and P. Janssen. Complexity of minimum biclique
cover and minimum biclique decomposition for bipartite domino-free graphs. Dis-
crete applied mathematics, 86(2-3):125–144, 1998. 3.1.1

[8] P. Ananth, M. Nasre, and K. K. Sarpatwar. Rainbow connectivity: Hardness and
tractability. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), pages 241–251, 2011. 5.1, 5.1.4

[9] R. Andersen and U. Feige. Interchanging distance and capacity in probabilistic
mappings. CoRR, abs/0907.3631, 2009. 6.1.3

[10] K. Appel and W. Haken. Every planar map is four colorable. Part I: Discharging.
Illinois J. Math., 21(3):429–490, 1977. 4.1

[11] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. Part II:
Reducibility. Illinois J. Math., 21(3):491–567, 1977. 4.1

[12] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009. 2.5

[13] S. Arora, S. Rao, and U. V. Vazirani. Expander flows, geometric embeddings and
graph partitioning. J. ACM, 56(2):5:1–5:37, 2009. 6.1.3

[14] F. Ban, V. Bhattiprolu, K. Bringmann, P. Kolev, E. Lee, and D. P. Woodruff.
A PTAS for `p-low rank approximation. arXiv preprint arXiv:1807.06101, 2018.
3.1.1, (5)

Bibliography

[15] N. Bansal, U. Feige, R. Krauthgamer, K. Makarychev, V. Nagarajan, J. Naor,
and R. Schwartz. Min-max graph partitioning and small set expansion. SIAM J.
Comput., 43(2):872–904, 2014. 6.1.3

[16] M. Basavaraju, L. S. Chandran, M. C. Francis, and R. Mathew. Hadwiger’s
conjecture of total graphs. Private communication. 4.1

[17] M. Basavaraju, L. S. Chandran, D. Rajendraprasad, and A. Ramaswamy. Rainbow
connection number and radius. Graphs and Combinatorics, 30(2):275–285, 2014.
5.1, 5.1.4

[18] M. Basavaraju, L. S. Chandran, D. Rajendraprasad, and A. Ramaswamy. Rainbow
connection number and radius. Graphs and Combinatorics, 30(2):275–285, 2014.
(4)

[19] D. Bein, L. Morales, W. Bein, C. Shields Jr, Z. Meng, and I. H. Sudborough.
Clustering and the biclique partition problem. In Proceedings of the 41st Annual
Hawaii International Conference on System Sciences (HICSS 2008), page 475.
IEEE, 2008. 1.1.1, 3.1.1

[20] N. Belkale and L. S. Chandran. Hadwiger’s conjecture for proper circular arc
graphs. European J. Combin., 30(4):946–956, 2009. 1.2, 4.1

[21] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Optimal
simulations of tree machines (preliminary version). In FOCS 1986, pages 274–282,
1986. 1.4, 6.1

[22] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-
exclusion. SIAM Journal on Computing, 39:546–563, 2009. 5.6

[23] H. L. Bodlaender, F. V. Fomin, P. A. Golovach, Y. Otachi, and E. J. van Leeuwen.
Parameterized complexity of the spanning tree congestion problem. Algorithmica,
64(1):85–111, 2012. 6.1.2, (1)

[24] H. L. Bodlaender, K. Kozawa, T. Matsushima, and Y. Otachi. Spanning tree
congestion of k-outerplanar graphs. Discrete Mathematics, 311(12):1040–1045,
2011. 1.4, 6.1.2

[25] B. Bollobás. Random Graphs. Cambridge University Press, 2001. 6.5.1

[26] B. Bollobás, P. Catlin, and P. Erdős. Hadwiger’s conjecture is true for almost
every graph. European J. Combin., 1(3):195–99, 1980. 1.2, 4.1

[27] B. Bollobás and A. Thomason. Random graphs of small order. North-Holland
Mathematics Studies, 118:47–97, 1985. 6.7

[28] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM
Monographs in Discrete Mathematics and Applications, 1999. 2.2.1

[29] L. Cai and D. G. Corneil. Tree spanners. SIAM J. Discrete Math., 8(3):359–387,
1995. (3)

182

Bibliography

[30] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster. On rainbow connection.
Electron. J. Combin, 15(1):R57, 2008. 5.1.1, 5.1.4

[31] S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster. Hardness and algorithms
for rainbow connection. Journal of Combinatorial Optimization, 21(3):330–347,
2011. 1.3, 5.1, 5.1.4

[32] P. Chalermsook, S. Heydrich, E. Holm, and A. Karrenbauer. Nearly Tight Ap-
proximability Results for Minimum Biclique Cover and Partition. In European
Symposium on Algorithms - ESA 2014, volume 8737 of LNCS, pages 235–246.
Springer Berlin Heidelberg, 2014. 1.1.2, 3.1.1

[33] L. S. Chandran, Y. K. Cheung, and D. Issac. Spanning Tree Congestion and Com-
putation of Generalized Györi-Lovász Partition. In 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018), volume 107 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 32:1–32:14, 2018.

[34] L. S. Chandran, A. Das, D. Issac, and E. J. van Leeuwen. Algorithms and Bounds
for Very Strong Rainbow Coloring. In Latin American Symposium on Theoretical
Informatics, pages 625–639. Springer, 2018.

[35] L. S. Chandran, A. Das, D. Rajendraprasad, and N. M. Varma. Rainbow
connection number and connected dominating sets. Journal of Graph Theory,
71(2):206–218, 2012. 5.1.1, 5.1.4

[36] L. S. Chandran, D. Issac, and A. Karrenbauer. On the Parameterized Complexity
of Biclique Cover and Partition. In 11th International Symposium on Parame-
terized and Exact Computation (IPEC 2016), volume 63 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 11:1–11:13, Dagstuhl, Germany, 2017.

[37] L. S. Chandran, D. Issac, J. Lauri, and E. J. van Leeuwen. Rainbow Coloring
and Forest number. Unpublished.

[38] L. S. Chandran, D. Issac, and S. Zhou. Hadwiger’s Conjecture for Squares of
2-Trees. European Journal of Combinatorics, 76:159 – 174, 2019.

[39] L. S. Chandran, A. Kostochka, and J. K. Raju. Hadwiger number and the
cartesian product of graphs. Graphs and Combinatorics, 24(4):291–301, 2008. 4.1

[40] L. S. Chandran and D. Rajendraprasad. Rainbow Colouring of Split and Threshold
Graphs. In Proceedings of the 18th Annual International Computing and Combina-
torics Conference (COCOON), volume 7434 of Lecture Notes in Computer Science,
pages 181–192. Springer, 2012. 5.1, 5.1.3, 5.1.4

[41] L. S. Chandran and D. Rajendraprasad. Inapproximability of rainbow colour-
ing. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), pages 153–162, 2013. 5.1, 5.1.4, (4)

[42] L. S. Chandran, D. Rajendraprasad, and M. Tesař. Rainbow colouring of split
graphs. Discrete Applied Mathematics, 216:98–113, 2017. 5.1.3, 5.1.4

183

Bibliography

[43] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang. Rainbow connection
in graphs. Mathematica Bohemica, 133(1):85–98, 2008. 1.3, 5.1, 5.1.1, 5.1.2, 5.1.4

[44] G. Chartrand and P. Zhang. Chromatic graph theory. CRC press, 2008. 5.1.4

[45] F. Chataigner, L. R. Salgado, and Y. Wakabayashi. Approximation and inapprox-
imability results on balanced connected partitions of graphs. Discrete Mathematics
and Theoretical Computer Science, 9(1):177–192, 2007. 6.1.3

[46] J. Chen, R. D. Kleinberg, L. Lovász, R. Rajaraman, R. Sundaram, and A. Vetta.
(Almost) Tight bounds and existence theorems for single-commodity confluent
flows. J. ACM, 54(4):16, 2007. 1.4, 1.4.1, 6.1.1, 6.3, 6.4, 6.4.2, 6.4.3, 6.19

[47] L. Chen, X. Li, and H. Lian. Further hardness results on the rainbow vertex-
connection number of graphs. Theoretical Computer Science, 481:18–23, 2013.
5.1.3

[48] L. Chen, X. Li, and Y. Shi. The complexity of determining the rainbow vertex-
connection of a graph. Theoretical Computer Science, 412(35):4531–4535, 2011.
5.1.3

[49] M. Chudnovsky and A. O. Fradkin. Hadwiger’s conjecture for quasi-line graphs.
J. Graph Theory, 59(1):17–33, 2008. 1.2, 1.2.1, 1.2.1, 4.1, 4.1

[50] M. Chudnovsky and P. Seymour. Claw-free graphs. VII. Quasi-line graphs. J.
Combin. Theory Ser. B, 102(6):1267–1294, 2012. 4.1

[51] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized algorithms, volume 3. Springer,
2015. 2.5.1

[52] M. Cygan, M. Pilipczuk, and M. Pilipczuk. Known algorithms for edge clique
cover are probably optimal. SIAM Journal on Computing, 45(1):67–83, 2016.
3.1.1, 3.1.2, 3.6, 3.6, 4, 3.6

[53] P. Dorbec, I. Schiermeyer, E. Sidorowicz, and É. Sopena. Rainbow connection in
oriented graphs. Discrete Applied Mathematics, 179:69–78, 2014. 5.1

[54] M. E. Dyer and A. M. Frieze. On the complexity of partitioning graphs into
connected subgraphs. Discrete Applied Mathematics, 10(2):139–153, 1985. 6.1.3

[55] E. Eiben, R. Ganian, and J. Lauri. On the complexity of rainbow coloring problems.
In Proceedings of the 26th International Workshop on Combinatorial Algorithms
(IWOCA), volume 9538 of Lecture Notes in Computer Science, pages 209–220.
Springer, 2015. 5.1.2, 5.1.3

[56] E. Eiben, R. Ganian, and J. Lauri. On the complexity of rainbow coloring problems.
Discrete Applied Mathematics, 246:38–48, 2018. 5.1.3, 5.1.3

[57] J. Ekstein, P. Holub, T. Kaiser, M. Koch, S. Matos Camacho, Z. Ryjáček, and
I. Schiermeyer. The rainbow connection number of 2-connected graphs. Discrete
Mathematics, 313(19):1884–1892, 2013. 5.1.4

184

Bibliography

[58] M. Elkin, Y. Emek, D. A. Spielman, and S. Teng. Lower-stretch spanning trees.
SIAM J. Comput., 38(2):608–628, 2008. 1.4, 6.1.2

[59] A. Ene, W. Horne, N. Milosavljevic, P. Rao, R. Schreiber, and R. E. Tarjan. Fast
exact and heuristic methods for role minimization problems. In SACMAT ’08:
Proceedings of the 13th ACM symposium on Access control models and technologies,
pages 1–10, New York, NY, USA, 2008. ACM. 1.1.1

[60] D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent layered drawings.
Algorithmica, 47:439–452, 2007. doi:10.1007/s00453-006-0159-8. 1.1.1

[61] P. Erdos, A. W. Goodman, and L. Pósa. The representation of a graph by set
intersections. Canad. J. Math, 18(106-112):86, 1966. 5.3

[62] P. Erdös, M. Saks, and V. T. Sós. Maximum induced trees in graphs. Journal of
Combinatorial Theory, Series B, 41(1):61–79, 1986. 5.1.1

[63] U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum
bisection. SIAM J. Comput., 31(4):1090–1118, 2002. 1.4, 6.1.3

[64] Q. Feng, Z. Zhou, and J. Wang. Parameterized algorithms for maximum edge
biclique and related problems. In International Workshop on Frontiers in Algo-
rithmics, pages 75–83. Springer, 2016. 3.1.1

[65] P. C. Fishburn and P. L. Hammer. Bipartite dimensions and bipartite degrees of
graphs. Discrete Math., 160(1-3):127–148, 1996. 3.1

[66] H. Fleischner, E. Mujuni, D. Paulusma, and S. Szeider. Covering graphs with few
complete bipartite subgraphs. TCS, 410(21-23):2045 – 2053, 2009. 3.1.1, 3.1.2, 2,
3.2.2, 3.2.2, 3.19

[67] F. V. Fomin, P. A. Golovach, D. Lokshtanov, F. Panolan, and S. Saurabh.
Approximation schemes for low-rank binary matrix approximation problems. arXiv
preprint arXiv:1807.07156, 2018. 3.1.1, (5)

[68] F. V. Fomin, P. A. Golovach, and F. Panolan. Parameterized low-rank binary
matrix approximation. arXiv preprint arXiv:1803.06102, 2018. 3.1.1

[69] D. S. Franzblau and D. J. Kleitman. An algorithm for covering polygons with
rectangles. Information and control, 63(3):164–189, 1984. 3.1.1

[70] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
1.1.2, 2.5, 5.4

[71] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some Simplified NP-Complete
Graph Problems. Theoretical Compututer Science, 1(3):237–267, 1976. 5.1.5

[72] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory, Series B, 16(1):47 – 56, 1974. 5.3

185

Bibliography

[73] F. Geerts, B. Goethals, and T. MielikÃďinen. Tiling databases. In Discovery
Science, pages 278–289. Springer, 2004. 1.1.1

[74] P. A. Golovach, P. Heggernes, P. van ’t Hof, and C. Paul. Hadwiger number of
graphs with small chordality. SIAM J. Discrete Math., 29(3):1427–1451, 2015.
4.1

[75] M. C. Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier,
2004. 5.3

[76] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Data reduction and exact
algorithms for clique cover. Journal of Experimental Algorithmics (JEA), 13:2,
2009. 3.1.1

[77] D. A. Gregory, N. J. Pullman, K. F. Jones, and J. R. Lundgren. Biclique
coverings of regular bigraphs and minimum semiring ranks of regular matrices. J.
Comb. Theory, Ser. B, 51(1):73–89, 1991. 3.1, 3.4

[78] H. Gruber and M. Holzer. Inapproximability of Nondeterministic State and
Transition Complexity Assuming P 6=NP. In Developments in Language Theory,
volume 4588 of Lecture Notes in Computer Science, pages 205–216. Springer, 2007.
1.1.1, 3.1.1

[79] E. Győri. On division of graphs to connected subgraphs. Colloq. Math. Soc.
Janos Bolyai, 18:485–494, 1976. 1.4, 6.2, 6.1.3, 6.1.4

[80] H. Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Natur-
forsch. Ges. Zürich, 88:133–142, 1943. 1.2, 4.1, 4.1

[81] M. M. Halldórsson. A still better performance guarantee for approximate graph
coloring. Information Processing Letters, 45(1):19–23, 1993. (6)

[82] P. Heggernes, D. Issac, J. Lauri, P. T. Lima, and E. J. van Leeuwen. Rainbow
Vertex Coloring Bipartite Graphs and Chordal Graphs. In 43rd International
Symposium on Mathematical Foundations of Computer Science (MFCS 2018),
volume 117 of Leibniz International Proceedings in Informatics (LIPIcs), pages
83:1–83:13, Dagstuhl, Germany, 2018.

[83] P. Hell and J. Huang. Certifying LexBFS Recognition Algorithms for Proper Inter-
val Graphs and Proper Interval Bigraphs. SIAM Journal on Discrete Mathematics,
18(3):554–570, 2004. 5.8

[84] L. Hofer and T. Lambert. Study of the article: An O(k2n2) algorithm to find a
k-partition in a k-connected graph, 2014. 1

[85] A. Hoyer and R. Thomas. The Győri-Lovász theorem. arXiv, abs/1605.01474,
2016. 6.1.3, 6.1.4, 2

[86] Janka Chleb́ıková. Approximating the maximally balanced connected partition
problem in graphs. Information Processing Letters, 60(5):225 – 230, 1996. 6.1.3

186

Bibliography

[87] T. Jiang and B. Ravikumar. Minimal nfa problems are hard. SIAM Journal on
Computing, 22(6):1117–1141, 1993. 3.1, 3.1.1, (3)

[88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local
search? J. Comput. Syst. Sci., 37(1):79–100, 1988. 6.1.1

[89] S. Jukna and A. S. Kulikov. On covering graphs by complete bipartite subgraphs.
Discrete Mathematics, 309(10):3399–3403, 2009. 1.1.1

[90] N. Kamčev, M. Krivelevich, and B. Sudakov. Some remarks on rainbow connec-
tivity. Journal of Graph Theory, 83(4):372–383, 2016. 5.1.1

[91] F. Kammer and T. Tholey. Approximation algorithms for intersection graphs.
Algorithmica, 68(2):312–336, 2014. 5.1.5

[92] K. Kawarabayashi and B. Toft. Any 7-chromatic graphs has K7 or K4,4 as a minor.
Combinatorica, 25(3):327–353, 2005. 4.1

[93] M. Keranen and J. Lauri. Computing minimum rainbow and strong rainbow
colorings of block graphs. arXiv preprint arXiv:1405.6893, 2014. 5.1.4

[94] M. A. Kiwi, D. A. Spielman, and S. Teng. Min-max-boundary domain decompo-
sition. Theor. Comput. Sci., 261(2):253–266, 2001. 6.1.3

[95] L. T. Kou, L. J. Stockmeyer, and C. K. Wong. Covering edges by cliques with
regard to keyword conflicts and intersection graphs. Commun. ACM, 21(2):135–
139, 1978. 3.1.1

[96] I. Koutis, G. L. Miller, and R. Peng. A nearly O(m logn) time solver for SDD
linear systems. In FOCS 2011, pages 590–598, 2011. 6.1.2

[97] L. Kowalik, J. Lauri, and A. Soca la. On the fine-grained complexity of rainbow
coloring. In Proceedings of the 24th Annual European Symposium on Algorithms
(ESA), pages 58:1–58:16, 2016. 5.1.4

[98] K. Kozawa and Y. Otachi. Spanning tree congestion of rook’s graphs. Discussiones
Mathematicae Graph Theory, 31(4):753–761, 2011. 1.4, 6.1.2

[99] K. Kozawa, Y. Otachi, and K. Yamazaki. On spanning tree congestion of graphs.
Discrete Mathematics, 309(13):4215–4224, 2009. 1.4, 6.1.2

[100] M. Krivelevich and R. Yuster. The rainbow connection of a graph is (at most)
reciprocal to its minimum degree. Journal of Graph Theory, 63(3):185–191, 2010.
1.3, 5.1.1, 5.1.3, 5.1.4, 5.1.5, 5.13, 5.76

[101] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, New York, NY, USA, 1997. 1.1.1

[102] J. Lauri. Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds.
PhD thesis, Tampere University of Technology, 2016. 1.3.1, 5.1.1, 5.1.1, 5.1.2,
5.1.2, 5.1.3, 5.1.3, 5.1.3, 5.1.4, 5.1.5, 5.12, 5.3

187

Bibliography

[103] J. Lauri. Further hardness results on rainbow and strong rainbow connectivity.
Discrete Applied Mathematics, 201:191–200, 2016. 5.1.4

[104] J. Lauri. Complexity of rainbow vertex connectivity problems for restricted graph
classes. Discrete Applied Mathematics, 219:132–146, 2017. 5.1.4

[105] H. F. Law, S. L. Leung, and M. I. Ostrovskii. Spanning tree congestions of planar
graphs. Involve, 7(2):205–226, 2014. 1.4, 6.1.2

[106] D. Li and M. Liu. Hadwiger’s conjecture for powers of cycles and their complements.
European J. Combin., 28(4):1152–1155, 2007. 1.2, 4.1

[107] H. Li, X. Li, and S. Liu. Rainbow connection of graphs with diameter 2. Discrete
Mathematics, 312(8):1453–1457, 2012. 5.1.4

[108] S. Li, X. Li, and Y. Shi. Note on the complexity of deciding the rainbow (vertex-
) connectedness for bipartite graphs. Applied Mathematics and Computation,
258:155–161, 2015. 5.1.3, 5.1.3, 5.1.3, 5.7, 5.72

[109] X. Li, Y. Mao, and Y. Shi. The strong rainbow vertex-connection of graphs.
Utilitas Mathematica, 93:213–223, 2014. 5.1.3, 5.1.5

[110] X. Li, Y. Shi, and Y. Sun. Rainbow connections of graphs: A survey. Graphs and
Combinatorics, 29(1):1–38, 2013. 5.1, 5.1.2, 5.1.4

[111] X. Li and Y. Sun. On strong rainbow connection number. arXiv preprint
arXiv:1010.6139, 2010. 5.1.2

[112] X. Li and Y. Sun. Rainbow connections of graphs. Springer Science & Business
Media, 2012. 5.1.2

[113] X. Li and Y. Sun. An updated survey on rainbow connections of graphs - a
dynamic survey. Theory and Applications of Graphs, 0:3, 2017. 1.3, 5.1, 5.1.2,
5.1.4

[114] X. Li and S. Zhou. Labeling outerplanar graphs with maximum degree three.
Discrete Appl. Math., 161(1-2):200–211, 2013. 4.6

[115] K.-W. Lih, W.-F. Wang, and X. Zhu. Coloring the square of a K4-minor free
graph. Discrete Math., 269(1âĂŞ3):303–309, 2003. 4.6

[116] B. Lin. The parameterized complexity of k-biclique. In Proceedings of the twenty-
sixth annual ACM-SIAM symposium on Discrete algorithms, pages 605–615. SIAM,
2014. 3.1.1

[117] L. Lovász. Coverings and colorings of hypergraphs. In Proceedings of the 4th
Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages
3–12, 1973. 5.1.5

[118] L. Lovász. A homology theory for spanning trees of a graph. Acta Math. Acad.
Sci. Hungaricae, 30(3–4):241–251, 1977. 1.4, 6.2, 6.1.3

188

Bibliography

[119] C. Löwenstein, D. Rautenbach, and F. Regen. On spanning tree congestion.
Discrete Math., 309(13):4653–4655, 2009. 1.4, 1.4.1, 6.1.2

[120] A. Lubiw. The boolean basis problem and how to cover some polygons by rectan-
gles. SIAM Journal on Discrete Mathematics, 3(1):98–115, 1990. 3.1.1

[121] A. Lubiw. A weighted min-max relation for intervals. Journal of Combinatorial
Theory, Series B, 53(2):151–172, 1991. 3.1.1

[122] P. Manurangsi. Inapproximability of maximum biclique problems, minimum
k-cut and densest at-least-k-subgraph from the small set expansion hypothesis.
Algorithms, 11(1):10, 2018. 3.1.1

[123] H. Mélot. Facet defining inequalities among graph invariants: The system GraPHe-
dron. Discrete Applied Mathematics, 156(10):1875–1891, 2008. 5.1.1

[124] M. Molloy and B. Reed. A bound on the total chromatic number. Combinatorica,
18(2):241–280, 1998. 4.1

[125] E. Mujuni and F. Rosamond. Parameterized complexity of the clique partition
problem. In Proceedings of the fourteenth symposium on Computing: the Aus-
tralasian theory-Volume 77, pages 75–78. Australian Computer Society, Inc., 2008.
3.1.1, 3.2.3, 3.5, 3.7, (1)

[126] H. Müller. On edge perfectness and classes of bipartite graphs. Discrete Math.,
149(1-3):159–187, 1996. 3.1.1

[127] S. Nakano, M. S. Rahman, and T. Nishizeki. A linear-time algorithm for four-
partitioning four-connected planar graphs. Inf. Process. Lett., 62(6):315–322,
1997. 1

[128] D. S. Nau, G. Markowsky, M. A. Woodbury, and D. B. Amos. A mathematical
analysis of human leukocyte antigen serology. Math. Biosciences, 40(3-4):243 –
270, 1978. 1.1.1

[129] I. Nor, D. Hermelin, S. Charlat, J. Engelstadter, M. Reuter, O. Duron, and M.-F.
Sagot. Mod/Resc parsimony inference: Theory and application. Inf. Comput.,
213:23–32, 2012. 1.1.1, 3.1.1, 3.1.2, 2, 3.1.2

[130] Y. Okamoto, Y. Otachi, R. Uehara, and T. Uno. Hardness results and an ex-
act exponential algorithm for the spanning tree congestion problem. J. Graph
Algorithms Appl., 15(6):727–751, 2011. 6.1.2, 6.1.3

[131] J. Orlin. Contentment in graph theory: Covering graphs with cliques. Indagationes
Mathematicae (Proceedings), 80(5):406 – 424, 1977. 3.1

[132] M. I. Ostrovskii. Minimal congestion trees. Discrete Math., 285:219–226, 2004.
1.4, 1.4.1, 6.1, (2), 6.1.2, 6.5

[133] M. I. Ostrovskii. Minimum congestion spanning trees in planar graphs. Discrete
Math., 310:1204–1209, 2010. 1.4, 6.1.2

189

Bibliography

[134] M. I. Ostrovskii. Minimum congestion spanning trees in bipartite and random
graphs. Acta Mathematica Scientia, 31(2):634 – 640, 2011. 1.4.1, 6.1.2, 6.1.2

[135] Y. Pogrow. Solving symmetric diagonally dominant linear systems in sublinear
time (and some observations on graph sparsification). Master’s thesis, Weizmann
Institute of Science, 2017. 6.1.2, 6.1.3

[136] H. Räcke. Optimal hierarchical decompositions for congestion minimization in
networks. In STOC, pages 255–264, 2008. 6.1, 6.1.3

[137] A. Raspaud, O. Sýkora, and I. Vrto. Congestion and dilation, similarities and
differences: A survey. In SIROCCO 2000, pages 269–280, 2000. 6.1.2

[138] B. Reed and P. Seymour. Hadwiger’s conjecture for line graphs. European J.
Combin., 25(6):873–876, 2004. 1.2, 1.2.1, 4.1

[139] F. S. Roberts. Applications of edge coverings by cliques. Discrete applied
mathematics, 10(1):93–109, 1985. 5.1.5

[140] N. Robertson, P. Seymour, and R. Thomas. Hadwiger’s conjecture for K6-free
graphs. Combinatorica, 13(3):279–361, 1993. 4.1

[141] N. Robertson and P. D. Seymour. Graph minors. II. algorithmic aspects of
tree-width. Journal of Combinatorial Theory, Series B, 7:309–322, 1986. 5.6

[142] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.
6.1.3

[143] H. U. Simon. On approximate solutions for combinatorial optimization problems.
SIAM J. DISC. MATH., 3(2):294 – 310, 1990. 3.1.1

[144] S. Simonson. A variation on the min cut linear arrangement problem. Mathemat-
ical Systems Theory, 20(4):235–252, 1987. 1.4, 6.1, 6.1.2, 6.1.3

[145] S. Soltan, M. Yannakakis, and G. Zussman. Doubly balanced connected graph
partitioning. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1939–1950. Society for Industrial and Applied
Mathematics, 2017. 1.4, 6.1.3

[146] D. A. Spielman and S. Teng. A local clustering algorithm for massive graphs
and its application to nearly linear time graph partitioning. SIAM J. Comput.,
42(1):1–26, 2013. 6.1.3

[147] J. Spinrad, A. Brandstädt, and L. Stewart. Bipartite permutation graphs. Discrete
Applied Mathematics, 18(3):279–292, 1987. 5.7

[148] D. Steurer. Tight bounds for the min-max boundary decomposition cost of
weighted graphs. In SPAA 2006, pages 197–206, 2006. 6.1.3

[149] G. Strang. Introduction to linear algebra, volume 3. Wellesley-Cambridge Press
Wellesley, MA, 1993. 2.3

190

Bibliography

[150] L. Sunil Chandran, A. Das, D. Rajendraprasad, and N. M. Varma. Rainbow
connection number and connected dominating sets. Journal of Graph Theory,
71(2):206–218, 2012. 5.1, 5.1.4

[151] H. Suzuki, N. Takahashi, and T. Nishizeki. A linear algorithm for bipartition of
biconnected graphs. Inf. Process. Lett., 33(5):227–231, 1990. 6.1.3, (2)

[152] Z. Svitkina and É. Tardos. Min-max multiway cut. In APPROX-RANDOM 2004,
pages 207–218, 2004. 6.1.3

[153] S. Teng. Scalable algorithms for data and network analysis. Foundations and
Trends in Theoretical Computer Science, 12(1-2):1–274, 2016. 6.1.3

[154] C. Thomassen. The square of a planar cubic graph is 7-colorable. J. Combin.
Theory, Series B, 2017. 4.6

[155] K. Uchizawa, T. Aoki, T. Ito, A. Suzuki, and X. Zhou. On the Rainbow Connec-
tivity of Graphs: Complexity and FPT Algorithms. Algorithmica, 67(2):161–179,
2013. 5.1.2, 5.1.4

[156] R. Uehara and G. Valiente. Linear structure of bipartite permutation graphs and
the longest path problem. Information Processing Letters, 103(2):71–77, 2007. 5.7

[157] V. V. Vazirani. Approximation algorithms. Springer Science & Business Media,
2013. 2.5.2

[158] K. Wada and K. Kawaguchi. Efficient algorithms for tripartitioning triconnected
graphs and 3-edge-connected graphs. In Graph-Theoretic Concepts in Computer
Science, 19th International Workshop, WG ’93, Utrecht, The Netherlands, June
16-18, 1993, Proceedings, pages 132–143, 1993. 6.1.3, (2)

[159] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Math. Ann., 114(1):570–
590, 1937. 4.1, 4.1

[160] G. Wegner. Graphs with given diameter and a coloring problem. Technical Report,
University of Dortmond, 1977. 4.1, 4.6

[161] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms.
Cambridge university press, 2011. 2.5.2

[162] D. Wood, G. Xu, and S. Zhou. Hadwiger’s conjecture for 3-arc graphs. Electronic
J. Combin., 23(4):#P4.21, 2016. 1.2, 4.1

[163] G. Xu and S. Zhou. Hadwiger’s conjecture for the complements of Kneser graphs.
J. Graph Theory, 84(1):5–16, 2017. 1.2, 4.1

[164] D. Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC), pages 681–690. ACM, 2006. 5.1.5, 5.4, 5.7

191

	Introduction
	Biclique Cover and Partition
	Hadwiger's Conjecture for Squares of 2-Trees
	Rainbow Coloring and its Variants
	Spanning Tree Congestion and Connected Partitioning
	Structure of the Thesis
	Acknowledgement of Collaboration

	Notation and Preliminaries
	Sets
	Graphs
	Matrices
	Computational Problems
	Complexity Theory
	Other Notations and Conventions

	Covering and Partitioning Edges with Bicliques
	Introduction
	Preliminaries
	Parameterized Algorithm for Binary Rank
	Parameterized Algorithm for Approximate Binary Rank
	Parameterized Algorithm for Edge Clique Partition
	Lower Bounds for Biclique Cover
	Approximation Algorithms for Biclique Cover and Partition
	Open Problems

	Hadwiger's Conjecture for Squares of 2-Trees
	Introduction
	Preliminaries
	Hadwiger's Conjecture and Squares of Split Graphs
	Hadwiger's Conjecture and Squares of 2-Trees
	Hadwiger's Conjecture for Squares of Generalized 2-Trees
	Concluding remarks and Open Problems

	Rainbow Coloring and its Variants
	Introduction
	RC and Forest Number
	Bounds on VSRC and SRC
	Hardness Results for VSRC
	Algorithm for VSRC in Cactus Graphs
	Other Algorithmic Results for VSRC
	RVC and SRVC in Bipartite graphs and their subclasses
	RVC and SRVC in Chordal graphs and their subclasses
	Open Problems

	Spanning Tree Congestion and Connected Partitioning
	Introduction
	Preliminaries
	Generalized Gyori-Lovasz Theorem
	Upper Bounds for Spanning Tree Congestion
	Lower Bound for Spanning Tree Congestion
	STC of Graphs with Expanding Properties
	STC of Random Graphs
	Open Problems

	Bibliography

