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Abstract

Technologies for motion and performance capture of real actors have enabled the creation of realistic-
looking virtual humans through detail and deformation transfer at the cost of extensive manual
work and sophisticated in-studio marker-based systems. This thesis pushes the boundaries of
performance capture by proposing automatic algorithms for robust 3D skeleton and detailed surface
tracking in less constrained multi-view outdoor scenarios. Contributions include new multi-layered
human body representations designed for effective model-based time-consistent reconstruction in
complex dynamic environments with varying illumination, from a set of vision cameras. We design
dense surface refinement approaches to enable smooth silhouette-free model-to-image alignment,
as well as coarse-to-fine tracking techniques to enable joint estimation of skeleton motion and fine-
scale surface deformations in complicated scenarios. High-quality results attained on challenging
application scenarios confirm the contributions and show great potential for the automatic creation
of personalized 3D virtual humans.
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Kurzzusammenfassung

Technologien zur Bewegungs- und Verhaltenserfassung echter Schauspieler haben es ermöglicht,
realistisch aussehende virtuelle Menschen zu erschaffen. Diese Technologien basieren auf Detail- und
Deformationstransfers, entstanden aus umfangreicher Handarbeit und im Studio entwickelter, kom-
plexer markerbasierter Systeme. Die vorliegende Arbeit sprengt die Grenzen der Verhaltenserfassung,
indem sie automatische Algorithmen für ein robustes 3D-Skelett und detailliertes Oberflächen-
Tracking in weniger eingeschränkten Outdoor-Szenarien mit Mehrfachansichten vorschlägt. Zu
den Beiträgen gehören neue mehrschichtige Darstellungen des menschlichen Körpers, die für eine
effektive modellbasierte und zeitlich konstante Rekonstruktion entwickelt wurden. Diese Darstel-
lungen wurden in komplexen dynamischen Umgebungen mit unterschiedlicher Beleuchtung aus
mehreren Vision-Kameras erzeugt. Die Ansätze zur Oberflächenverfeinerung einerseits ermögli-
chen eine ausgeglichene silhouettenfreie Ausrichtung des Modells an das Bild. Grobe bis feine
Tracking-Techniken andererseits ermöglichen eine gemeinsame Schätzung von Skelettbewegungen
und feinskaligen Oberflächendeformationen in komplexen Szenarien. Hochwertige Ergebnisse aus
anspruchsvollen Anwendungsszenarien bestätigen die Beiträge und zeigen großes Potenzial für die
automatische Erstellung von personalisierten virtuellen 3D-Menschen.
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Summary

Cutting-edge advances in technology in the digitization pipeline now allow the entertainment industry
to create and animate realistic-looking 3D virtual humans with personalized appearance that look
indistinguishable from real actors. The movie industry employs such technology for a range of
purposes, from the complexity of live-action shots to the need for photo-realistic virtual characters
that resemble an actor’s appearance. Despite the great improvements introduced in available hardware
and software, the creation of realistic characters still presents a number of restrictions and limitations.
Since our visual perception is attuned to the appearance and behavior of human beings, the demand
for realistic virtual look is particularly high.

To simplify the task of achieving realistic motion effects, producers make use of extensive motion
capture as the main performance driver of virtual characters. Output of marker-based technologies
is a set of sparse tracked feature points on the actor’s body, also called markers, that are used to
deform a 3D character, resulting in coarse-to-medium detailed deforming sequence reflecting the
real action, through inverse kinematics (IK). The quality of the reconstruction strictly depends on
the number of markers as well as on the quality and expressiveness of the actor’s model employed
and the re-targeting accuracy. High quality setups involving a large number of markers are capable
to reconstruct personalized detailed surface deformations and expressions on top of the motion,
capturing detailed performance (performance capture) at the cost of increased complexity in the
capturing setup. Extensive manual work by experienced animators is still required to refine the
reconstructions frame by frame accounting for missing details and setup limitations. The overall
acquisition process, from the installation and calibration to cumbersome manual refinement, is
extremely slow, expensive and most of the time infeasible, as it constrains performances in selected
indoor studios with accurately calibrated settings (e. g. back-screens and calibrated illumination).

Motivated by the infeasibility of the current technologies for performance capture, recently the
community started to look into markerless acquisition systems in less constrained environments,
aiming at enabling performance capture of more natural and casual actions. Despite the efforts,
none of the proposed approaches reconstruct reliable virtual performances in unconstrained outdoor
setups, due to the strong assumptions on the capturing scene.

In this thesis, we take a leap forward and build some of the first model-based tracking methods
to accurately and automatically capture the detailed surface deformation of performing actors in
challenging outdoor environments with a possibly dynamic background and varying illumination
conditions. Note that the given task is ambitious due to the overall uncertainty in the captured scene,
e. g. complex and fast movements, wide clothing involving large non-rigid deformations, occlusions,
lighting changes and dynamic background to name a few. The technical contributions of this
thesis can be divided in four main areas: actor modeling, motion capture for skeleton configuration
estimation, surface capture for personalized detailed deformation estimation and joint multi-layered
skeleton-surface capture for robust coarse-to-fine reconstruction.
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Actor Modeling Chapter 2 introduces a multi-layered mathematical body model of the actor,
characterized by interconnected explicit and implicit coarse-to-fine representations. The
body model can easily adapt to differently shaped and clothed humans and is well suited
for motion and performance capture applications. The binding of coarse and fine layer is
estimated automatically using a new efficient approach outlined in Section 2.3.2.2. The
model is further augmented in Chapter 4 with a set of 3D colored Gaussian functions that
approximate the surface geometry implicitly. This representation turns advantageous for
surface refinement in unconstrained settings. Additional 3D Gaussian pairs -based surface
approximation, discussed in Chapter 5, are used to align the model to the multi-view silhouettes
without explicit background subtraction.

Motion Capture Chapter 3 outlines a method for robust motion capture in outdoor challenging
scenarios with dynamic background and illumination changes. The approach generates
illumination invariant input views and solves for the skeleton pose based on the segmentations
iteratively. Moreover, this chapter presents a new adaptive combination of the lighting-invariant
segmentation with CNN-based joint detectors used to increase the robustness to segmentation
errors.

Surface Capture Chapter 4 presents a novel approach to recover true fine surface detail of de-
forming meshes of humans. Surface tracking is formulated as a global optimization problem
of the densely deforming surface. The fine scale deformations for all mesh vertices, which
maximize photo-temporal-consistency, can be effectively found by densely optimizing a new
correspondences-free model-to-image consistency energy. Additionally, Chapter 5 outlines a
method for unconstrained surface alignment to image contours without explicit background
subtraction, based on a specifically designed implicit representation of the reprojected surface
borders.

Joint Skeleton-Surface Capture Chapter 5 presents a new model-based method to accurately
reconstruct coarse-to-fine human performances captured outdoors. The proposed approach fits
a multi-layered actor model to unsegmented video frames, jointly optimizing for the coarse
skeletal pose and the non-rigid surface shape simultaneously.

To summarize, this thesis presents several robust and automatic algorithms for tracking full body
performances of a real actor from challenging outdoor multi-view videos. The proposed scientific
contributions advance the state of the art in multi-view performance capture, thus improving the
toolbox available for creating photo-realistic virtual 3D human avatars. Results attained on different
application scenarios show great potential to automatize the digitization of photo-realistic virtual
characters in movies and games, and possibly interactive applications in the near future. We hope
that this thesis motivates the development of more advanced methods to digitize photo-realistic
virtual human models of a quality comparable to the standard pipeline in post-production.



Zusammenfassung

Modernste technologische Fortschritte im Digitalisierungsverfahren haben es der Unterhaltungs-
industrie nun ermöglicht, realistisch aussehende virtuelle 3D-Menschen mit personalisiertem Er-
scheinungsbild zu erschaffen und zu animieren, die von echten Schauspielern nicht zu unterscheiden
sind. Die Filmindustrie setzt solche Technologien für zahlreiche Aufgaben ein. Diese reichen von
der Komplexität von Live-Action-Aufnahmen bis hin zur Notwendigkeit fotorealistischer virtueller
Charaktere, die dem Aussehen eines Schauspielers ähneln. Trotz der großen Verbesserungen, die
durch die verfügbare Hard- und Software eingeführt wurden, bringt die Erstellung realistischer
Charaktere immer noch eine Reihe von Einschränkungen und Schwierigkeiten mit sich. Da unsere
visuelle Wahrnehmung auf das Erscheinungsbild und Verhalten des Menschen abgestimmt ist, ist der
Bedarf nach einem realistischen virtuellen Aussehen besonders hoch.

Zur Vereinfachung der Aufgabe, realistische Bewegungseffekte zu erzielen, nutzen Produzenten
hauptsächlich die umfangreiche Bewegungserfassung als Leistungstreiber für virtuelle Charaktere.
Die Ausgabe markerbasierter Technologien besteht aus wenigen nachverfolgten Merkmalpunkten
auf dem Körper des Schauspielers, auch Marker genannt. Diese werden verwendet, um einen 3D-
Charakter zu verformen, was zu einer grob- bis mittel-detaillierten Verformungssequenz führt, welche
die reale Bewegung durch die Inverse Kinematik (IK) widerspiegelt. Die Qualität der Rekonstruktion
hängt stark von der Anzahl der Marker sowie von der Qualität und dem Ausdruck des verwendeten
Modells des Schauspielers sowie von der Genauigkeit des Re-Targeting ab. Hochwertige Setups
mit einer großen Anzahl von Markern sind in der Lage, personalisierte, detaillierte Oberflächen-
verformungen und -ausdrücke über der Bewegung zu rekonstruieren und detaillierte Bewegungen
auf Kosten einer erhöhten Komplexität im Aufzeichnungssetup zu erfassen (Performance Capture).
Umfangreiche Handarbeit durch erfahrene Animatoren ist nach wie vor erforderlich, um die Rekon-
struktionen Bild für Bild unter Berücksichtigung fehlender Details und Setup-Einschränkungen zu
verfeinern. Der gesamte Erfassungsprozess, von der Installation und Kalibrierung bis hin zur um-
ständlichen manuellen Verfeinerung, ist extrem langwierig, teuer und meist nicht realisierbar, da er
die Durchführung auf ausgewählte Indoor-Studios mit genau kalibrierten Einstellungen einschränkt
(z.B. Backscreens und kalibrierte Beleuchtung).

Motiviert durch die Unzulänglichkeit der aktuellen Technologien zur Performance Capture, wurde
vor Kurzem begonnen, sich mit markerlosen Erfassungssystemen in weniger eingeschränkten Umge-
bungen zu befassen, um die Erfassung natürlicher und zufälliger Bewegungen zu ermöglichen. Trotz
der Bemühungen rekonstruiert keiner der vorgeschlagenen Ansätze zuverlässige virtuelle Ergebnisse
in uneingeschränkten Outdoor-Setups, da die Schätzungen der Aufnahmeszene stark sind.

Diese Arbeit bringt einen großen Fortschritt durch den Aufbau erster modellbasierter Tracking-
Methoden, um die detaillierte Oberflächenverformung ausführender Schauspieler in anspruchsvollen
Außenumgebungen mit einem möglicherweise dynamischen Hintergrund und unterschiedlichen
Beleuchtungsbedingungen präzise und automatisch zu erfassen. Die gegebene Aufgabe ist sehr
anspruchsvoll, aufgrund der allgemeinen Unklarheit in der aufgenommenen Szene durch z.B. kom-
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plexe und schnelle Bewegungen, dynamische Hintergründe, weite Kleidung mit großen, unstarren
Deformationen, Okklusionen und Lichtveränderungen. Die technischen Beiträge dieser Arbeit lassen
sich in vier Hauptbereiche unterteilen: Modellierung des Schauspielers, Bewegungserfassung zur
Schätzung der Skelettkonfiguration, Oberflächenerfassung zur personalisierten detaillierten Defor-
mationsschätzung und gemeinsame mehrschichtige Skelett-Oberflächenerfassung für eine robuste
Grob-/Feinrekonstruktion.

Modellierung des Schauspielers Kapitel 2 stellt ein vielschichtiges mathematisches Körpermodell
des Schauspielers vor, das durch vernetzte explizite und implizite grobe bis feine Darstellun-
gen charakterisiert ist. Das Körpermodell kann sich leicht an unterschiedlich geformte und
bekleidete Menschen anpassen und eignet sich gut für Anwendungen zur Bewegungs- und
Verhaltenserfassung. Die Bindung von Grob- und Feinschicht wird automatisch mit einem
neuen effizienten Ansatz geschätzt, der in Abschnitt 2.3.2.2 beschrieben ist. Das Modell wird
in Kapitel 4 um eine Reihe farbiger dreidimensionaler Gaußscher Funktionen erweitert, die
sich der Oberflächengeometrie implizit annähern. Diese Darstellung wird für detailreichere
Oberflächen in uneingeschränkten Umgebungen vorteilhaft. Zusätzliche Oberflächenannä-
herung basierend auf 3D-Gaußschen Paaren, wie in Kapitel 5 erläutert, wird verwendet, um
das Modell ohne explizite Hintergrundsubtraktion an die Silhouetten mit mehreren Ansichten
anzupassen.

Bewegungserfassung Kapitel 3 beschreibt eine Methode zur robusten Bewegungserfassung in
anspruchsvollen Outdoor-Szenarien mit dynamischen Hintergrund- und Beleuchtungsänderun-
gen. Der Ansatz erzeugt beleuchtungsinvariante Eingangsansichten und löst diese iterativ für
die Skelettposition, basierend auf den Segmentierungen. Darüber hinaus stellt dieses Kapitel ei-
ne neue adaptive Kombination der beleuchtungsinvarianten Segmentierung mit CNN-basierten
Gelenkdetektoren vor, um die Robustheit gegenüber Segmentierungsfehlern zu erhöhen.

Oberflächenerfassung Kapitel 4 stellt einen neuartigen Ansatz zur Verfügung, um echte feine
Oberflächendetails des Menschen durch deformierende Netze zu erhalten. Die Oberflächen-
verfolgung ist als globales Optimierungsproblem der dicht verformten Oberfläche formuliert.
Die feinskaligen Verformungen für alle Netzknoten, die die foto-zeitliche Konsistenz ma-
ximieren, können effektiv gefunden werden, indem eine neue korrespondenzfreie Modell-
Bild-Konsistenzenergie dicht optimiert wird. Zusätzlich wird in Kapitel 5 ein Verfahren
zur uneingeschränkten Ausrichtung der Oberfläche auf Bildkonturen ohne expliziten Hinter-
grundabzug skizziert, basierend auf einer speziell entwickelten impliziten Darstellung der
re-projizierten Oberflächenränder.

Gemeinsame Skelett-Oberflächenerfassung Kapitel 5 präsentiert eine neue modellbasierte Me-
thode zur genauen Rekonstruktion grober bis feiner menschlicher Bewegungen, die im Freien
aufgenommen wurden. Der vorgeschlagene Ansatz passt ein mehrschichtiges Modell des
Akteurs an unsegmentierte Videobilder an und optimiert gemeinsam und gleichzeitig für die
grobe Skelettposition und die nicht starre Oberflächenform.

Zusammenfassend lässt sich sagen, dass diese Arbeit mehrere robuste und automatische Algorithmen
für die Nachverfolgung des Ganzkörperverhaltens echter Schauspieler aus anspruchsvollen Outdoor-
Videos mit mehreren Ansichten vorstellt. Die vorgeschlagenen wissenschaftlichen Beiträge bringen
den Stand der Technik in der Multiview-Verhaltenserfassung voran und verbessern damit die zur
Verfügung stehenden Mittel für die Erstellung fotorealistischer virtueller menschlicher 3D-Avatare.
Die Ergebnisse verschiedener Anwendungsszenarien zeigen ein großes Potenzial, die Digitalisierung
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fotorealistischer virtueller Charaktere in Filmen und Spielen sowie möglicherweise interaktiver
Anwendungen in naher Zukunft zu automatisieren. Wir hoffen, dass diese Arbeit zur Entwick-
lung fortgeschrittenerer Methoden zur Digitalisierung fotorealistischer virtueller Menschmodelle
motiviert, die von vergleichbarer Qualität wie die der Standard-Pipeline in der Postproduktion sind.





Acknowledgments

I would like to thank the fellow doctoral students of the Computer Graphics department at the Max
Planck Institute and in particular the members of the Graphics, Vision and Video group for their
feedback, cooperation and of course friendship. In particular I would like to express my gratitude
to the following people: Edilson De Aguiar, Helge Rhodin, Dan Casas, Florian Bernard, Weipeng
Xu, Dushyant Mehta, Edgar Tretschk, Abhimitra Meka, Ayush Tewari, Hyeongwoo Kim, Franziska
Mueller, Michael Zollhoefer, Srinath Sridhar, Pablo Garrido, Oleksandr Sotnychenko, Ahmed
Elhayek, Chenglei Wu, Thomas Helten, Carsten Stoll, Nils Hasler, Christian Richardt, Kwang In
Kim, James Tompkin, Jozef Hladky, Thomas Leimkuehler, Bertram Somieski, Elena Arabadzhiyska.
A big thank you to the secretaries Sabine Budde, Ellen Fries and Hanna Loger, for helping me out in
a number of matters from the settling-in to the organization of the final ceremony. I am also grateful
to the members of my committee and in particular to my advisor, Prof. Christian Theobalt, for his
patience and support in overcoming numerous obstacles I have been facing through my research.

Last but not least, I would like to thank my family for always loving me “no matter what”, in
particular my husband Alkhazur for his love and continuous support throughout writing this thesis.
This thesis is dedicated to him and to our little treasure, Asalia.

XV





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Summary of Technical Chapters . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 List of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Geometric Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Skeleton Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Volumetric Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Rigging Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Skeleton embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Skinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Skeleton Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Volumetric Tracking by Stoll et al. [164] . . . . . . . . . . . . . . . . . . 30
2.4.2 Improvements to Volumetric Tracking by Rhodin et al. [143] . . . . . . . . 34

3 Motion Capture 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Scene Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Lighting-invariant Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Pose costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Frame-dependent appearance costs . . . . . . . . . . . . . . . . . . . . . . 45
3.5.3 Smoothness term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.4 Minimization of the MRF Energy . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Pose Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.1 Adaptive weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7.1 Test Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.7.2 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7.3 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

XVII



CONTENTS XVIII

3.7.5 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.8 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Surface Capture 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Scene Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Surface Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.1 Similarity Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.2 Regularization Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.3 Temporal Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6.1 Test Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6.2 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6.3 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.5 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Joint Skeleton-Surface Capture 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Scene Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Surface Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5.1 Similarity Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5.2 Contour Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.3 Skinning Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.4 Smoothness Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5.5 Temporal Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.1 Test Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.2 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6.3 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6.5 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusion 113



XIX CONTENTS

6.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.1 Dealing with Moving Cameras . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.2 Automatic Creation of Personalized Body Models . . . . . . . . . . . . . 117
6.2.3 Capturing Apparent Topology Changes . . . . . . . . . . . . . . . . . . . 118
6.2.4 Shading-based Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Appendices 123

A Capturing Surface Details 125
A.0.1 Derivative of the Similarity Term . . . . . . . . . . . . . . . . . . . . . . 125
A.0.2 Derivative of the Regularization Term . . . . . . . . . . . . . . . . . . . . 126
A.0.3 Derivative of the Temporal Term . . . . . . . . . . . . . . . . . . . . . . . 127
A.0.4 Comparative Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B Outdoor Performance Capture 131
B.0.1 Derivative of the Similarity Term . . . . . . . . . . . . . . . . . . . . . . 131
B.0.2 Derivative of the Countour Term . . . . . . . . . . . . . . . . . . . . . . . 134
B.0.3 Properties of the Contour Term . . . . . . . . . . . . . . . . . . . . . . . . 135





Chapter 1
Introduction

1.1 Motivation

Modeling and animating virtual humans has gained a lot of interest in the past few years. Realistic
virtual humans and humanoids play a fundamental role in entertainment and artistic productions. In
the movie industry, 3D characters substitute real actors in various scenes and tasks, see some examples
in Figure 1.1(b,g,i,k). Personalized virtual selves or avatars enable immersive social interactions in
virtual and augmented reality, e. g. video editing and interactive applications. Recently-developed
virtual mirrors offer customers the possibility to try on various clothing or other accessories (e. g.
glasses) in real-time, see Figure 1.1(h). Understanding human behavior and physiology is an
important task in surveillance, sports medicine, design Realistic rendering of the human body and
simulation of his natural movements (including gestures, facial expressions and so on) are required
to enable the aforementioned applications.

During the past decades there has been impressive progress in the creation of entirely computer-
generated virtual characters. Despite the great improvements introduced in available hardware
and software, the creation of realistic characters is still an extremely challenging task with many
physical limitations. Since our visual perception is attuned to the appearance and behavior of
human beings, the demand for a realistic virtual look is particularly high. Such realistic appearances
can be recreated only with a high degree of realistic rendering on top of a convincingly detailed
three-dimensional model, which includes complex fine-scale features, such as hairs, skin wrinkles
and fabric folds. Given the current level of technology, realistically animating virtual characters
also proves a fundamental and challenging task because it is still difficult to capture subtle skin and
cloth deformations. While most human expressiveness happens in the facial area, plausible body
motions and interactions with the surrounding scene are crucial and serve to complete the picture.
In consequence, convincing simulation of natural human motion typically involves tedious manual
work by experienced animators.

To simplify the task to achieve realistic motion effects, producers typically make use of extensive
motion capture as the main performance driver of virtual characters. Motion capture, sometimes
referred as mocap, consists of recording the motion of real human actors and transfer the obtained
data to virtual characters, such that they move similarly (re-targeting). The technique was introduced
in the early 1970s initially as an optical analysis tool in bio-mechanics research [157]. Later, its use
was expanded to wider fields of application and was recently being adopted in computer animation
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Figure 1.1: Examples showing the use of photo-realistic virtual humans in feature films and interactive
applications. (a) “Planet of the Apes” featuring real actors with motion capture suits and (b) the corresponding
rendered result where only the background is preserved. (c) “Gravity” actor in action and (d) the final
rendering with additional features for the space suit and the background. (e) “Avatar” real actors with complex
motion capture suites complete with hairs, (f) interactive infrastructure to guide the action and (g) a rendering
result. (h) “Alice in wonderland” during capture and (i) after replacing the entire background with both static
and moving objects, while the main actor is completely preserved. (j) “Ironman” real actor with motion capture
suite to only estimate the rigid armor location, while the actor face is preserved at rendering time (k).

for television, cinema and video-games. Mocap techniques focus on tracking the rigid skeletal
motion of human beings, i. e. the coarse bone-driven deformation of the actor’s body, ignoring
non-rigid detailed deformation, e. g. folds and creases on clothing.

The capturing setup typically involves the use of (active) distinguishable markers, strategically placed
on the human actor’s body. Complex optical systems, such as a collection of calibrated cameras
placed around the actor, or non-optical systems, are used to track the markers’ position in time. The
output is a sparse set of tracked feature points that serve to animate virtual characters or differently
shaped humanoids (e. g. cartoons) similarly through re-targeting. While the captured features give a
good baseline of the overall motion, it is the animator’s task to refine the quality of the deformations
further to produce realistic effects. Virtual character modeling is also a fundamental and delicate task
that determines tracking accuracy and fidelity before the actual deformation tracking and transfer.
Models of characters are typically created by experienced 3D artists. In summary, three main steps
are required for mocap: actor modeling, motion tracking and transfer, and (manual) refinement to
introduce additional deformation detail.

When personalized detailed surface deformations and expressions are captured on top of the motion,
the whole process is often referred to as performance capture. Performance capture of an actor’s
motions with full fidelity, as is required for avatars, typically requires more complex and finer-scale
movements on top of skeleton-driven motion. These finer-scale movements include muscle bulging,
cloth deformations and subtle facial expressions. These additional fine-scale details cannot be simply
captured in their full extent with a few sparse markers. Increasing the number of markers results
in higher setup constraints and costs. Due to the increased capture detail, the complexity of the
performance capture pipeline is sensibly increased in all its steps, compared to that of mocap. On top
of that, the performance capture pipeline requires an additional detailed surface tracking step, before
the refinement. Capturing the detailed surface deformation is either performed as a separate step,
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Figure 1.2: Challenges in human performance capture. (a) large non-rigid cloth deformations, (b) fast
movements, (c) complex clothing reflectance, (d) cluttered outdoor capturing conditions with dynamic
background and possible illumination changes.

after the coarse skeleton-driven character motion has been inferred, or in a joint skeleton-surface
tracking fashion. This thesis proposes solutions for both strategies.

The overall capture process both for motion and performance capture, comprising of installation,
calibration, recording and refining, is extremely slow, expensive and most of the time infeasible, as
it constrains recordings in selected indoor studios with accurately calibrated settings (e. g. green-
screens and calibrated illumination) to allow for the acquisition sensors to detect and track the
markers. Less controlled (e. g. outdoor) capture settings easily prevent accurate markers acquisition,
due to possible dynamic interfering (moving) objects as well as changing weather conditions, causing
uncontrolled (abrupt) marker appearance variations. On top of such forbidding capture environment,
actors are required to respect the (narrow) space limits and wear a marker-suit, which in turn makes
it impossible to capture spontaneous acts or e. g. some long-distance sports.

Aiming at reducing the complexity of typical capture setups, the community has recently started
to look into markerless acquisition systems in less constrained environments, thus enabling the
performance capture of more natural and casual actions. While capturing the global skeleton motion
has been demonstrated outdoors, assuming steady weather conditions [21, 63, 74, 24, 164, 154, 51],
markerless performance capture of detailed surface motion has only succeeded in controlled studios
with carefully calibrated light and back-screens [20, 40, 64, 162, 180]. In this thesis, we take a
leap forward and build some of the first tracking methods that estimate surface deformations from
input multi-view footage captured in outdoor scenes. Specifically, we introduce a new multi-layer
model of the human body to fulfill our goal, as well as building full end-to-end optimization-based
frameworks that address the performance capture challenges robustly. We test our approaches on
different challenging outdoor scenarios including scenes with dynamic background and varying
illumination conditions.

1.2 Overview

Given a multi-view video of an actor recorded in uncontrolled environment with unknown illumina-
tion settings, the goal of this thesis is to develop robust, accurate, and fully-automatic model-based
methods to motion and performance capture the full temporally-coherent 3D body action, including
fast movements and non-rigid deformations of the surface.

There exist a number of inherent challenges in achieving the goal stated above. To simplify the
problem on the recording side, this thesis assumes the input cameras to be static and calibrated, such
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that their global position and orientation as well as intrinsic parameters (e. g. focal length) are known.
Knowing where the cameras are looking at only minimally simplifies the task. The quality of the
reconstructions are still limited by the recording quality, i. e. the pixel resolution, capturing frame
rate and the resolution of the actor in the frames. Similar to other capture methods, the approaches
in this thesis also assume a constrained recording space of few square meters with cameras equally
distributed around, aiming at covering most of the action from different sides.

Apart from the acquisition quality, this thesis has to deal with challenges imposed by the captured
scene itself. In uncalibrated outdoor scenarios, often scenes exhibit dynamic uncontrolled back-
ground, occlusions, illumination changes to name a few. Discriminating the actor (foreground) from
the rest of the scene is extremely challenging in presence of unpredictably moving background
and dynamic occlusions, see an example in Figure 1.1(d). Illumination changes, such as global
light changes or shadows, result in (sudden) changes to the actor’s visual appearance, causing
photometric-based tracking approaches to easily fail.

Further on, actor actions might involve fast movements, resulting in motion blur and missing
information, see Figure 1.1(b). Complex movements such as crossing arms cause self-occlusions
for a few frames that are typically hard to track. This thesis does not explicitly set any constraint
on the actor’s clothing; however, tracking accuracy highly depends on the cloth’s tightness to the
actor’s body and the stiffness, which affects the deformation behavior and complexity. Wide pieces
of apparel typically involve large complex non-rigid deformations that are hard to track accurately,
see an example in Figure 1.1(a).

Naturally, view-dependent clothing reflectance behavior (i. e. non-Lambertian), such as e. g. the shiny
jacket in Figure 1.1(c), may cause the same surface locations to appear differently from different
sides. Feature-less garments, e. g. uniformly colored shirts or pantsetc. , also lead to ambiguities
in tracking. Another fundamental difficulty is given by possible shape changes due to removal of
jackets or hats, for example. These require synthesizing topological changes in the initial body
model by re-defining its shape and connections, unless already present. To cope with the latter, this
thesis assumes no (large) topological changes happen during the recordings.

To robustly guide the tracking, especially designed models of the human actor are required to
enable effective actor-to-image similarity measures and deformation. The tracking accuracy and
the computational speed are primarily determined by the quality and storage efficiency of the body
model. To enable the capture of differently shaped and dressed humans, a specifically designed
body model has to be created for each new capture sequence, which is typically a cumbersome task.
This thesis contributes with a new multi-layer human body model composed of skeleton, implicit
volumetric and explicit mesh representation, automatically linked among each other using a new fast
skinning-based approach, that can easily adapt to new human shapes and is best suited for motion
and performance capture applications.

The remaining technical contributions of this thesis address a subset of the stated challenges at a
time, by addressing several algorithmic core problems that need to be approached for performance
capture in less constrained scenes. The second main contribution, after the actor modeling, is one
of the first methods to accurately capture the actor’s skeleton motion in presence of illumination
changes and non-Lambertian clothing reflectance behavior. The third main contribution is a new
correspondences-free approach to performance capture surface details that works outdoor without the
need for background/foreground segmentation. The proposed method copes with (self-)occlusions,
wide apparel and scenes that show people in clothing with only few features. Finally, we introduce a
new model-to-image method that jointly optimizes for the coarse skeletal motion and the non-rigid
surface deformation simultaneously in outdoor scenarios with possible occlusions and varying
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backgrounds. This thesis also demonstrates methods that can deal with fast and complex motions
better than previous approaches.

1.3 Structure of the Thesis

This thesis is divided into six chapters covering the main technical contributions in the areas of
human motion and performance capture:

• Chapter 1 introduces the topic of this thesis, states the goals, outlines the structure of exposition,
summarizes the technical chapters, and states the main technical contributions.

• Chapter 2 presents the required background for the research presented in this thesis. Among
the contributions, it introduces a new multi-layer human body model of the actor, especially
designed for easy adaptation to different body shapes, which is optimized for motion and
performance capture applications.

• Chapters 3–5 present the main technical contributions, going from new methods to robustly
track the human body motion to the reconstruction of detailed surface deformation in chal-
lenging scenarios. Chapter 3 proposes an effective solution to the motion capture problem in
challenging illumination-changing scenarios. Chapter 4 is focused on surface detail capture
given an initial coarse human body deformation sequence. Chapter 5 describes a complete
solution to the problem of model-based human performance capture that jointly captures
the skeletal motion and the detailed surface deformation in outdoor scenes. Each chapter
gives an introduction and outline of the proposed solution compared to previous approaches.
Results and comparisons to related work are discussed at the end of each chapter. Section 1.3.1
describes each chapter in more detail.

• Chapter 6 summarizes the core contributions and results achieved so far, and it briefly discusses
unexplored future challenges.

The following section gives a more detailed overview of the technical chapters of this thesis.

1.3.1 Summary of Technical Chapters

Chapter 2 introduces the mathematical body model of the
human used throughout this thesis. In particular, it discusses
the three typical model layer components that form the hu-
man body, namely skeleton, volumetric representation and
triangular mesh surface. This chapter additionally discusses
in detail an automatic approach for estimating mesh skinning
weights using the underlying implicit volumetric layer. This
method has been first introduced as part of the pipeline in the
co-authored paper [142]. The resulting skinned mesh repre-
sentation combined with underlying skeleton and Gaussian-
based volumetric representation has been used extensively in
the follow-up papers [146, 144].
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Chapter 3 presents a new solution to the problem of captur-
ing human body motion under changing lighting conditions
in a multi-view setup [144]. The key idea is to provide to
the tracking approach robustly and dynamically segmented
input frames, invariant to the scene lighting. Illumination-
invariant frames are obtained by solving time-varying seg-
mentation problems that use frame- and view-dependent ap-
pearance costs. Moreover, this chapter presents a new adap-
tive combination of the lighting-invariant segmentation with
CNN-based joint detectors used to increase the robustness to
segmentation errors. Experimental results demonstrate the
capabilities of this approach to handle global light changes
and shadows, outperforming existing works.

Chapter 4 presents a novel approach to recover true fine
surface detail of deforming meshes of humans [147, 145].
Surface refinement is formulated as a global optimization
problem of the densely deforming surface, implicitly rep-
resented using a set of Gaussian functions placed at each
vertex location. Similarly, the originally captured multi-view
images are represented with a set of 2D Gaussians. The
fine scale deformations for all mesh vertices, which maxi-
mize photo-temporal-consistency, can be effectively found
by densely optimizing a new correspondences-free model-to-
image consistency energy. We qualitatively and quantitatively
demonstrate that our technique successfully reproduces finer
detail than the input baseline geometry.

Chapter 5 presents a new model-based method to accu-
rately reconstruct human performances captured in less con-
trolled outdoor settings [146]. Starting from a template of
the actor model, a new unified implicit representation for
both, articulated skeleton tracking and nonrigid surface shape
refinement are introduced. The proposed approach fits the
template to unsegmented video frames in two stages: first,
the coarse skeletal pose is estimated, and subsequently non-
rigid surface shape and body pose are jointly refined. The
approach utilizes a new representation of the human body
surface based on a combination of 3D Gaussians, designed
to align the projected model with likely silhouette contours
without explicit segmentation or edge detection. The ob-
tained reconstructions are shown to outperform existing meth-
ods.
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1.4 List of Contributions

In this section, we provide a more detailed list of technical contributions that enable the methods
described above.

The main contributions of Chapter 2 are:

• Definition of a new multi-layered human body model composed of interconnected components,
namely skeleton, volumetric shape representation using Sums-of-Gaussian 3D functions, and
a triangular mesh.

• A method for automatically estimating mesh skinning weights using the underlying volumetric
layer.

The main contributions of Chapter 3 are:

• A formulation of the time-varying frame segmentation problem that uses frame- and view-
dependent appearance costs in order to obtain lighting-invariant representations of the individ-
ual frames.

• An adaptive combination of an abstract intermediate image representation with CNN-based
joint detectors for robust pose estimation.

• The integration of the combined illumination-invariant segmentation with CNN-based detec-
tion into a robust model-based tracker.

The main contributions of Chapter 4 are:

• A new shape representation that models the mesh surface with a dense collection of 3D
Gaussian functions centered at each vertex.

• A formulation of dense photo-consistency-based surface refinement on the basis of this new
model.

• The integration of the new surface Gaussian based refinement method into a model-based
performance capture method.

The main contributions of Chapter 5 are:

• A new unified implicit formulation for both, articulated skeleton tracking and non-rigid surface
shape refinement.

• The formulation of a new surface refinement method to align the projected model to likely
silhouette contours without explicit segmentation or edge detection.

1.5 List of Publications

The work presented in this thesis mainly encompasses four peer-reviewed scientific publications,
published at conferences and journals in the fields of computer graphics and vision:
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• Nadia Robertini, Edilson De Aguiar, Thomas Helten, Christian Theobalt. “Efficient Multi-
view Performance Capture of Fine-Scale Surface Detail”. Proceedings of the Second Interna-
tional Conference on 3D Vision (3DV), 2014 [147].

• Nadia Robertini, Dan Casas, Helge Rhodin, Hans-Peter Seidel, Christian Theobalt. “Model-
based Outdoor Performance Capture”. Proceedings of the Second International Conference
on 3D Vision (3DV), 2016 [146].

• Nadia Robertini, Dan Casas, Edilson De Aguiar, Christian Theobalt. “Multi-view Perfor-
mance Capture of Surface Details”. International Journal of Computer Vision (IJCV), First
Online. doi 10.1007/s11263-016-0979-1, 2017 [145].

• Nadia Robertini, Florian Bernard, Weipeng Xu, Christian Theobalt. “Illumination-invariant
Robust Multiview 3D Human Motion Capture”. Winter Conference on Applications of Com-
puter Vision (WACV), 2018 [144].

Additionally Chapter 2 discusses in detail a new approach for estimating mesh skinning weights,
first introduced in the co-authored paper below as part of the reconstruction pipeline. Details on the
core techniques outlined in the paper are given in Chapter 6.

• Helge Rhodin, Nadia Robertini, Dan Casas, Christian Richardt, Hans-Peter Seidel, Christian
Theobalt. “General Automatic Human Shape and Motion Capture Using Volumetric Contour
Cues”. Proceedings of the 2016 European Conference on Computer Vision (ECCV), 2016
[142].

Chapter 2 briefly discusses another co-authored paper focused on occlusions handling during model-
based scene reconstruction:

• Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, Christian Theobalt.
“A Versatile Scene Model with Differentiable Visibility Applied to Generative Pose Estimation”.
Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), 2015
[143].



Chapter 2
Background

2.1 Introduction

This chapter presents the required background for the research presented in this thesis. We start
by introducing our multi-layer body model in Section 2.2 used throughout this thesis, especially
designed for motion and performance capture applications. The model is formed by combining
a personalized, detailed geometric model of the human body surface with a kinematic skeleton,
augmented with an implicit volumetric representation, automatically linked among each other with a
new approach, outlined in Section 2.3. Our human body representation can easily adapt to differently
shaped and dressed humans and can be effectively employed for skeleton motion capture (mocap),
as explained in Section 2.4. The mocap approach presented here serves as basis for the advanced
performance capture techniques developed in this thesis.

2.2 Body Model

Scene modeling is a fundamental and cumbersome step in motion and performance capture applica-
tions. Models of the human actor are needed to enable effective actor-to-image similarity measures
that robustly guide the tracking. The type and the resolution of the chosen actor representation
primarily determine the computational speed at tracking time. It also determines robustness to
outliers and tracking accuracy. Highly detailed surface mesh based representations [9, 64] enable fine
scale model-to-image fitting in the number of available mesh vertices. However, determining optimal
model fits with such a high number of independent model parameters, namely the 3D position of
each vertex, is computationally demanding and easily becomes under-constrained. Simplifications of
the actor model, either through volumetric [50, 164, 143] or implicit surface representation [137, 80]
have shown impressive results in skeleton tracking thanks to their highly reduced space of unknown
and elegant mathematical formulations. However, simplifying the surface representation typically
reduces the reconstruction fidelity as it restricts the amount and quality of the captured surface
details.

Aiming at fusing the beauty of an elegant mathematical representation without sacrificing surface
detail, some methods use a combination of coarse, e. g. volumetric approximations, and fine-scale
actor models, e. g. detailed surface meshes, to enable coarse-to-fine tracking [40]. In these approaches,
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Figure 2.1: Visualization of the three layers of our body model in natural pose or T-pose. (a) Mesh with
texture, (b) underlying skeleton structure, (c) underlying volumetric Gaussian-based representation.

the actor mesh is skinned to the underlying skeleton structure and deformed along with the estimated
coarse pose. Robust surface refinement is then applied in a second step taking advantage of improved
initial surface guesses. To improve tracking convergence, many methods proposed different ways
to couple the articulated skeleton with the surface [88, 7, 136, 109, 159, 110, 14]. Most commonly
used are linear blend shape models [5] and variants of the SCAPE model [7], both learned from
databases of human scans. SCAPE is a popular data-driven human model able to synthesize realistic
non-rigid surface deformations, e. g. muscle bulging, as a function of pose of the articulated skeleton
and body characteristics, like mass and weight. However, these suggested parameterizations are not
general enough to represent surface details such as exact wrinkles and general apparel deformation.

Aiming at combining the beauty of volumetric body representation with detailed surface geometry,
we choose a multi-layer body model and make use of it throughout this thesis. The coarse layer
is inspired by the model proposed by Stoll et al. [164] and it consists of a skeleton structure with
volumetric Gaussian primitives rigidly attached to the underlying bones, see Figure 2.1. This
representation is shown to be advantageous for human mocap (Section 2.4) and can easily adapt
to differently shaped and clothed humans (Section 2.3). Our fine layer is a detailed rigged mesh
obtained either from 3D full body scans or through image-based techniques. In the remainder of this
section, we describe each layer of our proposed human body model as well as techniques to obtain
personalized static reconstructions for each layer, compared to related models and approaches used
in the literature.

2.2.1 Geometric Layer

In our three-layered actor representation, the geometric model is used to represent the last and most
detailed layer. The geometry layer shall enable to describe the exact shape and appearance of the
actor surface, in terms of points (vertices), connected polygons (typically triangles) and associated
colors (vertex colors and textures), up to the tiniest surface detail depending on resolution, e. g. skin
wrinkles. The amount of explained detail highly depends on the setup used for geometry acquisition.
The actor body can be effectively scanned with a 3D body scanner to obtain a highly personalized
reconstruction, see Section 2.2.1.2.

Generative image-based scanning approaches, described in Section 2.2.1.3, have been successfully
employed to estimate accurate approximations of the human geometry from multi-view photographs,
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Figure 2.2: Example of single camera calibration images using a checkerboard. (a) The top row visualizes
three input photographs of the checkerboard in different orientations, with the corresponding undistorted
images in the bottom row. (b) Example of resulting extrinsic calibration showing the estimated camera
location and orientation w. r. t. the 3D checkerboard.

when 3D full body scanners are unavailable [162, 60]. These kind of methods are extensively used
in motion and performance capture applications as well as in this thesis.

In the remaining sections, we describe theory and methodologies for multi-view calibration of static
vision cameras (Section 2.2.1.1), which is fundamental both for accurate static scanning and dynamic
motion and performance capture. Next, we outline body scanning techniques as well as image-based
scanning methods proposed in the literature to obtain static geometry and appearance reconstructions.

2.2.1.1 Multi-view Calibration

This section describes theory and methodologies for Multi-view Calibration (MVC) of static cameras.
The technique described is extensively used in this work as a preprocessing step prior to motion and
performance capture. We start by outlining our parametric camera model to later introduce methods
for geometry and color calibration of multi-view capture setups.

Parametric Camera Model A camera is a device that projects 3D world points onto the 2D image
plane. Understanding how this imaging process takes place, or, in other words, what is the relation
between world points and camera pixels, is essential for vision-based reconstruction and tracking,
and is the primary task of calibration. Calibration aims at estimating the camera properties, such as,
e. g. , focal length, lens distortion, location w. r. t. the world and so on, that affect its imaging process.
To simplify the task of finding these quantities, we use a parametric camera model of the real camera
and focus on estimating the (few) characterizing parameters. Most of the related work calibration
approaches model the camera system as a pinhole camera with additional lens distortion parameters
[195]. The pinhole camera model can be effectively used to approximate real-camera mapping from
a 3D scene to a 2D image using a perspective projection. In such a perspective model, a 2D pixel
point ph := [u v 1]T in homogeneous coordinates is obtained from the corresponding 3D world point
p̂h := [x y z 1]T as:

u
v
1

 :=

 fx ·mx γ cx

0 fy ·my cy

0 0 1

 ·
r11 r12 r13 t1

r21 r22 r23 t2
r31 r32 r33 t3

 ·


x
y
z
1

 (2.1)
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where ( fx, fy) is the camera focal length in pixels, (mx,my) is a scale factor relating pixels to distance,
γ represents the skew coefficient between the x and the y axis and is often 0, (cx,cy) represent the
principal point, which would be ideally in the center of the image, r·· are the rotation components of
the global camera rotation matrix R′c, whereas t· are the translation components of the global camera
translation matrix t ′c. The matrix containing internal camera parameters is often called intrinsic
matrix Kc, while the matrix describing the global position and orientation of the camera in the world
is also called extrinsic matrix, T ′c := [R′ct

′
c]. The product of the intrinsic and extrinsic matrix is often

called camera projection matrix Pc := Kc×T ′c . This notation is used throughout this work.

Nonlinear parameters such as lens distortion cannot be included in the linear camera model described
by the intrinsic parameter matrix. Radial distortion occurs when light rays bend more near the
edges of a lens than they do at its optical center and are typically modeled by the radial distortion
parameters ρ1,2,3 as:

ũdistorted = ũ(1+ρ1 · (ũ2 + ṽ2)2 +ρ2 · (ũ2 + ṽ2)4 +ρ3 · (ũ2 + ṽ2)6)

ṽdistorted = ṽ(1+ρ1 · (ũ2 + ṽ2)2 +ρ2 · (ũ2 + ṽ2)4 +ρ3 · (ũ2 + ṽ2)6)
(2.2)

Tangential distortion occurring when the lens and the image plane are not parallel, is modeled by the
tangential distortion coefficients τ1,2 as follows:

ũdistorted = ũ+(2 · τ1 · ũ · ṽ ·+τ2 · ((ũ2 + ṽ2)2 +2 · ũ2))

ṽdistorted = ṽ+(τ1 · ((ũ2 + ṽ2)2 +2 · ṽ2)+2 · τ2 · ũ · ṽ)
(2.3)

where ũ and ṽ are respectively the undistorted pixel locations in normalized image coordinates,
computed as:

ũ :=
u− cx

fx
, ṽ :=

v− cy

fy
. (2.4)

Once radial and tangential distortion parameters are estimated from calibration, we typically undistort
all camera views once offline and work on the rectified images.

Geometric Calibration The most widely used approaches to geometrically calibrate a camera,
i. e. estimate intrinsic and extrinsic as well as lens distortion parameters, also called geometric
calibration, is to analyze several photographs of a set of known control points on a planar object,
i. e. a calibration target, in focus in different locations and orientations [119, 201, 72]. Typically a
checkerboard with white and black well-recognizable squares of known dimensions is employed.
See an example of calibration sequence for a single camera setup in Figure 2.2.

Calibrating a static multi-view camera setup involves mainly three steps: automatic detection
of the checkerboard corners, initial estimation of the camera parameters and final refinement.
Image processing techniques, e. g. segmentation and edge detection, are employed to identify the
checkerboard corners in all the multi-view photographs. Initial estimates of the camera parameters
can then be obtained via RANSAC [56] or a similar iterative method, which is robust to outliers,
applied to successive pairs of camera (stereo) correspondences. The error metric used is the
reprojection error for the reconstructed points i = 1 . . .ni for all camera views. To reduce the space of
unknowns, often a subset of the parameters is considered at a time, i. e. intrinsics, lens distortion and
extrinsics alone. To refine the calibration, iterative bundle adjustment [173] of tracked feature points
across multiple views is applied until the re-projection errors are minimized. This aims at minimizing
the total sum of squared distances between the observed feature points and the projected object
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Figure 2.3: Example of photograph before and after color calibration. (a) Uncalibrated photograph, (b)
calibrated photograph and (c) an example of calibration pattern photographed in bright sunlight.

points i = 1 . . .ni in all camera views c = 1 . . .nc, using the current estimates for camera parameters:

nc

∑
c=1

ni

∑
i=1

v(i,c)||ph
ic−Pc · p̂h

i ||2 (2.5)

where v(i,c) ∈ [0,1] equals 1 if point i is visible from camera c and 0 otherwise.

The accuracy of the calibration highly depends on the quality of the multi-view corner detection,
the correctness of the found point correspondences across views and the amount and distribution
in the camera space of the observations. To accurately estimate lens distortion parameters, for
instance, a discrete amount of sample corners is needed, especially seen at very oblique angles close
to the image edges, where the distortion is larger. High quality extrinsics, i. e. camera location and
orientation w. r. t. the other cameras, for each camera in the multi-view system can be obtained with
few samples, as soon as those are visible from many cameras at a time. While intrinsics and lens
distortion affect each camera independently, extrinsics estimated for a multi-view setup must be
computed in conjunction with as many cameras as possible to avoid inconsistencies. Since pinhole
models ignore geometric distortions or blurring of unfocused objects caused by lenses and finite
sized apertures, it is the cameramen task to assure that the object of interest, e. g. the calibration
pattern or the performing actor, is in focus during the whole capturing time. This is especially
important to accurately find the (sub-pixel) location of the checkerboard corners during calibration
or the corresponding surface points during multi-view reconstruction.

In this thesis, we often use the software The Captury Studio [30] for semi-automatic accurate multi-
view calibration using a moving checkerboard of known size. The software allows inspecting the
reprojection error of each camera, perform error analysis and add manual input to improve the
estimates. Alternatively, multi-view calibration of static cameras can be obtained using open source
libraries, e. g. the Camera Calibration Toolbox for MATLAB [17] or OpenCV [140].

Color Calibration In order to improve the color consistency across views or also improve the
color perception of a single view photograph (see an example in Figure 2.3), it is often necessary to
perform so called color calibration, right after geometric calibration. The camera color perception
varies from camera to camera as it depends both on the specific camera properties, i. e. optics and
mechanics, as well as on the particular scene lighting. Color calibration typically involves the use of
a color chart with known color distribution and RGB codes, see Figure 2.3(c). Corresponding colors
across views are then matched with the source color of each checkerboard patch, such that the seen
digital color has the same properties.

In this thesis, we either rely on color pre-calibrated in-studio sequences (Chapter 4) or purposefully
leave the multi-view system color uncalibrated to test the robustness of our motion and performance
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Figure 2.4: Full-body scanner examples. (a) Size Stream’s SS20 3D Body Scanner [166], (b) Fit3D -
Proscanner [57], (c) Telmat Industrie - Symcad III [83], (d) Twindom - Twinstant Mobile [176].

capture methods in complicated outdoor scenarios (Chapter 3 and Chapter 5). Reliable color
calibration must handle dynamic color changes visible on the object of interest, i. e. the performing
actor, which may be due to e. g. radiometric falloff, non-linear response of the camera sensor
and non-uniform (changing) illumination. This is currently an active challenging research topic
[54, 111, 199].

2.2.1.2 Body Scanning

There exist several techniques to scan the human body reliably. The most rigorous technique to
accurately capture bodies so far is through so called 3D body scanners, also called full-body scanners.
Full-body scanners are designed to capture the 3D shape of a person’s body and obtain a highly
accurate 3D model based on the captured data. The obtained 3D model can be used to visualize
the exact body shape and get accurate information regarding sizes, dimensions, posture and so
on. Originally developed for the fashion industry, 3D scans are now used in various fields such as
healthcare, 3D figurines and 3D photo, fitness and entertainment, as well as input for motion and
performance capture applications.

To obtain a full body scan with a 3D scanner, the subject usually has to stand in the middle of a
cabin and holds a pose for a few seconds, the time necessary for the scanner to capture sample data
from many angles. A 3D software then reconstructs a highly detailed 3D model of the person’s
body, which can have colors and textures depending on the type of body scanners used. Typical
resulting scanning holes caused by occlusion or noise can be easily filled-in using e. g. a Poisson
reconstruction filter [97]. Figure 2.5 shows an example of triangulated scan mesh with holes at the
armpits, feet and hairs, fixed using these kind of filters.

During the 3D capture process, the subject can either stand on a rotating turntable facing a fixed
3D body scanner, or stand still while the sensors located all around the body capture information
from all angles. See examples in Figure 2.4. The fastest body scanners require only a few seconds
of scanning time and typically deliver high-resolution point clouds of geometric samples that
are then automatically triangulated and cleaned to obtain final detailed surface meshes with high
fidelity [176, 83, 166, 57, 16]. High capturing speed is required since tiny movements can easily
corrupt the scan accuracy by generating holes or mismatches in the samples. By greatly reducing
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Figure 2.5: Example 3D triangulated scan of an actor before and after hole filling. (a) Initial scan of the actor,
(b) Detailed Poisson reconstruction.

the acquisition time, down to e. g. a few milliseconds, the human body remains almost completely
rigid and therefore can be captured at its highest resolution. One of the most recent and accurate
body scanning technologies reaches accuracy levels within 0.1 mm with a maximum resolution of
20 million polygons and 0.01 seconds of scanning time [16].

The most popular acquisition technology is based on structured light sensors [150, 47]. These kind
of sensors inspect the way a known light pattern projection onto the scene is deformed when striking
object surfaces in a scene. The displacement of the pattern allows for an exact retrieval of the 3D
coordinates of details on the object’s surface. In its simplest form, structured light consists of a laser
beam projecting a single dot onto the scene. Projecting a light plane, resulting in a single slit on
the object surface, only requires scanning along a single axis, e. g. top to bottom, compared to the
dot projection (requiring two axes scanning), to collect point correspondences over all the actor’s
body. This technology is commonly used for general 3D scanning. In order to avoid time consuming
mechanical scanning, fast solutions consist in projecting multiple (phase shifting) stripes or dots
[71].

Invisible infrared (IR) pattern projection allows non-invasive 3D scanning and is widely use for scan-
ning the full 3D human body without altering its appearance [39]. IR structured light technologies
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Figure 2.6: Examples of image-based static multi-view reconstruction taken from [162]. (a) One input view
out of 8, (b) Shape-from-silhouette reconstruction, (c) Multi-view Stereo reconstruction, (d) Reconstruction
obtained by fusing silhouette, feature and multi-view stereo cues.

combined with photogrammetry allow simultaneous 3D scanning and color (texture) acquisition.
Photogrammetry stands for a series of techniques to obtain reliable information about physical
objects through processes of recording, measuring and interpreting photographic images. Depth
from stereo and depth from defocus are examples of photogrammetry aimed at reconstructing depth
through the analysis of (multiple) photographs of the object of interest [153, 44, 82]. While these are
typically combined with IR pattern projection, pure photogrammetry scanning solutions are also
valid 3D scanning solutions. However, they typically require a very large number of high-resolution
cameras with accurate calibration [16].

2.2.1.3 Image-based Multi-view Reconstruction

There exist many cues that can be used to extract geometry from multi-view photographs: texture,
defocus, shading, contours, and stereo correspondence. Techniques that use stereo correspondences
as their main cue, so-called Multi-view stereo (MVS) approaches, have been the most successful
in terms of robustness and application [162]. Shape-from-silhouette methods are also very popular
techniques, which enable shape extraction from given silhouette contours [162, 60].

Multi-view Stereo Multi-view stereo algorithms are able to construct highly detailed 3D models
from multi-view images of the scene [155, 61, 66]. The basic MVS method densely matches pairs of
images by finding likely pixel correspondences across stereo views. Using the camera calibration
parameters, the image matching problem is simplified from a 2D search over all the image space
to a 1D search along the so called epipolar line [73]. A pixel in an image generates a 3D optic
ray that passes through the pixel and the camera center of the image. The corresponding pixel on
another image can only lie on the projection of that optic ray into the second image, seen by a second
camera. By exploiting photo-consistency as well as regularization constraints, used to estimate
the likelihood of two pixels or groups of pixels being in correspondence, it is possible to identify
corresponding pixels across views and reconstruct a 3D point. The 3D point cloud resulting from
multi-view stereo matches can be used to reconstruct the detailed shape of the object of interest,
either by direct triangulation of the points or by different kinds of holes-free fitting methods, e. g.
Poisson fitting [97].
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Figure 2.7: 3D reconstruction steps using the software Agisoft PhotoScan [2]. (a) The acquired multi-view
photographs of the actor, (b) Dense estimated point cloud, (c) Resulting shaded mesh, (d) Resulting mesh
with visible triangles, (e) Zoomed-in dense estimated point cloud.

MVS techniques reconstruct highly detailed point clouds when textures are available. In the
presence of plain-colored objects or objects with complex view-dependent appearance properties, e. g.
specularities or transparency, most of the proposed MVS techniques are unable to perform adequately.
Humans wearing highly diffuse pieces of apparel are best suited for MVS. Visible ambiguities and
noise, which cause mismatches at correspondence finding time, can however generate holes and
ghosting geometry that require manual correction. See an example in Figure 2.6(c).

In this thesis, we often make use of the MVS-based software Agisoft PhotoScan [2] to estimate a
reliable colored mesh of the human actor from a collection of photographs. To obtain the actor mesh,
we first capture images of the steady actor from different viewpoints. We typically ask our actors to
hold a steady T-pose with slightly opened legs, while relaxing their arms on two sustaining tripods
on the sides. The purpose of the tripods is to separate the arms from the sides while still ensuring
steadiness of the entire body, allowing photographs to better capture hidden surface points such as
the hips. The photographer typically walks in a circle around the actor’s body, taking photographs
from all sides. We typically adjust the camera focus once before the capture process starts, and then
keep it fixed to enhance photograph capturing speed.

The acquired photos are then loaded into Agisoft PhotoScan. The program allows to automatically
select good photograph candidate depending on their quality (e. g. sharpness) and to estimate the
camera 3D location for each of them based on common features, see Figure 2.7(a). After calibrating
all cameras, the software allows to reconstruct a textured mesh out of the manually-segmented dense
points. The quality of the model highly depends on the calibration accuracy and on the quality of the
camera sensor. We typically reconstruct highly detailed textured meshes from densely estimated
point clouds, see Figure 2.7(c,d). See an example of the density of our point clouds in Figure 2.7(e).

Agisoft PhotoScan only allows to obtain fragmented texture maps, as the one in Figure 2.8(a).
We typically use Blender [58] to map the texture islands to a more compact, human-readable
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Figure 2.8: Example texture maps. (a) Fragmented texture map and (b) the same texture remapped to a
single island.

representation, see Figure 2.8(b).

Shape-from-silhouette Shape-from-silhouette reconstruction is a 3D reconstruction technique
that is based on intersecting multiple 3D reprojected silhouette cones [101]. This class of approaches
uses camera parameters to project multi-view silhouettes of an object of interest to the 3D space
thereby creating multiple visual cones. The final visual hull is obtained as the intersection of all the
visual cones generated for different points of view [59, 33]. Alternatively, instead of back-projecting
each silhouette into 3D space, a different approach to obtain a visual hull consists in projecting all
the voxels from a given voxel grid onto each object silhouette. Then, the visual hull is computed by
taking all voxels lying inside a predefined number of silhouettes [114, 158, 134].

Unlike other 3D reconstruction methods, shape-from-silhouette techniques require neither constant
object appearance nor the presence of textured regions. If exact silhouette contours are available,
transparent objects or objects with complex reflectance properties can be reconstructed faithfully.
The primary disadvantage of this kind of approach is the inability to obtain the exact detailed shape
when, e. g. , the object presents cavities and internal details that never appear along the reprojection
borders of any view. Although there exist methods able to find accurate silhouette boundaries in some
uncontrolled scenarios [34, 36], the availability of exact silhouettes is typically restricted to highly
controlled capturing setups with calibrated light and monochromatic back-screens for automatic
foreground extraction. The scene depicted in Figure 2.6(a) shows an example of ideal capturing
setups for silhouette-based techniques. The corresponding low-quality reconstruction result obtained
with as few as 8 cameras is depicted in Figure 2.6(b).

2.2.2 Skeleton Layer

Given a static geometric model of the actor, the most wide way of defining surface deformations
is using skeletal animation techniques. These techniques involve the generation of an embedded
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skeleton layer that can be used to animate the mesh. In the next sections, we describe the general
skeleton definition as well as the template human skeleton structure employed throughout this thesis.

2.2.2.1 General Skeleton Definition

The typical skeleton data structure, commonly used in character animation, is inspired by the actual
anatomic skeleton of humans. It is usually implemented as a hierarchical structure of interconnected
bones, each being a 3-dimensional segment of fixed size, having global 3D location and orientation
determined by the parent bones motion. One effective way of storing a skeleton structure in memory
is by saving only the connection between the bones, also called skeletal joints, with associated local
transformation matrices and parental relationships. This algorithmic definition of the skeleton has
computational advantages when it comes to animation, see Section 2.3 for details.

The concatenation of rigidly connected joints is called in mechanical engineering a kinematic chain
[122]. The local 3D transformation of a joint Tj includes a local offset to the parent joint, scale and
rotation information. The 3D global transformation of a skeletal joint T ′j is obtained by multiplying
its parent’s global joint transform T ′parent( j), where parent( j) indicates the parent joint of j, with its
own local transform:

T ′j := Tj×T ′parent( j) (2.6)

Notice that the root joint, which is the upper most joint in the skeleton hierarchy, has also a fictional
parent, which is defined as the global coordinate system, i. e. centered in (0,0,0) and with a local
transformation matrix corresponding to the identity.

Each joint has at most 6 degrees of freedom, being defined by local translations (max 3 degrees) and
rotations (max 3 degrees) along the x, y and z axes in the corresponding local coordinate system. The
collection of the values assigned to each degree of freedom sp,∀p are the skeleton parameters used
to describe a particular pose configuration S := {sp : p ∈ {1 . . . |S |}}. The neutral pose, also called
T-pose, used throughout this thesis, is the skeleton pose obtained by setting all values in the joint
configurations to zero, i. e. sp = 0,∀p, see Figure 2.1(b). Simplification in the number of joints or
degrees of freedom considered are generally possible, for example limiting the knee joint to only
allow bending and to forbid twisting. Most of the joints are spherical joints, being able to generate
rotations around their 3 corresponding local axis. The root joint has typically 6 degrees of freedom to
additionally allow global 3D translations of the entire skeletal structure. Joints that allow translation
along at least one axis are also called prismatic joints.

Given a joint axis a j and an assigned rotational angle sp, the corresponding rotation matrix Tj :=
R j(sp) ∈ R3×3 in local coordinates can be found using the axis-angle representation:

R j(sp) := I +(sin(sp)) ·A+(1− cos(sp)) ·A2 (2.7)

where I is the identity, and A is the cross-product matrix for the normalized axis vector a j defined as:

A :=

 0 −[a j]z [a j]y
[a j]z 0 −[a j]x
−[a j]y [a j]z 0

 (2.8)

where [a j]x,y,z are respectively the x, y and z coordinates of the normalized axis vector a j. The
corresponding 4×4 local rotation matrix in homogeneous space Rh

j can be obtained as:

Rh
j :=

[
R j 0
0 1

]
(2.9)
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The translation matrix Tj := t j(sp) along an axis a j by sp in local coordinates is defined as:

t j(sp) :=


1 0 0 [a j]xsp

0 1 0 [a j]ysp

0 0 1 [a j]zsp

0 0 0 1

 (2.10)

Multiple rotations and translations along multiple joint axes, i. e. x, y and z, are obtained concatenating
the corresponding matrices:

Tj := [t j]z× [Rh
j ]z× [t j]y× [Rh

j ]y× [t j]x× [Rh
j ]x. (2.11)

where [Rh
j ]x,y,z and [t j]x,y,z are respectively the rotation and translation matrices along either the x, y

or z joint local axis. In principle, the global coordinates of a joint in homogeneous space ĵ h′ ∈ R4

can be computed as:
ĵ h′ := T ′j · ĵ h (2.12)

where ĵ h is the joint location in local coordinates w. r. t. the parent joint.

The process of computing the location of the joints in global coordinates from a given skeleton
configuration S̃ is called forward kinematics, while the inverse process, i. e. computing S̃ given
the 3D location of the joints, is called inverse kinematics. The latter is more intuitive for end-
user applications like animation, e. g. allowing animators to choose the exact 3D location of the
joint, sparing the user the burden of setting the actual intricate joint parameters, which are instead
automatically estimated by the program in the background.

Differently shaped and dressed humans are characterized by the same underlying skeleton structure,
with the same bones, joint connections and possible configurations. Variations are possible though in
the bone length and rotation amplitude. For example, some people can perform leg splits, being able
to perform wide hip rotations, while others cannot. Joint limits define upper Lp and lower lp bound
for each degree of freedom, i. e. sp ∈ [lp,Lp],∀p.

While techniques do exist that estimate skeleton structures for some vertebrates automatically
[108, 8, 169], related work has shown that the results are unstable, especially in the presence of large
apparel and complicated poses and shapes [102]. Since in this thesis we focus exclusively on the
shape of humans, we fix the underlying general skeleton structure and focus on (semi-) automatic
refinement of the bone lengths to find best fits for differently shaped actors.

2.2.2.2 Our Template Human Skeleton Layer

In this section, we describe our template human skeleton structure we use throughout this thesis.
The template represents the common human skeleton hierarchy, independent of body shape and
clothing. To best adapt to differently shaped humans, the template skeleton must be embedded into
the corresponding actor’s mesh by adaptively changing bone lengths and pose configuration. Our
automatic skeleton embedding technique is presented later in Section 2.3.1. The overall structure
consists of 24 joints: 4 for each hip-toe sub-chain (hip, knee, ankle, toe), 4 for the clavicle-wrist
sub-chain (clavicle, shoulder, elbow, wrist) and 8 for the head-pelvis (head, neck and 6 more spine
joints, namely spine1. . .spine6). See a visualization of the skeleton structure in Figure 2.1(b). The
skeleton is parameterized with a 48-dimensional vector S consisting of 6 global translation and
rotation parameters, and 42 more joint rotation parameters. Each parameter controls one or multiple
skeleton joints and operates along the corresponding 3 local joint axes. Some parameters describe
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Table 2.1: Active degrees of freedom for each skeletal joint used to describe skeleton pose configurations
of our template human skeleton. For each skeletal joint, the table gives the active degrees of freedom
expressed as rx, ry and/or rz for rotations and tx, ty, tz for translations respectively around the x, y and z
local joint axes. The last column shows the limits (radians for rotations and millimeters for translations) for
each degree of freedom.

Joint Name Active Degrees of Freedom Limits ([lower,upper])
root tx,ty,tz,rx,ry,rz no limits
spine1. . . spine6 rx,ry,rz [−0.5,0.5], [−0.55,0.55], [−0.8,0.25]
neck rx,ry,rz [−0.667,0.667], [−0.3,0.3], [−0.5,0]
2 × clavicles ry,rz [−0.4,0.5], [−0.4,0.4]
2 × shoulders rx,ry,rz [−1.6,1.6], [−2.3,1.3], [−10,10]
2 × elbows rx,ry,rz [−2.7,−0.1], [−2.0,1.46], [−1.5,1.5]
2 × wrists ry,rz [−0.5,0.5], [−1.3,1.3]
2 × hips rx,ry,rz [−10,10], ][−0.5,0.5], [−1,0.6]]
2 × knees rx [−2.5,−0.1]
2 × ankles rx,ry,rz [−0.4,0.4], [−0.5,0.5], [−0.25,0.25]
2 × toes rx [−0.7,0.7]

rotations with respect of a subset of the available axes. For instance, the knee joint is only allowed a
rotation along the x-axis, corresponding to bending.

Table 2.1 shows all skeleton joints with corresponding active degrees of freedom and limits. Most of
the chosen parameters reflect the mechanical structure and behavior of real human skeletons. Some
bones describing finger, toes and facial movements are excluded from our skeleton structure, as they
fall out of the scope of this thesis in terms of level of captured detail. The effect of changing single
pose parameters, within the limits, is visualized in Figure 2.9 on an example character.

2.2.3 Volumetric Layer

Volumetric actor model representations provide different shape information, compared to surface
meshes, that can be effectively employed for volume-preserving deformation. In the fields of motion
and performance capture, they are often used to approximate the human body volume, allowing
advantageous model-to-image matching in a reduced space of unknowns, i. e. from a large amount
of surface points to a few volumetric primitive locations [50, 164, 143]. The volumetric layer of our
body model is described in detail in Section 2.2.3.2. Volume-based models presented in the literature
are described in the next Section 2.2.3.1.

2.2.3.1 Volumetric Models in the Literature

Many methods employ a specific set of primitives, such as ellipses, cylinders or cardboards, [189,
22, 90], which are joined together to form reliable human shape configurations. Primitives are
typically either connected within each other or rigidly attached to an underlying skeleton structure
[164, 50]. Some methods assign an additional color attribute to the primitives, which is used for
improved model-to-image similarity assessment. Due to their reduced detail, their use is mostly
restricted to skeleton (motion) tracking application rather than surface tracking. More detailed
general volumetric shape models employ tetrahedral, multi-resolution voxels or even particle-based
representations [40, 194, 112]. These have been successfully used to enable detail preserving,
finer-scale 3D reconstruction. Still, detail reconstruction remains challenging.
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Figure 2.9: Visualization of pose configurations resulting from changing single skeletal parameters at a
time on an example character. The blue arrows indicate the direction of the movement. (a) Neutral pose or
T-pose, (b) changing the spine parameters resulting in upper body twist, lean and bend, (c) changing the neck
parameters resulting in head movements, (d) changing the left arm parameters resulting in shoulder and
elbow movements, (e) changing the left leg parameters resulting in hip and knee movements, (f) changing
the left ankle parameters resulting in foot movements, (g) changing the left wrist parameters resulting in hand
movements.

Among the volumetric representations, implicit models have recently become attractive due to their
smooth analytical definitions. Implicitly defined surfaces represented through non-parametric signed
distance function (SDF) are advantageous for volumetric reconstruction and tracking [128, 46, 137,
80, 131], also from single RGB-D input [84, 127, 128]. The use of implicit surfaces for shape and
motion estimation from multi-view video was originally proposed by Plankers and Fua [137], who
use smooth implicit surfaces attached to an articulated skeleton to approximate a human 3D shape,
see an example in Figure 2.10(a). This representation allows defining a distance function of data
points and models that is smooth everywhere in space. Similarly, Ilic and Fua [80] create implicit
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Figure 2.10: Examples of volumetric human actor representations. (a) Metaballs based model from Plankers
et al. [137], (b) Cylinder based model fitting of [22], (c) Gaussian-based model introduced by Stoll et al. [164],
(d) Tetrahedral model from Aguiar et al. [40].

meshes by attaching triangular primitives to the faces of explicit 3D meshes. In a recent work, Stoll
et al. [164] employ a set of 3D parametric colored Gaussian functions rigidly attached to the skeleton,
see Figure 2.10(c). Their model formulation is extensively used throughout this thesis both for
multi-view coarse and fine-scale tracking as well as an approximation of signed distance functions
for skinning. Our volumetric Gaussian-based layer is described in detail in Section 2.2.3.2.

In order to accurately approximate an actor’s mesh volume with a chosen set of primitives, some
methods automatically optimize the degrees of freedom that characterize the chosen volume prim-
itives, i. e. their 3D location, orientation and dimensions, such that they optimally fit the surface
model or the multi-view silhouettes [164]. Alternatively, the primitives are manually fitted inside the
surface model.

2.2.3.2 Our Volumetric Layer

Our volumetric model layer that is used throughout this thesis is inspired by the implicit Gaussian-
based representation introduced by Stoll et al. [164]. A set of 3D Gaussians with an additional color
attribute are rigidly attached to the underlying skeleton to approximate coarsely the body volume. A
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Volumetric Gaussian Ĝm is defined by its 3D mean µ̂m and 3D standard deviation σ̂m:

Ĝm(x) :=
1

σ̂m
√

2π
exp

(
−1

2

(
x− µ̂m

σ̂m

)2
)

(2.13)

Our template human volumetric layer is defined by 66 Volumetric Gaussians manually placed all
around the template skeleton structure, introduced in Section 2.2.2.2. In particular, we employ 9
Volumetric Gaussians to approximate each leg volume, 5 for the feet, 10 for the abdomen, 6 for the
head, 8 for the arms and 3 for the hands. The Volumetric Gaussians are distributed evenly along
the limbs and the abdomen. The head is filled such that front and back are covered by different
Volumetric Gaussians. This is used to allow different coloring of the face, i. e. skin color, w. r. t. the
back side, i. e. hair color. After an initial manual fit of the template volumetric layer inside a given
actor’s mesh, the average color of the surrounding vertices of each Ĝm is assigned as additional color
attribute in the HSV space ηm. Also the attachment location and the standard deviation of each
Volumetric Gaussian are adjusted based on the input actor’s shape. As shown later in Section 2.3.1,
our volumetric layer representation can be fitted automatically inside a given actor’s mesh volume
using a technique proposed in the literature. The volumetric layer also serves for optimal skeleton
structure fitting within a human mesh. A visualization of the volumetric 3D Gaussian-based layer
can be seen in Figure 2.1(c).

Each 3D Volumetric Gaussians is rigidly attached to one underlying skeleton bone. Consequently,
bone motions move the affected Volumetric Gaussians as well. The formula to find the new location,
i. e. mean µ̂h′

m , of a Volumetric Gaussian in homogeneous depending on the skeleton pose parameters
is given by:

µ̂
h′
m = T ′j µ̂

jh
m (2.14)

where µ̂
jh

m is the Volumetric Gaussian mean in local homogeneous coordinates w. r. t. the single
parent joint j.

2.3 Rigging Pipeline

In animation, the process of describing surface mesh deformations with the motion of an underlying
kinematic skeleton is called rigging. Given an actor’s mesh, the rigging pipeline consists in three
main steps: defining the underlying skeleton structure, performing skeleton fitting inside the mesh
of the actor and finally binding the surface to the skeleton. In this thesis, we make extensive use of
rigging to define links among the multiple human body layers. Since differently shaped and dressed
humans share a similar hierarchical skeleton structure, we use the skeleton structure described in
Section 2.2.2.2 and focus on the remaining two steps, namely fitting, also called skeleton embedding,
and binding, also called skinning. After giving a brief introduction on proposed approaches for
embedding and skinning, Section 2.3.2.2 outlines our proposed approach for reliably and efficiently
estimating the required skinning weights, i. e. the weights that describe how the underlying bones
affect each surface vertex of the human body model.

2.3.1 Skeleton embedding

Given a template human skeleton, the task of fitting it inside a given actor’s geometry is called
skeleton embedding. Skeleton embedding is the first step of the so called rigging process and consists
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Figure 2.11: Visualization of skinning weights for different bones on a character. The skinning weights are
obtained using the method explained in Section 2.3.2.2. (a) Skinning weights of the spine, (b) skinning
weights of the arms, (c) skinning weights of the legs.

in estimating bone lengths as well as joint configurations that best fit the actor surface model and
pose. Optimal skeleton structure fits place joints as close as possible to the correspondent real
joint location. Solving such a problem automatically may lead to imperfect embedding solutions
that require manual interventions. Errors at embedding time typically cause poor quality rigging
solutions, which in turn result in distracting artifacts during animation.

Methods that provide approximate bone positions based on geometry surfaces and shapes are
often insufficient for animation of photorealistic character models [91]. Embedding techniques
especially designed for human shapes have shown more accurate results than general methods
[55, 93, 120, 118]. Such methods are mostly based on initial template rigs or rely on a database of
rigs, automatically adapted to the input human shape, to enable robust skeleton embedding. However
for these techniques, model fitting may still be inaccurate in the presence of excessive clothing.

When the actor’s geometry is available in different pose configurations, e. g. multiple 3D body
scans, automatic skeleton embedding produces more accurate results. [102, 49]. The accuracy of
the skeleton fit however still depends on the quality and amount of pose variations observed. Few
observations or lots of similarly posed meshes still lead to unreliable results that require manual
corrections. Despite the improvements introduced in the literature, skeleton embedding remains a
semi-automatic process, where the user’s intervention, aimed at correcting misplacement or providing
prior annotations, is still needed.

In this thesis, we make extensive use of the additional volumetric layer, rigidly bounded to the
underlying skeleton structure, to automatically fit both the skeleton and the Volumetric Gaussians
inside a given actor’s mesh. Specifically, we optimize for the joint configuration, i. e. skeletal pose,
the bone lengths and the Volumetric Gaussians distribution with relative standard deviation, such
that both coarse layers fit optimally the detailed surface layer. Due to the large amount of unknowns,
we optimize iteratively for a subset of the parameters. To effectively fill in the volume of the actor’s
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shape, we automatically generate multi-view silhouettes of the input mesh as seen from several
fictional calibrated cameras placed around in a circle. The reprojected volume approximation given
by the silhouettes is used to find the best set of reprojected Volumetric Gaussian, in terms of mean
and standard deviation, across all camera views. This technique has been proposed and successfully
employed by Stoll et al. [164] and is outlined in detail in Section 2.4.1.4. We make extensive use of
their released software The Captury Studio [30] for automatic embedding.

2.3.2 Skinning

Skinning is the process of binding the actor surface mesh to the embedded skeleton structure, such
that deformations of the surface vertices are determined by skeleton pose configurations. When
an association between a surface mesh and a skeleton is given, simple bending of a joint displaces
multiple vertices according to the underlying bone motion. A mesh skinned to a skeleton structure is
also called rigged mesh and is widely used in the animation and movie industry.

One of the most popular geometric skinning methods widely used in animation and interactive
applications is linear blend skinning (LBS) [113]. LBS defines a set of blending weights or skinning
weights wi, j,∀i, j that tell how much each vertex i, is affected by the joint j. See a visualization of
skinning weights in Figure 2.11. A single bone is typically associated with a group of vertices. For
instance, the thigh bone is associated with the vertices making up the polygons in the model’s thigh.
The deformed vertex location in 4D of vertex vh

i , i. e. vh′
i , in homogeneous space is computed using

the following weighted sum:

vh′
i =

n j

∑
j=1

wi, jT ′j v
jh
i (2.15)

where T ′j is the global transform of joint j in global coordinate system and v jh
i is the 4D vertex

location in local coordinates w. r. t. the parent joint j. Note that vertices located close to bone
intersections, i. e. joints, are likely to be associated to two or more bones at the same time and
the mixed influence generates a nicely looking smooth deforming surface in those areas. LBS has
real-time performance and provides acceptable deformations in a good range of cases. The main
disadvantages of LBS are the loss of volume in bent areas and the unnatural candy-wrapper effect
that appears when skeleton joints are twisted.

Geometric skinning with approximate dual quaternion linear blending (DLB) partially solves these
issues [95]. The solution consists in converting each transformation into a unit dual quaternion q j

[98]. Then, a normalized linearly blended dual quaternion qi is computed using the skinning weights:

qi :=
∑ j wi, jq j

||∑ j wi, jq j||
(2.16)

This blended unit dual quaternion is guaranteed to represent a rigid body transformation T̃ ′j , which
can replace the original LBS term, to estimate skinned vertices locations as:

vh′
i =

n j

∑
j=1

wi, jT̃ ′j v
jh
i (2.17)

DLB exhibits less artifacts than LBS at minimal additional cost, and is the chosen skinning approach
throughout this thesis. Alternative more powerful approaches typically involve complex and com-
putationally expensive strategies either inspired by physics [29, 161, 172, 96, 149, 177] or based



27 2.3. RIGGING PIPELINE

Figure 2.12: Reposing examples of a skinned actor model. The figure shows the expressiveness of our
multi-layer human body model through realistic poses.

on multiple input meshes [182, 129]. These approaches deliver a high level of realism. Some even
simulate realistic muscle bulges. However, the associated high computational costs together with the
unusual settings restrict the applicability of these methods.

Another important step of the skinning process, apart from defining the algorithm to estimate
global vertex locations given skeleton pose configuration, is the estimation of the skinning weights,
described in the next section.

2.3.2.1 Skinning Weights Estimation in the Literature

Few automatic methods have been proposed to estimate skinning weights from a static 3D model
[10, 181, 94, 87]. This is a non-trivial problem due to a number of difficulties. For the chosen set
of weights, the corresponding skin deformations caused by skeleton motion must produce natural
looking surface displacements. A realistic look is given by convincing feature-preserving, non-rigid
deformation, without distortions, loss of volume or other visible artifacts. The assignment of skinning
weights must account for the resolution, the shape and the individual body parts. Assigned weights
are typically distributed non-uniformly on the surface and present differently smoothed overlapping
influence depending on the specific body part, i. e. varying smoothing window size for influence
transition in bone intersection areas.

Some generalized methods that ignore the different body parts make simplifying assumptions on the
latter: rather than producing a uniform weight distribution, which does not account for different body
parts and shape, they tend to keep the width of a transition between two bones meeting at a joint
proportional to the distance from the joint to the surface. Proximity to bones is an unreliable measure
for skinning weight assignment, since it ignores the actual shape and can cause wrong attachments,
e. g. part of the torso being attached to an arm.

More robust approaches make use of implicit 3D signed distance approximations of the surface model
to assign skinning weights. This conversion helps in correctly estimating a valid set of skinning
weights, assuming the input model is free from self-intersections. However, due to the cost of
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volumetric tessellation, some methods made simplifications by running distance computations only
for areas close to the surface, which reduces the attachment time to a few seconds [10]. Approaches
using skinning by example, i. e. estimating skinning based on a set of given reposed meshes, have
demonstrated superior results when multiple actor models are provided as input [102, 49, 89, 75]. In
the typical single model restricted conditions, approaches specifically designed for human shapes
have also found reasonable weight assignment solutions, for example using automatic rigging
attributes transferred from template [55]. The quality of this kind of data-driven approaches is
however limited by the shape space spanned by models in the used database.

Despite the progresses made, automatically assessed skinning weights are still suboptimal and require
some manual adjustment, also called weight painting, to account for imperfections and unnatural
deformations resulting from poor automatic skinning weight assignment. The typical skinning
weights assignment process involves iterative skeleton embedding adjustment and skinning weights
repainting, given initial distribution guesses provided by an automatic skinning weight estimation
method. After semi-automatic skeleton embedding, an initial set of weights is automatically esti-
mated. At this point, artists begin moving each joint around and make sure the resulting deformation
of the skin corresponds to the wanted surface displacement, see reposing examples in Figure 2.12. In
case of deformation errors, e. g. wrapping artifacts around joint areas, interactive tools allow to apply
manual corrections by local re-painting of weights. Alternatively, the skeleton embedding can be
manually refined to obtain improved estimates of skinning to start with. This cumbersome iterative
process is typically performed by experienced animators to guarantee outstanding skeleton-to-model
agreement, which is required for realistic skinning. In the next section, we describe our highly
simplified skinning weights assignment approach, specifically build for human actors, which exploits
the potentials of the underlying volumetric layer.

2.3.2.2 Our Volume based Skinning Weights Estimation

In this section, we describe our approach for assessing reliable skinning weights using the intermedi-
ate volumetric actor layer, introduced in Section 2.2.3.2. The volumetric layer is a 3D parametric
representation of the actor’s volume based on a set of 3D colored Gaussians attached to the underlying
skeleton structure. Gaussians are by definition smooth functions with infinite support having global
maxima located at the mean µm, which usually lies nearby a skeleton bone segment. Implicitly, a
Gaussians-based representation can be seen as a distance function defined everywhere in the space,
where the gradient points toward the closest skeleton point. This makes it possible to evaluate the
distance dm(vi) from all Volumetric Gaussians Ĝm of the volumetric layer at the 3D mesh vertex
locations vi,∀i:

dm(vi) := Ĝm(vi) :=
1

σ̂m
√

2π
exp

(
−1

2

(
vi− µ̂m

σ̂m

)2
)

(2.18)

To enhance computational speed, we only consider the closest Volumetric Gaussians up to a certain
user-defined threshold δ , D(vi) := {(m,dm) : dm < δ}. Then, to effectively find the closest joints,
we take the parent skeleton joint of the found Volumetric Gaussians. The skinning weights are then
estimated as:

wi, j := ∑
m∈D(vi)

dm(vi) : j is parent of m (2.19)

We additionally normalize the found skinning weights, such that ∑
n j
j=1 wi, j = 1,∀i.

This method for skinning weights assessment is used extensively throughout this thesis and was
originally introduced in one of our co-authored works by Rhodin et al. [142]. The proposed approach
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Figure 2.13: Actor modeling from segmented example pose images and tracking results from [164]. (a)
Semi-automatically segmented input images showing different actor poses (1 image per pose shown out of
8) and (b) the resulting personalized actor body model. (c) Tracking results shown as skeleton overlay over
the input images.

has computational advantages w. r. t. the work of Baran et al. [10]. First, it is based on available
volumetric information, rather than requiring computationally expensive explicit estimation of
heat distribution withing the surface mesh as it is done in [10]. Secondly, by fully exploiting the
Volumetric Gaussian-based representation, which clearly distinguishes between different body parts,
our method does not require any inside-outside surface check or handling of special cases, needed,
e. g. , in presence of non-manifold geometry with holes, disconnected surfaces or multiple internal
faces. Its high computational performance and independence from the geometric shape definition
beats most of the related approaches in terms of time.

The skinning weight quality highly depends on the 3D Gaussian model resolution, i. e. the number
of primitives as well as their distribution within the mesh surface. Poorly represented volume can
easily lead to inaccurate skinning weights estimation. Nevertheless, this method robustly delivers
adequate weight sets, which are good initial guesses that can be easily semi-automatically refined.
Our interactive software tool, we built to accomplish this task, also allows to manually paint and
adjust the automatically estimated skinning weights or (locally) smooth the weights over the surface
with a user-specified smoothing kernel, if needed. In this work, we make few to no use of the weight
painting tool, thus demonstrating the effectiveness of our automatic skinning weights assignment
approach, compared to related methods.

2.4 Skeleton Tracking

In this section, we focus on relevant previous work, which exploits the potentials of the Gaussian-
based representation both for multi-view mocap and differentiable visibility formulation. The
remainder of this section is dedicated to the description of the skeleton tracking approach proposed
by Stoll et al. [164], which is extensively used throughout this thesis, as well as conceptually extended
to performance capture of surface detail later on in this thesis. In this section, we also discuss an
extension of the work of [164] initially proposed by Rhodin et al. [143] in a co-authored work.
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2.4.1 Volumetric Tracking by Stoll et al. [164]

Stoll et al. [164] present an approach for modeling the input multi-view video sequence and the
human body by Sums of spatial Gaussians, that allow to perform fast and high-quality markerless
mocap. Based on the Gaussians-based models of the input scene, [164] introduce a novel continuous
and differentiable model-to-image similarity measure that can be used to estimate the skeletal motion
of human actors at high frame rates.

2.4.1.1 Scene Model

The body model representation employed by Stoll and colleagues corresponds to our skeleton and
Gaussian-based volumetric layers, described respectively in Section 2.2.2.2 and Section 2.2.3.2.
As shown in [164], the implicitly defined Gaussians-based representation Ĝm,∀m = 1 . . .nm is
advantageous for skeleton mocap in outdoor scenarios, where scene conditions are less controlled.

The model Gaussians can be easily projected into the image space, to obtain 2D Gaussians Gm.
The Gaussian mean in image space µm is obtained projecting the original mean in 3D µ̂m using the
camera projection matrix P:

µm =

 [Pµ̂h
m]x

[Pµ̂h
m]z

[Pµ̂h
m]y

[Pµ̂h
m]z

=

 [µ p
m]x

[µ p
m]z

[µ p
m]y

[µ p
m]z

 ∈ R2, (2.20)

where [µ̂h
m]x,y,z are the respective coordinates of the mean in homogeneous coordinates (i. e. the 4th

dimension is set to 1), [µ p
m]x,y,z are the respective coordinates of the projected mean in homogeneous

coordinates. Similarly, the corresponding 2D standard deviation σm of a Volumetric Gaussian is
obtained as follows:

σm =
σ̂m f
[Pµ̂h

m]z
=

σ̂m f
[µ p

m]z
∈ R, (2.21)

where f is the camera focal length and σ̂m the standard deviation in 3D. The Volumetric Gaussian
colors ηm are stored in the HSV color space for later computations.

To obtain a similar mathematical definition of the input image pixels, Stoll et al. additionally convert
the input multi-view images to an implicit Sums-of-Gaussians based representation. The implicit
model for the input images I(c) of all cameras c ∈ {1 . . .nc}, nc being the number of cameras,
is obtained by assigning an Image Gaussian Gi(x), x ∈ R2 to each image patch, resulting from
the decomposition of the input image to regions of similar color. The algorithm to assign Image
Gaussians decomposes each input frame into squared regions of coherent color by means of quad-tree
decomposition. After setting a maximum quad-tree depth Tqt, the image domain of each camera
view is recursively split in smaller regions. Then, neighboring patches of similar color, up to a
color similarity threshold Tfuse, are fused together. The color similarity between two regions having
colors η1 ∈ R3 and η2 ∈ R3 in the HSV space is computed by simply taking the Euclidean distance
||η1−η2||2. This approach allows generating a limited number of Gi, distributed densely at color
feature locations and sparsely in the remaining plain colored regions, saving space allocation as well
as computational performance.

After this bottom-up approach is completed, an Image Gaussian is assigned to each patch, such that
its mean µi ∈ R2 corresponds to the patch center, and its standard deviation σi to half of the side
length of the square patch. The underlying average HSV color ηi is also assigned as an additional
attribute. Figure 2.14 shows an example of implicit 2D Image Gaussians-based representation for an
image frame, where each Gi is visualized with a disk cantered at µi, with radius σi.
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Figure 2.14: Example of implicit image representation. (a) The input image and (b) the estimated implicit
representation as a collection of Image Gaussians (b).

2.4.1.2 Pose Tracking

Analysis-by-synthesis strategies have been successfully employed for many tasks in computer vision,
included pose estimation. General analysis-by-synthesis based approaches define a recognition
process in which hypotheses are formulated and compared with input data until one of the hypotheses
produces a match. In their work, Stoll et al. use analysis-by-synthesis to compare the multi-view
image observations with the reprojected the human body model in different poses. In particular,
the Gaussian-based approximation of the scene is used to formulate a smooth image-to-model
consistency energy to effectively find the optimal actor pose configuration at each frame. The
initial pose guess, either computed based on joint acceleration from previous frames or manually
estimated, is projected into each camera view. Then, the consistency across all views of the 2D
colored Volumetric Gaussians Gm and the Image Gaussians Gi is computed as:

E(S) = Esim−Etemp−Elim (2.22)

where Esim is the core data term, Etemp is the temporal smoothness term and Elim is used to check for
parameter limits. In the following, we describe each term in detail.

Similarity term The core energy term estimates the similarity between the projected Volumetric
Gaussians Gm and Image Gaussians Gi and is computed as:

Esim =
1
nc

nc

∑
c=1

[
1

∑
nc

i
i=1 Φi,i

nc
i

∑
i=1

min

(
nm

∑
m=1

Φi,m, Φi,i

)]
(2.23)

where nc
i is the number of Image Gaussians of camera c and Φi,m measures the appearance and

spatial similarity of an Image Gaussian i and a Volumetric Gaussian m:

Φi,m = T∆c(δi,m)

[∫
Ω

Gi(x)Gm(x)∂x
]2

(2.24)
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In the above equation δi,m = ||ηi−ηm||2 ∈ R+ measures the Euclidean distance between the colors
in HSV color space, ∆c is the maximum color difference allowed (beyond which the color similarity
is set to 0), and T∆(δ ) : R→ R is the Wendland radial basis function [187] modeled by:

T∆(δ ) =


(

1− δ

∆

)4(
4 δ

∆
+1
)

if δ < ∆

0 otherwise

(2.25)

Applying the T∆ function on δ results in a smooth color similarity measure that is equal 1 if δ = 0,
i. e. T∆(0) = 1 and smoothly decreases towards 0 as δ approaches ∆, i. e. limδ→∆ T∆(δ ) = 0.

A new approximation is proposed to handle self-occlusions without sacrificing the smoothness
properties of their energy formulation. When multiple volumetric 3D Gaussians project onto the
same screen space coordinate, their cumulative contribution in the sum can spoil the performance
qualitatively, if not handled correctly. The authors employ a function minimization, visible in Equa-
tion 2.23, to account for the non-differentiability of the visibility function at occlusion boundaries.
In a later co-authored work, described in the next section, a robust, fully differentiable visibility
function is developed in the context of mocap.

One of the advantages of using a Gaussian representation is that the integral in Equation 2.24 has a
closed-form solution, namely another Gaussian of the form:

Φi,m = T∆c(δi,m)2π
σ2

mσ2
i

σ2
m +σ2

i
exp
(
−||µi−µm||2

σ2
m +σ2

i

)
(2.26)

Φi,i = πσ
2
m (2.27)

As explained in Section 2.2.3.2, the Volumetric Gaussians distribution in space is uniquely defined
by the underlying skeletal joint configuration, which is in turn specified by the joint angles sp,∀p =
1 . . . |S |. Therefore, by optimizing for the model-to-image similarity in terms of the means µ̂m,∀m =
1 . . .nm, one actually estimates the optimal skeletal pose configuration for that frame. Optimization
details are provided in Section 2.4.1.3.

Temporal Term The estimated skeletal joint angles in subsequent frames are regularized using a
smoothness regularizer on the parameters:

Etemp =
|S |

∑
p=1

(
1
2
(
s f−2

p − s f
p
)
− s f−1

p

)2

(2.28)

where s f−2
p and s f−1

p are the pose parameter values found at previous frames and s f
p is the parameter

value at current frame. This term penalizes high acceleration in parameter space.

Limits Term Stoll et al. additionally include a check on the parameter limits:

Elim =
|S |

∑
p=1


||lp− sp||2 if sp ≤ lp

||sp−Lp||2 else if sp ≥ Lp

0 otherwise.

(2.29)

where lp and Lp are respectively the lower and upper joint angle limits on parameter sp.
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2.4.1.3 Optimization

In order to maximize E, defined in Equation 2.22, the analytical derivatives with respect to the
skeleton pose parameters S are computed. Then, conditioned gradient ascent is used to find the
optimal skeleton pose in each frame. To improve the initial convergence to the correct pose, the
initial actor skeletal configuration in frame 0 is typically manually initialized or assumed to be (close
to) the neutral pose. In Chapter 3, we demonstrate the use of data-driven information to automatically
initialize the actor pose and follow the motion without any manual intervention.

The approach shows impressive mocap results even in uncontrolled outdoor settings with a possibly
dynamic background and occlusions. Thanks to the advantageous formulation, results are computed
in real-time. The main disadvantage of this approach, which is due to the nature of the primitives,
is the difficulty to accurately track twisting motions that typically characterize limbs and head. A
possible solution to this issue is the explicit use of the information that is given by a skinned actor
mesh. In particular, the surface mesh can be used to regularize the underlying skeleton motion,
checking for sudden flips as well as for arising distortions or unnatural movements issues. Due
to the plain skeleton visualization, i. e. dots and segments, unnatural effects are only visible when
accompanied by skinning deformations.

2.4.1.4 Actor Calibration

Calibrating the actor, i. e. computing a personalized body model of the performing actor, is an
important step prior to tracking. The quality of the body model directly affects the accuracy of
mocap. Stoll et al. [164] make extensive use of the analysis-by-synthesis approach, described in
the previous section, to optimize for an enlarged set of the model parameters, which includes the
Volumetric Gaussian mean, standard deviation and color, as well as bone lengths on top of the joint
configuration. The algorithm decomposes the actor calibration problem in sub-problems aiming at
fitting the template human body model into the reprojected actor’s volume.

The reprojected actor’s volume is obtained semi-automatically segmenting multi-view photographs
of the actor in different poses, see Figure 2.13(a). Alternatively, if a scan of the actor is available, it is
possible to automatically generate multi-view silhouettes as seen from several fictional cameras with
known calibration placed all around. The colors of the Volumetric Gaussians of the template human
body model are initialized to the silhouette interior color. Then, the similarity energy in Equation
2.23 is iteratively minimized in terms of a subset of the model parameters: first the joint configuration
(pose) alone, then the Volumetric Gaussian properties, i. e. means and standard deviations, and finally
the bone lengths are estimated.

The initial skeletal pose can be automatically inferred by solving for single-frame model-to-image
fitting as described in Section 2.4.1.3. Since the actor model is still uncalibrated at this point, manual
corrections to the inferred pose are typically made to improve the estimated joint configuration. Once
an initial skeleton pose has been computed, the set of reprojected Volumetric Gaussians is fit to the
silhouettes across all views, in terms of the means µ̂m,∀m and standard deviations σ̂m,∀m. Finally,
the obtained personalized volumetric layer is used to adjust the bone lengths.

To effectively find the corresponding bone lengths, additional scaling degrees of freedoms Sscaling
are added to the skeletal parameter list, i. e. S := {S ∪ Sscaling}. Scaling degrees of freedom uniquely
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Figure 2.15: Translucent medium representation and visualization of radiance used to compute the visibility
of the Volumetric Gaussians [143]. (a) Solid sphere actor model compared with its translucent medium
density representation with increasing smoothness levels. (b) Ray-tracing of a Volumetric Gaussian density.
The density along a ray is a sum of 1D Gaussians (green) and transmittance (gray) falls off from one for
increasing optical depth. The radiance is the fraction of reflected light that reaches the camera (red and blue
areas).

define joint scaling transformations S j(sp) as:

S j(sp) :=


1 0 0 0
0 sp 0 0
0 0 1 0
0 0 0 1

 (2.30)

Notice that the scaling factor sp only affects the y axis, which by definition points towards the closest
child joint along the bone connection. The effect of scaling is a bone stretch or compression, which
exactly simulate variations in the bone lengths. Scaling transformations are concatenated to the
remaining joint transformations, i. e. eventual translations and rotations, to form local transformation
matrices, as explained in Section 2.2.2.1. The personalized bone lengths are found by computing the
scaling parameters Sscaling that best fit to the new personalized volumetric layer within the convex
hull, using Equation 2.23.

The actor calibration process can be iterated several times, i. e. re-estimating joint configuration,
set of Volumetric Gaussians and bone length, until it converges to a good approximation of the
actor’s skeleton and volume, see Figure 2.13(b). Generally, it is best to provide this embedding
method several different poses, also called calibration poses, to best locate the position of all the
skeletal joints. Four of the typically used calibration poses are shown in Figure 2.13(a). The colors
of the Volumetric Gaussians can be estimated at the end of the actor calibration cycle, by taking
the underlying multi-view pixel color mean. This is obtained by computing the HSV color mean of
the collection of all underlying pixels of each projected Volumetric Gaussian in all camera views.
For each Volumetric Gaussian Ĝm and camera view, we typically take the set of pixels which lie
in a 2D region of the image space enclosed in the approximated circle centered in the 2D µm with
radius equal to σm. In case an actor’s mesh is available together with associated vertex colors, the
Volumetric Gaussians are assigned the close-by vertices color mean.

2.4.2 Improvements to Volumetric Tracking by Rhodin et al. [143]

A co-authored paper by Rhodin et al. [143] demonstrates the use of a volumetric Gaussian-based
actor’s body approximations to create an analytic, continuous and smooth visibility function that is
differentiable everywhere in the scene. The main difficulty of related approaches lies in the handling
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of occlusions when projecting from 3D to the 2D space, where only visible parts of a 3D actor
model should be considered when estimating e. g. model-to-image similarity. For simplicity, most
other approaches check for camera visibility right before performing model projection to the image
space. This kind of approaches are erroneous as they prevent occluded body parts from eventually
reappearing in the view. Other approaches ignore multiple occluded object contribution in the energy
[164].

The approach proposed by Rhodin and colleagues treats each Gaussian approximating the actor’s
volume as a translucent medium with smooth density distribution, see Figure 2.15(a). The smooth
Volumetric Gaussian visibility Vm along a pixel ray, from the camera origin o towards a certain direc-
tion n (depending on the pixel location) at distance s, is estimated as the accumulated transmittance
T of all encountered Volumetric Gaussians:

Vm(o,n) := ∑
m∈Sm

λmT (o,n,s)Ĝm(o+ sn) (2.31)

In the above equation, Sm is a compact sampling interval around the mean of each Volumetric
Gaussian Gs used to obtain an analytical closed form. Equation 2.31 is inspired by the radiance
equation, where the sum of the product of the source radiance and transmission effectively measure
the contribution of each Volumetric Gaussian to the pixel color, therefore approximating Volumetric
Gaussian visibility, see plot in Figure 2.15(b). The transmittance function T , i. e. , the percentage of
light transmitted between two points in space, decays exponentially with the optical thickness of a
medium, which is defined as the accumulated density D:

T (o,n,s) := exp
(
−
∫ s

0
D(o+ tn)dt

)
(2.32)

Using the Gaussian form of the density, one can rewrite the transmittance function in as:

T (o,n,s) := exp
(
−
∫ s

0
∑
m

Ĝm(o+ tn)dt
)

(2.33)

The approximated transmittance of a Gaussian has an analytic closed form definition thanks to
the appealing mathematical properties of Gaussians. Computationally, the proposed method has
quadratic complexity in the number of Gaussians and is therefore relatively expensive. Nevertheless,
the method delivers more accurate tracking and 3D geometry estimation w. r. t. previous methods
based on non-differentiable visibility. In their experiment, the authors show that the new differentiable
and well-behaved visibility function is essential for the success of the approach in markerless human
mocap with very few cameras and/or strong occlusions. Setups with limited number of cameras or
large occlusions highly rely on a proper visibility formulation to overcome failure at tracking time.





Chapter 3
Motion Capture

3.1 Introduction

Image-based human motion capture (mocap) is an important and long-standing problem in computer
vision. In the past decades, there has been a constantly growing demand for robust human mocap
algorithms from a wide range of application fields, such as computer animation, video effects
(VFX) and biomechanical analysis. Recently mocap of performing humans in less constrained
environment has gained increasing attention due to the potential of capturing casual actions in the
wild. Despite the improved tracking quality of the previous methods in presence of challenging
dynamic background, no known approach is able to reliably track the human motion in presence of
changing illumination conditions, such as global light changes, or appearance changes, due to e. g.
harsh shadows or view-inconsistent reflectance of pieces of apparel, which are typical in outdoor
settings [21, 74, 24, 63, 154, 164, 53, 50, 141, 117, 197].

In this chapter, we describe a novel human mocap approach to reliably track the human action from
multi-view videos with challenging temporally varying illumination (see an example in Figure 3.1),
initially introduced in [144]. Our approach fits the personalized multi-layer human body model,
described in Section 2.2, to a combination of an abstract intermediate image representation that is
robust to lighting changes and 2D joint detections based on a convolutional neural network (CNN).

The main insight of our work is to factor out the lighting influence from the images by extracting the
reflectance (or albedo) component of the image, and then perform motion tracking using the albedo
component. To this end, for each frame of the multi-view sequence, the proposed method estimates
the albedo component by solving a lighting-invariant segmentation problem. Our segmentation
problem is phrased as a multi-labeling problem based on a pairwise Markov Random Field (MRF)
[19], where each “material” of the human body is assigned a unique label that corresponds to its
albedo. Lighting-invariance is achieved by dynamically updating the appearance information to
reflect the changing lighting conditions. This is implemented by combining the image appearance
and a pose prediction prior in a suitable way.

In order to increase the overall robustness, we additionally employ CNN-based joint position
detections, which have been shown to have remarkable generalization ability [48, 204, 105, 171,
116, 133, 117]. Nevertheless, we have found that the CNN detector alone may be noisy and struggles
under some conditions. In an attempt to combine the advantages of both worlds, we use an adaptive

37
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Figure 3.1: Our method estimates 3D human pose from multi-view image sequences. Even under extreme
lighting conditions, our method is still able to track the motion successfully.

strategy for setting the relative weighting between the segmentation and the detectors, which are
then embedded into the model-based mocap method described in Section 2.4.1. Our main technical
contributions are:

1. the formulation of suitable time-varying segmentation problem that use frame- and view-
dependent appearance costs in order to obtain lighting-invariant representations of the individ-
ual images,

2. the adaptive combination of an abstract intermediate image representation with CNN-based
joint detectors, and

3. the integration of this combined information into a robust model-based tracker.

We demonstrate the effectiveness of our approach on several challenging sequences, including drastic
lighting changes as well as harsh shadows. Our quantitative and qualitative results show that our
approach accurately tracks the human pose and outperforms the existing methods in such challenging
scenarios.

3.2 Related Work

Mocap of 3D humans has received a lot of attention in recent decades. Many vision-based markerless
methods have been proposed to address this problem. A large portion of the literature focuses
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on generative model-based multi-view mocap, where the goal is to optimize the overlap of the
projected 3D body model with multi-view images. Model-free approaches generally deliver worse
qualitative performance compared to model-based approaches, as they employ automatically or semi-
automatically estimated approximations of the tracked object. When the tracked object articulations
are known a-priori (this is the case for a human model), the remaining dimensions, such as height,
weight, lengths and so on, can generally be accurately estimated up to possible non-rigidity, e. g.
loose clothing [142]. Most of the model-based approaches rely on manually estimated human models
or 3D scans.

Given an input articulated body model of the actor, many methods for robust pose tracking rely on the
silhouette input obtained by background subtraction [164, 13, 103, 62, 106, 9]. As the silhouette cue
provides a strong constraint and drastically reduces the difficulty of the problem, those methods yield
accurate mocap results. Multiple character tracking, even with complex interaction, has also been
demonstrated. In the approach by Liu et al. [106] they first segment the provided foreground image
region into different characters based on the color models and the pose prior. Then the different
characters are tracked independently. In our method, the pose term for material segmentation is
inspired by this work. However, our method segments the images with respect to different materials
instead of different characters and does not rely on the silhouette input. This allows for automatic
tracking as well as better estimation of the correspondences between the body model and the
images. Although plausible results have been achieved by multiple character tracking methods, their
application scenario is restricted to static backgrounds, since the background subtraction does not
work well on dynamic background [107].

There also exist several generative model-based approaches that do not require explicit silhouette
input [21, 74, 24, 63, 154, 164, 53]. Many approaches make extensive use of (dense) optical flow or
region-based matching to track the articulated body motion [24, 63, 154]. More accurate methods
build on top of indoor approaches by introducing a dynamic background segmentation step [21, 74].
The background is typically segmented based on temporal body motion cues obtained from previous
frames. However, only results in well-controlled environments have been demonstrated. Cluttered
background in a general outdoor scenario with illumination changes typically lead to tracking failures.
Elhayek et al. [53] proposed an improved model-to-image consistency energy in weighted HSV
color space, which is more resistant to intensity changes. Although the tracking failure due to
illumination changes is alleviated to some extent, we have found in our experiments that using
the color consistency energy in HSV space alone is not enough to handle unconstrained complex
lighting conditions for outdoor tracking. To handle varying illumination, Wu et al. [193] proposed to
simultaneously estimate the illumination and track the motion in a joint optimization framework.
However, since the illumination estimation and motion tracking is performed in an alternating
manner, and each step relies on the previous step being correct, their method is not able to recover
from errors. Besides, it is also worth mentioning that the computational complexity of their method
is rather high due the illumination estimation.

In contrast to generative model-based methods, data-driven (discriminative) methods address the 3D
pose estimation problem from the perspective of image feature extraction, regression or classification
[1, 85, 148, 121, 156]. With the enormous success of deep learning methods and the thus resulting
growing popularity, many CNN-based approaches have recently been proposed to predict 3D
human pose from monocular images. A common approach is to lift the 2D joint prediction to 3D
using temporal constraints and/or pose priors [205, 202, 203], while many other methods directly
estimate the 3D pose from single images [48, 204, 105, 171, 116, 133, 117]. Even real-time 3D
pose estimation has been achieved [117]. The CNN-based methods are typically more robust to
illumination changes in the outdoor scenario than generative methods due to the good generalization



CHAPTER 3. MOTION CAPTURE 40

Figure 3.2: Pipeline of our method.

ability of the deep neural network, but those monocular-based methods are usually less accurate
since they suffer from the inherent depth ambiguity. To address such problems, multi-view-based
discriminative methods [160, 26, 6, 174] have been proposed. However, they typically have lower
temporal stability than generative methods and, more importantly, they use a simplified body model
with only few degrees of freedom.

Several recent methods combine the generative model and the discriminative approach to benefit
from the merits of both sides [142, 53, 142, 15]. In particular, the methods in [142] and [53] share a
similar outdoor multi-view mocap setting with our proposed method. In contrast to their methods,
our approach iteratively tracks the skeletal motion and estimates the intrinsic segmentation to factor
out the illumination changes. Our experimental results demonstrate that our approach outperforms
the existing methods under varying illumination.

3.3 Overview

In this section, we describe our model-based mocap approach, which is summarized in Figure 3.2.
Given a sequence of multi-view calibrated and synchronized images capturing the action of a single
actor in varying lighting conditions, our goal is to consecutively track the human body pose in each
frame, resulting in the temporally coherent skeletal motion across the entire sequence. This approach
leverages the multi-layer human body model, described in Section 2.2.

To handle complex lighting conditions, for each frame we estimate an illumination-robust segmenta-
tion of the images by extracting the corresponding approximate albedo channel, and then incorporate
the segmentation into the skeleton tracking. Segmented frames are an optimal input to appearance-
based mocap approaches, since they are mostly invariant to illumination changes. Together with
the segmentations, we provide 2D sparse joint detections as input to the mocap approach, that are
estimated offline with CNN. As shown in Section 3.7, detections provide additional clues in presence
of challenging lighting conditions and body poses, and are used to further improve the reliability of
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Figure 3.3: Examples of 2 input body models with all their layers. (a) Textured 3D models, (b) triangulated
mesh model with kinematic skeleton, (c) Gaussian blob model showing the body material Gaussians as well
as the special discriminative Gaussians attached to the 14 most prominent joints, i. e. head, neck, shoulders,
elbows, wrists, hips, knees, and ankles.

the estimated body configurations.

In the rest of this chapter, we first discuss our approach for appearance model acquisition (Section 3.4),
then describe our segmentation approach (Section 3.5), and finally present the skeleton tracking
method (Section 3.6).

3.4 Scene Model

In this section, we describe our input actor representation, which we extensively use to estimate
lighting-invariant image segmentation.

3.4.1 Actor

Our approach relies on the three-layer person-specific human body model outlined in Section 2.2. In
this chapter, the volumetric layer is equipped with additional discriminative Gaussians attached to
the most prominent joints in the skeleton, i. e. head, neck, shoulders, elbows, wrists, hips, knees, and
ankles, see Figure 3.3(c). These are used to enable skeleton matching to the 2D CNN-based joint
detection heatmaps, as described in Section 3.6.

The detailed layer consists of a triangulated mesh with associated texture segmentation, see Figure 3.2.
While retaining the valuable texture quality, we reduced the number of triangles for performance
purposes. In order to define the model materials, we first semi-automatically segment the texture
into different regions according to the albedos of different materials (e. g. skin, shirt, etc.) as in
Figure 3.4(c). To this end, we first apply the image smoothing method of [196] on the texture image
to remove the high frequency shading components while preserving features in the image. Then
we manually annotate the smoothed texture image, resulting in the material texture segmentation
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Figure 3.4: Visualization of the material clustering process on the texture map. (a) Initial texture image, (b)
smoothed edge-preserving texture image to facilitate material clustering and (c) final material clustering.

that assigns a unique label to each material, see Figure 3.4(c). Note that while we assume that each
material is homogeneous, non-homogeneous parts (e. g. a shirt with a logo) can be modeled by
introducing sub-materials.

Since in this chapter we are only interested in the skeleton motion estimation, i. e. discarding the
surface details, we keep the number of materials limited to a small number and combine together
slightly differently textured pieces of apparel or skin features. To this end, the shirt logo visible in
Figure 2.8(b) is fused together with the shirt material, while eyes and mouth are considered to be
one material, i. e. skin material, see Figure 3.4(c). All our body models have 5 materials in total,
namely skin, hair, shirt, pants and shoes.

3.5 Lighting-invariant Segmentation

This section describes how to obtain a lighting-invariant representation (albedo channel) of a multi-
view frame (I f

1 , . . . , I
f

nc) for each camera view c := 1 . . .nc and time f := 1 . . .F . Notice that in our
setting the same material may have a different color appearance when viewed from different cameras.
This is the case for, e. g. , apparel with (piece-wise) non-Lambertian reflectance behavior, such as
highly-specular apparel. A similar global effect may arise in case of incomplete or inconsistent
photometric calibration of the cameras, which causes the same material to have different color
appearance depending on the view. Consequently, we treat each camera view c independently, and
thus assume in the remainder of this section that c and the frame f are fixed. Hence, for notational
convenience we omit the c and f indices and write I instead of I f

c .

The objective of the lighting-invariant segmentation is to assign to each pixel i of image I a label
`i ∈ L that indicates which material is seen in that pixel. The set of foreground materials includes all
semi-automatically segmented materials of the actor’s surface (e. g. shirt, skin, pants) with indices
` := 1 . . . |L|−1, described in the previous Section 3.4.1. We additionally consider the background
to be a material and add it to the end of the labels’ list, i. e. with index |L|. A labeling `̀̀ ∈ L |I| for
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Figure 3.5: Visualization of color, pose and combined costs. Top row (a-f) shows the appearance costs,
middle row (g-l) shows the pose costs, and bottom row (m-r) the combined appearance-pose costs for
different materials: (a,g,m) background, (b,h,n) shirt, (c,i,o) pants, (d,j,p) skin, (e,k,q) hair and (f,l,r) shoes.
The input frame is shown on the top-right (s), while the resulting segmentation is depicted below in (t).

image I is obtained by minimizing an energy of the form

E(`̀̀) =
|I|

∑
i=1

Ei(`i)+∑
i∼ j

Ei j(`i, ` j) , (3.1)

where Ei(`) is the data term that measures the cost for assigning label ` ∈ L to pixel i, and Ei j is the
smoothness term that penalizes neighboring pixels i and j that are assigned different labels (i∼ j
indicates that i and j are neighbors).

The data term combines the appearance Ea
i (`) and pose cost Ep

i (`) defined for each pixel i as follows:

Ei(`) = Ea
i (`) ·E

p
i (`) , (3.2)

The appearance term measures the visible color similarity to the material color. In fact, we make
use of an enhanced appearance representation of pixels rather than using their simple RGB color,
which is shown to be more robust to illumination effects. A visualization of the appearance costs for
each material can be seen in Figure 3.5, first row (reference input image in Figure 3.5(s)). In the
gray-scale figure darker colors correspond to lower costs for the corresponding material. For instance,
the skin appearance costs in Figure 3.5(d) alone can be used to successfully identify arms and face
as skin, since the pixel at the corresponding regions have the lowest costs. However, misleading
outliers with similar appearance in the background, e. g. the shoes, would cause a segmentation
approach for the skin to be infeasible at this stage.
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To cope with similar looking materials, we additionally define the pose term. The pose term robustly
identifies possible material locations based on previously observed poses, see Figure 3.5, middle
row. Body motion is assumed to be sufficiently smooth between subsequent frames. The pose term
is designed such that it considers a (sufficiently large) uncertainty range of possible poses, making
the aforementioned assumption valid in most of the cases. By weighting the appearance term with
the pose term, most of the far regions in terms of pixel distance from the query material (e. g. , the
skin material in the example) are correctly set to high cost, see Figure 3.5 last row. In this case,
segmentation leads to accurate material labeling, see Figure 3.5(t).

The appearance representation as well as the detailed description of the energy term is described in
Section 3.5.2. Details for the pose term are discussed in the next Section 3.5.1.

3.5.1 Pose costs

Algorithm 1: Function to estimate pose costs Ep for all materials of a single camera view
c, given as input skinned mesh M with pose parameters S .

1 function Ep := PoseCosts(M,S ,c):
2 for n := 1 to 50 do
3 for p := 1 to |S | do
4 s̃p := min(max(rnd(sp,σ), lp),Lp);
5 end
6 S̃n := {s̃p,∀p := 1 . . . |S |};
7 for ` := 1 to |L|−1 do
8 M.enableMaterial(`);
9 H` := H`+M.render(S̃n,c);

10 end
11 end
12 for ` := 1 to |L|−1 do
13 H|L| := H|L|+(1−H`);
14 end
15 Ep := {1− k ·H`,∀` := 1 . . . |L|}

In order to define body pose costs at a given frame f , we start by predicting the body pose configu-
ration S f , which is obtained based on the acceleration computed from the pose parameters of the
previous two frames, i. e. S f−1 and S f−2:

S f := S f−1 +
S f−1− S f−2

2
(3.3)

The pose parameters for the first frame S1, are either user-specified or assumed to be all equal to
zero as a first guess, and S2 := S1. Figure 3.14 shows a successfull fast recovery example when S1

remains unspecified. The predicted pose, computed using the above formula, gives already a good
approximation of the actual human pose in the multi-view images, as most of the human natural
movements have close-to-constant acceleration across frames. However to be able to capture some
pose variation, we additionally allow a window of uncertainty around each predicted joint parameter.

In particular, we sample 50 random pose parameters from a Gaussian distribution around the current
pose parameter prediction S f . Random joint parameters S̃n := {s̃p : p ∈ {1 . . . |S |}} are chosen in
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respect of the joint limits [lp,Lp], as shown in Function 1, lines 3-6. The standard deviation σ for
random sampling rnd(sp,σ) is typically chosen aiming at covering a sufficiently large space of
the complex body pose variations around the predicted pose, and is set to be 10cm for the global
skeleton translation components, and 0.2 radians for the rotational skeleton joints. The effect of
accumulated small rotations going from parent to children joints ,e. g. , going from the shoulder to
the wrist, result in naturally larger end-points movement, especially visible for the shoulder-wrist
chain in Figure 3.5( j).

Given S f and a set of random joint parameters S̃ f
n ,∀n := 1 . . .50, we estimate for each material

` ∈ L a binary pose probability image H` : Ω→ {0,1}, where Ω is the 2D image pixel space and
H`(xi) := 1 if pixel i, with position xi ∈Ω, belongs to material `, and H`(xi) := 0 otherwise. H` can
be easily and efficiently estimated using mesh rendering techniques. To this end, we project all the
50 estimated random mesh configurations, resulting from skinning based on the random skeleton
poses S̃ f

n , onto the same image plane using the camera projection matrix of the chosen view. To
distinguish between different material projections, we assign |L|−1 (foreground) textures to the
mesh. Each texture is colored with white color value (1,1,1,1) in the RGBA color space at the
corresponding material locations represented. The remaining surface locations, assigned to different
materials, are set to transparent (0,0,0,0). For instance, the texture for the skin material is white
on the arms and face, and transparent in the remaining surface mesh locations. We, then, render
each texture projection in separated blending buffers initialized to (0,0,0,1), one per foreground
material, taking care of enabling depth test, disabling lighting, and setting the blending function such
that new overlaying renderings are summed up in the buffer. This results in accumulated material
buffers H` : Ω→ {0,1}, ∀` := 1 . . . |L|−1, which are black everywhere except at those locations
filled by randomly re-posed re-projected material textures, representing in other words binary pose
probability masks ∈ {0,1}. The binary mask for the background H|L| : Ω→ {0,1} is obtained by
summing up all resulting material masks and inverting their values, see Function 1, lines 12-14 . The
method used to estimate binary pose probability images H` gives a view, pose and shape guided
approximation, which is more accurate than considering e. g. fixed-sized 2D bounding boxes around
each material re-projection.

The pose cost masks for each material are finally obtained by inverting the probability masks and
by slightly smoothing the borders using a small Gaussian smoothing kernel k, simulating smoothly
decreasing/increasing costs around the border’s mask:

Ep
i (`) := 1− k ∗H` . (3.4)

3.5.2 Frame-dependent appearance costs

Given a definition for pixel i appearance Ψ(xi),∀i := 1 . . . |I| and material ` appearance Ψ(`),∀` :=
1 . . . |L|, the cost of assigning ` to i is given by:

Ea
i (`) := dist(Ψ(xi),Ψ(`)) . (3.5)

where the function dist computes the distance between their appearances. While the pixel appearance
Ψ(xi) can be defined by their color at the corresponding pixel location, the material appearance Ψ(`)
needs to be re-estimated at each frame according to the new material location in the images and its
possibly changing visual appearance due to varying lighting conditions. For estimating Ψ(`), using
the un-smoothed mask H` introduced in the previous section, we extract all pixel appearance vectors
at the reprojected location of material`, which we denote as X` := {Ψ(xi) : H`(xi) = 1}. Then, we
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Algorithm 2: Function to estimate appearance costs Ea, materials mean µ` and covariance
C` for all materials of a single view, given input RGB image I and pose costs Ep

` .

1 function [Ea,µ`,C`] := AppearanceCosts(I,Ep
` ):

2 Ψ := Rgb2Feature(I);
3 for ` := 1 to |L|−1 do
4 X` := {Ψ(i) : 1−Ep

` ≥
1
2};

5 µ` := argminy ∑x∈X`
‖x− y‖2;

6 C` := 1
|X`|−1 ∑x∈X`

(x−µ`)(x−µ`)
T ;

7 for i := 1 to |I| do
8 Ea

i (`) := (Ψ(i)−µ`)
TC`(Ψi−µ`);

9 end
10 end
11 Ψbg := [ΨT ,Ea

i (`1), . . . ,Ea
i (`|L|−1)]

T ;
12 X|L| := {Ψbg(i) : 1−Ep

|L| ≥
1
2};

13 µ|L| := argminy ∑x∈X|L| ‖x− y‖2;
14 C|L| := 1

|X|L||−1 ∑x∈X|L|(x−µ|L|)(x−µ|L|)
T ;

15 for i := 1 to |I| do
16 Ea

i (|L|) := (Ψbg(i)−µ|L|)
TC|L|(Ψbg(i)−µ|L|);

17 end

compute the geometric median µ` ∈ [0,1]3 of the vectors in X`, which is given by

µ` := µ(X`) = argmin
y

∑
x∈X`

‖x− y‖2 , (3.6)

The above formula admits an efficient solution [186, 79]. Note that when the `2-norm in (3.6) is
replaced by the squared `2-norm, one obtains the mean, whereas using the `1-norm results in the
coordinate-wise median. The geometric median gives a robust and reliable estimate of material
visual appearance even in presence of inaccuracies in the estimated pose mask H`, outperforming
median or average. In addition to µ`, we estimate a robust covariance matrix of X` based on the
geometric median µ`, computed as

C` :=
1

|X`|−1 ∑
x∈X`

(x−µ`)(x−µ`)
T . (3.7)

The geometric median µ` and the covariance matrix C` together define the material appearance, i. e.
Ψ(`) := {µ`,C`}, and are updated at each time frame f .

Figure 3.6 illustrates appearance costs Ea
i when changing the definition of appearance Ψ(xi) for

each pixel as well as the formula for assessing the costs, i. e. dist. When using simple RGB colors,
i. e. Ψ(xi) := RGB(xi), and norm distances, i. e. dist(Ψ(xi),Ψ(`)) := ||Ψ(xi)−µ`||2, we obtain the
pixel costs depicted in Figure 3.6(a, f ,k). Notice that in this case we completely ignore valuable
information on the material given by its covariance C`. The lack of complete information as well as
the use of the weak RGB color space for the distance computations, result in unreliable appearance
costs, since the target material in the pixels has mixed costs. The skin costs depicted in Figure 3.6(a),
for instance, are very sensitive to shading, e. g. around the arms, and have even higher costs on the
arms and face locations than certain far sides in the background. The pants costs in Figure 3.6( f ) are
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Figure 3.6: Color costs (the darker the lower) for skin (a,b,c,d,e), pants (f,g,h,i,j) and shirt (k,l,m,n,o). Each
column from left to right shows the respective costs using simple RGB space distance (a,f,k), HSV space
distance (b,g,l), Mahalanobis distance from the average material color (c,h,m), Mahalanobis distance from
the median material color (d,i,n) and Mahalanobis distance from the geometric median material color (e,j,o).

better estimated, since the pants are well marked till the boundaries. Still, outliers on the shirt and
on the background are present. The illustrated costs for the shirt material in Figure 3.6(k) show a
complete failure, due to the high RGB similarity of the gray shirt to the gray floor.

When replacing the RGB space with the HSV color space instead, we gain more robustness to
shading, since similar colors that are differently illuminated have smaller distances than in the RGB
space. Thanks to this fact, all depicted costs are much improved, see Figure 3.6(b,g, l). Especially
for the skin material Figure 3.6(b) the simple conversion to HSV space mostly resolves the shading
problem around the arms, and better captures the face, eliminating most of the surrounding outliers,
i. e. setting the remaining pixels costs to higher values (closer to white). While the costs for the pants
material itself (Figure 3.6(g)) looks worse than in the RGB case, the remaining body parts and the
background have now been well separated from the target material in terms of costs.

In order to improve upon the still limited lighting-invariance that we gain in the HSV color space,
we resort to keeping the perceived color information as well as the saturation, given respectively
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by the hue and saturation components, ignoring the shading value component. The feature image
Ψ : Ω→ [0,1]3 is then obtained by setting the first and second components to the sine and cosine of
the hue, respectively, and the third component to the saturation. The choice of sine and cosine helps
to better deal with the periodicity of the hue component and, therefore, to ease further processing.
On top of that, rather than using simple norm distances for the function dist, we consider a (frame-

Algorithm 3: Function to convert an RGB image to feature vector.

1 function Ψ := Rgb2Feature(I):
2 for i := 1 to |I| do
3 [H,S,V ] := Rgb2Hsv(I(i)) ∈ {(0,2π),(0,1),(0,1)};
4 Ψ(i,1) := sin(H)+1

2 ;
5 Ψ(i,2) := cos(H)+1

2 ;
6 Ψ(i,3) := S;
7 end

dependent) robust version of the Mahalanobis distance to measure the discrepancy between the
observed appearance vector Ψ(xi) of a given pixel i and material Ψ(`) appearance. Using both
the dynamically updated geometric median µ` and the covariance C`, for all foreground materials
`1, . . . , `|L|−1, we define the appearance cost Ea, in the spirit of the Mahalanobis distance, as

Ea
i (`) := (Ψ(xi)−µ`)

TC−1
` (Ψ(xi)−µ`) . (3.8)

Using the new outlined color space together with the new appearance distance definition above, we
obtain much more accurate appearance costs, see Figure 3.6, columns 3-5, where the corresponding
target material pixels are assigned the lower costs. The figure compares resulting costs Ea

i (`)
computed using the material appearance average (column 3) with median (column 4) and with the
chosen geometric median (column 5), visually proving the effectiveness of the latter against the
remaining two. The shirt costs in Figure 3.6(m,n,o) still presents some limitation at this stage, due
to undistinguished appearances of the shirt and the floor. Nevertheless, this is fixed when combining
the appearance term with the pose term.

Since the background (having label `|L|) is in general inhomogeneous, a single-modal model in the
Ψ-feature space as assumed in (3.8) is inappropriate. Instead of using a multi-modal model, for
the background we consider a lifted feature vector Ψbg obtained by augmenting Ψ with the already
predicted foreground costs, i. e.

Ψbg(xi) = [Ψ(xi)
T ,Ea

i (`1), . . . ,Ea
i (`|L|−1)]

T . (3.9)

By embedding the computed foreground costs into the (3+(|L| − 1))-dimensional background
feature vector Ψbg, we have found that a single-modal model in this higher-dimensional feature
space is able to provide sufficient discriminability for the background. The background appearance
costs are then computed as in (3.8) with Ψbg in place of Ψ, and µ|L| and C|L| being computed from
the predicted background mask using X|L| = {Ψbg(x) : H|L|(x) = 1}. The used method for the
background segmentation is proved to be superior to alternative ways involving for instance the
direct use of the pose costs, as shown in Figure 3.7(c) compared to (d).

Results of the segmentation when using the appearance costs only (ignoring the pose costs) are shown
in Figure 3.8. Notice that, thanks to the robustness of our approach, all foreground materials have
been segmented successfully, with the exception of some isolated pixels present in the background.
These are fixed when additionally considering the pose costs.
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Figure 3.7: Background segmentations using different approaches. (a) Input image, (b) segmentation
resulting by assigning background labels the maximum costs (in this case almost no pixel is assigned the
background label), (c) segmentation with label costs taken from the pose prior alone (silhouette mismatches
arise), (d) segmentation using the proposed background labeling costs.

Figure 3.8: Segmentation results considering only the appearance cost term (without the pose costs):
(a,b,c,d) input views, (e,f,g,h) resulting segmentations.

3.5.3 Smoothness term

In order to achieve a piece-wise constant labeling `̀̀ ∈ L |I| of image I, we use a smoothness term that
penalizes neighboring pixels that are assigned different labels. The Potts model s [139] is a robust
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Figure 3.9: Segmentation results using different smoothness weights. (a,e) Input views, (b,f) no smoothness
weight (λs := 0.0), (c,g) used smoothness weight (λs := 0.5), (d,h) high smoothness weight (λs := 10)

discontinuity-preserving interaction potential that is defined such that s(`i, ` j) := 1 if `i = ` j and
s(`i, ` j) := 0 otherwise. The pairwise term used in (3.1) is given by the generalized Potts model [18]

Ei j(`i, ` j) := wsmooth ·ωi j · s(`,`′) ∀ i∼ j . (3.10)

where wsmooth is the smoothness weight and ωi j ≥ 0 is a weight that depends on appearance similarity
among neighboring pixels i, j and is defined as

ωi j = exp
(
‖Ψ(xi)−Ψ(x j)‖2

2
2

)
. (3.11)

The purpose of the weights ωi j is to increase the cost for assigning different labels to neighboring
pixels that have similar color appearance, and to decrease the cost if the color appearance is different.
Figure 3.9 shows segmentation results with varying smoothness weights wsmooth. Segmentations
obtained without smoothness term are clearly noisy, while those with high smoothness weights tend
to have over-smoothed material boundaries, causing thin materials, such as arms and shoes, to vanish,
see Figure 3.9(d,h). We used wsmooth := 0.5 for all resulting sequences, which gives a good trade-off
retaining material boundaries accuracy with smoother overall look.

3.5.4 Minimization of the MRF Energy

In order to minimize (3.1), we use the alpha-expansion algorithm [19] that has appealing properties
both from a theoretical and from a practical point-of-view. On the one hand, when minimizing
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Figure 3.10: Examples of our segmentation for 4 sequences. (a,d,g,j) Input frames, (b,c,h,k) initial segmen-
tation guesses and (c,f,i,l) final refined segmentations.

the energy in Equation (3.1) with a generalized Potts model as smoothness term (as in (3.10)), the
alpha-expansion algorithm has the guarantee that the so-obtained local optimum lies within a factor
of the global optimum [178]. Moreover, the alpha-expansion algorithm is very efficient and is known
to produce good solutions in practice. In order to improve the performances, we typically reduce
the search space by cropping the input image views based on the reprojected model location at the
current frame. In particular, we consider an enlarged bounding box around the skeleton re-projected
location, with a margin of 100 pixels.

For all frames f > 1 we estimate an initial segmentation guess ˜̀̀̀ f
, which is obtained using the

unchanged material appearance information from the previous frame Ψ(`) f−1 := {µ f−1
` ,C f−1

` }
and the pose prediction formula described in Section 3.5.1 for the costs. Once the actual skeleton
pose is estimated using the mocap approach described in the next section, the initial segmentation
guess is also refined and the new material appearance information is updated. Examples of the
resulting segmentations with their corresponding initial guess are visualized in Figure 3.10. Notice
how the refined estimates resolve most of the issues present in the initial guesses for all shown
sequences in Figure 3.10(c, f , i, l). There are cases, where the initial guess already gives high quality
segmentation results, as in Figure 3.10(b), since the predicted pose in that case is already very
accurate. Figure 3.10(i, l) show great improvements in the refined versions, where most of the
illumination-changing issue and shadows have been correctly recognized and labeled. Also in the
extreme harsh shadows case Figure 3.10(d) there are improvements, although, as depicted, the
method failed to recognize the overexposed face as skin. The quality of the segmentations highly
depends on the quality of the skeleton pose, since both material appearance and pose costs are
estimated based on the skeleton configuration. Overall results clearly show the robustness of our
segmentation method in challenging illumination-changing scenarios.
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Figure 3.11: Visualization of the input 2D CNN-based detections. (a,d) Colored heat-maps obtained from
each joint, (b,e) heat-map maxima identified by crosses, (c,f) 2D corresponding skeleton fit to the detections.

3.6 Pose Tracking

This section describes the pose tracking algorithm used to successfully track the human performance
in presence of challenging illumination changes. The goal is to estimate accurate, temporally-smooth
skeleton pose parameters S f at current frame f . We give as input to our mocap approach both the pre-
computed actor model, described in Section 3.4.1, and the input multi-view material segmentations
`̀̀ f estimated using the method described in Section 3.5. By using the material segmentations directly
instead of the raw images, we gain illumination robustness which helps guiding the skeleton tracking
regardless of possible appearance and light changes.

Such multi-view illumination-invariant images are an optimal input to appearance-based tracking
approaches. Aiming at efficient skeleton recovery as well as robustness to possible input segmentation
outliers, e. g. imprecise silhouette borders, missing materials or other failures as described in
Section 3.5, we adopt the Sums of Gaussians based skeleton tracking method described in detail in
Section 2.4.1. The use of volumetric representation of the body model, through a set of Gaussians,
as well as the smooth optimization used, helps in successfully recovering the skeleton pose even
in presence of qualitatively poor segmentations. Typically if at least a few views have accurately
labeled the corresponding materials, then accurate pose tracking is still feasible. In extreme cases,
however, when, e. g. , the input skeleton pose is wrongly initialized, the tracking method is unable to
recover, due to the segmentation procedure getting stuck to wrong material appearance estimate.



53 3.7. EXPERIMENTAL RESULTS

To avoid the aforementioned situation, we additionally provide the tracking method with CNN-
based 2D detections δ obtained by the convolutional pose machine approach [185]. The 2D sparse
detections which are available for 14 joints only, included end-effectors such as hands and feet,
provide additional cues on the human pose in case of material segmentation failure. Figure 3.11(a,d)
show examples of input 2D detections given as distinct heatmap for each joint. CNN-based detections
are typically robust to varying background and illumination-changes, however, they are temporally
and spatially unstable (see a failure case in Figure 3.11(d)). Nevertheless a combination of both 2D
detections and material segmentations turned to be an effective solution to the pose tracking problem
in challenging illumination-changing scenes.

The 2D joint heatmaps are treated as images similarly to the material segmentation and given as input
to the mocap approach. The additional detection Gaussians, described in Section 3.4.1, are used to
match the skeleton pose with CNN-based 2D detections, in a similar way the Volumetric Gaussians
are fit to the segmented images. As shown in Section 3.7, the additional use of the detections allows
to recover the correct skeleton pose even when uninitialized. The next section describes in detail
how to combine the benefits of the detections with the segmentations using an adaptive weighting
scheme that adjusts their importance based on their reliability.

The pseudo-code of the complete proposed tracking method is outlined in Function 4. Our approach
goes through all frames in the sequences, estimating the skeleton pose if f > 1 (lines 3-5) based on
the currently available segmentations `̀̀ f and detections δ f . Lines 6-11 and 17-23 depict respectively
the estimation the material segmentations for the current frame f (refined or initial) and the next
frame f + 1 (initial guess). Finally lines 12-16 perform weights updating described in the next
Section 3.6.1.

3.6.1 Adaptive weighting

In order to improve upon the robustness and to prevent wrong segmentations to cause error propaga-
tion, we employ an adaptive weighting strategy to set the relative importance between the material
segmentations `̀̀ f and the CNN-based joint detections δ f at current frame f . Let ws and wd be re-
spectively the weights of the segmentation and joint detections, initially set to ws = 0.8 and wd = 0.2.
In order to check for unreliable segmentations, we compute for each material `1, . . . `L the `2-norm
of the distance between the µ

f
` at the current and µ

f−1
` at the previous frame, i. e.

dist(`) := ‖µ f
` −µ

f−1
` ‖2 (3.12)

If any of the dist(`) for ` = `1, . . . `L is larger than the threshold θ := 0.08, it means that the
corresponding material appearance has changed suddenly (i. e. unsmoothly), due to either abrupt
illumination changes or wrong skeleton poses. In this case, we update ws =

ws
2 to decrease the

relative importance of the segmentation, otherwise we set ws := min(ws +0.1,0.8). The weight wd
is obtained as wd = 1−ws, such that when ws is decreased the tracking method relies more on the
detections.

3.7 Experimental Results

In this section, we evaluate the proposed tracking approach by running it on several multi-view
sequences with illumination changes. Among the test sequences, we specifically capture several
outdoor videos with harsh and soft shadows caused by sun and tree interactions, as well as in-studio
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Algorithm 4: Main function to estimate pose parameters S f for each frame f := 2 . . .F ,
given input skinned mesh M, multi-view images I f

c and detections δ
f

c and initial pose
parameters S1.

1 function S f := Solve(M, I f
c ,δ

f
c ,S1):

2 for f := 1 to F do
3 if f != 1 then
4 S f := mocap(M,S f , `̀̀ f ,δ f ,wd ,ws);
5 end
6 for c := 1 to nc do
7 Ep

c := PoseCosts(M,S f ,c);
8 [Ea

c ,µ
f ,c
` ,C f ,c

` ] := AppearanceCosts(I f
v ,E

p
c );

9 E f
c := Ea

c ×Ep
c ;

10 `̀̀ f
c := Optimize(E f

c );
11 end
12 if ∃` : ||µ f ,c

` −µ
f−1,c
` ||> θ then

13 ws := ws
2 , wd := 1−ws;

14 else
15 ws := min(ws +0.1,0.8), wd := 1−ws;
16 end
17 S f+1 := S f + S f−S f−1

2 ;
18 for c := 1 to nc do
19 Ep

c := PoseCosts(M,S f+1,c);
20 Ea

c := AppearanceCosts(I f+1
c ,Ep

c );
21 E f+1

c := Ea
c ×Ep

c ;
22 `̀̀ f+1

c := Optimize(E f+1);
23 end
24 end
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Sequence boy, girl boy, girl1, girl2 walk1, walk2
_indoor _outdoor _outdoor

Published by Us GVVPerfCapEva [68]
Cameras 8
Frames 330 770 400 270 300 700 600
Frame rate 40 Hz
Camera type PhaseSpace Camera [81] GoPro Camera [67]
Resolution 1004×1004 1920×1080

Table 3.1: Details for each sequence. This table summarizes the technical details of the sequences used in
this chapter.

videos with simulated global light-changes. The indoor global illumination changes are simulated by
randomly switching on and off a subset of the studio lights, which are placed around the captured
scene. We additionally run our approach on two challenging sequences from the GVVPerfCapEva
dataset [68]. For one of the outdoor captured sequences, we computed ground truth joint locations and
performed quantitative evaluation as well as comparison to different tracking approaches. We show
that our method produces reliable and accurate tracking, robust to illumination changes and capable
of quickly recovering from temporal failures due to challenging motions or bad pose initialization.

3.7.1 Test Sequences

Due to the lack of available multi-view calibrated footage with illumination changes, for evaluating
our approach we capture 5 new sequences with the wanted actor-light interactions, see Table 3.1. 3
sequences are captured outdoor at sunset on a grass field surrounded by trees. As the sun goes slowly
down behind the trees, the initially soft shadows produced by the branches and leaves interacting
with the sunlight cause soft shadow spots to appear on the actor’s body, temporally changing his
appearance. We design the captured scene such that half of it is covered by the shadows of the trees,
and half is directly hit by the sun. Two differently dressed actors are recorded while moving in such
complex illuminated scene, producing 3 sequences: boy_outdoor, girl1_outdoor and girl2_outdoor.
In particular, in boy_outdoor the recorded actor performs complex arm crossing movements while
stepping from the shadow to the illuminated area. The remaining sequences involve the same girl
actor performing respectively simple walk and jumping motions. The acquisition system for this
scene is composed of 8 steady synchronized and calibratedGoPro cameras [67] placed in a circle
around.

To test our method on global illumination changes as well, we switch the capturing setup in an
indoor studio with a different acquisition setup and a semi-professional studio light system, that help
to simulate wider light changes, both in terms of scene coverage and intensity. The light system
is composed of several white lights placed all around the capture scene, that can be individually
operated by (smoothly) change their intensity from strong to off. While capturing the actors moving
around, the studio lights were randomly operated to generate global illumination variations and
therefore appearance variations of the actor surface. The sequence boy_indoor shows smooth light
reduction across time, while the actor performs similar arm exercises as in boy_outdoor. The longer
girl_indoor sequence involves extreme low-light conditions, where the girl’s body is barely visible
in the dark. Switches from bright to dark illumination happen discontinuously and faster, making
this sequence one of the most challenging to work with. The acquisition system indoor is composed
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of 8 PhaseSpace cameras [81] placed around at different heights, including some of them attached
to the ceiling.

We additionally make use of 2 available sequences from the GVVPerfCapEva dataset: walk1_outdoor
and walk2_outdoor. The first footage includes strong harsh shadows cutting the actor’s body, while
he walks in a circle. The second one, although recorded in steady weather conditions, shows cluttered
dynamic background, with a lot of people walking around, causing trouble to the CNN-based 2D
joint detection, as it is discussed in Section 3.7.3.

3.7.2 Runtime

Our current implementation takes around half a minute per multi-view frame when using 8 views.
The performance time decreases linearly when decreasing the number of camera views considered.
The biggest overhead is the estimation of color and pose costs, which has to be computed for each
view and pixel. These subroutines are called in lines 7, 8, 19 and 20 in Function 4. We believe the
computation time can be drastically decreased using parallel computing techniques. The appearance
costs can be computed in parallel for all the image pixels as they solely depend on the single pixel
appearance. The pose costs estimation could be further simplified to still obtain reliable pose costs at
much higher frame-rate. The CPU implementation of the tracker, in Function 4, line 4, has proven
to have real-time performances, as described in Section 2.4.1.3. Overall, we believe a systematic
GPU implementation of the entire tracking approach, together with the online estimation of 2D joint
heatmaps, can lead to much improved performance.

3.7.3 Qualitative results

In Figure 3.12 and Figure 3.1, we provide some examples of the pose estimation results obtained with
our method. Input to our tracking approach, apart from the multi-view sequence and the calibration,
are the actor models with manually estimated skeletal pose at frame 1. We can see from these
results that our method accurately tracks the skeletal motion of the actors in both outdoor and indoor
scenarios with different kind of illumination changes.

In the girl_indoor sequence, shown in Figure 3.12, row 1, our approach produces smooth reliably
mocap results, even in presence of extremely dark illumination conditions, where the actor is hardly
visible for a human observer. In dark frames, the segmented materials are accurately identified
and provide the tracker valuable information regarding the skeleton location. CNN-based 2D joint
locations instead are unreliable in those frames due to the extreme light conditions. This confirms
the effectiveness of the material segmentation in such challenging scenarios.

Figure 3.12, row 2, shows some resulting frames of the boy_indoor sequences. While the darkest
illumination conditions reached during this sequence remain brighter than the sequence in row 1, here
the tracking has to deal with more challenging arm crossing motions, that typically cause (temporal)
failures for most of the approaches. Our method tracks the whole motion reliably regardless of the
complex movements.

In the outdoor sequences of Figure 3.12, rows 3-5, namely girl1_outdoor, girl2_outdoor and
boy_outdoor, although the appearance of the actors changes significantly as the actors walk into or
out of the shadow, our method is still able to track the skeletal motion stably. The strong appearance
changes of the upper body surface area, e. g. shirt and sweater, from dark to piece-wise over-exposed
and vice-versa, typically causes tracking failure in common color-based approaches. The use of
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Figure 3.12: Qualitative results. The figure shows tracking results obtained with our approach on 2 indoor
and 5 outdoor sequences (columns) and different frames of the same view (rows). From the top to the bottom:
girl_indoor, boy_indoor, girl1_outdoor, girl2_outdoor, boy_outdoor, walk1_outdoor, walk2_outdoor.
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Figure 3.13: The image shows a tracking failure during a challenging motion in the boy_outdoor sequence.
Our method recovers in the next frames. The white circles point to tracking failures.

material segmentations combined with the CNN-based 2D joint detections provide sufficiently
reliable data to overcome challenging appearance shifts and complex motions, like arm crossing and
jumps.

In the boy_outdoor sequence the actor crosses his arm while walking from the shadow to the
illuminated area. The combination of challenging motion and illumination at the same time, causes
temporal tracking failure during those few frames, see Figure 3.13. Despite the failure, our tracking
approach quickly recovers after few frames, thanks to the adaptive weighting of the material
segmentations against the 2D joint detections. Loosing tracking results in abrupt changes in the
estimated material appearance, which in turn results in reduced weighting (confidence) for the
segmentations and increased weighting for the detections. 2D joint detections can recover the
tracking back to stability thanks to the fact they are not strictly relying to temporal information,
instead the joint location probability is estimated individually for each frame in 2D. In the next
section, we show that relying exclusively on the detections results in temporally inaccurate tracking.
The temporal stability of our motion results is visible in the resulting video sequence.

In the sequence of Figure 3.12, row 6, walk1_outdoor, our method yields successful tracking results,
even in presence of harsh shadow. Segmentations for this sequence are successfully estimated,
independently to the appearance changes of the blue sweater. The last resulting walk2_outdoor
sequence, shown in Figure 3.12, row 7, provides a good example where 2D joint detections alone
become unreliable due to the presence in the background of several moving people that tend to
disguise the detector at times. Our tracking approach for this sequence relied almost exclusively on
the material segmentations, resulting in temporally reliable and accurate skeleton tracking.

As additional test, we run our method on the boy_outdoor sequence without providing the initial
skeleton configuration, see Figure 3.14. Testing revealed the importance of the CNN-based joint
detections during this experiment as well as the effectiveness of the adaptive weighting strategy. The
material segmentations alone get stuck to wrong material appearances, due to the body model being
re-projected to highly inaccurate location. Because of the typical high variability of the material
appearance across frames, due to the overlap of the badly re-posed model with different materials
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Figure 3.14: Bad pose initialization example. The image shows skeleton tracking resulting from bad pose
initialization in the boy_outdoor sequence. Even in presence of strong misalignments, our method is able to
successfully recover the correct pose after few frames.

(e. g. building, grass and so on) as well as the pose being discontinuously re-estimated, the 2D
detections weight increases greatly, suggesting the tracker to rely more on the detections and less on
the biased segmentations. The process of adaptive weighting eventually allows the tracking approach
to converge to the correct body pose after few frames, see Figure 3.14.

3.7.4 Comparison

We compare our tracking approach with 3 different tracking methods, specifically chosen to prove the
effectiveness of the algorithmic choices for our mocap algorithm. In particular, we pick the original
Gaussian based tracker, described in Section 2.4.1, denoted as Images-only, which relies exclusively
on the input images, without considering any CNN-based detections or material segmentations. We
additionally run the aforementioned mocap method on the 2D detections only (Detections-only).
Finally, we chose the tracking method proposed by Rhodin et al. [142], which is a representative
approach for tracking relying both on input unsegmented images and 2D joint detections estimated by
CNN (Image+Detections). We run all the chosen tracking approaches to the boy_outdoor sequence
for which we manually estimated the ground truth joint locations. Given the ground truth, we
qualitatively as well as quantitatively evaluated the proposed approach against the related work.

Figure 3.15 qualitatively compares the estimated poses resulting from the aforementioned tracking
approaches against our results. The Images-only method delivers the least accurate results due to
the challenging appearance changes and complex body motions, i. e. arm crossing. Apart from
temporally loosing tracking of the limbs during the crossing motion, the overall body location and
orientation remains stable until the color appearance of the various materials changes due to the body
being hit by direct sunlight, after it leaves the shadow. Examples of resulting skeleton configuration
are shown in Figure 3.15(d,h).

The Detections-only method is more robust to complex motions and illumination, however its
temporal instability leads to frequent sudden tracking failures. The jittering is due to the high
variability of the joint heatmaps, which are computed independently for each frame and camera. 2D
joint detections often contain outliers due to the presence of other people in the scene or person-like
objects. As soon as for more than half of the views the estimated heatmaps can be used to identify
correct joint locations, the correct pose is typically also well identified, although jittery. Another
limitation of the Detections-only method is the missing tracking information for some joints, like
feet and hands, which therefore cannot be recovered. These are also visible in Figure 3.15(b, f ).
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Figure 3.15: Comparison of estimated poses in 2 frames of the boy_outdoor sequence for different methods.
(a,e) Our reconstruction, (b,f) Detections-only, (c,g) Image+Detections and (d,h) Images-only. The white
circles point to tracking failures.

The Image+Detections method highly relies on the (jittery) CNN-based detections, however the
resulting sequence is smoother than Detections-only due to the additional raw images input for
guiding the tracking. The jittering is attenuated by combining the detections with the denser
information given by the raw images. However, temporal pose estimation failures are still present
due to the unreliable illumination changing images. Figure 3.15(c,g) shows an example frame where
the estimated pose is incorrectly estimated, due to high input color variability caused by the shadows.
End-effector joints like the top of the head and the feet remain sometimes unexplained because of
the lack of reliable information at those locations.

Our tracking approach successfully estimates the entire body motion outperforming all the related
approaches, both in terms of motion estimation accuracy and smoothness across time. The resulting
skeleton estimations compared to the other discussed methods are visible in Figure 3.15(a,e).
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Figure 3.16: 3DPCK values of end-effector joint positions for boy_outdoor sequence when using 8 cameras.
The value on the vertical axis shows the percentage of frames where the error is smaller than or equal to the
value on the horizontal axis. The corresponding AUC values are shown in Table 3.2.

Table 3.2: Area under curve (AUC) values of 3DPCK curves in Figure 3.16, as well as the corresponding
numerical summary of average ground truth errors (in cm) and standard deviation for five different joints.

Images+Detections Images-only Detections-only Ours

Joint AUC Error AUC Error AUC Error AUC Error
Left Wrist 0.9249 7.35±9.68 0.6858 30.92±26.18 0.9295 6.89±8.77 0.9428 5.59±4.91
Right Wrist 0.9298 7.20±11.39 0.6023 41.02±35.09 0.9326 6.91±9.73 0.9451 5.61±6.32
Left Ankle 0.8839 7.28±3.05 0.7979 12.69±14.35 0.9075 5.79±1.28 0.9114 5.55±1.33
Right Ankle 0.8279 9.60±3.34 0.7003 16.73±16.82 0.9061 5.22±1.14 0.9105 4.98±1.25
Neck 0.8836 3.23±1.45 0.7001 8.34±5.71 0.8951 2.91±1.18 0.8970 2.86±1.26

3.7.5 Quantitative evaluation

Quantitative results evaluating those methods on the boy_outdoor sequence are shown in Figure 3.16,
as well as in Table 3.2. In Figure 3.16, we show the percentage of correct keypoints (3DPCK [116])
for four end-effector joints across the entire sequence comprising 400 frames from 8 different views.
The end-effector joints, e. g. hands and feet, provide a good measure for the overall skeleton pose
accuracy, since the corresponding joints typically move faster than the remaining ones and thus
are most prone to tracking failures and jittering. Among the chosen joints for the evaluation, we
selected the wrists, the ankles and the neck. Table 3.2 summarizes the corresponding area under the
curve (AUC) as well as the 3D ground truth error (in cm) for the chosen methods and joints. Overall,
our method and the Detections-only method significantly outperform the other two approaches. As
also discussed in the qualitative evaluation of the methods in Section 3.7.4, our method yields more
accurate motion estimation results. This assessment is also quantitatively confirmed in Table 3.2
with a reduced AUC as well as reduced overall error.

We also evaluate the performance of our method compared to Detections-only depending on the
number of views, see Figure 3.17. For the evaluation we compute the end-effector joints errors in cm
as before. As we decrease the number of views used, we keep the most challenging camera views,
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Figure 3.17: Ground truth error (vertical axis) of our method (solid lines) and Detections-only (dashed lines)
depending on the used number of views (horizontal axis).

where the appearance changes are best visible. We also maintain a good distribution of the chosen
cameras, to favor a good coverage of the scene. As expected, skeleton pose estimation in acquisition
setups with fewer cameras are less accurate. Our method outperforms Detections-only for all joints,
except the left wrist joint alone, that is shown to be more accurately estimated by Detections-only
when fewer than 6 cameras are used. Apart from being invisible from the selected camera views for
most of the time, the left arm happen to casually overlap to the same background material, causing
segmentation trouble to distinguish it from the skin through unchanged adaptive weighting, thus
resulting in long lasting tracking failure of the corresponding joints.

3.8 Discussion and Limitations

The proposed tracking approach is robust to illumination changes thanks to the combination of
material segmentations and CNN-based joint detections. Results on various testing sequences with
different illumination conditions show the effectiveness of the proposed method to accurately track
the human motion in outdoor challenging scenarios with a possible dynamic background, occlusions
and appearance changes. Our approach outperforms existing related approaches as demonstrated
both qualitatively and quantitatively in Section 3.7.

Illumination-invariant material segmentation is robust thanks to the proposed dynamic appearance
term. Our method is, in general, reliable in cases where the foreground and the background
appearance coincide, thanks to the additional pose prediction term accounting for plausible motions.
Results demonstrated the effectiveness of the tracking approach even in presence of imperfect material
segmentation boundaries. Since the used mocap approach is based on smooth Gaussian based scene
representation, it does not strictly consider sharp object boundaries or edges, making incomplete
or inexact segmentations suffice for good tracking results. Moreover, the missed information
about a certain material location can still be inferred by the location of the other surrounding
materials. Typically, in a multi-view setting, the background varies a lot and the combination of the
segmentations of all the views suffices to converge to the right pose.

The additional use of the 2D joint detections and the adaptive weighting scheme further increase
the robustness of our tracking approach. Detections have shown their effectiveness in presence of
inaccurate segmentations and strong initial skeleton pose misalignment. Thanks to the proposed
scheme, our method can quickly recover from segmentation errors.

The initial model acquisition and semi-automatic material segmentation have a direct impact on the
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quality of the results. Our approach does not require an exact shape match to the images, however,
accurate input shapes lead to higher-quality segmentation and tracking. To automatically identify the
actor materials, a simple color clustering might suffice. Automatic identification of the materials
could, however, produce poor quality segmentations, e. g. in presence of highly textured apparel.

Our method cannot directly handle non-homogeneous as well as highly specular foreground materials,
due to their high variability within the same material. A multi-modal color term, e. g. Gaussian
mixture models, could help in improving segmentation of such materials. Alternatively, it might be
necessary to define multiple sub-materials to better handle highly variable material appearances.

3.9 Conclusion

In this chapter, we have presented a novel approach for illumination-invariant human mocap in a
multi-view setup. The goal is to capture the continuous temporally-consistent skeleton pose in a
multi-view sequence with illumination changes, such as global light changes, or appearance changes,
due to e. g. harsh shadows or view-inconsistent reflectance of e. g. pieces of apparel. We employ an
intermediate image representation that factors out variations in lighting across the sequence in time,
or variations in appearance across the views. In order to obtain this invariant representation, for each
frame and each view we solve a segmentation problem that uses previous tracking results in order to
infer cues about the individual materials’ appearances in the current frame. By fusing this approach
with CNN-based joint detectors as well as with the model-based tracker described in Section 2.4.1,
we demonstrate superior performance compared to other methods, even under difficult conditions.

The proposed mocap method is focused on recovering the coarse skeleton based deformation of
the actor, ignoring personalized non-rigid detailed deformation, which are crucial in performance
capture applications. In the next chapter, we fill this lack by discussing a novel approach for dense
surface tracking. The described surface capture method densely refines input coarse (skeleton based)
actor deformation sequences by adding visible non-rigid deformation detail from multi-view images.





Chapter 4
Surface Capture

4.1 Introduction

In the previous chapter, we focused on skeletal motion capture in challenging illumination-varying
scenarios, ignoring the tracking of fine-scale surface details. This chapter fills this gap for per-
formance capture applications by focusing on a novel surface capture method that densely refines
input coarse animations. Over the last decade, performance capture techniques have enabled the
3D reconstruction of the motion and the appearance of real-world scenes, such as human motion
or facial expressions, from multiple video recordings [40, 64, 20, 179]. Captured sequences are
reconstructed using a space-time coherent 3D mesh, also known as 4D model, that reproduces
the original scene or motion. Such temporal reconstructions are essential for creating high-quality
animations in entertainment and real-time applications, e. g. virtual mirrors. 4D models can be
obtained by deforming a mesh or a rigged template such that it aligns with the images [40, 179], or
by a per-frame independent reconstruction of the scene [162, 35] followed by a surface alignment
step to convert the temporally inconsistent mesh geometries to a coherent model [25]. However,
many reconstructing methods only produce coarse-to-medium scale 4D models that do not reproduce
the high-frequency geometry detail present in the original scene. A second refinement step serves as
to recover the finer scale shape detail on top of the coarse geometry.

For fine surface detail reconstruction, some methods have used photo-consistency constraints via
stereo-based refinement [40, 162]. However, such methods often turn to discrete sampling of
local displacements, since formulating dense stereo based refinement as a continuous optimization
problem has been more challenging [100]. Other methods for mesh refinement align the surface
to a combination of silhouette constraints and sparse image features [64]. But such approaches
merely recover medium scale detail and may suffer from erroneous feature correspondences between
images and shape. Recently, shading-based techniques such as shape-from-shading or photometric
stereo [192, 190, 179] have been also proposed to capture small-scale displacements. However, these
methods are either limited to be used in controlled and calibrated lighting setups, or they require
a complex inverse estimation of lighting and appearance when they are applied in uncontrolled
recording conditions.

This chapter describes an effective solution to the dynamic shape refinement step using multi-view
photo-consistency constraints. As input, our method expects synchronized and calibrated multiple
video of a scene and a reconstructed coarse mesh animation, as it can be obtained with previous

65
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Figure 4.1: From a multi-view video sequence (a) and a coarse mesh animation (b), our method efficiently
reconstructs fine scale surface details (c) on the skirt, e. g. wrinkles and folds.

methods from the literature. Background subtraction or image silhouettes are not required for
refinement.

Our main technical contributions are:

1. a new implicit surface representation that models the mesh surface with a dense collection of
3D Gaussian functions centered at each vertex,

2. the formulation for dense photo-consistency based surface refinement, which we formulate as
a global optimization problem in the position of each vertex on the surface,

3. and the integration of the proposed refinement method into a model-based performance capture
pipeline.

The model-to-image photo-consistency formulation can be effectively minimized in terms of dense
local surface displacements with standard gradient-based solvers. In contrast to previous approaches,
this formulation enables a correspondence-free continuous optimization of the dense surface defor-
mation.

We test our approach on performing actors wearing loose clothing, e. g. skirt or large t-shirt. The
input coarse geometry of the scenes is obtained using a template-based method [64, 40], or a
template-free method [162] followed by a surface alignment step [25]. Qualitative and quantitative
results demonstrate that our approach captures more fine-scale detail, e. g. , the wrinkles in the skirt
in Figure 4.1, than both of the baseline methods.
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4.2 Related Work

Existing methods for surface capture and refinement can be split into two categories. On one hand,
model-based methods [31, 40, 64, 179, 107, 191, 193, 9] deform a static template of an actor or a
person’s apparel [20], usually obtained by a laser scan or image-based reconstruction, to best fit it into
synchronized multi-camera input. On the other hand, model-free methods [162, 180, 60, 35] remove
the need of an initial template by reconstructing a per-frame independent geometry using variants of
shape-from-silhouette or active or passive stereo [60, 206, 115, 162, 184, 175]. In contrast to model-
based methods, the output geometry is typically temporally incoherent, e. g. has a different number
of vertices and edges per frame. A subsequent step, known as surface alignment, is used to convert
the temporally incoherent geometry proxy to a coherent geometry that deforms over time to fit the
reconstructed shapes. Cagniart et al. [27] solve such free-form alignment sequentially by iterative
close point matching of overlapping rigid-patches. Similarly, Budd et al. [25] use a combination of
geometric and photometric features in a non-sequential alignment framework. Volumetric constraints
have also been used to formulate the surface tracking problem [4, 41]. Nevertheless, regardless the
accuracy of the method used for surface tracking, most of them result in a coarse-to-medium scale
4D model in which most of the high-frequency details are lost.

Most of the methods mentioned so far suffer from two main limitations: on one hand, the template-
based methods that use an initial highly detailed scan model usually do not deform the fine-detail
of the template according to the acquired per-frame imagery. This leads to incorrect surface detail
on the final reconstructed meshes that does not match the captured dynamics [40, 179]. On the
other hand, methods that require the deformation of the per-frame reconstructed meshes to achieve
temporal consistency [162, 25, 27] tend to output a coarse reconstruction of the sequence. In both
cases, true fine detail needs to be recovered in a subsequent step.

Medium scale non-rigid 4D surface detail can be estimated by using a combination of silhouette
constraints and sparse feature correspondences [64]. Other approaches use stereo-based photo-
consistency constraints in addition to silhouettes to achieve denser estimates of finer scale defor-
mations [162, 40]. It is an involved problem to phrase dense stereo-based surface refinement as a
continuous optimization problem, as it is done in variational approaches [100]. Thus, stereo-based
refinement in performance capture often resorts to discrete surface displacement sampling which
are less efficient, and with which globally smooth and coherent solutions are harder to achieve.
Alternatively, fine-detail surface deformation caused by garment wrinkling has been investigated
using cloth-specific approaches. Popa et al. [138] enhance reconstructed surfaces using a wrinkle
generation method based on the recorded shadows.

Fine-scale detail can be also recovered using methods acquiring active lighting, e. g. shape-from-
shading or photometric stereo [190]. Many of these approaches require controlled and calibrated
lighting [77, 180, 3], which reduces their applicability in real-world scenarios. For example, Hernan-
dez et al. [77] use red, green and blue lights from different directions to estimate surface normals
with a photometric stereo approach. This enables detailed reconstruction of cloth, even untextured.
Ahmed et al. [3] estimate surface reflectance and time-varying normal fields on a coarse template
mesh to incorporate garment details such as wrinkles and folds. Vlasic et al. [180] reproduce
high-resolution geometric detail by capturing multi-view normal maps in a large lighting dome that
provides a series of novel spherical lighting configurations. More recently, shading-based refinement
of dynamic scenes captured under more general lighting was shown [192, 191], but these approaches
are computationally challenging as they require to solve an inverse rendering problem to obtain
estimates of illumination, appearance and shape at the same time.
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Figure 4.2: Our approach takes as input a coarse topologically consistent mesh animation and a set of
input images from a multi-view calibrated and synchronized camera setup. Both the input mesh and image
sequences are converted to an implicit representation resembling respectively a collection of 3D Surface
Gaussians and 2D Image Gaussians. Then, the color consistency between the two representations is
optimized in 2D for each camera view, resulting in a refined mesh animation with additional captured surface
details.

Our technique has some similarity to the work of Sand et al. [151] who capture skin deformation
as a displacement field on a template mesh. However, they require marker-based skeleton capture,
and only fit the surface to match the silhouettes in multi-view video. In this chapter, we describe a
surface refinement approach that does not require input silhouettes and has therefore the capabilities
of being applied on unconstrained outdoor scenarios.

4.3 Overview

In this section, we describe our model-based surface capture approach, also depicted in Figure 4.2.
Given a sequence of multi-view calibrated and synchronized images capturing the action of a single
actor, as well as a deformation sequence, composed of a set of spatiotemporally coherent meshes, i. e.
with the same topology over time, coarsely reproducing the visible surface deformation, our goal
is to refine the initial set of coarse geometries by incorporating missing visible fine-scale dynamic
surface details to the meshes. The proposed refinement method is applicable to any deformation
sequence. For consistency with the scope of this thesis, we focused on refinement of performing
humans, for which an initial deformation sequence is available.

The proposed approach extends the mocap method described in Section 2.4.1 to surface capture
using a similar Gaussian based representation both for the actor model and the input multi-view
images. To enable capture of finer-scale deformation detail, we employ a much denser collection
of 3D colored Gaussian functions, referred to as Surface Gaussians, to approximate the surface.
Each Surface Gaussian implicitly describes the location and color of each vertex in the input mesh.
Similarly to Section 2.4.1, we maximize the color consistency between the collection of projected
Surface Gaussians and the images, properly converted to a set of Image Gaussians, obtained using
the approach described in Section 2.4.1.1, for all views. Because of the additional detail required for
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refinement, we employ a much denser set of Image Gaussians w. r. t. to those used in Section 2.4.1.

The optimization displaces the Surface Gaussians along the associated vertex normal of the coarse
mesh, yielding the necessary vertex displacement. On top of an extended similarity energy functional,
initially introduced in Section 2.4.1.2, we employ a new regularization term, to account for temporally
and spatially smooth surface deformation tracking. Thanks to the advantageous mathematical
formulation, our optimization method inherits all advantages of the initial mocap method: our
smooth energy function can be expressed in closed form, and it allows to analytically computing
derivatives, enabling the possibility of using efficient gradient-based solvers.

4.4 Scene Model

In order to enable effective model-to-image consistency optimization, we convert the actor model
and the images to an implicit representation, similarly to Section 2.4.1.1. Both the actor and the input
multi-view images are converted to Sums-of-Gaussian functions with additional color attributes.

4.4.1 Actor

Our refinement approach requires an input deformation sequence that coarsely represents the recorded
action, visible in the multi-view video. The input deformation sequence, i. e. the sequence of
topologically consistent meshes, is typically the result of vertex displacements applied on a given
actor geometry, i. e. having fixed topology over time. Alternatively, in presence of complete three-
layered actor models, as described in Section 2.2, with given skeletal joint configurations per frame,
obtained, e. g. , from the mocap approach described in Chapter 3, the deformation sequence can be
obtained applying skinning frame-by-frame.

Our implicit model for the input actor geometry is obtained by placing a Surface Gaussian at each
mesh vertex vs, ∀s ∈ {1 . . .ns}, ns being the number of vertices. An isotropic Gaussian function
on the surface is defined with a mean µ̂s, that coincides with the vertex location, and a standard
deviation σ̂s as follows:

Ĝs(x̂) =
1√

σ̂s
√

π
exp
(
−||x̂− µ̂s||2

2σ̂2
s

)
, (4.1)

with x̂ ∈ R3. The standard deviation σ̂s is chosen to guarantee surface coverage while minimizing
overlap. We typically regularize the input mesh triangulation beforehand, such that each vertex
is equidistant and then choose the same σ̂s,∀s. Figure 4.3 shows an example of implicit model
representation for the skirt region. Note that although assigned Surface Gaussians Ĝs(x̂) have
infinite support, for visualization purposes we visualize them as a sphere centered at µ̂s with σ̂s mm
radius. In contrast to the unnormalized representation used for the Volumetric Gaussians, shown
in Section 2.2.3.2, the Surface Gaussians are normalized using the normalization factor of 1√

σ̂s
√

π
.

In Section 4.5, we mathematically validate this choice and show quantitative improvements on the
overall energy formulation.

We further assign an HSV color value ηs to each Surface Gaussian. In case the geometry model of
the actor is equipped with colors, it is possible to directly assign the corresponding vertex colors to
the Surface Gaussians. When vertex colors are unavailable, for each projected Surface Gaussian, we
compute the underlying pixel color mean, in a similar way as it is done for Volumetric Gaussians in
Section 2.4.1.4. However, when computing the color mean, due to possible occlusions and other
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Figure 4.3: Surface Gaussian initialization pipeline. Starting from the input mesh (left), we populate the
regions in which we want to recover the fine geometric detail (in this case, the skirt) with 3D Gaussians
(center). Finally, a color is assigned to each 3D Gaussian based on the underlying reprojected pixel average
from the best-camera view (right).

vertex visibility issue, we only consider the most direct camera, i. e. where the corresponding vertex
normal and camera viewing direction align best, instead of taking all the camera views. The Surface
Gaussians are then projected to the image from the best camera view and the underlying pixel color
average is assigned as additional color attribute.

3D Surface Gaussians Ĝs can be easily and efficiently projected to the 2D image space of each
camera view using the corresponding camera projection matrix P. The projected 2D mean µs and
standard deviation σs are computed using the formulas shown in Section 2.4.1.1. The same Surface
Gaussian based representation is propagated to subsequent meshes in the deformation sequence.
Temporal correspondences across topologically consistent meshes are easily inferred.

4.4.2 Images

Our implicit model for the input images I(c) of all cameras views c ∈ {1 . . .nc}, nc being the number
of cameras, is obtained by assigning an Image Gaussian Gi(x), x ∈ R2 to each image patch of all
camera views. Section 2.4.1.1 describes in detail this procedure. Since we aim at capturing fine-scale
details, we choose the quad-tree depth threshold Tqt such that the smallest Image Gaussians has
standard deviation σi := 1 pixel.

4.5 Surface Refinement

In this section, we describe our surface refinement approach. We employ an analysis-by-synthesis
approach to refine the input coarse mesh animation, at every frame, by optimizing the following
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energy E(M ) w. r. t. the collection of Surface Gaussian means M = {µ̂1, . . . µ̂ns}:

E(M ) = Esim(M )−wregEreg(M )−wtempEtemp(M ). (4.2)

The term Esim measures the color similarity of the projected 2D Surface Gaussians with the 2D
Image Gaussians for each camera view. Ereg is used to keep the distribution of the Surface Gaussians
geometrically smooth, whereas wreg is a user defined smoothness weight. The additional term Etemp
is used to temporally smooth the displacements of the Surface Gaussians over time to avoid visual
artifacts such as jittering, whereas wtemp is a user defined temporal smoothing weight.

We constrain the Surface Gaussians to only move along the corresponding vertex (normalized)
normal direction n̂s, i. e. the 3D mean µ̂s is defined by:

µ̂s = µ̂
init
s + n̂sks ∈ R3 (4.3)

where µ̂ init
s is the initial Surface Gaussian mean initialized as the vertex position vs at the beginning

of each frame, and ks is the unknown vertex displacement. Constraining the motion of µ̂s along the
corresponding normal brings two main advantages. On the one hand, it implicitly forces the Surface
Gaussians to maintain a regular distribution on the surface, reducing the risk of self intersections
due to crossing triangles. On the other hand, the consequent reduction of the optimization space, i. e.
ns (ks) unknown instead of 3×ns ( [µ̂s]x, [µ̂s]y and [µ̂s]z ), results in higher performance as well as
better-posed convergence.

Optimal displacements ks for each Surface Gaussian can be directly applied as vertex displacements
along the corresponding surface normal to refine the model surface, both in terms of reprojected
surface-image appearance agreement and space-time smoothness. We define each term of E(M )
analytically and compute the corresponding derivatives with respect to the unknown displacements
ks,∀s ∈ {1 . . .ns}. The derivatives are:

∂E
∂ M

=
∂E
∂ks

=
∂

∂ks
(Esim−wregEreg−wtempEtemp) =

∂Esim

∂ks
−wreg

∂Ereg

∂ks
−wtemp

∂Etemp

∂ks
(4.4)

In the next sections, we describe each term in detail.

4.5.1 Similarity Term

We exploit the power of the implicit Gaussian representation of both input images and surface
in order to derive a closed-form analytical formulation for our similarity term. The appearance
and spatial similarity Φi,s of an Image Gaussian Gi and projected Surface Gaussian Gs pair can be
mathematically formulated as the integral of the Gaussian product, weighted by the color similarity
T∆c(δi,s), as follows:

Φi,s = T∆c(δi,s)

[∫
Ω

Gi(x)Gs(x)∂x
]2

(4.5)

This equation has a similar mathematical definition to the overlap energy used for Volumetric
Gaussians, explained in detail in Section 2.4.1.2. One of the advantages of using a Gaussian
representation is that the integral in Equation 4.5 has a closed-form solution:

Φi,s = T∆c(δi,s)

[∫
Ω

1
√

πσsσi
exp
(
−1

2
||x−µi||2

σ2
i

)
· exp

(
−1

2
||x−µs||2

σ2
s

)
∂x
]2

(4.6)
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Figure 4.4: Volumetric Gaussians based shape approximation from silhouette at different optimization steps
[143]. (a) Initialization, (b) after 100 iterations, (b) after 300 iterations and (d) after 10000 iterations.

= T∆c(δi,s)

 √
2σsσi√

(σ2
s +σ2
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exp
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−1
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i

)2

= T∆c(δi,s)2
σsσi

σ2
s +σ2

i
exp
(
−||µi−µs||2

σ2
s +σ2

i

) (4.7)

Notice that, due to the different mathematical definition of Surface Gaussians compared to Volumetric
Gaussians, Φi,s has a more advantageous closed-form definition. The use of normalized Surface
Gaussians with the chosen normalization factor allows to mathematically constraining the overlap
Φi,s in the interval [0,1], which has appealing properties concerning the next formulations’ steps.
Φi,s estimated with normalized Gaussian can be also used to optimize the standard deviation σ̂s

along with the mean µ̂s of the Surface Gaussians. This can be used for example when estimating
optimal Surface Gaussians properties, i. e. location and size, during model initialization, as it has
been demonstrated in Figure 4.4 for Volumetric Gaussians. Figure 4.5 compares the similarity
landscape in 3D with and without normalization, visually proving the effectiveness of this improved
formulation.

To compute the similarity of the surface model to the multi-view images Esim, we first calculate
the overlap of the set of Surface Gaussians against the set of Image Gaussians for each camera
view, obtained by summing-up all overlaps Φi,s, ∀i,s. Then, we normalize the result considering the
number of cameras nc and the maximum obtainable overlap, which can be found counting out the
Image Gaussians ∑i Φi,i = ∑i 1 = nc

i , ∀c:

Esim =
1
nc

nc

∑
c=1

[
1
nc

i

nc
i

∑
i=1

min

(
ns

∑
s=1

Φi,s, 1

)]
(4.8)

such that Esim ∈ [0,1]. The use of normalized Gaussians contributes in an improvement in perfor-
mance (3% w. r. t. the unnormalized version), due to the reduced computational demand for Esim.
In this equation, the inner minimization implicitly handles occlusions on the surface as it prevents
occluded Gaussian projections into the same image location to contribute multiple times to the
energy. This is an elegant way for handling occlusion while preserving at the same time energy
smoothness.
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Figure 4.5: Similarity Esim evaluated for a Surface Gaussian with varying mean µs and standard deviation
σs against a fixed Image Gaussian having σi = 5 and µi = 0. Left: the energy obtained without Gaussian
normalization as in [147]. Right: the energy obtained by normalizing the Gaussians as explained in this
chapter. Both plots have a maxima in µs = 0 = µi, however only the normalized energy on the right has max
Esim = 1 for σs = 5 = σi, while the un-normalized plot has limσs→∞ Esim = ∞.

This formulation has appealing analytical derivatives:

∂Esim

∂ks
=

1
nc

nc

∑
c=1

1
nc

i

nc
i

∑
i=1


∂Φi,s
∂ks

if∑
ns
s=1 Φi,s < 1

0 otherwise
(4.9)

For the full derivation, refer to Section A.0.1.

4.5.2 Regularization Term

The regularization term constraints the Surface Gaussians in the local neighborhood such that the
final reconstructed surface is sufficiently smooth. This is accomplished by keeping neighboring
vertices displacements ks and k j, j ∈Ψ(s), Ψ(s) being the set of Surface Gaussians indices that are
neighbors of Ĝs, close to each other:

Ereg =
ns

∑
s=1

1
|Ψ(s)| ∑

j∈Ψ(s)
T∆d (δs, j)(ks− k j)

2 (4.10)

The relevance of a pair ks and k j similarity is adjusted by the fixed weight T∆d (δs, j), that is small
(≈ 0) when the geodesic distance δs, j ∈ R+ (measured in number of edges) between the vertices is
large, and large (≈ 1) otherwise. In particular, T∆(δ ) is the Wendland radial basis function defined in
Section 2.4.1 and ∆d is the maximum allowed geodesic distance after which T∆d drops to 0. Since we
assume fixed surface topology for our experiments, δs j does not change, and in particular is constant
with respect to the variable ks. We compute the geodesic distance among all vertices and all possible
neighbors only once for each sequence.

The effect of the minimization of Ereg is to maintain a smooth surface where all close neighbors show
similar displacements the more they are close to each other. Notice that the initial model surface
with ks = 0,∀s is assumed to be already smooth. Baked-in details cannot be smoothed out after
optimization. A similar formulation in the case of free motion of the Surface Gaussian without any



CHAPTER 4. SURFACE CAPTURE 74

constraints along the normal would be harder to formulate, as it would require additional complex
terms to guarantee smooth and regular surface distribution of the resulting vertex positions. The
smooth derivatives of the regularization term are:

∂Ereg

∂ks
=

4
|Ψ(s)| ∑

j∈Ψ(s)
T∆d (δs, j)(ks− k j) (4.11)

The corresponding derivation rules can be found in Section A.0.2.

4.5.3 Temporal Term

The temporal smoothing term is used to constraint the displacements ks over time, generating a
smooth temporal deformation and avoiding jitter and artifacts. This term is defined as follows:

Etemp =
ns

∑
s=1

(
1
2
(k f−2

s + k f
s )− k f−1

s

)2

(4.12)

where k f
s , k f−1

s and k f−2
s are respectively the normal displacement ks computed a current, previous

and one before the previous frame. This formulation is inspired by the acceleration law, aiming at
obtaining time consistent results with smooth acceleration. The smoothing term comes into play
after computing the displacements for the first 2 frames, when the constants for the first frame k1

s ,
and second frame k2

s are known.

Smooth derivatives of the temporal term are computed as:

∂Etemp

∂ks
=

1
2
(k f−2

s + k f
s )− k f−1

s (4.13)

The complete derivation rules are in Section A.0.3.

4.5.4 Optimization

Our energy function E can be efficiently optimized using an iterative gradient-based approach. For
each iteration t of the maximization process, we compute the derivative of Et with respect to each
ks,s ∈ {1 . . .ns}, obtained summing-up all energy term derivatives together, following Equation 4.4.

To improve computational efficiency, we evaluate the overlap Φi,s only for visible Surface Gaussians
from each camera view. Explicit visibility computation is performed only once at the beginning
of each frame, by considering each Surface Gaussian as simple vertices. The implicit occlusion
handling approximation takes care of consistently handling new occlusions that might arise during
optimization. The Gaussian overlap is then computed against visible projected Surface Gaussians
and Image Gaussians in a local neighborhood, by considering only the closest Image Gaussians up
to a distance threshold Tdist in number of pixels and an HSV color distance threshold Tcolor.

We efficiently optimize our energy function E using a conditioned gradient ascent approach. The
general gradient ascent method is a first-order optimization procedure that aims at finding local
maxima by taking steps proportional to the energy gradient. It uses a scalar factor, the conditioner γ ,
associated to the analytical derivatives that increases (respectively decreases) step-by-step when the
gradient sign is constant (respectively fluctuating).
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At each optimization step t we update the displacements kt
s based on the current normalized gradient

∇(E)t and conditioner γ t

kt
s = kt−1

s +∇(E)t
γ

t (4.14)

where initial k1
s = 0, ∀s = 1 . . .ns, and ∇(E)t is the normalized gradient computed considering the

maximum ∇(E)t among all s = 1 . . .ns at the current step to ensure values in the interval [0,1]:

∇(E)t =
∇(E)t

max(∇(E)t ,s = 1 . . .ns)
(4.15)

The conditioner is initially set to γ1 = 0.1, then we update it based on the gradients at previous and
current step as follows:

γ
t+1 =


min

(
1.2γ t ,

∆γ

∇(E)t

)
if
(

∇(E)t−1∇(E)t
)
> 0

0.5γ t otherwise

(4.16)

where ∆γ = 1 mm is the maximum step size. We additionally check if the gradient has dramatically
decreased in magnitude, and if so further reduce the conditioner based on the gradient ratio:

γ
t+1 = 0.25

∇(E)t−1

∇(E)t
γ

t (4.17)

The use of the conditioner brings three main advantages: faster convergence to the final solution,
smoother convergence slope without undesired zigzagging, and controlled size of the analytical
derivative. Such benefits are depicted in Figure 4.6, showing the impact of the conditioner on the
convergence curve trend. For each frame, we perform at least t := 5 and at most t := 1000 iterations,
and stop when

|Et −Et−1|
max(1,Et ,Et−1)

≤ 1e−8. (4.18)
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Figure 4.6: Comparison between conditioned gradient ascent (red) used in this paper, and simple gradient
ascent (green) optimization. Left: gradient intensity ∇(E)s per iteration of a single parameter ks. Right: the
energy E per iteration. The conditioned gradient ascent has faster convergence to the local maxima while
keeping a smooth gradient curve.

Once the convergence has been reached (typically around iteration nt := 200 for all sequences,
see Figure 4.6), we update the vertex positions of the input mesh at the current frame by simply
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Sequence skirt dance handstand wheel pop2lock synthetic
Published by Gall et al. [64] S.&H. [162] Us
Cameras 8 10
Frames 640 574 150 120 250 1
Frame rate 40 Hz n/a
Camera type PhaseSpace Vision Camera n/a
Resolution 1004×1004 1920×1080 1280×720
Vertices 12095 3430 12095 12095 3880 42

Table 4.1: Details for each sequence. This table summarizes the main settings for all the used sequences,
as well as optimization-related settings, e. g. approximate amount of 3D and 2D Gaussians per frame.

displacing them along the corresponding normal using the found optimal k f
s := knt

s . Note that in
practice, when rendering the final resulting mesh sequence, we add an extra ε to the computed vertex
displacement k f

s . This is needed to compensate for the small surface bias (shrink along the normal
during optimization) that is due to the spatial extent of the Gaussians. More details are given in
Section 4.6. Hence, we update the vertex position as:

v′s = vs + n̂s · (k f
s + ε) (4.19)

where vs is the original location of the vertex, n̂s is the corresponding unchanged normal and ε = σs

throughout this work.

4.6 Experimental Results

In this section, we describe our datasets and provide detailed qualitative and quantitative evaluation
of the results compared to previous work.

4.6.1 Test Sequences

We test our approach on five different datasets: skirt, dance, pop2lock, handstand and wheel. Input
multi-view video sequences, as well as camera settings and initial coarse mesh reconstruction
were provided by Gall et al. [64] and Starck and Hilton [162]. All sequences are recorded with
8 synchronized and calibrated cameras and number of frames ranging between 120 and 640, see
Table 4.1. Input coarse meshes are obtained using techniques based on sparse feature matching,
shape-from-silhouette and multi-view 3D reconstruction, described in [64, 162], and therefore lack
of surface details.

In order to refine the input mesh sequences, we first subdivide the coarse input topology by inserting
additional triangles and vertices until we reach sufficient density. This preprocessing step is per-
formed in order to increase the amount of surface details that can be captured during optimization.
We typically subdivide more in presence of highly textured apparel, and less in case of plain colored
surfaces. The skirt in the skirt sequence for instance is highly subdivided, due to the high details
recovering potentials, while the monochromatic shirt and pants in the dance sequence are mostly left
with their original coarse subdivision. We then generate a collection of Gaussians on the surface, as
described in Section 4.3. Since most of the fine-scale deformations happen on the clothing, we focus
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on the refinement on those areas, generating Surface Gaussians only for the corresponding vertices.
The number of vertices indicated in Table 4.1 correspond to the amount of Surface Gaussians created
for each sequence.

To visually enhance the capabilities of our refinement approach in capturing fine-scale surface details,
we create 3 additional datasets by smoothing the input meshes of the sequences dance, skirt and
pop2lock. By doing so, we eliminate most of the baked-in surface details and use the over-smoothed
mesh animations as input to our system. For the quantitative evaluation of our technique, we
additionally generate a synthetic sequence. See Section 4.6.5 for more details.

4.6.2 Runtime

The biggest overhead of our Gaussian-based refinement is the evaluation of the similarity term,
which has to be computed for each pair surface-image Gaussian in all the views. This quantity
has to be estimated iteratively for each gradient-descent based optimization step until convergence.
The complexity of our approach depends on the number of iterations nt performed by the gradient-
based solver, as well as the number of Image Gaussians nc

i per view and Surface Gaussians ns,
O(nt ∑

nc
c=1 nc

i ns). These 3 quantities variate depending on the sequence, frame and specific camera.
The order of complexity is obtained considering the maximum among the possible values for each
sequence. For each frame, at most nt = 1000 iterations are performed, see Section 4.5.4, and at most
each pixel is taken as Image Gaussian, resulting in nc

i = 1004×1004 for the sequences from Gall
et al. [64] and nc

i = 1920×1080 for the sequences provided by Starck and Hilton [162].

However, convergence to a solution is typically reached in less iterations, after around nt = 200
iterations, see Figure 4.6. The number of Image Gaussians is also smaller than the number of pixels
for each camera, as for each Surface Gaussian we only take into account the closest Image Gaussians
in terms of spacial and color distance, as described in Section 4.5.4. The average number of Image
Gaussians per frame is close to nc

i = 10000, which is ≈ 2 order of magnitude smaller than the total
number of pixels. It can be easily shown that our approach has linear complexity with respect to
varying Surface Gaussians.

We evaluate the performance of our system on an Intel Xeon Processor E5-1620, Quad-core with
Hyperthreading and 16GB of RAM. Table 4.2 summarizes the performance we obtain for the 6 tested
sequences. The computation time can be further reduced by parallelizing orthogonal optimization
steps, such as the evaluation of the overlap Φi,s,∀i,s, described in Section 4.5.1. Our algorithm is
particularly suited for implementation on GPU, which we believe has a strong impact on the time
performance.

4.6.3 Qualitative Results

In Figure 4.7 and Figure 4.8, we provide some examples of surface refinement results obtained with
our method. Input to our refinement approach, on top of the multi-view images and corresponding
camera calibration, are the temporally consistent deformation sequences obtained from the methods
of [64, 162]. Our visual results demonstrate that our approach is able to plausibly reconstruct
additional fine-scale details, e. g. the wrinkles and folds in the skirt, and it produces closer model
alignment to the images than the baseline methods.

The skirt sequence is the most suited for our multi-view surface refinement technique thanks to
its highly textured regions and accurate alignment with respect to the images. We focus on the
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Figure 4.7: Results of our refinement approach for (from top to bottom) the skirt, dance, pop2lock, wheel
and handstand animation sequences from an unused camera. From left to right: input image, baseline mesh,
refined mesh, surface difference between baseline and refined, flow magnitude for the reprojected input
mesh and the reprojected output mesh against the original input image.
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Figure 4.8: Results of our refinement approach for the smooth skirt (top), dance (middle) and pop2lock
(bottom) animation sequences from an unused camera. From left to right: input image, baseline mesh,
refined mesh, surface difference between baseline and refined, flow magnitude for the reprojected input
mesh and the reprojected output mesh against the original input image.
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refinement of the skirt surface region, which is highly textured. Textures lead to high-color variance
of the Surface Gaussians, which in turn allows to estimate finer scale details and more accurate
alignment, even in the inner parts, far from the projected borders. As shown in Figure 4.7, row 1,
and Figure 4.8, row 1, our method is able to capture additional fine-scale details for both the skirt
and the smoothed skirt sequences using the default parameter settings depicted in Table 4.3. The
incorporated details are best visible in the smoothed sequence version.

The dance sequence shows strong deformations on the subject’s clothing during the jumping motions,
see Figure 4.7, row 2, and Figure 4.8, row 2. We successfully refine the input geometry to include
additional cloth dynamics, e. g. floating shirt, also visible in the video. Inner details are only
marginally captured when a shading effect appears, due to lack of textures, and are best visible in the
smoothed dance sequence. Most of the captured details are visible along the reprojected borders,
where the alignment with respect to the images appears to be improved. For both the original and the
smoothed animation, we use the default parameters setting in Table 4.3.

The pop2lock sequence is challenging to refine with our approach, due to the large homogeneously
colored regions on the subject’s shirt. On top of that, the input mesh presents severe misalignments
with respect to the input multi-view images with several time-consistency artifacts throughout the
multi-view video. Similar to the dance sequence, the majority of the captured details are localized on
the reprojected borders, as seen in Figure 4.7, row 3, and Figure 4.8, row 3. Our refinement approach
is unable for this sequence to improve the silhouette overlap consistently, due to the strong shirt
deformations, e. g. folding and creasing.

Both the handstand and the wheel sequences contain textured regions, represented by the stripes in
the shirt, which help in improving the surface details by effectively guiding the Surface Gaussian
along the shirt deformation. The handstand sequence is particularly challenging for our refinement
approach, since the shirt is strongly deformed during the performance, especially in the upside-down
pose after frame 50. On the other hand, the wheel sequence shows an example of fast motion, where
the underlying geometry is temporally misplaced, resulting in false underlying colors and therefore
inaccurate refinement, as it is shown in the quantitative evaluation. Nevertheless, our refinement
approach captures inner details consistently for both of the sequences.

4.6.4 Comparison

In order to compare our approach with the baseline methods on sequences for which no ground-truth
geometry is available, we compute the optical flow error. To this end, we first texture the baseline and
our resulting mesh models by assigning Surface Gaussian colors to the corresponding vertices. Then,
we use the classical variational approach by Brox et al. [23] to generate displacement flow vectors
between the input images of a single camera view and the reprojected textured mesh models for each
frame and pixel. For each frame, we then compute the average displacement error, by dividing the
sum of the displacement norm by the number of pixels. The evaluation is performed on a camera
view that is excluded from the optimization.

As shown in the Table 4.2, row 3, our method significantly decreases the average flow displacement
error for all the sequences, leading to quantitatively more accurate results compared to the baseline
(input) methods. In terms of percentage, the registered improvement lies between 3% and 11%. High
percentage of flow error reduction between the baseline and the refined meshes is also obtained in
the purposely smoothed datasets. This confirms that our approach successfully recovers true surface
detail even when using very coarse geometry. Figure A.2 shows the corresponding normalized flow
error per frame compared to the unrefined input meshes and visually shows the average improvement
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Sequence skirt dance handstand wheel pop2lock
Input Meshes orig smooth orig smooth orig orig orig smooth
Flow Improvement [%] 4.8 4.7 9.1 2.7 11 5.1 4.9 3
Silh. Improvement [pixel] 59 384 294 1121 −80 35 96 −16
Total [pixel] ≈16K ≈35K ≈19K ≈30K
Timing [min/frame] ≈20 ≈3 ≈30 ≈3

Table 4.2: Flow and silhouette average improvements produced by our refinement approach compared
to the baseline methods. The average flow displacements improvement is express in percent, while the
silhouette improvement in number of pixels over the approximate total amount of true re-projected cloth
pixels over all the views.
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Figure 4.9: Silhouette improvement of the refined meshes for the smoothed skirt and dance datasets. In
each graph: pixel improvement with respect to the specified input sequence per frame. Manually estimated
true cloth pixels to be used as a reference for the silhouette pixel improvement are stated in the captions of
each sequence.

per frame also stated in Table 4.2. Notice that most of the baseline input mesh sequences, e. g.
the skirt sequence, already provide closely-aligned input meshes. In these cases, improvements
introduced after refinement are marginal in terms of flow displacement error. Qualitative figures
nevertheless show that our approach is able to capture the deformation dynamics happening on the
clothing in all sequences, as well as fine-scale details, especially for highly textured regions. Details
on the inner plain-colored regions, e. g. shirt folds in the dance sequence, are hard to reproduce with
our approach, since they lack of sufficiently distinctive color information in the Surface Gaussians
neighborhood.

Especially for the latter cases, quantitative evaluation demonstrates that our approach also improves
the boundary alignment of the reconstructed meshes with respect to the input image, without explicitly
relying on any precomputed foreground segmentation. This is especially visible in the pre-smoothed
sequences, also shown in Figure A.1 and Figure 4.10. As opposite to most of the silhouette-based
approaches [162], our optimization approach smoothly and continuously improves the alignment to
the silhouettes, without using error-prone correspondence finding, discrete optimization or complex
background subtraction. We visually show silhouette reprojection improvement in Figure 4.10. The
silhouette improvement per frame is computed by counting the false positive and false negative
(i. e. wrong) pixels in the original and refined sequences, obtained by subtracting the ground-truth
silhouette image pixels with the reprojected mesh pixels from an unused camera. Then, we take the
difference between original and refined false pixels, which implicitly resembles the number of newly



CHAPTER 4. SURFACE CAPTURE 82

Figure 4.10: Silhouette overlap evaluation of the refined meshes shown for skirt (top), dance (middle) and
pop2lock (bottom) sequences. From left to right: input image, silhouette overlap of the baseline (input),
silhouette overlap of the refined mesh, zoomed-in baseline overlap, zoomed-in refined overlap. The overlap
is estimated from unused views. We used the following color code for the silhouette overlap: Purple: true
positives, Green: false negatives, Red: false positives.
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Figure 4.11: Average flow displacement error of the refined meshes for the skirt and dance sequence.The
plots show normalized flow error per frame for the baseline (red) and refined (blue) mesh sequences.

(a) (b) (c) (d) (e) (f)

Figure 4.12: Results of our refinement approach for the synthetic sequences. (a) target shape with no
additional displacement, (b) resulting shape, (c) target with normal displacement, (d) resulting shape, (e)
target with random displacement and (f) resulting shape.

found correct pixels. Notice, that our computations are performed using the available full-body
silhouette images, although, we just refine the clothing parts. For comparison, we manually count
the average number of true pixels in the clothing areas for each sequence as a reference, see Table
4.2, row 5.

4.6.5 Quantitative Evaluation

We quantitatively evaluate the performance of our approach on a synthetic sequence, consisting of a
42-vertices sphere model with randomly generated colors. We build three different target scenarios:
the unchanged sphere, the sphere with randomly displaced vertices along the corresponding vertex
normals, and the sphere with randomly displaced vertices without any normal constraint. Each
scenario is rendered from 10 arbitrary points of view with a resolution of 1280x720 and used as
input multi-view images for our refinement approach. The initial unchanged sphere geometry with
true pre-assigned colors is taken as the starting surface to be refined. Finally, we compare the output
of each scenario with the ground truth geometry to numerically assess the quality of our results.

Figure 4.12 shows the described target (a,c,e) and refined (b,d, f ) mesh for each scenario. For
the first unchanged scenario, we use the default parameter settings from Table 4.3, while for the
remaining two we used wreg = 0 aiming at capturing the randomly generated displacements, without
introducing any temporal nor spatial smoothness constraints. For all scenarios we have used Tdist = 90
pixels to capture also larger displacements. We compute exact average Euclidean displacement error,
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Figure 4.13: Vertex displacement error curve (green) when using different number of cameras. The plot
shows 3×42 blue circles, each sampling the displacement error of a single optimized vertex in the 3 synthetic
sphere sequences described in Section 4.6.5. The y-axis indicates the number of cameras that see a certain
vertex sample. The plot also shows the average displacement error (dashed red) as well as average visibility
(dashed green).

by summing up the vertex displacement norm from the ground truth divided by the number of vertices.
The average error is then estimated as a percentage of the total object volume size. Even with large
distortions, e. g. the severe displacement introduced in the third scenario with random displacements,
applied to the original geometries, our method is able to recover the fine geometric details with
average errors lower than ≤ 7% of the volume size. For the remaining scenarios, the estimated error
lies below 1.84% and 0.22% respectively for the normal constrained random displacements and the
unchanged case. Notice that due to the surface normal constraints introduced in the design of our
refinement approach, for the third scenario, i. e. with random normal-unconstrained displacements,
we got a normal-constrained approximation of the target shape, which justifies the increased error
w. r. t. the shape volume.

While experimenting with the scenarios, we make several observations. The initially assigned color
of the Surface Gaussians has a direct impact to the performance of the proposed surface capture
approach. While the used HSV color space helps in keeping our surface capture approach relatively
robust to slight color changes due to illumination, larger appearance changes caused by e. g. shadows
and global light changes cannot be handled properly with the current formulation.

Testing revealed that the error increases when reducing the number of views, see Figure 4.13. This
finding suggests that without providing more advanced surface smoothness term to handle missing
depth, our approach is impractical for settings with monocular, few-cameras or badly distributed
camera settings. Randomly placed cameras around the synthetic sphere resulted in an average of
visibility of 5.23 cameras per vertex, see the plot in Figure 4.13. Evidently little visible vertices
cause a consistent loss on the overall quantitative performance average.

We further validate the additional ε used to correct the displacements, described in Section 4.5.4. An
increase of ε =σs of the found displacements, helps to accommodate for the bias in the displacements,
as it is also shown in Figure 4.14. The average errors relative to the total volume size for each refined
mesh with added epsilon are 0.22%, 1.84% and 7.10%, against the unchanged 0.69%, 1.95% and
7.13% estimated from the optimizer only, i. e. without additional epsilon increase.
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(a) (b) (c) (d) (e) (f)

Figure 4.14: Effects of adding a displacement along the normal of the refined meshes equal to the standard
deviation of the Surface Gaussians. The figure shows the zoomed-in overlap between the input (semi-
transparent) and resulting (colored) mesh of the synthetic sequence first without and then with additional
displacement. (a,b) overlap from the first unchanged scenario with and without epsilon, (c,d) overlap from the
normal-displaced scenario with and without epsilon and (e,f) overlap from the randomly displaced scenario
with and without epsilon.

Parameter Description Value interval Default Value
wreg Regularization weight [0,1] 5e−7

wtemp Temporal weight [0,1] 1e−7

σs Standard deviation, ∀Gs (0,∞), [mm] 5
Tqt Quad-tree depth threshold [0, log2(min(I.width, I.height))] max
Tfuse Color fusion threshold [0,∞) 0.05
Tcolor Color similarity threshold [0,∞) 0.15
Tdist Threshold on pixel distance [0,∞), [px] 30
∆d Max geodesic distance [0,∞), [#edges] 2

Table 4.3: User-defined parameters of the energy function E, together with their description, value interval
and default value.
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Figure 4.15: Influence of the parameters of the energy function E on the reconstructed error and computa-
tional time, in the synthetic dataset. The reconstruction error is estimated as average Euclidean displacement
error from the given ground-truth in three different scenarios: input and target meshes are equal (no displace-
ment, red lines), the target has a random displacement along the corresponding normal (normal displacement,
green lines), the target has random displacement which may deviate from a normal displacement (random
displacement, blue lines).

4.6.5.1 Parameters

In order to test the influence of the parameters used in our energy formulation, we run several
experiments based on the synthetic dataset described in Section 4.6.5. For each user-defined
parameter, see Table 4.3, we change the parameter value within its pre-defined interval, while
keeping the remaining parameters fixed, and run our refinement approach with this setting. The set
of plots in Figure 4.15 show the error and time performance obtained by varying each parameter.

As expected increasing wreg improves the static sphere scenario results, deteriorating the remaining
ones. To enable the capture of details while preserving a certain degree of surface smoothness, we
must choose a proper non-null regularization weight, which avoids over-smoothing.

By increasing the standard deviation σs size, we obtain slightly worse reconstructions. We believe
this is due to the fact that the Gaussian color is taken from the corresponding vertex color of the
ground-truth mesh, and not from the underlying pixel average. In this case, the underlying pixel
color poorly matches the Surface Gaussian color, leading to displacement errors.

The color similarity threshold Tcolor restricts the evaluation of our similarity function w. r. t. a Surface
Gaussian to a subset of Image Gaussians with similar color properties. The larger the threshold
the more Image Gaussians are included in the evaluation, leading to an increasing computational
time. The distance threshold Tdist value highly depends on the sequence and mesh scale. Further
increasing its value beyond its default (Tdist = 90 pixels for the synthetic sequence) does not improve
qualitatively the reconstruction, instead it slows down the performance. On the other hand the fusion
threshold Tfusion and the quad-tree depth threshold Tqt only produce accurate reconstruction results
for high values, which in turn decrease the time performance. The smoothing weight wtemp improves
the stability of the refinement in time, without further improving the quality of the resulting surface.
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4.7 Discussion and Limitations

The proposed refinement approach smoothly captures the surface details and improves the alignment
of the input mesh sequences with the multi-view images consistently and robustly. Results on various
testing sequences qualitatively and quantitatively show the effectiveness of the proposed approach
to capture small details such as cloth wrinkles on dynamic sequences with loose clothing. The
proposed formulation has a smooth correspondence-free energy that can be efficiently and effectively
optimized using gradient-based optimization.

For the applicability of the proposed refinement approach, there are few assumptions. We assume
the input mesh sequence to be sufficiently accurate, such that smaller details can be easily and
correctly captured by displacing vertices along their corresponding vertex normals. In cases where
the input reconstructed meshes present misalignments with respect to the images (e. g. in the
pop2lock sequence) or if it is necessary to reconstruct stronger deformations, then our method
is unable to perform adequately. Our refinement might be reformulated allowing more complex
displacements, e. g. , removing the normal constraint. However, such weaker prior requires more
complex regularization formulation in order to maintain a smooth surface, also to handle unwanted
self-intersections and collapsing vertices. An example of more advanced regularization formulation
to handle free surface deformation is described in the next Chapter 5. The increased number of
parameters to optimize for (i. e. 3 times more, when optimizing for all 3 vertices dimensions, x, y and
z) would spoil computational efficiency and raise the probability of getting stuck in local maxima
solutions. The risk of returning local maxima solutions is still high when employing local solvers
(e. g. gradient ascent) on non-convex problems as in our case. A possible solution is to use more
advanced solvers, e. g. global solvers, when computational efficiency is not a requirement.

As we demonstrate in the previous section, our approach is unable to densely refine plain colored
surfaces with little texture (e. g. the pop2lock and dance sequences). In fact, in these cases, the
corresponding color variability of the Surface Gaussians in the inner surfaces is too small to provide
any clue for the optimizer. A solution here could be to employ a more complex color model that takes
into account, e. g. , illumination and shading effects, at the cost of increased computational expenses.
For sequences with little texture, we have although found that our approach improves the reprojected
surface borders alignment with the images consistently. The employed surface-image similarity
formulation is well suited to recover inner details in presence of texture, nevertheless the estimated
border alignment resulting from optimization is sub-optimal and requires adjustments, i. e. adding
ε to the found displacements. In fact, by design, Gaussians tend to align towards higher density
regions, rather than along the borders, making them unsuitable for exact extremities approximation.
A better mathematical formulation for border alignment is described in the next Chapter 5.

The used temporal smoothing term analytically formulates smoothing in time based on a window of
3 frames, that might be insufficient to fully eliminate time inconsistencies, e. g. for videos captured
at high frame rates. We would like to further investigate into the impact of a larger window size on
the overall time consistency of the reconstruction. On top of that our temporal smoothing approach
only keeps the optimized displacements smooth in time and cannot correct time inconsistencies in
the original input geometry. This limitation is particularly visible in the sequence pop2lock.
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4.8 Conclusion

In this chapter, we have presented an effective method for capture of deforming meshes with fine-
scale time-varying surface detail from multi-view video recordings. Our approach refines the input
coarse meshes on all vertex positions by adding fine-scale deformation present in the original video.
The proposed model-to-image consistency energy function uses an implicit representation of the
deformable mesh using a collection of Gaussians for the surface and a set of Gaussians for the
input images, enabling a smooth closed-form energy with implicit occlusion handling and analytic
derivatives.

We qualitatively and quantitatively evaluated our refinement strategy on 5 input sequences, initially
obtained using 2 different state-of-the-art 3D reconstruction approaches: a template-free method and
template-based method, which originally tend to produce smooth results that lack fine-scale details.
We demonstrated that in both cases the proposed method successfully recovers true fine-scale detailed
geometry and improves the surface border alignment w. r. t. to the multi-view images. Additionally,
we have also shown the performance of our method on synthetic data, which we manually modeled
and smoothed to create the ground truth. Numerical evaluation confirms the effectiveness of our
refinement approach compared to previous work quantitatively.

This chapter focused on a surface capture solution based on input coarse animations. The next
chapter demonstrates the capabilities of the refinement approach, described in this chapter, to be
successfully applied in less constrained outdoor scenarios. Additionally, the next chapter shows how
combining skeleton with surface capture can boost robustness to various outdoor environments.



Chapter 5
Joint Skeleton-Surface Capture

5.1 Introduction

In the previous chapter, we introduced a new approach for dense surface refinement of coarse anima-
tions. This chapter extends this refinement approach by proposing a full performance capture method
that simultaneously recovers both the coarse skeletal and the fine-scale surface of a performing actor
in general outdoor scenarios. Several markerless human performance capture methods have been pro-
posed to reconstruct people in their general, potentially loosely deforming, apparel, from multi-view
RGB video [20, 40, 64, 162, 180]. Some state-of-the-art methods reconstruct highly detailed 3D
mesh sequences by fitting a 3D template to the observed performance [40, 64, 179]. More general
methods reconstruct per-frame geometry independently and without a prior model [60, 162, 180].
Most high-quality reconstruction methods fail on footage recorded in general outdoor scenes, as
they expect constant lighting and crisp foreground-background subtraction, which is best achieved
in front of static indoor green screens. Aiming to overcome this limitation, recent research in joint
segmentation and reconstruction [170, 123, 124] successfully reconstructed deforming objects in less
constrained setups. However, resulting 3D mesh detail is significantly lower than for the previous
in-studio silhouette-based methods.

In this chapter, we propose a new model-based performance capture method that takes a leap
forward, and captures detailed human performance, including accurate motion and loose non-rigid
surface shape, in less controlled and outdoor environments with moving background, without explicit
silhouette extraction. To meet the challenges of less controlled environments, we use a new unified
implicit formulation for both, articulated skeleton tracking and non-rigid surface shape refinement.
Our method fits an initial static surface mesh of an actor to unsegmented video frames by jointly
optimizing for skeleton pose and non-rigid surface detail. To this end, we introduce a mathematical
formulation as the minimization of an objective function that estimates the agreement of model and
observation.

The coarse volumetric 3D body shape and body appearance used for skeletal pose estimation, as
well as the fine-scale 3D surface geometry and appearance, which is coupled to the coarse body
representation, are described in Section 2.3. Particularly for surface shape refinement we introduce a
new combination of 3D Gaussians, which we refer to as Border Gaussians, designed to align the
projected model with likely silhouette contours without explicit segmentation or edge detection. Also
the input images are transformed to an implicit representation, similar to the previous chapter, but at

89
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Figure 5.1: From a set of multi-camera input images (left), we reconstruct the human performance as
a temporally consistent 3D mesh that accurately matches the captured motion, here visualized textured
(center) and untextured (right) to better appreciate the results. Our novel formulation for model-based
human performance capture enables reconstruction of outdoor performances without explicit silhouette
segmentation.

much higher resolution to model details. This scene representation enables effective and efficient
optimization and analytically differentiable smooth objective functions. We introduce a coarse-to-
fine objective that integrates coarse fitting and detail refinement, where robust skeleton tracking is
used to improve the performance of fine-scale surface detail recovery, both computationally and
qualitatively.

Ours is the first integrated template representation and fitting approach for both coarse and fine
geometry capable of accurately reconstructing the articulated motion and deforming surface geometry
of actors in challenging outdoor scenes. Our main technical contributions are:

1. a unified implicit formulation for both, articulated skeleton tracking and non-rigid surface
shape refinement,

2. a formulation of a new surface refinement method to align the projected model to likely
silhouette contours without explicit segmentation or edge detection.

We obtain reconstructions of much higher quality in outdoor settings than existing methods, and
show that we are on par with state-of-the-art methods on indoor scenes for which they were designed.

5.2 Related Work

Existing methods for performance capture involve subsequent optimization of coarse tracking
and detailed reconstruction. During coarse tracking, the global motion of the actor is estimated
through skeleton or coarse (volumetric) surface fitting. Finer deformation details are recovered in a
subsequent step using either stereo constraints, features, or shading-based refinement. Section 3.2
and Section 4.2 describe previous approaches focused respectively on coarse, i. e. skeleton driven,
and fine-scale surface tracking. While independent fitting of skeleton and derived detailed surface
have proven impressive results especially in indoor controlled scenarios, failures of individual steps
often cause temporal tracking mismatches from which it is hard to recover.

Joint optimization of skeleton and shape is often advantageous as it creates structural stability and
allows to correct mismatches in skeleton and surface simultaneously [179, 9, 64]. However, opti-
mization with such a high number of independent model parameters is computationally demanding
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and easily becomes under-constrained. Related works tend to simplify the input model aiming at
reducing the number of parameters to optimize for. In the work of Straka et al. [165], the actors
shape is constrained by a linear dependency on skeleton bone positions and is optimized efficiently to
silhouette observations. Rigidity weights are manually assigned. Kanazawa et al. [92] learn stiffness
values for a volumetric deformation energy during fitting to manually obtained correspondence
annotations. Most commonly used are linear blend shape models [5] and variants of the SCAPE
model [7], both learned from databases of human scans. In particular, SCAPE represent a popular
data-driven human model able to synthesize realistic non-rigid surface deformations as a function
of skeletal pose and body shape. However these and many other suggested parameterizations
[88, 7, 136, 109, 110, 14, 142] are constrained to a low-dimensional set of deformation parameters
and not general enough to represent surface details such as exact wrinkles and general apparel
deformation.

Many methods demonstrate their capability to recover fine scale surface details by iteratively
optimizing over detailed and multi-layered models. Iterative local optimization allows at each
iteration to optimize for a lower dimensional subspace of the entire parameter set, which improves
the overall performance especially in terms of stability. Global optimization is too expensive for
large data sets and skeletons with many degrees of freedom. Gall et al. [64] describe a method to
solve for skeleton mismatches through local iterative optimization. Stoll et al. [163] segment the
result of [64] into rigid and non-rigid parts to separate near-rigid body parts from clothing exhibiting
free deformation.

Despite all recent progress in performance capture, existing model-based methods do not cope well
in uncontrolled outdoor scenes, due to background-foreground ambiguities among others. In this
chapter, we use a coarse-to-fine strategy where the shape reconstructions increases in detail from
iteration to iteration, while inferred constraints such as skeleton dependencies are maintained, but
refined by generative matching to the input video without intermediate simplifications.

A key element of this chapter is a method for surface border refinement without silhouettes. It
overcomes the limitation of many existing performance capture methods that rely on explicit
background segmentation for accurate silhouette alignment, an error-prone step which hinders their
usage in uncontrolled environments. Progress has been made by multi-view segmentation [183, 45],
joint segmentation and reconstruction [167, 69, 21, 123, 124, 37], and also aided by propagation of a
manual initialization [74, 191, 170]. In uncontrolled environments, the obtained segmentation is still
noisy, enabling only skeleton pose [74] and rather coarse 3D reconstructions [123, 124]. Rhodin et al.
[142] propose a volumetric contour model and directly fit a parametric shape model to image edges,
circumventing silhouette extraction entirely. However, only coarse shape without cloth-level detail is
reconstructed. Non-rigid shape and silhouettes can be also directly captured with depth cameras,
whose richer RGB-D data ease pose optimization and allow even real-time reconstructions with
template based [207, 70, 198] and parametric shape models [14, 76, 37]. However, the specialized
RGB-D sensors are not as commonly available as RGB video cameras, e. g. in mobile devices, may
have higher cost and energy consumption, and do not work well in direct sunlight. In contrast, the
proposed segmentation-free method only requires RGB videos as input and is thereby applicable in
more general outdoor environments.
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Figure 5.2: Overview of our method. Input to our optimization approach is an actor model and a multi-view
sequence obtained from synchronized and calibrated cameras (right). We optimize the model-to-image
agreement in two stages (depicted in the middle) where we subsequently estimate the skeleton pose and
then refine the surface using a new tracking approach. Output of our method (left) is a sequence of refined
geometry and texture, which best resembles the input performance in terms of pose and surface details.

5.3 Overview

In this section, we describe our model-based performance capture approach, also summarized in
Figure 5.2. Given a sequence of multiview calibrated and synchronized images capturing the action
of a single actor in an outdoor environment, our goal is to deform a given personalized body model
of the actor such that it accurately reproduces the performance filmed. Details on the three-layer
human body model used are given in Section 2.2.

The initial skeleton motion of the performance is tracked based on the approach described in
Section 2.4.1, which does not require segmentation and attains high performance through a Gaussian
representation of image and actor model. Output is an intermediate skeleton motion, which is used
to drive the mesh layer by skinning. The resulting mesh sequence only accounts for the rigid motion
derived from the skeleton, therefore it fails in reproducing non-rigid deformations caused by cloth
and soft tissue deformation, and suffers from skinning artifacts.

In order to recover high-detailed surface deformation, we maximize the agreement between a fine-
scale Gaussian-based implicit representation of the surface mesh and the image in a similar way to
Chapter 4. The previous chapter described a surface capture approach to densely refine an initial
coarse animation using a set of small 3D Surface Gaussians on the mesh surface. The capabilities
of the method were mostly demonstrated in indoor controlled settings, due to the lack of outdoor
reconstructed sequences of sufficient quality. In this chapter, we demonstrate the effectiveness of the
Surface Gaussian based approach in less constrained outdoor scenarios. Additionally, to refine the
input skinned animation, we introduce a new set of 3D Border Gaussians designed to improve the
contour alignment in presence of a dynamic background without explicit background segmentation.

The full performance capture approach described in this chapter actively employs the refined
surface deformation output to improve the initially reconstructed skeletal pose iteratively. This
chapter demonstrates that joined estimation of skeletal and shape deformation is advantageous over
independent optimization in terms of robustness. The output of our method is a sequence of skeletal
poses alongside with refined surface meshes that reproduce the input videos.
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Figure 5.3: Actor mesh model creation for the pablo sequence. (a) Initial scan of the actor, (b) Poisson
reconstruction, (c) resulting mesh after regularization and simplification, (d) resulting mesh with vertex colors.

5.4 Scene Model

Similarly to the previous chapter, we convert both the actor model and images to an implicit
representation to enable effective model-to-image consistency estimation and optimization.

5.4.1 Actor

We use the three-layer representation, described in Section 2.2, to define our personalized actor
model. Before converting the mesh surface layer to an implicit mathematical representation, we
regularize its geometry such that the vertices are regularly distributed on the surface. We additionally
smooth out the high-frequency surface details, see Figure 5.3(b). Smoothing is applied in order to
remove most of the baked-in details, which are due to pose-related deformations on the clothing,
e. g. flapping sleeves, wrinkles or facial expressions. Notice that by equally smoothing out the entire
mesh, we may additionally get rid of important rigid details such as pockets and detailed arm or leg
shape. To avoid this, a rigid-details aware semi-automatic surface smoothing approach is a better
choice. Our final textured mesh is obtained by reprojecting the multi-view pixel colors from the input
images to the manually reposed mesh in the first frame, see Figure 5.3(c), using a similar procedure
as explained in Section 2.4.1.4.

We transform the vertices of the geometric layer into an implicit representation G = {Gc
s ,G

c
b}

consisting of two subsets of Gaussians: Surface Gaussians Gc
s ,∀s = 1 . . .nc

s and Border Gaussians
Gc

b,∀b = 1 . . .nc
b. In this chapter, we often use the term Model Gaussian referring to the collection

of Surface and Border Gaussians. The Surface Gaussians are assigned to the visible vertices from
camera c that do not fall onto an occluding mesh contour at a given frame. A small 3D Gaussian is
placed at each vertex position and is assigned the color of the static mesh vertex, as also explained in
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Chapter 4. Notice that the Surface Gaussians have the same mathematical definition introduced in
the previous chapter, however they are now only placed at inner vertices, away from the reprojection
borders. For the vertices falling on a contour a different subset of Gaussians is used, with a different
mathematical representation, which we call Border Gaussians.

The Border Gaussians are assigned to the vertices that lie on an outer occluding mesh contour
in the original camera view c, and are explicitly used for contour alignment. Their mathematical
formulation consists of a pair of connected Surface Gaussians designed to have opposing forces
respectively towards the foreground and background. By minimizing the product of these opposing
forces, Border Gaussians are designed to align exactly at the image contours. Details about the
design and the formulation for optimization are given in Section 5.5.2.

Algorithm 5: Function to initialize a given actor model with Surface and Border Gaussians
for each camera view c, given as input current mesh M, camera projection matrices
Pc,∀c = 1 . . .nc and distance threshold ∆ to the closest image borders.

1 function Gc := Init(M,Pc,∆):
2 for c := 1 to nc do
3 for v := 1 to nv do
4 vc := Pcv;
5 if vc visible then
6 if dist(vc,border)≤ ∆ then
7 Gc

b.insert(BorderGaussian(v));
8 else
9 Gc

s .insert(Sur f aceGaussian(v));
10 end
11 end
12 end
13 Gc := {Gc

s ,G
c
b};

14 end

We preserve the mesh connectivity information to define the surface topology of Surface and Border
Gaussians. Model Gaussians are also coupled to the skeleton by the original mesh skinning weights,
in order to formulate skinning-based surface regularization, see Section 5.5.3. The pseudo-code used
for initializing the actor model is depicted in Function 5. While these sets of Gaussians are defined
per each camera, in the rest of this chapter, we drop the camera index for notation simplification.

5.4.2 Images

Our input image set is approximated with a set of colored 2D Image Gaussians Gc
i ,∀i = 1 . . .nc

i . The
Image Gaussians are estimated using the method explained in Section 2.4.1.1.

5.5 Surface Tracking

The articulated skeleton pose S is estimated using the approach described in Section 2.4.1, which is
shown to recover reliable poses in complicated outdoor recordings. In particular, the initial skeletal
configuration in the first frame is estimated manually. Once the skeletal motion has been recovered,
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the initial actor surface, defined by M := {Ms,Mb},Ms := {µ̂s : s= 1 . . .ns},Mb := {µ̂b : b= 1 . . .nb},
is obtained through skinning, i. e. by rigidly deforming the actor body limbs following the skeleton
motion S . In this section, we describe how to incorporate the missing fine-scale non-rigid surface
deformations to the coarse geometry. In order to refine the initial skinned actor model, we maximize
the following energy:

E(M ,S) = Esim(Ms)+Econt(Mb)−wskinEskin(M ,S)−wsmoothEsmooth(M )−wtempEtemp(S), (5.1)

initialized with the estimated pose S and the associated skinned mesh M . The combination of the
proposed energy terms helps in minimizing the discrepancy between the actor model geometry and
the multi-view images, while keeping the surface deformations smooth both spatially and temporally.
We define each term of E(M ,S) analytically and compute the corresponding derivatives with respect
to the unknown surface M and skeleton pose S . The derivatives are:

∂E
∂ Ms

=
∂Esim

∂ Ms
−wskin

∂Eskin

∂ Ms
−wsmooth

∂Esmooth

∂ Ms
(5.2)

∂E
∂ Mb

=
∂Econt

∂ Mb
−wskin

∂Eskin

∂ Mb
−wsmooth

∂Esmooth

∂ Mb
(5.3)

∂E
∂ S

=−wskin
∂Eskin

∂ S
−wtemp

∂Etemp

∂ S
(5.4)

Notice that ∂ Ms := ∂ [µ̂s]x,y,z and ∂ Mb := ∂ [µ̂b]x,y,z correspond to derivative w. r. t. the 3D Model
Gaussian means, i. e. Surface Gaussians µ̂s,∀s = 1 . . .ns and Border Gaussians µ̂b,∀b = 1 . . .nb, and
[·]x,y,z are the corresponding coordinates on the global axis x, y and z.

The unified energy representation enables joint and efficient optimization of surface interior, contour
alignment, and skeleton pose, using a traditional fast gradient-based optimizer. In the next sections,
we describe each term in detail.

5.5.1 Similarity Term

The similarity term Esim measures the photo consistency of the visible Surface Gaussians with the
input images. It is implemented as a generalization of the volumetric Gaussian tracking, described in
Section 2.4.1:

Esim(Ms) =
1
nc

nc

∑
c=1

[
1
nc

i

nc
i

∑
i=1

min

(
ns

∑
s=1

Φi,s, 1

)]
(5.5)

where Φi,s measures the similarity between the image and the reprojected Surface Gaussians,
described in detail in Section 4.5.1. This term accounts for fine-scale detail refinement of the
surface interior, especially when texture cues are available. As shown in the previous chapter, this
formulation is sub-optimal for contour alignment. The corresponding analytical derivatives are
defined as:

∂Esim

∂ Ms
=

1
nc

nc

∑
c=1

1
nc

i

nc
i

∑
i=1


∂Φi,s
∂ Ms

if∑
ns
s=1 Φi,s < 1

0 otherwise
(5.6)

Notice that in contrast to the previous chapter, the Model Gaussians are allowed free displacement in
space. Therefore the derivatives have to be computed w. r. t. each global axis x, y and z. For the full
derivation of the derivatives, refer to Section B.0.1.
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Figure 5.4: Visualization of the Gaussian based representation for the actor volume (volumetric layer) and
surface in the pablo sequence. (a) Volumetric Gaussians, (b) Surface Gaussians on the inner surface
locations and Border Gaussians along the image contours, (c) zoom in on a reprojection border to better
visualize the Border Gaussians. Notice that only the outer Gaussian in blue is well visible, while the inner
Gaussian with the surface color is hidden below the surface.

5.5.2 Contour Term

The contour term Econt measures the model-to-image contour alignment. Our goal is to align each
border vertex in color, space and direction with nearby image gradients, i. e. move border vertices
such that their projection satisfies the following constraints: it spatially coincides with a strong
edge, it shows a strong gradient from vertex color to background color, and its edge orientation
aligns with the mesh contour direction. In our setting, we have an accurate shape and appearance
model of the actor, but face unknown background, e. g. moving scenes, which hinders direct
foreground-background gradient computation.

We propose a formulation that neither requires pre-computations nor knowledge of the background
color and is nevertheless efficient to optimize. For each mesh vertex v that is within a certain distance
to the contour of the mesh in the camera plane, we create an implicit representation, which we refer
to as Border Gaussian. Border Gaussians Ĝb are centered at vertices closest to the reprojection
surface borders and consist of an inside and a connected outside Gaussian, respectively Ĝbin and
Ĝbout , meeting at the corresponding vertex location, i. e. Ĝb := {Ĝbin , Ĝbout}. Both inside and outside
Gaussian attributes, i. e. mean µ̂bin and µ̂bout and standard deviation σ̂bin and σ̂bout , are computed from
the Border Gaussian attributes, i. e. µ̂b and σ̂b:

µ̂bin := µ̂b− σ̂bn̂b, µ̂bout := µ̂b + σ̂bn̂b, σ̂bin := σ̂bout :=
σ̂b

2
(5.7)

where n̂b is the corresponding vertex normal, obtained by interpolation the neighboring face normals.
Notice that for later optimization, this quantity is kept as a constant. Inside and outside Gaussian are
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Figure 5.5: Response of a Surface Gaussian (b) compared to a Border Gaussian (c) in an example scenario.
(a) Shows an example distribution of red and blue-colored 1D Gaussians meeting at an image border located
in µ = 0. Optimal Surface and Border Gaussians are sampled respectively in green and cyan for different
standard deviations. These are extracted from the energies in (b) and (c).

designed to have opposing color similarity. We therefore optimize:

Econt(Mb) =
1
nc

nc

∑
c=1

[
1

nc
i

2

nc
i

∑
i=1

min

(
nc

b

∑
b=1

Φi,bin ,1

)
·min

(
nc

b

∑
b=1

Φi,bout ,1

)]
(5.8)

where nb is the number of Border Gaussian, and Φi,bin and Φi,bout are respectively the similarity
between the inside and outside Gaussians in a reprojected Border Gaussian and the Image Gaussian.
In particular, Φ takes the opposing color similarity T∆(δb,i), expressed as (1−T∆(δb,i)). This allows
evaluating the outside Gaussian contribution to the energy without explicitly defining its color, which
is variable w. r. t. view and time depending on the currently hit background at the reprojection surface
borders. Instead, the outside Gaussian color is assumed to be sufficiently far from the color of the
connected inside Gaussian. Notice that this leaves out possible cases where the foreground and
background color match. Nevertheless these extreme cases cannot be handled by state-of-the-art
computer vision approaches either. Optimizing for Econt causes implicit attraction of the inside
Gaussian to the model color and the outside Gaussian to the background color. These opposing
attraction forces push the Border Gaussian towards the foreground-background boundaries as desired.

Figure 5.5 shows the response of a Border Gaussian compared to a single Surface Gaussian in an
example scenario in 1D with an image border. The scenario involves 6 Image Gaussians, 3 blue and
3 red meeting at an image border. While an optimal Surface Gaussian slides away from the image
borders during optimization, a Border Gaussian finds its maxima at the desired location.

Additionally, Figure 5.6 visualizes the responses of Surface and Border Gaussians w. r. t. rotation in a
similar scenario in 2D. Surface Gaussians are insensitive to rotation as shown in the figure and have
only response to similarly colored Image Gaussians. Surface Gaussians can be effectively used to
refine inner parts of the surface, as shown in Chapter 4. On the other hand, Border Gaussians, thanks
to the pair structure, have responses both to the foreground and to the background and are sensitive
to rotations. Maximum response is located at the edge of the Image Gaussians, therefore pulling
the Border Gaussian at the image edges with optimal rotation. More examples and properties of the
Border Gaussians are discussed in Section B.0.3. The analytical derivatives are defined below. Full
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Figure 5.6: Response of a Surface Gaussian (a) compared to a Border Gaussian (b) sampled along different
positions and orientations in an example scenario. The example scenario is visualized in 2D on top of the
responses.

derivation can be found in Section B.0.2.

∂Econt

∂ Mb
=

1
nc

nc

∑
c=1

1
nc2

i

nc
i

∑
i=1



Φi,bout

∂Φi,bin
∂ Mb

+Φi,bin

∂Φi,bout
∂ Mb

if ∑
nb
b=1 Φi,bin < 1 and ∑

nb
b=1 Φi,bout < 1

Φi,bin

∂Φi,bout
∂ Mb

else if ∑
nb
b=1 Φi,bin ≥ 1

Φi,bout

∂Φi,bin
∂ Mb

else if ∑
nb
b=1 Φi,bout ≥ 1

0 otherwise
(5.9)

5.5.3 Skinning Term

The skinning term Eskin is used to keep the 3D Model Gaussians means 3D, i. e. M := {Ms,Mb},
close to the correspondent rigid location µq̌,∀q = 1 . . .ns +nb, which is determined by the estimated
skeleton pose S and the global joint transformations T ′j :

µ̂q̌ =
n j

∑
j=1

wq, jT ′j µ̂
j

q̌ (5.10)

where µ̂
j

q̌ is expressed in local coordinates w. r. t. the parent joint j. Details on skinning are presented
in Section 2.3.2. Given the rigid Gaussian locations µ̂q̌, the skinning term Eskin is defined as follows:
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Figure 5.7: Rigidity masks for different actor models. Black stands for no rigidity constraint, while red stands
for strong rigidity. (a) Actor from the cathedral sequence, (b) actor from the pablo sequence, (c) actor from
the skirt sequence, (d) actor from the unicampus sequence introduced in Section 5.6.1.

Eskin =
1

ns +nb

ns+nb

∑
q=1

λq

(
1− Φ̂qq̌

)2
(5.11)

where λq is a rigidity weight associated to the Gaussian q and Φ̂qq̌ is the similarity in 3D of the
optimized Model Gaussian Ĝq with its rigid correspondent Ĝq̌:

Φ̂qq̌ = T∆(δqq̌)2
σ̂qσ̂q̌

σ̂2
q + σ̂2

q̌
e
−
||µ̂q−µ̂q̌||

2

σ̂2q +σ̂2
q̌ = e

−
||µ̂q−µ̂q̌ ||

2

2σ̂2q (5.12)

A rigidity weight λq ∈ [0,1] is defined for each vertex by providing a mask, which enables to
regularize different parts of the body differently, e. g. allow loose clothing to move more freely than
hands or feet. See examples in Figure 5.7.

As a consequence of jointly optimizing M and S , the Eskin term also refines the skeleton pose. The
corresponding derivatives w. r. t. to the surface are:

∂Eskin

∂ M
=

2
ns +nb

ns+nb

∑
q=1

λq

(
1− Φ̂qq̌

)−∂ Φ̂qq̌

∂ M
=

2
ns +nb

ns+nb

∑
q=1

λq

(
1− Φ̂qq̌

)
Φ̂qq̌

(
µ̂q− µ̂q̌

σ̂2
q

ex,y,z

)
(5.13)

where ex,y,z is a 3-dimensional vector defined depending on the dimensionality, i. e. either x, y or
z, with respect of which the derivative is estimated. In particular, ex := (100), ey := (010) and
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ez := (001). The derivatives w. r. t. each skeleton degree of freedom sp,∀p = 1 . . . |S | are:

∂Eskin

∂ sp
=

2
ns +nb

ns+nb

∑
q=1

λq

(
1− Φ̂qq̌

)−∂ Φ̂qq̌

∂ sp

=
2

ns +nb

ns+nb

∑
q=1

λq

(
1− Φ̂qq̌

)
Φ̂qq̌

(
−

µ̂q− µ̂q̌

σ̂2
q

n j

∑
j=1

wq, j
∂T ′j
∂ sp

µ̂
j

q̌

) (5.14)

The joint j is either prismatic, i. e. T ′j = t ′j is a translation, revolute, i. e. T ′j = R′j is a rotation or a
combination of these. For different kinds of joints, we obtain different derivations:

∂ t ′j
∂ sp

= a j,
∂R′j
∂ sp

= a j× (µ̂q− c j) (5.15)

The derivative with respect to a translation is the joint axis a j ∈R3 in global coordinates. For revolute
joint we have to take the angular velocity given by the rotation matrix, which is by definition the
tangential perperdicular to both the joint global axis and the vector connecting the joint center in
global coordinate c j and the optimized vertex position µ̂q.

5.5.4 Smoothness Term

The surface smoothness term Esmooth regularizes unnatural surface deformations with a smoothness
prior term. We use a Laplacian smoothness term which penalizes deviations of the optimized
Laplacian coordinates from the Laplacian coordinates of the skinned mesh at current frame. The
smoothness term is defined as:

Esmooth =
1

ns +nb

ns+nb

∑
q=1

(
Lq(M )−Lq(M init)

)2
(5.16)

where Lq(M ) is the Laplacian operator applied to the currently optimized mean of the q-th Model
Gaussian, while Lq(M init) is the same operator applied to the initial Model Gaussian mean resulting
from skinning. The Laplacian operator is mathematically defined by:

L =


∑q∈ξ (1) g1,q −g1,2 · · · −g1,ns+nb

−g2,1 ∑q∈ξ (2) g2,q · · · −g2,ns+nb
...

...
. . .

...
−gns+nb,1 −gns+nb,2 · · · ∑q∈ξ (ns+nb) gns+nb,q

 (5.17)

where ξ (q) is the set of Model Gaussians neighbor to q and the weights gm,n are defined for each
opposite edge (m,n) as:

gm,n =
1
2
(cotαm,n + cotβm,n) (5.18)

taking the angles αm,n and βm,n to the mesh edge (m,n). By applying the Laplacian operator L
to the surface vertices, i. e. multiplying L with a vertices matrix obtained by stacking the vertex
coordinates row by row, one obtains the so called Laplacian coordinates. Note that, in the previous
Chapter 4, we constrained vertex motion explicitly to the surface normal direction, suppressing
tangential corrections entirely and precluding convergence from large displacements, while the
Laplacian regularization based on the Laplacian coordinates only ensures coherent motion of nearby
vertices.
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The derivative of the smoothness term w. r. t. the surface at any vertex location is defined as:

∂Esmooth

∂ M
=

2
ns +nb

ns+nb

∑
q=1

(
Lq(M )−Lq(M init)

)
Lq(M ) (5.19)

5.5.5 Temporal Term

We include a temporal term Etemp in the optimization in order to obtain smooth skeleton movements.
The energy to be minimized is given by:

Etemp =
1
|S |

|S |

∑
p=1

(
1− e−

[ 1
2(s f−2

p +s f
p)−s f−1

p ]
2

2

)
(5.20)

The exponential is used to smooth the pose acceleration in previously observed frames as well as
to keep the quantity between 0 and 1. Notice that the temporal term is applied from f > 2 for the
previous pose configurations, i. e. f −1 and f −2, to be defined. The derivative with respect to the
degrees of freedom sp,∀p = 1 . . . |S | is computed as follows:

∂Etemp

∂ sp
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1
|S |

e−
[ 1

2(s f−2
p +s f
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2

2 ·
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1
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− 1

2
s f−1

p

)
(5.21)

5.5.6 Optimization

To solve for the surface M and the skeleton pose S , we employ a fast conditioned gradient ascent. In
general, gradient-based optimization finds locally optimal solutions, and (close to) global optima
solutions when accurate surface initialization guesses are provided.

The initial skeleton pose guess is estimated manually, while the initial surface guess is obtained from
skinning. In the first iteration, we refine the surface, by keeping the skeleton degrees of freedom
fixed. This improves the model-to-image similarity having the initial skeleton pose regularize the
vertices location. Once the surface has been refined, we step back to solve for the skeleton pose
aiming at fixing eventual model-skeleton agreement issues that appeared after surface refinement,
e. g. bones wrongly placed withing the body or even exiting rigid body parts. Notice that through the
use of a rigidity mask, we guide the alignment more strictly for arms and legs than, e. g. , clothing.

Given an updated skeleton pose, we may iterate to improve the surface alignment to the images
with an improved smoothness term. We typically set up to 3 iterations, where one iteration consists
of subsequent surface and skeleton pose optimization. While refining the surface, we separate the
optimization of the Surface Gaussians and the Border Gaussians in two subsequent steps, aiming at
reducing the number of unknowns, see Function 6. Section 5.6 quantitatively validates this choice,
showing improved performances w. r. t. to simultaneous optimization of all Model Gaussians at once.
The conditioned gradient ascent optimization steps are explained in Section 4.5.4.

5.6 Experimental Results

We qualitatively and quantitatively evaluate our method and compare our results with state-of-the-art
human performance capture methods, both indoor and outdoors.
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Algorithm 6: Function to refine an input actor mesh, given as input the actor’s skeleton
parameters S and 3D Model Gaussian means M .

1 function M ′ := Refine(S ,M ):
2 M := {Ms,Mb} := M .update(S);
3 for n := 1 to 3 do
4 M ′

s := Optimize(Ms);
5 M ′

b := Optimize(Mb);
6 M .update(M ′

s ,M
′
b);

7 S ′ := Optimize(S);
8 M .update(S ′);
9 end

Sequence cathedral pablo unicampus skirt synthetic
Published by Kim et al. [99] Us Elhayek et al. [50] Gall et al. [64] Us
Cameras 8 9
Frames 65 200 133 200 1
Frame rate 40 Hz n/a
Camera type GoPro Camera [67] PhaseSpace Camera [81] n/a
Resolution 1920×1080 1280×720 1004×1004 1280×720
Vertices 4473 9161 6155 3862 160

Table 5.1: Details for each sequence. This table summarizes the technical details of the sequences used in
this chapter.

5.6.1 Test Sequences

Table 5.1 presents the details of the sequences used in this chapter. The cathedral sequence,
published by Kim et al. [99], shows an actor walking down the outdoor stairs of a cathedral. The
sequence presents some dynamic variations in the unconstrained background, while the illumination
remains constant during the whole action. For this sequence there is no actor scan available. To
obtain an actor mesh, we manually segment one frame of the sequence and perform silhouette-based
reconstruction to obtain a static reconstruction, which we use as a template, see Section 2.2.1 for
details. This method allows obtaining a rough estimate of the actor’s surface, which lacks surface
details. Despite this, later in this section, we show high-quality reconstruction results of the whole
sequence with additional deformations being captured.

The newly captured pablo sequence shows alternating short jumps and walking motions performed
by a single person on a grass field. While the illumination stays constant in time, individual automatic
color adjustment of the GoPro cameras causes the actor to appear differently when switching to
different views. Since the videos lack color calibration, the tracking approach has to deal with
possible color mismatches across the views. On top to this, the shadows of the surrounding trees
sometimes alter the appearance of the actor, introducing additional challenges in the tracking. During
the jumping motions the shirt and shorts undergo strong deformations. For this and the remaining
sequences, a detailed actor scan is available.

The unicampus sequence, published by Elhayek et al. [50], also used as testing sequence in Chapter 3,
shows a circular walk outside of large building with a dynamic background, featuring people walking
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around and cars driving close by. In terms of capturing setup, this sequence is the most challenging
due to the unconstrained environmental features that surrounds the action. The main actor partially
leaves at times (some of) the camera views and appearance-wise can get confused with other people
in the scene.

The skirt sequence has been used also in the previous Chapter 4. For this sequence automatically
estimated silhouettes are available thanks to the back-screened capturing setup. The performing girl
wears highly textured clothing with a highly deforming skirt, which is perfectly suited for Gaussians
based optimization. Although the controlled background is less challenging in this sequence, we
include it in our evaluation setup to perform both evaluation and comparison to previous methods.
For the quantitative evaluation of our technique, we additionally generate a synthetic sequence with
exact ground-truth. See Section 5.6.5 for more details.

5.6.2 Runtime

All results presented in this chapter are computed on a desktop computer with a NVIDIA GeForce
Titan X. Using unoptimized code, our method takes about 5-30 minutes on the CPU and 1-4 minutes
on the GPU, per frame. The biggest overhead is the refinement step, where the similarity between
all Model Gaussians and the Image Gaussians has to be estimated. In particular, the similarity
computation of a single Border Gaussian takes twice the time of a Surface Gaussian, since it has
to be estimated for both the inside and the outside Gaussian. As demonstrated in Chapter 4, the
computational time is directly proportional to the amount of Model Gaussians. Notice that, in contrast
to the previous chapter, we now optimize w. r. t. all the 3 global coordinates of each Model Gaussians.
Thus, the order of complexity is at least three times worse in the worst case. Depending on the
number of gradient descent iterations nt and the number of vertices nv, the order of complexity is
O(3nt ∑

nc
c=1 nc

i 2nv), when the entire surface is approximated with Border Gaussians only. Compared
to the previous chapter, where only single 1-degree Surface Gaussians are considered, the method
in this chapter involves six times more operations in the worst case. This explains the increased
runtime.

5.6.3 Qualitative Results

In Figure 5.1 and Figure 5.8, we qualitatively show reconstruction results on the 4 different sequences,
introduced in Section 5.6.1. Our results demonstrate that reconstructed meshes are temporally
coherent, do not suffer from temporal noise, and maintain the level of detail of the input template
without suffering from unnatural geometric deformation artifacts.

We also show textured models in Figure 5.8, last column, computed by reprojecting the original
image frames onto the refined models, which implicitly demonstrate the accuracy of our surface
reconstruction. More advanced view-dependent texturing techniques [32] would alleviate some of
the remaining ghosting artifacts in the appearance. We use wskin = 0.001 for all the sequences and
variable wsmooth ∈ [0.001,0.045].

The cathedral sequence shows accurate tracking of the cloth deformation along the rigid actor’s
motion. Due to the lack of baked-in surface details, because of absence of scans for the performing
actor, the reconstructed deformations are better appreciated over the textured model. With such
accurate geometry alignment to the multi-view images, it is a fairly trivial task to add the missing
fine-scale surface details, e. g. , using shading-based refinement approaches. While the overall
reconstruction aligns well with the multi-view images input, implausible deformations are still
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Figure 5.8: Qualitative results of our human performance capture approach. On the left, a representative
input frame of each sequence. For each sequence, we show untextured and textured reconstructions of
various frames. From top to bottom: cathedral, pablo, skirt and unicampus.
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(a) (b) (c) (d) (e)

Figure 5.9: Influence of the rigidity mask on the skinning Eskin term. (a) Input image, (b) zoom in, (c) initial
skinned surface, (d) refined surface without rigidity mask, (e) refined surface with rigidity mask.

visible in the deformation sequence, e. g. in the hair. A higher rigidity weight for the head region
would fix these issues.

The pablo sequence is particularly challenging to track, due to the appearance changes of the actor
across cameras. The reconstructed sequence is apparently unaffected by these inconsistencies, as the
found estimated surface is the result of multiple camera fitting, where few uncalibrated views get
implicitly ignored (or down-weighted) during optimization. Another challenge in this sequence is
the frequent occlusions of the feet in the high grass. In this challenging situations, our refinement
step, strongly influenced by the similarity term Esim, tends to implausibly squash the geometry to
maximize model-to-observation similarity. When using a rigidity mask, we can enforce vertices on
the feet to deform rigidly and maintain its original volume, while improving the contour alignment
at the same time, see figure 5.9(e). This proves the effectiveness of our skinning term Eskin to deal
with such difficult situations plausibly. In the pablo reconstructed sequence, some wobbling in the
upper head are visible due to difficulty to distinguish between the hair color and the dark background.
Results demonstrate plausible tracking and reconstruction of the shirt and shorts deformation along
with the actor’s movement.

The skirt sequence is one of the least challenging sequences we tested on in this chapter. Monochro-
matic static background is ideal to refine the mesh contours. Also the strong textures on the clothing
allow the proposed approach to track surface details at a finer resolution than the remaining se-
quences, mostly facing plain-colored apparel. For this sequence we obtain impressively accurate
reconstructions including tracking of tiny feet motions and matching flapping of the skirt with the
images. Notice that, due to the stronger surface regularization based on Laplacian coordinates, we
obtain slightly over-smoothed reconstruction w. r. t. those obtained in Chapter 4, even with small
regularization weight, i. e. wsmooth = 0.005.

The unicampus sequence is one of the most challenges to reconstruct, due to the highly dynamic
background. Our results show that our actor model keeps high fidelity matches with the multi-view
images regardless of the sudden changes in the background. The actor model of this sequence has
the highest resolution compared to the actors in the other sequences and holds most of the initially
scanned baked-in details, e. g. wrinkles on the clothing and face features. Our refinement approach
keeps surface details rigid while accounting for contour and feature match with the images. While
removing baked-in surface details is hard with our formulation, e. g. to capture new forming cloth
wrinkles of different shape, we demonstrate that our rigid mask constraints in this sequence help
maintaining a plausible-looking shape across the sequence.
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5.6.4 Comparison

We compare our approach to the silhouette-based method proposed by Gall et al. [64], as well as
to the motion capture approach, describe in Section 2.4.1, augmented with a skinned mesh, which
corresponds to our initial surface guess. The approach proposed by Gall et al. [64] entirely relies on
pre-computed accurate silhouettes and can therefore only be applied to controlled capturing setups.
For the comparison we launched all mentioned methods on the indoor skirt sequence for which exact
silhouettes are available.

To quantitatively assess the performance of our method compared to different approaches, we use a
silhouette overlap metric between the actor model projected to the camera plane and the ground truth
silhouette obtained with manual segmentation. We label as positive and negative the foreground
and background pixels, respectively. When the label of the projected model and the ground truth
image pixel agree, it is a true pixel, and false otherwise. The combination of true and false pixels is
expressed with the F1 score [152], commonly used in statistical analysis for binary classification,
which can be interpreted as a weighted average of precision and recall, i. e. :

F1 := 2 · precision · recall
precision+ recall

. (5.22)

The Figures in this section visualize the resulting overlap labels using green for false negative FN,
red for false positive FP, purple for true positive T P and black for true negative T N. Precision and
recall are defined respectively as:

precision :=
T P

T P+FP
, recall :=

T P
T P+FN

. (5.23)

Figure 5.10 presents a visualization of the qualitative evaluation of the skirt sequence, showing the
overlap of the mesh and the ground truth contour (top row), as well as the resulting silhouette overlap
labels (middle row), in different settings. Zoomed in visualizations are given in the bottom row. As
expected, the mesh generated from skinning after applying the motion capture approach, described
in Section 2.4.1 ( f irst column), is incapable of capturing the non-rigid skirt contour and suffers from
skinning artifacts in the shoulder area. Our approach (second column) significantly improves these
shortcomings, resulting in a much more accurate alignment.

Additionally, we also validate the performance of our method in ideal conditions, where the back-
ground is known (third column). Instead of working with the input color images, we use the
silhouette images, i. e. , with white foreground and black background, and assign the outside Gaus-
sians of the Border Gaussians also a black color, instead of the inverse of the inner Gaussian color as
we do in uncontrolled conditions. Results under such ideal conditions, shown in the third column,
further confirm the effectiveness of our new implicit representation: perfect color assignment of
the inner and outer Gaussians refines the mesh such that it perfectly matches the ground truth. Our
results are in fact comparable to Gall et al. [64] ( f ourth column). Notice that this state-of-the-art
method requires explicit silhouette segmentation and can be only launched in indoor sequences with
controlled capturing setup, whereas our method does not suffer from this restriction.

Figure 5.11 visualizes the F1 scores across 60 frames and 8 cameras of the skirt sequence, for different
approaches. Average F1 score values when enforcing known color background (0.9676±0.0056)
are comparable to the silhouette-based method from Gall et al. [64] (0.9683±0.0045).
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(a) (b) (c) (d)

Figure 5.10: Silhouette overlap evaluation in the skirt sequence. (Top row) Meshes with ground truth contour
in orange, (Middle row) Silhouette overlap. See Section 5.6.4 for color scheme description. (Bottom row)
Zoomed-in results. (a) Initial skinned surface, (b) refined surface, (c) refined surface with silhouettes, (d)
results of Gall et al. [64].
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Sequence cathedral pablo unicampus skirt
Actor Model convex hull scan
Surface Initial Refined Initial Refined Initial Refined Initial Refined
F1 score 0.9114±

0.0077
0.9362±
0.0033

0.8812±
0.0156

0.9212±
0.0096

0.8962±
0.0149

0.9223±
0.0083

0.9271±
0.0122

0.9676±
0.0056

Timing ≈14 ≈30 ≈20 ≈12

Table 5.2: Quantitative evaluation of the sequences tested in this paper. Timing is expressed in minutes per
frame. The F1 score of the refined surface is consistently higher than for the initial surface resulting from
skinning.

Figure 5.11: Quantitative evaluation of the silhouette overlap for the skirt sequence. The figure shows
the F1 scores (y-axis) across frames (x-axis) for different settings. Blue: Gall et al. [64], Red: Stoll et al.
[164], Yellow: Our approach using explicit silhouettes, Violet: Our approach using Surface Gaussians only
(corresponding to Chapter 4 without the normal constraint), Green: Our approach using Border Gaussians
only, Cyan: Our complete proposed approach.

5.6.5 Quantitative Evaluation

Extensive quantitative evaluation on outdoor footage is difficult due to the lack of ground truth
data, which can only be generated with laborious manual segmentation. We manually segment 10
frames of the publicly available cathedral dataset [99], as well as of our new sequences unicampus
and pablo. Figure 5.12 shows the silhouette overlap evaluation in these sequences, demonstrating
consistent improvement after mesh refinement. Despite the challenging scenes, with uncontrolled
background, our method successfully reconstructs and refines the surface of the actor model, without
requiring explicit manual silhouette segmentation. Table 5.2 presents the F1 mean and standard
deviation of evaluated frames in these sequences, consistently showing that our performance capture
method achieves high scores even in such challenging datasets.

In Figure 5.11, we evaluate each of the components of our energy, demonstrating that mesh refinement
using Surface Gaussians and Border Gaussians significantly improves over the initial skinning guess,
as well as using Surface or Border Gaussian alone.
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(a) (b) (c) (d) (e)

Figure 5.12: Silhouette overlap evaluation in outdoor sequences. (a) Original frame, (b) initial skinned mesh
and ground truth contour in orange, (c) final refined mesh and and ground truth contour in orange, (d) initial
skinned mesh silhouette overlap and (e) final refined silhouette overlap. See Section 5.6.4 for color scheme
description.
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Figure 5.13: Results of our approach for the synthetic sequence with different configurations. (Top row)
Input view featuring a black and white textured cube together with the resulting reprojected wire-frame cube
after refinement with different settings: (a) initial state, (b) result optimizing only for the Border Gaussians,
(c) result optimizing only for the Surface Gaussians, (d) result obtained with simultaneous optimization for
Surface and Border Gaussians, (e) result obtained by optimizing first for the Surface Gaussians only and
then for the Border Gaussians only (Our), (f) result as in (d) when using few Surface/Border Gaussians, i. e.
at most 8 per views. (Bottom row) Corresponding silhouette overlap. See Section 5.6.4 for color scheme
description.

We additionally test our refinement step on a synthetic sequence consisting of a 8-vertices textured
cube, further subdivided to obtain up to 160 vertices in total, with side size equal to 1 meter, i. e.
the volume size equals 1m3. We render 9 random views of the same mesh cube and feed it to our
refinement approach together with an initial slightly translated cube model, moved 50 mm along the
x axis, as initial surface guess, corresponding to a mean displacement error of 50 mm. Figure 5.13
shows the resulting refined cubes reprojected to a single chosen view using different settings. The
initial guess, which is used for refinement, is translated by 50 along the x axis. The corresponding
overlap is depicted in Figure 5.13(a). Note that for clarity the figure always visualizes the reprojected
resulting cubes with 8 vertices, although up to 160 are used for refinement. The best aligned result
given by Figure 5.13(e), which corresponds to the method described in this chapter, has mean
displacement error equal to 13.8 mm with a percentage improvement over the initial guess of 72.3%.

All the remaining test result in less accurate alignment w. r. t. to the input images. The Surface
Gaussian only result in Figure 5.13(c) has better performances (41.3% improvement, 29.3 mm error)
than the Border Gaussians only result in Figure 5.13(b) (5.0% improvement, 47.4 mm error). The
textures in the inner surface guide the Surface Gaussians toward the correct overlap and implicitly
adjust the contours as well, although imperfectly. This finding has been also confirmed in the
evaluation of previous Chapter 4.

In the Figure 5.13(d), we also test our method when simultaneously optimizing for both Surface
and Border Gaussians and find out this leads to worse performances than for our approach, with an
average improvement over the initial guess equal to 3.5%, with error 48.2 mm. One reason behind
this behavior is that simultaneous optimization has to solve for a larger number of unknowns at the
same time, i. e. Surface and Border Gaussians, easily leading to local minima solutions Figure 5.13(e).
To prove the last assertion, we run simultaneous optimization of Surface and Border Gaussians using
only as few as 8 vertices. This clearly leads to inaccurate matches, due to the missing tracking
information. However, it has slightly improved performances w. r. t. the test with a larger number of
unknowns, i. e. 5.3% improvement and 47.3 mm error.
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5.7 Discussion and Limitations

Testing demonstrated improved silhouette alignment results when both the inner and outer Gaussian
colors in a Border Gaussian are known and fixed, see Section 5.6. In a dynamic background scenario,
the color of outer Gaussians is hard to infer as it is subject to sudden changes. In an attempt to identify
the actual visible color for each view and frame, an idea could be to use the available information
given by the inner surface colors and look for the closest color change, which corresponds to a border
cross, along the surface normal, e. g. , using image gradient based techniques. This simple approach
may be enough to identify the outer Gaussian color and guide the surface refinement step accurately.
Nevertheless, the chosen approach delivers close to optimal silhouette alignment even when surface
and background do not present opposing colors.

Especially in outdoor scenarios where the illumination can undergo strong changes, e. g. , global light
changes or large harsh shadows hitting the actor, it is important to keep tracking of the appearance
changes of the performer and accommodate when needed. The current implicit surface formulation
has fixed colors taken from the initial template. However, to account for possible piece-wise
appearance changes, the Surface Gaussian colors as well as the inner Gaussians in the Border
Gaussians, have to be updated accordingly. Resetting the surface color by multi-view re-projection
at each frame easily leads to tracking failures due to the possibly accumulated color mismatches
that can lead to increased error over time. Chapter 3 describes a method for robustly creating input
illumination-invariant images, which is an effective solution to the appearance changes problem.
Another approach to deal with light variations as well as time-varying shading effects happening on
the surface could be explicit illumination estimation.

As demonstrated also in the previous chapter, our implicit model formulation enables fine-scale
detail reconstruction in presence of highly textured surfaces. Plain colored apparel for instance
cannot be tracked down to full detail due to lack of color information in the homogeneous areas.
High-frequency geometric detail in these cases could be recovered using inverse rendering techniques,
which also consider shading effects. These techniques often require estimating the illumination and
might be unsuited for highly shadowed areas, where a shadow edge is easily disguised for a shape
detail.

5.8 Conclusion

This chapter presented one of the first model-based methods for outdoor human performance capture.
Our new unified implicit representation for both skeleton tracking and non-rigid surface refinement
allows to jointly optimize for pose and shape, even in scenes with unknown moving background.
Our method fits the template to unsegmented video frames by first optimizing for skeletal pose
and subsequently refine both the pose and the non-rigid surface shape, such that they match the
multi-view images.

During surface refinement, the approach optimizes the silhouette alignment of the reprojected mesh
to the multi-view images without explicit background subtraction, by using a new implicit surface
border formulation. This new formulation based on Border Gaussians allows formulating silhouette
alignment without explicitly defining the vary background color and is proven to deliver improved
results even in presence of a unknown dynamic background.

We qualitatively and quantitatively evaluated our performance capture approach on several outdoor
sequences, demonstrating the effectiveness of our approach in unconstrained outdoor settings with a
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possibly dynamic background. We compare our approach with the previous methods and numerically
show improved performances.



Chapter 6
Conclusion

Cutting-edge advances in technology in the digitization pipeline now allow the entertainment industry
to create and animate realistically looking 3D virtual humans with personalized appearance that look
indistinguishable from real actors. Technologies for motion and performance capture of real actors
have enabled the creation of convincingly looking virtual humans through detail and deformation
transfer. Capturing detailed human bodies, however, comes at the price of extensive manual work
and sophisticated marker-based systems that are expensive to build and that only work with in-studio
controlled settings. Lightweight approaches for motion and performance capture have introduced
great simplifications in the acquisition and tracking process through markerless setups. However,
outdoor solutions still assume steady weather conditions and fail to reproduce the desired amount of
detail in presence of uncontrolled appearance variations of the performing actor, due to illumination
changes.

In this thesis, we took a leap forward and built one of the first model-based tracking methods
to automatically capture the surface deformation of performing actors in challenging outdoor
environment with possibly dynamic background and varying illumination conditions at high accuracy.
Novel technical advances have been developed in four different areas, namely actor modeling, motion
capture for skeleton configuration estimation, surface capture for personalized detailed deformation
estimation and joint multi-layered skeleton-surface capture for robust coarse-to-fine reconstruction.
We developed a new multi-layer body model of the actor, composed of a skeleton, volumetric and a
geometry layer, that can be easily personalized to represent differently shaped and dressed humans
and is well suited for motion and performance capture applications (Section 2.2). The model is
further augmented with an implicit Gaussian-based surface representation to favor surface capture in
less controlled outdoor settings (Chapter 4 and Chapter 5). Our markerless capture setup consists of
a set of synchronized and calibrated vision cameras capturing the overall performance from different
viewpoints. We have developed an illumination-invariant motion capture method to reliably estimate
skeletal motion in challenging scenarios with illumination changes, such as global light changes
and shadows (Chapter 3). For transferring the estimated rigid motion to the geometric layer, we
have proposed a fast and effective method to automatically skin the actor’s mesh to the underlying
skeleton (Section 2.3). Additionally, we have developed a surface capture approach to include
additional visible deformation and best match the model to the input multi-view images (Chapter 4).
To complete the picture, we have developed unified implicit formulation for both the articulated
skeleton tracking and non-rigid surface refinement to jointly track the overall actor’s motion from
coarse to fine scale resolution (Chapter 5).

113
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Figure 6.1: Overview of the main contributions presented in this thesis [147, 146, 145, 144].

In this chapter, we conclude the efforts achieved so far by restating and discussing the presented
contributions. Additionally, we examine some open challenges towards full body performance
capture in the wild.

6.1 Summary and Discussion

In this section, we summarize the core contributions presented in Chapters 2 and 5 and provide a
brief discussion of some remaining challenges that were not addressed in this thesis.

Chapter 2 introduced the mathematical body model of the human actor used throughout this thesis
for motion and performance capture. The multi-layered model consists of a skeleton structure
equipped with a volumetric representation of the actor and detailed geometry, which can be easily
personalized to differently shaped and clothed human actors. This chapter additionally outlined a
novel effective approach for rigging, i. e. defining mesh deformation based on the underlying rigid
skeleton motion, which is computationally cheap and generates reliable skinning weights without
the need for extensive manual adjustment. The proposed rigging method has been successfully used
in several published work [146, 142, 144] to define reliable rigid motion transfer for topologically
different actors.

Most of the markerless motion capture approaches are unable to deliver reliable skeleton tracking
in presence of strong illumination changes. To overcome this limitation, Chapter 3 introduced a
state-of-the art model-based approach that captures accurate skeletal motion by iteratively generating
illumination-invariant representations of the input multi-view images. The proposed graph-cut based
approach estimates a unique material label for each pixel in the input images, representing its albedo.
Synthesized albedo pictures are by definition illumination-invariant and can be effectively used to
robustly capture the skeletal motion in presence of strong illumination-changes affecting the actor’s
appearance. Results in unconstrained capture setup demonstrated qualitatively and quantitatively
improved skeleton configuration estimations, outperforming related approaches.

Motivated by the lack of general methods for dense surface refinement in (possibly) general environ-
ment, Chapter 4 introduced a simple yet robust approach for reliably capturing dense surface details



115 6.2. FUTURE WORK

without the need for explicit vertex-to-pixel correspondence [147, 145]. Instead, we built a smooth
energy functional, differentiable everywhere in space, that exploits the potentials of the volumetric
representation of the actor model to optimally fit it to the multi-view images. A fine-scale Sums-
of-Gaussians body model of the actor is matched to similarly approximated 2D Gaussians-based
multi-view images using gradient-based optimization. Error-prone correspondence finding is unnec-
essary in this context, thus enabling better posed model-to-image fitting, possibly in unconstrained
background settings.

The potentials of the smooth energy functional for model-to-image fitting in outdoor dynamic
environments, is demonstrated in Chapter 5. In this chapter, an improved differentiable energy is
introduced to account both for the inner surface details and for the silhouette alignment without the
explicit need for background subtraction [146]. The approach is based on a novel smooth formulation
for surface reprojection borders that allows silhouette and correspondence-free accurate contour
alignment to the multi-view images using gradient based optimization. Additionally, this chapter
defined an iterative approach to jointly estimate skeletal motion and refine the surface geometry,
enabling robust and accurate solutions to the problem of performance capture. The method proposed
in this chapter is one of the first to tackle the performance capture problem in outdoor dynamic
scenes.

As stated in Chapter 3, the quality of the input actor model has a direct impact on the accuracy of
the results. Because of the lack of fully-automatic methods to estimate personalized geometry and
rigging, the proposed approaches require cumbersome manual adjustment and can become infeasible
for real-time/interactive applications. While the proposed illumination-invariant segmentation of the
input image is robust to different kinds of material and appearance, highly specular materials can
easily spoil the performances. The same deficiency applies to the proposed Gaussian-based surface
refinement approaches. Nevertheless our smooth volumetric based tracking demonstrated robustness
to sporadic unhandled local effects, both in terms of appearance changes and complex deformation.

While Gaussian-based geometry refinement had encountered difficulties in tracking complex cloth
folding and tiny details, mainly due to the large number of unknowns, the overall coarse-to-medium
scale smooth deformation of the actor closely matches the actual performance, even in outdoor
dynamic capture environments. Apart from the geometry resolution, another important factor that
affects the quality of the reconstruction is the presence of texture. While typical coarse skeleton
tracking prefers plain colored foregrounds, the discovery of fine-scale detail is best performed in
presence of highly textured surfaces, where the color distribution produces lots of reliable features
to be tracked. When texture are unavailable, shading is another choice for cues that can be used to
refine monochromatic pieces of apparel. The reconstruction of fine-scale details covering any kind
of surface, i. e. , textured and texture-less, remains an open scientific question, that will be examined
in the next section.

6.2 Future Work

In this section, we discuss other remaining aspects not covered in this thesis, including challenges
in unconstrained full-body performance and motion capture. In this thesis, we have worked with
multi-view synchronized and calibrated camera settings. Unconstrained multi-view performance
capture, however, has to deal with possibly moving cameras with different technical characteristics
and synchronization (Section 6.2.1).

Our proposed model-based performance and motion capture approaches require as input a personal-
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ized body model of the actor. The proposed multi-layer actor model is able to semi-automatically
adapt to new human shapes. In Section 6.2.2, we outline a method, introduced in a co-authored work
by Rhodin et al. [142], that further automatizes the creation of personalized models. Also handling
of apparent topology changes, which are due to inaccurate initial actor modeling, is an interesting
future direction. More details on related approaches and possible solutions are given in Section 6.2.3.

Our refined tracking solution showed accurate results, especially in presence of strong texture.
Remaining monochromatic surface areas can be refined using shading-based refinement. While
approaches have been proposed to tackle the problem of understanding geometry from shading, no
existing approach is able to synthesize general fine-scale correct detail in unconstrained outdoor
scenarios. An overview of the challenges that characterize shading-based methods are outlined in
Section 6.2.4.

6.2.1 Dealing with Moving Cameras

The past few years have observed significant advances in mobile camera technology. The widespread
use of smart-phones facilitated casually capturing and sharing any scenes of interest. Multi-view
capture of the same scene, e. g. street performances, has become nowadays more common than
ever. Methods for motion and performance capture from sparse mobile videos, have to deal with
independent camera movements that lack calibration and synchronization.

Due to the inherent complexities, only few existing works deal with the problem of tracking humans
from moving unsynchronized cameras [51, 52, 74, 198, 65]. Hasler et al. [74] perform accurate
synchronization using the audio recordings, while camera parameters for each set of pre-synchronized
video frames are estimated by performing Structure from Motion (SfM) [132]. The actor’s pose
configurations are estimated in a second step, relying on the estimated camera settings. However,
SfM fails in case of cluttered scenes with dense moving background. Another limitation of SfM
is its unreliability in presence of motion blur due to e. g. hand-held camera shaking, and small
camera translation up to pure rotational motion. Ye et al. [198] proposed a model-based method
to simultaneously optimize skeletal pose and sensor position from image features and geometric
correspondences tracking between the point clouds and the performer’s surface, using multiple
consumer depth sensors. Unfortunately, depth sensors have trouble working in outdoor scenarios,
when the IR sun rays may introduce interference in the IR-projection pattern. For the method to
work reliably, stable background features are also required.

In contrast to these and related approaches, Elhayek et al. [53] proposed a new energy formulation to
jointly optimize for the skeleton pose and the camera parameters. Their on-the-fly bundle adjustment
method for multi-view calibration is based on few sparse 3D points corresponding to the visible
skeleton joints. Resulting camera paths can be less accurate than SfM based approaches. On top
of this, their method requires some manual input in the first frame, i. e. initial camera calibration
and the actor’s poses initialization. Nevertheless, theirs is one of the first method to provide good
guesses of camera extrinsics in dynamic and possibly cluttered scenes.

An improved estimation of the camera parameters could be obtained utilizing the larger set of
point correspondences across views provided by the denser surface information of the reconstructed
geometries, which are refined using the approaches proposed in this thesis in Chapter 4 and Chapter 5.
The additional cues could be also used to refine the camera intrinsics along with the extrinsics. Due
to the increased amount of parameters to optimize for w. r. t. to [53], specific optimization strategies
and temporal regularizers must be explored.
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Figure 6.2: Parametric body model examples estimated using the method of Rhodin et al. [142] compared
to 3D body scans (a,c,e) Estimated parametric body model, (b,d,f) Corresponding 3D scans.

6.2.2 Automatic Creation of Personalized Body Models

In this thesis, we introduced a new multi-layer actor body model, which can easily adapt to differently
shaped and clothed humans and is well suited for motion and performance capture applications.
Among the layers, the geometry layer is the hardest to generate, due to the amount of personalized
detail required. High quality geometry is typically achieved through the use of complex 3D scanners
or semi-automatic image-based scanning techniques that are strongly affected by imperfect input,
see Section 2.2.1. In this thesis, we have seen that most of the backed-in surface detail resulting
from scanning are due to the specific body pose (or motion) captured during scanning. In order to
obtain a more neutral shape geometry, i. e. independent from specific pose, we typically smooth-out
the geometry before tracking. This suggests that the level of detail we are seeking to capture is way
smaller than that obtainable from 3D scanners. Semi-automatic image-based scanning techniques
applied to few cameras would generally suffice for capturing coarse geometry that is, nevertheless,
well suitable for motion and performance capture.

Several methods have been proposed in the literature to reconstruct general high-quality geometry
from multi-view photographs [155, 61, 66, 162, 60], see Section 2.2.1.3. Due to the generality of
these methods, the reconstructed humans, especially in absence of sufficient camera views, lack
of important shape details. To improve the capture of human-like shapes from multi-view, some
human-specific methods have been proposed that fit a parametric body model of a human to a
multi-view photograph of the actor [159, 110]. In a co-authored work by Rhodin et al. [142], we
fully automatically build a personalized 3D model of the actor using a statistical model representing
the human body surface in combination with a few multi-view image clues. Our data-driven body
model is learned from a database of 228 registered 3D scans of humans in neutral pose. Then, we set
one of the scans as a reference mesh, and create a rigged skeleton as well as an implicit volumetric
representation of the shape in a similar way as in Section 2.2.3.2. We finally build a PCA model on
the variation space given by bone length and volume dimensions and determine a few major PCA
coefficients to span the principal shape variations of the database.

To obtain an initial skeleton-based parametric shape of the actor seen in the images, we find optimal
PCA parameters that best fit the parametric model to a given estimation of the person’s global location,
complete with the most prominent joint position guesses obtained using CNN-based approach, in
a few frames. To further account for non-rigid shape variations, e. g. determined by fat and body
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Figure 6.3: Example results of related approaches synthesizing apparent topology changes [104, 27].
(a,b) Input 3D reconstructions of two subjects playing with a large ball, (c) Canonical time-consistent actor
showing topological separation of the actor’s hands from the ball, (d,f) Input model views, (e,g) Corresponding
time-consistent canonical model reconstructions with automatic segmented body parts.

mass index (BMI), we additionally refine the estimated shape using multi-view image contour cues.
Our smooth energy formulation for silhouette-free contour alignment matches reprojected model
border gradients with the closest image gradients, which implicitly resemble likely contours. This
final refinement step incorporates additional shape features, which may deviate from the database
and therefore best adapt to the actor’s actual proportions.

Figure 6.2 shows examples of this method’s body approximations. As shown in the figure, the
estimated parametric model closely aligns to the corresponding 3D scans in terms of body sizes and
general shape. A disadvantage of data-driven human body approximations is mainly the lack of some
surface features, e. g. clothing deformations and facial detail, which cannot be captured faithfully
unless present in the database. As discussed before, optimal personalized human body models must
be free of pose specific deformations and these human approximations mostly respect this constraint.
A disadvantage of this approach is the inability to capture less-tightly dressed human, e. g. , wearing
dresses or skirts, or any other additional add-on, e. g. hats. In fact, this approach synthesizes tightly
clothed human body models despite the large variation in clothing, e. g. , correctly locating the
hips in presence of a large skirt. A combination of data-driven and image-based method could help
integrating unseen body shapes due to clothing. Nevertheless, automatic creation of personalized
actor models is an interesting research direction for performance capture.

6.2.3 Capturing Apparent Topology Changes

Our proposed model-based approaches require a colored template mesh for initialization and cannot
cope well with complex shape or topology changes. Topology changes (in physics) are the changes in
the geometric structure of objects due to splits or merges, e. g. water particles. Apparent topological
changes are defined as the apparent change of the initially assumed topology due to inconsistencies to
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the reality. The actor model’s geometry is a complex multi-layered structure of interacting materials,
e. g. skin and clothing, that are typically assumed to be merged together in a unique surface. In these
cases, apparent topology changes occurring when a hidden body part is suddenly revealed, e. g. a
hat is taken off, cause strong model-to-image mismatches that cannot be accounted for, unless the
topology of the initial actor model is also updated, i. e. the hat is split from the head geometry.

Most methods for performance capture simply ignore apparent topology changes and treat these
sudden changes as outliers [40, 64, 20, 179]. Other approaches aimed at reconstructing the full
performance, remove the need for an input actor model and reconstruct geometry frame-by-frame
including apparent changes in the topology [46, 130, 162, 35]. The main drawback for these
techniques is the lack of temporal consistency. On top of this, the reconstructed geometry lacks
important details due to the underconstrained settings. Additionally, because of the need for trackable
features and background subtraction, model-free approaches have only been successful in indoor
controlled studios, often with complicated, expensive multi-view setups.

Since synthesizing realistic multi-layered personalized human models, complete with clothing
geometry and physical interactions, is extremely challenging with the current technology, methods
to capture apparent topology changes have focused on algorithms to consistently and accurately
update the input coarse human model. Advanced techniques explicitly synthesize apparent topology
changes on the given input geometry, and then propagate the changes back in time, aiming at
keeping the geometry temporally consistent [104, 200, 12, 38, 135], see examples in Figure 6.3. This
kind of approaches are ideal for performance capture applications. However, they have only been
demonstrated on controlled settings with low resolution geometry.

Implicit surfaces and hybrid implicit-explicit representations are well suited to handle topology
changes, thanks to the fact they naturally adapt to typical topological operations like split and merge
[188, 131, 43]. Alternatively volumetric particle, voxel or patch based representations can serve well
for this purpose [112, 168, 27, 28]. Macklin et al. [112] demonstrate the use of particles with fixed
size to represent any kind of object and matter, i. e. solid, liquid or gas. Actor models can be formed
by joining together solid particles and model splitting and merging at the particles connections.
However, recovering fine-scale detail as well as representing thin material surfaces, e. g. pieces of
apparel, is challenging in a low resolution setting, and computationally demanding otherwise. This
also applies for voxel or other primitive -based volumetric representation. Nevertheless, this is an
interesting future direction.

A solution to the problem of capturing apparent topology changes could utilize the proposed multi-
layer body model, synthesized using a collection of Gaussians on the surface, to track the possible
variations in topology using the model-to-image fitting techniques discussed in Chapter 4 and
Chapter 5. The surface Gaussians described in Chapter 5 are structurally linked by the underlying
triangle connections in the geometry using a surface Laplacian regularizer. To enable stronger
deformation possibly caused by apparent topology changes, a new less-constraining regularization
term must be formulated, that keeps the surface smooth while allowing typical topological operations,
such as cuts, fusion and hole formations. Sums-of-Gaussians based models simulate implicit
surfaces, which are by definition topologically-free and thus optimal for tracking topology changes.
Possibly, new Gaussians on the surface must be seeded and properly constrained to the neighbors to
explain newly appearing areas. However, meshes extracted from implicit representations must be
remapped to a common topology for spatio-temporal consistency. Large topology changes could
be propagated back in time to favor temporal consistency as well as used to refine the previously
estimated deformations. As discussed in the thesis, Gaussians on the surface are primarily fit to
similarly colored areas. Therefore, topology changes are captured mostly when they result in a
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Figure 6.4: Results of shading based refinement for different methods. (a) Less-constrained indoor solution
by Wu et al. [193], (b) Complex light-stage based reconstruction result by Debevec et al. [42].

visible appearance, i. e. color, change. Nevertheless, the use of Gaussians on the surface for capturing
apparent changes in topology is an interesting direction for future research.

6.2.4 Shading-based Refinement

Most feature based approaches, like multi-view stereo (MVS), reconstruct coarse-to-medium over-
smoothed models mainly due to lack of trackable image structures, multi-view averaging into a
canonical model or strong regularization [126, 86, 155]. Shape-from-shading (SfS) based approaches
overcome some of these resolution limits and also succeed on texture-less objects. For SfS to deliver
correct results, reliable information on surface reflectance (albedo) of the object of interest and
illumination must be provided.

SfS is extensively used in the literature to refine coarse image-based shape models, e. g. obtained from
MVS, even under general uncontrolled lighting [192, 193, 191, 11]. In these works, illumination and
albedo distributions are estimated via inverse rendering optimizations, a cumbersome and ill-posed
step in uncontrolled scenarios. In an attempt to simplify computationally expensive non-linear
inverse rendering for scene illumination understanding, strong scene and lighting assumptions
are made, e. g. prior knowledge on reflectance, geometry and well-controlled complex lighting
setups [42, 78, 125]. Many methods employ spherical harmonics to approximate the lighting
model and assume distant, monochromatic light sources. Surfaces are typically assumed to be
Lambertian, ignoring specularities. Handling of self-occlusions, spatially-varying illumination and
high-frequency textures are few examples of additional unhandled cases in SfS refinement, that
restrict the applicability of the these kind of techniques.

One of the primary challenges in general scene understanding is distinghishing between albedo
and shading variations. Abrupt changes in the albedo, e. g. due to texture, might erroneously
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hallucinate geometric detail as a result of misinterpretation of local albedo changes as variations
in surface shading. Texture-copy artifacts are very common inaccuracies in shading based surface
reconstruction. Despite the impressive advances made in this direction, shading based refinement in
the wild remains an open problem.

In Chapter 3, we proposed a method that simultaneously tracks both surface deformation and local
illumination changes. After initially assigning an albedo color to the various materials, the method
learns the appearance change of each material using temporal pose priors and color consistency cues.
The accumulated information on different body parts could be used to approximate a reflectance
model for each material to better study light interactions from different view points and find the
correct albedo to use for SfS. The formulation of surface refinement through SfS could be combined
with the actual surface tracking to derive better regularized deformation.

6.3 Closing Remarks

The work presented in this thesis has been motivated by current limitations in performance capture,
which involve skeleton and fine-scale surface tracking of real actors for 3D realistic virtual human
synthesis. Restrictive capturing setup and extensive manual work greatly reduce the applicability of
these techniques. Several scientific contributions, which advance the state of the art in multi-view
performance capture, have been proposed in Chapters 2–5 to deal with the limitations mentioned
above.

Results attained on challenging scenarios have confirmed the scientific advances in the field and have
shown potential to automatize the digitization process for realistic virtual characters. Animation
artists can now better utilize the results obtained by our algorithms as high-quality prototypes to
sketch realistic human animations thereby streamlining the entire conventional digitization process
in post-production, thus saving money and weeks of strenuous effort. There are still many challenges
that need to be solved to digitize characters in unconstrained settings at high fidelity. We hope that
this thesis motivates the development of more follow-up methods to digitize photo-realistic virtual
human models of a quality comparable to the standard pipeline in post-production.
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Appendix A
Capturing Surface Details

A.0.1 Derivative of the Similarity Term

In order to calculate the derivative of Esim, we note that most of its terms are constant with respect to
ks, except the projected means µs and the variances σs, within the term Φi,s.

Using homogeneous coordinates, expressed throughout the paper using the superindex h, we first
compute the Surface Gaussian mean in 2D image space, µh

s , by projecting the constrained Surface
Gaussian mean µ̂h

s from Equation 4.3, using the camera projection matrix P ∈ R4×4:

µ
h
s = Pµ̂

h
s = P(µ̂ init

s + n̂h
s ks) ∈ R3, (A.1)

where µ̂ init
s is the initial Surface Gaussian mean, initialized as the vertex position vs, in homogeneous

coordinates. The derivative of µh
s with respect to ks is defined as:
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Combining the above equations, the derivative of µs evaluates to:
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The derivative with respect to ks of the projected variance σs is calculated by applying simple
derivation rules:
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Therefore, the derivative of the term Φi,s with respect to ks is obtained by substituting Equation A.3
and Equation A.4 in Equation 4.7, which generates:
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Finally, the derivative of Esim with respect to ks is:
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A.0.2 Derivative of the Regularization Term

The derivative of Ereg with respect to ks is calculated by simple derivation rules as follows:
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A.0.3 Derivative of the Temporal Term

The derivative of Etemp with respect to k f
s at the current frame f is calculated by simple derivation

rules as follows:

∂Etemp

∂ks
= 2

(
1
2
(k f−2

s + k f
s )−k f−1

s

)(
1
2
(0+1)−0

)
=

1
2
(k f−2

s + k f
s )− k f−1

s .

(A.8)

A.0.4 Comparative Graphs

In this Section, we show all comparative graphs for the tested sequences.
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Figure A.1: Silhouette improvement of the refined meshes for all the tested sequences. In each graph: pixel
improvement with respect to the specified input sequence per frame. Manually estimated true cloth pixels to
be used as a reference for the silhouette pixel improvement are stated in the captions of each sequence.
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Figure A.2: Average flow displacement error of the refined meshes, for the skirt and dance datasets,
including over-smoothed version. In each subfigure: (Left) normalized flow error per frame for original, in red,
and refined, in blue, mesh sequences. (Right) Difference between input and resulting flow error. Notice how
the resulting error is consistently decreased across all sequences. We register about 2.7% to 11% average
improvement of the sequence quality with respect to the input flow error. See the text for detailed evaluation.
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Figure A.3: Average flow displacement error of the refined meshes, for the pop2lock, wheel and handstand
datasets, including over-smoothed version. In each subfigure: (Left) normalized flow error per frame for
original, in red, and refined, in blue, mesh sequences. (Right) Difference between input and resulting flow
error. Notice how the resulting error is consistently decreased across all sequences. We register about 2.7%
to 11% average improvement of the sequence quality with respect to the input flow error. See the text for
detailed evaluation.



Appendix B
Outdoor Performance Capture

B.0.1 Derivative of the Similarity Term

The derivation of the similarity term Esim follows similar derivation rules explained in Section A.0.1.
The derivatives of the projected surface Gaussian mean µ

p
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s with respect to all dimensions are:
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where P ∈ R4×4 is the camera projection matrix, µ̂h
s ∈ R4 is the Gaussian mean in homogeneous

coordinates (i.e. the 4th additional dimension is set to 1) and [P]x,y,z are respectively the first, second
and third column of the projection matrix. The mean in 2D µs is obtained from the projected mean
µ
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s by performing a dimensionality reduction:
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Therefore its derivative with respect to x, y and z-dimension is obtained as follows:
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where p·,· are the matrix components of the projection matrix P. The projected standard deviation in
2D σs is obtained from the correspondent standard deviation in 3D σ̂s as:

σs =
f σ̂s[
µ

p
s
]

z

∈ R, (B.4)

where f is the camera focal length. The derivatives with respect to [µ̂s]x, [µ̂s]y and [µ̂s]z are then
defined as:
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Next, we find all sub-term required for the derivation of Φi,s (in R) with respect to [µ̂s]x only:
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Therefore, the derivative of the similarity Φi,s is obtained as:
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Finally the derivative of the similarity term Esim is:
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B.0.2 Derivative of the Countour Term

The contour term Econt can be considered as an extension of the Esim term, where the overlap is
estimated simultaneously for two Surface Gaussians, i. e. the inside and outside Gaussian components
of the Border Gaussians, at a time. The partial derivatives for the inside and the outside Gaussian
similarity, i. e. Φi,bin and Φi,bout can be computed using the formula in Section B.0.1. In particular,
the derivatives w. r. t. Φi,bout have inverted color similarity weight:
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Finally, the derivative of Econt is:
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B.0.3 Properties of the Contour Term

Notice that the contour term evaluates in the interval [0,1], in fact:
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Figure B.1 shows various example plots of Econt obtained by finding the optimal Border Gaussians
for various standard deviations (sigma), given a set of 4 Image Gaussians with random sigmas, mean
and color. The color of the Image Gaussians is randomly chones to be either blue or red. These
energy plots are maximized where the Image Gaussian form a border: for all cases, the optimal
Border Gaussian have mean at the Image Gaussian border. Notice how smaller standard deviations
in general produce more precise alignment to the border.

In the first example (top) the only border has been detected sucessfully. In the middle example the
most prominent border of the two is detected using different standard deviations. Notice that the
resulting energy in this case has a double spike for smaller standard deviations, which suggests
where the the borders are located. In the bottom more complex case, one can see that by varying the
standard deviations of the optimal Border Gaussian one can easily recognize two out of the three
borders.
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Figure B.1: On the left: Plots of 1D image Gaussians (dashed blue and red corresponding to opposite color
similarity wrt a pair of Gaussian) together with the optimal set of Border Gaussians in cyan obtained for
different standard deviations (sigmas). On the right: the Border Gaussian energy plotted for various means
and sigmas.
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dynamic deformations. In Proceedings of the 29th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’02, 2002. 26

[30] T. Captury. The captury, 2011. 13, 26

[31] J. Carranza, C. Theobalt, M. Magnor, and H.-P. Seidel. Free-viewpoint video of human actors.
In ACM TOG (Proc. SIGGRAPH ’03), 2003. 67

[32] D. Casas, M. Volino, J. Collomosse, and A. Hilton. 4D Video Textures for Interactive
Character Appearance. Computer Graphics Forum, 2014. 103

[33] B. Chang, S. Woo, and I. Ihm. Gpu-based parallel construction of compact visual hull meshes.
Vis. Comput., 2014. 18

[34] D. C. Chen, S. Denman, and C. B. Fookes. Accurate silhouette segmentation using motion
detection and graph cuts. In 10th International Conference on Information Science, Signal
Processing and their Applications, 2010. 18

[35] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe, A. Kirk,
and S. Sullivan. High-quality streamable free-viewpoint video. ACM Trans. Graph., 2015.
65, 67, 119

[36] C. Coniglio, C. Meurie, O. Lézoray, and M. Berbineau. A graph based people silhouette
segmentation using combined probabilities extracted from appearance, shape template prior,
and color distributions. In Advanced Concepts for Intelligent Vision Systems. Springer
International Publishing, 2015. 18



III BIBLIOGRAPHY

[37] Y. Cui, W. Chang, T. Nöll, and D. Stricker. KinectAvatar: Fully automatic body capture using
a single kinect. In ACCV Workshops, 2012. 91

[38] F. Da, C. Batty, and E. Grinspun. Multimaterial mesh-based surface tracking. ACM Trans. on
Graphics (SIGGRAPH 2014), 2014. 119

[39] Y. V. David Fofi, Tadeusz Sliwa. A comparative survey on invisible structured light, 2004. 15

[40] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, and S. Thrun. Performance
capture from sparse multi-view video. ACM TOG (Proc. of SIGGRAPH), 2008. 3, 9, 21, 23,
65, 66, 67, 89, 119

[41] E. de Aguiar, C. Theobalt, C. Stoll, and H.-P. Seidel. Marker-less deformable mesh tracking
for human shape and motion capture. In CVPR, 2007. 67

[42] P. Debevec. The Light Stages and Their Applications to Photoreal Digital Actors. In
SIGGRAPH Asia, 2012. 120

[43] M. Desbrun and M.-P. Gascuel. Animating soft substances with implicit surfaces. In Pro-
ceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’95, 1995. 119

[44] Y. Ding, J. Xiao, and J. Yu. A theory of multi-perspective defocusing. In CVPR 2011, 2011.
16

[45] A. Djelouah, J.-S. Franco, E. Boyer, F. Le Clerc, and P. Pérez. Sparse multi-view consistency
for object segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2015. 91

[46] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello, A. Kowdle, S. O. Escolano,
C. Rhemann, D. Kim, J. Taylor, P. Kohli, V. Tankovich, and S. Izadi. Fusion4d: Real-time
performance capture of challenging scenes. ACM Trans. Graph., 2016. 22, 119

[47] S. J. N. Drvar. The assessment of structured light and laser scanning methods in 3d shape
measurements. In Proceedings of the 4 th International Congress of Croatian Society of
Mechanics, 2003. 15

[48] Y. Du, Y. Wong, Y. Liu, F. Han, Y. Gui, Z. Wang, M. Kankanhalli, and W. Geng. Marker-less
3D human motion capture with monocular image sequence and height-maps. In ECCV, 2016.
37, 39

[49] D. A. Edilson, T. Christian, T. Sebastian, and S. Hans-Peter. Automatic conversion of mesh
animations into skeleton-based animations. Computer Graphics Forum, 2008. 25, 28

[50] A. Elhayek, E. Aguiar, A. Jain, J. Tompson, L. Pishchulin, M. Andriluka, C. Bregler,
B. Schiele, and C. Theobalt. Efficient convnet-based marker-less motion capture in gen-
eral scenes with a low number of cameras. In CVPR, 2015. 9, 21, 37, 102

[51] A. Elhayek, C. Stoll, N. Hasler, K.-i. Kim, H.-P. Seidel, and C. Theobalt. Spatio-temporal
motion tracking with unsynchronized cameras. In Proc. CVPR, CVPR ’12, 2012. 3, 116

[52] A. Elhayek, C. Stoll, K. I. Kim, H. P. Seidel, and C. Theobalt. Feature-based multi-video
synchronization with subframe accuracy. In Pattern Recognition, 2012. 116

[53] A. Elhayek, C. Stoll, K. I. Kim, and C. Theobalt. Outdoor Human Motion Capture by
Simultaneous Optimization of Pose and Camera Parameters. In CGF, 2015. 37, 39, 40, 116

[54] U. Fecker, M. Barkowsky, and A. Kaup. Histogram-based prefiltering for luminance and
chrominance compensation of multiview video. IEEE Transactions on Circuits and Systems
for Video Technology, 2008. 14



BIBLIOGRAPHY IV

[55] A. Feng, D. Casas, and A. Shapiro. Avatar reshaping and automatic rigging using a deformable
model. In Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, MIG
’15. ACM, 2015. 25, 28

[56] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartography. Commun. ACM, 1981. 12

[57] Fit3D. Proscanner, 2014. 14

[58] B. Foundation. Blender: free and open source 3d creation suite, 1998. 17

[59] J.-S. Franco and E. Boyer. Exact polyhedral visual hulls. In British Machine Vision Conference,
2003. 18

[60] J.-S. Franco and E. Boyer. Efficient polyhedral modeling from silhouettes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2009. 11, 16, 67, 89, 117

[61] S. Fuhrmann, F. Langguth, and M. Goesele. Mve: A multi-view reconstruction environment.
In Proceedings of the Eurographics Workshop on Graphics and Cultural Heritage, 2014. 16,
117

[62] J. Gall, B. Rosenhahn, T. Brox, and H. P. Seidel. Optimization and filtering for human motion
capture: A multi-layer framework. IJCV, 2010. 39

[63] J. Gall, B. Rosenhahn, and H. P. Seidel. Drift-free tracking of rigid and articulated objects. In
CVPR, 2008. 3, 37, 39

[64] J. Gall, C. Stoll, E. Aguiar, C. Theobalt, B. Rosenhahn, and H.-P. Seidel. Motion capture
using joint skeleton tracking and surface estimation. In Proc. IEEE CVPR, 2009. 3, 9, 65, 66,
67, 76, 77, 89, 90, 91, 102, 106, 107, 108, 119

[65] M. Germann, A. Sorkine-Hornung, R. Keiser, R. Ziegler, S. Würmlin, and M. H. Gross.
Articulated billboards for video-based rendering. Comput. Graph. Forum, 2010. 116

[66] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz. Multi-view stereo for
community photo collections. In 2007 IEEE 11th International Conference on Computer
Vision, 2007. 16, 117

[67] GoPro. Gopro: The world’s most versatile action cameras, 2002. 55, 102

[68] G. Group. Gvvperfcapeva: Human shape and performance capture datasets, 2013. 55

[69] J.-Y. Guillemaut and A. Hilton. Joint multi-layer segmentation and reconstruction for free-
viewpoint video applications. International Journal of Computer Vision, 2011. 91

[70] K. Guo, F. Xu, Y. Wang, Y. Liu, and Q. Dai. Robust non-rigid motion tracking and surface
reconstruction using l0 regularization. In ICCV, 2015. 91

[71] M. Gupta and S. K. Nayar. Micro phase shifting. 2012 IEEE Conference on Computer Vision
and Pattern Recognition, 2012. 15

[72] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2003. 12

[73] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, 2004. 16

[74] N. Hasler, B. Rosenhahn, T. Thormählen, M. Wand, J. Gall, and H. P. Seidel. Markerless
motion capture with unsynchronized moving cameras. In CVPR Workshops, 2009. 3, 37, 39,
91, 116

[75] N. Hasler, T. Thormählen, B. Rosenhahn, and H.-P. Seidel. Learning skeletons for shape and
pose. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, 2010. 28



V BIBLIOGRAPHY

[76] T. Helten, A. Baak, G. Bharaj, M. Müller, H.-P. Seidel, and C. Theobalt. Personalization and
evaluation of a real-time depth-based full body tracker. In 3DV, 2013. 91

[77] C. Hernandez, G. Vogiatzis, G. J. Brostow, B. Stenger, and R. Cipolla. Non-rigid photometric
stereo with colored lights. In Proc. ICCV, 2007. 67

[78] C. Hernandez, G. Vogiatzis, and R. Cipolla. Multiview photometric stereo. 2008. 120

[79] O. Hössjer and C. Croux. Generalizing univariate signed rank statistics for testing and
estimating a multivariate location parameter. Journal of Nonparametric Statistics, 1995. 46

[80] S. Ilic and P. Fua. Implicit meshes for surface reconstruction. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 2006. 9, 22

[81] P. Inc. Phasespace vision camera, 1994. 55, 56, 102

[82] P. R. Induchoodan, M. J. Josemartin, and P. R. Geetharanjin. Depth recovery from stereo
images. In 2014 International Conference on Contemporary Computing and Informatics
(IC3I), 2014. 16

[83] T. Industrie. Symcad iii, 2017. 14

[84] M. Innmann, M. Zollhoefer, M. Niessner, C. Theobalt, and M. Stamminger. Volumedeform:
Real-time volumetric non-rigid reconstruction, 2016. 22

[85] C. Ionescu, L. Bo, and C. Sminchisescu. Structural svm for visual localization and continuous
state estimation. In 2009 IEEE 12th International Conference on Computer Vision, 2009. 39

[86] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges,
D. Freeman, A. Davison, and A. Fitzgibbon. Kinectfusion: Real-time 3d reconstruction and
interaction using a moving depth camera. In Proc. UIST. ACM, 2011. 120

[87] A. Jacobson, I. Baran, L. Kavan, J. Popović, and O. Sorkine. Fast automatic skinning
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Dynamic shape capture using multi-view photometric stereo. In ACM TOG (Proc. SIGGRAPH
Asia ’09), 2009. 3, 67, 89

[181] L. Wade and R. E. Parent. Automated generation of control skeletons for use in animation.
Vis. Comput., 2002. 27
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