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Dekan Univ. - Prof. Dr. med. Michael D. Menger

1. Berichterstatter Univ. - Prof. Dr. Stefan Wagenpfeil

Institut für Medizinische Biometrie, Epidemiologie und

Medizinische Informatik (IMBEI), Universität des Saar-

landes, Homburg (Saar)

2. Berichterstatter apl. Prof. Dr. med. Jürgen Scharhag
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4.4 Nomogram of relative V̇O2peak (Rüdesheim/Frankfurt). . . . . . . . . . . 42

4.5 Coefficient plots of absolute V̇O2peak. . . . . . . . . . . . . . . . . . . . . . 45

4.6 Coefficient plots of relative V̇O2peak. . . . . . . . . . . . . . . . . . . . . . 45

4.7 Apparent validation box plots. . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Apparent validation calibration plots. . . . . . . . . . . . . . . . . . . . . 47

4.9 External validation box plots. . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.10 External validation calibration plots. . . . . . . . . . . . . . . . . . . . . . 49

4.11 Median regressions for inclusion versus exclusion of participants with no

maximal effort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.12 Screenshot of web application. . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 Coefficient plots of multivariable quantile regression models for absolute

V̇O2peak in men. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.14 Coefficient plots of multivariable quantile regression models for absolute

V̇O2peak in women. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.15 Coefficient plots of multivariable quantile regression models for relative

V̇O2peak in men. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.16 Coefficient plots of multivariable quantile regression models for relative

V̇O2peak in women. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Comparison of reference values for V̇O2peak. . . . . . . . . . . . . . . . . . 66

A.1 Histograms of continuous variables for men. . . . . . . . . . . . . . . . . . 131

A.2 Histograms of continuous variables for women. . . . . . . . . . . . . . . . 132

A.3 Correlation matrix of continuous variables for men. . . . . . . . . . . . . . 133

A.4 Correlation matrix of continuous variables for women. . . . . . . . . . . . 134

A.5 Apparent validation box plots: Comparing regression models. . . . . . . . 136

A.6 Apparent validation calibration plots: Comparing regression models. . . . 137

A.7 Informed consent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

vi



List of Tables

2.1 End criteria for maximal effort in exercise tests. . . . . . . . . . . . . . . . 10

3.1 Inclusion and exclusion criteria of the present study. . . . . . . . . . . . . 16

3.2 Specifications of record linkage. . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Eligible variables of the present study for comparison with DEGS1. . . . . 22

4.1 Descriptive statistics by sex and study center. . . . . . . . . . . . . . . . . 32

4.2 Quantiles of relative V̇O2peak by sex and age group. . . . . . . . . . . . . 36

4.3 Quantiles of absolute V̇O2peak by sex and age group. . . . . . . . . . . . . 36

4.4 Comparison of study population to results of DEGS1. . . . . . . . . . . . 38

4.5 Regression coefficients and 95% conficence intervals of quantile regressions

plotted in nomograms (absolute V̇O2peak). . . . . . . . . . . . . . . . . . . 43

4.6 Regression coefficients and 95% conficence intervals of quantile regressions

plotted in nomograms (relative V̇O2peak). . . . . . . . . . . . . . . . . . . 44

4.7 Regression coefficients and R squared for linear regression in calibration

data for apparent validation. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Regression coefficients and R squared for linear regression in calibration

data for external validation. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.9 Median regression using exertion and age as interaction terms. . . . . . . 52

4.10 Regression coefficients of multivariable quantile regressions for relative V̇O2peak

in men. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.11 Regression coefficients of multivariable quantile regressions for relative V̇O2peak

in women. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 Regression coefficients of multivariable quantile regressions for absolute

V̇O2peak in men. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 Regression coefficients of multivariable quantile regressions for absolute

V̇O2peak in women. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Quality assessment of the measurement of V̇O2peak. . . . . . . . . . . . . . 73

A.1 Bivariate descriptive table of the full dataset and random sample. . . . . . 129

A.2 Bivariate descriptive table of the final dataset and excluded cases. . . . . 130

A.3 Skewness and quantile-based skewness of all eligible quantitative variables 135

A.4 Regression coefficients and R squared for linear regression in calibration

data for apparent validation. Comparison of three regression models. . . . 138

A.5 Akaike Information Criterion AIC for different regression models. . . . . . 138

vii



Abstract

Background

Low cardiorespiratory fitness is a crucial risk factor for premature death and a plethora

of health threats. It is determined by measuring the maximal volitional oxygen consump-

tion (V̇O2peak) in incremental cardiopulmonary exercise tests. The interpretation of an

individual’s V̇O2peak is only meaningful if sex-specific and age-specific reference values

are considered. The primary goal of this study was to create reference values for V̇O2peak

based on cardiopulmonary exercise tests using cycle ergometry.

Methods

The data were acquired in the course of primary preventive health screenings. Overall,

9,354 German white-collar workers (6,063 men, 3,291 women) aged 25 to 69 years who

performed cycle ergometry-based incremental exercise tests were included in the analysis.

Three study centres recorded the data in a central database (Prevention First Registry)

for an inquiry period between 2001 and 2015. Quantile regressions were used to cre-

ate nomograms and an interactive web application was developed (www.uks.eu/vo2peak).

Apparent and external validations of the regression fits were performed. The generalis-

ability of this sample was assessed by comparing five characteristics to a study which was

representative of the German population. Exercise test modalities were not recorded in

the full dataset but were acquired retrospectively for a random sample with an a priori

calculated sample size of 252 participants.

Results

An estimated proportion of 97% of the recorded exercise tests was continued until exertion.

The reference values showed a particularly high validity for the age groups from 30 to

64 years. 3/5 characteristics in men and 4/5 characteristics in women of this sample

were significantly different from the German population, indicating a selection of healthy

participants.

Conclusions

The reference values presented by this study are based on one of the most extensive

databases in this field. They can be used for participants of cycle ergometry-based exercise

tests aged 25 to 69 years who are part of a population that is comparable to this study.
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Zusammenfassung

Hintergrund

Eine niedrige kardiorespiratorische Fitness ist ein entscheidender modifizierbarer Risiko-

faktor für vorzeitiges Versterben sowie eine Vielzahl von weiteren Gesundheitsgefahren.

Sie wird bestimmt, indem die maximal willkürliche Sauerstoffaufnahme (V̇O2peak) bei

einer spiroergometrischen Untersuchung gemessen wird. Die individuelle V̇O2peak ist

jedoch nur aussagekräftig, wenn sie mit geschlechtsspezifischen und altersspezifischen

Referenzwerten verglichen wird. Das primäre Ziel dieser Arbeit war die Erstellung von

Referenzwerten für die V̇O2peak, welche im Rahmen von Spiroergometrien mit Fahrrad-

ergometern erhoben wurden.

Methoden

Die Datenerhebung erfolgte im Rahmen von präventivmedizinischen Untersuchungen bei

denen eine Spiroergometrie mit Fahrradergometern durchführt wurde. Insgesamt wurden

9,354 Teilnehmer (6,063 Männer, 3,291 Frauen) im Alter von 25 bis 69 Jahren in die

Analyse eingeschlossen. Die Teilnehmer waren vor allem Büroangestellte mit einem bewe-

gungsarmen Arbeitsumfeld. Untersuchungen aus drei deutschen Zentren wurden in einer

zentralen Datenbank (Prevention First Registry) gespeichert. Quantilregressionen wur-

den berechnet um Nomogramme zu erstellen und eine Webapplikation wurde entwickelt

(www.uks.eu/vo2peak). Apparente und externe Validierungen der Quantilregressionen

wurden durchgeführt. Fünf Merkmale dieser Studienpopulation wurden mit einer für

Deutschland repräsentativen Studie verglichen um die Repräsentativität der Ergebnisse

zu untersuchen. Die Testmodalitäten der Spiroergometrien wurden nicht in der zentralen

Datenbank gespeichert und wurden deshalb für eine Zufallsstichprobe mit einer a priori

berechneten Fallzahl von 252 Teilnehmern erhoben.

Ergebnisse

Bei einem geschätzten Anteil von 97% der Teilnehmer wurden Ausbelastungskriterien

erfüllt. Die Referenzwerte zeigten eine besonders hohe Validität für die Altersgruppen

von 30 bis 64 Jahre. 3/5 Merkmale bei Männern und 4/5 Merkmale bei Frauen dieser

Studienpopulation zeigten signifikante Unterschiede zur deutschen Bevölkerung. Dies

deutet auf eine Selektion von gesunden Teilnehmern hin.

Schlussfolgerung

Die Referenzwerte dieser Studie basieren auf einer der umfangreichsten bisher publizierten

Datengrundlagen in diesem Feld. Sie können für Teilnehmer von fahrradergometrischen

Spiroergometrien im Alter von 25 bis 69 Jahren verwendet werden, die einer Bevölkerungs-

gruppe angehören, welche vergleichbar mit dieser Studienpopulation ist.

ix
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1 Rationale and objectives

Cardiorespiratory fitness (CRF) is the ability of a person to perform physical activity for

a prolonged period of time [53, p. 72]. During physical activity, the cardiorespiratory

system reacts with an increased heart rate and breathing rate, which is necessary to

supply the additional amount of oxygen. This is needed to sustain increased energetic

requirements through the oxidation of metabolic substrates.

A comprehensive body of evidence shows that low endurance capacity is an important

risk factor for a plethora of health threats such as cardiovascular diseases and premature

death [35, 61, 41]. This means that the risk of dying and the risk of cardiovascular diseases

is higher in persons with low endurance capacity. Besides cardiovascular diseases and all-

cause mortality, CRF is also associated with diabetes mellitus [5, 77], some types of cancer

[60] and - to a lower extent - with psychiatric diseases like depression or dementia [21].

CRF is a strong predictor for health threats in later life and its predictive power is

comparable to well-accepted risk factors such as tobacco smoking or arterial hypertension.

Kim et al. (2007) [33] stated that, “Exercise capacity is known to be one of the most

important predictors of death for men and women alike.” However, despite the high

predictive power, cardiovascular risk calculators like PROCAM [4]∗, European SCORE

[12]†, Framingham [13] or JBS3 [28]‡ do not consider CRF for risk estimation. The

American Heart Association (AHA) emphasised in 2016 that this is a major drawback

and that it is crucial to consider CRF for cardiovascular risk predictions [58].

The assessment of CRF in primary preventive health examinations is crucial and the

value of CRF in preventive medicine goes beyond the mere prediction of future health

threats. As physical exercise increases CRF [39], it is assumed to be a modifiable risk

factor. Participants of preventive health examinations are hence able to impact their

future health by performing physical activity regularly. The AHA emphasised that CRF

is an essential modifiable factor that should be addressed to reach the AHA’s 2020 goals

of improving the cardiovascular health of US-Americans [40].

The most common approach for determining CRF is by performing incremental cardiopul-

monary exercise testing (CPET) and measuring the participant’s oxygen uptake. During

CPET, the participant performs a physical activity of increasing intensity which leads

to increased requirements for oxygen. The participant tries to maintain the increased

physical activity until the maximal volitional intensity is achieved. At this point of the

exercise test, the oxygen uptake of the participant is assessed. If the intensity performed

in the exercise test is close to the true exercise capacity of the participant, the determined

∗PROCAM = Prospective Cardiovascular Münster study

†SCORE = Systematic Coronary Risk Evaluation

‡JBS3 = Joint British Society 3
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1. Rationale and objectives

oxygen uptake is then stated to be the maximal oxygen uptake. The maximal oxygen

uptake is widely considered to be the gross criterion of CRF [44, 59].

Gas exchange measurement during CPET usually determines the oxygen uptake of a par-

ticipant as the difference between the volume of oxygen inhaled and exhaled per time

unit. The result of this calculation is the volumetric flow rate (V̇O) of oxygen which is in-

corporated by the participant∗. According to the American Thoracic Society’s statement

on cardiopulmonary exercise testing (2003), there are two notations of the highest oxygen

uptake measured using CPET [1]. V̇O2max is considered to express the oxygen uptake

in the case that the participant maintained the incremental exercise until the maximal

volitional intensity. Maximal effort can be assumed based on end criteria measured during

the exercise test. On the other hand, V̇O2peak denotes the oxygen uptake if it is not clear

whether the participant performed the exercise test until maximal exertion. However,

there is no strict distinction between the usage of V̇O2max and V̇O2peak, and both terms

are often used interchangeably. Therefore, the present study uses V̇O2peak to denote the

highest oxygen uptake during CPET irrespective of whether end criteria were considered

or not.

As mentioned above, a high CRF seems to be essential for improving cardiovascular health.

However, the definition of what exactly can be defined as a high CRF is not apparent.

CRF is known to be strongly dependent on sex and age [23, 50]. Other factors such as

physical activity or tobacco smoking are also known to have an impact, which is why

there is a wide inter-individual variability of CRF [50]. Considering the substantial role

that sex plays as well as the decline of CRF associated with increasing age, it is critical

to interpret the individual CRF of a CPET participant in the light of sex- and age-

specific reference values from a comparable population. According to Kim et al. (2007),

“defining normative values for EC [exercise capacity] is of utmost importance in accurate

risk prediction after stress testing” [33]. Based on this, the primary and secondary goals

of the present analysis were:

Primary goals

1. Primary goal 1: To calculate percentile reference values for peak oxygen

uptake.

2. Primary goal 2: To visualise reference values as nomograms and as an inter-

active web application.

∗V̇O = volume of oxygen per time unit = δV
δt

, measured in litres of oxygen per minute

2



1. Rationale and objectives

Secondary goals

1. Secondary goal 1: To perform external validation of the reference values. The

population used for external validation should be different from the population

in which the reference values are calculated.

2. Secondary goal 2: To compare this study sample with the German population

in order to detect selection bias.

3. Secondary goal 3: To perform an exploratory multivariable analysis aiming

to find predictors for peak oxygen uptake.

In the following, the role of CRF in preventive medicine, the measurement of CRF using

CPET and present reference values for peak oxygen uptake are outlined in chapter 2. The

data source, test modalities and statistical methods of the present study are described

in chapter 3. The results including reference values, visualisations as nomograms and

an explorative multivariable analysis are displayed in chapter 4. Finally, the results are

discussed in chapter 5 and conclusions are drawn in chapter 6.

3



2 Background

This chapter reviews the current literature on the association between cardiorespiratory

fitness and health-related outcomes (section 2.1) followed by the value and the general

framework of incremental exercise testing in primary preventive health examinations (sec-

tion 2.2). Section 2.3 describes the methodological principles of the measurement process

using incremental exercise tests. In section 2.4, existing reference values for peak oxygen

uptake and quality standards of the measurement are reviewed.

2.1 Cardiorespiratory fitness as a risk factor

Low CRF is a risk factor for premature all-cause mortality and cardiovascular disease. A

comprehensive body of scientific evidence supports an inverse dose-response relationship,

meaning that the higher a person’s CRF, the lower the person’s risk of cardiovascular

disease [53, 33]. Besides, other health problems such as neoplasia, metabolic or neurode-

generative diseases have been shown to be inversely associated with CRF. The evidence

can be derived from meta-analyses as well as comprehensive prospective studies. Sev-

eral studies have reported adjusted effects supporting the assumption that low CRF is a

risk factor which is independent of widely accepted risk factors. The effects of CRF on

cardiovascular disease and mortality have been recognized as decidedly strong. CRF is

therefore regarded as one of the most important independent predictors of cardiovascular

disease and all-cause mortality [33].

Kodama et al. (2009) performed a systematic review and meta-analysis of observational

cohort studies that addressed the question of CRF being a predictor for cardiovascular

disease [35]. Overall, 33 studies were eligible for the analysis including 102,980 subjects

for analysis of all-cause mortality and 84,323 subjects for analysis of cardiovascular dis-

ease. Mean age at baseline of the included studies was 37 to 58 years. The meta-analysis

revealed that an increase of maximal cardiorespiratory fitness decreased the risk for car-

diovascular disease (risk ratio [RR] 0.85, 95% confidence interval [CI] 0.82 to 0.88 for an

increase of maximal aerobic capacity by one MET∗) and the risk of all-cause mortality

(RR 0.87, 95% CI 0.84 to 0.90 for an increase of maximal aerobic capacity by one MET).

Another meta-analysis was performed by Löllgen et al. (2009), who analysed the asso-

ciation between physical activity and all-cause mortality [41]. In total, 38 prospective

cohort studies including information on the intensity of physical activity were included

in the analysis. Highly active subjects had a lower risk to die compared to subjects with

∗CRF can be described by metabolic equivalents (METs). 1 MET is assumed to be the oxygen consump-
tion under resting conditions which is assumed to be 3.5 mLO2/min/kg. < 3 METs indicate low-intensity
physical activity and ≥ 6 METs indicate vigorous-intensity physical activity.
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low activity levels (men: RR 0.78, 95% CI 0.72 to 0.84, women: RR 0.69, 95% CI 0.53 to

0.90).

Shah et al. (2016) conducted a comprehensive cohort study and observed that the CRF

of younger adults (18 to 30 years) was also a predictor of health outcomes in later life

[61, 11]. They observed 4,872 participants of exercise tests for a median follow-up period

of 27 years. One additional minute of exercise test duration at baseline reduced the

hazard of death by 15% (hazard ratio 0.85, 95% CI 0.80 to 0.91). The authors assumed

that CRF was an independent risk factor and was not mediated by other well-known

risk factors such as coronary artery calcification. This assumption was supported by

their adjusted analysis which considered confounding and effect modification by major

risk factors. Furthermore, the authors could not find an association between CRF and

coronary artery calcification at each follow-up measurement and hence suggested that

coronary artery calcification did not mediate the protective effects of high CRF.

Aside from all-cause mortality and cardiorespiratory events, a low CRF was a risk factor

for other health-related outcomes such as metabolic diseases [77], neoplasia [60], neurode-

generative diseases [21] or, with smaller effect size, affective disorders [51].

Zaccardi et al. (2015) described the association between CRF and type 2 diabetes mel-

litus [77]. The authors conducted a meta-analysis of prospective studies as well as their

own prospective cohort study with a follow-up period of 23 years. 92,992 subjects were

analysed in the meta-analysis including 8,564 cases with type 2 diabetes mellitus. Higher

CRF was associated with a lower risk for type 2 diabetes mellitus (RR 0.95, 95% CI 0.93

to 0.98 per increased MET) in the meta-analysis.

Schmid & Leitzmann (2015) performed a meta-analysis of the association between CRF

and total cancer mortality [60]. They considered six prospective studies, which included

71,654 subjects with a median follow-up period of 16 years, resulting in 2,002 total cancer

mortality cases. CRF was measured using maximal or submaximal exercise tests. All

included studies presented risk estimates that were adjusted for age and smoking status.

The meta-analysis showed a strong, inverse association when the groups with highest and

lowest CRF were compared (RR 0.55 95% CI 0.47 to 0.65).

The impact of physical activity on neurodegenerative diseases was studied by Hamer &

Chida (2009) [21]. In their meta-analysis, the authors extracted data from 16 prospective

cohort studies, including 163,797 participants with 2,731 dementia or Alzheimer’s disease

patients and 488 patients with Parkinson’s disease. CRF was not measured directly in

the included studies, but self-reported physical activity was used as the predictor. When

subjects with the highest and the lowest physical activity were compared, Alzheimer’s

disease was found less often in the group with higher physical activity (RR 0.55, 95% CI

0.36 to 0.84). Other associations showed lower effects measures or non-significant results.

Another association was analysed by Papasavvas et al. (2016) [51], who found a modest

correlation (correlation coefficient -0.16 95% CI -0.21 to -0.10) between the severity of

depression and CRF in their meta-analysis.

In summary, there is substantial evidence for an association between CRF and cardiovas-
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cular disease as well as CRF and premature all-cause mortality. The associations were

observed in prospective studies, meta-analysis and were validated in external popula-

tions. Hence, it is likely that there is a causal relationship between CRF and these health

threats. It should also be emphasised that the effect sizes of these relationships are very

high and comparable with other major risk factors such as tobacco smoking or dyslipi-

daemia. Therefore, CRF is a decisive modifiable risk factor which should be targeted by

preventive medicine. Furthermore, adjusted analyses support the assumption that CRF

is a risk factor that is independent of other major risk factors. Aside from cardiovascu-

lar disease and mortality, plenty of health threats are inversely associated with CRF. To

conclude, CRF might be an essential target in the prevention of cardiovascular disease,

mortality and other critical health threats.

2.2 Exercise tests in preventive medicine

This section outlines the general framework of CPET and the value of CPET in preventive

medicine. Furthermore, the effort to increase CRF, which is a primary goal of preventive

medicine and one of the important rationales to measure V̇O2peak, is outlined.

General framework of exercise tests

CPET and the measurement V̇O2peak should be embedded into a more comprehensive

assessment to rule out preexisting diseases that might affect patient safety [53, 1, 71].

This assessment includes anamnesis, resting electrocardiogram, blood pressure as well as

the measurement of anthropometric characteristics and laboratory values such as carbon

hydrate and lipid metabolism. During CPET, there is usually a recording of heart rate,

blood pressure and the assessment of subjective symptoms. Blood pressure and exercise

electrocardiogram are recorded to detect pathological reactions of the circulatory system

and terminate CPET if appropriate. Subjective symptoms may either be the rating of

perceived exertion (e.g. by Borg Scale, [53]), localised pain or angina pectoris. Taking

capillary blood samples is also common to measure lactate levels at a given work rate.

Based on lactate thresholds, precise recommendations for physical exercise can be con-

ducted. A number of organisations have published extensive guidelines for CPET and its

framework such as the ACSM (2014) [53], ATS/ACCP (2003) [1], AHA (2010) [7] and in

German by Trappe & Löllgen (2000) [67] or DGSP∗ (2007) [15].

Exercise prescription

In chapter 2.1, evidence was presented to show that CRF is a substantial risk factor for a

number of health threats. Garber et al. (2011) stated in their ACSM position that, “The

scientific evidence demonstrating the beneficial effects of exercise is indisputable” [18].

∗Deutsche Gesellschaft für Sportmedizin und Prävention
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From a public health perspective, it is interesting how CRF can be improved and whether

and to what extent an improvement in CRF leads to a lower occurrence of adverse events.

Therefore, a short overview of cardiopulmonary exercise and its health implications is

outlined in the following.

CRF is largely dependent on physical activity and physical exercise. Improved fitness

as a response to progressive exercise is a basic principle of training theory [16]. This

was shown in a meta-analysis by Lin et al. (2015) [39], who used 27 studies of men and

25 studies of women. The exercise arrangements were different in the analysed studies

including moderate and vigorous training. The mean overall response of relative V̇O2peak

was quantified at 5.4 mLO2/min/kg (95% CI 4.3 to 6.5) in men and 3.2 mLO2/min/kg

(95% CI 2.6 to 3.9) in women. The effect of exercise was stronger in subjects with a

sedentary lifestyle compared to subjects with an active lifestyle, and it also increased

with exercise duration per week. The authors also observed that exercise leads to desired

effects on lipid and glucose metabolism. Those findings were confirmed by a meta-analysis

of Huang et al. (2016) [24], who conducted a meta-analysis of older adults with a mean

age of 68 years.

The ACSM’s recommendations for cardiorespiratory endurance exercise in healthy indi-

viduals depend on the intensity of exercise [18, 53]. When moderate intensity is performed,

30 minutes per day on five days a week are recommended. Exercise with vigorous inten-

sity should be performed on three days a week for 20 minutes per day. The intensity of

endurance exercise should be defined based on heart rate reserve (HRR) or on V̇O2peak re-

serve (V̇O2R)∗. Using the oxygen uptake method, moderate exercise is defined as V̇O2rest

plus 40% to < 60% of V̇O2R and vigorous exercise at V̇O2rest plus 60% to < 90% of V̇O2R.

Persons with diseases such as heart failure, or athletes with high CRF are likely to benefit

from different training arrangements which can be found in [53, p. 161] and [18].

To conclude, it is clear that cardiorespiratory fitness is a substantial independent risk

factor. However, CRF is critically dependent on cardiorespiratory exercise and training

[37, 18]. It is reasonable to measure CRF by acquiring V̇O2peak in preventive medicine

to assess the participant’s risk and in order to arrange endurance exercise systematically.

For the interpretation of a participant’s V̇O2peak as well as for exercise prescription, sex-

specific and age-specific reference values based on a comparable population are essential.

2.3 Measurement of peak oxygen uptake

This chapter outlines the measurement tools needed to assess V̇O2peak. Different types of

ergometers, test protocols, and end criteria are summarised. A special focus is placed on

how the results of CPET are affected by its test modalities.

∗Heart rate reserve is defined as HRR = HRmax − HRrest, where HRmax denotes the maximal heart rate
and HRrest denotes heart rate at rest. V̇O2peak reserve is calculated as V̇O2R = V̇O2peak−V̇O2rest, where
V̇O2peak denotes maximal oxygen comsumption and V̇O2rest denotes oxygen consumption at rest [53, p.
170].
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Cardiopulmonary exercise tests

There are several test arrangements that aim to assess V̇O2peak. Open circuit spiroergom-

etry that is performed until maximal effort of the participant is a standard setting and has

been described as the gold standard in measuring V̇O2peak [1, 7, 53]. Spiroergometry is the

measurement of gas exchange during physical activity that is performed on an ergometer.

Gas exchange is measured by wearing an airtight mask with a built-in pneumotachograph,

which is a low-resistance valve through which respiration is conducted. V̇O2 is obtained

using respiratory rate, tidal volume and the composition of inhaled and exhaled gas. Re-

cent spiroergometry systems provide a breath-by-breath analysis of the composition of

gas. In order to measure maximal oxygen uptake, the work rate is increased over time

until the maximal volitional work rate of the participant is finally achieved. V̇O2peak

is then calculated as the average V̇O2 of the final exercise period in order to decrease

noise. Past studies have suggested using an average over at least the final 30 seconds

of the exercise test [50, 1]. In some settings, CPET cannot be performed until exertion.

In that case, exercise is performed until a predefined termination point and V̇O2peak is

extrapolated based on e.g. heart rate at a given work rate using prediction equations.

Such submaximal testing is an option if maximal testing is not safe for patients with

preexisting cardiovascular disease [53]. However, the focus of the following is on maximal

exercise tests, as those were used in the present study.

Type of ergometer

Graded exercise testing requires that the participant performs a standardised dose of

work. Two options that were applied frequently in past studies are cycle ergometers

and treadmills [53, 1, 71]. Some characteristics and differences of cycle and treadmill

ergometers are summarised below.

The work rate is adjusted differently in cycle and treadmill ergometers. In treadmills,

this is usually done using speed and elevation of the device, whereas in cycle ergometers,

the resistance is modified. In electronically broken cycle ergometers, the work rate can

be adjusted very accurately by controlling the resistance of the device. When treadmill

ergometers are used, on the other hand, the work rate can only be estimated based on

the speed and weight of the subject.

There is a substantial difference in the assessed V̇O2peak between cycle and treadmill

ergometers. V̇O2peak was estimated to be 5 to 10% higher when measured on treadmill

ergometers [1, p. 218]. The difference between both ergometer types was even greater in

two studies of the same population using both types of ergometers. A 35 year-old man

showed a median relative V̇O2peak of 42 mLO2/min/kg using treadmill ergometers and

30 mLO2/min/kg using cycle ergometers [30, 31]. It was assumed that these differences

occur because CPET on cycle ergometers is often terminated due to local muscle fatigue.

Additionally, a larger number of muscles are active in treadmill tests, which increases O2

consumption. Because of the large difference between cycle and treadmill ergometer, it is
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essential to be informed about the type of ergometer that was used for reference values.

Another difference in ergometers concerns additional testing during the exercise test like

electrocardiograms or drawing capillary blood samples. It is more feasible and there are

less artefacts when cycle ergometers are used because the whole body of the subject is

in motion on treadmill ergometers. To address this issue, it is becomes necessary to

use specific test protocols to treadmill ergometers. When capillary blood samples and

treadmill ergometry are desired, discontinuous protocols are often applied and the blood

samples are drawn during phases without exercise.

In conclusion, ATS/ACCP Guidelines recommend cycle ergometers as the preferred mode

of exercise [53]. In order to increase external validity, treadmill or field test may be desired,

nevertheless.

Protocols of incremental exercise tests

Exercise tests are usually based on an incremental work rate. The ATS/ACCP guidelines

(2003) [1, p. 224] describe four different general types of CPET protocols. The protocols

are particularly defined by the amount of increment per time unit.

1. In progressive or continuous incremental protocols (also: “ramp protocol”), the

work rate is adjusted in short periods of time or continuously.

2. In multistage incremental protocols, the work rate is constant for a defined period

of time (e.g. three minutes) and increased when the time period is over.

3. In protocols using constant work rate, the work rate is constant over a period of

usually < 30 minutes.

4. In discontinuous protocols, the work rate is constant over a period of time (e.g.

three minutes), then a resting period is inserted after which an increased work rate

is applied. This type of protocol is sometimes necessary when lactate measurements

from capillary blood samples are desired and treadmill is the preferred mode of

physical activity.

In clinical practice, however, plenty of versions of the protocols mentioned above are used.

The ATS/ACCP guidelines (2003) [1, p. 224] provide an overview of the most common

protocols.

The amount of increments per time has to be selected carefully and has to be adjusted

to the participant’s level of fitness. An increase in work rate leads indeed to an increased

oxygen consumption, but the oxygen consumption increases with some delay. Therefore,

a rapid increase in work rate might lead to inaccurate results in gas exchange measure-

ment. According to ATS/ACCP guidelines (2003), increments should be between 5 to

25 Watt/minute [1]. This should yield a period of 8 to 12 minutes for CPET, overall.

By the use of predicted V̇O2peak, the increase in work rate can be adjusted to achieve an

estimated overall time of 10 minutes [1, p. 225].
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Termination of exercise tests

The exercise test should be continued until the participant reaches the maximal volitional

effort. This is required because V̇O2peak cannot be interpreted as the highest volitional

oxygen uptake if CPET was terminated due to other reasons. In order to quantify the

participant’s effort, several measures have been used. Midgley et al. (2007) [45] reviewed

and commented end criteria for maximal effort that were used in past studies. Some of

the commonly used criteria were based on the slope of V̇O2 during incremental exercise,

the heart rate, the respiratory exchange ratio (RER = V̇CO2

V̇O2
) or blood lactate level. The

most common criteria of the reviewed studies are displayed in table 2.1.

Table 2.1: End criteria for maximal effort in exercise tests.

Criterion Value used

Heart rate ≥ 90% of APMHR
RER ≥ 1.1
Blood lactate ≥ 8 mmol/L

V̇O2 plateau ≤ 150 mLO2/min

Note: APMHR = age-predicted maximal
heart rate
RER = respiratory exchange ratio
Table modified according to Midgley et al.
(2007) [45]

The estimation of the age-predicted maximal heart rate (APMHR) can be useful as an end

criterion, but several calculation methods have been used. Common estimation methods

have been APMHR = 220 - age in years or the less rigorous equation APMHR = 200

- age in years [59, 15]. The latter criterion might be more suitable for cycle ergometry

since the exercise test is usually terminated earlier compared to treadmills (section 2.3).

A more data-driven approach was published by Tanaka et al. (2001) [66], who performed

a meta-analysis of studies with an overall sample size of 18,712 participants. The linear

regression model APMHR = 208 - 0.7 ∗ age in years showed a high goodness-of-fit and a

correlation coefficient of r = -0.9.

In addition to end criteria for maximal effort, there are health-related contraindications

for the continuation of the exercise test [53, p. 87] such as i) symptoms of hypoxia (e.g.

dyspnoea, angina pectoris, cyanosis) ii) unphysiological response of blood pressure or

heart rate (decreasing blood pressure or heart rate despite increasing work rate, excess of

blood pressure) or arrhythmia in the electrocardiogram.
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2.4 Reference values for peak oxygen uptake

It is essential to compare the individual results of exercise testing with reference values

that are drawn from a comparable population and are stratified by at least age and sex

[33]. This is due to the strong impact of sex and age on the CRF. Exercise test results

are only diagnostically conclusive if sex-specific and age-specific reference values from a

comparable population are considered [1, 7, 50].

Several attempts have been made to produce reference values for CPET. Kim et al. (2007)

[33] summarised eleven studies that provided reference values for exercise capacity and

conducted an external validation of the models. The authors had access to CPET results

of 13,089 men and 9,177 women and were able to assess the subsequent deaths of the study

subjects using Social Security Death Index for a median follow-up time of five years. The

authors concluded that all reference values were more or less accurate for the prediction

of premature all-cause mortality. This was done by classifying the individual results of a

CPET participant in relation to the reference values. Low V̇O2peak in comparison to the

reference values was then used as the predictor of premature all-cause mortality. Reference

values that were adjusted for age and sex, nevertheless, performed better compared to

simple cut-off values. The best predictions of death for men and women were based on a

Veterans Affairs cohort [46] and the St. James Take Heart Project [20], respectively.

Paap and Takken (2014) performed a systematic review of studies that presented reference

values for V̇O2peak in adults [50]. The key points of this review are be summarised below:

Overall, 35 studies from 1985 to 2013 were included in the analysis. In the reviewed stud-

ies, the sample size ranged from 25 to 2,263 and the age from 4 to 95 years, respectively.

23/32 (71.9%) studies with a reported design were prospective, and 17/32 (53.1%) were

population-based. The study design was unclear in three studies. Most studies were con-

ducted in European and North American countries, resulting in predominantly Caucasian

participants. The authors described the need of reference values especially for South

American, Middle Eastern, African and Asian populations. 22/35 (62.9%) studies used

only cycle ergometers, 12/35 (34.3%) studies only treadmill ergometers and 1/35 (2.9%)

study used both ergometers. The reviewed studies used different CPET protocols. The

most prevalent protocols were multistage or ramp protocols, but different individualised

protocols were also present. Most studies (21/32; 65.6%) used either breath-by-breath or

mixing chamber systems with an at least 30-second time-averaging of V̇O2 of the final

exercise test period to determine V̇O2peak. Only 7/23 (30.4%) studies with reported time

averaging used < 30 seconds. Tobacco smokers were excluded by 7/29 (24.1%) studies in

which smoking status was reported, and only one study took smoking status into account

in the analysis. The authors created a rating system based on ATS/ACCP guidelines for

exercise testing [1] to grade the quality of each reviewed study. They listed 14 dichoto-

mous criteria (yes/no) and coded yes as 1 and no as 0. Studies with ≥ 10 points were

considered “high quality”, 7 to 9 “moderate quality” and < 7 “low quality”. Some of

those criteria were also used to assess the quality of the present study (table 5.1). The
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14 items can be categorised into four groups:

• Study design

1. Prospective design

2. Proper randomization

3. Community-based sampling of the study population

4. The number of study subjects is at least as high as calculated in the sample

size estimation

• Characteristics of CPET

5. Measurement of gas exchange data and VO2peak is averaged over time to avoid

noise (preferably ≥30 seconds intervals)

6. CPET was performed using breath-by-breath or mixing chamber analysis ac-

cording to ATS/ACCP guidelines [1]

7. Quality control was performed according to ATS/ACCP guidelines [1]

• Important background reported

8. Level of physical activity reported

9. Exercise testing protocol described

• Data analysis and reporting

10. External validation of the statistical model

11. Adequate fitting of the regression model was performed

12. Analysis was stratified by racial group

13. Smokers were excluded

14. Confidence limits were given for descriptive statistics

The study that scored the most points (11) was conducted by Itoh et al. (2013) [26]. The

publication of Edvardsen et al. (2013) [17] scored 10 points. For this reason, these two

studies are summarised below:

Itoh et al. (2013) performed a prospective, community-based, multi-centre study in Japan.

The allocation of study subjects into groups was randomised. The final sample consisted

of 749 healthy Japanese participants aged 20 to 78 years. The authors excluded smokers,

subjects with a body mass index (BMI) of < 17.6 kg/m2 or BMI > 28.6 kg/m2, subjects

who exercise regularly (> 2 times per week), subjects with cardiopulmonary pathologies

and more. The measurement was done using treadmill and cycle ergometers, and ramp

protocols were applied. VO2peak was calculated as the average of the last 30 seconds of

exercise. RER was measured, and subjects with poor effort (RER < 1) were excluded from
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the analysis. Differences in protocol and cycle versus treadmill ergometer were compared.

Multiple linear regression was used to model the effects of age, sex and the type of test

protocol. The results were displayed as two-dimensional line charts and scatter plots.

The analysis using linear ordinary least square regression, however, was a limitation of

this study because it only allows the estimation of conditional means and not percentiles.

This approach does not consider the distribution of VO2peak for a given age and sex. A

further limitation was the extensive exclusion of participants which lead to a final study

population which was constructed artificially and might decrease external validity. The

authors obviously wanted to derive reference values from healthy healthy individuals, who

did not exercise on a regular basis or have any potetial risk factors.

A study performed by Edvardsen et al. (2013) [17] was based on a multi-centre, population-

based random sample from Norway. The final sample size after exclusion of study subjects

with poor effort (RER < 1.10 or Borg score < 17) was 759 men and women aged 20 to 85

years. Smokers were not excluded in this study. CPET was performed only on treadmill

ergometers. Gas exchange measures were reported as the mean VO2 of the final 30 sec-

onds of the exercise test. The reference values were also presented as the result of linear

ordinary least square regression, and no percentiles were reported.

The results of two recent studies that were based on a large sample were not included in

the systematic review of Paap and Takken [50]. Kaminsky et al. (2015) and Kaminsky

et al. (2017) [30, 31] presented the results of the “Fitness Registry and the Importance

of Exercise National Database (FRIEND)” database. The database was based on CPET

data from several laboratories in the USA. Men and women who participated in an exercise

programme or research study at the age of 20 to 79 years were eligible for the study.

Percentile values of treadmill [30] as well as cycle [31] ergometer were published. Kaminsky

et al. (2015) [30] recorded CPET results from eight laboratories in the time frame from

2014 to 2015. Treadmill ergometers were used, and individuals who achieved exertion

(RER > 1.0) were included in reference values. Overall, 7,783 subjects (4,611 men, 3,172

women) were eligible for the analysis. On the other hand, Kaminsky et al. (2017) [31]

published reference values based on CPETs using cycle ergometers. 4,494 subjects (1,717

men, 2,777 women) from ten laboratories participated in data acquisition between 2014

to 2016. Exertion was assumed if RER > 1.1.

Reference values based on a German sample were also derived. Koch et al. (2009) [34]

conducted a population-based study in Pomerania, a north-eastern region of Germany.

A representative sample of 3,300 subjects was drawn from the whole population (n =

212,157). Of those 3,300, 1,708 subjects agreed to participate in CPET on a cycle er-

gometer. The volunteers were younger, healthier and tobacco smoking was less prevalent

compared to the Pomeranian population. This might be an indicator of selection bias.

The selection of healthy participants might lead to increased reference values. A rigorous

exclusion of cases such as smokers, obese subjects and subjects with cardiac arrhythmia

led to a final sample size of 534 (253 men and 281 women). CPET was performed using

a stepwise protocol on cycle ergometers with an increment of 16 W/min. The analysis
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was done using quantile regression with maximal oxygen uptake as dependent and age as

independent variables. Age was modelled as a categorical factor and was adjusted for sex

and BMI. Regression coefficients and plots with normal ranges were supplied.

To conclude, several attempts have been made to create reference values. The quality of

the existing reference values was diverse. Nevertheless, reference values were valuable for

the prediction of all-cause mortality.
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3 Material & Methods

The material and methods of the present study are outlined in this chapter. Section

3.1 describes the study design as well as the composition and structure of this study’s

participants. Furthermore, it summarises the general set-up of data acquisition. The

measurement of V̇O2peak is described in section 3.2. Data management and the construc-

tion of the final datasets is described in section 3.3. Lastly, the methods to assess the

generalisability of this sample, and the statistical methods are outlined in the sections

3.4, and 3.6.

3.1 Study design and participants

General framework

The data acquisition of the present study was conducted by Prevention First®, a quality

network of institutions offering primary preventive health screenings. There were three

study centres in the German cities Rüdesheim, Frankfurt and Munich. Data acquisition

ended at all three sites in 2015 but started in different years. Rüdesheim was the first

centre to systematically record the data in 2001, followed by Frankfurt in 2006 and Munich

in 2008.

Study design

This was a cross-sectional, registry-based study analysing routine files recorded in the

course of primary preventive health screenings.

Participants

A proportion of 95% of all recorded CPET participants of this study was acquired in the

course of workplace health promotion programmes. More than 100 local companies such

as mid-sized companies, banks, insurance companies or business consulting participated

in these programmes. The individuals in this group were predominantly white-collar

workers with office jobs and a sedentary working environment. The other 5% of the

recorded individuals comprised persons with private health insurance or persons who

purchased the health screening as direct payers.

Inclusion criteria and exclusion citeria

All participants underwent pre-exercise evaluation before qualifying for participation in

CPET. According to ACSM guidelines [53, p. 40], medical history, physical examination

and laboratory tests were applied. Subjects who did not meet clinical exclusion criteria
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(e.g. hypertensive emergency, acute infection) and who were free of acute complaints

subsequently performed CPET with the goal of maintenance until exertion. If exclusion

criteria were present, CPET was offered at a later time. Experienced test instructors

and physicians supervised CPET. table 3.1 outlines inclusion and exclusion criteria of

the present study. Some participants contacted Prevention First® more than one time,

but for this cross-sectional analysis, only the first contact of a participant and Prevention

First® was considered.

Table 3.1: Inclusion and exclusion criteria of the present study.

Inclusion criteria Exclusion criteria

•Men and women aged 25 to 69 years •Age < 25 or age ≥ 70 years

•First contact of the participant and Pre-

vention First®
•Follow-up examinations of the participant

and Prevention First®

•Participants of workplace health promo-

tion programmes, members of private

health insurance or direct payers

•Persisting contraindications for CPET

such as acute myocardial infarction or

unstable angina pectoris. For a compre-

hensive list, see [1, p. 227]

•Participation in preventive health screen-

ings including CPET at Prevention First®

in Rüdesheim, Frankfurt or Munich

•Participants who did not agree with the

use of personal data for scientific purposes

or did not provide informed consent

•Missing value in one of the characteristics

i) age or ii) peak oxygen uptake or iii)

study centre (location of data acquisition:

Rüdesheim, Frankfurt or Munich)

Ethics approval and informed consent

Participants who agreed with the use of their personal data for scientific purposes and

provided informed consent (appendix A.4) were considered for this study. Their CPET

results and pre-exercise evaluations were recorded in a computerised database.

According to the AGENS∗ guidelines for secondary data analysis, ethical approval was not

needed as this was a secondary data analysis using routine files [3, p. 3]. The participant’s

data were pseudonymised before data analysis, and there was no particular treatment of

participants who were analysed in this study.

∗AGENS = Arbeitsgruppe Erhebung und Nutzung von Sekundärdaten der Deutschen Gesellschaft für
Sozialmedizin und Prävention (DGSMP) und der Deutschen Gesellschaft für Epidemiologie (DGEpi)
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3.2 Measurement of sample characteristics

Primary outcome measures: peak oxygen uptake

This study determined CRF as the highest volitional oxygen consumption during CPET.

The consumption of oxygen was assessed as a volumetric flow rate (V̇O2 = δV
δt ). End

criteria of the exercise test were not recorded in the main dataset but were acquired

retrospectively for a random sub-sample (section 3.3). Therefore, the term V̇O2peak rather

than V̇O2max was used to describe the highest oxygen uptake during CPET. This was in

concordance with the recommendations of CPET guidelines [1]. V̇O2peak was assessed

as an absolute value (absolute V̇O2peak measured in LO2 per minute) and relative to the

participant’s body weight in kilograms (relative V̇O2peak measured in mLO2 per minute

per kilogram of body weight). V̇O2peak was defined as the mean V̇O2 of the last 10 seconds

of the exercise test. Such averaging was recommended to avoid noise and artefacts of

measurement [1, 50].

Further sample characteristics

The sample characteristics were acquired in the course of the pre-exercise evaluation prior

to the exercise test. The age of the participants was recorded in years. Tanita TBF 410

(Tanita, Tokyo, Japan) body composition analysers were used to assess body weight and

to estimate body fat via bioelectrical impedance analysis. Body fat was also estimated

by measuring skinfold thickness using Lange Skinfold Calipers (Beta Technology, Cam-

bridge, Maryland, USA). Skinfold thickness was measured at three sites according to

Jackson Pollock (1985) [27] (men: chest, abdomen, thigh; women: triceps, suprailium,

thigh). Blood pressure was acquired after the participant rested in a sitting position for

at least 5 minutes. Manometric blood pressure gauges by BOSO (Jungingen, Germany)

were used, and the average of two consecutive measurements was recorded to the nearest

2 mmHg. Overweight, obesity, and hypertension were defined according to the World

Health Organization (WHO) (overweight: BMI ≥ 25 kg/m2, obesity: BMI ≥ 30 kg/m2,

hypertension: either systolic blood pressure ≥ 140 mmHg, or diastolic blood pressure ≥

90 mmHg [76, 74]). Participants were instructed not to eat on the morning prior to their

exercise test in order to draw fasting blood samples. The analyses of the blood samples

were performed by two accredited laboratories (study centres Rüdesheim and Frankfurt:

Labor Dr. Riegel, Wiesbaden, Germany; study centre Munich: Synlab, Augsburg, Ger-

many). Dyslipidaemias were defined according to guidelines by the ESC/EAS∗ [9, table

10]. Elevated low-density lipoprotein (LDL) cholesterol was defined as fasting LDL choles-

terol levels ≥ 115 mg/dL, reduced high-density lipoprotein (HDL) cholesterol was defined

as HDL cholesterol ≤ 40 mg/dL, elevated triglycerides were defined as triglycerides ≥

150 mg/dL. Diabetes mellitus was defined according to the WHO as either fasting blood

∗European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS)
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glucose levels ≥ 126 mg/dL or glycated haemoglobin (HbA1c) ≥ 6.5% [57].

Exercise test modalities

Open circuit spiroergometry using cycle ergometers was performed to apply an incre-

mental workload to the participant. The CPET protocol was selected according to the

requirements of each measurement and was adapted to the estimated level of fitness of

the participant. Multi-stage protocols were used if capillary blood samples for measuring

blood lactate levels were drawn and ramp protocols were used if no capillary blood sam-

ples were drawn. The duration of CPET was intended to be 4 to 6 stages of 3 minutes

each in multistage protocols or 12 to 18 minutes in ramp protocols. The increments in

work rate were selected by an experienced CPET instructor or physician before the CPET

according to the participant’s level of fitness to fulfil these conditions. Before the first

application of a workload, the participant pedalled with no resistance for 3 minutes.

Gas exchange was measured with breath-by-breath analysis using the Ganshorn Power-

cube system (Ganshorn Medizin Electronic GmbH, Niederlauer, Germany). Ganshorn

LF8 V8.5 software and the previous versions were used for analysis of the results. Cal-

ibration of the gas exchange measurement system was performed daily in concordance

with the manufacturer’s instructions, and approximately 3 to 4 CPETs were performed

per day using the same calibrated system. Cycle ergometers were calibrated once a year

and met the German directives for medical devices. At all study centres, quality control

was performed according to a DIN EN ISO 9001 certified quality management system.

If there were no contraindications during the exercise test [53, p. 87], the increments

of work were continued until the maximal volitional work rate was achieved. Blood

lactate levels, RER, and maximal heart rate were recorded to get information about

the participant’s effort. Adequate exertion was assumed if one of the end criteria was

achieved: i) blood lactate levels ≥ 8 mmol/L or ii) RER ≥ 1.10 or iii) maximal heart

rate ≥ 90% of the age-predicted maximal heart rate ([45], section 2.3). The measures

of maximal effort were used to evaluate the effort of the participant instantly and were

noted in the participant’s medical chart. However, the end criteria were not recorded in

the main study database.

3.3 Data management

Data sources

Health screening data of all eligible participants who met the inclusion and exclusion

criteria (table 3.1) were recorded in a computerised database called “PF Studie”. All

data were pseudonymised using a unique identification number. A key file to link the

personal data and the unique identification number was stored at the Prevention First®

centre in Rüdesheim. For this cross-sectional analysis, only the baseline data was exported

to the main dataset. If there was more than one contact of a subject and Prevention
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First®, only the first contact was included in the dataset. The variable “study centre”

and some CPET modalities were not recorded in the “PF Studie” database. CPET

modalities were documented in medical records and the study centre was recorded in a

second database of Prevention First® (“PF Patient”). This additional information was

added retrospectively. The variable study centre could be added using probabilistic record

linkage as it was stored in a database, but CPET modalities had to be acquired manually

from medical records. Due to a large number of observations, the additional CPET test

results could only be provided for a random subset of the main dataset with an a priori

calculated sample size of n = 252 participants (section 3.3). An overview of the data

sources is displayed in fig. 3.1.

Random sample

Exercise test modalities were not recorded in the main study dataset; rather, these were

included in medical records that were stored separately. This information had to be ac-

quired manually. As the acquisition of the information for the entire main study dataset

would have been excessively time-consuming, a random sample was drawn from the main

study dataset. The variables were added manually and a second dataset (“random sam-

ple”) was created. Sample size calculation was used to estimate the size of the random

sample. The minimum sample size was calculated for a proportion and 95% CI of sub-

jects who achieved exertion (≥ 90% of age-predicted maximal heart rate or RER ≥ 1.10

or blood lactate levels ≥ 8 mmol/L). The margin of error (ME) for a single proportion

with the assumption of normal approximation was used [72]:

ME = z1−α2 ∗
p̂ ∗ (1 − p̂)

n
(3.1)

Where ME denotes the margin of error, z1-α2 is the critical value of the standard normal

distribution that corresponds to the level of confidence, p̂ is the point estimator for the

expected sample proportion and n is the a priori sample size of the random sample. Using

ME of 0.05 and 95% CI (α=0.05), the sample size is calculated as:

n =
1.962 ∗ p̂ ∗ (1 − p̂)

0.052
(3.2)

For a proportion of 80% of all individuals reaching exertion, n = 246 and for 90% of all

individuals reaching VO2peak, n = 139. At the start of data analysis, the main outcome

variable (relative VO2peak) included 218/10189 (2.1%) missing values. A subsequent data

acquisition yielded the described numbers of non-missing cases (fig. 3.2). Therefore, the

sample size was adjusted for the amount of missing values. Hence, the final sample size

was calculated as:
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n =
246

1 − 0.021
≈ 252 (3.3)

In order to test the representativity of the random sample for the full dataset, a set of

characteristics (A.1) were compared between the random sample and the full dataset.

However, none of the compared characteristics were significantly different between the

entire main study dataset and the random sample.

Record linkage

In contrast to the CPET modalities, information on the study centre was acquired from

the second database using record linkage. The information on the study centre was stored

in the database “PF Patient” and had to be linked with the main dataset, which was

based on the database “PF Studie”. However, as there was no key identifier to link both

databases, record linkage was necessary to merge “PF Studie” and “PF Patient”. As the

data were typed into the databases separately by hand, it was also necessary to consider

typing errors. Probabilistic record linkage was selected to address these conditions.

The participant’s name and sex were present in both databases and could be used for

record linkage. Birthdate was recorded in “PF Patient” but not in “PF Studie”, which

only included the year of the first contact with Prevention First® as well as the age in years

at the time of this contact. Based on this, the participant’s birth year could be determined

with an inaccuracy of one year. The calculated birth year was correct if the contact with

Prevention First® was later than the subjects birthday and it was one year too low if the

contact was before the subjects birthday. This inaccuracy was also necessary to consider

in probabilistic record linkage. In light of the above-mentioned requirements for record

linkage, two software programmes were considered: i) the R package recordlinkage [8]

and ii) “Fine-grained record linkage (FRIL)” software [29]. FRIL software performed

better using the specifications outlined in 3.2.

Table 3.2: Specifications of record linkage.

Variable Linkage algorithm Weight

First name Edit distance 40%
Last name Edit distance 40%
Year of birth Numeric distance 10%
Sex Equal fields 10%

Note: Acceptance level was set at 90; FRIL
software was used for record linkage [29].

Additional data acquisition

After drawing the random sample (section 3.3), additional data acquisition was conducted

for the full dataset aiming to reduce the number of missing values in the variables age
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as well as absolute and relative V̇O2peak. This yielded the final main study dataset as

described in fig. 3.2.

Figure 3.1: Data sources and information.

PF Studie

- CPET results

- Sample

characteristics

Main study dataset

PF Patient

- Study centre

Medical Records

- CPET modalities

Random sample dataset

Source

Information

Dataset

Record

linkage

3.4 Representativity

The representativity of the present study population was analysed by comparing eligible

characteristics to data from DEGS1∗ [19]. DEGS1 is a study based on a representative

sample of the German population and was performed by the German governmental organ-

isation which is responsible for disease control and prevention (RKI†). The information

needed for the comparison with the present study was based on a cross-sectional study

sample with an enquiry period from 2008 to 2011. The study acquired a sample of 8,152

adult subjects using a multistage-sampling process. The participants of the study were

more than 18 years of age, and the sample was representative of the German population

from 2011.

Variables from the present study were eligible for comparison with DEGS1 if i) the in-

formation was recorded in “PF Studie” as well as in DEGS1, ii) the variable was binary,

coded with yes/no, iii) the unit of measurement of this characteristic was identical or

could be transformed to be identical, iv) 95% confidence intervals were provided for the

proportions in DEGS1, and v) the results were reported separately for men and women

in DEGS1. Eligible variables according to these criteria are displayed in table 3.3.

∗“Studie zur Gesundheit Erwachsener in Deutschland”

†“Robert Koch-Institut”
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Table 3.3: Eligible variables of the present study for comparison with DEGS1.

Characteristic DEGS1 source

Smoking status Lampert et al. (2013) [38]

Ex-smoker Lampert et al. (2013) [38]

Overweight Mensink et al. (2013)[43]

Obesity Mensink et al. (2013) [43]

High blood pressure Neuhauser et al. (2013) [48]

Note: Overweight: BMI ≥ 25 kg/m2

Obesity: BMI ≥ 30 kg/m2

Hypertension: systolic blood pressure ≥ 140

mmHg or diastolic blood pressure ≥ 90 mmHg

The variables of the present study were transformed to directly age-standardised propor-

tions using the R package epitools [2] to compare the results of DEGS1 to the present

population. The German population as reported in the census 2011 [62] was selected as

the standard population for age standardisation. This was done because the results of

DEGS1 were age-standardised for this population [38, 43, 48]. Consequently, only the

proportions of the present population had to be transformed to achieve comparability.

3.5 Sample description

To analyse differences in the study centres and to perform external validation, the full

dataset was separated into two datasets using i) data recorded in Rüdesheim or Frankfurt

and ii) data recorded in Munich. The separation was conducted in this form as there

were participants who could be assigned to either Rüdesheim or Frankfurt but not def-

initely to one of both locations. This was because some participants appeared in both

locations because they might have visited both study centres due to the spatial proximity

of Rüdesheim and Frankfurt. Participants who could not be assigned definitely to either

Rüdesheim/Frankfurt or Munich, on the other hand, were excluded from reference values.

Furthermore, participants with missing values in the variables age or absolute as well as

relative V̇O2peak were excluded.

In their systematic literature review, Paap & Takken (2014) [50] recommended to exclude

smokers, and earlier studies [34, 26] also excluded obese subjects in order to produce

reference values that are representative for a healthy population. Other reference values

did not exclude smokers or obese subjects [30, 17, 30, 53]. For purpose of this study,

smokers and obese subjects were not excluded in the main analysis, but subgroup analyses

were performed. A flow chart of excluded cases is displayed in fig. 3.2.

Participants aged 25 to 69 years were included in the present analysis. Participants

aged ≥70 years or < 25 years were excluded. The participants were excluded because

the integer variable “age in years” had to be transformed to a categorical variable with

5-year age classes to perform the apparent and external validation of the present study

(section 3.6). In this analysis, age class as an ordinally scaled variable was modelled as a
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metric predictor. This approach was critically discussed in the literature and required the

assumption of a metrically scaled variable [68]. Comparatively few cases of the present

study were recorded in the age groups of < 25 years and ≥70 years, and therefore the

reduction of the sample size was approved to perform the validation analysis as mentioned

above.

The final study dataset was compared with the cases that were excluded due to missing

values to analyse if there was a selective dropout of participants. Selective dropout could

bias the final results and would be present if participants with specific characteristics were

more likely to be excluded. Selective dropout can be analysed by comparing the excluded

and the included cases (table A.2). In the present study, some statistically significant

differences were present between both groups. However, the extents of the differences

were low, and the significant results were likely due to high numbers of cases. Selective

dropout that severely impacts the results of the present study was therefore unlikely.
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Figure 3.2: Flow chart showing numbers of cases included in reference values.

Baseline:
Overall n = 10,189

Men n = 6,512

Women n = 3,677

No missing values:

Overall n = 9,417

Men n = 6,098

Women n = 3,319

Included in analysis:

Overall n = 9,354

Men n = 6,063

Women n = 3,291

Study centres

Frankfurt/Rüdesheim:

- Reference values

- Training data

- Apparent validation data

Overall n = 7,516

Men n = 4,710

Women n = 2,806

Study centre

Munich:

- External validation data

Overall n = 1,838

Men n = 1,353

Women n = 485

Excluded due to missing values:

V̇O2peak (absolute/relative) n = 96

Study centre n = 673

Age n = 3

Other exclusion criteria:

Age < 25 OR age ≥ 70 years n = 63

3.6 Statistical methods

General framework

The statistical analyses were performed using R software version 3.3.1 [54]. Analyses

were stratified for sex and adjusted for age if adequate. All 95% confidence intervals were

approximated using ordinary non-parametric bootstrapping with 10,000 pseudo-random

bootstrap samples [14, p. 120-123]. Statistical significance was assumed for P values

of less than 0.05 or when 95% confidence intervals did not overlap using a two-sided

significance level of α = 0.05. There was no correction of P values for multiple testing.

The computational code of statistical analyses should be published to ascertain repro-

ducible research [25, 52]. The code of the present analysis is outlined in chapter 7 and can

be accessed via the online appendix of this study at https://github.com/rappdaniel/vo2peak.
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Descriptive statistics

A subset of all variables in the original dataset was selected for descriptive statistics and

for multivariable quantile regression modelling. Quantitative variables were described as

median [1st quartile; 3rd quartile] and qualitative variables as n (%). Comparisons of

two groups were conducted using Mann-Whitney U test for quantitative variables and

χ2 test for qualitative variables. Fisher’s exact test was not considered as expected cell

counts with n < 5 under the null hypothesis were not present. Two-way descriptive tables

were performed using the R package compareGroups [65]. For quantitative variables, the

assumption of normal distribution was analysed using (supplementary tables, [49]):

1. box plots and histograms

2. skewness

3. quantile based skewness [22, p. 14]

Kolmogorov-Smirnov and Shapiro-Wilk tests were not applied as the sample size was

large and particularly Shapiro-Wilk tests cannot be computed for samples with n > 5000

using the described version of the R software [54].

Quantile regression modelling and conducting nomograms

Several approaches were used to arrange age-adjusted reference values as nomograms.

Kaminsky et al. [30, 31] categorised age in 10-year classes and calculated quantiles within

each class. The quantiles were also visualised using box plots for each age class. Well-

known and widely used nomograms are the WHO’s Child Growth Standards for paedi-

atrics [75]. For those nomograms, age was modelled as a continuous predictor, and cubic

spline smoothing was used to fit the regression models to the data [73]. Koch et al. (2009)

[34] published quantile reference values and nomograms for maximal oxygen uptake and

used polynomial quantile regression. Accordingly, the present study used quantile regres-

sions (R package quantreg [36]) to model conditional quantiles and to estimate predicted

quantile values of maximal oxygen uptake depending on age as a continuous predictor.

Age as a linear and polynomial predictor as well as b-spline smoothing (R package splines

[54]) were compared using Akaike Information Criterion (AIC) and also in apparent (sec-

tion 3.6). For nomograms, the quantiles 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75,

0.8, 0.9, and 0.95 were selected.

Validation of regression models

After fitting quantile regression, the models’ performance was tested and compared with

empirical data. Validation of the statistical models was also a quality criterion in the

systematic review of Paap & Takken (2014) [50]. Two major approaches were applied in

the underlying data analyses: i) in apparent validation, the regression fits were compared
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with the original data to which the regressions were fitted [64, p. 300]. This usually

leads to results that are too optimistic. Therefore, ii) in external validation the regression

fits were compared with new subjects who were not used to fit the regression models.

A graphical technique of model validation is the calibration plot [56] where predicted

and observed values are plotted. Additionally, linear ordinary least square regression

was performed in the calibration data using observed and predicted values of V̇O2peak as

dependent and independent variables, respectively.

To perform external validation in the present analysis, the dataset was split by study

centre prior to regression modelling. Data from Rüdesheim and Frankfurt were used

as training data to fit quantile regressions and data from Munich as validation data for

external validation. Compared to other predictive models, there were some challenges

in the validation of the present regression models. i) There were 13 regression models

(for the quantiles 0.05, 0.1,..., 0.95) for men and women each, ii) the goal of the present

analysis was not to get the best prediction of maximal oxygen uptake for a given age but to

predict quantiles for a given age. Due to these challenges, regular calibration plots could

not be performed. To address these problems, age was recoded into 5-year age classes

for model validation and empirical quantiles of V̇O2peak were calculated within each age

class. Subsequently, quantile regression models were fitted using the recoded age classes

as a metrically scaled predictor (section 3.5). That way, the predicted quantile could be

compared with the empirical quantile for each age class, and it was also possible to derive

observed and predicted values for all age classes and quantiles (figs. 4.7 to 4.10). It was

also possible to acquire one single calibration plot for all age classes and quantiles. For

model validation, the quantiles 0.25, 0.5, and 0.75 were selected and were coded in graphs

as ● 0.25, ▴ 0.5 and ◾ 0.75 (figs. 4.7 to 4.10). For the calibration plot, predictions from

all three quantile regressions (quantiles 0.25, 0.5, and 0.75) were compared to observed

data and plotted within a single calibration plot. Linear regression was performed using

the same calibration data to get one overall regression result for all quantiles.

Further nomograms and subgroup analyses

In addition to the described reference values, additional nomograms were conducted.

On the one hand, this was done to ascertain comparability with past studies that ex-

cluded smokers and obese participants [50]. On the other hand, subgroup analyses

were conducted using only participants from either Frankfurt and Rüdesheim or par-

ticipants from Munich. All nomograms can be accessed via the online appendix at

https://github.com/rappdaniel/vo2peak.

Measures of exertion in random sample

As described in sections 3.2 and 3.3, the measures of exertion were acquired for a random

sample of 252 subjects in the present study. It was not possible to exclude cases with poor

effort as the measures of exertion were not recorded in the entire main study dataset. This
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is a critical issue because participants who did not exert maximal effort are not valid and

should be excluded from the analysis. If, for example, a participant terminated CPET

immediately after the start because of anxiety caused by wearing the gas exchange mask,

the measured maximal oxygen uptake would be close to the resting oxygen consumption.

Such cases would distort the reference values. Therefore, this study aimed to estimate the

proportion of participants who did not continue CPET until the maximal volitional effort.

On the other hand, the goal was to estimate how the reference values were affected by

keeping such participants in the analysis. These analyses were performed in the random

sample in which the measures of maximal effort were gathered retrospectively. First, the

proportion and 95% confidence intervals of participants who did not reach the end criteria

(section 3.2) was calculated. Secondly, a visual approach was used: Median regression

lines were plotted using i) all cases of the random sample and ii) only cases which reached

exertion in CPET. Peak oxygen uptake was used as the dependent and age in years as the

independent variable, respectively. Additionally, an analysis of covariance was applied

using i) age in years, ii) exertion (yes/no) as well as iii) an interaction term of both

as independent variables in median regressions. This was done to derive P values for

the variable “exertion” and to see if the regression was significantly altered by keeping

subjects with poor effort in the data.

Multivariable regression modelling

The sample characteristics of the present dataset were considered for multivariable quan-

tile regression modelling. In contrast to the calculation of nomograms, the quantiles

0.25, 0.50, and 0.75 were used. A correlation matrix of all quantitative variables using

Spearman’s correlation coefficient was calculated before the variables were included in the

regression model to avoid collinearity. If there was a high correlation between two vari-

ables, one was considered to be eliminated heuristically. Histograms, as well as measures

of skewness, were used to check for normality of the distribution of quantitative variables.

If a quantitative variable appeared to follow a non-normal distribution, the variable was

recoded into a binary variable using dummy coding (0 = no, 1 = yes). All variables were

added to an AIC-based stepwise variable selection using backward and forward selection.

Furthermore, a pseudo R squared according to Hao et al. (2007) [22, p. 52] was calculated

for all quantile regression models.

Quantile calculator

The goal of the present analysis was to present reference values for peak oxygen uptake

that can be interpreted by physicians and CPET participants. An interactive web appli-

cation was created (section 7.1) to facilitate doctor-patient communication and increase

the value of the presented reference values in clinical practice (www.uks.eu/vo2peak). This

web application followed four goals:
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1. Plotting the individual results of a CPET participant that are obtained in the course

of a preventive health screening on a nomogram produced by the present study.

2. Calculating a sex-specific and age-specific percentile for the individual’s result. It

was aimed to present a percentile which is exact within one percent.

3. Optional plotting of 95% confidence intervals to visualise the uncertainty of the

estimation.

4. Interactive subgroup analyses by excluding smokers and obese participants from the

reference values.

The methods that were used for this web application were slightly different from the rest

of present analysis (chapter 3.3). The overall sample size in this analysis was 10,090

instead of 9,354 because participants who provided no information on the study centre

(n=673) and participants who were not 25 to 70 years old (n=63) were not excluded.

The material and methods for this analysis are also described in Rapp et al. (2018) [55].

The web application was created using the R software package shiny [10]. A screenshot

is displayed in fig. 4.12.

Parallelisation

Some of the statistical procedures of the present study were computationally intensive.

Especially the calculation of 95% confidence intervals using 10,000 bootstrap samples was

time-consuming. Therefore, parallel computing was applied to decrease the computation

time using the R software package parallel [54], and mostly 4 CPUs. The calculation

of 95% confidence intervals in the online web application required the greatest amount of

time. The hardware used for these calculations was a DELL-Server (DELL PowerEdge

R720) with two 8-core-processors (CPUs) and 256GB RAM memory using a Debian-

based Linux operating system. Despite using 12 of the 16 CPUs in this case, the overall

computation process lasted more than 150 hours.

Missing data

Participants with missing values in one of the primary variables of interest (peak oxy-

gen uptake, age and sex) were excluded from the data (fig. 3.2). In multiple quantile

regression, casewise deletion was used. Casewise deletion means that cases with a missing

value in the dependent variable or one of the independent variables are excluded from the

regression model in which they appear. In the R-code, casewise deletion is specified by

the term na.action = “na.omit”.
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3.7 Reporting

The results of the present study were reported according to the RECORD∗ guidelines

[69], which are an extension of the STROBE† reporting guidelines. A complete RECORD

checklist can be accessed via the online appendix [49].

∗Reporting of studies conducted using observational routinely-collected data

†Strengthening the reporting of observational studies in epidemiology
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4 Results

4.1 Descriptive statistics

The time period of data collection ranged from 18 July 2001 to 20 November 2015.

Rüdesheim was the first study centre to record the data in 2001, followed by Frankfurt in

2006 and Munich in 2008. The cumulative number of participants by examination date

is plotted in fig. 4.1.

Overall, 9,354 participants (6,063 men, 3,291 women) were included in the analysis. 7,516

subjects (4,710 men, 2,806 women) were recorded in Rüdesheim or Frankfurt and 1,838

(1,353 men, 485 women) subjects were recorded in Munich (table 4.1).

The overall median age was 45 [41; 50] years for men and also for women (supplementary

table 1 [49]). Despite a high number of observations overall, the marginal age groups

were sparse. For example, only one women in the age class [30; 35) years was recorded in

Munich (table 4.1). The distributions of the participants’ ages are displayed in figs. A.1

and A.2.

Median absolute V̇O2peak was 3.0 LO2/min [2.6; 3.4] for men and 1.9 LO2/min [1.7; 2.2]

for women (supplementary table 1 [49]). Relative V̇O2peak was 35.3 mLO2/min/kg [30.3;

40.5] for men and 28.7 mLO2/min/kg [24.4; 33.2] for women. The differences between

men and women in both, absolute and relative V̇O2peak were statistically significant.

However, there was no statistically significant difference of peak oxygen uptake between

study centres except for absolute V̇O2peak in men (table 4.1).

Peak oxygen uptake was lower in older participants. In men, median relative V̇O2peak

was 37.2 mLO2/min/kg in the age group [25; 30) and 29.3 mLO2/min/kg in the age

group [65; 70). A similar decrease was observed in women. Quantiles of relative and

absolute V̇O2peak by sex and age group are displayed in tables 4.2 and 4.3, respectively.

The distribution of absolute and relative V̇O2peak is visualised in figure 4.2. Furthermore,

all quantitative characteristics were plotted as histograms and scatter plot matrices in

figs. A.1 to A.4.

30



4.1. DESCRIPTIVE STATISTICS 4. Results

Figure 4.1: Cumulative number of participants from Rüdesheim, Frankfurt and Munich by date
of examination. The overall inquiry period ranged from 18 July 2001 to 20 November 2015.
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Table 4.1: Descriptive statistics by sex and study center.

Men Women

Frankfurt/Rüdesheim Munich
P value

Frankfurt/Rüdesheim Munich
P value

N=4710 N=1353 N=2806 N=485

V̇O2peak

Relative [mLO2/min/kg] 35.2 [30.3;40.5] 35.5 [30.3;40.6] 0.846 28.6 [24.3;33.1] 28.9 [24.7;33.8] 0.168

Absolute [LO2/min] 3.02 [2.64;3.41] 2.95 [2.57;3.36] <0.001 1.95 [1.68;2.20] 1.90 [1.66;2.19] 0.186

Anthropometric

Age [years] 45.0 [40.0;50.0] 46.0 [41.0;51.0] <0.001 45.0 [41.0;50.0] 45.0 [41.0;49.0] 0.863

Age class [years]

[25,30) 22 (0.47%) 3 (0.22%) 9 (0.32%) 4 (0.82%)

[30,35) 103 (2.19%) 21 (1.55%) 51 (1.82%) 1 (0.21%)

[35,40) 412 (8.75%) 132 (9.76%) 106 (3.78%) 25 (5.15%)

[40,45) 1816 (38.6%) 413 (30.5%) 1208 (43.1%) 197 (40.6%)

[45,50) 1056 (22.4%) 374 (27.6%) 655 (23.3%) 137 (28.2%)

[50,55) 721 (15.3%) 247 (18.3%) 439 (15.6%) 80 (16.5%)

[55,60) 401 (8.51%) 117 (8.65%) 232 (8.27%) 31 (6.39%)

[60,65) 143 (3.04%) 38 (2.81%) 81 (2.89%) 8 (1.65%)

[65,69] 36 (0.76%) 8 (0.59%) 25 (0.89%) 2 (0.41%)

Weight [kg] 85.0 [78.0;94.0] 83.0 [76.0;91.0] <0.001 67.0 [60.0;76.0] 64.0 [59.0;73.0] 0.001

Heigh [cm] 181 [177;186] 181 [177;185] 0.414 167 [163;172] 167 [163;172] 0.806

BMI [kg/m2] 25.7 [23.8;28.2] 25.2 [23.5;27.4] <0.001 23.8 [21.4;26.9] 23.1 [21.1;25.8] 0.001

Body fat Caliper [%] 23.0 [19.0;27.0] 22.6 [19.0;26.7] 0.173 31.0 [26.0;36.5] 28.5 [24.6;33.7] <0.001

Overweight <0.001 0.001

no 1865 (39.6%) 625 (46.2%) 1729 (61.7%) 337 (69.5%)

yes 2842 (60.4%) 728 (53.8%) 1075 (38.3%) 148 (30.5%)

Obesity <0.001 0.014

no 4078 (86.6%) 1228 (90.8%) 2474 (88.2%) 447 (92.2%)

yes 629 (13.4%) 125 (9.24%) 330 (11.8%) 38 (7.84%)

continued on next page
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Table 4.1 – continued from previous page

Men Women

Frankfurt/Rüdesheim Munich
P value

Frankfurt/Rüdesheim Munich
P value

N=4710 N=1353 N=2806 N=485

Blood pressure

Systolic [mmHg] 128 [120;138] 124 [118;134] <0.001 120 [110;130] 116 [106;128] 0.006

Diastolic [mmHg] 82.0 [80.0;90.0] 80.0 [78.0;88.0] <0.001 80.0 [70.0;82.0] 78.0 [70.0;82.0] 0.051

Hypertension 0.007 0.014

no 3193 (67.9%) 971 (71.8%) 2303 (82.1%) 421 (86.8%)

yes 1508 (32.1%) 381 (28.2%) 501 (17.9%) 64 (13.2%)

Glucose metabolism

Blood glucose [mg/dL] 96.0 [90.0;102] 93.0 [88.2;99.0] <0.001 91.0 [86.0;98.0] 89.5 [83.0;94.0] <0.001

HbA1c [%] 5.40 [5.10;5.60] 5.40 [5.20;5.60] <0.001 5.30 [5.10;5.60] 5.40 [5.20;5.50] 0.054

Diabetes mellitus 0.061 0.636

no 4524 (96.9%) 1305 (97.9%) 2738 (98.3%) 478 (98.8%)

yes 146 (3.13%) 28 (2.10%) 46 (1.65%) 6 (1.24%)

Lipid metabolism

Total cholesterol [mg/dL] 216 [191;242] 208 [185;232] <0.001 209 [186;235] 200 [180;222] <0.001

HDL cholesterol [mg/dL] 52.0 [45.0;60.0] 54.0 [47.0;63.0] <0.001 66.0 [56.0;75.0] 72.0 [61.0;84.0] <0.001

LDL cholesterol [mg/dL] 135 [114;158] 128 [107;151] <0.001 122 [102;145] 110 [94.0;131] <0.001

Triglycerides [mg/dL] 117 [85.0;164] 104 [75.0;149] <0.001 87.0 [68.0;119] 75.0 [58.0;100] <0.001

continued on next page
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Table 4.1 – continued from previous page

Men Women

Frankfurt/Rüdesheim Munich
P value

Frankfurt/Rüdesheim Munich
P value

N=4710 N=1353 N=2806 N=485

Smoking status

Smoker <0.001 <0.001

no 3990 (85.1%) 1226 (91.4%) 2352 (84.3%) 434 (90.8%)

yes 696 (14.9%) 116 (8.64%) 439 (15.7%) 44 (9.21%)

Ex-smoker <0.001 <0.001

no 3391 (72.4%) 1102 (82.1%) 2045 (73.3%) 395 (82.6%)

yes 1295 (27.6%) 240 (17.9%) 746 (26.7%) 83 (17.4%)

Note: Overweight: BMI ≥ 25kg/m2, obesity: BMI ≥ 30kg/m2, hypertension: systolic blood pressure ≥ 140 mmHg or diastolic

blood pressure ≥ 90 mmHg

Quantitative characteristics are displayed as median [1st quartile; 3rd quartile], qualitative characteristics as n (%).

No P values were calculated for the characteristic “age class” because this resulted in 2-by-9 contingency tables with expected

cell counts with n < 5 under the null hypothesis were present.
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4.1. DESCRIPTIVE STATISTICS 4. Results

Figure 4.2: Box plots of absolute and relative V̇O2peak by age group.
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Table 4.2: Quantiles of relative V̇O2peak by sex and age group.

Quantiles

Age
class

0.05 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 0.95 n

Female
[25,30) 23.1 23.5 25.1 26.1 27.9 32.5 34.2 35.2 37.4 39.1 39.8 40.6 40.9 13
[30,35) 20.3 24.2 25.9 26.4 27.2 30.0 30.8 32.5 34.0 34.8 36.4 40.1 43.5 52
[35,40) 22.9 25.1 26.7 27.4 28.6 30.1 31.8 33.8 35.0 36.5 37.8 40.5 44.1 131
[40,45) 20.4 22.4 24.9 26.0 27.0 28.6 30.0 31.7 33.3 34.5 35.4 38.4 40.4 1405
[45,50) 19.4 21.6 23.7 24.8 25.6 27.1 28.8 30.6 32.5 33.4 34.6 37.3 39.7 792
[50,55) 17.2 19.0 21.5 22.5 23.5 25.1 26.3 28.0 30.3 31.2 32.2 34.7 36.9 519
[55,60) 16.0 18.9 21.7 22.2 22.8 23.6 25.2 26.8 28.2 28.9 29.4 32.0 33.8 263
[60,65) 15.4 16.9 18.8 19.7 19.9 21.6 22.7 24.2 25.1 26.4 27.3 30.1 32.3 89
[65,69] 15.6 18.8 19.7 20.2 20.6 21.2 22.8 23.6 24.9 25.4 26.2 27.0 29.7 27

Male
[25,30) 29.7 30.9 33.1 33.5 33.7 35.9 37.2 37.8 39.3 39.9 40.3 42.1 44.0 25
[30,35) 26.8 28.5 31.7 33.6 34.1 36.5 38.7 40.4 42.8 43.9 45.3 48.0 50.9 124
[35,40) 26.2 29.5 31.8 32.9 34.2 36.1 38.5 40.3 42.5 43.4 44.8 47.8 50.7 544
[40,45) 25.4 28.0 30.9 32.0 33.1 34.9 36.8 38.7 40.7 41.9 43.2 46.5 49.5 2229
[45,50) 25.1 27.1 30.0 31.0 32.1 33.9 35.6 37.5 39.3 40.3 41.6 44.6 47.5 1430
[50,55) 21.7 24.0 27.3 28.2 29.2 30.9 32.8 34.9 36.7 37.6 39.2 42.7 46.2 968
[55,60) 20.8 23.2 25.4 26.6 27.3 29.1 30.7 32.7 34.7 35.7 36.7 39.7 42.8 518
[60,65) 19.5 21.7 24.1 24.8 25.7 27.7 28.6 29.8 31.7 32.1 33.3 37.7 40.7 181
[65,69] 19.7 22.0 23.7 24.5 26.1 27.9 29.3 30.1 30.6 32.8 34.8 36.4 38.0 44

Note: Relative V̇O2peak was measured in mLO2/min/kg, age in years, participants from Frankfurt,
Rüdesheim and Munich included.

Table 4.3: Quantiles of absolute V̇O2peak by sex and age group.

Quantiles

Age
class

0.05 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 0.95 n

Female
[25,30) 1.47 1.66 1.91 1.95 1.97 1.99 2.17 2.32 2.41 2.50 2.64 2.86 2.97 13
[30,35) 1.49 1.61 1.73 1.78 1.91 2.08 2.17 2.25 2.29 2.41 2.45 2.62 2.70 52
[35,40) 1.55 1.64 1.80 1.86 1.90 1.99 2.08 2.13 2.23 2.29 2.37 2.60 2.84 131
[40,45) 1.43 1.55 1.71 1.77 1.83 1.93 2.02 2.11 2.20 2.26 2.32 2.50 2.70 1405
[45,50) 1.37 1.50 1.66 1.72 1.78 1.88 1.97 2.06 2.17 2.23 2.29 2.47 2.65 792
[50,55) 1.25 1.36 1.54 1.59 1.63 1.72 1.81 1.90 2.00 2.05 2.12 2.30 2.43 519
[55,60) 1.16 1.34 1.46 1.51 1.55 1.63 1.71 1.80 1.86 1.92 2.02 2.10 2.25 263
[60,65) 1.10 1.19 1.29 1.33 1.38 1.47 1.55 1.65 1.74 1.79 1.86 2.00 2.07 89
[65,69] 1.37 1.43 1.48 1.50 1.52 1.57 1.62 1.68 1.73 1.75 1.77 2.03 2.11 27

Male
[25,30) 2.62 2.75 2.80 2.95 3.09 3.14 3.15 3.27 3.37 3.57 3.65 3.89 4.06 25
[30,35) 2.31 2.49 2.72 2.89 3.00 3.12 3.27 3.41 3.60 3.72 3.80 4.15 4.25 124
[35,40) 2.32 2.54 2.77 2.84 2.90 3.05 3.18 3.35 3.50 3.60 3.69 3.93 4.16 544
[40,45) 2.22 2.41 2.66 2.77 2.85 2.99 3.14 3.27 3.43 3.51 3.60 3.87 4.09 2229
[45,50) 2.17 2.37 2.59 2.66 2.74 2.89 3.02 3.17 3.31 3.40 3.49 3.75 3.95 1430
[50,55) 1.96 2.13 2.38 2.47 2.55 2.70 2.84 3.00 3.11 3.21 3.31 3.53 3.73 968
[55,60) 1.80 2.05 2.22 2.35 2.40 2.54 2.66 2.80 2.90 3.00 3.13 3.37 3.53 518
[60,65) 1.77 1.95 2.11 2.23 2.28 2.42 2.52 2.64 2.76 2.81 2.86 3.05 3.30 181
[65,69] 1.61 1.81 2.00 2.06 2.12 2.23 2.35 2.49 2.64 2.75 2.87 2.93 3.06 44

Note: Absolute V̇O2peak was measured in LO2/min, age in years, participants from Frankfurt,
Rüdesheim and Munich included.
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4.2 Representativity

To get information on the representativity for the German population, some characteris-

tics were compared between the underlying dataset and results from ’Studie zur Gesund-

heit Erwachsener in Deutschland’ (DEGS1) [32]. Five binary characteristics (smoker,

ex-smoker, overweight, obesity, hypertension) were measured equally in both sources and

were therefore eligible for comparison (table 4.4). Direct age standardisation was applied

to achieve comparable results (chapter 3.4).

Especially in women, the proportions of the underlying data differed from DEGS1 results.

The only non-significant difference was in ex-smoking. The differences between the present

study and DEGS1 were smaller in men. The proportions of smokers, overweight and obese

men were significantly lower in the present study. Almost all of these compared risk factors

were more prevalent in DEGS1 compared to the present study. Only hypertension in men

and ex-smoking in women were less prevalent in DEGS1 (table 4.4). Large differences

were observed for obesity in women as well as for smoking status in men. 23.9% of the

women in DEGS1 and only 12.1% in the present study were obese. In DEGS1, 26.1% of

men were smokers whereas this proportion was only 14.7% in the present study.
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Table 4.4: Comparison of study population to results of DEGS1.

Male Female

PF Studie DEGS1 PF Studie DEGS1

Smoker 14.7 (12.7 to 16.9) 26.1 (24.0 to 28.2) 14.7 (12.1 to 17.6) 21.4 (19.7 to 23.1)
Ex-smoker 29.9 (27.3 to 32.5) 33.7 (31.9 to 35.5) 26.9 (23.6 to 30.4) 22.8 (21.4 to 24.2)
Overweight 61.0 (58.3 to 63.6) 67.1 (65 to 69.2) 38.4 (35.0 to 42.1) 53.0 (50.8 to 55.1)
Obesity 13.9 (12.1 to 15.9) 23.3 (21.2 to 25.4) 12.1 (10.0 to 14.3) 23.9 (22.0 to 25.9)
Hypertension 36.4 (33.8 to 39.2) 33.3 (31.1 to 35.6) 20.7 (18.2 to 23.5) 29.9 (28.1 to 31.9)

Note: Frequencies are displayed as % [95% confidence interval]. For this analysis, participants from all study
centres (Frankfurt/Rüdesheim and Munich) were included (N = 9,354).
Overweight: BMI ≥ 25 kg/m2, obesity: BMI ≥ 30 kg/m2, hypertension: systolic blood pressure ≥ 140 mmHg
or diastolic blood pressure ≥ 90 mmHg.
DEGS1 data extraction for smoking and ex-smoking [38], overweight and obesity [43] and hypertension [48].
Direct age standardisation was performed for results from the present study with the R package epitools [2]
using the German age structure of 2011 as standard population [63]. Proportions in which 95% confidence
intervals do not overlap are printed bold.
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4.3. NOMOGRAMS AND REGRESSION MODEL VALIDATION 4. Results

4.3 Nomograms and regression model validation

Quantile regressions were fitted using peak oxygen uptake as the dependent variable

and age in years of the participant as the independent variable to plot age-dependent

nomograms of peak oxygen uptake. Three different approaches of how to model age as

the independent variable were described in section 3.6. Age could be modelled as i) a

linear predictor, ii) a polynomial predictor or iii) using b-spline smoothing. All approaches

were compared using Akaike Information Criterion (AIC) as well as in apparent validation

of the models (figs. A.5 and A.6 and tables A.4 and A.5). Calibration data included three

quantile regressions for the quantiles 0.25, 0.5, and 0.75. Box plots of observed data

and predicted quantiles per age class were plotted (fig. A.5) and in calibration plots, the

results of all three regressions were compared with observed quantiles in each age group

(fig. A.6). The results from linear regressions that were fitted to calibration data are

displayed in table A.4.

Quantile regressions with b-spline smoothing showed the most accurate results in apparent

validation. Age as a linear predictor yielded the worst results. Age as a second-degree

polynomial predictor fell in between these approaches. As an example, the results from

linear regressions of calibration data should be outlined for men and relative V̇O2peak: In

apparent validation, intercept, slope and R squared were 6.21, 0.80 and 0.89 for linear

regression, 5.94, 0.83 and 0.92 for polynomial regression as well as 1.16, 0.97 and 0.98 for

regression with b-splines, respectively (table A.4). AICs in relative V̇O2peak of men for

median regressions were 8,175, 8,152, and 8,145 for linear regression, polynomial regression

and regressions with b-splines, respectively (A.5). Overall, spline regressions performed

best. Nevertheless, spline regression models often yield complex regression equations and

cannot be formulated like univariable, multivariable or polynomial regression models [42].

As the final models should be outlined in a table, the more feasible approach was selected

over the most accurate and final nomograms were conducted using age as a predictor with

a second-degree polynomial. The final models were defined as:

V̇O2peak i,τ = β̂0(τ) + β̂1(τ) ∗ agei + β̂2(τ) ∗ age2i + ei,τ (4.1)

where τ denotes the τ-quantile, i = 1,..., n the i-th participant, age indicates the age in

years of the participant β̂0, β̂1, β̂2 the regression coefficients to be estimated and e the

error term.

The validation of polynomial quantile regressions is displayed in figs. 4.7 to 4.8. Figure

4.7 shows predicted quantiles based on Frankfurt/Rüdesheim in comparison to observed

quantiles from Frankfurt/Rüdesheim. The 95% confidence intervals of the predicted values

(red shades) include a substantial proportion of the observed quantiles. This means that

there was no statistically significant difference between observed and predicted values.
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The predicted values were particularly accurate in central age classes and less accurate

in marginal age classes. Significant differences between predicted and observed quantiles

appeared especially in the age classes 25 to 29 years and 65 to 69 years. These results

were also observed in the calibration plot (fig. 4.8) with results of R squared close to

1, intercept close to 0 and slope close to 1. As to be expected, the results of external

validation showed less accurate results. However, especially the predictions in the central

age classes ranging from 30 to 59 years were still accurate. In the marginal age classes, it

has to be noted that the numbers of participants were low, leading to distorted empirical

quantiles (fig. 4.9). This could also be observed in the calibration plots where the linear

regressions showed some deviation from the angle bisector (fig. 4.10).

Regression coefficients of the final polynomial quantile regression models are displayed in

tables 4.5 and 4.6 and plotted in figs. 4.5 and 4.6.

In addition to the presented results, subgroup analyses were performed. Reference values

and nomograms were conducted using the entire dataset from Rüdesheim, Frankfurt and

Munich but also using only non-smokers and non-obese participants (supplementary tables

and figures, [49]).
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4.3. NOMOGRAMS AND REGRESSION MODEL VALIDATION 4. Results

Figure 4.3: Nomogram of absolute V̇O2peak (Rüdesheim/Frankfurt)
Note: Participants from Rüdesheim and Frankfurt were included (2,806 women , 4,710 men).
Shades are 95% confidence intervals.
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4.3. NOMOGRAMS AND REGRESSION MODEL VALIDATION 4. Results

Figure 4.4: Nomogram of relative V̇O2peak (Rüdesheim/Frankfurt)
Note: Participants from Rüdesheim and Frankfurt were included (2,806 women , 4,710 men).
Shades are 95% confidence intervals.
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Table 4.5: Regression coefficients and 95% conficence intervals of quantile regressions plotted in nomograms (absolute V̇O2peak).

Quantile
regression

Intercept Age Age2

95% CI 95% CI 95% CI

Coefficient Lower bound Upper bound Coefficient Lower bound Upper bound Coefficient Lower bound Upper bound

Women
fit0.05 1.49913043 0.57906056 2.55129982 0.00916667 -0.03576120 0.04884738 -0.00025362 -0.00068089 0.00022411
fit0.1 2.10653061 0.87801975 2.70606696 -0.01180272 -0.03565934 0.04133534 -0.00003401 -0.00060396 0.00020259
fit0.2 2.06037037 0.99757677 2.58000000 -0.00018519 -0.02199574 0.04324667 -0.00018519 -0.00061728 0.00004548
fit0.25 2.06284600 1.41904762 2.92625754 0.00168129 -0.03425926 0.02863636 -0.00019981 -0.00047890 0.00017037
fit0.3 2.24454545 1.73953912 3.10143878 -0.00380808 -0.03949346 0.01845158 -0.00014478 -0.00039112 0.00022059
fit0.4 2.49637500 1.58473106 3.09074986 -0.00950000 -0.03444444 0.02871359 -0.00009375 -0.00048486 0.00015670
fit0.5 2.27391994 1.80357829 2.81044196 0.00387164 -0.01857143 0.02294894 -0.00023464 -0.00042357 -0.00000700
fit0.6 2.34365265 1.72597017 2.78857293 0.00549134 -0.01330923 0.03057967 -0.00026099 -0.00051054 -0.00006443
fit0.7 2.17450000 1.61368034 3.04000000 0.01662500 -0.01879120 0.03977625 -0.00037500 -0.00061006 -0.00001852
fit0.75 2.45054545 1.58603838 2.96052881 0.00778961 -0.01390476 0.04346154 -0.00028831 -0.00064935 -0.00006250
fit0.8 2.14655462 1.52331800 2.91912279 0.02270308 -0.00892053 0.04914586 -0.00043417 -0.00070996 -0.00011311
fit0.9 2.76728938 1.59563467 3.61307576 0.00614286 -0.02926714 0.05407547 -0.00028938 -0.00076925 0.00007775
fit0.95 2.70967546 1.46509311 4.05118261 0.01959770 -0.03775323 0.06983979 -0.00046991 -0.00096202 0.00013889

Men
fit0.05 2.01681818 0.69031328 3.04755405 0.03117045 -0.01423629 0.08840770 -0.00060227 -0.00121296 -0.00011252
fit0.1 2.12961538 1.22997586 3.24016740 0.03401282 -0.01423148 0.07290991 -0.00062821 -0.00104848 -0.00011396
fit0.2 2.38682051 1.88285642 3.51403260 0.03267873 -0.01388917 0.05393145 -0.00061237 -0.00083575 -0.00013689
fit0.25 2.88086957 1.89875652 3.55889773 0.01565217 -0.01273666 0.05764334 -0.00043478 -0.00087558 -0.00013974
fit0.3 2.91333333 2.16329239 3.39361014 0.01857143 -0.00232158 0.05000046 -0.00047619 -0.00080000 -0.00025000
fit0.4 2.76311037 2.29830183 3.34193204 0.03023226 0.00621205 0.05076022 -0.00058900 -0.00080953 -0.00034446
fit0.5 2.79016667 2.19178512 3.41613125 0.03676786 0.01027467 0.06064167 -0.00067560 -0.00091471 -0.00040070
fit0.6 2.93021008 2.27226144 3.74169030 0.03679622 0.00338730 0.06380689 -0.00068277 -0.00095586 -0.00034259
fit0.7 3.31865801 2.39498904 4.13723057 0.02893939 -0.00540859 0.06700078 -0.00062771 -0.00101121 -0.00027174
fit0.75 3.44690821 2.52533731 4.33076923 0.02795743 -0.00880982 0.06764484 -0.00062651 -0.00103451 -0.00025132
fit0.8 3.66909091 2.65130000 4.39115654 0.02250000 -0.00773616 0.06597359 -0.00056818 -0.00102779 -0.00025298
fit0.9 3.77000000 2.82190745 4.69615087 0.02984848 -0.00780413 0.07077050 -0.00064738 -0.00107629 -0.00026695
fit0.95 3.47483516 2.59020000 4.36079514 0.05066904 0.01467532 0.08978920 -0.00086296 -0.00127605 -0.00051435

Note: Absolute V̇O2peak was measured in LO2/min.
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Table 4.6: Regression coefficients and 95% conficence intervals of quantile regressions plotted in nomograms (relative V̇O2peak).

Quantile
regression

Intercept Age Age2

95% CI 95% CI 95% CI

Coefficient Lower bound Upper bound Coefficient Lower bound Upper bound Coefficient Lower bound Upper bound

Women
fit0.05 23.84835165 5.59087363 50.10395565 0.05785714 -1.05766005 0.80808081 -0.00335165 -0.01087569 0.00828160
fit0.1 33.97500000 18.19006800 43.70057692 -0.27500000 -0.69098656 0.39722149 -0.00000000 -0.00702743 0.00443350
fit0.2 40.43443223 24.81967857 51.45452772 -0.44472527 -0.88907457 0.20955888 0.00172161 -0.00500019 0.00608467
fit0.25 36.92186235 27.44654913 52.76745790 -0.25205321 -0.87316774 0.14559597 -0.00028918 -0.00439815 0.00571448
fit0.3 40.60000000 28.60000000 51.31336184 -0.34722222 -0.79009010 0.14013260 0.00046296 -0.00434783 0.00493336
fit0.4 38.79090909 29.83139244 49.74464580 -0.18954545 -0.64419192 0.17418103 -0.00136364 -0.00492071 0.00328683
fit0.5 39.08561208 29.59427572 47.29127948 -0.13156598 -0.48431904 0.24256936 -0.00204293 -0.00571978 0.00172630
fit0.6 36.30400000 26.91236870 46.57357367 0.05600000 -0.36562469 0.44546489 -0.00400000 -0.00796333 0.00023389
fit0.7 35.43421053 24.80867857 49.55557875 0.16206140 -0.42500000 0.61746128 -0.00504386 -0.00991429 0.00092639
fit0.75 37.06990553 23.17532322 51.68217906 0.14028340 -0.44874416 0.71469368 -0.00492578 -0.01077501 0.00087933
fit0.8 42.74829932 27.61014348 52.20000000 -0.03265306 -0.41126892 0.59666723 -0.00340136 -0.00980392 0.00036332
fit0.9 37.39480519 28.70107143 55.42313862 0.30930736 -0.42363415 0.65714547 -0.00692641 -0.01031061 0.00047619
fit0.95 36.22440000 23.26127906 60.39901657 0.50340000 -0.54513889 0.99632070 -0.00940000 -0.01404791 0.00176304

Men
fit0.05 28.48571429 13.51236584 37.21760006 0.09285714 -0.27608749 0.74345431 -0.00396825 -0.01093750 -0.00000000
fit0.1 27.88750000 19.37541893 41.02363248 0.25555556 -0.31394850 0.60809598 -0.00601852 -0.00960426 0.00000000
fit0.2 31.39411765 20.99703725 39.25569048 0.22835294 -0.10408144 0.67366977 -0.00576471 -0.01041098 -0.00236799
fit0.25 29.13552632 23.26838235 37.53445760 0.37580409 0.01533095 0.63142962 -0.00738304 -0.01012987 -0.00365365
fit0.3 29.32000000 22.28888889 38.71196815 0.42400000 0.03333180 0.73387758 -0.00800000 -0.01134086 -0.00400942
fit0.4 31.32521008 20.88379840 40.66076087 0.42710084 0.03901366 0.84573873 -0.00819328 -0.01233775 -0.00414456
fit0.5 35.04000000 25.28893872 43.13656566 0.35500000 0.01778344 0.77170597 -0.00750000 -0.01192318 -0.00406143
fit0.6 35.34126984 29.02319610 44.60513183 0.42412698 0.04187771 0.70001282 -0.00825397 -0.01118308 -0.00443175
fit0.7 35.49010989 26.26422054 46.28282552 0.52516484 0.06362250 0.90667045 -0.00956044 -0.01335110 -0.00467829
fit0.75 36.55503247 27.04126082 46.66736161 0.52857143 0.11196168 0.93800238 -0.00957792 -0.01388286 -0.00540391
fit0.8 37.67414530 26.01267857 50.32868654 0.55384615 0.00917467 1.03611742 -0.01004274 -0.01497867 -0.00428571
fit0.9 48.66599327 33.83227273 66.70263062 0.23686869 -0.50892308 0.86269943 -0.00690236 -0.01339288 0.00070355
fit0.95 47.24897959 33.48281704 61.63508967 0.38350340 -0.21507143 0.96266353 -0.00799320 -0.01387266 -0.00182853

Note: Relative V̇O2peak was measured in mLO2/min/kg.
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4.3. NOMOGRAMS AND REGRESSION MODEL VALIDATION 4. Results

Figure 4.5: Coefficient plots of all quantile regressions coefficients plotted in nomograms (abso-
lute V̇O2peak, table 4.5).

Figure 4.6: Coefficient plots of all quantile regressions coefficients plotted in nomograms (relative
V̇O2peak, table 4.6).
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4.3. NOMOGRAMS AND REGRESSION MODEL VALIDATION 4. Results

Figure 4.7: Apparent validation of quantile regression models.
Note: Quantiles are displayed as ● = 0.25, ▴ = 0.5, ◾ = 0.75.
For apparent validation, the box plots as well as the regression predictions were based on partic-
ipants from Frankfurt/Rüdesheim. The 95% confidence intervals for predicted values are plotted
in red; age was modelled in classes.
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4.3. NOMOGRAMS AND REGRESSION MODEL VALIDATION 4. Results

Figure 4.8: Apparent validation calibration plots.
Note: Quantiles are displayed as ● = 0.25, ▴ = 0.5, ◾ = 0.75.
For apparent validation, the observed values as well as the regression predictions were based on
participants from Frankfurt/Rüdesheim.
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4.3. NOMOGRAMS AND REGRESSION MODEL VALIDATION 4. Results

Figure 4.9: Apparent validation of quantile regression models.
Note: Quantiles are displayed as ● = 0.25, ▴ = 0.5, ◾ = 0.75. For external validation, participants
from Munich were used for the box plots and participants from Frankfurt/Rüdesheim were used
to to obtain predicted values. The 95% confidence intervals for predicted values are plotted in
red; age was modelled in classes.
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4.3. NOMOGRAMS AND REGRESSION MODEL VALIDATION 4. Results

Figure 4.10: External validation calibration plots.
Note: Quantiles are displayed as ● = 0.25, ▴ = 0.5, ◾ = 0.75.
For external validation, the observed values were based on participants from Munich and the
predicted values were based on participants from Frankfurt/Rüdesheim.
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4.4. EXERCISE TEST MODALITIES AND RANDOM SAMPLE 4. Results

Table 4.7: Regression coefficients and R squared for linear regression in calibration data for
apparent validation.

Absolute V̇O2peak Relative V̇O2peak

Women
Intercept 0.11 [-0.12 to 0.33] 1.06 [-1.29 to 3.35]
Slope 0.94 [0.83 to 1.05] 0.97 [0.88 to 1.05]
R squared 0.95 [0.92 to 0.99] 0.95 [0.9 to 0.98]

Men
Intercept 0.26 [0.07 to 0.45] 5.94 [1.35 to 9.91]
Slope 0.91 [0.84 to 0.97] 0.83 [0.71 to 0.96]
R squared 0.97 [0.95 to 0.99] 0.92 [0.85 to 0.97]

95% confidence intervals in square brackets.

Table 4.8: Regression coefficients and R squared for linear regression in calibration data for
external validation.

Absolute V̇O2peak Relative V̇O2peak

Women
Intercept 0.64 [0.26 to 0.96] 8.54 [2.48 to 14.63]
Slope 0.63 [0.46 to 0.83] 0.67 [0.45 to 0.91]
R squared 0.64 [0.4 to 0.85] 0.65 [0.4 to 0.87]

Men
Intercept 0.01 [-0.18 to 0.22] 1.47 [-2.73 to 4.61]
Slope 0.97 [0.9 to 1.04] 0.99 [0.9 to 1.12]
R squared 0.98 [0.96 to 0.99] 0.94 [0.9 to 0.97]

95% confidence intervals in square brackets.

4.4 Exercise test modalities and random sample

Some characteristics of CPET test modalities were not recorded in the full dataset. There-

fore, 252 participants were randomly selected from the entire main study dataset, and

CPET modalities were manually added from medical records for this random sample

(chapter 3.3). Some characteristics were compared between full dataset and the random

sample (table A.1), to evaluate wheather the random sample was representative for the

whole dataset. However, none of the characteristics were significantly different in the two

datasets. Therefore, the representativity of the random sample was assumed.

Three measures of the participants’ effort were analysed in the random sample. Adequate

effort was defined when either RER ≥ 1.1 or lactate ≥ 8 mmol/L or the heart rate was ≥

90% of the age-predicted maximal heart rate [66, 45]. Overall, 239/247 (96.8% 95% CI

94.4% to 98.8%) of the observations achieved exertion as defined above. This proportion

was 150/155 (96.8% 95% CI 93.6% to 99.4%) in men and 89/92 (96.7% 95% CI 92.5% to

100%) in women. In five participants who were selected for the random sample, none of

these three variables was recorded.

Multistage protocols were used in 130/243 (54%, 95% CI 47% to 60%) exercise tests of the

random sample, and ramp protocols in 113/243 (47%, 95% CI 40% to 53%) exercise tests

of the random sample. The overall median maximal heart rate was 174/min [164;182]
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4.4. EXERCISE TEST MODALITIES AND RANDOM SAMPLE 4. Results

(men: 174/min [165;182], women: 175/min [163;182]).

To depict how reference values were affected when subjects with poor effort were excluded,

median regressions were fitted for i) the entire random sample and ii) individuals with no

adequate effort excluded (fig. 4.11). The regression lines were approximately congruent.

In addition to the graphical approach, median regressions were also calculated for the

sample data, including an interaction term of age and exertion as the independent variable

(4.9). None of the regression coefficients were statistically significant.

Figure 4.11: Median regressions for inclusion versus exclusion of participants with no maximal
effort.
Note: Median regressions were calculated using i) all subjects without missing values in the
random sample (n = 247) and ii) only subjects that showed maximal effort (n = 239, dashed line,
table 2.1). Participants with no adequate effort are printed red.
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4.5. WEB APPLICATION 4. Results

Table 4.9: Median regression using exertion and age as interaction terms.

95% CI

Coefficients Lower bound Upper bound P value

Men, absolute V̇O2peak

Intercept 12.61 -27.95 25.08 0.262
Age -0.20 -0.45 0.61 0.352
Exertion(yes) -3.99 -10.18 16.18 0.477
Age * Exertion(yes) 0.08 -0.32 0.21 0.447

Men, relative V̇O2peak

Intercept 165.81 -402.94 345.16 0.232
Age -2.73 -6.24 8.72 0.309
Exertion(yes) -57.26 -144.86 225.74 0.408
Age * Exertion(yes) 1.18 -4.52 2.89 0.380

Women, absolute V̇O2peak

Intercept 1.29 -0.39 3.95 0.322
Age -0.00 -0.04 0.04 1.000
Exertion(yes) 0.47 -1.07 1.54 0.519
Age * Exertion(yes) -0.00 -0.03 0.02 0.817

Women, relative V̇O2peak

Intercept 18.27 -1.48 31.99 0.108
Age 0.11 -0.24 0.57 0.633
Exertion(yes) 5.85 -4.54 20.94 0.414
Age * Exertion(yes) -0.07 -0.38 0.18 0.636

Note: Exertion was coded as “yes” =2 and “no” = 1. Only 5 men and 3
women were recorded in the group exertion = “no”. Therefore, the results
have to be interpreted with caution.

4.5 Web application

An interactive web application was created to facilitate the interpretation of the present

study’s results. This application can be accessed at www.uks.eu/vo2peak. A screenshot

is displayed in fig. 4.12.
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4.5. WEB APPLICATION 4. Results

Figure 4.12: Screenshot of the V̇O2peak calculator web application which was deployed as part
of the present study (www.uks.eu/vo2peak, section 3.6, [55])
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4.6. MULTIVARIABLE ANALYSES 4. Results

4.6 Multivariable analyses

An explorative multivariable regression modelling was performed to find associations of

peak oxygen uptake and characteristics of the present study sample. Quantile regressions

were calculated using the quantiles 0.25, 0.5, and 0.75. The regression coefficients are

displayed in tables 4.10 to 4.13. Figs. 4.13, 4.14, 4.15, and 4.16 are coefficient plots of

the regression coefficients.

Correlation matrices were calculated for all eligible quantitative variables that were con-

sidered for multivariable regression (figs. A.3 and A.4) to avoid collinearity. Some variables

were excluded because they were shown to be highly correlated. A high correlation was

observed between BMI, body weight, waist circumference and body fat. Therefore, only

BMI was considered for multivariable analyses and body weight, waist circumference and

body fat were excluded. Another high correlation was present between total cholesterol

and LDL cholesterol. As total cholesterol includes HDL and LDL cholesterol, and HDL

cholesterol was also considered for the analysis, total cholesterol was excluded. LDL and

HDL were recoded into binary variables (section 3.2) because some skewed distributions

were observed.

The regressions’ goodness of fit showed to be quite high in absolute V̇O2peak and lower

in relative V̇O2peak. In absolute V̇O2peak, all R squared were above 90%. In relative

V̇O2peak, R squared were observed to be around 20% (figs. 4.13 to 4.16).

Some characteristics were associated with peak oxygen uptake in the multivariable anal-

yses. Age showed statistically significant associations in both sexes and in all regressions.

Peak oxygen uptake was lower in older ages. In both men and women, cigarette smoking

was found to be strongly associated with absolute and relative V̇O2peak. This was also

observed across all regression quantiles. In men, for example, the estimated 0.75 quantile

of relative V̇O2peak was 2.2 mLO2/min/kg (95% CI 2.9 to 1.3) lower compared to non-

smokers. Furthermore, triglycerides were shown to be negatively associated with peak

oxygen uptake in all regressions. In women with elevated triglycerides, the estimated

0.75 quantile of relative V̇O2peak was 2.2 mLO2/min/kg (95% CI 2.9 to 1.1) lower com-

pared to women with triglyceride levels below 150 mg/dL. Low HDL cholesterol levels

were also strongly associated with lower peak oxygen uptake across all regressions of men

but in none of the models of women. The estimated 0.75 quantile of relative V̇O2peak

was 2.1 mLO2/min/kg (95% CI 2.9 to 1.4) lower compared to men with HDL cholesterol

levels above 40 mg/dL. The body composition, represented by overweight and obesity,

was also associated with decreased relative and increased absolute V̇O2peak. On the other

hand, body height was shown to be positively associated with absolute peak oxygen up-

take. Diabetes mellitus and hypertension were associated with lower peak oxygen uptake

especially in men.
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4.6. MULTIVARIABLE ANALYSES 4. Results

Figure 4.13: Coefficient plots of multivariable quantile regression models for absolute V̇O2peak

in men.
Note: Dependent variable = absolute V̇O2peak [LO2/min].
Quantile regressions for the quantiles 0.25, 0.5, and 0.75 were fitted. Independent variables were
selected using stepwise regression. AIC was used as criterion statistic for model comparison.
Backward and forward variable elimination were selected as direction. Pseudo R2 was calculated
according to [22, p. 52].
Units of measurement: age [years], height [cm], overweight: BMI ≥ 25 kg/m2, obesity: BMI ≥

30 kg/m2, hypertension: systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90
mmHg, low HDL: HDL cholesterol ≤ 40 mg/dL, high LDL: LDL cholesterol ≥ 115 mg/dL, high
TG: triglycerides ≥ 150 mg/dL, diabetes mellitus: fasting glucose ≥ 126 mg/dL or HbA1c ≥ 6.5%
(section 3.2). 55



4.6. MULTIVARIABLE ANALYSES 4. Results

Figure 4.14: Coefficient plots of multivariable quantile regression models for absolute V̇O2peak

in women.
Note: Dependent variable = absolute V̇O2peak [LO2/min].
Quantile regressions for the quantiles 0.25, 0.5, and 0.75 were fitted. Independent variables were
selected using stepwise regression. AIC was used as criterion statistic for model comparison.
Backward variable elimination was selected as direction. Pseudo R2 was calculated according to
[22, p. 52].
Units of measurement: age [years], height [cm], overweight: BMI ≥ 25 kg/m2, obesity: BMI ≥

30 kg/m2, hypertension: systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90
mmHg, low HDL: HDL cholesterol ≤ 40 mg/dL, high LDL: LDL cholesterol ≥ 115 mg/dL, high
TG: triglycerides ≥ 150 mg/dL, diabetes mellitus: fasting glucose ≥ 126 mg/dL or HbA1c ≥ 6.5%
(section 3.2). 56



4.6. MULTIVARIABLE ANALYSES 4. Results

Figure 4.15: Coefficient plots of multivariable quantile regression models for relative V̇O2peak in
men.
Note: Dependent variable = relative V̇O2peak [mLO2/min/kg].
Quantile regressions for the quantiles 0.25, 0.5, and 0.75 were fitted. Independent variables were
selected using stepwise regression. AIC was used as criterion statistic for model comparison.
Backward variable elimination was selected as direction. Pseudo R2 was calculated according to
[22, p. 52].
Units of measurement: age [years], height [cm], overweight: BMI ≥ 25 kg/m2, obesity: BMI ≥

30 kg/m2, hypertension: systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90
mmHg, low HDL: HDL cholesterol ≤ 40 mg/dL, high LDL: LDL cholesterol ≥ 115 mg/dL, high
TG: triglycerides ≥ 150 mg/dL, diabetes mellitus: fasting glucose ≥ 126 mg/dL or HbA1c ≥ 6.5%
(section 3.2). 57



4.6. MULTIVARIABLE ANALYSES 4. Results

Figure 4.16: Coefficient plots of multivariable quantile regression models for relative V̇O2peak in
women.
Note: Dependent variable = relative V̇O2peak [mLO2/min/kg].
Quantile regressions for the quantiles 0.25, 0.5, and 0.75 were fitted. Independent variables were
selected using stepwise regression. AIC was used as criterion statistic for model comparison.
Backward variable elimination was selected as direction. Pseudo R2 was calculated according to
[22, p. 52].
Units of measurement: age [years], height [cm], overweight: BMI ≥ 25 kg/m2, obesity: BMI ≥

30 kg/m2, hypertension: systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90
mmHg, low HDL: HDL cholesterol ≤ 40 mg/dL, high LDL: LDL cholesterol ≥ 115 mg/dL, high
TG: triglycerides ≥ 150 mg/dL, diabetes mellitus: fasting glucose ≥ 126 mg/dL or HbA1c ≥ 6.5%
(section 3.2). 58



4.6. MULTIVARIABLE ANALYSES 4. Results

Table 4.10: Regression coefficients of multivariable quantile regressions for relative V̇O2peak in
men.

95% CI

Coefficient Lower bound Upper bound P value

Quantile 0.25
Intercept 46.80 45.38 48.10 <0.001
Age -0.24 -0.27 -0.21 <0.001
Overweight -3.41 -3.80 -2.94 <0.001
Obese -4.89 -5.40 -4.32 <0.001
Hypertension -1.03 -1.43 -0.59 <0.001
Low HDL -1.80 -2.31 -1.08 <0.001
High LDL -0.52 -1.00 -0.10 0.025
High TG -1.40 -1.81 -1.02 <0.001
Diabetes mellitus -2.16 -3.22 -0.71 0.001
Smoker -1.76 -2.39 -1.17 <0.001
Ex-smoker -0.28 -0.73 0.18 0.219

Quantile 0.50
Intercept 59.61 52.47 65.60 <0.001
Age -0.28 -0.31 -0.25 <0.001
Height -0.04 -0.07 <-0.01 0.029
Overweight -3.82 -4.27 -3.33 <0.001
Obese -5.39 -5.94 -4.76 <0.001
Hypertension -0.52 -1.00 -0.11 0.023
Low HDL -1.53 -2.39 -0.98 <0.001
High LDL -0.65 -1.13 -0.19 0.006
High TG -1.80 -2.24 -1.29 <0.001
Diabetes mellitus -2.00 -3.10 -0.92 <0.001
Smoker -1.95 -2.54 -1.48 <0.001

Quantile 0.75
Intercept 68.18 62.22 73.78 <0.001
Age -0.30 -0.34 -0.26 <0.001
Height -0.05 -0.08 -0.02 <0.001
Overweight -3.95 -4.51 -3.49 <0.001
Obese -5.75 -6.37 -5.17 <0.001
Hypertension -0.94 -1.32 -0.40 <0.001
Low HDL -2.11 -2.91 -1.35 <0.001
High LDL -0.67 -1.23 -0.18 0.013
High TG -2.03 -2.47 -1.51 <0.001
Diabetes mellitus -1.61 -3.13 -0.30 0.031
Smoker -2.16 -2.89 -1.33 <0.001
Exsmoker -0.34 -0.78 0.20 0.178

Note: Dependent variable = relative V̇O2peak [mLO2/min/kg].
Quantile regressions for the quantiles 0.25, 0.5, and 0.75 were fitted. Inde-
pendent variables were selected using stepwise regression. AIC was used as
criterion statistic for model comparison. Backward variable elimination was
selected as direction. Pseudo R2 was calculated according to [22, p. 52].
Units of measurement: age [years], height [cm], overweight: BMI ≥ 25 kg/m2,
obesity: BMI ≥ 30 kg/m2, hypertension: systolic blood pressure ≥ 140 mmHg
or diastolic blood pressure ≥ 90 mmHg, low HDL: HDL cholesterol ≤ 40 mg/dL,
high LDL: LDL cholesterol ≥ 115 mg/dL, high TG: triglycerides ≥ 150 mg/dL,
diabetes mellitus: fasting glucose ≥ 126 mg/dL or HbA1c ≥ 6.5% (section 3.2).
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4.6. MULTIVARIABLE ANALYSES 4. Results

Table 4.11: Regression coefficients of multivariable quantile regressions for relative V̇O2peak in
women.

95% CI

Coefficient Lower bound Upper bound P value

Quantile 0.25
Intercept 32.26 25.74 38.11 <0.001
Age -0.20 -0.23 -0.17 <0.001
Height 0.03 <-0.01 0.07 0.077
Overweight -3.70 -4.21 -3.21 <0.001
Obese -3.96 -4.70 -3.34 <0.001
Hypertension -1.32 -1.80 -0.63 <0.001
High LDL -0.40 -0.77 0.07 0.064
High TG -1.29 -1.94 -0.58 <0.001
Smoker -1.27 -1.88 -0.60 <0.001
Ex-smoker 0.40 -0.10 0.87 0.099

Quantile 0.50
Intercept 42.03 40.48 43.50 <0.001
Age -0.23 -0.26 -0.20 <0.001
Overweight -4.23 -4.65 -3.80 <0.001
Obese -4.10 -4.78 -3.47 <0.001
Hypertension -1.27 -1.97 -0.60 <0.001
High TG -1.73 -2.59 -1.09 <0.001
Diabetes mellitus -1.23 -2.20 0.34 0.065
Smoker -1.30 -1.85 -0.77 <0.001
Ex-smoker 0.40 -0.13 0.85 0.115

Quantile 0.75
Intercept 47.36 45.34 49.11 <0.001
Age -0.27 -0.31 -0.23 <0.001
Overweight -4.86 -5.51 -4.25 <0.001
Obese -4.59 -5.38 -3.65 <0.001
Hypertension -0.37 -1.29 0.20 0.344
High TG -2.20 -2.94 -1.05 <0.001
Smoker -1.10 -1.98 -0.15 0.016
Ex-smoker 0.39 -0.18 0.95 0.177

Note: Dependent variable = relative V̇O2peak [mLO2/min/kg].
Quantile regressions for the quantiles 0.25, 0.5, and 0.75 were fitted. Inde-
pendent variables were selected using stepwise regression. AIC was used as
criterion statistic for model comparison. Backward variable elimination was
selected as direction. Pseudo R2 was calculated according to [22, p. 52].
Units of measurement: age [years], height [cm], overweight: BMI ≥ 25 kg/m2,
obesity: BMI ≥ 30 kg/m2, hypertension: systolic blood pressure ≥ 140 mmHg
or diastolic blood pressure ≥ 90 mmHg, low HDL: HDL cholesterol ≤ 40 mg/dL,
high LDL: LDL cholesterol ≥ 115 mg/dL, high TG: triglycerides ≥ 150 mg/dL,
diabetes mellitus: fasting glucose ≥ 126 mg/dL or HbA1c ≥ 6.5% (section 3.2).
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4.6. MULTIVARIABLE ANALYSES 4. Results

Table 4.12: Regression coefficients of multivariable quantile regressions for absolute V̇O2peak in
men.

95% CI

Coefficient Lower bound Upper bound P value

Quantile 0.25
Intercept -1.70 -2.25 -1.20 <0.001
Age -0.02 -0.02 -0.02 <0.001
Height 0.03 0.03 0.03 <0.001
Overweight 0.15 0.11 0.18 <0.001
Obese 0.05 -0.01 0.10 0.072
Hypertension -0.04 -0.08 0.01 0.098
Low HDL -0.12 -0.17 -0.06 <0.001
High LDL -0.02 -0.07 0.01 0.251
High TG -0.08 -0.12 -0.05 <0.001
Diabetes mellitus -0.16 -0.29 -0.05 0.006
Smoker -0.14 -0.17 -0.09 <0.001

Quantile 0.50
Intercept -1.31 -1.73 -0.79 <0.001
Age -0.02 -0.02 -0.02 <0.001
Height 0.03 0.03 0.03 <0.001
Overweight 0.13 0.10 0.16 <0.001
Low HDL -0.12 -0.17 -0.06 <0.001
High LDL -0.03 -0.07 0.01 0.104
High TG -0.11 -0.15 -0.07 <0.001
Diabetes mellitus -0.15 -0.22 -0.04 0.002
Smoker -0.17 -0.20 -0.12 <0.001

Quantile 0.75
Intercept -1.02 -1.54 -0.50 <0.001
Age -0.02 -0.03 -0.02 <0.001
Height 0.03 0.03 0.03 <0.001
Overweight 0.15 0.11 0.19 <0.001
Hypertension -0.03 -0.07 0.01 0.154
Low HDL -0.14 -0.19 -0.09 <0.001
High LDL -0.04 -0.09 -0.01 0.021
High TG -0.12 -0.16 -0.08 <0.001
Diabetes mellitus -0.13 -0.26 0.00 0.053
Smoker -0.18 -0.23 -0.14 <0.001
Ex-smoker -0.02 -0.06 0.02 0.211

Note: Dependent variable = absolute V̇O2peak [LO2/min].
Quantile regressions for the quantiles 0.25, 0.5, and 0.75 were fitted. Inde-
pendent variables were selected using stepwise regression. AIC was used as
criterion statistic for model comparison. Backward variable elimination was
selected as direction. Pseudo R2 was calculated according to [22, p. 52].
Units of measurement: age [years], height [cm], overweight: BMI ≥ 25 kg/m2,
obesity: BMI ≥ 30 kg/m2, hypertension: systolic blood pressure ≥ 140 mmHg
or diastolic blood pressure ≥ 90 mmHg, low HDL: HDL cholesterol ≤ 40 mg/dL,
high LDL: LDL cholesterol ≥ 115 mg/dL, high TG: triglycerides ≥ 150 mg/dL,
diabetes mellitus: fasting glucose ≥ 126 mg/dL or HbA1c ≥ 6.5% (section 3.2).
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Table 4.13: Regression coefficients of multivariable quantile regressions for absolute V̇O2peak in
women.

95% CI

Coefficient Lower bound Upper bound P value

Quantile 0.25
Intercept -1.32 -1.77 -0.89 <0.001
Age -0.01 -0.02 -0.01 <0.001
Height 0.02 0.02 0.02 <0.001
Overweight 0.12 0.08 0.16 <0.001
Obese 0.07 0.02 0.13 0.013
Hypertension -0.03 -0.06 0.01 0.173
Low HDL 0.08 -0.02 0.15 0.068
High TG -0.09 -0.15 -0.04 0.001
Smoker -0.10 -0.14 -0.03 <0.001
Ex-smoker 0.04 <0.01 0.08 0.046

Quantile 0.50
Intercept -0.92 -1.37 -0.54 <0.001
Age -0.01 -0.02 -0.01 <0.001
Height 0.02 0.02 0.02 <0.001
Overweight 0.10 0.08 0.14 <0.001
Obese 0.13 0.07 0.18 <0.001
Hypertension -0.05 -0.09 -0.01 0.023
High TG -0.09 -0.15 -0.05 <0.001
Smoker -0.11 -0.15 -0.07 <0.001
Ex-smoker 0.03 -0.01 0.05 0.097

Quantile 0.75
Intercept -1.10 -1.58 -0.62 <0.001
Age -0.02 -0.02 -0.01 <0.001
Height 0.02 0.02 0.03 <0.001
Overweight 0.11 0.08 0.15 <0.001
Obese 0.15 0.09 0.20 <0.001
High TG -0.13 -0.17 -0.05 <0.001
Diabetes mellitus -0.12 -0.19 0.18 0.218
Smoker -0.12 -0.16 -0.07 <0.001

Note: Dependent variable = absolute V̇O2peak [LO2/min].
Quantile regressions for the quantiles 0.25, 0.5, and 0.75 were fitted. Inde-
pendent variables were selected using stepwise regression. AIC was used as
criterion statistic for model comparison. Backward variable elimination was
selected as direction. Pseudo R2 was calculated according to [22, p. 52].
Units of measurement: age [years], height [cm], overweight: BMI ≥ 25 kg/m2,
obesity: BMI ≥ 30 kg/m2, hypertension: systolic blood pressure ≥ 140 mmHg
or diastolic blood pressure ≥ 90 mmHg, low HDL: HDL cholesterol ≤ 40 mg/dL,
high LDL: LDL cholesterol ≥ 115 mg/dL, high TG: triglycerides ≥ 150 mg/dL,
diabetes mellitus: fasting glucose ≥ 126 mg/dL or HbA1c ≥ 6.5% (section 3.2).
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5 Discussion

Low CRF is a crucial predictor for a plethora of health threats as well as for premature all-

cause mortality. The measurement of CRF in the course of preventive health screenings is

valuable because regular exercise can increase CRF. CRF is accepted as one of the most

important modifiable risk factors due to strong associations with cardiovascular disease

and premature all-cause mortality (section 2.1). Therefore, incremental cardiopulmonary

exercise testing is a frequently applied procedure in clinical practice to estimate cardiores-

piratory fitness by determining peak oxygen uptake. However, as V̇O2peak is associated

with sex and age [23], it is only conclusive to interpret the V̇O2peak of an individual in the

light of sex-specific and age-specific reference values. The presented study provides sex-

specific and age-specific reference values for peak oxygen uptake that are based on 25- to

69-year-old participants who underwent primary preventive health screenings and CPET

using cycle ergometry in one of three German cities. By acquiring 9,354 participants, this

study is one of the largest that has been published so far in this field [50] [53, p. 88].

This chapter discusses the results of the present study. First, the presented reference

values are compared with the literature in section 5.1. The representativity of this study

population and the generalisability of the results is described in section 5.2. The sections

5.3, 5.4, and 5.5 discuss the quality of V̇O2peak measurement, the statistical methods

as well as the results of the multivariable quantile regressions, respectively. Finally the

strengths and limitations of this study are outlined in section 5.6.
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5.1. REFERENCE VALUES 5. Discussion

5.1 Reference values

The presented values for V̇O2peak showed a strong association with sex and age. Women

had lower peak oxygen uptake compared to men and participants with higher ages had

a lower peak oxygen uptake than younger participants. Furthermore, there was a wide

range of V̇O2peak for a given sex and age, which was likely to be - at least partially -

the result of physical activity and endurance exercise. The decline over age was present

in both sexes and at all levels of fitness. Hawkins & Wiswell (2003) [23] described that

the age-dependent decline of V̇O2peak was approximately 10% per decade regardless of

the individual level of fitness. In the present study, this decline seems to be lower in

both sexes. Median relative V̇O2peak in men at the ages of 30, 40, 50 and 60 years were

38.9, 37.2, 34.0 and 29.3 mLO2/min/kg, respectively. In women, it was 33.3, 30.6, 27.4

and 23.8 mLO2/min/kg, respectively (table 4.6∗). Some reasons for the decline might be

difficulties maintaining training in higher ages, a decline of maximal heart rate and lean

body mass. According to ACSM guidelines [53], physical activity and exercise should be

performed to maintain CRF and lean body mass. Maximal heart rate, on the other hand,

seems not to be strongly associated with physical activity [23].

Although CRF was lower in women and older individuals, the results also demonstrated

that women with high fitness were fitter than men with poor fitness and also that elders

with good fitness were fitter than young with low fitness. When relative V̇O2peak in men

was compared, a 60-year-old at the 95% quantile showed a higher fitness level than the

median at 30-years. Also, women at the 95% quantile were fitter than the median in men

for the entire age-span.

The present reference values compared with past studies are plotted in fig. 5.1. For

this comparison, the SHIP study by Koch et al. (2009) [34] was selected because the

study was conducted in Germany. The FRIEND study by Kaminsky (2017) [31] was

also chosen due to its recency and large sample size. The reference values of the present

study and the SHIP study were comparable. The median of 40-year-old men was 37.2

∗

men:

RelativeV̇O2peak = (0.355 ∗ 30) + (−0.0075 ∗ 30 ∗ 30) + 35.04 = 38.9mLO2/min/kg

RelativeV̇O2peak = (0.355 ∗ 40) + (−0.0075 ∗ 40 ∗ 40) + 35.04 = 37.2mLO2/min/kg

RelativeV̇O2peak = (0.355 ∗ 50) + (−0.0075 ∗ 50 ∗ 50) + 35.04 = 34.0mLO2/min/kg

RelativeV̇O2peak = (0.355 ∗ 60) + (−0.0075 ∗ 60 ∗ 60) + 35.04 = 29.3mLO2/min/kg

women:

RelativeV̇O2peak = (−0.131566 ∗ 30) + (−0.002043 ∗ 30 ∗ 30) + 39.085612 = 33.3mLO2/min/kg

RelativeV̇O2peak = (−0.131566 ∗ 40) + (−0.002043 ∗ 40 ∗ 40) + 39.085612 = 30.6mLO2/min/kg

RelativeV̇O2peak = (−0.131566 ∗ 50) + (−0.002043 ∗ 50 ∗ 50) + 39.085612 = 27.4mLO2/min/kg

RelativeV̇O2peak = (−0.131566 ∗ 60) + (−0.002043 ∗ 60 ∗ 60) + 39.085612 = 23.8mLO2/min/kg
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mLO2/min/kg (table 4.6 ∗) in the present study and 36.5 mLO2/min/kg [34]† in the SHIP

study. Reference values from FRIEND study showed higher values in the youngest age

group but also a rapid decline and lower values in all other age groups. The median for

40-year-old men was only 27.1 mLO2/min/kg. Some reasons for the differences between

the reference values are discussed below.

A number of past reference values excluded smokers and obese subjects from reference

values [34, 26]. The exclusion of smokers was also recommended in the systematic review

by Paap & Takken (2014) [50]. Therefore, the present study included subgroup analyses

by excluding smokers and obese subjects from the analyses (supplementary tables and

figures [49]). The reference values were considerably higher when smokers were excluded

from the sample. Median relative V̇O2peak in 45-year-old men was 37.3 mLO2/min/kg

when smokers and obese subjects were excluded and 35.8 mLO2/min/kg when smokers

and obese subjects remained in the reference data (supplementary tables and figures [49]
‡).

Aside from the exclusion of smokers and obese subjects, subgroup analyses were also

performed for the inclusion of all subjects from Rüdesheim, Frankfurt and Munich. In

that case, the reference values were consistent with the primary results (supplementary

tables and figures [49]).

Past studies have shown that V̇O2peak can be increased by physical activity and exercise.

The average effect was estimated at 5.4 mLO2/min/kg in men and 3.2 mLO2/min/kg in

women by Lin et al. (2015) [39]. When those estimations are compared to the present

nomograms, the mean effect of structured exercise on V̇O2peak of 40-year old men and

women may be equal to the difference of median and 0.7 quantile. This can be interpreted

as a 20% increase relative to the reference population.

∗RelativeV̇O2peak = (0.355 ∗ 40) + (−0.0075 ∗ 40 ∗ 40) + 35.04 = 37.2mLO2/min/kg

†RelativeV̇O2peak = 47.7565 + (−0.9880 ∗ 2) + (−0.2356 ∗ 2 ∗ 2) + (−8.8697 ∗ 1) + (2.3597 ∗ 0) + (−2.0308 ∗
2 ∗ 0) + (−3.7405 ∗ 1 ∗ 0) + (0.2512 ∗ 2 ∗ 1) + (1.3797 ∗ 2 ∗ 1 ∗ 0) = 36.5, where male sex was denoted by 1,
the age class of 35 to 44 years as 2 and BMI < 25 kg/m2 as 0.

‡men:

RelativeV̇O2peak = (0.37 ∗ 45) + (−0.0075 ∗ 45 ∗ 45) + 35.8375 = 37.3mLO2/min/kg

RelativeV̇O2peak = (0.355 ∗ 45) + (−0.0075 ∗ 45 ∗ 45) + 35.04 = 35.8mLO2/min/kg
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5.2. STUDY POPULATION AND REPRESENTATIVITY 5. Discussion

Figure 5.1: Comparison of reference values for relative V̇O2peak.
Note: SHIP (cycle ergometry-based): 95%, 50% and 5% percentiles plotted; [34]; FRIEND (cycle
ergometry-based) 50% percentile plotted (the study did not provide 5% and 95% percentiles) [31]);
Prevention First (cycle ergometry-based) 95%, 50% and 5% percentiles plotted.

5.2 Study population and representativity

Study population and data acquisition

Several reference values for peak oxygen uptake have been published using different study

designs and populations [50, 30, 31, 53]. In the rating system of the systematic review

by Paap & Takken (2014) [50], four items dealt with study design and sampling. The

authors assigned one point each for i) community-based sampling (27/35 of the reviewed

studies, 77%), ii) including a randomization process (1/35 of the reviewed studies, 3%),

iii) a large sample size with uniform distribution of age and sex (2/35 of the reviewed
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studies, 6%), as well as iv) a prospective study design (23/35 of the reviewed studies,

66%). The present study was based on register data, and no population-based sampling

process was conducted to select the participants of the study. The numbers of women

(n = 3,291) were lower compared to men (n = 6,063) and the distribution of age showed

low numbers of cases in marginal age groups (figs. A.1 and A.2). This effect of sparse

age groups was less prevalent in population-based studies. In the underlying training

dataset (Frankfurt/Rüdesheim), only nine women were observed in the age class 25 to 29

years. In the study of Koch et al. (2009) [34] the age class with the least number of cases

was the class of women above 75 years. 23 participants were recorded in this class. In

other well-designed population-based studies, the observations were also rather uniformly

distributed over the age groups [17, 26]. Furthermore, the problem of sparsity in marginal

age groups is smaller in recent register-based studies [30, 31]. Due to the relatively low

number of cases in marginal age groups, estimations for these groups were less precise

in the present study. This was represented by wide confidence intervals at both ends of

the regression curves (figs. 4.3 and 4.4). However, age groups from 30 to 64 years showed

higher numbers of observations compared to most other studies leading to more precise

estimations and narrow confidence intervals. The reference values for these age groups

are particularly precise compared to other studies.

Reference population

When the data collection in studies was not based on a population-based sampling, it is

important to know the general setup of the data acquisition. For this reason, an outline

is provided to explain why CPET was performed in the first place. The reference values

are not appropriate for an individual when the reference population is distinctly differ-

ent from the individual’s population. This becomes particularly obvious when reference

values of the present study are compared with data from Kaminski et al. (2015, 2017)

[30, 31] or long-established reference values from Wasserman (cited by [70]). The par-

ticipants of Kaminski et al. conducted CPET prior to exercise programmes or research

studies, and Wasserman et al. acquired former shipyard workers. Both populations were

different from the sample of the underlying study which was primarily composed of Ger-

man workers with a predominantly sedentary working environment. Men at the age of

45 years had a median relative V̇O2peak of 35.8 mLO2/min/kg in the present study (ta-

ble 4.6∗), 27.1 mLO2/min/kg in the study of Kaminski et al. (2015) [30] and a mean of

34.0 mLO2/min/kg† for a male at 180 cm and ideal weight using Wasserman’s equation

[70]. Reference values from Wasserman were higher compared to Kaminski et al. The rea-

son for this might be that shipyard workers had a physically active working environment.

∗RelativeV̇O2peak = (0.355 ∗ 45years) + (−0.0075 ∗ 45years ∗ 45years) + 35.04 = 35.8mLO2/min/kg

†Ideal weight = 0.79 ∗ 180cm − 60.7 = 81.5kg
Peak V̇O2 = 0.0337∗180cm−0.000165∗45years∗180cm−1.963+0.006∗(81.5kg−81.5kg) = 2.77LO2/min

RelativeV̇O2peak = 2.77∗1000
81.5kg

= 34.0mLO2/min/kg, see [70, p. 158]
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In Kaminski et al., the participants conducted CPET prior to exercise programmes. This

may suggest that there was an indication for exercise prescriptions to counteract sedentary

lifestyles or other risk factors such as smoking or obesity. Furthermore, there were more

than 20 years between the data collection of both reference values, and both Kaminski’s

and Wasserman’s reference values were based on a US-American sample, which might

impact the results. As the present study was based on German workers with a primarily

sedentary working environment, distinct differences from the reference values mentioned

above were observed. Hence, reference values based on US-American samples should be

applied with caution to German participants.

Representativity

The sample of the present study was compared to ’Studie zur Gesundheit Erwachsener in

Deutschland (DEGS1)’ [19], which was based on a population-based sampling process and

was representative for the German population. Five binary characteristics were selected

that were published in DEGS1 and were measured equally in the underlying data. All five

characteristics can be characterised as cardiovascular risk factors. DEGS1 results were

age-standardised using the German population of 2011 as standard [38, 43, 48] and the

presented results were standardised according to DEGS1 (section 3.4). Men and women

showed significant differences from DEGS1 results (table 4.4). In men, 3/5 characteristics

were significantly different in the present study compared to DEGS1. Smoking, over-

weight and obese participants were less prevalent in the present study. In women, 4/5

characteristics were significantly different, and only ex-smokers did not differ significantly.

The differences were particularly large in regard to obesity, where 23.9% of the women

in DEGS1 but only 12.1% in the underlying data met the criterion. A large difference

was also present in the smoking status of men. 26.1% of men in DEGS1 were smok-

ers but only 14.7% of the underlying data. The risk factors were less prevalent in the

present study compared to DEGS1. This might indicate selection bias. It is likely that

the present study sample consisted of persons with a particularly healthy lifestyle. The

reason for this could be that the participation in the workplace health promotion pro-

grammes was voluntary and persons who participated were more prone to live a healthy

lifestyle. The presented reference values might be assumed to be higher compared to the

German population and also probably higher than in the population of German workers

with a sedentary working environment because it is likely that there was a selection of

particularly healthy participants.

Koch et al. (2009) [34] published reference values using a population-based sampling but

assumed that selection bias was present in their study, nevertheless. This would also have

led to higher reference values compared to the whole population. 45-year-old women had

a median relative V̇O2peak of 29.0 mLO2/min/kg in the present study (table 4.6∗) and

∗RelativeV̇O2peak = (−0.131566 ∗ 45years) + (−0.002043 ∗ 45years ∗ 45years) + 39.085612 =
29.0mLO2/min/kg
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26.4 mLO2/min/kg∗ in the SHIP study by Koch et al. However, it has to be noted that

age was modelled in 10-year age classes by Koch et al. Another reason for the differences

was that smokers and obese subjects were excluded by Koch et al. As peak oxygen

uptake is associated with smoking status and obesity, the exclusion of such participants

was likely to increase the reference values. However, reference values by Koch et al. were

slightly lower, overall. This might be due to a more severe selection of study subjects in

the present study or also regional differences. Koch et al. collected the data in north-

eastern Germany, the present study in regions of southern Germany. The time between

publication by Koch et al. (2009) and the present study was not assumed to have a strong

impact as data collection at Prevention First® started in 2001.

Itoh et al. (2013) [26] produced reference values based on a Japanese population. Com-

pared to the present study, 45-year-old women showed an even higher V̇O2peak of 31.3

mLO2/min/kg†. However, this study performed even more rigorous exclusion than Koch

et al. [34]. In summary, the results of the present study were more comparable to the

results based on the German population [34], rather than the US-American or Japanese

reference values [31, 70]. Reference values from different nations and settings showed

large differences. This has to be considered when reference values are used to interpret

the V̇O2peak of a CPET participant.

Exclusion criteria

The exclusion criteria were different in past studies, and there is no clear guideline regard-

ing which participants should be excluded or not. Paap & Takken (2014) suggested to

exclude smokers and obese participants as these cases do not represent a healthy popula-

tion. However, if this rationale is used, participants with other conditions such as arterial

hypertension or dyslipoproteinemia should also be excluded. This leads to an artificial

study population and is likely to increase the reference values because healthy persons

probably have a higher V̇O2peak. Some of the past studies performed rigorous exclusion of

smokers, obese individuals and such with other risk factors [34, 50]. Itoh et al. (2013) [26]

also excluded individuals with abnormal blood pressure at rest and those who exercised

more than twice a week or were not 145 to 190 cm tall. Other studies [30, 31] did not

provide information on how they treated smokers and obese subjects.

The present study did not exclude individuals with risk factors from the sample for the

primary results. However, subgroup analyses were performed with exclusion of smokers

and obese subjects (supplementary tables and figures, [49]). As expected, reference val-

ues were slightly higher when smokers were excluded (section 5.1). However, by keeping

participants with risk factors in the sample, this study aimed to represent the entire Ger-

∗RelativeV̇O2peak = 47.7565 + (−0.9880 ∗ 3) + (−0.2356 ∗ 3 ∗ 3) + (−8.8697 ∗ 2) + (2.3597 ∗ 0) + (−2.0308 ∗
3 ∗ 0) + (−3.7405 ∗ 2 ∗ 0) + (0.2512 ∗ 3 ∗ 2) + (1.3797 ∗ 3 ∗ 2 ∗ 0) = 26.4mLO2/min/kg, where women were
coded as 2, age group of 45 to 54 as 3 and BMI ≥ as 0 [34].

†RelativeV̇O2peak = 61.06+ (−0.510 ∗ 45years) + (−20.4 ∗ 1) + (0.301 ∗ 1 ∗ 45years) = 31.3mLO2/min/kg
(29 mLO2/min/kg in the present study), where female was coded as 1 [26].
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man population. This might increase the generalisability of the present reference values

for the German population. Furthermore, interactive subgroup analyses are possible at

www.uks.eu/vo2peak.

Further population information

As mentioned above, differences in peak oxygen uptake between countries were observed.

Furthermore, it is valuable to report the level of physical activity of the study population.

In the systematic review by Paap & Takken (2014) [50], physical activity was reported by

20/35 (57%) of the reviewed studies. Itoh (2013) [26], for example, excluded participants

who stated that they exercised more than twice a week. Edvardsen et al. (2013) [17]

recorded physical activity using activity accelerometers and questionnaires. In the present

study, no information on physical activity level was recorded, which is why the level of

physical activity of the present sample remained unknown.

Paap & Takken (2014) [50] emphasised that the ethnicity of the sample should be de-

scribed. Few past studies have provided information on the ethnic composition of their

sample or have taken this information into account by stratification or exclusion of sub-

jects. Caucasian, Japanese and Scandinavian populations were mostly used as reference

population. According to Paap & Takken, Asian, Middle-Eastern, African and South-

American populations have been underrepresented so far. The underlying data for the

present study did not provide information on ethnicity but it can be assumed that largely

Caucasian subjects were recorded.

To sum up, the present registry-based study provided one of the largest study samples in

its field. Most of the participants were white-collar workers with a primarily sedentary

working environment. As in other registry-based studies and also in population-based

studies, it can be assumed that a selection of particularly healthy participants was present.

Compared to other studies, the present reference values were relatively high. Furthermore,

there was no exclusion of participants with cardiovascular risk factors, but an exclusion

can be performed interactively by using the online web application (www.uks.eu/vo2peak)

or by using the appropriate nomograms from the subgroup analyses (supplementary tables

and figures, [49]).

5.3 Exercise test modalities

Some CPET test modalities such as the choice of ergometer (cycle or treadmill) and the

time of termination of CPET have a substantial impact on the V̇O2peak. The CPET

modalities of the present study and the impact on the test results are summarised below.
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Type of ergometer

Most exercise test protocols are based on an incremental work rate (section 2.3). The most

common devices for conducting test protocols are cycle ergometers or treadmills. However,

the choice of ergometer type has a strong impact on the V̇O2peak, which is measured in the

exercise test. The differences between cycle ergometry-based and treadmill-based V̇O2peak

can be observed by comparing the studies of Kaminski et al. (2015 and 2017) [30, 31].

Both studies were based on the same registry (Fitness Registry and the Importance of

Exercise National Database, “FRIEND”) but used either cycle ergometers or treadmills to

assess V̇O2peak. 35-year-old men showed a median relative V̇O2peak of 42.4 mLO2/min/kg

using treadmill ergometer [30] and 30.1 mLO2/min/kg using cycle ergometer [31]. This

difference is even stronger than the difference between sexes and also considerably higher

than the 5 to 10% increase stated by ATA/ACCP guidelines [1, p. 218]. Medians in 35-

year-old women were 30.2 mLO2/min/kg using treadmill and 21.6 mLO2/min/kg using

cycle ergometer. A similar effect was observed by Itoh et al. (2013) [26]. The relative

V̇O2peak for a 35-year old man using treadmill and cycle ergometer was expected to be

43.2 mLO2/min/kg∗ and 32.7 mLO2/min/kg†, respectively. In 35-year-old women, the

expected values for treadmill and cycle ergometers were 33.4 mLO2/min/kg‡ and 28.3

mLO2/min/kg§. In the present study, the type of ergometer was not recorded in the

entire dataset. Prevention First® provided both options - cycle or treadmill ergometer -

but it was assumed that all tests that were recorded for the present study were performed

using cycle ergometer. To validate this assumption, the type of ergometer was recorded

retrospectively in the random sample of 252 observations. 249/249 tests were recorded

using cycle ergometer, and in three tests, no information on the type of ergometer has

been recorded. This provided further evidence that exclusively cycle ergometers were

used in this study. However, this information is based on a random sample and was not

recorded for the entire dataset. If tests using treadmill ergometers were present, it would

be likely that the presented reference values were falsely high.

Measures of maximal effort

Another CPET test modality that impacts the measured V̇O2peak is the time of termi-

nation of the exercise test. Ideally, the participant has to perform until the true peak

volitional work rate is achieved to capture a V̇O2peak that is close to the true peak vo-

litional oxygen uptake. However, this is dependent on the participant’s motivation and

effort. To assess the participants’ effort, several techniques were suggested: i) the rela-

tionship between increasing work rate and increasing oxygen uptake could be considered

∗RelativeV̇O2peak = 61.07 + (−0.510 ∗ 35) + (−20.4 ∗ 0) + (0.301 ∗ 0 ∗ 35) = 43.2mLO2/min/kg

†RelativeV̇O2peak = 42.05 + (−0.268 ∗ 35) + (−7.22 ∗ 0) + (0.0811 ∗ 0 ∗ 35) = 32.7mLO2/min/kg

‡RelativeV̇O2peak = 61.07 + (−0.510 ∗ 35) + (−20.4 ∗ 1) + (0.301 ∗ 1 ∗ 35) = 33.4mLO2/min/kg

§RelativeV̇O2peak = 42.05 + (−0.268 ∗ 35) + (−7.22 ∗ 1) + (0.0811 ∗ 1 ∗ 35) = 28.3mLO2/min/kg [26]

71



5.3. EXERCISE TEST MODALITIES 5. Discussion

(section 2.3). If a levelling-off (that is, smaller increases of oxygen uptake per increase

of work) appears, the recorded V̇O2 can be assumed to be close to the true physiological

peak oxygen uptake. This relationship was not used extensively in past studies as a V̇O2

increase of ≤ 150 mLO2/min is rarely observed [59]. Other measures of the participant’s

effort were used more frequently including ii) respiratory exchange ratio (RER = V̇CO2

V̇O2
),

iii) capillary lactate levels and iv) maximal heart rate. An RER of ≥ 1.1, capillary lactate

levels of ≥ 8 mmol/L or heart rate of ≥ 90% of the age-predicted maximal heart (APMHR)

rate should be achieved [59, 45] to ascertain adequate effort. The criteria for maximal

effort were different in past studies. For example, Kaminsky et al. used an RER of ≥

1.1 for CPET using cycle ergometers [31] and RER of ≥ 1.0 for CPET using treadmill

ergometers. Itoh et al. (2013) [26] defined RER of < 1.0 as poor effort.

In most prospectively-designed studies, participants with poor effort were excluded from

the sample and were not used for calculation of reference values. In the present study, the

measures of maximal effort were not recorded in the entire database but were acquired

manually for the random sample (section 4.4). Measures of good exertion were defined

as mentioned above (RER ≥ 1.1 or capillary lactate levels ≥ 8 mmol/L or maximal heart

rate ≥ 90% of APMHR). 97% (95% CI 94% to 99%) of the participants in the random

sample showed adequate effort. However, as measures of effort were not recorded in

the database, participants with poor effort could not be excluded from the analysis.

Therefore an estimated 3% of the exercise tests were not valid. Assuming that patients

with poor effort showed lower V̇O2 at the time of termination, the here presented reference

values were reduced by keeping these participants in the sample. To see if this effect

was present in the random sample, median regressions were calculated in the random

sample for i) inclusion and ii) exclusion of subjects with poor effort. Furthermore, a

multivariable median regression including a binary predictor variable for exertion (yes/no)

and an interaction term (age∗exertion) was calculated to see if the effect was significant.

However, regression lines did not show a large deviation in the sample (fig. 4.11) and

exertion, as well as interaction terms in men, were not significant (table 4.9). In women,

only three observations with poor effort were available leading to imprecise regression

estimates. To conclude, it can be stated that the numbers of invalid exercise test results

were low in the present study. Based on the random sample, it is likely that the effect on

the presented reference values of those tests was low.

Exercise test protocol

In incremental exercise tests, the work rate is low at the beginning and increases over time.

There are plenty of protocols for incremental exercise tests including ramp protocols or

multistage protocols (section 2.3). In past studies, mostly one single protocol was used

throughout the data acquisition. Itoh et al. (2013) [26] used ramp protocols and different

increments of work per time. They described that work rate at peak exercise was higher

if the increments were higher. However, there was no impact of the different increments
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on the assessed V̇O2peak. This finding is similar to earlier studies which did not find an

association between protocol and peak oxygen uptake [6, 47]. In the present study, the

type of exercise test protocol was not recorded in the entire database but was assessed

retrospectively in the random sample. Multistage protocols (130/243 times) were used

more often compared to ramp protocols (113/243 times). However, based on the litera-

ture, it can be assumed that there is no substantial effect of the exercise test protocol on

the measured value of V̇O2peak.

To conclude, it can be stated that the test modalities were not recorded in the entire study

dataset and had to be estimated based on a random sample. The choice of ergometer has

a substantial impact on reference values. In the random sample, all exercise tests were

performed using cycle ergometer. Participants with poor effort remained in the dataset

and contributed to the reference values. However, as there was an estimated proportion

of 97% participants with adequate effort, the impact of this shortcoming was low.

Table 5.1: Quality assessment of the measurement of V̇O2peak.

Characteristic Value

Study design
- Prospective design 0
- Proper randomization 0
- Community-based sampling of the study population 0
- The number of study subjects is at least as high as calculated in sample size estimation 1

Characteristics of the exercise tests
- Measurement of gas exchange data and VO2peak is averaged over time to avoid noise
(preferably ≥ 30 seconds intervals)

0

- CPET was performed using breath-by-breath or mixing chamber analysis according to
ATS/ACCP guidelines

1

- Quality control was performed according to ATS/ACCP guidelines 1
Important background reported

- Level of physical activity reported 0
- Exercise testing protocol described 1

Data analysis and reporting
- External validation of the statistical model 1
- Adequate fitting of the regression model was performed 1
- Analysis was done stratified by racial group 0
- Smokers were excluded 1
- Confidence limits were given for descriptive statistics 1

Sum 8/14

Note: This rating score was modified according to Paap & Takken (2014) [50]. The overall quality
score of the present study’s measurement was 8/14. The quality of measurement can therefore be
rated as “medium quality” (section 2.4).

5.4 Statistical methods

Modelling maximal oxygen uptake

Past studies of reference values for V̇O2peak used different statistical approaches. The

most common choices were i) to use age as categorical variable and to calculate empirical
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quantiles within each age class [53, 30, 31] or ii) to perform linear regression with age as

predictor variable [26, 17]. iii) Koch et al. [34] used second-degree polynomial quantile

regression. Further well-accepted reference values which are, however, not related with

V̇O2peak are the WHO’s nomograms for child growth. The authors of these reference

values used spline smoothing [75].

Those four approaches were also considered for the present analysis. However, it was

decided that some approaches were less adequate for reference values. First, linear re-

gression would not be sufficient to represent the distribution of V̇O2peak for a given age

because only the conditional mean would be estimated and the large variation of CRF

due to physical activity and interpersonal factors would not be represented. Secondly,

in order to calculate quantiles, age had to be measured in age classes and could not be

treated as a continuous variable. Past studies often treated age as a categorical variable

using ten-year age classes [30, 31, 34, 53]. In the present study, substantial differences

were observed within a 10-year age class. For women, median relative V̇O2peak was 27.4

mLO2/min/kg∗ and 24.2 mLO2/min/kg† for 50 and 59 years, respectively. This leads

to a difference of 3.2 mLO2/min/kg, which is approximately equivalent to the difference

between median and 0.7 quantile in women of that age group the present study.

As the approaches mentioned above would have yielded a large imprecision, this study

estimated quantiles based on age as a continuous predictor. To achieve this, quantile

regression was selected. The decision of how to treat age as a predictor (linear, polynomial

or using spline smoothing) was based on AIC as well as apparent and external validation.

Linear quantile regression performed worst and was hence excluded. The most accurate

regression fits were observed for spline regression. However, this study used polynomial

quantile regression instead of spline models because polynomial quantile regression models

are less complex than spline models. The number of regression coefficients was equal in

all quantile regressions of this study. Therefore, it was possible to display the regression

coefficients in tables (section 4.3).

Validation of reference values

Paap & Takken (2014) [50] suggested to do external validation of reference values for

V̇O2peak. However, none of the reviewed studies since 2010 conducted validation of the

reference values in an external population.

The present study aimed to perform external validation by splitting the dataset by study

centre. Data from Rüdesheim and Frankfurt were used as training data and data from

Munich were used as external validation data. Validation was performed as i) apparent

validation using the training data to fit regression models and also for validation and ii)

external validation using the training data to fit regression models and external validation

data for validation.

∗RelativeV̇O2peak = (−0.131566 ∗ 50) + (−0.002043 ∗ 50 ∗ 50) + 39.085612 = 27.4mLO2/min/kg

†RelativeV̇O2peak = (−0.131566 ∗ 59) + (−0.002043 ∗ 59 ∗ 59) + 39.085612 = 24.2mLO2/min/kg, table 4.6
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Validation according to established approaches was not possible for several reasons. This

should be outlined based on the example of validation of a linear regression model. In

linear regression, the conditional mean of the continuous dependent variable y is estimated

as the expected value (e.g. the best prediction) for an individual i conditional to the values

in a set of predictor variables of that individual i. Validation can easily be performed

using the predicted value ŷi and the observed value yi to plot a scatter plot. In this

calibration data of ŷi and yi, a linear regression can be performed and coefficients for

the intercept close to 0 and for the slope close to 1 are desirable. This technique applies

to apparent as well as external validation using the training data or external validation

data to obtain yi, respectively. In the present study, however, it was not desired to

get the best prediction of V̇O2peak for an individual but to derive quantiles based on

age as a continuous predictor. As quantiles could not be calculated for an individual,

aggregated empirical data had to be used. Therefore, the observed age was aggregated

into age classes. To be able to compare the predicted quantiles with aggregated empirical

quantiles, age has also been aggregated as the predictor in quantile regression models to

obtain estimated quantiles. This aggregarion was only done for model validation but not

for the calculation of nomograms and reference values. Therefore, there was a limitation

of not using the same models in nomograms and for model validation. The true validity,

hence, could only be estimated based on this approach.

This validation process showed that the regression models fitted the empirical data well.

As expected, better validity was observed in apparent validation compared to external

validation. In men aged 25 to 29 years, the predicted V̇O2peak was higher than the

observed V̇O2peak. This was observed in apparent and external validation. However,

this age group was sparse, including only 22 observations (figs. 4.7 and 4.8). Regression

coefficients also showed adequate validity with most intercepts close to zero and slope as

well as R squared close to one. A larger deviation from ideal values was observed for

V̇O2peak of men. Here, intercept was 5.9 (95% CI 1.4 to 9.9), slope 0.8 (95% CI 0.7 to

1.0) and R squared 0.9 (95% CI 0.9 to 1.0). Significant differences from intercept = 0 and

slope = 1 were especially observed in men. All coefficients of men in apparent validation

showed significant differences from the ideal coefficients. Apparent validation of women,

on the other hand, showed accurate results. In external validation, the results were more

accurate in men but less accurate in women.

Nevertheless, although there were significant differences in calibration plots, the regres-

sion fits seemed quite accurate, especially in the age classes from 30 to 64 years (figs. 4.7

to 4.10). The approach for model validation of the present study can assumed to be

particularly rigorous and might be accountable for some of the deviation from optimal

values. As mentioned above, observed quantiles were based on V̇O2peak which was cal-

culated within age classes. However, the numbers of observations in age classes were

different across the age classes. The age classes 25 to 29 years and 65 to 69 years were

relatively sparse. The estimation of quantiles was less precise in these age classes. There-

fore, the differences between predicted and observed values were relatively large. As each
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age class weighted the same in the calibration plot, regardless of the number of cases

within the age class, the presented validation underestimated the validity of the present

quantile regressions.

To sum up, apparent as well as external validation were rarely performed in past stud-

ies in this field. Still, validation adds some valuable information on how adequate and

valid reference values are when they are compared to other individuals besides the study

population. The reference values presented by this study showed adequate regression fits

but also significant differences from optimal values in some cases. As different approaches

were used for the calculation of reference values and model validation, it was only possible

to get an estimation of how valid the presented quantile curves were.

Number of observations

For the development of reference values, high numbers of cases and a uniform distribution

over all age classes are desirable to achieve precise estimations and narrow confidence

intervals [50]. Overall, the present study was based on one of the largest datasets that

were reported in this field, so far. Using the search term from Paap & Takken et al.

(2014) [50] in the search engine Pubmed (https://www.ncbi.nlm.nih.gov/pubmed/) did

not yield any study with higher numbers at the time of preparation of this manuscript.

Only the sample of reference values by the Cooper Institute (cited by [53, p. 88]) was

larger. However, it has to be noted that the total number of cases in the present study

were large, but the cases were not uniformly distributed across the age classes. This led to

more precise estimations in age classes 30 to 64 years, but also to less precise estimations

in marginal classes (< 25 years and ≥ 65 years). The overlapping confidence intervals

visualised the less precise estimations in the nomograms (figs. 4.3 and 4.4).

5.5 Multivariable analyses

In addition to reference values, exploratory analyses were performed using multivariable

quantile regression for the quantiles 0.25, 0.5, and 0.75. AIC-based forward and backward

variable selection was used to select predictors for V̇O2peak. The goodness of fit, which was

assessed using pseudo R squared (section 3.6), showed high values of ≈90% for absolute

and lower values of ≈20% for relative V̇O2peak. This large deviation of R squared in

absolute or relative V̇O2peak was likely to be explained by the presence of the variable

“overweight” as an independent variable. Being overweight showed a strong positive

association in each regression where absolute V̇O2peak was used and a strong negative

association in each regression where relative V̇O2peak was used. This was likely due to the

fact that relative V̇O2peak was defined as absolute V̇O2peak relative to body weight∗. The

findings in the present study showed that V̇O2peak increases with body weight, that is, a

∗Absolute V̇O2peak measured in LO2/min
Relative V̇O2peak measured in mLO2/min/kg.
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heavier person is able to consume more oxygen. On the other hand, obese subjects seem

to have lower CRF relative to their body weight compared to non-obese subjects. This

effect has already been described by Edvardsen et al. (2013) [17]. It was the largest effect

over all predictors and was even stronger than the effect of tobacco smoking. In addition

to body weight, triglycerides and in some cases higher blood glucose levels or diabetes

mellitus were associated with lower peak oxygen uptake. HDL on the other hand, was

higher in men with a good CRF. However, this association was not present in women.

A comprehensive meta-analysis by Lin et al. (2015) [39] found associations between

physical activity, CRF and lipids as well as lipoprotein markers. The authors suggested

that physical activity increased CRF and HDL cholesterol and decreased triglycerides. In

this meta-analysis, physical activity led to decreased triglycerides by -5.3 mg/dL (95%

CI -10.6 to -0.9). Accordingly, in the present study men with triglycerides ≥ 150 mg/dL

showed a decreased median of relative V̇O2peak by -1.8 mLO2/min/kg (95% CI -2.2 to

-1.3) compared to men with lower triglyceride levels (table 4.10).

Another strong association with V̇O2peak was observed for tobacco smoking. Median

relative V̇O2peak in women was decreased by 1.3 mLO2/min/kg (95% CI 1.9 to 0.8, ta-

ble 4.11). This effect was even stronger in men (-2.0 mLO2/min/kg, 95% CI -2.5 to -1.5,

table 4.10) and was observed across all regression quantiles. Ex-smokers, on the other

hand, did not show significantly decreased CRF. However, there was no measure of how

long non-smoking had been sustained. Tobacco smoking has been widely considered in

past studies. Smokers were excluded from some analyses because they were assumed to

distort the results and because the samples were intended to represent a healthy popula-

tion [34, 26]. Therefore, smoking and obesity were considered in multivariable analyses

and in subgroup analyses of this study (www.uks.eu/vo2peak, supplementary tables and

figures [49]).

Diabetes mellitus was associated with lower V̇O2peak especially in men. This effect was

also well-described in past studies such as the meta-analysis by Zaccardi et al. (2015)

[77]. The hazard ratio to develop diabetes mellitus was 0.93 per 1-MET increase of CRF.

In contrast to this result, diabetes mellitus was used as an independent variable in the

present study. Men with diabetes showed a lower V̇O2peak (-2.0 mLO2/min/kg, 95% CI

-3.1 to -0.9). However, it was interesting to see that this association was not present in

women of the present study. This might be parcially due to the lower numbers of women

in the dataset but future studies might consider sex as effect modifier or report stratified

results.

Furthermore, as mentioned before, an inverse association of V̇O2peak and age was observed.

This association was well-described before [23, 50] and was present in this analysis even

when the effect was adjusted for other predictors.

A positive association was observed between V̇O2peak and body height. However, as body

height cannot be influenced, this result seemed to be of minor interest.

Weaker associations were observed for blood pressure and LDL cholesterol.

To conclude, explorative multivariable results yielded some strong inverse associations
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between V̇O2peak and body composition as well as tobacco smoking. Smaller effects were

observed for other blood lipids, hypertension and diabetes mellitus. Even though those

associations were based on explorative analyses, the results confirmed results from past

studies [39, 50].

5.6 Summary of strengths and limitations

This section summarises the strengths and limitations of the present study compared to

other studies.

One important strength was the large amount of data, which included a sample size of

more than 9,000 individuals. Based on this data, precise reference values could be calcu-

lated, especially for age groups from 30 to 64 years. Secondly, the data analysis was done

using age as a continuous predictor and using quantile regression to plot nomograms for a

number of quantiles. The nomograms were desired to be helpful in clinical practice when

the results of CPET are interpreted. Thirdly, in contrast to past studies, validation of

the reference values was performed in an external population in order to get information

on the external validity of the reference values. The validity was shown to be adequate.

Finally, CPET was performed by experienced exercise test instructors of a quality net-

work for primary preventive health screening institutions. Finally, an interactive web

application was created to facilitate the usage of the reference values in clinical practice

(www.uks.eu/vo2peak).

On the other hand, the present study also showed some limitations. Firstly, the numbers

of observations were low in the age classes of < 30 years and ≥ 64 years. Reference values

for those ages were less precise. Furthermore, the study population was not drawn by a

prospective population-based sampling process including a randomisation process. There

were also large differences from the German population, indicating a selection of healthy

participants. The quality of the data acquisition according to Paap & Takken (2014) [50]

was only “moderate” (table 5.1) and the exercise test modalities were not documented in

the main data file. Therefore, a small proportion of participants who did not continue the

exercise test until exertion remained in the data. Another limitation was the validation

of regression models as it was performed in the present study. The approach of using

quantile regressions necessitated aggregation of the data, and therefore, age was treated

as a continuous predictor for reference values and as a categorical predictor for model

validation.
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The present study provides reference values for peak oxygen uptake. They can be used

for participants of cycle ergometry-based cardiopulmonary exercise tests who are 25 to

69 years old and who are part of a population that is similar to this study.

Reference values are essential for cardiopulmonary exercise testing because they allow the

classification of individual results based on the reference population. It is only possible

to classify the individual cardiorespiratory fitness as “high” or “low” if the result is com-

pared with sex-specific and age-specific reference values from a comparable population.

If the cardiorespiratory fitness of a person is low compared to other persons of the same

sex and age, this person has an increased risk to die prematurely. From a public health

perspective, it is therefore particularly valuable to increase the cardiorespiratory fitness

of the population. Preventive health screenings are an appropriate setting to achieve this

goal. However, it is essential that physicians consider cardiorespiratory fitness as a risk

factor in addition to well-known risk factors such as tobacco smoking or arterial hyper-

tension.

The present study adds important value to this field. The study population yielded one

of the most extensive samples that has been published so far. The participants of this

study were predominantly German workers with a sedentary lifestyle. A large proportion

of the populations of industrialised countries have similar working environments.

This study aimed to facilitate the interpretation and access of the presented reference val-

ues by constructing nomograms and an interactive web application (www.uks.eu/vo2peak).

Depending on which population is desired as the reference population, subgroup analyses

can be performed interactively. Furthermore, this study allows physicians to evaluate the

cardiorespiratory fitness of an exercise test participant precisely. Past studies often have

used 10-year age classes or linear regression, but these approaches yielded substantial

imprecision. This study presents the reference values as percentile values, which is an

accurate representation of the inter-individual variability.

The evaluation of the validity and the generalisability is crucial for the interpretation of

reference values. External validation was suggested by Paap & Takken (2014) [50], but

the validity and the representativity were rarely assessed in previous studies. Although

these two analyses revealed some shortcomings of the present sample, they are valuable

for the interpretation of the presented reference values. It is important to keep in mind

that this sample was probably a selection of healthy participants. This might have led
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to optimistic reference values. Hence, the cardiorespiratory fitness of an exercise test

participant who is compared with the present reference values might be evaluated too

pessimistically. This has to be considered by the exercise test instructor.

It is important that reference values for cardiorespiratory fitness are presented and up-

dated regularly. Further accurate studies are needed to create valid and generalisable

reference values. These studies should aim to evaluate the generalisability and to perform

external validation.
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7 Statistical code

7.1 Web application

7.1.1 ui.R

library(shiny)

library(shinythemes)

# Define UI for application that draws a histogram

shinyUI(fluidPage(theme = shinytheme("sandstone"),

# Application title

titlePanel(h1("Peak oxygen uptake calculator for cycle ergometry")),

navbarPage(id="selectedTab",

"",

# how to put the title on top and the panels below?

# br() # does not work!

###############################################################

# First NavbarPanel

###############################################################

tabPanel(

"Quantile reference values",

# Math equations

withMathJax(),

# Sidebar with a slider input for number of bins

sidebarLayout(

sidebarPanel(

###############################################################

# Main

###############################################################

wellPanel(

selectInput("gender", "Your gender",

choices = c("Male", "Female")),

sliderInput("age", "Your age",

min = 25, max = 69, value = 40, step = 1),

uiOutput("slider"),

selectInput("relabs", "Absolute or relative \\(\\dot{\\text{V}}\\text{O}_{\\text{2peak}}\\)",
choices = c("Relative", "Absolute")),

helpText("Units:", br(),

"Absolute: [mL*min\\(ˆ{\\text{-1}}\\)]", br(),

"Relative: [mL*min\\(ˆ{\\text{-1}}\\)*kg\\(ˆ{\\text{-1}}\\)]")

), # end of well panel

###############################################################

# Display further options

###############################################################

wellPanel(

h3("Further options"),

checkboxInput("opts_ci", "Display confidence intervals", F),

checkboxInput("opts_ex", "Exclude smokers and obese participants from reference values", F),

checkboxInput("opts_tab", "Display regression coefficients", F)

)# end of well panel

),

# Show a plot of the generated distribution
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mainPanel(

h4("Your percentile"),

textOutput("txt"),

plotOutput("nomo", height="700"),

conditionalPanel(

condition = "input.opts_tab == true",

h4("Regression coefficients"),

tabPanel("coefficients", tableOutput("ConditionalTable"))

)

)# End of mainPanel

)# End of this sidebarLayout

),# End of this tabPanel

###############################################################

# Second NavbarPanel

###############################################################

tabPanel(withMathJax("Estimate \\(\\dot{\\text{V}}\\text{O}_{\\text{2peak}}\\)"),

sidebarLayout(

sidebarPanel(

sliderInput("wgt", "Your body weight (kilograms)",

min = 50, max = 125, value = 75, step = 1),

sliderInput("wtt", "Your maximal work rate (watts)",

min = 90, max = 350, value = 200, step = 5)

),# End of SidebarPanel

mainPanel(

wellPanel(

h3("Estimated \\(\\dot{\\text{V}}\\text{O}_{\\text{2peak}}\\)"),
tableOutput("vo2.tab"),

helpText("Units:", br(),

"Absolute: [mL*min\\(ˆ{\\text{-1}}\\)]", br(),

"Relative: [mL*min\\(ˆ{\\text{-1}}\\)*kg\\(ˆ{\\text{-1}}\\)]")
),# End of well panel

wellPanel(

h3("Rationale"),

p("If no gas exchange measurement was conducted during cardiopulmonary exercise testing,

\\(\\dot{\\text{V}}\\text{O}_{\\text{2peak}}\\)
can be estimated based on maximal work rate from incremental exercise tests and body weight.")

)# End of well panel

)# End of mainPanel

)# End of sidebarLayout

),# End of tabPanel2

###############################################################

# Third NavbarPanel

###############################################################

tabPanel("About",

mainPanel(

wellPanel(

h3("Quantile reference values for cycle ergometry"),br(),

p("Quantile reference values have been derived from a sample of 10,090 German white-collar workers who were recorded to the

'Prevention Fitst Registry'. For further information please check [1].")

),# End of well panel

wellPanel(

h3("Estimation of \\(\\dot{\\text{V}}\\text{O}_{\\text{2peak}}\\)"),br(),
p("For estimation we used the ACSM equation [2]:"),br(),

p("\\(\\text{Estimated} \\ \\dot{\\text{V}}\\text{O}_{\\text{2peak}} = (10.8*\\text{W}*\\text{M}ˆ{-1}) + 7\\)"),
helpText("W = maximal work rate in incremental cycle ergometry measured in watts", br(),

"M = body mass in kilograms")

), # End of well panel

wellPanel(

h3("References"),br(),

tableOutput("tab.ref")
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)# End of well panel

)# End of mainPanel

)# End of tabPanel3

)# End of this navbarPage

)# End of fluidPage

)# End of Ui

7.1.2 server.R

library(shiny)

# Define server logic required to draw a histogram

shinyServer(function(input, output) {

###############################################################

# VO2max slider

###############################################################

# Make dynamic slider for absolute/relative VO2max

output$slider <- renderUI({
sliderInput("inSlider", "Your result from exercise test using cycle ergometry",

min = ifelse(input$relabs == "Relative", 11, 0.9),

max = ifelse(input$relabs == "Relative", 61, 5),

value = ifelse(input$relabs == "Relative", 30, 2.7),

step = ifelse(input$relabs == "Relative", 1 , 0.1))

})

###############################################################

# Text Output

###############################################################

output$txt <- renderText({

# quantiles

q_m_abs <- read.csv("./www/quantiles/q_m_abs.csv")

q_f_abs <- read.csv("./www/quantiles/q_f_abs.csv")

q_m_rel <- read.csv("./www/quantiles/q_m_rel.csv")

q_f_rel <- read.csv("./www/quantiles/q_f_rel.csv")

q_m_ex_abs <- read.csv("./www/quantiles/q_m_ex_abs.csv")

q_f_ex_abs <- read.csv("./www/quantiles/q_f_ex_abs.csv")

q_m_ex_rel <- read.csv("./www/quantiles/q_m_ex_rel.csv")

q_f_ex_rel <- read.csv("./www/quantiles/q_f_ex_rel.csv")

if(input$gender == "Male" & input$relabs == "Relative" & input$opts_ex == F) mat <- q_m_rel

if(input$gender == "Female" & input$relabs == "Relative" & input$opts_ex == F) mat <- q_f_rel

if(input$gender == "Male" & input$relabs == "Absolute" & input$opts_ex == F) mat <- q_m_abs

if(input$gender == "Female" & input$relabs == "Absolute" & input$opts_ex == F) mat <- q_f_abs

if(input$gender == "Male" & input$relabs == "Relative" & input$opts_ex == T) mat <- q_m_ex_rel

if(input$gender == "Female" & input$relabs == "Relative" & input$opts_ex == T) mat <- q_f_ex_rel

if(input$gender == "Male" & input$relabs == "Absolute" & input$opts_ex == T) mat <- q_m_ex_abs

if(input$gender == "Female" & input$relabs == "Absolute" & input$opts_ex == T) mat <- q_f_ex_abs

# confidence intervals

ci_m_abs <- read.csv("./www/ci_for_quantiles/ci_m_abs.csv")

ci_f_abs <- read.csv("./www/ci_for_quantiles/ci_f_abs.csv")

ci_m_rel <- read.csv("./www/ci_for_quantiles/ci_m_rel.csv")

ci_f_rel <- read.csv("./www/ci_for_quantiles/ci_f_rel.csv")

ci_m_ex_abs <- read.csv("./www/ci_for_quantiles/ci_m_ex_abs.csv")

ci_f_ex_abs <- read.csv("./www/ci_for_quantiles/ci_f_ex_abs.csv")

ci_m_ex_rel <- read.csv("./www/ci_for_quantiles/ci_m_ex_rel.csv")

ci_f_ex_rel <- read.csv("./www/ci_for_quantiles/ci_f_ex_rel.csv")

if(input$gender == "Male" & input$relabs == "Relative" & input$opts_ex == F) ci <- ci_m_rel

if(input$gender == "Female" & input$relabs == "Relative" & input$opts_ex == F) ci <- ci_f_rel

if(input$gender == "Male" & input$relabs == "Absolute" & input$opts_ex == F) ci <- ci_m_abs

if(input$gender == "Female" & input$relabs == "Absolute" & input$opts_ex == F) ci <- ci_f_abs
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if(input$gender == "Male" & input$relabs == "Relative" & input$opts_ex == T) ci <- ci_m_ex_rel

if(input$gender == "Female" & input$relabs == "Relative" & input$opts_ex == T) ci <- ci_f_ex_rel

if(input$gender == "Male" & input$relabs == "Absolute" & input$opts_ex == T) ci <- ci_m_ex_abs

if(input$gender == "Female" & input$relabs == "Absolute" & input$opts_ex == T) ci <- ci_f_ex_abs

# x and y coordinates of matrices

mat_x <- which(input$age == 25:69) + 1

if(input$relabs == "Relative") mat_y <- which(input$inSlider == 11:61)

if(input$relabs == "Absolute") mat_y <- which(input$inSlider == seq(from = 0.9, to = 5, by = 0.1))

# confidence intervals reactive to checkbox

if(input$opts_ci == F){ci_txt <- ""} else {ci_txt <- paste("(95% CI ", ci[mat_y,mat_x], ")", sep = "")}

t <- paste(mat[mat_y,mat_x]*100, "% ", ci_txt, " of the reference population had a lower peak oxygen uptake than you.", sep = "")

})

###############################################################

# NOMOGRAM default plot

###############################################################

output$nomo <- renderPlot({

req(input$inSlider)

# Reading data

m_abs_all <- read.csv("./www/m_abs_all.csv")

m_abs_ex <- read.csv("./www/m_abs_ex.csv")

m_rel_all <- read.csv("./www/m_rel_all.csv")

m_rel_ex <- read.csv("./www/m_rel_ex.csv")

f_abs_all <- read.csv("./www/f_abs_all.csv")

f_abs_ex <- read.csv("./www/f_abs_ex.csv")

f_rel_all <- read.csv("./www/f_rel_all.csv")

f_rel_ex <- read.csv("./www/f_rel_ex.csv")

# colours

col <- c("dodgerblue","dodgerblue1","tomato3","dodgerblue2","dodgerblue3", "dodgerblue4",

"tomato3",

"dodgerblue4", "dodgerblue3", "tomato3", "dodgerblue2", "dodgerblue1", "dodgerblue")

# function for fitting of ggplots

library(ggplot2)

library(directlabels)

# function for fitting of ggplots

plt <- function(dat, sex, ymin, ymax, rel = T, ci = F){

# y-label

if(rel == T){
# y label

ylb <- expression("Relative"˜dot("V")˜O["2peak"]˜"[mL*min"ˆ{-1}*"*kg"ˆ{-1}*"]")
# y breaks by 1

ybr <- 1

# digits 0

ymin <- round(ymin, digits = 0)

}
if(rel == F){

# y label

ylb <- expression(dot("V")˜O["2peak"]˜"[L*min"ˆ{-1}*"]")
# y breaks by 0.1

ybr <- 0.1

# digits 2

ymin <- round(ymin, digits = 1)

}

lmt <- c(ymin, ymax)

brk <- seq(from = ymin, to = ymax, by = ybr)

ggp <- ggplot(data = dat, aes(x = ALTER, y = fit)) +

# defining background of ggplot

theme(panel.grid.major = element_line(colour = "grey30", linetype = "dotted"),

panel.background = element_rect(fill = "white"),

axis.text.x = element_text(angle = 90, vjust=0.5, size=14),
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axis.text.y = element_text(size=14),

plot.title = element_text(hjust = 0.5, size = 14, face = "bold"),

axis.title = element_text(size=14,face="bold")) +

scale_x_continuous(limits = c(25,69),

breaks = seq(from = 25, to = 69, by = 1))+

scale_y_continuous(limits = lmt,

breaks = brk) +

labs(x = "Age",

y = ylb,

title = sex) +

geom_vline(xintercept = c(30, 40, 50, 60),

colour = "gray25",

size = 0.6)

# adding confidence bands

if(ci == T){
ggp <- ggp +

geom_ribbon(aes(x = ALTER, ymin = lower, ymax = higher, fill = percentile),

alpha = 0.3, inherit.aes = F, show.legend = F, na.rm = T) +

scale_fill_manual(values = col)

}

# adding quantile curves

ggp <- ggp +

geom_line(aes(x = ALTER, y = fit, colour = percentile),

show.legend = F, size = 1, na.rm = T) +

scale_color_manual(values = col)

ggp <- direct.label(ggp, list("last.polygons", colour = "white"))

return(ggp)

}# End of plt-function

# if else etatements to select adjacent plot

# strategy to avoid error "argument is of length zero":

# decisions...

# 1st: are there additional opts? --> no? --> data set "all"

# 2nd: additional opts but no exclusion? --> data set "all"

# 3rd: additional opts and exclusion? --> data set "ex"

if(input$opts_ex == F){

if(input$gender == "Male" & input$relabs == "Relative") ds <- m_rel_all

if(input$gender == "Female" & input$relabs == "Relative") ds <- f_rel_all

if(input$gender == "Male" & input$relabs == "Absolute") ds <- m_abs_all

if(input$gender == "Female" & input$relabs == "Absolute") ds <- f_abs_all

}

if(input$opts_ex == T){

if(input$gender == "Male" & input$relabs == "Relative") ds <- m_rel_ex

if(input$gender == "Female" & input$relabs == "Relative") ds <- f_rel_ex

if(input$gender == "Male" & input$relabs == "Absolute") ds <- m_abs_ex

if(input$gender == "Female" & input$relabs == "Absolute") ds <- f_abs_ex

}

# relative or absolute

if(input$relabs == "Relative") rel.true <- T

if(input$relabs == "Absolute") rel.true <- F

yc <- input$inSlider

ggplt <- plt(ds, input$gender, min(ds[,"lower"]), max(ds[,"higher"]), rel = rel.true, ci = input$opts_ci)

ggplt + geom_point(aes(x = input$age, y = yc), shape = 21, size = 5, colour = "black", fill = "red", stroke = 1)

})

###############################################################

# coefficient tables

###############################################################

output$ConditionalTable <- renderTable({

# Overall

if(input$opts_ex == F & input$gender == "Female" & input$relabs == "Absolute") ds1 <- read.csv("./www/tables/adff.csv")

if(input$opts_ex == F & input$gender == "Male" & input$relabs == "Absolute") ds1 <- read.csv("./www/tables/adfm.csv")
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if(input$opts_ex == F & input$gender == "Female" & input$relabs == "Relative") ds1 <- read.csv("./www/tables/rdff.csv")

if(input$opts_ex == F & input$gender == "Male" & input$relabs == "Relative") ds1 <- read.csv("./www/tables/rdfm.csv")

# Exclusion of smokers and obese

if(input$opts_ex == T & input$gender == "Female" & input$relabs == "Absolute") ds1 <- read.csv("./www/tables/exadff.csv")

if(input$opts_ex == T & input$gender == "Male" & input$relabs == "Absolute") ds1 <- read.csv("./www/tables/exadfm.csv")

if(input$opts_ex == T & input$gender == "Female" & input$relabs == "Relative") ds1 <- read.csv("./www/tables/exrdff.csv")

if(input$opts_ex == T & input$gender == "Male" & input$relabs == "Relative") ds1 <- read.csv("./www/tables/exrdfm.csv")

ds1

}, digits=7)

#output$ConditionalTable <- renderTable({

#if(input$opts_tab == F) data.frame()

#if(input$opts_tab == T) read.csv("./www/tables/adff.csv")

# read.csv("./www/tables/adff.csv")

#}, digits=7)

###############################################################

# Estimation of VO2max

###############################################################

output$vo2.tab <- renderTable({

# based on ACSM guidelines (Franklin, 2000)

in.thousend <- 10.8 * input$wtt + 7 * input$wgt

abs.vo2.est <- in.thousend / 1000

rel.vo2.est <- in.thousend / input$wgt

data.frame(Absolute = abs.vo2.est, Relative = rel.vo2.est)

})

###############################################################

# References

###############################################################

output$tab.ref <- renderTable({

data.frame(

number <- c("1","2"),

ref <- c("Rapp D, Scharhag J, Wagenpfeil S, Scholl J. Reference values for peak oxygen uptake: cross-sectional analysis of cycle ergometry-

based cardiopulmonary exercise tests of 10,090 adult German volunteers from the Prevention First Registry. BMJ Open. 2018 Mar 5;8(3):e018697.

doi: 10.1136/bmjopen-2017-018697",

"Franklin BA, Balady GJ, American College of Sports Medicine. ACSM's guidelines for exercise testing and prescription. 6. ed.

Philadelphia: Lippincott Williams & Wilkins 2000, ISBN: 978-0-7817-2735-8, p. 303.")

)

}, include.colnames = F)

})
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7.2 Calculations for web application

############################################################

# DATA AND PACKAGES

############################################################

library(quantreg)

library(parallel)

# data sets overall and exclusion af obese and smokers

df <- readRDS("./170525_n10090_bmj")

df <- df[,c("Geschlecht","ALTER", "REL_VO2_MAX", "VO2_MAX", "obese", "ZIGARETTEN")]

dfm <- subset(df, Geschlecht == "Male")

dff <- subset(df, Geschlecht == "Female")

dfm_ex <- subset(dfm, obese == "no" & ZIGARETTEN == "no")

dff_ex <- subset(dff, obese == "no" & ZIGARETTEN == "no")

# quantiles

taus <- seq(from = 0.01, to = 0.99, by = 0.01)

# range of REL vo2max (0.1 to 99.9 percentiles of data)

rvo <- seq(from = 11, to = 61, by = 1)

avo <- seq(from = 0.9, to = 5, by = 0.1)

# range of age

ag <- 25:69

rfrm <- as.formula("REL_VO2_MAX ˜ ALTER + I(ALTERˆ2)")

afrm <- as.formula("VO2_MAX ˜ ALTER + I(ALTERˆ2)")

nboot <- 10000

############################################################

# FUNCTIONS FOR MATRIX "QUANTILE"

############################################################

# equivalent to predict.rq

# predict.rq cannot be applied

# as 10,000*100 quantile regressions (coeficients, residuals etc) are stored in RAM (too large)

# this function is able to predict with only coefficients and not whole rq-object

predict_rq <- function(fit){

Intercept = fit[1,]

Slope1 = fit[2,]

Slope2 = fit[3,]

newdata = matrix(rep(25:69, 99),nrow = 45)

colnames(newdata) <- as.character(taus)

prd <- function(i) Intercept[i] + Slope1[i] * newdata[,i] + Slope2[i] * newdata[,i] * newdata[,i]

for(i in 1:99) newdata[,i] <- prd(i)

newdata <- as.data.frame(newdata)

newdata$ALTER <- 25:69 # adding ALTER

return(newdata)

}

# which predicted value from which tau is the closest for given age and vo2max?

# CAVE: data set has to be called pred!

q.check.fun <- function(age, vo2){

sset <- subset(pred, ALTER == age)

sset <- sset[,!(names(sset)) == "ALTER"] # drop ALTER

row <- which.min(abs(vo2 - sset))

return(names(row))

}

# INNER FUNCTION

# for a given age: taus are calculated for each vo2max

q.inner <- function(x) {
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col <- lapply(vo, function(y) q.check.fun(age = x, vo2 = y))

col <- do.call(data.frame, col)

col <- t(col)

row.names(col) <- vo

return(col)

}

# OUTER FUNCTION

q.outer <- function() {

matrix <- lapply(ag, q.inner)

matrix <- do.call(data.frame, matrix)

colnames(matrix) <- as.character(ag)

row.names(matrix) <- as.character(vo)

return(matrix)

}

## FUNCTION OVERALL

#fit <- rq(frm, data = in_data, tau = taus)$coefficients

#pred <- predict_rq(fit)

#res <- q.outer()

## FUNCTION CALLS

t1 <- Sys.time()

#####

## relvo2max

#####

frm <- rfrm

vo <- rvo

# MALES

fit <- rq(frm, data = dfm, tau = taus)$coefficients

pred <- predict_rq(fit)

q_m_rel <- q.outer()

write.csv(q_m_rel, "q_m_rel.csv")

fit <- rq(frm, data = dfm_ex, tau = taus)$coefficients

pred <- predict_rq(fit)

q_m_ex_rel<- q.outer()

write.csv(q_m_ex_rel, "q_m_ex_rel.csv")

# FEMALES

fit <- rq(frm, data = dff, tau = taus)$coefficients

pred <- predict_rq(fit)

q_f_rel <- q.outer()

write.csv(q_f_rel , "q_f_rel.csv")

fit <- rq(frm, data = dff_ex, tau = taus)$coefficients

pred <- predict_rq(fit)

q_f_ex_rel<- q.outer()

write.csv(q_f_ex_rel , "q_f_ex_rel.csv")

#####

## absvo2max

#####

frm <- afrm

vo <- avo

# MALES

fit <- rq(frm, data = dfm, tau = taus)$coefficients

pred <- predict_rq(fit)

q_m_abs <- q.outer()

write.csv(q_m_abs , "q_m_abs.csv")

fit <- rq(frm, data = dfm_ex, tau = taus)$coefficients

pred <- predict_rq(fit)

q_m_ex_abs<- q.outer()

write.csv(q_m_ex_abs, "q_m_ex_abs.csv")

# FEMALES

fit <- rq(frm, data = dff, tau = taus)$coefficients

pred <- predict_rq(fit)
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q_f_abs <- q.outer()

write.csv(q_f_abs, "q_f_abs.csv")

fit <- rq(frm, data = dff_ex, tau = taus)$coefficients

pred <- predict_rq(fit)

q_f_ex_abs<- q.outer()

write.csv(q_f_ex_abs, "q_f_ex_abs.csv")

t2 <- Sys.time()

t2-t1 # time spent

############################################################

# BOOTSTRAP FUNCTIONS

############################################################

# function to calculate 10,000 bootstrap samples

# output are 10,000 rq coefficients!

boot_all <- function(dat){

cl <- makeCluster(mc <- getOption("cl.cores", parallel::detectCores()-1))

clusterEvalQ(cl,library(quantreg))

clusterExport(cl,varlist = c("taus", "dfm","dff","dfm_ex", "dff_ex", "frm"))

# creating bootstrap sample (replace = T)

gen_sample <- function() dat[sample(nrow(dat), replace = T),]

l1 <- parLapply(cl,1:nboot, function(z) rq(frm, data = gen_sample(), tau = taus)$coefficients )

stopCluster(cl)

return(l1)

}

# predicted values for all quantile regressions and all ages

# input must be called l

pred_all <- function() {

l1 <- lapply(1:nboot, function(z) {

d <- predict_rq(l[[z]])

return(d)

})

return(l1)

}

# function for checking out nearest tau of quantile regression

# list must be called l1

check.fun <- function(age, vo2){

l2 <- lapply(l1, function(x) subset(as.data.frame(x), ALTER == age)[,as.character(taus)])

qtl <- lapply(l2, function(x) {

col <- which.min(abs(x - vo2))

qtl <- as.numeric(names(col))

return(qtl)

})# End of lapply

qtl1 <- t(do.call(data.frame,qtl))

lo <- round(quantile(qtl1, probs = c(0.025))*100, digits = 0)

hi <- round(quantile(qtl1, probs = c(0.975))*100, digits = 0)

ci <- paste0(lo, "% to ", hi, "%")

return(ci)

}

# apply check.fun to all achieved vo2_max (inner function) and all ages (outer function)

# INNER FUNCTION

inner <- function(x) {

col <- lapply(vo, function(y) check.fun(age = x, vo2 = y))

col <- do.call(data.frame, col)

col <- t(col)

row.names(col) <- vo

return(col)
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}

# OUTER FUNCTION

outer <- function() {
cl <- makeCluster(mc <- getOption("cl.cores", parallel::detectCores()-1))

clusterExport(cl=cl, varlist=c("vo", "ag", "l1", "inner", "check.fun", "taus"))

clusterCall(cl, function() library("quantreg"))

ci_matrix <- parLapply(cl, ag, inner)

stopCluster(cl)

ci_matrix <- do.call(data.frame, ci_matrix)

colnames(ci_matrix) <- as.character(ag)

row.names(ci_matrix) <- as.character(vo)

return(ci_matrix)

}

## FUNCTION OVERALL

#l <- boot_all(dat_input)

#l1 <- pred_all()

#res <- outer()

## FUNCTION CALLS

#####

## relvo2max

#####

frm <- rfrm

vo <- rvo

# MALES

l <- boot_all(dfm)

l1 <- pred_all()

ci_m_rel <- outer()

write.csv(ci_m_rel, "ci_m_rel.csv")

l <- boot_all(dfm_ex)

l1 <- pred_all()

ci_m_ex_rel <- outer()

write.csv(ci_m_ex_rel, "ci_m_ex_rel.csv")

# FEMALES

l <- boot_all(dff)

l1 <- pred_all()

ci_f_rel <- outer()

write.csv(ci_f_rel, "ci_f_rel.csv")

l <- boot_all(dff_ex)

l1 <- pred_all()

ci_f_ex_rel <- outer()

write.csv(ci_f_ex_rel, "ci_f_ex_rel.csv")

#####

## absvo2max

#####

frm <- afrm

vo <- avo

# MALES

l <- boot_all(dfm)

l1 <- pred_all()

ci_m_abs <- outer()

write.csv(ci_m_abs, "ci_m_abs.csv")

l <- boot_all(dfm_ex)

l1 <- pred_all()

ci_m_ex_abs <- outer()

write.csv(ci_m_ex_abs, "ci_m_ex_abs.csv")

# FEMALES

l <- boot_all(dff)

l1 <- pred_all()

ci_f_abs <- outer()

write.csv(ci_f_abs, "ci_f_abs.csv")

l <- boot_all(dff_ex)
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l1 <- pred_all()

ci_f_ex_abs <- outer()

write.csv(ci_f_ex_abs, "ci_f_ex_abs.csv")

# END

7.3 Statistical code

7.3.1 Specifications

# loading packages

library(Hmisc)

library(compareGroups)

library(boot)

library(quantreg)

library(grid)

library(gridExtra)

library(xtable)

library(psych)

library(e1071)

library(reshape2)

library(plyr)

library(dplyr)

library(epitools)

library(directlabels)

library(splines)

# quantiles

TAUS <- c(0.05,0.1,0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.75,0.8,0.9,0.95)

# defining numer of bootstrap samples

NBOOT <- 10000

# labels for plots

REL_LAB <- expression("Relative"˜dot("V")*O["2peak"]˜"[mL"*O["2"]*"/min/kg"*"]")

ABS_LAB <- expression("Absolute"˜dot("V")*O["2peak"]˜"[L"*O["2"]*"/min"*"]")

# function for saving plots

SAVE.PLOT <- function(PLOT, FILE.NAME, HEIGHT, WIDTH){

# path

P1 <- paste0("./results/fig/", FILE.NAME)

# format

png(filename = P1,

units = "in",

width = WIDTH,

height = HEIGHT,

res = 300)

plot(PLOT)

dev.off()

}

7.3.2 Data

##################################################

# reading data

##################################################

# reading full data

df <- read.table(

"./data/160301_Originaldaten.csv",

header = T, sep = ";", dec = ",")
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# adding missing data

df2 <- read.table(

"./data/missings161020.csv",

header = T, dec = ",", sep = ";")

##################################################

# Calculating new variables

##################################################

# renaming id

names(df)[which(names(df) == "Ã¯..ID")] <- "id"

names(df2)[which(names(df2) == "Ã¯..ID")] <- "id"

# adding missing data

df_miss <- subset(df, id %in% df2$id)

df_miss <- df_miss[order(df_miss$id),]

df2 <- df2[order(df2$id),]

df_miss$ALTER <- df2$ALTER # adding age from df2

df_miss$REL_VO2_MAX <- df2$REL_VO2_MAX # adding rel VO2 from df2

df_miss$VO2_MAX <- df2$VO2_MAX # adding abs VO2 from df2

df_nomiss <- subset(df, !(df$id %in% df2$id))

df <- rbind(df_miss, df_nomiss)

# define date variable

df$datum <- as.Date(df$DATUM, "%d.%m.%Y")

df <- df[order(df$datum),]

df$DATUM <- NULL

# recode binary variables with -1 / 0

# defining relevant variables

vars <- c("ZIGARETTEN","EXRAUCHER")

# function for changing -1 to 1

f <- function(x){
ifelse(x == -1, 1 , x)}

# apply function to all relevant variables

df[, vars] <- sapply(df[, vars], f)

# computing vars

# diabetes, hypertension, overweight, obesity

df$MANIFEST_DM <- ifelse(df$BLUTZUCKER >= 126 | df$HBA1C >= 6.5, 1, 0)

df$BLUTHOCHDRUCK_WHO <- ifelse(df$SYST >= 140 | df$DIAST >= 90, 1, 0)

df$BMI_GE_25 <- ifelse(df$BMI >= 25, 1, 0)

df$obese <- ifelse(df$BMI >= 30, 1, 0)

##################################################

# adding study center

##################################################

sto <- read.csv("./data/160810_standort.csv")

df <- merge(df, sto, by = "id", all.x = T)

df$standort <- factor(df$standort,

levels = c("F", "M"),

labels = c("Frankfurt/Ruedesheim", "Munich"))

##################################################

# Implausible cases

##################################################

# Function for assinging NA to implausible cases

f <- function(var, mi = min(df[var]), ma = max(df[var])){
d <- ifelse(df[var] > ma | df[var] <= mi, NA, df[[var]])

d <- as.vector(d)

return(d)

}

df$ALTER <- f("ALTER", 15, 100)

df$KOERPERFETT_TANITA <- f("KOERPERFETT_TANITA", 0, 100)

df$KOERPERFETT_CALIPER <- f("KOERPERFETT_CALIPER", 0, 100)

df$SYST <- f("SYST", 50, 400)

df$DIAST <- f("DIAST", 30, 200)

df$VO2_MAX <- f("VO2_MAX", 0, 7)

df$REL_VO2_MAX <- f("REL_VO2_MAX", 0, 100)

df$GESAMTCHOLESTERIN <- f("GESAMTCHOLESTERIN", 0, 600)

df$HDL_CHOLESTERIN <- f("HDL_CHOLESTERIN", 10, 150)

df$TRIGLYCERIDE <- f("TRIGLYCERIDE", 0, 2000)

df$HBA1C <- f("HBA1C", 0, 100)
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# implausible dates

df <- df[order(df$datum), ]

df$datum[df$datum < as.Date("2000-01-01")] <- NA

# defining factor variables in df

f <- function(var){
out <- factor(df[,var], levels = c(0,1), labels = c("no", "yes"))

}

df$Geschlecht <- factor(df$Geschlecht,

levels = c(0,1),

labels = c("Men", "Women"))

df$BMI_GE_25 <- f("BMI_GE_25")

df$obese <- f("obese")

df$ZIGARETTEN <- f("ZIGARETTEN")

df$EXRAUCHER <- f("EXRAUCHER")

df$MANIFEST_DM <- f("MANIFEST_DM")

df$BLUTHOCHDRUCK_WHO <- f("BLUTHOCHDRUCK_WHO")

# create variable ex smoker

df$EXRAUCHER[which(df$ZIGARETTEN == "yes")] <- "no"

df$EXRAUCHER[which(df$ZIGARETTEN == "no" & is.na(df$EXRAUCHER))] <- "no"

# add variable age group

df$ageclass <-cut(df$ALTER,

breaks = c(25,30,35,40,45,50,55,60,65,69),

include.lowest = TRUE, include.highest = F, right = F)

# creating numerical age class used as linear predictor in regression (validation)

df$ageclass_double <- as.double(df$ageclass)

##################################################

# cleaning data

##################################################

keeps <- c("id", "Geschlecht", "ALTER",

"GEWICHT", "GROESSE",

"BMI", "BAUCHUMFANG", "KOERPERFETT_CALIPER", "KOERPERFETT_TANITA",

"SYST", "DIAST",

"VO2_MAX", "REL_VO2_MAX", "MAX_LEISTUNG",

"GESAMTCHOLESTERIN","HDL_CHOLESTERIN","LDL_CHOLESTERIN", "TRIGLYCERIDE",

"ZIGARETTEN", "EXRAUCHER",

"MANIFEST_DM", "BLUTHOCHDRUCK_WHO", "BMI_GE_25", "obese",

"ageclass", "ageclass_double",

"BLUTZUCKER", "HBA1C", "datum", "standort")

df <- df[,which(names(df) %in% keeps)]

##################################################

# Adding Hmisc variable labels

##################################################

label(df$Geschlecht) <- "Sex"

label(df$ALTER) <- "Age [years]"

label(df$ageclass) <- "Age class"

label(df$REL_VO2_MAX) <- "Relative $\\dot{V}O_{2peak}$ [$\\unitfrac{mL}{min*kg}$]"
label(df$VO2_MAX) <- "Absolute $\\dot{V}O_{2peak}$ [$\\unitfrac{L}{min}$]"
label(df$GEWICHT) <- "Weight [kg]"

label(df$GROESSE) <- "Height [cm]"

label(df$BMI) <- "BMI [$\\unitfrac{kg}{mˆ2}$]"
label(df$KOERPERFETT_CALIPER) <- "Body fat Caliper [\\%]"
label(df$BMI_GE_25) <- "Overweight"

label(df$obese) <- "Obese"

label(df$SYST) <- "Systolic [mmHg]"

label(df$DIAST) <- "Diastolic [mmHg]"

label(df$BLUTHOCHDRUCK_WHO) <- "Hypertension"

label(df$BLUTZUCKER) <- "Blood glucose [$\\unitfrac{mg}{dl}$]"
label(df$HBA1C) <- "$HbA1_c$ [\\%]"
label(df$MANIFEST_DM) <- "Diabetes mellitus"

label(df$GESAMTCHOLESTERIN) <- "Total cholesterol [$\\unitfrac{mg}{dl}$]"
label(df$HDL_CHOLESTERIN) <- "HDL Cholesterol [$\\unitfrac{mg}{dl}$]"
label(df$LDL_CHOLESTERIN) <- "LDL Cholesterol [$\\unitfrac{mg}{dl}$]"
label(df$TRIGLYCERIDE) <- "Triglycerides [$\\unitfrac{mg}{dl}$]"
label(df$ZIGARETTEN) <- "Smoker"

label(df$EXRAUCHER) <- "Ex smoker"

label(df$standort) <- "Study center"
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7.3.3 Random sample

##################################################

# draw random sample

##################################################

set.seed(1)

spl<-df[sample(nrow(df),252),]

##################################################

# compare full data vs. sample

##################################################

# df for comparison of df and spl

spl$spl <- 1

df_no_spl <- subset(df, !(df$id %in% spl$id))

df_no_spl$spl <- 0

test_spl <- rbind(df_no_spl, spl)

test_spl$spl <- factor(test_spl$spl,

levels = c(0,1),

labels = c("Full data", "Random sample"))

# defining quatitative and categorical variables

qvars<-c("ALTER","REL_VO2_MAX","VO2_MAX", "GEWICHT","GROESSE","BMI")

cvars<-c("Geschlecht","ZIGARETTEN","BMI_GE_25", "standort")

# creating formula

frm <- as.formula(paste0("spl ˜", paste(c(qvars, cvars), collapse = " + ")))

# creating bivariate table for sample vs. full data

tab <- compareGroups(frm , data = test_spl, method = 2)

tab <- createTable(tab)

export2latex(tab)

##################################################

# reading file with manually added information

##################################################

# read sample Ruedesheim and create two data sets

# sr: only sample characteristics

# sf: merged with original data

# (without excluded cases as random IDs were drawn prior to exclusion)

sr <- read.csv("./data/sample_Rued_ergaenzt_160622.csv",

sep=";", dec=",", header=T)

sr <- merge(sr, df, by.x = "ID", by.y = "id", all.x = T)

##################################################

# measures of exertion

##################################################

# calculating age-predicted maximal heart rate (APMHR, pmid: 11153730)

# the criterion for maximal effort is 90% of APMHR (pmid: 18027991)

sr$th_hr_max <- (208 - 0.7 * sr$ALTER) * 0.9

# measure of exertion: lac>8 OR RER >1.1 OR HR >90% of APMHR

sr$lac_ge8 <- ifelse(sr$Laktat >= 8,1,0)

sr$rer_ge1 <- ifelse(sr$RER >= 1.1,1,0)

sr$hr_ge <- ifelse(sr$HF.max >= sr$th_hr_max,1,0)

# specifying rows where lac, rer and hr are all NA

sr$na <- rowSums(is.na(cbind(sr$rer_ge1,sr$lac_ge8,sr$hr_ge)))

sr$Ex <- rowSums(cbind(sr$lac_ge8,sr$rer_ge1,sr$hr_ge),na.rm=T)

sr$Ex <- ifelse(sr$na == 3, NA, sr$Ex)

sr$Exertion <- ifelse(sr$Ex >=1,1,sr$Ex)

# Bootstrapped 95% confidence intervals for proportions

SAMPLE.PROPORTION <- function(x, d) {
z = sum(x[d]==1, na.rm = T)

n = sum(x[d]==0, na.rm = T)

p = z/(z+n)

return(p)

}

# function to list N(%) [95% CI] of exertion

EXERTION <- function(SUBGROUP = ""){

x <- sr[SUBGROUP, "Exertion"]

YES <- sum(x == 1, na.rm = T)
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NO <- sum(x == 0, na.rm = T)

N <- paste0(YES, "/", YES + NO)

PERCENT <- round((YES / (YES + NO))*100, digits = 0)

set.seed(1)

b <- boot(x, SAMPLE.PROPORTION, R = NBOOT)

CI <- paste(round(quantile(b$t, probs = c(0.025, 0.975))*100, digits = 0))

return(paste0(N, " (", PERCENT, "%)", " [", CI[1], "% to ", CI[2], "%]"))

}

# overall, males, females

EXERTION(sr$sex == "m" | sr$sex == "w")

EXERTION(sr$sex == "m")

EXERTION(sr$sex == "w")

##################################################

# does inclusion of cases with exertion == "no" change results?

##################################################

sr$Exertion <- factor(sr$Exertion, levels = c(0, 1), labels = c("no", "yes"))

# checking visually using scatter plots

# producing scatter plot with two regression lines:

# 1) all cases of the sample 2) only cases with Exertion == "yes"

# for males and females / absolute and relative vo2max (fig 4.13)

SC.PLOT <- function(SEX = "m", OUTCOME, XLAB, YLAB, TITLE = ""){

DAT <- subset(sr, sex == SEX)

DAT.NOEX <- subset(DAT, Exertion == "yes")

FRM <- as.formula(paste(OUTCOME, "˜ ALTER"))

FIT <- rq(FRM, data = DAT, tau = 0.5)$coefficients

FIT.NOEX <- rq(FRM, data = DAT.NOEX, tau = 0.5)$coefficients

gp <- ggplot(data = DAT, aes_string(x = "ALTER", y = OUTCOME, colour = "Exertion")) +

geom_point(na.rm = T) +

geom_abline(intercept = FIT[1], slope = FIT[2]) +

geom_abline(intercept = FIT.NOEX[1], slope = FIT.NOEX[2], lty = 2) +

scale_x_continuous(limits = c(25,69), breaks = seq(from = 25, to = 69, by = 5)) +

scale_y_continuous(limits = c(min(DAT[,OUTCOME]), max(DAT[,OUTCOME]))) +

labs(x = XLAB, y = YLAB, title = TITLE) +

theme(plot.title = element_text(hjust = 0.5), legend.position="none")

return(gp)

}

SAVE.PLOT(

PLOT = grid.arrange(

SC.PLOT("m", "REL_VO2_MAX", "", REL_LAB, "Men"),

SC.PLOT("w", "REL_VO2_MAX", "", "", "Women"),

SC.PLOT("m", "VO2_MAX", "Age [years]", ABS_LAB, ""),

SC.PLOT("w", "VO2_MAX", "Age [years]", "", ""),

ncol = 2),

"sample.png", 7, 7

)

# function to create an xtable with ANCOVA- results

# Question: does Exertion significantly alter Results?

# Median regression:

# DV = VO2peak

# IV = ALTER + Exertion (yes/no) + interaction term ALTER * Exertion

ANCOVA <- function(dat = srf, outcome = "REL_VO2_MAX"){

# 1) data without missings (avoid error by boot.rq)

dat <- dat[!is.na(dat[,outcome ]),]

dat <- dat[!is.na(dat[,"ALTER" ]),]

dat <- dat[!is.na(dat[,"Exertion"]),]

# 2) how many cases with "exertion = no"?

print(table(dat[,"Exertion"]))

# 2) extract variables

A <- dat[,"ALTER"]

E <- as.numeric(dat[, "Exertion"])

DV <- dat[, outcome]
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# 3) create formula

frm <- paste(outcome, "˜ A + E + I(A * E)")

frm <- as.formula(frm)

# 4) estimate for coefficient and bootstrapped P values

fit <- rq(frm, tau = 0.5, data = dat)

estpv <- summary(fit, se = "boot")$coefficients

est <- estpv[,1]

pval <- estpv[,4]

# 5) bootstrapped confidence intervals

set.seed(1)

fit.b <- boot.rq(cbind(1, A, E, I(A * E)), DV, tau = 0.5, R = NBOOT)

ci <- t(apply(fit.b$B, 2, quantile, c(0.025,0.975)))

# 6) cbind to create a table

tab <- cbind(est, ci, pval)

tab <- as.data.frame(tab)

row.names(tab) <- c("Intercept", "Age", "Exertion(yes)", "Age * Exertion(yes)")

print(xtable(tab,digits=c(2,2,2,2,3)), include.rownames = T)

}

ANCOVA(dat = subset(sr, sex == "m"), outcome = "REL_VO2_MAX")

ANCOVA(dat = subset(sr, sex == "m"), outcome = "VO2_MAX")

ANCOVA(dat = subset(sr, sex == "w"), outcome = "REL_VO2_MAX")

ANCOVA(dat = subset(sr, sex == "w"), outcome = "VO2_MAX")

## PLAUSIBILITY CHECK:

## visualise the regression lines for exertion = yes/no seperately

#pdat <- data.frame(age = seq(from = 20, to = 80))

#pdat$pred_exertion <- 18.27 + (0.11*pdat$age) + (5.85*2) + (-0.07*2*pdat$age)

#pdat$pred_no_exertion <- 18.27 + (0.11*pdat$age) + (5.85*1) + (-0.07*1*pdat$age)

#ggplot() +

# geom_point(aes(x = ALTER, y = REL_VO2_MAX), data = srf, na.rm = T) +

# geom_line(aes(x = age, y = pred_exertion), data = pdat, colour = "red") +

# geom_line(aes(x = age, y = pred_no_exertion), data = pdat, colour = "blue")

7.3.4 Descriptive statistics

##################################################

# Numbers of cases for flow chart

##################################################

# function for counting non-missings

n <- function(x) sum(!is.na(x))

ex <- function(x) sum(is.na(x))

# crude n

nrow(df)

table(df$Geschlecht)

# excluded cases due to missing values

ex(df$REL_VO2_MAX | df$VO2_MAX)

ex(df[!is.na(df$REL_VO2_MAX), "standort"])

ex(df[!is.na(df$REL_VO2_MAX) &

!is.na(df$standort),"ALTER"])

# n after exclusion

n(df[!is.na(df$REL_VO2_MAX) &

!is.na(df$standort) &

!is.na(df$ALTER),"REL_VO2_MAX"])

tapply(df[!is.na(df$REL_VO2_MAX) &

!is.na(df$standort) &

!is.na(df$ALTER), "REL_VO2_MAX"],

df[!is.na(df$REL_VO2_MAX) &

!is.na(df$standort) &

!is.na(df$ALTER), "Geschlecht"], n)

# exclusion of age>=70 or <25

ex(df[!is.na(df$REL_VO2_MAX) &
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!is.na(df$standort) &

!is.na(df$ALTER), "ageclass"])

n(df[!is.na(df$REL_VO2_MAX) &

!is.na(df$standort) &

!is.na(df$ALTER) &

!is.na(df$ageclass),"REL_VO2_MAX"])

# Selective dropout analysis

df$dropout <- ifelse(

is.na(df$REL_VO2_MAX) |

is.na(df$standort) |

is.na(df$ALTER) |

is.na(df$ageclass),

1,0

)

# defining quatitative and categorical variables

qvars<-c("REL_VO2_MAX","VO2_MAX","ALTER", "GEWICHT","GROESSE","BMI")

cvars<-c("Geschlecht","ZIGARETTEN","BMI_GE_25", "standort")

# creating formula

frm <- as.formula(paste0("dropout ˜", paste(c(qvars, cvars), collapse = " + ")))

# creating bivariate table for sample vs. full data

tab <- compareGroups(frm , data = df, method = 2)

tab <- createTable(tab)

export2latex(tab)

# exclude cases

df <- df[df$dropout == 0,]

tapply(df$VO2_MAX,df$Geschlecht,n)

# split data by location

df_FR <- subset(df, standort == "Frankfurt/Ruedesheim")

df_M <- subset(df, standort == "Munich")

# split data by sex

dfm <- subset(df, Geschlecht == "Men")

dff <- subset(df, Geschlecht == "Women")

# split data by sex and location

dfm_FR <- subset(df_FR, Geschlecht == "Men")

dff_FR <- subset(df_FR, Geschlecht == "Women")

dfm_M <- subset(df_M, Geschlecht == "Men")

dff_M <- subset(df_M, Geschlecht == "Women")

##################################################

# Date and location

##################################################

SAVE.PLOT(

# density function of date of examination

ggplot(df, aes(x = datum, colour = Geschlecht)) +

stat_bin(data=subset(df,Geschlecht=="Men"),aes(y=cumsum(..count..)),geom="step", na.rm = T)+

stat_bin(data=subset(df,Geschlecht=="Women"),aes(y=cumsum(..count..)),geom="step", na.rm = T)+

scale_x_date(breaks = seq(as.Date("2001-01-01"), as.Date("2015-12-31"), by="2 years"), date_labels = "%Y") +

scale_y_continuous(breaks = seq(from = 0, to = 6000, by = 1000)) +

scale_colour_discrete(name ="Sex",

breaks=c("Women", "Men")) +

geom_vline(xintercept = as.Date("2001-01-01", "%Y-%m-%d"), colour = "grey60", size = 0.3 ) +

geom_vline(xintercept = as.Date("2015-12-31", "%Y-%m-%d"), colour = "grey60", size = 0.3 ) +

labs(y = "Cumulative number of participants", x = "Date")

, "time.png", 5, 5

)

##################################################

# Bivariate descriptive Table

##################################################

# bivariate desctiptive table

# exclude missing values from

# age, relative and absolute VO2peak

# use only subset of variables

vars <- c(
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# id, independent and dependent variables

"Geschlecht", "REL_VO2_MAX", "VO2_MAX", "ALTER", "ageclass",

# descriptive statistics and multivariable regression

"GEWICHT", "GROESSE", "BMI", "KOERPERFETT_CALIPER", "BMI_GE_25", "obese",

"SYST", "DIAST", "BLUTHOCHDRUCK_WHO", "BLUTZUCKER", "HBA1C", "MANIFEST_DM",

"GESAMTCHOLESTERIN", "HDL_CHOLESTERIN", "LDL_CHOLESTERIN", "TRIGLYCERIDE",

"ZIGARETTEN", "EXRAUCHER", "standort")

df1 <- df[, vars]

# description of full data

tab <- compareGroups(

Geschlecht ˜ .,

data = df1,

method = 2)

export2latex(createTable(tab),

header=c(p.overall='P value'),

caption = "Descriptive statistics by sex.")

# description of data for reference values

df1m <- subset(df1, Geschlecht == "Men")

df1f <- subset(df1, Geschlecht == "Women")

males <- compareGroups(

standort ˜ . -Geschlecht,

data = df1m,

method = 2)

females <- compareGroups(

standort ˜ . -Geschlecht,

data = df1f,

method = 2)

males <- createTable(males)

females <- createTable(females)

export2latex(cbind(Males = males, Females = females),

header=c(p.overall='P value'),

caption = "Descriptive statistics by sex and study center.")

##################################################

# Description of all variables in data set

##################################################

# description of all variables in original data set

# quantitative

qvars <- c(

# target variables

"ALTER" ,"REL_VO2_MAX", "VO2_MAX",

# other quantitative variables

"GEWICHT", "GROESSE", "BMI", "KOERPERFETT_CALIPER", "KOERPERFETT_TANITA", "BAUCHUMFANG",

"SYST", "DIAST", "BLUTZUCKER", "HBA1C",

"GESAMTCHOLESTERIN", "HDL_CHOLESTERIN", "LDL_CHOLESTERIN", "TRIGLYCERIDE")

qvars_labels <- c(

# target variables

"Age" , "Relative \n VO2peak", "Absolute \n VO2peak" ,

# other quantitative variables

"Weight", "Height", "BMI", "Body fat \n (Caliper)", "Body fat \n (Tanita)", "Waist \n circumference",

"Systolic", "Diastolic", "Blood \n glucose", "HbA1c",

"Total \n cholesterol", "HDL \n cholesterol", "LDL \n cholesterol", "Tri- \n glycerides")

# equations as labels in histograms

qvars_labels2 <- qvars_labels

qvars_labels2[2] <- expression("Relative"˜dot("V")*O["2peak"])

qvars_labels2[3] <- expression("Absolute"˜dot("V")*O["2peak"])

qvars_labels2[13] <- expression("HbA1"["c"])

# histograms for all qvars using labels

hst <- function(dat){

# empty list to save in

lst <- list()

for(i in qvars){
# calculate means, sd and the index of label
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m <- mean(dat[, i], na.rm = T)

s <- sd(dat[, i], na.rm = T)

num <- qvars_labels2[which(qvars %in% i)]

# plot

g <- ggplot(data = dat, aes_string(x = i)) +

geom_histogram(aes(y=..density..), color="black", bins = 15, na.rm= T) +

scale_x_continuous(limits = c(m - 3*s, m + 3*s)) +

stat_function(fun = dnorm, args = list(mean = m, sd = s), color = "red", na.rm = TRUE) +

labs(x="", y="") +

ggtitle(num)

# save plot in list

lst[[i]] <- g }

return(lst)

}

# Arranging all plots to one

# males

lst_m <- hst(dfm)

lst_m[[18]] <- blankPanel<-grid.rect(gp=gpar(col="white")) # adding white space

gm <- do.call(grid.arrange, c(lst_m, list(ncol = 6, top = "Men")))

SAVE.PLOT(gm, "histograms_male.png", 10,15)

# females

lst_f <- hst(dff)

lst_f[[18]] <- blankPanel<-grid.rect(gp=gpar(col="white")) # adding white space

gf <- do.call(grid.arrange, c(lst_f, list(ncol = 6, top = "Women")))

SAVE.PLOT(gf, "histograms_female.png", 10,15)

# correlation matrices (SPLOM)

png(height = 4500, width = 6000, pointsize = 20, res = 300,

file="./results/fig/corplot_males.png")

pairs.panels(

setNames(dfm[, qvars], qvars_labels),

pch = ".",

gap = 0,

method = "spearman",

density = F,

hist.col = "white",

rug = F)

dev.off()

png(height = 4500, width = 6000, pointsize = 20, res = 300,

file="./results/fig/corplot_females.png")

pairs.panels(

setNames(dff[, qvars], qvars_labels),

pch = ".",

gap = 0,

method = "spearman",

density = F,

hist.col = "white",

rug = F)

dev.off()

# defining quantile-based skewness (Hao, 2007: 14)

qsk <- function(x){
qsk_numerator <-

quantile(x, probs = 0.90, na.rm = T) -

quantile(x, probs = 0.5, na.rm = T)

qsk_denominator <-

quantile(x, probs = 0.5, na.rm = T) -

quantile(x, probs = 0.1, na.rm = T)

qsk <- (qsk_numerator / qsk_denominator) - 1

return(qsk)}

# Skewness and qsk for all quantitative variables

melted <- melt(df[, c(qvars, "Geschlecht")], id.vars = "Geschlecht")

grouped <- group_by(melted, Geschlecht, variable)

tab <- summarise(grouped, skewness = skewness(value, na.rm = T), qsk=qsk(value))

tab <- cbind(tab[tab$Geschlecht == "Men", 2:ncol(tab)],

tab[tab$Geschlecht == "Women", 3:ncol(tab)])
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print(xtable(tab), include.rownames = F)

##################################################

# Box plots Vo2 by age class

##################################################

# Function because BPLs are also needed for validation

PLT.BPL <- function(DAT, REL = T, LAB = REL_LAB){

# ageclass is needed as "factor"

DF1 <- ddply(DAT, c("ageclass", "Geschlecht"), transform, N = length(ageclass))

DF1$label <- paste0(DF1$ageclass, "\n" , "(n=",DF1$N,")")

# labels and axes

if(REL == T){
OUTCOME = "REL_VO2_MAX"

LMT = c(0,60)

BRK = seq(from=0,to=60,by=5)

}else{
OUTCOME = "VO2_MAX"

LMT = c(0,6)

BRK = seq(from = 0,to = 6,by = 0.5)

}

# absolute VO2peak

BPL <- ggplot(DF1, aes_string(x = "label", y = OUTCOME)) +

geom_boxplot(na.rm = T) +

scale_y_continuous(limits = LMT, breaks = BRK) +

facet_grid(.˜Geschlecht, scales = "free")+

labs(x = "",

y = LAB)

return(BPL)

}

SAVE.PLOT(grid.arrange(PLT.BPL(df, REL = F, LAB = ABS_LAB),

PLT.BPL(df, REL = T, LAB = REL_LAB),

ncol=1),

"bpl.png", 7, 10)

7.3.5 Representativity

# read standard population

sb <- read.table("./data/Altersverteilung_Zensus_2011.csv",

header = T, sep = ";", dec = ",")

sb$Men <- sb$Male

sb$Women <- sb$Female

sb$Male <- sb$Female <- NULL

# same age groups for standard population and PF sample

df$a.standard <- cut(df$ALTER,

breaks = c(25,30,35,40,45,50,55,60,65,69),

include.lowest = TRUE, include.highest = F, right = F)

sb$a.standard <- cut(sb$Alter,

breaks = c(25,30,35,40,45,50,55,60,65,69),

include.lowest = TRUE, include.highest = F, right = F)

# restricting census age groups to the margins of the present sample

sb <- subset(sb, !is.na(a.standard))

# aggregating standard population by age group

sb <- aggregate(cbind(Men, Women) ˜ a.standard, data = sb, sum)

# bootstrap function

ias <- function(dat, sex, var, b, standard = sb){

set.seed(1)

bt <- dat[b,]
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# variables

repvars <- c("ZIGARETTEN",

"EXRAUCHER",

"BMI_GE_25",

"obese",

"BLUTHOCHDRUCK_WHO")

# aggregating PF sample by age group

events <- aggregate(

x = bt[,repvars],

by = bt[,c("a.standard", "Geschlecht")],

function(x) sum(x=="yes", na.rm =T))

n_per_AG <- aggregate(

x = bt[,repvars],

by = bt[,c("a.standard","Geschlecht")],

function(x) sum(!is.na(x)))

e <- subset(events, Geschlecht == sex)

n <- subset(n_per_AG, Geschlecht == sex)

# event rate

er <- epitools::ageadjust.direct(

e[,var], n[,var], stdpop = standard[,sex])

return(er*100)

}

# function to execute bootstrap for sexes and variables

bt <- function(sx, vr){

b = boot::boot(

data = df,

sex = sx, var = vr, statistic = ias,

R = NBOOT

)

return(

c(b$t0[2],

quantile(b$t[,2], probs = c(0.025,0.975))

)

)

}

# Creating overall table

PF_MALE <- data.frame(

Smoker = bt("Men", "ZIGARETTEN"),

Former_Smoker = bt("Men", "EXRAUCHER"),

Overweight = bt("Men", "BMI_GE_25"),

Obesity = bt("Men", "obese"),

Hypertension = bt("Men", "BLUTHOCHDRUCK_WHO")

)

PF_FEMALE <- data.frame(

Smoker = bt("Women", "ZIGARETTEN"),

Former_Smoker = bt("Women", "EXRAUCHER"),

Overweight = bt("Women", "BMI_GE_25"),

Obesity = bt("Women", "obese"),

Hypertension = bt("Women", "BLUTHOCHDRUCK_WHO")

)

DEGS_MALE <- data.frame(

Smoker = c(26.1, 24.0, 28.2),

Former_Smoker = c(33.7, 31.9, 35.5),

Overweight = c(67.1, 65.0, 69.2),

Obesity = c(23.3, 21.2, 25.4),

Hypertension = c(33.3, 31.1, 35.6)

)

DEGS_FEMALE <- data.frame(
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Smoker = c(21.4, 19.7, 23.1),

Former_Smoker = c(22.8, 21.4, 24.2),

Overweight = c(53.0, 50.8, 55.1),

Obesity = c(23.9, 22.0, 25.9),

Hypertension = c(29.9, 28.1, 31.9)

)

TAB <- round(as.data.frame(cbind(

t(PF_MALE),

t(DEGS_MALE),

t(PF_FEMALE),

t(DEGS_FEMALE)

)), digits = 1)

LTAB <- cbind(

paste0(TAB[,1], " (", TAB[,2]," to ", TAB[,3], ")"),

paste0(TAB[,4], " (", TAB[,5]," to ", TAB[,6], ")"),

paste0(TAB[,7], " (", TAB[,8]," to ", TAB[,9], ")"),

paste0(TAB[,10], " (", TAB[,11]," to ", TAB[,12], ")")

)

LTAB <- as.data.frame(LTAB)

names(LTAB) <- c("PF_M", "DEGS_M", "PF_F", "DEGS_F")

row.names(LTAB) <- row.names(TAB)

# saving results as a list on hard drive

TAB_REPRESENTATIVITY <- list(

DATA = TAB,

LATEX = xtable(LTAB)

)

saveRDS(TAB_REPRESENTATIVITY, "./results/dat/tab_representativity.rds")

save.image()

# load(".RData")

7.3.6 Reference values

##################################################

# Quantiles

##################################################

# relative VO2peak

# aggregating by TAUS and age class

tab1 <- aggregate(REL_VO2_MAX ˜ ageclass + Geschlecht,

data = df,

FUN = function(x) quantile(x, probs = TAUS))

tab2 <- aggregate(REL_VO2_MAX ˜ ageclass + Geschlecht,

data = df,

FUN = function(x) length(x))

tab <- do.call(data.frame, merge(tab1, tab2, by = c("Geschlecht", "ageclass")))

names(tab) <- c("Sex", "Age class", TAUS, "N")

print(xtable(tab,

digits = c(0, 0, rep(1, 15))),

include.rownames = F)

## PLAUSIBILITY CHECK:

# sum(df_FR$Geschlecht == "Female" & df_FR$ageclass == "[25,30)")

# quantile(subset(dfm_FR, ageclass == "[65,69]")$REL_VO2_MAX, probs = TAUS)

# correct!

# absolute VO2peak

tab1 <- aggregate(VO2_MAX ˜ ageclass + Geschlecht,

data = df,
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FUN = function(x) quantile(x, probs = TAUS))

tab2 <- aggregate(VO2_MAX ˜ ageclass + Geschlecht,

data = df,

FUN = function(x) length(x))

tab <- do.call(data.frame, merge(tab1, tab2, by = c("Geschlecht", "ageclass")))

names(tab) <- c("Sex", "Age class", TAUS, "N")

print(xtable(tab,

digits = c(0, 0, rep(2, 15))),

include.rownames = F)

## PLAUSIBILITY CHECK:

# quantile(

# subset(df,

# Geschlecht == "Male" &

# ALTER >= 25 &

# ALTER < 30)$REL_VO2_MAX,

# probs = c(0.05, 0.5, 0.95)

# )

## --> correct!

##################################################

# Nomograms: calculation data

##################################################

PLT.DAT <- function(dat, var){

# empty list to save results

lst <- list()

# loop over all taus and calculate predicted values

for(i in TAUS){

# fit quantile regression

fit <- rq(dat[,var] ˜ ALTER + I(ALTERˆ2), data = dat, tau = i)

# create empty prediction data set

pdat <- data.frame(ALTER = seq(from = 25, to = 70, length.out = 1000))

# calculate predicted values and confidence intervals, and adding tau

set.seed(1)

pdat <-

cbind(pdat, tau = i,

predict.rq(fit, newdata = pdat, interval = "confidence", level = .95,

se = "boot", type = "percentile", R = NBOOT)

)

# creating list with all results

nam <- paste("pdat", i, sep = "")

lst[[nam]] <- pdat

}

############################################

## >pdat

## head(lst$pdat0.95)

# ALTER tau fit lower higher

#1 25.00000 0.95 52.41516 49.79706 54.98178

#2 25.04505 0.95 52.40571 49.79676 54.96343

#3 25.09009 0.95 52.39624 49.79642 54.94508

## --> all entries (taus) should be row-binded

############################################

# row-binding for all prediction data frames (pdat)

ds_overall <- do.call(rbind, lst)

# express tau as perventile

ds_overall$tau <- ds_overall$tau*100

ds_overall$percentile <- paste(ds_overall$tau, "%", sep = "")

return(ds_overall)

}# plt.dat function end
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# Apply PLT.DAT to desired data sets

# list of all desired data sets

# --> 8 data sets --> perfect for parallelisation with 4 cpus

DSETS <- list(

# males and females with all observations

dfm = dfm,

dff = dff,

# males and female, smokers and obese excluded

# exm = exclusion of smokers&obese, male

exm = subset(dfm, ZIGARETTEN == "no" & obese == "no"),

exf = subset(dff, ZIGARETTEN == "no" & obese == "no"),

# including only participants from Frankfurt/Ruedesheim

# dfrm = df Ruedesheim, male

dfm_FR = dfm_FR,

dff_FR = dff_FR,

# including only participants from F/R and no smokers/obese

# exrm = exclusion of smoker&obese, Ruedesheim, male

exm_FR = subset(dfm_FR, ZIGARETTEN == "no" & obese == "no"),

exf_FR = subset(dff_FR, ZIGARETTEN == "no" & obese == "no")

)

# initiate clusters for parallel computing

cl <- makeCluster(mc <- getOption("cl.cores", 4))

clusterExport(cl=cl, varlist=ls())

clusterCall(cl, function() library("quantreg"))

ABS <- parLapply(cl, DSETS, function(x) PLT.DAT(x, "VO2_MAX"))

REL <- parLapply(cl, DSETS, function(x) PLT.DAT(x, "REL_VO2_MAX"))

stopCluster(cl)

# saving data sets (long computing time)

saveRDS(ABS, "./results/dat/nomodata_abs.rds")

saveRDS(REL, "./results/dat/nomodata_rel.rds")

save.image()

# load(".RData")

##################################################

# Nomograms: plotting

##################################################

# defining colors

COL <- c("dodgerblue","dodgerblue1","tomato3","dodgerblue2","dodgerblue3", "dodgerblue4",

"tomato3",

"dodgerblue4", "dodgerblue3", "tomato3", "dodgerblue2", "dodgerblue1", "dodgerblue")

# function for fitting of ggplots

PLT <- function(data_male, data_female, rel = T, ex = F){

# y-label

if(rel == T){
ylb <- REL_LAB

yby <- 1

dig <- 0

} else {
ylb <- ABS_LAB

yby <- 0.1

dig <- 1

}

# breaks are not dependent on a "from =" and "to =" argument

brk_fun <- function(k) {
step <- k

function(y) seq(floor(min(y)), ceiling(max(y)), by = step)

}

dm <- data_male

df <- data_female

dm$sex <- "Men"

df$sex <- "Women"

d <- rbind(dm, df)
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ggp <- ggplot(data = d, aes(x = ALTER, y = fit)) +

# defining background of ggplot

theme(panel.grid.major = element_line(colour = "grey60", size = 0.3),

panel.background = element_rect(fill = "white"),

axis.text.x = element_text(angle = 90, vjust=0.5),

plot.title = element_text(hjust = 0.5)) +

scale_x_continuous(limits = c(25,69),

breaks = seq(from = 25, to = 69, by = 1))+

scale_y_continuous(breaks = brk_fun(yby)) +

labs(x = "Age [years]",

y = ylb) +

geom_vline(xintercept = c(30, 40, 50, 60),

colour = "gray25",

size = 0.6) +

facet_wrap(˜sex, scales = "free_y", ncol = 1)

# adding confidence bands

ggp <- ggp +

geom_ribbon(aes(x = ALTER, ymin = lower, ymax = higher, fill = percentile),

alpha = 0.3, inherit.aes = F, show.legend = F, na.rm = T) +

scale_fill_manual(values = COL)

# adding quantile curves

ggp <- ggp +

geom_line(aes(x = ALTER, y = fit, colour = percentile),

show.legend = F, size = 1, na.rm = T) +

scale_color_manual(values = COL)

# adding percentile labels to curves

ggp <- direct.label(ggp, list("last.polygons", colour = "white", cex=0.65))

return(ggp)

}

# saving plots

# Only Frankfurt and Ruedesheim (Munich is for external validation)

SAVE.PLOT(PLT(REL$dfm_FR, REL$dff_FR, rel = T, ex = F), "nomo_rel_include_FR.png", 10.5, 7)

SAVE.PLOT(PLT(ABS$dfm_FR, ABS$dff_FR, rel = F, ex = F), "nomo_abs_include_FR.png", 10.5, 7)

SAVE.PLOT(PLT(REL$exm_FR, REL$exf_FR, rel = T, ex = T), "nomo_rel_exclude_FR.png", 10.5, 7)

SAVE.PLOT(PLT(ABS$exm_FR, ABS$exf_FR, rel = F, ex = T), "nomo_abs_exclude_FR.png", 10.5, 7)

# Frankfurt, Ruedesheim and Munich included

SAVE.PLOT(PLT(REL$dfm, REL$dff, rel = T, ex = F), "nomo_rel_include_OVERALL.png", 10.5, 7)

SAVE.PLOT(PLT(ABS$dfm, ABS$dff, rel = F, ex = F), "nomo_abs_include_OVERALL.png", 10.5, 7)

SAVE.PLOT(PLT(REL$exm, REL$exf, rel = T, ex = T), "nomo_rel_exclude_OVERALL.png", 10.5, 7)

SAVE.PLOT(PLT(ABS$exm, ABS$exf, rel = F, ex = T), "nomo_abs_exclude_OVERALL.png", 10.5, 7)

dev.off()

##################################################

# Nomograms: Coefficient tables

##################################################

# calculating all coefficients and all 95% CIs for coefficients

COEF <- function(DAT, OUTCOME){

# two empty lists to save coefficients and ci (lower and higher CI)

COEF <- list()

CIL <- list()

CIH <- list()

# loop over all taus and calculate predicted values

for(i in TAUS){

# name

NAM <- paste0("fit", i)

# fit quantile regression

FIT <- rq(DAT[,OUTCOME] ˜ ALTER + I(ALTERˆ2), data = DAT, tau = i)

# bootstrapped confidence intervals for coefficients

BT <- boot.rq(cbind(1, DAT[,"ALTER"], I(DAT[,"ALTER"]ˆ2)),

DAT[, OUTCOME],

tau = i, R = NBOOT)
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COEF[[NAM]] <- FIT$coefficients

CIL[[NAM]] <- apply(BT$B, 2, quantile, c(0.025))

CIH[[NAM]] <- apply(BT$B, 2, quantile, c(0.975))

}# End of loop

return(list(COEF = COEF, CIL = CIL, CIH = CIH))

}

# calculating coefficients for all data sets

# initiate clusters for parallel computing

cl <- makeCluster(mc <- getOption("cl.cores", 4))

clusterExport(cl=cl, varlist=ls())

clusterCall(cl, function() library("quantreg"))

COEF.ABS <- parLapply(cl, DSETS, function(x) COEF(x, "VO2_MAX"))

COEF.REL <- parLapply(cl, DSETS, function(x) COEF(x, "REL_VO2_MAX"))

stopCluster(cl)

# saving data sets (long computing time)

saveRDS(COEF.ABS, "./results/dat/coef_abs.rds")

saveRDS(COEF.REL, "./results/dat/coef_rel.rds")

save.image()

# creating tables for all data sets

COEF.TAB <- function(DAT){

C <- round(t(do.call(data.frame, DAT$COEF)), digits = 8)

L <- round(t(do.call(data.frame, DAT$CIL)), digits = 8)

H <- round(t(do.call(data.frame, DAT$CIH)), digits = 8)

# for coefficient plots

TAB <- cbind(C[,1], L[,1], H[,1],

C[,2], L[,2], H[,2],

C[,3], L[,3], H[,3])

TAB <- as.data.frame(TAB)

# Coefficients + CI, I = Intercept, a = age, a2 = ageˆ2

# names are needed in this format for reshape using varying (coef plots)

names(TAB) <- c(

"c.1", "cil.1", "cih.1", "c.2", "cil.2", "cih.2", "c.3", "cil.3", "cih.3")

TAB$FIT <- row.names(C)

row.names(TAB) <- NULL

# for Latex, FIT is first col

LTAB <- cbind(TAB$FIT, TAB[, 1:9])

names(LTAB) <- c(

"Fit",

"intercept", "cil.intercept", "cih.intercept",

"age", "cil.age", "cih.age",

"age2", "cil.age2", "cih.age2")

LTAB <- xtable(LTAB, digits = c(0,0,rep(8,9)))

return(list(LTAB = LTAB, DATA = TAB))

}

# Create tables

# Absolute VO2max

# All cases

print(COEF.TAB(COEF.ABS$dfm)$LTAB, include.rownames = FALSE)

print(COEF.TAB(COEF.ABS$dff)$LTAB, include.rownames = FALSE)

# exclusion of smokers and obese

print(COEF.TAB(COEF.ABS$exm)$LTAB, include.rownames = FALSE)

print(COEF.TAB(COEF.ABS$exf)$LTAB, include.rownames = FALSE)

# Frankfurt/Ruedesheim (FR)
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print(COEF.TAB(COEF.ABS$dfm_FR)$LTAB, include.rownames = FALSE)

print(COEF.TAB(COEF.ABS$dff_FR)$LTAB, include.rownames = FALSE)

# Frankfurt/Ruedesheim (FR)

print(COEF.TAB(COEF.ABS$exm_FR)$LTAB, include.rownames = FALSE)

print(COEF.TAB(COEF.ABS$exf_FR)$LTAB, include.rownames = FALSE)

# Relative VO2max

# All cases

print(COEF.TAB(COEF.REL$dfm)$LTAB, include.rownames = FALSE)

print(COEF.TAB(COEF.REL$dff)$LTAB, include.rownames = FALSE)

# exclusion of smokers and obese

print(COEF.TAB(COEF.REL$exm)$LTAB, include.rownames = FALSE)

print(COEF.TAB(COEF.REL$exf)$LTAB, include.rownames = FALSE)

# Frankfurt/Ruedesheim (FR)

print(COEF.TAB(COEF.REL$dfm_FR)$LTAB, include.rownames = FALSE)

print(COEF.TAB(COEF.REL$dff_FR)$LTAB, include.rownames = FALSE)

# Frankfurt/Ruedesheim (FR)

print(COEF.TAB(COEF.REL$exm_FR)$LTAB, include.rownames = FALSE)

print(COEF.TAB(COEF.REL$exf_FR)$LTAB, include.rownames = FALSE)

##################################################

# coefficient plots

##################################################

PLT.COEF <- function(DAT_MALE = COEF.ABS$dfm, DAT_FEMALE = COEF.ABS$dff){

DM <- COEF.TAB(DAT_MALE)$DATA

DF <- COEF.TAB(DAT_FEMALE)$DATA

# adding sex-variable

DM$Sex <- "Men"

DF$Sex <- "Women"

# Rbindung both sexes

COEF.DATA <- rbind(DM, DF)

# >COEF.DATA

# colnames are: c1 = Intercept, c2 = age, c3 = ageˆ2

#

# c.1 cil.1 cih.1 c.2 cil.2

# fit0.05 2.148064 1.2871575 2.833846 0.0220968 -0.0071967 ...

# fit0.1 2.283736 1.3166107 2.540710 0.0250659 0.0004518 ...

# fit0.2 2.407500 1.2070498 2.863562 0.0309868 -0.0089181 ...

# ...

LONG <- reshape(COEF.DATA, dir="long", varying = 1:9, idvar = c("FIT", "Sex"))

LONG$time <- factor(LONG$time, levels = c(1,2,3),

labels = c("Intercept", "Age",expression(Ageˆ"2")))

# >LONG

# FIT Sex time c cil cih

# fit0.05 Male Age 2.1480645 1.1823432 3.1150844

# fit0.1 Male Age 2.2837363 1.4854133 2.9921140

# fit0.2 Male Age 2.4075000 1.9149587 2.6529048

# ...

PLT <- ggplot(LONG) +

geom_point( aes(x = FIT, y = c)) +

geom_linerange(aes(x = FIT, ymin = cil, ymax = cih)) +

theme(axis.text.x = element_text(angle = 45, hjust = 1),

plot.title = element_text(hjust = 0.5)) +

facet_wrap(Sex ˜ time, scales = "free", labeller = label_parsed) +

geom_hline(yintercept = 0, lty = 2) +

labs(y = "Coefficient (95% CI)", x = "Quantile regression")

return(PLT)

}

# Create plots

# Absolute VO2max
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# All cases

SAVE.PLOT(PLT.COEF(COEF.ABS$dfm,COEF.ABS$dff), "coefplot_abs_OVERALL.png", 4, 8)

# exclusion of smokers and obese

SAVE.PLOT(PLT.COEF(COEF.ABS$exm,COEF.ABS$exf), "coefplot_abs_EX.png", 4, 8)

# Frankfurt/Ruedesheim (FR)

SAVE.PLOT(PLT.COEF(COEF.ABS$dfm_FR,COEF.ABS$dff_FR), "coefplot_abs_FR.png", 4, 8)

# Relative VO2max

# All cases

SAVE.PLOT(PLT.COEF(COEF.REL$dfm,COEF.REL$dff), "coefplot_rel_OVERALL.png", 4, 8)

# exclusion of smokers and obese

SAVE.PLOT(PLT.COEF(COEF.REL$exm,COEF.REL$exf), "coefplot_rel_EX.png", 4, 8)

# Frankfurt/Ruedesheim (FR)

SAVE.PLOT(PLT.COEF(COEF.REL$dfm_FR,COEF.REL$dff_FR), "coefplot_rel_FR.png", 4, 8)

7.3.7 Validation

##################################################

# calculating validation data

##################################################

VALI.DAT <- function(TRN.DAT = dfm_FR, VAL.DAT = dfm_FR, OUTCOME = "REL_VO2_MAX",

FORMULA = "ageclass + I(ageclassˆ2)"){

# GOALS: producing all data for validation

# G1) empirical quantiles (EMP.QTLS) from validation data (VAL.DAT)

# G2) quantile regression in trainaing data (TRN.DAT)

# G3) predicted values from quantile regressions

# G4) 95% CI for predicted values

# G5) AIC table for each TAUS2

# G6) comparing empirical and estimated values in separate function

# quantiles for validation

TAUS2 <- c(0.25,0.5,0.75)

# GOAL 1

# empirical quantiles: tau = {0.25,0.5,0.75}
FRM1 <- as.formula(paste(OUTCOME, "˜ ageclass + Geschlecht"))

EMP.QTLS <- aggregate(FRM1, data = VAL.DAT,

FUN = function(x) quantile(x, probs = TAUS2))

EMP.QTLS <- do.call(data.frame, EMP.QTLS)

names(EMP.QTLS) <- c("ageclass", "Geschlecht", "tau0.25", "tau0.5", "tau0.75")

EMP.QTLS <- melt(EMP.QTLS, id.vars = c("ageclass", "Geschlecht"))

# > EMP.QTLS

# ageclass Geschlecht variable value

# [25,30) Male tau0.25 33.525

# [30,35) Male tau0.25 33.400

# [35,40) Male tau0.25 32.700

# ...

# GOAL 2

# ageclass variable (from trainaing data) for regression

TRN.DAT$ageclass <- as.numeric(TRN.DAT$ageclass)

# formula for quantile regressions

FRM2 <- as.formula(paste(OUTCOME, "˜", FORMULA))

PDAT <- list()

AIC.DAT <- list()

# loop over all taus and calculate predicted values

for(i in TAUS2){

FIT <- rq(FRM2, data = TRN.DAT, tau = i)

# create empty prediction data set

pdat <- data.frame(ageclass = 1:9)

# function to predict value and 95% CI
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PRED <- function(){

set.seed(1)

PV <- predict.rq(FIT,

newdata = pdat,

interval = "confidence",

se = "boot", type = "percentile",

level = .95, R = NBOOT)

return(PV)

}

# calculate predicted values and confidence intervals, and adding tau

pdat <- cbind(pdat,

tau = paste0("tau",i),

PRED()

)

# > pdat

# ageclass tau fit lower higher

# 1 tau0.50 39.30000 38.31400 41.09600

# 2 tau0.50 38.83333 38.24494 39.88267

# 3 tau0.50 38.00000 37.70000 38.49750

# ...

# column must be the same name as outcome

# in order to add the dots in the box plot

pdat[,OUTCOME] <- pdat$fit

# saving prediction data

nam1 <- paste0("pdat", i)

PDAT[[nam1]] <- pdat

# saving aic data

nam2 <- paste0("aic", i)

AIC.DAT[[nam2]] <- AIC.rq(FIT)

}

PDAT <- do.call(rbind, PDAT)

row.names(PDAT) <- NULL

AIC.DAT <- do.call(rbind, AIC.DAT)

# > test$AIC.DAT

# [,1]

# aic0.25 32672.15

# aic0.5 32406.82

# aic0.75 33242.66

return(list(EMP.QTLS = EMP.QTLS, PDAT = PDAT, AIC.DAT = AIC.DAT))

}

# saving all data

# Nomenclature:

# A = a = apparent, e = external

# M = male, F = female

# R = REL_VO2_MAX, A = ABS_VO2_MAX

# __________________________________

# Main models: Quadratic

# __________________________________

# apparent validation

AMR <- VALI.DAT(dfm_FR, dfm_FR, "REL_VO2_MAX", "ageclass + I(ageclassˆ2)")

AFR <- VALI.DAT(dff_FR, dff_FR, "REL_VO2_MAX", "ageclass + I(ageclassˆ2)")

AMA <- VALI.DAT(dfm_FR, dfm_FR, "VO2_MAX", "ageclass + I(ageclassˆ2)")

AFA <- VALI.DAT(dff_FR, dff_FR, "VO2_MAX", "ageclass + I(ageclassˆ2)")

# external validation

EMR <- VALI.DAT(dfm_FR, dfm_M, "REL_VO2_MAX", "ageclass + I(ageclassˆ2)")

EFR <- VALI.DAT(dff_FR, dff_M, "REL_VO2_MAX", "ageclass + I(ageclassˆ2)")

EMA <- VALI.DAT(dfm_FR, dfm_M, "VO2_MAX", "ageclass + I(ageclassˆ2)")

EFA <- VALI.DAT(dff_FR, dff_M, "VO2_MAX", "ageclass + I(ageclassˆ2)")

# __________________________________

# Other models: Linear

# __________________________________

# apparent validation

AMR_lin <- VALI.DAT(dfm_FR, dfm_FR, "REL_VO2_MAX", "ageclass")
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AFR_lin <- VALI.DAT(dff_FR, dff_FR, "REL_VO2_MAX", "ageclass")

AMA_lin <- VALI.DAT(dfm_FR, dfm_FR, "VO2_MAX", "ageclass")

AFA_lin <- VALI.DAT(dff_FR, dff_FR, "VO2_MAX", "ageclass")

# __________________________________

# Other models: spline

# __________________________________

# apparent validation

AMR_spl <- VALI.DAT(dfm_FR, dfm_FR, "REL_VO2_MAX", "bs(ageclass)")

AFR_spl <- VALI.DAT(dff_FR, dff_FR, "REL_VO2_MAX", "bs(ageclass)")

AMA_spl <- VALI.DAT(dfm_FR, dfm_FR, "VO2_MAX", "bs(ageclass)")

AFA_spl <- VALI.DAT(dff_FR, dff_FR, "VO2_MAX", "bs(ageclass)")

save.image()

# load(".RData")

##################################################

# validation box plots

##################################################

# function for adding the estimates or CI to the box plot

ADD.LINES <- function(DAT = DAT, COLOUR = "blue", CI = F, ALPHA = 1){

# adding confidence bands

if(CI == T){
BPL <- BPL +

geom_linerange(data = DAT,

aes(x = ageclass, ymin = lower, ymax = higher, group = tau),

size = 7, colour = "red", alpha = 0.5)

}

BPL <- BPL +

geom_line(data = DAT,

stat = "smooth", method = "loess",

aes(x = ageclass, y = fit, group = tau),

size = 0.5, colour = COLOUR, alpha = ALPHA,

na.rm = T) +

geom_point(data = DAT, aes(x = ageclass, y = fit, shape = factor(tau)),

size = 2, colour = COLOUR, alpha = ALPHA) +

theme(legend.position="none")

return(BPL)

}

# __________________________________

# Apparent validation

# __________________________________

# rel, males

BPL <- PLT.BPL(dfm_FR, REL = T, LAB = REL_LAB)

BPL1 <- ADD.LINES(DAT = AMR$PDAT, COLOUR = "blue", CI = T)

# rel, females

BPL <- PLT.BPL(dff_FR, REL = T, LAB = "")

BPL2 <- ADD.LINES(DAT = AFR$PDAT, COLOUR = "blue", CI = T)

# abs, males

BPL <- PLT.BPL(dfm_FR, REL = F, LAB = ABS_LAB)

BPL3 <- ADD.LINES(DAT = AMA$PDAT, COLOUR = "blue", CI = T)

# abs, females

BPL <- PLT.BPL(dff_FR, REL = F, LAB = "")

BPL4 <- ADD.LINES(DAT = AFA$PDAT, COLOUR = "blue", CI = T)

SAVE.PLOT(grid.arrange(BPL1,BPL2,BPL3,BPL4, ncol = 2),

"vali_apparent.png", 8, 10.5)

# __________________________________

# External validation

# __________________________________

# rel, males

BPL <- PLT.BPL(dfm_M, REL = T, LAB = REL_LAB)

BPL1 <- ADD.LINES(DAT = EMR$PDAT, COLOUR = "blue", CI = T)

# rel, females

BPL <- PLT.BPL(dff_M, REL = T, LAB = "")
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BPL2 <- ADD.LINES(DAT = EFR$PDAT, COLOUR = "blue", CI = T)

# abs, males

BPL <- PLT.BPL(dfm_M, REL = F, LAB = ABS_LAB)

BPL3 <- ADD.LINES(DAT = EMA$PDAT, COLOUR = "blue", CI = T)

# abs, females

BPL <- PLT.BPL(dff_M, REL = F, LAB = "")

BPL4 <- ADD.LINES(DAT = EFA$PDAT, COLOUR = "blue", CI = T)

SAVE.PLOT(grid.arrange(BPL1,BPL2,BPL3,BPL4, ncol = 2),

"vali_external.png", 8, 10.5)

# __________________________________

# Apparent validation including linear and spline models

# __________________________________

# rel, males

BPL <- PLT.BPL(dfm_FR, REL = T, LAB = REL_LAB)

BPL <- ADD.LINES(DAT = AMR_lin$PDAT, COLOUR = "red", CI = F, ALPHA = 0.5)

BPL <- ADD.LINES(DAT = AMR$PDAT, COLOUR = "blue", CI = F, ALPHA = 0.5)

BPL1 <- ADD.LINES(DAT = AMR_spl$PDAT, COLOUR = "green", CI = F, ALPHA = 0.5)

# rel, females

BPL <- PLT.BPL(dff_FR, REL = T, LAB = "")

BPL <- ADD.LINES(DAT = AFR_lin$PDAT, COLOUR = "red", CI = F, ALPHA = 0.5)

BPL <- ADD.LINES(DAT = AFR$PDAT, COLOUR = "blue", CI = F, ALPHA = 0.5)

BPL2 <- ADD.LINES(DAT = AFR_spl$PDAT, COLOUR = "green", CI = F, ALPHA = 0.5)

# abs, males

BPL <- PLT.BPL(dfm_FR, REL = F, ABS_LAB)

BPL <- ADD.LINES(DAT = AMA_lin$PDAT, COLOUR = "red", CI = F, ALPHA = 0.5)

BPL <- ADD.LINES(DAT = AMA$PDAT, COLOUR = "blue", CI = F, ALPHA = 0.5)

BPL3 <- ADD.LINES(DAT = AMA_spl$PDAT, COLOUR = "green", CI = F, ALPHA = 0.5)

# abs, females

BPL <- PLT.BPL(dff_FR, REL = F, LAB = "")

BPL <- ADD.LINES(DAT = AFA_lin$PDAT, COLOUR = "red", CI = F, ALPHA = 0.5)

BPL <- ADD.LINES(DAT = AFA$PDAT, COLOUR = "blue", CI = F, ALPHA = 0.5)

BPL4 <- ADD.LINES(DAT = AFA_spl$PDAT, COLOUR = "green", CI = F, ALPHA = 0.5)

SAVE.PLOT(grid.arrange(BPL1,BPL2,BPL3,BPL4, ncol = 2),

"vali_apparent_comparison.png", 8, 10.5)

##################################################

# validation calibration plots

##################################################

# build basic calibration plot without lines

PLT.CALI <- function(REL = T, CITY = "Frankfurt/RÃ¼desheim"){

if(REL == T){ MIN = 20; MAX = 50; BY = 5 }else{
MIN = 1 ; MAX = 4 ; BY = 0.5}

lab <- paste("Observed \n in", CITY)

P <- ggplot(data = D, aes(x = fit, y = value)) +

geom_abline(intercept = 0, slope = 1, lty = 3) +

theme(legend.position = "none") +

scale_x_continuous(limits = c(MIN,MAX), breaks = seq(MIN, MAX, by = BY)) +

scale_y_continuous(limits = c(MIN,MAX), breaks = seq(MIN, MAX, by = BY)) +

labs(x = "Prediction \n based on Frankfurt/RÃ¼desheim", y = lab)

return(P)

}

# add regression lines and dots

LINE.CALI <- function(X = AMR$PDAT, Y = AMR$EMP.QTLS, PLOT = CP, COLOUR = "blue", ALPHA = 1){

Y$ageclass <- as.numeric(Y$ageclass)

D <- merge(X, Y,

by.x = c("ageclass", "tau"),

by.y = c("ageclass", "variable"))

CP <- CP +

geom_line(stat = "smooth", method = "lm", se = F,
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data = D,

aes(x = fit, y = value),

colour = COLOUR, alpha = ALPHA, na.rm = T) +

geom_point(data = D, aes(x = fit, y = value, shape = tau),

colour = COLOUR, alpha = ALPHA, na.rm = T) +

facet_grid(˜Geschlecht)

return(CP)

}

# __________________________________

# Apparent validation

# __________________________________

CP <- PLT.CALI(REL = T)

CP1 <- LINE.CALI(AMR$PDAT, AMR$EMP.QTLS)

CP2 <- LINE.CALI(AFR$PDAT, AFR$EMP.QTLS)

CP <- PLT.CALI(REL = F)

CP3 <- LINE.CALI(AMA$PDAT, AMA$EMP.QTLS)

CP4 <- LINE.CALI(AFA$PDAT, AFA$EMP.QTLS)

SAVE.PLOT(grid.arrange(

arrangeGrob(CP1,CP2, top = textGrob(REL_LAB)),

arrangeGrob(CP3,CP4, top = textGrob(ABS_LAB)),

ncol = 2), "cali_apparent.png", 10,8)

# __________________________________

# External validation

# __________________________________

CP <- PLT.CALI(REL = T, CITY = "Munich")

CP1 <- LINE.CALI(EMR$PDAT, EMR$EMP.QTLS)

CP2 <- LINE.CALI(EFR$PDAT, EFR$EMP.QTLS)

CP <- PLT.CALI(REL = F, CITY = "Munich")

CP3 <- LINE.CALI(EMA$PDAT, EMA$EMP.QTLS)

CP4 <- LINE.CALI(EFA$PDAT, EFA$EMP.QTLS)

SAVE.PLOT(grid.arrange(

arrangeGrob(CP1,CP2, top = textGrob(REL_LAB)),

arrangeGrob(CP3,CP4, top = textGrob(ABS_LAB)),

ncol = 2), "cali_external.png", 10,8)

# __________________________________

# Apparent validation comparison of regression models

# __________________________________

CP <- PLT.CALI(REL = T) # Males, REL_VO2_MAX

CP <- LINE.CALI(AMR$PDAT, AMR$EMP.QTLS , ALPHA = 0.5, COLOUR = "blue")

CP <- LINE.CALI(AMR_lin$PDAT, AMR_lin$EMP.QTLS, ALPHA = 0.5, COLOUR = "red")

CP1 <- LINE.CALI(AMR_spl$PDAT, AMR_spl$EMP.QTLS, ALPHA = 0.5, COLOUR = "green")

CP <- PLT.CALI(REL = T) # Females REL_VO2_MAX

CP <- LINE.CALI(AFR$PDAT, AFR$EMP.QTLS , ALPHA = 0.5, COLOUR = "blue")

CP <- LINE.CALI(AFR_lin$PDAT, AFR_lin$EMP.QTLS, ALPHA = 0.5, COLOUR = "red")

CP2 <- LINE.CALI(AFR_spl$PDAT, AFR_spl$EMP.QTLS, ALPHA = 0.5, COLOUR = "green")

CP <- PLT.CALI(REL = F) # Males VO2_MAX

CP <- LINE.CALI(AMA$PDAT, AMA$EMP.QTLS , ALPHA = 0.5, COLOUR = "blue")

CP <- LINE.CALI(AMA_lin$PDAT, AMA_lin$EMP.QTLS, ALPHA = 0.5, COLOUR = "red")

CP3 <- LINE.CALI(AMA_spl$PDAT, AMA_spl$EMP.QTLS, ALPHA = 0.5, COLOUR = "green")

CP <- PLT.CALI(REL = F) # Females VO2_MAX

CP <- LINE.CALI(AFA$PDAT, AFA$EMP.QTLS , ALPHA = 0.5, COLOUR = "blue")

CP <- LINE.CALI(AFA_lin$PDAT, AFA_lin$EMP.QTLS, ALPHA = 0.5, COLOUR = "red")

CP4 <- LINE.CALI(AFA_spl$PDAT, AFA_spl$EMP.QTLS, ALPHA = 0.5, COLOUR = "green")

SAVE.PLOT(grid.arrange(

arrangeGrob(CP1,CP2, top = textGrob(REL_LAB)),

arrangeGrob(CP3,CP4, top = textGrob(ABS_LAB)),

ncol = 2), "cali_apparent_comparison.png", 10,8)

##################################################

# validation AIC tables

##################################################

# Males

AIC.TAB <- rbind(

# females

cbind(AFR_lin$AIC.DAT, AFR_spl$AIC.DAT, AFR$AIC.DAT,

AFA_lin$AIC.DAT, AFA_spl$AIC.DAT, AFA$AIC.DAT),

# males

cbind(AMR_lin$AIC.DAT, AMR_spl$AIC.DAT, AMR$AIC.DAT,

AMA_lin$AIC.DAT, AMA_spl$AIC.DAT, AMA$AIC.DAT)
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)

AIC.TAB <- as.data.frame(AIC.TAB)

names(AIC.TAB) <- c("AL","AS","AP","RL","RS","RP")

row.names(AIC.TAB) <- c("F.25","F.5","F.75","M.25","M.5","M.75")

xtable(AIC.TAB)

##################################################

# validation coefficient tables

##################################################

COEF.TAB2 <- function(DAT){

X <- DAT["PDAT"]; X <- X$PDAT$fit

Y <- DAT["EMP.QTLS"]; Y <- Y$EMP.QTLS$value

D <- data.frame(X,Y)

COEF.BT <- function(data, INDEX){
set.seed(1)

D1 <- data[INDEX,]

FIT <- lm(Y ˜ X, data = D1)

ROW <- c(FIT$coefficients, summary(FIT)$r.squared)

}

BT <- boot(data = D, statistic = COEF.BT, R = NBOOT)

TAB <- rbind(BT$t0, apply(BT$t, 2, quantile, c(0.025,0.975)))

TAB <- round(t(as.data.frame(TAB)), digits = 2)

COL <- paste0(TAB[,1], " [", TAB[,2], " to ", TAB[,3], "]")

COL <- data.frame(COL = COL)

row.names(COL) <- c("Intercept", "Slope", "Rsquared")

#> COL

#Intercept 5.94 [3.11 to 8.69]

#Slope 0.83 [0.76 to 0.90]

#Rsquared 0.92 [0.88 to 0.96]

return(COL)

}

# __________________________________

# Apparent validation

# __________________________________

# CAVE: females on top, absolute on the left column

TAB <- rbind(

cbind(COEF.TAB2(AFA), COEF.TAB2(AFR)),

cbind(COEF.TAB2(AMA), COEF.TAB2(AMR))

)

names(TAB) <- c("Absolute", "Relative")

xtable(TAB)

# __________________________________

# External validation

# __________________________________

TAB <- rbind(

cbind(COEF.TAB2(EFA), COEF.TAB2(EFR)),

cbind(COEF.TAB2(EMA), COEF.TAB2(EMR))

)

names(TAB) <- c("Absolute", "Relative")

xtable(TAB)

# __________________________________

# Apparent validation comparison of regression models

# __________________________________

TAB <- rbind(

# female

cbind(# absolute

COEF.TAB2(AFA_lin), COEF.TAB2(AFA_spl), COEF.TAB2(AFA),

# relative

COEF.TAB2(AFR_lin), COEF.TAB2(AFR_spl), COEF.TAB2(AFR)),

# male

cbind(# absolute

COEF.TAB2(AMA_lin), COEF.TAB2(AMA_spl), COEF.TAB2(AMA),

# relative
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COEF.TAB2(AMR_lin), COEF.TAB2(AMR_spl), COEF.TAB2(AMR))

)

names(TAB) <- c("AL", "AS", "AP", "RL", "RS", "RP")

xtable(TAB)

7.3.8 Multiple quantile regression

# histogram rubust for outliers

h <- function(var){

# set margins of histogram

m <- mean(df[,var], na.rm = T)

s <- sd(df[,var], na.rm = T)

# log transformed variable

d <- df

d$l <- log(df[,var])

ml <- mean(d$l, na.rm = T)

sl <- sd(d$l, na.rm = T)

# histogram with crude variable

c <- ggplot(df, aes_string(x = var)) +

geom_histogram(aes(y = ..density..), bins = 20, na.rm = T) +

scale_x_continuous(limits = c(m - 3*s, m + 3*s)) +

facet_wrap(˜Geschlecht) +

labs(title = "crude")

# histogram with log-transformed variable

l <- ggplot(d, aes(x = l)) +

geom_histogram(aes(y = ..density..), bins = 20, na.rm = T) +

scale_x_continuous(limits = c(ml - 3*sl, ml + 3*sl)) +

facet_wrap(˜Geschlecht) +

labs(title = "log-transformed")

gg <- grid.arrange(c,l)

return(gg)

}

h("BMI") # --> transform --> use overweight/obese

h("GEWICHT") # --> transform --> exclude due to colliearity

h("TRIGLYCERIDE") # --> transform: binary

h("BAUCHUMFANG") # transform -->

h("BLUTZUCKER") # --> transform --> binary as Diabetes_mellitus

h("HBA1C") # --> transform --> binary as Diabetes_mellitus

h("SYST") # --> no transformation

h("DIAST") # --> no transformation

# checking correlation of variables

# remove when r>=0.75 to avoid collinearity

# based on SPLOM

# --> remove:

# GEWICHT, BAUCHUMFANG, KOERPERFETT_CALIPER & TANITA,

# GESAMTCHOLESTERIN

# calculating new variables

df$Age_squared = df$ALTERˆ2

df$log_BMI = log(df$BMI)

df$log_triglycerides = log(df$TRIGLYCERIDE)

df$log_blood_glucose = log(df$BLUTZUCKER)

df$log_HbA1c = log(df$HBA1C)

df$High_LDL = ifelse(df$LDL_CHOLESTERIN >=115, 1, 0)

df$High_TG = ifelse(df$TRIGLYCERIDE >=150, 1, 0)

df$Low_HDL = ifelse(df$HDL_CHOLESTERIN <=40, 1, 0)

df$Hypertension = ifelse(df$SYST >= 140 | df$DIAST >= 90, 1, 0)

# renaming variables (for tick labels)

df$Height <- df$GROESSE

df$Age <- df$ALTER

df$Systolic <- df$SYST

df$Diastolic <- df$DIAST

df$HDL_cholesterol <- df$HDL_CHOLESTERIN
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df$LDL_cholesterol <- df$LDL_CHOLESTERIN

# recoding factor variables

# --> necessary for following function

# --> coding as no = 1, yes = 2

BIN <- function(x){
var <- as.numeric(df[,x])

var <- ifelse(var == 1, 0, ifelse(var == 2, 1, NA))

return(var)

}
df$Smoker <- BIN("ZIGARETTEN")

df$Exsmoker <- BIN("EXRAUCHER")

df$Overweight <- BIN("BMI_GE_25")

df$Obese <- BIN("obese")

df$Diabetes_mellitus <- BIN("MANIFEST_DM")

# Defining final independent variables

IV <- c(

"Age", "Height",

"Overweight", "Obese",

"Hypertension", "Low_HDL", "High_LDL", "High_TG",

"Diabetes_mellitus", "Smoker", "Exsmoker"

)

# removing all cases with NAs in data set

df$exclusion <- rowSums(is.na(df[,c(IV,"VO2_MAX", "REL_VO2_MAX")]))

df1 <- subset(df, exclusion == 0)

# subsetting data including new IVs

dfm <- subset(df1, Geschlecht == "Men")

dff <- subset(df1, Geschlecht == "Women")

# Regression fitting

QR <- function(dat, outcome, qtile) {

# creating formula

# IV have to be defined!

frm <- as.formula(paste(outcome ,"˜", paste(IV, collapse = "+")))

# fitting quantile regression

fit <- step(rq(frm, data = dat, tau = qtile), direction = "both")

# bootstrapped P values

# NBOOT has to be defined!

set.seed(1)

tab <- summary(fit, se = "boot", R = NBOOT)

# extract all variables that are in the formula of final model and remove dependent var

var <- setdiff(all.vars(tab$call$formula), outcome)

# bottstrapping 95% confidence intervals

set.seed(1)

bt <- boot.rq(cbind(1, dat[, var]), dat[, outcome], tau = qtile, R = NBOOT)

# add bootstrapped 95% CI to table

tab <- cbind(

tab$coefficients[, c(1,4)],

t(apply(bt$B, 2, quantile, c(0.025,0.975))))

# are coefficients within ci bounds?

tab <- as.data.frame(tab)

tab <- tab[, c("Value", "2.5%", "97.5%", "Pr(>|t|)")]

coef_in_ci <- data.frame(

hi = tab$Value<tab$`97.5%`,

lo = tab$Value>tab$`2.5%`)

# do 95% CI and P value lead to the same conclusion (sig. yes/no)?

sig <- data.frame(

pval = tab[,4] < 0.05,

ci = (tab[,2] > 0) == (tab[,3] > 0)

)

sig$SAME_CONCLUSION <- sig$pval == sig$ci

# calculation of Rˆ2 according to

# Hao, 2007, p. 52

# https://stat.ethz.ch/pipermail/r-help/2006-August/110386.html
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# http://stats.stackexchange.com/questions/129200/r-squared-in-quantile-regression

fit0 <- rq(REL_VO2_MAX ˜ 1, tau = qtile, data = dat)

rho <- function(u,tau=qtile)u*(tau - (u < 0))

R1 <- round(1 - fit$rho/fit0$rho, digits = 3)

# creating name for coefficient plot

# sex

if(dat[3,"Geschlecht"] == "Men") sex <- "Men"

if(dat[3,"Geschlecht"] == "Women") sex <- "Women"

# return the name VO2_MAX

out <- colnames(dat)[which(colnames(dat) %in% outcome)]

# build name

if(out == "REL_VO2_MAX") {
lab <- bquote(atop(.(paste0(sex))*";"

˜Dependent˜variable˜"="

˜Relative˜dot('V')*O['2peak']˜ "[mL" * O["2"]*"/min/kg"*"]",

Quantile˜"="˜.(qtile)*";"

˜Pseudo*"-"*Rˆ2˜"="˜ .(R1)))}
if(out == "VO2_MAX") {
lab <- bquote(atop(.(paste0(sex))*";"

˜Dependent˜variable˜"="

˜Absolute˜dot('V')*O['2peak']˜ "[L" * O["2"]*"/min"*"]",

Quantile˜"="˜.(qtile)*";"

˜Pseudo*"-"*Rˆ2˜"="˜ .(R1)))}

# add variable names

name <- rownames(tab)

tab2 <- tab

tab2$name <- name

# coefficient plot

plt <-ggplot(data = tab2[2:nrow(tab2),]) +

geom_point(aes(x = name, y = Value)) +

theme(panel.background = element_rect(fill = "white"),

panel.grid.major = element_line(linetype = "dotted", colour = "grey60", size = 0.3),

plot.title = element_text(size = 10)) +

geom_hline(yintercept = 0, lty = 2) +

geom_linerange(aes(x = name, ymin = `2.5%`, ymax = `97.5%`)) +

labs(x = "", y = "") +

ggtitle(lab) +

scale_y_continuous(expand = c(0.1,0.1), breaks = ) +

coord_flip()

l <- list(tab, plt, R1, coef_in_ci, sig)

return(l)}

# males

rm25 <- QR(dfm, "REL_VO2_MAX", 0.25)

rm50 <- QR(dfm, "REL_VO2_MAX", 0.50)

rm75 <- QR(dfm, "REL_VO2_MAX", 0.75)

# females

rf25 <- QR(dff, "REL_VO2_MAX", 0.25)

rf50 <- QR(dff, "REL_VO2_MAX", 0.50)

rf75 <- QR(dff, "REL_VO2_MAX", 0.75)

# arranging coefficient plots

rm <- grid.arrange(rm25[[2]], rm50[[2]], rm75[[2]], ncol = 1)

rf <- grid.arrange(rf25[[2]], rf50[[2]], rf75[[2]], ncol = 1)

# absolute VO2peak

# males

am25 <- QR(dfm, "VO2_MAX", 0.25)

am50 <- QR(dfm, "VO2_MAX", 0.50)

am75 <- QR(dfm, "VO2_MAX", 0.75)

# females

af25 <- QR(dff, "VO2_MAX", 0.25)

af50 <- QR(dff, "VO2_MAX", 0.50)

af75 <- QR(dff, "VO2_MAX", 0.75)

# arranging coefficient plots

am <- grid.arrange(am25[[2]], am50[[2]], am75[[2]], ncol = 1)

af <- grid.arrange(af25[[2]], af50[[2]], af75[[2]], ncol = 1)
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# saving plots

SAVE.PLOT(rm, "multi_relative_m.png", 8,6)

SAVE.PLOT(rf, "multi_relative_f.png", 8,6)

SAVE.PLOT(am, "multi_absolute_m.png", 8,6)

SAVE.PLOT(af, "multi_absolute_f.png", 8,6)

# tables

print(xtable(rbind(rm25[[1]], rm50[[1]], rm75[[1]]), digits=c(2,2,2,2,3)))

print(xtable(rbind(rf25[[1]], rf50[[1]], rf75[[1]]), digits=c(2,2,2,2,3)))

print(xtable(rbind(am25[[1]], am50[[1]], am75[[1]]), digits=c(2,2,2,2,3)))

print(xtable(rbind(af25[[1]], af50[[1]], af75[[1]]), digits=c(2,2,2,2,3)))

7.3.9 Comparison of reference values

# SHIP Study (Koch, 2009)

# CODING

# m=1, f=2

# age groups: 25-34, 35-44, 45-54, 55-64, >=64

# bmi: <25 = 0, >=25 = 1

# VO2peak 5%

v.05 <- function(sex, Age, bmi){
p <- 30.9643 +

(-2.5661*Age) +

(-0.0263*I(Ageˆ2)) +

(-3.7224*sex) +

(1.8765*bmi) +

(0.1082*Age*bmi) +

(-2.9703*sex*bmi) +

(0.7361*Age*sex) +

(0.2799*Age*sex*bmi)

return(p)

}

v.95 <- function(sex, Age, bmi){
p <- 61.3721 +

(-1.9479*Age) +

(-0.3053*I(Ageˆ2)) +

(-9.1229*sex) +

(3.8892*bmi) +

(-1.9492*Age*bmi) +

(-6.7455*sex*bmi) +

(0.0716*Age*sex) +

(1.6900*Age*sex*bmi)

return(p)

}

v.50 <- function(sex, Age, bmi){
p <- 47.7565 +

(-0.9880*Age) +

(-0.2356*I(Ageˆ2)) +

(-8.8697*sex) +

(2.3597*bmi) +

(-2.0308*Age*bmi) +

(-3.7405*sex*bmi) +

(0.2512*Age*sex) +

(1.3797*Age*sex*bmi)

return(p)

}

# prediction data set

ship_m <- data.frame(Age = 1:5)

ship_f <- data.frame(Age = 1:5)

own_m <- data.frame(Age = 25:70)

own_f <- data.frame(Age = 25:70)

# males

ship_m$m.05 <- v.05(1, ship_m$Age, 0)

ship_m$m.50 <- v.50(1, ship_m$Age, 0)

ship_m$m.95 <- v.95(1, ship_m$Age, 0)

# females
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ship_f$f.05 <- v.05(2, ship_f$Age, 0)

ship_f$f.50 <- v.50(2, ship_f$Age, 0)

ship_f$f.95 <- v.95(2, ship_f$Age, 0)

ship_m$Age <- ship_f$Age <- factor(

ship_m$Age,

levels = 1:5,

labels = c("25-34", "35-44", "45-54", "55-64", ">=64"))

ship_m_long <- melt(ship_m, id.vars = "Age")

ship_f_long <- melt(ship_f, id.vars = "Age")

# FRIEND Study (Kaminsky, 2015)

# Age groups (6): 20-29, 30-39, 40-49, 50-59, 60-69, 70-79

kaminsky_m <- data.frame(

Age = rep(1:6, 3),

variable = c(rep("m.05",6), rep("m.50",6), rep("m.95",6)),

value = c(

# m.50

41.9, 30.1, 27.1, 24.8, 22.4, 19.5))

kaminsky_f <- data.frame(

Age = rep(1:6, 3),

variable = c(rep("f.05",6), rep("f.50",6), rep("f.95",6)),

value = c(

# f.50

31.0, 21.6, 19.4, 17.3, 16.0, 14.8))

# recoding age

kaminsky_m$Age <- kaminsky_f$Age <- factor(

kaminsky_m$Age,

levels = 1:6,

labels = c("20-29", "30-30", "40-49", "50-59", "60-69", "70-79"))

# own

dfm_FR$Age <- dfm_FR$ALTER

dff_FR$Age <- dff_FR$ALTER

# males

fitm.05 <- rq(REL_VO2_MAX ˜ Age + I(Ageˆ2), data = dfm_FR, tau = 0.05)

fitm.50 <- rq(REL_VO2_MAX ˜ Age + I(Ageˆ2), data = dfm_FR, tau = 0.50)

fitm.95 <- rq(REL_VO2_MAX ˜ Age + I(Ageˆ2), data = dfm_FR, tau = 0.95)

own_m$m.05 <- predict(fitm.05, newdata = own_m)

own_m$m.50 <- predict(fitm.50, newdata = own_m)

own_m$m.95 <- predict(fitm.95, newdata = own_m)

own_m_long <- melt(own_m, id.vars = "Age")

# females

fitf.05 <- rq(REL_VO2_MAX ˜ Age + I(Ageˆ2), data = dff_FR, tau = 0.05)

fitf.50 <- rq(REL_VO2_MAX ˜ Age + I(Ageˆ2), data = dff_FR, tau = 0.50)

fitf.95 <- rq(REL_VO2_MAX ˜ Age + I(Ageˆ2), data = dff_FR, tau = 0.95)

own_f$f.05 <- predict(fitf.05, newdata = own_f)

own_f$f.50 <- predict(fitf.50, newdata = own_f)

own_f$f.95 <- predict(fitf.95, newdata = own_f)

own_f_long <- melt(own_f, id.vars = "Age")

g <- function(dat, tit, xtit, ytit, class = T){
# plot

gp <- ggplot(data = dat, aes(x = Age, y = value, group = factor(variable))) +

geom_line() +

theme(panel.grid.major = element_line(colour = "grey60", size = 0.3),

panel.background = element_rect(fill = "white")) +

scale_y_continuous(limits = c(10,55), breaks = seq(from=10, to = 55, by = 5)) +

labs(title = tit, x = xtit, y = ytit)

# modifying x axis

if(class == F){
gp <- gp + scale_x_continuous(limits = c(25,70), breaks = seq(from= 25, to = 70, by = 5))

}else{
gp <- gp + geom_point()

}
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return(gp)

}

# plotting males

g1 <- g(own_m_long, "Prevention First", "Age [years]", REL_LAB, class = F)

g2 <- g(ship_m_long, "SHIP Study", "Age class [years]", "")

g3 <- g(kaminsky_m, "FRIEND Study", "Age class [years]", "")

# agganging plots

gm <- grid.arrange(g1, g2, g3, ncol = 3, top = "Men")

# plotting females

g1 <- g(own_f_long, "Prevention First", "Age [years]", REL_LAB, class = F)

g2 <- g(ship_f_long, "SHIP Study", "Age class [years]", "")

g3 <- g(kaminsky_f, "FRIEND Study", "Age class [years]", "")

# agganging plots

gf <- grid.arrange(g1, g2, g3, ncol = 3, top = "Women")

g_final <- grid.arrange(gf, gm, ncol = 1)

# saving plots

SAVE.PLOT(g_final,"Comp.png", 9, 9)

##################################################

##################################################

# web application

##################################################

##################################################

save.image()

# see separate code
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sorgeuntersuchung im Sport. URL http://daten2.verwaltungsportal.de/dateien/

seitengenerator/leitlinie vorsorgeuntersuchung 4.10.2007-1-19.pdf

[16] Dickhuth HH, Gollhofer A (2007) Allgemeine medizinische Trainingslehre. In:

HH Dickhuth, G Badtke (eds.) Sportmedizin für Ärzte: Lehrbuch auf der Grund-
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A Appendix

A.1 Random sample

Table A.1: Bivariate descriptive table of the full dataset and random sample.

Full data Random sample
P value

N=9937 N=252

V̇O2peak

Relative [mLO2/min/kg] 32.8 [27.7;38.4] 31.9 [27.2;37.5] 0.211

Absolute [LO2/min] 2.63 [2.06;3.18] 2.56 [1.97;3.13] 0.218

Anthropometric

Age [years] 45.0 [41.0;50.0] 45.0 [40.0;50.0] 0.546

Weight [kg] 80.0 [69.0;90.0] 79.0 [67.5;89.0] 0.615

Height [cm] 177 [170;183] 177 [168;183] 0.459

BMI [kg/m2] 25.1 [22.9;27.7] 24.7 [22.7;28.0] 0.713

Sex: 0.756

Men 5916 (64.8%) 147 (63.6%)

Women 3207 (35.2%) 84 (36.4%)

Smoker 0.374

no 7810 (86.1%) 192 (83.8%)

yes 1258 (13.9%) 37 (16.2%)

Overweight 0.234

no 4434 (48.6%) 122 (52.8%)

yes 4684 (51.4%) 109 (47.2%)

Study center

City 0.628

Frankfurt/Ruedesheim 7327 (80.3%) 189 (81.8%)

Munich 1796 (19.7%) 42 (18.2%)

Note: Full data denotes the overall dataset (n=10,189) excluding participants

who were selected for the random sample (n=252). The random sample was

drawn from the original dataset including 10,189 participants before exclusion

of participants (fig. 3.2).

None of the obtained P values was < 0.05. Consequently, there were no statisti-

cally significant differences between the full data and the random sample. The

random sample was hence assumed to represent the full dataset adequately.

Quantitative variables are displayed as median [1st quartile; 3rd quartile],

qualitative characteristics as n (percent).

Overweight: BMI ≥ 25 kg/m2, obesity: BMI ≥ 30 kg/m2.

129



A.2. SELECTIVE DROPOUT ANALYSIS A. Appendix

A.2 Selective dropout analysis

Table A.2: Bivariate descriptive table of the final dataset and excluded cases.

Final dataset Excluded cases
P value

N=9354 N=835

V̇O2peak

Relative [mLO2/min/kg] 32.8 [27.7;38.4] 31.6 [26.4;36.8] <0.001

Absolute [LO2/min] 2.63 [2.06;3.18] 2.29 [1.84;2.94] <0.001

Anthropometric

Age [years] 45.0 [41.0;50.0] 46.0 [41.0;51.0] <0.001

Weight [kg] 80.0 [69.0;90.0] 75.0 [65.0;86.0] <0.001

Height [cm] 177 [170;183] 173 [166;181] <0.001

BMI [kg/m2] 25.1 [22.9;27.7] 24.5 [22.2;27.2] <0.001

Sex <0.001

Men 6063 (64.8%) 449 (53.8%)

Women 3291 (35.2%) 386 (46.2%)

Smoker 0.722

no 8002 (86.1%) 710 (86.6%)

yes 1295 (13.9%) 110 (13.4%)

Overweight <0.001

no 4556 (48.7%) 463 (55.7%)

yes 4793 (51.3%) 368 (44.3%)

Study center

City 0.805

Frankfurt/Ruedesheim 7516 (80.4%) 126 (79.2%)

Munich 1838 (19.6%) 33 (20.8%)

Note: Final dataset denotes the main study dataset (n=9,354) excluding

participants who were excluded due to missing values (n=835) (fig. 3.2).

Quantitative variables are displayed as median [1st quartile; 3rd quartile],

qualitative characteristics as n (percent).

Overweight: BMI ≥ 25 kg/m2, obesity: BMI ≥ 30 kg/m2.
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Figure A.1: Histograms of continuous variables for men.
Note: Men from Frankfurt/Rüdesheim and Munich were included (n=6,063).
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Figure A.2: Histograms of continuous variables for women.
Note: Women from Frankfurt/Rüdesheim and Munich were included (n=3,291).
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Figure A.3: Correlation matrix of continuous variables for men.
Note: Scatter plots including ellipsoids and Loess curves are plotted on the bottom-left, his-
tograms on the diagonal and Spearman correlation coefficients on the top-right.
All 6,063 men from Frankfurt/Rüdesheim and Munich were included.
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Figure A.4: Correlation matrix of continuous variables for women.
Note: Scatter plots including ellipsoids and Loess curves are plotted on the bottom-left, his-
tograms on the diagonal and Spearman correlation coefficients on the top-right.
All 3,291 women from Frankfurt/Rüdesheim and Munich were included.
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Table A.3: Skewness and quantile-based skewness of all eligible quantitative variables

Men Women

Skewness QSK Skewness QSK

Outcome measures

Relative V̇O2peak [mLO2/min/kg] 0.19 0.06 0.30 0.09

Absolute V̇O2peak [LO2/min] 0.09 0.08 0.43 0.04

Anthropometrics

Age [years] 0.50 0.83 0.60 1.00

Weight [kg] 0.96 0.31 1.30 0.82

Height [cm] -0.01 0.12 -0.10 0.03

BMI [kg/m2] 1.27 0.53 1.42 0.93

Body fat (Caliper) [%] 1.15 0.04 0.64 0.00

Body fat (Tanita) [%] 0.55 0.13 0.16 0.11

Waist circumference [cm] 0.86 0.36 0.82 0.58

Blood pressure

Systolic [mmHg] 0.82 0.38 1.04 0.00

Diastolic [mmHg] 0.57 0.30 0.52 -0.17

Glucose metabolism

Blood glucose [mg/dL] 5.72 0.40 13.63 0.30

HbA1c [%] 41.38 -0.00 25.73 0.33

Lipid metabolism

Total cholesterol [mg/dL] 0.31 0.13 0.66 0.30

HDL Cholesterol [mg/dL] 0.98 0.50 0.56 0.38

LDL Cholesterol [mg/dL] 2.29 0.18 11.75 0.28

Triglycerides [mg/dL] 3.89 1.22 10.65 1.37

Quantile-based skewness (QSK) was calculated according to [22, p. 14]. All

3,291 women and all 6,063 men from Frankfurt/Rüdesheim and Munich were

included.
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A.3 Regression modelling

Figure A.5: Apparent validation box plots: Comparing regression models.
Note: Quantiles are displayed as ● = 0.25, ▴ = 0.5, ◾ = 0.75. For apparent validation, the box
plots as well as the regression predictions were based on participants from Frankruft/Rüdesheim.
Age was modelled in classes.
Green: quantile regression using b-spline smoothing
Red: linear quantile regression model
Blue: polynomial quantile regression model
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Figure A.6: Apparent validation calibration plots.
Note: Quantiles are displayed as ● = 0.25, ▴ = 0.5, ◾ = 0.75.
For apparent validation, the observed values as well as the regression predictions were based on
participants from Frankruft/Rüdesheim.
Green: quantile regression using b-spline smoothing
Red: linear quantile regression model
Blue: polynomial quantile regression model

137



A
.3
.

R
E
G
R
E
S
S
IO

N
M
O
D
E
L
L
IN

G
A
.
A
p
p
en

d
ix

Table A.4: Regression coefficients and R squared for linear regression in calibration data for apparent validation. Comparison of three regression models.

Absolute V̇O2peak Relative V̇O2peak

Linear Spline Polynomial Linear Spline Polynomial

Women
Intercept 0.09 [-0.1 to 0.27] 0.01 [-0.19 to 0.19] 0.11 [-0.12 to 0.33] 2.03 [-0.35 to 4.13] 0.27 [-2.12 to 2.96] 1.06 [-1.29 to 3.35]
Slope 0.94 [0.86 to 1.04] 1 [0.9 to 1.1] 0.94 [0.83 to 1.05] 0.93 [0.85 to 1.01] 1 [0.91 to 1.09] 0.97 [0.88 to 1.05]
R squared 0.96 [0.92 to 0.99] 0.96 [0.92 to 0.98] 0.95 [0.92 to 0.99] 0.95 [0.89 to 0.98] 0.92 [0.79 to 0.98] 0.95 [0.9 to 0.98]

Men
Intercept 0.32 [0.02 to 0.64] 0.02 [-0.08 to 0.13] 0.26 [0.07 to 0.45] 6.21 [0.99 to 11.11] 1.16 [-0.62 to 3] 5.94 [1.35 to 9.91]
Slope 0.87 [0.76 to 0.98] 0.99 [0.96 to 1.03] 0.91 [0.84 to 0.97] 0.8 [0.65 to 0.96] 0.97 [0.92 to 1.02] 0.83 [0.71 to 0.96]
R squared 0.94 [0.88 to 0.99] 0.99 [0.99 to 1] 0.97 [0.95 to 0.99] 0.89 [0.8 to 0.96] 0.98 [0.96 to 0.99] 0.92 [0.85 to 0.97]

95% confidence intervals in square brackets.

Table A.5: Akaike Information Criterion AIC for different regression models.

Absolute V̇O2peak Relative V̇O2peak

Quantile Linear Spline Polynomial Linear Spline Polynomial

Female
.25 18562.02 18562.13 18563.99 2832.95 2830.88 2831.54
.50 18357.10 18358.27 18357.55 2623.22 2623.27 2623.08
.75 18794.05 18791.95 18790.79 3205.03 3201.94 3200.07

Male
.25 32693.45 32659.89 32672.15 8611.33 8597.82 8604.32
.50 32425.59 32388.06 32406.82 8175.13 8145.55 8152.83
.75 33269.80 33219.23 33242.66 8975.45 8954.71 8957.62
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A.4. INFORMED CONSENT A. Appendix

A.4 Informed consent

Figure A.7: Informed consent
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