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Abstract
Collaborative task solving in a shared environment requires referential success. Human

speakers follow the listener’s behavior in order to monitor language comprehension (Clark,

1996). Furthermore, a natural language generation (NLG) system can exploit listener gaze

to realize an effective interaction strategy by responding to it with verbal feedback in vir-

tual environments (Garoufi, Staudte, Koller, & Crocker, 2016). We augment situated

spoken language interaction with listener gaze and investigate its role in human-human

and human-machine interactions. Firstly, we evaluate its impact on prediction of reference

resolution using a mulitimodal corpus collection from virtual environments. Secondly, we

explore if and how a human speaker uses listener gaze in an indoor guidance task, while

spontaneously referring to real-world objects in a real environment. Thirdly, we con-

sider an object identification task for assembly under system instruction. We developed

a multimodal interactive system and two NLG systems that integrate listener gaze in the

generation mechanisms. The NLG system “Feedback” reacts to gaze with verbal feed-

back, either underspecified or contrastive. The NLG system “Installments” uses gaze to

incrementally refer to an object in the form of installments. Our results showed that

gaze features improved the accuracy of automatic prediction of reference resolution. Fur-

ther, we found that human speakers are very good at producing referring expressions,

and showing listener gaze did not improve performance, but elicited more negative feed-

back. In contrast, we showed that an NLG system that exploits listener gaze benefits the

listener’s understanding. Specifically, combining a short, ambiguous instruction with con-

trastive feedback resulted in faster interactions compared to underspecified feedback, and

even outperformed following long, unambiguous instructions. Moreover, alternating the

underspecified and contrastive responses in an interleaved manner led to better engage-

ment with the system and an effcient information uptake, and resulted in equally good

performance. Somewhat surprisingly, when gaze was incorporated more indirectly in the

generation procedure and used to trigger installments, the non-interactive approach that

outputs an instruction all at once was more effective. However, if the spatial expression

was mentioned first, referring in gaze-driven installments was as efficient as following an

exhaustive instruction. In sum, we provide a proof of concept that listener gaze can effec-

tively be used in situated human-machine interaction. An assistance system using gaze

cues is more attentive and adapts to listener behavior to ensure communicative success.
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Zusammenfassung

Natürliche Sprache ist unsere wichtigste Kommunikationsmethode und doch häufig vage

und schwer zu deuten. Um festzustellen, ob Zuhörer ihre Äußerungen gehört und ver-

standen haben, beobachten Sprecher daher deren nonverbalen Verhalten (Clark, 1996).

Daran kann erkannt werden, ob weitere Erklärungen nötig sind. Dieses Phänomen zeigt

sich insbesondere für gesprochene zielorientierte Interaktionen, die in einem situativen

Kontext eingebettet sind und in denen Effizienz wichtig ist. Dabei spielt der Blick

des Zuhörers eine bedeutende Rolle, weil die Blicke ein Anzeichen des Sprachverste-

hens sind (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). Referenzierende

Ausrücke beziehen sich auf ko-präsente Objekte und beschreiben ihre Merkmale, damit

der Zuhörer sie erkennen kann. Menschen können solche referenzierende Ausrücke ohne

großen Aufwand planen und spontan artikulieren, weil sie den Sprachproduktionsprozess

gut beherrschen. Dabei tendieren sie häufig dazu eine nicht minimale Beschreibung zu

äußern, die mehr Objekteigenschaften als nötig beinhaltet (Pechmann, 1989). Besonderes

häufig wird die Farbe eines Gegenstands erwähnt, obwohl sie manchmal redundant ist

und dadurch eine überspezifizierte Beschreibung entsteht. Die Farbe ist eine absolute

Charakteristik und wird gerne benutzt, weil man sie auf den ersten Blick wahrnehmen

und daher schneller verarbeiten kann. Die Objektgröße dagegen ist eine relative Charak-

teristik, die von dem jeweiligen Kontext bestimmt wird. Die Blickrichtung des Zuhörers

deutet darauf hin, wie ein referenzierender Ausdruck aufgelöst wird. In anderen Worten,

schauen die Zuhörer auf Objekte, die sie in Betracht ziehen und als nächstes bearbeiten

oder auswählen werden. Menschliche Kommunikation funktioniert meist dann gut, wenn

verschiedene Informationskanäle gut synchronisiert sind. Für Maschinen hingegen stellt

dies eine Herausforderung dar.

Mit der Generierung natürlicher Sprache (natural language generation NLG) befasst sich

ein ganzes interdisziplinäres Forschungsgebiet. Denn diese ist für eine Reihe von Anwen-

dungen wichtig: anfangend vom Wetterbericht bis zu intelligenten interaktiven Systemen.

Aufgrund dieser verschiedenen Anwendungsbereiche haben NLG-Systeme verschiedene

Ein- und Ausgabeformate und unterscheiden sich in ihrem Interaktivitätsgrad. Allerd-

ings müssen alle NLG-Systeme folgende Teilaufgaben bewältigen: 1) Inhaltsauswahl (was

gesagt werden soll), 2) Realisierung (wie es gesagt werden soll) und 3) Präsentation (ob

die Ausgabe als Text oder Audio erfolgt). Bei der Konzeption eines NLG-Systems kommt

es oft auf ein Kompromiss zwischen der Komplexität der Generierungsmethode und der



vi

Laufzeit, die für die Berechnung benötigt wird, an. Je komplexer der Ansatz der Sprach-

generierung ist, desto höher ist der Rechenaufwand. Daher eignen sich für Echtzeit-

Interaktionen eher weniger anspruchsvolle Techniken, während sich anspruchsvolle Tech-

niken für Offline-Anwendungen anbieten. Interaktive Systeme, die natürliche Sprache

benutzen, können multimodal gestaltet werden. So zeigten Garoufi et al. (2016) in

der GIVE Umgebung, dass ein NLG-System effektiv den Zuhörerblick benutzen kann.

Hier hatte das NLG-System den Zuhörer durch ein virtuelles Labyrinth geführt, indem

es navigierende Anweisungen generierte. An jeder Wand in dem Labyrinth befindeten

sich verschiedene Knöpfe. Das NLG-System generierte eindeutige Objektbeschreibungen,

damit der Zuhörer bestimmte Knöpfe identifizieren und betätigen konnte, um mit der

Aufgabe weiterzukommen. Sobald der Zuhörer ein Objekt betrachtete, wertete das Sys-

tem mit Hilfe von Eyetracking Technologie aus, ob das Zielobjekt im Fokus ist. In diesem

Fall wurde eine Bestätigung (“Ja, genau das!”) geliefert, ansonsten eine Warnung (“Nein,

nicht das!”). Dieses System wurde mit einem Basissystem verglichen und die Benutzung

der Augenbewegungen hat eine signifikante Verbesserung der Erfolgsrate erzielt. Während

dies zeigt, dass der Zuhörerblick nützlich sein kann, ist allerdings noch unklar, ob und wie

menschliche Sprecher ihre verbalen Anweisungen in der “realen Welt” anpassen, wenn ih-

nen der Zuhörerblick zur Verfügung steht. Weiterhin ist unklar, ob NLG-Systeme in realen

Setups den Zuhörerblick nutzen. Das Ziel dieser Dissertation ist es, diese Forschungsfragen

zu untersuchen. Dafür wurden das Zusammenspiel von Sprache und Augenbewegungen

in verschiedenen Mensch-Mensch und Mensch-Maschine Setups betrachtet. Diese Arbeit

addressiert drei Szenarien, in denen die Rolle des Zuhörerblicks untersucht wurde.

Zuerst betrachten wir ein virtuelles Scenario und die Aufgabe, automatisch die Auflösung

eines referenzierenden Ausducks vorherzusagen. Engonopoulos, Villalba, Titov, and Koller

(2013) entwickelten dafür zwei probabilistische Modelle, machten sich Maschinelles Ler-

nen zunutze und evaluierten diese in der GIVE Umgebung. Das erste Model wertet den

linguistischen Kontext und das zweite Model den visuellen Kontext aus. Da beide Modelle

komplämentäre Informationen verarbeiteten, war die beste Akkuratheit mit der Kombi-

nation von beiden erzielt. Wir erweiterten das zweite probabilistische Model, so dass die

Blickbewegungen des Zuhörers berücksichtigt werden, z.B. wie oft ein Objekt angeschaut

wurde. Dafür wurden Eyetracking Features entwickelt. Außerdem wurde die Trainigs-

und Testmethode angepasst, um sequentielle Daten mit der 10-cross-fold-validation

Methode zu testen. Es zeigte sich, dass das Blickverhalten an sich nicht ausreicht, um eine

sehr gute Genauigkeit zu erreichen. Die Kombination aus Blickbewegungen und den Fea-

tures des Basismodells, die Salienz und Distanz zum Zielobjekt berechnen, führt jedoch zu
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einer Verbesserung der Vorhersagegenauigkeit. Dies gilt insbesondere für unübersichtliche

visuelle Kontexte mit mehreren Objekten, welche die gleichen Eigenschaften aufweisen

und daher schlecht differenziert werden können. Diese zusätzliche Information ist zum

früheren Zeitpunkt in der Interaktion aufschussreich, was wichtig für Interaktionen in

Echtzeit ist, damit die Sprachausgabe rechtzeitig (z.B. bevor nach einem Objekt gegriffen

wird) angepasst werden kann.

Das zweite Szenario ist “Schatzsuche” – Navigation in Gebäuden: Ein Feldexperiment mit

zwei Teilnehmern, das sich mit der Frage befasst, ob die Verfügbarkeit des Zuhörerblicks

zu einer besseren Mensch-Mensch Interaktion beiträgt. In diser explorativen Studie wurde

das Zusammenspiel von Augenbewegungen und Sprache untersucht und dabei die Sicht-

barkeit des Zuhörerblicks für den Sprecher manipuliert. Jedem Teilnehmer wurde eine

Rolle zugeteilt, entweder als Sprecher, der spontan Richtungen angibt und identifizeirende

Anweisungen produziert oder als Zuhörer, der die Anweisungen folgt, herumläuft und bes-

timmte Objekte nötig für neun unterschiedliche Alltagsszenarien, wie beispelsweise Brief

schreiben, identifiziert. Es wurde erwartet, dass die Verfügbarkeit des Zuhörerblicks zu

kürzeren Interaktionszeiten und mehr deiktischen Ausdrücken führt, weil Sprecher sehen,

worauf gerade die Zuhörer schauen. Die Ergebnisse zeigen jedoch, dass der Zuhörerblick

keinen Einfluss auf die Performanz hatte aber die Sprecher tendierten dazu, mehr negatives

Feedback zu äußern, wenn sie ihn gesehen hatten, sie versuchten also, Missverständnisse

zu verhindern.

Unser drittes Szenario is Modellbau unter Systemanweisungen. Der Kernaspekt dieser

Arbeit ist die Entwicklung eines mulimodalen Assistenzsystems mit den zwei darin einge-

betteten NLG-Systemen, “Feedback” und “Installments”. Beide Systeme generieren au-

tomatisch identifizierende Anweisungen. Drei empirischen Studien wurden durchgeführt,

die weitere wissenschaftliche Evidenz für die Nützlichkeit des Zuhörerblicks und seine

Integrität in Interaktiven NLG Systemen liefern. Das Assistenzsystem berücksichtigt

die Augenbewegungen des Zuhörers mithilfe eines mobilen Blickbewegungsmessers (Eye-

Tracker) in einer realen Umgebung, um die Sprachausgabe in Echtzeit anzupassen. Um

eine reale Szene in ein virtuelles Modell umzuwandeln und ermitteln zu können, wohin

ein Zuhörer schaut, wurde die Technik der erweiterten Realität (Augmented Reality)

verwendet. Durch diese Realisierung ist das Assistenzsystem aufmerksam und adap-

tiv hinsichtlich des Nutzerverhaltens. Da der Zuhörerblick ein zuverlässiger Hinweis auf

Sprachverstehen ist, kann er dazu beitragen Mensch-Maschinen Interaktionen effektiver

und angenehmer zu gestalten. Gleichzeitig ist das Augenbewegungssignal kontinuierlich,



viii

sehr rapide, dynamisch und individuell. Aus diesen Gründen ist es nicht trivial die Au-

genbewegungen im Sprachkontext zu interpretieren. Um ein Blickbewegungssignal richtig

zu deuten, braucht man das Wissen über die zugrundeliegenden Verarbeitungsprozesse.

Zunächst werden sogenannte Eye-Tracking-Events extrahiert: Fixationen weisen auf das

Betrachten eines Objekts hin; Sakkaden sind dagegen schnelle Bewegungen beider Augen,

die einen neuen Fixationspunk erfassen. Diese Arbeit bezieht sich auf Inspektionen von

Objekten, also längere Fixationen, deren Schwellenwert je nach Setup angepasst werden

kann. Anhand dieser Inspektionen von Objekten kann das entwickelte System feststellen,

ob eine Anweisung richtig verstanden wurde. Das erste NLG-System “Feedback” gener-

iert entweder kurze, mehrdeutige oder lange, ausführliche Anweisungen und reagiert auf

Objektinspektionen mit verbalem Feedback. Das Feedback hat unterschiedliche Spezi-

fität, nämlich warnend und unspezifisch (z.B. “Nein, nicht das!”) oder informativ und

kontrastiv, indem die Position des Zielobjekts relativ zu dem jetzigen Fixationspunkt

berechnet und als Richtungsanweisung ausgegeben wird (z.B. “Weiter links!”). Diese weit-

erführende Information soll die Suche eingrenzen und durch eine resultierende verkürzte

Interaktionszeit eine effizientere Interaktion realisieren. Das zweite NLG System “In-

stallments” implementiert die inkrementelle Generierung von identifizierenden Anweisun-

gen und gibt eine Objektbeschreibung in aufeinanderfolgenden Phrasen aus (so genannte

Installments). Jede Phrase liefert eine Teilbeschreibung des Zielobjektes, wobei es in

Abhängigkeit des Blickverhaltens zu einer unterschiedlichen Anzahl der Installments in

der Systemausgabe kommt. Des Weiteren kann das System eine lange, vollständige Objek-

tbeschreibung generieren, indem es alle Phrasen aneinander zusammenfügt. Jedes System

bietet zwei unterschiedliche Interaktionsstile an: passiv/nicht interaktiv gegenüber inter-

aktiv. In der ersten empirischen NLG-Studie wurden Versuchspersonen eingeladen, mit

dem NLG-System “Feedback” zu interagieren. Es wurde zum einen untersucht: ob eine

mehrdeutige Anweisung kombiniert mit blickgesteuertem Feedback in realer Umgebung

effizienter als eine ausführliche Anweisung sein kann. Witerhin wurde geprüft, wie sich

die Spezifizität des Feedbacks auf die Performanz auswirkt. Dafür wurden zwei Gruppen

getestet bei denen der Interaktionsstil als Within-Subject-Faktor und die Feedbackspez-

ifizität als Between-Subject-Factor manipuliert wurden. Die Versuchspersonen wurden

instruiert die Systemanweisungen zu befolgen und möglichst präzise bestimmte LEGO

Duploteile zu identifizieren und mit denen ein kreatives Model zusammenzubauen. Die

Ergebnisse zeigen, dass die Versuchspersonen in der ersten Gruppe signifikant schneller

waren, wenn sie eine ausführliche Objektbeschreibung gehört haben als wenn sie eine
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mehrdeutige Objektbeschreibung mit unspezifischem Feedback erhalten haben. Die Rich-

tung dieses Haupteffekts wändete sich in der zweiten Gruppe: Eine unspezifische An-

weisung mit informativem Feedback konnte eine ausführliche Anweisung übertreffen. In

der zweiten empirischen NLG-Studie wurde die Rolle der Feedbackspezifizität näher betra-

chtet und diese als Within-Subject-Faktor abwechselnd für jede Anweisung manipuliert.

Interessanterweise war die Kombination aus einer mehrdeutigen Beschreibung mit unspez-

ifischem Feedback nun nicht mehr benachteiligt. Die Erwartungshaltung hinsichtlich der

Systemfähigkeiten scheint für die Performanz ausschlaggebend zu sein. Wenn die Benutzer

eine informative weiterführende Information erwarten, können sie eine nicht sonderlich

informative Information besser verarbeiten und ebenso schnelle Interaktionszeiten erre-

ichen. In der dritten empirischen NLG-Studie wurden die Versuchspersonen dazu einge-

laden, mit dem NLG-System “Installments” zu interagieren. Es wurde untersucht, welcher

Ansatz der Informationslieferung (Installments vs. NoInstallments) effizienter ist. Um eine

inkrementelle Objektbeschreibung zu generieren, reagiert das NLG-System “Installments”

auf Augenbewegungen eher indirekt (also nicht relativ zu dem Fixationspunkt), um die

nächste Phrase auszulösen. Darüber hinaus variert die Informationsanordnung über die

Position des Zielobjekts und über die Objekteigenschaften. Beide experimentellen Fak-

toren wurden als Within-Subject-Faktor manipuliert. Die Datenauswertung zeigt, dass

hier die lange Variante schneller ans Ziel geführt hat als die schrittweise ausgegebene

Beschreibung. Allerdings war die inkrementelle Variante genauso effizient wie die lange,

ausführliche Variante, wenn die Objektposition am Anfang der Anweisung spezifiziert war,

weil auf diese Weise der Suchraum von vornherein eingeschränkt war. Interessanterweise

generierte das NLG-System in disem Fall mehr Installments, d.h. es liefert mehr Teilob-

jektbeschreibungen, als wenn die Position an der zweiten Stelle erschien. Das lässt sich

durch die Tatsache erklären, dass die Zuhörer konkurrierende Objekte betrachteten, um

beispielsweise die Größe eines Objekts in Relation zueinander zu setzen.

Zusammenfassend hat diese Arbeit die Rolle des Zuhörerblicks aus verschiedenen Blick-

winkeln betrachtet und diese Modalität in Mensch-Mensch und Mensch-Maschine Inter-

aktion integriert. Diese Integration war für menschliche Sprecher während der Sprachpro-

duktion schwer zu interpretieren, weshalb sie sich nicht auf die sprachlichen Ausdrucken

auswirkte. Die Information über das Blickverhalten des Zuhörers hat jedoch die automa-

tische Vorhersage der Referenzauflösung verbessert. Des Weiteren liefert die vorliegende

Arbeit den Wirksamkeitsnachweis, dass ein Assistenzsystem, welches identifizierende An-

weisungen in natürlicher Sprache automatisch generiert, dem Zuhörerblick effektiv nutzen

kann. Dies minimiert die Fehlerrate beim Greifen von Objekten und kann zu schnelleren
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Interaktionszeiten führen. Der Zuhörerblick erweist sich auch hier als ein verlässliches

Anzeichen des Sprachverstehens, welches eine positive Auswirkung auf Mensch-Maschine

Interaktion hat.
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Chapter 1

Introduction

1.1 Motivation and Context

Natural language is our usual mean of communication. However, sometimes it can be dif-

ficult to interpret language without further cues, specifically in spoken interaction when

referring to co-present objects. That is, the same linguistic expression can be resolved

to different entities depending on the current situation and visual context. Consider, for

instance, the utterance “The next thing you need is this!”: it contains a deictic expression

“this”, which is unspecific and can be resolved to different entities depending on the visual

context. In Figure 1.1 two sample scenarios are presented. In the situation depicted in

the left picture the expression will be resolved to “a shelf panel” as opposed to the right,

where it will be resolved most probably to “spinach”. Additionally, in the left picture there

are multiple shelf panels and so other non-verbal cues like gestures and gaze play a very

important role: They can be used to disambiguate an expression and thereby facilitate

referential success. Specifically, the eye movements of the human interlocutors indicate

their intentions. That is, human speakers look at co-present objects they are about to

mention (Griffin & Bock, 2000) and listeners’ eye movements mirror language comprehen-

sion, meaning that listeners inspect relevant objects matching a description (Tanenhaus

et al., 1995). It often happens that such an ambiguous referring expression can be mis-

understood. Depending on the context and task under consideration, a misunderstanding

can have different consequences. In the cooking scenario, putting the ingredients in a

1
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Figure 1.1: Example visual contexts, where a deictic expression like “this” is resolved
either to “a shelf panel” or most probably to “spinach”.

different order might affect the taste of the meal. On the other hand, in the assembly sce-

nario, if the listener misunderstands a referring expression and grasps an incorrect object,

which cannot be assembled into the available construction, then she should put it back

and search further for the suitable one. This leads to longer interaction time because the

speaker has to clarify, for example, by giving a more specific description. Thus, avoiding

misunderstandings saves time and results in more efficient interaction. For this reason

speakers monitor visual behavior and adapt their utterances to it, for example by provid-

ing verbal feedback such as “No, I don’t mean that!” In other words, situated interaction

involves various modalities to achieve communicative success because it takes place in a

shared (physical) environment, which is particularly important for goal-oriented scenar-

ios such as collaborative assembly, where a mutual goal has to be achieved. Although

human interlocutors can align and interpret different modalities intuitively, this poses a

challenge for assistance systems. Such systems aim to support a user in collaboratively

solving a task and need to process multimodal cues automatically in order to be attentive

to changes in the environment and adaptive to the user’s behavior. But interpreting the

numerious cues is not trivial and sometimes impossible even for humans.

In the following we identify three different scenarios touching upon three adjacent research

areas before we formulate the research questions that we have tackeled in this thesis (in

Section 1.2).

Human-human interaction In collaborative task solving, grounding is crucial to

achieve communicative success. Grounding is the process of interlocutors’ validation of

each other’s mental models. In other words, speakers observe listeners to detect if their

communication message was received and understood (Clark, 1996). Specifically, they
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monitor listener’s understanding and the mapping of a meaning to the world by consider-

ing listener gaze (Clark & Krych, 2004; Brown-Schmidt, 2012). Gaze has been shown to

be a reliable indicator of reference resolution (Cooper, 1974) because listeners look at ob-

jects they believe are being referred to by the speaker (Tanenhaus et al., 1995; Eberhard,

Spivey-Knowlton, Sedivy, & Tanenhaus, 1995). Importantly, such gaze cues are closely

time-locked to a referring expression (Allopenna, Magnuson, & Tanenhaus, 1998). Most

of this evidence is based on very controlled laboratory settings using predefined utterances

and simple visual scenes. In more dynamic setting that involve two interlocutors, the role

of listener gaze is typically studied in face-to-face interactions and not interpreted from

the egocentric perspective of the listener. A considerable exception is the work by Brown-

Schmidt and Tanenhaus (2008), who present two experiments, in which they monitored

gaze and speech, while pairs of näıve interlocutors engaged in a referential communication

task. Their results demonstrate that gaze can be used to examine real-time processing

during free interactive conversation. In another explorative study, Brennan, Schuhmann,

and Batres (2013) investigated communication in the wild for outdoor navigation. They

examined referring expressions and lexical choice during remote pedestrian guidance with

human interlocutors, and reported that there is a strong degree of lexical entrainment and

that the efficiency is affected by the direction giver’s spatial ability. However, they did

not take listeners’ eye movements into account. Inspired by their setting, we identify our

first scenario and design an experiment to investigate the interplay of spontaneous spoken

instructions and listener gaze in an indoor guidance task.

Human-machine interaction An artificial speaker, also known as natural language

generation (NLG) system, is capable of automatically planning and creating sentences,

instructions or discourse from a machine representation. An NLG system can assist a user

to solve a task collaboratively, as was proposed in the GIVE challenge (Koller, Striegnitz,

Byron, et al., 2010). The effective use of listener gaze as an index of understanding

has been shown to improve human-machine interaction in virtual environments (Koller,

Staudte, Garoufi, & Crocker, 2012; Staudte, Koller, Garoufi, & Crocker, 2012; Garoufi

et al., 2016). There, an interactive NLG system guided a human listener through a

virtual maze, referred to specific buttons to be pressed and provided gaze-based feedback

on button inspections. Importantly, interacting with the gaze-sensitive system resulted

in better performance (lower error rate) than interacting with a baseline system that

did not consider listener’s eye movements and did not give feedback. An offline study
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by Engonopoulos et al. (2013) on a corpus collection from the GIVE challenge investigated

the problem of automatically predicting how a referring expression (RE) will be resolved.

They achieved accurate prediction of reference resolution by combining two probabilistic

log–linear models: a semantic model, evaluating the semantics of a given instruction, and

an observational model, evaluating listeners’ behavior. Notably, the best accuracy of the

observational model was measured in a relatively late stage of the interaction. Similar

observations are reported by Kennington and Schlangen (2014), who compared listener

gaze and an incremental update model as predictors for the reference resolution. However,

Engonopoulos et al. (2013) did not consider listener gaze. Thus we take this setup to be

our second scenario for investigating the usefulness of listener gaze and augment the

observational model with eye-tracking features to capture listener’s attention.

Collaborative Assembly In contrast to human-machine interaction, where the pleas-

antness of the interaction and the politeness of a system are important aspects, the area

of collaborative assembly focuses mostly on efficiency and does not necessarily use natu-

ral language to communicate which object is needed. There is a large body of work on

assembly tasks in virtual and real setups, but less has been done to investigate the role

of listener gaze in such scenarios. For example, Kopp, Jung, Leßmann, and Wachsmuth

(2003) examined interactive assembly using a virtual agent. The agent is capable of in-

structing a human listener on how to build a pre-defined model. If it recognizes a failure,

then the agent informs the listener about it and the virtual agent undoes the wrong

step. Handling such errors takes additional effort and time. This required multimodal

reference resolution in a dynamic virtual environment (Pfeiffer & Latoschik, 2004). An-

other study by Kirk, Rodden, and Fraser (2007) considered the role of remote gestures

in human-human assembly tasks and showed that gestures offer positive benefits for col-

laborative performance. Neither study looked at the role of listener gaze, as they focused

on other modalities. In contrast, Sakita, Ogawara, Murakami, Kawamura, and Ikeuchi

(2004) considered human-robot collaboration using non-verbal cues and proposed a more

flexible task management strategy for a LEGO assembly task by allowing a free choice

the next assembly step. Tracking the assembler gaze to predict the next action allowed

simultaneous assembly, which led to an efficiency gain. Further, Fischer et al. (2015)

investigated social gaze in human-robot interaction for assembly, and demonstrated its

importance for quicker engagement with the robot and feeling more responsible for the

task performance. However, the exact temporal alignment of the user’s object-directed
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gaze with spoken instructions has not been assessed. This could be beneficial because

gaze is an early indicator of the listener’s intentions (Altmann & Kamide, 1999). An

exception is the work by Fang, Doering, and Chai (2015), who proposed a collaborative

referring expression generation algorithm for situated human-robot interaction. They fo-

cused more on embodiment and the robot’s gestures, but also incorporated listener gaze

to refer to objects incrementally in installments. Their results showed a performance drop

when using listener gaze, which may be explained by the choice of the method they used

to interpret the gaze signal.

Our third scenario is automatic, interactive instruction-giving for collaborative assembly

in a real environment. Specifically, we developed a multimodal instruction-giving system

that generates referring expressions to identify objects and interprets the listener’s eye

movements to adapt its verbal output. The listener grasps the objects and assembles

them to an individual model.

1.2 Research Aims and Contributions

The main objective of this thesis is to investigate the utility of object-directed listener

gaze for efficient communication.

We address this topic in different settings. Efficient communication is particularly im-

portant for goal-oriented scenarios, where misunderstandings could lead to mistakes that

require correction, leading to longer interaction times. Thus we investigate if a speaker

(human or artificial) who gives instructions to a human listener can effectively use lis-

tener gaze to better refer to co-present objects and reason about the listener’s intentions.

Human speakers would be then more rational by adapting to the listener’s focus of atten-

tion and by using the gaze indicator to cooperate more effectively. An assistance system

that tracks and integrates listener gaze into the automatic generation of identifying in-

structions offers an attentive and interactive behavior, which could lead to more efficient

communication.

The first research question we pose is whether listener gaze can improve automatic pre-

diction of reference resolution. We report on the extension of a probabilistic observational

model to also consider a listener’s gaze behavior. More precisely, we describe how we
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implemented features that encode listener’s eye movement patterns and in this way we

take the listener’s perspective into account. Then we evaluate their performance on a

multimodal data collection for interactions in virtual environments. We show that such

a prediction model, which is aware of the listener’s gaze position, is more accurate espe-

cially when the referential scene is complex with many competitors available next to the

target. The results from this study were published in the proceedings of the Association

for Computational Linguistics ACL 2015 (Koleva, Villalba, Staudte, & Koller, 2015).

Our second aim was to assess if and how a human speaker uses listener gaze in a real

world task because listeners gaze reliably indicates language understanding. For this, we

designed an exploratory study that involves spontaneous spoken instructions in a real

environment while we manipulated the listener’s gaze availability to the speaker (in the

form of a cursor). The speaker remotely guided a näıve listener though a hall to find the

next table and collect specific objects associated with everyday tasks. Gaze availability

had no effect on the performance, but human speakers were already very good at this task.

However, gaze behavior differed before and after, but not while an instruction was being

spoken, suggesting that it was used more deliberately. Further, we observed that speakers

produced more negative feedback when they could see the gaze cursor. We observed

that the manipulation of availability of listener gaze position to the speaker had a main

effect on listener gaze before and after an utterance, but not while an instruction was

being spoken. Gaze availabilty further affected the type and amount of feedback given by

speakers. Our findings have been published in the proceedings of the Annual Meeting of

the Cognitive Science Society 2015 (Koleva, Hoppe, Moniri, Staudte, & Bulling, 2015).

Our third aim, and potentially the largest contribution of this thesis, is to examine if an

NLG system that uses listener gaze can lead to more efficient interactions. We designed,

implemented and tested two interactive NLG systems that use augmented reality technolo-

gies (Pfeiffer, 2012; Pfeiffer & Renner, 2014) to monitor listener gaze in real environment.

The scenario we consider is collaborative assembly. We created complex referential scenes

such that the generation of a uniquely identifying description was challenging. We used a

toy scenario, where participants had to identify specific building blocks for constructing

a LEGO model. We provide as a proof of concept an assistance system that can use

listener gaze in real setups to facilitate collaboration and improve performance. As has

been shown in virtual environments, using listener gaze can minimize error rate. Our work
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extends previous findings by splitting the information into more chunks rather than gen-

erating a one-shot reference. We hypothesize that the incremental approach would lead

to quicker (more efficient) task solving as it monitors listener gaze behavior and adapts

the verbal output. A cooking task or building a LEGO model are often considered for

evaluating assistance systems (cf. Section 2.2). Beyond these toy scenarios there are a

number of other applications where a small improvement can have a large impact. For

example, in the manufacturing industry, a wrong step in the production on an assembly

line could be propagated and damage the end product. An assistance system that detects

such mistakes in advance and gives a warning before they happen can save resources (time

and money).

Technical Contributions Our NLG system “Feedback” uses listener gaze to provide

feedback proactively to the user. We replicate findings from virtual environments that

gaze-based feedback is beneficial. We further provide evidence that splitting the infor-

mation into an ambiguous instruction and more informative feedback, which can also be

thought of as referring in interactive installments, improves task performance and even

outperforms following an unambiguous, exhaustive instruction. These results have been

published in the proceedings of the Annual Meeting of the Cognitive Science Society 2018

(Mitev, Renner, Pfeiffer, & Staudte, 2018). Further, we found that the informativity of the

gaze-driven feedback determines the engagement of the listener with the system. These

results have been published in “Attention in Natural and Mediated Realities”, a special

issue of the journal “Cognitive Research: Principles and Implications” of the Psychonomic

Society. Our NLG system “Installments” uses listener gaze more indirectly and incorpo-

rates this non-verbal cue into the generation algorithm. It implements two information

delivery approaches to refer to co-present objects, either in gaze-driven installments or by

providing a full description at once. Our results showed that following a full instruction

(all installments concatenated) was faster than gaze-driven installments triggered by ob-

ject inspections. However, mentioning the position of the searched-for object first made

installments equally efficient as acting out an exhaustive instruction, suggesting that it is

an effective information delivery approach for collaborative task solving.
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Outline of the thesis:

Chapter 2 gives background information and discusses related work for both topics, natu-

ral language generation and listener gaze in situated interactions. In Chapter 3 we present

the extension of a probabilistic observational model targeted to automatically predict ref-

erence resolution. We propose eye-tracking features that capture listeners’ attention and

evaluate the performance of the model. Further, in Chapter 4, we present an exploratory

study that aims at assessing if and how a human speaker uses listener gaze when sponta-

neously referring to co-present objects. The main focus of this thesis is how an artificial

speaker can use listener gaze to tune natural language generation. In Chapter 5 we present

a multimodal interactive system (GazInG) that monitors listener gaze, and two NLG sys-

tems, “Feedback” and “Installments” to generate identifying spoken instructions on the

fly in real environments. In order to assess the usefulness of listener gaze in this scenario,

we designed and conducted three experiments. In Chapter 6 we present the first two

experiments investigating the interaction with the NLG system “Feedback” and report

on the effects of gaze-driven verbal feedback on performance. The third experiment is

described in Chapter 7; it assessed the interaction with the NLG system “Installments”

and whether an incremental instruction generation benefits listener understanding. Fi-

nally, we discuss limitations and address directions for future research in Chapter 8 before

making our final conclusions.



Chapter 2

Background

In this chapter we present the scientific background relevant to natural language genera-

tion and the role of gaze in interaction specifically for assistance systems.

2.1 Natural Language Generation (NLG)

Natural language generation (NLG) is a sub-field of computational linguistics and focuses

on computational systems that automatically produce natural language texts and speech.

NLG systems are important for various applications ranging from weather reports to

intelligent interactive systems. Thus NLG systems have different input and output formats

and support different degrees of interactivity. However, all types of NLG systems face

the problems of content selection (what to say), surface realization (how to say it) and

presentation of the generated material, i.e. output text, speech with suitable intonation

or even non-verbal cues. Making decisions for all steps represents a challenge, as there is

no single correct solution but rather multiple options, and deciding on a specific one could

be influenced by subjective preferences and creativity, which complicates the evaluation

of such a system (Stent & Bangalore, 2014). There is always a trade-off when designing

and implementing an NLG system concerning the complexity of the generation algorithm

and its run time, i.e. depending on the end application, one could optimize for speed using

a shallow generation approach, or for the advancement of the generation technique using

a deep generation approach. Hybrid approaches combine both in order to benefit from

their advantages (e.g. Klarner & Ludwig, 2004).

9
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There are numerous approaches proposed for natural language generation. Depending on

the goal of the application one or the other could be more or less suitable due to what

constraints are involved. For example, an NLG system that is targeted to be used in

real-time interactions requires a fast generation method in order to compute the output

on the fly during an interaction. In contrast, if the goal of the NLG system is to offer

a more sophisticated generation method that, for instance, simulates processes of human

language production (and the system’s output is optimized for quality), then this could be

computationally expensive and would need to be done offline. Such an approach is suit-

able for applications that output natural language but do not involve active interaction,

e.g. automatic text summarization. Ideally an NLG system overcomes the disadvantages

of both approaches; thus, hybrid generation approaches are becoming more popular.

Our work focuses on the generation of identifying instructions that contain referring ex-

pressions. Referring expressions are verbal descriptions of an entity that allow a compre-

hender to identify it. They are commonly used and are relevant for any type of interaction

but are particularly important for situated communication. Human speakers are very good

at producing a description of a target object such that it is distinguished from other co-

present competitor objects. A referring expression has to be informative enough to enable

unique identification of a target object. The semantic content of a referring expression

is usually chosen to contrast the target object from competitors. There is evidence that

human speakers tend to mention redundant attributes and produce so-called overspecified

referring expressions; that is, they mention more attributes of the target object than are

needed to uniquely describe it (Engelhardt, Bailey, & Ferreira, 2006; Koolen, Gatt, Goud-

beek, & Krahmer, 2011). Some object attributes are preferred over others. Specifically,

speakers often mention absolute attributes like color even if it is redundant (Pechmann,

1989). Further, Belke and Meyer (2002) found out that color is more frequently used in

overspecified descriptions than a relative attribute like size. On the other hand, auto-

matic generation of referring expressions faces the problem of attribute selection, i.e. how

to decide which attributes to mention such that the comprehender is able to identify a

target. The discriminatory power of an attribute plays an important role, that is, how

many objects would be excluded by mentioning a specific object attribute. Further evi-

dence suggests that, in highly interactive settings, referring in installments is a common

phenomenon. That is, speakers provide the information incrementally by presenting it not

all at once, but in subsequent chunks, to the listener (Striegnitz, Buschmeier, & Kopp,

2012). An example from their study and data collection in the GIVE challenge is S: “the
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blue button” ... L: [moves and then hesitates] ... S: “the one you see on your right” ... L:

[starts moving again] ... S:“press that one”. Indeed, speakers often start speaking before

they have planned the entire utterance, especially if they are under time pressure. They

are thereby able to adapt to changes in the surroundings and the listeners’ signals. How-

ever, whether an interactive system can also successfully adapt to the listener’s behavior

remains unclear. In the following, we review various approaches proposed to solve the

problem of automatically generating referring expressions in natural language.

Already two decades ago, Dale and Reiter (1995) proposed an incremental algorithm for

generating simple referring expressions similar to those produced by human speakers in

accordance with the Gricean maxims (Grice, 1975). Their algorithm does not encode

the ranking of attributes, but models human preferences based on empirical evidence.

However, depending on the task and domain, the preferences could be different. The

problem of automatically generating referring expressions is usually divided into three

steps: 1) selection of the expression type, 2) selection of pre- and post-modifiers specifying

object attributes like color, size etc., and 3) their realization in the form of linguistic

expressions (Reiter & Dale, 2000). Krahmer, van Erk, and Verleg (2003) proposed a

graph-based approach and framed the problem as finding the sub-graph that minimizes

cost. Their approach also assumes that some attributes are preferred over others and are

thus associated with a lower cost.

Simple approaches provide computationally efficient generation that is suitable for real

time applications. In order to realize an adaptive behavior, the system has to accommo-

date its verbal output to the user’s behavior and changes in the environment. Thus the

generation and output of natural language expressions should happen on the fly and can-

not be done in advance. Another important aspect for designing an interactive system is

domain independence, i.e. switching to another domain does not require re-implementation

of the generation algorithm, and existing modules are portable to other applications.

A very simple approach is to use canned text that is defined prior to runtime and is

presented whenever triggered without any adaptation because the linguistic output is

static. For this, template-based realization is used; that is, the templates are pre-defined

and during runtime slot filling is applied (e.g. Channarukul, 1999). Another method is to

use a rule-based approach for generation by defining a grammar that encodes the syntactic

structure of the utterances an NLG system can generate (e.g. DeVault, Traum, & Artstein,

2008). There are some systems that use a hybrid approach by combining template and
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rule-based generation for spoken dialogue applications (e.g. Stent, 2001; Galley, Fosler-

Lussier, & Potamianos, 2001). In the existing literature the opposition of template vs. real

generation has been discussed (Reiter, 1995; Van Deemter, Krahmer, & Theune, 2005).

Template-based systems are not as easy to extend and maintain as linguistically-based

systems, where building additional functionality does not require major changes such as

rewriting templates.

Later on, the GIVE challenge addressed more advanced NLG and tested different meth-

ods for instruction generation in situated communication (Koller, Striegnitz, Byron, et al.,

2010). There, an NLG system guided a human listener through a virtual maze, referred to

specific buttons to be pressed and thus proposed objective evaluation metrics for an NLG

system. Different approaches for generating referring expressions have been developed

and tested in the GIVE framework, which offers more objective evaluation of NLG sys-

tems in virtual environments. For such a dynamic task, the adaptation of the instruction

generation to the constantly changing visual context is necessary. Stoia, Shockley, Byron,

and Fosler-Lussier (2006) presented a machine learning approach that interleaved navi-

gational and discrimination information to better control the situated context. Further,

Garoufi and Koller (2010) presented a natural language generation method that made use

of AI planning techniques. They exploited non-verbal context in situated interactions and

guided the listener to a location, which is convenient for the generation of simple refer-

ring expressions with context-dependent adjectives. Both approaches plan and output a

reference as a single noun phrase, the so-called “one-shot” reference. However, splitting

a referring expression into shorter information chunks can be beneficial. For instance,

Mitchell, van Deemter, and Reiter (2013) proposed a method for generating expressions

to refer to co-present objects, and they separated absolute form relative properties, which

often resulted in overspecified expressions. Their algorithm was evaluated in two do-

mains and was shown to outperform previously proposed algorithms by Dale and Reiter

(1995), Krahmer et al. (2003) and Viethen, Dale, Krahmer, Theune, and Touset (2008).

Another study by Kelleher and Kruijff (2006) focused on generating spatial expressions

incrementally. Their work focuses on expressions that describe the spatial relation of a

target object to a reference object, also known as a landmark. Object descriptions that

specify the position of the target object relative to a landmark could be computationally

expensive due to the high number of combinations. They address this issue and exemplify

their approach on a static scene with the long-term goal to apply such an algorithm in
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situated dialog for the development of conversational robots. The production of viewer-

centered expressions (such as “on the left”) involves perspective-taking, which abstracts

from spatial relations. Depending on the setting, such expressions might be preferred, as

they might be more appropriate. For example in the GIVE-2 challenge, there were more

viewer-centered spatial expressions than expressions containing a spatial relation (Koller,

Striegnitz, Gargett, et al., 2010). Our approach is to use the listener’s gaze position

and to specify the relative position of the target object; in this manner, we avoid the

issue of searching for a landmark. More recently, the generation of installments, that is,

referring expressions delivered piece-wise instead of being output all at once, was also

shown by Zarrieß and Schlangen (2016) to improve performance on object identification

in real-world pictures. They first output an easy expression; if it is not understood, then

try to combine it with another one or paraphrase it. Their findings suggest that such a

generation approach enhances identification of real objects depicted in static images and

has a stable success rate over time. Further, Villalba, Teichmann, and Koller (2017) pro-

posed the generation of contrastive referring expressions. They presented a static scene

to the user, asking them to select an object that matches a written description. Their

system detects misunderstandings of a referring expression whenever the wrong object

was selected. Then it generates contrastive referring expressions that emphasize other

object attributes in order to achieve communicative success. This strategy was shown to

be effective and also preferred by the users’.

In this thesis, we investigate NLG for situated spoken interaction inspired by the GIVE

challenge but switching to a real environment. Further, we examine whether interpreting

listener gaze could be utilized for incremental generation of identifying instructions in

dynamic setups, as opposed to Zarrieß and Schlangen (2016), who consider static scenes.

The task we used is collaborative assembly in a real environment. We focus on interpreting

listener gaze behavior with respect to referring expression resolution. For that, we built

a multimodal interactive system and developed two NLG systems embedded in it that

use gaze cues to detect misunderstandings early on and either proactively generate verbal

feedback (see Section 5.2.2, NLG system “Feedback”) or trigger the next installment (see

Section 5.2.3, NLG system “Installments”).
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2.2 Listener Gaze in Task-oriented Interaction

Previous research has shown that listeners follow speakers’ verbal references (as well as

their gaze in face-to-face situations) to rapidly identify a referent (Eberhard et al., 1995;

Hanna & Tanenhaus, 2004). Listener gaze reveals a lot about how the listener processes

a given word, namely quickly, incrementally and in a way that is tightly linked to the

visual context. Keysar, Barr, Balin, and Brauner (2000) looked at mental processes that

underlie perspective taking in comprehension. They observed that although listeners

know that some objects are not visible to the speaker, they do not restrict the visual

search, but also consider non-visible objects when trying to establish a reference. As

soon as the listener becomes aware of an error, she uses common ground to correct it,

i.e. information about the speaker’s perspective is used while interpreting an utterance. In

contrast to these findings, Barr (2008) showed that the listener uses common ground solely

before receiving the message and not during its interpretation. Further, Brown-Schmidt

(2009) demonstrated that other factors influence the listener’s initial interpretation, as

well. Specifically, it is sensitive to the partner and depends on the identity of the speaker

and the experience of interacting with them. The reaction of the speaker to referential

eye movements, however, was considered in only a few studies. Clark and Krych (2004),

for instance, aimed to grasp this reciprocal nature of an interaction in a study using a

collaborative block building task and manipulating whether participants could see each

other or each other’s workspaces. Their results suggested that the joint workspace was

more important than seeing each other’s faces. Using the GIVE setup, Staudte et al.

(2012) conducted a study in which users were guided by an NLG system through a virtual

world to find a trophy. The system either gave feedback on the users’ eye movements,

or not. This controlled setting allowed the observation of dynamic and interactive (gaze)

behavior while maintaining control over one interlocutor (the NLG system). The results

of this study suggest that it can be beneficial for task performance when listener gaze is

exploited by the speaker to give feedback. It remains unclear, however, whether (human)

speakers indeed provide such feedback and how the availability of listener gaze recursively

affects the spoken instructions and, possibly, the gaze behavior itself.

Assistance Systems Gaze-based assistive technologies have a long tradition in command-

like desktop interfaces for the physically challenged, but with advances in mobile eye

tracking technologies, they have moved into less controlled environments in the last
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decade (Pfeiffer, 2013). Our work is related to work in attentive assistance systems (Maglio,

Matlock, Campbell, Zhai, & Smith, 2000) or human-robot/human-agent interaction, where

gaze is also relevant for the social aspects of interaction (Sidner, Kidd, Lee, & Lesh, 2004;

Breazeal, Kidd, Thomaz, Hoffman, & Berlin, 2005) as well as for grounding verbal utter-

ances using mechanisms of joint attention (Imai, Ono, & Ishiguro, 2003). The focus of our

work is more on assistance systems and user gaze behavior for understanding collabora-

tive comprehension processes. Gaze has already been used in previous work on assistance

systems to tune verbal or visual feedback. For example, a prototype of an attentive mo-

bile eye tracking system has been presented, which monitored eye movements in real time

and provided feedback to guide the user back to a given track on a map (Eaddy, Blasko,

Babcock, & Feiner, 2004). There is, however, no report on a systematic evaluation of the

system and it is not stated to what extent the natural language feedback was generated

automatically. This kind of interaction is typical for perceptual user interfaces. For ex-

ample, Turk and Robertson (2000) consider gaze-assisted interaction and the quote “No,

not that one!” they suggested in their article is actually realized by our working system.

Smart Eyewear has been identified as a key technology for assistance systems (Pfeiffer,

Feiner, & Mayol-Cuevas, 2016) and recently has been combined with a real-time analysis

of eye tracking to support assembly tasks (Renner & Pfeiffer, 2017; Blattgerste, Strenge,

Renner, Pfeiffer, & Essig, 2017).

Gaze has been used for HCI, but in rather non-verbal interactions. It is shown to be a

faster indicator in the context of object selection task than a hand movement (Kosunen

et al., 2013). Carter, Newn, Velloso, and Vetere (2015) built a gaze and gesture system to

investigate the role of showing the gaze cursor (referred to as feedback) to the user during

an object selection task when playing a game. In a user study, they found that people

dislike the version with a visualized gaze cursor. On the other hand, (Garkavijs, Okamoto,

Ishikawa, Toshima, & Kando, 2014) showed that gaze feedback improves satisfaction in

an exploratory image search.

Further, Torrey, Fussell, and Kiesler (2013) investigated the usefulness of adaptive robot

behavior. The robot instructed experts and novices on which cooking tools to select next.

The robot responded to users’ typed input. They observed a benefit of the adaptive be-

havior for the users, especially when they were under time pressure. Later on, Andrist,

Gleicher, and Mutlu (2017) considered bidirectional gaze in face-to-face communication



16 Chapter 2 Background

and mechanisms to coordinate gaze cues of a virtual character with a human user iden-

tifying ingredients for making a sandwich. They showed that the virtual character can

produce quick and effective non-verbal references by responding to users’ gaze. Their

interactive system is based on interactions obtained from a human-human study. The

virtual agent initially provides a verbal reference to identify a target, but it is not au-

tomatically generated. An error in such toy scenarios might not be fatal, but for more

serious applications, minimizing the risk can have a larger impact. For example, Reynal,

Colineaux, Vernay, and Dehais (2016) present a study involving pilots in the cockpit, aim-

ing to assess how the crew supervises the flight deck. They found that both pilots (flying

and monitoring) looked more at the primary than at the secondary flight parameters;

also, a similar visual behavior of both pilots was observed. Their findings suggest that

the visual behavior of the pilot monitoring attention could be suboptimal. Another study

by Campana et al. (2001) extended a dialogue system integrated in a simulated version

of the Personal Satellite Assistant to also monitor user gaze. If an underspecified com-

mand is given by the user, the system asks for clarification before any action is performed.

However, such clarification may appear unnatural if the user looks at the intended target.

They expected to see a reduction in task completion times and turns taken during the

interaction, but no systematic evaluation of their approach was reported.

If the user is performing actions in such a critical use case, where it is crucial not to

make mistakes, an assistance system could prevent mistakes from happening by exploiting

listener gaze to detect misunderstandings.



Chapter 3

Listener Gaze for Automated

Prediction of Reference Resolution

Interactive systems that generate natural language to collaborate on a task with a human

listener aim at effective and efficient interaction. Ideally they should model the grounding

process, that is, monitor listener behavior and respond to it. If the listener intends to per-

form an incorrect action, it would be useful if the system could detect a misunderstanding

and react with a warning in order to prevent a wrong step that would have to be undone.

In this manner, an interactive system would be more attentive and importantly would

ensure more efficient interaction. The first step towards realizing such a clever mechanism

is to address the problem of automatic prediction of reference resolution. That is, we aim

to automatically predict how the listener has resolved a referring expression by evaluating

her visual behavior. Engonopoulos et al. (2013) proposed two statistical models to solve a

grounding problem, i.e. to predict (mis-)understandings of a referent described by an au-

tomatically generated object description: a semantic model Psem computing predictions

based on the linguistic content, and an observation model Pobs computing predictions

based on listener behavior features.

In this chapter, we present joint work with Alexander Koller and Mart́ın Villalba and

report on the extension of the observational model Pobs introduced by Engonopoulos et

al. (2013). We address the research question of how to automatically predict a refer-

ring expression (RE) resolution, i.e., answering the question of which entity in a virtual

environment has been understood by the listener after receiving an instruction. While

17
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Figure 3.1: The processing pipeline for automatic prediction of reference resolution.

the linguistic material in instructions carries a lot of information, even completely unam-

biguous descriptions may be misunderstood. A robust NLG system should be capable of

detecting misunderstandings and preventing its users from making mistakes. Language

comprehension is mirrored by interlocutors’ non-verbal behavior, and this can help when

decoding the listener’s interpretation. Precise automatic estimates may be crucial when

developing a real–time NLG system, as such a mechanism would reliably predict the next

action to be taken by an instruction follower. In the case of detecting a misunderstanding,

the system can plan and output a corrective response aiming at more effective interac-

tion. Specifically, we implement features that encode the listener’s eye movement patterns

and extend the Pobs model to evaluate their performance on a multimodal data collection

(the GIVE Corpus). We show that the extended observational model, as it takes an addi-

tional communication channel into account, provides more accurate predictions, especially

when dealing with complex, more cluttered scenes where more competitors next to the

target object are available. These results have been published in the proceedings of the

Association for Computational Linguistics ACL 2015 (Koleva, Villalba, et al., 2015).

3.1 Problem Definition

Figure 3.1 illustrates our processing pipeline for the automatic prediction of reference

resolution. We segment the collected interactions into episodes consisting of the beginning

of an instruction (speech onset) until the target button is pressed (action). The next step

is to extract the observational and eye tracking features. After that the prediction models

are trained to correctly predict how the reference is resolved, i.e. which button will be

pressed.
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More formally, let’s assume a system generates an expression r that aims to identify a

target object ot among a set O of possible objects, i.e. those available in the scene view.

Given the state of the world s at time point t, and the observed listener’s behavior σ(t)

of the user at time t ≥ tb (where tb denotes the end of an interaction), we estimated the

conditional probability p(op|r, s, σ(t)) that indicates how probable it is that the listener

resolved r to op.

This probability can be also expressed as follows:

P (op|r, s, σ(t)) ∝ Psem(op|r, s)Pobs(op|σ(t))

P (op)

Following Engonopoulos et al. (2013) we make the simplifying assumption that the dis-

tribution of the probability among the possible targets is uniform and obtain:

P (op|r, s, σ(t)) ∝ Psem(op|r, s)Pobs(op|σ(t))

We expect an NLG system to compute and output an expression that maximizes the

probability of op. Due to the dynamic nature of our scenarios, we also require the prob-

ability value to be updated at certain time intervals throughout an interaction. Tracking

the probability changes over time, an NLG system could proactively react to changes in

its environment. Henderson and Smith (2007) show that accounting for both fixation

location and duration are key to identify a player’s focus of attention.

3.2 Episodes and Feature Functions

The data for our experiment was obtained from the GIVE Challenge (Koller, Striegnitz,

Gargett, et al., 2010), an interactive task in a 3D virtual environment in which a human

player (instruction follower) is guided through a maze, locating and pressing buttons in

a predefined order, aiming to unlock a safe. While pressing the wrong button in the

sequences doesn’t always have negative effects, it can also lead to restarting or losing

the game. The instruction follower receives instructions from either another player or an

automated system (instruction giver). The instruction follower’s behavior was recorded

every 200ms, along with the instruction giver’s instructions and the state of the virtual

world. The result is an interaction corpus comprising over 2500 games and spanning over
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340 hours of interactions. These interactions were mainly collected during the GIVE-2

and the GIVE-2.5 challenges. A laboratory study conducted by Staudte et al. (2012)

comprises a data collection that contains eye-tracking records for the instruction follower.

Although the corpus contains both successful and unsuccessful games, we have decided to

consider only the successful ones.

We define an episode in this corpus as a typically short sequence of recorded behavior

states, beginning with a manipulation instruction generated by the instruction giver and

ending with a button press by the instruction follower (at time point tb). In order to

make sure that the recorded button press is a direct response to the instruction giver’s

instruction, an episode is defined such that it contains no further utterances after the first

one. Both the target intended by the instruction giver (ot) and the one selected by the

instruction follower (op) were recorded.

Figure 3.2: The structure of the interactions.

Figure 3.2 depicts the structure of an episode when eye-tracking data is available. Each

episode can be seen as a sequence of interaction states (s1, . . . , sn), and each state has a

set of visible objects ({o1, o2, o3, o10, o12}). We then compute the subset of fixated objects

({o2, o3, o12}). We update both sets of visible and fixated objects dynamically in each

interaction state with respect to the change in visual scene and the corresponding record

of the listener’s eye movements.

We developed feature functions over these episodes. Along with the episode’s data, each

function takes two parameters: an object op for which the function is evaluated, and a

parameter d seconds that defines how much of the episode’s data the feature is allowed

to analyze. Each feature looks only at the behavior that happens in the time interval −d
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to 0. Henceforth we refer to the value of a feature function over this interval as its value

at time −d. The value of a feature function evaluated on episodes with length less than

d seconds is undefined.

3.3 Prediction Models

Given a referring expression uttered by an instruction giver, the semantic model Psem

estimates the probability for each possible object in the environment to have been under-

stood as the referent, ranks all candidates and selects the most probable one in a current

scene. This probability represents the semantics of the utterance, and is evaluated at a

single time point immediately after the instruction (e.g. “press the blue button”) has been

uttered. The model takes into account features that encode the presence or absence of

adjectives carrying information about the spatial or color properties (like the adjective

“blue”), along with landmarks appearing as post-modifiers of the target noun.

In contrast to the semantic model, the observational model Pobs evaluates the changes

in the visual context and the player’s behavior after an instruction has been received.

The estimated probability is updated constantly before an action, as the listener in our

task-oriented interactions is constantly in motion, altering the visual context. The model

evaluates the distance of the listener position to a potential target, whether it is visible

or not, and also how salient an object is in that particular time window.

Interlocutors constantly interact with their surroundings and point to specific entities

with gestures and, importantly, with their eyes. Gaze behavior is also driven by the

current state of the interaction. As we have seen above, eye movements provide useful

information indicating language comprehension. That is, they are tightly aligned with

the linguistic input and give some insights about listener intentions. In particular, for

goal-oriented interactions they can reveal what the listener is about to do next. Thus,

we extend the basic set of Pobs features and implement eye tracking features that capture

gaze information. We call this the extended observational model PEobs and consider the

following additional features:

1. Looked at: this feature counts the number of interaction states in which an object

has been fixated at least once during the current episode.
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2. Longest Sequence: detects the longest continuous sequence of interaction states in

which a particular object has been fixated.

3. Linear Distance: returns the Euclidean distance dist on screen between the gaze

cursor and the center of an object.

4. Inv-Squared Distance: returns 1
1+dist2

.

5. Update Fixated Objects: expands the list of fixated objects in order to consider the

instruction follower’s focus of attention. It successively searches in 10-pixel steps

and stops as soon as an object is found (the threshold is 100 pixels). This feature

evaluates to 1 if the list of fixated objects has been expanded and 0 otherwise.

When training our model at time −dtrain, we generate a feature matrix. Given a training

episode, each possible (located in the same room) object op is added as a new row, where

each column contains the value of a different feature function for op over this episode at

time −dtrain. Finally, the row based on the target selected by the instruction follower

is marked as a positive example. We then train a log-linear model, where the weights

assigned to each feature function are learned via optimization with the L-BFGS algorithm.

By training our model to correctly predict a target button based only on data observed up

until −dtrain seconds before the actual action tb, we expect our model to reliably predict

which button the user will select. Analogously, we define accuracy at testing time −dtest
as the percentage of correctly predicted target objects when predicting over episodes at

time −dtest. This pair of training and test parameters is denoted as the tuple (dtrain, dtest).

3.4 Dataset

We evaluated the performance of our improved model on data collected by Staudte et al.

(2012) using the GIVE Challenge platform. Both training and testing were respectively

performed on a subset of the data obtained during a collection task involving worlds

created by Gargett, Garoufi, Koller, and Striegnitz (2010), designed to provide the task

with varying levels of difficulty. This corpus provides recorded eye-tracking data, collected

with a remote faceLAB system. In contrast, the evaluation presented by Engonopoulos et

al. (2013) uses only games collected for the GIVE 2 and GIVE 2.5 challenges, for which
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no eye-tracking data is available. Here, we do not investigate the performance of Psem,

but concentrate on the direct comparison between Pobs and PEobs in order to find out if

and when eye tracking can improve the prediction of an RE resolution.

We further filtered our corpus in order to remove noisy games following Koller et al. (2012),

considering only interactions for which the eye-tracker calibration detected inspection of

either the target or another button object in at least 75% of all referential scenes in

an interaction. The resulting corpus comprises 75 games, for a combined length of 8

hours. We extracted 761 episodes from this corpus, amounting to 47m 58s of recorded

interactions, with an average length per episode of 3.78 seconds (σ = 3.03sec.). There are

261 episodes shorter than 2 sec., 207 in the 2-4 sec. range, 139 in the 4-6 sec. range, and

154 episodes longer than 6 sec.

3.5 Evaluation and Results

The accuracy of our probabilistic models depends on the parameters (dtrain, dtest). At

different stages of an interaction the difficulty of predicting an intended target varies

as the visual context, and in particular the number of visible objects, changes. As the

weights of the features are optimized at time −dtrain, it would be expected that testing

also at time −dtest = −dtrain yields the highest accuracy. However, the difficulty of

making a prediction decreases as tb− dtest approaches tb, i.e. as the player moves towards

the intended target. We expect that testing at −dtrain works best, but we need to be

able to update continuously. Thus we also evaluate at other timepoints and test several

combinations of the (dtrain, dtest) parameters.

Given the limited amount of eye-tracking data available in our corpus, we replaced the

cross-corpora-challenge test setting from the original Pobs study with a ten-fold cross-

validation setup. As training and testing were performed over instances of a certain

minimum length according to (dtrain, dtest), we first removed all instances with length

less than max(dtrain, dtest), and then performed the cross-validation split. In this way

we ensured that the number of instances in the folds were not unbalanced. Moreover,

each instance was classified as easy or hard depending on the number of visible objects

at time tb. An instance was considered easy if no more than three objects were visible

at that point, or hard otherwise (see Figure 3.3 for examples). For −dtest = 0, 59.5% of
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all instances are considered hard, but this proportion decreases as −dtest increases. At

−dtest = −6, the number of hard instances amounts to 72.7%.

(a) In response to a navigational instruction, the user is heading
towards a certain room.

(b) The user enters the room. The system briefly acknowledges
this, and subsequently generates “Push the red button”. The
onset of this spoken utterance marks the start of the referential
scene and time window 1.

(c) While the expression referring to the target is being spoken
(time window 2), the user moves towards the target and inspects
it.

(d) Approximately 1600 ms after the o�set of the referring ex-
pression, the eye-tracking-based system reacts to the inspection
by means of positive feedback (“Yes, that one”).

(e) The user goes on and presses the button. This action marks
the end of the referential scene.

(f) The system briefly acknowledges the successful action and
instructs the user to navigate away, in search of the next target.

Figure 5. A series of snapshots spanning a recorded referential scene with the eye-tracking-based generation system.

10

Figure 3.3: The GIVE corpus: Example visual context of an easy (left picture) and a
hard (right picture) referential scene in the virtual environment.

We evaluated both the original Pobs model and the PEobs model on the same dataset. We

also calculated accuracy values for each feature function, in order to test whether a single

function could outperform Pobs. We included as baselines two versions of Pobs using only

the features InRoom and Visual Salience proposed by Engonopoulos et al. (2013).

The accuracy results in Figure 3.4 show our observations for −6 ≤ −dtrain ≤ −2 and

−dtrain ≤ −dtest ≤ 0. The graph shows that PEobs performs similarly as Pobs on the easy

instances, i.e. the eye-tracking features are not contributing in those scenarios. However,

PEobs shows a consistent improvement on the hard instances over Pobs.

For each permutation of the training and testing parameters (dtrain, dtest), we obtain a set

of episodes that fulfill the length criteria for the given parameters. We apply Pobs and

PEobs on the obtained set of instances and measure two corresponding accuracy values.

We compared the accuracy values of Pobs and PEobs over all 25 different (dtrain, dtest) pairs,

using a paired samples t-test. The test indicated that the PEobs performance (M = 83.72,

SD = 3.56) is significantly better than the Pobs performance (M = 79.33, SD = 3.89),

(t(24) = 9.51, p < .001, Cohen′s d = 1.17). Thus, eye-tracking features seem to be

particularly helpful for predicting to which entity an RE is resolved in hard scenes.

The results also show a peak in accuracy near the -3 seconds mark. We computed a

2x2 contingency table that contrasts correct and incorrect predictions for Pobs and PEobs,

i.e. whether oi was classified as the target object or not. Data for this table was collected

from all episode judgements for models trained at times in the [−6 sec.,−3 sec.] range

and tested at -3 seconds. McNemar’s test showed that the marginal row and column
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Eobs

Figure 3.4: Accuracy as a function of training and testing time.

frequencies are significantly different (p < 0.05). This peak is related to the average

required time between an utterance and the resulting target manipulation. This result

indicates that our model is more accurate precisely at points in time when we expect

fixations to a target object.

3.6 Discussion

In this chapter, we have demonstrated that accuracy increases when considering eye track-

ing features in the context of predicting the resolution of an RE. Eye movements are a

good indicator of language comprehension because they are tightly connected to the visual

scene and are driven by the semantics of a given word as well as the goal to identify and

press the referenced object (see Chapter 2). In addition, we observed that our extended

observational model PEobs proves to be more robust than the basic observational model

Pobs when the time interval between the prediction (tb − dtest) and the button press (tb)

gets larger, i.e. gaze is especially beneficial in an early stage of an interaction. This ap-

proach shows a significant accuracy improvement on hard referential scenes where more

objects are visible and thus each can be seen as a potential target.

We have also established that gaze is particularly useful when combined with some other

simple features, as the features that capture the listener’s visual behavior are not powerful
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enough to outperform even the simplest baseline. Gaze only benefits the model when it

is added on top of features that capture the visual context, i.e. the current scene.

In other words, gaze alone is not sufficient to accurately predict how a reference will

be resolved. However, it provides precise information that is temporally aligned with

an utterance as listeners look at what they hear (Tanenhaus et al., 1995). Specifically

in task-oriented scenarios that involve reference resolution, this signal encodes listeners’

intentions (Staudte et al., 2012) and thus is a reliable information source.

A future line of research is the combination of our PEobs model with the semantic model

Psem, in order to test the impact of the extended features in a combined model, which is out

of the scope of this thesis. If successful, such a model could provide reliable predictions for

a significant amount of time before an action takes place. This is of particular importance

when it comes to designing a system that automatically generates and outputs feedback

online to confirm correct and reject incorrect listener intentions.

Testing with users in real time is also an area for future research. An implementation

of the Pobs model is currently in the testing phase, and an extension for the PEobs model

would be the immediate next step. The model could be embedded in an NLG system to

improve the automatic language generation in such scenarios.

As corpora collections containing eye-tracking data are sparse, here it remains open

whether this effect applies only to the considered domain, or would be evident in other in-

teractive scenarios as well as in a real environment. Indeed, it would be interesting to ask

if a human instruction giver could benefit from the predictions of PEobs. We could study

whether predictions based on the gaze (mis-)match between both interlocutors are more

effective than simply presenting the instruction follower’s gaze to the instruction giver

and trusting the instruction giver to correctly interpret this continuous signal. If such

a system proved to be effective, it could point out misunderstandings to the instruction

giver before either of the participants becomes aware of them.

Our study builds on previous work from virtual environments and considers an automated

speaker, an NLG system. Garoufi et al. (2016) showed that an NLG system can exploit

this non-verbal cue and react to it with verbal feedback, which led to more effective

interaction. However, whether human speakers actively use eye movements and react to

them with feedback, and if their feedback would be even more informative, or simply

different, is still unclear.
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Thus we address this research question in the next chapter, where we switch to a real

environment. Specifically, we investigate whether and how a remote human speaker uses

the additional information of where the listener is currently looking while spontaneously

referring to real-world objects the listener has to select, and if so, how this influences

performance.





Chapter 4

Human-Human Interaction:

Availability of Listener Gaze in an

Indoor Guidance Task

We constantly direct our gaze to different parts of the visual scene to be able to perceive

objects of interest with high acuity. These eye movements can be driven internally, i.e. by

some self-initiated goal or intent, or externally, by something that attracts our visual

attention (Yantis & Jonides, 1990). External factors that drive a listerner’s attention can

be the saliency of visible objects or another person’s utterances that direct our eyes to

a co-present object or an event. The latter has been exploited in many psycholinguistic

studies in order to study language comprehension processes (e.g. Cooper, 1974; Tanenhaus

et al., 1995). Conversely, a listener’s gaze may also signal (mis-)understanding back to the

speaker. Taking the listener’s behavior into account when planning and making utterances

is an important aspect of collaborative, goal-oriented interaction. In this sense, listener’s

eye movements can be both a result of a comprehension process, i.e. a “symptom”, and/or

a “signal” and feedback channel to the speaker, who can then react to it by adapting their

next utterance.

This chapter describes an explorative real-world study on indoor guidance. The study

investigated whether and how showing the listener gaze to a human speaker influences

interlocutors’ behavior during task-oriented interactions. Specifically, a remote speaker

gave instructions to a näıve listener to localize, identify and collect specific objects while

29
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being eye-tracked. The speaker was asked to verbally guide the listener and together they

solved nine tasks. Firstly, the experiment was aimed at revealing whether the availability

of listener gaze position to the speaker would affect the production of verbal feedback.

Secondly, if gaze was used as a signal, which listeners control and use deliberately, then the

option to do so (and thereby evoke speaker reactions) would ubiquitously change listener

gaze. If gaze was more generally a symptom of other processes and deliberate control

was (too) difficult, listener gaze would change according to tasks or events rather than

based on GazeAvailability. Finally, if gaze was used as a signal, variations of listener gaze

behavior should mainly occur prior to an utterance. If gaze was a reaction to changes in

the utterances (i.e. a symptom), gaze behavior should instead change after an utterance.

We obtained a multimodal data collection consisting of the videos from the listeners’

perspective, their gaze data, and instructors’ utterances. We analyze the changes in

instructions and listener gaze with respect to GazeAvailability when the speaker can see

1) only the video (NoGaze), 2) the video and the gaze cursor (Gaze), or 3) the video

and a manipulated gaze cursor, i.e. one not displayed on the exact gaze position but

randomly shifted with an offset of ±0, 2 (ManGaze). Our results show that listener

visual behavior mainly depends on utterance presence but also varies significantly before

and after instructions. Additionally, we observed that more negative feedback occurred in

condition 2). While piloting a new experimental setup, our results provide an indication

for gaze reflecting both a symptom of language comprehension, and a signal that listeners

employ when it appears useful, and which therefore adapts to our manipulation. Our

findings have been published in the proceedings of the Annual Meeting of the Cognitive

Science Society 2015 (Koleva, Hoppe, et al., 2015).

We expected to encounter different types of instructions changing with the availability

of listener gaze to the speaker. As a consequence, listeners may even consciously use

their gaze, similar to a pointing gesture, for instance in order to point to an object when

the hands are full. Further, we assumed that showing listener gaze would lead to more

efficient interactions. For this reason, we tested if the speaker could use the information

about the current focus of the listener’s attention and so utter more precise instructions.

Additionally, we investigated whether a speaker needs the exact gaze position (Gaze) or

could also make use of the general area where the listener looks (ManGaze), or if this

would be confusing for the speaker.
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4.1 Method

We designed a task that combines a dynamic, interactive setting with the possibility to

conduct exact and detailed analyses, in particular on eye movement behavior, in order

to assess the mutual influence of listener gaze and speech in human-human interaction.

Näıve participants either became an instructor (speaker) or a walker (listener). The

speaker instructed the listener to perform a series of tasks. These tasks consisted of a

navigational part, i.e. finding the next out of nine tables in a hall, which we call the macro

task, and the identification of some objects at each table, referred to as the micro task.

Each pair of participants experienced all three GazeAvailability conditions in a different

order according to a Latin square.

Figure 4.1: The experimental setup: the walker wearing a head-mounted eye tracker,
following instructions and selecting objects (left picture) and the remote instructor
giving directions, describing the next target and monitoring the walker’s behavior (right

picture)

Figure 4.1 depicts our setup with the two roles of the interlocutors: the remote instructor

received a plan of the route needed to solve the macro tasks and a static picture of the

tabletop where the next target object for the micro task was highlighted. The walker

listened to the instructions via headset and wore a head-mounted eye tracker through

which the speaker could see the scene from the listener’s perspective without, with or with

a shifted gaze cursor. The purpose of manipulating GazeAvailability was to reveal whether

the availability of listener gaze to the speaker affected a) the produced utterances and b)

the listener’s gaze behavior. We included ManGaze in order to investigate whether

slightly perturbed gaze would be considered either uninformative (more like NoGaze) or
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even distracting, or whether the speaker would be robust towards slight imprecisions of

the gaze cursor and treat it more like the Gaze condition.

Here is an example trial starting with a macro task consisting of navigational instructions:

(1) “So, und jetzt musst du nochmal laufen, und zwar wieder zurück an diesen vorheri-

gen Tisch ... nochmal zurück durch die, durch die Tür, in diesen Konferenzraum.

Un vor dem Tisch standest du grad eben schon ... das ist der, wo so Scheren und

Post-its drauf liegen. Nein, das iss er nicht, der andere, auf der andern Seite von,

also quasi gegenüber ... Genau, genau.”

(So and now you should walk again, namely back again to the previous table ...

again through the door into the conference room. And you were just now standing

in front of this table ... this is it, where the scissors and the post-its are placed. No,

it is not that one ... the other one on the other side, opposite. ... Right, exactly!)

As soon as the walker reached the right location, the instructor continued with the micro

tasks and started describing the first target object that was supposed to be collected from

the current setup.

(2) “Also, da sollen wir ne Schere suchen, und zwar ist das, die zweite schwarze Schere

von oben auf der rechten Seite... die liegt neben einem grünen Stift... Genau die...

ok. Danke.”

(Alright, here we should search for a pair of scissors, namely this is the second

black pair of scissors from above on the right side... it is located next to a green

pen... Exactly that one!... OK. Thanks!)

Materials

The nine micro tasks were associated with daily duties such as doing office work or cooking.

Office scenarios included writing a letter using envelopes, pens, paper and glue; kitchen

scenarios, for example, making a cake using milk, sprinkles, mixing spoons and a carton

of eggs. To make the task sufficiently complex, i.e. to have hard referential scenes, and

elicit the production of detailed referring expressions, which uniquely identify the target
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object, at least two competitor objects for each target were also included in each setup.

In total, 234 everyday objects were used; 36 of them were target objects (see Appendix C).

Participants

Twelve pairs of participants (16 females) took part in this study. The average age was

26.6 and all but one were in the age range 18–40. All participants were German native

speakers and received a payment of e10. They reported normal or corrected-to-normal

vision. A session lasted between 30 and 45 minutes.

Procedure

Participants were first asked about their preference for role assignment and assigned to

the walker/instructor role accordingly. Two experimenters instructed both participants

separately from each other. The participants received a brief description (one page) of

their role. Specifically, the instructor was shown the route and tables but was not told

how to refer to the target objects in order to avoid priming. Then, the instructor was led

to a remote room from which she guided the walker. During the experiment the instruc-

tor saw a picture of the current target object, a map of the hall, and the scene view of

the walker (see right picture in Figure 4.1). Neither walker nor instructor were informed

about our manipulation.

Apparatus

We used a Pupil Pro monocular head-mounted eye tracker for gaze data collection (Kassner,

Patera, & Bulling, 2014). The tracker is equipped with a high-resolution scene camera

(1280 x 720 pixels) and eye camera (640 x 360 pixels). We extended the Pupil soft-

ware with additional functionality needed for our study, namely to hide and display a

manipulated gaze cursor to the instructor.
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Two notebooks were used: one for the walker and one for the instructor. The instructor

notebook was connected to two displays, one for the instructor and one for the exper-

imenter. The experimenter sitting next to the instructor used a control panel to send

commands to the eye-tracking software to switch between conditions. The mobile eye

tracker was connected to the walker notebook, which was a MacBook Pro Mid 2013 on

which Ubuntu 14.04 was running. The eye tracker was connected to the walker notebook

on which we recorded the incoming sound, i.e. the instructions the listener heard. At the

same time, the walker’s speech was muted such that we ensured only non-verbal responses

from the walker. For this, the sound was redirected (the output sound was assigned to

the input channel in order to record the incoming instructions). A command line audio

recorder, SoX, was launched in parallel for each new recording.

Both audio and video signals were streamed using Skype. In addition, the walker was

equipped with a presenter to signal success (finding a target object) by pressing a green

button or confusion (when something was unclear) by pressing a red button. When the

green button was pressed, the picture of the next target object was updated and a new

recording was started. If the red button was pressed, then a picture depicting confu-

sion was shown on the instructor’s screen. The communication of the different software

components was implemented using custom client-server software, but all recordings were

carried out on the walker machine.

Measures and Analysis

We collected a multimodal corpus of interactions and derived various measures to analyze

interlocutors’ behavior. We evaluated the linguistic material produced by the instructors

and the eye movements of the listener and assessed the influence of GazeAvailability on

those two modalities.

Linguistic Data

To prepare the recorded data for further processing, we applied a standard linguistic pre-

processing pipeline. We first transcribed the audio signal, which was a manual step as

the discourse collected in our study was very specific and also contained ungrammatical

utterances and disfluencies. We then aligned the text to the audio signal by applying the
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forced alignment technique (Kisler, Schiel, & Sloetjes, 2012). We performed lemmati-

zation and part-of-speech (POS) tagging followed by linguistic annotation using shallow

syntactic analysis. These annotations were automatically carried out using the Tree-

Tagger (Schmid, 1995). Further, two types of feedback instances, positive and negative,

were automatically recognized by searching for words that express feedback (simple string

matching), e.g. “Ja, genau!” (Yes, exactly! ) is a positive instance and “Nein, falsch!” (No,

that is wrong! ) is a negative one. However, in some cases those words did not express

feedback, but had a different grammatical function and meaning, e.g. “ne” was used to

express a negation “Nein!”(No! ) but also as an abbreviated feminine indefinite article

in German “eine” (a). Therefore, a manual post-correction was carried out to filter out

incorrectly detected instances, and also to add a few other words that are not typical for

feedback but had this function in a particular context, or different spellings more usual

for spoken language, e.g. “jep”. Then we were able to assess the proportion of positive

and negative feedback instances per condition. Lastly, we evaluated what kind of refer-

ring expressions were produced by the speakers and whether our manipulation had an

influence on that. We came up with an annotation scheme suitable for our setting and

labeled the descriptions present in the corpus. The span of each micro-scale task was also

manually annotated, i.e. from when the walker had reached a target location (table) until

all target objects were found and selected, which essentially distinguished two activities:

walking around and the stationary search for target objects.

Statistical analyses were conducted in the R statistical programming environment (R Core

Team, 2014). We assessed statistical significance utilizing linear mixed-effects models

using the lme4 package in R and model selection in order to determine the influence of

GazeAvailability. As proposed by Bates, Kliegl, Vasishth, and Baayen (2015), we started

out with the maximal model fitting our assumptions with respect to the random effects

structure.

Eye Movement Data

We first detected fixations using a standard dispersion-based fixation detection algorithm

as in Salvucci and Goldberg (2000) that declares a sequence of gaze points to be a fixation

if the maximum distance from their joint center is less than 5% of the scene camera width

and the sequence has a minimum duration of 66 msec. Eye movements between two
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Fixation rate, mean, max, variance of durations;
mean, variance of variance within one fix.

Saccades rate, ratio of (small/large/right/left) sacc.;
mean, max, variance of amplitudes

Combined ratio of saccades/fixations
Wordbooks number of non-zero entries;

maximum and minimum entries as well as
their difference for n-grams with n ≤ 4

Ratios all fixation, saccade and combined features
in ratio to the value over the whole trial for
a particular pair and condition.

Table 4.1: Features extracted from human visual behavior.

fixations were considered saccades without further processing. Blinks were not included

as video-based eye trackers, such as Pupil, do not record them by default. We then used

a sliding window approach with a window size of 500 msec and step size of 250 msec to

extract eye movement features, resulting in a dataset consisting of 18841 time windows.

For each window, we extracted a subset of 45 features of those previously proposed for

eye-based recognition of visual memory recall processes (Bulling & Roggen, 2011) and

cognitive load (Tessendorf et al., 2011). We added 21 additional features relating current

gaze behavior to the overall gaze behavior of the current person in the current experi-

ment, e.g. the ratio of the small saccade rate in the whole experiment to the small sac-

cade rate in this time window. Inspired by Bulling, Ward, Gellersen, and Tröster (2011)

we extracted the set of features shown in Table 4.1. For feature selection we used the

minimal-redundancy-maximal-relevance criterion (mRMR) which aims to maximize the

feature’s relevance in terms of mutual information between target variable and features

while discarding redundant features (Peng, 2007). For our analyses we relied on data

driven method and used the consistently top-ranked features for target variables such

as GazeAvailability, Pair or FeedbackPresence and fitted linear mixed-effects models to

the top-ranked feature according to mRMR (saccade rate). Similar results can also be

achieved based on further top-ranked features such as the ratio of small to large saccades

(where a saccade is considered small if its amplitude is less than twice the maximum

radius of a fixation).
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4.2 Results

The results presented in this section are based on the measures collected during micro

tasks. The reason for analyzing only this data is because the eye tracker was calibrated

for the micro setting, as calibration for the macro task would require adjustment of the

scene camera during the experiment.

4.2.1 Performance

Our overall performance measure is the task completion time measured from the beginning

of an instruction until the success button was pressed by the walker to mark the time point

of target identification. There were only a few confusion button presses, and all tasks were

correctly solved. We analyzed the task completion time in each condition to reveal whether

listener gaze was used to complete a task more efficiently. There were no significant

differences obtained for the performance measure (χ2(2) = 1.722, p = 0.423). Figure 4.2

illustrates that participants were comparably fast in all three conditions, NoGaze (M =

15.030 sec, SD = 6.750 sec), Gaze (M = 15.300 sec, SD = 7.105 sec) and ManGaze

(M = 14.609 sec, SD = 6.352 sec). Since the average interaction time was generally very

low, a floor effect may have prevented a distinction of the conditions.

4.2.2 Linguistic Analysis

Length of Utterances Next we examined the intuition that the utterances can differ

in length; that is, we expected shorter instructions in the Gaze condition compared to the

other conditions due to possible usage of deixis, given that the current focus of attention

was provided. So we investigated the number of words needed to describe a target object

involved in a micro task. There were no significant differences with respect to the different

levels of GazeAvailability Gaze vs. NoGaze (β = −0.052, SE = 0.057, z = −0.90, p =

0.367) and Gaze vs. ManGaze (β = −0.023, SE = 0.052, z = −0.43, p = 0.665),

respectively. Specifically, the amount of words uttered by the speaker including disfluen-

cies and feedback was similar in the NoGaze (M = 21.76 words, SD = 10.79 words),

Gaze (M = 23.12 words, SD = 11.89 words) and ManGaze (M = 22.36 words, SD =

9.53 words) conditions.
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Figure 4.2: The task completion time (log transformed with 95% CI error bars) for
the individual trials in the micro task

Verbal Feedback We then investigated the proportion of the detected feedback in-

stances. As already mentioned, there are two types of feedback, positive (pos) and

negative (neg). Positive feedback confirms correct understanding of an instruction and

occurred more frequently in this setting. Negative feedback aims at signaling misunder-

standings and introduces repairs in the linguistic content of a previous utterance. To test

if the difference in the proportions was significant, we constructed a generalized linear

mixed-effects model (with a logit link function) fitted to FeedbackType with GazeAvail-

ability as a fixed effect.

Figure 4.3 depicts a graph that shows the proportion of feedback in the different gaze con-

ditions and gives the model specification. The amount of data points (feedback instances

per pair) does not license the inclusion of a random slope in the model, so we include only

the random intercept for Pair.

This model shows a difference between the Gaze and NoGaze condition that approaches

significance (β = 0.574, SE = 0.314, z = 1.829, p = 0.067). This marginally significant
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Figure 4.3: The proportion of positive and negative feedback instances in the dif-
ferent conditions. The model fitted to that data is the following feedbackType ∼

GazeAvailability + (1|Pair)

difference indicates that speakers make use of the exact gaze positions of the listeners and

that they utter more negative feedback to signal misunderstandings. ManGaze (12%)

falls somewhat inbetween Gaze (16%) and NoGaze (10%).

Moreover, a negative feedback instance is usually followed firstly by a repair, i.e. an addi-

tional description that either provides complementary information that was not mentioned

in the instruction before, or an alternative description that describes a distractor which

is usually underspecified. Secondly, a positive feedback instance often follows to confirm

the successful resolution of the repair. Example (3) illustrates that repeated pattern.

(3) “ne das andere ... Genau” (no the other one ... exactly)

We further explored if these repairs differed with the availability of gaze: We measured

the length (in words) of the repairs and compared them across all conditions. For this

measure there were also no significant differences found.
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RE

specific non specific

featural spatial

egocentric allocentric

Figure 4.4: The annotation scheme for categorizing referring expressions.

The number of words is a rather coarse measure that investigates the quantity of the

recorded speech but cannot capture the semantic content of the utterances. Thus we fur-

ther investigated the types of referring expressions that were produced by the instructors

during the interactions.

Referring Expressions Speakers used referring expressions to describe the target ob-

jects. The type of the produced referring expressions provides some insights about the

kind of information speakers chose to describe an object. In order to evaluate whether

there was a systematicity of mentioning specific object properties, like color or position

on the table, and relate it to our manipulation, we developed an annotation scheme to

categorize a referring expression.

In Figure 4.4 the annotation scheme is depicted. There is a general differentiation between

specific vs. non-specific references and we expected to observe more specific expressions

given the task under consideration. Further, a specific expression can be sub-categorized

into featural or spatial. That is, we investigated whether speakers tended to use object

properties or its spatial location to describe it for the listener who had to identify and

collect it. For this distinction, we expected to see more featural descriptions because

human speakers tend to select absolute object attributes (Belke & Meyer, 2002), which

would be perceived more easily and then if needed, include a spatial description for clar-

ification. Lastly, we split the spatial category into spatial-egocentric or spatial-allocentric

in order to examine if the speaker takes the perspective of the listener (egocentric) or

instead considers the visual scene and relates closer objects to the target position.
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The possible categories for a referring expression were defined as follows:

• non-specific: general, non-exhaustive expressions, e.g. the pen

• specific: explicit or definite expressions

– featural: not comparable, uses the properties of the object to describe it,

e.g. the blue pen

– spatial-egocentric: linked to the walker’s current location, e.g. the pen that

is furthest away from you

– spatial-allocentric: linked to a reference frame based on the visible scene and

independent of the walker’s current location in it, e.g. the pen that is next to

the notepad

We sampled a small random subset of our corpus (11 descriptions) and asked two annota-

tors to assign a referring expression occurring in the description to one of the categories.

They had a very high agreement; all but one of the expressions were assigned to the same

category. We then split the corpus in two parts and each annotator labeled one half.

We compared the mean occurrences of specific vs. non-specific referring expressions per

trial. For the statistical analysis, we constructed a generalized mixed-effects model (with

Poisson distribution) fitted to REsOccurrences with GazeAvailability and Category as

fixed effects.

There were no significant differences with respect to GazeAvailability : Gaze vs. NoGaze

(β = −0.021, SE = 0.082 z = −0.250, p = 0.803) and Gaze vs. ManGaze (β =

0.015, SE = 0.082, z = 0.183, p = 0.855). This suggests that speakers did not incor-

porate the listener gaze position while planning their utterances. However, in agreement

with our expectations, the majority of the produced referring expressions were specific:

NoGaze (M = 2.48 inst, SD = 0.95 inst), Gaze (M = 2.54 inst, SD = 0.86 inst) and

ManGaze (M = 2.57 inst, SD = 0.81 inst) and fewer non-specific ones were identified:

NoGaze (M = 1.52 inst, SD = 0.65 inst), Gaze (M = 1.46 inst, SD = 0.68 inst) and

ManGaze (M = 1.38 inst, SD = 0.57 inst). Specifically, there was a main effect of Cat-

egory (β = −0.553, SE = 0.097, z = −5.709, p < 0.001). This result is not surprising

and can be explained by the nature of the task under consideration. In order to enable the
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Figure 4.5: The average number of sub-specific referring expressions per trial in the
micro task (95% CI error bars)

listener to precisely identify a target object, specific expressions were predominated. The

presence of non-specific expressions can be explained by the fact that speakers described

the objects spontaneously and sometimes they were unsure about an object type, e.g. “das

Blatt oder der Block” (the sheet or the notepad).

Figure 4.5 depicts the mean occurrences one level deeper in the annotation scheme, namely

how many referring expressions were categorized as featural vs. spatial. The former spec-

ifies identifying object features such as color, size and type, whereas the latter specifies

the location of the searched-for target object. Again there were no significant differ-

ences between Gaze and NoGaze (β = 0.081, SE = 0.163, z = 0.498, p = 0.619)

and Gaze and ManGaze (β = 0.123, SE = 0.163, z = 0.757, p = 0.449). How-

ever, the model revealed a marginal effect of Category (β = −0.292, SE = 0.153, z =

−1.907, p = 0.056). That is, speakers tended to produce more featural expressions

(NoGaze (M = 0.67 inst, SD = 0.75 inst), Gaze (M = 0.62 inst, SD = 0.63 inst)

and ManGaze (M = 0.70 inst, SD = 0.63 inst)) than spatial ones (NoGaze (M =
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0.40 inst, SD = 0.66 inst), Gaze (M = 0.46 inst, SD = 0.61 inst) and ManGaze

(M = 0.43 inst, SD = 0.64 inst)), which conforms to our assumptions. In other words,

the speakers specified a property of the target object to contrast it from other co-present

objects and shift the listener’s attention to a relevant object. Then, they further described

the location of the objects as complementary information to ensure finding the current

target.

Further, the specific spatial expressions can be assigned to two sub-categories indicating

the type of information they contain (allocentic vs. egocentric). For this subset, we ob-

tained the same pattern as for the other categories, namely that there was no influence of

GazeAvailability on what kind of referring expressions were uttered: Gaze vs. NoGaze

(β = −0.416, SE = 0.493, z = −0.845, p = 0.398) and Gaze vs. ManGaze (β =

2.262, SE = 0.332, z = −0.028, p = 0.978). However, our analysis revealed a main

effect of Category (β = −0.553, SE = 0.097, z = 6.811, p < 0.001). Specifically, we ob-

served that speakers described the spatial location more often using allocentric expressions

(NoGaze (M = 0.76 inst, SD = 0.75 inst), Gaze (M = 0.83 inst, SD = 0.63 inst) and

ManGaze (M = 0.79 inst, SD = 0.70 inst), and only rarely using egocentric expressions

(NoGaze (M = 0.06 inst, SD = 0.23 inst), Gaze (M = 0.09 inst, SD = 0.28 inst) and

ManGaze (M = 0.09 inst, SD = 0.28 inst)). This could presumably be because taking

the listener’s perspective is more difficult than focusing on the visual scene when planning

an utterance and might not be very efficient in such setups.

4.2.3 Visual Behavior Analysis

To assess the role of listener gaze in this scenario, we examined the interplay of utterances,

listener gaze and the GazeAvailability manipulation.

First, we fitted a linear mixed-effects model with a random intercept and random slope

for pair to the dataset consisting of all (sliding) time windows (18841 in total). We found

a significant main effect of UtterancePresence through model selection (χ2(1) = 9.54, p <

0.01). GazeAvailability, in contrast, had no effect on model fit.

We then considered feedback expressions which are a specific form of utterance and com-

monly occur in situated and spoken interaction: Such phrases typically form a direct and

closely time-locked response to changes in the situation or, more crucially, the listener’s
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behavior. Similarly to the analysis of utterances in general, we fitted a linear mixed-effects

model, this time with FeedbackPresence as a factor. We observed a main effect (χ2(1) =

80.63, p < 0.001) and an interaction with GazeAvailability (χ2(2) = 9.38, p < 0.01). The

interaction suggests that the manipulation of gaze availability has some effect on how

listeners move their eyes during verbal feedback, compared to before or after it. This

observation also seems to be in line with the results of the linguistic analysis according

to which the proportion of positive and negative feedback instances vary in the different

levels of GazeAvailability to the speaker.

Taken together, the results from gaze behavior in UtterancePresence and FeedbackPres-

ence indicate that gaze patterns differ depending on whether speech is happening or not,

i.e. when the listener is processing speech compared to when she is not currently listening

to an utterance, and that this is relatively independent of GazeAvailability. In light of the

symptom-signal distinction, this suggests that language comprehension processes drive

the ocular system (symptom) but that deliberate control of gaze, e.g. using it as pointer

in the Gaze but not the NoGaze condition (signal), hardly affects overall gaze patterns.

Furthermore, we attempted to break up the reciprocal nature of the interaction between

listener gaze and speech by considering the temporal order of gaze events and speech

events. Examining how gaze affects utterances and then, in turn, how the utterances

affect eye movements helps us to shed light onto the dual role of listener gaze: On the one

hand, it can be seen as a sign that helps the walker to communicate with the instructor (as

the instructor can observe the walker’s behavior but cannot hear the walker). In this case,

gaze patterns may differ between the Gaze and NoGaze conditions before an utterance,

since in the former condition gaze may be more frequently used as a signal to which the

speaker reacts. On the other hand, gaze may be mostly a symptom that reflects language

processing and which therefore may also reflect when the speaker adapts to seeing listener

gaze (Gaze condition) and produces utterances accordingly. In that case, gaze patterns

are likely to differ with GazeAvailability immediately after utterance offset.

Thus, analogously to the analyses above, we fitted linear mixed-effects models on a subset

of the data, namely the time windows immediately before the onset and after the off-

set of an utterance. Both subsets consist of 954 instances and we found that the factor

GazeAvailability significantly contributes to a better model fit, not only before an instruc-

tion (χ2(2) = 9.77, p < 0.01) but also after it (χ2(2) = 10.89, p < 0.01). The same

analysis was carried out for the time windows before and after positive and, additionally,
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before and after negative feedback occurrences. However, no effect of GazeAvailability

was observed (which may also be due to the lower number of samples).

To conclude, we observed no significant difference in gaze behavior with the GazeAvail-

ability manipulation, but gaze patterns were distinct from each other in the presence and

absence of utterances in general and feedback in particular. The analyses taking temporal

aspects of the gaze and speech events into consideration showed that listener gaze signifi-

cantly differs before and after instructions. This evidence supports the view that listener

gaze can not only be seen as a symptom of language comprehension but also a non-verbal

signal to the speaker. The latter role is comparable to the role of verbal deictic expression

like “Do you mean that one there?” which could have been used in a bidirectional verbal

dialogue.

4.3 Discussion

In this exploratory study, we observed that the manipulation of the availability of listener

gaze position to the speaker had a main effect on listener gaze before and after an ut-

terance, but not while an instruction was spoken. GazeAvailability further affected the

type and amount of feedback given by speakers. In particular, Gaze differed significantly

from NoGaze, with ManGaze being inbetween those two conditions with respect to

the amount of negative feedback uttered by the speaker. This suggests that manipulated

gaze was used somewhat less than natural gaze, but was not ignored either. Surprisingly,

GazeAvailability did not affect the type of referring expressions produced in the course of

the interactions. This observation suggests that the speakers were not able to integrate

that information while planning an object description. It was possibly too demanding for

them to constantly follow and interpret the gaze cursor, which is continuous and could

rapidly move, while they were concentrated on how to precisely describe a target object.

However, we have seen that the majority of the produced expressions are specific in all

conditions and that this is task dependent. More general, non-specific expressions cannot

uniquely identify a target and are consequently not often used. Interestingly, speakers

used more featural than spatial descriptions to specify a target, suggesting that mention-

ing the featural characteristics is essential for the object identification, whereas spatial
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expressions complement them. Additionally, most of the spatial expressions were allocen-

tric and only a few egocentric ones were produced. This indicates that speakers focused

on the visual context, and encoded information about the location of the target relative

to the location of the other objects, rather than relative to the listener’s location.

Based on the combination of gaze effects before and after an utterance and the lack of

such an effect on eye movements during an utterance, we further assume that listener

gaze can be seen as both a signal from listeners for conveying some sort of information

to the speaker and as a symptom that reflects the language comprehension processes.

The tendency of speakers to produce more negative feedback with gaze availability also

supports the role of listener gaze as a signal to which instructors actively react. These

feedback instances have the potential to quickly eliminate wrong beliefs by the listener

about intended referents. We did not find an improvement of performance in terms of

time needed for task completion in the Gaze condition, but we believe that this could be

due to a ceiling effect.

Similarly, we did not find a significant effect of GazeAvailability on other coarse-grained

measures of the spoken material such as utterance length (in words). However, many

words do not necessarily carry more information. Further, GazeAvailability did not influ-

ence the type of referring expressions, but we observed some task-specific patterns that

allow the walker to precisely identify a target.

In sum, human instruction givers seem to be very efficient at producing referring expres-

sions that uniquely identify a target object among many others in real, hard referential

scenes. Unlike results in the joint attention literature investigating face-to-face social

interactions, where gaze is a helpful information source and facilitates coordination of

turn taking and reasoning about intentions of the conversational partner (e.g. Foulsham,

Cheng, Tracy, Henrich, & Kingstone, 2010), here the availability of listener gaze that

indicates the current focus of attention does not contribute to faster task solving. This

could be due to the specific setting, with listener gaze projected as a cursor. Another

explanation for why they could not constantly exploit the gaze information is possibly

because speakers were concentrating on producing a unique description of a target in an

overloaded scene. In contrast, an NLG system (as its output can be fully controlled)

may take advantage of this additional information. Specifically, it can provide proactive

feedback andthus optimize the interaction by achieving better performance in virtual envi-

ronments as shown by Garoufi et al. (2016). However, the open question remains whether
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these findings are evident in real environments that are noisier than virtual ones and do

not abstract from individual differences, e.g. head and hand movements of each person are

different. Furthermore, listener gaze can be integrated in an REG algorithm to incremen-

tally deliver an object description to the user in subsequent chunks and thereby realize the

notion of referring in installments. But another open question is whether this approach

could lead to efficient human-machine collaboration. To our knowledge, only Fang et al.

(2015) addressed this issue, but they focused mainly on gesture and embodiment in their

work. Hence we present two NLG systems dedicated to answering the above-mentioned

open research questions in the next chapter.





Chapter 5

Gaze-driven Interactive Instruction

Generation in the Real World

Designing an interactive system that communicates with the user in natural language is a

challenging task. What could be especially difficult are human-machine interactions that

take place in a shared physical environment where many factors influence communicative

success. Therefore a system that should take actions depending on the interaction state

could benefit from exploiting non-verbal cues. Interactive systems can in this way become

more attentive, efficient and friendly.

As mentioned in Section 1.1, gaze is an important indicator of language comprehension

and can be used to predict 1) what the speaker is about to say next and 2) how the

listener will resolve a reference. However, gaze is a very rapid, continuous signal and

thus it is not quite straightforward to decide when such eye movements are informative

and in particular how to react to them. Listener gaze can be also misleading because it is

dynamic, fast and continuous information source. A listener looks not only at an intended

and understood object but to other co-present objects that are similar to it and share

some features like type, color or size. Thus this information can sometimes be as noisy

and ambiguous as language. The key question is to identify informative eye movements

that correspond to an utterance. This is challenging in dynamic situated communication,

where many utterances occur and listeners perform visual search to identify and find

specific objects. It is not clear how long a fixation has to last in order to be considered to

reflect the intention of the listener to perform an action. However, human speakers can

49
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often successfully interpret such signals immediately and adequately react to them. There

is evidence that an NLG system can use gaze in virtual environments and, importantly,

that this facilitates collaboration and improves performance (Garoufi et al., 2016; Koller

et al., 2012; Staudte et al., 2012). However, whether this is similar in real environments,

which are noisier and motion cannot be as controlled as in virtual environments remains

unclear. Further, it is unexplored whether using listener gaze as a trigger for incremental

generation of natural language instruction can lead to smooth and efficient interaction.

In this chapter we present a multimodal interactive system (GazInG) and two NLG systems

embedded in it. The system assists and verbally guides a human listener during an

assembly task in the real world. Both NLG systems use listener gaze aiming to improve

referential success and to offer more interactive communication thereby encouraging the

user to better engage with the system during collaborative task solving. The NLG system

“Feedback” gives either long, unambiguous or short, ambiguous instructions and uses

listener gaze to proactively generate verbal feedback on object inspections. This system

uses listener gaze directly to provide either underspecified (“No, not that one!”) or

contrastive feedback (“Further left!”), i.e. it specifies the position of the target relative

to the current gaze position of the listener. This system is presented in our conference

paper in the proceedings of the Annual Meeting of the Cognitive Science Society 2018

(Mitev et al., 2018) and in a journal paper for the special issue “Attention in Natural

and Mediated Realities” of the journal “Cognitive Research: Principles and Implications”

of the Psychonomic Society. The NLG system “Installments”, in contrast, integrates the

listener gaze rather indirectly into the generation mechanism. Specifically, it provides an

object description incrementally, in subsequent chunks, and specifies all features of the

target object as well as its absolute (viewer-centered) position. In other words, this system

refers to objects in gaze-driven Installments, but it can generate a long description

containing all chunks and output them at once (NoInstallments). Moreover, it presents

the information in different order by either including the SpatialDescriptor, i.e. the location

of the searched-for target in the workspace, on the first or the second position in the

instruction.
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Figure 5.1: The workspace comprises 20 composed objects spread on a table (left
picture); and a close-up view of a composed target object (right picture).

5.1 Use Case and Task

The use case we consider, for which an assistance system would be appropriate, is as-

sembly. This scenario involves goal-oriented teamwork. In particular, a speaker gives

instructions to a listener who performs actions. An important step before putting to-

gether any pieces to assemble a whole object is to identify the right missing element at

any time in the assembly process. To avoid having to undo wrong steps, which negatively

influences performance, it is important to select a specific object. This may not always

be easy, especially if the workspace is overloaded and many similar objects are available,

but tracking listener gaze can help. We designed a task that involves such an interaction

in a dynamic setting and allows us to study the mutual influence of listener gaze and

speech. The target domain of our scenario is LEGO DUPLO. This domain is suitable

for our setup as the building blocks are of convenient size, while allowing a multitude of

combinations and various ways of assembly. The workspace is overloaded such that it

is challenging to automatically generate a unique identifying referring expression. Our

findings presented in Chapter 3, namely that listener gaze is beneficial in hard referential

scenes, further motivate the complexity of the visual context for this task.

Figure 5.1 depicts the workspace (left picture). A layout consists of 20 composed objects

in total and eight targets to be collected. Each composed object comprises two simple

building blocks (see Figure 5.1 (right picture) for a close-up view). For each target object

there are at least two competitors available in the workspace.
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Figure 5.2: This diagram depicts the modular software architecture of the GazInG
system.

5.2 Gaze-sensitive Instruction Generation in the Real

World

In this section we introduce the assistance system, GazInG (Gaze-driven Instruction Gen-

eration), that supports a user during a real-world object identification task. We present

two NLG systems that make use of listener gaze to augment their referring expression

generation algorithms.

5.2.1 GazInG: Multimodal Interactive System

The multimodal interactive system GazInG monitors listener gaze and interprets object

inspections and so attents to the listener. In other words, whenever the listener looks at

a co-present object and considers to picking it, the system evaluates the gaze signal and

responds to the listener respectively. The two different NLG systems embedded in it are

targeted at generating instructions in natural language and contain referring expressions

describing a specific target object. Both systems implement two different methods for

generating an instruction: they can either provide a long, exhaustive description or split

the description into different chunks and output them sequentially.

The modular design of the system makes it flexible, easily extendable and adaptable to

other domains. Figure 5.2 depicts the system’s architecture. The core software compo-

nent is the InteractionManager which steers the interaction flow. It is coupled to the
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EyeSee3D module that transfers the real scene into a 3D virtual model, which is nec-

essary for the semantic mapping of object inspections. The InteractionManager has

access to the Domain knowledge, where the characteristics of the real-world objects are

stored. On the basis of the properties of a target object (color, size and position), the

InstructionGenerator uses the LexicalRepresentation and generates an Utterance,

i.e. instruction in natural language. The InstructionGenerator is connected to the

SpeechSynthesizer (MaryTTS (Schröder, Charfuelan, Pammi, & Steiner, 2011)) in or-

der to obtain an auditory version of the generated text and output spoken instructions

on request by the InteractionManager. The target language we used is German and the

TextRealizer we chose is SimpleNLG (Gatt & Reiter, 2009).

The programming language used for the implementation of the NLG systems is Java. The

different modalities are synchronized and aligned by making use of thread programming

and the interaction flow is realized with event-based programming.

Augmented Reality: EyeSee3D Module

EyeSee3D was developed to enable real-time analysis of mobile gaze-based experiments.

The central idea is to model the environment as a 3D situation model in which the stimuli

are represented (see turquoise arrow in Figure 6.1). The model can be created by scanning

the environment (e.g. using a Microsoft Kinect) or, as done here, manually using abstract

geometries like boxes.

In order to integrate the user’s head position and orientation into the model, the en-

vironment is instrumented with low-cost printable fiducial markers (see cloth table in

Figure 6.1). These are located in previously known positions relative to the stimuli. The

scene camera of the mobile eye tracker is then used to detect and track the markers. If

at least one marker is visible in the scene camera, the head position and orientation can

be calculated.

Computed from the user’s gaze direction, a 3D gaze ray can then be cast into the situation

model (see yellow arrow in Figure 6.1). By testing intersections of the ray with the

modeled stimuli, objects of interest being gazed at can be identified. In this way the

semantic mapping of the listener’s inspections is realized, i.e. onto which real-world object
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inspections are detected. For more technical details of the approach see Pfeiffer and

Renner (2014).

Modality Alignment and Synchronization

For such situated interactions, the temporal alignment of the different modalities is crucial

and challenging. The synchronization can be an issue if it fails. The eye-tracking signal is

continuous and noisy because eye movements are rapid, i.e. they can quickly jump from one

object to another. Thus, it is important to decide on which fixations should be interpreted

and used to trigger feedback, and when to output this feedback. A critical parameter

is the inspection threshold, i.e. how long a fixation should last to be considered as an

indicator of the listener’s intention to pick up the gazed-at object. Inspired by Garoufi et

al. (2016), who dealt with long distances between listener and target, i.e. targets which

were not directly within the participant’s reach, we set the inspection threshold initially

to 300 ms. However, we adjusted the threshold to 200 ms on an empirical basis as we

are dealing with short distances between user and targets, so that objects can be reached

very quickly. System instructions were not self-interrupted and feedback occurred only

after an instruction ended (offset). In advance, we ran two preliminary studies to find

an appropriate object density and to determine whether the latency of the eye-tracking

data streaming allows the generation of feedback on time. We used human-authored

instructions in the form of canned text to refer to the different objects the listeners should

identify. These were final strings that were presented to the user without changing them

when the appropriate trigger (object inspection) was detected (see Appendix B).

5.2.2 NLG System “Feedback”: Instructions Combined with

Gaze-driven Verbal Feedback

In this section, we present our first NLG system. We use a heuristic approach and imple-

ment two interaction strategies: generating short, ambiguous or long, unambiguous

instructions. Furthermore, the system provides gaze-driven feedback triggered by inspec-

tions of competitors or the target. The feedback triggered by inspections of competitors

can be of different specificity: either underspecified or contrastive.
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Figure 5.3: The generation mechnism implemented in NLG system “Feedback”.

On Figure 5.3 the workflow diagram of the generation mechanism is depicted. The system

generates, depending on the interaction strategy, either an unambiguous or an ambigu-

ous instruction. The system observes gaze behavior and interprets it. If the listener looks

at a competitor object, the system generates a negative feedback instance. If the listener

inspects the target object, the system generates a positive feedback instance to confirm

the correct interpretation of an instruction. Typically after hearing a confirmation, lis-

teners grasp the target and assemble it onto the other building blocks. Listeners had the

option to look at the middle of the workspace (fixating on a small green LEGO plate) if

they were confused in order to get further help from the system. In this case, the system

repeated the initial instruction. An unambiguous instruction is followed by either no

or underspecified feedback, and after an ambiguous instruction the system provides

the user with either underspecified or contrastive feedback.
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NLG Heuristics Our system uses a heuristic approach to generate an instruction con-

taining a referring expression (RE) that describes a composed object available in the

workspace. The syntactic structure of the instructions is predefined. The system is able

to generate ambiguous instructions consisting of a main clause that describes the bottom

object:

(1) “Nimm den großen roten Baustein!” (Pick the big red building block.)

Size and color are used as pre-modifiers and the head noun is randomly chosen from a

set of synonyms suitable for the type of object such that the instructions are not too

monotonous. In order to output an unambiguous instruction the algorithm appends

two post-modifiers additionally to describe the top object, 1) a prepositional phrase (PP):

(2) “Nimm den großen roten Baustein mit dem kleinen gelben Duploteil darauf!”

(Pick the big red building block with the small yellow one on top.)

or a relative clause (RelClause)

(3) “Nimm den großen roten Baustein, auf dem ein kleiner gelber Duploteil steckt”

(Pick the big red building block, on which a small yellow one is placed.)

and 2) an adverbial phrase containing absolute position information.

(4) “Nimm den großen roten Baustein, auf dem ein kleiner gelber Duploteil steckt,

hinten links!”

(Pick the big red building block, on which a small yellow one is placed, at the back

toward the left.)

The workspace is divided into four squares a) at the back toward the left or b) the right

and c) in the front toward the left or d) the right. Providing the spatial expression

disambiguates the instruction.



Chapter 5 GazInG: Gaze-driven Instruction Generation 57

Verbal Feedback The system is capable of generating either underspecified or con-

trastive feedback. Inspections of target objects trigger positive feedback (e.g. “Yes”,

“Exactly” etc.), and inspections of competitors trigger negative feedback signaling that

the listener is considering the wrong object: underspecified, such as “No, not that

one!” or contrastive, providing relative position information to compensate, such as

“Further left!”. In the former case, the listener can exclude only the inspected competitor,

which might be sufficient for simple scenes where fewer competitors are available in the

visual context. In the latter case, the listener’s attention is directed towards the target

relative to the current gaze position. The system thereby avoids inspections of other com-

petitors until the target is found. This makes such an interaction approach comparable

to the notion of referring in installments as it splits the information into different chunks.

However, in this case the second piece of information is instead in the form of feedback

and is related to the current gaze position of the listener. In the next section we present

our second NLG system that implements true installments, i.e. it splits a full instruction

into three chunks and provides them subsequently depending on which objects the listener

inspects.

5.2.3 NLG System “Installments”: Gaze-driven Incremental

Instruction Generation

In this section, we present our second NLG system, “Installments”, that describes real-

world objects needed by a listener for assembly in a real-time and environment. The

system includes a mechanism to interpret listener gaze in the REG algorithm. We im-

plemented two approaches for InformationDelivery, i.e. how to provide the listener with

the required information to identify an object. Our system generates and outputs 1) the

whole description at once (NoInstallments) vs. 2) incrementally in subsequent chunks

(Installments) triggered by object inspections. Furthermore, it varies the order of the

information presented to the listener by providing a SpatialDescriptor as either the first

or the second installment, i.e. the position specification of a target object is mentioned

before or after a featural descriptor.

NLG Heuristics Analogously to NLG system “Feedback” we use a heuristic approach

to generate instructions, which have a predefined syntactic structure. However, the order
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of the information varies with respect to the appearance of the SpatialDescriptor. The

system initially generates a polite request:

(5) “Nimm bitte den folgenden Baustein!” (Pick the following building block, please! )

After that, the description of the composed target object is specified. In this setup both

color and size of the respective target need to be specified in order to identify an object. To

be as concise as possible, the object type is not mentioned, because it does not contribute

to the unique reference (all objects are of the same type). Instead the head noun in

a referring expression is a nominalized color adjective, and the adjective that specifies

the size is used as a pre-modifier. Figure 5.4 depicts the second generation mechanism

implemented in the GazInG system. For each target object, initially all installments

are generated, and depending on the InformationDelivery approach, are presented in a

different manner to the listener. Two InformationDelivery approaches are implemented:

referring to objects in NoInstallments vs. Installments (triggered by the listener’s

object inspections). For the former, all installments are concatenated and output at once,

while the latter gives the next installment as a response to a competitor inspection. A

competitor object has the same characteristics as a target object, except for location

or color, depending on when the SpatialDescriptor is mentioned. All other objects are

considered as distractors and the system does not react to distractor inspections. This

system generates verbal confirmation. That is, inspections of a target object trigger

positive feedback like “Yes”, “Exactly” etc. to encourage the user to grasp it. Usually

after hearing an exhaustive description (NoInstallments), listeners would not consider

a competitor, but if they do, our system outputs negative feedback such as “No, not that

one!” to prevent a wrong grasp.

Additionally, as the position of the target object disambiguates a referring expression,

we flip the first two installments to investigate whether mentioning the position right at

the beginning influences performance. That is, SpatialDescriptor is generated first (2)

vs. second (3).

(6) “Hinten links” ... < competitor inspection > ... “den großen Blauen” ...

< competitor inspection > ... [“mit dem kleinen Gelben darauf”] ...

< target inspection > ... “Ja!”
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Figure 5.4: The generation mechanism implemented in NLG system “Installments”.

(At the back toward the left ...< competitor inspection > ... the big blue one

...< competitor inspection > ... [with the small yellow one on top of it] ...

< target inspection > ... Yes!)

(7) “Den großen Blauen” ...< competitor inspection > ... “hinten links” ...

< competitor inspection > ... [“mit dem kleinen Gelben darauf” ] ...

< target inspection > ... “Ja!”

(The big blue one ...< competitor inspection > ... at the back toward the left ...

< competitor inspection > ... [with the small yellow one on top of it]...

< target inspection > ... Yes! )
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For the NoInstallments approach, there are two corresponding versions with respect

to the order of information; see examples (4) and (5).

(8) “Hinten links, den großen Blauen mit dem kleinen Gelben darauf.” ...

< target inspection > ... “Ja!”

(At the back toward the left, the big blue one, with the small yellow one on top of

it...< target inspection > ... Yes! )

(9) “Den großen Blauen, hinten links, mit dem kleinen Gelben darauf.” ...

< target inspection > ... “Ja!”

(The big blue one, at the back toward the left, with the small yellow one on top of

it...< target inspection > ... Yes! )

5.3 Summary

In this chapter, we have introduced a multimodal instruction-giving system (GazInG) that

is targeted to assist a user by giving verbal instructions. The use case we consider is col-

laborative assembly; that is, the system and the user team up to find and collect specific

co-present objects needed for assembly. The system is in the role of a speaker and the user

is the listener. Furthermore, our system tracks listener gaze and reacts to it. This enables

consideration of attention shifts and adaptive behavior aiming at efficient communica-

tion. We developed two NLG systems to automatically generate identifying instructions.

The NLG system “Feedback” reacts to listener’s eye movements with verbal feedback,

which can be either underspecified, i.e. just warning, for example, “No, not that one!”,

or contrastive, i.e. providing additional information by specifying the spatial location, for

example “Further left!”. In contrast, the NLG system “Installments” uses listener’s eye

movements to output an instruction incrementally. That is, it first outputs a phrase that

gives partial information, and then, depending on where the listener looks, either further

describes the intended target with another phrase (not in the form of feedback) or outputs

a confirmation. Both systems also implement a non-interactive object description gener-

ation and so output an instruction that specifies at once all object attributes needed to

identify a target, i.e. color, size and position. Our system provides a proof-of-concept that

listener gaze can be used for adaptive NLG in real environments. However, it is not yet
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clear if using a gaze-driven strategy for NLG is 1) beneficial for the user, i.e. it benefits the

listener’s understanding and leads to more efficient interactions and 2) if it is preferred by

the user over a non-interactive strategy, i.e. if it feels better, namely more appropriate and

natural. Importantly, GazInG can be used to investigate these research questions; we ad-

dress them in the next two chapters. Specifically, we present two experiments investigating

the interaction with the NLG system “Feedback” and how gaze-driven feedback affects

performance and engagement in Chapter 6. Further, in another experiment presented

in Chapter 7, we observed how listeners interacted with the NLG system “Installments”

and examined if gaze-driven installments benefit understanding and if spatial information

determines efficiency.





Chapter 6

Human-Machine Interaction: Effects

of Listener Gaze on Performance and

Engagement

Listener gaze is a reliable indicator of language understanding. We address the question of

whether a listener gaze can successfully be used as a non-verbal feedback cue for adaptive

instruction generation and integrate listener feedback into the interaction loop. There

is some evidence from studies in virtual environments that feedback from the artificial

speaker based on listener gaze can increase interaction efficiency (Koller et al., 2012;

Staudte et al., 2012; Garoufi et al., 2016). However, there are two remaining questions

that we address in the present chapter: (1) whether the successful use of listener gaze

can be replicated in real environments, which are much more complex, noisy, and less

controlled to handle technically, and (2) whether gaze-aware natural language generation

can be used to generate adaptive repairs in the form of contrastive feedback, which further

describes a target.

In this chapter we present two experiments that are designed to test the usefulness of

listener gaze for adaptive feedback generation. Both experiments were designed to inves-

tigate the interaction with the first NLG System “Feedback”. Our results indicate that

listener gaze can reliably be used to anticipate, in the real world as well, which object the

listener is considering to grasp. In both experiments we obtain a very low error rate and

so validate that gaze can be used to prevent wrong steps that would need to be undone.

63
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Further, in Experiment 1 we show that contrastive feedback improves performance and

speeds up task solving. Specifically, when it is combined with an ambiguous instruc-

tion it outperforms acting out an unambiguous instruction, suggesting that distributing

the information into subsequent chunks is beneficial. These results have been published

partly published in the proceedings of the Annual Meeting of the Cognitive Science Society

2018 (Mitev et al., 2018). In Experiment 2, we found that the presence of contrastive

gaze-driven feedback influences the engagement in the interaction with the the instruction-

giving system and listeners’ information uptake. Both aspects influence how the listener

can progress through the task. Thus, even in the more difficult condition when feedback

was underspecified, listeners were as fast as when they received contrastive feed-

back. The findings from both experiments have been published in “Attention in Natural

and Mediated Realities”, a special issue of the journal “Cognitive Research: Principles

and Implications” of the Psychonomic Society.

6.1 Experimental Method

In order to investigate how listener gaze can be used in a dynamic task-oriented interac-

tion and in particular how listeners engage with an artificial speaker, we conducted two

experiments. Both experiments were targeted to evaluate the interaction with the NLG

system “Feedback” and to examine whether exploiting listeners’ gaze to generate verbal

feedback facilitates communication and contributes to efficiency. We tested two different

InteractionStrategies (unambiguous vs. ambigous) and two levels of FeedbackSpecificity

(underspecified vs. contrastive) and how these factors influence task performance

and listeners’ engagement with the instruction-giving system.

6.1.1 Setup and Apparatus

Figure 6.1 depicts our setup. Our system is designed to describe real-world objects to

a näıve listener, who is asked to select these in real time. The system does not provide

guidelines on how to put together the selected elements but leaves this to the listener’s

creativity.
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reconstructed
3D gaze ray

3D situation model
with proxy geometries

Figure 6.1: Setup: Listener in front of a workspace before any objects are collected.
The target is circled in green and competitors in red. The listener inspects the com-
petitor object to the left as highlighted in the virtual 3D model. EyeSee3D is used to
reconstruct the gaze ray in 3D (yellow). The target domain is modeled as a 3D situation

model with boxes as proxies for the assembled structures (turquoise).

We used an SMI Eye Tracking Glasses binocular head-mounted eye tracker for gaze data

collection. The tracker is equipped with a high-resolution scene camera (1280 x 960)

at 24Hz and two eye cameras recording at 30Hz. The eye tracker was connected to a

notebook. The EyeSee3D augmented reality software (see Section 5.2.1) and the NLG

system run on a Dell Precision M4800 15,6” WORKSTATION with processor I7 4900MQ

at 2.8GHZ and with 16GB RAM. The speech synthesizer was located on a remote server.

The communication was implemented using a client-server architecture.

6.1.2 Measures and Analysis

Both experiments included almost the same core set of objective and behavioral measures

to assess the quality and effectiveness of the interaction. In Experiment 1 we assessed

additionally subjective measures concerning listeners’ perception of the interactions with

the GazInG system.
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Figure 6.2: This diagram illustrates the interaction phases for both strategies: The
spoken instruction, followed by identification, i.e. time to first target inspection, and
the grasp of the object after a verbal confirmation is given. Visual search starts either
during or after an instruction and can be interleaved with feedback, depending on the

condition.

All measures were collected on a per item basis. Performance was measured by total time

needed for task completion and success rate.

The total time was further divided into three phases, which differ depending on the

InteractionStrategy (see Figure 6.2). The first phase is determined by the duration of

the spoken instruction, from speech onset to speech offset. Secondly, we assessed the

time for identification, i.e. the time needed from the offset of the instruction to make

the first inspection to the target in Experiment 1 and 2. Finally, the time from the first

target inspection until the grasp of the target determined the duration of the third phase.

For the exhaustive, unambiguous instructions and NoInstallments, the visual search

starts while the system is still speaking out the instruction. This is not the case for the

ambiguous interaction strategy.

Further, we derived various metrics from the eye-tracking data. For the object inspec-

tions, we examined the average number per trial, i.e. how often participants looked at the

target or at one of the competitors. We obtained the duration of the inspections during

and after an instruction (until finding the target) and also for the whole time span (task

completion time). For speech, the only variable is feedback occurrences, as this modality
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was controlled throughout the experiments. Besides the total count of feedback occur-

rences, we analyzed the time intervals from instruction offset to feedback onset of the first

positive and also first negative feedback instance because they correspond to visual search

behavior.

Statistical analyses were conducted in the R statistical programming environment (R Core

Team, 2014). We assessed statistical significance using linear mixed-effects models using

the lme4 package in R and model comparison in order to determine the influence of In-

teractionStrategy and FeedbackSpecificity. As proposed by (Bates et al., 2015), we started

out with the maximal model fitting our assumptions with respect to the random effects

structure. When the models failed to converge, our approach for simplifying the ran-

dom structure was to first remove the correlations between random slopes and intercepts,

followed by the intercept terms, starting with the random effect for items (if present).

6.2 Experiment 1: Interaction with the NLG System

“Feedback”

In this experiment, we manipulated the InteractionStrategy : unambiguous vs. am-

biguous instructions within participants and the FeedbackSpecificity : underspecified

vs. contrastive feedback between participants, i.e. group one was provided with no or

unspecific feedback (e.g. “No, not that one!”) while group two received spatial informa-

tion relative to the user’s current fixation point (e.g. “Further right!”). We hypothesized

that providing contrastive feedback complementing an ambiguous instruction will

shorten total interaction time compared to when feedback is underspecified. The for-

mer guides listeners attention and narrows down the search space, while the latter only

provides warnings to prevent wrong actions. Further, we expected to find that distribut-

ing the information in different chunks would be similarly effective as following long,

unambiguous instructions.
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Interaction Strategy

Ambiguous Unambiguous

Group 1 Underspecified Feedback No Feedback
Group 2 Contrastive Feedback Contrastive Feedback

Table 6.1: Interaction strategies (blocked) for each group in Experiment 1.

6.2.1 Participants

Forty-eight participants, mainly students enrolled at Saarland University, took part in the

experiment. Twenty-four were assigned to group one (19 female) and the other twenty-

four formed group two (18 female). The average age of the first group of participants was

25 years with a range of 19–35, and of the second, 24 years with a range of 20–31. All

participants were German native speakers and reported normal or corrected-to-normal

vision and no red-green color blindness. Their participation was compensated with e8

(first group) and e5 (second group) with the difference being due to the slightly shorter

duration of the second group’s experiment.

6.2.2 Procedure

Participants were seated in front of the workspace and asked to carefully listen to and

follow the system’s instructions. They were instructed to act as a team with the system

and solve the task together as precisely as possible, i.e. to avoid taking the wrong building

blocks. Then participants were equipped with a pair of eye-tracking glasses and a 3-point

calibration procedure followed. Calibration was repeated between layouts and whenever

needed. Before performing the actual task, a short practice session was completed: par-

ticipants had to collect three targets among six objects in total in order to familiarize

themselves with the task and the system’s pace.

The experimental part consisted of two blocks, one for each interaction strategy (see

Table 6.1). The order was balanced across participants. Each block consisted of one

layout with a total of 20 composed objects and eight targets to be collected in each (see

Appendix A). Our system did not give instructions on how to assemble the identified

building blocks. However, participants were encouraged to put effort into building an
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Figure 6.3: An example trial: System instructs the user by saying “Pick the big red
building block.” The listener identifies and grasps it. After that it is assembled to the

other LEGO blocks (right picture). The circle represents the gaze cursor.

individual LEGO model, as an additional reward was given for the most creative one.

An example trial is presented in Figure 6.3: The system gives the instruction “Pick the

big red building block”. The listener identifies the target (left picture). After receiving a

confirmation based on looking at the target object (“Yes, that one!”), the listener takes

it, hears “Well done!” and assembles it with the other blocks (right picture).

In the different experimental conditions the interaction is typically as follows:

Using the unambiguous InteractionStrategy, the system gives a long description. The lis-

tener identifies the target, and in the no-feedback condition people just grasp the uniquely

described target, or get a confirmation. underspecified feedback is given after an ex-

haustive RE, to encourage the listener to grasp the target.

(1) system: Pick the big red building block with a small yellow piece on top of

it at the back toward the left.

listener: [inspects the target]

system: [no reaction or] Yes, that one! (underspecified or contrastive)

listener: [grasps the target]

system: Well done!
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In contrast, the ambiguous InteractionStrategy is more interactive and includes more

turns. Initially, a partial description, which specifies the characteristics of the bottom

object, is given. Then, if a competitor is inspected, the system warns the listener with

underspecified feedback that a wrong object is being considered, and finally the target

is found and grasped.

(2) system: Pick the big red building block.

listener: [inspects a competitor]

system: No, not that one! (underspecified)

listener: [inspects a competitor]

system: No, not that one! (underspecified)

listener: [inspects the target]

system: Yes, exactly!

listener: [grasps the target]

system: Well done!

Providing contrastive feedback directs listeners’ attention in the right direction and

may require fewer turns.

(3) system: Pick the big red building block.

listener: [inspects a competitor]

system: Further toward the left! (contrastive)

listener: [inspects the target]

system: Yes, that one!

listener: [grasps the target]

system: Well done!

After finishing one layout, each participant filled in a questionnaire assessing participants’

perception and impressions of the interaction with the system. Finally, they answered

questions about the comparison of both interaction strategies they experienced. The

experiment lasted between 30 and 45 minutes.
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Figure 6.4: This plot depicts the task completion time (log transformed) from the
instruction onset until the target is grasped in Experiment 1.

6.2.3 Results

The results reported in this section are based on 722 unique trials remaining after outlier

removal (filtering out data points that were 2.5 standard deviations above or below the

mean) from a total of 768; the outliers amounted to 6% of the data. Table 6.2 summarizes

the number of trials for each condition and each group of participants. The number of

correct trials indicates that it was unproblematic for the participants to identify a target

in the unambiguous condition even if no feedback was provided by the system.

Performance The total time to solve each task, i.e. find and collect a building block,

indicates efficiency of the communication with the system. All tasks were solved, and

Interaction Strategy Group 1 Group 2
unambiguous 180 (166) 183 (176)
ambiguous 175 (151) 184 (166)

Table 6.2: This table summarizes the number of trials remaining after outlier removal
and in how many of them no wrong objects were grasped (presented in brackets).
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there were only a few wrong grasps (8.7%), and almost no need for repetition of an in-

struction, validating that both interaction strategies are effective. Figure 6.4 depicts the

main findings: Participants were faster when they received contrastive feedback af-

ter an unambiguous instruction as opposed to when no feedback was given after an

unambiguous instruction (blue line). Additionally, we found that an ambiguous in-

struction in combination with contrastive feedback was acted out faster compared to

the combination with underspecified feedback and, surprisingly, even outperforms the

unambiguous interaction strategy (red line).

Specifically, the first group of participants was faster at solving the task listening to an

unambiguous instruction (M = 14.31 sec, SD = 8.60 sec) than in the ambiguous con-

dition with underspecified feedback (M = 17.56 sec, SD = 10.44 sec). For the second

group, the effect changed its direction: the ambiguous condition now led to shorter task

completion times (M = 11.96 sec, SD = 5.61 sec) compared to the unambiguous one

(M = 12.75 sec, SD = 4.75 sec).

More precisely, we constructed an individual model for each group with InteractionStrategy

as a fixed effect and with random intercepts and slopes for subjects and items. Table 6.3

summarizes the inferential statistics. Both comparisons revealed main effects of Interac-

tionStrategy for the first group exposed to underspecified feedback (χ2(1) = 4.008, p <

0.05) and for the second group exposed to contrastive feedback (χ2(1) = 4.502, p < 0.05).

For the ambiguous subset, we fitted a linear mixed-effects model with FeedbackSpecificity

as fixed effect and included random intercepts and slopes for subjects and items. There

was a main effect of FeedbackSpecificity on total time revealed by model comparison

(χ2(1) = 15.907, p < 0.001), that is, contrastive feedback improved task completion

time over underspecified feedback.

Listener gaze Next, we analyzed the identification time needed to find and inspect the

intended target after instruction offset. Unsurprisingly, participants were quicker at iden-

tifying a target in the unambiguous instruction as it contains all object characteristics

and also specifies its absolute position, so the search started while the instruction was

being spoken (see Figure 6.5). Table 6.4 summarizes the mean reaction times per trial.

Analogously to the analysis of the total time, we fitted linear mixed-effects models for each

dataset with the same random structure. Table F.1 summarizes the inferential statistics.
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Df AIC BIC logLik deviance χ2 χ Df P(> χ2)
model0 8 -116.36 -85.39 66.18 -132.36
model1 9 -118.37 -83.52 68.19 -136.37 4.01 1 0.0453∗

Group 1
Model 0: totalTime ∼ 1 + (InteractionStrategy | Subject) + (InteractionStrategy | Item)

Model 1: totalTime ∼ InteractionStrategy + (InteractionStrategy | Subject) +

(InteractionStrategy | Item)

Df AIC BIC logLik deviance χ2 χ Df P(> χ2)
model0 8 -305.54 -274.30 160.77 -321.54
model1 9 -308.05 -272.90 163.02 -326.05 4.50 1 0.0338∗

Group 2
Model 0: totalTime ∼ 1 + (InteractionStrategy | Subject) + (InteractionStrategy | Item)

Model 1: totalTime ∼ InteractionStrategy + (InteractionStrategy | Subject) +

(InteractionStrategy | Item)

Df AIC BIC logLik deviance χ2 χ Df Pr(> χ2)
model0 8 -99.77 -68.70 57.88 -115.77
model1 9 -113.67 -78.73 65.84 -131.67 15.91 1 <0.001∗∗∗

Grpup 1 and Group 2 ambiguous condition
Model 0: totalTime ∼ 1 + (FeedbackSpecificity | Subject) + (FeedbackSpecificity | Item)

Model 1: totalTime ∼ FeedbackSpecificity + (FeedbackSpecificity | Subject) +

(FeedbackSpecificity | Item)

Table 6.3: This table summarizes the models fitted to the performance data and the
model comparison results for Experiment 1. Differences are denoted to be significant at

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Model selection revealed main effects of InteractionStrategy for the first group (χ2(1) =

60.257, p < 0.001) and for the second group (χ2(1) = 92.868, p < 0.001). Additionally, a

Instruction
Identification

Time
Grasp

Total
Time

first
group

unamb. 7.21 2.17 4.93 14.31
amb. 2.81 7.22 7.52 17.56

second
group

unamb. 7.23 1.27 4.25 12.75
amb. 2.80 4.21 4.94 11.96

Table 6.4: The mean durations in seconds of the interaction phases in Experiment 1
(see Figure 6.2).
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Figure 6.5: This plot depicts the time span from the instruction offset to the first
target inspection in Experiment 1.

main effect of FeedbackSpecificity for the ambiguous condition (χ2(1) = 4.172, p < 0.05)

was observed. In other words, listeners needed three times longer after hearing an am-

biguous instruction (M = 7.22 sec, SD = 8.37 sec) to find the target object than after

listening to an unambiguous one (M = 2.17 sec, SD = 5.12 sec). This time span was

shortened dramatically when gaze-driven contrastive feedback followed the instruc-

tions, though listeners still inspected the intended target sooner after the unambigu-

ous interaction strategy (M = 1.27 sec, SD = 2.21 sec) than in the ambiguous case

(M = 4.21 sec, SD = 3.80 sec).

Speech As we had full control of the speech modality, the only variation can be encoun-

tered in the feedback instances output by the system. For the unambiguous strategy,

there is no comparison between groups because in the first part of the experiment, no

feedback was given to the listener. We analyzed the number of negative feedback in-

stances which occurred in the ambiguous condition across groups. To test if there was

a significant difference, we constructed a generalized linear mixed-effects model (with a
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Figure 6.6: This plot depicts the number of negative feedback occurrences in Experi-
ment 1.

logit link function) fitted to FeedbackOccurrences with FeedbackSpecificity as a fixed ef-

fect. Surprisingly, there was no significant difference with respect to our manipulation

(β = −0.038, SE = 0.086, z = −0.443, p = 0.658). Overall there were more positive

than negative instances in general (β = −0.094, SE = 0.048, z = −1.948, p = 0.051),

which can be explained by the fact that whenever the listener is reaching for a target,

she keeps looking at it and this triggers positive feedback affirming understanding. This

pattern was also observed in our human-human interaction study (see Chapter 4), which

suggests that feedback proportions are dependent on the setup (tabletop within reach).

Surprisingly, there was no significant difference in the number of negative instances with

respect to our manipulation (β = −0.038, SE = 0.086, z = −0.443, p = 0.658)

As the setting is very dynamic, the number of feedback occurrences might not be a good

indicator of task performance and the involvement in the interaction. After carefully in-

specting samples of the video material collected during the experiment, we observed that

negative feedback instances can also occur after a confirmation of an object inspection

(positive feedback instance) because listeners turned quickly to place the found building

block on the LEGO model. Additionally, in such a setup an artifact is that no neutral
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Speaker 
(Language)
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No! Not that! Yes exactly!
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Listener 
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Figure 6.7: This figure illustrates how a typical trial looks and the differentiation of
FeedbackSpecificity. The red arrows indicate the time intervals analyzed for the sequen-

tial feedback analysis.

fixation position exists, such as a fixation cross in the visual world paradigm. The pro-

jection of the gaze vectors hits an area of interest almost all of the time, and given the

high density of similar objects, this can also trigger a reaction by the system. Addition-

ally, there may be a larger participant variation in the eye movements which trigger the

verbal feedback, and thus we analyzed the proportional feedback per trial, i.e. the num-

ber of negative feedback instances normalized by the total number of feedback instances

that each participant triggered in each trial. There was no effect of FeedbackSpecificity

(χ2(1) = 1.179, p = 0.277).

Further, we investigated the sequential order of feedback occurrences, i.e. how long after

hearing an instruction listeners received the first negative and the first positive feedback

instance, which are triggered by inspecting relevant objects (see red arrows in Figure 6.7).

This mirrors visual search behavior during the task and also hints at how well participants

engaged with the instruction-giving system.

Figure 6.8 depicts the mean time intervals from instruction offset to the onset of feedback

instances for the ambiguous condition. By design of the interaction, positive feedback

occurred later than negative feedback, which is reflected in a main effect of Feedback-

Type (χ2(1) = 123.455, p < .001). Importantly, the analysis showed that there is a

main effect of FeedbackSpecificity (χ2(1) = 18.416, p < 0.001). As expected, the pattern

observed in the listener gaze evaluation (time to first fixation) persists for the time to

first positive feedback instance because this inspection triggers the first positive feedback
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instance. In the underspecified feedback condition, listeners induced later positive

feedback (M = 10.33sec, SD = 16.91sec) than in the case of contrastive feedback

(M = 5.43sec, SD = 5.97sec). This demonstrates how more specific feedback narrowed

down the search for the target object and shortened the time until finding it. Further-

more, the investigation of the first occurrence of a negative feedback instance revealed that

listeners also inspected a competitor fitting the description faster in the contrastive

(M = 1.97sec, SD = 2.68sec) than the underspecified (M = 4.07sec, SD = 5.77sec)

condition. This suggests that listeners’ expectation of an informative response elicits more

deliberate and controlled use of gaze because the system constantly reacts with additional,

useful information to their back channels.

Perception Participants answered 13 questions to judge each interaction strategy. 8

questions were using a five-point Likert scale (1 indicating a very good and 5 a poor

score), e.g. “How good/precise did you find the spoken instructions?” or “How flexible

did you find the interaction?”. There were 5 yes/no questions like “Was the system’s
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Figure 6.8: This plot depicts the time interval from the instruction offset to the onsets
of the first negative (triggered by a competitor inspection) and first positive (triggered
by a target inspection) feedback instances for the ambiguous InteractionStrategy in

Experiment 1.
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feedback confusing?” to assess if the interaction with the system felt natural or “Were

the instructions exhaustive, i.e. you were able to identify a target upon hearing the in-

struction?” to check whether participants paid attention. In a final questionnaire they

answered 5 yes/no questions to compare both interaction strategies and assess user pref-

erences. Overall the interaction with the system was perceived as natural and gaze-driven

feedback was rated as helpful and not confusing. In sum, we conclude that in terms of

pace and flow, the interaction was well perceived. This can be interpreted as validation

of our design and choice of parameters. In order to assess whether participants paid at-

tention, they were asked if they noticed differences in the type of spoken instructions. In

addition, we asked which one of the interaction strategies they preferred. Interestingly,

there was a clear preference in both groups for listening and following an unambiguous

instruction. All participants (100%) in the underspecified feedback group and most of

the participants in the contrastive feedback group (87.5%) stated that they prefer un-

ambiguous instructions and indicated them as more pleasant, although the contrastive

feedback group was faster when experiencing the ambiguous strategy. However, a simple

linear regression ran on the responses to “How good did you find the interaction flow?”

poor

neutral

good

Interaction Strategy
ambiguous    

unambiguous

underspecified   no feedback  contrastive  contrastive

Feedback Specificity

Figure 6.9: This plot depicts participants’ perception and judgement of the interaction
flow measured on a Likert scale for Experiment 1.
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revealed main effects of FeedbackSpecificity (β = −0.333, t(92) = −1.996, p < 0.05)

and InteractionStrategy (β = −0.750, t(92) = −2.008, p < 0.05) (see 6.9). That is,

when contrastive feedback followed an ambiguous instruction, it was judged to

be better (M = 1.25, SD = 0.44) than when underspecified feedback was provided

(M = 1.58, SD = 0.77). The former assessment was similar to the perception of the

unambiguous instructions by the contrastive (M = 1.25, SD = 0.53) and underspecified

feedback group (M = 1.20, SD = 0.51). This demonstrates that the informativity of

the verbal feedback improves the InteractionStrategy giving initially partial, ambiguous

instructions and so listeners experience it as smoother.

6.2.4 Discussion

The analyses of the data collected during interactions with the GazInG system provide

some evidence for successful use of listener gaze in a real-world task. An Interaction-

Strategy that refers to objects incrementally and reacts to listeners’ gaze can be used to

identify objects in the shared space. Moreover, performance results indicate that Feed-

backSpecificity is essential for efficiency. The results reveal that contrastive feedback

benefits task performance because it not only warns the listener against grasping a wrong

object, but also includes a relative direction in which to look for the target. In contrast,

underspecified feedback solely prevents the user from wrong grasps and does not fa-

cilitate search. Notably, the combination of ambiguous instructions with contrastive

feedback even outperformed following unambiguous instructions, which contain all char-

acteristics including the position of the target object.

Interestingly, there was a mismatch in the perception and performance measures with re-

spect to the unambiguous and ambiguous interaction strategies. Apparently, listeners

felt more confident in their own performance when following unambiguous instructions.

One explanation for this perception might be that the unambiguous strategy allowed

participants to be more passive during the interactions. After an ambiguous instruction,

in contrast, they had to actively engage with the system in order to make progress in the

task. The former is obviously considered as more convenient despite being apparently less

efficient compared to the more interactive strategy with specific responses.

In sum, listener gaze is important and can be used to split information by proving first

a partial description and then supplementary, more informative feedback as a reaction to



80 Chapter 6 Human-Machine Interaction: Effects of Gaze-driven Feedback

object inspections. Task performance depends on the informativity of system responses,

i.e. contrastive feedback leads to shorter task completion time.

6.3 Experiment 2: Interaction with the NLG System

“Feedback”

This experiment was intended to further examine the impact of FeedbackSpecificity on

task performance, still giving ambiguous instructions but with a different distribution

than in the previous experiment. Here, FeedbackSpecificity was manipulated within par-

ticipants and underspecified vs. contrastive feedback occurred in an interleaved

and randomized order on an item-by-item basis. Thus, participants did not know in ad-

vance which type of feedback they might receive and a strategic adaptation to the specific

system behavior was impossible. This aimed at assessing whether participants benefited

from the contrastive feedback in the first experiment, because more information was

indeed conveyed in the form of contrastive feedback, so that this system is inherently

more efficient—or whether participants more generally adapted to the system, e.g., by

increasing their attentiveness or willingness to collaborate and thus to really take up and

process the provided information efficiently. If the former hypothesis holds, then perfor-

mance in the contrastive feedback condition would remain high (and higher than with

underspecified feedback), even when it occurred in an interleaved manner. If the lat-

ter hypothesis is true, we would expect to see either low performance in both conditions

(when engagement decreases altogether) or high performance in both conditions (when

engagement is high and leads to more efficient information uptake).

6.3.1 Participants

Twenty-four German native speakers participated in the experiment. The average age of

participants was 24 years with a range of 18–32. They reported normal or corrected-to-

normal vision and no red-green color blindness, and were compensated with e7.
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6.3.2 Procedure

The task was the same as in Experiment 1 and the procedure was almost identical. This

time, the experimental part consisted of four blocks and so two more layouts were designed

(see Appendix B). In contrast to the procedure in Experiment 1, there was no question-

naire, but after finishing all four blocks participants answered two questions: whether

they noticed any differences and if they had a particular strategy for inspecting objects.

The experiment lasted around 40 minutes.

6.3.3 Results

Performance Figure 6.10 depicts the time needed to finish the task given ambigu-

ous instructions for both experiments. In contrast to Experiment 1 (left plot) there is no

significant difference in performance observed in Experiment 2 (right plot). When partici-

pants received underspecified feedback, task completion time was slightly longer (M =

12.63 sec, SD = 6.83 sec) than following contrastive feedback (M = 12.33 sec, SD =

6.52 sec). We fitted a model with FeedbackSpecificity as a fixed effect and with random

intercepts and slopes for subjects and items, but there was no significant effect of Feedback-

Specificity (χ2(1) = 0.666, p = 0.414). There were twice as many targets in Experiment

2 as in Experiment 1 and thus we split the interactions in two parts (first vs. second
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Figure 6.10: The task completion time measured in interactions obtained in Experi-
ment 1 (left plot) and in Experiment 2 (right plot).
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Df AIC BIC logLik deviance χ2 χ Df Pr(> χ2)
Model 0 12 -346.84 -291.92 185.42 -370.84
Model 1 13 -345.51 -286.01 185.75 -371.51 0.67 1 0.4144
Model 2 14 -348.87 -284.79 188.43 -376.87 5.36 1 0.0206∗

Model 3 15 -348.37 -279.72 189.18 -378.37 1.50 1 0.2200

Model 0: totalTime ∼ 1 + (FeedbackSpecificity * Half | Subject)
Model 1: totalTime ∼ FeedbackSpecificity + (FeedbackSpecificity * Half | Subject)
Model 2: totalTime ∼ FeedbackSpecificity + Half + (FeedbackSpecificity * Half | Subject)

Model 3: totalTime ∼ FeedbackSpecificity * Half + (FeedbackSpecificity * Half | Subject)

Table 6.5: This table summarizes the models fitted to the performance data and the
model comparison results for Experiment 2. Differences are denoted to be significant at

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

half). More precisely, we compared the performance in the first two layouts vs. the last

two layouts participants completed. Table 6.5 summarizes the model specifications and

results from model selection.

The analysis of the first vs. second half of the experiment revealed a main effect on

task performance (χ2(1) = 5.359, p < 0.01). That means that listeners improved over

time and worked better with the system, which resulted in faster task completion in the

second half for both conditions (contrastive (M = 11.35 sec, SD = 56.08 sec) vs. un-

derspecified (M = 12.159 sec, SD = 6.336 sec) than in the first half (contrastive

(M = 13.34 sec, SD = 72.16 sec) vs. underspecified (M = 13.13 sec, SD = 7.30 sec)).

Listener gaze The gaze signal represents visual search and we analyzed the identifi-

cation time span from instruction end until listeners inspect the target object for the

first time. We fitted a model with FeedbackSpecificity as fixed effect and similarly to

the performance results, the identification time did not reveal a significant difference

(χ2(1) = 0.0648, p = 0.799) for Experiment 2, whereas this was the case in Experiment 1

(see Figure 6.11 for visualization).

In the second experiment, this point in time was a bit later given underspecified

(M = 4.84 sec, SD = 4.82 sec) than given contrastive feedback (M = 4.47 sec, SD =

5.32 sec). The analysis of both experimental parts also did not reveal a significant effect.

Table 6.6 summarizes the mean response times for Experiment 2.
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Figure 6.11: This plot depicts the time span from the instruction offset to the first
target inspection in Experiment 1 (left plot) and in Experiment 2 (right plot).

Speech The type of instructions (InteractionStrategy) was not manipulated in this ex-

periment, i.e. the system systematically generated ambiguous instructions. However,

verbal feedback can be considered as a dependent variable since it is a direct consequence

of participants’ visual search behavior: Competitor inspections triggered negative feed-

back and target inspections triggered positive feedback. The negative feedback differed in

specificity. There was a significant effect of FeedbackSpecificity (χ2(1) = 5.169, p < 0.01)

on the number of feedback occurrences. Table 6.7 summarizes inferential statistics. That

is, when listeners followed underspecified feedback (M = 2.19 inst SD = 1.56 inst )

their gaze triggered more negative instances, i.e. they considered more competitors be-

fore arriving at the target, in comparison to when they followed contrastive feedback

(M = 1.74 inst, SD = 1.10 inst ). The analysis of the proportional feedback revealed a

FeedbackSpecificity Instruction Identification Grasp Total
Time

underspecified 2.81 4.84 4.98 12.63
contrastive 2.79 4.47 5.07 12.33

Table 6.6: Mean durations in seconds of the three interaction phases and the total
time for Experiment 2 as depicted in Fig. 6.2.
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Figure 6.12: This plot depicts the number of negative feedback occurrences in Exper-
iment 2.

marginal difference (χ2(1) = 3.383, p = 0.065).

Furthermore, we ran a sequential analysis on feedback occurrences to assess first rel-

evant inspections. Typically, positive feedback occurred after negative feedback, re-

vealed by a main effect (χ2(1) = 373.146, p < 0.001), but there is no significant dif-

ference with respect to our manipulation of FeedbackSpecificity (χ2(1) = 0.100, p = 0.752)

Estimate Std. Error Wald z p
(Intercept) 0.24 0.05 5.15 < 0.001∗∗∗

contrastiveFeedbackunderspec 0.17 0.07 2.40 0.02∗

Model: negativeFeedbackInstances ∼ FeedbackSpecificity + (FeedbackSpecificity | Subject)

Table 6.7: This table summarizes the models fitted to the listener gaze data and the
model comparison results for Experiment 2. Differences are denoted to be significant at

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Figure 6.13: This plot depicts the time interval from the instruction offset to the
onsets of the first negative and first positive feedback instances in Experiment 2.

(see Figure 6.13). Notably, although underspecified feedback did not provide addi-

tional information, after hearing an instruction listeners quickly inspected a competi-

tor object matching the description and triggered the first negative feedback instance

(M = 1.45 sec, SD = 2.19 sec) and this happened similarly soon after getting con-

trastive feedback (M = 1.79 sec, SD = 3.34 sec). There was no significant difference

between the two conditions.

6.3.4 Discussion

The results of Experiment 2 suggest that the presence of more informative feedback (even

when occurring only occasionally) influences the overall willingness to interact and cooper-

ate with a system on solving a task together. Listeners seem to have greater expectations

for the capabilities of the GazInG system, which is mirrored in their gaze behavior. Thus

participants in the more difficult and rather unnatural condition (ambiguous instruc-

tions with underspecified feedback) were now as efficient as those experiencing the

more specific one (ambiguous instructions with contrastive feedback), in contrast to
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the results obtained in Experiment 1. These findings provide some evidence that par-

ticipants are able to deal effectively with imperfect behavior of a system as long as they

perceive it as helpful and efficient overall. In other words, it is not just the actual infor-

mativeness of the spoken output in a trial, but the confidence in the system’s supportive

behavior more generally, that determines how efficient information uptake is. In terms of

the strategic use of gaze, it seems as if none of the participants spotted the manipulation.

Thus, we assume that listeners adapted their engagement and behavior rather naturally

and unconsciously instead of employing a tactic for where to look and which object to

inspect next in a specific experimental condition.

It seems that splitting the description into subsequent chunks and providing these incre-

mentally is beneficial and improves task performance. However, this interaction strategy

does not exactly generate true installments, because the second piece of information is in

the form of feedback, which is related to the current gaze position. Thus we developed

a second NLG system to generate true installments and output them depending on the

listener’s gaze behavior, or concatenate all of them to output an exhaustive instruction.



Chapter 7

Human-Machine Interaction: Effects

of Gaze-driven Installments and

Information Order on Performance

Usually an NLG system plans and outputs a reference in a single noun phsase (Stoia et al.,

2006; Garoufi & Koller, 2010). In highly interactive settings, however, it is common that

speakers often start speaking before they have planned the entire utterance and so provide

the information incrementally by presenting it not at all once, but in subsequent chunks

to the listener, i.e. they refer to objects in installments (Striegnitz et al., 2012). Hence,

speakers are better able to adapt to changes in the surroundings and to the listener’s

signals. Recently, Zarrieß and Schlangen (2016) applied installments to generate referring

expressions and demonstrated that such a generation approach enhances identification of

real objects depicted in static images. What remains unclear, and what we address in

this chapter, is (1) whether installments can be applied for dynamic goal-oriented tasks

and (2) whether the listener gaze can be utilized to trigger and inform such installments.

Previous work by Fang et al. (2015) integrated gaze in a collaborative referring expression

generation (REG) algorithm. They observed a performance drop when using gaze, but

their work focused more on embodiment and robots gestures.

In this chapter, we present an experiment that was designed to investigate the effectiveness

of referring to co-present objects in gaze-driven installments and the role of information

order. Our findings presented in the previous chapter indicate that using listener gaze to

87
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deliver a referring expression incrementally is an effective interaction strategy for an inter-

active instruction-giving system. Furthermore, the informativity of gaze-driven feedback

determines efficiency, namely, participants solved the task faster when they received con-

trastive feedback than when they received underspecified feedback. The former even

outperformed following an unambiguous description that gives all of the information at

once. However, this is not quite a fair comparison because an unambiguous instruction

contains more information not mentioned in the ambiguous variant, and the contrastive

feedback directs listeners’ attention to the target by specifying the position relative to the

current gaze. Thus, we consider ’real’ gaze-based installments in the following.

7.1 Experiment 3: Interaction with the NLG System

“Installments”

In this experiment, we shed light on the comparison of referring in Installments (trig-

gered by a listener’s object inspections) vs. NoInstallments. For this we implemented

and used the NLG system “Installments” described in Section 5.2.3. Additionally, since

the location of the target object (specified by a spatial descriptor) helps to resolve a re-

ferring expression, we investigate whether swapping the partial feature description of a

target object, and the expression that specifies the location of the target object would be

even more beneficial for the listener’s understanding, that is, SpatialDescriptor is gener-

ated first vs. second, which occurred in an interleaved and randomized order on an

item-by-item basis.

Here, the gaze signal is rather inconspicuously integrated in the incremental generation

mechanism because the system provides an absolute viewer-centered and not a relative

spatial expression as direct feedback to eye movements. Additionally, a fallback strategy

if the target is still not identified after the first two installments is to deliver a third in-

stallment that specifies the remaining features of the searched-for object. We hypothesize

that listeners will benefit from hearing the location specification first because this in-

formation restricts the search space and with the next installment (feature description)

the listener will more quickly (efficiently) identify the intended target (see example (2) in

Section 5.2.3) as opposed to when it is the other way around (see example (3) in Section
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5.2.3). If the interactions are equally efficient in both conditions, then this would indicate

that the order of the information pieces does not play a role.

For the NoInstallments condition there are two corresponding versions with respect

to the position of the SpatialDescriptor in the instruction (see examples (4) and (5) in

Section 5.2.3).

If monitoring gaze to refer in installments is generally more suitable for such interactions,

then following Installments would lead to better performance than following NoIn-

stallments). If we obtain an effect in the opposite direction, this would mean that the

form of the installments plays a crucial role, that is, relative vs. absolute spatial infor-

mation determines efficiency. For the latter it could be further argued that more direct

involvement of listener gaze increases listeners’ attentiveness and willingness to collabo-

rate with the instruction-giving system. If there is no difference, then again gaze-driven

relative direction is essential to make an installment effective. Regarding visual search we

expect to observe earlier target inspections when SpatialDescriptor is mentioned first

than when it is mentioned second.

7.1.1 Method

In our third NLG experiment, we investigated the interaction with the NLG system “In-

stallments” and whether monitoring listener gaze benefits performance when it is inte-

grated in the generation method differently, namely to trigger the next information piece.

Specifically, we examined if and how the InformationDelivery approach (NoInstallments

vs. Installments) and SpatialDescriptor occurrence (first vs. second) affect the in-

teraction with our system. We used the same setup and apparatus (see Section 6.1.1) but

we upgraded to a successor model of the SMI Eye Tracking Glasses recording at 120 Hz.

The measures and analysis were almost the same as in the previous two experiments

(see Section 6.1.2). Figure 6.2 depicts the interaction phases, which vary with respect

to the InformationDelivery approach employed by the instruction-giving system. The

only difference is that the identification time in Experiment 3 was measured from the

instruction onset, i.e. the beginning of the first installment.
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List 1 List 2
layout InfoDelivery layout InfoDelivery

Block 1
1

NoInstallments
1

Installments
2 2

Block 2
3

Installments
3

NoInstallments
4 4

Table 7.1: The design of Experiment 3.

Participants

Twenty-four German native speakers (18 female) took part in the experiment. The average

age of the participants was 25 years with a range of 19–34. They reported normal or

corrected-to-normal vision and no red-green color blindness, and their participation was

compensated with e8.

Procedure

The task was the same as in Experiments 1 and 2 (see Chapter 6). The procedure was

analogous to the one in Experiment 1 and included the two additional layouts tested in

Experiment 2. The experimental part consisted of two blocks, one for each interaction
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Figure 7.1: This diagram illustrates the interaction phases for both information de-
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Figure 7.2: This plot depicts the task completion time in Experiment 3.

strategy and each block consisted of two layouts (see Table 7.1). Participants filled in a

questionnaire after each block that assessed their perception of each information delivery

approach, and at the end they answered questions about the comparison of the two. The

experiment lasted around 45 minutes.

7.1.2 Results

Performance The overall performance measure is the total time needed to complete

the task. In Figure 7.2 the mean task completion time in each condition is depicted: Par-

ticipants completed the task faster when they followed NoInstallments than when they

were receiving the information incrementally in Installments. Furthermore, mention-

ing the SpatialDescriptor first led to more efficient interactions compared to when the

SpatialDescriptor appeared second after a partial feature description, independent of the

InformationDelivery approach. Interestingly, the performance in NoInstallments with

SpatialDescriptor second and Installments with SpatialDescriptor first is equally ef-

ficient and this validates the effectiveness of the piece-wise information delivery approach.

Specifically, we fitted a linear mixed-effects model with random intercepts and random

slope for subject to the dataset consisting of 713 trials in total.
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Table 7.2 summarizes the models and results from the inferential analysis. Model compar-

ison indicated that the InformationDelivery had a significant effect on task completion

time (χ2(1) = 4.63, p < 0.05). We also found a significant main effect of SpatialDe-

scriptor (χ2(1) = 7.68, p < 0.01). Listeners achieved the best performance when fol-

lowing NoInstallments and when the SpatialDescriptor was specified first (M =

10.12 sec, SD = 3.61 sec). Finding and collecting a specific object among several oth-

ers took more time in the case of following NoInstallments with SpatialDescriptor

second (M = 10.59 sec, SD = 3.08 sec) and similarly long in the case of Install-

ments with SpatialDescriptor first (M = 10.65 sec, SD = 3.37 sec). The slowest

task completion time was observed in Installments with SpatialDescriptor second

(M = 11.18 sec, SD = 3.63 sec).

Listener gaze We analyzed visual search considering the listener’s gaze signal and

particularly the identification time, that is, the interval needed to inspect the intended

target after instruction onset. The results show that listeners focused on the correct object

earlier when its location was specified at the beginning of the instruction, which supports

the hypothesis that the search space restriction is beneficial and this helps the instruction

follower to speed up the search. This time span was longer when the SpatialDescriptor

was uttered after the feature description, as visualized in Figure 7.3.

Df AIC BIC logLik Deviance χ2 Chi Df Pr(>Chisq)
Model0 12 -1122.69 -1067.86 573.34 -1146.69
Model1 13 -1128.37 -1068.97 577.19 -1154.37 7.68 1 0.0056∗∗

Model2 14 -1131.00 -1067.02 579.50 -1159.00 4.63 1 0.0315∗

Model3 15 -1129.00 -1060.45 579.50 -1159.00 0.00 1 0.9990

Random Structure: (InformationDelivery*SpatialDescriptor | Subject)
Model 0: totalTime ∼ 1 + Random Structure
Model 1: totalTime ∼ SpatialDescriptor + Random Structure
Model 2: totalTime ∼ SpatialDescriptor+InformationDelivery + Random Structure

Model 3: totalTime ∼ SpatialDescriptor*InformationDelivery + Random Structure

Table 7.2: This table summarizes the models fitted to the performance data and the
model comparison results for Experiment 3. Differences are denoted to be significant at

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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As was done for the performance measure, we fitted linear mixed-effects models and

conducted model selection to assess statistical significance. Table F.5 summarizes the

models and results from model selection. The analysis revealed main effects for both

factors: InformationDelivery (χ2(1) = 14.50, p < 0.001) and SpatialDescriptor (χ2(1) =

18.72, p < 0.001). Specifically, listeners inspected the target sooner when they heard

the SpatialDescriptor first (M = 5.56 sec, SD = 1.91 sec) in NoInstallments and

(M = 6.15 sec, SD = 2.12 sec) in Installments . This time interval was longer when

the SpatialDescriptor appeared in the second position in NoInstallments (M =

6.16 sec, SD = 1.65 sec) and even longer in Installments (M = 7.09 sec, SD = 2.53 sec).

Speech The InformationDelivery approach employed by the system to refer to specific

objects was predefined and the NoInstallments case did not allow for variation in

the language modality (see Section 5.2.3). In the interactive version of the system, how-

ever, the number of installments that the system generated while instructing the human

listener could differ. We evaluated this dependent variable by constructing a general-

ized linear mixed-effects model (with a logit link function) and observed a main effect

of SpatialDescriptor (β = −0.21452, SE = 0.0745, z = −2.881, p < .001). There
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Figure 7.3: This plot depicts the time interval from instruction onset to first target
inspection in Experiment 3.
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Figure 7.4: This plot depicts the time interval from instruction onset to first target
inspection in Experiment 3. Differences are denoted to be significant at ∗p < 0.05,

∗∗p < 0.01, ∗∗∗p < 0.001.

were more installments generated by the system when the SpatialDescriptor was men-

tioned first (M = 2.28inst, SD = 0.63inst) than when it was mentioned second

(M = 1.84inst, SD = 0.56inst).

SpatialDescriptors are very much related to referring expressions, but the main difference

is that they can specify a location even when there is nothing there. This property may be

the reason why participants hesitated to grasp a target when they received only this infor-

mation. That is, even though SpatialDescriptor first leads to earlier inspections on tar-

get objects, more installments are elicited before the participant finally grasps the object

(compared to SpatialDescriptor second). For example, if only the SpatialDescriptor and

confirming feedback triggered by a target inspection is output by the system (e.g. “Pick

the following building block! At the back toward the left ... < target inspection > ... Yes!”)

participants are likely to consider other objects. This means that in order to be confident

enough to initiate an action listeners need to hear a feature description of the target ob-

ject and thus when the SpatialDescriptor was planned to appear in the second position,

they would tend to grasp after hearing the first information bit and a confirmation of an

inspection (“Pick the following building block! The big blue one ... < target inspection >

... Yes!”). During carefully inspecting of the video material of some trials in Install-

ments first condition, we found out that when the system mentioned the color of the
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bottom building block, they inspected nearby competitors with the same color (which is

an absolute feature), presumably to determine the meaning of the size modifier (which is

a relative feature) in the current visual context.

Perception As was done for Experiment 1, we assessed the perception of the users with

post-task questionnaires. Participants answered 7 questions to judge each information de-

livery approach. The questionnaires consisted of 4 questions using a five-point Likert scale

(1 indicating a very good and 5 a poor score), e.g. “How good/precise did you find the

spoken instructions?” or “How flexible did you find the interaction?”. There were also 3

yes/no questions like “Was it clear at all time points during the interaction what you were

supposed to do?” to assess if the interaction with the system felt natural or “Were the

instructions exhaustive, i.e. were you able to identify a target upon hearing the instruc-

tion?” to check whether participants paid attention to the form of the instructions. In a

final questionnaire, they answered 4 yes/no questions to assess which information delivery

approach they preferred. Overall, the interaction with the system was well perceived and

piece-wise information delivery was not rated as distracting. In order to assess whether

poor

neutral

good

Figure 7.5: This plot depicts participants’ perception and judgment of the interaction
flow measured on a Likert scale for Experiment 3.
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participants paid attention, they were asked if they noticed differences in the type of spo-

ken instructions. In addition, we asked which one of the information delivery approaches

they preferred. Most of the participants preferred to follow NoInstallments (70.8%)

when they need to identify a specific building block. Figure 7.5 depicts the mean values

and we analyzed the responses to the question “How good did you find the interaction

flow?”. Specifically, we ran a simple linear regression, but there was no effect of Informa-

tionDelivery (β = −0.250, t(46) = −1.297, p = 0.201). This means that the interaction

flow was similarly good, as the scores we obtained were very high: NoInstallments

(M = 1.50, SD = 0.51) and Installments (M = 1.75, SD = 0.79).

7.2 Discussion

Previous evidence suggests that referring in installments is common for situated task-

oriented interactions (Striegnitz et al., 2012). Further, it has been shown that such

an approach is beneficial for referring expression generation in static scenes (Zarrieß &

Schlangen, 2016). Their approach focused more on the type of information being output

and rephrasing of an expression when it was resolved incorrectly. We investigated whether

listener gaze can also be used to trigger automatically generated Installments in a more

dynamic setting, and we compare this approach with providing a full reference at once

(NoInstallments).

Previous work by Fang et al. (2015) reports a significant performance drop when incorpo-

rating listener gaze into a generation algorithm and using it to trigger installments. Here

we tested the usefulness of listener gaze to automatically generate installments in a dif-

ferent setup. Crucially, we implemented a different inspection detection method, namely

to measure the duration of a fixation and not the number of fixations to relevant ob-

jects. Once the threshold was exceeded (200ms), our system output the next installment.

This method was initially proposed by Garoufi et al. (2016) to generate proactive verbal

feedback and we validate that it is applicable to piece-wise InformationDelivery.

Our results show that following Installments made it take longer to solve the task. A

possible explanation is that listeners could have hesitated to grasp an object after receiving

only a partial object description. The main caveat of our approach is probably that it

takes some time until the listener looks at an object, our system detects the listener’s
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intention and only after that the next installment is output. On the other hand, in the

collected interactions we obtained a very low error rate because our system interprets

the listener’s gaze cues, which are an early indicator of language understanding. When

an object that was not the intended target was inspected, the system provides more

information, crucially before performing an action, which reduces the number of wrong

grasps.

We demonstrated that more interactive instruction generation using listener gaze is an

effective strategy for goal-oriented interactions in the real world. Specifically, when the

SpatialDescriptor was mentioned first, right at the beginning of the instruction, the In-

stallments approach was as efficient as NoInstallments with SpatialDescriptor men-

tioned second.





Chapter 8

Conclusion

This thesis investigated the role of listener gaze in situated spoken language interaction.

We examined whether this non-verbal cue can facilitate human-human interaction and if

it can improve human-machine collaboration. We addressed these research questions in

various settings and studied them from different perspectives. Specifically, we evaluated

the influence of listener gaze on automated prediction in virtual environments. Further,

we investigated the role of listener gaze in an indoor guidance task, where two human

interlocutors, a remote speaker and a listener walking inside a hall solved nine tasks

together. The core of this thesis is the development of an artificial speaker, a multimodal

assistance system, employed in a real environment to assist the user. The system exploits

listener gaze to automatically generate an instruction that identifies a real-world object

for assembly. We employed the system in three experiments to investigate how it interacts

with real users.

In Section 8.1 we summarize our contributions and in Section 8.2 we discuss limitations

and further research directions.

8.1 Summary

Lister gaze indicates language understanding and mirrors the listener’s intentions (Tanenhaus

et al., 1995). Importantly, interpreting gaze cues can improve the performance of an NLG

99
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system (Garoufi et al., 2016). Our work replicated previous findings from virtual envi-

ronments in a real setup. Furthermore, we extended previous work concerning referential

success to also consider listener gaze.

Firstly, in Chapter 3, we investigated whether listener gaze can facilitate automatic pre-

diction of reference resolution. As listener gaze is tightly linked to language and mirrors

comprehension processes, we expected that augmenting a probabilistic model with such

information would improve the accuracy of the model. Specifically, we extended an ob-

servational model proposed by Engonopoulos et al. (2013) with eye-tracking features and

obtained a performance gain. Our results showed that encoding listener gaze awareness

improves the accuracy particularly in hard referential scenes with many competitor ob-

jects.

Secondly, in Chapter 4, we investigated whether and how a human speaker would use lis-

tener gaze from an egocentric perspective during remote instruction giving. We designed

an indoor guidance task to investigate the interplay of spontaneous speech and visual

behavior. The tasks consisted of complex referential scenes such that it was not trivial

to refer to an object. We varied the availability of listener gaze to the speaker by either

not showing the gaze cursor, or showing the exact or a slightly shifted gaze position. Our

results show that human speakers are very good at producing references, so additional

information as to what the listener currently is fixating, did not have an impact on perfor-

mance. However, we observed a tendency that speakers produced more negative feedback

when they had access to the exact gaze position and that visual behavior differs in this

condition just before and right after an utterance. These findings suggest that listener

gaze can be seen as a symptom, i.e. an indicator of comprehension processes, but also as

a signal that affects feedback type. Our investigation of more coarse-grained measures

on the collected spoken material, such as utterance length (in words), did not reveal a

significant effect. However, many words do not necessarily carry more information. Im-

portantly, the salience threshold for the speech segmentation is a crucial parameter and

can vary depending on the domain, the task and the setting, e.g. whether it is a uni- or

bidirectional, free or goal-oriented conversation. Further, the word level may be too coarse

to reveal qualitative differences in utterances as a function of listener gaze. Thus, we fur-

ther annotated the type of referring expressions uttered during the recorded interactions.

Surprisingly, our manipulation did not affect the type of referring expressions, although

we expected to see more deictic expressions when gaze was visible. However, we observed
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that speakers systematically used particular types of referring expressions independent

from our manipulation and possibly characteristic for the task. Instructors generally

produced rather specific expressions, like definite noun phrases (e.g. the blue pen), and

interestingly, more featural expressions, which mentioned the object’s attributes, than

spatial expressions, which mentioned the location of the object.

Thirdly in Chapter 5, we provide a proof of concept that listener gaze can be used to

augment NLG in real-time interactions taking place in a real setup. Our scenario is

collaborative assembly, where a human listener follows system’s instructions aiming at

identifying specific objects to be collected and assembled. We used mobile eye tracking

and augmented reality technology to realize the semantic mapping of object inspections

(Pfeiffer & Renner, 2014). We proposed two NLG systems that use listener gaze either di-

rectly, to generate feedback, or more indirectly, to provide an instruction incrementally in

installments. Our first system NLG system “Feedback” varied the interaction strategy by

generating a short, ambiguous instruction or a long, unambiguous one. It further outputs

verbal feedback in response to object inspections of different specificity: underspecified

feedback (e.g. “No, not that one!”) or more informative feedback that specifies the relative

position of a target (e.g. “Further left!”). Our second system NLG system “Installments”

implemented two information delivery approaches, either outputting the entire descrip-

tion at once or delivering it piece-wise in gaze-driven installments. Moreover, our system

varied the order of mentioning the spatial expression — either first or second — in order

to facilitate the search process, because this information restricts the search space. We

conducted three experiments to test the effectiveness of these interaction approaches with

users. In the first two experiments, we invited people to interact with the NLG system

“Feedback” and investigated the role of gaze-driven feedback and its specificity using

different experimental designs (see Chapter 6). In Experiment 1, we replicated previous

findings from virtual environments, namely that gaze-driven feedback after an exhaustive,

unambiguous instruction improves performance as opposed to when no feedback followed.

Our novel contribution here is that the combination of an ambiguous instruction, i.e. a

partial description with contrastive feedback, outperforms following an exhaustive, unam-

biguous instruction. Further, in Experiment 2 we observed that the presence of contrastive

feedback influences a listener’s engagement with the instruction-giving system and that

this also has an impact on performance. That is, the expectation that the system will

give additional information helps the listener to better perform even in the more difficult

condition, when feedback was underspecified, only giving a warning but not providing
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further information. The third experiment was designed to test the effectiveness of the

gaze-driven installments and we employed the NLG system “Installments” for the inter-

action (see Chapter 7). Surprisingly, our findings from the third experiment revealed that

long, exhaustive instructions were followed faster than gaze-driven installments. However,

contrary to the results of Fang et al. (2015), who considered this question in their work, we

showed that referring in gaze-driven installments can be as efficient as a long description

when the spatial expression appears first, right at the beginning of an instruction.

8.2 Discussion

The findings described in this thesis provide evidence for the usefulness of listener gaze

in various settings encompassing human-human and human-machine interactions in real

environments. We discuss the implications and contributions of our work and address

some open questions, limitations and possible future research directions.

Extending an Observational Probabilistic Model

In Chapter 3 we have shown that the listener’s gaze is useful by showing that accuracy,

improves over an observational model by including features from the visual context for

predicting the resolution of a referring expression. In addition, we observed that our

extended model turns out to be more robust than the basic model when the time interval

between the prediction and the button press increases, i.e. gaze is especially beneficial in

an early stage of an interaction. This approach shows significant accuracy improvement on

hard referential scenes where more objects are visible. We have also established that gaze

is particularly useful when combined with other simple features, as the features capturing

a listener’s visual behavior are not powerful enough to outperform even the simplest

baseline. Gaze only benefits the model when it is added on top of features that capture

the visual context, i.e. the current scene. This means that gaze alone is not sufficient

to accurately predict reference resolution in such a dynamic navigational setting. Since

Engonopoulos et al. (2013) showed that the combination of the basic observational model

with the semantic model achieved the best performance, an immediate next step would be

to combine the extended observational model with the semantic model. This was beyond
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the scope of our study. Such a model could provide reliable predictions early enough

and so give an accurate estimate before an action takes place. This aspect is particularly

important for real-time interactions. That is, if the prediction model is embedded in an

NLG system, it can improve the automatic language generation in such scenarios because

it captures the focus of the listener’s attention. Given that our work refers only to NLG

systems, no analysis of a speaker’s gaze is possible. However, it may be interesting to ask

whether a human speaker could benefit from the predictions of the extended observational

model. We could study whether predictions based on the gaze (mis-)match between both

interlocutors are more effective than simply presenting the listener’s gaze to the speaker

and trusting the speaker to correctly interpret this signal. If such an approach is effective,

it could point out misunderstandings to the speaker before either participant becomes

aware of them and help optimize collaboration toward achieving a mutual goal.

Listener Gaze in Human-Human Interactions

In our exploratory study presented in Chapter 4, where we considered human-human

interactions, we observed that the availability of listener gaze to the speaker did not

affect the overall performance (the task completion time). We believe that this could be

due to a ceiling effect; that is, speakers are very good at describing co-present objects

even in complex referential scenes. This is contrary to findings in the joint attention

literature, where mostly face-to-face social interactions are considered. Following gaze

is useful and helps to better coordinate turn taking and predicting the intentions of the

conversational partner (e.g. Raidt, Bailly, & Elisei, 2007; Foulsham et al., 2010). In our

study, making listener gaze available to the speaker did not shorten interaction time. A

possible explanation is the nature of the setup, where listener gaze is projected on the

egocentric video. Moreover, it could have been too difficult to exploit this information

while at the same time spontaneously planning and producing a unique description in the

cluttered scene.

We observed different listeners’ gaze behavior and particularly main effects of GazeAvail-

ability before and after an utterance. This suggests that listeners used their gaze as a

signal to communicate to the speaker. The lack of such an effect while listening to an

utterance indicates that gaze is a symptom of language comprehension processes. Further,
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the observation that more negative feedback was produced when listener gaze was avail-

able supports the claim that listener gaze was used as a signal to which speakers actively

reacted. These feedback instances have the potential to quickly eliminate wrong beliefs

by the listener about intended referents.

Our findings are in agreement with the results of Coco, Dale, and Keller (2018), who

examined the role of feedback and alignment in a “spot the difference” task. Their study

revealed that only if interlocutors could not exchange verbal feedback, their gaze aligned.

Both studies indicate that exploiting a technical augmentation of the listener gaze (e.g. by

visualizing a gaze cursor is not something that human speakers naturally do efficiently.

The instructors were faced with the additional perception task of following gaze cursors,

which might have increased the cognitive load too much. In contrast, an NLG system

can easily exploit gaze. This is computationally inexpensive and can be used to generate

verbal feedback as a response to eye movements. Depending on the task, parametrization

could vary.

Initially we expected that in the collected corpus of interactions we would observe similar

instructions and could use them as the basis for designing an instruction-giving system.

However, we encountered very high variability of the lexical choices made by the speakers.

That is, human speakers have an individual way of describing objects and use very diverse

expressions. There was a systematic use of featural expressions most probably driven by

the task. It may be interesting to investigate if the referring expressions emerging in such

complex referential scenes are overspecified. This may be difficult to determine and could

require a practice session and more annotators to resolve potential disagreement.

One caveat to this study is that the presence of hand movements and pointing gestures

or hovering over objects probably added noise to the role of listener gaze as a feedback

modality. The hand is much more prominent than the gaze cursor in the streamed scene

video, such that it could also trigger a reaction. However, this is typical for such setups

and it means that may be the speaker cannot easily separate both modalities and they

also frequently overlap. It may be worth investigating if showing listener gaze to the

speaker would have an effect when hand movements are restricted or not allowed at all

while listening to an instruction. Moreover, perhaps it is difficult for a human speaker to

constantly monitor and interpret the gaze signal. Or the mediation of gaze information by

a gaze pointer overlaid on a scene camera video, as was used in that study, was creating

an artificial situation that speakers could not exploit intuitively and efficiently.
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Further, the experiment consisted of a micro and a macro scale task, the latter of which

was originally intended to be more of a navigation task. The actual reduction in task

complexity (and therefore the omission of the macro task from the analyses) was due the

significant technical challenges of setting up a stable WLAN connection throughout a large

building to transfer high-resolution video, audio, and gaze data in real time. Moreover,

mono eye trackers do not handle eye movements as good as stereo systems that use two

cameras, and thus the data quality is impacted. Further, during calibration the device

was adjusted for the micro task. This makes the evaluation of the macro task with respect

to the gaze availability uninterpretable.

Augmenting NLG with Listener Gaze in a Real-world Setup

Interactive systems which use natural language in situ to assist a user in solving a task

can benefit from exploiting listener gaze. Although the gaze signal is continuous and

rapid, there is evidence that it can effectively be exploited by an NLG system designed

to give directions to a listener and to refer to objects in a virtual environment (Koller

et al., 2012; Staudte et al., 2012). There the authors showed that using listener gaze

led to higher success rates. Real-world interactions are noisier and the system’s knowl-

edge about the environment is usually far from perfect. Thus, it is more challenging

to make use of listeners’ eye movements in such a setting. We employed an artificial

speaker, that is, a parametrized NLG system, which tracks users’ eye gaze to real objects

while simultaneously planning an utterance. The system has the advantage of generat-

ing instructions systematically and without the great variation that is typical for human

production data. Such control over the (artificial) speaker allows us to integrate differ-

ent modalities in the interaction without much additional effort, while avoiding recursive

effects between independent and dependent variables (variation by the speaker would af-

fect listener behavior, which in turn could affect the speaker). Importantly, providing

gaze-driven feedback triggered by object inspections is computationally inexpensive for

our system but enables it to be even more interactive and to better engage with the lis-

tener. Our experimental investigation with this system supports this view and suggest

that exploiting listener gaze in real-world human-machine collaboration can indeed be

beneficial. Our results extend previous research by looking at interactions with increased

interactivity with an assistance system: Instead of generating long unambiguous instruc-

tions providing all required information, our system split the information and provided it
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on demand, by giving partial instructions and requiring a non-verbal cue from the listener

to progress the communication. While Experiment 1 showed that this might be consid-

ered more demanding, even exhausting, as listeners were more involved, the assessment

of using such variants of installments to refer to co-present objects (ambiguous instruc-

tion with informative feedback) revealed that the interaction flow was perceived positively

and rated as highly as following an unambiguous instruction. Moreover, an interaction

strategy that refers to objects incrementally and reacts to listeners’ gaze can be used to

identify objects in the shared space faster. Experiment 2 then examined if the benefit of

contrastive feedback is inherent to it or whether there is a learning effect specific to this

system’s behavior. Here, the system provided underspecified or contrastive, more infor-

mative feedback in an interleaved manner. Somewhat surprisingly, the results revealed

that both conditions now led to equally high task performance: Participants were equally

efficient in completing the task when listening to underspecified or contrastive feedback

given the different study designs, although obtaining different results is not that unusual

(Charness, Gneezy, & Kuhn, 2012). Specifically, we interpret the performance gain in

Experiment 2 as a natural adaptation to the system’s informative behavior which extends

to and even absorbs the not-so-informative trials. Supportive evidence for this interpre-

tation comes from the sequential feedback analysis, which shows that gaze was used more

deliberately and this helps to quickly advance within a trial. Lastly, given that not only

the specificity of gaze-driven feedback improves task performance, but that the listener’s

perception of an assistance system also influences it, an adaptation of the instructions’

form could possibly contribute further to efficiency. In general, considering the form of

automatically generated utterances when designing a system is important. Politeness

is a key aspect of interaction design and can improve usability, making a system more

user-friendly (Pemberton, 2011). The notion of human-computer interaction etiquette has

been discussed by Hayes, Pande, and Miller (2002); this is a necessary but not sufficient

criterion to establish effective interaction. Especially in urgent situations and under time

pressure, social appropriateness is not as important as efficiency, as shown by Kellermann

and Park (2001). A direction for future research could be to vary the syntactic structure

and the lexicalization when generating an ambiguous instruction to examine the effect of

the politeness aspect in this context.

Further, referring in installments is common in situated task-oriented interactions and

has been shown to be beneficial for referring expression generation (Zarrieß & Schlangen,

2016). We investigated whether listener gaze can also be used to trigger automatically
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generated installments and compared this approach to providing a full reference at once.

Both information delivery approaches are realized in our NLG system “Installments”.

Although Fang et al. (2015) reported a performance drop when incorporating listener

gaze into their generation algorithm, we test the usefulness of listener gaze in a differ-

ent setup and crucially with a different inspection detection method proposed by Garoufi

et al. (2016). We demonstrated that more interactive instruction generation which uses

listener gaze is feasible for goal-oriented interactions in the real world, too. However,

following installments made it take more time to solve the task. A possible explanation is

that listeners might hesitate to grasp an object after receiving only a partial description.

Additionally, they might need some time to get used to this style of interaction. Both

interaction approaches were similarly perceived in terms of interaction flow. That vali-

dates the appropriateness of using listener gaze to deliver information piece-wise. Similar

to the assessment in Experiment 1, most of the listeners preferred to follow an exhaustive

description, probably because they felt more confident in their performance. However,

nearly one third of the participants (29.2%) in Experiment 3 favored the incremental ap-

proach as opposed to Experiment 1: none of those participants preferred it when feedback

was underspecified, and fewer of them when feedback was informative (12.5%). This sug-

gests that the more indirect use of gaze cues with respect to the lexical realization of a

spatial expression positively influences the perception of the interaction. These findings

can be helpful when designing an interactive system, and depending on the goal of the

application, the more appropriate approach could be used, i.e. optimizing for efficiency

by using feedback or for better user perception by using gaze-driven installments.

A direction for future investigation could be to validate the effectiveness of gaze-sensitive

instruction generation for another domain. Further, the perception of the interactive

systems was not as good as that of the non-interactive ones. Thus there is some room for

improvement and it may be that the form of the partial instruction should prepare the

listener to expect that some information will follow, e.g. using indefinite noun phrases,

such that a partial description does not feel disadvantageous.

In general it may be questionable why an assistance system should give verbal instead

of non- verbal feedback like showing an arrow, playing a beep or even highlighting the

relevant objects. These styles of interaction are effective and can be efficient; they are

typically used for interactive collaborative assembly (e.g. Renner & Pfeiffer, 2017). Impor-

tantly, language is our usual mean of communication and there is no additional training
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required to decipher its semantics because people already understand it. Thus it can

be used for any domain and conceivable scenario. Perhaps a combination of both vi-

sual signals and verbal responses would be an optimal solution for an instruction-giving

system that guides the user in how to complete a task. Sometimes the visualization of

an action could be technically difficult (e.g. turning a large construction around) and so

hard to comprehend, while at the same time, it could be expressed with a few words

(e.g. “Please turn it around”) and so ensure correct understanding. On the other hand,

instead of generating a long, exhaustive instruction that identifies an object, it may be

easier to highlight it and use only a deictic expression like “Please take this”. That would

minimize misunderstandings and ensure an efficient and less error-prone human-machine

interaction.

Final Remarks

In conclusion, we argue that gaze information can be used to automatically predict ref-

erence resolution. Further, showing listener gaze to a human speaker from an egocentric

perspective does not affect performance because it is possibly too demanding to constantly

interpret it while planning an identifying instruction in a complex visual scene.

Importantly, assistance systems that generate natural language to interact with the user

can successfully integrate listener gaze into their generation mechanisms in real, noisier

environments. Exploiting this information source minimizes error rate and optimizes

speed; that is, shortens the interaction time when the response to gaze is in the form

of verbal feedback, i.e. is directly connected to the gaze, but not when it is in form of

installments. At the same time, we found that efficiency does not necessarily correlate with

the perceived agreeableness. We provide a proof of concept that a system can use listener

gaze in real environments to narrow down visual search, and validate the effectiveness of

this interaction approach using a sample assembly scenario.
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Micro Tasks used in the indoor guidance study

1. Brief schreiben, 35 Obj.

(a) Umschlag

(b) Kleber

(c) Stift

(d) Block

2. Kuchen backen, 28 Obj.

(a) Milch

(b) Dekor

(c) Löffel

(d) Eier

3. Sensor aufbauen, 28 Obj.

(a) Klebeband

(b) Box

(c) Sensor in der Box

4. Cocktail mixen, 26 Obj.

(a) Flasche

(b) Messbecher

(c) Glas

(d) Strohhalm

5. Notiz schreiben, 28 Obj.

(a) Schere

(b) Klebezettel

(c) Marker

(d) Block

6. PC aufbauen, 15 Obj.

(a) Kabel

(b) Maus

(c) Tastatur

7. Stift spitzen, 30 Obj.

(a) Spitzer

(b) Stift

(c) Radiergummi

(d) Klebezettel

8. Papiere heften, 32 Obj.

(a) Locher

(b) Papier

(c) Schnellhefter

9. Tee kochen, 26 Obj.

(a) Tasse

(b) Löffel

(c) Tee
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Appendix B

GazInG: Preliminary Studies

In two preliminary studies, we tested the object density and if the latency of the gaze-

driven feedback is acceptable. One requirement for the system is that the verbal feedback

is generated in a timely way such that a delay will not cause misunderstandings. Hence,

these studies we used predefined verbal instructions.

B.1 Object density

During the initial test runs, the positioning and density of the real-world objects were

tested. There are 25 fiducial markers in total, on which target and competitor objects can

be positioned on the marker field, 13 of which are large (located at the edges of the table)

and 12 small (in the inner area). The corresponding bounding boxes in the 3D model also

have different sizes, respectively. Figure B.1 shows the initial object positioning with the

marker IDs (a). The calibration and fixation-to-marker mapping accuracy for the large

markers is quite good, even for the last row in the back where the depth is increased.

In contrast, fixation detection and the performance of the fixation-to-marker mapping

algorithm for the smaller makers that are close to each other is rather sub-optimal when

all of them are occupied (i.e. for marker IDs 66, 58, 89, 98, 112, 126, 195, 138).

The verbal feedback provided by the interactive system is triggered by an inspection of

a particular object. An inspection is defined as a fixation that has a duration exceeding

a certain threshold. The threshold for the inspection duration we currently experiment
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with is set to 300ms. Accurate calibration is a prerequisite for implementing the correct

behavior of the system. Thus it is crucial to ensure the best possible calibration accuracy

in order not to output incorrect and inappropriate feedback, which could lead to incor-

rect actions or even interrupting an interaction. Thus, four objects that were originally

located on small markers were removed from the scene (see Figure B.1 b). In this man-

ner, we reduced the complexity and ensured an appropriate distance between the objects.

Additionally, the size of the 3D object bounding boxes was adjusted by enlarging the

smaller ones. Another advantage of removing four objects and having visible markers in

each quadrant of the marker field is that it improves the stability of the 3D model, even

if the listener is looking around and moving her head before any other objects are grasped.

Figure B.1: The GazInG setup: full (left picture) vs. reduced (right picture) referential
scene.
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B.2 Timing and Usefulness of Gaze-based Feedback

The main challenge of our mobile setup is the temporal synchronization of the two software

components: the one that tracks listeners’ eye movements and the one that outputs speech.

To make the system’s behavior believable and usable they need to be in synchronization,

i.e. the system’s feedback statements have to correspond to a listener’s eye movements in

order to be interpretable.

For this reason, we conducted a preliminary study to test the timing of the system’s

feedback. In particular we were interested in users’ judgment of the gaze-speech syn-

chronization. Importantly, the tracker necessarily receives the gaze data with some delay.

Therefore it is very important to make sure that this does not disturb the interaction

with the system. Participants followed human-authored ambiguous instructions describ-

ing eight predefined target objects. The instructions were also pre-synthesized such that

only the playback happens on the fly.

After an interaction with the system, a post-questionnaire was filled in by each subject

in order to assess if the feedback timing was appropriate and if the feedback statements

were helpful. Eight subjects participated in the study (one male and six female). They

answered eight questions, three of which used a 5-point rating scale (where 1 fits best)

and the remaining five were of which yes-no questions. In the following, the evaluation of

the questionnaire is presented:

Figure B.2: How natural did you find the spoken system instructions?

Figure B.2 depicts how participants rated the naturalness of the system’s instructions.

The result is somewhat mixed: the instructions were mostly rated as rather natural or
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neutral, but sometimes also unnatural. This may be partly because they are ambiguous,

but also because of the synthesized speech.

Figure B.3: How precise did you find the spoken system instructions?

Figure B.3 depicts how participants rated the precision of the system’s instructions. The

instructions were judged as rather imprecise, but as participants experienced only am-

biguous descriptions, it was expected to see such ratings.

Figure B.4: How adequate was the system’s feedback?

Figure B.4 depicts how participants rated the adequateness of the system’s instructions.

The ratings were again varied, ranging from very adequate to rather inadequate. The

calibration mostly worked good but for three of the participants it was somewhat noisy.

Figure B.5 shows the results of how people answered a yes-no question about the timing

of the utterance. Five out of eight people answered this question with yes. Sometimes

participants expected the system to be quicker than it was.

The questions in Figures B.6, B.7 and B.8 were answered by seven subjects with “yes”

while only one person answered “no”. The questions aimed to assess the usefulness and

importance of the feedback statements output by the system.
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Figure B.5: I think that the timing of the system’s feedback was appropriate.

Figure B.6: Without the system’s feedback I would not be able to find the right
building blocks.

Figure B.7: Because the system reacted to my eye movements, it was easier for me to
find the building blocks.

Finally, the participants were asked to list free-text comments to provide additional sug-

gestions not covered by the questions they answered.

Some participants complained about the unnaturalness of the voice, but this concerns the

synthesis system we used. However, we focused on the natural language generation and

used an out-of-the-box synthesizer. The imprecision of the instructions was also criticized.

However, we intended to give ambiguous instructions, which we later supplement with

informative feedback.

In conclusion, the judgment of the feedback appropriateness was rather positive and con-

firmed that the flow of the interaction was smooth. This preliminary results validated
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Figure B.8: The instructions did not contain enough information such that the sys-
tem’s feedback was crucial.

that interpreting listener gaze was reasonable to generate verbal feedback in real time and

a real environment.



Appendix C

Scene Layouts for Assembly

C.1 Scene Layout 1 and Scene Layout 2 used in Experiment 1,

2 and 3

Figure C.1: First scene layout
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Figure C.2: Second scene layout

C.2 Scene Layout 3 and Scene Layout 4 used in Experiment 2

and 3

Figure C.3: Third scene layout
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Figure C.4: Fourth scene layout





Appendix D

Questionnaires für Experiment 1

D.1 Assessment of the Interaction

1. Wie gut finden Sie den Ablauf der Interaktion?

2. Wie gut finden Sie die Art der Anweisungen?

3. Wie flexibel fanden Sie die Interaktion?

4. Wie präzise fanden Sie die gesprochenen Systemanweisungen?

5. Ich fand es notwendig eine Wiederholung der Anweisung zu verlanden.

6. Die Objektbeschreibung hatte andere Duploteile ausgeschlossen.

7. War Ihnen zu jedem Zeitpunkt klar, was Sie tun mussten?

8. Ich kann mir vorstellen ein solches System zu benutzen, wenn ich etwas zusammen-

bauen möchte, weil es die Suche der Teile erleichtert.

9. Ich denke, dass es einfacher sein wird, wenn man mit dem System sprechen kann.

D.2 Comparison of the Two Interaction Strategies

1. Die sprachliche Kommunikation der beiden Systeme war unterschiedlich.
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2. Ich habe eine ausführliche Beschreibung des gesuchten Duploteils bevorzugt.

3. Eine ausführliche Beschreibung des gesuchten Duploteils war zu lang.

4. Dadurch dass ich in einer der Interaktionen Rückmeldungen auf meinem Blick erhielt

(z.B. “Ja, genau!” bzw. “Nein, nicht das!”), fiel es mir leichter die Duploteile zu

finden.

5. Die gesprochenen Systemruückmeldungen (z.B. “Ja, genau!” bzw. “Nein, nicht

das!”) waren hilfreich.

6. Die gesprochenen Systemruückmeldungen (z.B. “Ja, genau!” bzw. “Nein, nicht das!”)

waren verwirrend.

7. Ich fand es wichtig, dass ich dem System Signale mit meinem Blick geben konnte.



Appendix E

Questionnaire für Experiment 3

E.1 Assessment of the Interaction

1. Wie gut finden Sie den Ablauf der Interaktion?

2. Wie gut finden Sie die Art der Anweisungen?

3. Wie flexibel fanden Sie die Interaktion?

4. Wie präzise fanden Sie die gesprochenen Systemanweisungen?

5. War Ihnen zu jedem Zeitpunkt klar, was Sie tun mussten?

6. Ich kann mir vorstellen ein solches System zu benutzen, wenn ich etwas zusammen-

bauen möchte, weil es die Suche der Steine erleichtert.

E.2 Comparison of the Two Interaction Strategies

1. Die gesprochenen Anweisungen in beiden Hälften waren unterschiedlich.

2. Welche der beiden Interaktionen fanden Sie angenehmer?

3. Die ganze Beschreibung des gesuchten Steins war zu bevorzugen (auf einmal präsen-

tiert).

4. Die schrittweise Präsentation der Beschreibung des gesuchten Steins war zu bevorzu-

gen.
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Appendix F

Model Selection Results for the Interactions with the GazInG

System

Df AIC BIC logLik deviance χ2 χ Df Pr(> χ2)
model0 4 760.39 775.41 -376.19 752.39
model1 5 702.13 720.91 -346.07 692.13 60.26 1 <0.001∗∗∗

Group 1
Model 0: identificationTime ∼ 1 + (1 | Subject) + (1 | Item)

Model 1: identificationTime ∼ InteractionStrategy + (1 | Subject) + (1 | Item)

Df AIC BIC logLik deviance χ2 χ Df Pr(> χ2 )
model0 4 845.16 860.52 -418.58 837.16
model1 5 754.30 773.49 -372.15 744.30 92.87 1 <0.001∗∗∗

Group 2
Model 0: identificationTime ∼ 1 + (1 | Subject) + (1 | Item)

Model 1: identificationTime ∼ InteractionStrategy + (1 | Subject) + (1 | Item)

Df AIC BIC logLik deviance χ2 χ Df Pr(> χ2)
model0 8 1610.55 1646.48 -797.28 1594.55
model1 9 1606.65 1647.07 -794.33 1588.65 5.90 1 0.0151∗

Group 1 and Group 2 ambiguous condition
Model 0: identificationTime ∼ 1 + (0+FeedbackSpecificity | Subject) + (0+FeedbackSpecificity
| Item)

Model 1: identificationTime ∼ FeedbackSpecificity + (0+FeedbackSpecificity | Subject) +

(0+FeedbackSpecificity | Item)

Table F.1: This table summarizes the models fitted to the time for identification data
and the model comparison results of listener gaze behavior for Experiment 1. Differences

are denoted to be significant at ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Model : negativeFeedbackInstances ∼ Type + FeedbackSpecificity + (FeedbackSpecificity |
Subject) + (FeedbackSpecificity | Item)

Estimate Std. Error Wald Z p
(Intercept) 0.93 0.05 19.52 < 0.001∗∗∗

FeedbackType:neg -0.09 0.05 -1.95 0.05∗

FeedbackSpecificity:underspecified -0.01 0.05 -0.10 0.92

Table F.2: This table summarizes the model fitted to the feedback data and inferential
statistics for Experiment 1.Differences are denoted to be significant at ∗p < 0.05, ∗∗p <

0.01, ∗∗∗p < 0.001.

Df AIC BIC logLik deviance χ2 χ Df Pr(> χ2)
object 4 1635.67 1653.98 -813.84 1627.67
..1 5 1637.61 1660.49 -813.80 1627.61 0.06 1 0.7991
..2 6 1637.78 1665.24 -812.89 1625.78 1.82 1 0.1771
..3 7 1639.77 1671.80 -812.88 1625.77 0.02 1 0.8987

Model 0: identificationTime ∼ 1 + (1 | Subject) + (1 | Item)
Model 1: identificationTime ∼ FeedbackSpecificity + (1 | Subject) + (1 | Item)
Model 2: identificationTime ∼ FeedbackSpecificity + Half + (1 | Subject) + (1 | Item)

Model 3: identificationTime ∼ FeedbackSpecificity * Half + (1 | Subject)+ (1 | Item)

Table F.3: This table summarizes the models fitted to the listener gaze data and the
model comparison results for Experiment 2. Differences are denoted to be significant at

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Df AIC BIC logLik deviance χ2 Chi Df p
Model0 5 -575.61 -553.32 292.80 -585.61
Model1 6 -592.32 -565.58 302.16 -604.32 18.71 1 < 0.001∗∗∗

Model2 7 -604.82 -573.62 309.41 -618.82 14.50 1 < 0.001∗∗∗

Model3 8 -602.98 -567.32 309.49 -618.98 0.16 1 0.6903

Random Structure: (InformationDelivery*SpatialDescriptor | Subject)
Model 0: identificationTime ∼ 1 + Random Structure
Model 1: identificationTime ∼ SpatialDescriptor + Random Structure
Model 2: identificationTime ∼ SpatialDescriptor + InformationDelivery + Random Structure

Model 3: identificationTime ∼ SpatialDescriptor * InformationDelivery + Random Structure

Table F.4: This table summarizes the models fitted to the performance data and
the model comparison results. Differences are denoted to be significant at ∗p < 0.05,

∗∗p < 0.01, ∗∗∗p < 0.001.
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Estimate Std. Error Wald Z P
(Intercept) 0.83 0.05 16.59 < 0.001∗∗∗

SpatialDescriptor -0.21 0.07 -2.88 < 0.001∗∗∗

Model: numInstallments ∼ SpatialDescriptor + (1 | Subject), family = “poisson”

Table F.5: This table summarizes analysis and the model fitted to the speech data.
Differences are denoted to be significant at ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.





Bibliography

Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course

of spoken word recognition using eye movements: Evidence for continuous mapping

models. Journal of Memory and Language, 38 , 419–439.

Altmann, G., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the

domain of subsequent reference. Cognition, 73 (3), 247–264.

Andrist, S., Gleicher, M., & Mutlu, B. (2017). Looking coordinated: Bidirectional gaze

mechanisms for collaborative interaction with virtual characters. In Proceedings

of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 2571–

2582). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

3025453.3026033 doi: 10.1145/3025453.3026033

Barr, D. J. (2008). Pragmatic expectations and linguistic evidence: Listen-

ers anticipate but do not integrate common ground. Cognition, 109 (1), 18

– 40. Retrieved from http://www.sciencedirect.com/science/article/pii/

S0010027708001698 doi: https://doi.org/10.1016/j.cognition.2008.07.005

Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015, 06). Parsimonious Mixed Models.

, 1506 .

Belke, E., & Meyer, A. S. (2002). Tracking the time course of multidimensional stimulus

discrimination: Analyses of viewing patterns and processing times during “same”-

“different“ decisions. European Journal of Cognitive Psychology , 14 (2), 237-266.

Retrieved from https://doi.org/10.1080/09541440143000050 doi: 10.1080/

09541440143000050

Blattgerste, J., Strenge, B., Renner, P., Pfeiffer, T., & Essig, K. (2017). Comparing

conventional and augmented reality instructions for manual assembly tasks. In

Proceedings of the 10th International Conference on PErvasive Technologies Related

to Assistive Environments (pp. 75–82). ACM. doi: 10.1145/3056540.3056547

129

http://doi.acm.org/10.1145/3025453.3026033
http://doi.acm.org/10.1145/3025453.3026033
http://www.sciencedirect.com/science/article/pii/S0010027708001698
http://www.sciencedirect.com/science/article/pii/S0010027708001698
https://doi.org/10.1080/09541440143000050


130 Bibliography

Breazeal, C., Kidd, C. D., Thomaz, A. L., Hoffman, G., & Berlin, M. (2005, 08). Effects

of nonverbal communication on efficiency and robustness in human-robot teamwork.

In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp.

708–713). doi: 10.1109/IROS.2005.1545011

Brennan, S. E., Schuhmann, K. S., & Batres, K. M. (2013). Entrainment on the move

and in the lab: The walking around corpus. In Proceedings of the 35th Annual

Conference of the Cognitive Science Society. Berlin, Germany.

Brown-Schmidt, S. (2009). Partner-specific interpretation of maintained referential prece-

dents during interactive dialog. Journal of Memory and Language, 61 (2), 171–

190. Retrieved from http://www.sciencedirect.com/science/article/pii/

S0749596X0900045X doi: https://doi.org/10.1016/j.jml.2009.04.003

Brown-Schmidt, S. (2012). Beyond common and privileged: Gradient representations

of common ground in real-time language use. Language and Cognitive Processes ,

27 (1), 62–89. Retrieved from https://doi.org/10.1080/01690965.2010.543363

doi: 10.1080/01690965.2010.543363

Brown-Schmidt, S., & Tanenhaus, M. K. (2008). Real-time investigation of referential

domains in unscripted conversation: A targeted language game approach. Cognitive

Science, 32 (4), 643-684. Retrieved from https://onlinelibrary.wiley.com/doi/

abs/10.1080/03640210802066816 doi: 10.1080/03640210802066816

Bulling, A., & Roggen, D. (2011). Recognition of visual memory recall processes using

eye movement analysis. In Proc. UbiComp (pp. 455–464).

Bulling, A., Ward, J. A., Gellersen, H., & Tröster, G. (2011). Eye movement analysis
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Proceedings of the IEEE Virtual Reality 2004 (pp. 35–42).

Pfeiffer, T., & Renner, P. (2014). EyeSee3D: A low-cost approach for analyzing mobile

3D eye tracking data using computer vision and augmented reality technology. In

http://dl.acm.org/citation.cfm?id=645524.656806
http://www.aclweb.org/anthology/N13-1137
http://penglab.janelia.org/proj/mRMR/
http://penglab.janelia.org/proj/mRMR/


Bibliography 137

Proceedings of the Symposium on Eye Tracking Research and Applications (pp. 369–

376).

R Core Team. (2014). R: A language and environment for statistical computing [Computer

software manual]. Vienna, Austria. Retrieved from http://www.R-project.org/

Raidt, S., Bailly, G., & Elisei, F. (2007). Gaze patterns during face-to-face interaction.

In Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web

Intelligence and Intelligent Agent Technology - Workshops (pp. 338–341). Wash-

ington, DC, USA: IEEE Computer Society. Retrieved from http://dl.acm.org/

citation.cfm?id=1339264.1339721

Reiter, E. (1995). NLG vs. templates. In Proceedings of the 4th European Workshop on

Natural Language Generation (EWNLG 1995).

Reiter, E., & Dale, R. (2000). Building Natural Language Generation Systems. New York,

NY, USA: Cambridge UniversityA Press.

Renner, P., & Pfeiffer, T. (2017). Attention guiding techniques using peripheral vision

and eye tracking for feedback in augmented-reality-based assistance systems. In

2017 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 186–194). IEEE. doi:

10.1109/3DUI.2017.7893338

Reynal, M., Colineaux, Y., Vernay, A., & Dehais, F. (2016). Pilot flying vs. pilot mon-

itoring during the approach phase: An eye-tracking study. In Proceedings of the

International Conference on Human-Computer Interaction in Aerospace (pp. 7:1–

7:7). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

2950112.2964583 doi: 10.1145/2950112.2964583

Sakita, K., Ogawara, K., Murakami, S., Kawamura, K., & Ikeuchi, K. (2004). Flexible

cooperation between human and robot by interpreting human intention from gaze

information. 2004 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (IEEE Cat. No.04CH37566), 1 , 846–851.

Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-

tracking protocols. In Proc. ETRA (pp. 71–78).

Schmid, H. (1995). Improvements in part-of-speech tagging with an application to Ger-

man. In In Proceedings of the ACL SIGDAT-Workshop (pp. 47–50).
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