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Abstract 
Myxobacterial natural products have proven to be a valuable source of antibacterial and 

anticancer compounds in the last decades. This thesis covers the biosynthesis elucidation, 

heterologous production as well as structure and yield optimization of two potent 

myxobacterial compounds. The work on coralloypronin resulted in the design of an efficient 

heterologous production platform in the myxobacterial model organism Myxococcus xanthus. 

Research on the established heterologous producer led to identification of specific 

biochemical processes and resulted in isolation and structure elucidation of two novel 

coralloypronin derivatives. Furthermore, gene deletion experiments led to discovery of 

hypothetical self-resistance mechanism, which seems to be conserved in most myxobacterial 

RNA polymerase (RNAP) inhibitor biosynthetic gene clusters (BGC). The BGC of argyrin, a 

cyclic octapeptide produced by nonribosomal peptide synthetase (NRPS), was identified in 

Cystobacter sp. SBCb004. The heterologous expression of synthetic argyrin BGC was 

achieved in M. xanthus, which, after medium optimization, led to a significant yield 

improvement over the wild type producer. The production of argyrin could be even further 

improved by utilization of different promoter systems with a specifically optimized leader 

sequence. Furthermore, precursor directed biosynthesis was applied to produce a library of 

novel argyrin derivatives.  
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Zusammenfassung 
Myxobakerielle Naturstoffe haben sich in den letzten Jahrzehnten als wertvolle Ressource für 

Wirkstoffe gegen Bakterien und Krebs bewährt. Diese Dissertation umfasst die 

Biosyntheseaufklärung, die heterologe Produktion sowie Struktur und Ausbeuteoptimierung 

zweier wirksamer myxobakterieller Verbindungen. Die Arbeit über Corallopyronin führte 

zum Design einer effizienten myxobakteriellen Produktionsplattform im myxobakteriellen 

Modellorganismus Myxococcus xanthus. Die Erforschung dieses etablierten heterologen 

Produzenten führte zur Identifizierung spezifischer biochemischer Prozesse, die in der 

Isolation und Strukturaufklärung zweier neuer Corallopyroninderivate resultierte. Zusätzliche 

Gendeletionsexperimente führten zur Entdeckung eines hypothetischen 

Selbstresistenzmechanismus, der in myxobakteriellen RNA Polymerase (RNAP) Inhibitor 

Biosynthese-Genclustern (BGC) konserviert zu sein scheint. Das BGC des zyklischen 

Oktapeptids Argyrin wurde in einem Nichtribosomalen Peptid Synthetase (NRPS) Gencluster 

in Cystobacter sp. SBCb004 entdeckt. Die heterologe Expression eines synthetischen Argyrin 

BGC in M. xanthus führte nach Medienoptimierung zu einer signifikanten Steigerung der 

Ausbeute im Vergleich zum Wildtyp. Zusätzliche Steigerungen der Argyrinproduktion 

wurden durch Integration verschiedener Promotoren mit einer optimierten Leader Sequenz 

erreicht. Zudem konnte durch die Fütterung spezieller Vorläufermoleküle eine Bibliothek 

neuer Argyrinderivate produziert werden.  
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1 Introduction 

1.1 Natural products 

By broad definition natural products (NP) include everything produced by living systems1, 

however a more detailed definition of the term usually refers to secondary metabolites, or 

those not required for growth of the producing organisms2. The history of NPs from plants, 

animals, bacteria or fungi extends back into the prehuman era. Millions of years of evolution 

resulted in a complex and ever-evolving variety of NPs that exists today. First records of NPs 

used by humans dated back into 2600 BC, documenting an extensive list of around 1000 

plant-derived substances in Mesopotamia. NPs were used in their crude form, to treat a 

variety of illnesses ranging from colds to parasitic infections and inflammations since the first 

use of medicine by ancient human civilizations3.  

With the development of modern medicine and transition into the “golden era of antibiotics”, 

an extensive investigation of new active microbial NPs began. The discovery of penicillin, the 

first β-lactam antibiotic, by Alexander Fleming in 1928 opened up new opportunities in the 

field of NPs as the vast source of yet undiscovered anti-infective agents began to unravel. 

Since then, until late 1970s a number of different antibiotic classes were revealed, majority of 

them originating from microorganisms (Fig. 1). Discovery of streptomycin, gentamicin, 

tetracycline and other antibiotics prompted the pharmaceutical companies to start expanding 

their NP research programs4. Microorganisms quickly became one of the main sources of 

active metabolites with a variety of different activities. Many of those metabolites were found 

to be highly potent due to the evolutionary pressure by which their chemical optimisation was 

driven4. NPs play a pivotal role in the development of novel anti-infectives and anticancer 

agents. A large portion of the small-molecule drugs approved between 1981 and 2014 (43.6 % 

of anti-infectives and 40.7 % of anticancer agents) was based on natural products and their 

derivatives5. Some of the most important NPs throughout the history exert various biological 

activities, including antibacterial activity (e.g. penicillin, vancomycin, erythromycin, 

rifamycin)6,7, cytotoxic activity (e.g. bleomycin and doxorubicin)6, antifungal activity (e.g. 

amphotericin7, griseofulvin6) as well as immunosuppressive effects (e.g. cyclosporin6) (Fig. 2).  
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Figure 1. Discovery timeline of novel antibiotic classes. 
 

 

 
 

Figure 2. Chemical structures of some important natural products with various activity profiles. 
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As more and more antibiotics reached the market in the 1960 and 70s, the need for novel anti-

infectives seemed to decrease and pharmaceutical companies began to lose interest in this 

field8,9. The discovery of novel antibiotics has therefore been in steady decline since the peak 

of anti-infectives discovery in the middle of the 20th century (Fig. 2). In the period from 1970 

to 1990 only one broad spectrum class of antibiotics, the fluoroquinolones, was introduced to 

the market9. Due to rapidly emerging bacterial antibiotic resistance, novel pharmaceuticals are 

once again urgently needed for treating infectious diseases10,11.  

 

1.2 Myxobacteria as producers of natural products 

Microorganisms have been the leading force in production of antibiotics. Especially important 

are actinobacteria which helped establish microorganisms as prominent anti-infective 

producers with the discovery of streptothricin and streptomycin in the 1940s12–14. To date, 

more than 5000 antibiotics have been identified from the order of actinomycetales, with over 

90% of these produced solely by the Streptomyces genus12. Other microbial producers, like 

fungi and bacilli, have also been established as prolific sources for NPs15,16, the latter are 

known by producing a special class of antibiotics called lantibiotics12. In the last decades, 

myxobacteria acquired a reputation of prominent secondary metabolite producers by 

contributing a sizable share of NPs17,18. From the discovery of ambruticin in 1970s by Warner 

& Lambert19 until 2010, more than 100 distinct core structures were isolated from 

myxobacteria and many of them were shown to exhibit intriguing bioactivities20–22. 

Myxobacteria are Gram-negative bacteria belonging to the group of �-proteobacteria23. 

Similar to the Streptomycetes, they are also known as soil residing organisms, famous for 

their rich secondary metabolism, originating from a vast number of biosynthetic gene clusters 

(BGCs) encoded in their genomes24,17,25. They have one of the largest genomes of all known 

prokaryotes, ranging from 9 to 14.8 Mb24,26,25. It is speculated that those large genome sizes 

are necessary for their complex way of life26 as it has been reported that bacteria showing 

such multicellular behavior typically possess large proteomes26,27. 

Myxobacteria are known for several intriguing multicellular, social behaviors. Some of those 

include motility in form of swarming and predatory behavior. Both behavious are somewhat 

connected, since the detection of nutrients (e.g. prey or other metabolites) triggers gliding 

motility in the corresponding direction. As the swarm connects with the foreign colony, 

myxobacteria lyse opposing cells by releasing antibiotics and exoenzymes. Nutrients released 

from digested prey cells are taken up as source of energy for further growth and expansion of 

the colony26. When myxobacteria deplete their prey and are subjected to nutrient poor 



4 | Introduction 
 

conditions, they start a differentiation process that results in two types of cells. Some cells 

turn into a monolayer of cells called peripheral rods28–30, while most cells aggregate and form 

intriguing biofilm-like structures ranging from simple mounds to complicated three 

dimensional structures called fruiting bodies26,31 (Fig. 3).  

 

 
Figure 3. Fruiting bodies of Myxococcus xanthus DK1622 (A), Cystobacter SBCb004 (B), Archangium 

cellulosum Ar8082 (C), Myxococcus fulvus Mx f50 (D) and Corallococcus coralloides Cc c127 (E).  
 

To cope with the depleted conditions, cells within fruiting bodies develop specific functions. 

Some develop into hibernating or non-reproductive cells while others differentiate into 

resistant, reproductive myxospores (Fig. 4). Sporulation in M. xanthus differs from endospore 

formation in Bacillus spp. in terms that the entire cell converts into a myxospore28. During the 

starvation conditions, cells that do not aggregate into fruiting bodies or form the surrounding 

monolayer of peripheral rods often lyse. It has been suggested that the released nutrients serve 

as source of energy for peripheral rods that act as a defensive line, protecting fruiting bodies 

from approaching microorganisms28.  
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Figure 4. Life cycle of Myxococcus xanthus

32. 
 

Myxobacteria are also metabolically very well equipped for fending off intruders or 

competitors in their natural habitat. With their rich secondary metabolism they are a great 

alternative to streptomycetes, which are still one of the biggest sources for microbial NPs 

today12. These natural products exhibit some common biological activities like antifungal (e.g. 

soraphen33 and ambruticin19), antibacterial (e.g. cystobactamid34), antitumor (e.g. epothilone35) 

as well as some more unusual ones like antiviral (e.g. aetheramide36), antimalarial (e.g. 

chlorotonil37), immunomodulatory (e.g. argyrin38) and antifilarial (e.g. corallopyronin39) (Fig. 

5). Due to their potent bioactivity profiles, myxobacterial NPs play an important role in drug 

development. One of the most important myxobacterial compounds is epothilon as its 

semisynthetic derivative ixabepilone has already been approved for breast cancer treatment by 

the FDA40. Some other myxobacterial anticancer agents include e.g. bengamide, a derivative 

of which was studied in anticancer phase I clinical trial41 and tubulysin, which also showed 

promising results in preclinical studies42. Cholorotonil is a macrolactone antibiotic isolated 

from Sorangium cellulosum So ce1525. It shows potent in vitro activity against Gram-positive 

pathogens, however, even more interesting is the activity against Plasmodium falciparum. In 

an in vivo study with P. berghei, chlorotonil led to a substantial reduction of parasitemia in 

mice37. Another very potent antibacterial agent from myxobacteria, cystobactamide, was 

identified as an inhibitor of bacterial topoisomerase34. This antibiotic is of high interest as it 

showed high inhibitory activity against E. coli in in vitro tests21. 
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Figure 5. Myxobacterial secondary metabolites. 
 

1.3 Multifunctional megasynthetases for natural product biosynthesis 

Most of the myxobacterial NPs characterized so far are assembled by giant megasythetases. 

Those can be classified as either polyketides (PKs), nonribosomal peptides (NRPs), or hybrids 

thereof (i.e. PK-NRP hybrids)43, while other structural types e.g. include phenyl-propanoids 

and alkaloids20. Modular PKs and NRPs are assembled in a similar manner. They consist of 

monomer units coupled into longer chains by large multimodular enzymes commonly referred 

to as megasynthetases44,43. Megasynthetases are composed of multifunctional subunits 

containing various catalytic domains, which are organized in so-called modules. Each of these 

modules is responsible for incorporation of corresponding building blocks into a growing 
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ketide or peptide chain, which is transferred along the entire assembly line until its release43. 

Modules consists of multiple domains and each domain has a specific catalytic function, 

which makes it responsible for a specific reaction step in the chain elongation cascade43. 

Polyketide synthases (PKS) use acyl-coenzyme A (acyl-CoA) precursors as building blocks, 

whereas nonribosomal peptide synthetases (NRPS) employ a significantly larger and more 

diverse group of monomers, by accepting proteinogenic and non-proteinogenic amino acids as 

well as aryl acids43,45. Due to structural and catalytic similarities of PKS and NRPS, it is 

biochemically possible for those systems to interact and form functional hybrid systems46. 

The results are so called hybrid NRPS/PKS megasynthetases, which represent a significant 

share of myxobacterial/microbial natural product biosynthetic pathways47. 

During the assembly process the precursors and growing intermediates are covalently bound 

to the megasynthetase. The main domain responsible for binding of the building blocks is 

called carrier protein (CP) domain. For the CP to perform its intended function, a 

posttranslational modification called phosphopantetheinylation is necessary, to convert the 

inactive apo form of the CP into its active holo form. In this process, a superfamily of proteins 

called phosphopantetheinyl transferases (PPanteases) transfer the 4'-

phosphopantetheine moiety (PPant), also called “PPant arm” or “prosthetic arm”, from 

coenzyme A to a catalytic serine in the active site of the ACP48. Once the CP has been 

PPanthenylated, the PPant group serves as an attachment site to covalently tether chain 

intermediates and shuttle them from/to other catalytic domains (e.i. AT, KS)48 (Fig. 6).  

 
Figure 6. Transformation of the carrier protein apo form to holo form by phosphopantetheinylation. 
 

An example of myxobacterial compound produced by a megasynthetase is myxothiazol. It is a 

natural product with antifungal properties produced by Angiococcus, Stigmatella, and 

Myxococcus genera of myxobacteria. It acts on the cytochrome bc1 complex and is a potent 

inhibitor of the respiratory chain. The megasynthetase responsible for production of 

myxothiazol is a hybrid PKS/NRPS with several unusual features. The biosynthesis begins 

with an incorporation of the unusual starter unit isovalerate, which is further condensed with 

malonate, methylmalonate and cysteine units49. The Ox domain in mtaC was shown to be 
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superfluous by the deletion experiment, therefore it’s assumed that the Ox domain of mtaD is 

responsible for oxidation of both thazolines50. The assembly line consists of mtaB, mtaE, 

mtaF, encoding the PKS part, mtaC and mtaG, encoding NRPS part and the gene mtaD 

consists of NRPS and PKS elements49 (Fig. 7). The terminal amide in myxothiazol structure is 

formed by an unusual release mechanism. It is predicted that the monooxygenase (MOX) 

domain present in MtaG oxidizes the last module intermediate. Dealkylation of the resulting 

α-hydroxylated intermediate leads to the release of myxothiazol, whereas the terminal amino 

acid is cleaved from the PCP by subsequent action of the TE domain51,52.  
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Figure 7. The assembly line of myxothiazol. PKS modules are highlighted in green and NRPS modules in red. 
Catalytic domains are illustrated as circles. 
 

1.3.1 Polyketide synthases (PKS) 

The biochemistry of PKS is similar to that of the fatty acid synthases (FAS) and both groups 

are  evolutionarily connected53, which becomes quite clear once we take a closer look at their 

biosynthesis. In essence, both machineries follow the same concept of connecting monomer 

acyl units into a long ketide chain. The chain is formed in a cascade of Claisen condensation 

reactions responsible for interconnection of activated acyl starter units with malonyl-CoA-

derived extender units44. Typically, the most common starter units are malonyl-CoA and 

methyl malonyl-CoA. The Claisen condensation is an essential reaction for chain elongation, 

which requires at least three catalytic domains: acyltransferase domain (AT) responsible for 

selection of starter and extender units, an acyl carrier protein domain (ACP) 
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posttranslationally activated via phosphopantetheinylation48 to shuttle monomer units and 

elongated intermediates and a ketosynthase domain (KS) for C-C bond formation (Fig. 8). 

After the full length chain has been assembled, the thioesterase (TE) domain in the final 

module catalyzes its release from the assembly line by hydrolysis or lactonization54.   

 

Figure 8. Polyketide chain elongation. The catalytic domain in each step is highlighted. 
 

Three additional domains have to be employed in order to fully reduce the initially generated 

ß-keto group after chain elongation. Those include the ketoreductase domain (KR) which 

generates a ß-hydroxyl group, the dehydratase domain (DH) responsible for dehydration of 

the hydroxyl group to form a double bond which is further reduced by the enoylreductase 

domain (ER)55 (Fig. 9). The main difference between FAS and PKS is that each incorporated 

monomer unit in FAS is always fully reduced55, whereas in modular PKS not all 

modifications necessarily take place44. This leads to higher diversity of PKS products, which 

compared to fatty acids differ in chain lengths and consist of structural differences such as 

various hydroxyl or keto groups and double bonds. Additional functional domains, enzymatic 

reactions and various system architectures can further increase the diversity of PKS44.  

 

 

 
Figure 9. Optional β-keto processing steps of PKS. 
 

1.3.2 Structural diversity in PKS biosynthesis 

There are several factors contributing to the structural diversity of the PKS. Some of this 

remarkable diversity comes from combinatorial utilization of only a few simple building 

blocks. The major part of the monomer building blocks used in PKS chain elongation is 

represented by malonyl-CoA and methyl malonyl-CoA, however, the starter units show much 
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larger diversity in form of e.g. thioesters of monoacyl groups such as acetyl-, propionyl-, and 

benzoyl-CoAs, or structural variants, such as malonamyl-CoA56.   

In modular PKS systems a set of KS, AT, and ACP domains, as well as optional β-keto 

processing domains, constitute one module. Each module is responsible for only one single 

elongation cycle, therefore the number of modules correlates with the number of elongation 

steps. This makes it possible to predict metabolite structure from enzyme architecture or vice 

versa. The correlation of the chain length with the number of catalytic modules is referred to 

as the co-linearity rule44. The unique structures of the PKs are additionally shaped by the 

actions of optional reduction and/or modification step. The complete or partial absence of β-

keto processing domains is reflected in the structures of PKs by the presence of keto groups, 

hydroxyl groups and unsaturated double bonds44. The diversity of the PKs is further 

influenced by various stereochemistry orientations provided by different catalytic domains. 

For instance, KR domains can lead to generation of S or R hydroxyl groups, based on the type 

of the KR domain. Their specificity can be predicted by the presence of the important 

sequence motifs, which have been experimentally elucidated by mutagenesis and genetic 

engineering experiments57–59. Another level of stereo-chemical diversity is provided by the 

action of DH domains. Dehydration of the D configured moieties in most cases results in 

trans double bond configuration, whereas dehydration of the L isomers usually leads to 

generation of cis double bonds44. ER domains can lead to S or R methyl branches in the 

structures of the PKs. Ladley and co-workers were able to deduce an important residue in the 

ER domains. By mutation of the catalytic tyrosin to valin in the PKS derived from 

erythromycin biosynthesis, they were able to achieve a change in methyl branch 

stereochemistry from S to R. The reverse experiment on the ER from rapamaycin was 

however not successful. This suggests that additional residues might play a role60. 

 

1.3.3 Unusual biochemistry of trans-AT PKS systems 

Typically, in standard PKS systems each AT is paired with its own ACP domain, which 

accepts the substrate activated by the corresponding AT. Such systems are commonly referred 

to as cis-AT PKS. However, there is a special class of PKS called trans-AT PKS, in which the 

AT domain is lacking in every module and is instead replaced by a free-standing AT domain61. 

Such systems are thus sometimes also referred to as AT-less PKS. Since the discovery of 

pederin, first reported trans-AT PKS with an attributed metabolite, it has become clear that 

alternatives to cis-AT PKS exist61. Despite the same modular organization and other 

similarities to cis-AT PKS, trans-AT PKS have evolved independently from standard PKS 
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systems. They initially failed to be recognized as a standalone class of metabolites due to their 

scarcity in streptomycetes. However, more and more of those compounds are being identified 

in less common types of microorganisms, which are harder to cultivate, including 

myxobacteria62. A recent study of PKS systems showed that trans-AT PKs are a major group 

of bacterial compounds, which attributed 38% of all sequenced bacterial genomes to trans-AT 

type62. This clearly shows that trans-AT PKS are important bacterial secondary metabolite 

pathways, which deserve to be classified as standalone class. There are several known cases 

where the biosynthesis of PKS deviates from the standard modular PKS biochemistry. Some 

of such peculiarities include e.g. module skipping, split modules located on two adjacent 

proteins, non-elongating modules, unusual system organizations and some catalytic functions 

performed in trans
63,62. Those features are known to commonly occur in trans-AT PKS 

systems62.  

A typical example of trans-AT PKS is bacillaene biosynthetic pathway which was used in a 

number of studies to investigate many fundamental principles of trans-AT PKSs61 (Fig. 10). 

Comparrison of the bacillaene structure with the PKS architecture reveals many non-

canonical features. The cluster encodes 17 modules but the compound contains only 13 

building blocks, indicating the presence of non-elongating modules. Modules 4, 8 and 14 are 

split and located on two separate proteins. As commonly observed in trans-AT PKSs, the AT 

functionality was shown to be provided in trans by the PksC, a homologue of BaeC from 

another producer64. Furthermore, trans-ER activity provided by PksE (BaeE) in module 2, 

was also identified65. 
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Figure 10. The bacillaene PKS and biosynthetic model from B. amyloliquefaciens. The β,γ double bonds 
introduced by β,γ dehydration are highlighted in pink (modules 12 and 13). The β,γ double bond predicted to be 
introduced by module 14 and isomerized on the following non-elongating module 15 (KS0-DH*-ACP) is 
highlighted in orange. Non-elongating modules are marked with a star and the methyl branch in BaeL introduced 
by β-branching is highlighted in red. 
 

Another common and highly characteristic feature of trans-AT PKS is β-branching61. The 

feature is also present in bacillaene biosynthesis and is responsible for incorporation of methyl 

branch in BaeL66 (Fig. 10). Alkylation at the β position (e.g. β-branching) is less common 

than the well-characterized methylation at the α-position, but nevertheless important since it 

introduces additional structural complexity into polyketides. Introduction of β alkyl side-

chains is performed by a set of enzymes that perform similar reaction to those observed in 

mevalonate biosynthesis67. Genes encoding those enzymes are commonly clustered in trans-

AT systems and referred to as β-branching cassette61 or alternatively as “HMGS” cassette67. 

The cassette typically consists of three main proteins: a donor APC that gets loaded by 
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malonyl-CoA, a nonelongating KS domain responsible for decarboxylation of the 

aforementioned malonyl-CoA and finally a HMGS homolog responsible for interconnection 

of the generated acetate unit with the biosynthetic intermediate bound to the corresponding 

module of the assembly line. The three core proteins are normally accompanied by one or two 

additional enoyl-CoA hydratases (ECH) homologs, responsible for a subsequent dehydration 

and decarboxylation67 (Fig. 11). 

 

 
Figure 11. Catalytic reactions of the β-branching cassette. 
 

Introduction of β,γ double bonds is yet another unusual element found in PKS systems. Most 

of the double bonds found in PKs are in α,β position. However, several cases of β,γ double 

bonds have also been reported. This seems to be a common feature in trans-AT PKS since β,γ 

dehydration, as well as α,β to β,γ double bond migration have been observed in bacillaene 

biosynthesis68. Additionally, α,β to β,γ double bond migrations have been reported in 

rhizoxin69, nosperin70 and corallopyronin (COR)71 biosynthetic pathways. Both described 

reactions yield a β,γ double bond, however, their mechanisms are different. One is a direct 

β,γ-dehydration by a single, dedicated module and the other is canonical dehydration on one 

module followed by a double bond isomerization by a non-elongating downstream module 

containing an additional DH-like domain, termed DH*72. Bacillaene possesses three β,γ 

double bonds, where the first two were proven to be installed by β,γ dehydration and the third 

one seems to be introduced by a non-elongating module (Fig. 10). This is in analogy with 

other non-elongating modules found in rhizoxin, nosperin and COR biosynthetic pathways. 

The non-elongating modules found in rhizoxin and nosperin biosynthetic pathway consist of 

KS0–DH*–ACP, where the KS0 is nonfunctional. The modules appear to be responsible solely 

for isomerization of the α,β double bond, introduced by the previous module69. A similar 

situation is found in COR biosynthesis where a non-elongating, split module is found, 

consisting of the same KS0–DH*–ACP domain organization, yielding a β,γ double bond71.  
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1.3.4 Nonribosomal peptide synthetases (NRPS) 

Nonribosomal peptide synthetases (NRPS) are large, multi-modular megasynthetases that 

employ a very similar biosynthetic strategy as PKS. In NRPS, analogously to PKS, a basic 

module also consists of three core domains; adenylation domain (A), peptidyl carrier protein 

domain (PCP) and a condensation domain (C). The A domain selects amino acid substrate and 

activates it as the aminoacyl-AMP under consumption of ATP. The thiol group of the 

following PCP covalently binds the activated substrate intermediate and shuttles it to the 

subsequent condensation domain which performs peptide bond formation, resulting in a chain 

elongation73 (Fig. 12). As already described for ACPs in PKS systems (see 1.3.1), PCPs in 

NRPS systems are also posttranslationally modified to holo-PCPs by phosphopantetheinyl 

transferases, which attach the Ppant prosthetic group45,74,73. While building blocks are tethered 

to the holo-PCP domain, they can also be shuttled to optional modification domains located in 

the assembly line or present as standalone enzymes, providing functionality in trans
45. Once 

the full-length NRP chain is assembled, a terminal TE domain normally catalyzes its release 

from the assembly line, either as linear chain or in cyclic form75. The structure of the 

produced metabolite is dictated by the specificity of the A domain73 as well as specificity of 

the subsequent C domains which act as an additional “gatekeeper“76–78.  

 

 
Figure 12. Nonribosomal peptide chain elongation. The catalytic domain in each step is highlighted. 
 

Similar to PKS, there are also several additional domains existing in NRPS systems, which 

further diversify structures of those molecules. Some of those domains include epimerization 

domains (E), in charge of changing stereo-chemical orientation of incorporated substrate45,79 

(Fig.13A), methyl transferase domains (MT), responsible for incorporation of additional 

methyl groups45,80,81 (Fig.13B), cyclization domains (Cy), forming heterocyclic rings73,82 

(Fig.13C) and oxidation domains (Ox) responsible for the conversion of thiazoline and 

oxazoline rings to thiazole and oxazole, respectively73,45,80 (Fig.13C) or for α-hydroxylation of 
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incorporated amino acids46,51. Thiazoline/oxazoline rings can also be reduced by the reduction 

(R) domains to form thiazolidine/oxazolidine as observed in e.g. pyochelin83. 

 

 
Figure 13. Optional domains of NRPS modules performing (A) epimerization, (B) methylation, (C) 
heterocyclization and oxidation.  
 

1.3.5 Structural diversity in NRPS biosynthesis 

As already mentioned for PKS, the selection of building blocks is an important factor that 

contributes to the structural diversity of NPs. This is even more so in NRPS, where the pool 

of monomer units is even larger and more diverse. NRPS accept anything from 20 

proteinogenic amino acids to a large variety of nonproteinogenic amino acids and aryl acids43, 

which leads to practically unlimited diversity of NRPs.  The A domains play a pivotal role in 

NRPS substrate selection and activation. It has been shown by several separate studies, that A 

domains are the specificity-mediating “gatekeeper” units, however, the exact mechanism of 

selectivity at first remained unclear84,74,85. This has changed with the elucidation of the first 

two crystal structures from the adenylate forming superfamily of enzymes. The first one was 

the crystal structure of firefly luciferase from Photinus pyralis
86

, followed by a crystal 

structure of A domain GrsA from gramicidin S pathway, in complex with phenylalanine and 

AMP87. By solving the crystal structure of the GrsA domain with its corresponding substrate 

and ATP, Stachelhaus and coworkers were able to identify the binding pocket of the A 

domain and develop ground rules for substrate specificity prediction of A domains, based on 

their primary protein sequence alignment. The binding pocket of the A domain is lined by ten 

amino acid residues, known as specificity-conferring code for substrate prediction of NRPSs, 
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now also commonly referred to as the nonribosomal code74,87,88. The nonribosomal code of 

ten residues was later expanded, to include important residues in range of 8 Å from the 

binding pocket of the A domain89. Those residues are predicted to interact with the substrate 

and thus influence the A domain specificity. Based on this knowledge, several A domain 

specificity predictor tools have been developed over the years (e.g. NRPSpredictor290 or 

NRPSsp91). Those tools can identify the specificity conferring code in the given A domain 

sequence and predict the specificity of the A domain based on this code. Such data can be 

very useful when trying to predict a structure of a compound originating from a NRPS 

containing BGC as well as when trying to manipulate specificity of an A domain in order to 

initiate production of new derivatives. It has been shown by several studies that it is possible 

to change the specificity of the A domain by manipulating its nonribosomal code, where as 

little as one mutated residue was in some cases enough to completely change the A domain 

specificity74,92,93. When modifying the specificity of the A domain it is important to keep in 

mind, that the substrate also has to be processed by the downstream domains. Activation of 

the substrate, reflecting significant structural difference compared to the native building block, 

often leads to noncompliance with the downstream C domains which act as additional 

gatekeepers in the NRPS systems94,76,78. Furthermore, such specificity modifying approaches 

are even more difficult, as introduction of point mutations in complex megasynthetases is not 

trivial.  

 

1.4 Heterologous expression of complex natural product pathways 

Heterologous expression has proven to be an indispensable tool in the discovery, production, 

engineering and characterization of bacterial secondary metabolites95–97. Many of the NP 

producers are not easy to handle in the standard laboratory conditions without significant 

effort invested in method development. They are often slow in growth, requiring weeks to 

produce secondary metabolites. Despite all efforts to improve their growth, product yield 

sometimes remains too low for further studies. There are various methods that can be 

implemented to improve production yields of native or heterologous producers. Modifications 

include implementations of strong promoters98 or modifying the expression levels of 

negative99,100 and positive101 regulators. As native producers are often not genetically 

accessible, expression of BGCs in well-established heterologous hosts provides a better 

alternative. Selected surrogate hosts are usually well studied organisms for which various 

genetic engineering techniques and molecular biology tools are readily available. Those tools 

can be employed to modify biosynthetic pathways introduced into genetically amendable 



Introduction | 17 
 

hosts for their characterization and modification in order to e.g. produce novel derivatives. 

Heterologous expression also provides means for expression of natural product BGCs 

uncovered by the genome sequencing projects. In the last decades, several hundred fully 

sequenced bacterial genomes have been acquired from well-known NP producers95. They 

present a rich source of BGCs for production of to date unknown compounds. 

Genes that are transferred to a selected heterologous host have to be transcribed and translated, 

as well as the resulting protein has to fold correctly. For this purpose, the heterologous host 

has to be capable of performing appropriate posttranslational modifications. This is also the 

case in PKSs and NRPSs, as the heterologous host has to be able to posttranslationally modify 

the megasynthetases, e.g. via phosphopantetheinylation of ACPs or PCPs48. PKS and NRPS 

represent a major portion of secondary metabolites produced by actinobacteria and 

myxobacteria, which are also well known for their high GC content. Therefore, a 

heterologous host, selected for production of compounds from those organisms, also has to be 

able to express GC-rich genes95,102. Rare codons sometimes also represent a problem, as they 

can cause ribosomal stalling, resulting in truncated or degraded proteins. However, in practice 

it seems that rare codons are less problematic than initially believed98. 

Once the appropriate heterologous host is selected, a desired BGC has to be appropriately 

modified, before successful expression in a heterologous host is possible. To obtain the BGC 

from native hosts, various techniques can be employed. Traditionally, large cosmid libraries 

were generated, which were then screened for constructs harboring desired genes. In most 

cases, the BGC has to be rearranged or reassembled on a special expression vector, harboring 

appropriate genetic elements like promoters and terminators as well as a good integration or 

replication system, specifically tailored to fit the host organism96. To assemble functional 

expression vectors, restriction-digestion and ligation based approaches were traditionally 

employed. Such methods are extremely laborious and time consuming, therefore faster and 

more versatile techniques were developed103.  

Some of the more advanced methods include in vitro techniques like the Gibson assembly104 

or Golden Gate cloning105 as well as in vivo methods like transformation-associated 

recombination (TAR) in yeast106 or Red/ET recombination in E. coli
107. Both in vivo methods 

can be employed to assemble DNA within the overlapping homologous regions via 

recombination, with the Red/ET being a bit more versatile and easily employed for further 

plasmid modifications in E. coli.  
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1.5 Combinatorial biosynthesis approaches 

Another field, closely related to heterologous expression, is combinatorial biosynthesis. 

Swapping of entire domains, modules and subunits are some of the methods applied in 

combinatorial biosynthesis108. The approaches to this form of genetic engineering began with 

PKS systems, due to their predictable, modular organization109. The trait of certain PKS to 

follow co-linearity rules made it straightforward to predict the outcome of mix-matching 

modules from various biosynthetic pathways. The approach was limited to the modification of 

well characterized systems which resulted in a small library of novel non-natural 

derivatives103. One famous example of such approaches include swapping of AT domain from 

erythromycin biosynthetic pathway with its counterpart from rapamycin biosynthesis110. The 

method yielded 61 new analogues, many of which have not been naturally detected. Other 

similar examples of combinatorial biosynthesis in PKS include pikromycin111, tylosin111 and 

daptomycin112, genes of which have also been combinatorially assembled for production of 

novel analogues. Alternatively to modifying preexisting pathways, de novo assembly of 

biosynthetic pathways by combining various enzymes in heterologous hosts has also been 

described103 for flavonoids113,114 and carotenoids115. Despite some successful examples of 

combinatorial biosynthesis, the method is by no means well established or without limitations. 

The idea of hybrid megasynthetases has been around for quite some time, however, it has thus 

far not been developed to the point of becoming a standardized method. One limitation of 

combinatorial studies comes from traditional restriction-digestion and ligation based cloning 

methods, which are tedious and time-consuming. As a result, traditional approaches are not 

appropriate to construct large libraries of combinatorially assembled pathways that are 

necessary for screening. A major challenge in assembly of chimeric synthases is their 

functional expression. Many of such enzymes are insoluble or functionally impaired resulting 

in abolished or very low production. The limitation is most often a result of incomplete 

understanding of protein-protein interactions necessary for efficient processing of the 

intermediates108.   

A more modern approach for biosynthetic pathway assembly is de novo DNA synthesis, 

which has been steadily gaining importance in the last decade. The method is usually based 

on extensive in sillico analysis of biosynthetic pathways, which allows their rearrangement or 

optimized design of genes. Unlike traditional approaches, methods based on DNA synthesis 

are not limited by the arrangement of native genes. Since the DNA can be de novo 

synthesized, it is possible to rearrange it as desired by employing previously mentioned DNA 

assembly techniques like TAR, Red/ET, Gibson assembly, Golden Gate assembly as well as 
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traditional restriction-digestion and ligation approach. This allows construction of more 

versatile biosynthetic pathways that enable easier genetic modifications later on. Nevertheless, 

the method is not without its limitations. The main issue at this point is still the cost of the 

synthesized DNA fragments. Moreover, the synthesis of fragments larger than 5 kb for now 

remains unreliable and impractical116, therefore development of advanced DNA assembly 

techniques is of importance.  

 

1.6 Outline of the present work 

The work of this thesis focuses on two distinctive classes of natural products, corallopyronins 

and argyrins (Fig. 14). Both compounds exert prominent biological activities. Corallopyronins 

were identified as potent antibiotics active against multiple Gram-positive and a few Gram-

negative bacterial species. They recently showed strong potential for treatment of filariasis by 

targeting Wolbachia, endosymbiotic bacteria inside filarial nematodes. Agryrins were shown 

to possess antibacterial activity against several bacterial species including Pseudomonas sp.,   

opportunistic, Gram-negative pathogen. Furthermore, they exert immunomodulatory and 

anticancer activity. Argyrin F has already been evaluated as a preclinical candidate for 

anticancer therapy. Biosynthetic pathways for both compounds families were already 

identified and initial studies on biosynthesis were performed. In both cases the natural 

producer strains were not easily genetically amendable, which motivated the establishment of 

heterologous expression systems to facilitate structure and yield improvement approaches. 

 



20 | Introduction 
 

 
Figure 14. Structures of argyrin and corallopyronin compound families. 
 

The first part of the thesis focuses on the α-pyrone antibiotic COR, produced by a trans-AT 

hybrid PKS-NRPS system117. COR A was shown to target bacterial RNA polymerase (RNAP) 

at a novel binding site – the switch region118,119. The new binding site differs from the binding 

site of previously known RNAP inhibitors (e.g. rifamycins) and is thus expected to help 

overcome resistance issues of currently used clinical RNAP inhibitors120. COR A was recently 

also shown to deplete symbiotic endobacteria – Wolbachia from filarial nematodes121,39. It is 

therefore currently being investigated as the lead candidate for treatment of filariasis. The 

main goal of the COR project was to establish and optimize the production platform for COR 

in the heterologous host M. xanthus (see chapter 2). As the compound developed into a lead 

candidate for broad antifilarial treatment, the establishment of optimized production platform 

was of the highest priority as the wild type strain did not allow for significant production of 

the compound. Parallel studies on the structurally related α-pyrone antibiotic myxopyronin 

(MXN) led to the assembly of the corresponding BGC expression construct, which could be 

successfully employed to generate a hybrid mxn/cor heterologous expression system. The 

platform was successfully expressed in a derivative of M. xanthus DK1622 and led to a 

significant increase in production of COR A, compared to the native producer. To improve 

the COR A yield, achieved by the production system, several additional modifications were 

performed (see chapter 3). Exchange of promoter and replacement of the genome integration 

system led to further increase in production. To confirm the function of certain proteins in the 
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COR BGC and try to generate novel COR derivatives, several gene deletion experiments were 

performed (see chapter 3). The information gathered from the experiments helped redefine 

certain aspects of the COR biosynthesis and cultivation of the gene deletion mutants led to 

isolation of two novel COR analogues (see chapter 3). These studies also included evaluation 

of the myxobacterial α-pyrone antibiotic self-resisatnce, which provided data that hints 

towards a myxobacterial RNAP inhibitor specific self-resisatance mechanism. This finding 

might help improve self-resistance of the COR heterologous producer and lead to increased 

COR production yields.  

The second part of the thesis describes a macrocyclic octapeptide – argyrin, known for its 

interesting activity profile. It has recently been shown that elongation factor G (EF-G) is the 

cellular target for argyrin in P. aeruginosa
122,123. Upon binding to EF-G, argyrin prevents 

protein synthesis and inhibits bacterial growth. By mutagenesis studies and structural analysis 

it could be shown that argyrin binds to a target site of EF-G that clearly differs from the 

binding site of previously known inhibitor - fusidic acid122,123. Argyrins were also shown to 

inhibit the eukaryotic elongation factor G1 (EF-G1)123 and are described as proteasome 

inhibitors124, which makes them a promising candidate for the development of anticancer 

drugs. Besides their antibacterial and cytotoxic properties, argyrins also exhibit 

immunosuppressive activity and are currently studied as potent inhibitors of T - cell 

independent antibody formation125. The main focus of the argyrin project was to direct the 

biosynthesis towards production of specific argyrin derivatives, as different analogues exhibit 

a different activity profile and because the production strain typically generates a complex 

mixture of analogues (see chapter 4). To facilitate the production of different analogues we 

aimed at directing the argyrin production profiles via engineering the NRPS megasynthetase, 

targeting adenylation domains. As an alternative method for production of novel argyrin 

analogues, precursor directed biosynthesis was established. By employing a readily available 

technique, production of several tryptophan analogues was achieved and supplementation of 

heterologous producer cultures with those analogues led to production, isolation and structure 

elucidation of more than 14 new argyrin derivatives. Furthermore, studies of alternative 

promoter systems led to significant improvement in production of argyrins (see chapter 5). 
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2 Heterologous production of myxobacterial α-pyrone 

antibiotics in Myxococcus xanthus 

 

2.1 Abstract 

Myxopyronins (MXN) and corallopyronins (COR) are structurally related α-pyrone 

antibiotics from myxobacteria that represent a highly promising compound class for the 

development of broad-spectrum antibacterial therapeutic agents. Their ability to inhibit RNA 

polymerase through interaction with the “switch region”, a novel target, distant from 

previously characterized RNA polymerase inhibitors (e.g. rifampicin), makes them 

particularly promising candidates for further research. To improve compound supply for 

further investigation of MXN, COR and novel derivatives of these antibacterial agents, 

establishment of an efficient and versatile microbial production platform for myxobacterial α-

pyrone antibiotics is highly desirable. Here we describe design, construction and expression 

of a heterologous production and engineering platforms for MXN and COR to facilitate 

rational structure design and yield improvement approaches in the myxobacterial host strain 

Myxococcus xanthus DK1622. Optimization of the cultivation medium yielded significantly 

higher production titers of MXN A at around 41-fold increase and COR A at around 25-fold 

increase, compared to the standard CTT medium. 

 
2.2 Introduction 

Myxobacteria represent a prolific source of novel anti-infectives with unprecedented modes of 

action1–3. Prominent examples are myxopyronins (MXN) and corallopyronins (COR), 

structurally related α-pyrone antibiotics discovered from Myxococcus fulvus and 

Corallococcus coralloides strains, respectively4,5 (Fig. 1). They both inhibit the prokaryotic 

RNA polymerase (RNAP), which is highly conserved across the bacterial domain and a 

proven target for broad-spectrum antibacterial therapy6. Importantly, the binding site of MXN 

and COR – the RNAP ‘switch region’7,8 – is distant from targets of previously characterized 

RNAP inhibitors including rifamycins (Rif), which are currently used in clinics for treatment 

of Gram-negative and Gram-positive bacterial infections and represent first-line anti-

tuberculosis agents. The clinical utility of Rif is threatened by the rising development and 

spread of resistant strains that typically harbor RNAP mutations at or adjacent to the Rif 

binding site9. Due to their different RNAP target site MXN and COR do not exhibit cross-
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resistance with Rif, which makes them promising candidates for the development of novel 

broad-spectrum antibiotics10. Currently, MXN and analogs thereof are evaluated for treatment 

of Mycobacterium tuberculosis, Staphylococcus aureus and other infections with bacterial 

pathogens11–13, whereas COR is investigated for application in filariasis therapy as it was 

shown to specifically target and deplete obligate Wolbachia endobacteria from filarial 

nematodes14,15.  

 

 
Figure 1. Myxopyronin (mxn) and corallopyronin 
(cor) biosynthetic gene clusters and their products 
described from native producer strains. 
 

To improve compound supply for further exploitation of MXN, COR and novel derivatives 

thereof as antibacterial agents, establishment of an efficient and versatile microbial production 

platform for myxobacterial α-pyrone antibiotics is highly desirable. A synthetic route was 

established but requires more than 22 steps with an overall yield of less than 1%, suggesting 

that total synthesis is currently not a viable alternative for compound production16. Rational 

bioengineering efforts require insight into the biosynthesis, which was investigated for both 

compound families in the past years. The corresponding mxn and cor biosynthetic gene 

clusters (Fig. 2) were identified from the native producer strains M. fulvus Mxf5022 and 

C. coralloides B03531, respectively, and shown to encode multimodular polyketide synthase 
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(PKS) systems belonging to the growing class of trans-AT PKS17. A striking feature of MXN 

and COR biosynthesis is the assembly of two polyketide chains, designated as eastern and 

western chain, which are finally condensed by a pyrone-ring forming ketosynthase 

MxnB/CorB18,19. The chains are generated by two separate PKS assembly lines, which both 

depend on the acyltransferase (AT) and enoylreductase (ER) activity of the bifunctional 

MxnA/CorA provided in trans. As expected from the identical substructure, MXN and COR 

eastern chains are generated via the same biosynthetic route by homologous assembly lines. 

They consist of two PKS subunits (MxnI-J/CorI-J) and harbor a nonribosomal peptide 

synthetase (NRPS) module20 for incorporation of an amino acid building block (glycine). The 

terminal eastern chain carboxy moiety is modified by the O-methyltransferase MxnH/CorH21. 

In contrast to eastern chain assembly, MXN and COR western chain biosynthesis differs 

significantly due to additional PKS elongation cycles and modifications in the case of COR 

revealing a more bulky western part22. Whereas the COR western chain PKS system consists 

of two subunits (CorK-L), the Mxn PKS (MxnK) is much smaller. In both cases, different 

starter units can be employed (acetyl-CoA or proprionyl-CoA) resulting in the production of 

MXN A/B (1/2) or COR A/B (3/4)4,5 (Fig. 1). Western chain assembly includes ß-branching23, 

a typical feature of trans-AT PKS systems resulting in methyl group substituents. It is 

mediated by a set of five proteins (MxnC-MxnG/CorC-CorG) and occurs twice during COR 

biosynthesis. Additional modifying enzymes encoded by the cor gene cluster are responsible 

for double-bond isomerization (CorN) and hydroxylation (CorO). Deficiency of the latter 

modification catalyzed by a P450 enzyme results in the production of so-called 

‘precorallopyronins’, like preCOR A (5)24.  

 

 

 

Figure 2. Strategies for the generation of expression constructs for heterologous myxopyronin (A) and 
corallopyronin (B) production. 
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In the present study we aimed at establishing heterologous production and engineering 

platforms for MXN and COR to facilitate rational structure and yield improvement 

approaches, which turned out to be challenging with the native producers (see e.g.25). The 

myxobacterial model strain Myxococcus xanthus DK162226 was selected as heterologous host 

due to its close phylogenetic relationship to the native producers plus additional advantageous 

features. These include established genetic tools, growth in suspension, short doubling time (~ 

5 hours) compared to other myxobacteria as well as available fermentation know-how27. In 

addition, the strain is characterized as promising producer of natural products28 indicating the 

availability of common biosynthetic precursors, and two broad spectrum phosphopantetheinyl 

transferases were identified29, which are required for posttranslational activation of 

PKS/NRPS megasynthetases. Thus, M. xanthus DK1622 represents a promising host for 

heterologous expression of PKS/NRPS biosynthetic pathways, especially those from other 

myxobacteria, which is underpinned by successful examples from previous work27. To 

engineer biosynthetic gene clusters for heterologous MXN and COR production in M. xanthus 

different strategies were envisaged (Fig. 2). In case of MXN, we aimed at subcloning of mxn 

gene cluster fragments by plasmid recovery from chromosomal DNA of M. fulvus Mx f50 

mutants that can be generated via targeted integration of suicide vectors as established 

previously22. Employing recombination-based cloning technologies, like Red/ET 

recombineering30, the overlapping gene cluster fragments can be subsequently stitched to 

reconstitute the 53 kb mxn pathway on one expression vector (Fig. 2A). Regarding COR, the 

initial situation was different as methods for genetic manipulation of the native producer 

strain have not been established yet, but a cosmid library was available31. Based on this, we 

intended to reconstitute the downstream part of the cor gene cluster (corK-corO), which 

diverges from the mxn pathway as expressed by the different COR/MXN western chains22. 

Replacement of the corresponding mxn gene cluster region (mxnK-mxnM) with the corK-corO 

gene set should yield a 65 kb mxn/cor hybrid pathway for COR production (Fig. 2B). 

However, this depends on the effective interaction of the chimeric MXN/COR biosynthesis 

machinery, which we considered likely due to the close relationship of both pathways and the 

homology of the functionally equivalent mxnA-mxnJ and corA-corJ gene cluster regions22. 

Overall, the heterologous production platforms described here should facilitate access to 

MXN, COR and novel derivatives thereof to set the stage for further exploitation of 

myxobacterial α-pyrone antibiotics for therapeutic applications.  
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2.3 Material and methods 

2.3.1 Sequence analysis and mxn and cor gene cluster sequences 

Sequence analysis and routine in silico DNA work was performed using Geneious v8-v10 

software package (Biomatters Ltd.). The sequence of the myxopyronin biosynthetic gene 

cluster from Myxococcus fulvus Mx f5022 and the corallopyronin biosynthetic gene cluster 

from Corallococcus coralloides B03531 was retrieved from GenBank: KF356280 and 

HM071004. In addition to restriction analysis, integrity of the generated expression constructs 

pHSU-mxn43 (harboring the mxn gene cluster) and pDPO-mxn116 (harboring the mxn/cor 

hybrid gene cluster) as well as of the intermediate construct pHSU-mxn113b (harboring corK-

corO) was verified by sequencing. Using the Illumina paired-end technology on a MiSeq 

platform a 1806 fold (pHSU-mxn43), a 480-fold (pDPO-mxn116) and 722-fold (pHSU-

mxn113) mean sequencing coverage was achieved and no mutations within the gene cluster 

region were detected. 

 
2.3.2 Construction and engineering of plasmids 

Routine handling of nucleic acids, such as isolation of plasmid DNA, restriction endonuclease 

digestions, DNA ligations, and other DNA manipulations, was performed according to 

standard protocols32. E. coli HS996 (Invitrogen) was used as host for standard cloning 

experiments and E. coli SCS110 (Stratagene) for preparation of plasmid DNA free of Dam or 

Dcm methylation. E. coli strains were cultured in LB medium or on LB agar (1% tryptone, 

0.5% yeast extract, 0.5% NaCl, (1.5% agar)) at 30-37 °C (and 200 rpm) overnight. Antibiotics 

were used at the following final concentrations: 100 µg/mL ampicillin, 50 µg/mL kanamycin, 

5 µg/mL tetracycline, 20 µg/mL zeocin, 12.5 µg/mL chloramphenicol. Transformation of E. 

coli strains was achieved via electroporation in 0.1 cm-wide cuvettes at 1250 V, a resistance 

of 200 Ω, and a capacitance of 25 μF. Plasmid, cosmid and BAC DNA was either purified by 

standard alkaline lysis32 or by using the GeneJet Plasmid Miniprep Kit (Thermo Fisher 

Scientific) or the NucleoBond PC100 kit (Machery Nagel). Restriction endonucleases, 

alkaline phosphatase (FastAP) and T4 DNA ligase were obtained from Thermo Fisher 

Scientific. Oligonucleotides used for PCR and sequencing were obtained from Sigma-Aldrich 

and are listed in Table S1. PCR reactions were carried out in a peqSTAR 96 universal 

gradient thermocycler (Peqlab) or Mastercycler® pro (Eppendorf) using Phusion™ High-

Fidelity or Taq DNA polymerase (Thermo Fisher Scientific) according to the manufacturer’s 

protocol. For Taq: Initial denaturation (3 min, 95 °C); 30 cycles of denaturation (30 s, 95 °C), 
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annealing (30 s, 53 or 57 °C) and elongation (varied based on PCR product length 1 kb/min, 

72 °C); and final extension (10 min, 72 °C). For Phusion™: Initial denaturation (30 s, 98 °C); 

30 cycles of denaturation (20 s, 98 °C), annealing (25 s, 53 or 57 °C) and elongation (varied 

based on PCR product length 0.5 kb/min, 72 °C); and final extension (10 min, 72 °C). PCR 

products or DNA fragments from restriction digests were purified by agarose gel 

electrophoresis and isolated using the peqGold Gel Extraction (Peqlab). The PCR products 

were cloned into pJET1.2/blunt vector using the CloneJET PCR Cloning Kit (Thermo Fisher 

Scientific) or pCRII-TOPO vector using the TOPO TA Cloning Kit (Invitrogen) and 

sequenced using the primers pJET1.2For/pJET1.2Rev or M13For/M13Rev (Table S1). 

Red/ET recombineering experiments for plasmid modifications30 using the strains E. coli 

HS996/pSC101-BAD-gbaA-tet or E. coli GB05-red were performed according to the 

manufacturer’s protocol (Gene Bridges GmbH). After selection with suitable antibiotics, 

clones harboring correct recombination products were identified by plasmid isolation and 

restriction analysis with a set of different endonucleases. Details on the construction of all 

plasmids generated in this study are given in Table 1. 

 

Table 1. Genetic constructs generated in this study. 

Plasmid name Construction details Features 

pJet-Tn5-mxnA 1374 bp PTn5-mxnA’ (1191 bp from mxnA 5’ end) fragment 
amplified via overlap extension (OE) PCR using primers 
mxn33/mxn30 and subcloned into pJET1.2/blunt; templates 
used for OE PCR: PTn5 amplified from pCRII-TOPO 
(Invitrogen) using primers mxn33/41 and a part of mxnA’ 
amplified from M. fulvus Mx f50 genomic DNA using primers 
mxn42/mxn30 

PTn5-mxnA’,  

pMB1 ori, amp
R 

p15A-Tet-Zeo 2946 bp PvuI-zeo
R-PvuI fragment amplified from pCDNA-Zeo 

(Invitrogen) using primers mxn128/mxn129 and ligated into a 
p15A-Tet minimal vector backbone, which was amplified from 
pACYC18433 using primers mxn126/mxn127 and hydrolyzed 
with AvrII 

p15A ori, tet
R
, zeo

R 

pHSU-mxn16 1371 bp PacI-PTn5-mxnA’(1191 bp from mxnA 5’ end)-EcoRV 
fragment from pJet-Tn5-mxnA ligated into a p15A-Tet minimal 
vector backbone, which was amplified from pACYC184 33 
using primers  mxn52/53 and hydrolyzed with PacI/PvuII 

PTn5-mxnA’,  

p15A ori, tet
R 

pHSU-mxn19 

 

1491 bp EcoRV-mxnM plus flanking orf-NheI-NdeI-SspI-PacI 
fragment amplified from M. fulvus Mx f50 genomic DNA using 
primers mxn64/mxn65 and subcloned into pCRII-TOPO 
(Invitrogen)  

mxnM,  

pUC ori, kan
R
, amp

R 

pHSU-mxn26 Plasmid recovery of a 31.6 kb EcoRV-mxnJ’’(6.2 kb from mxnJ 

3’ end)-mxnKLM-pUCori-amp
R-kan

R-EcoRV fragment from 
chromosomal DNA of the mutant M. fulvus Mxf50::pHSU-
mxn16::pHSU-mxn19, which was  hydrolyzed with EcoRV and 
re-ligated  

mxnJ’’-mxnK-M, pUC 
ori, kan

R
, amp

R 
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pHSU-mxn27 Plasmid recovery of a 17.1 kb PacI-tet
R-p15Aori-PTn5-

mxnABCDEFGH-mxnI’(5.9 kb from mxnI 5’ end)-PvuI 
fragment from chromosomal DNA of the mutant M. fulvus 
Mxf50::pHSU-mxn16::pHSU-mxn19, which was hydrolyzed 
with PacI/PvuI and re-ligated  

PTn5-mxnA-H-mxnI’,      

p15A ori, tet
R 

pHSU-mxn31 

 

Red/ET recombineering between pHSU-mxn26 and a 979 bp 
AflII-cm

R-SpeI linear fragment amplified from pACYC18433 
using primers mxn122/mxn123  

mxnK-M,  

pUC ori, kan
R
, amp

R
,
 

cm
R 

pHSU-mxn32 1410 bp PvuI-mxnJ’’(1380 bp from mxnJ 3’ end)-SpeI-mxnK’ - 
AflII fragment amplified from M. fulvus Mx f50 genomic DNA 
using primers mxn124/mxn125 and ligated into p15A-Tet-Zeo 
hydrolyzed with PvuI/AflII  

mxnJ’’ 

p15A ori, tet
R
, zeo

R 

pHSU-mxn35 Plasmid recovery of a 20.3 kb PvuI-mxnI’’(5.8 kb from mxnI 3’ 
end)-mxnJ-zeo

R-tet
R-p15Aori-PvuI fragment from chromosomal 

DNA of the mutant M. fulvus Mxf50::pHSU-mxn32, which was 
hydrolyzed with PvuI and re-ligated  

mxnI’’-mxnJ,  

p15A ori, tet
R
, zeo

R 

pHSU-mxn37 949 bp PacI-kan
R
-PacI fragment amplified from pCRII-TOPO 

(Invitrogen) using primers mxn144/145 and subcloned into 
pJET1.2/blunt (ThermoFisher Scientific) 

pMB1 ori, amp
R
, kan

R 

pHSU-mxn38 1086 bp AflII-amp
R
-PacI fragment amplified from 

pJET1.2/blunt (ThermoFisher Scientific) using primers 
mxn147/mxn148 and subcloned into pJET1.2/blunt  

pMB1 ori, amp
R
, 

pHSU-mxn40 

 

1086 bp AflII-amp
R
-PacI fragment from pHSU-mxn38 ligated 

into pHSU-mxn35 hydrolyzed with AflII/PacI 
mxnI’’-J,  

p15A ori, tet
R
, amp

R 

pHSU-mxn41 Red/ET recombineering between pHSU-mxn27 and a 18.5 kb 
AvrII-mxnI’’(5.8 kb from mxnI 3’ end)-mxnJ- amp

R
-AvrII linear 

fragment obtained from AvrII hydrolysis of pHSU-mxn40 

PTn5-mxnA-J,  

p15A ori, tet
R
, amp

R 

pHSU-mxn42 21.5 kb SpeI-mxnKLM-PacI fragment derived from pHSU-
mxn31 ligated into pHSU-mxn41 hydrolyzed with SpeI/PacI 

PTn5-mxnA-M , p15A 
ori, tet

R 

pHSU-mxn43 949bp PacI-kan
R
-PacI fragment derived from pHSU-mxn37 

ligated into pHSU-mxn42 hydrolyzed with PacI 
PTn5-mxnA-M,  

p15A ori, tet
R
, kan

R 

pHSU-mxn51 Red/ET recombineering between cosmid BA5 and a 913 bp 
AflII-apra

R-AflII-PacI amplified from pKC113234 using primers 
mxn200/mxn201 

corK’’-corL-orf1-

corM-O, pUC ori, 
kan

R
, amp

R
, apra

R 

pHSU-mxn52 Red/ET recombineering between cosmid AM24 and a 923 bp 
NdeI-PmeI-apra

R-PmeI linear fragment amplified from 
pKC113234 using primers mxn202/mxn203 

corI’’-corJ-corK’’, 
pUC ori, kan

R
, amp

R
, 

apra
R 

pHSU-mxn53 Red/ET recombineering between pHSU-mxn52 and a 933 bp 
NdeI-cm

R-SpeI fragment amplified from pACYC18433 using 
primers mxn209/mxn210 

corK’,  

pUC ori, kan
R
, amp

R
, 

apra
R
, cm

R 

pHSU-mxn54 

 

Red/ET recombineering between pHSU-mxn51 and a 9.5 kb 
NdeI-cm

R-corK’(8.5 kb from corK 5’ end)-NdeI linear fragment 
obtained from NdeI hydrolysis of pHSU-mxn53 

corK-L-orf1-corM-O, 
pUC ori, kan

R
, amp

R
, 

apra
R
, cm

R 

pHSU-mxn56 pHSU-mxn54 hydrolyzed with AflII and re-ligated  

(to eliminate AflII-apra
R
-AflII cassette)  

corK-L-orf1-corM-O, 
pUC ori, kan

R
, amp

R
, 

cm
R 

pHSU-mxn113a Red/ET recombineering between pHSU-mxn56 and a 1401 bp 
PmeI-tet

R-AflII-PacI fragment amplified from pACYC18433 
using primers mxn330/mxn331 

corK-L-orf1-corM-O, 
pUC ori, kan

R
, amp

R
, 

cm
R
, tet

R 

pHSU-mxn113b  1401 bp PmeI-tet
R
-AflII-PacI fragment amplified from 

pACYC184 using primers Tet-for-AflII-PacI/Tet-rev-PmeI and 
ligated into pHSU-mxn113a hydrolyzed with PmeI/PacI 

corK-L-orf1-corM-O, 
pUC ori, kan

R
, amp

R
, 

cm
R
, tet

R 
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pBeloBac11-Kan Red/ET recombineering between pBeloBAC11 (NEB) and a 
1063 bp PacI-kan

R
-AvrII-SwaI linear fragment amplified from 

pCRII-TOPO using primers Kan-BeloBAC-for/Kan-BeloBAC-
rev (cm

R exchanged with kan
R)  

ori2, sopA, sopB, 
sopC, repE, kan

R, 

pDPO-mxn115 33.2 kb Bst1107I-PTn5-mxnABCDEFGHIJ-amp
R
-PacI fragment 

from pHSU-mxn41 ligated into pBeloBac11-Kan hydrolyzed 
with Bst1107I/PacI 

PTn5-mxnA-J, ori2, 
sopA, sopB, sopC, 
repE, kan

R, amp
R 

pDPO-mxn116 34.8 kb SpeI-corKL-orf1-corMNO-tet
R
-PacI fragment from 

pHSU-mxn113b ligated into pDPO-mxn115 hydrolyzed with 
SpeI/PacI 

PTn5-mxnA-J-corKL-

orf1-corM-O, ori2, 
sopA, sopB, sopC, 
repE, kan

R
, tet

R
 

 
2.3.3 Generation of M. fulvus Mx f50 mutant strains and subcloning of mxn gene cluster 

fragments 

According to a previously established electroporation procedure22  the native myxopyronin 

producer M. fulvus Mx f504 was transformed with the suicide plasmids pHSU-mxn16, pHSU-

mxn19 and pHSU-mxn32 (Table 1). M. fulvus Mx f50 wild type and mutants were cultivated 

at 30 °C in Casitone Yeast (CY) medium or on CY agar (0.3% casitone, 0.1% yeast extract, 

0.1% CaCl2 x 2 H2O, (1.5% agar)) supplemented with 0.5 mg/L vitamin B12 after autoclaving. 

For liquid cultures, the strains were grown in Erlenmeyer flasks on an orbital shaker at 180 

rpm for 3-5 days. Antibiotics for selection of M. fulvus mutants were used at the following 

final concentrations: 50 µg/mL kanamycin and/or 6.25 µg/mL oxytetracycline. Correct 

chromosomal integration of the suicide plasmids via homologous recombination was verified 

by PCR using genomic DNA of the transformants as template isolated with the Gentra 

Puregene Genomic DNA Purification Kit (Qiagen) according to the manufacturer’s protocol. 

For each suicide plasmid correct chromosomal integration was confirmed using two different 

primer combinations revealing PCR products of the expected sizes: pHSU-mxn16, primers 

mxn60/p15A-Tet1 (1342 bp) and mxn61/p15A-Tet2 (1473 bp); pHSU-mxn19, primers 

mxn94/pTOPO-out (1720 bp) and mxn95/pTOPO-in (1594 bp); pHSU-mxn32, primers 

mxn136/p15A-Tet1 (1992 bp) and p15A-Tet2/mxn137 (1527 bp); for primer sequences see 

Table S1. PCR reactions were performed according to the conditions described in chapter 2.2. 

using Taq polymerase. For plasmid recovery approaches, high molecular weight 

chromosomal DNA of the verified M. fulvus Mx f50::pHSU-mxn16::pHSU-mxn19 and 

M. fulvus Mx f50::pHSU-mxn32 mutants was isolated via the phenol chloroform isoamyl 

alcohol extraction method32 and hydrolyzed with suitable endonucleases (see Fig. 3). 

Subsequent re-ligation and transformation of E. coli HS996 with the ligation mixture revealed 

clones harboring the expected plasmids pHSU-mxn26, pHSU-mxn27 and pHSU-mxn35 
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(Table 1), which were verified by restriction analysis. The subcloned chromosomal fragments 

of these three plasmids cover the entire mxn biosynthetic gene cluster region (Fig. 3). 

 

 

 

Figure 3. Generation of an expression construct for the myxopyronin (mxn) biosynthetic gene cluster. 
A/B: Subcloning of three overlapping gene cluster fragments from the native producer M. fulvus Mx f50 via 
chromosomal integration of suicide plasmids and subsequent plasmid recovery. C: Reconstitution of the entire 
mxn gene cluster on a p15Aori-based expression vector.   
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2.3.4 Transfer and chromosomal integration of the expression constructs into the 

heterologous host  

According to a previously established electroporation procedure for Myxococcus xanthus 

DK162235 the host strain M. xanthus DK1622 ΔmchA-tet (Wenzel et al., unpublished) was 

transformed with the generated expression constructs pHSU-mxn43 and pDPO-mxn116. 

M. xanthus DK1622 ΔmchA-tet is a mutant in which the myxochromide A gene cluster has 

been deleted. Myxochromide A is one of the major compounds produced by M. xanthus 

DK1622, and its gene cluster deletion was expected to provide an increased precursor pool for 

production of other secondary metabolites. In brief, the myxochromide A gene cluster was 

completely deleted from M. xanthus DK1622 and replaced by a tetracycline resistance gene, 

which served as the target site for the chromosomal integration of both expression constructs. 

M. xanthus DK1622 mutants were routinely cultivated at 30 °C in CTT medium or an CTT 

agar (1% casitone, 10 mM Tris buffer pH 7.6, 1 mM KH2PO4 pH 7.6, 8 mM MgSO4 (1.5% 

agar) with final pH 7.6).  For liquid cultures, the strains were grown in Erlenmeyer flasks on 

an orbital shaker at 180 rpm for 3-6 days. For selection of M. xanthus mutants 50 µg/mL 

kanamycin was used. Correct chromosomal integration of the expression constructs via 

homologous recombination into the tet
R locus was verified by PCR. Genomic DNA of the 

pHSU-mxn43 transformants was isolated using the Gentra Puregene Yeast/Bact. Genomic 

DNA Purification Kit (Qiagen) and in case of the pDPO-mxn116 transformants cells were 

lysed by incubating at 95 °C for 20 minutes prior of being added to the PCR reaction (‘colony 

PCR’). For each expression construct correct chromosomal integration was confirmed using 

two different primer combinations revealing PCR products of the expected sizes: pHSU-

mxn43, primers P4/P2 (1635 bp) and P3/P1 (1609 bp); pDPO-mxn116, primers P4/P6 (1632 

bp) and P5/P1 (1519 bp)  (Fig. S1). In both cases, genomic DNA of M. xanthus DK1622 

ΔmchA-tet was used as negative control. A complementary experiment using primers P4/P1 

revealed a 1461 bp PCR product for M. xanthus DK1622 ΔmchA-tet, but not for the 

expression strains M. xanthus DK1622 ΔmchA-tet::pHSU-mxn43 and M. xanthus DK1622 

ΔmchA-tet::pDPO-mxn116. PCR reactions were performed according to the conditions 

described in chapter 2.2. using Taq polymerase; for primer sequences see Table S1. 
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2.3.5 Initial cultivation experiments with the heterologous expression strains in 

comparison to the native producers   

To evaluate the production titers of MXN and COR the heterologous producers (M. xanthus 

DK1622 ΔmchA-tet::pHSU-mxn43 and M. xanthus DK1622 ΔmchA-tet::pDPO-mxn116), 

host strain (M. xanthus DK1622 ΔmchA-tet) and native producers (M. fulvus Mx f504 and C. 

coralloides Cc c1275) were cultivated in parallel. Strains were inoculated from cryo stocks 

and grown on agar plates for several days until plates were mostly overgrown with cells. All 

of the cells were scraped from the plates to inoculate preculture medium (50 mL medium in 

300 mL Erlenmeyer flask), which was cultivated at 30 °C, 180 rpm for 48 h. 5 mL of well 

grown preculture was used to inoculate 50 mL production medium in which the strain was 

grown at the same conditions for 6 days. In case of M. xanthus DK1622 derivatives, CTT 

medium (see 2.3.4) amended with suitable antibiotics was used (50 µg/mL kanamycin for 

heterologous producers and 6 µg/mL oxytetracycline for the host strain), M. fulvus Mx f50 

was grown in the BTY medium (0.6% tryptone, 0.05% yeast extract, 0.2% MgSO4 x 7 H2O, 

0.04% CaCl2 x 2 H2O, with final pH 7.2)4 and C. coralloides Cc c127 in MD1/4 medium (0.6% 

tryptone, 0.2% soluble starch, 0.2% MgSO4 x 7 H2O, 0.04% CaCl2 x 2 H2O, with final 

pH 7.2)5. All cultivations were performed in triplicates at 30 °C and 180 rpm for 6 days. 

Cultures were centrifuged at 8000 rpm, 4 °C for 15 min to separate supernatant and cells. 

After addition of one aliquot (55 mL) MeOH to the supernatant and incubation in a culture 

flask on an orbital shaker (180 rpm) for 1 h, 2 mL of the supernatant/MeOH mixture was 

transferred to an Eppendorf tube and centrifuged at 15000 rpm, 4 °C for 15 minutes prior the 

LC-MS analysis. The cells were extracted separately by adding 50 mL MeOH to 50 mL 

falcon tube and rotating at the rotation wheel for 1 h.  After filtration the extract was 

evaporated and re-dissolved in 0.5 mL of MeOH prior to the LC-MS analysis. Quantification 

of production yields was performed as described in chapter 2.3.7, results are shown in Table 

S6 (MXN A) and Table S7 (COR A). 

 
2.3.6 Additional cultivation experiments with the heterologous expression strains in 

different production media  

After initial evaluation of M7s medium for MXN production (Table S2), the medium 

composition was optimized to develop M7/s6 medium (see SI). To analyze the effect on 

MXN and COR production in comparison to the CTT (standard medium for M. xanthus 

DK1622) and the native producer media (MD1/4 and BTY) parallel cultivation experiments 
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were performed and production yields were quantified (Table 2). The strains were inoculated 

from glycerol stocks and grown for several days on CTT agar plates supplemented with 

50 µg/mL kanamycin, until plates were mostly covered with cell mass. All of the cells were 

scraped from the plates to inoculate preculture media; M7/s4 (0.5% soy flour, 0.5% corn 

starch, 0.2% glucose, 0.1% yeast extract, 0.1% MgSO4 x 7 H2O, 0.1 % CaCl2 x 2 H2O, 1% 

HEPES, with final pH 7.4 and supplemented with 0.1 mg/L of vitamin B12 and 5 mg/L of 

FeCl3 after autoclaving), CTT (see 2.3.4), BTY and MD1/4 (see 2.3.5) supplemented with 

50 µg/mL kanamycin (50 mL medium in 300 mL Erlenmeyer flask). Precultures were 

cultivated at 30 °C, 180 rpm for 48 h. Five mL of well grown preculture was used to inoculate 

50 mL production medium supplemented with 50 µg/mL kanamycin in which strain was 

grown at the same conditions for 6 days. M7/s6 (0.5% soy flour, 0.5% corn starch, 0.2% 

glucose, 0.1% yeast extract, 1% potassium acetate, 0.1% MgSO4 x 7 H2O, 0.1% CaCl2 x 2 

H2O, 1% HEPES, with final pH 7.4 and supplemented with 0.1 mg/L of vitamin B12 and 5 

mg/L of FeCl3 after autoclaving)) was used as production medium for M7/s4 preculture and 

for other precultures the same medium as for the preculture was used for production. All 

cultivations were done in triplicates. After 6 days of cultivation at 30 °C and 180 rpm, 

cultures were extracted by addition of 55 mL of MeOH directly to the culture flask which was 

then incubated at 180 rpm for 1 h on orbital shaker. Two mL of the culture broth/MeOH 

mixture was centrifuged in 2 mL Eppendorf tubes at 15000 rpm at 4 °C for 15 min. The 

supernatant was subjected to LC-MS analysis to determine MXN A and COR A production 

yields. 

 

Table 2. MXN A and COR A production yields achieved with the 
heterologous expression strains in different media after 6 days of 
cultivation. 

 

 

a 
M. xanthus DK1622 ΔmchA-tet::pHSU-mxn43 

b M. xanthus DK1622 ΔmchA-tet::pDPO-mxn116 

c BTY medium for MXN A; MD1/4 medium for COR A 

 

 

Medium MXN A  [mg/L]a COR A [mg/L]b 

CTT 3.79 ± 0.09 1.48 ± 0.14 

Native producer medium c 3.03 ± 0.11  0.98 ± 0.09   

M7/s6 156 ± 12 37 ± 4 
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2.3.7 Analysis of myxopyronin and corallopyronin production by HPLC-MS  

All measurements were performed on a Dionex Ultimate 3000 RSLC system using a BEH 

C18, 100 x 2.1 mm, 1.7 µm dp column equipped with a C18 precolumn (Waters, Germany). 

Separation of a 1 µL sample was achieved by a linear gradient from (A) H2O + 0.1% FA to (B) 

ACN + 0.1% FA at a flow rate of 600 µL/min and 45 °C. The gradient was initiated by a 0.5 

min isocratic step at 5% B, followed by an increase to 50% B in 1 min, to 65% B in 6 min and 

to 98% B in 0.5 min. After a 1 min step at 98% B the system was re-equilibrated to the initial 

conditions (5% B). UV spectra were recorded by a DAD in the range from 200 to 600 nm. For 

MS measurements on solariX XR (7T) FT-ICR mass spectrometer (Bruker Daltonics, 

Germany), the LC flow was split to 75 µL/min before entering the mass spectrometer using 

the Apollo ESI source. In the source region, the temperature was set to 200 °C, the capillary 

voltage was 4500 V, the dry-gas flow was 4.0 L/min and the nebulizer was set to 1.1 bar. 

After the generated ions passed the quadrupole with a low cutoff at 150 m/z they were trapped 

in the collision cell for 80 ms and finally transferred within 0.9 ms through the hexapole into 

the ICR cell. Captured ions were excited by applying a frequency sweep from 150 to 950 m/z 

and detected in broadband mode by acquiring a 184 ms transient. For quantification of MXN 

A the peak area of [M+H]+ 418.2225 m/z at 5.60 min was integrated and compared to a 

calibration curve obtained from serial dilutions of authentic MXN A reference material 

covering the concentration range from 0.5 - 100 µg/mL (generated from 1 mg/L stock 

solution in acetonitrile). For quantification of COR A the peak area of [M+H-H2O]+ 510.2850 

m/z at 5.83 min was integrated and compared to a calibration curve obtained from serial 

dilutions of authentic COR A reference material covering the concentration range from 0.5-

100 µg/mL (generated from 1 mg/L stock solution in acetonitrile). 

 
2.4 Results and discussion 

As illustrated in Fig. 2 different strategies were pursued to generate expression constructs for 

the heterologous production of myxobacterial α-pyrone antibiotics in M. xanthus. We first 

aimed to achieve successful heterologous expression of the myxopyronin biosynthetic 

pathway (see 2.4.1-2.4.3) prior to developing an expression system based on a hybrid gene 

cluster for corallopyronin production (see 2.4.4-2.4.6). After establishment and analysis of 

heterologous production under standard cultivation conditions, different media were evaluated 

to improve myxopyronin and corallopyronin yields (see 2.4.7). 
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2.4.1 Subcloning of mxn gene cluster fragments from M. fulvus Mx f50 

Based on a previously established directed mutagenesis procedure for the myxopyronin 

producer M. fulvus Mx f5022 mutant strains were generated allowing for subcloning the mxn 

biosynthetic gene cluster (or fragments thereof) via plasmid recovery from chromosomal 

DNA. In our initial approach we aimed to capture the entire pathway in one step based on 

unique restriction sites (R-sites) introduced upstream and downstream of the mxn gene cluster. 

For this purpose, two suicide vectors with compatible selection markers, pHSU-mxn16 (tet
R) 

and pHSU-mxn19 (kan
R), were constructed. The pACYC184 derivative pHSU-mxn16 

harbors a 1.2 kb fragment homologous to the 5’ end of the mxnA gene (Fig. 3A). This 

fragment was fused with the 5’-untranslated region and PnptII promoter sequence from the 

Tn5 kan
R resistance gene in order to replace the native transcriptional/translational initiation 

region of mxnA after chromosomal integration. In addition, a unique PacI site was introduced 

downstream of the mxnA homology region to enable plasmid recovery approaches. 

Transformation of M. fulvus Mx f50 with this suicide vector yielded mutant M. fulvus Mx 

f50::pHSU-mxn16. For genetic modification at the 3’ end of the mxn gene cluster a 1.5 kb 

chromosomal fragment of M. fulvus Mx f50 including the mxnM gene plus downstream 

region was amplified and subcloned into pCRII-TOPO revealing pHSU-mxn19 (Fig. 3A). The 

homologous fragment was flanked with EcoRV and PacI R-sites to enable different plasmid 

recovery approaches after single cross over into M. fulvus Mx f50::pHSU-mxn16. The 

chromosome of the resulting mutant strain M. fulvus Mx f50::pHSU-mxn16::pHSU-mxn19 

harbors two plasmid backbones integrated upstream and downstream of the 53 kb mxn gene 

cluster. Correct integration of both plasmids was verified via PCR analyses. Next, we aimed 

to recover the entire pathway together with the flanking p15Aori-tet
R fragment in one step via 

PacI hydrolysis and re-ligation. However, as the expected plasmid could not be obtained 

(probably due to the large size of the target fragment) the strategy was adapted for subcloning 

of three overlapping gene cluster fragments. Based on chromosomal DNA from the M. fulvus 

Mx f50::pHSU-mxn16::pHSU-mxn19 mutant two separate plasmid recovery approaches 

were performed (Fig. 3A). Hydrolysis with PacI/PvuI (generating compatible cohesive ends) 

allowed for subcloning a 17.1 kb mxnA-mxnI’ fragment revealing pHSU-mxn27, whereas a 

31.6 kb mxnJ’’-mxnM fragment was acquired via EcoRV hydrolysis and re-ligation yielding 

pHSU-mxn26. In order to access the missing genetic information from mxnI-mxnJ another 

suicide plasmid, pHSU-mxn32, was constructed. It harbors a 1.4 kb 3’end fragment of mxnJ 

including a SpeI R-site after the stop codon for later gene cluster reconstitution approaches 

and a PvuI R-site upstream of the homology region for the planned plasmid recovery 
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approach (Fig. 3B). In addition two homology regions, HL and HR (each 40 nt in size and 

flanked with an AvrII R-site), were engineered during construction of pHSU-mxn32 to enable 

later Red/ET recombineering for mxnA-mxnJ stitching (Fig. 3C). Transformation of M. fulvus 

Mx f50 yielded the mutant strain M. fulvus Mx f50::pHSU-mxn32, which was verified by 

PCR analysis. Hydrolysis with PvuI and re-ligation yielded pHSU-mxn35 harboring a 20.3 kb 

mxnI’’-mxnJ fragment. Subsequent exchange of the zeo
R selection marker with the ampicillin 

resistance gene (amp
R) via the unique AflII and PacI R-sites revealed pHSU-mxn40 (Fig. 3B). 

All constructs obtained from the plasmid recovery approaches were verified by restriction 

analysis.                  

 
2.4.2 Construction of a mxn gene cluster expression vector 

Based on the three plasmids harbouring fragments of the mxn gene cluster (pHSU-mxn26, 

pHSU-mxn27 and pHSU-mxn40) we aimed to reconstitute the entire biosynthetic pathway on 

one expression construct. The overall cloning strategy involves a combination of Red/ET 

recombineering 30 and conventional restriction and ligation methods (Fig. 3C). In order to join 

the mxnA-mxnJ gene cluster region, the 18.5 kb mxnI”-mxnJ fragment from pHSU-mxn40 

was prepared via AvrII hydrolysis and subsequent gel-purification. The Red/ET proficient 

strain E. coli GB05-red harbouring plasmid pHSU-mxn27 was transformed with the linear 

gene cluster fragment, which is flanked by 40 nt homology arms for recombination that were 

already engineered during construction of the suicide plasmid pHSU-mxn32. Selection on 

ampicillin and tetracycline revealed clones propagating the expected recombination product 

pHSU-mxn41. In parallel, pHSU-mxn26 harbouring the downstream part of the gene cluster 

was modified by Red/ET recombineering to introduce a SpeI site at the 5’ end of mxnK. The 

Red/ET proficient strain E. coli HS996/pSC101-BAD-gbaA-tet harboring plasmid pHSU-

mxn26 was transformed with a linear fragment containing the chloramphenicol resistance 

gene (cm
R), which is flanked by 40 nt homology arms introduced via PCR. Clones growing on 

chloramphenicol and kanamycin were shown to harbor the expected recombination product 

pHSU-mxn31. Insertion of the 21 kb mxnKLM fragment from pHSU-mxn31 into pHSU-

mxn41 can be accomplished via different strategies: ligation of the AflII-cm
R
-SpeI-mxnKLM-

PacI fragment including the chloramphenicol resistance cassette, which can be subsequently 

released via SpeI hydrolysis and re-ligation, or direct ligation of the mxnKLM target fragment 

via SpeI/PacI without the additional cm
R selection option (Fig. 3C). We first pursued the latter, 

one-step approach, and were indeed able to reconstitute the entire mxn gene cluster on a low 

copy vector (p15Aori). The resulting plasmid, pHSU-mxn42, was further modified by 
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insertion of a kan
R gene via a unique PacI R-site. The resistance cassette was obtained from 

pHSU-mxn37, a pJET1.2 derivative harbouring the amplified kan
R gene from the pCRII-

TOPO vector. The generated expression construct pHSU-mxn43 features the entire 53 kb mxn 

gene cluster under control of the constitutive PnptII promoter, a suitable selection marker 

(kan
R) as well as a homology fragment (tet

R) for directed chromosomal integration into the 

heterologous host M. xanthus DK1622 ΔmchA-tet. The unique SpeI site engineered at the 

mxnJ/mxnK interface is not only employed for mxn gene cluster stitching, but also represents 

an important feature for the construction of a mxn/cor hybrid gene cluster (see 2.4.5). In 

addition to restriction analysis, the expression plasmid pHSU-mxn43 was verified via 

Illumina sequencing to exclude potential mutations that might have occurred during the 

cloning procedure, especially within the PnptII promoter and gene cluster region. 

   

2.4.3 Heterologous myxopyronin production in M. xanthus  

The generated mxn gene cluster expression construct pHSU-mxn43 (57 kb) was transferred to 

M. xanthus DK1622 ΔmchA-tet by electroporation. Clones growing on selection plates 

amended with kanamycin were analyzed for correct chromosomal integration of the 

expression plasmid by PCR (Fig. S1). After genotypic verification, the M. xanthus DK1622 

ΔmchA-tet::pHSU-mxn43 mutant and M. xanthus DK1622 ΔmchA-tet were cultivated under 

standard conditions in CTT medium at 30 °C for 6 days. The cultures were harvested by 

centrifugation to analyze the cell pellet and supernatant metabolite profiles separately for the 

presence of myxopyronins (MXN). As expected, LC-MS analysis revealed no MXN 

production in case of M. xanthus DK1622 ΔmchA-tet (data not shown). In extracts from the 

mutant strain M. xanthus DK1622 ΔmchA-tet::pHSU-mxn43 production of MXN could be 

indeed confirmed, proving the successful and functional expression of the heterologous mxn 

gene cluster (Fig. S4). The majority of MXN was detected in the supernatant fraction 

indicating that the product is efficiently secreted into the medium (Table S6). The same was 

observed for the native producer M. fulvus Mx f504, which was re-cultivated and analyzed in 

our study. In both cases, the heterologous and native producer, comparable MXN production 

yields of around 3-10 mg/L were achieved under the applied cultivation conditions. In the 

heterologous producer MXN A was the dominating myxopyronin derivative, whereas MXN B 

was produced in significantly lower amounts (Fig. 4). The latter originates from incorporation 

of a propionyl-CoA instead of an acetyl-CoA starter unit in western chain biosynthesis22. In 

case of M. fulvus Mx f50 slightly more MXN B than MXN A was detected in the performed 
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cultivation experiment, although in previous studies MXN A was found to be the major 

derivative4,22. 

 
 

 

 

                   

 

 

 

 

 

 

 

 

Figure 4. Comparative myxopyronin production analysis in the heterologous and 
native producer. HPLC-MS analysis of the supernatant showing extracted ion 
chromatograms (EIC) [M + H]+ = 418.222 (1); [M + H]+ = 432.238 (2). 
 

2.4.4 Reconstitution of the corK-O gene cluster part from cosmids  

After establishment of heterologous MXN production we aimed to develop the expression 

system for biosynthesis of the related corallopyronin (COR). The structural differences in the 

western chain are caused by the polyketide synthases CorK and CorL as well as the enoyl 

CoA hydratase CorN and the cytochrome P450 CorO, homologues of which do not exist in 

the mxn biosynthetic pathway (Fig. 2). In order to reconstitute the corK-corO gene set we 

started from two cosmids that were previously used to clone the downstream part of the cor 

gene cluster sequence31. The overall strategy is illustrated in Fig. 5 and first involved the 

insertion of an apramycin resistance gene (apra
R) at the 3’ends of the cor gene cluster 

fragments from cosmids AM24 and BA5 to introduce R-sites for subsequent cloning 

approaches and to delete part of the chimeric cosmid inserts. The Red/ET-proficient strains 

E. coli GB05-red/cosmid AM24 and E. coli GB05-red/cosmid BA5 were transformed with 

apra
R fragments flanked by suitable R-sites and homology arms (40 nt) generated via PCR. 

Selection on apramycin revealed clones harboring the expected recombination products, 

pHSU-mxn52 and pHSU-mxn51, respectively. A second Red/ET recombineering step using 

E. coli GB05-red/pHSU-mxn52 was performed to insert a cm
R gene upstream of corK thereby 

eliminating a large part of the cosmid insert including corI”-corJ. In addition to the homology 

regions for the immediate recombination event, the resistance cassette was flanked by an 
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additional homology arm plus NdeI R-site required for the subsequent Red/ET recombination 

step as well as a SpeI R-site, which was introduced at the 5’ end of corK. Selection using 

chloramphenicol revealed the recombinant product pHSU-mxn53, which was next hydrolyzed 

with NdeI. The obtained 9.5 kb cm
R
-SpeI-corK’ linear fragment is flanked by a 40 nt 

homologous region to the T7 end of the cosmid vector backbone and shares  577 bp overlap 

with the corK region from pHSU-mxn51. Red/ET recombineering with E. coli GB05-

red/pHSU-mxn51 and subsequent selection on chloramphenicol revealed construct pHSU-

mxn54 harboring the entire corK-corO gene cluster region. As initial attempts to stitch the cor 

gene cluster fragment with the mxn part from pHSU-mxn41 failed for unknown reasons, 

alternative cloning strategies were evaluated including various vector backbone engineering 

steps. One of the generated constructs, pHSU-mxn113b, was finally used for construction of 

the mxn/cor hybrid gene cluster (Fig. 5). It was obtained from pHSU-mxn54 via three cloning 

steps, even though a more straightforward engineering route would have been possible 

retrospectively. In the first step, the apra
R gene was eliminated by AflII hydrolysis and re-

ligation yielding pHSU-mxn56. Next, Red/ET recombination using E. coli GB05-red/pHSU-

mxn56 and a linear tet
R fragment flanked by suitable homology arms and R-sites was 

performed. Selection on tetracycline and kanamycin revealed the recombinant product pHSU-

mxn113a, which was modified by ligation of a PmeI-tet
R
-AflII-PacI fragment with reverse 

tet
R orientation. The opposite arrangement of tet

R is preferred as it allows for chromosomal 

integration of the final expression construct in the same direction as achieved for the mxn 

expression construct pHSU-mxn43 (Fig. S1). The obtained construct, pHSU-mxn113b, was 

verified via Illumina sequencing before pursuing the final cluster stitching step.    



Heterologous production of myxobacterial α-pyrone antibiotics in Myxococcus xanthus | 51 
 

 

Figure 5. Generation of an expression construct for a myxopyronin/corallopyronin (mxn/cor) hybrid biosynthetic 
gene cluster. A: Reconstitution and engineering of a corK-corO gene cluster fragment based on a cosmid library 
from the native producer C. coralloides B035 (cosmid inserts are chimeric as indicated by ‘cf boxes’). 
B: Engineering of a BAC derivative harboring the mxnA-mxnJ gene cluster fragment. C: Reconstitution of the 
mxn/cor hybrid gene cluster on a BAC-based expression vector.    
 

2.4.5 Construction of a mxn/cor hybrid gene cluster expression vector 

As previous attempts to reconstitute the 65 kb mxn/cor hybrid pathway by stitching the 

mxnA-mxnJ with the corK-corO gene cluster part on a p15Aori based vector backbone failed, 

we aimed to perform the final ligation step based on a single-copy bacterial artificial 

chromosome (BAC) vector. In order to achieve the intended vector backbone exchange of 

plasmid pHSU-mxn41, which harbors the upstream part of the mxn gene cluster (mxnA-mxnJ), 
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the commercial pBeloBAC11 vector was modified via Red/ET recombineering (Fig. 5B). For 

this, the Red/ET proficient strain E. coli GB05-red/pBeloBAC11 was transformed with a kan
R 

gene fragment flanked by unique R-sites and suitable 45 nt homology arms to replace the 

pBeloBAC cm
R gene. Subsequent selection on kanamycin revealed pBeloBAC-Kan as 

recombinant product. Making use of unique Bst1107I and PacI R-sites the p15Aori-tet
R 

fragment from pHSU-mxn41 was replaced with the linearized pBeloBAC11-Kan vector 

yielding the BAC derivative pDPO-mxn115, which harbors the upstream part of the mxn gene 

cluster (mxnA-mxnJ) that is homologous to corA-corJ. In analogy to the final mxn gene cluster 

stitching step (Fig. 3) the downstream part of the cor pathway was ligated via SpeI and PacI 

R-sites to replace the amp
R gene in pDPO-mxn115. The respective 34.8 kb corK-corO 

fragment including a tet
R gene was obtained from pHSU-mxn113b after SpeI/PacI hydrolysis. 

The resulting expression construct pDPO-mxn116 harbors the entire 65 kb mxn/cor hybrid 

pathway (mxnA-mxnJ, corK-corO) under control of the PnptII promoter and features the 

required genetic elements for selection and directed chromosomal integration into the 

expression host (kan
R and tet

R
; Fig. 5C). The orientation of the tet

R gene allows for 

implementation of the hybrid gene cluster into the former mchA locus in the same direction as 

achieved for the pure mxn pathway based on expression construct pHSU-mxn43. To exclude 

potential mutations from the cloning procedure, the expression construct pDPO-mxn116 was 

verified via Illumina sequencing before transfer into the host. 

             

2.4.6 Heterologous corallopyronin production in M. xanthus  

The generated mxn/cor hybrid gene cluster expression construct pDPO-mxn116 (74 kb) was 

transferred to M. xanthus DK1622 ΔmchA-tet by electroporation. Only very few clones 

growing on selection plates amended with kanamycin were obtained, probably due to the 

large construct size. After PCR verification of chromosomal integration via the tet
R gene (Fig. 

S1), the M. xanthus DK1622 ΔmchA-tet::pDPO-mxn116 mutant and M. xanthus DK1622 

ΔmchA-tet were cultivated under standard conditions in CTT medium at 30 °C for 6 days. The 

cultures were harvested and extracted in the same way as described for MXN production 

analysis. As expected, LC-MS analysis revealed no COR production in the case of M. xanthus 

DK1622 ΔmchA-tet (data not shown). With M. xanthus DK1622 ΔmchA-tet::pDPO-mxn116 

production of COR was indeed confirmed (Fig. S5). The yield was similar to the ones (1-1.5 

mg/L COR) obtained with the native producer C. coralloides Cc c1275, which was re-

cultivated in parallel. In both cases, COR A represents the main derivative besides low 

amounts of COR B (Fig. 6). The majority of COR was detected in the supernatant fraction 
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(Table S7) indicating that the product is efficiently secreted into the medium as also observed 

for MXN (cf. 2.4.3). The heterologous COR production achieved with M. xanthus DK1622 

ΔmchA-tet::pDPO-mxn116 demonstrates the successful interplay of the expressed 

MXN/COR hybrid enzymatic machinery. Whereas the COR eastern chain is exclusively 

synthesized by MXN proteins (MxnI-J interacting with MxnA), western chain biosynthesis 

involves several hybrid interactions of MXN proteins with the CorK/CorL assembly line. 

These include extender unit loading/reduction by MxnA, two ß-branching events mediated by 

MxnC-G and the final interaction with the α-pyrone forming enzyme MxnB, which is able to 

perform the condensation reaction using the structurally more complex COR western chain.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparative corallopyronin production analysis in the heterologous and 
native producer. HPLC-MS analysis of the supernatant showing extracted ion 
chromatograms (EIC) [M + Na]+ = 550.278, [M – H2O + H]+ = 510.285 (3); [M + 
Na]+ = 564.293, [M – H2O + H]+ = 524.301 (4) 

 
2.4.7 Improvement of myxopyronin/corallopyronin production yields  

In parallel to our efforts towards establishing a COR pathway expression system, we aimed at 

optimizing cultivation conditions for heterologous MXN production. One important 

parameter, when it comes to production yield improvement, is the composition of the 

production medium. In addition to CTT, our standard medium for M. xanthus DK1622 

experiments, the heterologous MXN producer was cultivated in M7s medium, which led to 

promising results in a previous heterologous expression study (Wenzel and Müller, 

unpublished). As MXN production in M7s was more than two-fold higher compared to CTT 

(Table S2), M7s medium was used as basis for further optimization approaches (see SI). 

Numerous variations with different carbon sources were analyzed after scaling down the 
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cultivation setup to 7 mL allowing for a higher throughput (Table S3-S5). The best yields 

were achieved with supplements of potassium acetate or different oils (soy oil, vegetable oil, 

methyl oleate). The latter was already observed for epothilone production36, but it might 

hamper downstream purification processes. Based on the obtained results M7/s6 medium was 

developed, which additionally contains 10 g/L potassium acetate and 5 g/L corn starch instead 

of the more expensive soluble starch. Compared to CTT medium the nutrition content in the 

complex M7/s6 medium is much higher, which allows for reaching increased biomass levels. 

In order to evaluate the optimized production medium in our standard 50 mL scale shake flask 

cultivation scenario, the heterologous MXN and COR producer (which was in the meantime 

available) were grown in M7/s6, CTT and the production medium of their native producer 

strains. Analysis of α-pyrone antibiotic production revealed for both expression systems 

significant higher yields in M7/s6 compared to the two other media, 156 mg/L MXN A and 

37 mg/L COR A (Table 2). One obvious reason for the lower COR A production yield 

compared to MXN A is inefficient COR western chain hydroxylation resulting in the 

accumulation of significant amounts of preCOR A (Figure S2; the exact yield was not 

quantified due to the lack of pure reference material). This bottleneck is probably caused by 

low expression levels or low activity of the cytochrome P450 enzyme CorO, which is encoded 

as last gene of the 65 kb mxn/cor operon and requires a so far unknown reduction partner that 

has to be provided by the expression strain. However, considering the by-product preCOR A, 

the overall COR production yield seems to be lower, compared to the MXN expression 

system, which might be related to the nature of the hybrid pathway and/or to COR 

biosynthesis in general. Probably, the genetic design of the mxnJ-corK hybrid interface has a 

negative impact on CorK expression/function as the translational initiation region is different 

(3’end of mxnJ instead of corJ) and a SpeI R-site was engineered at the 5’end of corK (which 

seems to be well tolerated in case of MxnK; Figure S6). It is also possible that COR western 

chain biosynthesis, performed by the two-subunit CorK-L assembly line, is in general less 

efficient compared to MxnK and/or that the interplay between the chimeric MXN/COR 

biosynthesis machinery (cp. 2.4.6) is not as proficient as in the native systems. However, 

compared to previously reported heterologous expression studies using M. xanthus as host 

(Table S8), very promising production yields for MXN and COR were already achieved with 

the developed M7/s6 medium, which might enable yield improvement in other cases as well.  
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2.5 Conclusions 

In this study, mxn and hybrid mxn/cor biosynthetic gene clusters were successfully 

constructed and expressed in a derivative of M. xanthus DK1622. Optimization of the 

cultivation medium yielded high production titers of MXN A (156 mg/L) and COR A (37 

mg/L plus significant amounts of preCOR A) in shake flask experiments. The applied 

cultivation conditions might be useful for other heterologous expression studies in M. xanthus 

as well, which represents the most promising host for myxobacterial biosynthetic pathways so 

far. The observed hydroxylation bottleneck in the COR expression system might be addressed 

by overexpression of the corresponding P450 enzyme CorO to efficiently direct production 

towards COR A. Alternatively, corO can be deleted from the gene cluster to produce preCOR 

A as major product, which was also shown to represent a promising compound for further 

development. This derivative is hardly accessible from the native producer since it is a minor 

product and genetic manipulation of C. coralloides B035 has yet to be established. Overall, 

the developed heterologous expression systems set the stage for future bioengineering 

approaches to further exploit this promising class of myxobacterial α-pyrone antibiotics, e.g. 

including the generation of novel analogs with improved pharmaceutical properties. 
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2.7 Supplementary information 

2.7.1 Evaluation and optimization of M7s medium for myxopyronin production 

A comparative production experiment between M7s and CTT media (Table S2) was 

performed, to evaluate the potential of M7s medium for myxopyronin production. Frozen 

glycerol culture of M. xanthus DK1622 ΔmchA-tet::pHSU-mxn43 was scraped from a cryo 

vial and mixed with 200 µL of CTT medium in an Eppendorf tube. Five drops were then 

spotted on CTT agar plates supplemented with kanamycin 50 µg/mL which were incubated at 

30 °C for several days, until most of the agar surface was covered with cells. All of the cells 

were scraped from the plate and inoculated into the CTT seed medium supplemented with 

kanamycin 50 µg/mL and incubated for 48 h in Erlenmeyer flasks. Grown seed culture was 

used (10 %) to inoculate 50 mL of M7s production medium supplemented with kanamycin 50 

µg/mL in Erlenmeyer flasks and production stage culture was incubated for 96 hours. After 

cultivation, the culture was mixed with the same amount of methanol, shaken vigorously, 

centrifuged and supernatant was subjected to the HPLC analysis to perform a relative 

quantification of MXN (MXN A and MXN B) production in the different media. The results 

showed around two fold increase of production in M7s medium compared to CTT (Table S2). 

Carbon source evaluation for M7s medium was performed in falcon tubes, using a down 

scaled volume of 7 mL, to achieve higher throughput. The seed culture was inoculated in an 

Erlenmeyer flask as already mentioned above and 10 % was again used to inoculate 

production cultures in falcon tubes. The cultures were extracted and analysed in the same way 

as already mentioned. The best carbon sources turned out to be potassium acetate and certain 

oils (Tables S3 – S5). Addition of potassium acetate to the M7s medium and replacement of 
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soluble starch with a corn starch as a cheaper alternative, led to the development of M7/s6 

medium which was used for comparative production with CTT and native producer media 

(Table 2 and Table S8). Media components were purchased from the following suppliers: 

Bacto casitone (DB Biosciences), soy flour (Sojaprotein), soluble starch, maltose and fructose 

(Merck), glucose (Roquette), lactose (Fluka), sucrose (Gram Mol), dextrin and corn starch 

(Helios), MgSO4 x 7 H2O and HEPES (Glentham life science), yeast extract, CaCl2 x 2 H2O, 

vitamin B12, methyl oleate, K-acetate, vinyl propionate and FeCl3 (Sigma Aldrich), n-

propanol (J.T.Baker),  skim milk (Oxoid), soy oil and vegetable oil (Zvezda). 

 

Table S1. List of primers used in this study 

Primer 
name 

Sequence (5’3’) 
(restriction sites in bold, homology arms underlined) Restriction sites     

mxn30 TGCTTAATTAATATTCATATGGCTAGCGAGCTCCTGGAT
GGCCTT 

PacI fused with 
SspI, EcoRV, NheI 

mxn33 CAGGTAGATATCTGGACAGCAAGCGAACC EcoRV 

mxn41 AATCTGTACCTCCTTATCCTGTCTCTTGATCAGAT  

mxn42 CAAGATCTGATCAAGAGACAGGATAAGGAGGTACAGATT
ATGACTTTCACCGTCGTT 

 

mxn52 GATACACAGCTGTCCCTCCTGTTCAGCTAC PvuII 

mxn53 ATCTTAATTAAGGACGCGATGGATATGTT PacI 

mxn60 TGCCATGAGCAGACAGTTA  

mxn61 CGGGTGGTTGATATCGTG  

mxn64 GCTGAGACGGTCTTCCTC  

mxn65 TGCTTAATTAATATT CATATG 
GCTAGCACGCGATTCACTGTCTCA 

PacI fused with 
SspI, EcoRV, NheI 

mxn94 TCACGGCGAAGCACATCC  

mxn95 AGGAGGCAGGGTCCGAAT  

mxn122 CCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGAT
CTTAAGTACCTGTGACGGAAGATCAC 

AflII 

mxn123 AAGCCACCGCCTCCCGTGAGGACCCAGGCTTCTCGTGGGC
ACTAGTGGGCACCAATAACTGCCTT 

SpeI 

mnx124 CAATACGATCGCTGGACTGGTGAAG  

mxn125 TGCTACTTAAG TTATCA 
ACTAGTCATGGCTTCGCTCCCGCC 

AflII, STOP codon, 
SpeI 

mxn126 GATACACCTAGGTCCCTCCTGTTCAGCTAC AvrII 

mxn127 TCAGGTCCTAGGGGACGCGATGGATATGTT AvrII 

mxn128 ACATCGCCTAGGCGCGCCCTGAGCGCCCTGCGGAACAAG
GAGTGTGATGCGGCGATCGGACATACTTAAGGGATCTGA
TCAGCACGTG 

AvrII, PvuI, AflII 

mxn129 TCTATGCCTAGGTGCGCAAACCAACCCTTGGCAGAACATA
TCCATCGCGTCCTTAATTAATCAGTCCTGCTCCTCGGC 

AvrII 

mxn136 AACATCGGCCACCTGGAG  

mxn137 AGGACCCAGGCTTCTCGT  

mxn144 GATACATTAATTAACCGGAATTGCCAGCTG PacI 

mxn145 CTGTTAATTAATCAGAAGAACTCGTCAAGAAG PacI 

mxn147 TATGTCCTTAAGATAATTCGGCTGCAGGGG AflII 

mxn148 TATCTTAATTAATTACCAATGCTTAATCAGTG PacI 
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mxn200 AGCAGCCGGGTGAGGCTGAGGTCCACCTGGCTCACGACG
ACTTAAGGGTTCATGTGCAGCTCCA 

AflII 

mxn201 CATGAGAATTCGCGGCCGCATAATACGACTCACTATAGGG
TTAATTAACTTAAGGAGCTCAGCCAATCGACT 

PacI, AflII 

mxn202 GTCCGCCACCACGACGCGCGCGTGGTGCTCACCGGCCGCT
CATATGGTTTAAACGGTTCATGTGCAGCTCCA 

NdeI, PmeI 

mxn203 TCTTCAAGAATTCGCGGCCGCAATTAACCCTCACTAAAGG
GTTTAAACGAGCTCAGCCAATCGACT 

PmeI 

mxn209 CATGAGAATTCGCGGCCGCATAATACGACTCACTATAGGG
CATATGGTCTTCAAGAATTCGCGGCCGCAATTAACCCTCA
CTAAAGTACCTGTGACGGAAGATCAC 

NdeI 

mxn210 AGGCCATCCCGATGATGGCCACCCCGGGCGCCTGTTCACG
ACTAGTGGGCACCAATAACTGCCTT 

SpeI 

mxn330 CGAAGCCGGGGACGCCGCGCCGGATTCAGCGAGGCGTCC
CGTTTAAACATTAATTCTCATGTTTGAC 

PmeI 

mxn331 GCCGCATAATACGACTCACTATAGGGTTAATTAACTTAA
GCCAAGGGTTGGTTTGCGC 

PacI, AflII 

Tet-for-AflII-
PacI 

GAGCTCTTAATTAAGTGCTTAAGCGTAATTCTCATGTTTG
ACAGC 

PacI, AflII 

Tet-rev-PmeI GATACAGTTTAAACCAAGGGTTGGTTTGCGCA PmeI 

Kan-
BeloBAC-rev 

TTCAGGCGTAGCAACCAGGCGTTTAAGGGCACCAATAACT
GCCTTCCTAGGACCATTTAAATTCAGAAGAACTCGTCAA
GAAG 

AvrII, SwaI 

Kan-
BeloBAC-for 

TCCTGTGCGACGGTTACGCCGCTCCATGAGCTTATCGCGA
ATAAATTAATTAATGGACAGCAAGCGAACCGG 

PacI 

p15A-Tet1 GGAGAACTGTGAATGCGC  

p15A-Tet2 ACTCCGCTAGCGCTGATG  

pJET1.2For CGACTCACTATAGGGAGAGCGGC  

pJET1.2Rev AAGAACATCGATTTTCCATGGCAG  

pTOPO-in CCTCTAGATGCATGCTCGAG  

pTOPO-out 

P1 

P2  

P3 

P4 

P5 

P6 

TTGGTACCGAGCTCGGATCC 

CGAGCAATCCGCTATTGGC 

TCGGTTCAAAGAGTTGGTAGC  

GAGAACCTGCGTGCAATC 

CTGTGTCCTTCTGCGACGC 

GGACATCCCACTGCGCTAC 

ACCTGCGTGCAATCCATC 
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Table S2. Production of myxopyronin A and B in CTT and M7s  
media after 72 h of cultivation (10 % seed culture inoculum). 

 
Medium 

Relative MXN A/B 

yield [%] 

CTT 

-10 g/L casitone   

-10 mL/L Tris-HCl (1 M, pH 7.6)  

-1 mL/L KH2PO4 (1 M, pH 7.6)  

-10 mL/L MgSO4 (0.8 M) 

 

100 

M7s 

- 5 g/L soya flour 

- 5 g/L soluble starch 

- 2 g/L glucose 

- 1 g/L yeast extract 

- 1 g/L MgSO4 x 7 H2O 

- 1 g/L CaCl2 x 2 H2O 

- 10 g/L HEPES 

- 0.1 mg/L vitamin B12 

- 5 mg/L FeCl3 

 

 

233 
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Table S3. Effect of carbon 
source addition to M7s medium 
 

 

 

 

 

 

 

 

 

 

 

 
 
Table S4. Effect of carbon 
source addition to M7s medium 
   

   
   
   
   
   
   
   
   
   
   
   

Table S5. Retesting of carbon 
source addition to M7s medium

Variations of M7s Relative 

yield 

[%] 

Control 100 

fructose 5 g/L 334 

fructose 10 g/L 157 

fructose 20 g/L 178 

glucose 5 g/L 102 

glucose 10 g/L 160 

lactose 5 g/L 119 

lactose 10 g/L 183 

lactose 20 g/L 110 

maltose 5 g/L 147 

maltose 10 g/L 145 

maltose 20 g/L 128 

sucrose 5 g/L 148 

sucrose 10 g/L 171 

sucrose 20 g/L 141 

dextrin 5 g/L 107 

dextrin 10 g/L 160 

dextrin 20 g/L 122 

corn starch 5 g/L 147 

corn starch 10 g/L 124 

corn starch 20 g/L 114 

soluble starch 10 g/L 136 

soluble starch 20 g/L 203 

methyl oleate 1 g/L 231 

methyl oleate 2 g/L 483 

methyl oleate 5 g/L 364 

methyl oleate 10 g/L 17 

methyl oleate 20 g/L 72 

Variations of M7s Relative 

yield 

[%] 

Control 100 

fructose 2 g/L  128 

fructose 5 g/L  109 

fructose 10 g/L  112 

glucose 10 g/L  126 

glucose 20 g/L  160 

glucose 40 g/L  219 

soluble starch 20 g/L  74 

soluble starch 30 g/L  98 

K-acetate 1 g/L  163 

K-acetate 5 g/L  444 

K-acetate 10 g/L  521 

soy oil 2 g/L  400 

soy oil 5 g/L  488 

soy oil 10 g/L  270 

soy oil 20 g/L  284 

soy oil 5 g/L + feed 

after 48 h 5 g/L  

474 

vegetable oil 5 g/L  488 

vegetable oil 10 g/L  333 

vegetable oil  20 g/L  435 

vegetable oil 5 g/L + 

feed after 48 h 5 g/L  

426 

Variations of M7s Relative 

yield 

[%] 

Control 100 

K-acetate 0.5 g/L 114 

K-acetate 1 g/L 113 

K-acetate 5 g/L 471 

n-propanol 0.5 g/L 89 

n-propanol 1 g/L 95 

n-propanol 5 g/L 109 

vinyl propionate 

0.5 g/L 

150 

vinyl propionate 1 

g/L 

104 

vinyl propionate 5 

g/L 

125 

soy oil 1 g/L 209 

soy oil 2 g/L 314 

soy oil 5 g/L 459 

soy oil 10 g/L 430 

vegetable oil 1 g/L 191 

vegetable oil 2 g/L 230 

vegetable oil 5 g/L 252 

vegetable oil 10 

g/L 

425 
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Table S6. Myxopyronin A concentration in the pellet and 
supernatant of the native producer (M. fulvus Mx f50) and 
heterologous host (M. xanthus DK1622 ΔmchA-tet::pHSU-mxn43) 
after cultivation in BTY and CTT medium respectively. 
Strain Pellet avg. 

[mg/L] 
Supernatant avg. 

[mg/L] 
 

M. fulvus Mx f50a 
  

0.003 ± 0.001  1.800 ± 0.000 
  

M. xanthus DK1622 

ΔmchA-tet::pHSU-mxn43b 
  

0.023 ± 0.006 8.000 ± 0.346 
   

a BTY medium 
b CTT medium  
 

Table S7. Corallopyronin A concentration in the pellet and 
supernatant of the native producer (C. coralloides Cc c127) and 
heterologous host (M. xanthus DK1622 ΔmchA-tet::pDPO-mxn116) 
after cultivation in MD1/4 and CTT medium respectively. 
Strain Pellet avg. 

[mg/L] 
Supernatant avg. 

[mg/L] 
 

C. coralloides C cc127a 
 

  
0.018 ± 0.006 0.867 ± 0.115 

  
M. xanthus DK1622 

ΔmchA-tet::pDPO-mxn116b 
  

0.030 ± 0.006 1.467 ± 0.115 
  

a MD1/4 medium 
b CTT medium  
 

Table S8. Heterologous production of secondary metabolites in Myxococcus xanthus (Table adapted from1) .  
Compound Native 

producer 
Medium Promoter Pathway-type [size] Yield  Ref 

Bengamide Myxococcus 

virescens 

CTT PnptII PKS/NRPS [25 kb]  >10 mg/L 2 

Dawenol Stigmatella 

aurantiaca 

CTT native PKS [21 kb] n.d. 3 

Epothilone Sorangium 

cellulosum 

CMM native PKS/NRPS [56 kb] 0.1 - 0.4 mg/L 4–6 

Epothilone Sorangium 

cellulosum 

CTS native PKS/NRPS [56 kb] 23 mg/L 5 

Myxochromide S Stigmatella 

aurantiaca 

CTT PnptII PKS/NRPS [29 kb] >1000 mg/L 7 

Myxothiazol Stigmatella 

aurantiaca 
CTT Pm PKS/NRPS [57 kb] 20 mg/L 8 

Oxytetracycline Streptomyces 

rimosus 

CTTYE native PKS [32 kb] 10 mg/L 9 

Pretubulysin Cystobacter 

species 

CTTa Ptet PKS/NRPS [40 kb] 0.2 mg/L 10 

PUFAs 
 
Myxopyronin 
 
 
Corallopyronin 

Aetherobacter 

fasciculatus  

Myxococcus 

fulvus 

 

Corallococcus 

coralloides 

CTT 
 
CTT 
M7/s6 
 
CTT 
M7/s6 

Ptet 
 
PnptII 
 
 
PnptII 

PKS/FAS [18 kb]  
 
PKS/NRPS [53 kb] 
 
 
PKS/NRPS [65 kb] 

~1 mg/CDW 

 
3.8 mg/L 
156 mg/L 
 
1.5 mg/L 
37 mg/L 

11 
 
(this study) 
 
 
(this study) 

n.d., not determined 
a 0.1 mg/L supplemental of racemic D,L-pipecolic acid 
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Figure S1. Genotypic verification of integration of both clusters into the heterologous host M. xanthus DK1622 
ΔmchA-tet. Primer sets used for genotypic verification, their binding sites and amplicon sizes are illustrated. 
Nucleotide sequences of the primers used are listed in the table S1.   
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure S2. Production analysis of M. xanthus DK1622 ΔmchA-tet::pDPO-mxn116 cultivated in the M7/s6 
medium, showing significant amount of preCOR A (5) being produced in comparison to the COR A (3). HPLC-
MS analysis of supernatant showing extracted ion chromatograms (EIC) [M + Na]+ = 550.278, [M – H2O + H]+ = 
510.285 (3); [M + H]+ = 512.296, [M + Na]+ = 534.278, [M – H2O + H]+ = 494.285 (5). 
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Figure S3. Production analysis of M. xanthus DK1622 ΔmchA-tet::pHSU-mxn43 cultivated in the M7/s6 
medium, showing significant production of MXN A (1) and no production of MXN B (2). HPLC-MS analysis of 
supernatant showing extracted ion chromatograms (EIC) [M + H]+ = 418.222 (1); [M + H]+ = 432.238 (2). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. MS/MS spectrum of myxopyronin A (m/z = 418.222) from pure myxopyronin A standard and from 
an extract of M. xanthus DK1622::ΔmchA-tet::pHSU-mxn43, showing identical pattern. 
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Figure S5. MS/MS spectrum of corallopyronin A (m/z = 510.285) from pure corallopyronine A standard and 
from an extract of M. xanthus DK1622::ΔmchA-tet::pDPO-mxn116, showing identical pattern. 
 
 

 

 

 

 

 

 

 

 

Figure S6. Translational alignment of 3’ and 5’ ends of PKS genes from the native and engineered MXN and 
COR biosynthetic pathways. 
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3 Production optimization and biosynthesis revision of 

corallopyronin A, a potent anti-filarial antibiotic 

 

3.1 Abstract 

Corallopyronins (COR) are α-pyrone antibiotics from myxobacteria representing highly 

promising lead structures for the development of antibacterial therapeutic agents. Their ability 

to inhibit RNA polymerase through interaction with the “switch region”, a novel target, 

distant from binding sites of previously characterized RNA polymerase inhibitors (e.g. 

rifampicin), makes them particularly promising as antibiotic candidates. Corallopyronin A is 

currently also investigated as a lead compound for the treatment of lymphatic filariasis 

because of its superb activity against the nematode symbiont Wolbachia. As total synthesis is 

not a valid production option biotechnological optimisation of compound supply is of utmost 

importance to further develop this highly potent compound class.  

Here we describe decisive improvements of the previously reported heterologous COR 

production and engineering platform yielding production of ~100 mg/L COR A. Furthermore, 

we provide a revised model of COR biosynthesis shedding light on the function of several 

biosynthetic proteins, including an unusual ECH-like enzyme providing dehydration 

functionality in trans and an uncharacterized protein conferring COR self-resistance in the 

myxobacterial heterologous host Myxococcus xanthus DK1622. We also report two new COR 

derivatives, COR D and oxyCOR A discovered in genetically engineered strains.  
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3.2 Introduction 

Filariasis and Onchocerciasis, also known as river blindness, are devastating parasitic diseases 

mainly present in tropical and subtropical countries. Caused by filarial nematodes endemic in 

more than 80 countries they infect more than 150 million people worldwide1. Current 

treatment options resort to use of ivermectin and diethylcarbamazine as main drugs of choice2. 

Although safe and effective they primarily target first stage larvae (microfilariae) causing 

temporary infertility in the female worms. Thus, the drugs have to be administered once to 

twice yearly to avoid microfilariae relapse2. Distribution and compliance issues as well as 

emerging resistance raise concerns for future treatment options3. An emerging new target for 

treatment against filarial nematodes are Wolbachia, Gram-negative bacterial endosymbionts 

of the nematodes4,5. Depletion of Wolbachia leads to various effects on the nematodes, 

including sterility of adult worms6. Therefore, new anti-filarial drugs that successfully deplete 

Wolbachia from filarial nematodes are highly desired. 

One prominent candidate are the structurally related myxobacterial α-pyrone antibiotics 

corallopyronins (COR) and myxopyronins (MXN), discovered in Corallococcus coralloides 

Cc c1277 and Myxococcus fulvus Mx f508, respectively. COR A was shown to specifically 

target and deplete obligate Wolbachia endobacteria from filarial nematodes1,2, while showing 

no toxicity against eukaryotic cells7. The main target of COR A is the prokaryotic RNA 

polymerase (RNAP), which is highly conserved across the bacterial domain and a proven 

target for broad-spectrum antibacterial treatment9. Importantly, the RNAP ‘switch region’10,11, 

the binding site of COR,  is distant from targets of previously characterized RNAP inhibitors 

including rifamycins (Rif). Rif are currently used in the clinics for treatment of Gram-

negative and Gram-positive bacterial infections and represent first-line anti-tuberculosis 

agents. Unfortunately, the clinical utility of Rif is already threatened by the rising resistance 

by RNAP mutations12. Utilizing Rif as an anti-wolbachial agent is thus problematic2. As COR 

binds to a different RNAP target site it does not exhibit cross-resistance with Rif making it a 

promising candidate for the development of novel broad-spectrum antibiotics13.  

For further exploitation of COR as well as novel derivatives thereof as antifilarial and 

antibacterial agents, the improvement of compound supply is of utmost importance. Since the 

established total synthesis was shown to be tedious and cost-inefficient, requiring more than 

22 steps with an overall yield of less than 1%14, a heterologous production platform in the 

myxobacterium M. xanthus DK1622 was developed as a more viable alternative15. By 

heterologous expression of mxn and hybrid mxn/cor biosynthetic gene clusters (BGCs) driven 

by the PnptII promoter, significant yield improvements of both MXN and COR could be 
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achieved, reaching 150 mg/L and 40 mg/L, respectively. Significant amounts of 

precorallopyronin A (preCOR A) were detected in the extracts of the heterologous COR 

producer, which might account for part of the decreased COR A yield in comparison to MXN 

production15. 

In the present study we aimed to improve the COR heterologous production platform15, by co-

expression of an additional CorO (cytochrome P450) copy in the heterologous host, to 

facilitate hydroxylation of preCOR A to COR A (see Figure 6). Furthermore, the effect of 

different promoters as well as integration of the whole biosynthetic pathway in an alternative 

genomic locus was evaluated. With the deletion of corO from the corallopyronin biosynthetic 

gene cluster (BGC), production of preCOR A could be highly improved which facilitates 

future drug development, as its antibiotic potential was shown not to lag behind that of COR 

A16. Several additional gene deletions were performed in order to produce novel COR 

analogues as well as to reveal surprising details about functions of specific proteins encoded 

in the BGC.  

 

3.3 Materials and methods 

3.3.1 Sequence analysis of Corallopyronin biosynthetic gene clusters (BGC) 

Sequence analysis and routine in silico DNA work was performed using Geneious v8-v11 

software package (Biomatters Ltd.). In addition to restriction analysis, integrity of the 

generated expression constructs: pDPO-mxn116-Pvan-Tpase, pDPO-mxn116-Pvan-

TpaseΔCorN, pDPO-mxn116-Pvan-TpaseΔCorO, pDPO-mxn116-Pvan-TpaseΔCorN-O, 

pDPO-mxn116-Pvan-TpaseΔCorM and pDPO-mxn116-Pvan-TpaseΔCorP was verified by 

sequencing. Using the Illumina paired-end technology, on a MiSeq platform, 569-fold 

(pDPO-mxn116-Pvan-Tpase), 651-fold (pDPO-mxn116-Pvan-TpaseΔCorN), 755-fold 

(pDPO-mxn116-Pvan-TpaseΔCorO) and 513-fold (pDPO-mxn116-Pvan-TpaseΔCorN-O) 

mean sequencing coverage was achieved and no mutations within the BGC region were 

detected. Constructs pDPO-mxn116-Pvan-TpaseΔCorM and pDPO-mxn116-Pvan-

TpaseΔCorP were verified by sequence analysis of the modified region and detailed 

restriction analysis. 

 
3.3.2 Construction and engineering of plasmids 

Routine handling of nucleic acids, such as isolation of plasmid DNA, restriction endonuclease 

digestions, DNA ligations, and other DNA manipulations, was performed according to 
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standard protocols17. E. coli HS996 (Invitrogen) was used as host for standard cloning 

experiments. E. coli strains were cultured in LB medium or on LB agar (1% tryptone, 0.5% 

yeast extract, 0.5% NaCl, (1.5% agar)) at 30-37 °C (and 200 rpm) overnight. Antibiotics were 

used at the following final concentrations: 100 µg/mL ampicillin, 50 µg/mL kanamycin, 6 

µg/mL oxytetracycline, 50 µg/mL zeocin, 12.5 µg/mL chloramphenicol and 40 µg/mL 

apramycin. Transformation of E. coli strains was achieved via electroporation in 0.1 cm-wide 

cuvettes at 1250 V, a resistance of 200 Ω, and a capacitance of 25 μF. Plasmid, cosmid and 

bacterial artificial chromosome (BAC) DNA was either purified by standard alkaline lysis17 or 

by using the GeneJet Plasmid Miniprep Kit (Thermo Fisher Scientific) or the NucleoBond 

PC100 kit (Machery Nagel). Restriction endonucleases, alkaline phosphatase (FastAP) and T4 

DNA ligase were purchased from Thermo Fisher Scientific. Oligonucleotides used for PCR 

and sequencing were obtained from Sigma-Aldrich and are listed in Table S1. PCR reactions 

were carried out in a Mastercycler® pro (Eppendorf) using Phusion™ High-Fidelity, Taq 

DNA polymerase or DreamTaq (Thermo Fisher Scientific) according to the manufacturer’s 

protocol. For Taq and DreamTaq: Initial denaturation (3 min, 95 °C); 30 cycles of 

denaturation (30 s, 95 °C), annealing (30 s, 53 or 57 °C) and elongation (varied based on PCR 

product length 1 kb/min, 72 °C); and final extension (10 min, 72 °C). For Phusion™: Initial 

denaturation (30 s, 98 °C); 30 cycles of denaturation (20 s, 98 °C), annealing (25 s, 53 or 57 

°C) and elongation (varied based on PCR product length 0.5 kb/min, 72 °C); and final 

extension (10 min, 72 °C). PCR products or DNA fragments from restriction digests were 

purified by agarose gel electrophoresis and isolated using the NucleoSpin® Gel and PCR 

Clean-up (Macherey-Nagel) or peqGold Gel Extraction (Peqlab). Red/ET recombineering 

experiments for plasmid modifications 18 using the strains E. coli HS996/pSC101-BAD-

gbaA-tet or E. coli GB05-red were performed according to the manufacturer’s protocol (Gene 

Bridges GmbH). After selection with suitable antibiotics, clones harbouring correct 

recombination products were identified by plasmid isolation and restriction analysis with a set 

of different endonucleases. Details on the construction of all plasmids generated in this study 

are given in Table S3. 
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3.3.3 Transfer and chromosomal integration of the expression constructs into the 

heterologous host  

According to a previously established electroporation procedure the host strain Myxococcus 

xanthus DK162219 or derivatives thereof were transformed with the generated expression 

constructs (see Table 1). M. xanthus DK1622 mutants were routinely cultivated at 30 °C in 

CTT medium or on CTT agar (1% casitone, 10 mM Tris buffer pH 7.6, 1 mM KH2PO4 pH 7.6, 

8 mM MgSO4 (1.5% agar) with final pH 7.6).  For liquid cultures, the strains were grown in 

Erlenmeyer flasks on an orbital shaker at 180 rpm for 3-6 days. For selection of M. xanthus 

mutants 50 µg/mL kanamycin, 50 µg/mL zeocin, 12 µg/mL oxytetracycline or combinations 

of 50 µg/mL kanamycin with 50 µg/mL zeocin or  50 µg/mL zeocin with 12 µg/mL 

oxytetracycline were used. Successful chromosomal integration of the expression constructs 

via transposase or mx8 and mx9 phage integrase into the host genome was verified by PCR. 

Transformants’ cells were lysed by incubation at 95 °C for 20 minutes prior of being added to 

the PCR reaction (‘colony PCR’). For each expression construct successful chromosomal 

integration was confirmed using suitable primer combinations revealing PCR products of the 

expected sizes: transposon based constructs: dpo-cor-1/dpo-cor-2 (667 bp) and dpo-cor-3/dpo-

cor-4 (599 bp); mx8 phage integrase based constructs: Mx8-attB-up2/Mx8-attP-down (427 bp) 

and Mx8-attP-up2/Mx8-attB-down (403 bp) (Fig. S2). A complementary experiment using 

primers mx8-attB-up2/Mx8-attB-down revealed a 449 bp PCR product for M. xanthus 

DK1622, but not for the mx8 phage integrase based expression strains. Successful 

chromosomal integration by mx9 phage integrase was verified according to the protocol used 

by Gemperlein at. al.20. In all cases, genomic DNA of M. xanthus DK1622 was used as 

negative control.  

PCR reactions were performed according to the conditions described in chapter 3.3.2 using 

Taq polymerase; for primer sequences see Table S1. 
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Table 1. Myxococcus xanthus (Mx.) expression strains generated in this study (for details on construction of 
expression plasmids see Table S3).       

Strain name Expressed genetic constructs COR derivative yields 

Mx. DK1622::pDPO-mxn116-Pvan-
Tpase 

pDPO-mxn116-Pvan-Tpase COR A: +++, preCOR A: +++, 
COR D: +, oxyCOR A: + 

Mx. DK1622::pDPO-Mxn116-Pvan-
TpaseΔcorN 

pDPO-Mxn116-Pvan-TpaseΔcorN COR A: -, preCOR A: -, COR 
D: +++, oxyCOR A: ++ 

Mx. DK1622::pDPO-Mxn116-Pvan-
TpaseΔcorO 

pDPO-Mxn116-Pvan-TpaseΔcorO COR A: -, preCOR A: +++, 
COR D: ++, oxyCOR A: - 

Mx. DK1622::pDPO-Mxn116-Pvan-
TpaseΔcorN-O 

pDPO-Mxn116-Pvan-TpaseΔcorN-O COR A: -, preCOR A: -, COR 
D: +++, oxyCOR A: - 

Mx. DK1622::pDPO-Mxn116-Pvan-
TpaseΔcorM 

pDPO-Mxn116-Pvan-TpaseΔcorM COR A: ++, preCOR A: ++, 
COR D: +, oxyCOR A: + 

Mx. DK1622::pDPO-Mxn116-Pvan-
TpaseΔcorP 

pDPO-Mxn116-Pvan-TpaseΔcorP COR A: ++, preCOR A: ++, 
COR D: +, oxyCOR A: + 

Mx. DK1622 ΔmchA::pDPO-
mxn116::pUC18-Zeo-mx8-nptII-corO 

pDPO-mxn116, pUC18-Zeo-mx8-nptII-corO COR A: +++, preCOR A: -, 
COR D: +, oxyCOR A: + 

Mx. DK1622 ΔmchA::pDPO-
mxn116::pUC18-Zeo-mx8-Pvan-corO 

pDPO-mxn116, pUC18-Zeo-mx8-Pvan-corO COR A: +++, preCOR A: -, 
COR D: +, oxyCOR A: + 

Mx. DK1622 ΔmchA::pDPO-
mxn116::pUC18-Zeo-mx8-nptII-corM 

pDPO-mxn116, pUC18-Zeo-mx8-nptII-corM COR A: ++, preCOR A: ++, 
COR D: +, oxyCOR A: + 

Mx. DK1622 ΔmchA::pDPO-
mxn116::pUC18-Zeo-mx8-Pvan-corM 

pDPO-mxn116, pUC18-Zeo-mx8-Pvan-corM COR A: ++, preCOR A: ++, 
COR D: +, oxyCOR A: + 

Mx. DK1622 ΔmchA::pDPO-
mxn116::pUC18-Zeo-mx8-nptII-mxnM 

pDPO-mxn116, pUC18-Zeo-mx8-nptII-mxnM COR A: ++, preCOR A: ++, 
COR D: +, oxyCOR A: + 

Mx. DK1622 ΔmchA::pDPO-
mxn116::pUC18-Zeo-mx8-Pvan-mxnM 

pDPO-mxn116, pUC18-Zeo-mx8-Pvan-mxnM COR A: ++, preCOR A: ++, 
COR D: +, oxyCOR A: + 

Mx. DK1622::pDPO-mxn116-Pvan-
Tpase::pUC18-Zeo-mx8-nptII-corP 

pDPO-mxn116-Pvan-Tpase, pUC18-Zeo-mx8-
nptII-corP 

COR A: +++, preCOR A: +++, 
COR D: +, oxyCOR A: + 

+++ high production 
++ low production 
+ trace amounts 
- no production 
 

3.3.4 Cultivation of the heterologous expression strains  

All cultivations were performed according to the previously established procedure15. Strains 

were inoculated from cryo stocks and grown on agar plates for several days until plates were 

mostly overgrown with cells. All of the cells were scraped from the plates to inoculate 

preculture medium M7/s4 (0.5% soy flour, 0.5% corn starch, 0.2% glucose, 0.1% yeast 

extract, 0.1% MgSO4 x 7 H2O, 0.1% CaCl2 x 2 H2O, 1% HEPES, with final pH 7.4 and 

supplemented with 0.1 mg/L of vitamin B12 and 5 mg/L of FeCl3 after autoclaving) (50 mL 

medium in 300 mL Erlenmeyer flask), which was cultivated at 30 °C, 180 rpm for 48 h. Five 

mL of well grown seed culture was used to inoculate 50 mL production medium M7/s6 (0.5% 

soy flour, 0.5% corn starch, 0.2% glucose, 0.1% yeast extract, 1% potassium acetate, 0.1% 
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MgSO4 x 7 H2O, 0.1% CaCl2 x 2 H2O, 1% HEPES, with final pH 7.4 and supplemented with 

0.1 mg/L of vitamin B12 and 5 mg/L of FeCl3 after autoclaving) in which the strain was 

grown at the same conditions for 6 days. In case of M. xanthus DK1622 derivatives, media 

were amended with suitable antibiotics (50 µg/mL kanamycin, 50 µg/mL zeocin and 12 

µg/mL oxytetracycline for heterologous producers and without antibiotics for the wild type 

host strain). All cultivations were performed in triplicates at 30 °C and 180 rpm for 6 days. 

After addition of an equal volume of MeOH (55 mL) to the culture broth and incubation in a 

culture flask on an orbital shaker (180 rpm) for 1 h, 2 mL of the supernatant/MeOH mixture 

was transferred to an Eppendorf tube and centrifuged at 15000 rpm, 4 °C for 15 minutes prior 

the HPLC-MS analysis. Quantification of production yields was performed as described in the 

supplementary information. 

 

3.4 Results and discussion 

3.4.1 Construction of a transposon-based COR BGC expression construct 

One of the goals of this study was to improve the COR A production yield of the previously 

generated heterologous producer strain15. To achieve this goal additional genetic 

modifications were designed and implemented to the original heterologous expression 

construct pDPO-mxn116, as outlined in Figure 1. Two major modification attempts were 

pursued to evaluate different chromosomal integration sites as well as efficacy of different 

promoters. Promoter exchange is one way to improve transcription of biosynthetic pathways21 

as different promoters can have a big impact on gene expression levels, consequently leading 

to increased or decreased secondary metabolite production22,23. Furthermore, inducible 

promoters can have an advantage in initiating the production at a certain time point during 

fermentation, which can in some cases lead to increased production, especially if the product 

turns out to be toxic or inhibitory for the host organism24. Those aspects make selection of a 

suitable promoter a crucial part of BGC expression construct design. Another factor to 

consider when improving production yield is the genomic integration site, as positional effects 

can have large impact on the overall expression and yield25–27. Several methods are available 

for integration of BGC into the host genome, some of which are site-specific and lead to 

integration in a precisely defined locus (e.g. homologous recombination, phage integration), 

whereas others are unspecific and integrate randomly in the genome (e.g. transposition)22,28. 

In most cases, methods that allow integration in a specific locus are preferred. Nevertheless, 

we chose random genome integration by a transposition for this study, since it allows to 
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screen a high number of myxobacterial clones harboring the COR BGC at various genomic 

loci and subsequently compare their production levels. To evaluate additional chromosome 

integration sites in the M. xanthus DK1622 heterologous host, the tet
R gene on the expression 

plasmid was exchanged with a more effective transposase integration system28. The tet
R was 

previously used as locus for genome integration by homologous recombination, but the 

efficiency of homologous integration was found very low. This is in line with our previous 

results showing that transposon based integration systems for BGCs are significantly more 

efficient than chromosomal integration via homologous recombination28. Since the choice of 

known selection markers in M. xanthus is limited, the existing tet
R and kan

R genes were 

removed to make them available in later modification steps. Conveniently, both genes were 

located next to each other on the backbone of pDPO-mxn116 construct, making it possible to 

replace them with a cm
R gene in one in vivo, Red/ET recombination step, resulting in 

construction of pDPO-mxn116-cm. The detailed procedure is provided in the supplementary 

information. 

To further improve COR production, we aimed to evaluate the Pvan promoter system. By 

performing one Red/ET recombination step, the pDPO-mxn116-cm-Pvan construct was 

generated (Fig. 1). The construct had to be further modified to allow for its integration in 

M. xanthus genome, since the previous integration cassette, based on homologous 

recombination via tet
R, was removed in the first modification step.  

Employing the same Red/ET technology, a previously generated pDPO-mxn116-cm-Pvan 

construct was modified to introduce a transposase gene on its backbone. The resulting 

construct pDPO-mxn116-Pvan-Tpase now harbored all necessary elements for heterologous 

expression in M. xanthus DK1622 (Fig. 1). A detailed description of the heterologous 

expression construct design is provided in the supplementary information. 
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Figure 1. Sequence of RedET in vivo recombination steps required to construct pDPO-mxn116-Pvan-Tpase 
construct starting from pDPO-mxn116 expression plasmid. 
 

3.4.2 Production of corallopyronin by an inducible system after transposition into the 

heterologous host M. xanthus DK1622 

The generated mxn/cor gene cluster expression construct pDPO-mxn116-Pvan-Tpase (77 kb) 

was transferred to M. xanthus DK1622 by electroporation. Clones growing on selection plates 

amended with kanamycin were analyzed for successful chromosomal integration of the 

transposable cassette by PCR (Fig. S2). After genotypic verification, the M. xanthus 

DK1622::pDPO-mxn116-Pvan-Tpase mutant and M. xanthus DK1622 were cultivated under 

standard conditions in M7/s6 medium for 6 days and culture extracts were analyzed for the 

presence of corallopyronins. By HPLC-MS analysis the production of COR could indeed be 

confirmed in the extracts from the mutant strain M. xanthus DK1622::pDPO-mxn116-Pvan-

Tpase (Fig. 2). This proves the successful and functional expression of the heterologous 

mxn/cor gene cluster under the control of the Pvan promoter after random transposition into 

M. xanthus DK1622.   

To evaluate the effect of different genome loci on the yield of COR, several transposon 

mutants (M. xanthus DK1622::pDPO-mxn116-Pvan-Tpase) were evaluated in comparison to 

the previously described heterologous producer M. xanthus DK1622 ΔmchA::pDPO-

mxn11615. One study from myxobacteria27 and several more from other bacteria29,25,26 could 

previously underpin the impact of the positional genomic effect on the gene expression. We 

screened five independent clones which were cultivated in parallel and the corresponding 
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culture extracts were analysed for the presence of COR. Interestingly, production of all five 

mutants was almost the same under the analyzed conditions and was quantified at around 100 

mg/L. This is more than twice the production yield of the previous heterologous producer. 

Thus, either the genome locus or the promoter exchange greatly benefited the COR 

production. Since the transposase mediates chromosomal integration at random loci, and the 

achieved yield in all M. xanthus DK1622::pDPO-mxn116-Pvan-Tpase clones was nearly the 

same under the analyzed conditions, it is very likely, that BGC location is not the main reason 

for the observed yield increase. Most likely the Pvan promoter is in this case superior to the 

previously used PnptII, probably because of better suited transcription rate. 

Surprisingly, in addition to COR A, significant amounts of preCOR A (around 160 mg/L) 

were detected in M. xanthus DK1622::pDPO-mxn116-Pvan-Tpase extracts (Fig. 2). PreCOR 

A (see Figure 6B) is assumed to be the biosynthetic precursor of COR A which is oxidized by 

the cytochrome P450 enzyme CorO. Therefore, the total yield of corallopyronins in this set of 

experiments was increased to more than 250 mg/L (cp. 120 mg/L in previous experiments) 

with an obvious bottleneck in preCOR A oxidation. This finding lead to the speculation that 

the chosen construct induces a misbalance of activity of the responsible oxidase CorO and the 

remaining biosynthetic pathway (see chapter 3.4.4 and 3.4.5). 

  

3.4.3 Evaluation of CorM function 

CorM was described as a type II TE domain30. These enzymes are known to have editing 

function, removing wrong substrates and nonreactive moieties attached to the carrier proteins 

blocking the assembly line, thus resulting in increased production31,32. Contrary to most of the 

other proteins in the corallopyronin BGC, CorM does not have a homolog in the structurally 

related myxopyronin BGC from M. fulvus Mx f5033. However, MxnM from the myxopyronin 

biosynthetic pathway is described as a type II AT domain33, an enzyme class that has also 

been described to provide proofreading functionality34, similar to the type II TE enzymes. 

To evaluate the function of CorM a gene deletion experiment was performed. The apra
R gene 

was PCR amplified and used to replace corM by a single in vivo recombination step in E. coli 

GB05-red. The resulting pDPO-Mxn116-Pvan-TpaseΔcorM-apraR plasmid was hydrolyzed 

by XmaJI restriction endonuclease and re-ligated, to excise apra
R. The final construct pDPO-

Mxn116-Pvan-TpaseΔcorM was transferred into M. xanthus DK1622 by electroporation.  The 

details on genotypic verification, cultivation and quantification are provided in the Materials 

and Methods / Supplementary information. Product quantification revealed an average 77% 

yield decrease in the CorM deletion mutant compared to the control strain showing that the 



Production optimization and biosynthesis revision of corallopyronin A | 81 
 

type II TE CorM is important for high yield production of COR A. We thus hypothesized that 

an additional copy of corM might increase production yield, hence another copy of the gene 

was co-expressed in the heterologous COR producer M. xanthus DK1622 ΔmchA::pDPO-

mxn116. The analogous question was in parallel addressed for mxnM. To study the effect of 

overexpression of these two genes two different promoter systems well established in M. 

xanthus, were tested: the constitutive PnptII promoter of the neomycin phosphotransferase II 

resistance gene from Tn535 and the vanillate inducible Pvan promoter36, which was 

implemented without repressor gene (to also achieve constitutive expression). Generated 

expression constructs (see Table1 and S3) were transferred into M. xanthus DK1622 

ΔmchA::pDPO-mxn116 by electroporation. The obtained mutants (see Table 1) were 

cultivated in parallel with M. xanthus DK1622 ΔmchA::pDPO-mxn116 control mutant.  The 

details on genotypic verification, cultivation and quantification are provided in the Materials 

and Methods / Supplementary information. As expected, HPLC-MS analysis revealed 

production of both metabolites in all of the evaluated mutants, however a detailed 

quantification revealed around 50% decrease of overall COR production in CorM and MxnM 

overexpression mutants. The overexpression of either proofreading enzyme probably results 

in unspecific cleaving of correct polyketide intermediates from the assembly line, leading to a 

decreased overall production efficiency32,37. This result indicates that assembly line 

maintenance by CorM (MxnM) needs to be fine-tuned and is not a main bottleneck in the 

current expression system under the analyzed conditions. 

 

3.4.4 Deletion of corO  

The previously generated heterologous expression system15 enabled easy pathway 

modifications and gene function studies. Red/ET in vivo recombination18 allowed to perform 

simple gene deletions in a quick two-step process. This method opened up the possibility to 

identify functions of deleted and overexpressed genes as well as to potentially produce novel 

derivatives in the process. As functions of most genes in the mxn/cor clusters had not been 

experimentally proven, it was essential to perform gene deletion experiments to assign 

functions to corresponding genes in the BGC. To exclude the possibility that part of the 

hydroxylation activity required to form COR A from preCOR A comes from an unidentified 

protein encoded in the host genome, we deleted corO from the expression construct. This 

experiment mostly aimed to generate a production strain providing access to pure preCOR A.  

To perform the corO deletion the same approach as for corM was applied (see chapter 3.4.3). 

The final construct pDPO-Mxn116-Pvan-TpaseΔcorO was transferred into M. xanthus 
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DK1622 by electroporation. The details on genotypic verification, cultivation and 

quantification are provided in the Materials and Methods / Supplementary information. As 

expected, HPLC-MS analysis revealed production of both compounds in M. xanthus 

DK1622::pDPO-Mxn116-Pvan-Tpase, however in M. xanthus DK1622::pDPO-Mxn116-

Pvan-TpaseΔcorO only production of preCOR A was observed (Fig. 2). This finding confirms 

that CorO is the only enzyme responsible for hydroxylation of preCOR A at C-24 and thus its 

conversion to COR A in M. xanthus (Fig. 6B). M. xanthus DK1622::pDPO-Mxn116-Pvan-

TpaseΔcorO can be employed for production of preCOR A as this mutant revealed 300-350 

mg/L production of preCOR A, which confirmed the overall high corallopyronin yield 

reported in 3.4.2 and represents more than a twofold increase over the original expression 

strain (M. xanthus DK1622 ΔmchA::pDPO-mxn116-Pvan-Tpase). This result is important 

since preCOR A is an interesting candidate for drug development, as its antibiotic potential 

was shown to be comparable to that of the structurally more complex COR A16 exhibiting 

increased lipophilicity important to achieve worm penetration.  

 

 
Figure 2. Production analysis of M. xanthus DK1622::pDPO-mxn116-Pvan-Tpase and M. xanthus 
DK1622::pDPO-mxn116-Pvan-TpaseΔcorO cultivated in the M7/s6 medium. The HPLC-MS analysis of 
supernatant showing base peak chromatograms. Peak areas for preCOR A are 8.9 (Tpase) versus 19.6 (ΔcorO). 
 

3.4.5 Overexpression of CorO: An attempt to improve conversion of preCOR A to COR 

A and thus increase COR A production 

To further improve COR A production starting from the mutant in the optimized medium we 

aimed to improve conversion of preCOR A to COR A. As hypothesized in previous 

studies30,15 and experimentally proven in this study (see chapter 3.4.4), the cytochrome P450 

CorO is responsible for preCOR A hydroxylation to form COR A. During the cultivation of 

M. xanthus DK1622 ΔmchA::pDPO-mxn116 producer strain in M7/s6 medium, high levels of 

preCOR A were detected in addition to the COR A pointing towards incomplete conversion 



Production optimization and biosynthesis revision of corallopyronin A | 83 
 

via CorO leading to accumulation of preCOR A. Further supporting this hypothesis almost no 

preCOR A could be detected in extracts from the native producer C. coralloides Cc c127 or in 

the M. xanthus DK1622 ΔmchA::pDPO-mxn116 heterologous producer when cultivated in 

CTT medium (data not shown). The overall COR yield, measured under those conditions, was 

significantly lower compared to the production in the optimized production medium M7/s615. 

It is thus likely that CorO achieved complete turnover under the “low” production conditions, 

however, once the production was optimized, it could no longer hydroxylate all of the 

substrate, resulting in preCOR A accumulation. It is also possible that hydroxylation is 

inefficient because CorO is missing appropriate interaction partners (e.g. ferredoxin and/or 

ferredoxin reductase) in the heterologous producer. In this case corresponding homologous 

proteins present in M. xanthus DK1622 might be performing these functions. However, their 

efficiency might be lower, resulting in only partial conversion of preCOR A to COR A. 

In order to facilitate hydroxylation of preCOR A to increase production of COR A, an 

additional copy of corO was co-expressed in M. xanthus DK1622 ΔmchA::pDPO-mxn116. 

The co-expression was performed in the same fashion as already described for the 

CorM/MxnM (see chapter 3.4.3). As observed before HPLC-MS analysis revealed production 

of both metabolites in the M. xanthus DK1622 ΔmchA::pDPO-mxn116 mutant (Fig. 2 and 3). 

As expected in clones harboring a second copy of corO under the control of either promoter, 

preCOR A production was basically abolished (Fig. 2 and 3). Surprisingly, however, the yield 

of COR A remained approximately unchanged indicating conversion of preCOR A or COR A 

to an unknown product. In order to detect putative novel COR derivatives that might arise 

from the overexpression of corO, we analyzed the secondary metabolome of M. xanthus 

DK1622::pDPO-Mxn116-nptII-corO in more detail. Therefore, extracts were profiled against 

such of the control strain M. xanthus DK1622::pDPO-Mxn116, using principal component 

analysis (PCA) applied to the HPLC-MS chromatograms (see Supplementary information)38. 

The PCA revealed an additional minor derivative eluting after 11.5 min (Fig. 3) with an 

[M+H]+ of 544.290 m/z as well as slightly more prominent ions [M-H2O+H]+ of 526.279 and 

[M-2H2O+H]+ of 508.267. This monoisotopic mass indicates a mass addition of 16 respective 

to the mass of COR A, which indicated the presence an additional OH group. The yield of the 

novel derivative was very low at this point requiring significant effort to elucidate its structure 

by NMR. Fortunately, the same derivative was detected in another mutant in parallel studies, 

in noticeably higher amount (see chapter 3.4.6). Quantification of preCOR A yields revealed 

around ~80 mg/L of preCOR A in extracts of M. xanthus DK1622 ΔmchA-tet::pDPO-mxn116 
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and total abolishment of preCOR A in extracts of M. xanthus DK1622 ΔmchA-tet::pDPO-

mxn116-nptII-corO.  

 

 
Figure 3. I) Identification of oxyCOR A by PCA based metabolome comparison of M. xanthus DK1622 ΔmchA-

tet::pDPO-Mxn116-nptII-corO (A) and M. xanthus DK1622 ΔmchA-tet::pDPO-Mxn116 (B) and II) 
comparative analysis of the extracted Ion chromatograms (EIC) for oxyCOR A [M-H2O+H]+ = 526.280, COR A 
[M-H2O+H]+ = 510.285, and preCOR A [M+H]+ = 512.295. 
 

Despite the detection of the newly identified doubly-hydroxylated derivative (see 3.4.6), the 

total yield difference between M. xanthus DK1622 ΔmchA-tet::pDPO-Mxn116 and the CorO 

overexpression mutant cannot be explained as the newly identified peak represents a very 

minor derivative. It is therefore assumed that the overall yield of COR derivatives decreased 

after overexpression of CorO due to degradation starting from a second hydroxylation step. 

An unambiguous explanation for this phenomenon is currently not available but it may be 

possible that CorO acts during polyketide assembly and thus before pyrone ring formation 

takes place. Its overexpression might thus lead to more efficient hydroxylation of the western 

chain intermediate, possibly leading to hydroxylation at multiple positions which may also 

prevent those from further correct processing to COR A.   
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Figure 4. Production analysis of M. xanthus DK1622 ΔmchA-tet::pDPO-mxn116 and M. xanthus DK1622 
ΔmchA-tet::pDPO-mxn116-nptII-corO cultivated in the M7/s6 medium, showing significant amount of preCOR 
A produced in M. xanthus DK1622 ΔmchA-tet::pDPO-mxn116 and total abolishment of preCOR A in mutant 
with additional copy of CorO (M. xanthus DK1622 ΔmchA-tet::pDPO-mxn116-nptII-corO). A very small peak 
for oxyCOR A could also be detected in the latter mutant. HPLC-MS analysis of supernatant showing extracted 
ion chromatograms (EIC) [M + Na]+ = 550.278, [M – H2O + H]+ = 510.285, [M + H]+ = 528.295 (COR A), [M + 
Na]+ = 534.278, [M – H2O + H]+ = 494.285, [M + H]+ = 512.295  (preCOR A) and [M -2H2O+H]+ = 508.267, [M 
– H2O + H]+ = 526.280, [M + H]+ = 544.290  (oxyCOR A) 
 

3.4.6 Evaluation of the function of CorN  

CorN was identified as enoyl-CoA hydratase according to a comprehensive BLAST analysis 
30 and was proposed to be responsible for double bond isomerization from Δ24, 25 to the Δ25, 27 

position. To confirm this hypothesis and produce novel COR derivatives, a corN gene 

deletion was performed as described below. To facilitate production of additional novel 

derivatives, we also aimed to construct a corN/corO deletion mutant.  

The same approach as for corM (see chapter 3.4.4) was applied. The apra
R gene was flanked 

by XmaJI R-sites in all cases, however the flanking homology regions were adapted for each 

gene deletion specifically. Two more linear apra
R PCR constructs were amplified, flanked by 

specific homology regions, designed for deletion of corN, as well as corN-O region covering 

both genes. Final constructs pDPO-Mxn116-Pvan-TpaseΔcorN and pDPO-Mxn116-Pvan-

TpaseΔcorN-O were transferred into M. xanhtus DK1622. The details on genotypic 

verification, cultivation and quantification are provided in the Materials and Methods / 

Supplementary information. The culture extracts were analyzed for the presence of COR A, 

preCOR A and isomers thereof. To our surprise, HPLC-MS analysis revealed a novel [M+H]+ 

peak at m/z 528.294 at 13.1 min (Fig. 5) in both gene deletion mutants, whereas COR A and 

preCOR A were not detected. Chromatograms of the M. xanthus DK1622::pDPO-Mxn116-

Pvan-Tpase in contrast showed standard production profile with COR A and preCOR A as 

major metabolites. 
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Purification and NMR structure elucidation of the novel peak exhibiting a retention time of 

13.1 min. revealed the structure of the novel derivative COR D possessing a hydroxyl group 

at the C-23 instead of C-24 (Fig. 6C; Fig. S4). Details on the NMR based structure elucidation 

are provided in the supplementary information. A hydroxyl group at C-23 was thus far not 

observed in any COR derivative. Based on those results, the current corallopyronin 

biosynthesis model was revised and a different function was assigned to CorN. Instead of 

acting as tailoring enzyme involved in double bond isomerization from Δ24, 25 to Δ25, 27 30, 

CorN is assumed to eliminate the C-23 hydroxyl group by dehydration during western chain 

assembly. The double bond which should arise after the dehydration is assumed to be reduced 

by CorA which provides the trans-ER activity30. The double bond isomerization from Δ24, 25 

to Δ25, 27 position might be mediated by the N-terminal DH* domain of CorL, previously 

thought to be in charge of OH group dehydration at C-23. This DH domain would in this case 

fall into the clade of “shifting DH” domains (DH*)39,40. In standard DH domains the H44 

residue acts as a catalytic base to deprotonate the α position of the reduced polyketide 

intermediate and the D206 residue promotes the elimination41. In contrast to standard DH 

domains, residue H44 was hypothesized to serve as a proton donor in DH* domains, whereas 

a yet unknown basic residue should assist in the double bond migration39. To support the 

hypothesis of DH* in CorL being a “shifting DH”, a protein alignment with known DH* 

domains was performed and core motifs were extracted (Fig. S1). The catalytic residue H44 

in the HxxxGxxxxP motif could indeed be assigned, whereas the catalytic D206 in DxxxQ/H 

motif was found to be mutated to N206, which is consistent with most of the other known 

shifting DH domains39,40,42. Nevertheless, in case of  the N-terminal CorJ DH*, which was 

previously shown to be involved in double bond isomerization of the corallopyronin eastern 

chain, the D206 in DxxxQ/H was found to be conserved and is thus assumed to be the 

catalytic residue for the double bond shifting43. However, after D206N (D211N43) mutation, 

the enzyme was shown to keep the double bond shifting activity in vitro
43. The basic residue 

that acts as the proton acceptor in the double bond migration, thus remains unknown.  
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Figure 5. Production analysis of M. xanthus DK1622::pDPO-mxn116-Pvan-Tpase, M. xanthus DK1622::pDPO-
mxn116-Pvan-TpaseΔcorN and M. xanthus DK1622::pDPO-mxn116-Pvan-TpaseΔcorN-O cultivated in the 
M7/s6 medium, showing production profile of different gene deletions. HPLC-MS analysis of supernatant 
showing base peak chromatograms.  
 

If our hypothesis about CorN function is correct, a downstream reduction activity is required 

to saturate the double bond between C-23 and C-24, which necessarily arises after the 

dehydration of the C-23 OH group (Fig. 6A). Such functionality could be provided by CorA 

exhibiting AT/ER type of activity in trans
30

. In the hybrid mxn/cor pathway the CorA 

function is mediated by the homolog MxnA33.  
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Figure 6. Proposed biosynthesis of the corallopyronin A western chain, showing the DH* with the 
corresponding migrated double bond highlighted in tan and modifications implemented by CorN highlighted in 
green (A). Pyrone ring formation and tailoring of the produced intermediate in the native system (B). Pyrone ring 
formation and tailoring of the produced intermediate in a corN deletion mutant (C). 
1The CorA function is mediated by its homolog MxnA from the myxopyronin BGC. 
 

While screening all available COR cluster mutants, we realized that strain pDPO-Mxn116-

Pvan-TpaseΔcorN produces higher amounts of the new derivative detected in the CorO 

overexpression mutant with the mass [M+H]+ of 544.290 m/z (see chapter 3.4.5, Fig. 7). We 
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thus chose to attempt isolation of said metabolite from pDPO-Mxn116-Pvan-TpaseΔcorN. 

Due to quite low production of this new derivative, a 12 L cultivation had to be performed, to 

isolate enough compound for NMR structure elucidation. Analysis indeed revealed the 

presence of two OH groups, present at the C-23 and C-24 (Fig. 6C, Fig. S5). The new 

derivative, named oxyCOR A, is thus probably biosynthesized from COR D via 

hydroxylation. The fact that oxyCOR A could only be detected in extracts of the ΔcorN 

mutant (M. xanthus DK1622::pDPO-Mxn116-Pvan-TpaseΔcorN) and not in the extract of 

ΔcorN-O mutant (M. xanthus DK1622::pDPO-Mxn116-Pvan-TpaseΔcorN-O), can be 

interpreted in analogy with the previous statement that CorO is responsible for hydroxylation 

at position C-24 (see chapters 3.1 and 3.5). Addition of the OH group at the C-24 of COR D 

leads to production of oxyCOR A (Fig. 6C). Very low amounts for oxyCOR A detected in the 

extracts of the ΔcorN-O mutant could be caused by inefficient hydroxylation of COR D, 

which could be due to the steric hindrance of C-24 position by the C-23 OH group of COR D. 

This also correlates well with the results of principal component analysis performed on 

M. xanthus DK1622::pDPO-Mxn116-nptII-corO (see chapter 3.4.5), where an additional copy 

of the CorO is probably responsible for more efficient hydroxylation of minor COR D 

amounts present in the broth (see Table 1), leading to production of oxyCOR A.  

 

 
Figure 7. Production analysis of M. xanthus DK1622::pDPO-mxn116-Pvan-TpaseΔcorN and M. xanthus 
DK1622::pDPO-mxn116-Pvan-TpaseΔcorN-O cultivated in the M7/s6 medium, showing oxyCOR A production 
in M. xanthus DK1622::pDPO-mxn116-Pvan-TpaseΔcorN, whereas no oxyCOR A was detected in M. xanthus 
DK1622::pDPO-mxn116-Pvan-TpaseΔcorN-O. HPLC-MS analysis of supernatant showing extracted ion 
chromatograms (EIC) [M – H2O + H]+ = 526.279, [M + H]+ = 544.290 (oxyCOR A). 
 

3.4.7 Evaluation of the function of CorP  

An open reading frame encoding a hypothetical protein (CorP), was found in the cluster, 

positioned between the assembly line and the three tailoring genes (corM, corN and corO)30. 

Its function remained elusive, as no homologue with assigned specific function could be 
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found in any database and no additional functionality necessary for corallopyronin production 

was missing from the identified genes. By screening the internal database of myxobacterial 

genomes using BLAST, several homologues of CorP with unknown function were identified 

in BGCs of myxopyronin, sorangicin and several yet unknown biosynthetic pathways. To 

elucidate whether the protein is essential for the biosynthesis and/or to finally decrypt its 

function, a gene deletion was performed according to the described method (see 

supplementary information). The final construct pDPO-Mxn116-Pvan-TpaseΔcorP was 

transferred into M. xanthus DK1622. The details on genotypic verification, cultivation and 

quantification are provided in the Materials and Methods / Supplementary information. 

Quantification revealed an average of 82% yield decrease in the corP deletion mutant 

compared to the control strain. As no additional enzymatic function was required for COR 

biosynthesis according to the current model, the role of CorP remained ambiguous. Taking 

into account the high yield of COR A and the unexplained high levels of preCOR A, together 

with the decrease in yield after the corP deletion, we assumed that the mutant might lack 

sufficient self-resistance. Intriguingly, the aforementioned homologs identified by BLAST 

analysis were all found in BGCs of other known RNAP inhibitors. Furthermore, a CorP 

homolog was found upstream of the ripostatin BGC from Sorangium cellulosum So ce377 

which was not obviously involved in the biosynthesis44. Conseqeuntly, we hypothesized that 

the protein could function as the self-resistance protein in ripostatin, corallopyronin, 

myxopyronin, sorangicin and possibly other RNAP inhibitor BGCs. In order to evaluate this 

hypothesis, we first aimed to express corP in corallopyronin susceptible E. coli ∆TolC, as a 

similar approach was successfully applied in other studies (e.g. bengamide study45). An mx8 

integrase based expression plasmid with corP driven by the PnptII promoter was constructed 

(pUC18-zeo-mx8-nptII-corP, Table S3). The final construct as well as the empty control 

plasmid (pUC18-Zeo-mx8-MCS, Table S3) were transferred into E. coli ∆TolC.  Clones were 

selected on LB agar supplemented with zeocin and the COR A MIC was evaluated. Results 

revealed no difference between E. coli ∆TolC::pUC18-zeo-mx8-MCS and E. coli 

∆TolC::pUC18-zeo-mx8-nptII-corP, as both values were determined at 1 mg/L. The results 

showed that CorP does not confer resistance against COR A in E. coli ∆TolC, potentially 

because the myxobacterial protein is not functionally expressed in E. coli. Therefore, we 

further aimed to express CorP in the myxobacterial host M. xanthus DK1622. Previously 

constructed plasmids pUC18-zeo-mx8-nptII-corP and pUC18-Zeo-mx8-MCS were 

transferred into M. xanthus DK1622 and clones growing on the selection plates amended with 

zeocin were analyzed for correct chromosomal integration of the expression plasmids by PCR 
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(Fig. S2). Generated mutants M. xanthus DK1622::pUC18-zeo-mx8-nptII-corP and 

M. xanthus DK1622::pUC18-zeo-mx8-MCS were grown in presence of COR A and their 

MIC was determined at ~64 mg/L and ~4 mg/L, respectively, confirming that CorP confers 

resistance against corallopyronin in  M. xanthus DK1622. To provide additional evidence that 

CorP confers resistance to COR A in M. xanthus DK1622, we also evaluated the MIC of the 

CorP deletion mutant M. xanthus DK1622::pDPO-Mxn116-Pvan-TpaseΔcorP. The MIC was 

measured at ~4 mg/L which is the same value as measured for the control mutant harboring 

empty plasmid without CorP and for the wild type M. xanthus DK1622, providing solid 

evidence that CorP indeed mediates increased resistance to COR. 

With this new information available, we further investigated if co-expression of an additional 

CorP copy in the COR A producer mutant further increases COR A production. The pUC18-

zeo-mx8-nptII-corP plasmid was transferred into M. xanthus DK1622::pDPO-Mxn116-Pvan-

Tpase. The details on genotypic verification, cultivation and quantification are provided in 

Materials and Methods / Supplementary information. Quantification of COR A production 

revealed no difference between both mutants (~ 100 mg/L) indicating that co-expression of an 

additional corP copy does not increase the level of self-resistance and/or other bottlenecks in 

COR biosynthesis limit production levels. 

In order to determine if increased levels of CorP have a positive impact on COR resistance a 

compatible vector for co-expression of a second corP copy was constructed (pUC18-TetR-

mx9-nptII-corP; Table S3). The construct harbored corP driven by the PnptII and an mx9 phage 

integrase46 for integration in a different genomic locus than previously described for the mx8 

based construct. The plasmid was transferred into M. xanthus DK1622::pUC18-zeo-mx8-

nptII-corP and clones growing on the selection plates amended with zeocin and 

oxytetracycline were analyzed for correct chromosomal integration of the expression plasmid 

by PCR20. Finally, clone M. xanthus DK1622::pUC18-zeo-mx8-nptII-corP::pUC18-TetR-

mx9-nptII-corP was grown in presence of COR A and its MIC was evaluated using the 

standard protocol (see Supplementary information). Additional concentrations between 64 

mg/L and 128 mg/L (e.g. 73, 83 and 100 mg/L) were also evaluated. The MIC was 

determined at ~64 mg/L, the same as for the strain with a single expressed corP copy. This 

result shows that the expression of an additional corP copy does not further increase the self-

resistance to COR A in M. xanthus DK1622. The exact molecular basis of CorP conferred 

resistance to RNAP inhibitors remains to be determined in ongoing studies. 
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3.5 Conclusion 

One of the main aspects of this study was the modification of the corallopyronin heterologous 

production platform leading to significantly increased production of ~100 mg/L COR A and 

~160 mg/L preCOR A. Deletion of corO led to a strain generating preCOR A only at high 

production levels of 350 mg/L. Overexpression of the cytochrome P450 enzyme (CorO) did 

not result in stable conversion of the remaining preCOR A to COR A. However, this 

experiment lead to the discovery of a novel dihydroxylated derivative – oxyCOR A. Another 

new derivative COR D was detected after the deletion of corN, which also helped to redefine 

the corresponding protein as an ECH-like enzyme performing a dehydration reaction in trans 

during the chain elongation in western chain biosynthesis. In silico analysis of the CorL N-

terminal DH domain revealed a missing typical DH domain motif and showed some shared 

traits with DH* domains. This led us to hypothesize that this domain is responsible for the 

isomerization of the double bond from Δ24, 25 to Δ25, 27. Furthermore, deletion of corP, 

together with the MIC studies performed on the heterologous host and mutant strains, 

revealed the function of CorP to be a self-resistance protein. Interestingly, homologs of CorP 

were found in BGCs of several other RNAP inhibitors (e.g. myxopyronin, sorangicin, 

ripostatin). We assume that this type of protein represents an RNAP inhibitor specific self-

resistance mechanism in myxobacteria, which might in the future serve as a great tool in the 

identification of novel RNAP inhibitor encoding BGCs. The exact function of CorP in COR 

resistance is subject of further studies. 

The contributions to the elucidation of corallopyronin biosynthesis achieved in this study 

provide a better understanding of several biosynthetic steps and enable better control of COR 

production which will lead to even further increase of production yield in the future. 

Production optimization is currently of high priority in order to continue the ongoing 

evaluation as (pre)clinical candidate.   
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Table S1. List of primers used in this study. 

Primer name 
Sequence (5’3’) 
(restriction sites in bold, homology arms underlined) 

Restriction 
sites     

dpo-nptII-corO-F GATACACATATGGAGGAGTGTCACCATGAGTAGCC NdeI 
   
dpo-nptII-corO-R1 CTATGTATGCATGGACGCCTCGCTGAATC NsiI 
   
dpo-corP-F GATACACATATGTTGCTTGGGGAGATGTCATGACG NdeI 
   
dpo-corP-R CTATGTATGCATCCCACGCCGTCCATCAACTC NsiI 
   

dpo-corP-PstI-F GATACACTGCAGTGGACAGCAAGCGAACCGGAATTG PstI 
   
dpo-corP-PstI-R GATACACTGCAGCCCACGCCGTCCATCAACTC PstI 
   
dpo-ntpII-mxnM-F GATACACATATGGGAGAAGGACGGGCG NdeI 
   
dpo-mxnM-R CTATGTATGCATGGGTCGATCACGTCAGAC NsiI 
   
dpo-Pvan-mxnM-F GATACACATATGAGCGCTGAGACGGTCTTC NdeI 
   
dpo-ntpII-corM-F GATACACATATGGAAGGCGGGCGGACG NdeI 
   
dpo-ntpII-corM-R CTATGTATGCATCCTCAGCTCCCCGTCCAG NsiI 
   
dpo-Pvan-corM-F GATACACATATGATTGATCCGCGTTGG NdeI 
   
dpo-mx8-PacI-F GATACATTAATTAACCAAGGCAGAGTTGGTG PacI 
   
dpo-mx8-PciI-R GATACAACATGTCCCACTGCAAGCTACCTG PciI 
   

dpo-mx8-1 GGACGCAGGCTCCAAGTC  
   
dpo-mx8-2 GACTCGTGGACTGCAATTG  
   
dpo-mx8-3 GTCCTGAAGGCGACCGAG  
   
dpo-mx8-4 CACGATGCTTGCCAGTTG  
   
dpo-mx8-5 GTGGTGCGTCAGCAGATG  
   

dpo-CorM-F TAGAAAGCCAGTCCGCAG  
   
dpo-cor-TD1-R2 TGCTGGCCTTTTGCTCAC  
   
dpo-apra-corM-F GCTTCGCCGAAGGACCGGCCCACCGGAAAGGACGGGCGG

AGTTGACCTAGGCTCACGGTAACTGATGCC 
XmaJI 

   
dpo-apra-corM-R GACGCGTTGGATGCGGGAGACCATGGGAGCCCCTCAGCT

CCCCGTCCTAGGTCAGCCAATCGACTGGCGAGC 
XmaJI 

   
dpo-apra-corN-F CTCCAGCTCTTCCGTCAGGTCCTCCAGCCCTGGACGGGGA

GCTGACCTAGGCTCACGGTAACTGATGCC 
XmaJI 

   
dpo-apra-corN-R GAAGACCTCGGGTTCGTTCAAGGCCTGCCGTCCGCGCGG

GACGGCCCTAGGTCAGCCAATCGACTGGCGAGC 
XmaJI 

   
dpo-apra-corO-F CGGATGCAGTCGCTGTTGATGCACCGGCGCGTGCTGCGC

AACTGACCTAGGCTCACGGTAACTGATGCC 
XmaJI 
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dpo-apra-R TAAACGGGACGCCTCGCTGAATCCGGCGCGGCGTCCCCG

GCTTCGCCTAGGTCAGCCAATCGACTGGCGAGC 
XmaJI 

   
dpo-apra-orf1-F CCGGCCCCCGCCCGGAATGGCATCCACGAACGAGAGTCG

GCGTGACCTAGGCTCACGGTAACTGATGCC 
XmaJI 

   
dpo-apra-orf1-R CGCGGATCAATCACCGTCCGCCCGCCTTCGCTCCCACGCC

GTCCACCTAGGTCAGCCAATCGACTGGCGAGC 
XmaJI 

   
P5 TATCCGTTCGCGAGGAAG  
   
P6 TGCTGCGGATCCATGTTC  
   
P7 ATCCCGGAGACGCTGAAG  
   
P8 GCCTGCGTCGCTCTTCAC  
   
Mx8-attB-up2 GCGCACTGGACCATCACGTC  
   
Mx8-attP-down GGCTTGTGCCAGTCAACTGCG  
   
Mx8-attP-up2 CGACGGTGCCGACAAATAC  
   
Mx8-attB-down CGGATAGCTCAGCGGTAGAG  
   
dpo-puc-tet-F GGTTTTCCCAGTCACGAC  
   
dpo-mx9-corP-1 GCGGGGTGGCAAATGAGC  
   
dpo-mx9-corP-2 GACGGCCAGCTTGAACAG  
   

 
Table S2. Gene synthesis constructs obtained from ATG:biosynthetics GmbH 

Construct name Fragment size Description 

pUC57-TD1-cm 1031 bp PacI-HL-TD1-Bst1107I-cmR-Bst1107I-HR-PciI 
   
pUC57-kan-IR-Tpase 2684 bp PacI-HL-TD1-Bst1107I-kanR-IR-Tpase-Bst1107I-HR-PciI 
   
pUC57-Pvan-vanR-IR-
ampR-oriT 

3085 bp KpnI-HL-oriT-BglII-StuI-ampR-NruI-SalI-IR-KspAI-XhoI-
Pvan-NdeI-HR-PmeI 

   
pUC57-Pvan-corO 1459 bp PciI-Pvan-corO-NsiI 
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Table S3. Plasmids and expression constructs generated in this study. 
Plasmid name Construction details Features 

pDPO-mxn116-Cm kan
R
-tet

R cassette of pDPO-mxn116 replaced with 

1031 bp fragment from pUC57-TD1-cm by in 

vivo recombination.  

PnptII-mxnA-J-corKL-

corP-corM-O, ori2, 

sopA, sopB, sopC, 

repE, cm
R 

pDPO-mxn116-Cm-Pvan PnptII of pDPO-mxn116-Cm replaced with 3085 

bp fragment from pUC57-Pvan-vanR-IR-ampR-

oriT by in vivo recombination. 

Pvan-mxnA-J-corKL-

corP-corM-O, ori2, 

sopA, sopB, sopC, 

repE, cm
R, amp

R, oriT 

pDPO-mxn116-Pvan-Tpase cm
R of pDPO-mxn116-Cm-Pvan replaced with 

2684 bp fragment from pUC57-kan-IR-Tpase by 

in vivo recombination. 

Pvan-mxnA-J-corKL-

corP-corM-O, ori2, 

sopA, sopB, sopC, 

repE, cm
R, amp

R, 

oriT, tpase 

pDPO-Mxn116-Pvan-

TpaseΔcorM-apraR 

corM of pDPO-mxn116-Cm-Pvan-Tpase replaced 

with 1082  bp apra
R
 fragment amplified from 

pOJ4461 using primers dpo-apra-CorM-F/dpo-

apra-CorM-R, by in vivo recombination. 

Pvan-mxnA-J-corKL-

corP-corN-O, ori2, 

sopA, sopB, sopC, 

repE, cm
R, amp

R, 

oriT, tpase, apra
R 

pDPO-Mxn116-Pvan-

TpaseΔcorN-apraR 

corN of pDPO-mxn116-Cm-Pvan-Tpase replaced 

with 1082  bp apra
R
 fragment amplified from 

pOJ4461 using primers dpo-apra-CorM-F/dpo-

apra-CorM-R, by in vivo recombination. 

Pvan-mxnA-J-corKL-

corP-corM-corO, 

ori2, sopA, sopB, 

sopC, repE, cm
R, 

amp
R, oriT, tpase, 

apra
R 

pDPO-Mxn116-Pvan-

TpaseΔcorO-apraR 

corO of pDPO-mxn116-Cm-Pvan-Tpase replaced 

with 1082  bp apra
R
 fragment amplified from 

pOJ4461 using primers dpo-apra-CorM-F/dpo-

apra-CorM-R, by in vivo recombination. 

Pvan-mxnA-J-corKL-

corP-corM-N, ori2, 

sopA, sopB, sopC, 

repE, cm
R, amp

R, 

oriT, tpase, apra
R 

pDPO-Mxn116-Pvan-

TpaseΔcorN-O-apraR 

corN-O of pDPO-mxn116-Cm-Pvan-Tpase 

replaced with 1082  bp apra
R
 fragment amplified 

from pOJ4461 using primers dpo-apra-CorM-

F/dpo-apra-CorM-R, by in vivo recombination. 

Pvan-mxnA-J-corKL-

corP-corM, ori2, 

sopA, sopB, sopC, 

repE, cm
R, amp

R, 

oriT, tpase, apra
R 

pDPO-Mxn116-Pvan-

TpaseΔcorP-apraR 

corP of pDPO-mxn116-Cm-Pvan-Tpase replaced 

with 1082  bp apra
R
 fragment amplified from 

pOJ4461 using primers dpo-apra-CorM-F/dpo-

apra-CorM-R, by in vivo recombination. 

Pvan-mxnA-J-corKL-

corM-O, ori2, sopA, 

sopB, sopC, repE, 

cm
R, amp

R, oriT, 

tpase, apra
R 
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pDPO-Mxn116-Pvan-

TpaseΔcorM 

pDPO-Mxn116-Pvan-TpaseΔcorM-apraR 

hydrolyzed with XmaJI and re-ligated (to 

eliminate apra
R cassette). 

Pvan-mxnA-J-corKL-

corP-corN-O, ori2, 

sopA, sopB, sopC, 

repE, cm
R, amp

R, 

oriT, tpase 

pDPO-Mxn116-Pvan-

TpaseΔcorN 

pDPO-Mxn116-Pvan-TpaseΔcorN-apraR 

hydrolyzed with XmaJI and re-ligated (to 

eliminate apra
R cassette). 

Pvan-mxnA-J-corKL-

corP-corM-corO, 

ori2, sopA, sopB, 

sopC, repE, cm
R, 

amp
R, oriT, tpase 

pDPO-Mxn116-Pvan-

TpaseΔcorO 

pDPO-Mxn116-Pvan-TpaseΔcorO-apraR 

hydrolyzed with XmaJI and re-ligated (to 

eliminate apra
R cassette). 

Pvan-mxnA-J-corKL-

corP-corM-N, ori2, 

sopA, sopB, sopC, 

repE, cm
R, amp

R, 

oriT, tpase 

pDPO-Mxn116-Pvan-

TpaseΔcorN-O 

pDPO-Mxn116-Pvan-TpaseΔcorN-O-apraR 

hydrolyzed with XmaJI and re-ligated (to 

eliminate apra
R cassette). 

Pvan-mxnA-J-corKL-

corP-corM, ori2, 

sopA, sopB, sopC, 

repE, cm
R, amp

R, 

oriT, tpase 

pDPO-Mxn116-Pvan-

TpaseΔcorP 

pDPO-Mxn116-Pvan-TpaseΔcorP-apraR 

hydrolyzed with XmaJI and re-ligated (to 

eliminate apra
R cassette). 

Pvan-mxnA-J-corKL-

corM-O, ori2, sopA, 

sopB, sopC, repE, 

cm
R, amp

R, oriT, tpase 

pUC18-Zeo-mx8-MCS 3185 bp PacI-mx8-PciI PCR fragment amplified 

from M. xanthus DK1622 genomic DNA by dpo-

mx8-PacI-F/dpo-mx8-PciI-R primers, ligated into 

pUC18-Zeo-Hom-MCS hydrolyzed with the same 

enzymes. 

PnptII, MCS, pUC ori, 

mx8, zeo
R
 

pUC18-Zeo-mx8-nptII-corO 1426 bp NdeI-nptII-corO-NsiI PCR fragment 

amplified from pDPO-Mxn1162 by dpo-ntpII-

corO-F/dpo-ntpII-corO-R1 primers, ligated into 

pUC18-Zeo-Hom-MCS  hydrolyzed with the 

same enzymes. 

PnptII-corO, pUC ori, 

mx8, zeo
R 

pUC18-Zeo-mx8-Pvan-corO 1426 bp NdeI-Pvan-corO-NsiI PCR fragment 

amplified from pDPO-Mxn1162 by dpo-ntpII-

corO-F/dpo-ntpII-corO-R1 primers, ligated into 

pUC18-Zeo-Hom-MCS  hydrolyzed with the 

same enzymes. 

Pvan-corO, pUC ori, 

mx8, zeo
R 

pUC18-Zeo-mx8-nptII-corM 794 bp NdeI-nptII-corM-NsiI PCR fragment 

amplified from pDPO-Mxn1162 by dpo-ntpII-

PnptII-corM, pUC ori, 

mx8, zeo
R 
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corM-F/dpo-ntpII-corM-R primers, ligated into 

pUC18-Zeo-Hom-MCS  hydrolyzed with the 

same enzymes. 

pUC18-Zeo-mx8-Pvan-corM 776 bp NdeI-Pvan-corM-NsiI PCR fragment 

amplified from pDPO-Mxn1162 by dpo-Pvan-

corM-F/dpo-ntpII-corM-R primers, ligated into 

pUC18-Zeo-mx8-Pvan-corO hydrolyzed with the 

same enzymes. 

Pvan-corM, pUC ori, 

mx8, zeo
R 

pUC18-Zeo-mx8-nptII-mxnM 1038 bp NdeI-nptII-mxnM-NsiI PCR fragment 

amplified from pHSU-mxn432 by dpo-ntpII-

mxnM-F/dpo-mxnM-R primers, ligated into 

pUC18-Zeo-mx8-nptII-corO hydrolyzed with the 

same enzymes. 

PnptII-mxnM, pUC ori, 

mx8, zeo
R 

pUC18-Zeo-mx8-Pvan-mxnM 1014 bp NdeI-Pvan-corM-NsiI PCR fragment 

amplified from pHSU-mxn432 by dpo-Pvan-

corM-F/dpo-ntpII-corM-R primers, ligated into 

pUC18-Zeo-mx8-Pvan-corO hydrolyzed with the 

same enzymes. 

Pvan-mxnM, pUC ori, 

mx8, zeo
R 

pUC18-Zeo-mx8-nptII-corP 1776 bp NdeI-nptII-corP-NsiI PCR fragment 

amplified from pDPO-mxn116-Pvan-Tpase by 

dpo-corP-F/dpo-corP-R primers, ligated into 

pUC18-Zeo-mx8-nptII-corO hydrolyzed with 

hydrolyzed with the same enzymes. 

PnptII-corP, pUC ori, 

mx8, zeo
R 
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3.7.1 Construction of a transposon-based COR BGC expression construct 

Since the choice of known selection markers in M. xanthus was limited, the existing tet
R and 

kan
R genes were removed from the pDPO-mxn116 expression construct in order to later 

employ them in the downstream modification steps. Both genes were eliminated from the 

pDPO-mxn116 backbone in one in vivo, Red/ET recombination step. For this purpose a ~1 kb 

synthetic fragment pUC57-TD1-cm (Table S2), harboring TD1 terminator3, followed by a 

cm
R gene, was designed and obtained from a gene synthesis company. The fragment was 

flanked by 50 bp homology regions (HL and HR, see Fig. 1), homologous to the tet
R - kan

R 

cassette in the pDPO-mxn116 construct and by unique restriction sites PacI and PciI to allow 

its excision from the pGH vector in which it was supplied. After the excision the linear 

fragment could directly be used for in vivo recombination. By employing previously described 

E. coli GB05-red (chapter 3.3.2), Red/ET recombination strain, tet
R - kan

R cassette was 

successfully exchanged with cm
R gene, resulting in construction of pDPO-mxn116-cm 

construct (Fig. 1). 

To improve COR production by M. xanthus heterologous host, previously generated pDPO-

mxn116-cm construct was further modified to replace the constitutive PnptII with the Pvan 

promoter. To facilitate this process, a ~3 kb synthetic fragment pUC57-Pvan-vanR-IR-AmpR-

oriT (Table S2) was designed harboring Pvan promoter, amp
R gene, oriT and one inverted 

repeat (IR) element fragment, to be employed for genome integration, mediated by the 

transposase. The transposase and a second IR element, required for transposase-mediated 

chromosomal BGC integration4, was planned to be introduced in downstream modification 

steps. The fragment was flanked by suitable 50 bp homology regions and unique KpnI and 

PmeI R-sites, allowing its excision from the standard pGH vector in which it was supplied, in 

order to directly use the linear fragment for in vivo recombination. By performing one Red/ET 

recombination step, pDPO-mxn116-cm-Pvan construct was generated (Fig. 1), which had to 

be further modified in order to be able to integrate in M. xanthus genome, since the previous 

transfer cassette based on homologous recombination via tet
R was already deleted.  

In the last step a previously generated pDPO-mxn116-cm-Pvan construct was further 

modified by Red/ET to introduce the transposase gene on its backbone. To facilitate this 

process, a ~2,7 kb synthetic fragment pUC57-Kan-IR-Tpase was designed (Table S2), 

harboring TD1 terminator followed by a kan
R
 gene, IR and the transposase gene. As 

previously mentioned, a second IR element was included on this construct in order to allow 

chromosomal integration via transposition. The fragment was flanked by suitable 50 bp 

homologies and PacI and PciI R-sites, allowing its excision from the standard pGH vector in 
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which it was supplied. The resulting construct pDPO-mxn116-Pvan-Tpase now harbored all 

the necessary elements for heterologous expression in M. xanthus DK1622 heterologous host 

(Fig. 1). All synthetic fragments were provided by ATG:biosynthetics GmbH and are 

provided in Table S2. 

 

3.7.2 Deletion of corM, corN, corO, corN-O and corP biosynthetic genes from COR BGC 

expression construct by in vivo recombination in E. coli 

A 804 bp long apra
R gene was amplified from the pOJ4461 plasmid using Phusion 

polymerase, by suitable primer pairs: corM (dpo-apra-corM-F/dpo-apra-corM-R), corN (dpo-

apra-corN-F/dpo-apra-corN-R), corO (dpo-apra-corO-F/dpo-apra-R), corN-O (dpo-apra-

corN-F/dpo-apra-R) and corP (dpo-apra-orf1-F/dpo-apra-orf1-R). The apra
R gene was 

flanked by XmaJI R-sites and 45 bp long homology regions, homologous to the corresponding 

deletion region in the mxn/cor BGC, provided on the primers. By single in vivo recombination 

step in E. coli GB05-red, the corresponding gene was replaced by the apra
R gene and correct 

E. coli clones were selected on LB medium supplemented with apramycin. Resulting 

plasmids (pDPO-Mxn116-Pvan-TpaseΔcorM-apraR, pDPO-Mxn116-Pvan-TpaseΔcorN-

apraR, pDPO-Mxn116-Pvan-TpaseΔcorO-apraR, pDPO-Mxn116-Pvan-TpaseΔcorN-O-apraR, 

pDPO-Mxn116-Pvan-TpaseΔcorP-apraR) were hydrolyzed by XmaJI restriction endonuclease 

and re-ligated, to excise apra
R. Sequences of the final constructs (pDPO-Mxn116-Pvan-

TpaseΔcorM, pDPO-Mxn116-Pvan-TpaseΔcorN, pDPO-Mxn116-Pvan-TpaseΔcorO, pDPO-

Mxn116-Pvan-TpaseΔcorN-O and pDPO-Mxn116-Pvan-TpaseΔcorP) were confirmed by 

Illumina sequencing, before transformation to M. xanthus DK1622. All primer sequences are 

provided in the Table S1. 

 

3.7.3 Assembly of CorO, CorP, CorM and MxnM expression/co-expression constructs 

Phusion polymerase was used to amplify 1426 bp long nptII-corO fragment (dpo-nptII-corO-

F/dpo-nptII-corO-R1) from pDPO-mxn116 plasmid, 1776 bp long nptII-corP fragment (dpo-

corP-F/dpo-corP-R) from pDPO-mxn116-Pvan-Tpase template and 1921 bp long PnptII-corP 

fragment (dpo-corP-PstI-F/ dpo-corP-PstI-R) from pUC18-Zeo-mx8-nptII-corP. DreamTaq 

polymerase was used to amplify 1038 bp long nptII-mxnM fragment (dpo-ntpII-mxnM-F/dpo-

mxnM-R) and 1014 bp long Pvan-mxnM fragment (dpo-Pvan-mxnM-F/dpo-mxnM-R) from 

pHSU-Mxn43 template. The 794 bp nptII-corM fragment (dpo-ntpII-corM-F/dpo-ntpII-corM-

R) and 776 bp Pvan-corM fragment (dpo-Pvan-corM-F/dpo-ntpII-corM-R) were amplified by 
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Taq polymerase from pDPO-mxn116 template. Primer names used for PCR reactions are 

provided in the brackets. Additionally, 1459 bp long Pvan-corO fragment was ordered from a 

gene synthesis company (Table S2). To express those fragments in M. xanthus DK1622 

heterologous host, a suitable expression vector had to be constructed. The 3185 bp long mx8 

phage integrase gene was PCR amplified from M. xanthus DK1622 genomic DNA by dpo-

mx8-PacI-F/dpo-mx8-PciI-R primer pair, using Phusion polymerase. The fragment was 

hydrolyzed with PacI and PciI restriction endonucleases and stitched into a previously 

constructed expression vector pUC18-Zeo-Hom-MCS (Pogorevc et al., unpublished) to 

construct pUC18-Zeo-mx8-MCS expression construct. Sequence of the mx8 phage integrase 

gene was verified by Sanger sequencing using dpo-mx8-1, dpo-mx8-2, dpo-mx8-3, dpo-mx8-

4 and dpo-mx8-5 primers. The nptII-corO and Pvan-corO fragments were digested with 

suitable restriction endonucleases (NdeI/NsiI pair for nptII-corO and PciI/NsiI pair for Pvan-

corO) and stitched into pUC18-Zeo-mx8-MCS construct, resulting in construction of pUC18-

Zeo-mx8-nptII-corO and pUC18-Zeo-mx8-Pvan-corO expression plasmids. The pUC18-Zeo-

mx8-nptII-corO and pUC18-Zeo-mx8-Pvan-corO were further used to stitch nptII-corM and 

Pvan-corM fragments by NdeI/NsiI restriction endonucleases, yielding pUC18-Zeo-mx8-

nptII-corM and pUC18-Zeo-mx8-Pvan-corM expression plasmids respectively. The same 

method was used for introduction of nptII-mxnM and Pvan-mxnM fragments into pUC18-Zeo-

mx8-nptII-corO and pUC18-Zeo-mx8-Pvan-corO using NdeI/NsiI restriction endonucleases, 

yielding pUC18-Zeo-mx8-nptII-mxnM and pUC18-Zeo-mx8-Pvan-mxnM expression 

plasmids, respectively. The nptII-corP fragment was stitched into pUC18-Zeo-mx8-nptII-

corO using NdeI/NsiI restriction endonucleases, yielding pUC18-Zeo-mx8-nptII-corP 

expression plasmid. The PnptII-corP fragment was stitched into pUC18-TetR-mx9 (Schillinger 

and Pogorevc et al., unpublished) by PstI restriction endonuclease, yielding pUC18-TetR-

mx9-nptII-corP expression plasmid. Inserted gene fragments were verified by Sanger 

sequencing using primers dpo-mx9-corP-1, dpo-mx9-corP-2 and dpo-puc-tet-F in case of 

pUC18-TetR-mx9-nptII-corP and primers dpo-CorM-F and dpo-cor-TD1-R2 in all other cases. 

All primer sequences are provided in the Table S1. 

 

3.7.4 Corallopyronin MIC testing against M. xanthus DK1622, E. coli ∆TolC and 

mutants thereof 

M. xanthus strains were inoculated from cryo stocks and grown on CTT agar supplemented 

with suitable antibiotics at 30 °C. A patch of cells was scraped to inoculate 20 mL CTT 

medium supplemented with suitable antibiotic. Culture was grown at 30 °C and 180 rpm for 1 
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to 2 days until OD600 of around 1.0 was reached. Culture was diluted to OD600 0,1 before 

performing the MIC test. E. coli strains were inoculated from cryo stocks directly into 20 mL 

LB medium supplemented with suitable antibiotic. Culture was grown at 37 °C and 180 rpm. 

Overnight culture was diluted to OD600 0,01 before performing the MIC test. MIC test was 

performed in 96 well plates by adding 19.2 µL of COR A solution in ACN with concentration 

of 1 mg/mL into one well in the first row. Plate was left open under the laminar flow until the 

ACN evaporated, before addition of 150 µL of diluted culture to all wells. Additional 150 µL 

of diluted culture were added to all wells in the first row and mixed with multi pipet. After 

mixing 150 µL of culture was transferred to the next row of wells and again mixed by 

pipetting. Procedure was repeated until the last row after which the last 150 µL of culture 

were discarded. The plate was incubated at 30 °C with shaking at 180 rpm overnight in case 

of E. coli and 48 hours in case of M. xanthus, before MIC was determined by visual 

evaluation.  

 

3.7.5 Alignment of the conserved core motives of classical DH domains with the two 

DH* domains from the corallopyronin A BGC and several other DH* domains 

The conserved motives HxxxGxxxxP and DxxxQ/H are essential for the catalytic activity of a 

DH as a reductive enzyme5. These motives are usually mutated in DH* domains which are 

not responsible for the dehydration of the hydroxyl group but rather for the isomerization of 

the double bond5. 

In the N-terminal DH domain from CorL of the corallopyronin BGC the first core motif 

HxxxGxxxxP is still present, whereas the second motif lacks both conserved residues (Fig. 

S1), indicating that this DH is unable to exhibit dehydratase activity, but might act as “shifting 

DH”. 

 
CorL_DH*   ...HEVFGRPLFPT...  ...NGLLM...   

CorJ_DH*   ...HTVLGQRVLLG...  ...DGVIV...  

NspC_DH*   ...HTLLGDRVLLG...  ...NSAFL... 

RhiE_DH*   ...HQFNHRRILLG...  ...NSAFL...   

BaeR_DH*   ...HQFSGEPVLVG...  ...NSAYL...   

DifK_DH*   ...HLVFGKPALMG...  ...NSCYM...   

EryAII_DH  ...HVVGGRTLVPG...  ...DAVAQ...   

DH_Cons.   ...HXXXGXXXXPG...  ...DXXXQ/H... 

 
Figure S1. Alignment of DH and DH’ amino acid sequences. The conserved catalytic residues for DH domains 
are highlighted in red. The corresponding accession numbers are as follows: ADI59534.1 (CorL), ADI59532.1 
(CorJ), YP_003748161.1 (RhiE), ABS74065.1 (BaeR), CAJ57411.1 (DifK), AAV51821.1 (EryAII) and 
NspC_DH*6.  
DH_Cons. = consensus sequence normally found in standard DH domains5. 
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3.7.6 Standardized HPLC-MS method for sample analysis and application of principal 

component analysis 

HPLC-MS measurements for initial quantification of the samples as well as the application of 

principal component analysis have to be highly standardized to assure exact mass and 

retention time reproducibility. Measurements were made on a Dionex 

Ultimate 3000 RSLC system using a Waters BEH C18 column (50 x 2.1 mm, 1.7 µm) 

equipped with a Waters VanGuard BEH C18 1.7 µm guard column. Separation of 1 µl sample 

was achieved by a linear gradient from (A) H2O + 0.1% FA to (B) ACN + 0.1 % FA at a flow 

rate of 600 µL/min and a column temperature of 45 °C. Gradient conditions were as follows: 

0 – 0.5 min, 5% B; 0.5 – 18.5 min, 5 – 95% B; 18.5 – 20.5 min, 95% B; 20.5 – 21 min, 95 – 5% 

B; 21-22.5 min, 5% B. UV spectra were recorded by a DAD in the range from 200 to 600 nm. 

The LC flow was split to 75 µL/min before entering the Bruker Daltonics maXis 4G hr-qToF 

mass spectrometer using the Apollo II ESI source.  Mass spectra were acquired in centroid 

mode ranging from 150 – 2500 m/z at a 2 Hz full scan rate. Mass spectrometry source 

parameters were set to 500V as end plate offset; 4000 V as capillary voltage; nebulizer gas 

pressure 1 bar; dry gas flow of 5 L/min and a dry temperature of 200°C. Ion transfer and 

quadrupole settings were set to Funnel RF 350 Vpp; Multipole RF 400 Vpp as transfer 

settings and Ion energy of 5eV as well as a low mass cut of 300 m/z as Quadrupole settings. 

Collision cell was set to 5.0 eV and pre pulse storage time was set to 5 µs. Spectra acquisition 

rate was set to 2Hz. Calibration of the maXis4G qTOF spectrometer was achieved with 

sodium formate clusters before every injection to avoid mass drifts. All MS analyses were 

acquired in the presence of the lock masses C12H19F12N3O6P3, C18H19O6N3P3F2 and 

C24H19F36N3O6P3 which generate the [M+H]+ Ions of 622.028960, 922.009798 and 

1221.990638. The corresponding MS2 method operating in automatic precursor selection 

mode picks up the two most intense precursors per cycle, applies smart exclusion after five 

spectra and performs CID and MS/MS spectra acquisition time ramping. CID Energy was 

ramped from 35 eV for 500 m/z to 45 eV for 1000 m/z and 60 eV for 2000 m/z. MS full scan 

acquisition rate was set to 2Hz and MS/MS spectra acquisition rates were ramped from one to 

four Hz for precursor Ion intensities of 10kcts to 1000kcts. 

 

3.7.7 HPLC-MS method for quantification of (pre)Cor A production yields 

Detailed quantification of samples was performed on a Dionex Ultimate 3000 RSLC system 

using a BEH C18, 100 x 2.1 mm, 1.7 µm dp column equipped with a C18 precolumn (Waters, 
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Germany). Separation of a 1 µL sample was achieved by a linear gradient from (A) H2O + 0.1% 

FA to (B) ACN + 0.1% FA at a flow rate of 600 µL/min and 45 °C. The gradient was initiated 

by a 0.5 min isocratic step at 5% B, followed by an increase to 50% B in 1 min, to 65% B in 

6 min and to 98% B in 0.5 min. After a 1 min step at 98% B the system was re-equilibrated to 

the initial conditions (5% B). UV spectra were recorded by a DAD in the range from 200 to 

600 nm. For MS measurements on solariX XR (7T) FT-ICR mass spectrometer (Bruker 

Daltonics, Germany), the LC flow was split to 75 µL/min before entering the mass 

spectrometer using the Apollo ESI source. In the source region, the temperature was set to 

200 °C, the capillary voltage was 4500 V, the dry-gas flow was 4.0 L/min and the nebulizer 

was set to 1.1 bar. After the generated ions passed the quadrupole with a low cutoff at 150 

m/z they were trapped in the collision cell for 80 ms and finally transferred within 0.9 ms 

through the hexapole into the ICR cell. Captured ions were excited by applying a frequency 

sweep from 150 to 950 m/z and detected in broadband mode by acquiring a 184 ms transient. 

For quantification of COR A and preCOR A the peak areas of [M+H-H2O]+ 510.2850 m/z at 

5.85 min and [M+H]+ 512.2850 m/z at 8.98 min, respectively, were integrated and compared 

to a calibration curve obtained from serial dilutions of authentic COR A and preCOR A 

reference material covering the concentration range from 0.5-100 µg/mL (generated from 1 

mg/L stock solution in acetonitrile).  

 

3.7.8 Statistical data treatment using the principal component analysis  

To assay the influence of additional corO copy and identify possible differences between the 

M. xanthus DK1622 ΔmchA::pDPO-mxn116 mutant and the M. xanthus DK1622 

ΔmchA::pDPO-mxn116-nptII-corO mutant, 6 LC-HRMS measurements acquired with our 18 

min standard method on the UHPLC hyphenated maxis 4G spectrometer (Section 3.7.6) from 

extracts of three independent cultivations per bacterial strain were used for statistical data 

treatment. For preprocessing of MS data the molecular feature finder implemented in Bruker 

Compass Data Analysis 4.2 (Bruker, Bremen) was used with the compound detection 

parameters SN threshold 1; Correlation coefficient 0.9; minimum compound length 10 spectra 

and smoothing width of 3 spectra. Bucketing was done with Bruker Compass Profile Analysis 

2.1 (Bruker, Bremen) with advanced bucketing and window parameters of 30s and 15 ppm. 

Bucket value was log transformed to avoid under-evaluating low intensity signals in the 

presence of high intensity signals. The PCA t-Test function was used in order to separate 

medium derived MS features from the metabolome derived MS features, since the t-Test table 
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that can be exported from Bruker Compass Profile Analysis 2.1 (Bruker, Bremen) contains 

information upon how many blanks and how many bacterial extracts contain said feature. 

 

 

 
Figure S2. Genotypic verification of M. xanthus DK1622 heterologous expression strains. Genotypic 
verification of mxn/cor BGC (pDPO-mxn116-Pvan-Tpase) integration in M. xanthus DK1622 by transposition 
(A). Genotypic verification of corO integration in M. xanthus DK1622 ΔmchA::pDPO-mxn116 by the mx8 
phage integrase. The same method was used to verify all other construct integrations in mx8 attb1 site (B). 
Primer sets used for genotypic verification, their binding sites and amplicon sizes are illustrated. Nucleotide 
sequences of the primers used are listed in the table S1. 
 

3.7.9 Compound isolation and characterization 

3.7.9.1 Isolation of preCOR A 

Strain M. xanthus DK1622::pDPO-Mxn116-Pvan-TpaseΔcorO was grown in 6 L of M7/s6 

medium (3 x 2 L medium in 5 L conical flask) supplemented with kanamycin 50 µg/mL at 

180 rpm and 30 °C. Corallopyronin production was induced with 1 mM vanillate at the 

beginning of the cultivation. After 6 days of cultivation cultures were harvested by 

centrifugation at 8000 rpm, 4 °C for 15 min. Supernatant was extracted by liquid/liquid 

extraction with 4 L of EtOAc and pellet was extracted separately with 1L of MeOH. Extracts 

were dried on the rotary evaporator prior to purification on HPLC-MS. Most of the preCOR A 

was obtained from the cell pellet. Purification of preCOR A from this crude extract was 

carried out on a Dionex Ultimate 3000 SDLC low pressure gradient system on an Agilent 

Zorbax C8 250x10 mm 5 µm column with the eluents H2O + 0.1% FA as A and ACN + 0.1% 

FA as B, a flow rate of 5 mL/min and a column thermostated at 30 °C. Precorallopyronin A 
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can be detected by UV absorption at 312 nm. The gradient that starts with a plateau at 50% A 

for 3 minutes. Then A content is ramped to 5% A during 17 minutes and finally ramped to 95% 

A during 2 minutes. A content is kept stable at 95% for 1 minutes and then ramped back to 50% 

A during 30 seconds. The column is reequilibrated at 50% A for 3 minutes. Precorallopyronin 

A is obtained as weakly yellowish amorphous solid. 

 

3.7.9.2 NMR based characterization of preCOR A 

1H NMR, 13C NMR and 2D spectra were recorded at 700 MHz (1H)/175 MHz (13C) 

conducting an Avance III Ascend 700 spectrometer using a cryogenically cooled triple 

resonance probe (Bruker Biospin, Rheinstetten, Germany). Samples were dissolved in 

methanol-d4. Chemical shifts are reported in ppm relative to TMS, the solvent was used as the 

internal standard. 

 
Figure S3. Structure formula of preCOR A with atom numbering according to the NMR data. 
 

Table S4. List of all observed NMR correlations for preCOR A in methanol-d4. 
Carbon number δ 1H  

[ppm] 
Multiplicity, J 
[Hz] and proton 
number 

δ 13C 
[ppm] 

COSY correlations 
[ppm] 

HMBC correlations [ppm] 

2 - - 163.6 - - 

3 - - 102.2 - - 

4 - - n.d. - - 

5 6.11 s, 1H 100.6 2.67 38.9, 102.2, 163.6, 173,7 

6 - - 173.7 - - 

7 2.67 m, 1H 38.9 1.25 35.5, 38.9, 173.7 

8 1.25 d, 6.9, 3H 18.2 2.67 18.2, 35.5, 173.7 

9a 1.58 m, 1H 35.5 1.77, 2.02 18.2, 28.4, 38.9, 110.3, 173.0 

9b 1.77 m, 1H 35.5 1.58, 2.02 18.2, 28.4, 38.9, 110.3, 173.0 

10 2.02 m, 2H 28.4 1.58, 1.77, 5.04, 6.40 35.5, 39.9,  110.3, 125.9 

11 5.04 dt, 14.3; 7.2, 1H 110.3 2.02, 6.40 28.4,35.5, 125.9 

12 6.40 d, 14.3, 1H 125.9 2.02, 5.04 28.4, 35.5, 110.3, 156.6 

13 - - 156.6 - - 

14 3.66 s, 3H 52.5 - 156.6 

15 - - 198.4 - - 

16 - - 134.8 - - 

17 1.94 m, 3H 11.8 6.28, 7.15   

18 7.15 d, 11.5, 1H 137.8 1.94, 6.28 11.8, 121.9, 134.8, 151.0, 198.4 
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19 6.28 d, 11.5, 1H 121.9 1.82, 1.94, 2.20, 7.15 17.2, 41.4, 134.0, 137.8, 151.0 

20 - - 151.0 - - 

21 1.82 s, 3H 17.2 2.20, 6.28, 7.15 41.4, 121.9, 137.8, 151.0 

22 2.20 t, 7.6, 2H 41.4 1.58, 1.82, 6.28 17.2, 27.1,32.0, 41.4, 121.9, 151.0 

23 1.58 m, 2H 27.1 2.04, 2.20 32.0, 41.4, 136.2 

24 2.04 m, 2H 32.0   23.4, 27.4, 41.4, 124x, 136.2 

25 - - 136.2 - - 

26 1.70 m, 3H 23.4 2.04, 2.64, 5.15 17.9, 31.9, 124.5, 131.1, 136.2 

27 5.15 t, 7.2, 1H 124.5 1.70, 2.04, 2.64 23.4, 31.9, 131.1, 136.2 

28 2.64 m, 2H 31.9 1.71, 5.15, 5.38, 5.40 17.9, 23.4, 125.4, 131.1, 136.2 

29 5.38 m, 1H 131.1 1.62,2.64, 5.40 17.9, 31.9, 125.4 

30 5.40 m, 1H 125.4 1.62, 2.64, 5.38 17.9, 31.9, 131.1 

31 1.62 d, 5.2, 3H 17.9 2.64, 5.38, 5.40 31.9, 125.4, 131.1 

 

3.7.9.3 Isolation of COR D 

Strain M. xanthus DK1622::pDPO-Mxn116-Pvan-TpaseΔcorN was grown in 6 L of M7/s6 

medium (3 x 2 L medium in 5 L conical flask) supplemented with kanamycin 50 µg/mL at 

180 rpm and 30 °C. Corallopyronin production was induced with 1 mM vanillate at the 

beginning of the cultivation. After 6 days of cultivation cultures were harvested by 

centrifugation at 8000 rpm, 4 °C for 15 min and supernatant was extracted by liquid/liquid 

extraction with 4 L of EtOAc. Extracts were dried on the rotary evaporator prior to 

purification on HPLC-MS. Purification of corallopyronin D (Cor D) was carried out on a 

Waters preparative SFC system, equipped with a Thar fluid delivery module, 2767  sample  

manager, an ABPR 20, a GLS system featuring a 515 GLS pump, a column oven 

thermostated to 45 °C and  a  2998  photodiode  array  detector  coupled  to  a Waters Acquity 

QDA mass analyzer operated with a 515 Make up pump. Autopurification is done by setting 

the fraction collection trigger mass to 528.3 corresponding to Corallopyronin D [M+H]+. 

QDA probe temperature is set to 600 °C, Cone voltage is set to 25 V while spray voltage was 

set to 1.75 kV. Separation was carried out on a Waters Torus 2EP 250x19mm 5µm column 

using MeOH as co solvent and a flow rate of 15 mL/min. GLS solvent was Methanol and 

make up solvent 80/20 Methanol/Water + 0.2% formic acid. Separation started by keeping 5% 

co solvent for 1 minute followed by a co solvent ramp to 55% during 10.5 minutes. Co 

solvent concentration is subsequently kept at 55% during 1 minute. Co solvent concentration 

is then ramped back to initial conditions during 30s and the column is reequilibrated for 1 

minute prior to the next injection. Further purification is done using a Dionex Ultimate 3000 

SDLC low pressure gradient system on a Agilent Zorbax C8 250x10 mm 5 µm column with 

the eluents H2O + 0.1% FA as A and ACN + 0.1% FA as B, a flow rate of 5 mL/min and a 
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column thermostated at 30 °C. Corallopyronin D can be detected by UV absorption at 312 nm. 

The gradient that starts with a plateau at 60% A for 3 minutes. Then A content is ramped to 

20% A during 23 minutes and finally ramped to 95% A during 2 minutes. A content is kept 

stable at 95% for 2 minutes and then ramped back to 60% A during 30 seconds. The column 

is reequilibrated at 60% A for 3 minutes. Corallopyronin D (COR D) is obtained as weakly 

yellowish amorphous solid. 

 

3.7.9.4 NMR based characterization of COR D 

1H NMR, 13C NMR and 2D spectra were recorded at 500 MHz (1H)/125 MHz (13C) 

conducting an Avance III Ultrashield 500 spectrometer using a cryogenically cooled triple 

resonance probe (Bruker Biospin, Rheinstetten, Germany). Samples were dissolved in 

methanol-d4. Chemical shifts are reported in ppm relative to TMS, the solvent was used as the 

internal standard. 

 
Figure S4. Structure formula of COR D with atom numbering according to the NMR data. 
 

Table S5. List of all observed NMR correlations for COR D in methanol-d4. 

Carbon 
number 

δ 1H  
[ppm] 

Multiplicity, J [Hz] 
and proton number 

δ 13C [ppm] COSY correlations 
[ppm] 

HMBC correlations [ppm] 

2 - - 141.3 - - 

3 - - 102.3 - - 

4 - - 174.5 - - 

5 6.09 s, 1H 101.0 - 39.1, 102.3, 141.3, 173.5,174.5, 198.8 

6 - - 173.5 - - 

7 2.67 m, 1H 39.1 1.25, 1.58, 1.75 18.3, 28.4, 35.3, 101.0, 173.5 

8 1.25 d, 6.9, 3H 18.3 2.67 35.3, 39.1, 173.5 

9a 1.58 m, 1H 35.3 1.75, 2.02, 2.67 18.3, 28.4, 39.1, 110.5, 173.5 

9b 1.75 m, 1H 35.3 1.58, 2.02, 2.67 18.3, 28.4, 39.1, 110.5, 173.5 

10 2.02 m, 2H 28.4 1.58, 1.75, 5.05 35.5, 39.1, 110.5, 125.8 

11 5.05 dt, 14.4; 7.2, 1H 110.5 2.02, 6.39 28.4, 35.3, 125.8 

12 6.39 d, 14.4, 1H 125.8 5.05, 2.02 28.4,110.5, 156.9 

13 - - 156.9 - - 

14 3.66 s, 3H 52.5 - 156.9 

15 - - 198.8 - - 

16 - - 135.4 - - 
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3.7.9.5 Isolation of oxyCOR A 

Strain M. xanthus DK1622::pDPO-Mxn116-Pvan-TpaseΔcorN was grown in 6 L of M7/s6 

medium (3 x 2 L medium in 5 L conical flask) supplemented with kanamycin 50 µg/mL at 

180 rpm and 30 °C. Corallopyronin production was induced with 1 mM vanillate at the 

beginning of the cultivation. After 6 days of cultivation cultures were harvested by 

centrifugation at 8000 rpm, 4 °C for 15 min and supernatant was extracted by liquid/liquid 

extraction with 4 L of EtOAc. Extracts were dried on the rotary evaporator prior to 

purification on HPLC-MS. Purification  was  carried  out  on  a  Waters Autopurifier  

(Eschborn,  Germany)  high  pressure gradient system, equipped with 2545 binary gradient 

module, SFO system fluidics organizer, 2767  sample  manager and  a  2998  photodiode  

array  detector  coupled  to  a  3100  single quadrupole mass spectrometer operated in positive 

ion mode. Source and voltage settings for the MS were as follows: mass range, m/z 300 - 

1000; scan duration, 1 s; points per Dalton, 4; capillary voltage, 3.5 kV; cone voltage, 30 V; 

extractor voltage 3 V; RF lens, 0.1 V; source temperature 150 C, desolvation temperature, 250 

C; desolvation gas flow, 400 L/hr; cone gas flow, 50 L/hr; ion counting threshold, 30. 

Autopurification is done by setting time dependent fraction collection on the 2767 sample 

manager. Separation was carried out on Waters Xbridge BEH C18 150x20 mm column using 

MeOH + 0.1% FA as B and H2O + 0.1% FA as A with a flow rate of 25 mL/min. Separation 

is started with a plateau at 55% A for 2 minutes followed by a ramp to 35% A during 11 

minutes and then to 5% A during 1 minute. The A content is kept at 5% A for 2 minutes. The 

17 1.95 m, 3H 11.9 7.17 135.4, 137.6,198.8 

18 7.17 d, 11.5, 1H 137.6 1.95, 6.33 11.9, 124.2, 135.4, 148.1, 198.8 

19 6.33 d, 11.5, 1H 124.2 1.85, 7.17 17.7, 49.4, 137.6, 148.1 

20 - - 148.1 - - 

21 1.85 s, 3H 17.7 2.25, 2.33, 6.33 49.4, 69.4, 124.2, 137.6 148.1 

22a 2.25 m, 1H 49.4 2.33, 3.93 17.7, 40.9, 49.4, 69.4, 124.2, 148.2 

22b 2.33 m, 1H 49.4 2.25, 3.93 17.7, 40.9, 49.4, 69.4, 124.2, 148.2 

23 3.93 m, 1H 69.4 2.22, 2.25, 3.33 40.9, 49.1, 133.7, 148.1 

24 2.22 t, 8.1, 2H 40.9 3.93 24.1, 49.4, 69.4, 126.7, 133.7 

25 - - 133.7 - - 

26 1.75 m, 3H 24.1 2.7, 5.25 40.9, 69.4, 126.7, 131.0, 133.7 

27 5.25 t, 7.3, 1H 126.7 1.75, 2.7 24.1, 32.1, 40.9, 131.0, 133.7 

28 2.70 m, 2H 32.1 1.75, 5.25, 5.38 17.8, 125.8, 126.7, 131.0, 133.7 

29 5.39 m, 1H 131.0 1.62, 2.7, 5.41 17.8, 32.1, 125.8 

30 5.41 m, 1H 125.8 1.62, 2.7, 5.39 17.8, 32.1, 131.0 

31 1.62 d, 6.2, 3H 17.9 2.7 , 5.39, 5.41 32.2, 125.8, 131.0 
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A content is ramped back to starting conditions during 30 seconds and the column is re 

equilibrated for 5 minutes. Oxycorallopyronin A (oxyCOR A) is obtained as slightly 

yellowish amorphous solid. 

 

3.7.9.6 NMR based characterization of oxyCOR A 

1H NMR, 13C NMR and 2D spectra were recorded at 500 MHz (1H)/125 MHz (13C) 

conducting an Avance III Ultrashield 500 spectrometer using a cryogenically cooled triple 

resonance probe (Bruker Biospin, Rheinstetten, Germany). Samples were dissolved in 

methanol-d4. Chemical shifts are reported in ppm relative to TMS, the solvent was used as the 

internal standard. 

 
Figure S5. Structure formula of oxyCOR A with atom numbering according to the NMR data. 
 

Table S6. List of all observed NMR correlations for oxyCOR A in methanol-d4. 
Carbon 
number 

δ 1H  
[ppm] 

Multiplicity, J [Hz] 
and proton number 

δ 13C [ppm] COSY correlations 
[ppm] 

HMBC correlations [ppm] 

2 - - 149.9 - - 

3 - - 102.3 - - 

4 - - 179.2 - - 

5 5.81 s, 1H 105.8 - 38.5, 102.3, 169.6, 179.2 

6 - - 169.9 - - 

7 2.56 m, 1H 38.5 1.22, 1.55, 1.74 18.5, 28.4, 35.7, 169.6 

8 1.22 d, 7.0, 3H 18.5 2.56 35.7, 38.5, 169.6 

9a 1.55 m, 1H 35.7 1.74, 2.01, 2.56 18.5, 28.4, 38.5, 110.8, 169.9 

9b 1.74 m, 1H 35.7 1.55, 2.01, 2.56, 5.34 18.5, 28.4, 38.5, 110.8, 169.9 

10 2.01 m, 2H 28.4 1.55, 1.74, 5.07 35.7, 110.8, 125.5 

11 5.07 dt, 13.9; 7.2, 1H 110.8 2.01, 6.39 28.3, 35.7, 125.5 

12 6.39 d, 13.9, 1H 125.5 5.08, 2.01 28.3, 110.8, 156.6 

13 - - 156.6 - - 

14 3.66 s, 3H 52.3 - 156.6 

15 - - 200.4 - - 

16 - - 135.9 - - 

17 1.93 m, 3H 11.51 7.31 135.9, 137.8, 200.4 

18 7.33 d, 12.0, 1H 137.8 1.93, 6.32 11.51, 136.1, 171.2, 200.4 

19 6.34 d, 12.0, 1H 124.5 7.33, 2.27,1.83 17.3, 45.5, 136.1, 137.8 

20 - - 146.5 - - 

21 1.83 s, 3H 17.3 2.27, 2.11, 3.76, 6.33 45.5, 124.5, 146.5, 151.1 
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22a 2.27 m, 1H 45.5 2.11, 3.76,6.34 17.3, 72.6, 124.5, 146.2 

22b 2.11 m, 1H 45.5 2.27, 3.76, 6.34 17.3, 72.6, 73.9, 124.5, 146.2 

23 3.76 m, 1H 72.6 4.30, 2.11 73.9, 146.2 

24 4.3  d, 7.5, 1H 73.9 3.76 18.7, 45.5, 73.9, 128.3, 136.2 

25 - - 136.2 - - 

26 1.72 m, 3H 18.7 5.34 73.9, 128.3, 130.3, 136.2 

27 5.34 t, 7.6, 1H 128.3 1.72, 2.76 73.9, 18.7 

28 2.76 m, 2H 31.4 5.34, 5.39, 5.44 17.6, 125.8, 128.3, 130.3, 136.2 

29 5.39 m, 1H 130.3 1.65, 2.76, 5.44  17.6, 31.4, 126.1, 128.3 

30 5.44 m, 1H 126.1 1.65, 5.39 17.6, 31.4, 128.3, 130.3 

31 1.65 m, 3H 17.6 2.76, 5.44, 5.39 130.3, 126.1 

 

3.7.10 Investigation of the stereochemistry of COR D and oxyCOR A 

3.7.10.1 In silico evaluation of the ketoreductase stereochemistry 

The additional hydroxyl group present in COR D and oxyCOR A is originates from ß-

ketoreduction by the ketoreductase (KR) domain from module 4. The stereochemistry of the 

resulting OH group at C-23 depends on the type of the KR domain. The KR domains can be 

grouped in different types based on the specific core motifs present in the sequence7. The 

most obvious fingerprint to classify KR is the presence or absence of the LDD motif, in 

particular the presence of the second aspartate residue8. The LDD motif is absent in 

CorL_KR_M4’ (Fig. S6) which indicates the A type KR. The A type KRs should result in S 

alcohol stereochemistry, which is in agreement with the prediction from a software tool 

developed by Kitsche and Kalesse (https://akitsche.shinyapps.io/profileHMM_App/)9. The S 

configuration of the OH group at C-23 has also been experimentally proven below. 

 
Figure S6. Alignment of important KR motifs. The alignment is reproduced from the original alignment by 
Keatinge-Clay with example sequences for two different type A and type B KRs7. The LDD motif, typically 
found in B type KRs, is highlighted in green. 
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3.7.10.2 Experimental evidence for an S,S-diol configuration in oxyCOR A 

The stereochemistry of the hydroxyl group in COR A has already been successfully 

determined to be R- configured 10. 

 
Figure S7. Structure formula of R-corallopyronin A. 
 

In oxyCOR A the second OH group forms a vicinal diol together with the first OH group and 

therefore one can apply the coupling constant rules for vicinal diols. As vicinal diols form a 

strong hydrogen bond between the two OH their conformation is rather fixed via a hydrogen 

bond. This leads to the special case that the meso form of butane-2,3-diol has a much smaller 

coupling constant of about 3.5 Hz than the 6.8 Hz in the corresponding S,S or R,R isomers11. 

As we know from above, the configuration of the OH also present in COR A has to be S 

(inverted by IUPAC rules through the introduction of the second OH) while the configuration 

of the second hydroxyl group is still unknown. We therefore have the possibility of a pseudo – 

meso or a pseudo S,S arrangement. 

 

 
Figure S8. Pseudo S,S form of oxyCOR A. 
 

 
Figure S9. Pseudo meso form of oxyCOR A. 
 

As the coupling constant of the two hydrogen atoms in this vicinal diol system equals 7.47 in 

methanol-d4 one can safely assume the stereochemistry of the oxyCOR A diol to be S,S. 

Since the KR that creates this OH group is the same that creates the OH group in COR D and 

KR domains are enantioselective, one can assume COR D to have the OH group on the same 

molecule face (which in this case is R-configured as the second OH group is missing). 
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Figure S10. R-form of COR D. 
 

3.7.11 1D and 2D NMR spectra 

3.7.11.1 NMR spectra of preCOR A 

 
Figure S11. 1H NMR spectrum of preCOR A in methanol-d4. 
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 Figure 12. 1H NMR spectrum of preCOR A in methanol-d4. 

 
Figure S13. HSQC NMR spectrum of preCOR A in methanol-d4. 
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Figure S14. HMBC NMR spectrum of preCOR A in methanol-d4. 
 

3.7.11.2 NMR spectra of COR D 

 
Figure S15. 1H NMR spectrum of COR D in methanol-d4. 
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Figure S16. COSY NMR spectrum of COR D in methanol-d4. 
 

 
Figure S17. HSQC NMR spectrum of COR D in methanol-d4. 
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Figure S18. HMBC NMR spectrum of COR D in methanol-d4. 
 

3.7.11.3 NMR spectra of oxyCOR A 

 
Figure S19. 1H NMR spectrum of oxyCOR A in methanol-d4. 
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Figure S20. COSY NMR spectrum of oxyCOR A in methanol-d4. 

 

Figure S21. HSQC NMR spectrum of oxyCOR A in methanol-d4. 



124 | Production optimization and biosynthesis revision of corallopyronin A 
 

 

Figure S22. HMBC NMR spectrum of oxyCOR A in methanol-d4. 
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4 Biosynthesis and heterologous production of argyrins 

4.1 Abstract 

Argyrins represent a family of cyclic octapeptides exhibiting promising antimicrobial, 

antitumorigenic and immunosuppressant activities. They derive from a nonribosomal peptide 

synthetase pathway, which was identified and characterized in this study from the 

myxobacterial producer strain Cystobacter sp. SBCb004. Using the native biosynthetic gene 

cluster (BGC) sequence as template synthetic BGC versions were designed and assembled 

from gene synthesis fragments. A heterologous expression system was established after 

chromosomal deletion of a well-expressed lipopeptide pathway from the host strain 

Myxococcus xanthus DK1622. Different approaches were applied to engineer and improve 

heterologous argyrin production, which was finally increased to 160 mg/l, around 20-fold 

higher yields compared to the native producer. The optimized production system provides a 

versatile platform for future supply of argyrins and novel derivatives thereof.    
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4.2 Introduction               

Microbial natural products have historically been proven as invaluable source for the 

development of therapeutic agents, especially in the field of anti-infective research1,2. They 

possess exceptional molecular diversity that cannot be matched by synthetic libraries of small 

molecules and exhibit a wide variety of biological activities3,4. A prolific source for novel 

natural products are myxobacteria, δ-proteobacteria that are mostly soil-dwelling and can be 

found in various habitats5,6. Although the number of myxobacterial species known today is 

still limited7,8, numerous highly bioactive compounds have been already isolated9–11. 

Currently, one drug derived from a myxobacterial product, ixabepilone, has been approved for 

clinical use 12,13, and several other compounds are being evaluated in preclinical studies due to 

their promising mode of action14–18. These also include the argyrins produced from 

Archangium and Cystobacter sp.
19,20, which are also known from actinomycetes as Antibiotics 

A2145921,22.  

Argyrins represent a family of cyclic octapeptides, for which eight derivatives, argyrin A-H, 

have been elucidated so far20. Initial bioactivity studies characterized argyrins as potent 

immunosuppressants, which also inhibit the growth of mammalian cell cultures and show 

selective antimicrobial activity by inhibition of bacterial protein synthesis19,22. More recently 

it was shown that argyrins target the elongation factor G (EF-G) in bacteria and its closest 

homologue, the mitochondrial elongation factor (EF-G1), in yeast and mammalian cells23,24. 

Elongation factor G is also inhibited by the clinically used antibiotic fusidic acid, however, 

argyrin B binds to EF-G at a different site revealing a new mode of protein synthesis 

inhibition23. Therefore, and considering the intriguing antibacterial spectrum23,24,19,25, which 

e.g. includes modest activity against the Gram-negative pathogen Pseudomonas aeruginosa, 

argyrins represent promising tool compounds for the development of novel antibiotics. In 

addition, argyrins are under investigation due to their immunosuppressive and antitumorigenic 

activities. Argyrin A was described to induce apoptosis and block angiogenesis by preventing 

the destruction of the cyclin kinase inhibitor p27kip1 through proteasome inhibition26,27. 

Continuing structure-activity-relation studies identified argyrin F as most promising 

derivative for development of an antitumor drug28, which was further characterized by in vivo 

studies showing that argyrin F treatment might be useful as an additional therapy for 

pancreatic adenocarcinoma18.  

Most studies on elucidation of the biological activity of argyrins were pursued with the major 

natural derivatives argyrin A and B, whereat argyrin F, for example, represents a very minor 
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product in the native producer strain Archangium gephyra Ar808219. Although total synthesis 

approaches have been already developed for generation of argyrins and novel derivatives28–30, 

the establishment of efficient and cost-effective supply routes is highly demanded for further 

investigation and development of this promising compound class. Argyrins biosynthetically 

derive from amino acids and were assumed to be synthesized by a nonribosomal peptide 

synthetase (NRPS) system. NRPS represent large multifunctional megasynthetases involved 

in the assembly of numerous structurally diverse compounds among them several marketed 

drugs, e.g. penicillin, vancomycin, cyclosporin31,32. The corresponding genes for production 

of a particular compound family are usually clustered within the chromosome of the microbial 

producer strain. In this study, we first aimed to elucidate argyrin biosynthesis by identification 

and analysis of the corresponding biosynthetic gene cluster (BGC). Next we envisaged the 

establishment of a versatile microbial production platform to facilitate future exploitation of 

argyrins and novel derivatives thereof. As genetic engineering of the native argyrin producer 

strains is difficult we intended to heterologously express the arg BGC in a derivative of the 

myxobacterial model strain Myxococcus xanthus, which turned out to be a suitable host for 

expression of other natural product pathways from myxobacteria in the past33. Synthetic 

biology approaches were applied to design and construct different synthetic versions of the 

argyrin BGC based on synthetic DNA and to engineer the argyrin production spectrum. 

 

4.3 Results and Discussion    

4.3.1 Identification and characterization of the argyrin biosynthetic pathway   

To identify the argyrin biosynthetic gene cluster (arg BGC) genome sequence data of 

Cystobacter sp. SBCb00434, a characterized argyrin producer from our myxobacterial strain 

collection, were analyzed. Using bioinformatics tools for detection of nonribosomal peptide 

synthetase (NRPS) encoding genes35,36 a BGC encoding an expected octamodular NRPS 

assembly line was identified. The putative arg BGC is about 30 kb in size and consists of five 

genes, arg1-5 (Fig. 1). Besides the two NRPS subunits Arg2 and Arg3, the gene products 

include three putative modifying enzymes: a radical SAM-dependent methyltransferase 

(Arg1), an O-methyltransferase (Arg4) and a tryptophan 2,3-dioxygenase (Arg5) (Table S1). 

To verify the involvement of the identified BGC in argyrin biosynthesis arg3 from 

Cystobacter sp. SBCb004 was inactivated by integration of a suicide plasmid, whereby 

production of argyrins was abolished (Fig. S2/S3).  
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Fig. 1. Argyrin BGC, the encoded NRPS assembly line and corresponding products. The BGC is around 30 kb in 
size and comprises five genes (shown as arrows; Table S1). The NRPS assembly line consists of two subunits 
harboring eight modules. Catalytic domains are illustrated as circles and numbered according to module order. 
Domain abbreviations: A, adenylation domain; CP, carrier protein domain (also known as peptidyl carrier 
protein (PCP) or thiolation (T) domain); E, epimerization domain; MT, methyltransferase domain; Cy (=Cyc), 
heterocyclization domain; Ox, oxidation domain; TE, thioesterase domain. Argyrins A-H were described 
previously20, argyrins I and J were isolated and characterized in this study (Fig. S7-S8; Tables S6/S7). 
 

Based on the NRPS domain arrangement and predicted substrate specificities of the 

adenylation (A) domains (Table S2) it was concluded that argyrin biosynthesis is initiated at 

amino acid residue R1 (D-alanine or D-α-aminobutyrate; Fig. 1). C-terminal elongation with 

seven additional amino acids yields an octapeptide chain that is finally released from the 

NRPS megasynthetase by thioesterase (TE)-mediated macrolactamization. The structural 

diversity of the natural argyrin derivatives characterized so far, argyrin A-H (Fig. 1;20) results 

from different amino acids implemented by modules 1 and 4 as well as different modification 

stages at the tryptophan residue incorporated by module 7. The latter is assumed to be C-

methylated via a radical mechanism by Arg1 (R3 = CH3) and oxygenated by Arg5 followed 

by Arg4-mediated O-methylation (R4 = OCH3). These tailoring steps probably occur after 

peptide core assembly, however, transformations at an earlier stage of the biosynthesis cannot 
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be excluded based on current data. Argyrins C and D feature a complete tryptophan 

substitution pattern (R3 = CH3, R4 = OCH3), whereas the peptide core from argyrin E is not 

altered in these positions (R3, R4 = H). All other natural argyrin derivatives known so far 

harbor a partially modified tryptophan residue (R4 = H, R3 = OCH3) indicating that radical 

C-methylation represents a bottleneck in the evaluated producer strains under the applied 

cultivation conditions.  

In addition to the tryptophan derivative, argyrins harbor several non-proteinogenic amino acid 

building blocks including α-aminobutyrate (Abu), dehydroalanine (Dha) as well as a thiazole 

unit that are also known from other NRPS biosynthesis pathways37. Thiazole rings are built 

after peptide chain elongation with cysteine via heterocyclization and subsequent oxidation38, 

the required heterocyclization (Cyc; Fig. S1) and oxidation (Ox) domains could be identified 

in module 5 of the argyrin megasynthetase. Dehydroalanine units are less common in NRPS 

products, and are often further converted during the biosynthesis through inter- or 

intramolecular Michael addition37,39. As recently shown for nocardicin they can be generated 

from thioester-bound seryl residues on the NRPS assembly line in cis
40, which might be a 

possible scenario for argyrin biosynthesis as bioinformatics analysis of the arg BGC and 

flanking region did not point to candidate auxiliary enzymes known from other NRPS 

pathways (e.g. viomycin41, staphyloferrin42), or from posttranslational modifications in 

ribosomal peptide biosynthesis43. A feeding experiment with Cystobacter sp. SBCb004 

confirmed the biosynthetic origin of the argyrin Dha unit from serine (Fig. S4), which 

corresponds with the serine substrate specificity predicted for the A domain from module 2 

(Table S2). However, similar to other examples for which Dha unit biosynthesis remains 

elusive (e.g. bleomycin44 the characteristic core motif described for the downstream 

condensation (C) domain in nocardicin biosynthesis40 was not identified in the argyrin 

megasynthetase. Phylogenetic C domain analysis revealed that some examples of C domains 

from α,β-dehydro amino acid forming pathways, including the C domain from module 3 of 

the argyrin NRPS, represent a distinct new clade besides the six C domain subtypes 

distinguished by Rausch et al.45 (Fig. S1). This indicates that the module 3 C domain is 

involved in Dha unit generation when processing the seryl-dipeptide intermediate from 

module 2. In contrast to the Dha and thiazole units, which are present in all natural argyrin 

derivatives characterized so far, the Abu unit (R1 = CH2CH3) contributes to the structural 

diversity of argyrins. In order to confirm that this unit originates from activation and 

incorporation of Abu by module 1 instead of L-alanine (R1 = CH3) that is subsequently 

methylated during biosynthesis (e.g. by the radical SAM-dependent methyltransferase Arg1), 
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a feeding experiment with Cystobacter sp. SBCb004 was performed. As isotopically labelled 

Abu was not available a metabolic precursor, L-threonine-13C4,
15N, was used46, which indeed 

resulted in an argyrin B labelling pattern expected for Abu incorporation (Fig. S5). Due to the 

presence of an epimerization (E) domain in the first NRPS module and a downstream D-

specific C domain (DCL-type according to Rausch et al.45; Fig. S1) D-configured Abu and 

alanine units are finally incorporated into the argyrin peptide core.  

The alanine (R2 = CH3) and serine (R2 = CH2OH) units incorporated by module 4 also exhibit 

D-configuration in the final argyrin derivatives. According to the argyrins known so far, 

alanine seems to be the preferred substrate, which correlates with the in silico prediction of 

the A4 substrate specificity (Table S2), whereas serine and glycine (R2 = H) were only 

observed in minor derivatives. However, in contrast to the first module, module 4 does not 

harbor an E domain for generation of D-configured intermediates. According to textbook 

NRPS biochemistry D-configured building blocks can also result from the presence of a dual 

C/E domain, e.g. as discovered for the arthrofactin megasynthetase47, or from direct 

incorporation of D-amino acids by gate-keeping A domains, e.g. as observed for 

cyclosporin48,49, which depends on sufficient metabolic supply of D-amino acids (D-alanine 

and D-serine for argyrin biosynthesis) as well as the presence of a DCL-type domain 

processing D-configured donor substrates. Both scenarios require downstream C domains 

generating and/or processing D-configured amino acids. Bioinformatics analysis according to 

Rausch et al.45 did neither lead to the identification of dual C/E-type nor DCL-type domains in 

downstream modules of the argyrin NRPS (Fig. S1). The immediately downstream module 5 

installs a thiazole unit and its N-terminal domain (Cy5) groups with Cyc domains in the 

applied phylogenetic analysis approach. It might be possible that this domain harbors a donor 

site accepting D-configured substrates required for both scenarios discussed above and 

probably additionally exhibits epimerization activity. However, modifications at a later stage 

of the biosynthesis cannot be excluded based on current data.           

In accordance with the established biosynthesis model two additional argyrin derivatives, 

argyrin I and J (Fig. S6) were isolated during re-evaluation of extract fractions from previous 

large scale fermentation studies19. The planar structures were elucidated by NMR 

spectroscopy (Tables S6/S7; Fig. S7/S8) and it is proposed that the stereochemistry correlates 

with previously described derivatives as argyrin I and J represent the corresponding “Abu-

derivatives” (R1 = CH2CH3) of argyrins E and H. Argyrins A and B are produced as major 

products in A. gephyra Ar808219 and Cystobacter sp. SBCb004 (Fig. S3), whereas argyrins C-

J represent minor derivatives.  
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4.3.2 Establishment of a heterologous expression system based on synthetic DNA 

In order to establish a versatile production platform for argyrins we aimed at heterologous 

expression of the pathway in a well-established host for myxobacterial megasynthetases, 

Myxococcus xanthus33. We intended to generate BGC DNA fragments via gene synthesis, 

which allows for modulation of arg sequences according to requirements relevant for BGC 

assembly, engineering and heterologous expression (Fig. 2).  

For arg BGC design, the native pathway from Cystobacter sp. SBCb004 was used as 

blueprint, truncated to the arg2-4 gene set to simplify the production spectra by avoiding 

partial methylation by Arg1. In analogy to the native pathway, the synthetic BGC was 

configured as single transcription unit by using promoter and terminator sequences 

established for M. xanthus, which were implemented in the expression vector backbone as 

described below. A key step in the constructional design process was the engineering of 

endonuclease restriction sites (R-sites; Fig. 2A) according to predefined requirements. This 

included the implementation of unique R-sites upstream and downstream of each gene as well 

as in between each module of the NRPS encoding genes arg2 and arg3 to facilitate BGC 

assembly and modifications. In addition, a unique R-site was introduced at the 5’ end of arg2 

to open possibilities for leader sequence exchange and other engineering approaches. 

Interfering R-sites along the BGC sequence including those selected for vector backbone 

engineering (Table S8) were eliminated by point mutations, which were based on 

synonymous codon substitutions in coding regions. During the sequence modulations, two 

different versions of arg gene sets (arg-V1 and arg-V2) were designed. For both versions the 

exact same R-sites engineering was applied, but arg-V2 genes were additionally adapted 

according to sequence parameters that are usually addressed in formal gene optimization 

approaches. This included the avoidance of homopolymer stretches and DNA repeats, 

increase of stop codons in unused reading frames, reduction of Shine-Dalgarno (SD)-anti-SD 

interactions and codon adaptation to the heterologous environment comprising elimination of 

rare codon clusters as well as modulation of the local codon adaptation index (CAI). The 

resulting course of the local CAI shows a smoothed shape without any distinct peaks and a slight 

gradient along each coding DNA sequence in arg-V2 compared to the native sequence (Fig. 2B). 

For codon usage optimization, a similar approach as described in our previous study on the 

heterologous expression of a synthetic epothilone BGC in M. xanthus was applied for arg-V2, 

using a set of PKS/NRPS encoding genes from the host as reference50.  
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In parallel, a suitable expression vector backbone, pSynBio3 (Fig. 2C), was designed 

harboring the low copy p15A origin of replication as well as kanamycin resistance gene (kan
R) 

from pACYC17751, and the tetracycline resistance gene (tet
R) from pACYC18452 for 

integration into the host chromosome as described below. In addition the vector features a 

customized PnptII-MCS-tD1 box for arg BGC assembly at the multiple cloning site (MCS) and 

subsequent heterologous expression in M. xanthus controlled by the PnptII promoter of the 

neomycin phosphotransferase II  resistance gene from Tn553 and tD1 terminator from a M. 

xanthus DK1622 tRNA gene54. Genetic elements in pSynBio3 were flanked by unique R-sites 

to enable future backbone engineering as well as the initial vector construction based on 

synthetic DNA fragments. In total, 22 restriction enzymes were selected for vector and arg 

BGC engineering (Table S8), and interfering R-sites were eliminated from the pSynBio3 

sequence in similar manner as described for arg BGC modulation. 

After completion of the design process, synthetic DNA fragments covering the two arg BGC 

versions as well as the pSynBio3 expression vector were generated via gene synthesis. The 

latter was constructed in one step from two synthetic DNA fragments (pGH-15A-kan and 

pGH-tet-nptII-MCS-TD1; Table S4) by applying conventional restriction and ligation 

methods (Table S5). The two modulated arg BGC sequences (arg-V1 and arg-V2) were 

dissected into ten fragments, whereat individual genes were separated and NRPS encoding 

genes arg2/arg3 were fragmented according to their modular architecture. In addition to the 

unique R-sites engineered during the BGC design, each gene synthesis fragment was flanked 

by NdeI and BglII R-sites to facilitate the assembly process by applying conventional cloning 

techniques (Fig. 2C, Table S5). First of all, the NRPS encoding genes were reconstituted 

stepwise based on three (arg2) and five (arg3) gene synthesis fragments to yield constructs 

pGH-arg2-V1/V2 and pGH-arg3-V1/V2, which were verified by sequencing. Next, arg BGCs 

were sequentially assembled in the expression vector pSynBio3 based on the synthetic arg 

gene library revealing the final expression constructs pArg2345-V1/V2, which were verified 

by sequencing as well, before proceeding with the heterologous expression studies. 
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Fig. 2. Design and construction of synthetic arg BGCs and expression constructs based on the pSynBio3 vector. 
(A) Result of R-sites engineering applied for arg-V1/V2. Along the 31 kb native arg2-arg5 BGC sequence 13 
constructional R-sites were introduced and 59 interfering R-sites were eliminated (for restriction enzyme list see 
Table S8). (B) Comparison of the course of the local codon adaptation index (CAI) of the native (arg-native) and 
modulated (arg-V2) arg2-arg5 gene sequences. The native sequence is shown in the background (gray), and the 
artificial sequence (arg-V2) is shown in black. Window width is 25 codons. In arg-V2, the gradient between 
start and stop codon of each coding DNA sequence (CDS) was adjusted to 0.05. Untranslated regions between 
the CDS were excluded from the graph. (C) Gene synthesis fragments and subsequent assemblies: first 
reconstitution of arg2 and arg3, followed by BGC assembly at the multiple cloning site (MCS) of pSynBio3. 
The same assembly procedure was applied for generation of pArg2345-V1 and V2 (for details see Table S5). 
Expression vector features (not illustrated in scale): p15A ori, low copy origin of replication; kan

R, kanamycin 
resistance gene (for selection); tet

R, tetracyclin resistance gene (for chromosomal integration into M. xanthus 
DK1622 ΔmchA-tet); PnptII, constitutive promoter for arg-BGC expression; tD1, terminator.     
 
As host strain we aimed to employ the myxobacterial model strain Myxococcus xanthus 

DK1622, which led to the most promising yields in previous expression studies with 
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myxobacterial megasynthetases33. However, to simplify the production spectra and to 

probably cause additional beneficial effects on heterologous argyrin biosynthesis (e.g. reduce 

precursor competition) we first deleted the BGC that is in charge of lipopeptide production in 

the host (mchA BGC,55). The corresponding products, myxochromides A, represent one of the 

most abundant compound families produced in M. xanthus under standard cultivation 

conditions56. Deletion of the mchA BGC was achieved by replacement with a tetracycline 

resistance gene (tet
R) via homologous recombination at flanking mchA BGC regions resulting 

in the mutant strain M. xanthus DK1622 ΔmchA-tet (Fig. S10). The engineered strain, which 

lacks myxochromide A production, was recently also employed in parallel expression studies 

on myxobacterial α-pyrone antibiotics (myxopyronin, corallopyronin), different lipopeptides 

(myxochromides) as well as bioactive peptolides (vioprolides) underpinning its suitability as 

host57–59. The chromosomally integrated tet
R gene provides a hub for integration of 

heterologous BGCs via homologous recombination of expression plasmids harboring a tet
R 

gene (fragment), e.g. as considered in the design of the pSynBio3 expression vector (Fig. 2C). 

Transformation of the engineered M. xanthus strain with the generated arg BGC expression 

constructs pArg2345-V1/V2 resulted in the expected mutant strains (Table 1), which was 

verified by genotypic analysis (Fig. S10).  

The generated expression strains M. xanthus DK1622 ΔmchA-tet::pArg2345-V1/V2 as well 

as the native producer Cystobacter sp. SBCb004 were cultured under standard conditions for 

analysis of argyrin production. With both synthetic arg BGC versions successful production 

was achieved, yielding argyrin A and B as major products similar to the native producer. 

Production levels were significantly higher in the arg-V1 expression strain (35 mg/l argyrin 

A/B with pArg2345-V1) compared to arg-V2 (~100 µg/l argyrin A/B with pArg2345-V2) for 

which additional parameters were applied during sequence modulation. The arg-V2 design 

represents the second example for a codon usage optimization strategy applied in a previous 

study on a synthetic epothilone BGC, for which production yields in similar range were 

observed (~100 µg/l;50). This illustrates that the establishment of rational sequence modulation 

approaches for heterologous expression of giant megasynthetase complexes still remains a 

challenging task, which requires further insights on relevant criteria to improve production 

yields. However, the approach applied for arg-V1 focusing on the constructional design and 

replacement of the native promoter against PnptII revealed promising production yields, which 

are higher compared to the yields achieved with the native producer Cystobacter sp. SBCb004 

(8 mg/l). In addition, the native producer is genetically less accessible and marker-less 

modifications for rational engineering approaches have not been established yet. Therefore, 
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the successful establishment of a heterologous production platform provides considerable 

progress for biotechnological production of argyrins and novel derivatives thereof. As 

expected, the minor derivatives argyrins C and D were not produced in the heterologous 

system due to the absence of arg1. However, two novel argyrin derivatives, assigned as 

argyrins K and L, were detected in extracts of the expression strain M. xanthus DK1622 

ΔmchA-tet::pArg2345-V1 (Fig. 3). The corresponding MS data pointed to the respective 

valine derivatives of argyrins A and F (with R1 = CH2-(CH3)2 instead of CH3), which is in 

accordance with the A1 domain specificity analysis (Table S2) and was further supported by 

feeding experiments with deuterium-labelled valine (Fig. S11).  

 

Table 1. Myxococcus xanthus (Mx.) expression strains generated in this study (for details on construction of 
expression plasmids see Table S5).       

Strain name Expressed arg BGC 
Major (minor) 
derivatives 

Mx. DK1622 ΔmchA-tet::pArg2345-V1 PnptII-(arg2-arg3-arg4-arg5)-V1-tD1 Argyrins A, B 
(argyrins E-L) 

Mx. DK1622 ΔmchA-tet::pArg2345-V2 PnptII-(arg2-arg3-arg4-arg5)-V2-tD1  Argyrins A, B 
(n.a.)1 

Mx. DK1622 ΔmchA-tet::pArg23-V1 PnptII-(arg2-arg3)-V1-tD1 Argyrins I, E 
(argyrins G3, F3) 

Mx. DK1622 ΔmchA-tet::pArg235-V1 PnptII-(arg2-arg3-arg5)-V1-tD1 Argyrins I, E 
(G3, F3, A2) 

Mx. DK1622 ΔmchA-tet::pArg2345-V1-BsaI PnptII-(arg2-arg3-arg4-arg5)-V1-BsaI-tD1 Argyrins A, B 
(argyrins E-L) 

Mx. DK1622 ΔmchA-tet::pArg2345-V1-mod1 PnptII-(arg2
*
-arg3-arg4-arg5)-V1-tD1 

*A1 mutation mod1 (Table S11) 
Argyrins A, B 
(n.a.)1 

Mx. DK1622 ΔmchA-tet::pArg2345-V1-mod2 PnptII-(arg2
*
-arg3-arg4-arg5)-V1-tD1 

*A1 mutation mod2 (Table S11) 
Argyrins A, B 
(n.a.)1 

Mx. DK1622 ΔmchA-tet::pArg2345-V1-mod8 PnptII-(arg2
*
-arg3-arg4-arg5)-V1-tD1 

*A1 mutation mod8 (Table S11) 
Argyrin A, B 
(n.a.)1 

Mx. DK1622 ΔmchA-tet::pArg2345-V1-mod9 PnptII-(arg2
*
-arg3-arg4-arg5)-V1-tD1 

*A1 mutation mod9 (Table S11) 
Argyrin A, B, K 
(n.a.)1

 

Mx. DK1622 ΔmchA-tet::pArg2345-V1-BsaI PnptII-(arg2-arg3-arg4-arg5)-V1-tD1 Argyrins A, B, (I)2 
(argyrins E-L) 

1 Minor derivatives were not analyzed due to the very low production levels. 
2 Only detected in M7/s4 medium supplemented with amino acid solution as major derivative (see Fig. 5). 

 

4.3.3 Approaches to engineer the argyrin production profile  

The successful establishment of a heterologous expression system expands future 

opportunities for exploiting argyrins for potential therapeutic application, however, due to the 

complexity of the production profiles it would be highly desirable to develop strategies for 

directing argyrin biosynthesis towards certain derivatives. In our attempts to engineer argyrin 

biosynthesis we first focused on the expression of arg-V1 BGC variants lacking further 

tryptophan modifying genes. In the course of generation of the pArg2345-V1 expression 
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plasmid intermediate constructs with arg BGCs lacking arg4 and/or arg5 were generated. 

Transformation of the host with expression plasmids pArg23-V1 and pArg235-V1 resulted in 

the expected mutant strains (Table 1), which were subsequently analyzed for argyrin 

production (Fig. 3). Deletion of arg4/arg5 directed biosynthesis towards argyrin derivatives 

with unmodified tryptophan rings yielding the respective equivalents of argyrins A and B, 

argyrins E and I (R3/R4 = H), as main derivatives, which can be detected in the M. xanthus 

DK1622 ΔmchA-tet::pArg2345-V1 expression strain and the native producer as well, at much 

lower levels. In addition, novel argyrin derivatives, assigned as argyrins G3 and F3, were 

produced by M. xanthus DK1622 ΔmchA-tet::pArg23-V1 representing putative unmodified 

equivalents (R3/R4 = H) of argyrins G and F as concluded from MS fragmentation data (Table 

S10). They harbor a serine residue in the fourth position of the peptide chain (R2 = CH2OH), 

which is much less preferred than alanine (R2 = CH3) during the NRPS assembly, resulting in 

the lower production of argyrins G3 and F3 compared to argyrins E and I. Heterologous 

expression based on pArg235-V1 harboring the modifying gene arg5 was expected to yield 

novel hydroxylated argyrin derivatives (R4 = OH) through the action of the tryptophan 2,3-

dioxygenase Arg5 and the absence of the O-methyltransferase Arg4. Indeed, one novel 

argyrin designated as argyrin A2 was detected representing a putative derivative of argyrin A 

with R4 = OH instead of OCH3 as concluded from MS fragmentation data (Table S10). 

However, argyrins with unmodified tryptophan rings (argyrin E, I, G3 and F3) were still 

produced at higher yields indicating that tryptophan hydroxylation in the generated expression 

strain M. xanthus DK1622 ΔmchA-tet::pArg23-V1 is either not very efficient (e.g. due to the 

genetic design of arg235-V1) and/or the hydroxylated derivatives are less stable.      
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Fig. 3. Argyrin production analysis of different 
M. xanthus DK1622 heterologous expression strains in 
comparison to the native producer Cystobacter sp. 

SBCb004 (HPLC-MS data of the detected argyrin 
derivatives are listed in Table S10).  
 

In a parallel approach to direct argyrin production towards certain derivatives we aimed to 

engineer the NRPS assembly line. Our studies on argyrin biosynthesis revealed that the first 

module (M1) incorporates either alanine (Ala; R1 = CH3) or α-aminobutyric acid (Abu; 

R1 = CH2CH3), at almost equal level, into the argyrin peptide core (Fig. 1). To a much lower 

extent valine (Val; R1 = CH2(CH3)2) is incorporated as well, yielding argyrins K and L 

(Fig. S11) as discovered during our heterologous expression studies. The first gatekeepers for 

amino acid incorporation in NRPS biosynthesis represent A domains, which are responsible 

for substrate selection and activation. Making use of the established expression system we 
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aimed to direct the biosynthetic capacity of the argyrin megasynthetase towards Ala, Abu or 

Val derived argyrins by engineering the A domain of M1 (A1). Several approaches to A 

domain engineering have been evaluated over the past three decades60, ranging from entire 

domain replacement61,62, subdomain replacement63,64 and finally to modifications of the 

individual amino acid residues within the A domain binding pocket65,66. The latter was 

enabled after the A domain specificity conferring code defined by Stachelhaus et al.67, also 

known as “nonribosomal code”68, has been identified. In our study, we designed a panel of 14 

modified A1 domains, in which residues of the substrate binding pocket were mutated based 

on the nonribosomal codes from other myxobacterial A domains, that activate Ala, Abu or 

Val as deduced from the corresponding NRPS products (see Table S11). Respective A1 

domain encoding fragments were obtained via gene synthesis and used for generation of 

engineered expression plasmids (pArg2345-V1-mod[1-14], Table S5 and Fig. S12). After 

transformation of M. xanthus DK1622 ΔmchA-tet with the modified constructs and genotypic 

verification of the mutant strains according to the established procedure (Fig. S10) argyrin 

production was analyzed. For this, parallel cultivation studies including M. xanthus DK1622 

ΔmchA-tet::pArg2345-V1 as reference producer were performed. In all analyzed mutants, 

production of argyrin could indeed be confirmed, proving the successful and functional 

expression of the modified NRPS megasynthetases. However, as often observed in such bio-

combinatorial approaches60,69,70, yields decreased significantly in many mutants, hampering 

the reliable analysis of argyrin production profiles. Nevertheless, four expression strains with 

different A1 mutations, DK1622 ΔmchA-tet::pArg2345-V1-[mod1;2;8;9] (see Table S11), 

yielded satisfactory argyrin levels and showed the desired shift in substrate selection towards 

alanine compared to the wild-type NRPS expressed in M. xanthus DK1622 ΔmchA-

tet::pArg2345-V1 (Fig. 4). Further optimization of production levels and profiles (including 

specificity shifts towards other substrates) might be achieved by evaluation of an extended 

series of NRPS mutants, e.g. also involving modifications of additional catalytic domains.  
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Fig. 4. Production levels of argyrin A and B evaluated in mutants expressing NRPS megasynthetases with 
engineered A1 domains (mod1, mod2, mod8 and mod9; see Table S11) compared to the host expressing the 
parent megasynthetase (control). Samples were analyzed by HPLC-MS and levels or argyrin A and B were 
detected by EIC [M + H]+ = 825.313±0.05 (arg A) and [M + H]+ = 839.329±0.05 (arg B). Corresponding peaks 
were integrated and the surface area values were used for yield comparison. The value of argyrin B produced by 
the control strain was normalized to 1. 
 
 
4.3.4 Approaches to further improve the heterologous expression system 

In the initial arg-V1 design approach sequence modulation was focused on the engineering of 

a restricted number of R-sites to minimize the extent of (synonymous) codon substitutions. 

Although straightforward arg-V1 assembly and subsequent BGC modification was achieved 

we aimed at improving the expression system by extending the engineering options. As 

shown for A1 modifications, NRPS engineering was feasible with arg-V1, but has proven to 

be tedious and time consuming as two-step cloning processes were required to (Fig. S12) 

avoid gene synthesis of entire module fragments. To reduce the experimental effort for such 

approaches we aimed to construct a derivative of arg-V1, in which all R-sites for the type IIS 

endonuclease BsaI were mutated. The BGC sequence was modulated accordingly eliminating 

in total 32 BsaI R-sites by silent point mutations (Table S9). An expression construct with the 

adapted BGC, designated as arg-V1-BsaI, was generated based on ten gene synthesis 

fragments using the established assembly approach (pArg2345-V1-BsaI; Table S5). 

Transformation of M. xanthus DK1622 ΔmchA-tet yielded the expression strain M. xanthus 

DK1622 ΔmchA-tet::pArg2345-V1-BsaI as verified by PCR performed analogously to the 

previous mutant analysis (Fig. S10). Comparative production analysis with the parent arg-V1 

BGC from M. xanthus DK1622 ΔmchA-tet::pArg2345-V1 under standard cultivation 

conditions revealed similar argyrin production yields (35 mg/l argyrin A/B for M. xanthus 

DK1622 ΔmchA-tet::pArg2345-V1-BsaI), indicating that the additional sequence 
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modifications had no negative impact on argyrin pathway expression. The absence of BsaI 

R-sites in the entire expression construct pArg2345-V1-BsaI greatly expands future 

engineering opportunities. Independently of the unique R-sites previously introduced in the 

synthetic arg BGC between genes and NRPS modules, any BGC region can now be directly 

targeted on the expression construct as illustrated in Fig. S13. After replacement of the target 

region with a selection marker flanked by (unique) BsaI R-sites via recombination 

technologies modified sequence(s) can be introduced scar-less via the BsaI R-sites by 

applying conventional restriction and ligation methods. The more versatile expression system 

already significantly reduced the cloning effort in ongoing argyrin NRPS engineering 

approaches (data not shown) and the design principle is broadly applicable on other natural 

product pathways.  

Besides improvement of the arg BGC sequence to enable more versatile engineering 

procedures we aimed to further increase production yields of argyrins. As an alternative to the 

standard CTT medium, we evaluated argyrin production in M7/s4 and M7/s6 media, which 

were previously used for increased production of myxobacterial α-pyrone antibiotics, 

myxopyronin and corallopyronin, in M. xanthus DK162257. By comparative cultivation in 

both media we identified M7/s4 as superior medium for production of argyrins, reaching 

production levels of 45 mg/l argyrins A/B with argyrin A as major product (Fig. 5). Lower 

argyrin production in the M7/s6 medium can be explained from the perspective, that high 

amounts of potassium acetate do not directly benefit production of peptides in the same way 

as they do the polyketides. This prompted us to investigate if yield can be further improved by 

supplementation of M7/s4 medium with a mixture of amino acids required for argyrin peptide 

core assembly. Indeed argyrin A/B production could be increased significantly to around 

160 mg/l by repetitive external supply of the precursor mix during cultivation. In contrast to 

the standard cultivation in M7/s4 medium, production significantly shifted towards argyrin B, 

probably due to the external supply of Abu from the precursor mix (Fig. 5). In addition, the 

feeding strategy led to a significant increase in production of argyrin I (R3, R4 = H; Fig. 1) 

indicating a bottleneck of Arg4/Arg5-mediated tailoring biochemistry under the optimized 

production conditions (Fig. 5). Addressing this bottleneck in future studies, e.g. by co-

expression of additional arg4/5 gene copies, offers a great potential to further increase 

production yields of argyrins A and B. The argyrin A/B production yields achieved in the 

heterologous host so far (160 mg/l) are already much higher compared to the native argyrin 

producer (8 mg/l for Cystobacter sp. SBCb004). The established production system ranks 

with the most successful examples in heterologous expression studies on myxobacterial 



Biosynthesis and heterologous production of argyrins | 145 
 

 

megasynthetases in M. xanthus (Table 2) and again illustrates the suitability of M. xanthus 

DK1622 ΔmchA-tet (engineered in this study) as host. 

 
Fig. 5. Production levels of argyrin A, B, I and total argyrin production evaluated in M. xanthus DK1622 
ΔmchA-tet::pArg2345-V1-BsaI. Argyrin levels were analyzed by HPLC-MS and pure substance of each 
derivative was used as standard. Detailed method is provided in the supplementary information.  
 

Table 2. Heterologous production of PKS/NRPS-derived natural products in M. xanthus. 

‡ based on shake flask experiments 
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Compound Native producer Pathway-type [size] Yield ‡ Ref 

Argyrin A, B Cystobacter species NRPS [33 kb] 160 mg/l this study 

Bengamide Myxococcus virescens PKS/NRPS [25 kb]  >10 mg/l 71 

Corallopyronin A Corallococcus coralloides PKS/NRPS [65 kb] 37 mg/l 57 

Dawenol Stigmatella aurantiaca PKS [21 kb] n.d. 72 

Epothilone Sorangium cellulosum PKS/NRPS [56 kb] 0.1 - 0.4 mg/l 73,74,50 

Myxochromide A Myxococcus xanthus PKS/NRPS [29 kb] ~500 mg/l 58 

Myxochromide S Stigmatella aurantiaca PKS/NRPS [29 kb] >500 mg/l 75 

Myxopyronin A Myxococcus fulvus PKS/NRPS [53 kb] 156 mg/l 57   

Myxothiazol Stigmatella aurantiaca PKS/NRPS [57 kb] 20 mg/l 76   

Oxytetracycline Streptomyces rimosus PKS [32 kb] 10 mg/l 77 

Pretubulysin Cystobacter species PKS/NRPS [40 kb] 0.2 mg/l 78 

PUFAs Aetherobacter fasciculatus  PKS/FAS [18 kb]  ~1 mg/CDW 79   

Vioprolide B, D Cystobacter violaceus NRPS [56 kb] 80 mg/l 80   
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4.4 Conclusion 

Argyrin biosynthesis is directed by a NRPS pathway that naturally produces at least ten 

derivatives, argyrins A-J, due to miscellaneous megasynthetase substrate specificities and 

inefficient tailoring chemistry. The dehydroalanine unit, a key structural feature of argyrins, is 

generated from serine by putative action of a specialized C domain from the downstream 

assembly line module. Based on our data and other recent examples, we suggest to expand the 

current C domain classification with a new subtype that generates α,β-dehydro amino acid 

residues in addition to standard peptide bond formation. The identification of the arg BGC 

from Cystobacter sp. SBCb004 set the stage for the establishment of a heterologous 

expression system employing synthetic biology tools. Synthetic arg BGCs were constructed 

and successfully expressed in a derivative of the myxobacterial model strain M. xanthus. A 

gene sequence optimization approach related to a previous study on the epothilone pathway 

revealed similar production yields of around 100 µg/l illustrating present challenges in 

rational gene design for complex megasynthetases. Based on the few examples evaluated so 

far, the most promising strategy for expression of such giant assembly lines originating from 

myxobacteria in M. xanthus seems to restrict gene sequence modulations to the constructional 

design. Using the respective arg-V1 and the advanced arg-V1-BsaI BGC version production 

yields of 35 mg/l were achieved, which were further enhanced to 160 mg/l argyrin A/B plus 

significant amounts of argyrin I (~70 mg/l) via media optimization guided by our insights on 

argyrin biogenesis. The established expression system provides a versatile platform for 

biotechnological production of argyrins and thereby supports further investigation of their 

potential medicinal application. Overall, several bottlenecks encountered with the native 

producer strain, e.g. low production yields and unavailable methods for scare-less 

chromosomal BGC engineering, were eluded via arg BGC re-design and efficient 

heterologous expression. In future work, we aim to use the improved platform to continue our 

studies on directing biosynthesis towards selected argyrins and novel derivatives thereof. 

 

4.5 Materials and methods  

4.5.1 Identification and sequence analysis of the arg BGC from Cystobacter sp. SBCb004 

Shotgun genome sequence data of Cystobacter sp. SBCb004 were available from a previous 

study on tubulysins34. The putative argyrin (arg) biosynthetic gene cluster (BGC) was 

identified using the antiSMASH 3.035 and PKS/NRPS analysis software tools36. Sequence 
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analysis of the identified BGC was performed with the Geneious software versions 5.3-11.1 

(Biomatters, Auckland, New Zealand). Putative gene functions were assigned based on 

Pfam81 and Blast82 homology searches. By in silico analysis it was proposed that the arg BGC 

comprises five genes (Table S1). The annotated arg BGC sequence from Cystobacter sp. 

SBCb004 is accessible at the GenBank (accession number MK047651) and MIBiG (accession 

number BGC0001834). Catalytic domains of the two NRPS subunits Arg2 and Arg3 (Fig. 1) 

were analyzed with the antiSMASH 3.0 software35, predicted substrate specificities of 

adenylation (A) domains are listed in Table S2. C domains from the argyrin NRPS and 

selected examples from other pathways generating α,β-dehydro amino acids83 were aligned 

with a list of 525 C domain sequences from a previous study45, using MUSCLE. The 

alignment was used to reconstruct the phylogeny using phyml, employing the JTT model of 

amino acid substitution and a gamma-distributed rate variation with four categories. The 

support values were based on 100-fold bootstrapping, the resulting phylogenetic tree is 

illustrated in Fig. S1. 

 

4.5.2 Strains, transformation and cultivation conditions 

E. coli strains HS996 (Invitrogen, Carlsbad, USA), SCS110 (Stratagene, La Jolla, USA) and 

HB10184 were grown at 37 °C in Luria-Bertani (LB) medium85. Transformation of E. coli 

strains was achieved via electroporation in 0.1 cm-wide cuvettes at 1250 V, a resistance of 

200 Ω, and a capacitance of 25 μF.  When required, the medium was amended with 

chloramphenicol (30 µg/ml), ampicillin (100 μg/ml), and/or kanamycin (60 µg/ml) for 

selection of transformants. The myxobacterial wild-type strains and mutants thereof were 

grown at 30 °C on a rotary shaker at 180 rpm in standard Erlenmeyer flasks (e.g. 50 ml 

culture volume in a 300 ml flask). Cystobacter sp. SBCb004 strains were grown in M medium 

(10 g/l soy peptone (phytone), 10 g/l maltose, 1 g/l CaCl2 x 2 H2O, 1 g/l MgSO4 x 7 H2O, 8 

mg/l EDTA (FEIII), 11.9 g/l HEPES, pH adjusted to 7.2 with KOH), amended with 120 

µg/ml tobramycin (natural resistance) and 100 µg/ml kanamycin for selection of 

transformants. Transformation was carried out via triparental conjugation (for details see 

Supplementary data). Myxococcus xanthus DK1622 strains were grown in CTT medium (10 

g/l casitone; 10 mM Tris-HCl, pH 8.0; 8 mM MgSO4; 10 mM potassium phosphate, pH 7.6) 

amended with 50 µg/ml kanamycin and/or 12.5 µg/ml oxytetracycline for selection of 

transformants. Transformation was carried out via electroporation according to previously 

established methods86. 
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4.5.3 General methods for DNA manipulation, analysis and PCR 

Plasmid DNA was either purified by standard alkaline lysis85 or by using the GeneJet Plasmid 

Miniprep Kit (Thermo Fisher Scientific) or the NucleoBond PC100 kit (Machery Nagel). 

Oligonucleotides were obtained from Sigma-Aldrich and are listed in Table S3. PCR reactions 

were carried out in a Mastercycler® pro (Eppendorf) using Phusion™ High-Fidelity or Taq 

DNA polymerase (Thermo Fisher Scientific) according to the manufacturer's protocol. For 

Taq: Initial denaturation (5 min, 95 °C); 30 cycles of denaturation (30 s, 95 °C), annealing (30 

s, 53 - 64 °C) and elongation (varied based on PCR product length 1 kb/min, 72 °C); and final 

extension (10 min, 72 °C). For Phusion™: Initial denaturation (1 min, 98 °C); 30 cycles of 

denaturation (20 s, 98 °C), annealing (25 s, 53 - 64 °C) and elongation (varied based on PCR 

product length 0.5 kb/ min, 72 °C); and final extension (5 min, 72 °C). Restriction enzymes 

were purchased from Thermo Fisher Scientific or New England Biolabs. Genomic DNA 

isolation was performed with the Gentra PURGENE® DNA Purification Kit (Qiagen, Hilden, 

Germany). DNA fragments were separated by agarose gel electrophoresis and purified by gel 

extraction by NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel) or ethanol precipitation 

(for the fragments larger than 10 kb). T4 DNA ligase (Thermo Fisher Scientific) was used for 

ligation. Shrimp alkaline phosphatase (Thermo Fisher Scientific) was used to treat the accept 

vectors for avoiding self-ligation. Plasmid preparations, restriction digestions, gel 

electrophoresis, and ligation reactions were carried out according to standard methods85. 

Synthetic DNA fragments were obtained from ATG:biosynthetics GmbH and delivered in 

standard cloning vectors (Table S4). Details on the construction of plasmids generated in this 

study are given in Table S5. Sequence data of the expression vector pSynBio3 as well as the 

expression constructs pArg2345-V1, pArg235-V1, pArg23-V1, pArg2345-V2 and pArg2345-

V1-BsaI are accessible at the GenBank (accession numbers: MK047657, MK047655, 

MK047653, MK047652, MK047654, MK047656).       

 

4.5.4 Studies with the native argyrin producer strains 

A gene inactivation experiment targeting the NRPS encoding gene arg3 was performed using 

a derivative of the pSUP-Km suicide vector87. The constructed plasmid pArg1 was transferred 

into Cystobacter sp. SBCb004 via conjugation and integrated into the chromosome by 

homologous recombination (Fig. S2). The obtained mutant strain Cystobacter sp. 

SBCb004::pArg1 was cultivated in comparison to the wild-type and argyrin production was 

evaluated by HPLC-MS analysis of culture extracts (Fig. S3). Details on the inactivation 



Biosynthesis and heterologous production of argyrins | 149 
 

 

experiment are provided in the Supplementary data. For feeding studies, small-scale shake 

flask cultivations of Cystobacter sp. SBCb004 were performed under standard conditions. 

Labelled precursors (L-serine-2,3,3-D3 and L-threonine-13C4,
15N) were fed to the cultures in 

aliquots and culture extracts were analyzed by HPLC-MS to evaluate the incorporation 

pattern (Fig. S4/S5). Details on the feeding experiments are provided in the Supplementary 

data. Re-evaluation of extract fractions from previous large-scale Archangium sp. 

fermentations19 revealed two novel argyrin derivatives, argyrin I and argyrin J (Fig. S6). The 

planar structures were elucidated by 1D/2D NMR spectroscopy (Fig. S7/S8, Tables S6/S7) 

and high-resolution-MS data (for details see Supplementary data).      

   

4.5.5 Sequence design and assembly of synthetic arg BGCs 

Using the native arg BGC sequence from Cystobacter sp. SBCb004 as template two versions 

of synthetic arg BGCs were designed (arg-V1 and arg-V2). Sequence modulations were 

performed with the evoMAGis software package (ATG:biosynthetics GmbH) as described 

previously50. The sequence design process included the engineering of endonuclease 

restriction sites (R-sites) for both arg BGC versions (Fig. 2A, Table S8). The arg-V2 

sequence was further modified according to additional criteria: adaptation of the codon usage 

and the course of the local codon adaptation index (CAI; Fig. 2B), engineering of Shine-

Dalgarno (SD) – anti-SD interactions (Fig. S9A), elimination of rare codon clusters (Fig. 

S9B), introduction of “hidden” stop codons in unused frames (Fig. S9C), as well as the 

elimination of sequence repeats and homopolymer stretches. The sequence modulation was 

applied for genes arg2-arg4 based on synonymous codon substitutions (Table S9). A 

derivative of arg-V1 was generated by elimination of all BsaI R-sites (arg-V1-BsaI). Details 

on the sequence design are provided in the Supplementary data. The three arg BGC versions 

(arg-V1, arg-V2 and arg-V1-BsaI) were assembled based on synthetic DNA fragments via 

conventional restriction and ligation methods making use of unique R-sites engineered during 

the sequence design (Fig. 2). Thirty DNA fragments (ten for each BGC version) were 

generated via gene synthesis (Table S4) as well as two fragments for construction of a suitable 

vector backbone (pSynBio3). Details on the construction of the expression plasmids 

pArg2345-V1, pArg2345-V2, pArg2345-V1-BsaI, pArg23-V1 and pArg235-V1 are provided 

in Table S5. In addition to restriction analysis, integrity of the generated expression constructs 

was verified by Illumina sequencing prior transformation of the host strain. Using the 

Illumina paired-end technology on a MiSeq platform a mean sequencing coverage 
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of > 200 fold was achieved for each construct and no mutations within the arg BGC region 

were detected.       

  

4.5.6 Heterologous expression in M. xanthus and argyrin production analysis 

A derivative of M. xanthus DK1622, M. xanthus DK1622 ΔmchA-tet, was constructed, in 

which the mchA BGC region55 was replaced with a tet
R gene (for details see Supplementary 

data). As illustrated in Fig. S10, expression constructs were chromosomally integrated via tet
R 

after electroporation of the host. The obtained transformants were verified by PCR analysis 

(for details see Supplementary data). Expression strains generated in this study are listed in 

Table 1. After genotypic verification, heterologous argyrin production was analyzed. Small-

scale cultivations were performed in shake flasks under standard conditions (CTT medium 

amended with 50 µg/ml kanamycin and 2% XAD-16, 30 °C, 200 rpm for 5-6 days). Crude 

cell/XAD extracts were generated and concentrated aliquots were analyzed by HPLC-MS (for 

details see Supplementary data). Argyrin derivatives were identified based on their MS 

fragmentation spectra (Table S10). In addition to argyrins known from native producer strains, 

argyrins A-H20 and argyrins I and J (see Supplementary data), novel derivatives were detected 

and assigned as argyrins K, L, A2, F3 and G3 (Fig. 3, Table S10). To confirm the 

incorporation of valine into the new derivatives argyrin K and L, a feeding experiment with 

L-valine-D8 was performed (Fig. S11). Further details are provided in the Supplementary data.    

 

4.5.7 NRPS A1 domain engineering  

The A domain engineering experiment was performed according to the procedure illustrated 

in Figure S12. Synthetic fragments used to exchange the subdomain part of the A1 domain are 

provided in the Table S4. Modified argyrin expression constructs (see Table S5) were 

transferred into heterologous host M. xanthus DK1622 ΔmchA-tet by electroporation. The 

obtained mutants were cultivated in comparison to the control strain M. xanthus DK1622 

ΔmchA-tet::pArg2345-V1 and argyrin production was evaluated by HPLC-MS analysis of the 

culture extracts. Details of the A1 engineering experiment are provided in the Supplementary 

data.  
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Database linking 

The sequences of the native arg BGC from Cystobacter sp. SBCb004, the expression vector 

pSynBio3 as well as the expression constructs pArg2345-V1, pArg235-V1, pArg23-V1, 

pArg2345-V2 and pArg2345-V1-BsaI have been deposited in the GenBank database 

(accession numbers: MK047651, MK047657, MK047655, MK047653, MK047652, 

MK047654, MK047656 ). The information on the native arg BGC from Cystobacter sp. 

SBCb004 has also been deposited in the MIBiG repository (accession number BGC0001834). 

 

Appendix A. Supporting Information 

Provided file includes:  

• Supplementary text providing detailed description of experiments 

• Figures show phylogenetic analysis of C domains, inactivation of arg3 in Cystobacter 

sp. SBCb004 and genotypic analysis of the mutants, argyrin production analysis after 

arg3 inactivation in Cystobacter sp. SBCb004, analysis of labelled L-serine and L-

threonine feeding, structures and NMR spectra of argyrin I and J, effect of the arg-V2 

sequence modulation on selected features in comparison to arg-native, construction 

and verification of expression strains, analysis of labelled L-valine feeding, strategy to 

exchange the subdomain part of A1 and modification strategy of the pArg2345-V1-

BsaI expression construct. 

• Tables show genes, proteins, proposed function in the arg BGC from Cystobacter sp. 

SBCb004, substrate specificity analysis of A domains from the argyrin NRPS from 

Cystobacter sp. SBCb004, oligonucleotides used in this study, gene synthesis 
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constructs obtained from ATG:biosynthetics GmbH, plasmids and expression 

constructs generated in this study, NMR spectroscopic data of argyrin I and J, 

restriction sites engineered within the arg BGC and pSynBio3 sequence, sequence 

features of synthetic arg BGC versions compared to the native sequence, HPLC-MS 

data of argyrin derivatives detected in the heterologous expression strains and 

nonribosomal codes of A domains. 
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4.7.1 Inactivation of the argyrin biosynthetic pathway in Cystobacter sp. SBCb004 

To verify that the identified BGC is indeed involved in argyrin production, one of the NRPS 

encoding genes (arg3) was inactivated by insertion of the suicide plasmid. For this purpose, 

the pArg1 plasmid was constructed and a conjugation protocol was established for 

transformation of Cystobacter sp. SBCb004. After genotypic verification of the obtained 

mutants secondary metabolite production was analyzed. In contrast to the wild type strain, all 

mutants were shown to lack production of argyrins. Experimental details are described below.  

For the construction of pArg1 a 1.1 kb homologous fragment of arg3 was amplified from 

genomic DNA using the oligonucleotides Arg1/Arg2 (Table S3) and Taq DNA polymerase 

according to the manufacturer`s protocol. PCR conditions were as follows: initial denaturation 

3 min at 95 °C; denaturation 30 s at 95 °C; annealing 50 s at 56 °C; extension 90 s at 72 °C; 

30 cycles. The amplified fragment was ligated into the conjugable plasmid pSUP-Km1, using 

the enzymes EcoRV/BamHI to generate the suicide plasmid pArg1.  

To transform Cystobacter sp. SBCb004 with the suicide plasmid pArg1 a suitable conjugation 

procedure was established as follows: Cultures of the methylation-deficient strain E. coli 

SCS110 carrying pArg1 (SCS110/pArg1), E. coli HB101 carrying the helper plasmid 

pRK6002 (HB101/pRK600) as well as Cystobacter sp. SBCb004 were grown in LB medium 

(amended with kanamycin for pArg1 or chloramphenicol for pRK600) or rather M medium 

until an OD600 of 0.6 was reached. Cells from 2 ml Cystobacter sp. SBCB004 culture were 

washed using 2 x 2 ml HEPES buffer (5 mM HEPES [pH 7.2], 0.5 mM CaCl2) and cells from 

the E. coli cultures (1 ml) were washed with LB medium (2 x 1 ml). After combining the cells 

in 1 ml M medium and shaking for 3 h at 30 °C, the cells were re-suspended in 250 µl fresh 

M medium and plated out on an M agar plate, which was incubated at 30 °C for 2 d. The cells 

were scraped from the plate, re-suspended in M medium and plated out on M agar amended 

with 100 µg/ml kanamycin and 120 µg/ml tobramycin. The plates were incubated at 30 °C 

until transconjugants appeared (about 3-4 d).   

To verify the correct chromosomal integration of pArg1 the obtained transconjugants were 

analyzed by PCR (see Fig. S2). For this, the mutants were grown in M medium amended with 

kanamycin and genomic DNA was isolated using the Gentra PURGENE® DNA Purification 

Kit (Qiagen). Using the genomic DNA as template PCR analysis with different sets of 

oligonucleotides (Arg10/Arg11, Arg10/pSUP_B, Arg11/pSUP_E; see Table S3) and Taq 

DNA polymerase was performed according to the manufacturer`s protocol. PCR conditions 

were as follows: initial denaturation 3 min at 95 °C; denaturation 30 s at 95 °C; annealing 50 s 
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at 56 °C; extension 90 s at 72 °C; 30 cycles. PCRs using oligonucleotides Arg10/pSUP_B and 

Arg11/pSUP_E produced DNA fragments of expected size in the Cystobacter sp. 

SBCb004::pArg1 mutants but not in Cystobacter sp. SBCb004 verifying that pArg1 was 

successfully integrated into gene arg3 on the chromosome (Fig. S2).                            

For phenotypic analysis the Cystobacter sp. SBCb004::pArg1 mutant strains as well as 

Cystobacter sp. SBCb004 wild-type were cultivated in 50 ml M liquid medium containing 2% 

XAD-16 for 4 days. The cells together with the XAD were harvested by centrifugation and 

extracted with methanol. To compare the spectrum of secondary metabolites produced by the 

mutant with that of the wild type strain, 50:1 concentrated methanol extracts were analysed by 

High performance liquid chromatography-mass spectrometry-diode array detection (HPLC-

MS-DAD). An Agilent 1100 series solvent delivery system coupled to Bruker HCTplus ion 

trap mass spectrometer was used. Chromatographic separation was carried out on an RP 

column Nucleodur C18 (125 by 2 mm, 3 µm particle size; Macherey-Nagel) equipped with a 

precolumn C18 (8 x 3 mm, 5 µm). The mobile phase gradient (solvent A: water + 0.1% 

formic acid and solvent B: acetonitrile + 0.1% formic acid) was linear from 5% B at 2 min to 

95% B at 32 min, followed by 4 min with 95% B at a flow rate of 0.4 ml/min. Diode array 

detection was carried out at 200-600 nm and mass detection was performed in the positive and 

negative ionization mode within a range of 100-1100 amu. As shown in Fig. S3, the wild type 

culture produced argyrin A, argyrin B, argyrin D, and argyrins E to H. On the contrary, the 

mutant did not produce any of these argyrins, demonstrating the involvement of enzyme 

encoded by arg3 in the argyrin biosynthesis.        

 

4.7.2 Feeding studies with Cystobacter sp. SBCb004 

To investigate the biosynthetic origin of the L-α-aminobutyrate (Abu) and dehydroalanine 

(Dha) units of argyrins, feeding studies with L-threonine-13C4,
15N and L-serine-2,3,3-D3 were 

performed with the native producer Cystobacter sp. SBCb004. Experimental details and 

results are described below. 

From a well-grown agar plate of Cystobacter sp. SBCb004 culture flasks with 50 ml M 

medium were inoculated and incubated on a rotary shaker (200 rpm) at 30 °C for 4 days. 

Solutions of isotopically labelled precursors were prepared by dissolving 25 mg of 

L-threonine-13C4,
15N (Isotec) and L-serine-2,3,3-D3 (CIL) in 1.5 ml water followed by sterile 

filtration. Equal aliquots (300 µl) were fed to the production cultures after 24 h, 29 h, 32 h, 

48 h and 56 h of incubation in parallel to a control experiment where no labelled precursor 
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was added. Amberlite XAD-16 adsorber resin (2%) was added after 72 h to all cultures. After 

90 h of incubation the cultures were harvested by centrifugation and cells/XAD were 

extracted with 50 ml of methanol. Concentrated methanol extracts from the feeding 

experiments and the respective controls without feeding were analyzed by HPLC-MS. 

Separation was performed on a Dionex UltiMate 3000 RSLC system equipped with a Waters 

BEH C18 (100 × 2.1 mm, 1.7 μm dp) column using a linear gradient with solvent A (water + 

0.1% formic acid) and B (acetonitrile + 0.1% formic acid) at a flow rate of 550 μl/min and 

45 °C. The gradient was initiated by a 0.39 min isocratic step with 5% B followed by an 

increase to 95% B within 18 min. HPLC was coupled to a Thermo Fisher Orbitrap via an 

Advion Triversa NanoMate nano-ESI system. Mass spectra were acquired in positive 

ionization mode with a range of 200-2000 m/z at a resolution of R=30000. Identities of the 

argyrins were confirmed by comparing with both retention time and MS2 fragmentation 

pattern of the authentic compounds. Results from the HPLC-MS analysis of the crude extracts 

are shown in Fig. S4/S5. Argyrin A and argyrin B exhibit in MS analysis three apparent 

isotopic signals with the monoisotopic signal [M+H]+ of 825.3143 m/z (argyrin A) and 

839.3300 m/z (argyrin B). After feeding of the labelled precursors additional isotope signals 

appeared with a maximum intensity of a peak of +2.0125 m/z for L-serine-2,3,3-D3 (analyzed 

for argyrin A, Fig. S4) and +4.0134 m/z for L-threonine-13C4,
15N (analyzed for argyrin B; Fig. 

S5). These data indicate that the Dha unit indeed originates from serine and that the ethyl 

group of the peptide core from argyrin B (as well as from argyrins D and G) results from 

incorporation of an Abu unit. The latter is supplied by primary metabolism through 

conversion of L-threonine by threonine deaminase and aminotransferase enzymes as 

illustrated in Fig. S5C3. 

 

4.7.3 Isolation and structure elucidation of argyrins I and J 

During re-evaluation of extract fractions from large-scale fermentations of native argyrin 

producers4, two novel argyrin derivatives (argyrin I and J, Fig. S6) were isolated 

(chromatographic data not shown). Structure elucidation was achieved using NMR 

spectroscopy and the high-resolution mass spectrometry (HR-MS). High resolution mass 

spectra were acquired on an UPLC coupled Bruker Daltonics maXis 4G qToF mass 

spectrometer in a range from 150-2500 m/z in positive ionization mode. Separation was 

carried out on a Waters BEH C18 100 x 2.1 mm, 1.7 µm dp column using H2O + 0.1% formic 

acid as A and acetonitrile + 0.1% formic acid as B. Separation was carried out on a linear 
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gradient from A to B over 16 minutes. HR-MS data of argyrin I yielded an [M+H]+ ion at m/z 

809.3193 consistent with a molecular formula C40H44N10O7S (809.3188 calculated for 

C40H45N10O7S). HR-MS data of argyrin J yielded an [M+H]+ ion at m/z 825.3204 consistent 

with a molecular formula C40H44N10O8S (825.3137 calculated for C40H45N10O8S). NMR 

spectra were acquired in CDCl3 at a Bruker Ascend 700 MHz spectrometer. 1D 1H as well as 

2D 1H-1H COSY, HSQC and HMBC spectra were recorded using standard pulse programs 

and are illustrated in Fig. S7/S8. Carbon chemical shifts were extracted from 2D NMR data. 

NMR spectroscopic data are listed in Tables S6/S7. The NMR data of argyrin I and J were in 

accordance with those of argyrin E and H, which harbor a methyl group instead of an ethyl 

group in position R1. It is assumed that the absolute configuration of argyrin I and J 

corresponds to argyrin A-H as the argyrin megasynthetase very likely applies the same 

stereochemistry control. 

 

4.7.4 Sequence design of synthetic arg BGCs (arg-V1, arg-V2, arg-V1-BsaI) 

To meet the constructive demands for arg BGC assembly based on synthetic building blocks 

and prospective modifications, endonuclease restriction sites (R-sites) were engineered as 

illustrated in Fig. 2A. This included the insertion of unique R-sites upstream and downstream 

of each gene, within the 5’ end of arg2 as well as in NRPS intermodule linker regions of arg2 

and arg3. Simultaneously, 59 interfering R-sites along the entire arg BGC sequence were 

eliminated. R-sites engineering was performed by point mutations (synonymous codon 

substitutions in coding regions) according to a list of 22 restriction enzymes selected for arg 

BGC and pSynBio3 vector backbone design (Table S8).  

No further sequence modulation was performed in case of the arg-V1 BGC, whereat the arg-

V2 sequence was additionally adapted by applying a similar strategy as previously reported 

for construction of a synthetic epothilone BGC5. An artificial host codon usage table (“myxo-

PKS/NRPS”) was used as basis for formal sequence optimization with particular emphasis on 

parameters affecting translational elongation. The relative adaptiveness scoring system 

implemented in the codon adaptation index (CAI;6) was used to modulate the course of the 

local CAI in the four arg-V2 coding sequences (CDS). Due to the assumption that the 

translation rate of a single codon is to some degree correlated with its synonymous codon 

fraction, a slight gradient was engineered in the four arg-V2 CDSs (Fig. 2B), which 

theoretically should improve the ribosomal packing ratio along the whole message if the 

translation initiation rate is sufficiently high. The occurrence of internal Shine-Dalgarno (SD) 
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sequences was strongly suppressed to avoid unfavorable duplex formation with the anti-SD 

sequence of the 16S rRNA during translation7. As illustrated in Fig. S9A, the arg-V2 CDSs 

show no strong signals indicating SD – ASD interactions in contrast to arg-native. In addition, 

the clustered occurrence of low frequency codons, which could cause ribosome stalling and 

abortion during translation, was avoided. The resulting arg-V2 sequence lacks pronounced 

downward local CAI peaks according to a smaller 9 codon window8 (Fig. S9B). As it is 

assumed that “hidden” stop codons can have a positive impact on gene expression by 

preventing off-frame gene reading9,10, the density of stop codons in neighbouring frames was 

increased in the arg-V2 sequence (Fig. S9C). Furthermore, the emergence of homopolymeric 

stretches, which can cause transcriptional slippage, as well as DNA sequence repeats, was 

suppressed during arg-V2 optimization and the GC-content was kept within preselected limits.  

Overall, sequence modifications were more extensive for arg-V2 compared to arg-V1, for 

which only R-sites engineering was applied. To facilitate future BGC engineering procedures, 

the arg-V1 BGC sequence was later on further modified by eliminating all 32 BsaI R-sites via 

synonymous codon substitutions (arg-V1-BsaI). Table S9 shows a comparison between arg-

native and the adapted gene sequences of arg-V1, arg-V2 and arg-V1-BsaI.    

  

4.7.5 Construction of M. xanthus DK1622 ΔmchA-tet and arg BGC expression strains  

Prior to the transfer of the generated expression constructs into M. xanthus, the strain was 

engineered to delete the mchA BGC, which is in charge for production of the lipopeptide 

family myxochromides A11. A suitable suicide vector was constructed, which enables 

replacement of the mchA BGC region with a tetracycline resistance gene (tet
R) via two 

successive homologous recombination events (Fig. S10). Two homologous fragments, each 

around 1 kb, were amplified by PCR from chromosomal DNA of M. xanthus DK1622 wild-

type using the oligonucleotide pairs Mch140/Mch141 and Mch165/Mch166, respectively 

(Table S3). PCR was carried out with Taq DNA polymerase according to general procedures 

(see Materials and methods section 4.5.3). After gel purification, the PCR products were 

hydrolyzed using the restriction enzymes SacI/XbaI for the Mch140/Mch141 amplicon and 

XbaI/BamHI for the Mch165/mch166 amplicon. In parallel, an established suicide vector for 

M. xanthus, pSWU4112, was hydrolyzed with SacI/BamHI. The linearized vector backbone 

was ligated with the two homology fragments in one step (triple ligation) yielding the plasmid 

pMyx-Mch2. Next, a fragment harboring the tetracycline resistance gene (tet
R), which confers 

resistance to oxytetracycline in M. xanthus, was amplified from pSWU22 (S. S. Wu and 
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D. Kaiser, unpublished results) using the oligonucleotides TetR-for/TetR-rev (Table S3) and 

Taq DNA polymerase. The resulting 1.4 kb tetR amplicon was gel-purified, hydrolyzed with 

XbaI and subsequently ligated with XbaI linearized pMyx-Mch2 yielding the construct pMyx-

Mch2-tet. After transformation of M. xanthus DK1622 with pMyx-Mch2-tet via 

electroporation according to established procedures13 transformants were selected on CTT 

medium amended with kanamycin (50 µg/ml). Chromosomal integration via either of the two 

homology regions was verified by Southern Blot analysis (data not shown). A verified mutant 

was selected and grown in CTT medium amended with oxytetracycline (12.5 µg/ml). After 3-

4 days cultivation at 30 °C the well-grown culture was used to inoculate fresh medium. This 

procedure was repeated three times to increase the possibility of a second crossover event. 

After repetitive cultivation cycles different dilutions of the cell population were plated out on 

CTT medium amended with oxytetracycline (12.5 µg/ml) to select for the presence of the tet
R 

gene and sucrose (6%) for counterselection based on the sacB gene from the pSWU41 vector 

backbone12. Under these selection conditions only mutants, in which the suicide plasmid was 

eliminated and the mchA BGC replaced with the tet
R gene were expected. After 7-10 days the 

first colonies appeared, which were grown in CTT medium amended with oxytetracycline 

(12.5 µg/ml) to isolate genomic DNA for genotypic verification via Southern Blot analysis 

and PCR (data not shown). The resulting mutant was cultivated under standard conditions in 

parallel to M. xanthus DK1622 wild-type and culture extracts were subsequently analyzed by 

HPLC-MS as described in a previous study on myxochromide production14. Myxochromides 

A were detected in wild-type extracts, but not in extracts of the mutant M. xanthus DK1622 

ΔmchA-tet confirming the expected phenotype after successful deletion of the mchA BGC. 

The engineered host strain M. xanthus DK1622 ΔmchA-tet was transformed with the 

generated expression constructs by electroporation according to previously established 

procedures13. Transformants were selected on CTT agar containing kanamycin (50 μg/ml). 

Colonies usually appeared after 5-10 days. For each construct, several colonies were picked 

and transferred onto new plates. Correct chromosomal integration of the expression constructs 

via homologous recombination into the tet
R locus was verified by ‘colony-PCR’. For this, 

cells were dissolved in 50 μl H2O and lysed by incubation at 95 °C for 30 min prior of 2 μl 

suspension being added to the PCR reaction. PCR was performed according to general 

procedures (see Materials and methods section 4.5.3). As illustrated in Fig S10, correct 

chromosomal integration of the expression constructs was confirmed using two primer 

combinations revealing PCR products of the expected sizes: P1/P2 (1458 bp) and P3/P4 (1461 

bp). Genomic DNA of M. xanthus DK1622 ΔmchA-tet was used as negative control. A 
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complementary experiment using primers P1/P4 revealed a 1461 bp PCR product for 

M. xanthus DK1622 ΔmchA-tet, but not for the expression strains. In addition, primer sets to 

detect fragments of arg genes were designed to further verify the integrity of the arg BGC 

variants by additional PCRs (respective primer pair and expected PCR product size in 

brackets): arg2-V1 (arg2V1F/arg2V1R, 428 bp), arg3-V1 (arg3V1F/arg3V1R, 363 bp), arg4-

V1 (arg4V1F/arg4V1R, 582 bp), arg5-V1 (arg5V1F/arg5V1R, 516 bp), arg2-V2 

(arg2V2F/arg2V2R, 512 bp), arg3-V2 (arg3V2F/arg3V2R, 446 bp), arg4-V2 

(arg4V2F/arg4V2R, 476 bp) and arg5-V2 (arg5V2F/arg5V2R, 463 bp). Primer sequences are 

listed in Table S3. Expression strains generated in this study are listed in Table 1.  

 

4.7.6 Analysis of argyrin production in M. xanthus and valine feeding experiment 

Single colonies of the expression strains with verified genotype were grown in 50 ml CTT 

medium amended with 2% XAD-16 adsorber resin and 50 µg/ml kanamycin for 5-6 days. 

After centrifugation, the cells and XAD were extracted with methanol and concentrated crude 

extracts were analyzed by HPLC-MS. For qualitative analysis of argyrin production profiles, 

the following HPLC-MS method was applied. Separation was performed on a Dionex 

UltiMate 3000 RSLC system equipped with a Waters reversed phase UPLC column (Acquity 

UPLC BEH C18 1,7μm; 2.1*100mm) using a linear gradient with solvent A (water + 0.1% 

formic acid) and B (acetonitrile + 0.1% formic acid) at a flow rate of 600 μl/min and 45 °C. 

The gradient was initiated by a 0.5 min isocratic step with 5% B followed by an increase to 15% 

B within 1 min, 50% B within 11.5 min and 95% B within 1 min, which was kept for 1min, 

before decreasing back to initial conditions of 5% B within 0.3 min and was kept for 1.7 min. 

HPLC was coupled to a Bruker Daltonics QqToF mass spec maxis4G system in a mass range 

from 150-2500 m/z in positive ionization mode. Structures of the new derivatives were 

characterized by comparing the MS2 spectra with those of the known argyrins (Table S9). 

Argyrin production profiles of different M. xanthus expression strains in comparison to the 

native argyrin producer are illustrated in Fig. 3.         

To quantify argyrin production levels in expression strains harboring the arg2345 gene set 

(producing argyrins A and B as major derivatives), the following HPLC-MS method was 

applied. Separation was performed on a Dionex UltiMate 3000 RSLC system equipped with a 

Waters reversed phase UPLC column (Acquity UPLC BEH C18 1,7μm; 2.1*100mm) using a 

linear gradient with solvent A (water + 0.1% formic acid) and B (acetonitrile + 0.1% formic 

acid) at a flow rate of 600 μl/min and 45 °C. The gradient was initiated by a 0.5 min isocratic 
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step with 5% B followed by an increase to 15% B within 1 min, 50% B within 11.5 min and 

95% B within 1 min, which was kept for 1min, before decreasing back to initial conditions of 

5% B within 0.3 min and was kept for 1.7 min. HPLC was coupled to a Bruker Daltonics ion 

trap mass spec ‘Amazon speed’ system. Mass spectra were acquired in positive ionization 

mode with a range of 200-2500 m/z at a resolution of R=30000. Identities of the argyrins 

were confirmed by comparing with both retention time and MS2 fragmentation pattern of the 

authentic compounds.  

To further verify the incorporation of valine into argyrins K and L (R1 = CH2(CH3)2), a 

feeding experiment with M. xanthus DK1622 ΔmchA-tet::pArg2345-5-V1 growing in 50 ml 

CTT medium (50 µg/ml kanamycin) was performed. Around 29 mg L-valine-D8 (Deutero 

GmbH) was dissolved in 8 ml H2O, sterile filtered and equal aliquots were added to the 

culture after 48 h, 60 h, 72 h, 84 h, 96 h, 108 h, 120 h, and 132 h of growth. Amberlite 

XAD-16 adsorber resin (2%) was added after 144 h. After 168 h of cultivation, cells and 

XAD were harvested, extracted with methanol and analyzed by HPLC-MS as described in 

chapter 2. Argyrins K and L exhibit in MS analysis the monoisotopic signal [M+H]+ of 

853.3469 m/z (argyrin K) and 869.3412 m/z (argyrin L). As shown in Fig. S11, additional 

isotope signals appeared with a maximum intensity of a peak of +7.0439 m/z indicating the 

incorporation of L-valine-D8 during biosynthesis of both derivatives (Deuterium label in α-

position of L-valine-D8 lost because of frequent H-D exchange).  

 

4.7.7 Engineering of the A1 domain of the argyrin NRPS megasynthetase 

To rationally engineer argyrin the A1 specificity conferring code15, A domains from 

myxobacterial BGCs with known substrate specificity were used as template. Eight A 

domains, from published myxobacterial NRPS megasynthetases, with specificity for alanine, 

α-aminobutyric acid or valine were selected and their nonribosomal codes were extracted 

(Table S11). A panel of modified A1 versions was designed, in which residues of the 

substrate-binding pocket were mutated according to the extracted nonribosomal codes. 

In most cases the original code from “template” A domain was implemented, to adapt the 

original argyrin A1, but in some cases a hybrid code between original argyrin A1 and the 

“template” A domain was generated instead (Table S11). To avoid any bottlenecks, a codon 

usage bias of the selected surrogate host was taken into account, meaning that for each amino 

acid residue that was mutated, a codon with high prevalence in the M. xanthus DK1622 
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ΔmchA-tet host genome was employed. Synthetic sequences for 14 modified argyrin A1 

domains fragments were designed based on the described procedure (Table S4). 

Argyrin expression constructs with engineered A1 domains were constructed as shown in 

Fig. S12. Synthetic fragments of 14 modified argyrin A1 domain regions, flanked by AarI 

endonuclease restriction sites were obtained from a gene synthesis company (Table S4). AarI 

is a type IIS restriction endonuclease that cuts DNA outside of its recognition sequence, 

which allows construction of desired overhangs that are complementary to any selected target 

sequence. Construct pGH-arg2-M1-VI harboring first module of the Arg2 argyrin subunit was 

also obtained from a gene synthesis company for construction of the synthetic argyrin BGC 

(see chapter 4.5.5). The backbone of the construct was replaced with the pUC18 vector 

backbone by traditional restriction-ligation using NdeI and SdaI restriction endonucleases. 

Resulting construct pUC18-arg2-M1-V1, now harboring first module of the Arg2 argyrin 

subunit, was further modified using Red/ET in vivo recombination technique, to replace A1 

subdomain region between residues 235 and 330 (based on the GrsA numbering15) with 

kanamycin resistance cassette, flanked by AarI endonuclease restriction sites. The cassette 

was generated by PCR amplification from pTpSmchS16
 template using Arg42 and Arg43 

primer pair (Table S3). The resulting construct pUC18-arg2-M1-V1-Del-Pos235-330 as well 

as 14 synthetic A domain fragments, subcloned into standard gene synthesis vectors (pGH-

A1-mod[1-14], see Table S4), were digested using AarI enzyme and subsequently ligated, to 

generate 14 modified constructs harboring modified first module (M1) of argyrin BGC. The 

resulting 14 modified M1 modules were sub-cloned in pArg2345-V1 argyrin expression 

construct by traditional restriction-ligation using NdeI and SbfI restriction endonucleases (Fig. 

S12). Finally 14 modified argyrin heterologous expression constructs (pArg2345-V1-mod[1-

14], see Table S5) were generated and the modified region was verified by Sanger sequencing 

using the primer Arg51 (Table S3).   

Generated argyrin BGC expression constructs with modified A1 were transferred into 

M. xanthus DK1622 ΔmchA-tet by electroporation. Clones growing on selection plates 

amended with kanamycin were analyzed for correct chromosomal integration of the 

expression plasmid by PCR (Fig. S10). To evaluate the production profile of argyrin, the 

heterologous producers (A1 domain modifications: M. xanthus DK1622 ΔmchA-

tet::pArg2345-V1-mod[1-14]; see Table S5) and control strain M. xanthus DK1622 ΔmchA-

tet::pArg2345-V1 were cultivated in parallel. Strains were inoculated from cryo stocks and 

grown on agar plates for several days until plates were mostly overgrown with cells. All of the 

cells were scraped from the plates to inoculate seed medium (50 ml medium in 300 ml 
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Erlenmeyer flask), which was incubated at 30 °C, 180 rpm for 48 h. Five ml of well grown 

seed culture were used to inoculate 50 ml production medium in which the strain was grown 

at the same conditions for 6 days. M. xanthus DK1622 derivatives were grown in CTT 

medium (see 4.5.2) supplemented with 50 μg/ml kanamycin and 2% Amberlite XAD-16 

adsorber resin. All cultivations were performed in triplicates at 30 °C and 180 rpm for 6 days. 

Cultures were harvested by centrifugation at 8000 rpm and 4 °C for 15 min. Supernatant was 

removed and pelleted cells with XAD were extracted with 1:1 mixture of methanol and 

acetone (25 ml of methanol and 25 ml acetone). After filtration, the crude extracts were 

evaporated to dryness and subsequently re-dissolved in 1 ml of methanol for HPLC-MS 

analysis (see chapter 2). Argyrin peaks were identified by EIC [M + H]+ = 825.313 (arg A) 

and [M + H]+ = 839.329 (arg B) and their yields were evaluated by integration and relative 

comparison of the peak surface area. 

 

4.7.8 Medium optimization for yield improvement 

To further improve argyrin production levels, M7/s4 (0.5% soy flour, 0.5% corn starch, 0.2% 

glucose, 0.1% yeast extract, 0.1% MgSO4 x 7 H2O, 0.1 % CaCl2 x 2 H2O, 1% HEPES, with 

final pH 7.4 and supplemented with 0.1 mg/l of vitamin B12 and 5 mg/l of FeCl3 after 

autoclaving) and M7/s6 (0.5% soy flour, 0.5% corn starch, 0.2% glucose, 0.1% yeast extract, 

1% potassium acetate, 0.1% MgSO4 x 7 H2O, 0.1 % CaCl2 x 2 H2O, 1% HEPES, with final 

pH 7.4 and supplemented with 0.1 mg/l of vitamin B12 and 5 mg/l of FeCl3 after autoclaving) 

media were investigated as alternative options. The M7/s4 medium was identified to be the 

best candidate for further optimization.  Experimental details and results are described below. 

From a well-grown agar plate of M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI culture, 

flasks with 50 ml M7/s4 medium were inoculated and incubated on a rotary shaker (180 rpm) 

at 30 °C for 6 days. Solution of amino acid mixture calculated for the final concentration of 5 

mM serine, 5 mM cysteine, 5 mM alanine, 10 mM tryptophan, 10 mM glycine and 10 mM α-

aminobutyric acid was fed to the production cultures twice daily over the course of 6 days. 

The control experiment without supplementing the medium with the amino acid solution was 

performed in parallel. Amberlite XAD-16 adsorber resin (2%) was added after 24 h to all 

cultures. After 6 days of incubation the cultures were harvested by centrifugation and 

cells/XAD were extracted with 50 ml of ethyl acetate. Concentrated methanol extracts from 

the feeding experiments and the respective controls without feeding were analyzed by HPLC-

MS and argyrin production was quantified as described in chapter 4.7.6. 



Biosynthesis and heterologous production of argyrins | 171 
 

 

4.7.9 Figures 

 

 

 
 
Figure S1. Phylogenetic tree of different C domain subtypes. Phylogenetic tree of all known C domain subtypes 
(LCL, DCL, Starter, Dual E/C, Epimerization and Heterocyclization domains), with the new proposed Dual Deh/C 
subtype highlighted in orange. The phylogeny was reconstructed using phyml, employing the JTT model of 
amino acid substitution and a gamma-distributed rate variation with four categories. The support values are 
based on 100-fold bootstrapping. The C domain list includes 525 domains from phylogenetic study by Rausch et. 
al.17, seven C domains from the argyrin NRPS (C2_SBCb004, C3_SBCb004, C4_SBCb004, Cy5_SBCb004, 
C6_SBCb004, C7_SBCb004 and C8_SBCb004) as well as selected C domain examples from α,β-dehydro amino 
acid forming pathways: bleomycin (blmVI; Q9FB23), burriogladin (BgdA; MH170348), haerogladin (HgdA, 
MH170356), nocardicin (NocB; Q5J1Q6 ), hassallidin (HasO; K7VZQ9), syringomycin (SyrE; O85168), 
stenothricin (StenS; EFE73312.1),  
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Figure S2. Inactivation of arg3 in Cystobacter sp. SBCb004 by insertional mutagenesis. Integration of the 
suicide plasmid pArg1 via homologous recombination (A), and verification of the mutant strains via PCR 
analysis (B). 
 

 

 

 
Figure S3. Argyrin production analysis after arg3 inactivation in Cystobacter sp. SBCb004. Culture extracts of 
Cystobacter sp. SBCb004 wild-type (A) and the arg3 inactivation mutant strain Cystobacter sp. 
SBCb004::pArg1 (B) were analyzed by HPLC-MS-DAD (DAD chromatograms at 200-600 nm shown). 
Argyrins A-E were detected in the wild-type, but not in the mutant extract. 
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Figure S4. Analysis of the incorporation L-serine-2,3,3-D3 during argyrin biosynthesis. MS-spectra of argyrin A 
after HPLC-MS analysis of culture extracts of Cystobacter sp. SBCb004. The monoisotopic signal of the argyrin 
A [M+H]+ ion is at 825.3143 m/z (calc. 825.3137 m/z, C40H45N10O8S). (A) Control sample to which no labelled 
precursor was fed, (B) sample from feeding experiment with L-serine-2,3,3-D3, (C) expected labelling pattern of 
argyrin A after incorporation of L-serine-2,3,3-D3 and Dha unit generation. 
 
 
 
 
 
 
 

 
 
Figure S5. Analysis of the incorporation L-threonine-13C4,

15N during argyrin biosynthesis. MS-spectra of 
argyrin B after HPLC-MS analysis of culture extracts of Cystobacter sp. SBCb004. The monoisotopic signal of 
the argyrin B [M+H]+ ion is at 839.3300 m/z (calc. 839.3294 m/z, C41H47N10O8S). (A) Control sample to which 
no labelled precursor was fed, (B) sample from feeding experiment with L-threonine-13C4,

15N, (C) expected 
labelling pattern of argyrin B after incorporation of Abu generated from L-threonine-13C4,

15N metabolism by 
threonine deaminase and aminotransferase enzymes3. 
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Figure S6. Structures of argyrin I and argyrin J. For NMR data see Tables S6/S7. 
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Figure S7 (continued on next page) 
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Figure S7 (continued on next page) 
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Figure S7 (continued on next page) 
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Figure S7. NMR spectra of argyrin I.  
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Figure S8 (continued on next page) 
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Figure S8 (continued on next page) 
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Figure S8 (continued on next page)  
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Figure S8. NMR spectra from argyrin J. 
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Figure S9. Effect of the arg-V2 sequence modulation on selected features in comparison to arg-native. 
Untranslated regions between the protein coding sequences of arg2-arg4 were excluded from the graphs. 
(A) Interaction of the 16s rRNA 3'-end (anti-Shine-Dalgarno (ASD) sequence) and internal Shine-Dalgarno (SD) 
within the arg CDSs. (B) Occurrence of rare codon clusters within the arg CDSs derived from 9 codon windows 
(including Trp and Met for CAI calculation). The modified BGC arg-V2 shows no downward peaks below 
CAI=0.425, whereas the native BGC has values lower than CAI=0.2. (C) Occurrence patterns of hidden stop 
codons in neighbouring frames of arg CDSs.   
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Figure S10. Construction and verification of expression strains. (A) After replacement of the mchA BGC region 
in M. xanthus DK1622 with the tetracycline resistance gene (tet

R), arg BGC expression constructs were 
integrated by homologous recombination via tet

R. Genetic elements are not illustrated in uniform scale (B) 
Correct chromosomal integration was verified by PCR using the oligonucleotides P1-P4 (Table S1) as shown for 
M. xanthus DK1622 ΔmchA-tet::pArg2345-V1/V2 in comparison to M. xanthus DK1622 ΔmchA-tet and water 
as negative control.  
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Figure S11. Analysis of the incorporation L-valine-D8 during argyrin biosynthesis. MS-spectra of argyrin K (C) 
and argyrin L (G) after HPLC-MS analysis of culture extracts of Cystobacter sp. SBCb004. The monoisotopic 
signal of the argyrin K [M+H]+ ion is at 853.3469 m/z (calc. 853.3450 m/z, C42H49N10O8S) and of the argyrin L 
[M+H]+ ion at 869.3412 m/z (calc. 869.3399 m/z, C42H49N10O9S). (A)/(E) Control sample to which no labelled 
precursor was fed, (B)/(F) sample from feeding experiment with L-valine-D8, (D)/(H) expected labelling pattern 
of argyrin K and L after incorporation of L-valine-D8 (D in α-position lost because of frequent H-D exchange). 
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Figure S12. Strategy to exchange the subdomain part of A1. Using this approach 14 expression constructs with 
engineered A1 domains (pArg2345-V1-mod[1-14]) were generated. 
 
 

 
Figure S13. Modification strategy of the pArg2345-V1-BsaI expression construct. General modification strategy 
of the pArg2345-V1-BsaI expression construct (e.g. Arg3 subunit), employing BsaI type IIS restriction sites.   
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4.7.10 Tables 

 

Table S1. Genes, proteins, proposed function in the arg BGC from Cystobacter sp. SBCb004. 
Gene name Gene length Protein name Protein length Putative function 

arg1 2013 nt Arg1 670 aa radical SAM-dependent 
methyltransferase 

arg2 10617 nt Arg2 3538 aa nonribosomal peptide synthetase 
(NRPS), subunit 1 

arg3 17841 nt Arg3 5946 aa nonribosomal peptide synthetase 
(NRPS), subunit 2 

arg4 1011 nt Arg4 336 aa O-methyltransferase 

arg5 1152 nt Arg5 383 aa tryptophan 2,3-dioxygenase 

nt = nucleotides, aa = amino acids 
 

Table S2. Substrate specificity analysis of A domains from the argyrin NRPS from Cystobacter sp. SBCb004.  
 Residue according to GrsA Phe numbering 1 

Specificity predictions 2 
235 236 239 278 299 301 322 330 331 517 

A1 D V L F L G V V A K (a) Ile Ala - 
A2 D V W H F S L I D K Ser Ser Ser Ser 
A3 D I L Q L G M V W K Gly Gly Gly Gly 
A4 D L W N M G E V W K (b) Asn Ala - 
A5 D L Y N M S L I W K Cys Cys Cys Cys 
A6 D G W A L A A V T K (c) Trp Tyr - 
A7 D G W A T A V V T K Trp Trp Ala Trp 
A8 D I L Q L G V I W K Gly Gly Gly Gly 
1 Ten specificity-conferring residues defined by Stachelhaus et al.15 
2 Predicted substrate specificities were retrieved from reports of the applied antiSMASH 3.0 gene cluster 
analysis18. They include substrate predictions based on the NRPSpredictor2 method19 (1st column) / Stachelhaus 
code15 (2nd column) / method of Minowa et al.

20 (3rd column) / consensus of the three approaches (4th column; 
“-“ indicates no consensus). In some cases, no single substrates but (only) classes/clusters of several amino acids 
were predicted by NRPSpredictor2 as indicated by (a-c): (a) Hydrophobic aliphatic (Ala, Gly, Val, Leu, Ile, Abu, 
Iva Ser, Thr, Hpg, Dhpg, Cys, Pro, Pip), (b) Apolar, aliphatic (Gly, Ala, Val, Leu, Ile, Abu, Iva), (c) Apolar 
aromatic ring (Phe, Trp). 
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Table S3. Oligonucleotides used in this study. 
Name Sequence (5‘→3‘) 

(restriction sites in bold, homology arms underlined) 
R-sites 
(bold) 

Arg1 CTCGATATCCCAGCGCAAGAGCTATCG EcoRV 
Arg2 CTCGGATCCGGTCGGGAACCATGTACC BamHI 
Arg10 GAGCGTGCGGAAGAGCTC  
Arg11 CCTCGGTGCTGTTCCAGG  
Arg42 AACCCGAGGACCGCTTTCTCGCCCTGAGCTCGGTCTCCTTCG

ACGGCAGGTGTGGACAGCAAGCGAACCG 
 

Arg43 TGCACACTGTCACCCGCGAAGAGCTCTGGCGAAGTGACCGCG
ACGGCAGGTGTCAGAAGAACTCGTCAAG 

 

Arg44 TGACATCATATGCCTAGGGACGAAAGGGCCTCGTGATAC  
Arg45 ATGTCAGCATGCCCTAGGTTACCAATGCTTAATCAGTGAG  
Arg47 CACCAAGCTTTGAATGCGCAAACCAACC  
Arg48 CTAGGTCAGGGCATATGATC  
Arg51 CCCGCCTACTTCATGTACAC  
Arg2V1F GGCTCTTCAATCTGGACGAG   
Arg2V1R GATCTTCAGGTCTGGTTTGC   
Arg3V1F (= MutArg3V1F) CTCATGGCTTCTGGCGTCTG  
Arg3V1R (= MutArg3V1R) GGGACACCTTGTGCTTGTCC  
arg4V1F GTTGATGCTCGTCCTGGGTG  
arg4V1R CAGGTCGCATCGTCCCAATC  
arg5V1F CCGGCCTATATTCATGAGCG  
arg5V1R CTTCAGATGCTCGAAGCCATC  
Arg2V2F (= arg2F)  GGTCCGATGTATCGCACC   
Arg2V2R (= arg2R)  GTGTAGCGCTCACAGTGC   
Arg3V2F (= arg3F)  GATGCCCAGCACTTCAACC   
Arg3V2R (= arg3R)  GCCTGACCCTCACCTTCC  
Arg4V2F (= arg4F)  CACCTCATCAATAGCACG  
Arg4V2R (= arg4R)  GCCTTACGCAGGAGTTCC  
Arg5V2F (= arg5F)  TCTTCGTGGCTGACGTGC  
Arg5V2R (= arg5R)  GCATGTTCGCGGAACAGC  
P1 (= InMchP1) CGAGCAATCCGCTATTGGC  
P2 (= InMchP2) CAGCTGGCAATTCCGGTTCG   
P3 (= InMchP3) ACGGGACGGGATATCTGACC   
P4 (= InMchP4) CTGTGTCCTTCTGCGACGC   
pSUP_B CGCTCATCGTCATCCTCG  
pSUP_E GCTCATGAGCCCGAAGTG  
dpo-A4-ampR-F GGCCAGTCCGCGGGGAACCTGGACCTGGATTACGCCTCCGGG

GATGAGACCGACGAAAGGGCCTCGTGATAC 
BsaI 

dpo-A4-ampR-R AAGGGAGACGTGGACGAACTTCTCCTTGTTCAGCTCTGGCCG
CTTCGAGACCTTACCAATGCTTAATCAGTGAG 

BsaI 

dpo-BsaI-A4-R GTCTTGTAGAGGCGGACGTTG  

Ampint3 GGACCACTTCTGCGCTCG  

Ampint5 GTCTCATGAGCGGATAC  

Mch140 CATGAGCTCGGAAACGGACGCGCCAATCC SacI 
Mch141 CATTCTAGACTACGCCAATAGCGGATTGC XbaI 
Mch165 CATTCTAGACGATGTCGCGCAGGTACG XbaI 
Mch166 CATGGATCCCATCCAGCAGAAGGCCATC BamI 
TetR-for CACGGTTCTAGACGTAATTCTCATGTTTGACAGC XbaI 
TetR-rev CACGGTTCTAGACAAGGGTTGGTTTGCGCA XbaI 
 
  
  



Biosynthesis and heterologous production of argyrins | 189 
 

 

Table S4. Gene synthesis constructs obtained from ATG:biosynthetics GmbH.  
Construct name Fragment size Description 
pGH-arg2-M1-V1 3129 bp NdeI-AvrII-arg2-M1-V1-SbfI-BglII 
pGH-arg2-M2-V1 3374 bp NdeI-SbfI-arg2-M2-V1-MluI-BglII 
pGH-arg2-M3-V1 4317 bp NdeI-MluI-arg2-M3-V1-SphI-BglII 
pGH-arg3-M4-V1 3238 bp NdeI-SphI-arg3-M4-V1-KpnI-BglII 
pGH-arg3-M5-V1 4446 bp NdeI-KpnI-arg3-M5-V1-AscI-BglII 
pGH-arg3-M6-V1 3168 bp NdeI-AscI-arg3-M6-V1-NotI-BglII 
pGH-arg3-M7-V1 3172 bp NdeI-NotI-arg3-M7-V1-MfeI-BglII 
pGH-arg3-M8-V1 4037 bp NdeI-MfeI-arg3-M8-V1-NsiI-NcoI 
pGH-arg4-V1  1061 bp NdeI-NsiI-arg4-V1-NcoI-BglII 
pGH-arg5-V1  1236 bp NdeI-NcoI-arg5-V1-BglII  
pGH-arg2-M1-V2 3129 bp NdeI-AvrII-arg2-M1-V2-SbfI-BglII 
pGH-arg2-M2-V2 3374 bp NdeI-SbfI-arg2-M2-V2-MluI-BglII 
pGH-arg2-M3-V2 4317 bp NdeI-MluI-arg2-M3-V2-SphI-BglII 
pGH-arg3-M4-V2 3238 bp NdeI-SphI-arg3-M4-V2-KpnI-BglII 
pGH-arg3-M5-V2 4446 bp NdeI-KpnI-arg3-M5-V2-AscI-BglII 
pGH-arg3-M6-V2 3168 bp NdeI-AscI-arg3-M6-V2-NotI-BglII 
pGH-arg3-M7-V2 3172 bp NdeI-NotI-arg3-M7-V2-MfeI-BglII 
pGH-arg3-M8-V2 4037 bp NdeI-MfeI-arg3-M8-V2-NsiI-NcoI 
pGH-arg4-V2  1061 bp NdeI-NsiI-arg4-V2-NcoI-BglII 
pGH-arg5-V2  1236 bp NdeI-NcoI-arg5-V2-BglII  
pGH-15A-kanR 2088 bp PmeI-AflII-p15Aori-kanR-EcoRV-PacI 
pGH-tetR-PnptII-MCS-TD1 2002 bp EcoRV-PacI-tetR-PnptII-MCS-TD1-PmeI-AflII 
pGH-A1-mod1 324 bp AarI-A1-mod1-AarI 
pGH-A1-mod2 324 bp AarI-A1-mod2-AarI 
pGH-A1-mod3 324 bp AarI-A1-mod3-AarI 
pGH-A1-mod4 324 bp AarI-A1-mod4-AarI 
pGH-A1-mod5 324 bp AarI-A1-mod5-AarI 
pGH-A1-mod6 324 bp AarI-A1-mod6-AarI 
pGH-A1-mod7 324 bp AarI-A1-mod7-AarI 
pGH-A1-mod8 324 bp AarI-A1-mod8-AarI 
pGH-A1-mod9 324 bp AarI-A1-mod9-AarI 
pGH-A1-mod10 324 bp AarI-A1-mod10-AarI 
pGH-A1-mod11 324 bp AarI-A1-mod11-AarI 
pGH-A1-mod12 324 bp AarI-A1-mod12-AarI 
pGH-A1-mod13 324 bp AarI-A1-mod13-AarI 
pGH-A1-mod14 324 bp AarI-A1-mod14-AarI 
pGH-arg2-M1-V1-BsaI 3374 bp NdeI-AvrII-arg2-M1-V1-BsaI-SbfI-BglII 
pGH-arg2-M2-V1-BsaI 4317 bp NdeI-SbfI-arg2-M2-V1-BsaI-MluI-BglII 
pGH-arg2-M3-V1-BsaI 3226 bp NdeI-MluI-arg2-M3-V1-BsaI-SphI-BglII 
pGH-arg3-M4-V1-BsaI 4446 bp NdeI-SphI-arg3-M4-V1-BsaI-KpnI-BglII 
pGH-arg3-M5-V1-BsaI 3168 bp NdeI-KpnI-arg3-M5-V1-BsaI-AscI-BglII 
pGH-arg3-M6-V1-BsaI 3172 bp NdeI-AscI-arg3-M6-V1-BsaI-NotI-BglII 
pGH-arg3-M7-V1-BsaI 4037 bp NdeI-NotI-arg3-M7-V1-BsaI-MfeI-BglII 
pGH-arg3-M8-V1-BsaI 1061 bp NdeI-MfeI-arg3-M8-V1-BsaI-NsiI-NcoI 
pGH-arg4-V1-BsaI 1236 bp NdeI-NsiI-arg4-V1-BsaI-NcoI-BglII 
pGH-arg5-V1-BsaI 3374 bp NdeI-NcoI-arg5-V1-BsaI-BglII  
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Table S5. Plasmids and expression constructs generated in this study. 
Construct name Construction Description/Characteristics 
pSynBio3 
(p15A-kan-tet-
PnptII-MCS-TD1) 

1986 bp PacI-tetR-PnptII-MCS-TD1-
PmeI-AflII fragment from pGH-tetR-
PnptII-MCS-TD1 ligated with 2070 bp 
AflII-p15Aori-kanR-EcoRV-PacI fragment 
from pGH-15A-kanR  

Expression vector backbone, 
p15A ori, kan

R, tet
R 

pGH-arg2-M1-M2-
V1   

3359 bp SbfI-arg2-M2-V1-BglII fragment 
derived from pGH-arg2-M2-V1 ligated 
into pGH-arg2-M1-V1 hydrolyzed with 
the same enzymes    

synthetic arg2-V1 fragment (encoding 
modules M1-M2 of NRPS Arg2),  
pUC ori, amp

R 

pGH-arg2-V1 
  

4303 bp MluI-arg2-M3-V1-BglII fragment 
derived from pGH-arg2-M3-V1 ligated 
into pGH-arg2-M1-M2-V1 hydrolyzed 
with the same enzymes 

complete synthetic arg2-V1 gene 
(encoding modules M1-M3 of NRPS 
Arg2),  
pUC ori, amp

R 
pGH-arg3-M4-M5-
V1  

4432 bp KpnI-arg3-M5-V1-BglII  
fragment from pGH-arg3-M5-V1 ligated 
into pGH-arg3-M4-V1 hydrolyzed with 
the same enzymes  

synthetic arg3-V1 fragment (encoding 
modules M4-M5 of NRPS Arg3),  
pUC ori, amp

R 

pGH-arg3-M4-M5-
M6-V1   

3153 bp AscI-arg3-M6-V1-BglII fragment 
from pGH-arg3-M6-V1 ligated into pGH-
arg3-M4-M5-V1 hydrolyzed with the same 
enzymes 

synthetic arg3-V1 fragment (encoding 
modules M4-M6 of NRPS Arg3),  
pUC ori, amp

R 

pGH-arg3-M4-M5-
M6-M7-V1 
  

3157 bp NotI-arg3-M7-V1-BglII fragment 
from pGH-arg3-M7-V1 ligated into pGH-
arg3-M4-M5-M6-V1 hydrolyzed with the 
same enzymes   

synthetic arg3-V1 fragment (encoding 
modules M4-M7 of NRPS Arg3),  
pUC ori, amp

R 

pGH-arg3-V1 
  

4023 bp MfeI-arg3-M8-V1-BglII fragment 
from pGH-arg3-M8-V1 ligated into pGH-
arg3-M4-M5-M6-M7-V1 hydrolyzed with 
the same enzymes 

complete synthetic arg3-V1 gene 
(encoding modules M4-M8 of NRPS 
Arg3),  
pUC ori, amp

R 
pArg2-V1 
  

10755 bp NdeI-arg2-V1-BglII fragment 
from pGH-arg2-V1 ligated into pSynBio3 
hydrolyzed with the same enzymes 

expression vector with PnptII-arg2-V1-tD1 
transcription unit,   
p15A ori, kan

R, tet
R
  

pArg23-V1 
  

17923 bp SphI-arg3-V1-BglII fragment 
from pGH-arg3-V1 ligated into pArg2-V1 
hydrolyzed with the same enzymes 

expression vector with PnptII -arg2-arg3-
V1- tD1 transcription unit,   
p15A ori, kan

R, tet
R 

pArg235-V1 
  

1222 bp NcoI-arg5-V1-BglII fragment 
from pGH-arg5-V1 ligated into pArg23-
V1 hydrolyzed with the same enzymes 

expression vector with PnptII -arg2-arg3-

arg5-V1- tD1 transcription unit,   
p15A ori, kan

R, tet
R 

pArg2345-V1 
  

1035 bp NsiI-arg4-V1-NcoI fragment from 
pGH-arg4-V1 ligated into pArg235-V1 
hydrolyzed with the same enzymes 

expression vector with PnptII -arg2-arg3-

arg4-arg5-V1- tD1 transcription unit,   
p15A ori, kan

R, tet
R 

pGH-arg2-LM-M1-
V2   

3359 bp SbfI-arg2-M2-V2-BglII fragment 
derived from pGH-arg2-M2-V2 ligated 
into pGH-arg2-M1-V2 hydrolyzed with 
the same enzymes    

synthetic arg2-V2 fragment (encoding 
modules M1-M2 of NRPS Arg2),  
pUC ori, amp

R 

pGH-arg2-V2 
  

4303 bp MluI-arg2-M3-V2-BglII fragment 
derived from pGH-arg2-M3-V2 ligated 
into pGH-arg2-M1-M2-V2 hydrolyzed 
with the same enzymes 

complete synthetic arg2-V2 gene 
(encoding modules M1-M3 of NRPS 
Arg2),  
pUC ori, amp

R 
pGH-arg3-M4-M5-
V2  

4432 bp KpnI-arg3-M5-V2-BglII  
fragment from pGH-arg3-M5-V2 ligated 
into pGH-arg3-M4-V2 hydrolyzed with 
the same enzymes  

synthetic arg3-V2 fragment (encoding 
modules M4-M5 of NRPS Arg3),  
pUC ori, amp

R 

pGH-arg3-M4-M5-
M6-V2   

3153 bp AscI-arg3-M6-V2-BglII fragment 
from pGH-arg3-M6-V2 ligated into pGH-
arg3-M4-M5-V2 hydrolyzed with the same 
enzymes 

synthetic arg3-V2 fragment (encoding 
modules M4-M6 of NRPS Arg3),  
pUC ori, amp

R 

pGH-arg3-M4-M5-
M6-M7-V2 

3157 bp NotI-arg3-M7-V2-BglII fragment 
from pGH-arg3-M7-V2 ligated into pGH-

synthetic arg3-V2 fragment (encoding 
modules M4-M7 of NRPS Arg3),  
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  arg3-M4-M5-M6-V2 hydrolyzed with the 
same enzymes   

pUC ori, amp
R 

pGH-arg3-V2 
  

4023 bp MfeI-arg3-M8-V2-BglII fragment 
from pGH-arg3-M8-V2 ligated into pGH-
arg3-M4-M5-M6-M7-V2 hydrolyzed with 
the same enzymes 

complete synthetic arg3-V2 gene 
(encoding modules M4-M8 of NRPS 
Arg3),  
pUC ori, amp

R 
pArg2-V2 
  

10755 bp NdeI-arg2-V2-BglII fragment 
from pGH-arg2-V2 ligated into pSynBio3 
hydrolyzed with the same enzymes 

expression vector with PnptII-arg2-V2-tD1 
transcription unit,   
p15A ori, kan

R, tet
R
  

pArg23-V2 
  

17923 bp SphI-arg3-V2-BglII fragment 
from pGH-arg3-V2 ligated into pArg2-V2 
hydrolyzed with the same enzymes 

expression vector with PnptII -arg2-arg3-
V2- tD1 transcription unit,   
p15A ori, kan

R, tet
R 

pArg235-V2 
  

1222 bp NcoI-arg5-V2-BglII fragment 
from pGH-arg5-V2 ligated into pArg23-
V2 hydrolyzed with the same enzymes 

expression vector with PnptII -arg2-arg3-

arg5-V2- tD1 transcription unit,   
p15A ori, kan

R, tet
R 

pArg2345-V2 
  

1035 bp NsiI-arg4-V2-NcoI fragment from 
pGH-arg4-V2 ligated into pArg235-V2 
hydrolyzed with the same enzymes 

expression vector with PnptII -arg2-arg3-

arg4-arg5-V2- tD1 transcription unit,   
p15A ori, kan

R, tet
R 

pUC18-arg2-M1-V1 3113 bp  NdeI-arg2-M1-VI-SdaI fragment 
ligated into pUC18 hydrolyzed with the 
same enzymes 

cloning vector with arg2-M1-V1 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
Del-Pos235-330 

A1 subdomain region of pUC18-arg2-M1-
V1 replaced with 1052 bp kan

R fragment 

by in vivo recombination 

cloning vector with arg2-M1-V1-Del-
Pos235-330 synthetic fragment, pUC18 
ori, amp

R 
pUC18-arg2-M1-V1-
mod1 

302 bp AarI-A1-mod1-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod1 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
mod2 

302 bp AarI-A1-mod2-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod2 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
mod3 

302 bp AarI-A1-mod3-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod3 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
mod4 

302 bp AarI-A1-mod4-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod4 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
mod5 

302 bp AarI-A1-mod5-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod5 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
mod6 

302 bp AarI-A1-mod6-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod6 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
mod7 

302 bp AarI-A1-mod7-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod7 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
mod8 

302 bp AarI-A1-mod8-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod8 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
mod9 

302 bp AarI-A1-mod9-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod9 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1- 302 bp AarI-A1-mod10-AarI fragment cloning vector with arg2-M1-V1-mod10 
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mod10 ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

synthetic fragment, pUC18 ori, amp
R 

pUC18-arg2-M1-V1-
mod11 

302 bp AarI-A1-mod11-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod11 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
mod12 

302 bp AarI-A1-mod12-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod12 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
mod13 

302 bp AarI-A1-mod13-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod13 
synthetic fragment, pUC18 ori, amp

R 

pUC18-arg2-M1-V1-
mod14 

302 bp AarI-A1-mod14-AarI fragment 
ligated into pUC18-arg2-M1-V1-Del-
Pos235-330 hydrolyzed with the same 
enzyme 

cloning vector with arg2-M1-V1-mod14 
synthetic fragment, pUC18 ori, amp

R 

pArg2345-V1-mod1 3133 bp NdeI-arg2-M1-V1-mod1-SbfI 
fragment from pUC18-arg2-M1-V1-mod1 
ligated into pArg2345-V1 hydrolyzed with 
the same enzymes 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod1; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-mod2 3133 bp NdeI-arg2-M1-V1-mod2-SbfI 
fragment from pUC18-arg2-M1-V1-mod2 
ligated into pArg2345-V1 hydrolyzed with 
NdeI/SbfI 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod2; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-mod3 3133 bp NdeI-arg2-M1-V1-mod3-SbfI 
fragment from pUC18-arg2-M1-V1-mod3 
ligated pArg2345-V1 hydrolyzed with the 
same enzymes 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod3; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-mod4 3133 bp NdeI-arg2-M1-V1-mod4-SbfI 
fragment from pUC18-arg2-M1-V1-mod4 
ligated into pArg2345-V1 hydrolyzed with 
the same enzymes 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod4; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-mod5 3133 bp NdeI-arg2-M1-V1-mod5-SbfI 
fragment from pUC18-arg2-M1-V1-mod5 
ligated into pArg2345-V1 hydrolyzed with 
the same enzymes 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod5; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-mod6 3133 bp NdeI-arg2-M1-V1-mod6-SbfI 
fragment from pUC18-arg2-M1-V1-mod6 
ligated into pArg2345-V1 hydrolyzed with 
the same enzymes 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod6; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-mod7 3133 bp NdeI-arg2-M1-V1-mod7-SbfI 
fragment from pUC18-arg2-M1-V1-mod7 
ligated into pArg2345-V1 hydrolyzed with 
the same enzymes 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod7; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-mod8 3133 bp NdeI-arg2-M1-V1-mod8-SbfI 
fragment from pUC18-arg2-M1-V1-mod8 
ligated into pArg2345-V1 hydrolyzed with 
the same enzymes 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod8; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-mod9 3133 bp NdeI-arg2-M1-V1-mod9-SbfI 
fragment from pUC18-arg2-M1-V1-mod9 
ligated into pArg2345-V1 hydrolyzed with 
the same enzymes 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod9; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-
mod10 

3133 bp NdeI-arg2-M1-V1-mod10-SbfI 
fragment from pUC18-arg2-M1-V1-
mod10 ligated pArg2345-V1 hydrolyzed 
with NdeI/SbfI 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod10; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-
mod11 

3133 bp NdeI-arg2-M1-V1-mod11-SbfI 
fragment from pUC18-arg2-M1-V1-

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
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mod11 ligated into pArg2345-V1 
hydrolyzed with the same enzymes 

(* A1 mutation mod11; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-
mod12 

3133 bp NdeI-arg2-M1-V1-mod12-SbfI 
fragment from pUC18-arg2-M1-V1-
mod12 ligated into pArg2345-V1 
hydrolyzed with the same enzymes 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod12; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-
mod13 

3133 bp NdeI-arg2-M1-V1-mod13-SbfI 
fragment from pUC18-arg2-M1-V1-
mod13 ligated into pArg2345-V1 
hydrolyzed with the same enzymes 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod13; Table S11),   
p15A ori, kan

R, tet
R 

pArg2345-V1-
mod14 

3133 bp NdeI-arg2-M1-V1-mod14-SbfI 
fragment from pUC18-arg2-M1-V1-
mod14 ligated into pArg2345-V1 
hydrolyzed with the same enzymes 

expression vector with PnptII -arg2*-arg3-

arg4-arg5-V1- tD1 transcription unit  
(* A1 mutation mod14; Table S11),   
p15A ori, kan

R, tet
R 

pGH-arg2-M1-M2-
V1-BsaI 

3359 bp SbfI-arg2-M2-V1-BsaI-BglII 
fragment derived from pGH-arg2-M2-V1 
ligated into pGH-arg2-M1-V1 hydrolyzed 
with the same enzymes    

synthetic arg2-V1-BsaI fragment 
(encoding modules M1-M2 of NRPS 
Arg2), pUC ori, amp

R 

pGH-arg2-V1-BsaI 4303 bp MluI-arg2-M3-V1-BsaI-BglII 
fragment derived from pGH-arg2-M3-V1 
ligated into pGH-arg2-M1-M2-V1 
hydrolyzed with the same enzymes 

complete synthetic arg2-V1-BsaI gene 
(encoding modules M1-M3 of NRPS 
Arg2), pUC ori, amp

R 

pGH-arg3-M5-M6-
V1-BsaI 

3153 bp AscI-arg3-M6-V1-BsaI-BglII 
fragment from pGH-arg3-M6-V1-BsaI 
ligated into pGH-arg3-M5-V1-BsaI 
hydrolyzed with the same enzymes    

synthetic arg3-M5-M6-V1-BsaI fragment 
(encoding modules M5-M6 of NRPS 
Arg3), pUC ori, amp

R 

pGH-arg3-M5-M6-
M7-V1-BsaI 

3157 bp NotI-arg3-M7-V1-BsaI- BglII 
fragment from pGH-arg3-M7-V1-BsaI 
ligated into pGH-arg3-M5-M6-V1-BsaI 
hydrolyzed with the same enzymes    

synthetic arg3-M5-M6-M7-V1-BsaI 
fragment (encoding modules M5-M7 of 
NRPS Arg3), pUC ori, amp

R 

pGH-arg3-M5-M6-
M7-M8-V1-BsaI 

4023 bp MfeI-arg3-M8-V1-BsaI-BglII 
fragment from pGH-arg3-M8-V1-BsaI 
ligated into pGH-arg3-M5-M6-M7-V1-
BsaI hydrolyzed with the same enzymes    

synthetic arg3-M5-M6-M7-M8-V1-BsaI 
fragment (encoding modules M5-M8 of 
NRPS Arg3), pUC ori, amp

R 

pGH-arg3-V1-BsaI 3223 bp NdeI-arg3-M4-V1-BsaI-KpnI 
fragment from pGH-arg3-M4-V1-BsaI 
ligated into pGH-arg3-M5-M6-M7-M8-
V1-BsaI hydrolyzed with the same 
enzymes    

complete synthetic arg3-V1-BsaI 
fragment (encoding modules M4-M8 of 
NRPS Arg3), pUC ori, amp

R 

pArg2-V1-BsaI 10755 bp NdeI-arg2-V1-BsaI-BglII 
fragment from pGH-arg2-V1 ligated into 
pSynBio3 hydrolyzed with the same 
enzymes 

expression vector with PnptII-arg2-V1-
BsaI-tD1 transcription unit,   
p15A ori, kan

R, tet
R
  

pArg23-V1-BsaI 17923 bp SphI-arg3-V1-BsaI-BglII 
fragment from pGH-arg3-V1 ligated into 
pArg2-V1-BsaI hydrolyzed with the same 
enzymes 

expression vector with PnptII-arg2-arg3-
V1-BsaI-tD1 transcription unit,   
p15A ori, kan

R, tet
R 

pArg234-V1-BsaI 1047 bp NsiI-arg4-V1-BsaI-BglII fragment 
from pGH-arg4-V1-BsaI ligated into 
pArg23-V1-BsaI hydrolyzed with the same 
enzymes 

expression vector with PnptII-arg2-arg3-
arg4-V1-BsaI-tD1 transcription unit,   
p15A ori, kan

R, tet
R 

pArg2345-V1-BsaI 1222 bp NcoI-arg5-V1-BsaI-BglII 
fragment from pGH-arg5-V1-BsaI ligated 
into pArg234-V1-BsaI hydrolyzed with the 
same enzymes 

expression vector with PnptII-arg2-arg3-
arg4-arg5-V1-BsaI-tD1 transcription unit,   
p15A ori, kan

R, tet
R 

V1 = version 1, V2 = version 2, amp
R = ampicillin resistance gene, kan

R = kanamycin resistance gene, 
tet

R = tetracycline resistance gene, PnptII = PnptII promoter, TD1= tD1 terminator  
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Table S6. NMR spectroscopic data of argyrin I. 

Res ∆13Ca,c ∆ 1Hb Mult J(Hz) 
Thiaz NH  8.81 d 8.6 
1 159.8    
2 150.1    
3 122.9 8.03  s  
4 170.8    
5 45.5 5.48 d,q 7.1, 7.6 
6 20.7 1.71 d 7.2 
Trp1 NH  8.56 d 7.3 
1 172.7    
2 52.2 5.10 m  
3 27.0 3.49 d,d 15.5, 3.3 
  2.88 d,d 15.3, 3.4 
1´   NH  10.66 s  
2´ 125.9 6.99d d 2.6 
3´ 105.5    
4´ 115.9 6.22 d 7.8 
5´ 119.8 6.52 d,d 7.4,7.4 
6´ 121.5 6.98d d,d 7.6,7.6 
7´ 111.8 7.14 d 7.9 
8´ 134.9    
9´ 126.5    
Trp2 NH  6.61 m  
1 169.9    
2 56.4 4.28 m  
3 26.6 3.37 d,d 15.3, 5.2 
  3.31 d,d 15.2, 4.9 
1´   NH  8.41 s  
2´ 123.4 7.21 d 2.1 
3´ 109.1    
4´ 117.9 7.62  d 7.8 
5´ 121.1 7.29 d,d 7.6,7.6 
6´ 123.5 7.39 d,d 8.0,7.7 
7´ 112.1 7.60 d 8.1 
8´ 136.6    
9´ 127.3    
Gly NH  4.75 m  
1 171.1    
2 41.2 3.62 d,d 17.1, 7.8 
  1.29 m  
Abu  NH  6.67 d 6.5 
1 169.2    
2 54.5 4.01 t,d 8.8, 6.3 
3 21.3 1.99 m  
  1.86 m  
4 10.7 0.89 t 7.3 
DeAla  NH  9.36   
1 168.2    
2 136.8    
3 99.7 5.03 d 1.5 
  4.74 m  
Sarc       
1 166.8    
2 51.2 4.99 d 17.0 
  3.41 d 16.9 
CH3-N 37.4 3.11 s  
 

a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
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Table S7. NMR spectroscopic data of argyrin J.  

Res ∆13Ca,c ∆ 1Hb Mult J(Hz) 
Thiaz NH  9.08 d,d 8.0,4.4 
1 159.6    
2 150.3    
3 123.9 8.08  s  
4 165.6    
5 39.4 5.14 d,d 8.2, 14.4 
Trp1 NH  8.64 d 7.3 
1 172.9    
2 52.3 5.04 m  
3 26.8 3.55 d,d 15.2, 3.7 
  2.84 d,d 15.4, 3.1 
1´   NH  10.6 s  
2´ 125.6 6.99 d 2.6 
3´ 105.7    
4´ 116.1 5.43 d 7.8 
5´ 119.2 6.34 d,d 8.0,8.0 
6´ 121.4 6.88 d,d 6.9,6.9 
7´ 111.5 7.04 d 8.1 
8´ 134.8    
9´ 126.5    
Trp2 NH  8.77 m  
1 169.9    
2 57.9 4.21 m  
3 27.2 3.49 m  
  3.32 d,d 14.9,3.9 
1´   NH  8.29 s  
2´ 123.8 6.84 d 2.2 
3´ 108.3    
4´ 152.3    
5´ 101.5 6.92 m  
6´ 123.8 7.34d m  
7´ 106.7 7.34d m  
8´ 138.3    
9´ 117.4    
4´O-Me 56.4 4.34 s  
Gly NH  4.53 m  
1 171.5    
2 40.8 3.49 m  
  1.05 d,d 17.1,5.2 
Abu  NH  6.76 d 6.5 
1 169.5    
2 54.7 3.97 t,d 8.9, 6.2 
3 21.2 2.00 m  
  1.87 m  
4 10.6 0.88 t 7.5 
DeAla  NH  9.44   
1 168.3    
2 136.8    
3 100.1 5.02 d 1.4 
  4.73 m  
Sarc       
1 167.7    
2 51.4 4.96 d 16.8 
  3.41 d 16.8 
CH3-N 37.7 3.10 s  
 
 

a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
 



196 | Biosynthesis and heterologous production of argyrins 
 

 

Table S8. Restriction sites (R-sites) engineered within the arg BGC and pSynBio3 sequence. R-sites introduced 
into coding sequences (CDS) are shown in bold. In total, 22 different restriction enzymes were selected for 
engineering including EcoRI as backup for future approaches. Introduced R-sites are unique within the arg BGC 
and pSynBio3, respectively. Interfering R-sites in other positions were eliminated during sequence modulation.    

arg BGC  Position ‡ R-site  Selected enzymes  
(alphabetically) 5’ end arg BGC 3 NdeI  

5’ end arg2 14 AvrII  AflII 
5’ end arg2 181 StuI  AscI 
M1/M2 linker arg2 3116 SbfI  AvrII 
M2/M3 linker arg2 6455 MluI  BglII 
3’end arg2 / 5’ end arg3 10746 SphI  EcoRI 
M4/M5 linker arg3 13954 KpnI  EcoRV 
M5/M6 linker arg3 18365 AscI  KpnI 
M6/M7 linker arg3 21501 NotI  MfeI 
M7/M8 linker arg3 24642 MfeI  MluI 
3’end arg3 / 5’ end arg4 28641 NsiI  NcoI 
3’end arg4 / 5’ end arg5 29668 NcoI  NdeI 
3’ end arg5 / arg BGC 30886 BglII  NotI 
‡ with NdeI = start of artificial arg BGC sequence  NsiI 
    PacI 
pSynBio3 Position R-site  PciI 
upstream PnptII  5 PciI  PmeI 
5’ end MCS 151 NdeI  SbfI 
MCS 162 AvrII  SpeI 
MCS 179 SbfI  SphI 
MCS 188 MluI  SspI 
MCS 204 SphI  StuI 
MCS 216 KpnI  SwaI 
MCS 225 AscI   
MCS 239 NotI   
MCS 252 MfeI   
MCS 268 NsiI   
MCS 276 NcoI   
3’ end MCS 288 BglII   
downstream tD1 587 PmeI   
upstream p15A ori 589 AflII   
downstream p15A ori 1571 SspI   
5’ end kan

R 1589 SpeI   
3’ end kan

R 2645 EcoRV   
5’ end tet

R 2659 PacI   
3’ end tet

R 4044 SwaI   
 

Table S9. Sequence features of synthetic arg BGC versions compared to the native sequence. The coding 
sequences (CDS) are compared regarding three features: GC content (GC), codon adaptation index (CAI) and 
the degree of modification (Mod), which denotes the number of modified codons relative to the native sequence 
(percent change in parentheses).       

Gene arg2(3539 Codons) arg3(5947 Codons) arg4(337 Codons) arg5(384 Codons) 
Feature GC CAI Mod GC CAI Mod GC CAI Mod GC CAI Mod 
native 64.8 0.617 0 66.0 0.655 0 63.7 0.618 0 63.5 0.630 0 

V1 64.9 0.619 24 
(0.7%) 

66.1 0.655 40 
(0.7%) 

64.1 0.629 4 
(1.2%) 

63.5 0.629 4 
(1.0%) 

V2 66.9 0.716 
1745 

(49.3%) 
66.9 0.704 

2946 
(49.5%) 

65.2 0.702 
167 

(49.6%) 
65.5 0.732 

185 
(48.2%) 

V1-BsaI 64.9 0.621 
36 

(1.0%) 
66.1 0.657 

56 
(0.9%) 

64.1 0.632 
7 

(2.1%) 
63.5 0.630 

5 
(1.3%) 
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Table S10. HPLC-MS data of argyrin derivatives detected in the heterologous expression strains. 

 

 

Fragment a Fragment b Fragment c Fragment d 

[M+H]
+
 

ret. 
time                      
[min] 

m/z m/z m/z m/z 

 R1 R2 R3 R4 theoretical observed theoretical observed theoretical observed theoretical observed 

Argyrin A CH
3
 CH

3
 H OCH

3
 825.3137 10.17 345.1557 345.1558 412.1438 412.1440 464.1387 464.1388 737.2500 737.2496 

Argyrin A2 CH
3
 CH

3
 H OH 811.2981 8.20 331.1401 - 412.1438 412.1440 464.1387 464.1387 723.2344 723.2340 

Argyrin B CH
2
CH

3
 CH

3
 H OCH

3
 839.3294 10.72 359.1714 359.1715 412.1438 412.1437 464.1387 464.1388 737.2500 737.2496 

Argyrin E CH
3
 CH

3
 H H 795.3031 9.36 315.1452 315.1453 412.1438 412.1440 464.1387 646.1388 707.2395 707.2395 

Argyrin F CH
3
 CH

2
OH H OCH

3
 841.3086 9.20 345.1557 345.1558 428.1387 428.1389 480.1336 480.1336 753.2450 753.2445 

Argyrin F3 CH
3
 CH

2
OH H H 811.2981 8.40 315.1452 315.1456 428.1387 428.1386 480.1336 480.1335 723.2344 723.2340 

Argyrin G CH
2
CH

3
 CH

2
OH H OCH

3
 855.3243 9.48 359.1714 359.1715 428.1387 428.1388 480.1336 480.1337 753.2450 753.2445 

Argyrin G3 CH
2
CH

3
 CH

2
OH H H 825.3137 8.69 329.1608 329.1610 428.1387 428.1388 480.1336 480.1335 723.2344 723.2341 

Argyrin H CH
3
 H H OCH

3
 811.2981 9.42 345.1557 345.1558 398.1281 398.1282 450.1231 450.1231 723.2344 723.2344 

Argyrin I CH
2
CH

3
 CH

3
 H H 809.3188 9.88 329.1608 329.1609 412.1438 412.1440 464.1387 464.1388 707.2395 707.2395 

Argyrin J CH
2
CH

3
 H H OCH

3
 825.3137 9.95 359.1714 359.1715 398.1281 398.1282 450.1231 450.1231 723.2344 723.2343 

Argyrin K CH
2
(CH

3
)

2
 CH

3
 H OCH

3
 853.3450 11.14 373.1870 373.1872 412.1438 412.1440 464.1387 464.1388 737.2500 737.2503 

Argyrin L CH
2
(CH

3
)

2
 CH

2
OH H OCH

3
 869.3399 9.69 373.1870 373.1869 428.1387 - 480.1336 480.1337 753.2450 753.2445 
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Table S11. Nonribosomal codes of A domains. Nonribosomal codes of A domains from different BGC, aligned 
with native argyrin A1 code (Arg-A1) and 14 engineered A1 domain codes (modified residues are highlighted in 
bold). Residue numbering is adapted according to GrsA15.  

A domain 235 236 239 278 299 301 322 330 331 517 

Arg-A1  D V L F L G V V A K 
MchA-A21 (Ala) D V W V I A A V I K 

A1-mod1 D V W V I A A V A K 

MchA-A52 (Ala) D V W V T A A I I K 
A1-mod2 D V W V T A A I A K 
MchS-A33 (Ala) D V M F I G I V A K 
A1-mod3 D V M F I G I V A K 
MchS-A54 (Ala) D V W V L A A I I K 
A1-mod4 D V W V L A A I A K 
Arg-A4 (Ser/Gly) D L W N M G E V W K 
A1-mod5 D L W N M G E V A K 
A1-mod6 D L W V M G E V A K 
A1-mod7 D L W N L G E V A K 
A1-mod8 D L W N M G A V A K 
Sare07185 (Ala) D M W I A A A I V K 
A1-mod9 D M W I A A A I A K 
Cyc-A66 (Abu) D A W F H A V A Y - 
A1-mod10 D A W F H A V A A K 
A1-mod11 D V W F H G V V A K 
Tub-A37 (Val) D A F W L G G T F - 
A1-mod12 D A F W L G G T A K 
A1-mod13 D A F W L G G V A K 
A1-mod14 D A F W L G V T A K 

1A2 domain from the myxochromide A assembly line of M. xanthus DK1622 (YP_632256, aa 2028-2478)11  
2A5 domain from the myxochromide A assembly line of M. xanthus DK1622 (YP_632257, aa 2575-3030)11  
3A3 domain from the myxochromide S assembly line of S. aurantiaca DW4/3-1 (CAG29032, aa 475-949)21  
4A5 domain from the myxochromide S assembly line of S. aurantiaca DW4/3-1 (CAG29032, aa 2566-3036)21  
5Alanine-activating A domain from Salinispora arenicola CNS-205 ( CP000850))22 
6A6 domain from the cyclosporin assembly line of Tolypocladium inflatum (CAA82227, aa 7572-7976),23  
7A3 domain from the tubulysin assembly line of Angiococcus disciformis An d48 (CAF05648, aa 1593-1993)24  
 
 
4.8 Unpublished results 

4.8.1 Design, construction and evaluation of engineered argyrin A4 domains 

As already described in chapter 4.3.1, the fourth module of the argyrin BGC is able to 

incorporate multiple amino acid residues into the core peptide structure, contributing to a 

higher diversity of argyrins. The A4 domain, responsible for amino acid substrate activation, 

was shown to incorporate alanine, serine and glycine, based on the panel of argyrin 

derivatives detected in the production broth. Since water solubility is a major problem for 

argyrin pharmacokinetics, a platform for production of derivatives with better water solubility 

was highly desired. Incorporation of serine in the fourth module, instead of alanine would 

result in production of argyrin F, which shows better water solubility25 as well as increased 
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proteasome inhibition activity26. To increase production of argyrin F, a similar genetic 

modification approach as in case of A1 (see chapter 4.3.3) was applied to A4 domain, to make 

it more specific for serine. In addition of relying purely on the nonribosomal code, to 

determine the specificity of the A domain, the so called 8 Å code was identified, which 

consists of 34 amino acid residues that confer the specificity of the A domain, 9 of which are 

also included in the nonribosomal code27. 

For the A4 modifications three different strategies were applied. In addition to engineering of 

the nonribosomal code (Table S12), in some cases the 8 Å code was modified. The 8 Å code 

of argyrin A4 domain was extracted, and compared to five other serine specific A domains 

from myxobacterial BGCs with known substrate specificity, as well as argyrin A2 domain 

which is also serine specific (Table S13). Based on the serine specific 8 Å codes, several 

synthetic A domain fragments were designed and used to exchange a subdomain part of the 

original A4 domain, in a similar fashion as already described for A1 (see chapter 4.3.3). 

Alternatively in once case an entire subdomain of the A4 between core motifs A3 and A615 

was replaced with the same subdomain region from argyrin A2. 

 
Table S12. Specificity codes (based on the nonribosomal code) of 3 engineered argyrin A4 domains, aligned 
with GrsA specificity code and native argyrin A4 domain specificity code (Arg-A4). 

A domain Observed  
specificity 

235 236 239 278 299 301 322 330 331 517 

Arg-A4  Ala (Ser/Gly) D L W N M G E V W K 
A4-mod1 - D V W H F S L I D K 
A4-mod2 - D V W H F S L V D K 
A4-mod3 - D V W H V S L V D K 
 
Table S13. Serine specific A domain specificity codes (based on the 8 Å code) from published myxobacterial 
BGC, aligned with GrsA 8 Å code. 
A 
domain 

Observed 
specificity   

  
                                             8 Å code residues    

Arg-A4 Ala/Ser L D P H F D L S V W E G N Q M L G G E Y N E Y G P A E C A V W T T H 

Arg-A2 Ser R W M T F D V S V W E W H F F C S G E H N L Y G P T E A S I D V T A 

Mxp-A11 Ser R W M T F D V S V W E W H F V C S G E H N L Y G P T E A A V D V T Y 

Mxp-A42 Ser R W M T F D V S V W E W H F V C S G E H N L Y G P T E A A V D V T Y 

Mxp-A63 Ser R W M T F D V S V W E W H F V C S G E H N L Y G P T E A A V D V T Y 

Rhiz-A24 Ser R W M T F D V S V W E W H F F T S G E H N L Y G P T E A A V D V T F 

Chi-A15 Ser R W M T F D V S V W E W H F F F S G E H N L Y G P T E A A V D V S F 
1A1 domain from the myxoprincomide assembly line of M. xanthus DK1622 (Q1D5W2, aa 1,136 – 1,606)28 
2A4 domain from the myxoprincomide assembly line of M. xanthus DK1622 (Q1D5W2, aa 4,727 – 5,253)28 
3A6 domain from the myxoprincomide assembly line of M. xanthus DK1622 (Q1D5W2, aa 9,142 – 9,668)28 
4A2 domain from the rhizopodin assembly line of S. aurantiaca Sg a15 (G8YZM4, aa 928–1442)29 
5A1 domain from the chivosazol assembly line of S. cellulosum soce56 (Q2N3S9, aa 1024–1505)30 

 

The argyrin expression constructs with modified, synthetic A4 domains were designed based 

on the BsaI free argyrin BGC variant. This allowed us to skip one assembly step, compared to 
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the modifications of the A1 domain and perform modifications directly on the BGC construct 

(Fig. S14).  

 

Figure S14. Strategy to exchange the subdomain part of A4. Using this approach 8 expression constructs with 
engineered A1 domains (pArg2345-V1-BsaI-A4-mod[1-3], pArg2345-V1-BsaI-A4-8A-[1-4], pArg2345-V1-
BsaI-A4-argA2) were generated. 

Synthetic sequences of 8 modified argyrin A4 subdomain regions, flanked by BsaI R-sites 

were obtained from a gene synthesis company. Argyrin BsaI free BGC construct pArg2345-

V1-BsaI, was modified using Red/ET - in vivo recombination technique, to replace A4 

subdomain region with kanamycin resistance cassette, flanked by BsaI R-sites (Fig. S14). 

Gene synthesis fragments were digested using BsaI enzyme, to excise the modified A 

subdomain regions, which were subsequently ligated into pArg2345-V1-BsaI-delA4 construct, 

generated by Red/ET, to construct eight modified final synthetic argyrin heterologous 

expression constructs (Fig. S14). 

Generated argyrin BGC expression constructs with modified A4 domains (pArg2345-V1-

BsaI-A4-mod[1-3], pArg2345-V1-BsaI-A4-8A-[1-4], pArg2345-V1-BsaI-A4-argA2) were 

transferred into M. xanthus DK1622 ΔmchA-tet. Obtained clones were genotypically verified 

by PCR (Fig. S10) and their production was evaluated by parallel cultivation with control 
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strain M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI, under the standard conditions, the 

same way as for the A1 modification experiment (see Supplementary information). For three 

of the generated expression constructs, correct transformants could not be obtained (M. 

xanthus DK1622 ΔmchA-tet::pArg2345-V1-A4-8A-1-BsaI, M. xanthus DK1622 ΔmchA-

tet::pArg2345-V1-A4-mod[2-3]-BsaI). As expected, LC-MS analysis revealed standard 

argyrin production profile with around 1:1 ratio of argyrin A and argyrin B in case of M. 

xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI. Contrary to this, production of argyrin 

could this time not be detected in the extracts of any of the cultivated mutant clones. This is 

surprising, especially because it has already been proven, by detection of argyrin F in the wild 

type producer broth, that the incorporation of serine in the 4th module is indeed possible. This 

means that the subsequent C domain, which were also shown to act as the second gatekeeper31, 

should be able to process a serine containing intermediate. Most likely the modifications 

implemented on the extended specificity conferring code are in this case unfavorable and 

result in A domain sequence which is not able to fold correctly, therefore leading to its 

inactivity.  

 

4.8.2 Development and evaluation of the argyrin expression system for mutasynthesis 

studies 

In order to access novel argyrin derivatives we aimed to establish a mutasynthesis approach 

based on the generated mutant M. xanthus DK1622 ∆mchA-tet::pArg345-V1 (Fig. S15). To 

verify that the approach works, we first tried to restore the argyrin production by feeding 

mimics of the native tripeptide intermediate activated as N-acetylcysteamine thioesters 

(SNAC), to the culture of the generated mutant M. xanthus DK1622 ∆mchA-tet::pArg345-V1. 

Native tripeptide intermediate and additional variants thereof were synthesized according to 

organic synthesis procedures (unpublished data). 

Based on the previously established heterologous expression system for argyrin production 

(see chapter 4.3.2) an M. xanthus mutant for mutasynthesis studies was constructed by 

deletion of the arg2 gene from the expression construct. The expression construct pArg2345-

V1 was hydrolyzed using NdeI/SphI restriction enzymes, to excise 10.1 kb arg2 fragment, 

resulting in pArg345-V1 fragment. A 1097 bp amp
R cassette was amplified from pUC18 

plasmid using the oligonucleotides Arg44 and Arg45. The PCR fragment was hydrolyzed 

using NdeI/SphI restriction enzymes and ligated into previously generated pArg345-V1 

fragment, producing pArg345-V1-amp plasmid, which was hydrolyzed using AarI restriction 
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enzyme and subsequently re-ligated to construct pArg345-V1. The heterologous host M. 

xanthus DK1622 ∆mchA-tet was transformed with the modified expression construct by 

electroporation. Argyrin production was abolished in the generated expression strain 

M. xanthus DK1622 ∆mchA-tet::pArg345-V1 due to the absence of the first subunit (Arg2) 

from the argyrin megasynthetase. According to the argyrin biosynthesis model Arg2 initiates 

peptide core assembly by generating an enzyme bound tripeptide intermediate (H2N-D-Ala-

Dha-Sar-thioester or H2N-D-Abu-Dha-Sar-thioester), which is subsequently transferred to the 

second NRPS subunit (Arg3) to extend the peptide chain with five additional amino acids 

followed by macrocyclization (see chapter 4.3.1).  

To verify the functionality of the truncated argyrin biosynthesis operon (arg3-arg4-arg5) 

gene arg2 was integrated into the host chromosome at a different locus. For this purpose a 

compatible expression vector had to be assembled. Plasmid pGH-arg2-V1 was hydrolyzed by 

HindIII/XbaI to excise arg2 fragment which was subsequently ligated into pDKzeo1 plasmid 

hydrolyzed with the same enzymes, to produce pDKzeo1-arg2-V1. To introduce PnptII 

promoter upstream of the arg2 gene, a 208 bp fragment was amplified from pArg2345-V1 

using primers Arg47/Arg48. The resulting PnptII promoter fragment and the expression 

plasmid pDKzeo1-arg2-V1 were hydrolyzed by HindIII/NdeI restriction enzymes and ligated 

to produce pDKzeo1-PnptII-arg2-V1. The heterologous host M. xanthus DK1622 ∆mchA-

tet::pArg345-V1 was transformed with the generated expression construct by electroporation. 

The obtained mutant strain M. xanthus DK1622 ∆mchA-tet::pArg345-V1-nptII-arg2 was 

shown to produce argyrins indicating that the engineered operon is functionally expressed via 

the integrated pArg345-V1 construct.  

To restore argyrin production by mutasynthesis, mimics of the native tripeptide intermediates 

(SNAC-tripeptides) were fed to cultures of the mutant M. xanthus DK1622::pArg345-V1. 

Mutant strains of Myxococcus xanthus DK1622 were routinely cultivated in CTT medium 

amended with 50 µg/ml kanamycin for M. xanthus DK1622 ∆mchA-tet::pArg345-V1 and 

50 µg/ml kanamycin plus 50 µg/ml zeocin for M. xanthus DK1622 ∆mchA-tet::pArg345-

V1/pDKzeo1-nptII-arg2. Cultivations were carried out in shake flasks on a rotary shaker at 

200 rpm and at 30 °C. Feeding experiments were performed in 20 ml scale. 15 ml CTT 

medium was inoculated with 5 ml of a well grown pre-culture of M. xanthus 

DK1622::pArg345-V1. Mutasynthons were fed in equal portions (50 μL each) after 24 h, 27 h, 

30 h, 33 h and 36 h from a DMSO stock solution of the synthesized tripeptide thioesters (12 

mg/mL). After 39 h the adsorber resin XAD-16 was added (2% final conc.) and cultivation 

was continued overnight. The cultures were harvested by centrifugation at 8.000 rpm for 10 
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min and cells/XAD were extracted with 40 ml MeOH (stirring for 60 min at room temperature 

followed by filtration). Evaporated extracts were re-dissolved in 200 µl MeOH for HPLC-MS 

analysis. Feeding studies included parallel processing of a culture to which a pure DMSO 

solution (without mutasynthon) was supplied. Argyrin could be detected in pellet of M. 

xanthus DK1622 ∆mchA-tet::pArg345-V1-nptII-arg2, but not in pellet of M. xanthus DK1622 

∆mchA-tet::pArg345-V1 fed with synthetic tripeptide. 

In order to evaluate stability of the synthetic tripeptide mimic, its degradation kinetics was 

evaluated under the standard cultivation conditions. Two ml Eppendorf tube was filled with 

two ml of cultivation medium supplemented with 25 µl of the tripeptide DMSO stock solution 

and incubated at 30 °C, 800 rpm in the heat block. A 100 µl sample was taken every 2 h, 

centrifuged at 15000 rpm, 4 °C for 5 min and supernatant was subjected to HPLC-MS 

analysis. HPLC-MS analysis: column EC150/2 Nucleoshell HILIC 2.7 μM (Macherey-Nagel, 

Germany), buffer A: 100 mM ammonium formate buffer B: MeCN / 0.1% HCO2H, gradient 

of 5% A to 12% A over 12 min (flow 800 μL/min). The HPLC-MS analysis revealed a rather 

rapid degradation of the analysed mutasynthon, as after only 2 h of incubation time the 

majority was degraded and after 4 h of incubation almost complete degradation of the 

compound was observed (Fig. S16). 
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Figure S15. Mutasynthesis approach for production of argyrins. An expression strain harboring a truncated arg 
BGC lacking arg1 and arg2 (encoding the first subunit Arg2 of the argyrin NRPS megasynthetase) is fed with 
mutasynthons to restore argyrin production. Mutasynthons represent mimics of natural or unnatural tripeptide 
intermediates. For abbreviations of catalytic domains see Fig. 1.  
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Figure S16. Degradation kinetics of the D-Ala-Dha-Sar-SNAc mutasynthon in M7/S4 medium over 8 h period. 
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5 Production profile engineering and precursor directed 

biosynthesis for production of novel argyrin derivatives 

 

5.1 Introduction 

New antibiotics are urgently needed to combat more and more multidrug-resistant pathogens 

emerging every day. Especially hard to treat are Gram negative bacteria, since most of the 

antibiotics struggle with penetration of the bacterial wall to find their way to the cellular target 

site. One particularly troublesome multidrug-resistant Gram negative pathogens is 

Pseudomonas aeruginosa. This bacterium is a major cause for nosocomial infections with 

high mortality rate worldwide, therefore there is a high demand for novel, effective antibiotics 

targeting this pathogen1. Traditionally microbial natural products represent a major source of 

novel antibiotics2. A promising group of natural compounds discovered from myxobacteria 

are the argyrins, initially named antibiotics A214593,4. These cyclic octapeptides exhibit an 

interesting antibacterial activity profile as they seem to be particularly effective against 

Pseudomonas aeruginosa, Burkholderia multivorans and Stenotrophomonas maltophilia
5,6. 

Recently it was shown that elongation factor G (EF-G) is the cellular target for argyrin in P. 

aeruginosa
7,8. Upon binding to EF-G argyrin prevents protein synthesis and inhibits bacterial 

growth. The same target is also addressed by the steroid antibiotic fusidic acid, which is in 

clinical use e.g. to treat Staphylococcus infections, but it is not effective against Gram-

negative bacteria like pseudomonads. By mutagenesis studies and structural analysis it could 

also be shown that argyrin binds to an alternative site of EF-G that clearly differs from the one 

of fusidic acid7,8. Argyrins were also shown to inhibit the eukaryotic elongation factor G1 

(EF-G1)8 and are described as proteasome inhibitors9. Due to their cytotoxic activity profile 

they represent promising lead structures for the development of anticancer drugs10. Besides 

their antibacterial and cytotoxic properties argyrins also exhibit immunosuppressive activity 

and are currently studied as a potent inhibitor of T-cell independent antibody formation11. 

Argyrin biosynthetic pathway from a myxobacterial producer strain Cystobacter sp. SBCb004 

(Fig. 1) was recently identified and analyzed. Heterologous expression system based on 

synthetic genes and Myxococcus xanthus as host organism, led to identification of novel 

argyrin derivatives and enabled production yields of argyrin A and B of up to 160 mg/L12. 

The optimized production system provides a versatile platform for improved supply of 

argyrins and novel derivatives thereof. In this study we aimed to further optimize the 

production system, direct the biosynthesis towards certain analogues with improved 
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pharmaceutical properties as well as produce novel argyrin derivatives by precursor directed 

biosynthesis.  

 

 

Figure 1. The biosynthetic pathway for argyrin production in Cystobacter sp. SBCb004 (Arg1, radical SAM-
dependent methyltransferase; Arg2/Arg3, nonribosomal peptide synthetases; Arg4, O-methyltransferase; Arg5, 
tryptophan 2,3-dioxygenase). 

 

5.2 Results and discussion 

5.2.1 Argyrin production profile engineering 

5.2.1.1 Production of argyrins C and D by co-expression of radical SAM - Arg1  

Gene arg1 was excluded from the argyrin biosynthetic gene cluster (BGC) in our previous 

study12, to simplify the production spectra and avoid partial methylation by Arg1. In light of 

novel activities found for argyrins, especially immuno-modulation, it was important to also 

investigate the bioactivity of methylated argyrin variants such as argyrins C and D. To 

achieve production of the latter compounds, an expression vector for co-expression of arg1 in 

the heterologous argyrin producer M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI, was 

designed. 

An extensive in silico analysis of the native producer’s (Cystobacter SBCb 004) genome 

sequence was performed using FramePlot software package, to annotate the arg1 gene 

sequence and use it as a template for construction of functional expression construct. To 

facilitate the construction of a suitable expression vector, a pGH-arg1-V1 plasmid, harboring 
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a truncated version of the arg1 gene, was used. The plasmid was obtained from a gene 

synthesis company (Table S4), however the arg1 synthetic sequence was truncated due to an 

error in the original annotation and was missing the 5’ terminus of the gene. To reconstitute 

the gene, the 5’-arg1 gene extension fragment was PCR amplified from the genomic DNA of 

wild type producer Cystobacter SBCb004. Since no clear ribosomal start site (RBS) sequence 

could be identified in the Cystobacter SBCb004 genome, an RBS from mchA (AAGGAGG13) 

was introduced on the forward primer (Table S3). The fragment was ligated into the pGH-

arg1-V1 plasmid, yielding the pGH-arg1B plasmid harboring reconstituted arg1 sequence. 

The arg1B fragment was released from pGH-arg1B plasmid and inserted into previously 

constructed pUC18-zeo-Hom-MCS expression vector (see Supplementary information) by 

traditional restriction-digestion and ligation to produce pUC18-zeo-Hom-arg1B expression 

construct. Detailed description of the plasmid construction is provided in the supplementary 

information. The construct was transformed into the host strain M. xanthus DK1622 ΔmchA-

tet::pArg2345-V1-BsaI and clones growing on selection plates amended with kanamycin and 

zeocin were analyzed for correct chromosomal integration of the expression plasmid by PCR 

(Fig. S8). After genotypic verification, the generated mutant strain M. xanthus DK1622 

ΔmchA-tet::pArg2345-V1-BsaI-arg1-B and M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-

BsaI were cultivated under standard conditions in CTT medium at 30 °C for 6 days (see 

Supplementary information). The cultures were then centrifuged and the cell mass with 

Amberlite XAD-16 resin were extracted with EtOAc and analyzed for argyrin production. As 

expected HPLC-MS analysis revealed successful production of argyrins A and B in case of M. 

xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI. Similar amounts of argyrins A and B could 

be observed in the DK1622 ΔmchA-tet::pArg2345-V1-BsaI-arg1-B mutant, however, after a 

closer inspection, minor amounts of argyrins C and D could also be detected (Fig. 2). To 

improve methylation efficiency and aid conversion of argyrins A and B into their methylated 

counterparts, argyrins C and D, the cultivation was repeated and the production medium was 

supplemented with vitamin B12. Vitamin B12 is an important co-factor for radical-SAM type 

of enzymes14, which has been shown to be a curtail cofactor for activity of radical SAMs15,16. 

The cultivation, extraction and sample analysis was performed the same way as previously 

described. HPLC-MS analysis revealed significant improvement in production levels of 

argyrins C and D, whereas argyrins A and B could no longer be detected (Fig. 2). Additional 

details on cultivation are provided in the supplementary information. 
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Figure 2. Chromatogram showing conversion of argyrins A and B by coexpression of arg1 gene in M. xanthus 
DK1622 ΔmchA-tet::pArg2-3-4-5-V1-BsaI strain and further improvement of argyrin C and D production by 
addition of vitamin B12. HPLC-MS analysis of supernatant showing extracted ion chromatograms (EIC) [M + 
H]+ = 825.313 (Arg A), [M + H]+ = 839.329 (Arg B), [M + H]+ = 839.329 (Arg C), [M + H]+ = 853.344 (Arg D). 
 

5.2.1.2 Argyrin production profile engineering by variation of cultivation conditions 

Actions of the tailoring genes arg1, arg4 and arg5 combined with the relaxed specificity of 

the first and the fourth module of the argyrin biosynthesis, lead to high structural diversity of 

argyrins. A complex mixture of derivatives produced by the native or heterologous producer 

is inconvenient to work with and poses a challenge when trying to purify a specific derivative 

with high purity. We applied extensive optimization of medium and cultivation conditions, to 

decrease structural complexity of argyrins and simplify future purification processes.   

By cultivating heterologous argyrin producer M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-

BsaI in different media and/or by feeding α-aminobutyric acid (Abu), we were able to shift 

production between argyrin A and argyrin B. By using the previously described mutant, with 

co-expressed arg1 gene (M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI-arg1-B), 

production could further be manipulated to produce methylated argyrin derivatives (argyrin C 

and D) (see chapter 5.2.1.1). 

As reported in our previous study and seen in our initial cultivation experiments (see chapter 

5.2.1.1), argyrin heterologous producers (M. xanthus DK1622 ΔmchA-tet::pArg2345-V1 and 

M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI) produce around equal amounts of 

argyrin A and B when cultivated in standard CTT medium. This suggests that the first module 

of argyrin biosynthesis is promiscuous as it incorporates either alanine (Ala) or aminobutyric 
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acid (Abu), resulting in production of argyrin A or argyrin B, respectively12. However, when 

CTT medium was supplemented with 10 mM Abu, an almost 100% shift towards argyrin B 

was observed. This suggests that there is nevertheless a preference for incorporation of Abu, 

but most likely due to its low supply in the CTT medium, Ala will be incorporated after Abu 

depletion.  

In an effort to increase argyrin production, effectiveness of previously established M7/s4 

medium17 was evaluated in our previous study12. This medium was specifically developed for 

high titer production of antibiotics myxopyronin and corallopyronin by M. xanthus 

heterologous host17. During the first cultivation in M7/s4 a significant difference in the 

production profile, compared to the CTT, was observed in addition to the increased argyrin 

yield. In M7/s4 argyrin A was produced almost exclusively (Fig. 3A), probably due to the low 

availability of Abu in this medium. In the following experiment the M7/s4 medium was 

supplemented with 10mM Abu and a near 100% production of argyrin B was observed (Fig. 

3A), supporting the hypothesis of low Abu availability in M7/s4. 

To prove that the same approach of derivative manipulation can be used for argyrins C and D 

the same cultivation experiments were performed with M. xanthus DK1622 ΔmchA-

tet::pArg2345-V1-BsaI-arg1B. During the initial cultivation experiments with co-expressed 

arg1 gene in CTT medium only small amounts of argyrins C and D could be detected (see 

chapter 5.2.1.1 and Fig. 2). However, once the medium was supplemented with 1 mg/mL of 

vitamin B12, a 100% turnover was observed (see chapter 5.2.1.1 and Fig. 1). Now that a 

complete shift to argyrins C and D was possible, the same production manipulation as 

described for argyrins A and B above, could be performed (Fig. 3B). Detailed description of 

the cultivation is provided in the supplementary information. 

Medium and cultivation condition engineering in this study led to shifting ratios of major 

argyrin derivatives produced by the M. xanthus heterologous producer. Exchange of the 

standard CTT medium with M7/s4 medium allowed almost exclusive production of argyrin A, 

which could be entirely converted to argyrin B by supplementation with Abu. The same 

results were achieved for production of argyrins C and D, by applying the same conditions to 

the mutant with co-expressed arg1 gene. Addition of vitamin B12 was in this case necessary, 

to improve the activity of arg1 (Fig. 3). 
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Figure 3. Variation in production of argyrin A and B in different media (A). Variation in production of argyrin C 
and D in different media (B). HPLC-MS analysis of supernatant showing extracted ion chromatograms (EIC) [M 
+ H]+ = 825.313 (Arg A), [M + H]+ = 839.329 (Arg B), [M + H]+ = 839.329 (Arg C) and [M + H]+ = 853.344 
(Arg D). 
 

5.2.2 Precursor directed biosynthesis for production of novel argyrin derivatives 

Precursor directed biosynthesis is based on the cellular uptake of modified biosynthetic 

intermediates and their incorporation into the core structure of the produced compound18. It 

relies on unspecific substrate incorporation and processing by the gatekeeping enzymes (e.g. 

adenylation and condensation domains) and is thus a fairly simple method to execute. It 

requires only rudimentary knowledge of the host organisms’ growth conditions and the 

biosynthetic assembly process of the target compound.  

As some modules of argyrin BGC were already shown to act promiscuously, similar behavior 

could possibly be expected from the downstream modules. The sixth and the seventh module 

of the argyrin assembly line are responsible for incorporation of two consecutive tryptophan 

residues into the argyrin core structure12. Since argyrins have poor pharmacokinetic properties 

(e.g. low water solubility) it would be beneficial to introduce new functional groups on those 

residues for subsequent semisynthetic modifications. Introduction of new chemical groups can 

have a direct impact on the compounds pharmacokinetics, as observed in argyrin F where an 

additional hydroxyl group significantly  increases the compound’s water solubility10 or in the 

study by García-Pindado et. al. where introduction of brominated tryptophan in cyclic 

peptides improved passive diffusion, permeability across membranes, biostability in human 

serum and cytotoxicity19. Furthermore, introduction of bromine or iodine groups can be 

employed for additional synthetic modifications19–21.  

 



Production profile engineering and precursor directed biosynthesis of argyrins | 217 
 

 

By utilizing a readily available procedure for biotransformation of tryptophan derivatives, 

which focuses on fusing commercially available indole derivatives and serine by tryptophan 

synthase22 (Fig. 4), we were able to produce a library of nine tryptophan derivatives (Fig. 5) 

and use them for supplementation of culture broth of  the argyrin heterologous producer. To 

evaluate the ability of the argyrin BGC to accept modified tryptophan derivatives, a set of 

easily accessible indoles were obtained from commercial vendors and used for production of 

their corresponding tryptophans (Fig. 5). One of the main obstacles during the reaction 

procedure was poor solubility of the indoles, which resulted in large amounts of precipitate in 

the reaction buffer, leading to lower yields. To overcome this issue, reaction buffer was 

supplemented with increasing amounts of DMSO and the reaction efficiency was evaluated. 

Results showed increasing reaction efficiency with higher amounts of DMSO added to the 

reaction buffer. The best result was achieved by addition of 20% DMSO, which had a 

beneficial effect on the indole solubility and was still tolerated by the tryptophan synthase 

contained in the dialysis bag (data not shown). The method was successfully used to produce 

the 7-I, 5-Br, 5-Cl, 4-F, 5-F, 6-F, 7-F, 6-NO2 and 7-NO2 tryptophans (Fig. 5). Detailed 

description of the biotransformation, isolation and structure elucidation of the tryptophan 

derivatives are provided in the supplementary information.  

 

 
Figure 4. Tryptophan biotransformation reaction. Chemical reaction showing tryptophan biotransformation from 
indole and serine using tryptophan synthase. The X represents substitution on the indole ring (in this case F, Cl, 
Br, I or NO2). 
 

Tryptophan derivatives produced by the above described method were used to supplement the 

argyrin heterologous producer culture broth. We hoped that the modules 6 and 7 of the 

argyrin assembly line exert broader substrate specificity and would in this case be able to 

tolerate modification on the indole ring, thus accepting various tryptophan derivatives. The 

method could lead to production of novel argyrin analogs, provided that the incorporated 

tryptophan derivatives would also be processed by the rest of the assembly line.  
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Figure 5. Table of produced tryptophan derivatives. The X represents substitution at the corresponding position 
of the indole ring, marked in the figure.   
 

Both heterologous argyrin producer mutants were cultivated in M7/s4 medium supplemented 

with suitable antibiotics, vitamin B12 and Amberlite XAD-16 resin under standard cultivation 

conditions (see Supplementary information). Tryptophan derivatives were fed to the cultures 

twice per day and Abu was added to each culture flask to help decrease the number of 

derivatives by directing the production towards analogs of argyrin B. After 6 days, Amberlite 

XAD-16 resin and cells were harvested by centrifugation, the supernatant was removed and 

the pellets were frozen and freeze dried. Dry pellets were extracted by ethyl acetate and crude 

extracts were dissolved in a mixture of acetonitrile and DMSO, before purification on HPLC. 

Using this method, a library of argyrin derivatives could be produced, with structures of 14 

confirmed by NMR (Fig. 6, Supplementary information). Detailed description of the 

precursor directed biosynthesis, isolation and structure elucidation as well as absolute yields 

of the argyrin derivatives are provided in the supplementary information.  

 

Name Mass X 
4-F-Trp 222.08 F 
5-F-Trp 222.08 F 
6-F-Trp 222.08 F 
7-F-Trp 222.08 F 
7-I-Trp 329.99 I 
5-Cl-Trp 238.05 Cl 
5-Br-Trp 282.00 Br 
7-NO2-Trp 249.07 NO2 
6-NO2-Trp 249.07 NO2 
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Figure 6. List of major native argyrin derivatives and novel argyrin derivatives. The R1, R2 and R3 positions are 
highlighted with spheres and the X represents the substitution at the corresponding position of the indole ring, 
marked in the argyrin structure. 
 

  

Name Mass R1 R2 R3 X X’ 
Argyrin A 824.30 CH3 OCH3 H / / 
Argyrin B 838.32 CH2CH3 OCH3 H / / 
Argyrin C 838.32 CH3 OCH3 CH3 / / 
Argyrin D 852.33 CH2CH3 OCH3 CH3 / / 
Argyrin I 808.30 CH2CH3 H H / / 
4-F-argyrin C 856.31 CH3 OCH3 CH3 F H 
6‘-F-argyrin B 856.31 CH2CH3 OCH3 H H F 
6‘-F-argyrin C 856.31 CH3 OCH3 CH3 H F 
6,6'-di-F-argyrin C2 844.29 CH3 H CH3 F F 
7,7'-di-F-argyrin I 844.29 CH2CH3 H H F F 
5-Cl-argyrin B 872.28 CH2CH3 OCH3 H Cl H 
5’-Cl-argyrin I 842.27 CH2CH3 H H H Cl 
5,5'-di-Cl-argyrin I 876.23 CH2CH3 H H Cl Cl 
5-Br-argyrin B 916.23 CH2CH3 OCH3 H Br H 
5’-Br-argyrin I 886.22 CH2CH3 H H H Br 
5,5'-di-Br-argyrin I 964.13 CH2CH3 H H Br Br 
7-I-argyrin B 964.22 CH2CH3 OCH3 H I H 
7,7'-di-I-argyrin B 1090.11 CH2CH3 OCH3 H I I 
7,7'-di-I-argyrin I 1060.10 CH2CH3 H H I I 
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5.2.3 Optimization of argyrin production in M. xanthus DK1622 by utilization of new 

promoter systems 

Promoters are the key regulators of gene expression that have the potential to  increase or 

decrease of secondary metabolite production levels23. There are only a handful of promoter 

systems, which were successfully used for gene expression in myxobacteria, including PnptII, 

Ptet, Ppm and Pvan (see Table S2). Most of those systems were initially developed and 

evaluated in different host organisms and were later tested in myxobacteria due to a lack of 

highly efficient myxobacterial promoters. PnptII and Pvan are considered superior to other 

tested promoters systems, due to their high transcription rate and are thus commonly used for 

BGC activation and heterologous BGC expression. Furthermore, Pvan is the only viable option 

when it comes to inducible promoters, as it was shown to be more efficient than the PIPTG
24

 

and no other reliable inducible promoters are described for myxobacteria25. Since no data for 

direct comparison of the gene expression by the aforementioned promoters in myxobacteria 

was available, we decided, to evaluate their effect on expression of argyrin BGC. As argyrin 

heterologous production platform with high yield output was the main priority, this would 

provide a good variety of systems to determine the optimal candidate.  

To evaluate different promoter systems for production of argyrins, 6 new promoter constructs, 

based on 4 different promoter systems were designed (PnptII, Pvan, Ppm, Ptet). Original promoter 

PnptII from the pArg2345-V1-BsaI construct was exchanged with those 6 new designed 

promoter sequences, to evaluate the effect on argyrin production. To make results of all 

promoters consistent and comparable between each other, and to achieve the most optimal 

transcription and translation rate, a specific 5’-untranslated region (5’-UTR) was designed and 

used in all 6 designed constructs. This 5’-UTR sequence was generated using online RBS 

calculator tool26,27 and synthesized by a gene synthesis company. 

Synthetic fragments were designed for each of the promoter systems (Table S4), harboring 

specific promoter, followed by a 31 bp 5’-UTR region (TACGAGAGCAAAAACGAGGAG-

AGGAGAAGAT) and first 61 bp of the downstream arg2 gene, ending with a unique StuI 

restriction endonuclease at the 3’ end. For cloning purposes all constructs were also flanked 

by the SwaI restriction endonucleases at the 5’ end, allowing integration into pArg2345-V1-

BsaI expression construct as outlined in the Figure 7.  

 

In case of PnptII of the neomycin phosphotransferase II  resistance gene from Tn528  we used 

the same promoter sequence as originally used in pArg2345-V1-BsaI expression construct, to 

design nptII-synRBS-arg2 synthetic fragment. The only modification was the replacement of 
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the 5'-UTR region with the new, synthetic one and the introduction of the flanking restriction 

sites for the cloning purposes. The sequence of Pvan promoter24
 was used to design the Pvan-

synRBS-arg2 fragment and only the first 100 bp of the original Pvan promoter sequence were 

implemented to design Pvan-wo_vanR-synRBS-arg2 fragment with deleted repressor 

sequence in an attempt to make it function as a constitutive promoter system. The same 

approach was used in case of Ptet system29, to design Ptet-synRBS-arg2 and Ptet-wo_tetR-

synRBS-arg2 constructs. For version without repressor the first 63 bp of the tet promoter 

system were used. In case of the Ppm promoter, originating from Pseudomonas putida, the 

improved version of the promoter system, generated by random mutagenesis approach30, was 

used to design Ppm-synRBS-arg2 construct. For assembly purposes the StuI site, present in 

the promoter sequence, had to be mutated. This position is important for activity of the 

promoter as described in the promoter mutagenesis experiment30. The initial design was based 

on ML2-2 sequence that showed the best results in experiments performed by Bakke et. al., 

however due to the aforementioned mutation of StuI restriction site, a hybrid between ML2-2 

and ML2-1 sequences, which both achieved good transcription levels, was generated. The Ppm 

promoter normally acts as an inducible promoter in pseudomonads, however we used it as a 

constitutive promoter, as it was shown to work constitutively in M. xanthus
25.   

 

 

 
Figure 7. Assembly strategy for exchange of the promoter systems upstream of the arg operon. The same 
strategy was applied in case of all promoter fragments, the figure shows Ptet sequence as an example. 
 

Generated argyrin BGC expression constructs with exchanged promoter (pArg2345-V1-BsaI-

Ppm, pArg2345-V1-BsaI-Ptet, pArg2345-V1-BsaI-PtetΔR, pArg2345-V1-BsaI-PnptII, 
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pArg2345-V1-BsaI-Pvan and pArg2345-V1-BsaI-PvanΔR) were transferred into M. xanthus 

DK1622 ΔmchA-tet and clones growing on selection plates amended with kanamycin were 

analyzed for correct chromosomal integration of the expression plasmid by PCR (Fig. S1). 

Details on promoter exchange are provided in the supplementary information. After genotypic 

verification, the promoter mutant strains and M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-

BsaI were cultivated under standard conditions in M7/s4 medium at 30 °C for 6 days. The 

culture of M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI-Ptet was induced with 

tetracycline and the culture of M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI-Pvan was 

induced with vanillate. The M7/s4, supplemented with amino acid solution was selected to 

reduce possibility of bottlenecks by the lack of nutrients, since we already showed that the 

production in supplemented M7/s4 increases significantly compared to the CTT medium12. To 

evaluate production of argyrin by constitutive promoter systems, the promoter mutants and 

control strain were cultivated under standard conditions in M7/s4 medium continuously 

supplemented with the amino acid solution. The cultures were harvested by centrifugation to 

analyze the cell pellet with Amberlite XAD-16 resin for the presence of argyrins. HPLC-MS 

analysis revealed successful production of argyrins by all mutants, which revealed significant 

differences in production levels between different promoter systems. Supplementation with 

the amino acid solution, led to significant increase in production of argyin I (R2, R3 = H; Fig. 

6), which has already been observed12. This indicates a bottleneck in the Arg5 (tryptophan-

2,3-dioxygenase) and Arg4 (hydroxyindole O-MT) mediated tailoring biochemistry under the 

optimized production conditions. High amounts of argyrin, produced under those optimized 

conditions, probably exceed the limit of Arg5 and/or Arg4, which is unable to efficiently 

hydroxylate all of the produced argyrin, leading to increased production of argyrin I. The 

detailed description of the cultivation and argyrin quantification is provided in the 

supplementary information. 

Detailed comparison of relative peak areas of argyrin I and argyrin B revealed that the 5’-

UTR region used in the promoter system has a big impact on the production levels. We 

hypothesized that the system with the strongest promoter and the most optimal leader 

sequence will result in the best yield due to the highest transcription and translation rate, 

which leads to high levels of biosynthetic proteins31. The highest constitutive argyrin 

production was achieved with the use of PnptII promoter in combination with the optimized 

artificial 5’-UTR region. The same PnptII promoter was also used in the control construct 

(pArg2345-V1-BsaI) meaning that the efficient translation was probably the bottleneck in the 

control system. Once the 5’-UTR region was exchanged with the more optimal one, the 
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production increased by nearly 50% (Fig. 8). Promoters PtetΔR and PvanΔR performed better 

than the control system, however their performance was still slightly below the one of the 

PnptII. The worst performing promoter was the Ppm, which even with the optimized 5’-UTR 

region resulted in lower production than the control (Fig. 8). This probably means that in this 

case our version of the Ppm promoter is weaker then PnptII and shows that for optimal 

production a combination of strong transcription and translation is critical.  

 

 
Figure 8. Production levels of argyrin I and B evaluated in heterologous argyrin producers with different 
promoter systems in comparison with control (BsaI). Samples were analyzed by HPLC-MS and levels or argyrin 
A, B and I were detected by [M + H]+ = 825.314 (arg A), [M + H]+ = 839.329 (arg B) and EIC [M + H]+ = 
809.318 (arg I). 
 

To evaluate the effect of the inducers on agryin production, the cultivation was repeated using 

mutants harboring argyrin BGC driven by the inducible promoters Ptet and Pvan. Performance 

of the promoters was evaluated under induced and unindicted conditions. PtetΔR and PvanΔR 

promoter versions without repressor were also evaluated without addition of inducers and M. 

xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI was used as control. The detailed 

description of the cultivation is provided in the supplementary information. 

In case of Ptet promoter induction with tetracycline did not result in increased production as 

one would expect. One reason could be that repression of Ptet is not efficient in M. xanthus. 

However, this theory is not very likely, since deletion of repressor in PtetΔR led to significant 

increase in production (Fig. 9). M. xanthus is sensitive to tetracycline, therefore a possible 

explanation could be, that even addition of small amounts of tetracycline (e.g. 0,7 µg/mL) 

challenges the strain, which results in decreased production of secondary metabolites. As 

expected, in case of Pvan promoter induction with vanillate led to near 6-fold increase in 
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production of argyrin. Surprisingly, deletion of repressor in PvanΔR did not lead to further 

improvement of production levels, but rather resulted in a slight decrease in production, 

however this could be attributed to the standard deviation (Fig. 9). 

 

 
Figure 9. Production levels of argyrin A, B and I evaluated in heterologous argyrin producers with different 
promoter systems. The yields detected in mutants harboring argyrin BGC under the control of Ptet and Pvan was 
evaluated under induced and uninduced conditions. Repressor deletion mutants and control (BsaI) were 
evaluated under uninduced conditions. Samples were analyzed by HPLC-MS and levels or argyrin A, B and I 
were detected by [M + H]+ = 825.314 (arg A), [M + H]+ = 839.329 (arg B) and EIC [M + H]+ = 809.318 (arg I).  
 

 
After evaluation of results from both cultivation experiments, we observed a certain degree of 

variation between both experiments. The reason for this could be minor differences in 

cultivation conditions (e.g. medium variation, temperature variation, and other external 

factors). Nevertheless, we can conclude that PnptII is the current best option for constitutive 

production of argyrins in M. xanthus, with the PtetΔR and PvanΔR following closely behind. A 

similar degree of production can be achieved with inducible system by utilization of Pvan 

induced with vanillate. This information can be used in the future, to increase production of 

other myxobacterial secondary metabolite systems by promoter exchange. However, it has to 

be taken into account that in addition to the promoter efficiency, a 5’-UTR region can have a 

significant effect on protein expression 31 which in turn influences metabolite yield. This is 

clearly visible from the comparative argyrin production by M. xanthus DK1622 ΔmchA-

tet::pArg2345-V1-BsaI and M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI-PnptII (Fig. 

8). The argyrin BGC in both strains is driven by the same PnptII promoter, however the 5’-

UTR region in the second strain was optimized using the RBS calculator tool27,26, which led 

to 43% improvement of argyrin production.   
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5.3 Conclusion 

In this study we achieved a successful conversion of argyrins A and B to their methylated 

counterparts, argyrins C and D, by co-expression of the radical SAM Arg1. By utilizing 

precursor directed biosynthesis, we were able to produce more than 14 novel argyrin 

derivatives. Their structures were elucidated by NMR, however, the bioactivity testing still 

has to be performed.  

Furthermore, total production of argyrin could be significantly improved by implementation 

of different promoter systems, leading to a 55% increase in total argyrin production. In 

addition to argyrins A and B, significant levels of argyrin I were also produced, which could 

possibly be converted to argyrins A and B in the future by coexpression of additional 

Arg4/Arg5 copies. The library of evaluated promoters provides a valuable source of 

information which could be used in the future studies, to optimize heterologous production of 

other secondary metabolites in M. xanthus.  
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5.5.1 Materials and methods 

5.5.1.1 Construction and engineering of plasmids 

Routine handling of nucleic acids, such as isolation of plasmid DNA, restriction endonuclease 

digestions, DNA ligations, and other DNA manipulations, was performed according to 

standard protocols1. E. coli HS996 (Invitrogen) was used as host for standard cloning 

experiments. E. coli strains were cultured in LB medium or on LB agar (1% tryptone, 0.5% 

yeast extract, 0.5% NaCl, (1.5% agar)) at 30–37 °C (and 200 rpm) overnight. Antibiotics were 

used at the following final concentrations: 100 μg/mL ampicillin, 50 μg/mL kanamycin, 12 

μg/mL tetracycline. Transformation of E. coli strains was achieved via electroporation in 0.1 

cm-wide cuvettes at 1250 V, a resistance of 200 Ω, and a capacitance of 25 μF. Plasmid DNA 

was either purified by standard alkaline lysis1 or by using the GeneJet Plasmid Miniprep Kit 

(Thermo Fisher Scientific) or the NucleoBond PC100 kit (Machery Nagel). Restriction 

endonucleases, alkaline phosphatase (FastAP) and T4 DNA ligase were obtained from 

Thermo Fisher Scientific. Oligonucleotides used for PCR and sequencing were obtained from 

Sigma-Aldrich and are listed in Table S3. PCR reactions were carried out in a Mastercycler® 

pro (Eppendorf) using Phusion™ High-Fidelity, Taq DNA polymerase (Thermo Fisher 

Scientific) or Dream Taq DNA polymerase (Thermo Fisher Scientific) according to the 

manufacturer's protocol. For Taq and Dream Taq: Initial denaturation (5 min, 95 °C); 30 

cycles of denaturation (30 s, 95 °C), annealing (30 s, 53 - 64 °C) and elongation (varied based 

on PCR product length 1 kb/min, 72 °C); and final extension (10 min, 72 °C). For Phusion™: 

Initial denaturation (30 s, 98 °C); 30 cycles of denaturation (20 s, 98 °C), annealing (25 s, 53 - 

64 °C) and elongation (varied based on PCR product length 0.5 kb/ min, 72 °C); and final 

extension (10 min, 72 °C). PCR products or DNA fragments from restriction digests were 

purified by agarose gel electrophoresis and isolated using the NucleoSpin® Gel and PCR 

Clean-up (Macherey-Nagel) or peqGold Gel Extraction (Peqlab). Red/ET recombineering 

experiments for plasmid modifications2 using the strains E. coli HS996/pSC101-BAD-gbaA-

tet or E. coli GB05-red were performed according to the manufacturers protocol (Gene 

Bridges GmbH). After selection with suitable antibiotics, clones harboring correct 
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recombination products were identified by plasmid isolation and restriction analysis with a set 

of different endonucleases. Synthetic DNA fragments were obtained from ATG:biosynthetics 

GmbH and delivered in standard cloning vectors (Table S4). Details on the construction of 

plasmids generated in this study are given in Table S5. 

 

5.5.1.2 Assembly of arg1 expression construct 

Synthetic fragment zeo-Hom-MCS was ordered from a gene synthesis company and supplied 

in a standard pGH expression vector. Primers dpo-pUC18-F and dpo-pUC18-R were used to 

amplify 731 bp pUC18 ORI fragment from the pUC18 template plasmid using Phusion 

polymerase. The pUC18 ORI PCR fragment was ligated into pGH-zeo-Hom-MCS plasmid 

using PmeI and SpeI restriction endonucleases, resulting in pUC18-zeo-Hom-MCS expression 

vector. Primers dpo-arg1F and dpo-arg1R were used to amplify 238 bp arg1 extension 

fragment from Cystobacter sp. SBCb004 genomic DNA using Phusion polymerase. The 

fragment was ligated into the pGH-arg1-V1 plasmid, obtained from a gene synthesis company, 

using NdeI and EcoRI endonucleases, to construct pGH-arg1B plasmid harboring 

reconstituted arg1 sequence. The 2047 bp arg1B fragment was released from pGH-arg1B 

plasmid and inserted into previously constructed pUC18-zeo-Hom-MCS expression vector by 

traditional restriction-digestion and ligation using NdeI and BglII restriction endonucleases, 

yielding pUC18-zeo-Hom-arg1B expression construct (Table S5). 

 

5.5.1.3 Transfer and chromosomal integration of expression construct harboring arg1 

into the heterologous host 

According to a previously established electroporation procedure for Myxococcus xanthus 

DK1622 (Kashefi and Hartzell, 1995) the host strain M. xanthus DK1622 ΔmchA-

tet::pArg2345-V1-BsaI3 was transformed with the generated expression construct pUC18-

zeo-Hom-arg1B (Table S5). M. xanthus DK1622 mutants were routinely cultivated at 30 °C 

in CTT medium or on CTT agar (1% casitone, 10 mM Tris buffer pH 7.6, 1 mM KH2PO4 pH 

7.6, 8 mM MgSO4 (1.5% agar) with final pH 7.6). For liquid cultures, the strains were grown 

in Erlenmeyer flasks on an orbital shaker at 180 rpm for 3–6 days. For selection of M. xanthus 

mutants 50 μg/mL kanamycin and 50 μg/mL zeocin were used. Correct chromosomal 

integration of the expression constructs via homologous recombination into the downstream 

locus of the previously integrated argyrin BGC3 was verified by PCR. Transformant cells 

were lysed by incubating at 95 °C for 30 min prior of being added to the PCR reaction 
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(‘colony PCR’). For each expression construct correct chromosomal integration was 

confirmed using two primer combinations, revealing PCR products of the expected sizes: dpo-

arg1B-1/dpo-arg1B-2 (1261 bp) and dpo-arg1B-5/dpo-arg1B-4 (1401 bp). Genomic DNA of 

M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI was used as negative control. 

Complementary experiment using primers dpo-arg1B-1/dpo-arg1B-4 revealed a 1112 bp PCR 

product for M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI, but not for the expression 

strain. PCR reactions were performed according to the conditions described in Materials and 

methods, chapter 5.5.1.1, using Taq polymerase; for primer sequences see Table S3. 

 

5.5.1.4 Argyrin production profile engineering by variation of cultivation conditions  

To vary the production between different argyrin derivatives (e.g. arg A, arg B, arg C and arg 

D) strains M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI and M. xanthus DK1622 

ΔmchA-tet::pArg2345-V1-BsaI-arg1B were cultivated in CTT and M7/s4 medium  (0.5 % soy 

flour, 0.5 % corn starch, 0.2 % glucose, 0.1 % yeast extract, 0.1 % MgSO4 x 7 H2O, 0.1 % 

CaCl2 x 2 H2O, 1 % HEPES, with final pH 7.4 and supplemented with 0.1 mg/L of vitamin 

B12 and 5 mg/L of FeCl3 after autoclaving) with and without supplementation of α-

aminobutyric acid. Strains were inoculated from cryo stocks and grown on CTT agar plates 

supplemented with kanamycin 50 µg/mL (M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-

BsaI) or with kanamycin 50 µg/mL and zeocin 50 µg/mL (M. xanthus DK1622 ΔmchA-

tet::pArg2345-V1-BsaI-arg1B) for several days until plates were mostly overgrown with cells. 

All of the cells were scraped from the plates to inoculate preculture medium (50 mL medium 

in 300 mL Erlenmeyer flask), which was cultivated at 30 °C, 180 rpm for 48 h. Five mL of 

well grown preculture was used to inoculate 50 mL production medium in which the strain 

was grown at the same conditions for 6 days. All cultures were supplemented with suitable 

antibiotics as mentioned above as well as with 4 % Amberlite XAD-16 resin. All cultures 

were cultivated in triplicates for 6-8 days before harvesting by centrifugation at 8000 rpm for 

15 min. Supernatant was removed and pelleted cells with Amberlite XAD-16 resin were 

extracted with 50 mL of ethyl acetate. Extracts were filtered and dried in round bottom flasks 

on rotary evaporator. Crude extracts were dissolved in 1 mL of methanol and subjected to 

HPLC-MS analysis. 
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5.5.1.5 Biotransformation method for production of tryptophan analogs 

By utilizing readily available enzymatic biotransformation method4, a library of tryptophane 

derivatives was generated from several commercially available indoles. Escherichia coli pre-

transformed with pSTB7, a high copy number plasmid encoding genes for tryptophan 

synthase from Salmonella enterica, was commercially obtained (ATCC 37845)5,6. Plasmid 

pSTB7 was isolated from overnight E. coli culture and retransformed into E. coli BL21 (DE3) 

using standard electroporation conditions (see Materials and methods, chapter 5.5.1.1). Five 

mL of E. coli BL21 (DE3)::pSTB7 culture were used to inoculate 500 mL of LB medium in 2 

L Erlenmeyer flask and cultivated for 20-24 h at 37 °C. Fully grown culture was then 

centrifuged at 3500 g at 4 °C for 20 minutes. The pellet was washed twice with 80 mL of 

saturated salt solution and re-suspended in 80 mL of the lysis buffer (500 mM Tris-HCl, 10 

mM β-mercaptoethanol, 5 mM EDTA and 3 mM pyridoxal phosphate (PLP)), adjusted to pH 

of 7.8. Cells were lysed by sonication and lysate was clarified by centrifugation at 20000 g, 

4 °C for 20 minutes, before being aliquoted in 1.5 mL Eppendorf tubes, flash frozen in liquid 

nitrogen and stored at – 80 °C until further use.  

The biotransformation reaction was prepared in 100 mL of 1M KH2PO4 buffer (pH 7.8) with 

20% DMSO in 1 L Erlenmeyer flask. DMSO improves indole solubility and 20% content was 

found to significantly increase yield. Three mL of E. coli BL21 (DE3)::pSTB7 cell lysate, 

containing tryptophan synthase, were thawed at the room temperature and transferred into a 3 

mL dialyzer (D-Tube™ Dializer Maxi, MWCO 6-8 kDa from Novagen®, Merck Millipore) 

which was submerged into the reaction buffer. Substrates; serine (2.5 mmol) and desired 

indole derivative (2 mmol) were added to the reaction buffer and the flask was incubated at 

37 °C for 48-72 hours. After 24h dialysis bags were withdrawn and filled with fresh cell 

lysate to increase reaction efficiency.  

After three days of incubation at 37 °C, reaction was transferred into a separation funnel and 

extracted with equal volume of ethyl acetate. Water phase was frozen and freeze dried, to 

remove remaining DMSO, before purification on Biotage Isolera One. 

Commercially available indoles were obtained from Alfa Aesar (4-F, 6-F, 7-F, 5-Br, 5-Cl, 6-

NO2 and 7-NO2 indoles) and Sigma-Aldrich (7-I indole).  

 

5.5.1.6 Purification and structure elucidation of tryptophan derivatives  

Samples were redisolved in H2O before purification on a Biotage Isolera One using reverse-

phase Biotage® SNAP Cartridge KP-C18-HS 30 g column cartridge. Water with 0.1% formic 
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acid (A) was used to remove PLP, serine and other impurities and methanol with 0.1% formic 

acid (B) was used to elute novel tryptophan derivatives. The purification was carried out using 

the following gradient: 25 mL/min flow, equilibration with 5/95% B/A over 3 column 

volumes, 5/95% B/A over 3 column volumes, increase to 100%B over 8 column volumes and 

keeping 100% B over 3 column volumes. The collection wavelength was set to UV1+UV2 

(254, 280 nm). Collection of the peaks occurring from approx. 4.3 min to 12.0 min gave the 

resulting tryptophan analogs. Fractions containing the product were combined in a round 

bottom flask and dried on a rotary evaporator. Dry extract was treated twice with 20 mL of 

0.1 M hydrochloric acid and dried on rotary evaporator, to form hydrochloric salt. Product 

was re-dissolved in 3 - 4 mL of H2O, frozen at -80 °C and dried overnight by freeze drying, to 

produce powdered product. Ethyl acetate phase, containing unreacted indole, was dried on 

rotary evaporator and recovered indole could be recycled for further reactions.  

 

5.5.1.7  Production and purification of novel agryrin derivatives by precursor-directed 

biosynthesis 

Two heterologous argyrin producer mutants were used to produce new argyrin derivatives. M. 

xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI was used for production of argyrin B based 

derivatives and  M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI-arg1B was used to 

produce argyrin C based derivatives. Both strains were cultivated on CTT agar plates 

supplemented with kanamycin 50 µg/mL or kanamycin 50 µg/mL and zeocin 50 µg/mL, 

respectively. Once the plates were completely covered with cell mass, an entire plate was 

scraped and used to inoculate 50 mL of M7/s4 medium supplemented with suitable antibiotics. 

Seed culture was grown for 2 days after which 5 mL were used to inoculate main cultures, 

supplemented with suitable antibiotics and 2% Amberlite XAD-16 resin. In case of M. 

xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI-arg1B, the medium was supplemented with 

additional 1 mg/L of vitamin B12, to improve methylation efficiency.  Tryptophan derivatives 

were dissolved in H2O and fed to the cultures 2 times per day for 6 days, until final 

concentration of 1 mM was reached. Additionally α-aminobutyric acid (10 mM) was added to 

each culture flask to help decrease the number of derivatives by shifting the production 

towards argyrin B. After 6 days, Amberlite XAD-16 resin and cells were harvested by 

centrifugation at 4 °C for 15 min. The Supernatant was removed and the pellets were frozen 

and freeze dried. Dry pellets were extracted by ethyl acetate via standard extraction procedure 

(2x with 50 mL of ethyl acetate). Crude extracts were dissolved in a mixture of acetonitrile 

and DMSO, before purification on HPLC (see Material and methods chapter 5.5.1.8). 
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5.5.1.8 Purification and structure elucidation of novel argyrin derivatives  

First round of LC purification was performed on the Luna® 5µm C18 (2) 100 Å, LC (250 x 10 

mm) semi prep HPLC column, for all samples. Separation of a sample was achieved by a 

linear gradient from (A) H2O + 0.1 % FA to (B) ACN + 0.1 % FA. The gradient was initiated 

by a 4 min isocratic step at 5 % B, followed by an increase to 30 % B in 6 min, to 70 % B in 

20 min and to 95 % B in 0.5 min. After a 4 min step at 95 % B the system was re-equilibrated 

to the initial conditions of 5 % B, which were kept for 4 min before next injection. Column 

oven temperature was set to 45°C and separation was done at a flow rate of 5 mL/min. 

 

Additional purification steps were necessary to separate minor analogs containing 6-F, 7-F, 5-

Br, 7-NO2 and 5-Cl tryptophan residues. Second round of purification was performed on the 

Kinetex® 5 µm Biphenyl 100 Å LC column 250 x 10.0 mm. Separation of a sample was 

achieved by a linear gradient from (A) H2O + 0.1 % FA to (B) ACN + 0.1 % FA. The 

gradient was initiated by a 4 min isocratic step at 5 % B, followed by an increase to 45 % B in 

11 min, to 47 % B in 6 min and to 95 % B in 1 min. After a 2.5 min step at 95 % B the system 

was re-equilibrated to the initial conditions of 5 % B, which were kept for 2 min before next 

injection. Column oven temperature was set to 45°C and separation was done at a flow rate of 

5 mL/min. 

Yields of purified argyrin derivatives are provided in table S1. 

 

Table S1. Absolute and calculated yields of novel argyrin derivatives. The yields were achieved after 
purification from 150 mL of production broth.  

 

 

 

 

 

 

 

 

 
 

a Yield after HPLC purification from 150 mL production broth. 
* Production levels of natural argyrin derivatives achieved under the same conditions are 40 mg/L (argyrin B) 
and 16 mg/L (argyrin C). 

Name Mass Absolute 
yielda  [mg] 

Calculated 
yield [mg/L] 

4-F-argyrin C 856.31 1.00  6.67 
6‘-F-argyrin B 856.31 0.87  5.80 
6‘-F-argyrin C 856.31 0.86  5.73 
6,6'-di-F-argyrin C2 844.29 1.45  9.60 
7,7'-di-F-argyrin I 844.29 3.76  25.07 
5-Cl-argyrin B 872.28 0.58  3.86 
5’-Cl-argyrin I 842.27 0.73  4.87 
5,5'-di-Cl-argyrin I 876.23 4.07  27.13 
5-Br-argyrin B 916.23 0.97  6.47 
5’-Br-argyrin I 886.22 0.73  4.87 
5,5'-di-Br-argyrin I 964.13 3.30  22.00 
7-I-argyrin B 964.22 2.21  14.73 
7,7'-di-I-argyrin B 1090.11 0.18  1.20 
7,7'-di-I-argyrin I 1060.10 0.52  3.47 
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5.5.1.9 Construction of new synthetic promoter systems to replace the PntpII promoter 

in heterologous argyrin expression construct 

To evaluate other promoter systems for production of argyrins, 6 new promoter constructs, 

based on 4 different promoter systems were designed (PnptII, Pvan, Ppm, Ptet). Six synthetic 

promoter fragments were ordered from a gene synthesis company and supplied in a standard 

pGH expression vector. The promoter fragments with lengths of 233 bp (Ppm), 803 bp (Ptet), 

169 bp (PtetΔR), 245 bp (PnptII), 1145 bp (Pvan) and 200 bp (PvanΔR) were released from the pGH 

vector and ligated into pArg2345-V1-BsaI expression vector by SwaI, StuI restriction 

endonucleases, resulting in construction of the following argyrin BGC expression constructs: 

pArg2345-V1-BsaI-Ppm, pArg2345-V1-BsaI-Ptet, pArg2345-V1-BsaI-PtetΔR, pArg2345-

V1-BsaI-PnptII, pArg2345-V1-BsaI-Pvan and pArg2345-V1-BsaI-PvanΔR. 

 

 

5.5.1.10 Transfer and chromosomal integration of expression construct harboring 

argyrin BGC constructs with exchanged promoter system 

The host strain M. xanthus DK1622 ΔmchA-tet
3 was transformed with the generated 

expression constructs pArg2345-V1-BsaI-Ppm, pArg2345-V1-BsaI-Ptet, pArg2345-V1-BsaI-

PtetΔR, pArg2345-V1-BsaI-PnptII, pArg2345-V1-BsaI-Pvan and pArg2345-V1-BsaI-

PvanΔR (Table S5). Cultivation conditions were kept the same as described in Materials and 

methods, chapter 5.5.1.4. For selection of M. xanthus mutants 50 μg/mL kanamycin was used. 

Correct chromosomal integration of the expression constructs via homologous recombination 

into the tet
R locus was verified by PCR. Transformant cells were lysed by incubating at 95 °C 

for 30 min prior of addition to the PCR reaction (‘colony PCR’). For each expression 

construct correct chromosomal integration was confirmed using two primer combinations, 

revealing PCR products of the expected sizes: P1/P2 (1458 bp) and P3/P4 (1461 bp). 

Genomic DNA of M. xanthus DK1622 ΔmchA-tet was used as negative control. 

Complementary experiment using primers P1/P4 revealed a 1461 bp PCR product for M. 

xanthus DK1622 ΔmchA-tet, but not for the expression strains. PCR reactions were performed 

according to the conditions described in Materials and methods, chapter 5.5.1.1 using Taq 

polymerase. For primer sequences see Table S3. 

 



238 | Production profile engineering and precursor directed biosynthesis of argyrins 
 

 

5.5.1.11 Analysis of argyrin production in M. xanthus using different promoter systems 

for heterologous argyrin production 

M7/s4 medium was used for parallel cultivation of the heterologous producers with replaced 

promoter (M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI-Ppm, M. xanthus DK1622 

ΔmchA-tet::pArg2345-V1-BsaI-Ptet, M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI-

PtetΔR, M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI-PnptII, M. xanthus DK1622 

ΔmchA-tet::pArg2345-V1-BsaI-Pvan and M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-

BsaI-PvanΔR) and control strain (M. xanthus DK1622 ΔmchA-tet::pArg2345-V1-BsaI), to 

evaluate the effect of various promoters on the production profile of argyrin. Strains were 

cultivated on CTT agar plates supplemented with kanamycin 50 µg/mL for several days, until 

the plates was completely covered with cell mass. An entire plate was scraped and used to 

inoculate 50 mL of M7/s4 medium supplemented with kanamycin 50 µg/mL. Solution of 

amino acid mixture calculated for the final concentration of 5 mM serine, 5 mM cysteine, 5 

mM alanine, 10 mM tryptophan, 10 mM glycine and 10 mM α-aminobutyric acid was fed to 

the production cultures twice daily over the course of 6 days.  Seed culture was grown for 2 

days after which 5 mL were used to inoculate the main cultures, supplemented with 50 µg/mL 

kanamycin and 4% Amberlite XAD-16 resin. In case of inducible Ptet or Pvan promoters 

corresponding cultures were supplemented with 0,7 µg/mL tetracycline or 1 mM vanillate, 

respectively. All mutants were cultivated in triplicates for 6 days before harvesting. Cultures 

were harvested by centrifugation at 8000 rpm for 15 min. Supernatant was removed and 

pelleted cells with Amberlite XAD-16 resin were extracted with 50 mL of ethyl acetate. 

Extracts were filtered and dried in round bottom flasks on rotary evaporator. Crude extracts 

were dissolved in 1 mL of methanol and subjected to HPLC-MS analysis. 

Argyrin samples were routinely analyzed on a Dionex 

Ultimate 3000 RSLC system using a Waters BEH C18 column (50 x 2.1 mm, 1.7 µm) 

equipped with a Waters VanGuard BEH C18 1.7 µm guard column. Separation of 1 µl sample 

(Crude extract 1/5 dilutions in methanol) was achieved by a linear gradient from (A) H2O + 

0.1% FA to (B) ACN + 0.1 % FA at a flow rate of 600 µL/min and a column temperature of 

45 °C. Gradient conditions were as follows: 0 – 0.5 min, 5% B; 0.5 – 18.5 min, 5 – 95% B; 

18.5 – 20.5 min, 95% B; 20.5 – 21 min, 95 – 5% B; 21-22.5 min, 5% B. UV spectra were 

recorded by a DAD in the range from 200 to 600 nm. The LC flow was split to 75 µL/min 

before entering the Bruker Daltonics maXis 4G hr-qToF mass spectrometer using the Apollo 

II ESI source.  Mass spectra were acquired in centroid mode ranging from 150 – 2500 m/z at a 

2 Hz full scan rate. Mass spectrometry source parameters were set to 500V as end plate offset; 
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4000 V as capillary voltage; nebulizer gas pressure 1 bar; dry gas flow of 5 L/min and a dry 

temperature of 200°C.  Ion transfer and quadrupole settings were set to Funnel RF 350 Vpp; 

Multipole RF 400 Vpp as transfer settings and Ion energy of 5eV as well as a low mass cut of 

300 m/z as Quadrupole settings. Collision cell was set to 5.0 eV and pre pulse storage time 

was set to 5 µs. Spectra acquisition rate was set to 2Hz. Calibration of the maXis4G qTOF 

spectrometer was achieved with sodium formate clusters before every injection to avoid mass 

drifts. All MS analyses were acquired in the presence of the lock masses C12H19F12N3O6P3, 

C18H19O6N3P3F2 and C24H19F36N3O6P3 which generate the [M+H]+ Ions of 622.028960, 

922.009798 and 1221.990638. The corresponding MS2 method operating in automatic 

precursor selection mode picks up the two most intense precursors per cycle, applies smart 

exclusion after five spectra and performs CID and MS/MS spectra acquisition time ramping. 

CID Energy was ramped from 35 eV for 500 m/z to 45 eV for 1000 m/z and 60 eV for 2000 

m/z. MS full scan acquisition rate was set to 2Hz and MS/MS spectra acquisition rates were 

ramped from one to four Hz for precursor Ion intensities of 10kcts to 1000kcts. 

To quantify argyrin production levels described in chapter 5.2.3, the following HPLC-MS 

method was applied. Separation was performed on a Dionex UltiMate 3000 RSLC system 

equipped with a Waters reversed phase UPLC column (Acquity UPLC BEH C18 1,7μm; 

2.1*100mm) using a linear gradient with solvent A (water + 0.1% formic acid) and B 

(acetonitrile + 0.1% formic acid) at a flow rate of 600 μl/min and 45 °C. The gradient was 

initiated by a 0.5 min isocratic step with 5% B followed by an increase to 15% B within 1 min, 

50% B within 11.5 min and 95% B within 1 min, which was kept for 1min, before decreasing 

back to initial conditions of 5% B within 0.3 min and was kept for 1.7 min. HPLC was 

coupled to a Bruker Daltonics ion trap mass spec ‘Amazon speed’ system. Mass spectra were 

acquired in positive ionization mode with a range of 200-2500 m/z at a resolution of R=30000. 

Identities of the argyrins were confirmed by comparing with both retention time and MS2 

fragmentation pattern of the authentic compounds. 

Quantification was performed using Bruker Daltonics Quant analysis software version 4.4. 

The following method was used to quantify the corresponding derivatives; argyrin I (retention 

time 9.83, MS2 fragments: 707.2, 724.2), argyrin A (retention time 10.05, MS2 fragments: 

737.3; 754.3), argyrin B (retention time 10.60, MS2 fragments: 737.3; 754.3), argyrin C 

(retention time 10.71, MS2 fragments: 751.3; 768.3) and argyrin D (retention time 11.28, MS2 

fragments: 751.3; 768.3).  
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Table S2. Heterologous production of PKS/NRPS-derived natural products in M. xanthus. 

‡ based on shake flask experiments 
n.d., not determined 

 

 
Figure S1. Genotypic verification of integration of all argyrin cluster versions into the heterologous host M. 

xanthus DK1622 ΔmchA-tet. Primer sets used for genotypic verification, their binding sites and amplicon sizes 
are illustrated. Nucleotide sequences of the primers used are listed in the Table S3.   
 
 

Compound Native producer Pathway-type [size] Promoter Yield ‡ Ref 

Argyrin A, B Cystobacter species NRPS [33 kb] PnptII 160 mg/L 3 

Argyrin A, B Cystobacter species NRPS [33 kb] PnptII 250 mg/L This study 

Argyrin A, B Cystobacter species NRPS [33 kb] Pvan 250 mg/L This study 

Argyrin A, B Cystobacter species NRPS [33 kb] Pvan∆R 200 mg/L This study 

Argyrin A, B Cystobacter species NRPS [33 kb] Ptet 50 mg/L This study 

Argyrin A, B Cystobacter species NRPS [33 kb] Ptet∆R 150 mg/L This study 

Argyrin A, B Cystobacter species NRPS [33 kb] Ppm 120 mg/L This study 

Bengamide Myxococcus virescens PKS/NRPS [25 kb]  PnptII >10 mg/L 7 

Corallopyronin A Corallococcus coralloides PKS/NRPS [65 kb] PnptII 37 mg/L 8 

Corallopyronin A Corallococcus coralloides PKS/NRPS [65 kb] Pvan 100 mg/L 9   

Dawenol Stigmatella aurantiaca PKS [21 kb] native n.d. 10 

Epothilone Sorangium cellulosum PKS/NRPS [56 kb] native 0.1 - 0.4 mg/L 11–13 

Myxochromide A Myxococcus xanthus PKS/NRPS [29 kb] PnptII ~500 mg/L 14 

Myxochromide S Stigmatella aurantiaca PKS/NRPS [29 kb] PnptII >500 mg/L 15 

Myxopyronin A Myxococcus fulvus PKS/NRPS [53 kb] PnptII 156 mg/L 8   

Myxothiazol Stigmatella aurantiaca PKS/NRPS [57 kb] Ppm 20 mg/L 16   

Oxytetracycline Streptomyces rimosus PKS [32 kb] native 10 mg/L 17 

Pretubulysin Cystobacter species PKS/NRPS [40 kb] Ptet 0.2 mg/L 18 

PUFAs Aetherobacter fasciculatus  PKS/FAS [18 kb]  Ptet ~1 mg/CDW 19   

Vioprolide B, D Cystobacter violaceus NRPS [56 kb] Ptet 80 mg/L 20   
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Table S3. List of primers used in this study 

Primer name 
Sequence (5’3’) 
(restriction sites in bold, homology arms underlined) 

Restriction 
sites     

dpo-pUC18F GACGTTTAAACTGACCACTTAAGCATGTGAGCAAAAGG
CCAGCA 

PmeI, AflII 

dpo-pUC18R GTGAAACTAGTTCCGTGGCAAAGCAAATATTACCCCGTA
GAAAAGATCAAAGG 

SspI, SpeI 

dpo-arg1F CATCATATGAAGGAGGCTTTTCTGATGGGCCAGAC NdeI 
dpo-arg1R GTACATGAATTCCCACCATCCGGGGCCGATG EcoRI 
dpo-arg1B-1 GAGAACTGTGAATGCGCAAAC  
dpo-arg1B-2 GGAAGATTGGATGCGTTCAG  
dpo-arg1B-4 GACTTTCGACGATCTTCAGCTTC  
dpo-arg1B-5 GACGACGTGACCCTGTTCATC  

dpo-arg2-prom-F CTCGCTAACGGATTCACCAC  

dpo-arg2-prom-R GTTCACTCCTGGCGACAAG  
InMchP1 CGAGCAATCCGCTATTGGC  
InMchP2 CAGCTGGCAATTCCGGTTCG  
InMchP3 ACGGGACGGGATATCTGACC  
InMchP4 CTGTGTCCTTCTGCGACGC  

 
Table S4. Gene synthesis constructs obtained from ATG:biosynthetics GmbH. 

Plasmid name Synthetic fragment name Design 
Synthetic 
fragment size 
(bp) 

pGH-arg1-V1 Seq1-arg1-V1 NdeI-arg1-AvrII-BglII 1945  
pGH-zeo-Hom-MCS zeo-Hom-MCS SspI-zeo

R-Hom-PnptII-MCS-AflII 2007 
pGH-Ppm-synRBS-arg2 Ppm-synRBS-arg2 SwaI-PciI-NdeI-Ppm-synRBS-

arg2-StuI 
240 

pGH-Ptet-synRBS-arg2 Ptet-synRBS-arg2 SwaI-PciI-TetR-NdeI-Ptet-
synRBS-arg2-StuI 

810 

pGH-Ptet-wo_tetR-synRBS-
arg2 

Ptet∆R-synRBS-arg2 SwaI-PciI-NdeI-Ptet-synRBS-
arg2-StuI 

187 

pGH-nptII-synRBS-arg2 nptII-synRBS-arg2 SwaI-PciI-NdeI-PnptII-synRBS-
arg2-StuI 

263 

pGH-Pvan-synRBS-arg2 Pvan-synRBS-arg2 SwaI-PciI-VanR-NdeI-Pvan-
synRBS-arg2-StuI 

1163 

pGH-Pvan-wo_vanR-
synRBS-arg2 

Pvan∆R-synRBS-arg2 SwaI-PciI-NdeI-Pvan-synRBS-
arg2-StuI 

218 
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Table S5. Constructs generated in this study. 
Plasmid name Construction details Features 
pGH-arg1B 238 bp NdeI-arg1-EcoRI PCR fragment ligated 

into pGH-arg1-V1 hydrolyzed with the same 
enzymes.   

Reconstituted arg1 
gene, pUC ori, amp

R 

pUC18-zeo-Hom-MCS 731 bp PmeI-pUC18-ORI-SpeI PCR fragment 
ligated into pGH-zeo-Hom-MCS plasmid 
hydrolyzed with the same enzymes. 

pUC ori, zeo
R, 

homology region, 
MCS 

pUC18-zeo-Hom-arg1B 2047 bp NdeI-arg1B-BglII fragment derived from 
pGH-arg1B plasmid ligated into pUC18-zeo-
Hom-MCS expression vector hydrolyzed with the 
same enzymes. 

pUC ori, zeo
R, 

homology region, 
reconstituted arg1 
gene  

pArg2345-V1-BsaI-Ppm 233 bp SwaI-Ppm-StuI fragment derived from 
pGH-Ppm-synRBS-arg2, ligated into pArg2345-
V1-BsaI expression vector hydrolyzed with the 
same enzymes. 

Ppm, arg2-5, p15A 
ori, kan

R
, tet

R 

pArg2345-V1-BsaI-Ptet 803 bp SwaI-Ptet-StuI fragment derived from 
pGH-Ptet-synRBS-arg2, ligated into pArg2345-
V1-BsaI expression vector hydrolyzed with the 
same enzymes. 

Ptet, arg2-5, p15A 
ori, kan

R
, tet

R 

pArg2345-V1-BsaI-PtetΔR 169 bp SwaI-PtetΔR-StuI fragment derived from 
pGH-Ptet-wo_tetR-synRBS-arg2, ligated into 
pArg2345-V1-BsaI expression vector hydrolyzed 
with the same enzymes. 

PtetΔR, arg2-5, p15A 
ori, kan

R
, tet

R 

pArg2345-V1-BsaI-PnptII 245 bp SwaI-PnptII-StuI fragment derived from 
pGH-nptII-synRBS-arg2, ligated into pArg2345-
V1-BsaI expression vector hydrolyzed with the 
same enzymes. 

PnptII, arg2-5, p15A 
ori, kan

R
, tet

R 

pArg2345-V1-BsaI-Pvan 1145 bp SwaI-Pvan-StuI fragment derived from 
pGH-Pvan-synRBS-arg2, ligated into pArg2345-
V1-BsaI expression vector hydrolyzed with the 
same enzymes. 

Pvan, arg2-5, p15A 
ori, kan

R
, tet

R 

pArg2345-V1-BsaI-PvanΔR 200 bp SwaI-PvanΔR-StuI fragment derived from 
pGH-Pvan-wo_vanR-synRBS-arg2, ligated into 
pArg2345-V1-BsaI expression vector hydrolyzed 
with the same enzymes. 

PvanΔR, arg2-5, p15A 
ori, kan

R
, tet

R 
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5.5.2 NMR tables and spectra 

5.5.2.1 Tryptophan NMR data 

 

 
Figure S2. Structure of 4-F-L-tryptophan 
 

Table S6. List of all observed NMR correlations for 4-F-L-tryptophan in D2O. 
Res ∆ 13Ca  Mult. (j in Hz) ∆ 1Hb Mult. (j in Hz) 
α 54.0 4.12 d,d (8.3,5.2) 
β 38.6 3.65 d,d (15.2,5.3) 
 38.6 3.11 d,d (15.2,8.4) 
α-COOH 171.8  
1   
2 125.5 7.03 s 
3 104.8 d (11.8)  
4 156.3 d (242.5)  
4a 114.9 d (20.0)  
5 104.2 d (19.0) 6.63 d,d (8.0,11.7) 
6 122.5 d (8.2) 6.96 d,d,d (5.3,8.0,8.0) 
7 108.1 d (3.5) 7.09 d (8.2) 
7a 139.1 d (11.8)  
a acquired at 125 MHz  
b acquired at 500 MHz, referenced to solvent signal D2O at δ 4.79 ppm. 
 

 

 
Figure S3. Structure of 5-Br-L-tryptophan 
 

Table S7. List of all observed NMR correlations for 5-Br-L-tryptophan in D2O. 
Res ∆ 13Ca  Mult. (j in Hz) ∆ 1Hb Mult. (j in Hz) 
α 54.0 4.06 d,d (7.4,5.04) 
β 25.8 3.27 d,d (5.2,15.3) 
 25.8 31.7 d,d (7.4,15.4) 
α-COOH 172.6  
1   
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2 120.6 7.13 s 
3 106.3  
4 124.6 7.67 d (2.0) 
4a 128.2  
5 112.0  
6 126.4 7.17 d,d (8.8,1.8) 
7 113.5 7.23 d (8.5) 
7a 134.9  
a acquired at 125 MHz 

b acquired at 500 MHz, referenced to solvent signal D2O at δ 4.79 ppm. 
 
 

 
Figure S4. Structure of 5-Cl-L-tryptophan 
 

Table S8. List of all observed NMR correlations for 5-Cl-L-tryptophan in D2O. 
Res ∆ 13Ca  Mult. (j in Hz) ∆ 1Hb Mult. (j in Hz) 
α 53.8 4.03 d,d (7.4,5.3) 
β 25.8 3.27 d,d (15.4,5.0) 
 25.8 3.17 d,d (15.4,7.5) 
α-COOH 172.9  
1   
2 122.1 7.15 s 
3 106.5  
4 117.5 7.51 d (1.8) 
4a 124.6  
5 127.5  
6 126.5 7.04 
7 113.03 7.28 
7a 137.5  
a acquired at 125 MHz 

b acquired at 500 MHz, referenced to solvent signal D2O at δ 4.79 ppm. 
 

 

 
Figure S5. Structure of 5-F-L-tryptophan 
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Table S9. List of all observed NMR correlations for 5-F-L-tryptophan in D2O. 
Res ∆ 13Ca  Mult. (j in Hz) ∆ 1Hb Mult. (j in Hz) 
α 53.4 4.12 d,d (7.4, 5.4) 
β 25.7 3.29 d,d (15.5, 5.3) 
 25.7 3.21 d,d (15.4, 7.3) 
α-COOH 172.3  
 
1 

  

2 125.5 7.09 s 
3 106.6  
4 119.0 d (9.9) 7.42 d,d (8.7,5.5) 
4a 123.1  
5 97.8 d (26.3) 6.78 d,d,d (2.0,9.0,9.0) 
6 159.6 d  6.84 d,d,d (2.5,9.3,9.3) 
7 112.0 d (10) 7.27 d,d (8.9,4.43) 
7a 132.8  
a acquired at 125 MHz 

b acquired at 500 MHz, referenced to solvent signal D2O at δ 4.79 ppm. 
 

 
Figure S6. Structure of 6-F-L-tryptophan 
 

Table S10. List of all observed NMR correlations for 6-F-L-tryptophan in D2O. 
Res ∆ 13Ca  Mult. (j in Hz) ∆ 1Hb Mult. (j in Hz) 
α 53.4 4.12 d,d (7.3, 5.3) 
β 25.7  3.29 d,d (15.5, 5.3) 
 25.7 3.21 d,d (15.4, 7.3) 
α-COOH 172.3  
1   
2 125.5 7.09 s 
3 106.6  
4 119.0 d (9.9) 7.42 d,d (8.7, 5.5) 
4a 123.1  
5 97.8 d (26.3) 6.78 d,d,d (2.0,9.0,9.0) 
6 159.6 d (235.2)  
7 108.0 7.04 d,d (10.3, 2.1) 
7a 136.2 d (12.7)  
a acquired at 125 MHz 

b acquired at 500 MHz, referenced to solvent signal D2O at δ 4.79 ppm. 
 
 



246 | Production profile engineering and precursor directed biosynthesis of argyrins 
 

 

 
Figure S7. Structure of 6-NO2-L-tryptophan 
 

Table S11. List of all observed NMR correlations for 6-NO2-L-tryptophan in D2O. 
Res ∆ 13Ca  Mult. (j in Hz) ∆ 1Hb Mult. (j in Hz) 
α 53.7 4.09 d,d (6.9,5.6) 
β 25.5 3.29 d,d (15.4,5.4) 
 25.5 2.26 d,d (15.6, 7.1) 
α-COOH 172.4  
1   
2 131.4 7.39 s 
3 107.9  
4 118.0 7.48 d (8.7) 
4a 131.6  
5 114.6 7.73 d,d (2.0,8.7) 
6 142.3  
7 108.9 8.13 d (1.72) 
7a 134.5  
a acquired at 125 MHz 

b acquired at 500 MHz, referenced to solvent signal D2O at δ 4.79 ppm. 
 

 
Figure S8. Structure of 7-F-L-tryptophan 
 

Table S12. List of all observed NMR correlations for 7-F-L-tryptophan in D2O. 
Res ∆ 13Ca  Mult. (j in Hz) ∆ 1Hb Mult. (j in Hz) 
α 53.1 4.09 d,d (5.5,7.1) 
β 25.6 3.18 d,d (15.4,5.2) 
 25.6 3.11 d,d (15.3,7.3) 
α-COOH 171.8  
1   
2 125.8 7.05 s 
3 107.1  
4 113.9 d (2.7) 7.14 d (8.0) 
4a 130.2 d (5.4)  
5 119.7 d (5.4) 6.82 d,d,d (7.8,7.8,4.7) 
6 106.6 d (15.4) 6.73 d,d (11.4,7.7) 
7 149.4 d (243.4)  
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7a 124.3 d (13.6)  
a acquired at 125 MHz 

b acquired at 500 MHz, referenced to solvent signal D2O at δ 4.79 ppm. 
 

 
Figure S9. Structure of 7-I-L-tryptophan 
 

Table S13. List of all observed NMR correlations for 7-I-L-tryptophan in D2O. 
Res ∆ 13Ca  Mult. (j in Hz) ∆ 1Hb Mult. (j in Hz) 
α 53.8 4.04 d,d (7.4,5.4) 
β 26.1 3.26 d,d (15.3,5.3) 
 26.1 3.15 d,d (15.5,7.3) 
α-COOH 172.7  
1   
2 125.5 7.16 s 
3 108.3  
4 118.4 7.49 d (7.0) 
4a 126.8  
5 121.1 6.77 d,d (7.8,7.8) 
6 131.0 7.47 d (5.9) 
7 75.9  
7a 133.2  
a acquired at 125 MHz 

b acquired at 500 MHz, referenced to solvent signal D2O at δ 4.79 ppm. 
 

 
Figure S10. Structure of 7-NO2-L-tryptophan 
 

Table S14. List of all observed NMR correlations for 7-NO2-L-tryptophan in D2O. 
Res ∆ 13Ca  Mult. (j in Hz) ∆ 1Hb Mult. (j in Hz) 
α 53.8 4.04 d,d (7.2, 5.3) 
β 25.5 3.29 d,d (15.5,5.3) 
 25.5 3.21 d,d (15.5,7.3) 
α-COOH 172.7  
1   
2 127.1 7.21 s 
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3 108.9  
4 127.2 7.83 d (7.8) 
4a 128.9  
5 119.6 7.03 d,d (8.3,8.3) 
6 118.6 7.92 d (8.3) 
7 132.3  
7a 130.6  
a acquired at 125 MHz 

b acquired at 500 MHz, referenced to solvent signal D2O at δ 4.79 ppm. 
 

 

5.5.2.2 Argyrin NMR data 

5,5'-di-Br-argyrin I 

 
Figure S11. Structure formula of 5,5'-di-Br-argyrin I. Atom numbers are assigned according to the NMR data. 
 

 

Table S15. List of all observed NMR correlations for 5,5'-di-Br-argyrin I in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.75  d 8.5 
1 159.9    
2 149.8    
3 123.2 7.94  s  
4 171.3    
5 45.5 5.48 d,q 7.2, 7.5 
6 20.7 1.72 d 7.2 
     
Trp1 NH  8.61 m  
1 172.8    
2 52.1 5.08 m  
3 27.3 3.51 d,d 15.9, 3.7 
  2.91 d,d 15.3, 3.4 
1´   NH  10.84 s  
2´ 127.1 7.09 d 2.3 
3´ 105.8    
4´ 124.8 7.26 s  



Production profile engineering and precursor directed biosynthesis of argyrins | 249 
 

 

5´ 112.8    
6´ 119.2 7.19 m  
7´ 113.6 7.13 d 8.5 
8´ 133.6    
9´ 128.5    
     
Trp2 NH  6.64 s  
1 169.9    
2 56.4 4.30 m  
3 26.5 3.32 d,d 15.2, 5.2 
  3.23 d,d 15.3, 6.9 
1´   NH  8.59   
2´ 124.2 7.19 m  
3´ 108.3    
4´ 120.4 7.81  s  
5´ 113.9    
6´ 126.3 7.41d m  
7´ 113.9 7.41d m  
8´ 134.8    
9´ 129.0    
     
Gly NH  4.97 m  
1 170.8    
2 41.6 3.79 d,d 17.5, 8.2 
  1.70 m  
     
Abu  NH  6.84 d 6.55 
1 169.3    
2 54.5 4.06 t,d 8.7, 6.4 
3 21.4 1.99 m  
  1.88 m  
4 10.6 0.89 t 7.4 
     
DeAla  NH  9.37   
1 168.3    
2 136.6    
3 100.2 5.07 m  
  4.76 d 1.3 
     
Sarc       
1 166.8    
2 51.1 4.97 m  
  3.42 d 17.0 
CH3-N 37.6 3.13 s  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
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5,5'-di-Cl-argyrin I 

 
Figure S12. Structure formula of 5,5'-di-Cl-argyrin I. Atom numbers are assigned according to the NMR data. 
 
Table S16. List of all observed NMR correlations for 5,5'-di-Cl-argyrin I in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.75  d 8.5 
1 159.9    
2 149.8    
3 123.1 7.93  s  
4 171.2    
5 45.5 5.46 m  
6 20.6 1.72 d 7.2 
     
Trp1 NH  8.65 d 7.4 
1 172.9    
2 52.2 5.12 m  
3 27.3 3.53 d,d 15.9, 3.5 
  2.93 d,d 15.7, 3.1 
1´   NH  10.84 s  
2´ 127.4 7.11 d 2.4 
3´ 105.9    
4´ 116.0 6.93 s  
5´ 125.4    
6´ 122.3 7.07 d,d 8.4,2.1 
7´ 113.2 7.16 d 8.5 
8´ 133.3    
9´ 127.9    
     
Trp2 NH  6.81 s  
1 170.2    
2 56.3 4.31 m  
3 26.3 3.30 d,d 15.4, 4.9 
  3.26 d,d 15.3, 6.4 
1´   NH  8.57 s  
2´ 124.4 7.23 d 2.0 
3´ 108.7    
4´ 117.3 7.62  d 1.9 
5´ 126.7    
6´ 123.8 7.27 m  
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7´ 113.5 7.44 d 8.6 
8´ 134.8    
9´ 128.6    
     
Gly NH  4.95 m  
1 171.1    
2 41.5 3.74 d,d 17.4, 7.9 
  1.60 m  
     
Abu  NH  6.84 d 6.7 
1 169.5    
2 54.5 4.05 t,d 9.1, 6.4 
3 21.4 1.99 m  
  1.88 m  
4 10.5 0.89 t 7.4 
     
DeAla  NH  9.37 s  
1 168.3    
2 136.8    
3 100.2 5.07 d 1.7 
  4.76 d 1.3 
     
Sarc       
1 166.8    
2 51.1 4.96 d 17.1 
  3.42 d 16.8 
CH3-N 37.5 3.13 s  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
 

 

 

7,7'-di-F-argyrin I 

 
Figure S13. Structure formula of 7,7'-di-F-argyrin I. Atom numbers are assigned according to the NMR data. 
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Table S17. List of all observed NMR correlations for 7,7'-di-F-argyrin I in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.85  d 8.3 
1 160.2    
2 149.9    
3 122.9 8.01  s  
4 171.4    
5 45.2 5.46 m  
6 20.3 1.73 d 6.9 
     
Trp1 NH  8.71 m 7.4 
1 172.8    
2 52.1 5.26 m  
3 27.4 3.59 m  
  3.09 d,d 15.6, 3.5 
1´   NH  11.1 s  
2´ 126.2 7.08 d 2.6 
3´ 106.6    
4´ 111.3 6.14 d 8.2 
5´ 119.7 6.42 d,d,d 4.5,7.9,7.9 
6´ 106.2 6.67 m  
7´ 149.8  de 245e 
8´ 123.2    
9´ 130.4    
     
Trp2 NH  7.11 m  
1 170.0    
2 56.3 4.28 m  
3 26.3 3.43 m  
  3.30 d,d 15.3, 4.9 
1´   NH  8.70 s  
2´ 124.0 7.45 d 2.2 
3´ 110.2    
4´ 113.9 7.31 d 7.9 
5´ 121.0 7.12 m  
6´ 107.9 7.06 d,d 7.8, 10.8 
7´ 149.9  de 244e 
8´ 125.0    
9´ 131.2    
     
Gly NH  4.69 d,d 6.6, 6.3 
1 171.0    
2 41.0 3.57 m  
  1.20 m  
     
Abu  NH  6.68 m  
1 169.5    
2 54.4 4.03 t,d 9.3, 6.2 
3 21.3 1.98 m  
  1.86 m  
4 10.4 0.88 t 7.3 
     
DeAla  NH  9.27 s  
1 168.6    
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2 136.1    
3 100.4 5.03 m  
  4.74 d 1.6 
     
Sarc       
1 167.0    
2 51.1 4.94 d 17.1 
  3.43 m  
CH3-N 37.5 3.12 s  
a acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 500 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
e obtained from 13C NMR spectrum at 125 MHz 

 

7-I-argyrin B 

 
Figure S14. Structure formula of 7-I-argyrin B. Atom numbers are assigned according to the NMR data. 
 

Table S18. List of all observed NMR correlations for 7-I-argyrin B in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.69 d 8.7 
1 160.0    
2 150.3    
3 122.8 8.04  s  
4 171.4    
5 45.6 5.40 m  
6 20.2 1.76 d 6.9 
     
Trp1 NH  8.64 d 6.9 
1 172.9    
2 52.0 5.07 m  
3 27.2 3.53 m  
  2.78 d,d 15.4, 3.4 
1´   NH  10.8 s  
2´ 125.9 7.13 m  
3´ 107.8    
4´ 116.4 5.37 d 7.9 



254 | Production profile engineering and precursor directed biosynthesis of argyrins 
 

 

5´ 121.1 6.09 d,d 7.8,7.8 
6´ 130.1 7.26 m  
7´ 76.8    
8´ 137.1    
9´ 126.9    
     
Trp2 NH  8.75 m  
1 170.1    
2 57.8 4.20 m  
3 26.9 3.46 d,d 3.8,14.9 
  3.30 d,d 3.9,14.8 
1´   NH  8.29 s  
2´ 123.7 6.78 s 2.2 
3´ 108.5    
4´ 152.4    
5´ 101.5 6.92 d 7.6 
6´ 123.9 7.35 m  
7´ 106.7 7.32 m  
8´ 138.6    
9´ 117.6    
4`-OMe 56.3 4.35 s  
     
Gly NH  4.28 d,d 6.6,6.3 
1 171.5    
2 40.4 3.53 m  
  1.09 d,d 5.0,17.2 
     
Abu  NH  6.75 m  
1 170.2    
2 54.6 4.04 t,d 9.1, 5.8 
3 21.4 2.02 m  
  1.91 m  
4 10.6 0.90 t 7.3 
     
DeAla  NH  9.36 s  
1 168.6    
2 135.8    
3 101.8 5.01 m  
  4.74 m  
     
Sarc       
1 167.3    
2 50.9 4.95 d 16.5 
  3.39 d 16.7 
CH3-N 37.4 3.17 s  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
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4-F-argyrin C 

 
Figure S15. Structure formula of 4-F-argyrin C. Atom numbers are assigned according to the NMR data. 
 
Table S19. List of all observed NMR correlations for 4-F-argyrin C in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.82 d 8.6 
1 159.8    
2 150.4    
3 123.1 8.02  s  
4 170.8    
5 45.2 5.46 m  
6 20.3 1.72 d 7.1 
     
Trp1 NH  8.57 d 7.0 
1 173.2    
2 52.3 4.83 m  
3 28.0 3.75 m  
  3.57 d,d 15.4, 3.3 
1´   NH  11.17 s  
2´ 126.4 7.02 m  
3´ 104.5    
4´ 156.2   de 243.3e 
5´ 104.5 6.69 d,d 7.0,11.5 
6´ 122.2 7.03d m  
7´ 108.5 7.03d m  
8´ 137.7    
9´ 115.4    
     
Trp2 NH  8.44 m  
1 171.0    
2 59.2 4.04 d,t 9.7,2.8 
3 26.4 3.36 d,d 2.9, 14.8 
  3.28 d,d 9.9,14.8 
1´   NH  7.98 s  
2´ 131.9    
3´ 106.2    
4´ 152.3    
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5´ 101.5 6.74 d 7.8 
6´ 122.3 7.13 d,d 8.0,8.0 
7´ 105.3 7.02 m  
8´ 136.7    
9´ 118.2    
4`-OMe 56.2 4.27 s  
2`-Me 11.5 2.36 s  
     
Gly NH  5.42 m  
1 171.1    
2 41.1 3.72 m  
  1.43 m  
     
Ala  NH  6.96 d 6.2 
1 169.8    
2 48.5 4.28 m  
3 14.1 1.43 d 7.1 
     
DeAla  NH  9.51 s  
1 168.7    
2 136.8    
3 100.0 5.06 d 1.5 
  4.76 d 1.5 
     
Sarc       
1 166.9    
2 51.1 4.95 d 17.1 
  3.43 d 16.9 
CH3-N 37.6 3.13 s  
a acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 500 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
e obtained from 13C NMR spectrum at 125 MHz 

 

6,6'-di-F-argyrin C2 

 
Figure S16. Structure formula of 6,6'-di-F-argyrin C2. Atom numbers are assigned according to the NMR data. 
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Table S20. List of all observed NMR correlations for 6,6'-di-F-argyrin C2 in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.80 d 8.5 
1 160.0    
2 150.2    
3 123.1 8.05  s  
4 171.2    
5 45.5 5.45 m  
6 20.6 1.72 d 6.9 
     
Trp1 NH  8.48 d 7.0 
1 172.7    
2 52.1 5.05 m  
3 26.8 3.41 m  
  2.58 d,d 15.5, 3.4 
1´   NH  10.73 s  
2´ 126.0 6.98 d 2.5 
3´ 106.1    
4´ 116.7  5.92 d,d 8.6, 5.1 
5´ 108.0 6.45 m  
6´ 159.4  de 239e 
7´ 98.0 6.84 d,d 9.4, 2.4 
8´ 134.7    
9´ 123.1    
     
Trp2 NH  6.43 m  
1 170.4    
2 56.6 4.29 m  
3 24.9 3.28 d,d 4.3,15.4 
  3.22 d,d 5.6,15.4 
1´   NH  8.27 s  
2´ 134.1    
3´ 104.7    
4´ 117.1 7.48 d,d 4.8,8.7 
5´ 109.8 7.11 d,d,d 9.0,8.8,2.1 
6´ 160.1  d 239 
7´ 98.2 7.23 d,d 2.5,9.2 
8´ 135.6    
9´ 125.4    
     
Gly NH  4.69 m  
1 170.9    
2 41.3 3.76 d,d 8.1,17.5 
  1.56 m  
     
Ala  NH  6.70 d 6.1 
1 169.8    
2 48.5 4.30 m  
3 14.1 1.42 d 7.2 
     
DeAla  NH  9.49 s  
1 168.3    
2 136.6    
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3 100.5 5.07 d 1.6 
  4.75 d 1.4 
     
Sarc       
1 167.0    
2 51.1 4.95 d 17.0 
  3.41 d 17.0 
CH3-N 37.6 3.13 s  
a acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 500 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
e obtained from 13C NMR spectrum at 125 MHz 

 

6‘-F-argyrin C 

 

 
Figure S17. Structure formula of 6'-F-argyrin C. Atom numbers are assigned according to the NMR data. 
 

Table S21. List of all observed NMR correlations for 6'-F-argyrin C in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.82 d 8.5 
1 160.0    
2 150.5    
3 123.1 8.06  s  
4 170.9    
5 45.5 5.48 m  
6 20.6 1.73 d 7.0 
     
Trp1 NH  8.54 m  
1 172.7    
2 52.2 5.03 m  
3 26.9 3.55 d,d 15.3,3.2 
  2.81 d,d 15.5, 3.1 
1´   NH  10.70 s  
2´ 125.7 6.98 d 2.5 
3´ 105.9    
4´ 116.1  5.63 m  
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5´ 119.1 6.44 d,d 7.25, 7.25 
6´ 121.4 6.94 m  
7´ 111.6 7.09 d 7.8 
8´ 134.9    
9´ 126.6    
     
Trp2 NH  6.86 m  
1 170.2    
2 57.0 4.18 m  
3 25.6 3.39 m  
  3.27 d,d 15.4, 3.8 
1´   NH  8.09 s  
2´ 133.5    
3´ 104.0    
4´ 114.9    
5´ 92.1 6.70 d 11.0 
6´ 160.1  de 238e 
7´ 91.9 6.94 m  
8´ 151.3    
9´ 133.7    
4´-OMe 56.5 4.29 s  
2´-Me 11.5 2.11 s  
     
Gly NH  4.60 m  
1 170.8    
2 41.1 3.49 d,d 17.3, 7.6 
  1.21 d,d 17.1, 5.1 
Ala  NH  6.86 d 6.1 
1 169.9    
2 48.5 4.24 m  
3 14.1 1.42 d 6.9 
     
     
DeAla  NH  9.46 s  
1 168.2    
2 136.9    
3 99.8 5.02 m  
  4.73 m  
     
Sarc       
1 166.7    
2 51.2 4.97 d 16.9 
  3.39 m  
CH3-N 37.5 3.11 s  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
e obtained from 13C NMR spectrum at 175 MHz 
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5-Cl-argyrin B 

 
Figure S18. Structure formula of 5-Cl-argyrin B. Atom numbers are assigned according to the NMR data. 
 

Table S22. List of all observed NMR correlations for 5-Cl-argyrin B in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.75 d 8.3 
1 159.7    
2 150.1    
3 123.0 8.04  s  
4 170.7    
5 45.4 5.46 m  
6 20.5 1.73 d 6.9 
     
Trp1 NH  8.64 d 7.1 
1 172.7    
2 52.2 4.99 m  
3 26.9 3.52 m  
  2.62 d,d 15.4, 3.3 
1´   NH  10.99 s  
2´ 127.3 7.01 m  
3´ 105.7    
4´ 115.2 5.73 d 2 
5´ 127.6    
6´ 122.0 6.93 m  
7´ 112.7 7.00 m  
8´ 133.4    
9´ 125.2    
     
Trp2 NH  8.80 s  
1 170.1    
2 57.8 4.24 m  
3 27.1 3.52 m  
  3.34 d,d 14.9, 3.6 
1´   NH  8.34 s  
2´ 123.9 6.88 m  
3´ 108.0    
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4´ 152.2    
5´ 101.2 6.88 m  
6´ 123.4 7.32d m  
7´ 108.3 7.32d m  
8´ 138.3    
9´ 117.3    
4´-OMe 56.4 4.31 s  
     
Gly NH  4.72 m  
1 171.3    
2 40.8 3.67 d,d 17.2, 7.9 
  1.15 d,d 17.3, 5.1 
     
Abu  NH  6.86 d 6.1 
1 166.9    
2 45.4 5.47 d,d 8.4,7.4 
3 21.3 1.99 m  
  1.88 m  
4 20.5 1.73 d 7.3 
     
DeAla  NH  9.32 s  
1 168.6    
2 136.9    
3 99.7 5.00 d 1.5 
  4.71 m  
     
Sarc       
1 166.9    
2 51.2 4.94 d 16.8 
  3.38 m 16.9 
CH3-N 37.6 3.09 s  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
 

5-Br-argyrin B 

 
Figure S19. Structure formula of 5-Br-argyrin B. Atom numbers are assigned according to the NMR data. 
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Table S23. List of all observed NMR correlations for 5-Br-argyrin B in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.74  m  
1 159.7    
2 150.1    
3 123.1 8.04  s  
4 170.8    
5 45.3 5.48 d,q 7.3, 7.6 
6 20.4 1.73 d 7.1 
     
Trp1 NH  8.61 m  
1 172.8    
2 52.2 4.98 m  
3 27.1 3.53 m  
  2.62 d,d 15.2, 3.0 
1´   NH  11.04 s  
2´ 127.3 7.00 m  
3´ 105.4    
4´ 118.2 6.02 s  
5´ 112.7    
6´ 124.8 7.08 d,d 8.7,1.8 
7´ 113.4 6.98 d 8.5 
8´ 133.7    
9´ 128.0    
     
Trp2 NH  8.76 m  
1 170.2    
2 57.4 4.24 m  
3 27.2 3.52 m  
  3.35 d,d 14.7, 4.0 
1´   NH  8.37 m  
2´ 123.8 7.90 m  
3´ 108.3    
4´ 152.2    
5´ 101.3 6.87 d,d 2.2,6.1 
6´ 123.4 7.32d m  
7´ 108.4 7.32d m  
8´ 138.4    
9´ 117.2    
4´OMe 56.4 4.30 s  
     
Gly NH  4.78 d,d 5.1,7.9 
1 171.3    
2 41.6 3.69 d,d 7.9,17.1 
  1.17 d,d 5.1,17.6 
     
Abu  NH  6.91 m  
1 169.5    
2 54.7 3.98 t,d 8.6, 6.3 
3 21.3 1.99 m  
  1.89 m  
4 10.6 0.88 t 7.4 
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DeAla  NH  9.31   
1 168.7    
2 136.9    
3 99.7 5.00 d 1.5 
  4.72 d 1.4 
     
Sarc       
1 166.9    
2 51.2 4.94 d  
  3.41 d 17.0 
CH3-N 37.5 3.09 s  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
 

7,7'-di-I-argyrin I 

 
Figure S20. Structure formula of 7,7'-di-I-argyrin I. Atom numbers are assigned according to the NMR data. 
 
 
Table S24. List of all observed NMR correlations for 7,7'-di-I-argyrin I in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.70 d 8.0 
1 159.1    
2 149.9    
3 122.8 8.02  s  
4 171.3    
5 45.6 5.40 m  
6 20.3 1.75 d 7.2 
     
Trp1 NH  8.61 d 7.0 
1 172.5    
2 52.0 5.16 m  
3 27.4 3.49 d,d 15.9,2.9 
  2.82 m  
1´   NH  10.86 s  
2´ 125.8 7.17 d 2.2 
3´ 107.4    
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4´ 115.8 6.12 d 7.2 
5´ 121.5 6.36 d,d 7.7,7.7 
6´ 130.5 7.36 d 7.5 
7´ 77.1    
8´ 136.9    
9´ 126.4    
     
Trp2 NH  6.55d m  
1 169.8    
2 56.3 4.28 m  
3 26.7 3.36 d,d 4.6,15.3 
  3.22 d,d 4.7,14.9 
1´   NH  8.29 s  
2´ 123.6 7.26d m  
3´ 110.7    
4´ 117.9 7.55 d 7.6 
5´ 122.6 7.06 d,d 7.7,7.7 
6´ 132.0 7.75 d 7.4 
7´ 77.4    
8´ 138.4    
9´ 127.4    
     
Gly NH  4.42 m  
1 170.8    
2 41.4 3.63 d,d 17.3, 7.5 
  1.27 m  
     
Abu  NH  6.55d m  
1 169.9    
2 54.5 4.06 t,d 9.4, 6.1 
3 21.3 2.02 m  
  1.88 m  
4 10.5 0.90 t 7.3 
     
DeAla  NH  9.35 s  
1 168.3    
2 135.5    
3 101.9 5.04 d 1.6 
  4.76 m  
     
Sarc       
1 167.0    
2 50.9 4.96 d 16.9 
  3.40 d 16.9 
CH3-N 37.9 3.18 s  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
 

 

 



Production profile engineering and precursor directed biosynthesis of argyrins | 265 
 

 

6‘-F-argyrin B 

 
Figure S21. Structure formula of 6'-F-argyrin B. Atom numbers are assigned according to the NMR data. 
 

Table S25. List of all observed NMR correlations for 6'-F-argyrin B in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.81 d 8.6 
1 159.9    
2 150.5    
3 122.9 8.05  s  
4 171.0    
5 45.4 5.49 m  
6 20.7 1.72 d 6.9 
     
Trp1 NH  8.58 d 6.9 
1 173.1    
2 52.3 5.05 m  
3 26.4 3.57 d,d 15.5,3.4 
  2.84 d,d 15.3.3.0 
1´   NH  10.68 s  
2´ 125.8 6.98 m  
3´ 105.5    
4´ 115.9 5.65 d 7.9 
5´ 119.4 6.41 d,d 7.4,7.4 
6´ 121.6 6.92 d,d 7.5,7.5 
7´ 111.7 7.08 d 8.0 
8´ 135.0    
9´ 126.4    
     
Trp2 NH  8.43 s  
1 170.1    
2 57.9 4.20 m  
3 26.9 3.44 d,d 14.9,3.6 
  3.29 d,d 15.0,4.0 
1´   NH  8.30 s  
2´ 123.8 6.81 m  
3´ 108.8    
4´ 152.8    
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5´ 92.2 6.73 d 10.8 
6´ 160.8  de 240e 
7´ 92.7 7.02 d 8.3 
8´ 137.2    
9´ 114.2    
4´OMe 56.5 4.32 s  
     
Gly NH  4.58 m  
1 171.4    
2 407 3.51 d,d 17.1,7.8 
  1.12 d,d 17.2,5.1 
     
Abu  NH  6.79 m  
1 169.8    
2 54.5 3.98 m  
3 21.3 1.99 m  
  1.88 m  
4 10.7 0.88 t 7.3 
     
DeAla  NH  9.35 s  
1 168.4    
2 137.1    
3 99.6 5.00 m  
  4.72 m  
     
Sarc       
1 166.9    
2 51.1 4.98 d 16.9 
  3.39 d 16.8 
CH3-N 37.4 3.10 s  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
e obtained from 13C NMR spectrum at 125 MHz 

 

5’-Cl-argyrin I 

 
Figure S22. Structure formula of 5'-Cl-argyrin I. Atom numbers are assigned according to the NMR data. 
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Table S26. List of all observed NMR correlations for 5'-Cl-argyrin I in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.84 d 8.6 
1 159.9    
2 150.0    
3 122.7 8.02  s  
4 171.0    
5 45.1 5.48 d,q 7.5,7.1 
6 20.4 1.71 d 7.2 
Trp1 NH  8.61 d 7.5 
1 172.9    
2 51.9 5.14 m  
3 27.0 3.52 d,d 15.5,3.3 
  3.05 d,d 15.4.3.1 
1´   NH  10.70 s  
2´ 125.4 7.01 m  
3´ 105.6    
4´ 115.4 6.45d m  
5´ 119.4 6.45d m  
6´ 121.5 7.00 m  
7´ 111.7 7.15 d 8.1 
8´ 134.8    
9´ 126.4    
     
Trp2 NH  6.63 s  
1 170.1    
2 55.5 4.24 m  
3 26.4 3.34 d,d 15.1,5.4 
  3.25 d,d 15.0,5.3 
1´   NH  8.45 s  
2´ 124.5 7.37 m  
3´ 109.0    
4´ 117.9 7.49d m  
5´ 126.5    
6´ 123.5 7.32 d,d 8.8,1.7 
7´ 112.6 7.49d m  
8´ 134.9    
9´ 128.2    
     
Gly NH  4.83 d,d 7.4,5.4 
1 171.1    
2 40.9 3.65 d,d 17.4, 7.9 
  1.29 d,d 17.4,5.0 
     
Abu  NH  6.69 d 6.7 
1 169.2    
2 54.2 4.02 d,t 8.9,6.4 
3 20.9 1.97 m  
  1.87 m  
4 10.4 0.88 t 7.3 
     
DeAla  NH  9.37 s  
1 168.2    
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2 136.8    
3 99.5 5.04 d  
  4.75 d  
     
Sarc       
1 166.9    
2 50.9 4.99 d 16.9 
  3.42 d 16.9 
CH3-N 37.2 3.11 s  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
 

5’-Br-argyrin I 

 
Figure S23. Structure formula of 5'-Br-argyrin I. Atom numbers are assigned according to the NMR data. 
 
 
Table S27. List of all observed NMR correlations for 5'-Br-argyrin I in CDCl3. 
Res Δ 13Ca,c Δ 1Hb Mult J(Hz) 
Thiaz NH  8.81 d 8.6 
1 159.9    
2 150.0    
3 123.0 8.01  s  
4 171.1    
5 45.5 5.49 d,q 7.6,7.3 
6 20.8 1.71 d 7.2 
     
Trp1 NH  8.58 d 7.3 
1 172.7    
2 52.3 5.11 m  
3 27.2 3.55 d,d 15.5,3.5 
  3.00 d,d 15.4.3.2 
1´   NH  10.69 s  
2´ 125.6 7.04d m  
3´ 105.6    
4´ 115.8 6.46 m  
5´ 119.9 6.48 m  
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6´ 121.9 7.04d m  
7´ 112.1 7.17 d 8.0 
8´ 134.9    
9´ 126.4    
     
Trp2 NH  6.63 s  
1 170.0    
2 55.8 4.24 m  
3 26.8 3.33 d,d 15.3,5.6 
  3.23 m  
1´   NH  8.48 s  
2´ 124.5 7.27 m  
3´ 109.2    
4´ 121.4 7.67 m  
5´ 113.9    
6´ 126.4 7.49d m  
7´ 113.4 7.49d m  
8´ 135.6    
9´ 128.8    
     
Gly NH  4.84 m  
1 171.1    
2 41.3 3.68 d,d 17.5, 8.0 
  1.37 d,d 17.1,4.2 
     
Abu  NH  6.68 d 6.6 
1 169.3    
2 54.5 4.03 d,t 8.6,6.4 
3 21.3 1.98 m  
  1.86 m  
4 10.7 0.88 t 7.5 
     
DeAla  NH  9.37 s  
1 168.1    
2 136.8    
3 99.9 5.04 d 1.4 
  4.75 d  
     
Sarc       
1 166.8    
2 51.4 4.99 d 16.7 
  3.41 d 16.8 
CH3-N 37.2 3.11 s  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
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7,7’-di-I-argyrin B 

 
Figure S24. Structure formula of 7,7’-di-I-argyrin B. Atom numbers are assigned according to the NMR data. 
 

Table S28. List of all observed NMR correlations for 7,7’-di-I-argyrin B in CDCl3. 
Res ∆ 13Ca,c ∆ 1Hb Mult J(Hz) 
Thiaz NH  8.71 d 7.9 
1 159.8    
2 149.9    
3 122.9 8.04  s  
4 171.1    
5 45.6 5.39 d,q 7.4,7.1 
6 20.1 1.75 d 7.2 
     
Trp1 NH  8.64 d 6.9 
1 172.7    
2 52.0 5.05 m  
3 27.3 3.52 m  
  2.72 d,d 15.2,3.7 
1´   NH  10.87 m  
2´ 125.8 7.13 d 2.7 
3´ 107.8    
4´ 116.0 5.33 d 7.3 
5´ 121.1 6.19 d,d 7.7,7.7 
6´ 130.4 7.32 d 7.9 
7´ 76.7    
8´ 136.8    
9´ 126.5    
     
Trp2 NH  8.57 s  
1 169.8    
2 57.6 4.20 m  
3 27.1 3.43 d,d 15.3,4.3 
  3.28 d,d 15.1,3.7 
1´   NH  8.34 m  
2´ 123.8 6.86 d 2.2 
3´ 110.0    
4´ 152.9    
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5´ 103.6 6.78 d 8.2 
6´ 132.0 7.69 d 8.2 
7´ 69.2    
8´ 139.5    
9´ 117.2    
4´-OMe 56.6 4.33 s  
     
Gly NH  4.27 m  
1 171.0    
2 41.0 3.54 d,d 16.9,7.6 
  1.09 d,d 16.8,5.4 
     
Abu  NH  6.72 d 6.2 
1 170.1    
2 54.5 4.04 d,t 9.7,6.1 
3 21.4 2.01 m  
  1.89 m  
4 10.7 0.89 t 7.4 
     
DeAla  NH  9.37 s  
1 168.4    
2 135.6    
3 102.0 5.01 d 1.4 
  4.75 m  
     
Sarc       
1 167.2    
2 50.9 4.94 d 17.1 
  3.39 d 16.9 
CH3-N 38.0 3.17 s  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CDCl3 at δ 77.16 ppm. 
b acquired at 700 MHz, referenced to solvent signal CDCl3 at δ 7.26 ppm. 
c proton showing HMBC correlations to indicated carbons. 
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6 Discussion 

The projects discussed in this thesis focus on several aspects of natural product (NP) research, 

with the main emphasis on the structure and yield improvement. The achieved results can be 

split in two parts. The first part, discussed in the chapters 2 and 3, focuses on the 

establishment of heterologous production platforms of myxobacterial α-pyrone antibiotics 

myxopyronin (MXN) and corallopyronin (COR) and their yield optimization. Moreover, the 

heterologous expression of COR biosynthetic gene cluster (BGC) enabled detailed 

investigation of the biosynthesis, which led to the isolation and structure elucidation of two 

novel derivatives. The second part, discussed in chapters 4 and 5, describes the argyrin (ARG) 

biosynthetic machinery from the native producer Cystobacter sp. SBCb004 and its 

heterologous expression in Myxococcus xanthus DK1622. It also focuses on structure 

optimization of ARG by adenylation (A) domain engineering and precursor-directed 

biosynthesis. Furthermore, yield improvement by medium optimization an promoter 

engineering are discussed.  

 

6.1 Yield improvement and production profile engineering of microbial natural 

products 

Myxobacteria have steadily been gaining importance in the field of NPs over the last decades 

with more than 67 distinct core structures and some 500 derivatives reported from 

approximately 7500 myxobacterial strains in 20101,2. Many of the isolated secondary 

metabolites show interesting activities that have the potential to be implemented in the field of 

medicine. However, the path from a NP to an applicable medicinal drug is not only lengthy 

and expensive, but very low production titers of the compounds often hamper the 

development process. Bacteria in general are known to naturally produce secondary 

metabolites (e.g. antibiotics) in minor amounts, which are sufficient to provide competitive 

advantage over rival strains growing in the same habitat. However, those low production 

levels are significantly below the desired threshold required for profitable industrial 

production, which is fundamental for pharmaceutical companies to show interest in the target 

compound and launch it to the market3. In addition, the total production level of a compound 

class is often partitioned between multiple derivatives, which further decreases the production 

level of a specific analogue. Engineering of production profile is thus often necessary, to 

direct biosynthesis towards more prominent analogues. Production bottlenecks of bacterial 

secondary metabolites can have different origin. Common reasons that influence the 
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production profile include e.g. chromosomal location of the BGC, gene dosage, transcription, 

translation, correct protein folding, posttranslational activation, availability of precursors and 

cofactors, self-resistance of the strain etc.. Improving production of myxobacterial secondary 

metabolites is not trivial, as the regulation of NP biosynthesis in myxobacteria is not well 

understood and has only been intensely studied in a few cases4–7. Studying those regulatory 

networks is additionally challenging, as the regulators of myxobacterial secondary 

metabolism are typically not co-localized with the biosynthetic genes8. Furthermore, it is hard 

to evaluate the bottlenecks on the protein level related to the correct folding and efficient 

activation of multifunctional giant megasynthetase subunits. Bottlenecks regarding 

biosynthetic precursors also require insights into the biogenesis of the target compounds as 

well as the knowledge about the metabolic networks, however, only a few studies in 

myxobacteria are available on this topic9–11. Several approaches have been developed to 

overcome the struggle of poor metabolite production and help with engineering of the 

microbial production profile. Those techniques range from more traditional methods like 

medium and cultivation conditions optimization, to more modern and advanced metabolic 

engineering and heterologous expression approaches.  

 

6.1.1 Heterologous expression of myxobacterial natural product megasynthetases 

Myxobacterial strains are in general not easy to handle in standard laboratory conditions. 

Most of them are slow growing and require significant time for production of secondary 

metabolites, often in very low yields. Those low yields can be improved by utilization of 

genetic engineering techniques. However, most myxobacteria are not genetically amendable 

which prevents the engineering of their secondary metabolite pathways. Heterologous 

expression is a method commonly used for production, engineering and characterization of 

bacterial secondary metabolites. It provides a new and extended set of genetic engineering 

tools, by transferring the NP pathway to a better studied and more genetically amendable host.  

An overview of myxobacterial pathways, heterologously expressed in different bacterial 

surrogate hosts, is provided in Table 1. A variety of surrogate hosts has been employed to 

study the effects of heterologous expression on the production of myxobacterial NRPS/PKS 

pathways. Most of the given examples report successful expression in different bacteria; 

however, from the production yields it is obvious that in this aspect myxobacterial strains 

have an advantage over other bacterial hosts (Table 1). Indeed the production in Pseudomonas 

sp. in some cases did reach a few mg/L12,13, however this is still significantly lower than the 

yields achieved for the same compound by heterologous expression in myxobacteria. One 
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example is the parallel expression of myxochromide S (Mch S) and epothilone BGCs in M. 

xanthus and P. Putida, where a substantially higher production yield was achieved in M. 

xanthus for both metabolites14. A similar results was achieved for Vioprolides, where 

heterologous production in M. xanthus led to significantly higher production yields, compared 

to heterologous expression in Burkholderia DSM 7029 and Pseudomonas putida KT244015. 

Promising heterologous expression of Mch S was also achieved in thermophilic 

myxobacterial isolate C. macrosporus GT-216. The benefit of this strain over the more 

commonly used M. xanthus is its faster generation time, which is beneficial for quick and 

efficient production of secondary metabolites. Production of Mch S in C. macrosporus was 

measured at 600 mg/L. A similar  level of production was achieved in M. xanthus, however, 

the yields cannot be directly compared due to different expression constructs (e.g. different 

promoter)14,16. Based on the current status of myxobacterial heterologous hosts, M. xanthus 

seems to be the best option for expression of myxobacterial NRPS/PKS pathways. It enables 

expression of diverse myxobacterial NP pathways in relatively high yields while being the 

most genetically amendable myxobacterial strain with the biggest set of available genetic 

engineering tool at this time. Furthermore, M. xanthus is the only myxobacterial strain that 

was so far successfully used for heterologous expression of PKS from phylogenetically 

distant organism without the exchange of a promoter. Expression of oxytetracycline BGC 

from Streptomyces rimosus in this case led to the production of 10 mg/L of oxytetracycline17. 

Despite much higher oxytetracycline production levels achieved by heterologous expression 

in other actionbacteria18, this work shows potential for M. xanthus to be used as an expression 

host for production of metabolites from more distant bacterial strains. 

Taken together, heterologous expression is a great tool, which allowed us to perform genetic 

engineering of MXN, COR and ARG biosynthetic machinery, discussed in the following 

sections. 
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Table 1. Heterologously produced myxobacterial compounds 

n.d., not determined 
a supplementation with amino acid mixture 
b supplementation with L-leucine and vitamin B12 
c 0.1 mg/L supplementation of racemic D,L-pipecolic acid 

 

Compound Native producer Heterologous 
host 

Pathway-type [size] Promoter Medium Yield ‡ Ref 

Argyrin A, B Cystobacter 

species 

M. xanthus 

DK1622  
NRPS [33 kb] PnptII M7/s4a 160 mg/L 19 

    PnptII/Pvan M7/s4a ~250 mg/L 20 

Bengamide Myxococcus 

virescens 

M. xanthus PKS/NRPS [25 kb]  PnptII CTT >10 mg/L 21 

Corallopyronin A Corallococcus 

coralloides 

M. xanthus 

DK1622  
PKS/NRPS [65 kb] PnptII M7/s6 37 mg/L 22 

    Pvan M7/s6 ~100 mg/L 23 

Dawenol Stigmatella 

aurantiaca 

M. xanthus PKS [21 kb] native CTT n.d. 24 

Epothilone Sorangium 

cellulosum  

So ce90 

M. xanthus PKS/NRPS [56 kb] native CMM 0.1 - 0.4 mg/L 25,26 

 S. cellulosum  

SMP44 
S. coelicolor  
CH999  

PKS/NRPS [56 kb] actI  
 

R2YE  
 

50-100 µg/L  
 

27 

 S. cellulosum  

So ce90  
S. venezuelae  
DHS2001  

PKS/NRPS [56 kb] pikAI  
 

R2YE  
 

0.4 μg/l 28 

 S. cellulosum  

So ce90  
E. coli  
 

PKS/NRPS [54 kb] 
 

PBAD  

 
2xYT  
 

1 μg/L  
 

29 

 S. cellulosum  M. xanthus 

DK1622  
 

PKS/NRPS [58 kb] 
 

PnptII CTT  
 

100 μg/L  
 

30 

 S. cellulosum M. xanthus 

DK1622 

PKS/NRPS [60 kb] 
 

PnptII CTT 100 μg/L  
 

14 

 S. cellulosum P.putida  
KT2440  
 

PKS/NRPS [60 kb] 
 

Pm LB - 14 

Flaviolin S. cellulosum  
So ce56  

P.putida  
KT2440  
P. syringae  

pv. tomato  

PKS [1.1 kb] Pm LB 6 mg/L 
 
trace amounts 
 

12 

Myxochromide A Myxococcus 

xanthus 

M. xanthus 

DK1622  
PKS/NRPS [29 kb] PnptII CTT ~500 mg/L 31 

Myxochromide S Stigmatella 

aurantiaca 

M. xanthus PKS/NRPS [29 kb] PnptII CTT >500 mg/L 14 

  P.putida  
KT2440  

 PnptII LB 0.1 mg/L 
 

14 

  P.putida 

KT2440   
 Pm LB 8 mg/L 13 

  C.macrosporus  
GT-2  

 PaphII  M  600 mg/L  16 

Myxopyronin A Myxococcus 

fulvus 

M. xanthus 

DK1622  
PKS/NRPS [53 kb] PnptII M7/s6 156 mg/L 22  

Myxothiazol Stigmatella 

aurantiaca 
M. xanthus 
DZF1 

PKS/NRPS [57 kb] Pm CTT 20 mg/L 32  

  P. putida 

FG2005  
 Pm Minimal 

mediumb 
0.6 mg/L  33  

Oxytetracycline Streptomyces 

rimosus 

M. xanthus PKS [32 kb] native CTTYE 10 mg/L 17 

Pretubulysin Cystobacter 

species 

M. xanthus PKS/NRPS [40 kb] Ptet CTTc 0.2 mg/L 34 

  P. putida   Ptet LB 1.76 μg/L 34 

PUFAs Aetherobacter 

fasciculatus  

M. xanthus PKS/FAS [18 kb]  Ptet CTT ~1 mg/CDW 35  

Soraphen A  
 

S. cellulosum  
So ce26  

Streptomyces  
lividans ZX7  

PKS [67.5 kb] tipA  
 

YEME 0.3 mg/L  
 

36 

Vioprolide  Cystobacter 

violaceus 

M. xanthus 

DK1622  
NRPS [56 kb] Ptet CTT 500 mg/L 15 
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6.1.2 Medium optimization  

Medium optimization is one of the older, traditional yield improvement methods, which is 

still very relevant today. It is well known that the secondary metabolite production profile of a 

particular strain depends on the applied cultivation parameters37. Therefore, for every 

microbial production process, a rational medium optimization is necessary to maximize yield 

and minimize production costs. Before the 1970s, media optimization was performed by 

classical “One-factor-at-a-time” methods that are inefficient, expensive and time consuming. 

However, nowadays the modern statistical techniques drastically aid the optimization process, 

making it more reliable and economic38. The appropriate medium components (e.g. carbon 

and nitrogen sources) have to be selected based on the metabolic preferences of the producer 

organism. Enhanced production can usually be increased by medium engineering or by strain 

selection/improvement, however both approaches are somewhat connected as they can affect 

each other. Consequently, determining the optimal flow of the experiments remains a 

challenging task.  

Using a well-studied myxobacterial strain in the MXN/COR project (see chapter 2), 

simplified the medium optimization due to a better knowledge of its metabolism. However, 

since the M7s medium was already established for MXN production and turned out to be a 

promising choice, the more traditional “One-factor-at-a-time” approach was in this case 

applied to test an extensive library of carbon sources. The most promising results were 

achieved by supplementation with various oils (e.g. soy oil, vegetable oil, methyl oleate), 

which already showed good results in epothilone production optimization26. As the costs of 

the entire process has to be kept at a minimum, while still maintaining high levels of 

production, the impact of the used metabolites on downstream processing plays an important 

role. In favor of simplified compound purification, potassium acetate was finally used as the 

main carbon source in M7/s6 medium. This led to a significant yield improvement of MXN 

and COR, respectively, compared to the standard CTT medium, which is traditionally used 

for M. xanthus DK1622 cultivation (see chapter 2). 

In the ARG project M7/s4 medium could be successfully improved by addition of specific 

amino acids, to grant a 3.5-fold increase in total ARG production by a heterologous 

expression system in M. xanthus. On the other hand, the same optimization of the potassium 

acetate containing M7/s6 medium resulted in a lower production, probably because potassium 

acetate does not directly benefit the biosynthesis of peptides such as ARG. This is a good 

example of how a change of a single component (e.g. amino acid source) can drastically affect 



280 | Discussion 
 

 

the production of fundamentally different metabolites like polyketides and peptides (see 

chapter 4).  

Activity of PKS/NRPS megasynthetases often leads to production of various derivatives from 

a certain compound class, which results in a reduced production of one specific analogue (e.g. 

vioprolides15, disorazoles39, maltepolides40, myxalamids41 epothilones42 and argyins43). The 

main reasons for such events include e.g. relaxed substrate specificity of assembly line 

modules, inefficient modification steps on the assembly line as well as post-PKS/NRPS 

tailoring (Fig. 1). Multiple derivatives from a certain compound family are usually produced 

at different levels. Most often a few major derivatives, accompanied by several minor 

analogues are observed. In many cases production of minor derivatives is so low, that they 

can only be discovered from large scale fermentations. A fermentation of 700 L broth led to 

isolation of 37 natural epothilone variants, where only a few were produced in significant 

amounts42.    

Incorporation of different amino acid precursors by two of the eight assembly line modules in 

the ARG biosynthesis led to production of different peptide cores. Incomplete tailoring 

reactions by the three modifying enzymes resulted in production of additional derivatives, 

further expanding the ARG structural diversity (see chapter 4, Fig. 1).  

Such partitioning has a severe impact on the production of a particular target analogue, as the 

available precursors/cofactors and the biosynthetic capacity of the enzymatic machinery are 

spread amongst the entire spectrum of derivatives. Furthermore, downstream isolation 

processes are increasingly difficult with higher number of derivatives, especially when their 

structures, masses and chemical properties are so similar that they are in some cases almost 

impossible to separate by standard chromatographic methods. This also turned out to be a 

serious problem in the ARG precursor-directed biosynthesis study discussed below. The 

number of produced derivatives can often be manipulated by medium engineering, which was 

also addressed in the ARG project (see chapter 4). By using M7/s4 medium, we were able to 

decrease production of unwanted major and minor ARG derivatives in favor of significantly 

increased production of ARG A. Furthermore, the production could be almost exclusively 

directed towards ARG B by addition of the corresponding building block, α-aminobutyric 

acid. Such medium engineering approaches are often a quick and easy way to increase the 

production and modify the production profile of microbial metabolites44–46.  
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Figure 1. Structural diversity of argyrins. The residues contributing to structural diversity are highlighted in 
different colors and their origin is shown in the squares. It is unclear if the modification steps performed by arg1, 
arg4 and arg5 take place prior to assembly or after the release from the NRPS.  
 

6.1.3 Genetic engineering techniques  

In addition to traditional medium improvement approaches, genetic engineering techniques 

have been developing and becoming increasingly more efficient over the last decades. One of 

the important techniques for yield enhancement is the modification of the precursor supply. 

The main method usually pursued to achieve higher intracellular concentrations of building 

blocks is the regulation of primary metabolism pathways (e.g. increase of malonyl-CoA 

supply by manipulation of the acetyl-CoA carboxylase complex led to increased production of  

mithramycin47)3. Elimination of unwanted competing pathways can potentially also increase 

the shared precursor pool48. The latter method was, to some extent, applied in MXN/COR as 

well as ARG projects, by deletion of one native BGC from the genome of M. xanthus (see 

chapters 2 and 4). However, the elimination of the myxochromide BGC in M. xanthus 

DK1622 ΔmchA-tet is only the first step towards the construction of a genome minimized 

expression strain49. M. xanthus DK1622 possesses 24 BGCs50, 16 of which represent 

PKS/NRPS biosynthetic pathways51 (Fig. 2), therefore a substantial effort would be required 

to delete all of them. Heterologous expression of BGCs is one of the widely used approaches 

to improve compound supply, however it often needs to be combined with additional genetic 

engineering techniques (e.g. promoter exchange, changing gene orientation, codon adaptation 

to the selected surrogate host, etc.)  to achieve the beneficial effect on the production52,53. A 

lack of good expression strains and limited genetic tools (e.g. very few suitable selection 
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markers, no reliable replicative plasmid, limited set of promoters) are the main bottlenecks for 

efficient heterologous expression in myxobacteria. This is mainly due to the fact that they are 

relatively poorly researched, in contrast to the streptomycetes, which have been extensively 

studied since the middle of the 1980s. This provided enough time for development of several 

advanced actinomyces expression strains, with deleted multiple secondary metabolite 

BGCs54–57. Recently, a first cluster-free Streptomyces albus heterologous expression strain has 

been developed and used as a platform for activation of several cryptic BGCs, which led to 

the isolation of a new compound fralnimycin58.  

 

 
Figure 2. PKS/NRPS gene clusters of Myxococcus xanthus DK1622. The BGCs with known metabolites are 
labeled. Chemical structures of one representative from each metabolite family are shown. Chemical structures 
of Compound c844 and c329 were thus far not elucidated. 
 

A common method to improve the expression of complex BGC for heterologous NP 

biosynthesis is the implementation of strong heterologous promoters59. Promoters driving the 
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target BGCs have always been a focus for engineering attempts in order to improve secondary 

metabolite production. A number of studies have been conducted in various bacterial strains 

in an effort to provide increasingly more efficient promoter systems. A random mutagenesis 

approach in E. coli has been performed by Bakke et al. to boost the performance of Ppm 

promoter from Pseudomonas putida, leading to a 14-fold increase of gene expression60. In 

another study by Siegel et al. a randomized promoter modification approach was applied to 

establish a library of 56 synthetic promoters61. The promoters yielded expression levels 

between 2 % and 319 %, providing a good selection for various future metabolic engineering 

or heterologous expression applications. We conducted several experiments with the emphasis 

on the promoter evaluation in COR and ARG projects. Myxobacteria are not nearly as well 

studied as some other bacterial strains, thus only a few different promoters have been 

evaluated in the heterologous expression studies of NP BGC in M. xanthus so far (Table 1). 

Most of the heterologous systems resorted to the use of a strong constitutive PnptII
14,21,22,30 

promoter, while the Ptet
35,15,34 and Pm

32 were employed only in a few cases. One study 

evaluated the inducible Pvan and PIPTG promoters as viable alternatives for inducible gene 

expression in M. xanthus
62. Moreover, no study on systematic comparison of all different 

promoters available for M. xanthus was conducted thus far. Due to a lack of well described 

options, at first only a simple replacement of constitutive PnptII with an inducible Pvan 

promoter was performed in the COR project (see chapter 3). The exchange led to a twofold 

increase in COR A production, which showed good potential for further experiments in this 

direction. A more extensive promoter study has thus been performed in the ARG project, 

which focused on the comparison of several promoter systems and their impact on ARG 

production in M. xanthus DK1622 (see chapter 5). The applied approach was different from 

the ones described above, as no mutagenesis of the promoter sequences themselves has been 

performed. Instead, the native sequences of the promoters were compared directly to one 

another to provide a ranking of the most promising systems, which are currently available in 

myxobacteria. To eliminate other factors that could influence the production, the same 5’-

UTR region had to be implemented in all cases. Comparison of the promoters in the argyin 

project showed significant differences between the tested systems. The PnptII and Pvan were 

shown to be superior to other compared promoters, which provided a good starting ground for 

further optimization approaches. In the future studies previously mentioned mutagenesis 

experiments could be applied to further improve efficiency of the selected promoter. 

Moreover, the implemented 5’-UTR region provided significant improvement over the 

initially used sequence, which could be interesting for future heterologous expressions of 
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other promising metabolites in M. xanthus DK1622. To provide further insight and determine 

if this is a promising approach for future BGC expressions in myxobacteria, more studies, 

evaluating specifically tailored artificial 5’-UTR regions are needed. 

One of the approaches to improve the supply of COR A was the expression of multiple BGC 

copies in the heterologous host (unpublished results, data not shown). The method was 

already proven to work well in streptomycetes, in which a ~350% yield enhancement could be 

achieved by expressing three copies of the same BGC in S. albus and its derivatives52. We 

applied a similar method in M. xanthus DK1622 to enhance the yield of COR, while at the 

same time abolishing the production of the two unwanted major secondary metabolites 

myxochelin and myxochromide. The introduction of novel mx8 and mx9 attB sites in place of 

the myxochelin and myxochromide BGCs resulted in complete abolishment of the 

corresponding metabolites and provided phage attachment sites for genome integration of 

multiple COR gene cluster copies. Unfortunately, integration into the novel attB sites was 

never achieved, due to so far unknown reasons. One explanation could be that a longer 

neighboring region of the native attB site from M. xanthus DK1622 genome is required for 

successful genome integration. Due to the unsuccessful approach with multiple phage 

integration sites, we simplified the strategy in order to achieve the expression of at least two 

COR BGC copies. A previously generated transposase-based mutant with improved COR 

production profile (see chapter 3) was additionally transformed with another mx8-based BGC 

copy. Contrary to the study published by Manderscheid et al.52, in our case an additional copy 

of the COR BGC did not provide any beneficial effect on the COR production. We later 

discovered that the reason for this was most likely the toxic effect of the COR on the host 

organism, as the COR MIC on the producer strain, harboring a single BGC copy, was in the 

same range as the achieved production level (see chapter 3). Compound toxicity is one of the 

common problems associated with heterologous expression, which should be always kept in 

mind when dealing with compounds possessing potent bioactive properties. This issue is 

usually addressed by overexpression of resistance genes, provided that those have previously 

been identified53. In the COR cluster no such genes were reported, however additional 

experiments lead to the identification of a putative resistance protein CorP. An expression of 

additional CorP copy, however did not provide additional resistance to COR, therefore further 

research on COR self-resistance mechanism is necessary to be finally able to evaluate the 

expression of multiple COR clusters and its effect on COR production levels.  
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6.2 Structure engineering of microbial natural products 

Although many microbial NPs exhibit potent biological activities, they often lack the desired 

pharmaceutical properties required for medical application. To tackle this problem and 

generate structural variants of NPs, semisynthetic methods and genetic engineering 

approaches were developed. The structural complexity of many NPs (especially the 

compounds produced by NPRS and PKS megasynthetases) is the main hurdle when it comes 

to their engineering by standard chemical synthesis methods. Chemical synthesis of NPs has 

in most cases proven to be tedious and inefficient, often requiring many steps and producing 

total yields that are below the desired threshold63,64. Semi synthesis, however,  showed some 

good potential with e.g. oritavancin and ixabepilone reaching market approval65,66. Oritavacin 

is a semi-synthetic derivative generated from the naturally occurring glycopeptide antibiotic 

chloroeremomycin, by addition of the N-alkyl-p-chlorophenylbenzyl substituent on its 

disaccharide sugar. This helps oritavacin to better bind its target, thus increasing its potency67. 

Ixabepilone, a semi-synthetic derivative of myxobacterial anticancer compound epothilone B, 

was generated by chemically substituting the naturally present lactone in epothilone with a 

lactam. This modification substantially improved stability of the compound in the in vivo 

conditions, which was one of the main problems of the epothilone B68. 

Different approaches can be employed to engineer the microbial production systems in order 

to achieve biosynthesis of structural analogs. Some of such alternative methods include 

precursor-directed biosynthesis and mutasynthesis, which both focus on incorporation of 

surrogate building blocks into the core structure of the target compound (Fig. 3)69–71. 

Furthermore, the structure of NRPs/PKs can also be modified by utilizing exogenous tailoring 

enzymes from other pathways alongside the biosynthetic machinery to diversify the final 

structure or by modifying the biosynthetic machinery itself72,73.  

 

6.2.1 Precursor-directed biosynthesis and mutasynthesis approaches 

Precursor-directed biosynthesis relies on unspecific substrate incorporation and processing by 

the gatekeeping enzymes (e.g. adenylation and condensation domains). It does not require any 

genetic engineering effort to be successfully implemented. Moreover, no extensive knowledge 

about the biosynthesis or specificity of the involved biosynthetic enzymes is required. 

However, some basic information about the biogenesis can help facilitate the selection of the 

appropriate precursors/building blocks. The method is hence a popular approach to generate 

structural analogues of NPs. The main drawback is the competition of the enzymes between 
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the native and the alternative substrate, where the enzymes typically prefer the natural 

substrate. Furthermore, integration of various substrates results in a complex mixture of 

produced analogues which are often difficult to separate69. 

To avoid issues of competition with native building blocks, mutasynthesis is often applied 

instead of precursor-directed biosynthesis69. It provides selectivity by genetic engineering of 

the assembly line machinery or by mutation of genes involved in the supply of biosynthetic 

precursors and supplementing the corresponding biosynthetic precursor or missing 

intermediate with synthetic mimics. For successful integration of structurally diverse synthetic 

mimics, the gatekeeping enzymes have to exert sufficiently relaxed substrate specificity. With 

increasing structural differences of mutasynthons, compared to the native intermediate, the 

chances of successful integration are decreasing. It is very hard to predict which intermediates 

might still be accepted by the truncated biosynthetic pathway, thus a library of diverse 

mutasynthons is usually generated, to help determine the limits of structural complexity. The 

differences of precursor-directed biosynthesis and mutasynthesis are highlighted in the Figure 

3. 

The first successful example of precursor-directed biosynthesis was reported in 1989 by the 

researchers of Sandoz74. By supplementing the medium of the cyclosporine producer with 

exogenous amino acids, they were able to produce novel structural derivatives, some of which 

exhibited potent immunosuppressive activity. Since then many more successful examples of 

precursor-directed biosynthesis were reported. By feeding a series of 21 carboxylic acids to a 

rapamycin producer S. hygroscopicus, researchers were able to generate several novel 

rapamycin analogues75. In another study a variety of non-proteinogenic amino acids was fed 

to Streptomyces griseoflavus, which led to isolation of novel hormaomycins76. Successful 

examples were also reported from the field of myxobacteria, e.g feeding of halogenated 

phenylalanine and cinnamate to the myxobacterium Sorangium cellulosum, led to production 

of novel derivatives of potent antifungal compound Soraphen77.      
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Figure 3. Comparison of natural biosynthesis (A), precursor-directed biosynthesis (B) and mutasynthesis (C) 
shown on the example of pre-rapamycin biosynthetic model.  
 

This strategy was also applied in the ARG project targeting the two tryptophan moieties 

present in the peptide core (see chapter 5). Many of the substituted tryptophan derivatives 

were either not commercially available at all or were very expensive to obtain. On the other 

hand, substituted indoles were cheaper and more accessible from commercial vendors. We 

thus combined a straightforward approach for the biotransformation of halogenated and 

nitrated tryptophan derivatives with precursor-directed biosynthesis to generate a library of 

corresponding ARG derivatives, 14 of which were so far confirmed by NMR. The tryptophan 

biotransformation utilizes the activity of the tryptophan synthase β-subunit, to combine the 

externally supplied indole derivatives with L-serine and produce the corresponding 
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tryptophanes78–81 (Fig. 4). The system has potential to be developed further by e.g. expression 

of the tryptophan synthase in the host organism. This would enable direct feeding of the 

substituted indoles to the culture, eliminating the currently required biotransformation and 

workup steps and thus significantly speed up the process. 

 

Figure 4. Biosynthesis of L-tryptophan by tryptophan synthase α-subunit (TrpA) and β-subunit (TrpB).  
 

Several modules of the ARG BGC were already proven to be promiscuous as they were 

shown to incorporate multiple building blocks by studies conducted in chapter 4. It is not 

surprising that the downstream modules are exerting similar features. As previously 

mentioned, precursor-directed biosynthesis studies show overall moderate success75–77,82 due 

to the technique’s shortcomings often limiting applicability in industrial processes. 

Competition of the enzymes between the native and the alternative substrate leads to 

partitioning of the resources, negatively impacting the production yield of the desired novel 

compound in addition to causing difficulties in the downstream processing. The same was 

true in the case of ARG, where HPLC purification of the novel derivatives turned out to be 

more complicated than expected. Several rounds of purification on different analytical scale 

columns had to be performed, to remove impurities in form of various minor ARG derivatives. 

Furthermore, as ARG possesses two tryptophan residues, the incorporation of the modified 

tryptophan on either position resulted in the production of two isobaric derivatives with very 

similar chemical features, which were in some cases impossible to separate by standard 

chromatographic methods. 

Alternatively to precursor-directed biosynthesis different approaches of mutasynthesis are 

possible. Some simpler methods rely on disruption of starter unit biosynthesis and its 
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complementation with synthetic mimics that are usually easy to synthesize (e.g. generation of 

rapamycin analogues by mutasynthesis83). Other more complex methods rely on 

deletion/inactivation of larger parts of biosynthetic machinery (e.g deletion of several 

modules or entire megasynthetases subunit) and complementation of the corresponding 

biosynthetic intermediates by larger and more complex synthetic mutasynthons mimicking 

biosynthetic intermediates of the respective assembly line. An example of complex 

mutasynthesis is the study conducted on myxobacterial α-pyrone antibiotics from Myxococcus 

fulvus
84. Biosynthesis of the native compound was disrupted by mutation of the carrier protein 

(CP) in the first or the fourth module of the myxopyronin western chain assembly line. The 

cultures of the deletion mutants were supplemented with NAC-thio-esters of the 

corresponding first module precursors or longer fourth module intermediates. The disrupted 

myxopyronin biosynthetic machinery accepted most of the mutasynthons, however, the 

obtained production yield of generated derivatives was very low. Possible limitations in such 

complex approaches could be poor stability of the mutasynthons, or their poor permeability 

through the cell membrane. This is especially problematic if the synthetic intermediate is a 

peptide, which could probably be degraded by many proteases present in the production broth. 

Furthermore, complex synthetic intermediates are often difficult to synthesize, requiring 

significant time and effort, which often discourages more advanced mutasynthesis strategies.  

To access novel ARG analogues, a respective mutant with deleted arg2 gene, encoding the 

first subunit of the NRPS assembly line, was generated (see chapter 4). A set of synthetic 

intermediates, mimicking the ARG tripeptides including the intermediate with the native 

amino acid sequence, were generated by total synthesis. The first big problem was already 

encountered in this step as the chemical synthesis of the complex mutasynthons turned out to 

be difficult. Despite significant efforts, production of ARG by mutasynthesis could never be 

achieved. To establish the production of novel derivatives and test the boundaries of structural 

complexity, various intermediates are usually employed. In case of ARG the chemical 

structure of mutasynthons is most likely not the culprit for unsuccessful mutasynthesis as not 

even the synthetic intermediate with the native amino acid sequence could be successfully 

integrated by the Arg3 NRPS subunit (see chapter 4). The most likely explanation is probably 

the instability of synthetic intermediates in the production medium, as degradation kinetics of 

the native intermediate mimic (D-Ala-Dha-Sar-SNAc) in the production medium showed 

almost complete degradation after 2 hours of incubation (see chapter 4). Inefficient 

incorporation of the mutasynthons by the biosynthetic process, however, cannot be excluded 

as additional issue. 
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6.2.2 Engineering of tailoring genes 

In recent years tailoring enzyme engineering has begun to be exploited to bring additional 

structural diversity to NPs. One way the tailoring enzymes can modify the structure of the NP 

is by addition of chemical groups directly on the core compound after its release from the 

assembly line. They can also act by tailoring the biosynthetic precursor prior to its 

incorporation into the final NP structure or they can act in trans to modify the biosynthetic 

intermediates during the assembly process. In case of precursor tailoring the enzyme modifies 

the original building block in vivo, thus generating a pool of endogenous modified building 

blocks. Those modified precursors compete with the original precursors to be accepted by the 

biosynthetic machinery. The tailoring enzyme in this case modifies a simple biosynthetic 

precursor, which can often be found in other biosynthetic pathways. This makes it possible to 

introduce the genes for such tailoring enzymes into surrogate biosynthetic pathways to modify 

the corresponding metabolite. Since the enzyme is specific for the precursor molecule and not 

the final compound, such bio-combinatorial approaches usually lead to some degree of 

success even when combining enzymes from structurally diverse metabolite pathways. For 

example, expression of PrnA, a flavin-dependent tryptophan-7-halogenase from Pseudomonas 

fluorescens Pf-5, alongside the NRPS genes for antibiotic pacidamycin from Streptomyces 

coeruleorubidus, led to production of novel halogenated analogue85. One downside of such 

approaches, is the preference of the enzyme for the native substrate and the resulting mixture 

of the native and the modified NP, provided that the modified building block is accepted by 

the biosynthetic machinery. This was also the case in pacidamycin engineering approach, 

where the novel analogue was produced as a minor derivative alongside the native 

pacidamycin85. 

In contrast to the precursor tailoring, the enzymes that act on the post assembly line 

compound or in trans on the biosynthetic intermediates are usually more specific, making 

their mix-matching in most cases possible only in metabolic pathways with very similar 

products. For instance, expression of halogenase from ramoplanin BGC resulted in mono-

chlorinated enduracidin86. Both compounds are closely related lipopeptides chlorinated at one 

of the six L-Hpg residues by a flavin-dependent halogenase. Some enzymes exhibit lower 

selectivity, making them more suitable for such bio-combinatorial approaches. For example, 

replacement of endogenous γ-regiospecific pyrone methyltransferase AurI with the α-

regiospecific EncK homolog led to production of iso-deoxyaureothin derivative, despite 

different polyketide core structures of aureothin and enterocin (Fig. 5). However, 
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complementation of EncK with AurI was unsuccessful, indicating that EncK exhibits more 

relaxed substrate preference87.   

 
Figure 5. Regiospecific pyrone O-methylation by AurI and EncK (The figure is adapted from 87). 
 

Basic engineering of tailoring genes was applied in the COR and ARG projects, to access 

novel derivatives (see chapters 3 and 4). Deletion of corO encoding cytochrome P450 in COR 

project led to complete redirection of production towards the non-hydroxylated derivative 

preCOR A. Furthermore, deletion of corN, which turned out to encode a trans-acting ECH-

like enzyme, led to isolation of two novel derivatives bearing an OH group at a different 

position. Expression of ARG BGC variants lacking one or both of the tailoring genes arg4 

and arg5, in the ARG project resulted in production of various derivatives with different 

tailoring patterns at the second tryptophan residue. Expression of arg1 additionally resulted in 

production of two more methylated variants, argyrins C and D. Furthermore, argyrin 

production optimization led to significantly increased production yield, which also resulted in 

significant production of an untailored core peptide (preArgyrin), probably due to the 

inadequate activity of the arg4 and arg5. Expression of additional arg4 and arg5 copies could 

probably lead to conversion of the remaining untailored derivative to boost production of fully 

methoxylated derivatives e.g. ARG A and B (Fig. 6). 
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Figure 6. Conversion of preArgyrin to Argyrin by Arg1, Arg5 and Arg4 tailoring enzymes. List of argyrin 
derivatives is provided in Figure 1. 
 

6.2.3 Engineering of PKS/NRPS megasynthetases 

As described above, engineering of tailoring genes can be a prominent approach to increase 

structural diversity of naturally produced NRP/PK core structures. An alternative and more 

complex strategy is the engineering of the NRP/PK core directly. Modular megasynthetases, 

as the name suggests, consist of sequence of modules that incorporate individual building 

blocks into the growing peptide/polyketide chain. One possibility for the required 

megasynthetase engineering is deletion of NRPS/PKS subunits usually followed by their 

complementation with homologs from structurally similar product pathways. The method was 

successfully applied to exchange the dptD subunit from daptomycin BGC with cdaPS3 and 

lptD from structurally related CDA and A54145 biosynthesis, respectively, which resulted in 

production of two novel daptomycin analogues88 (Fig. 7). In another example the shuffling of 

the PKS subunits of tylosin, spiramycin and chalcomycin biosynthetic pathways resulted in 

production of hybrid molecules that varied in side chains at several positions89.  
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Figure 7. NRPS megasynthetases of Daptomycin, A54145 and CDA. The structures of the corresponding 
compounds and the resulting novel daptomycin derivatives are shown below.  
 

One way to modify the structure of peptide/polyketide chains is to introduce changes within 

specific modules or directly delete/replace them. Exchange of highly homologous modules 

within daptomycin BGC or swapping of native modules with modules from structurally 

related A54145 BGC led to production of predicted daptomycin analogues with exchanged 

residues at the corresponding positions90. Experiments in this study also showed that 
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exchange of C-A-T module architecture leads to much better production compared to 

exchange of full C-A-T-E module, emphasizing the importance of the module-module linker 

regions90. In a combinatorial study with PKSs 14 modules from 8 PKS clusters were used to 

generate 154 bimodular chimeric PKSs, from which around half of the systems were 

functional91. Furthermore, module deletion led to reduction of surfactin ring size92, whereas 

insertion of an additional module resulted in an extended core in balhimycin93 and 

erythromycin94 biosynthesis. As described in the provided examples, many of such 

modifications often result in substantial production yield decrease or even total abolishment 

of the production. It is now common knowledge that terminal regions of the domains and 

modules within the NRPS/PKS systems often act as linker regions that facilitate protein-

protein interactions72. By replacing or deleting modules/domains within those systems, those 

linker regions are often disrupted, preventing proper protein association and in turn leading to 

decreased or abolished production. Complications with linker region between NRPS domains 

led to the engineering of internal sub-domain part, to preserve the integrity of interactions 

with the neighboring domains. In hormaomycin study a sub-domain part of the A domain was 

replaced to generate hybrid A domains, some of which showed activity in vitro
95. The 

technique was further improved in the gramicidin study96.  

With the definition of the “nonribosomal code”97 defined by Stachelahus et al.98, the 

foundations for engineering of the A domain binding pocket were set. Introducing point 

mutations in the active site of the A domains eliminates the problems of the previously 

mentioned disruption of the linker regions. However, the specificity of the downstream 

modules remains a challenge. In many cases changing the specificity of the A domain leads to 

incompliance of the downstream gatekeeping domains, which fail to process the new substrate. 

Furthermore, performing markerless modifications of complex BGCs is technically 

challenging and time consuming. Recently, de novo design and engineering of NRPSs was 

achieved by swapping the defined exchange units (A-T-C) fused at specific positions between 

C and A domains, rather than traditional C-A-T modules. The method better respects the 

original specificity of the downstream module to enable production of the desired peptides99 

(Fig. 8). 
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Figure 8. Traditional C-A-T module exchange in comparison with the alternative A-T-C unit (A). Schematic 
representation for recombination of three NRPS A-T-C units, taking into account the C domain specificities (B). 
The specificity of the C domains for upstream and downstream substrate is marked with letters (X,Y,Z,Q).  
 

The A domains are the first and most obvious gatekeepers in NRPS biosynthesis, responsible 

for the building block incorporation. Due to their function of substrate selection and activation, 

they have been the preferred subject of genetic manipulation in the past72. Various approaches 

to A domain engineering have been evaluated over the last decades. They range from more 

robust (e.g. module and domain replacements)100,101,95,96, to more precise ones (e.g. targeted 

modifications of single amino acids lining the A domain active site)102,103. The latter approach 

was employed in the ARG project to engineer the production profile and direct the 

biosynthesis towards more desirable analogues (see chapter 4). Several modules of the ARG 

assembly line were shown to possess broader substrate specificity, as they are able to accept a 

few different building blocks. It was thus speculated that modifications of the nonribosomal 

codes in the A domains from those modules could make them more specific for one of the 

already accepted substrates. In case the substrate pool can provide enough of the preferred 

substrate, the modification should lead to increased production of the corresponding 

derivative. We also predicted that the downstream C domains should be able to process the 

integrated building block, as it already appears in the wild type production. The engineering 

of the A domain in the first module showed moderate success as several modifications led to a 
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higher incorporation of alanine compared to the control. The impact of the modification was 

not as successful as anticipated, due to the substantial reduction of ARG production in the 

majority of the mutants. Reduction of secondary metabolite production yields are not unusual 

following such assembly line modifications72,88,90. The main reason for this is probably 

incompliance of the downstream biosynthetic machinery with the newly incorporated 

substrate. To provide further insight into ARG A domain engineering, a similar approach was 

employed to modify the specificity of the A domain in the fourth module of the ARG 

assembly line. The modifications were adapted to include the extended region surrounding the 

A domain binding pocket, also known as the 8 Å code104. To our surprise, all modifications 

resulted in total abolishment of the ARG production, which shows that rational genetic 

engineering of the NRPS assembly line is a challenging and not a fully understood task72. The 

most logical explanation for the abolished production could be, that some of the mutations 

performed in the 8 Å code probably have an impact on structural integrity of the protein, 

resulting in its incorrect folding.  

 

6.3 Conclusion and outlook 

This thesis focused on an α-pyrone polyketide antibiotic COR and the octapeptide 

nonribosomal peptide ARG from myxobacteria. Heterologous production as achieved for both 

compounds provided a significant improvement in production and simplified additional 

biosynthesis studies and structural engineering approaches. Studies on the COR biosynthetic 

gene cluster provided new insight into the RNAP self-resistance mechanism, which could lead 

to an engineering of an improved COR heterologous producer strain in the future. Medium 

optimization in ARG projects led to a significant yield improvement of major ARG 

derivatives and successfully employed precursor-directed biosynthesis yielded several novel 

ARG derivatives the bioactivity of which still needs to be evaluated. The combination of 

improved production and precursor-directed biosynthesis will hopefully lead to the production 

of novel ARG derivatives with enhanced antibiotic and/or immunoregulatory bioactivity 

profiles in the future. Several of the methods applied in this thesis provide new knowledge 

about engineering and heterologous expression of NP pathways in myxobacteria, which could 

be applied to other NP biosynthetic pathways in the upcoming studies.  

 

  



Discussion | 297 
 

 

6.4 References 

(1) Weissman, K. J.; Müller, R. Myxobacterial secondary metabolites: bioactivities and 
modes-of-action, Nat. Prod. Rep. 2010, 27, pp. 1276–1295. 

(2) Herrmann, J.; Fayad, A. A.; Müller, R. Natural products from myxobacteria: novel 
metabolites and bioactivities, Nat. Prod. Rep. 2017, 34, pp. 135–160. 

(3) Bilyk, O.; Luzhetskyy, A. Metabolic engineering of natural product biosynthesis in 
actinobacteria, Curr. Opin. Biotechnol. 2016, 42, pp. 98–107. 

(4) Rachid, S.; Gerth, K.; Kochems, I.; Müller, R. Deciphering regulatory mechanisms for 
secondary metabolite production in the myxobacterium Sorangium cellulosum So ce56, Mol. 

Microbiol. 2007, 63, pp. 1783–1796. 

(5) Rachid, S.; Gerth, K.; Müller, R. NtcA-A negative regulator of secondary metabolite 
biosynthesis in Sorangium cellulosum, J. Biotechnol. 2008, 140, pp. 135–142. 

(6) Rachid, S.; Sasse, F.; Beyer, S.; Müller, R. Identification of StiR, the first regulator of 
secondary metabolite formation in the myxobacterium Cystobacter fuscus Cb f17.1, J. 

Biotechnol. 2006, 121, pp. 429–441. 

(7) Sandmann, A.; Frank, B.; Müller, R. A transposon-based strategy to scale up myxothiazol 
production in myxobacterial cell factories, J. Biotechnol. 2008, 135, pp. 255–261. 

(8) Wenzel, S. C.; Müller, R. Myxobacteria--'microbial factories' for the production of 
bioactive secondary metabolites, Mol. Biosyst. 2009, 5, pp. 567–574. 

(9) Bock, T.; Volz, C.; Hering, V.; Scrima, A.; Müller, R.; Blankenfeldt, W. The AibR-
isovaleryl coenzyme A regulator and its DNA binding site - a model for the regulation of 
alternative de novo isovaleryl coenzyme A biosynthesis in Myxococcus xanthus, Nucleic 

Acids Res. 2017, 45, pp. 2166–2178. 

(10) Mahmud, T.; Bode, H. B.; Silakowski, B.; Kroppenstedt, R. M.; Xu, M.; Nordhoff, S.; 
Höfle, G.; Müller, R. A novel biosynthetic pathway providing precursors for fatty acid 
biosynthesis and secondary metabolite formation in myxobacteria, J. Biol. Chem. 2002, 277, 

pp. 32768–32774. 

(11) Bolten, C. J.; Heinzle, E.; Müller, R.; Wittmann, C. Investigation of the central carbon 
metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of 
pathway fluxes, J. Microbiol. Biotechnol. 2009, 19, pp. 23–36. 

(12) Gross, F.; Luniak, N.; Perlova, O.; Gaitatzis, N.; Jenke-Kodama, H.; Gerth, K.; 
Gottschalk, D.; Dittmann, E.; Müller, R. Bacterial type III polyketide synthases: Phylogenetic 
analysis and potential for the production of novel secondary metabolites by heterologous 
expression in pseudomonads, Arch. Microbiol. 2006, 185, pp. 28–38. 

(13) Wenzel, S. C.; Gross, F.; Zhang, Y.; Fu, J.; Stewart, F. A.; Müller, R. Heterologous 
expression of a myxobacterial natural products assembly line in pseudomonads via red/ET 
recombineering, Chem. Biol. 2005, 12, pp. 349–356. 

(14) Fu, J.; Wenzel, S. C.; Perlova, O.; Wang, J.; Gross, F.; Tang, Z.; Yin, Y.; Stewart, A. F.; 
Müller, R.; Zhang, Y. Efficient transfer of two large secondary metabolite pathway gene 
clusters into heterologous hosts by transposition, Nucleic Acids Res. 2008, 36, e113. 

(15) Yan, F.; Auerbach, D.; Chai, Y.; Keller, L.; Tu, Q.; Hüttel, S.; Glemser, A.; Grab, H. A.; 
Bach, T.; Zhang, Y.; Müller, R. Biosynthesis and Heterologous Production of Vioprolides: 



298 | Discussion 
 

 

Rational Biosynthetic Engineering and Unprecedented 4-Methylazetidinecarboxylic Acid 
Formation, Angew. Chem. Int. Ed. Engl. 2018. 

(16) Perlova, O.; Gerth, K.; Kuhlmann, S.; Zhang, Y.; Müller, R. Novel expression hosts for 
complex secondary metabolite megasynthetases: Production of myxochromide in the 
thermopilic isolate Corallococcus macrosporus GT-2, Microb. Cell Fact. 2009, 8. 

(17) Stevens, D. C.; Henry, M. R.; Murphy, K. A.; Boddy, C. N. Heterologous expression of 
the oxytetracycline biosynthetic pathway in Myxococcus xanthus, Appl. Environ. Microbiol. 

2010, 76, pp. 2681–2683. 

(18) Yin, S.; Li, Z.; Wang, X.; Wang, H.; Jia, X.; Ai, G.; Bai, Z.; Shi, M.; Yuan, F.; Liu, T.; 
Wang, W.; Yang, K. Heterologous expression of oxytetracycline biosynthetic gene cluster in 
Streptomyces venezuelae WVR2006 to improve production level and to alter fermentation 
process, Appl. Microbiol. Biotechnol. 2016. 

(19) Pogorevc, D.; Tang, Y.; Hoffmann, M.; Zipf, G.; Bernauer, H. S.; Popoff, A.; Steinmetz, 
H.; Wenzel, S. C. Biosynthesis and heterologous production of argyrins. 2019, submitted 

manuscript. 

(20) Pogorevc, D.; Popoff, A.; Fayad, A. A.; Wenzel, S. C.; Müller, R. Production profile 
engineering and precursor directed biosynthesis approaches for production of novel argyrin 
derivatives, unpublished results. 

(21) Wenzel, S. C.; Hoffmann, H.; Zhang, J.; Debussche, L.; Haag-Richter, S.; Kurz, M.; 
Nardi, F.; Lukat, P.; Kochems, I.; Tietgen, H.; Schummer, D.; Nicolas, J.-P.; Calvet, L.; 
Czepczor, V.; Vrignaud, P.; Mühlenweg, A.; Pelzer, S.; Müller, R.; Brönstrup, M. Production 
of the bengamide class of marine natural products in myxobacteria: biosynthesis and 
structure-activity relationships, Angew. Chem. Int. Ed. Engl. 2015, 54, pp. 15560–15564. 

(22) Sucipto, H.; Pogorevc, D.; Luxenburger, E.; Wenzel, S. C.; Müller, R. Heterologous 
production of myxobacterial α-pyrone antibiotics in Myxococcus xanthus, Metab. Eng. 2017, 
44, pp. 160–170. 

(23) Pogorevc, D.; Panter, F.; Schillinger, C.; Jansen, R.; Wenzel, S. C.; Müller, R. 
Production optimization and biosynthesis revision of Corallopyronin A, a potent anti-filarial 
antibiotic. 2019, submitted manuscript. 

(24) Oßwald, C.; Zaburannyi, N.; Burgard, C.; Hoffmann, T.; Wenzel, S. C.; Müller, R. A 
highly unusual polyketide synthase directs dawenol polyene biosynthesis in Stigmatella 

aurantiaca, J. Biotechnol. 2014, 191, pp. 54–63. 

(25) Julien, B.; Shah, S. Heterologous expression of epothilone biosynthetic genes in 
Myxococcus xanthus, Antimicrob. Agents Chemother. 2002, 46, pp. 2772–2778. 

(26) Lau, J.; Frykman, S.; Regentin, R.; Ou, S.; Tsuruta, H.; Licari, P. Optimizing the 
heterologous production of epothilone D in Myxococcus xanthus, Biotechnol. Bioeng. 2002, 
78, pp. 280–288. 

(27) Tang, L.; Shah, S.; Chung, L.; Carney, J.; Katz, L.; Khosla, C.; Julien, B. Cloning and 
heterologous expression of the epothilone gene cluster, Science. 2000, 287, pp. 640–642. 

(28) Park, S. R.; Park, J. W.; Jung, W. S.; Han, A. R.; Ban, Y. H.; Kim, E. J.; Sohng, J. K.; 
Sim, S. J.; Yoon, Y. J. Heterologous production of epothilones B and D in Streptomyces 
venezuelae, Appl. Microbiol. Biotechnol. 2008, 81, pp. 109–117. 

(29) Mutka, S. C.; Carney, J. R.; Liu, Y.; Kennedy, J. Heterologous Production of Epothilone 
C and D in Escherichia coli, Biochemistry. 2006, 45, pp. 1321–1330. 



Discussion | 299 
 

 

(30) Oßwald, C.; Zipf, G.; Schmidt, G.; Maier, J.; Bernauer, H. S.; Müller, R.; Wenzel, S. C. 
Modular Construction of a Functional Artificial Epothilone Polyketide Pathway, ACS Synth. 

Biol. 2014, 3, pp. 759–772. 

(31) Yan, F.; Burgard, C.; Popoff, A.; Zaburannyi, N.; Zipf, G.; Maier, J.; Bernauer, H. S.; 
Wenzel, S. C.; Müller, R. Synthetic biology approaches and combinatorial biosynthesis 
towards heterologous lipopeptide production, Chem. Sci. 2018, 9, pp. 7510–7519. 

(32) Perlova, O.; Fu, J.; Kuhlmann, S.; Krug, D.; Stewart, F.; Zhang, Y.; Müller, R. 
Reconstitution of myxothiazol biosynthetic gene cluster by Red/ET recombination and 
heterologous expression in Myxococcus xanthus, Appl. Environ. Microbiol. 2006, 72, 

pp. 7485–7494. 

(33) Gross, F.; Ring, M. W.; Perlova, O.; Fu, J.; Schneider, S.; Gerth, K.; Kuhlmann, S.; 
Stewart, A. F.; Zhang, Y.; Müller, R. Metabolic engineering of Pseudomonas putida for 
methylmalonyl-CoA biosynthesis to enable complex heterologous secondary metabolite 
formation, Chem. Biol. 2006, 13, pp. 1253–1264. 

(34) Chai, Y.; Shan, S.; Weissman, K. J.; Hu, S.; Zhang, Y.; Müller, R. Heterologous 
expression and genetic engineering of the tubulysin biosynthetic gene cluster using Red/ET 
recombineering and inactivation mutagenesis, Chem. Biol. 2012, 19, pp. 361–371. 

(35) Gemperlein, K.; Rachid, S.; Garcia, R. O.; Wenzel, S. C.; Müller, R. Polyunsaturated 
fatty acid biosynthesis in myxobacteria. Different PUFA synthases and their product diversity, 
Chem. Sci. 2014, 5, pp. 1733–1741. 

(36) Zirkle, R.; Ligon, J. M.; Molnar, I. Heterologous production of the antifungal polyketide 
antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans, 
Microbiology. 2004, 150, pp. 2761–2774. 

(37) Bode, H. B.; Bethe, B.; Höfs, R.; Zeeck, A. Big effects from small changes: possible 
ways to explore nature's chemical diversity, ChemBioChem. 2002, 3, pp. 619–627. 

(38) Singh, V.; Haque, S.; Niwas, R.; Srivastava, A.; Pasupuleti, M.; Tripathi, C. K. M. 
Strategies for Fermentation Medium Optimization. An In-Depth Review, Front. Microbiol. 

2016, 7, p. 2087. 

(39) Hopkins, C. D.; Wipf, P. Isolation, biology and chemistry of the disorazoles: new anti-
cancer macrodiolides, Nat. Prod. Rep. 2009, 26, pp. 585–601. 

(40) Irschik, H.; Washausen, P.; Sasse, F.; Fohrer, J.; Huch, V.; Müller, R.; Prusov, E. V. 
Isolation, structure elucidation, and biological activity of maltepolides: remarkable macrolides 
from myxobacteria, Angew. Chem. Int. Ed. Engl. 2013, 52, pp. 5402–5405. 

(41) Gerth, K.; Jansen, R.; Reifenstahl, G.; Höfle, G.; Irschik, H.; Kunze, B.; Reichenbach, H.; 
Thierbach, G. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales). 
I. Production, physico-chemical and biological properties, and mechanism of action, J. 

Antibiot. 1983, 36, pp. 1150–1156. 

(42) Hardt, I. H.; Steinmetz, H.; Gerth, K.; Sasse, F.; Reichenbach, H.; Höfle, G. New natural 
epothilones from Sorangium cellulosum, strains So ce90/B2 and So ce90/D13: isolation, 
structure elucidation, and SAR studies, J. Nat. Prod. 2001, 64, pp. 847–856. 

(43) Vollbrecht, L.; Steinmetz, H.; Höfle, G.; Oberer, L.; Rihs, G.; Bovermann, G.; Matt, P. 
von Argyrins, immunosuppressive cyclic peptides from myxobacteria. II. Structure 
elucidation and stereochemistry, J. Antibiot. 2002, 55, pp. 715–721. 



300 | Discussion 
 

 

(44) Rateb, M. E.; Yu, Z.; Yan, Y.; Yang, D.; Huang, T.; Vodanovic-Jankovic, S.; Kron, M. 
A.; Shen, B. Medium optimization of Streptomyces sp. 17944 for tirandamycin B production 
and isolation and structural elucidation of tirandamycins H, I and J, J. Antibiot. 2014, 67, 

pp. 127–132. 

(45) Parra, R.; Aldred, D.; Magan, N. Medium optimization for the production of the 
secondary metabolite squalestatin S1 by a Phoma sp. combining orthogonal design and 
response surface methodology, Enzyme Microb. Technol. 2005, 37, pp. 704–711. 

(46) Jacob, J.; Rajendran, R. U.; Priya, S. H.; Purushothaman, J.; Saraswathy Amma, D. K. B. 
N. Enhanced antibacterial metabolite production through the application of statistical 
methodologies by a Streptomyces nogalater NIIST A30 isolated from Western Ghats forest 
soil, PLoS ONE. 2017, 12, e0175919. 

(47) Zabala, D.; Braña, A. F.; Flórez, A. B.; Salas, J. A.; Méndez, C. Engineering precursor 
metabolite pools for increasing production of antitumor mithramycins in Streptomyces 
argillaceus, Metab. Eng. 2013, 20, pp. 187–197. 

(48) Tanaka, Y.; Komatsu, M.; Okamoto, S.; Tokuyama, S.; Kaji, A.; Ikeda, H.; Ochi, K. 
Antibiotic overproduction by rpsL and rsmG mutants of various actinomycetes, Appl. Environ. 

Microbiol. 2009, 75, pp. 4919–4922. 

(49) Weber, T.; Charusanti, P.; Musiol-Kroll, E. M.; Jiang, X.; Tong, Y.; Kim, H. U.; Lee, S. 
Y. Metabolic engineering of antibiotic factories: new tools for antibiotic production in 
actinomycetes, Trends Biotechnol. 2015, 33, pp. 15–26. 

(50) Korp, J.; Vela Gurovic, M. S.; Nett, M. Antibiotics from predatory bacteria, Beilstein J. 

Org. Chem. 2016, 12, pp. 594–607. 

(51) Wenzel, S. C.; Müller, R. Host Organisms: Myxobacterium. In Industrial biotechnology, 

Microorganisms Volume 3a and 3b; Wittmann, C.; Liao, J., Eds.; Wiley-VCH: Weinheim, 
Germany, 2017, pp. 453–485. 

(52) Manderscheid, N.; Bilyk, B.; Busche, T.; Kalinowski, J.; Paululat, T.; Bechthold, A.; 
Petzke, L.; Luzhetskyy, A. An influence of the copy number of biosynthetic gene clusters on 
the production level of antibiotics in a heterologous host, J. Biotechnol. 2016, 232, pp. 110–
117. 

(53) Ongley, S.; Bian, X.; Neilan, B. A.; Müller, R. Recent advances in the heterologous 
expression of microbial natural product biosynthetic pathways, Nat. Prod. Rep. 2013, 30, 

pp. 1121–1138. 

(54) Gomez‐Escribano, J. P.; Bibb, M. J. Engineering Streptomyces coelicolor for 
heterologous expression of secondary metabolite gene clusters, Microb Biotechnol. 2011, 4, 

pp. 207–215. 

(55) Zhou, M.; Jing, X. Y.; Xie, P. F.; Chen, W. H.; Wang, T.; Xia, H. Y.; Qin, Z. J. 
Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase 
biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of 
Streptomyces coelicolor, FEMS Microbiol. Lett. 2012, 333, pp. 169–179. 

(56) Ikeda, H.; Kazuo, S.-y.; Omura, S. Genome mining of the Streptomyces avermitilis 
genome and development of genome-minimized hosts for heterologous expression of 
biosynthetic gene clusters, J. Ind. Microbiol. Biotechnol.  2014, 41, pp. 233–250. 



Discussion | 301 
 

 

(57) Komatsu, M.; Uchiyama, T.; Omura, S.; Cane, D. E.; Ikeda, H. Genome-minimized 
Streptomyces host for the heterologous expression of secondary metabolism, Proc. Natl. Acad. 

Sci. USA. 2010, 107, pp. 2646–2651. 

(58) Myronovskyi, M.; Rosenkränzer, B.; Nadmid, S.; Pujic, P.; Normand, P.; Luzhetskyy, A. 
Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous 
expression of secondary metabolite clusters, Metab. Eng. 2018, 49, pp. 316–324. 

(59) Stevens, D. C.; Hari, T. P. A.; Boddy, C. N. The role of transcription in heterologous 
expression of polyketides in bacterial hosts, Nat. Prod. Rep. 2013, 30, pp. 1391–1411. 

(60) Bakke, I.; Berg, L.; Aune, T. E.; Brautaset, T.; Sletta, H.; Tondervik, A.; Valla, S. 
Random mutagenesis of the Pm promoter as a powerful strategy for improvement of 
recombinant gene expression, Appl. Environ. Microbiol. 2009. 

(61) Siegl, T.; Tokovenko, B.; Myronovskyi, M.; Luzhetskyy, A. Design, construction and 
characterisation of a synthetic promoter library for fine-tuned gene expression in 
actinomycetes, Metab. Eng. 2013, 19, pp. 98–106. 

(62) Iniesta, A. A.; García-Heras, F.; Abellón-Ruiz, J.; Gallego-García, A.; Elías-Arnanz, M. 
Two systems for conditional gene expression in Myxococcus xanthus inducible by isopropyl-
ß-D-thiogalactopyranoside or vanillate, J. Bacteriol. 2012, 194, pp. 5875–5885. 

(63) Rentsch, A.; Kalesse, M. The total synthesis of corallopyronin A and myxopyronin B, 
Angew. Chem. Int. Ed. Engl. 2012, 51, pp. 11381–11384. 

(64) Hüttel, S.; Testolin, G.; Herrmann, J.; Planke, T.; Gille, F.; Moreno, M.; Stadler, M.; 
Brönstrup, M.; Kirschning, A.; Müller, R. Discovery and Total Synthesis of Natural 
Cystobactamid Derivatives with Superior Activity against Gram-Negative Pathogens, Angew. 

Chem. Int. Ed. Engl. 2017, 56, pp. 12760–12764. 

(65) Markham, A. Oritavancin. First global approval, Drugs. 2014, 74, pp. 1823–1828. 

(66) Conlin, A.; Fornier, M.; Hudis, C.; Kar, S.; Kirkpatrick, P. Ixabepilone, Nat. Rev. Drug 

Discov. 2007, 6, pp. 953–954. 

(67) Zhanel, G. G.; Calic, D.; Schweizer, F.; Zelenitsky, S.; Adam, H.; Lagacé-Wiens, P. R. 
S.; Rubinstein, E.; Gin, A. S.; Hoban, D. J.; Karlowsky, J. A. New lipoglycopeptides. A 
comparative review of dalbavancin, oritavancin and telavancin, Drugs. 2010, 70, pp. 859–886. 

(68) Lee, F. Y.; Borzilleri, R.; Fairchild, C. R.; Kim, S. H.; Long, B. H.; Reventos-Suarez, C.; 
Vite, G. D.; Rose, W. C.; Kramer, R. A. BMS-247550. A novel epothilone analog with a 
mode of action similar to paclitaxel but possessing superior antitumor efficacy, Clin. Cancer 

Res. 2001, 7, pp. 1429–1437. 

(69) Kirschning, A.; Taft, F.; Knobloch, T. Total synthesis approaches to natural product 
derivatives based on the combination of chemical synthesis and metabolic engineering, Org. 

Biomol. Chem. 2007, 5, pp. 3245–3259. 

(70) Weissman, K. J. Mutasynthesis - uniting chemistry and genetics for drug discovery, 
Trends Biotechnol. 2007, 25, pp. 139–142. 

(71) Kennedy, J. Mutasynthesis, chemobiosynthesis, and back to semi-synthesis: combining 
synthetic chemistry and biosynthetic engineering for diversifying natural products, Nat. Prod. 

Rep. 2008, 25, pp. 25–34. 

(72) Winn, M.; Fyans, J. K.; Zhuo, Y.; Micklefield, J. Recent advances in engineering 
nonribosomal peptide assembly lines, Nat. Prod. Rep. 2016, 33, pp. 317–347. 



302 | Discussion 
 

 

(73) Klaus, M.; Grininger, M. Engineering strategies for rational polyketide synthase design, 
Nat. Prod. Rep. 2018. 

(74) Traber, R.; Hofmann, H.; Kobel, H. Cyclosporins--new analogues by precursor directed 
biosynthesis, J. Antibiot. 1989, 42, pp. 591–597. 

(75) Lowden, P. A. S.; Böhm, G. A.; Metcalfe, S.; Staunton, J.; Leadlay, P. New Rapamycin 
Derivatives by Precursor-Directed Biosynthesis, ChemBioChem. 2004, pp. 535–538. 

(76) Zlatopolskiy, B. D.; Radzom, M.; Zeeck, A.; Meijere, A. de Synthesis and precursor-
directed biosynthesis of new hormaomycin analogues, Eur. J. Org. Chem. 2006, pp. 1525–
1534. 

(77) Hill, A. M.; Thompson, B. L. Novel soraphens from precursor directed biosynthesis, 
Chem. Commun. (Camb.). 2003, pp. 1360–1361. 

(78) Goss, R. J. M.; Newill, P. L. A. A convenient enzymatic synthesis of L-halotryptophans, 
Chem. Commun. (Camb.). 2006, pp. 4924–4925. 

(79) Winn, M.; Roy, A. D.; Grüschow, S.; Parameswaran, R. S.; Goss, R. J. M. A convenient 
one-step synthesis of L-aminotryptophans and improved synthesis of 5-fluorotryptophan, 
Bioorg. Med. Chem. Lett. 2008, 18, pp. 4508–4510. 

(80) Smith, D. R. M.; Willemse, T.; Gkotsi, D. S.; Schepens, W.; Maes, B. U. W.; Ballet, S.; 
Goss, R. J. M. The first one-pot synthesis of L-7-iodotryptophan from 7-iodoindole and serine, 
and an improved synthesis of other L-7-halotryptophans, Org. Lett. 2014, 16, pp. 2622–2625. 

(81) Corr, M. J.; Smith, D. R.; Goss, R. J. One-pot access to l-5,6-dihalotryptophans and l-
alknyltryptophans using tryptophan synthase, Tetrahedron. 2016, 72, pp. 7306–7310. 

(82) Ritacco, F. V.; Graziani, E. I.; Summers, M. Y.; Zabriskie, T. M.; Yu, K.; Bernan, V. S.; 
Carter, G. T.; Greenstein, M. Production of novel rapamycin analogs by precursor-directed 
biosynthesis, Appl. Environ. Microbiol. 2005, 71, pp. 1971–1976. 

(83) Gregory, M. A.; Petkovic, H.; Lill, R. E.; Moss, S. J.; Wilkinson, B.; Gaisser, S.; Leadlay, 
P. F.; Sheridan, R. M. Mutasynthesis of rapamycin analogues through the manipulation of a 
gene governing starter unit biosynthesis, Angew. Chem. Int. Ed. Engl. 2005, 44, pp. 4757–
4760. 

(84) Sahner, J. H.; Sucipto, H.; Wenzel, S. C.; Groh, M.; Hartmann, R. W.; Müller, R. 
Advanced mutasynthesis studies on the natural α-pyrone antibiotic myxopyronin from 
Myxococcus fulvus, ChemBioChem. 2015, 16, pp. 946–953. 

(85) Roy, A. D.; Gruschow, S.; Cairns, N.; Goss, R. J. M. Gene expression enabling synthetic 
diversification of natural products: chemogenetic generation of pacidamycin analogs, J. Am. 

Chem. Soc. 2010, 132, pp. 12243–12245. 

(86) Yin, X.; Chen, Y.; Zhang, L.; Wang, Y.; Zabriskie, T. M. Enduracidin analogues with 
altered halogenation patterns produced by genetically engineered strains of Streptomyces 
fungicidicus, J. Nat. Prod. 2010, 73, pp. 583–589. 

(87) Werneburg, M.; Busch, B.; He, J.; Richter, M. E.; Xiang, L.; Moore, B. S.; Roth, M.; 
Dahse, H. M.; Hertweck, C. Exploiting enzymatic promiscuity to engineer a focused library 
of highly selective antifungal and antiproliferative aureothin analogues, J. Am. Chem. Soc. 

2010, 132, pp. 10407–10413. 

(88) Miao, V.; Coeffet-Le Gal, M. F.; Nguyen, K.; Brian, P.; Penn, J.; Whiting, A.; Steele, J.; 
Kau, D.; Martin, S.; Ford, R.; Gibson, T.; Bouchard, M.; Wrigley, S. K.; Baltz, R. H. Genetic 



Discussion | 303 
 

 

engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics, Chem. 

Biol. 2006, 13, pp. 269–276. 

(89) Reeves, C. D.; Ward, S. L.; Revill, W. P.; Suzuki, H.; Marcus, M.; Petrakovsky, O. V.; 
Marquez, S.; Fu, H.; Dong, S. D.; Katz, L. Production of Hybrid 16-Membered Macrolides by 
Expressing Combinations of Polyketide Synthase Genes in Engineered Streptomyces fradiae 
Hosts, Chem. Biol. 2004, 11, pp. 1465–1472. 

(90) Nguyen, K. T.; Ritz, D.; Gu, J. Q.; Alexander, D.; Chu, M.; Miao, V.; Brian, P.; Baltz, R. 
H. Combinatorial biosynthesis of novel antibiotics related to daptomycin, Proc. Natl. Acad. 

Sci. U.S.A. 2006, 103, pp. 17462–17467. 

(91) Menzella, H. G.; Reid, R.; Carney, J. R.; Chandran, S. S.; Reisinger, S. J.; Patel, K. G.; 
Hopwood, D. A.; Santi, D. V. Combinatorial polyketide biosynthesis by de novo design and 
rearrangement of modular polyketide synthase genes, Nat. Biotechnol. 2005. 

(92) Mootz, H. D.; Kessler, N.; Linne, U.; Eppelmann, K.; Schwarzer, D.; Marahiel, M. A. 
Decreasing the Ring Size of a Cyclic Nonribosomal Peptide Antibiotic by In-Frame Module 
Deletion in the Biosynthetic Genes, J. Am. Chem. Soc. 2002, 124, pp. 10980–10981. 

(93) Butz, D.; Schmiederer, T.; Hadatsch, B.; Wohlleben, W.; Weber, T.; Sussmuth, R. D. 
Module extension of a non-ribosomal peptide synthetase of the glycopeptide antibiotic 
balhimycin produced by Amycolatopsis balhimycina, ChemBioChem. 2008, 9, pp. 1195–1200. 

(94) Rowe, C.; Bohm, I.; Thomas, I.; Wilkinson, B.; Rudd, B.; Foster, G.; Blackaby, A.; 
Sidebottom, P.; Roddis, Y.; Buss, A.; Staunton, J.; Leadlay, P. Engineering a polyketide with 
a longer chain by insertion of an extra module into the erythromycin-producing polyketide 
synthase, Chem. Biol. 2001, 8, pp. 475–485. 

(95) Crusemann, M.; Kohlhaas, C.; Piel, J. Evolution-guided engineering of nonribosomal 
peptide synthetase adenylation domains, Chem. Sci. 2013, 4, pp. 1041–1045. 

(96) Kries, H.; Niquille, D. L.; Hilvert, D. A subdomain swap strategy for reengineering 
nonribosomal peptides, Chem. Biol. 2015, 22, pp. 640–648. 

(97) Döhren, H. von; Dieckmann, R.; Pavela-Vrancic, M. The nonribosomal code, Chem. Biol. 

1999, 6, pp. R273-R279. 

(98) Stachelhaus, T.; Mootz, H. D.; Marahiel, M. A. The specificity-conferring code of 
adenylation domains in nonribosomal peptide synthetases, Chem. Biol. 1999, 6, pp. 493–505. 

(99) Bozhüyük, K. A. J.; Fleischhacker, F.; Linck, A.; Wesche, F.; Tietze, A.; Niesert, C.-P.; 
Bode, H. B. De novo design and engineering of non-ribosomal peptide synthetases, Nature 

Chem. 2018, 10, pp. 275–281. 

(100) Stachelhaus, T.; Schneider, A.; Marahiel, M. A. Rational design of peptide antibiotics 
by targeted replacement of bacterial and fungal domains, Science. 1995, 269, pp. 69–72. 

(101) Doekel, S.; Marahiel, M. A. Dipeptide formation on engineered hybrid peptide 
synthetases, Chem. Biol. 2000, 7, pp. 373–384. 

(102) Bian, X.; Plaza, A.; Yan, F.; Zhang, Y.; Müller, R. Rational and efficient site-directed 
mutagenesis of adenylation domain alters relative yields of luminmide derivatives in vivo, 
Biotechnol. Bioeng. 2015, 112, pp. 1343–1353. 

(103) Han, J. W.; Kim, E. Y.; Lee, J. M.; Kim, Y. S.; Bang, E.; Kim, B. S. Site-directed 
modification of the adenylation domain of the fusaricidin nonribosomal peptide synthetase for 
enhanced production of fusaricidin analogs,  Biotechnol. Lett. 2012, 34, pp. 1327–1334. 



304 | Discussion 
 

 

(104) Rausch, C.; Weber, T.; Kohlbacher, O.; Wohlleben, W.; Huson, D. H. Specificity 
prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using 
transductive support vector machines (TSVMs), Nucleic Acids Res. 2005, 33, pp. 5799–5808. 

 

 

 

 

 

  


