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Connectionist Language Production: Distributed Representations and the

Uniform Information Density Hypothesis

Abstract

This dissertation approaches the task of modeling human sentence production from a
connectionist point of view, and using distributed semantic representations. The main
questions it tries to address are: (i) whether the distributed semantic representations
defined by |[Frank et al.| (2009)) are suitable to model sentence production using artificial
neural networks, (ii) the behavior and internal mechanism of a model that uses this
representations and recurrent neural networks, and (iii) a mechanistic account of the

Uniform Information Density Hypothesis (UID; |Jaeger} 2006; Levy and Jaeger) 2007)).

Regarding the first point, the semantic representations of [Frank et al. (2009), called sit-
uation vectors are points in a vector space where each vector contains information about
the observations in which an event and a corresponding sentence are true. These rep-
resentations have been successfully used to model language comprehension (e.g., [Frank
et al.l 2009; Venhuizen et al., 2018). During the construction of these vectors, however,
a dimensionality reduction process introduces some loss of information, which causes
some aspects to be no longer recognizable, reducing the performance of a model that
utilizes them. In order to address this issue, belief vectors are introduced, which could be
regarded as an alternative way to obtain semantic representations of manageable dimen-
sionality. These two types of representations (situation and belief vectors) are evaluated
using them as input for a sentence production model that implements an extension of a
Simple Recurrent Neural network (Elman, 1990). This model was tested under different
conditions corresponding to different levels of systematicity, which is the ability of a
model to generalize from a set of known items to a set of novel ones. Systematicity is
an essential attribute that a model of sentence processing has to possess, considering
that the number of sentences that can be generated for a given language is infinite, and
therefore it is not feasible to memorize all possible message-sentence pairs. The results
showed that the model was able to generalize with a very high performance in all test
conditions, demonstrating a systematic behavior. Furthermore, the errors that it elicited
were related to very similar semantic representations, reflecting the speech error liter-
ature, which states that speech errors involve elements with semantic or phonological

similarity. This result further demonstrates the systematic behavior of the model, as it
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processes similar semantic representations in a similar way, even if they are new to the

model.

Regarding the second point, the sentence production model was analyzed in two dif-
ferent ways. First, by looking at the sentences it produces, including the errors elicited,
highlighting difficulties and preferences of the model. The results revealed that the model
learns the syntactic patterns of the language, reflecting its statistical nature, and that its
main difficulty is related to very similar semantic representations, sometimes producing
unintended sentences that are however very semantically related to the intended ones.
Second, the connection weights and activation patterns of the model were also analyzed,
reaching an algorithmic account of the internal processing of the model. According
to this, the input semantic representation activates the words that are related to its
content, giving an idea of their order by providing relatively more activation to words
that are likely to appear early in the sentence. Then, at each time step the word that
was previously produced activates syntactic and semantic constraints on the next word
productions, while the context units of the recurrence preserve information through
time, allowing the model to enforce long distance dependencies. We propose that these

results can inform about the internal processing of models with similar architecture.

Regarding the third point, an extension of the model is proposed with the goal of mod-
eling UID. According to UID, language production is an efficient process affected by a
tendency to produce linguistic units distributing the information as uniformly as possible
and close to the capacity of the communication channel, given the encoding possibilities
of the language, thus optimizing the amount of information that is transmitted per time
unit. This extension of the model approaches UID by balancing two different production
strategies: one where the model produces the word with highest probability given the se-
mantics and the previously produced words, and another one where the model produces
the word that would minimize the sentence length given the semantic representation
and the previously produced words. By combining these two strategies, the model was
able to produce sentences with different levels of information density and uniformity,

providing a first step to model UID at the algorithmic level of analysis.

In sum, the results show that the distributed semantic representations of [Frank et al.
(2009) can be used to model sentence production, exhibiting systematicity. Moreover,
an algorithmic account of the internal behavior of the model was reached, with the
potential to generalize to other models with similar architecture. Finally, a model of UID
is presented, highlighting some important aspects about UID that need to be addressed
in order to go from the formulation of UID at the computational level of analysis to a

mechanistic account at the algorithmic level.
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Kurzzusammenfassung

Diese Dissertation widmet sich der Aufgabe, die menschliche Satzproduktion aus kon-
nektionistischer Sicht zu modellieren und dabei verteilte semantische Reprasentationen
zu verwenden. Die Schwerpunkte werden dabei sein: (i) die Frage, ob die von |Frank
et al. (2009)) definierten verteilten semantischen Reprasentationen geeignet sind, um die
Satzproduktion unter Verwendung kiinstlicher neuronaler Netze zu modellieren; (ii) das
Verhalten und der interne Mechanismus eines Modells, das diese Représentationen und
rekurrente neuronale Netze verwendet; (iii) eine mechanistische Darstellung der Uniform

Information Density Hypothesis (UID; Jaeger, 2006} Levy and Jaeger, [2007).

Zunéachst sei angenommen, dass die Représentationen von Frank et al.| (2009)), genannt
Situation Vektoren, Punkte in einem Vektorraum sind, in dem jeder Vektor Informa-
tionen iiber Beobachtungen enthélt, in denen ein Ereignis und ein entsprechender Satz
wahr sind. Diese Représentationen wurden erfolgreich verwendet, um Sprachverstiand-
nis zu modellieren (z.B. |[Frank et al., 2009; |Venhuizen et al., 2018). Wahrend der Kon-
struktion dieser Vektoren fiihrt ein Prozess der Dimensionsreduktion jedoch zu einem
gewissen Informationsverlust, wodurch einige Aspekte verloren gehen. Um das Problem
zu losen, werden als Alternative Belief Vektoren eingefiihrt. Diese beiden Arten der
Représentation werden ausgewertet, indem sie als Eingabe fiir ein Satzproduktionsmod-
ell verwendet werden, welches als Erweiterung eines Simple Recurrent Neural Network
(SRN, Elman) 1990)) implementiert wurden. Dieses Modell wird unter verschiedenen Be-
dingungen getestet, die verschiedenen Ebenen der Systematizitit entsprechen, d.h. der
Féhigkeit eines Modells, von einer Menge bekannter Elemente auf eine Menge neuer El-
emente zu verallgemeinern. Systematizitdt ist ein wesentliches Attribut, das ein Modell
der Satzverarbeitung besitzen muss, wenn man bedenkt, dass die Anzahl der Sitze,
die in einer bestimmte Sprache erzeugt werden konnen, unendlich ist und es daher
nicht méglich ist, sich alle moéglichen Nachrichten-Satz-Paare zu merken. Die Ergeb-
nisse zeigen, dass das Modell in der Lage ist, unter allen Testbedingungen erfolgreich zu
generalisieren und dabei ein systematisches Verhalten zeigt. Dariiber hinaus weisen die
verbleibenden Fehler starke Ahnlichkeit zu anderen semantischen Reprisentationen auf.
Dies findet sich in der Literatur zu Sprachfehlern wider, wo es heif3t, dass Fehler Elemente

semantischer oder phonologischer Ahnlichkeit beinhalten. Dieses Ergebnis beweist das



systematische Verhalten des Modells, da es dhnliche semantische Reprasentationen in

dhnlicher Weise verarbeitet, auch wenn sie dem Modell unbekannt sind.

Zweitens wurde das Satzproduktionsmodell auf zwei verschiedene Arten analysiert. (i)
Indem man sich die von ihm erzeugten Satze ansieht, einschliefilich der aufgetretenen
Fehler, und dabei die Schwierigkeiten und Préferenzen des Modells hervorhebt. Die
Ergebnisse zeigen, dass das Modell die syntaktischen Muster der Sprache lernt. Dariiber
hinaus zeigt sich, dass die verbleibenden Probleme im Wesentlichen mit sehr dhnlichen
semantischen Représentationen zusammenhéngen, die manchmal ungewollte Sétze pro-
duzieren, welche jedoch semantisch nah an den beabsichtigten Sitzen liegen. (ii) Indem
die Verbindungsgewichte und Aktivierungsmuster des Modells analysiert und eine algo-
rithmische Darstellung der internen Verarbeitung erzielt wird. Demnach aktiviert die se-
mantische Eingangsreprasentation jene Worter, mit denen sie inhaltlich zusammenhéangt.
In diesem Zusammenhang wird ein Ranking erzeugt, weil Worter, die wahrscheinlich frith
im Satz erscheinen eine stirkere Aktivierung erfahren. Im néchsten Schritt aktiviert
das zuvor produzierte Wort syntaktische und semantische Einschrénkungen der néch-
sten Wortproduktionen. Derweil speichern Kontext-Einheiten Informationen fiir einen
léngeren Zeitraum, und ermoglichen es dem Modell so, lingere Abhédngigkeiten zu real-
isieren. Nach unserem Verstdndnis konnen diese Erkenntnisse als Erklarungsgrundlage

fiir andere, verwandte Modelle herangezogen werden.

Drittens wird eine Erweiterung des Modells vorgeschlagen, um die UID nachzubilden.
Laut UID ist die Sprachproduktion ein effizienter Prozess, der von der Tendenz gepragt
ist, linguistische Einheiten zu produzieren, die Informationen so einheitlich wie méglich
verteilen, und dabei die Kapazitdt des Kommunikationskanals vor dem Hintergrund der
sprachlichen Kodierungsmoglichkeiten ausreizt, wodurch die Menge der pro Zeiteinheit
iibertragenen Informationen maximiert wird. Dies wird in der Erweiterung umgesetzt,
indem zwei verschiedene Strategien der Wortproduktion gegeneinander ausgespielt wer-
den: Wéhle das Wort (i) mit der hochsten Wahrscheinlichkeit unter den zuvor pro-
duzierten Wortern; oder (ii) welches die Satzlinge minimiert. Durch die Kombination
dieser beiden Strategien ist das Modell in der Lage, Satze unter Vorgabe der Infor-
mationsdichte und -verteilung zu erzeugen, was einer ersten Modellierung der UID auf

algorithmischer Ebene gleichkommt.

Zusammenfassend zeigen die Resultate, dass die verteilten semantischen Représentatio-
nen von Frank et al.| (2009)) fir die Satzproduktion verwendet werden kénnen und dabei
Systematizitit beobachtet werden kann. Dariiber hinaus wird eine algorithmische Erk-
larung der internen Mechanismen des Modells geliefert. Schlieflich wird ein Modell der
UID vorgestellt, das einen ersten Schritt zu einer mechanistischen Darstellung auf der

algorithmischen Ebene der Analyse darstellt.
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Austiihrliche Zussamenfassung

Als menschliche Sprachproduktion bezeichnet man den Prozess, bei dem eine Person
ihre Gedanken M in eine sprachliche Auerung U kodiert, so dass, wenn eine andere
Person U diese hort oder liest, sie in der Lage wére, eine mentale Reprasentation M’
der AuBerung zu bilden. Diese Reprisentation sollte idealerweise so nah wie moglich
an den urspriinglichen Gedanken M liegen. Die spezifischen Mechanismen, die in einem
solchen Prozess involviert sind, wurden aus verschiedenen Perspektiven untersucht und
haben zu mehreren Berichten und Modellen gefiihrt, die versuchen dieses Phiénomen
zu erkldren. Diese Dissertation widmet sich der Aufgabe, die menschliche Sprachpro-
duktion aus einer konnektionistischen Perspektive zu modellieren, indem sie rekurrente

kiinstliche neuronale Netze und verteilte semantische Repréisentationen verwendet.

Konkret befassen wir uns mit der Sprachproduktion auf Satzebene und konzentrieren uns
auf den Prozess der Umwandlung einer zu vermittelnden Botschaft oder semantischen
Représentation in eine Folge von Wortern, die einen Satz bilden. Dies geschieht ohne
Riicksicht auf die Prozesse, die wahrend des Aufbaus der Botschaft beteiligt sein kon-
nten, oder diejenigen Prozesse, die an der phonologischen Kodierung oder Artikulation

beteiligt sind.

In diesem Zusammenhang werden in dieser Arbeit drei Hauptthemen behandelt:

a) die Verwendung von verteilten Reprasentationen zur konnektionistischen Modellierung
der Sprachproduktion in Bezug auf Systematizitét,

b) die interne Dynamik von Sprachproduktionsmodellen mit rekurrenten neuronalen

Netzen,
c¢) die Implementierung eines Modells, das die Intuitionen der “Uniform Information

Density Hypothesis” widerspiegelt (UID; Jaeger} 2006; Levy and Jaeger, 2007).

Hinsichtlich des ersten Punktes basieren die hier verwendeten Repréasentationen auf dem
Distributed Situation Space Modell (DSS;[Frank et al., 2003} 2009). Nach diesem Schema

wird die Bedeutung eines Satzes in Bezug auf eine Mikrowelt dargestellt, die eine kleine
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Gruppe von Entitdten enthilt, welche mit probabilistischen GesetzméaBigkeiten inter-
agieren. Die resultierenden Repréasentationen entsprechen Punkten in einem Vektor-
raum, dessen Struktur durch die Regelméfligkeiten der Mikrowelt gegeben ist. Folglich
kann die Ahnlichkeit zwischen verschiedenen Reprisentationen beurteilt werden, indem
man sich die Reprasentationen selbst ansieht, so dass ein Modell, das diese Bedeu-
tungsreprasentationen verwendet, eine Interpretation der Représentation vornehmen
kann. Dies ist auch tannier Fall, wenn Représentationen neu fiir das Modell sind.
Dariiber hinaus enthalten DSS-Représentationen sehr reichhaltige probabilistische In-
formationen {iiber die Situationen, in denen ein Satz wahr ist, und ermoglichen so
eine Schlussfolgerung basierend auf Weltwissen. Zum Beispiel wiirde die Nachricht-
enreprisentation fiir den Satz “Charlie spielt Fufiball”’ Informationen iiber die Orte, an

denen Fufiball gespielt werden kann, mogliche Spieler, Gewinner, etc. enthalten.

DSS-Représentationen wurden urspringlich entwickelt, um semantische Systematizitdt
im Sprachverstédndnis (Frank et al., 2009) zu demonstrieren. Systematizitat bezieht
sich auf die Fahigkeit, von einer Reihe bekannter Instanzen zu neuen Instanzen zu ve-
rallgemeinern und von den Gemeinsamkeiten zwischen den bekannten und den neuen
Instanzen zu profitieren. Es wurde vorgeschlagen, dass dies ein allgemeines Merkmal
und sogar ein Gesetz der kognitiven Systeme (Fodor and McLaughlin, [1990; [Fodor
and Pylyshyn) [1988) sei. Ihre Bedeutung liegt darin, dass das Auswendiglernen aller
Nachrichten-Satz-Paare nicht moglich ist, da sowohl die Anzahl der moglichen Nachrichten
als auch die Anzahl der moglichen Sétze unendlich ist und daher ein Modell der Satzpro-

duktion oder des Satzverstandnisses zwangslaufig eine Verallgemeinerung aufweisen muss.

Im Vergleich zur Wortproduktion, bei der lexikalische Elemente meist aus dem Gedécht-
nis abgerufen werden (mit Ausnahme von Woértern, die durch morphologische Produk-
tivitdt erzeugt werden), ist die Satzproduktion zudem ein viel produktiverer Prozess.
Wihrend die Anzahl der lexikalischen Elemente in einer Sprache begrenzt ist und die
meisten Worter einem Sprecher bekannt sind, ist die Anzahl der Sétze, die mit derselben
Sprache erzeugt werden konnen, unendlich. Basierend darauf sind viele Satze fiir einen
Sprecher neuartig. Daher ist die Systematizitdt von grofiter Bedeutung fiir ein Modell

der Satzproduktion oder des Verstdandnisses.

Diese Dissertation testet, ob DSS-Représentationen auch zur Modellierung der Sprach-
produktion verwendet werden kénnen und demonstriert Systematizitit wie [Frank et al.
(2009). Um dies zu erreichen, prasentieren wir ein Modell der Satzproduktion, das
DSS-Vektor-Repréisentationen als Input verwendet und ansonsten eine sehr dhnliche Ar-
chitektur wie das Prod-SRN-Modell von |Chang| (2002) hat.

Das vorgeschlagene Modell besteht aus einer Erweiterung eines “Simple Recurrent Neu-

ral Network” (SRN, [Elman| 1990). Mit jeder Zeiteinheit erhélt eine rekurrente Ebene als
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Eingabe die DSS-Représentation des zu iibertragenden Satzes und des Wortes, das im
vorherigen Zeitpunkt erzeugt wurde (leer zum Zeitpunkt 0), dann wird die Aktivierung
der rekurrenten Ebene einer Softmax-Ebene zugefiithrt, wobei jede Einheit in dieser
Ebene einem Wort im Wortschatz entspricht. Zu jedem folgenden Zeitpunkt wird das
Wort mit der héchsten Aktivierung in der Ausgangsebene erzeugt, das zum néchsten
Zeitpunkt der rekurrenten Ebene zugefithrt wird. Dieser Prozess wird fortgesetzt, bis

das Modell einen Punkt erzeugt.

Dieses Modell wurde unter verschiedenen Testbedingungen in Bezug auf verschiedene
Verallgemeinerungsebenen unter Verwendung der urspriinglichen DSS-Représentationen
von [Frank et al.| (2009), auch Situation Vektoren genannt, evaluiert, wihrend gleichzeitig
eine alternative Représentationsform eingefithrt wurde, die ebenfalls aus dem “Dis-
tributed Situation Space” abgeleitet ist, den wir Belief Vektoren nennen. Letztere
wurden als alternative Methode eingefiihrt, um semantische Représentationen einer
iiberschaubaren Dimensionalitdt zu erhalten, da wéhrend der Konstruktion der Situ-
ation Vektoren ein Dimensionalitdtsreduktionsprozess einige Informationsverluste mit
sich bringt. Diese fithren dazu, dass einige Aspekte nicht mehr erkennbar sind. Die
FErgebnisse zeigen, dass das Modell tatséchlich in der Lage war, Sdtze mit beiden Arten
von Nachrichtenreprisentationen (Situation und Belief Vektoren) zu erzeugen, sich zu
neuen Nachrichten zu verallgemeinern und eine sehr gute Leistung unter allen Bedin-
gungen leistet. Dariiber hinaus war das Modell in der Lage, nicht nur einen Satz zu
produzieren, sondern auch die meisten der Sétze, die von der Grammatik erlaubt sind
und die sich auf eine bestimmte Botschaft beziehen. Dies gilt auch auch wenn diese

Botschaften neu fiir das Modell waren, was ein hohes Mafl an Systematizitit aufweist.

Eine Analyse der Ausgabe des Modells und der hervorgerufenen Fehler ergab, dass das
Modell Schwierigkeiten mit Nachrichtenrepriasentationen hat, die sehr dhnlich sind und
den Beweis der Sprachfehlerliteratur widerspiegeln, bei denen Fehler als Ergebnis seman-
tischer oder phonologischer Ahnlichkeit auftreten. In diesem Fall sind die Fehler immer
mit semantischer Ahnlichkeit verbunden, da das Modell nicht mit phonologischen In-
formationen arbeitet. Die Art solcher Fehler dient dazu, das systematische Verhalten
des Modells weiter zu bestatigen, da dhnliche Nachrichtenreprésentationen dhnlich ver-

arbeitet werden, auch wenn sie neu fir das Modell sind.

In Anbetracht der semantischen Repréasentationen, die als Input fir das Modell ver-
wendet wurden, besitzen diese einige Eigenschaften, die die Modellierung bestimmter
Aspekte der menschlichen Sprachverarbeitung erleichtern, im Vergleich zu symbolis-
chen diskreten Repréisentationen. Erstens ist jede Représentation ein multidimension-
aler kontinuierlicher Vektor, der einem Punkt in einem Vektorraum entspricht. Folglich

ist die Anzahl der Représentationen, die aus diesem Raum gewonnen werden kdnnen,
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moglicherweise unendlich. Dies ist ein Attribut, das notwendig ist, wenn man unendliche
Mengen darstellen will, wie beispielsweise die Menge der Satze, die sich auf eine Sprache
beziehen. Zweitens, diese Reprasentationen enthalten vollstindige Beschreibungen der
Situationen in der Mikrowelt, die sich auf jeden Satz beziehen. Dies erméglicht direkte
Schlussfolgerung und die Schatzung von probabilistischen Informationen im Zusammen-
hang mit den Ereignissen, die in jeder semantischen Reprasentation vermittelt werden.
Schliefllich ist eine weitere wichtige Eigenschaft von DSS-Reprisentationen, dass, da es
sich um kontinuierliche Vektoren handelt, die Ahnlichkeit zwischen den Reprisentatio-
nen einfach durch Messen des Abstands zwischen den zugehérigen Vektoren bewertet
werden kann. Diese FEigenschaft ist wichtig, da die Eingangsreprasentationen untereinan-
der vergleichbar sein miissen, damit ein Modell Beziehungen von bekannten zu neuen

Inputs herstellt und so eine Verallgemeinerung erreicht.

Aufgrund dieser Eigenschaften konnen Situation und Belief Vektoren als gute Kandi-
daten fiir die Modellierung der menschlichen Sprachverarbeitung angesehen werden, in
diesem Fall fiir die Sprachproduktion im Vergleich zu symbolischen diskreten Repréasen-

tationen. Dies spiegelt sich in den positiven Ergebnissen der Simulationen widers.

Wihrend heutzutage rekurrente neuronale Netze und Deep-Learning-Architekturen im
Allgemeinen erfolgreich fiir eine Vielzahl von Aufgaben eingesetzt werden (siehe z.B.
LeCun et al.l |2015)), ist ihr interner Mechanismus nicht vollstandig verstanden und wird
eher als Blackbox verwendet. In unserem Fall zeigte das Produktionsmodell, dass es
in der Lage war, korrekte Sétze mit Systematizitdt zu produzieren, wobei der interne
Produktionsmechanismus des Modells noch ziemlich unklar war. Aus diesem Grund

wurde eine Analyse der internen Dynamik des Modells durchgefiihrt.

Die Analyse basierte auf Layer-wise Relevance Propagation (Bach et al.l 2015). Dieser
Algorithmus dhnelt dem Backpropagation-Algorithmus (Rumelhart et al., [1986), er be-
ginnt bei der Output-Ebene und bewegt sich im Diagramm in Richtung der Input-
Einheiten, wobei er die Relevanz verfolgt, die jede Einheit in der Ebene l;_; bei der
Aktivierung von Einheiten in der Ebene I; hat, zuriick zu den Input-Einheiten, die nor-

malerweise von Menschen interpretierbar sind.

Die Ergebnisse zeigen, dass jedes Input-Muster die Aktivierung von Wértern férdert, die
mit seiner Semantik zusammenhéngen, wiahrend es die Worter hemmt, die sich im Kon-
flikt befinden. Nach der Produktion jedes Wortes werden syntaktische und semantische
Beschrankungen eingefiihrt, die die folgenden Wortproduktionen beeinflussen, wahrend
die Kontext-Einheiten Informationen im Laufe der Zeit bewahren. In dieser Ansicht
kann das Verhalten des Modells als eine Reihe von Einheiten erkléirt werden, bei denen
jede Einheit eine bestimmte Funktion hat und das Modell die richtigen Wechselwirkun-

gen zwischen den Einheiten lernt, so dass ein korrektes globales Verhalten entsteht. Es
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ergibt sich dann eine korrekte Verarbeitung neuartiger Inputs, wenn die wahrend des
Trainings erlernten Regeln, die die Wechselwirkungen zwischen den Einheiten regeln,

mit den Regeln der Produktionsaufgabe tibereinstimmen.

Die Analyse wies auch auf Muster hin, die zuvor in Bezug auf die Sprachverarbeitung
mit rekurrenten neuronalen Netzen vorgeschlagen wurden: Einige versteckte Einheiten
schienen mit spezifischen Funktionen (Karpathy et al.l |2015) zusammenzuhéngen. Die
Aktivierungsmuster, die mit jedem Wort zusammenhingen, spiegeln die Ahnlichkeit
zwischen den Wortern (Mikolov et al., 2013) wider und dartiberhinaus die allgemeine
Intuition, dass das Wiederauftreten dazu dient, Informationen tiber Zeit zu erhalten. Die
hier vorgestellten Ergebnisse demonstrieren solche Intuitionen und liefern eine mecha-

nistisch ganzheitliche Darstellung der Funktionsweise des Modells.

Aufgrund von architektonischen Ahnlichkeiten mit anderen Sprachmodellen erwarten
wir, dass dieser Mechanismus das Verhalten &hnlicher Modelle der Sprachproduktion
widerspiegelt (z.B. |Chang, [2002; |(Chang et al., [1997; Dell et al., |1993), sowie grofere
Modelle, die in der Computerlinguistik verwendet werden, wie sie beispielsweise in der
Sprachmodellierung (z.B. Mikolov et al., 2010) oder der maschinellen Ubersetzung (z.B.
Sutskever et al., 2014) verwendet werden. Die hier beschriebene Methodik kénnte auch

dazu dienen, eine solche Hypothese in zukiinftigen Arbeiten zu testen.

Im Hinblick auf die Implementierung eines Modells der UID wird eine Erweiterung des
Modells mit dem Ziel vorgestellt, eine mechanistische Darstellung der Uniform Informa-
tion Density Hypothesis (UID; Jaeger, 2006, 2010; Levy and Jaeger, 2007)) zu erhalten.
UID stellt fest, dass die Sprachproduktion ein effizienter Prozess ist, der von der Tendenz
geprigt ist, linguistische Einheiten zu produzieren, die die Informationen so einheitlich
wie moglich und nahe an der Kapazitit des Kommunikationskanals verteilen, unter
Beriicksichtigung der Kodierungsmoglichkeiten der Sprache, wodurch die Menge der In-
formationen, die pro Zeiteinheit iibertragen wird, optimiert wird. Beweise fiir eine solche
Tendenz wurden zwar vorgelegt (z.B. Bell et al., [2003; [Jaeger} 2006), jedoch wurde kein
Ansatz vorgeschlagen, der erkliren wiirde wie ein solcher Mechanismus algorithmisch

durch ein Produktionsmodell implementiert wiirde.

Diese Erweiterung war in der Lage, die beiden wichtigsten rationalen Ziele zu implemen-
tieren, die zur Steuerung von UID vorgeschlagen wurden: Auf der einen Seite kann das
Modell eine Tendenz zeigen, die Menge der pro Zeiteinheit iibertragenen Informationen
zu maximieren, wobei es schnell ist; und auf der anderen Seite versucht das Modell, die
Grenze der Kanalkapazitdt zu unterschreiten, um Misskommunikation zu vermeiden.
Durch das Ausbalancieren dieser beiden Tendenzen kénnte man verschiedene Ebenen
der Einheitlichkeit erreichen, die einen Ausgangspunkt fiir das Modellieren von UID auf

der algorithmischen Ebene der Analyse bilden.
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Wiéhrend der Entwicklung des UID-Modells traten einige Probleme auf, die einige As-
pekte hervorhoben, die weiter untersucht werden miissen. FErstens unterscheidet sich
die Informationsverarbeitung aus Sicht des Empfiangers von der Sicht des Produzen-
ten: Der Produzent kennt vorher die Botschaft, die er zu vermitteln versucht, wiahrend
der Empfianger die beabsichtigte Botschaft aus dem erzeugten Satz ableiten muss. Da-
raus folgend bezieht sich der Produktionsaufwand mehr auf den Zugang der linguis-
tischen Einheiten, die zum Aufbau des Satzes benétigt werden, wahrend der Aufwand
des Verstehens mehr auf das Erkennen der Einheiten und den Aufbau einer mit dem
Satz kohadrenten Nachrichtendarstellung bezogen wére. Zweitens, wenn man bedenkt,
dass der Informationsgehalt, der sich auf einen bestimmten Satz bezieht, sowohl mit der
Wahrscheinlichkeit des Ereignisses, das der Satz vermittelt, als auch mit der Wahrschein-
lichkeit der linguistischen Elemente, die zur Bildung des Satzes verwendet werden zusam-
menhéngt, ist es notwendig einen Datensatz zu erstellen, der die relative Verteilung der
Ereignisse und ihrer jeweiligen Satze auf natiirliche Weise widerspiegelt, so dass ein auf
diesem Datensatz trainiertes Modell in der Lage ist abzuleiten, wie wahrscheinlich ein
bestimmtes Ereignis ist und wie wahrscheinlich eine bestimmte Folge von linguistischen
FEinheiten ist. Schliellich ist es notwendig, die Obergrenze oder Kapazitit des Kommu-
nikationskanals zu definieren. Ein Satz kann ein sehr einheitliches Uberraschungsprofil
haben, wahrend er sehr wenig oder sehr viele Informationen pro Zeiteinheit iibermittelt.
Einheitliche Uberraschungsprofile sind zwar wiinschenswert, aber sie miissen in Bezug

auf die Kanalkapazitét einheitlich sein, was bis heute nicht klar ist.

Im Allgemeinen zeigen die Ergebnisse dieser Arbeit, dass in der Tat die verteilten seman-
tischen Repréasentationen von [Frank et al. (2009)) zur Modellierung der Satzproduktion
verwendet werden kdnnen, wobei sie Systematizitdt und im Allgemeinen eine hohe Per-
formance in allen Simulationen aufweisen. Dariiber hinaus zeigt das vorgestellte Modell
ein Verhalten, das Tendenzen widerspiegelt, die von der Sprachfehlerliteratur berichtet
wurden, sowie Hinweise auf den Einfluss statistischer Muster auf die Sprachproduktion.
Da das Modell eine relativ geringe Dimensionalitdt hat und die Struktur des Daten-
satzes bekannt ist, konnte man sein internes Verhalten analysieren, um Einblicke in die
allgemeine Dynamik rekurrenter neuronaler Netze zu erhalten, die zu einer algorithmis-
chen Darstellung des Verhaltens des Modells fithren. Schliellich, profitierend von der
Féhigkeit des Modells mehrere Kodierungen fiir eine gegebene Semantik zu produzieren,
wird ein Modell der UID vorgestellt, das in der Lage ist, verschiedene Produktion-
sstrategien zu implementieren, und das einige wichtige Aspekte der UID hervorhob.
Dazu gehort die Notwendigkeit, die Kapazitat der Kommunikationskanéle und die Un-
terschiede in der Verarbeitung zwischen Produktion und Verstdndnis zu definieren, um
von der Formulierung der UID auf der Berechnungsebene der Analyse zu einer mecha-

nistischen Darstellung auf der algorithmischen Ebene zu gelangen.
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Chapter 1

Introduction

Humans are inherently social beings who need communication in order to coordinate, live
together and ultimately form complex societies. This communication is mostly achieved
through language, an ability that has been regarded as a characteristic that differentiates
humans from other animals. Indeed, we use language everyday to communicate almost
any kind of information. In spite of its importance, some aspects of this phenomenon
still need further study, amongst them, the cognitive aspects of language use: how people

produce and understand language.

In order to study language from a cognitive perspective, we can divide it in two major
processes: language production, where a person encodes his/her thoughts M into a lin-
guistic utterance U; and language comprehension, where a person decodes a linguistic
utterance U into a mental representation M’ of the information the speaker intended to
communicate. In this process, the utterance produced by the speaker U shoould be such
that the message that the comprehender is able to decode M’ is as similar as possible to
the message the speaker intended to communicate M. In this view, the speaker is respon-
sible for efficiently providing enough information under the environmental constraints,

in order for the comprehender to be able to decode the intended message.

Concerning human language production, a body of evidence has been gathered trying
to describe and analyze this process. The methods that have been utilized include the
inspection of speech errors that people elicit during normal conversation (e.g., Meringer
and Mayer} [1895), the recording of reaction times and behavioral preferences during a
production-related task (e.g., [Fraisse, |1967), and more recently the recording of neural
activity also during a production-related task (e.g., |Graves et al. 2007). This evidence
has served to motivate a number of accounts and computational models that try to

explain the process of human language production.
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In general, the models that have been proposed assume a sequence of steps, which are
typically linked to different levels of linguistic representation. These levels were originally
motivated by the regularities of speech errors elicited during conversation, as errors tend
to involve elements of the same linguistic level. For example, word exchanges can span
some distance and tend to occur only between complete words of the same syntactic
category, while sound exchanges ignore syntactic category and involve words that are
close to each other (Garrett, 1975). Additionally, word substitution errors usually involve
words that are semantically similar, suggesting that at an abstract “semantic level”,
similar words can be confused, possibly provoking the production of an unintended but

semantically similar word (Fromkin, 1973).

Amongst these models, the one proposed by |Levelt (1989) has been one of the most
influential, serving as reference for language production research. It describes the com-
plete process from intention to articulation of speech, based on the empirical evidence
available at the time of publication. According to [Levelt| (1989), language production

can be segmented in three modules:

e A conceptualizer, which generates the message to be conveyed, and monitors what

has been and what is about to be said.

e A formulator, which during grammatical encoding translates the message into a
sequence of lemmas following the syntactic rules of the language; and then, during
phonological encoding, this sequence of lemmas is translated into a phonetic/artic-

ulatory plan.

e An articulator, which specializes in the motor execution of the phonetic plan,

producing overt speech.

This dissertation focuses on language production at a sentence level, and more specif-
ically, on the process of converting a message to be conveyed, or semantic representation,
into a sequence of words forming a sentence; without considering the processes that
might be involved during the construction of the message, or the processes involved in

phonological encoding or articulation.

In the model of [Levelt| (1989), this corresponds to grammatical encoding. During gram-
matical encoding, according to [Levelt| (1989), the lemmas in the mental lexicon whose
meaning match part of the message are activated, making their syntax available and
thus activating syntactic building procedures. Using the latter, syntactic structures are
built, such as verb or noun phrases. After the relevant lemmas have been retrieved and

the relevant syntactic procedures have finished, the grammatical encoder would have
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produced a surface structure, an ordered string of lemmas that follows the syntactic

rules of the language.

Compared to word production where lexical items are mostly retrieved from memory
(with the exception of morphological productivity), sentence production is a much more
productive process. While the number of lexical items in a language is finite and most
words are known by a speaker, the number of sentences that can be generated with the
same language is infinite, and therefore many sentences are novel to a speaker. As a
consequence, an important attribute that a model of sentence production or comprehen-
sion has to exhibit is systematicity, which is the ability to generalize from a set of known
instances to novel ones, profitting from the commonalities between the known and the
novel instances. Its importance lies on the fact that memorization of all message-sentence
mappings is not possible, as both the number of possible messages and the number of
possible sentences are infinite, and consequently, a model of sentence production or com-
prehension necessarily has to show generalization. Furthermore, systematicity has been
proposed to be a general characteristic and even a law of cognitive systems (Fodor and
McLaughlin) [1990; |[Fodor and Pylyshyn, [1988]).

The degree to which a model can generalize is related to the complexity of the task.
During sentence production not only the correct words have to be retrieved from mem-
ory, but also they have to be in the correct order, meeting the syntactic constraints of
the language while conveying the information of the message. Therefore, a model of
sentence production has to learn, on the one hand, the way lexical items can be com-
bined according to the syntactic rules of the language; and on the other hand, with this

syntactic knowledge, how to translate a message onto a sequence of lexical items.

Moreover, a model of human language production is valid to the extent that it exhibits
a behavior and internal processing similar to humans. Then, it is not only necessary
that a model of sentence production learns to produce sentences in a systematic way,
but also, the model has to approximate the mechanism that humans utilize to solve the

same task, reflecting the evidence regarding human language production.

Considering these aspects, some connectionist models of sentence production have been
postulated. Connectionist models are inspired by the way the brain works. They follow
the principle that mental phenomena can be described by interconnected networks of
simple units, i.e., artificial neural networks. These models have been criticized with
claims that they cannot exhibit systematicity to the level that humans do (Fodor and
Pylyshyn, [1988). Consequently and given its importance for language production, some
connectionist models of language production have focused on demonstrating their gen-
eralization capacity. Most prominent amongst them are the Structural Priming model
(Chang et all [1997), the Prod-SRN model (Chang, 2002) and the Dual-Path model
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(Chang, 2002)), which implement an extension of a Simple Recurrent Neural network
(Elman) (1990; |Jordan, [1986)), being able to produce sentences with different degrees of

generalization.

The Structural Priming model and the Prod-SRN model have a very similar architecture
in which a message representation is given as input to a recurrent layer that in turn
activates an output layer containing lexical items. In contrast, the Dual-Path model
presents a much more complex architecture that was partially motivated by the low level
of systematicity that the Prod-SRN model showed during the experiments conducted
by |Chang| (2002)). Its architecture is formed by two different paths of computation that
converge on a recurrent layer, and such that the recurrent layer can interact only with
semantic roles, that in turn are connected to concepts of the message representation.
This separation between semantic roles and concepts allows the Dual-Path model to

exhibit higher levels of systematicity compared to the Prod-SRN model (Chang), 2002).

An aspect that these 3 models share is the use of localist input units, where the message
to be conveyed is represented by a set of binary units where only few of them are
activated signaling specific symbolic features. In contrast, this dissertation explores the
use of distributed message representations, where a message is represented by a point
in a multidimensional continuous meaning space. Using these, we test whether one can

achieve high levels of systematicity without increasing the complexity of the architecture.

The representations used here are based upon the Distributed Situation Space model
(DSS; [Frank et al., 2003, [2009). Under this scheme, the meaning of a sentence is repre-
sented with respect to a micro-world, which is a small set of entities that interact with
probabilistic regularities. The resulting representations correspond to points in a vector
space whose structure is given by the regularities of the micro-world. In consequence,
similarity can be assessed between different representations by looking at the represen-
tations themselves, permitting a model using these meaning representations to interpret
a representation even if it is new to the model. Moreover, DSS representations contain
very rich probabilistic information about the situations in which a sentence is true, al-
lowing for ‘world-knowledge’-driven inference. For example, the message representation
for the sentence “Charlie plays soccer.” would contain information about the locations

where soccer can be played, possible players, winners, losers, etc.

DSS representations were originally developed to demonstrate semantic systematicity
in language comprehension (Frank et al. [2009), and have been successfully used to
model language comprehension (e.g., [Frank et al.l |2009; [Venhuizen et al., [2018). In this
dissertation, we test whether these representations can also be used to model language
production, demonstrating systematicity as in Frank et al. (2009). In order to achieve

that, we present a model of sentence production that uses DSS representations as input,
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and that otherwise has a very similar architecture to the Prod-SRN model of |[Chang
(2002).

The proposed model of sentence production was evaluated under different test conditions
related to different levels of generalization. The results show that indeed the model was
able to produce sentences using the DSS message representations, generalizing to new
messages, exhibiting a very good performance in all conditions. Furthermore, the model
was able to produce not only one sentence, but most of the sentences that are allowed
by the grammar and that are related to a given message, even if the latter was novel to

the model, demonstrating a high level of systematicity.

An analysis of the output of the model and the mistakes elicited revealed that the
model has difficulties with message representations that are highly similar, reflecting
the evidence of the speech error literature, where errors arise as a result of semantic or
phonological similarity. In this case, the errors are always related to semantic similarity,
since the model does not operate with phonological information. Moreover, the nature
of such mistakes serves to corroborate the systematic behavior of the model, as similar

message representations are processed similarly, even if they are new.

While nowadays recurrent neural networks, and deep learning architectures in general,
are used successfully for a large variety of tasks (see e.g., LeCun et al., 2015)), their
internal mechanism is not fully understood and are rather used as a black box. It is evi-
dent that it is not sufficient to present a cognitive model that imitates the experimental
evidence, but also, one has to understand its internal mechanism. In order to look into
the internal mechanism of this model in particular, an analysis of the connection weights
and activation patterns was performed. Such an analysis permitted us to obtain an algo-
rithmic account of the behavior of the model that could be generalized to other language
production models with similar architecture (e.g.,|Chang, [2002; Chang et al., [1997; Dell
et al., [1993), as well as those used in computational linguistics for language modeling
(e.g., Mikolov et al., |2010), caption generation (e.g., Chen and Lawrence Zitnickl [2015)),

or machine translation (e.g., Sutskever et al., |2014).

Finally, since the model can produce several encodings for a given message representa-
tion, one can manipulate its configuration in order to modify its production preferences.
In that way, an extension of the model is presented with the goal of obtaining a mecha-
nistic account of the Uniform Information Density Hypothesis (UID;|Jaeger} 2006, 2010;
Levy and Jaeger, 2007)). UID states that language production is an efficient process
affected by a tendency to produce linguistic units distributing the information as uni-
formly as possible and close to the capacity of the communication channel, given the
encoding possibilities of the language, thus optimizing the amount of information that is

transmitted per time unit. Evidence for such a tendency has been presented (e.g., Bell
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et al., [2003} |Jaeger, [2006)), however, no account has been proposed that would explain
how such a mechanism would be algorithmically implemented by a production model.
While the UID model presented here needs further development, it serves to highlight

some important concerns that are still open regarding UID.

In general, the results of this dissertation, which are elaborated in the next chapters,
show that the distributed representations of Frank et al. (2009) can be used to model
language production exhibiting systematicity (see Chapter 5). Moreover, the model pre-
sented shows a behavior reflecting tendencies reported by the speech error literature, as
well as evidence suggesting the influence of statistical patterns on language production.
Since the model has a relatively low dimensionality and the structure of the dataset
is known, one can analyze its internal behavior giving insights about the general dy-
namics of recurrent neural networks (see Chapter 6). Finally, profiting from the ability
of the model to produce several encodings for a given semantics, a model of UID is
presented that is able to implement different production strategies and that highlighted
some important aspects about UID, such as the need to define the communication chan-
nel capacity, and the differences in processing between production and comprehension
(see Chapter 7).

1.1 Contributions

More concretely, the main contributions that this dissertation proposes are the following;:

e An alternative scheme for semantic representations, called belief vectors, that is
derived from the Distributed Situation model (Frank et al., 2003, 2009).

e A model of sentence production that uses as input the aforementioned representa-

tions, as well as the situation vectors defined by [Frank et al.| (2009).

e An evaluation and analysis of the behavior of the sentence production model, show-
ing that it was able to learn the language and furthermore it was able generalize
to novel sentences and semantic representations, exhibiting syntactic and semantic

systematicity.

e An analysis of the internal mechanism of the sentence production model by in-
specting its connection weights and average activations, reaching an algorithmic
account of the behavior of the model that could possibly generalize to other models

with similar architectures.
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o A mechanistic account of the Uniform Information Density Hypothesis (UID;
Jaeger, 2006; Levy and Jaeger, 2007), by extending the sentence production model

previously presented.

1.2 Organization

This dissertation is organized in 8 chapters, including the introduction. The second
chapter contains the Background, describing some of the most influential models of lan-
guage production and their motivations. It also introduces the main ideas of the Uniform
Information Density Hypothesis (UID; Jaeger, 2006; |Levy and Jaeger, 2007). The third
chapter, Semantic Representations, describes the type of semantic representations that
are used as input for the model of sentence production. The fourth chapter, Sentence
Production Model, describes the architecture and the training procedure of the model
of sentence production. The fifth chapter, Semantic Systematicity, presents experiments
using the model previously described, testing its capability regarding generalization or
systematicity. The sixth chapter, Sentence Production Dynamics, presents an analysis
of the internal mechanism of the model, by inspecting its connection weights and acti-
vation patterns. The seventh chapter, Approximating UID, presents an extension of the
model that represents a first attempt to model UID at an algorithmic level of analysis.

Finally, the eight chapter is devoted to conclusions and future work.



Chapter 2

Background

In this chapter we briefly overview the literature about accounts of Human Language
Production, emphasizing those that are most relevant for this work. Afterwards, we
also overview the Uniform Information Density Hypothesis (UID, |Jaeger, 2006, 2010;
Levy and Jaeger, [2007) which we will address in the last part of the dissertation. These
elements will serve to set up a context in order to better understand and motivate the

contributions made in the following chapters.

2.1 Accounts of Human Language Production

We take Language Production to refer to the process performed by humans when en-
coding an idea or message representation into an utterance conveying such information,
in contrast to Language Comprehension, where an utterance is mapped to a message
representation. These two skills permit humans to communicate in a seemingly effortless

way.

Language production is a very rapid process: in a normal fluent conversation we produce
2-3 words per second, corresponding to about 4 syllables and 10 or 12 phonemes (Lev-
elt, 1999). Each word is selected from a large vocabulary, typically containing 50-100
thousand words in a normal literate person (Miller, 1991). In spite of this speed, errors
are rare: one is produced no more than once or twice in 1000 words (Garnham et al.,
1981)). Language production is also one of the most exercised human skills: in less than
40 minutes of talking a day, we will have produced around 50 million words by the time
we reach adulthood (Levelt, |1999).

The study of this human phenomenon has been approached from a variety of perspec-

tives, including the analysis of speech errors, reaction times, production preferences,

8
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and neurophysiological activity. The results of these approaches have led to the pro-
posal of several models and accounts of human language production, each one seeking to
explain some aspects of the available empirical evidence. In this section we will briefly
review some of the most influential models and accounts, while introducing the empirical

evidence that inspired them.

2.1.1 Speech Errors

Some of the earliest investigations of language production analyzed the errors that people
exhibit normally in conversation, assuming that the nature of these errors would give

insight into the mechanism that generated them.

Meringer and Mayer| (1895) presented a large collection of German speech errors, which
permitted the distinction between errors related to form (“Studien” instead of “Stun-
den”) and to meaning (e.g., “ihre” instead of “meine”), with a large proportion related
to both. An important aspect that was later recognized is that these errors very often
involve some notion of similarity. That is, errors related to form often concern elements
with similar form, and likewise, errors related to meaning concern elements with similar

meanings.

Specific types of errors include (Carroll, 2007)):

o exchanges (e.g. “mell wade” for “well made”)
o anticipations (e.g. “taddle tennis” for “paddle tennis”)
o perserverations (e.g., “been abay” for “been away”)
o blends or contaminations (e.g., “evoid”, blending “avoid” and “evade”)
o additions (e.g., “moptimal” for “optimal”)
o deletions (e.g., “pecific” for “specific”)
o shifts (e.g., “she decide to hits it” for “she decides to hit it”)
o substitutions (e.g.”tennis bat” for “tennis racquet”)
Given the regularities of the reported errors, as they generally involve elements with

some relation to the intended utterance, Meringer and Mayer (1895) proposed three

reasons for them:

1. interference from intended elements of the utterance
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2. interference from an alternative formulation of the intended thought

3. interference from an unintended thought

where interference may be caused by competition at different levels of representation

(see Butterworth) |1981]).

Some errors related to the third reason correspond to what Freud| (1924) described and
linked to interfering unconscious thoughts; however, these errors also include cases where
the speaker is well aware of alternative competing ideas, or where there are external
stimuli interfering with the intended message (e.g., Garrett, 1980; [Hill, [1973; [Meringer
and Mayer, 1895)). Some authors have tried to integrate these errors into their own
theoretical frameworks (e.g., [Butterworth, 1980), some others have tried to reduced
them to instances of the first two reasons (e.g., |[Ellis, [1980; |Timpanaro, (1975); but in
general, research has been focused on the first two reasons as the corresponding errors

seem to be the most common and less controversial.

Another possible source of errors that has been postulated, in contrast to interference,
corresponds to cases where noisy communication between different processing modules
introduces addressing errors. For example, for the case of sound related substitutions,
Fay and Cutler| (1977) proposed that phonological items are organized in a phonological
basis (e.g. all one-syllabled words beginning with /t/ are grouped together in similar
areas, all three-syllabled words beginning with /k/ are also grouped together and so
on.). Then, during retrieval, slight changes or mutations on the address of the intended
element would result on the retrieval of distinct but similar elements to the intended

ones.

2.1.2 Utterance Generator (Fromkin) 1971)

The first attempt to relate speech errors in a systematic way to an integrated linguistic
theory was made by |[Fromkin (1971). She took the speech error findings available at
the time and related them to generative grammar. The result was a theoretical speech
production model, called Utterance Generator, whose features ranged from semantics to

phonetics (see Figure 2.1).

In the first stage of this model, the message to be conveyed is generated. Then a syn-
tactic structure is created, linking structural syntactic elements with semantic features.
This structure is created prior to lexical selection in order to account for the fact that
word switches occur only within and not across clauses (Fromkin) 1973]). Additionally,

creating a syntactic structure before lexical selection would account for the fact that
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FIGURE 2.1: Utterance Generator. Adapted from (1971).



Chapter 2. Background 12

word exchanges only occur between words of the same syntactic category. In the third
stage, an intonation contour for the whole structure is generated. Having the intonation
contour before lexical selection is intended to explain why the former does not seem to
be affected by word exchanges. At the fourth stage, lexical selection occurs, starting
with content words and then function words. This order is intended to explain the
phonological accommodation that function words undergo with respect to the linguistic

environment given by content words.

As one can see, this model is strictly top-down, where only one clause can be processed at
a time, and where each stage has no access to higher or lower levels. While this model can
account for a wide variety of speech errors, its strictly top-down nature fails to explain
the lexical bias, which is the tendency of speech errors to form real words more often
than non-words; among other phenomena that suggest more free interactions between

stages.

Fromkin| (1971) noticed that substitutions seem to occur when there is similarity either in
form or in meaning between the intended element and an alternative one. This required
the postulation of abstract features which do not show up in the final utterance but
that are shared amongst the exchanged elements. Thus, she proposed abstract semantic
features to explain meaning related substitutions, and thus, introduced the idea of the

need for different levels of production or representation.

2.1.3 Model of Garrett| (1975)

Garrett) (1975) made more explicit this idea of levels of production or representation,
noting that although speech errors can be elicited at all levels of linguistic representation,
from phonemes to complete phrases, the elements involved tend to belong to only one
level. For example, word exchanges can span some distance and mostly preserve the
grammatical category and function within their clauses. Similarly, exchanges of sound
or form (e.g. “rack pat” for “pack rat”) ignore grammatical category and occur between
words that are close to each other. This suggested at least two different modular levels
of production: one related to syntactic categories and another to the position of forms
(morphemes, phonemes), which integrated the main components of his model of sentence

production(Garrett|, 1975, see Figure 2.2).

In this model, three levels are proposed:

1. Message Level: where the intended message is generated.

2. Sentence Level: where lexico-syntactic aspects of the sentence are defined.
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FIGURE 2.2: Garret’s model of sentence production. Adapted from (1975).

3. Articulatory Level: where instructions to the articulatory system are defined.

The Sentence Level is further divided into Functional and Positional levels, where the
first one is related to lexical selection, as well as the syntactic constraints governing
the selected words; and the second one is related to segment interactions and phonemic
information. The separation of these two levels is motivated by speech error data.
Meaning-related errors (e.g., word substitutions where an intended word is replaced by
an unintended but semantically similar word with the same syntactic category) would
occur at the Functional Level, while form-related errors (e.g. morpheme shifts or sound

exchanges) would occur at the Positional Level. Additionally, this separation would

explain phonological accommodation. Finally, and like Fromkin| (1971)), \Garrett| (1975))

also emphasizes that content words are retrieved prior to function words, in view of some
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word exchanges where function words seem to adapt to content words even if the latter

are exchanged.

Garrett’s model of sentence production is very similar to that proposed by [Fromkin
(1971). In both cases, different levels of representation or processing are postulated,
and the sequence of processing is strictly top-down, where each level dominates the
immediate level down. Additionally, while |Garrett| (1975) does not commit to a sin-
gle representation being processed at a time, allowing possibly for parallel processing,
it is not clear how multiple parallel representations might interact with each other.
Consequently, these models have difficulties explaining lexical bias, blend errors, errors
concerning competition between alternative formulations of the intended thought, and

errors where an unintended thought interferes with the intended one.

2.1.4 Spreading Activation Theory (Dell, 1986

Similar to previous accounts, |Dell (1986) also proposes different levels of processing.
However, in this case the levels can interact not only top-down but also bottom-up.
Moreover, each level is formed by a number of connected nodes representing distinct
linguistic units (e.g., concepts, words, morphemes, phonemes, etc.) and following con-
nectionist principles. This results in an account described as globally modular and
locally interactive, where each two subsequent levels present interactions top-down and
bottom-up (see Figure 2.3). Like the previous models, this one also focuses on explaining

the evidence available regarding speech errors.

Although the theory contemplates a semantic level that specifies the meaning represen-

tation of the intended utterance, this theory describes mainly 3 levels of processing:

1. Syntactic: words are chosen and arranged according to the grammar rules.
2. Morphological: words are specified in terms of their constituent morphemes.

3. Phonological: words are spelled out in terms of their sound.

In each level there is a set of rules defining the combinatorial possibilities of units at
that particular level; for example, at the syntactic level, the rules specify the syntactic
categories and their combination within a sentence. Using these rules, a representation
is constructed simultaneously at each level, with the rate of processing depending on
each level and on the level immediately above it. In general, the selection of items
for a lower representation must await the construction of the structures of the higher
representation. Nonetheless, the degree to which processing at a higher level is ahead of

the processing at a lower level can vary.
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When a node is activated, activation spreads to all the nodes connected to it. Then
the items with highest activation that follow the combinatorial rules are selected. After
selection, their activation level immediately reduces to zero in order to avoid repeti-
tions. According to this theory, speech errors are elicited because an incorrect item will

sometimes have a higher activation than the correct one.

Given that the different levels interact flexibly with each other, a speech error can be the
result of influence coming from multiple levels. As an example, Dell| (1986]) quotes some-
one saying “Let’s stop” when “Let’s start” was intended. In this case, one can recognize
the semantic relation between the intended word and its substitution, however, one can
also recognize phonological similarity, as the substitute word shares a common sound
with the appropriate word. Errors of this nature have been shown to be overrepresented
in speech errors corpora, where substitutions errors involve simultaneously meaning and

phonological similarity (Dell and O’seaghdha, |1991; Harley, 1984]).

2.1.5 Model of Levelt (1989))

The model presented in [Levelt| (1989)) has become a point of reference in language pro-
duction research. Considering the available evidence, the author gave a very detailed

description of the process of speech production, from intention to articulation. The

TACTIC FRAMES LEXICAL NETWORK

m @ @ ?

WORD WORD

sa  Sv Ay Aty
m ?

FIGURE 2.3: Production process for the sentence “Some swimmers sink”. From [Dell
(1986)).
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model consists of three main autonomous components that are responsible for different

aspects of speech production (see Figure 2.4):

1. Conceptualizer: It is responsible for generating the message to be communicated,
encoding it into some kind of coherent plan, and monitor what is about to be
said as well as what has been said. For the generation of a message, it has ac-
cess to procedural and declarative knowledge, including encyclopedic knowledge
of the speaker, knowledge about the situation, and the discourse record of the
conversation. The message generation occurs in two stages: macroplanning and
microplanning. The first consists of the elaboration of a communicative goal into
a series of subgoals, and the retrieval of information to be expressed in order to
realized these subgoals. Microplanning involves giving a propositional shape to
each of these ‘chunks’, and assigning the informational perspective (topic and fo-
cus), that will guide the addressee’s attention. The product of these two stages is
a Preverbal Message, an organized conceptual structure that is not yet linguistic,

and that constitutes the input for the next component.
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2. Formulator: It is responsible for translating messages into a phonetic or articula-
tory plan. In order to achieve this, it has access to a mental lexicon, which is a
repository of knowledge about the words in the language. Each lexical item is spec-
ified by a lemma, containing declarative semantic and syntactic knowledge, and a
form, containing information about the morphology and phonology of the word.

Formulation occurs also in two stages: grammatical and phonological encoding.

During grammatical encoding, the lemmas whose meaning match part of the pre-
verbal message are activated, which will make their syntax available, which in
turn will activate certain syntactic building procedures. Using these procedures,
the Grammatical Encoder builds syntactic structures such as verb or noun phrases.
Retrieval of lemmas (lexical access) occurs following the Spreading Activation The-
ory (Dell, 1986)), described above. In this view, the lemmas selected are those
with the highest activation, which varies according to how their semantics match
the concepts in the preverbal message. When the relevant lemmas have been
retrieved and the related syntactic procedures have finished, the Grammatical
Encoder would have produced a surface structure, an ordered string of lemmas,

grouped in phrases and subphrases of various kinds.

During phonological encoding, a phonetic or articulatory plan is retrieved and
built for each lemma and for the entire utterance. This is done using the form
information in the lexicon related to each lemma. Afterwards, several phonological
procedures would modify the form information that is retrieved. The result of this
process, the phonetic/articulatory plan (alternatively called “internal speech”),

becomes the input for the next component.

3. Articulator: It specializes in the motor execution of the phonetic plan, involving
the respiratory, laryngeal and supralaryngeal systems. Considering possible dif-
ferences between the rate in which the Formulator delivers the phonetic plan,
and its execution by the Articulator, an Articulatory Buffer is proposed, where
the phonetic plan can be temporarily stored. The Articulator retrieves chunks
from the Articulatory Buffer and unfolds them for execution. The product of this

component is overt speech.

The monitoring process, for which the conceptualizer is responsible, is assumed to occur
utilizing components of language comprehension. Thus, speakers can monitor their
internal speech, detecting problems before articulation; and their overt speech, assessing

the meaning and well-formedness of their productions.

The components are modular in the sense that each component depends only on its input

and apart from that there is no communication or interaction with other components.
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The process is incremental, as the output of each module is delivered as soon as the
required information is available, and are normally used immediately by the next module.
The model works both serially and in parallel, where the output of one module becomes
the input of the next one, and all modules work at the same time although on different
parts of the message. Finally, some parts of the model are assumed to work automatically
without allocation of attentional resources. These aspects: incrementality, parallel and

serial processing, and automaticity; allow for real time language production.

Although some of its parts and assumptions have been questioned, this model has been
taken by many researchers as a framework for language production. It gives a complete
view of the process, dividing it into several subtasks. Each one of the latter has been
approached by different models, each one trying to describe and empirically verify their

mechanics.

2.1.6 Aphasia Model (Dell et al., (1997))

Following the principles of the Spreading Activation Theory, Dell and colleagues pro-
posed the Aphasia model (Dell et all [1997). This model focuses on explaining errors
concerning lexical access of aphasic and non-aphasic speakers in picture naming experi-

ments.

The model describes how a pattern of activation corresponding to the meaning of a
word is translated to a pattern corresponding to the sounds of the word. This process

is assumed to occur in two steps:

1. Lemma Selection: a concept is mapped onto a lemma, a non-phonological repre-
sentation of a word, which is often associated to grammatical properties such as

gender and number.

2. Phonological Encoding: a lemma is transformed into an organized sequence of

speech sounds.

Evidence for these steps comes from the tip-of-the-tongue (TOT) phenomenon, where
a speaker is aware that a word exists but cannot access its sounds. Furthermore, some
studies show that speakers in a TOT state know some grammatical properties of the
word being sought, such as gender (Miozzo and Caramazza, |1997; Vigliocco et al.l [1997)).
These steps are represented in the aphasia model (see Figure 2.5) by semantic features

being mapped onto words and then onto phonemes.

Lemma selection starts by adding activation to the semantic features of the intended

word. Then, activation spreads for a fixed number of time steps and according to a noisy
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FIGURE 2.5: Aphasia Model. Connections are excitatory and bidirectional. From |[Dell
et al.| (1997)).

linear activation update rule. Bidirectional excitatory connections of the model cause
that the activation spreads in the 3 levels. At the end of this process, the most activated
word of the correct syntactic category is chosen. Because of the activation noise, there
is a small chance that a formal, semantic or mixed neighbor is chosen, instead of the
intended word. It is also possible although more unlikely that a completely unrelated

word is chosen.

Phonological encoding begins with a boost of activation of the word chosen during lemma
selection. This boost introduces a nonlinearity that permits the model to handle the
arbitrary mapping between semantic features and phonemes. Activation spreads then
for another fixed number of time steps. At the end, the most highly activated phonemes
are selected and linked to slots in a phonological frame. Errors at this point can occur
if, due to noise, one or more phonemes are more active than those of the selected word.

This would typically result in non-words.

This model was computationally implemented and used to explain the speech errors of
aphasic and non-aphasic speakers. In order to accomplish that, the authors manipulated
2 variables: the connection weights between each level, and the decay rate of activation.
In both cases, speech errors are caused due to a higher level of noise introduced. Nonethe-
less, lesions to connection weights promoted errors producing non-words or unrelated
words; while a higher decay of activation was related to more formal, semantic or mixed

errors, showing that even though the noise was dominating, the errors were related to
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the intended word because the connections between levels were still strong. Modifying
only these 2 parameters, [Dell et al.| (1997) were able to fit the distributions of errors
of 21 out of 23 aphasic patients, being able also to fit them after some recovery of the

patients by manipulating the same parameters.

Being able to account for speech errors, permitting a graceful degradation through only
altering a couple of parameters, the aphasia model was one of the most influential models
of the speech error literature. Its key limitations, however, included that the connection
weights were manually set and not learned, and that the output of the model was not
sequential and phonemes were all retrieved at once. These two aspects were taken into

consideration in the Phonological Error model (Dell et al., |1993)), presented below.

2.1.7 Phonological Error Model (Dell et al., (1993

While the aphasia model involved a mapping from a semantic representation to a word
and then to phonemes, the Phonological Error model focuses on the process of Phono-
logical Encoding, that is, on mapping a word to a sequence of phonemes. This model
tries to integrate the principles of Parallel Distributed Processing (PDP), which stresses
the parallel and distributed nature of (artificial) neural networks, and the process of

learning the associated parameters.

This model implements a Simple Recurrent Neural network (SRN, Elman, [1990; |Jordan,
1986) mapping a word representation to a sequence of phonological features (see Figure
2.6). The input layer (“Lexical” in Figure 2.6) contains a representation of the word to be
spoken, that remains unchanged during the production of the word. In different versions
this representation was either a random bit vector related to a lemma or semantic
representation, or a vector correlated to the form of the word (either an underlying
phonological representation or the orthographic input for a reading aloud task). The
output layer contains 18 units corresponding to 18 phonological features. The input and
output layers are connected via a hidden layer. Additionally, the model contains two
sets of recurrent connections or context units feeding the hidden layer, one containing
the activation of the hidden layer at the previous time step (“Internal Context” in Figure
2.6) and another one containing a copy of the output layer at the previous time step

(“External Context” in Figure 2.6).

The word production process occurs as follows: at the beginning, the internal context
units are set to zero, and the external context units are set to a pattern signaling a
word boundary (0.5 in every unit). Production then starts when the input units are
activated in a pattern corresponding to the target word. Activation spreads from input

and context units to the hidden layer, which in turn spreads its activation to the output
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units. To the extent that the output differs from the expected output, the connection
weights are changed using the backpropagation algorithm (Rumelhart et al., [1986]), thus
conflating training with processing. Then, the activation of the hidden units and output
units are copied to the internal and external context units respectively. At the next
and following time steps, changes in context units allow the model to produce the next
elements in the sequence. Finally, production stops when a word boundary pattern is

produced.

The focus of this model was to explain phonological speech errors giving an account that
did not use a frame-and-slot approach. Frame-and-slot models assume two processes
during word phonological encoding: one involving the retrieval of the sounds of a word,
and another one involving the retrieval of a phonological frame. A frame represents the
number of syllables and the location of stress in a word. Within a frame each syllable
is associated with slots that label the kind of sounds acceptable for that slot. Some
speech errors have been proposed as evidence for this approach (Shattuck-Hufnagel,
1979)), including:

e Phonotactic regularity errors: speech errors tend to follow the phonotactic patterns

of the language.

e Syllable constituent errors: syllables are thought to have an internal constituent
structure, and speech errors reflect this structure. For example, considering a CVC
syllable, one is more likely to elicit an error regarding either an onset (C) or a coda

(VC) than other combinations.
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e Sound exchanges: for example “heft lemisphere”, where an initial anticipatory
substitution appears to cause another substitution in which the replaced sound
replaces the anticipated sound; suggesting under a frame-and-slot approach that
each sound was erroneously placed in the frame slot of the other word. Although
these errors are not very common (only 5-10% of phonological errors), they are

clearly not random events.

In order to produced speech errors, noise was introduced into the connection weights.
The resulting errors had a strong tendency to follow the phonotactics of the language.
Furthermore, errors tended to involve the hypothesized frame constituents, having more

syllable onset (C) than syllable coda (VC) errors, and more rime (VC) than CV errors.

This behavior was attributed on the one hand, to the sequential nature of the architec-
ture, where each item to be produced depends on the previous ones; and on the other
hand, to the statistical nature of the corpus used to trained the model. Thus, errors
reflect English patterns because the model was trained on English words, such that dur-
ing training, weight changes created pathways describing possible derivation sequences,
and when an error is elicited, the model sticks to those pathways. Moreover, errors
related to a syllable constituent structure reflect statistical patterns of English, where
at the beginning of a word there is more uncertainty than at the end, hence, there are
more onset than coda errors; and more errors tend to involve rime (VC) than CV units
because English has fewer VCs than CVs (Kessler and Treiman, (1997)).

Although the model was able to account for a large proportion of the errors, it supplied
no mechanism to explain sound exchanges. Nonetheless, its principles highlighted two
important aspects during language production: its sequential and incremental nature,

and the influence of statistical patterns in the corpus used to train the model.

2.1.8 Structural Priming Model (Chang et al., (1997)

This was the first computational model of human sentence production. It was developed
to simulate structural priming, which is the tendency of speakers to repeat syntactic
structures of sentences that were recently spoken or heard (Bock, [1986b; |Bock and
Loebell, 1990; [Pickering and Ferreira, 2008). The central claim of this model is that
structural priming is a form of implicit learning; thus, it is a consequence of the same

mechanism through which the model learns to produce sentences.

The model follows connectionist principles and its architecture (see Figure 2.7) is similar
to the Phonological Error model, where the input layer has learnable connections to a

hidden layer, which in turn has learnable connections to an output layer. Additionally,
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FIGURE 2.7: Structural Priming Model. Figure from [Dell et al.| (1999)).

context units influence the activation of the hidden layer, however, in this case the
context units are assumed to be the result of a comprehension system that is linked to

production.

The input layer contains a representation of the message to be conveyed in the form of
a 87-dimensional vector, where each dimension corresponds to a localist unit signaling
semantic features. These features are grouped in blocks corresponding to event roles of
the message: agent, patient, location and action. For example, the agent group contains
features including CHILD, MALE and UNITARY. The representation of this message

remains unchanged during the production of the sentence.

While the activation of the input units related to these features signaled its true value,
the relative degree of activation signaled the aspects upon which sentence production
should focus. Thus, in active sentences, the agent block would present relatively more
activation than the patient block, and vice versa in passive sentences. Similarly, the dif-
ference between representations preferring a double object dative versus a prepositional
dative was a difference in activation between the patient and recipient blocks. This is
meant to reflect studies showing lexical priming effects on grammatical role assignments,
where the easier it was to select a word to express a substantive concept, the more
likely it was to be encoded as a sentential subject (Bock, 1986al [1987). Furthermore,
other studies showed that more conceptually available elements in the message (due to
being more topical, imageable, animate or prototypical) are placed in more prominent

grammatical roles than are less accessible ones (Bock and Warren, [1985; Ferreira, [1994]).
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Chang et al| (1997)) made certain aspects of the meaning representation more accessible

by assigning them relatively more activation.

The context units in this model are supposed to approximate input from the compre-
hension system which is assumed to be accessible during production. In this view, the
context units, called Transition Network, reflect the current state of the sentence from
the perspective of the comprehension system. This information is represented by 10
units fully connected to the hidden layer, each one associated to a syntactic or an event
role category (e.g., VERB, AUX, AGENT, PATIENT). During production, activation of
these units vary according to the previously produced word. For example, after a noun,
the AGENT and PATIENT units would become active, reflecting that the previously
produced noun could be either an agent or a patient with some ambiguity; meanwhile,
after a verb, the VERB unit would become active, in this case without ambiguity. Addi-
tionally, each node retained half of its activation across the production of each individual

word.

The output layer contains 59 localist units corresponding to words in the vocabulary.
The training corpus consisted of 3600 sentences including different syntactic alternations,

such as passive or active sentences, and double object or prepositional dative.

The process of sentence production is as follows: The context units are initialized with
a PERIOD (which is different from the period symbol in the output layer), signaling the
beginning of a sentence. The input units are activated to the pattern corresponding to
the message to be conveyed. At each time step, activation propagates from input and
context units to the hidden layer, which propagates its activation to the output layer.
The word with highest activation at the output layer is the one selected for production.
Then, activation of the context units change as described above, for example, after a
verb is produced, the context unit VERB would be activated, while the context units
activated at a time step before would reduce its activation by half. Similar to the
Phonological Error model, the input units remain with a constant activation during the
whole process, while the context units change their activation according to the state of

production, allowing the model to have a sequential behavior.

Training was performed using the backpropagation algorithm (Rumelhart et al., 1986)
with weight changes after each word, with a learning rate of 0.06 for the first quarter
of training and 0.03 for the rest, and with a momentum of 0.9. During training, each
sentence in the corpus was shown to the model an average of 31 times. The model was
tested afterwards on 400 sentences, out of which 74% were novel sentences. On this set,

the model produced the correct word 94% of the time.
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In order to test structural priming, the learning mechanism continued working. First,
the model was shown a prime message that required either an active or a passive sentence
(alternatively a double object or prepositional dative). As in training, the connection
weights were adjusted as the sentence was produced with a learning rate of 0.03. Finally,
the model was given a target message that was neutral with respect to conceptual ac-
cessibility; for example, a message that could be encoded by a passive or active sentence
would have equal activation in the agent and patient blocks. The percentage of times
that each structure was produced as a function of the prime was recorded, the differences

constituted a measure of the priming effect.

The sizes of the priming effects patterned with the data. For example, having as prime
“boys chase dog”, the model would promote “girls feed cat” over “cat is fed by girls”.
Furthermore, the model successfully simulates the persistence of priming over 10 in-
tervening sentences (Bock et al., [1996), exhibiting the phenomenon that motivated the
view of priming as implicit learning. Nonetheless, the model failed to exhibit some of
the effects shown by Bock and Loebell| (1990), where the priming seemed to be related
to the surface constituent structure of the sentence, rather than to a mapping between
event and grammatical roles. The reason for this was proposed to be at least partially
due to the nature of the input representations, where each feature in the message is

completely independent of the others, denying any possible similarity.

2.1.9 Dual-Path Model (Chang, [2002)

The evidence of Bock and Loebell (1990) suggested that some structural priming effects
were related to promoting the surface constituent representation of the prime sentence,
rather than relations between specific semantic concepts and grammatical roles. This
would entail that between semantics and syntax, there is a significant independence or
abstraction, where a grammatical construction could be promoted in a general way and

not just for the specific semantic concept related to the priming sentence.

This dissociation between syntax and semantics was taken by |Chang (2002) as inspira-
tion for his Dual-Path model, which has since become the most influential connectionist
model of sentence production. In this view, event roles and semantic concepts can be
bound in a manner that does not necessarily reflect the training experience, permitting
bindings that were not seen before during training. This would allow the model to be
able to generalize to a greater degree, showing systematicity, which refers to the ability of
cognitive systems to handle novel elements generalizing from known ones. This ability is
argued to be necessary while modeling human cognition in general (Fodor and Pylyshyn,

1988; [Marcus, [1998a,b), and particularly while modeling human sentence production, as
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FIGURE 2.8: Production Simple Recurrent Network Model. From |Chang and Fitz
(2014).

the number of sentences in a language is infinite, and therefore most of them would be
novel to a model (see also Dell et al., [1999)).

compares two architectures for sentence production: one that is very
similar to the Structural Priming model, named Production Simple Recurrent Network
(Prod-SRN, see Figure 2.8), and the Dual-Path model (see Figure 2.9). The focus of the
comparison was to see how each architecture was able to generalize and produce novel

sentences.

The Prod-SRN model utilizes the same type of input representations as the Structural
Priming model. Furthermore, it also maps the input layer to a hidden layer and then
to an output layer that contains the words in the vocabulary. However, the context
units differ; as in this case they consist of two sets of units: one containing a copy of
the activation of the hidden layer at the previous time step, and another one containing
the word that was produced also at the previous time step. Compared to the Phonolog-
ical Error model, the Prod-SRN model has the same architecture, but operates at the

sentence level, producing sequences of words, instead of sequences of phonemes.

An important aspect of the message representations used by the Prod-SRN model and
the Structural Priming model is that they are binding-by-space representations, mean-
ing that if a concept appears in different roles, each combination concept-role would
be represented by different neurons. For example AGENT-DOG and PATIENT-DOG

would be represented by different neurons with no apparent relationship, even though
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they share the element DOG. Although this is a common practice in neural networks
(e.g., Miikkulainen) [1996; [St John and McClelland), |1990), this prevents the model from

learning similarities and generalizations over slots and fillers.

The Dual-Path model, shown in Figure 2.9, presents a more complex architecture com-
pared to the previous models. The key feature of this model is its role-concept binding
mechanism (see top right of Figure 2.9 ), which in contrast to binding-by-space represen-
tations where for example the pair AGENT-DOG would be represented by a localist unit,
the Dual-Path model introduces a binding-by-weight mechanism, which is implemented
by temporal links within the architecture. For example, considering the roles AGENT,
PATIENT and ACTION, and the concepts DOG, CAT, CHASE and BITE; the message
of “dog chases cat” would be represented in the network by having a constant positive
connection weight from the role AGENT to the concept DOG, from PATIENT to CAT,
and from ACTION to CHASE (as appears in Figure 2.9) and all other connections would
have connection weights of zero. In this way, activation can flow from the role AGENT
to DOG, but not to CAT, as the latter has no connection to AGENT in this given
example. Similarly, for the sentence “cat bites dog”, there would be positive connection
weights between AGENT and CAT, PATIENT and DOG, and ACTION and BITE, and
all other connections would have weights of zero. Thus, the connection weights in this
part of the model are not learnable and constitute part of the message representation of
the sentence to be produced. This type of binding is assumed to be related to the spatial
processing mechanisms of the brain, in which object and location/action information are
represented in different pathways, which are then bound together for spatial processing
(Goodale and Milner} 1992; Mishkin and Ungerleider, (1982).

At the core of the architecture, a hidden recurrent layer is responsible for the sequential
nature of the model, this layer is associated to a set of context units that contain the
activation of the hidden layer at the previous time step. Additionally, one can distinguish
two pathways of processing. The first one, named the sequencing system, corresponds
to the pathway PrevWord > Compress > Hidden > Compress > NextWord in Figure
2.9. The layer PrevWord consists of localist units where only the word produced at the
previous time step is active. The NextWord layer corresponds to the output layer and
it also consists of localist units where each unit represents one word in the vocabulary.
The Compress layers represent steps of abstraction, the first one maps a word to an
abstract low-dimensional representation, proposed to be similar to syntactic categories;
while the second one maps an abstract representation to specific words. As one can
see, this pathway is very similar to the segment PrevWord > Hidden > NextWord of
the Prod-SRN model (see Figure 2.8), with the exception of the two Compress layers.

According to the author, this pathway learns sequential behavior of words, as it has
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semi-direct connections to the next and previous words (only divided by the Compress

layers).

The second pathway corresponds to PrevWord > CompConcept > CompRole > Hid-
den > Role > Concept > NextWord. The segments CompConcept > CompRole and
Role > Concept correspond to the binding mechanism previously described and their
connections are defined by the message to be conveyed. The segment PrevWord > Com-
pConcept > CompRole can be thought as a comprehension counterpart to the segment
Role > Concept > NextWord. In this case, PrevWord contains the word produced at
the previous time step which learns to activate its related concept, which in turn acti-
vates the appropriate role given the temporary links, which effectively feeds the hidden
recurrent layer with the role activated at the previous time step. In this way, one can see
that the hidden recurrent layer does not operate directly over concepts in the message
representation but only over event roles. Consequently, the syntactic behavior of the

recurrence is independent of lexical content.

The last part of the model consists of a block of localist units called Event Semantics
(see top of Figure 2.9) signaling the number and type of roles to be encoded in the
sentence. For example, one role for “the dog sleeps” and two for “the girl chased the boy”.
Additionally, activation of this units varied systematically according to the intended
sentence. For example, AGENT would be less activated if a passive sentence is to be
produced. In general, this layer is useful for the model to select the proper structure

when several alternatives are available.

Production occurs as follows: First the context units are initialized to 0.5, the event
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semantics units are set according to the type of sentence to be produced, and the con-
nection weights between Role and Concept, and between CompConcept and CompRole
are set according to the message to be conveyed. At the first time step, activation
spreads from the context and the event semantics units to the hidden layer, which in
turn spreads its activation both to the second Compress layer and to the Role layer. The
Role layer would then activate the Concept layer. Finally, the output layer NextWord
would receive activation both from the Concept layer and the Compress layer. The unit
in NextWord with highest activation is selected as the word produced at that time step.
The unit in PrevWord related to the previously produced word is activated, additionally
the activation of the hidden layer is copied to the context units. At the following time
steps, the process is identical except that the hidden layer also receives activation origi-
nated from PrevWord, traversing on one pathway the first Compress layer, and on the
other pathway CompConcept and CompRole. This continues until the model produces

a period “”, signaling the end of production.

These two architectures (the Prod-SRN model and the Dual-Path model) were both
trained using backpropagation (Rumelhart et al., 1986). After training they were tested
for generalization according to 3 tasks. In the first task the models were tested to see
if a word could appear in a role that was not seen during training; for example, if the
models were able to produce “dog” in a goal position of a dative sentence. The second
task tested whether the models were able to produce structures of the form “a X is a X”,
in which the models had to generalize a novel word to 2 sentence positions; for example
“a blicket is a blicket” (Marcus, [1998b)). The third task tested if the models were able to
produce novel adjective-noun pairs; for example, produce “happy cake”, where during
training “happy” was only seen coupled with animate nouns and during testing it was

tested whether it could be produced modifying inanimate nouns.

In all 3 tasks, the Dual-Path model showed considerably greater degrees of generaliza-
tion, providing a closer match to human level syntactic behavior. For instance, for the
first task the Dual-Path model produced correct utterances 88% of the time, while the
Prod-SRN model only 6%. The overall difference was attributed to the fact that the
syntactic knowledge in the Dual-Path model was separated from the lexical content of
the message. This separation was needed to ensure that abstract syntax was learned.
As explained by |Chang (2002), the Prod-SRN model showed poor generalization, and
rather memorized the mapping between particular meanings and particular word se-
quences, partly due to the binding-by-space localist representations, and partly due to
its architecture. Consequently, the Prod-SRN model violated the property of System-
aticity, which Fodor and Pylyshyn (1988) argued is a fundamental feature of human

cognition.
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The Dual-Path model was further tested on a variety of structural priming phenomena
in|Chang et al. (2006)), assuming that priming was a product of implicit learning. Similar
to the Structural Priming model, it was more likely to describe a target message using
the same structure of the prime, regardless of the number of fillers intervening between
prime and target, reproducing the effects of Bock and Griffin! (2000). Furthermore, the
model successfully reproduced the effects of Bock and Loebell (1990) and Bock! (1989)),
where priming was related to the surface structural representation of the prime, rather
than to its semantic content or to specific function words. Nonetheless, according to
Chang et al.|(2006), due to the small learning rate, inherent to the account of priming
as implicit learning, the Dual-Path model was unable to show lexical boost, which is
the strong but short-lived priming effect that occurs when the prime and target present
overlap of content words such as verbs or nouns (Cleland and Pickering}, [2003; Hartsuiker
et al.,|2008; Pickering and Branigan, |1998]). Consequently,|Chang et al.|(2006)) suggested
that lexical boost was caused by a different short-lived mechanism, a prediction that was

confirmed two years later by Hartsuiker et al.| (2008).

Additionally, the Dual-Path model has been tested comparing a Japanese and an English
version (Chang, [2009). The model was able to learn the patterns of each language with
similar levels of grammaticality while producing novel sentences (93% for English and
95% for Japanese). Furthermore, it could explain production preferences between speak-
ers of the different languages, namely, Heavy NP shift (Arnold et al., [2000; [Hawkins,
1994, 2004; Ross|, 1967)) and aspects regarding lexical/conceptual accessibility. Heavy
NP shift refers to the tendency of English speakers to prefer configurations where long
phrases are placed later in sentences, showing a short-before-long bias. Japanese, on
the contrary, presents a long-before-short bias (Hawkins, |1994; Yamashita and Changj,
2001)). These preferences were reproduced by the model, and an analysis of its internal
representations suggested that the phenomenon was caused by a difference in the relative
importance of meaning and surface structural information at the choice point where the
two word orders diverge. In English, this choice point is placed after the verb, while in

Japanese it is at the beginning of the sentence.

Regarding lexical/conceptual accessibility, in English speakers prefer to use animate
elements early in a sentence (McDonald et al., |1993) which can lead to the use of less
common structures, like passives (e.g. “the man was almost hit by a car”). Using
the Dual-Path model, |Chang| (2009) noticed that these preferences were related to the
frequency of the input sentences, where sentences with animate subjects were more
frequent, and after training, the model would present this preference as well. Analogous
patterns were reproduced in the Japanese model, showing that while both versions shared

the same architecture, each one adapted to the statistical regularities of its language.
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Other phenomena in which the Dual-Path model was tested include preferential looking
during language acquisition (Chang et al., 2006, the production of relative clauses
during language acquisition (Fitz, 2009) and aphasic sentence production (Chang, 2002;
Gordon and Dell, 2003).

2.2 Uniform Information Density Hypothesis

In the previous section, some of the main models of human language production were
introduced. They described the process of production by defining representations and
operations over these representations. Thus, they can be regarded as operating at the
algorithmic level of analysis (Marr} [1982). In this section we will describe the Uniform
Information Density Hypothesis (UID, Jaeger, [2006, [2010; Levy and Jaeger} 2007)), which
is an account of language production operating at the computational level of analysis,

defining the goal of the computation and why it is appropriate.

UID stems from the notion that human language production is an efficient process,
which has been approached before. Considering the relation between word frequency and
form, |Zipf| (1929) noticed that frequent words have shorter forms, and later proposed the
Principle of Least Effort (Zipf, 1949), stating that human behavior presents a preference
to minimize the amount of work over time. More recently, Piantadosi et al.| (2011)) showed
that word length is even more strongly correlated with the average word predictability of
a word in its context than with its frequency alone. Furthermore, it has been found that
more predictable instances of the same word have on average shorter durations and less
phonological /phonetic detail (e.g., Aylett and Turk, 2004, 2006; Bell et al., 2003, 2009).
This relation reflects information theoretic considerations about efficient communication
(Shannon (1948)), where words that add more information to their context (are less

predictable) have longer forms.

UID builds on the Entropy Rate Constancy Principle, which states that the entropy
related to sentences remains constant through a text. Then, if one does not consider
context, the entropy of a sentence would increase with the location of the sentence within
the document (Genzel and Charniak, 2002). Similarly, the Smooth Signal Redundancy
Hypothesis, proposes that the pressure of producing robust communication while effi-
ciently expending articulatory effort leads to an inverse relationship between language
redundancy and duration. Such behavior would improve robustness in communication
by spreading information more evenly across the speech signal (Aylett and Turk, 2004]).
In both cases, the speaker is assumed to behave rationally (see |Anderson, [1991), trying

to optimize its behavior in order to achieve optimal communication.
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Expanding from these notions, UID proposes that language production is affected by a
preference to distribute information across the linguistic signal as uniformly as possible
given the encoding possibilities of the language. This assumes that human communi-
cation is efficient, balancing the risk of transmitting too much information per time,
increasing the risk of information loss or miscommunication; and the desire to convey

as much information as possible with the least amount of linguistic units.

Following such strategy, speakers would achieve optimal information transmission over
a bandwidth-limited noisy communication channel (Genzel and Charniak, 2002), by
transmitting a constant amount of information per time, and that is close to, but be-
low, the channel capacity. The channel capacity is defined as the maximum amount of
information per transmission through a noisy channel that can be transmitted with an
arbitrary small error rate (Shannon) [1948), and thus characterises the upper bound of

the processing capacity of the comprehender.

Additionally, following UID, speakers would minimize the comprehension effort related
to the produced utterances, provided that the effect of surprisal on comprehension diffi-
culty is superlinear (Levy and Jaeger, [2007); where surprisal refers to the negative log
probability of a linguistic unit conditioned on its context, which measures the amount

of information contained in that unit:

surp(x) = —logP(x|context) (2.1)

The way to achieve uniform surprisal profiles (information density) relies on the avail-
ability of multiple ways of encoding a meaning representation into linguistic units, which
depend on the constraints given by the grammar of the language. According to UID,
a speaker would prefer among these possibilities, the ones with more uniform surprisal

profiles.

For example, in the case of that-ommission in complement clauses (see Figure 2.10),
speakers have the option of including the complementizer “that” or not. The channel
capacity in Figure 2.10 is represented by the gray horizontal line in each graphic. Con-
sidering word surprisal and how it evolves over time, in the first case (Figure 2.10, above)
omitting the complementizer would result in surprisal at “we” that would be beyond the
channel capacity, which could cause comprehension/communication errors; therefore,
mentioning the complementizer would be preferred, decreasing the information density
at that point. For the second case (Figure 2.10, below), omitting the complementizer
renders a sentence that is already below the channel capacity, mentioning the comple-

mentizer would decrease the information density even more, which would reduce the
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efficiency of communication; consequently, in such case, omitting the complementizer

would be preferred.

Evidence supporting this hypothesis has been found at different linguistic levels. Con-
cerning speech rate, words with high information content are spread over longer periods
of time (Aylett and Turk, [2004; Bell et al., [2003). Similarly, phonemes that are highly
informative are produced more slowly and with more articulatory detail
[Van Santen, 2005)). At the morphology level, Frank and Jaeger (2008) showed that full

forms of “be”, “have” and “not” tend to be used at points of high information density,

as opposed to reduced forms (e.g., “I am” vs “I'm”). At the level of syntax, speakers

are more likely to produce optional functional words (“that”), when the following words

would otherwise be high in information content (Jaeger, 2006; Levy and Jaeger, [2007)).

While evidence suggests the plausibility of UID, some important issues remain. One
is the study of the nature of the channel capacity, which is hypothesized to bound
communication, but it is not clear what factors affect it, or even how to measure it.

Another issue concerns a description at the algorithmic level of analysis. The UID
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hypothesis only describes why a uniform information transmission rate is desirable, and
the empirical evidence supports the idea of its existence; however it is not clear what

mechanism would implement such strategy.

2.3 Summary

This section summarizes the main points presented in the previous two sections, enumer-
ating aspects that are important to be considered while modeling language production,

and highlighting those that are most relevant for this thesis:

e Speech errors suggest that language production is performed through a sequence
of levels. The units over which each level operates are organized such that during
production, similar elements compete, and errors are elicited when a similar but

different element is activated in exchange of the intended one.

o Lexical bias and the overrepresentation of errors involving both form and meaning

similarity suggest that different levels interact both top-down and bottom-up.

o The Aphasia model Dell et al| (1997) demonstrates that some speech errors can
be explained by varying the level of noise within a neural network. Additionally,
it corroborated that an architecture with top-down and bottom-up interactions is

able to explain the phenomena mentioned in the previous point.

o The Phonological Error model (Dell et all 1993) shows that a large proportion
of errors can be accounted by implementing a sequential and incremental archi-
tecture that creates dependencies and coherence amongst the elements produced.
Additionally, it highlighted the importance of the statistical patterns of language,

being able to explain different phenomena during phonological encoding.

o The Structural Priming model (Chang et al., 1997) shows that a similar architec-
ture as the Phonological Error model could be used to explain phenomena at a
sentence level. Specifically, it was able to explain structural priming as a product

of implicit learning.

e Systematicity is an important attribute of cognitive models, and specially for sen-
tence production, since the number of sentences related to a language is infinite.
The Dual-Path model was able to produce sentences with high levels of system-
aticity by separating syntax from semantics, which was achieved by a binding-
by-weight mechanism that merges the architecture of the model with the message

representation. This same mechanism was able to reproduce the effects of|[Bock and
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Loebell (1990), which also suggested a separation between syntax and semantics,

amongst other phenomena.

o As explained by (Chang et al.| (1997) and Chang (2002)), a lack of systematicity
is at least partially due to the nature of localist representations, where similarity

between different elements cannot be assessed by looking at their representations.

o The Uniform Information Density Hypothesis Jaeger| (2006, 2010);|Levy and Jaeger
(2007) is an account placed at the computational level of analysis that considers
language as an efficient process, reflecting information theoretic considerations
about efficient communication. In such account, linguistic units are produced
with a preference to distribute information across the linguistic signal as uniformly
as possible given the encoding possibilities of the language, balancing, on the
one hand, the risk of transmitting too much information per time, increasing the
risk of miscommunication; and on the other hand, the desire to convey as much
information as possible with the least amount of linguistic units. Evidence for this
is available at different linguistic levels (e.g., Aylett and Turkl [2004; Bell et al.,
2003; [Jaeger, [2006), however, it is not clear what algorithmic mechanism would
implement such account, or the way to measure the capacity of the communication

channel.

The following chapters approach some of these aspects by presenting a new model of
sentence production. This model possesses a similar architecture to the Phonological
Error model and the Structural Priming model. Consequently, this new model is also
incremental, sequential and able to learn and behave according to the statistical pat-
terns of the training examples. Nonetheless, the semantic representations that are used
as input are distributed and continuous, and thus to some extent mitigate the difficulties
associated to the use of localist symbolic representations. Using these continuous rep-
resentations, the model is tested for systematicity, demonstrating a high performance,
while reproducing some findings of the speech error literature. Additionally, the inter-
nal dynamics of said model is analyzed, arriving to an algorithmic account of language
production using recurrent neural networks. Finally, the model is extended in order
to provide a first mechanistic account at the algorithmic level of analysis of the UID

Hypothesis.
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Semantic Representations

The first stage of language production is related to the instantiation of a mental repre-
sentation of the message to be conveyed. While the model proposed here is not meant
to simulate the construction process of these representations, they are important as
they constitute the input of the model, which fundamentally influences its behavior. If
a model uses representations that are not appropriate, the performance of the model
might be hindered, even if the architecture would otherwise permit a good fit to exper-
imental data. Furthermore, if a model uses representations that are dissimilar to those
used by humans, the explanatory value of the results might as well be questioned. In
this perspective, identifying appropriate representations is a fundamental aspect to take

into account during computational modeling, perhaps as important as the architecture.

For the simulations described here, the message to be conveyed corresponds to semantic
representations based on the Distributed Situation Space model (DSS, [Frank et al.,
2003}, [2009). Briefly put, each semantic representation under this scheme is a vector in a
continuous multidimensional space, containing rich information describing the situations

in which the corresponding sentence is true.

These representations were successfully used in the connectionist comprehension model
described by [Frank et al. (2009) (see also |Venhuizen et al., 2018), showing that their
model was not only able to comprehend sentences that it had seen during training, but
that it is also able to comprehend sentences and situations that it had never seen before,
thus showing semantic systematicity. As mentioned in the previous chapter, system-
aticity has been argued to be a fundamental property of cognitive systems (Fodor and
Pylyshyn, 1988), and is specially important for sentence comprehension and production,
considering that while the number of words in the vocabulary of a language is finite, the
number of sentences allowed for the same language is infinite. As a result, any model

trying to learn a language has the challenge of learning it without having access to all

36
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the possible sentences of it; and likewise, any model of language comprehension and/or

production must be able to process sentences that have not been encountered before.

More concretely, for the simulations presented in the next chapters, two types of repre-
sentations were used. The first one corresponds to the representations defined by [Frank
et al. (2009)), called situation vectors. The second type is a modification of the latter
which is introduced as part of this thesis, called belief vectors, which showed a better
performance in the language production task. This chapter presents an overview of
the Distributed Situation Space and its situation vectors, as well as the belief vectors,

showing advantages and disadvantages of each type of representation.

3.1 Symbolic Localist Representations vs Situation Models

As seen with the models presented in the previous chapter, most connectionist mod-
els of sentence processing, either of production or comprehension, use symbolic localist
representations, where only one or few dimensions of a vector are activated (set to 1),
while the rest are set to zero; corresponding to a structural combination of symbols
representing the propositional content of a sentence (e.g., Budiu and Anderson, 2004}
Chang}, 2002; |Chang et al., 1997} Desai, 2007). While this is a simple way to introduce
information into the models, the format of these representations might lack the expres-
siveness necessary to emulate the kind of mental representations that are utilized by

humans during language processing.

Some studies suggest that during language comprehension, the semantic representation
formed by the comprehender is not just a propositional structure of the utterance, as
traditionally assumed (e.g., Kintsch and Van Dijk,|1978), but involves a simulation of the
situation that the utterance describes, a situation model. This is similar to the theory
of Johnson-Laird (1983), which states that the mental representation of the meaning
of a proposition involves a representation of one or more concrete situations that are
consistent with the proposition. Experimental evidence supporting this idea has been
presented (for a review, see [Kerkhofs and Haselager, [2006). For example, Stanfield and
Zwaan (2001)) found that readers mentally represent the orientation of objects when they
are implied. Similarly, [Zwaan et al.| (2002) found that the shape of objects forms part
of the mental representation of a sentence even if this shape is not explicitly mentioned

or relevant.

Considering language comprehension as the construction of a simulation, the process
would depend strongly on the experience and knowledge of the comprehender about

the world (Frank et al., 2009). As a consequence, the mental representations used by
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computational models should reflect and include world knowledge about the implications

of a given utterance.

In this context, Frank et al. (2009) further proposed that mental representations of
this nature lead to direct inference. A representation of an event A is said to have the
property of direct inference if the representation of A also represents any event B, if B is
an implication of A (see also Haugeland, 1987). Consequently, relations between events
in the world are reflected in the relations between the representations of the events. In
this case, one can also say that the form of a representation is analogous to its meaning
(Frank et al., |2009). Representations that are analogous and modal were referred to as
“perceptual symbols” by Barsalou| (1999)), however, following Frank et al.| (2009), we will
use the term “symbol” in the sense of Peirce (1903/1985), referring to tokens with an

arbitrary relation between form and meaning.

Symbolic localist representations contain very limited information of what is being rep-
resented. For example, a localist unit related to the proposition play(charlie) gives no
information about its implications in the world, as in itself the representation is only
an index that is related to a set of connection weights that link that representation to
the rest of the network. The nature of what is represented has to be learned through
training and the result of that training is the modification of the connection weights
and not the representation. If after training one introduces a new unit play(heidi), the
model would have no means to encode the similarity of these two units, as they would
be linked to two different sets of connection weights, and any relation would have to be
learned by exposing the model to multiple training items involving both of these units.
Consequently, the model would be unable to handle representations that have not been

seen during training, exhibiting a lack of systematicity.

Another disadvantage of using discreet symbolic representations is that their represen-
tational space is finite and bound by the number of units. With pure localist representa-
tions where only one unit can be active at a time, the number of representable entities is
equal to the number of units n. If multiple units can be active simultaneously, then the
number of representable entities is at most 2. Even if 2" grows rapidly with the number
of units, it is still finite, which is problematic, considering that, because of recursivity,

the number of possible sentences in a language is infinite.

In sum, the form of a symbolic representation provides no information about the nature
of what is being represented (in this case, the situation models related to the meaning
of sentences), since the form of each representation is not related to its meaning. Conse-
quently, information about how a represented element relates to other elements cannot
be obtained from the representation itself, and would have to be learned during training,

preventing the model from properly processing elements that have not been encountered
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before. Additionally, the limited representation capacity of localist representations im-
plies that they cannot be used to represent infinite sets, which is something necessary to
represent the sentences of a language and the situation models that are related to them.

These aspects highlight the need for an alternative representational scheme.

3.2 Distributed Situation Space Model

Taking into account some of the considerations presented in the previous section, the
Distributed Situation Space model (DSS, |Frank and Haselager, 2006; Frank et al., 2003,
2009)) was proposed. The main motivation was to build semantic representations with
the property of direct inference. This would be accomplished if co-occurrence relations
amongst events would be apparent by comparing their representations. In particular,
having only the representations of any pair of events: A and B, one should be able
to calculate P(A|B). If this holds, the representation of B would also be representing

anything that depends on B, thus, showing direct inference.

The representations obtained from the DSS model indeed have te property of direct
inference. They are also analogous, as the form of each representation depends on what
is being represented. They provide rich information about the meaning of each sentence
in terms of the situations to which a sentence refers, permitting the comparison of
any pair of semantics just by looking at their representations. Furthermore, they are
continuous representations, and as such, the number of semantics that one can represent
is potentially infinite, an attribute that is necessary in order to represent infinite sets,
such as the set of sentences of a language. These aspects make DSS representations
a possible solution to the disadvantages of symbolic localist representations that were

described in the previous section.

More concretely, the DSS model represents events with respect to a microworld, which
consists of a small set of entities interacting with each other, and which is struc-
tured in the sense that there are probabilistic constraints on event co-occurrence. This
microworld is defined by a finite set of basic events (e.g., play(charlie,chess) and
place(heidi, bedroom))—the smallest meaning-discerning units of propositional mean-
ing in that world. Paired to a microworld, a microlanguage permits the generation of
sentences expressing information about situations in the microworld. With these el-
ements, pairs of the form (sentence,semantics) can be obtained, corresponding to the
(input,output) of the comprehension model of Frank et al. (2009), and the (output,input)

of the language production model presented in this thesis.
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Class Variable  Class members (concepts) #
People p charlie, heidi, sophia 3
Games g chess, hide&seek, soccer 3
Toys t puzzle, ball, doll 3
Places X bathroom, bedroom, playground, street 4
Manners of Playing — myjqy well, badly 2
Manners of winning — Min easily, difficultly 2
Predicates - play, win, lose, place, manner 5

TABLE 3.1: Concepts in the microworld (Frank et al., |2009).

In the rest of this section, we will overview the microworld and the microwlanguage
that were used for the simulations, as well as the process of obtaining the DSS semantic

representations that have the properties mentioned above.

3.2.1 [Frank et al. (2009))’s Microworld

For the simulations presented in this thesis, the same microworld defined by |[Frank et al.
(2009) was used. In this microworld there are 3 people (2 girls and 1 boy), 4 places, 3
games and 3 toys, as shown in Table 3.1. People can be located at any time in one of
the 4 places, and play a game or with a toy. Additionally, there are 2 manners of playing
and 2 manners of winning. By combining each of the 5 predicates with their possible
arguments, 44 basic events can be constructed (e.g. play(charlie, chess), win(sophia),
place(heidi, bathroom)). These 44 basic events can fully describe the state of affairs of

the microworld at any given point.

This microworld presents structure in the sense that there are probabilistic constraints
on event co-occurence. That is, some events tend to co-occur while others are not allowed
to co-occur at all. These constraints can be divided in 4 categories; from each category
we will only mention the most salient, for further details see section 2 of [Frank et al.
(2009)):

e Personal characteristics: Each person tends to play a particular game and with a
particular toy. For example, Charlie likes and is skilled (tends to win) at playing
chess. Likewise, Sophia likes to play soccer and Heidi likes to play hide&seek.

Also, each person tends to be in some locations more often than others.

e Games and Toys: Each game and toy can be played only in certain locations. For
instance, soccer can only be played in the street and a puzzle can only be played
with in the bedroom. Some games/toys demand a specific number of participants,
like chess that needs exactly 2 players. Each person can only be playing one game
or with one toy at a time, and only a combination of playing soccer and playing

with a ball is allowed.
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e Being There: Each person can only be in one place at a time. If someone plays
hide&seek in the playground, all players are in the playground; and the two players

of chess are in the same place.

e Winning and Losing: People cannot win and lose at the same time, and there
cannot be more than one winner. If someone wins, all other players lose, and if
there is a loser, there must be one winner. Winning and losing can only happen
while playing a game. Finally, winning is usually done “easily” by someone who

plays “well” and “difficultly” by someone who plays “badly”.

3.2.2 Situation Space

Having defined a microworld, the next step to obtain the desired representations cor-
responds to the construction of a Situation Space. |Frank et al| (2009) do this by au-
tomatically generating a large number of ‘observations’ of the states-of-affairs in their
microworld. A particular observation O, is related to an instance in the microworld
and is obtained by, stochastically and according to the probabilistic regularities of the
microworld, setting each basic event to true (1) or false(0), yielding a binary vector
O, € [0, l]K , where K equals the number of basic events in the microworld (see Fig-
ure 3.2). The number of necessary observations N depends on the complexity of the
interactions within the microworld. In general, it should be large enough, such that the
sampled observations approximate the probabilistic nature of the microworld in terms of
the (co-)occurrence probability of the basic events. Frank et al|(2009) sampled 25,000
observations (N = 25,000) from their microworld. For the simulations presented here

the same number of observations was used.!

After sampling the necessary observations, they are put together into a situation space
matrix (see Table 3.2), with dimensionality N x K, where N is the number of sampled
observations and K is the number of basic events defining the microworld. Each column
in the resulting matrix constitutes the situation vector of the basic event that is related
to it. A situation vector encodes the meaning of an event in terms of the observations

in which the event is true.

Following the notation of Frank et al.| (2009), we refer to the situation vector related to

an event a as p(a), and p(a) = (p1(a), ..., un(a)) € [0, 177V,

!Thanks to Harm Brouwer for providing the code to generate the situation space that we use here.
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observation;
observationy
observationg

| —| o| play(charlie,hide&seek)
o| —| ~| manner(win,difficulty)

—| o| =| play(charlie,chess)
o| o| o| play(charlie,soccer)

observation y 0 1 0Of..1]0

TABLE 3.2: Situation Space matrix.

3.2.3 Complex Events

A boolean combination of basic events is called a complex event. In propositional logic
any boolean combination of propositions can be expressed using only the operators of
negation and conjunction. Therefore it is only necessary to define these in order to be

able to obtain the situation vector of any complex event.

Frank et al|(2009) defines these operations as is common in fuzzy logic:
p(=a) =1 - (o) (3.1)

pila A b) = pi(a)pi(b) (3.2)

With these two definitions the situation vector of any complex event can be computed.

For example, a disjunction is defined as a V b = =(—a A =b). Consequently, y;(a V b) =
1= ((1 = pa(a)) (1 = i (b)) = pia) + pi(b) — pi(a)a(b)-

Situation vectors of basic and complex events correspond to the semantic representations
sought by [Frank et al. (2009). In general, they represent the meaning of an event in
terms of the observations in which that event is true. This is similar to the approach of
distributional semantics in which the meaning of a word is defined in terms of the words

with which it appears, or the documents in which it appears.

3.2.4 Computing Probabilities

Situation vectors come with the benefit that they encode probabilistic information about

their corresponding events. For a given event (either basic or complex), one can estimate
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the prior probability of that event by calculating the average over the components of

the corresponding situation vector:
1
Pla) =+ > ni(a) (3.3)
i
Similarly, the probability of a conjunction can be estimated by:
Plant) = =3 pila)p(b (3.4
anb) = > i(@)i(b) 4)
(2

with a # b. If a = b, then, Frank et al. (2009) defines P(a A a) = P(a).

The conditional probability of an event a given another event b (P(alb)) is called the
belief value of a given b, because it represents the extent to which a might be believed

to be true, given b. This can be computed using the two previous equations:

5 @)
”Mﬁfg&m:lzm@ (35)

According to the rules governing the microworld, not all complex events are possible or
equally probable. For example, in the microworld defined by [Frank et al.| (2009), a person
cannot both win and lose at the same time (win(charlie) Alose(charlie)). Consequently,
after performing the operations needed to obtain the corresponding situation vector,
one would arrive to a vector filled with zeros, reflecting the probability of that event;
likewise for all situation vectors related to complex events that are not allowed within

the microworld.

It is important to note that these estimations are accurate to the extent that the number

of sampled observations NN is large enough to be representative of the microworld.

3.2.5 Dimensionality Reduction

As previously mentioned, the number of observations N has to be large enough in order
to be able to obtain accurate probability estimates. However, if N is very large, the
dimensionality of the situation space becomes impractically large. Thus, considering
the 25,000 observations sampled from their microworld, Frank et al. (2009)) applied a
dimensionality reduction technique in order to transform the situation vectors directly
obtained from the observations into vectors with a more manageable dimensionality,
while trying to maintain the probabilistic nature of the situation space. As Frank et al.

(2009)) explains, this procedure is merely a tool to obtain compressed representations,
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and is not intended to simulate the psychological process of developing event represen-

tations.

The dimensionality reduction technique consists of a self-organizing system called Com-
petitive Layer, which contains M units. Each of these units is assigned K values, each
one related to one of the K basic events defining the microworld. Putting these val-
ues together, one obtains a matrix similar to the situation space matrix, but with a
dimensionality of M x K, in contrast with the original situation space matrix with

dimensionality N x K.

During training, the units in the Competitive Layer adapt to the observations in an
unsupervised manner resembling a Self-Organizing Map (Kohonen), [1995). The specific
algorithm, as described in [Frank et al. (2009), begins by associating each unit m to a
weight vector pi,,, € [0,1]* and a single bias unit b,,. Initially all weights are equal to

0.5 and all biases equal 1.

Training is performed during 20 epochs. During each epoch the following is performed

for each observation O,,:

1. For each unit m, determine the cityblock distance between the weight vector of

that unit and the current observation:

d(ftm, On) = Z ’Nﬁz - Oiﬂ (3.6)
k

where % and OF refer to the value in the k-th dimension of y,,, and O,, respectively,

which are related to the k-th basic event in the microworld.

2. Select the winner w, which is the unit with the shortest biased distance to O,,:

w = argminy, (d(tm, On) — by) (3.7)

3. Update the weight vector of the winner:
Apw = (O — fiw) (3.8)

where « is the weight learning rate.

4. Decrease the bias of the winner (with a minimum of 1):
Aby, = Bby (1 — by) (3.9)

where (3 is the bias learning rate.
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S NpV P o APP, .

Nperson charlielheidi|sophia|someone|the boy|a girl
Ngame chess|hide& seek|soccer| football|a game
Nioy a puzzlela ball|a doll|a jigsaw|a toy

plays
wins|beats Nperson
loses|loses to Nperson

VPpeTson,play
person,win

VPperson,lose

V Pyame,play is played

V Pyame,win is won

V Pyame,lose is lost

V Pioy play is played with

[Ngame][Manner][Place]| P Pioy [Place]|Place PPioy
[PP'manne'r][PPgame][Place”PPgame PPmannerl
Place PPyame

[PPyame][Place]|Place PPyame
[Manner|[Person][Place]

[Manner][Person][Place]

[PPperson][Place]

APPpe'rson,play
APPpe'r'son,win

APPperson,lose
APPga'me,play
APPgame,win
APPga'me,lose

L A

APPyoy play [PPperson][Place]|Place PPperson

Manner well|badly

Place inside|outside|PPpjqce

PPpace in the bathroom|in the shower|in the bedroom|in the street|
in the playground

PPperson by Nperson

PPgame at Ngame

PPy with Nioy

PPranner with ease|with dif ficulty

TABLE 3.3: Grammar of the Microlanguage. Variable n € {person, game, toy} denotes
nouns; v € {play, win, lose} denotes verbs; VP=verb phrase; APP=adverbial/preposi-
tional phrase; PP=prepositional phrase. Items in square brackets are optional.

5. Increase the bias of all losers, with m # w :

Aby, = Bbp, (3.10)

a and 8 were initially set to 1 and 0.0001 respectively. After each of the first 10 training
epochs, their values were reduced linearly to end up at 10% of the initial values. During

the last 10 epochs, they remain at these levels.

In Frank et al. (2009)), and as previously stated, N = 25,000 and K = 44. Additionally,
the value of M was chosen according to the quality of the resulting vectors, which was
measured by comparing the true (conditional) probabilities in the microworld to the
corresponding belief values obtained from the reduced situation vectors. Larger values
of M generally lead to greater correlation coefficients, implying better results. Having
M = 150, the correlation coefficient was very good (r > 0.996), with little improvement
for larger values of M. Therefore Frank et al.| (2009) set it to 150.

This process allows us to obtain situation vectors for each basic event with a dimensional-
ity M = 150. Situation vectors for complex events can be obtained through conjunction
and negation operations, as previously described, in this case using the vectors with

reduced dimensionality.
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3.2.6 [Frank et al. (2009))’s Microlanguage and Examples Set

Events in the microworld are described by sentences obtained from a microlanguage.
This microlanguage consists of 40 words that can be combined into 13556 sentences
according to its grammar. For the simulations in this thesis, the grammar of [Frank
et al.| (2009) was minimally modified by introducing the determiners “a” and “the”, and
an end-of-sentence marker, leaving a total of 43 words in the vocabulary. The resulting

grammar can be seen in Table 3.3.

During the process of sentence generation, propositional logic semantics are attached
to each sentence (see examples shown in Table 3.4). These in turn are later converted
to situation vectors by applying the operations described above (in order to obtain
situation vectors for complex events) over the situation vectors related to the basic

events contained in the propositional logic semantics.

Using the grammar of the microlanguage, a set of sentences with their corresponding
situation vectors was generated.? This set comprises the dataset on which the model of

Frank et al|(2009)) was trained, as well as the models presented here.

The grammar allows the generation of 13556 sentences, however, many of the sentences
describe situations that are not allowed according the the rules governing the microworld,
consequently having empty situation vectors. These were removed, leaving a total of
8201 sentences.? From these, 6782 sentences were in active voice and 1419 in passive.
Note that this set contains sentences with simple semantics (e.g., “charlie plays chess.”
— play(charlie, chess)), as well as sentences with complex semantics (e.g., “a girl plays

chess” — play(heidi, chess) V play(sophia, chess)).

As one can see in the first two examples in Table 3.4, many sentences are related to
the same semantic representations. In total, there are 782 unique semantic representa-

tions, from which 424 are related to both passive and active sentences. The rest (358)

2Thanks to Harm Brouwer for providing the code to generate the sentences with their corresponding
situation vectors.

3A sample of the sentences can be found in Appendix A, a full list can be found in:
https://github.com/iesus/thesis-production-models/blob/master/sentences.txt

Sentence Semantics

charlie plays chess. play(charlie, chess)

chess is played by charlie. play(charlie, chess)

sophia plays with a ball in the street. | play(sophia,ball) N place(sophia, street)

someone plays with a doll. play(charlie, doll) V play(sophia, doll) V play(heidi, doll)

charlie loses to sophia. win(sophia) A lose(charlie)

sophia beats charlie at chess. win(sophia) A lose(charlie) N\ play(sophia, chess)

charlie wins inside. win(charlie) A (place(charlie, bedroom) V place(charlie, bathroom))
sophia plays soccer well. play(sophia, soccer) A manner(play(sophia), well)

TABLE 3.4: Examples of sentences generated with the microlanguage, paired with the
propositional form of the described event.


https://github.com/iesus/thesis-production-models/blob/master/sentences.txt
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corresponds to situations that can only be expressed by active sentences according to
the grammar. More concretely, the grammar does not define passive sentences for situ-
ations where the object of the action is either a person (e.g. “Heidi beats Charlie.”) or
undefined (e.g. “Charlie plays.”). While the grammar of [Frank et al. (2009) could be
extended in order to define passive constructions for these situations, it was left as it is

in order to inspect the behavior of the models with regards to generalization.

Putting together sentences related to the same semantics, and separating active and
passive sentences, a dataset was constructed. The dataset consists of a set of pairs
{(DSS1,¢1),...,(DSS,, vn)} where each DSS; corresponds to a situation vector plus
a bit indicating if the pair is related to active (1) or passive (0) sentences (DSS; €
[0,1]"1); and @; = {senty,...,senty} where sent; is a sentence, a sequence of words
wordy, . .., word,, expressing the information contained in DS.S;. Each set y; represents
all the possible sentences that express the information contained in the corresponding

DSSS; and in the expected voice. In total, there are 1,206 (DSS;, ;) pairs.

3.3 Belief Vectors

The unreduced situation vectors introduced by [Frank et al. (2009) explicitly mark in
which observations the given event is true, out of the 25,000 sampled observations.
For each observation, if the given event is true, there will be a 1 in that dimension,
0 otherwise. After applying the dimensionality reduction, the 25,000 observations are
reduced to a set of 150 pseudo-observations, in which the probabilistic structure of the
microworld is loosely preserved. The resulting 150-dimensional situation vectors are
more manageable and can serve as input or output to a computational model, which is

their main purpose.

Nonetheless, as consequence of the dimensionality reduction, some information is lost
during the process. Concerning the microworld defined by [Frank et al. (2009), informa-
tion regarding adverbial modification, such as “well”, “badly”, “with ease” and “with
difficulty”, is no longer available. For the sake of comparison, the 150-dimensional situ-
ation vectors defined by [Frank et al.| (2009) were used first for the simulations presented
in the next chapters, but later on the focus was given to belief vectors. These vectors
are derived from the original 44 x 25,000 dimensional matrix and could be regarded as

an alternative way to obtain vectors with reduced dimensionality.

In general, a belief vector corresponds to the most likely state-of-affairs of the microworld,
given a (complex) event. This is calculated by taking all the observations (amongst the

25,000 sampled) in which the event is true, and then averaging their states-of-affairs.
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Basic Event i P(i|sent)
play(charlie, chess) 1.0
play(charlie, hide _and_seek) | 0.0
play(charlie, soccer) 0.0
play(heidi, chess) 0.51138406
play(heidi, hide__and _seek) 0.0
play(heidi, soccer) 0.0
play(sophia, chess) 0.48861594
play(sophia, hide__and__seek) 0.0
play(sophia, soccer) 0.0
play(charlie, puzzle) 0.0
play(charlie, ball) 0.0
play(charlie, doll) 0.0
play(heidi, puzzle) 0.07789095
play(heidi, ball) 0.10515279
play(heidi, doll) 0.15248652
play(sophia, puzzle) 0.0724985
play(sophia, ball) 0.17765129
play(sophia, doll) 0.09916117
win(charlie) 0.29448772
win(heidi) 0.07789095
win(sophia) 0.07759137
lose(charlie) 0.15548232
lose(heidi) 0.15368484
lose(sophia) 0.14080288
place(charlie, bathroom) 0.0
place(charlie, bedroom) 1.0
place(charlie, playground) 0.0
place(charlie, street) 0.0
place(heidi, bathroom) 0.06590773
place(heidi, bedroom) 0.68544038
place(heidi, playground) 0.14529658
place(heidi, street) 0.1033553
place(sophia, bathroom) 0.07579389
place(sophia, bedroom) 0.63780707
place(sophia, playground) 0.16536848
place(sophia, street) 0.12103056
manner(play(charlie), well) 0.1758538
manner(play(charlie), badly) 0.20581186
manner(play(heidi), well) 0.09556621
manner(play(heidi), badly) 0.09946075
manner(play(sophia), well) 0.09496705
manner(play(sophia), badly) 0.09137208
manner(win, easily) 0.07219892
manner(win, dif ficultly) 0.05152786

TABLE 3.5: Belief vector related to the sentence “charlie plays chess.”.

This is not necessarily in conflict with a neural interpretation of the original situation
vectors. With the original 25,000 dimensional situation vectors, the meaning of an
event is represented by activating all observations in which the event is true. Thus,
assuming that each observation itself has an internal representation and that similar
representations would share common structural elements, it is not difficult to imagine
that the activation of all observations in which one event is true would be similar to
the activation of the mean state-of-affairs across all observations in which the event is
true. For example, let us imagine 3 observations that are related to a sentence. These
observations have 2 features in common but differ in a third one. If we assume that each
feature is represented neurologically only once, then activating the 3 observations at the
same time (thus activating the meaning of the sentence) would imply the activation of

the 2 common features and each of the individual features. If activation is cumulative,
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then the activation pattern would be a vector where the 2 common features would be
activated 3 times and each of the individual features only once. This is equivalent to a
belief vector, except that the belief vector would have an extra step corresponding to the

normalization in order to transform the sum over the activation values into probabilities.

An alternative and equivalent way to obtain belief vectors is by taking the dot product
between the original 44 x 25,000 dimensional situation space matrix and the 25,000
dimensional situation vector that is associated to the complex event, and then dividing
each dimension of the resulting vector by the number of ones in the original 25,000

dimensional situation vector:

A- sv;
b = = (3.11)

SU;

J
where A is the 44 x 25,000 dimensional situation space space matrix, sv; is the 25,000
dimensional situation vector of the event 7, and j is an index related to each dimension in
sv;. The resulting vector bv; contains 44 dimensions, each one associated to each basic
event in the microworld, and the value of each dimension is equal to the conditional

probability of each basic event given the complex event.

As an example, Table 3.5 shows the belief vector related to the sentence “Charlie plays
chess”. One can see that the vector reflects the implications of the sentence: first,
the dimension related to play(charlie, chess) is set to 1, while all other dimensions of
the form play(charlie, ) are set to 0. Then, place(charlie, bedroom) is also set to 1
because chess can only be played in the bedroom. Since chess has to be played by 2
people, and there are 3 people in the microworld, the sentence implies that either Heidi
or Sophia is playing with Charlie, and as shown by the dimensions play(heidi, chess)
and play(sophia, chess), Heidi is slightly more likely to be playing with Charlie. The
rest of the dimensions follow a similar pattern giving an intuition of the state-af-affairs

of the microworld, given the sentence.

Intuitively, the meaning of a sentence should reflect all observations that are in accor-
dance with the sentence, without enumerating each and all of the possible observations,
as this number might not be finite. Moreover, people presumably do not store each de-
tail of each observation they experience in memory, rather they likely store abstractions,
which allows them to relate similar observations even if they are not exactly the same.
The proposed belief vectors would account for that, offering an abstraction over the set

of observations related to a sentence, namely their average.

One additional benefit of belief vectors is that their dimensionality is lower and is given

by the number of basic events in the microworld, and it is not another hyperparameter.
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Finally, belief vectors are human interpretable, as each dimension is related to a basic
event. This is an aspect that later will become useful in Chapter 6, where an analysis of
the internal mechanism of the model is given, and for which human interpretable input

representations are important.

Using equation 3.11 and the original 25,000-dimensional situation vectors, a dataset was
constructed, similar to the one described in the previous section, with the only difference
being that the 150-dimensional situation vectors are replaced by the 44-dimensional
belief vectors. For the simulations presented in the next chapters, this dataset was used

as training/testing set, together with the set of 150-dimensional situation vectors.

3.4 Situation and Belief Vectors

In the previous sections the process to obtain the semantic representations (situation
and belief vectors) used in this thesis was shown. In this section, some of their main
properties will be explained and elaborated, showing their commonalities and the ad-

vantages/disadvantages of each type of representation.

3.4.1 Probabilities

The main feature sought by [Frank et al.| (2009)) was direct inference. Their situation
vectors possess this feature, since for any pair of events A and B, one can calculate P(A)
and P(A|B) using only their situation vectors, allowing the comparison of any pair of

events, drawing relations between them just by looking at their representations.

Being able to assess similarity between entities by looking at their representations is
fundamental if one expects a computational model to be able to generalize to new
inputs/outputs. In the DSS model, each event is represented by a point in a multidi-
mensional space, where similarity can be quantified by measuring the distance between
vectors. Consequently, any point within this space can be related to other points, even
if it has not been seen before. In contrast, using localist representations, each represen-
tation is independent of each other having different sets of connection weights, so any

relation or similarity between representations has to be learned during training.

Both situation and belief vectors are points in a multidimensional space. Additionally,
in both cases one can measure the similarity between representations by measuring the
distance between vectors. Nonetheless, belief vectors are formed by conditional proba-
bility values, where each dimension of a belief vector related to an event A has a value of

P(B;|A), where B; corresponds to a basic event. As a consequence, prior probabilities
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(P(A)) cannot be obtained from these representations. Likewise, conditional probabil-
ity values (P(BJ|A)) are only available for basic events. That is, one can only know the
state of the microworld given a sentence in terms of the basic events, but cannot infer
other conditional probabilities. For example, having the belief vector of the sentence
“charlie plays chess.”, one can know the probability of Charlie winning (win(charlie)),
but one cannot know the probability of Sophia playing with a puzzle in the bedroom
(play(sophia, puzzle) A place(sophia, bedroom)) given that Charlie plays chess.

The ability to calculate prior and conditional probabilities from the representations
might not always be helpful, specially for events with probabilities approaching zero.
Considering a more realistic (micro)world with more basic and therefore more complex
events, the prior probability of a large proportion of the complex events would be close to
zero, reflecting the difficulty of predicting events when the number of factors governing
a (micro)world increases. Furthermore, normal language use includes the expression of
events that are imaginary, contradictory, and other instances where an event might never
be observed. If the probability of a complex event approaches or is equal to zero, the
corresponding situation vector would as well approach a vector filled with zeros, giving
little insight about the related sentence. In such cases, belief vectors can be constructed
by setting each dimension to a hypothetical truth value even if the microworld would
not otherwise permit it. Thus, while they do not allow the computation of all the
probabilistic information that situation vectors contain, they can still be used as a

representation of events with probability equal or close to zero.

In sum and concerning probabilistic information, on the one hand, if the computation
of prior and conditional probabilities is important, then situation vectors would be the
more suitable representation to use. On the other hand, if the representation of rare or
impossible events (according to the microworld) is important, then belief vectors would
be a better option. In both cases, the representations are points in a multidimensional
space, where one can compute similarity values by measuring the distance between

vectors.

3.4.2 Information Loss

As previously explained, the dimensionality reduction technique used to obtain the 150-
dimensional situation vectors implies information loss of aspects regarding adverbial
modification. In the simulations presented in the next chapters, this loss implied that
in many cases the model was unable to differentiate some events, which motivated the

introduction of belief vectors.



Chapter 3. Semantic Representations 52

Nevertheless, going from the original 25,000-dimensional situation vectors to the 44-
dimensional belief vectors introduces a different kind of information loss. If two sen-
tences are equivalent, their situation vectors would point to the same observations, and
therefore, their mean state-of-affairs would be equal. Then, equivalent sentences would
have the same belief vectors and situation vectors, as expected. However, it is possi-
ble that different sentences related to different observations would have the same mean
state-of-affairs and thus belief vectors. This would be possible for pairs of highly am-
biguous sentences; but even then, considering that it is a multidimensional continuous
space, the probability of two vector representations coinciding in the exact point is very

low.

One can also imagine a sentence portraying two different clusters of observations. For
example, assuming the hypothetical sentence “the girl sees the man with the telescope”,
this sentence would refer to two different clusters of observations: one where the prepo-
sitional phrase “with the telescope” is attached to the verb “sees”, and another one
where the prepositional phrase is attached to “the man”. Then, the average over all the
observations, or belief vector, would be a point in the middle, with features related to
both clusters. While the resulting vector might still be uniquely related to the sentence,
the vector would be unable to represent the details of two situation models (one per
cluster of observations) at the same time, and therefore, we could say that information

regarding the details of each situation model would be partially lost.

It is unclear how many situation models people are able to construct simultaneously
and maintain in mind. While incremental comprehension implies discrimination over
possibly a large number of situations, the resulting situation model would be mostly
disambiguated by the end of the sentence, possibly rendering a single cluster of obser-
vations. Furthermore, for the case of language production, we can assume that people
would maintain a single situation model. This is similar to the case of polysemous words,
where a single word can refer to a set of possibly very different concepts; however, during

production speakers would normally refer to a single one.

For the set of sentences and meaning representations that are used for the simulations
in the next chapters, each sentence maps to a single cluster of observations uniquely
identified by its mean state-of-affairs, such that equivalent sentences map to the same
belief vectors, and also if two sentences map to the same belief vector, it implies that

they are equivalent.

In sum, 150-dimensional situation vectors preserve to some extent the information of the
25,000-dimensional original situation vectors, by enumerating amongst the 150 pseudo-
observations, the ones that are in accordance with a given event; however, some aspects of

the representations are lost, which prevents the models from differentiating some events.
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In contrast, using belief vectors one can differentiate each semantic representation in an
exact manner; however, the specific details of each observation related to a particular

event are also lost, remaining only the average over the relevant observations.

It is worth notice that in case one wants to use situation vectors, recently [Venhuizen
et al. (2018) used a different dimensionality reduction technique with the potential of

avoiding the information loss described previously.

3.4.3 Non-symbolic analogous representations

Another motivation for the situation vectors of Frank et al.[ (2009) was that symbolic lo-
calist representations do not contain information in the representation themselves about
the nature of what is being represented, and therefore one cannot make comparisons
between the represented items. This aspect of localist representations would hinder the
systematicity of a computational model, which as mentioned before, is an important
property to be considered during computational modeling of human sentence process-
ing. In exchange of localist representations, Frank et al. (2009) proposed analogous

representations.

An analogous representation is one where the form of the representation depends on what
is being represented, reflecting its properties, and it is not an arbitrary assignment. For
example, the word “chair” is a symbolic representation of the concept CHAIR, since
one would need to know English in order to have an idea of its meaning. In contrast,
a picture of a chair would be an analogous representation, since one can immediately
grasp the nature of what the representation refers to, as it is embedded in the form of the
representation. Additionally, one can immediately assess similarity between a chair and
a table by looking at their pictures, while one cannot say much about their similarity

by looking at the words “chair” and “table” without knowing English.

A representation is analogous to the extent that it contains the information that defines
a given entity and that permits us to differentiate that entity from others. Symbolic
representations do not contain much information apart from the identity of what is being
represented. For example, using localist representations, entities are represented by a
vector where only one dimension is set to 1, while the rest are set to 0. This vector
does not reflect any further information of what is being represented, and therefore,
such information would have to be learned during training. This means that any novel

representation would be unable to be processed without an amount training.

Situation and belief vectors are analogous representations that not only represent the

identity of their corresponding events, but also they include very rich information about
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the specific state-of-affairs of the microworld related to those events, thereby allowing
for ‘world knowledge’-driven inference. Consequently, events can be compared to other
events, establishing relations of similarity and/or implication, just by looking at their

representations.



Chapter 4

Sentence Production Model

This chapter presents the computational model of sentence production that is proposed

in this thesis and that was used for the simulations presented in the next chapters.

Sentence production involves the mapping of a message representation to a sequence
of words forming a sentence. In this process, not only must the appropriate words be
selected, but also they have to be retrieved in the correct order, such that the sentence
conveys the intended message representation, while meeting the grammatical constraints
of the language. Consequently, this process corresponds to Grammatical Encoding,

according to [Levelt| (1989))’s model (see Chapter 2).

According to the model of [Levelt| (1989)), during grammatical encoding a message rep-
resentation is taken as input. Then, the lemmas matching parts of the message are
activated, which in turn activate syntactic information. Using this information, syn-
tactic structures are built, such as noun or verb phrases, which put together form a

sequence of lemmas, corresponding to a sentence.

In the model presented here, the situation/belief vectors described in Chapter 3 are taken
as message representations in order to produce sentences that describe the associated
events. The output of the model corresponds to a sequence of word representations that
do not contain phonological information. As such, the scope of this model concerns only
grammatical encoding, being independent, on the one hand, of the processes that might
construct the message representations; and on the other hand, of processes concerning

phonological encoding.

Encoding at a sentence level is a much more productive process than lexical access or
phonological encoding, which mostly involve the retrieval of elements from memory (Dell
et al., 1999). Indeed, apart from instances where productive morphology can produce

new words, lexical access is restricted to the retrieval of items from a finite mental
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lexicon. In contrast, the number of sentences that can be generated using the grammar
of a language and its lexicon is infinite. Consequently, an important aspect of a model
of sentence comprehension/production is that it must be able to handle sentences that

have not seen during training, showing systematicity (see Fodor and Pylyshyn, [1988).

Other aspects that need to be considered are that human language production is incre-
mental, where the production of each word depends on the previous ones, showing an
overall coherence that follows the syntactic rules of the language; and that the statis-
tical patterns of the language are reflected in the behavior of the speakers (e.g., Bell
et al,|2003; Halel |2001bj Jurafsky, [1996)). In the rest of this chapter, the architecture of
the model and its training procedure are explained, showing how the model approaches

incrementality and how it learns the statistical patterns of the language.

The main code that implements this model can be found in appendices B and C. A full

version can be found in https://github.com/iesus/thesis-production-models!

4.1 Architecture

The model architecture, shown in Figure 4.1, consists of an input layer containing the
representation of the message to be conveyed, a 120-unit recurrent hidden (sigmoid)
layer, and a 43 unit (softmax) output layer where each unit corresponds to a word in

the vocabulary.

monitoring
O Hidden OE
N —2 20wt =
wn o
wn
Input Output
(45 units) (43 units)
context

FIGURE 4.1: Model architecture.
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The dimensionality of the input layer is determined by the chosen semantic represen-
tation (150-dimensional situation vector or 44-dimensional belief vector), plus one bit
indicating if the model should produce an active sentence (1) or a passive one (0). Thus,
the input layer dimensionality is equal to 151 when using the original 150-dimensional
situation vectors of [Frank et al. (2009)), and 45 when using belief vectors. The dimen-
sionality of the output layer matches the number of available words in the vocabulary

plus the end-of-sentence marker (43).

Time in the model is discrete. At each time step ¢, activation of the input layer dss
is propagated to the hidden recurrent layer. This layer also receives a copy of its own
activation h;—1 at time-step t — 1 (zeros at ¢t = 0) through context units. These units
help to preserve some memory of what has been produced expanding several time steps
in the past. Additionally, the hidden layer receives the identity of the word mon;_ 1
produced at time-step ¢ — 1 (zeros at ¢t = 0) through monitoring units, where only the

unit corresponding to the word produced at time-step ¢ — 1 is activated (set to 1).

More formally, activation of the hidden layer is given by:
hy = O’(VVih ~dss + Wy - he—1 + Wi - mong_1 + bh) (4.1)

where Wy, is the weight matrix connecting the input layer to the hidden layer, Wpy
is the weight matrix connecting the hidden layer to itself, W,,; is the weight matrix
connecting the monitoring units to the hidden layer, and b, corresponds to the bias unit

of the hidden layer.

Then, the activation of the hidden layer h; is propagated to the output layer, which

yields a probability distribution over the vocabulary, and its activation is given by:
outputy = softmax(Whe - ht + b,) (4.2)

where Wp, is the weight matrix connecting the hidden layer to the output layer and b,

is the vector corresponding to the output bias unit.

The word produced at time-step ¢ is defined as the one with highest probability (high-
est activation). The model stops when an end-of-sentence marker (a period) has been

produced.

As an example, Figure 4.2 illustrates the production of the sentence “someone plays
badly.”. At time step t=0, the DSS representation is fed into the hidden recurrent layer,
which in turn propagates its activation to the output layer, the output layer then yields
a probability distribution over the vocabulary. In this case, the words “someone” and

“a” have high activation. Given that “someone” has the highest activation, it is the word
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that the model produces. At time t=1, the hidden recurrent layer is fed again with the
DSS representation, but this time also the activation of the recurrent hidden layer at
t=0 and the identity of the word produced also at t=0 (“someone”). It then propagates
its activation to the output layer, which again yields a probability distribution over
the vocabulary. This time the only activated word is “plays”. At time t=2, the hidden
layer again receives the activation of the DSS representation, the activation of the hidden
layer at t=1, and the identity of the word produced at t=1 (“plays”). It then propagates
its activation to the output layer, which in this case activates the words “badly” and

[P}

a”. Since ”badly” has higher activation than “a”, it produces “badly”. Finally, the

process is repeated at t=3, but this time the model produces “”, which signals the end

of production.

t=0 t=1 t=2 t=3
w,=someone w,=plays w,=badly W=
'|~.: iT i
Words Words Words Words
A T T A
Hidden Hidden |_g| Hidden Hidden

DSS

FIGURE 4.2: Example of Production:“someone plays badly.”

The recurrent nature of this architecture, permits the model to behave incrementally,
producing one word per time step. As a result, a sequence of words produced in this
way presents coherence, as each word depends, on the one hand, on the message rep-
resentation, and on the other hand, on the words that have been previously produced,
allowing the network to enforce grammatical constraints. Additionally, in contrast to
a feedforward architecture, a recurrent architecture permits the generation of sentences
of variable length, since the number of words produced is not given beforehand, but is

chosen by the model itself by producing an end-of-sentence marker.
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4.1.1 Similar Architectures

The architecture proposed was inspired by the comprehension model of [Frank et al.
(2009), with the main difference being that the inputs and outputs are reversed, and the
inclusion of monitoring connections. As|Frank et al. (2009) explain, this is a very simple
architecture, which facilitates the assessment of the importance of the input/output

representations, with respect to the complexity of the architecture.

Indeed, as it is a production model, the architecture is even more similar to the Phono-
logical Error Model (see Chapter 2, Dell et al., 1993]), with the main difference being
that the Phonological Error Model generates sequences of phonemes given a lexical
representation, while the model proposed here generates sequences of words given a
message representation. In both cases, the input is a fixed representation that produces
a sequence of tokens of variable length. And similar to Dell et al.| (1993)), this architec-
ture is able to draw dependence relations between the tokens produced, which in their
case allowed them to account for phonological accommodation and other phonological

phenomena.

Compared to the architecture of the Structural Priming Model (see Chapter 2, |Chang
et al., [1997)), the architecture presented here is also similar, with the main difference
being that the context units are not linked to comprehension as in |(Chang et al.| (1997),
where the content of these units was set manually and trying to approximate the output
of comprehension. In the architecture presented here, the context units are not meant to
reflect comprehension processes, but rather they are used as memory units that preserve
a history of what has been produced so far. Also, their content is not set manually but

it is determined by the activation of the hidden layer at time step t — 1.

The model presented here is perhaps most similar to the Prod-SRN model (see Chapter 2,
Chang, 2002). However, the semantic representations used by Prod-SRN, as well as
the production models previously mentioned, are significantly different. In their case,
they use localist binding-by-space representations, while the model presented here uses
the DSS representations described in Chapter 3, which are continuous and distributed
representations. While (Chang| (2002) tested the Prod-SRN model for systematicity,
exhibiting less systematicity than the Dual-Path model, it is unclear to what degree

that was due to the message representations, rather than to the architecture.

Compared to the Dual-Path model (see Chapter 2, Chang, 2002), the model presented
here shares the use of a recurrent layer and the general flow of activation is to some
degree similar. The main difference is that the Dual-Path model introduces a binding-
by-weight mechanism merging the message representation with the architecture, and

that the computation is split into 2 different paths, resulting in a much more complex
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architecture. While such architecture was successful in showing systematicity, the mes-
sage representations had to be embedded into the architecture, which meant that for each
new representation, the wiring of some parts of the model had to be changed. It is not
clear how such a mechanism would be implemented neurally, and furthermore, whether

such a mechanism is necessary if one uses more expressive message representations.

Finally, one can also recognize a similarity of the model proposed here with some ar-
chitectures used in computational linguistics, most notably in language modeling and
machine translation (e.g., Mikolov et al.,|2010; Sutskever et al., 2014)). Such models show
high performance in their related tasks, being able to generalize to new input represen-
tations in an open domain context. In those cases, localist representations of words are
first converted to word embeddings, where each word is a point in a multidimensional

continuous space, similar to the DSS representations presented in the previous chapter.

4.2 'Training

The process of training consists of showing the model examples of how it is supposed to
behave for a given input. Each time a training example is given, the model changes its
connection weights in order to approach the expected output. After several repetitions
of the training examples, and if the training process is successful, the model would have

learned to exhibit the expected behavior.

Since this process relies on experience, models trained in this manner usually are able
to learn the patterns in the training examples according to their statistical properties.
For the production model presented here, the model is given examples of how to map
a semantic representation onto a sentence. Through repetition of these examples, the
model is able to identify what patterns are statistically permitted in the language, in
the semantic representations, and in the mapping between them. All this knowledge is
obtained implicitly, as the model is not given explicit syntactic or semantic rules, only

pairs of semantics and sentences.

One could relate this process of learning through experience to the process of human
language development, which is an approach that indeed some models pursue (e.g.,
Chang et al., 2006)). However, folowing |[Frank et al. (2009)), this work is not intended to

model language development, and therefore, we make no claims in that respect.
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4.2.1 Training Set

A training set for this model consists of pairs of the form (DSS, sent), where DSS is
a semantic representation, either a situation vector or a belief vector depending on the
chosen type of semantic representation for a given simulation, and sent is one of the

sentences that conveys the message of DSS.

More precisely, in order to generate a training set, we begin by taking the dataset
described in the previous chapter, which consists of a set {(DSS1, ¢1),...,(DSSh, ¥n))}
where each DS.S; corresponds to a situation or belief vector, plus an additional unit
used to indicate if the pair is related to active (1) or passive (0) sentences; and ¢; =

{senti,...,sent;} where sent; is a sentence expressing the information contained in

DSS;.

Then, considering a particular DSS;, for each sentence sent; in ¢;, create a pair
(DSS;, sent; j), where sent; ; is the j-th sentence related to the i-th DSS, and add

it to the training set. Doing this over all pairs in the original dataset generates a set:
{(DSS1,sent11),...,(DSS1, senty ), (DSSa, senta 1), ..., (DSSy, senty i)}

where k corresponds to the total number of sentences related to each DSS;, which varies
according to each DSS;. The resulting number of pairs obtained through this process
is equal to the number of sentences generated by the microlanguage that are allowed
according to the rules in the microworld. For the microlanguage of Frank et al.| (2009),

this number is 8,201.

4.2.2 Training Procedure

Prior to training, all weights on the projections between layers are initialized with ran-
dom values drawn from a normal distribution N(0,0.1). The weights on the bias pro-
jections are initially set to zero. Then the model is trained using cross-entropy back-
propagation |Rumelhart et al.| (1986), where at each time step the model is expected to
produce the word of the training sentence that corresponds to that time step. Weights
are updated accordingly after each word in the sentence of each pair (DS, sentence)

in the training set.

During training, the monitoring units are set at time ¢ to what the model was supposed
to produce at time t — 1 (zeros for ¢t = 0). This reflects the notion that during training
the word contained in the training sentence at time-step ¢ — 1 should be the one inform-

ing the next time step, regardless of the previously produced (and possibly different)
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word. During testing, the monitoring units are set to 1.0 for the word that was actually

produced and 0.0 everywhere else.

Unless otherwise specified, for the simulations in the next chapters the model is trained
for a maximum of 200 epochs, each epoch consisting of a full presentation of the training

set, which is randomized before each epoch.

An initial learning rate of 0.124 is employed, which is then halved each time there is
no improvement of performance on the training set during 15 epochs. No momentum is
used. Finally, training halts if the maximum number of epochs is reached or if there is

no performance improvement on the training set over a 40-epoch interval.

4.2.3 Testing

After training, one can test the model to verify if a specific behavior was obtained. The
nature of the procedure would depend on the aspect that one wants to test. For example,
a common practice in computational linguistics, and the machine learning community
in general, is to test the models to see if they are able to generalize to instances that do
not belong to the training set. In that case, a set of input-output pairs are separated
from the set of training examples, such that the model never sees those examples during
training. Then, the model is tested in order to see whether it is able to correctly process
those excluded items, in which case one can say that the model is able to generalize.
The degree of generalization would depend on how different the training items are from

the testing items.

Following these notions, the next chapter evaluates the model in terms of generalization
or systematicity, where the model is tested to see whether it is able to produce novel
sentences for novel semantic representations. In addition we analyze the production
patterns that are exhibited in those novel sentences. Finally, in Chapter 7, an extension
of this model is tested in order to see the behavior of the model while producing sentences
according to different policies, and how they approach the UID Hypothesis. The details

of the testing procedures are given in each of those chapters.
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Connectionist Systematicity

Language production and comprehension involve the mapping between sentences and
message representations. As mentioned in previous chapters, an important challenge in
such mapping is that both the number of sentences of a language and the number of the
related message representations is infinite. As a consequence, it is impossible to memo-
rize or even enumerate all possible sentences with their related message representations.
Then, a model of language production or comprehension necessarily needs to be able to

process novel sentences and message representations, showing systematicity.

Systematicity refers to the ability to generalize from a set of known instances of a
particular phenomenon to a set of novel instances, by profiting from the regularities
between the known and the novel ones. In terms of human language processing: “the
ability to produce/understand some sentences is intrinsically connected to the ability to
produce/understand certain others” (Fodor and Pylyshyn| [1988| p. 37). This property
has been proposed to be ubiquitous in human cognition, and even a law of cognitive
systems Fodor and McLaughlin| (1990); |Fodor and Pylyshyn (1988).

Concerning systematicity, Fodor and Pylyshyn! (1988) originated a debate arguing that
connectionist cognitive models are unable to behave systematically, and even if they
did, they would need to implement a symbolic system, similar to the one proposed
by the Language of Thought Hypothesis (Fodor, [1975), where the cognitive system
consists of a set of rules operating over a set of symbols with combinatorial dynamics
and internal hierarchical structure. If that is the case, connectionist models are reduced
to descriptions at the implementational level of analysis, with little to no explanatory

value at the algorithmic level.

Since the beginning of this debate, proponents of connectionism have argued that con-

nectionist models are able to exhibit systematicity (for a review see |Symons and Calvo
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(2014)), from a theoretical point of view (e.g., Bechtel, 1993; (Gelder} [1990)) and empiri-
cally (e.g., Bodén, [2004; Brakel and Frank, [2009; Chang, [2002; Elman, [1991). However,

until recently some issues of the debate still remain open. Among these, one can mention:

a) whether connectionist models can behave systematically,
b) whether they would be implementing a symbol system,

c¢) the reason for systematicity, that is, under which circumstances systematic behavior

is expected as an implication of the architecture and not just as a mere coincidence.

Although nowadays it is fairly accepted that connectionist models can show systematic-
ity to some degree, it has been argued that they need not only show the existence of
systematicity, but also they need to show a level of systematicity comparable to a human

level.

In order to operationalize and measure systematicity, Hadley| (1994a) proposed to define
it in terms of learning and generalization, where a neural network is said to behave
systematically if it is able to process inputs for which it was not trained. Then, the level
of systematicity would depend on how different the training items are from the testing
items. Along this line, Hadley| (1994a,b) proposed that human level systematicity is
achieved if the model is able to behave with semantic systematicity, which is the ability

to construct correct meaning representations of novel sentences.

In this context, many language comprehension models have been proposed (e.g., Farkas
and Crocker, |2008; [Hadley and Cardei, [1999; [Hadley and Hayward), 1997} |Jansen and
Watter, |2012; Miikkulainen, 1996)). Of particular relevance for our matters is the ap-
proach of [Frank et al.| (2009), which develops a connectionist model of comprehension
which is argued to achieve semantic systematicity. Their sentence comprehension model
takes a sentence in the form of a sequence of words, and constructs a situation vector.
As described in Chapter 3, each situation vector corresponds to a situation model (see
Zwaan and Radvansky, |1998) of the state-of-affairs described by a sentence that also
incorporates “world knowledge”-driven inferences. When the model processes a sentence
like ‘a boy plays soccer’, for instance, it not only recovers the explicit, literal propositional
content, but also constructs a more complete situation model in which a boy is likely
playing outside on a field, with a ball, with others, and so forth. In this way it differs
from other connectionist models of language comprehension and production, that typi-
cally employ simpler meaning representations, such as case-roles (e.g., Brouwer} 2014;
Chang et al.l 2006} [Mayberry et al.l [2009; |St John and McClelland, (1990). Crucially,
Frank et al.| (2009)’s model generalizes to both sentences and message representations

that it has not seen during training, exhibiting different levels of semantic systematicity.
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With regard to whether the model implements or not a symbol system, the situation
vectors defined by [Frank et al.| (2009) were specifically designed to avoid an internal
structure composed by a hierarchical combination of discrete symbols; rather, they can

be defined as points in a multidimensional continuous space.

Finally, |[Frank et al.| (2009)) explain the reason for the development of systematicity to be
the inherent structure of the world from which the semantic representations are obtained
(similar to|Jansen and Watter, 2012). Hence, systematicity does not have to be an inher-
ent property of the cognitive architecture, but rather a property of the representations
that are used by the model, where arbitrary symbols with no apparent relation with
each other would not suffice. In this way, the model addresses the systematicity issues,
and provides an important step in the direction of psychologically plausible models of

language comprehension.

This chapter investigates whether the approach developed by [Frank et al. (2009) can
be successfully applied to the case of language production. Using the message represen-
tations described in Chapter 3, the sentence production model described in Chapter 4
is tested to see if it is able to produce sentences related to message representations for
which a particular voice was never seen during training (passive vs active), i.e., exhibit-
ing syntactic systematicity; and further, whether the model is able to produce sentences
describing situations related to areas in the semantic space that have never been seen
during training, i.e., exhibiting semantic systematicity. The results show that the model
successfully learns to produce correct sentences in both cases, demonstrating systematic-
ity similar to Frank et al.| (2009)). Furthermore, the model is not only able to produce
a single novel sentence related to a novel message representation, but also it is typically
able to produce all possible encodings related to that message, and that are allowed
by the grammar that generated the training and test sets, indicating a high level of

systematicity.

As first step, the situation vectors defined by Frank et al.| (2009) are used, showing that,
as they are, the model is able to generate sentences in a systematic way. Afterwards,
the model is tested using belief vectors, which, as explained in Chapter 3, are also de-
rived from the Distributed Space matrix, but using a different dimensionality reduction
method, and which show a better performance during the simulations. Then, the be-
havior of the model is analyzed in order to shed some light into the algorithm that the

model implements, and how this explains its systematic behavior.

The structure of this chapter is as follows: section 5.1 describes details concerning the
testing conditions. Section 5.2 presents the results and analysis of the output for the case

where the model is prompted to produce a single sentence. Section 5.2 presents a similar
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analysis but for the case where the model has to encode multiple sentences. Finally,

sections 5.4 and 5.5 present respectively discussion and conclusion of this chapter.

For brevity, in the rest of this chapter, the term “situation” is used instead of “DSS rep-
resentation”, reflecting the intuition that each DSS representation conveys information

about a situation in the microworld.

Some results and parts of this chapter have been presented in |Calvillo et al. (2016).

5.1 Testing Conditions

In order to asses the performance of the model in terms of accuracy and generalization,

a 10-fold cross-validation schema was employed.

The dataset described in Chapter 3 is a set of pairs {(DSS1, ¢1), ..., (DSSn, on)}, where
each DSS; corresponds to a situation or belief vector, plus a bit indicating if the pair is
related to active (1) or passive (0) sentences; and where ¢; is the set of sentences that
convey the event related to DSS; in the expected voice. Then, each testing instance
corresponds to giving the model a DS'S; as input and see if the model is able to produce

one of the sentences in ;.

This dataset contains 782 unique DSS representations or situations in the microworld.
For testing, these were divided into two sets: the first one (setAP, n = 424) corresponds
to those associated to both active and passive sentences, and the second one (setA, n =
358) corresponds to situations that are related only to active sentences. The situations
in setA correspond to events in which the object of the action is either a person (e.g.
“Heidi beats Charlie.”) or undefined (e.g. “Charlie plays.”), and for which the grammar

of the microlanguage defines no passive sentences.

The testing conditions are outlined in Table 5.1. The first set (setAP) allowed for three

different testing conditions:

o Condition 1: Situations for which the model has seen only active sentences, and

a passive is queried.

e Condition 2: Situations for which the model has seen only passive sentences, and

an active is queried.

o Condition 3: Completely new situations (not seen during training), passive and

active sentences are queried.
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SetAP SetA
Condition | 1 2 3 4 5
Known act pas - act -
Query pas act act/pas | pas act/pas

TABLE 5.1: Testing Conditions

The second set (setA) allowed for two different testing conditions:

o Condition 4: Situations for which the model has seen only active sentences, and

a passive is queried.

o Condition 5: Completely new situations (not seen during training), passive and

active sentences are queried.

These conditions represent different levels of generalization or systematicity. In all cases,
the queried sentence type has never been seen by the model. For conditions 1, 2 and 4 the
model has seen the situations but not in the queried voice. Importantly, for conditions
3 and 5, the model has never seen the situation itself. Finally, for conditions 4 and 5,
where passives are queried, not only the model has not seen the passive sentences, but

also they are not defined by the grammar of the microlanguage.

We should note that the production model has no access to the grammar that gener-
ated the sentences, during training it only has access to semantic representations and
their related sentences. Nonetheless, the fact that the grammar does not define passive
sentences for the situations in setA means that within the training sentences there are
no examples of sentences whose syntactic structure would correspond to the passive
sentences that are sought. In other words, for these situations, not only the specific
sequences of words related to the sought sentences are new, but also their syntactic

structure has never beeen encountered.

According to the 10-fold cross-validation schema, setAP was randomly shuffled and split
into 10 folds of 90% training and 10% testing situations, meaning per fold 382 training
and 42 testing situations. For each fold, the testing situations were further split into the

3 conditions, rendering 14 different testing situations per condition, per fold.

SetA was also shuffled and split into 10 folds, but in order to preserve uniformity, for
each fold and for testing, 14 situations were drawn per condition; meaning that each

fold contained 28 testing and 330 training situations.

Finally, for condition 1, the situations were coupled with their corresponding active
sentences and incorporated into the training set (while the passive sentences remained in

the testing set); vice versa for condition 2. Similarly, for condition 4 the active sentences
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were incorporated into the training set, while during testing the model will be queried

for a passive construction, even though there is none according to the microlanguage.

5.1.1 Sentence Level Evaluation

For a given situation DS'S;, the model is expected to produce a sequence of words §;
constituting a sentence describing the state-of-affairs represented in DSS;. Because a
DSS; can be described by one or more sentences, we assume that the output of the model
is perfect if the sentence produced §; is part of the set ¢; of all possible realizations of

DS'S; in the queried voice.

However, sometimes the output of the model §; for a DS'S; does not perfectly match any
of the sentences in ;. As such, we also compute the similarity between the output of
the model §;, and each sentence in ;. This similarity is derived from their Levenshtein
distance Levenshtein (1966)); which is the number of insertions, deletions or substitutions
that are needed in order to transform one string into another. More formally, Levenshtein

similarity sim(si, s2) between two sentences s; and sy is defined as:

distance(si, s2)

sim(s1,s2) =1 (5.1)

~ max(length(s1), length(sz))
where distance is the Levenshtein distance. This similarity measure is 0 when the
sentences are completely different and 1 when they are the same. Alternatively, these
scores can be regarded as percentages, where 1 corresponds to 100% similarity. Thus,

for each item ¢ in the training and test set, we obtain a similarity value:

sim($;) = max sim($;, s) (5.2)
S€P;
Situation Vector (150-dim) Belief Vector (44-dim)

Cond. | Query | Perfect Match (%) | Similarity (%) | Perfect Match (%) | Similarity (%)
train - 87.52 96.89 97.38 99.22
1 pas 70.00 92.83 92.86 98.80
2 act 69.28 92.14 92.14 98.36
3 act 65.71 91.08 90.00 97.29
3 pas 70.00 93.67 90.71 98.24
5 act 37.14 83.43 87.14 95.36
Average Test 62.43 90.63 90.57 97.61

TABLE 5.2: Similarity scores for each test condition.
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5.2 Single Sentence Encoding

For each type of semantic representation (150-dimensional situation vectors and 44-
dimensional belief vectors), 10 instances of the model were trained and tested, corre-
sponding to each fold as described above. Each instance was initialized with a different

set of weight matrices. The scores reported below are averages over these instances.

5.2.1 Quantitative Analysis

We begin by inspecting the performance of the model using the 150-dimensional situation
vectors, which can be seen in columns 3 and 4 in Table 5.2. On the training set, the
model achieves an average similarity score of 96.89% (with 87.52% perfect matches).
This shows that the model is able to learn to transform a situation vector into a sequence

of words describing the state-of-affairs that the vector represents.

Regarding the test conditions, on average the model can generate perfect sentences for
almost two thirds of the situation vectors. While this performance may seem modest,
one should take into account that the 150-dimensional situation vectors went through
a dimensionality reduction process, after which some information is lost, in particular,
aspects regarding adverbial modification. Because of that, many of the sentences pro-
duced contain a wrong modifier such as “well” or “badly”, thus, reducing the number
of perfect sentences and similarity scores in general. Nevertheless, on average the model
achieves a 90.63% similarity score on the test conditions. Considering that all sentences

generated are novel to the model, this demonstrates that the model is able to generalize.

For condition 5 where active sentences are queried, we can notice a drop of performance.
This could be explained because setA in general contained fewer sentences per situation,
and thus fewer training items. For conditions 4 and 5 where passives are queried but
there are no example sentences defined by the grammar, no similarity scores can be

computed and in exchange a qualitative analysis will be presented in the next subsection.

The performance of the model using belief vectors can be seen in the last two columns in
Table 5.2. In all cases the model performs significantly better with these representations.
During training the model achieves a similarity score of 99.22% (with 97.38% perfect
matches). Regarding the test conditions, the average similarity score across all of them
is 97.61% (with 90.57% of perfect matches). This translates into roughly 1 to 3 errors
per condition and per fold. The nature of these errors is addressed in the next section,
however we can observe that the performance in terms of similarity is very high and

almost perfect in several cases, demonstrating a high level of semantic systematicity.
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One should note that considering the training regime, the only hyperparameters that
could be optimized are the settings of the learning rate and the number of hidden units.
However, modifying these parameters did not yield a better performance: increasing
or decreasing the initial learning rate would only change the speed to which the model
would converge; and similarly, using more or less hidden units did not represent a signif-
icant change, 120 hidden units are used here to mimic the settings of Frank et al.| (2009),
nonetheless, the results using 80 hidden units are very similar. Consequently the dif-
ference of performance between using belief vectors and situation vectors cannot be
attributed to the settings of the training regime; in fact, during previous experiments
the model was optimized looking for the best hyperparameters using both types of

representations independently, obtaining very similar results to the ones reported here.

5.2.2 Qualitative Analysis

Looking at the particular sentences produced by both types of representations, we can
notice that in both cases the sentences generated are, with only a few exceptions, syn-
tactically correct and in all cases their semantics are, if not entirely correct, at least

closely related to the intended semantics.

Nonetheless, as mentioned before, the dimensionality reduction technique used to gener-
ate the 150-dimensional situation vectors introduces some information loss, in particular,
information regarding adverbial modification. The sentences containing modifiers do not
discriminate properly between “well” and “badly”, and between “with ease” and “with
difficulty”. The errors elicited for 3 folds were manually analyzed, finding that during
training, out of 445 sentences that contained errors, 209 (46.96%) contained an error
regarding modification. Similarly, on the testing conditions, out of 82 items that con-
tained errors, 34 (41.46%) contained an error regarding modification. The information

loss affects also other aspects, causing other types of errors, but with fewer attestations.

Almost half of the errors elicited for the 150-dimensional vectors were related to modifi-
cation, which is an aspect for which no errors are elicited using belief vectors. Thus, we
can attribute a big part of the quantitative difference of performance between the two
types of representations as arising from the information loss related the 150-dimensional
situation vectors. If we do not take into account the errors caused by this, the output
obtained using the two kinds of representations is qualitatively similar. Because of that,
and since the errors that are elicited using belief vectors are much fewer, we will focus

the rest of the analysis on the output obtained using belief vectors. However, we would
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expect that the performance using the 150-dimensional situation vectors would be sim-
ilar to the one using belief vectors if the dimensionality reduction did not introduce

information loss.

Although the performance obtained using belief vectors is quite high, the model elicits a
number of systematic errors that provides us with some insight into the internal mech-

anism that is implemented by the network. Examples of these are shown in Table 5.3.

The vast majority of the elicited errors occurs when the model produces a sentence that
is semantically highly similar to the one expected, reproducing the error patterns of
the speech error literature (e.g., Meringer and Mayer, 1895)). This pattern can be seen
already during training, where the errors arise for situations that are closely related,
such that the model is unable to distinguish them, even though it has already seen the

situations with their respective sentences (examples 1-3 in Table 5.3).

TABLE 5.3: Examples of representative output errors.

Output Expected
1 someone plays with a ball outside. a girl plays with a ball outside.
2 | someone loses in the bedroom. someone wins in the bedroom.
3 | a girl loses to someone in the bedroom. someone beats a girl at a game in the bedroom.
4 Sophia beats Heidi with ease at hide_and_ seek. Sophia beats Heidi with ease at hide_and_ seek in the bedroom.
5 Sophia wins with ease at a game in the street. Sophia wins with ease at a game outside.
6 | a girl plays with a doll inside. Heidi plays with a doll inside.
7 | a game is won with ease by a girl in the bathroom. a game is won with ease by someone in the bathroom.
8 | someone plays. someone plays with a toy.
9 Charlie plays a game in the street. Charlie plays in the street.
10 | someone wins in the bedroom at hide_and_seek. someone loses in the bedroom at hide and_ seek.
11 | Heidi loses to someone in the bedroom at hide and_seek. | someone beats Heidi in the bedroom at hide and_seek.
12 | Sophia beats someone at hide and seek in the bedroom. | someone loses to Sophia at hide and_seek in the bedroom.

Sometimes the model produces sentences giving correct information but omitting some
details (underspecification). Some other times the model produces sentences that assume
information that is not given by the situation, but that it is likely to be the case given the
representation (overspecification). One could debate whether these should be considered
errors, given that people are not as precise in their productions, sometimes being vague

and some other times making assumptions under uncertainty.

In this analysis, we refer as “error” to any difference between the semantic information
of the input representation and the semantic information contained in the sentence
produced by the model. In some cases, this difference is very subtle and can only be
perceived by knowing very specific details of the microworld and the microlanguage (e.g.,
items 11 and 12 in Table 5.3).

For the conditions shown in Table 5.2, the errors elicited during 5 folds were manually

inspected in order to see their regularities. The errors observed (35 in total) can be

!See [Venhuizen et al.| (2018) for an alternative dimensionality reduction technique that may well
mitigate this information loss.
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classified into 2 main categories: the first one (68.57%) being errors concerning over and
underspecification, and the second one (28.6%) corresponding to situations that because

of the design of the microworld are remarkably similar, differing only in one aspect.

Concerning the first category, the errors can be further split into location under-
(14.28%) and over- (5.71%) specification (examples 4-5 in Table 5.3), subject under-
(22.86%) and over- (11.43%) specification (examples 6-7 in Table 5.3), and object under-
(8.57%) and over- (2.85%) specification (examples 8-9 in Table 5.3). We can also no-
tice that most of the errors in this category correspond to underspecification (45.71%),
corresponding to sentences that express correct information but perhaps not all of the
information conveyed in the semantic representation. Again, one could argue whether
these can be considered errors or not, taking into account that people often underspecify

their utterances.

The errors contained in the second category (examples 10-12 in Table 5.3) correspond
to sentences that at first glance seem correct, it is only after taking a deep look into the
microworld that one can see the error. First, according to this microworld, whenever
there is a winner, there is also a loser, which means that sentences that are apparently
contradictory (“someone loses.” vs “someone wins.”) actually have the same implica-
tions within the microworld and therefore are semantically identical. Second, in general
whenever there is a winner/loser, the loser is usually situated in the same location as
the winner. However, only for the game hide_and_seek and when the participants are
inside, the loser can be in the bedroom, while the winner could be in the bathroom, or
vice versa. Finally, whenever there is a prepositional phrase (“in the bedroom”), it is
attached to the subject of the sentence according to the grammar, which means that in
“Heidi beats Sophie in the bedroom”, Heidi is in the bedroom while Sophie could be in
either the bedroom or the bathroom, while in “Sophie loses to Heidi in the bedroom”,
it is Sophie who stays in the bedroom while Heidi could also be in the bathroom. Apart

from this detail, the situations are almost identical.

More than two thirds of the elicited errors were related to over- and underspecification,
where the model produced sentences highly related to the semantics but giving either
more or less information than expected. The remaining third was also related to highly
similar semantics, were the model was unable to distinguish them. Then, we can con-
clude that the nature of these errors is related to situations that are highly similar,

reproducing relevant findings of the speech error literature.

With regard to the test conditions 4 and 5 where a passive sentence is queried but the
grammar does not properly define its characterization, Table 5.4 presents examples of

output sentences and the situations that they were supposed to portray. As mentioned
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before, these situations can be of two types: the first one involving a winning/losing sit-
uation where both actors are explicitly mentioned, and the second type being situations
where the object of the action is not defined. In order to have a closer view, the output
for these conditions and for 5 folds (140 situations) was manually analyzed. The results

of such analysis are presented below.

Even though in condition 4 the model has not seen the type of sentences that are queried,
and that in condition 5 the model has no experience with the queried situations, the
sentences produced by the model are mostly correct and coherent with the semantic
information that is given to it. One can see that some information is omitted, but this
is expected since the model received no examples of sentences whose syntactic structure

would permit the encoding of these situations.

In general, the model learns during training that passive sentences start by mentioning
the object of the action. Therefore, for each situation it mentions first this object and

then tries to describe the rest of the situation.

Concerning winning/losing situations (examples 1-2 in Table 5.4), which conform 90.7%
of the analyzed situations, the object is always a game because in the microworld win-
ning/losing can only happen while playing a game. Thus, the model produces the specific
name of the game when it is known (e.g. “soccer is...”), otherwise the sentence starts
with “a game is...”. Then one of the players is mentioned (one omitted) and the rest of

the situation is portrayed.

Output Active Sentence
1 hide and_seek is won with ease by Heidi in the playground. | Heidi beats Sophia with ease in the playground at hide and _seek.
2 a game is won with ease by Sophia. Sophia beats Charlie with ease.
3 atoy is played with. someone plays.
4  a toy is played with in the playground by Sophia. Sophia plays in the playground.
5 a game is lost with difficulty by Charlie. a girl beats Charlie with difficulty in the street.
6 chess is lost by Heidi in the bedroom. the boy loses to Heidi at chess in the bedroom.
7 ‘ sophia is won with difficulty by charlie. sophia beats charlie with difficulty.

TABLE 5.4: Examples of passive output sentences for DSSs with no passive examples.

For the case of situations with an underspecified object (9.3%, examples 3-4 in Table
5.4), it is unknown whether the subject is playing a game or with a toy, so the model
is forced to choose one. In most cases (61.5%) the model chooses a toy, which seems
reasonable because mostly the situations of the underspecified sentences are more similar
to situations where a toy is played with. For example, the situation of “someone plays.”
is more similar to the one of “someone plays with a toy.” (99.36% cosine similarity) than

to the representation of “someone plays a game.” (97.73% cosine similarity).

Similar to the other conditions, errors regarding over and underspecification occur in
conditions 4 and 5, but are rare (7.14%, example 5 in Table 5.4). Two types of error

that appear only for these situations corresponds to the inversion of the winning/losing
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relation in game situations (23.57%, example 5 and 6 in Table 5.4), and the mention of

the agent at the beginning of the sentence (4.28%, example 7 in Table 5.4).

In sum, one can see from the output that the model is able to take the linguistic elements
learned during training in order to characterize situations for which it has no experience,
while being as informative as possible. The only difficulty appears to be the distinction of
situations that are highly similar. However, the performance of the model is very high in
general and even for the sentences that do present an error, the output is largely correct.
In addition, the errors that are elicited serve to further demonstrate systematicity, as
they are elicited precisely because of proximity/similarity in a semantic space, where

representations are close to each other if they represent similar situations.

5.3 Multiple Sentence Encoding

The previous section showed that the model is able to produce a novel sentence for
a given situation. Nonetheless, during training most of the situations that are shown
to the model are paired with more than a single encoding. Furthermore, it is clear
that humans are able to generate a variety of different encodings for a given semantics.
Therefore, it is desirable if not compulsory that a model of human language production
should be able to do so as well. In the present section we will test such ability, showing
that the model is able not only to produce one novel encoding for a given situation,
but in most cases it is able to produce all possible encodings that are supported by the

linguistic experience of the model.

5.3.1 Activation Threshold

Previously, at each time step the word produced was defined as the one with highest
activation at the output layer. At some time steps, however, two or more words can have
similarly high activation, such that all may be allowable continuations at that point of
the sentence. In order to give the model the opportunity to explore these derivations,
we redefine the policy to produce a word. At a given time step, the word(s) produced
is/are not only the one with highest activation, but all the words that reach an activation
above a certain threshold 7. By following all possible word derivations that comply with

this, the model is able to produce multiple sentences for a given semantics.

We can define 7 in several ways, in general it should be low enough such that it allows
the model to derive the range of possible sentences, but not too low, so as to avoid

overgenerations. A given threshold can be evaluated in terms of precision and recall
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while trying to obtain all and only the possible sentences given a semantics. In these

terms, the following variations were tested:

e Fixed:

o Entropy:
7 = px E[logp(w)]

e Ratio to Maximum:

T = p*xmaxp(w)

where p is a parameter for a given run that manipulates how strict the threshold should
be for all situations, and p(w) is the probability (activation) of word w at the output
layer. The first formulation sets a common threshold for all productions. The second
one allows 7 to change according to the distribution of activation across all words at a
specific derivation point. Finally, the third formulation allows 7 to change according to

the activation of each word compared to the maximum word activation at each point.

These definitions of 7 were used in order to produce multiple sentences for each semantic
representation DS.S; in the training set, manipulating the value of p. For each DSS;,
precision, recall and f-score of the set of sentences generated by the model were calcu-
lated, with respect to the set ; that is related to DSS;; thereafter these values were
averaged across the semantic representations in the training set. For these calculations,
a sentence produced by the model was taken into consideration only if it was a perfect

match with one of the sentences in ;, consequently discarding all partial matches.

Fixed Entropy Maximum
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FIGURE 5.1: Precision, recall and f-score for different values of p and for different
formulations of 7 on the training set.

For each of these formulations and for each value of p, Figure 5.1 shows average precision,
recall and f-score averaging across the 10 folds. We see that the behavior is almost

identical between the formulations, although the scales are different. This suggests that
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the definition of 7 is not sensitive to the form of the output distribution, and that a

global fixed threshold may be sufficient.

From Figure 5.1, we can also notice that the model achieves a very high recall when
setting 7 to relatively low values. In this case, precision is rather low, but its value is
still high enough to suggest that the model is heavily pruning the derivation forest to
only the sentences that are related to the given semantics. Finally, we also see that the
maximum f-score value is around 92.5%, meaning that the model is able to a very high

degree to reconstruct the whole set of training sentences.

Since the formulation of 7 is rather stable, we can set 7 as a fixed threshold, and
given the shape of the curve, we set it to the value of 0.12, which has a high recall
(98%) and a relatively high precision (89%). A high recall value is preferred in order to
produce a relatively large number of sentences that could give insight into the production

mechanism of the model. This value was used for the rest of the analysis.

5.3.2 Multisentence Evaluation

In this case, the model was evaluated in order to see whether the model was able to
produce all and only the sentences that are allowed by the grammar and that are in
line with the semantics. The same testing conditions previously defined were used.
For each condition and having the activation threshold 7 = 0.12, the following was
performed: for each DSS;, precision, recall and f-score values of the set of sentences
produced by the model with respect to the set ¢; were calculated; thereafter these
values were averaged across the semantic representations of each test condition. For
these calculations, only the sentences produced that perfectly matched a sentence in
; were considered, discarding all partial matches. Finally, these values were averaged

across the previously described 10 folds, giving the results shown in Table 5.5.

Cond. | Query | p(#sent)) | o(#sent) | Perfect(%) | Precision (%) | Recall (%) | F-Score (%)
1 pas 3.34 3.10 59.28 82.16 93.77 84.02
2 act 9.24 11.34 52.14 81.71 96.26 84.92
3 act 7.34 9.64 51.43 78.28 93.40 81.87
3 pas 3.49 2.81 52.86 78.77 91.00 81.36
5 act 8.40 7.25 63.57 83.27 94.13 84.67
Average 6.91 7.13 55.86 80.84 93.71 83.37

TABLE 5.5: Precision, Recall and F-Score values obtained on the testing conditions.

The first and second columns in Table 5.5 show the test conditions and the type of
sentence that the model was supposed to produce. The third and fourth columns show
the average size of the set ¢; related to each DS.S;, and the corresponding standard
deviation. For example, in condition 2, for each DS'S; the model is expected to produce

9.24 active encodings, with a standard deviation of 11.34. In general, the range is
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quite wide, where some representations are related to only 1 encoding, while others are
related to many more, 130 being the maximum. This variability is presented by the
standard deviation values in column 4. On average, the model is expected to produce

6.91 (0 = 7.13) encodings per semantic representation.

The fifth column in Table 5.5 shows the percentage of situations where the model pro-
duced all expected sentences without any over- or undergeneration. In all conditions
the model performed perfectly for more than half of the representations (55.86% on av-
erage). Considering only these situations, the mean number of sentences per situation
was 4.67 (sd = 5.31), meaning that the model is able to reproduce a significant number
of sentences per semantics without difficulties, in some cases it was able to reproduce
up to 40 different encodings without errors. One should also consider that the value
of 7 was set to have a high recall in order to obtain relatively many encodings, which
would give insight into the behavior of the model; but lowering precision, which would

ultimately reduce the number of perfect productions.

Columns 6, 7 and 8 in Table 5.5 present precision, recall and f-score accordingly. In
all conditions the model produced more than 90% of the expected sentences (93.7% on
average), additionally, the produced sentences were mostly correct (80.84% on average).
These values correspond to setting 7 = 0.12, however, we could vary this parameter in
order to obtain higher precision or higher recall, showing a behavior similar to the one
obtained with the training set (see Figure 5.1). The value of 7 was chosen such that
recall would be high, nonetheless, as we will see shortly, the sentences overgenerated,
which lower precision, are semantically very similar to the ones expected, which again

raises the question of whether they should be considered errors in the first place.

From these results we can conclude, first, that for more than a half of the situations in the
testing conditions, the model is able to reproduce without errors all the related sentences,
showing that the model can easily generate multiple encodings for a given semantics.
Second, from the f-score values we can further say that even for those situations where
there are under- or overgenerations, the model is able to reproduce correctly a large
proportion of the sentences that were expected for each situation. Finally, we can see
in general that the model is able to reproduce almost all sentences that the grammar
defines for each given semantic representation, even if the sentences/situations are novel,

demonstrating a high degree of systematicity.

5.3.3 Multisentence Error Analysis

Similar to the analysis of single sentence encoding, the errors that the model produces

were examined, in order to see if there are specific patterns that would allow us to
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understand better its internal mechanism.

For a given situation, we can construct a derivation tree of all the sentences that the
grammar defines. One can see an example of such a tree in Figure 5.2, where a single
semantics is related to 20 different encodings, each one corresponding to a leaf node.
In such a representation, Sy corresponds to the initial state where nothing has been
produced yet. Then, each node corresponds to the production of one word. So after Sy,
the model has 3 alternatives of word production: “charlie”, “the” (in this microworld
there is only one boy, so whenever one says “the boy”, it implies “charlie”) or “heidi”. If
the model produces “charlie”, then the alternatives are narrowed down to only “loses”,
then to “to” and then to “heidi”. After “heidi”, the model has to choose again between
different alternatives, and so on until a period is produced “”, in which case production
halts.

The process of producing all sentences for a given semantics implies the reconstruction
of this tree. On the one hand, by adding extra nodes (producing an incorrect word),
we obtain overgeneration. On the other hand, by removing some nodes (omitting a
correct word), we obtain undergeneration. In both cases, adding/removing one node
can potentially result in the addition/removal of several sentences. For this example in

particular, the model undergenerated “charlie” as first word, which means that the whole
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FI1GURE 5.2: Example of derivation tree.
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first branch was removed, therefore discarding 5 possible encodings. This constitutes a

typical undergeneration error.

Figure 5.3 shows an example of overgeneration. In this case, the only sentence that
encodes the semantics is “someone plays with a toy.”, however another 3 encodings are
produced. First, the model produces “a girl plays”, which allows 2 more different sen-
tences. Then, after “someone plays”, the model produces a period “”, which truncates
the sentence without specifying the object. At the end 4 different encodings are pro-

duced, all very semantically related.

someone —— plays

with — a —[ toy —[
0 4 )

a — girl —} plays <¥

‘ with  —— a — toy —

FIGURE 5.3: Example of derivation tree with overgenerations.

5.3.3.1 Manual Analysis of Overgenerations

In order to understand the nature of the errors elicited when the model wrongly pro-
duced a word, a manual analysis was made, taking the output of the model for the test

conditions and for 3 folds.

In total there were 391 sentences that contained an overgenerated token. These can
be split into 4 categories (percentages do not sum up to 100% because some sentences

contained more than one error and these pertained to several categories):

Output Expected
1 a doll is played with in the bedroom. a doll is played with by charlie in the bedroom.
2 | someone wins with ease in the playground. a girl wins with ease in the playground.
3 | charlie plays inside. charlie plays in the bedroom.
4 | a toy is played with by a girl. a toy is played with by a girl in the bedroom.
5 a toy is played with outside by sophia. a ball is played with outside by sophia.
6 | someone plays. someone plays with a toy.
7 | charlie plays a game in the playground. charlie plays a game well in the playground.
8 | a girl plays a game badly. someone plays a game badly.
9 | atoy is played with inside by sophia. a toy is played with inside by a girl.
10 | charlie plays with a doll in the playground. charlie plays with a doll.
11 | charlie beats heidi with ease at a game in the bedroom. charlie beats heidi with ease at a game inside.
12 | the boy plays a game in the street. the boy plays in the street.
13 | heidi plays with a doll in the playground. heidi plays with a toy in the playground.
14 | heidi loses in the bedroom. someone beats heidi in the bedroom.
15 | heidi loses to someone at hide and_seek in the bedroom. | someone beats heidi at hide and_ seek in the bedroom.

TABLE 5.6: Representative examples of overgeneration errors.
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o Underspecifying (47.31%): Sentences that give less specific information than

what the semantics contains.

According to the aspect where the underspecification occurs, these can be split
into: subject (33.25%, examples 1-2 in Table 5.6), location (10.99%, examples
3-4 in Table 5.6), object (10.99%, examples 5-6 in Table 5.6) and 2 sentences
concerning modality (0.51%, example 7 in Table 5.6).

o Overspecifying (23.02%): Sentences that give more information than what the

semantics contains.

Similarly, they can be split according to the aspect where the overspecification
occurs into: subject (11.5%, examples 8-9 in Table 5.6), location (5.88%), examples
10-11 in Table 5.6) and object (5.62%, examples 12-13 in Table 5.6).

o Winner/Loser Location (30.94%): As described before, these are situations
in which hide_and_ seek is being played, there is a winner and a loser, and the

location of the winner/loser is mistaken due to high semantic similarity (examples
14-15 in Table 5.6).

o Other (6.64%): These were 26 errors that did not belong to previous categories
(see Table 5.7). Although they are few, they present some interesting phenomena

that will be further discussed in the next subsection.

In general some errors are expected, considering that the model explores areas of low
probability in order to generate many encodings. Nonetheless, with only a few excep-

tions, the sentences produced maintain syntactic adequacy and semantic relatedness.

As we can see, the distribution of errors is very similar to the one obtained during single
sentence encoding. In this case the errors are also related to semantics that are very close
in the semantic space, which perhaps serves to demonstrate the cost of systematicity, as

the model processes similar semantics in a similar way.

5.3.3.2 Other Error Types

Amongst the sentences analyzed in the previous subsection, there were 26 sentences that
contained errors that did not match the previous categories. Table 5.7 shows examples
of such errors. Interestingly, some of these coincide with the ones found in the literature
about human speech errors, such as repetitions and substitutions (Clark and Clark,

1980); and only 4 sentences presented a clear syntactic anomaly.

We can classify these errors into 4 categories:
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o Repeated Constituents (13): Sentences presenting a repetition of one of its
segments (examples 1-3 in Table 5.7). With the exception of example 1, these
contain 2 prepositional phrases, sometimes complementary (e.g. “outside in the
playground”) or repeated with another constituent in between (e.g. “outside with
a toy outside”). These show a tendency to produce information as constituents,
suggesting some context independence, necessary in order to explain language

productivity and systematicity.

« Game/Toy Substitution (7): Sentences where “a game” substitutes “a toy” or
“a puzzle” (examples 4-5 in Table 5.7). In these cases we can see that the model
“knows” that there is similarity between games and toys. In the microworld, games
and toys are playable entities, however they are mutually exclusive in terms of the
situations in which they appear, with the exception of soccer that is always played
with a ball. Additionally, the characters can only win/lose while playing games.
Thus, while there is some semantic similarity, we can consider that the model infers

their similarity rather based on their linguistic distributional properties.

o Someone/someone (2): Sentences of the form “someone loses to someone...”
(example 6 in Table 5.7). The grammar of the microlanguage does not define
sentences of the form X loses to X, that is, sentences where the loser and win-
ner are the same. However, assuming that “someone” (the winner) is a different
person than “someone” (the loser), these sentences do not violate any rule of the

microworld, while being intuitively correct.

o Syntactically Anomalous (4): Sentences that contain a clear syntactic error
(example 7-8 in Table 5.7). These have no apparent reason apart from being

derivations of very low probability.

Expected Output
1 a girl plays hide and_seek. a girl plays hide and seek hide and seek.
2 heidi plays with a toy in the playground. heidi plays with a toy outside in the playground.
heidi plays outside with a toy in the playground.
3 heidi plays with a doll outside. heidi plays outside with a doll outside.
n sophia plays with a puzzle in the bedroom. a girl plays a game in the bedroom.
a girl plays a game with a jigsaw.
5 @ puzzle is played with by sophia in the bedroom. | a game is played with by a girl inside.
a game is played with by a girl in the bedroom.
6 someone loses in the shower at hide and seek. someone loses to someone in the shower at hide and seek.
7 a game is played by someone inside. a game is played by inside.
8 charlie beats sophia at a game with difficulty. charlie beats sophia at a game with the charlie.

TABLE 5.7: Examples of other errors.
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5.3.3.3 Manual Analysis of Undergenerations

While overgenerations correspond to incorrectly produced sentences, undergenerations

correspond to correct sentences that the model chose not to produce. Most undergen-

erations could be avoided by decreasing the threshold 7, however, these sentences are

interesting because they reveal the internal preferences of the model.

Since the omitted sentences are correct, we can only judge these omissions in relation to

the sentences that were actually produced. Thus, the sentences that were undergenerated

for the same 3 folds as in the previous section were analyzed, comparing them to the

ones that were produced. Examples of such sentences can be seen in Table 5.8.

These undergenerations were related to 38 situations, and followed very clear patterns,

which can be classified into:

Undergenerated Preferred
1 | the boy plays well in the playground. the boy plays hide_and_ seek well in the playground.
2 | a game is won with ease in the bedroom. | a game is won with ease by someone in the bedroom.
3 | charlie plays chess well. charlie plays chess well in the bedroom.
4 | sophia plays inside with a puzzle. a girl plays inside with a puzzle.
5 | the boy loses in the street at soccer. the boy loses at soccer in the street.
6 | charlie loses to heidi at chess. heidi beats charlie at chess.
7 | charlie wins at soccer with ease. charlie wins with ease at soccer.
8 | sophia beats heidi in the bathroom. heidi loses to sophia in the bathroom.

TABLE 5.8: Representative examples of undergeneration.

» Overspecification Preferred (28 situations, 43 sentences): In these cases,

while the undergenerated sentences are correct and exact, they leave some parts
implicit. For instance, “a game is played in the street.” implies that soccer is the
game being played because that is the only game that can be played in the street.

However, the model would prefer to say explicitly: “soccer is played in the street.”.

These behavior can be further split into Object (16 situations, 40 sentences, ex-
ample 1 in Table 5.8), Subject (9 situations, 26 sentences, example 2 in Table 5.8)

and Location (6 situations, 11 sentences, example 3 in Table 5.8).

Underspecification Preferred (4 situations, 54 sentences): In this case,
the model prefers to be more ambiguous, leaving details implicit. Nonetheless,
this only happens rarely, where the model produces “a girl” instead of “sophia”,
“someone” instead of “a girl” and “toy” instead “puzzle/jigsaw” (example 4 in
Table 5.8).

Order (16 situations, 110 sentences): The model produced encodings with
the same constituents as the undergenerated ones, but in different order. These

can be further split into:
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Location (13 situations, 48 sentences, example 5 in Table 5.8): Location

information is preferred to be produced at the end of the sentence.

— Winner first (3 situations, 62 sentences, example 6 in Table 5.8): The under-
generated sentences were the ones where the loser is mentioned first, showing

a preference for mentioning the winner first.

— “with ease” (1 situation, 6 sentences, example 7 in Table 5.8): There was one

case of “with ease”, which favored an early attachment.

o Winner/Loser Location (3 situations, 43 sentences): Hide and_seek is
played inside, someone wins/loses, and the location of the winner/loser is ex-
changed. For these situations, the model produced only incorrect sentences, un-

dergenerating the correct ones (example 8 in Table 5.8).

From these results we can distinguish two main tendencies, on the one hand, the model
has biases regarding the amount of information that it gives, where overspecification
is favored; and on the other hand, the model has specific preferences for constituency
order. In both cases, preferences are aligned with the statistical properties of the training

sentences.

Regarding overspecification, the related linguistic patterns are more frequent. Concern-
ing games, naming the specific game can be omitted only in situations where soccer is
being played in the street or hide_and_ seek is being played in the playground, otherwise
the game has to be specified in order to avoid ambiguity. Regarding subjects, there are
the same amount of sentences where “by someone” is mentioned and where that aspect
is omitted. However, taking into account the sentences containing “by charlie”, “by
sophia” and “by heidi”, there are 4 times as many sentences including a phrase contain-
ing “by X”. Similarly, regarding location, there are twice as many sentences containing

a phrase of the form “in the X”, rather than “outside” /“inside”.

The order of constituents presents a similar behavior. Regarding location, amongst all
the sentences that contain “inside” /“outside”, for example, only 23.52% mention it in
between the sentence, while the rest (76.48%) mention it at the end. Regarding the

2

winner first situations, there are 1572 sentences of the form “X loses to...” and “X loses
at...”, while there are 4250 of the form “X wins...” or “X beats.... Finally, out of the
sentences that contain “with ease”, 14.65% mention it at the end of the sentence, while

the rest (85.35%) mentions it in between.

In general, one can see that the preferences of the model reflect the statistical properties
of the training sentences, as expected and similar to the models presented in Chapter 2
(Changj, 2002; (Chang et al., |1997; |Dell et al., [1993).
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5.3.4 Overgenerations/Undergenerations

The results concerning undergenerations and overgenerations seem to be in contradic-
tion. The undergeneration results suggest that when the model is uncertain, it would
prefer to overspecify its sentences. In contrast, the overgeneration results show that
there are more errors where an underspecification is elicited than an overspecification.

In order to understand this, we consider the structure of the semantic space.

Charlie plays in the B - Charllle plays l‘r; the
street. Q /ﬁ Q playground.

Charlie plays outside.

()
o/
Charlie plays.

Charlie plays in the
bathroom.

— / /"
bedroom. ]

Charlie plays inside.

FIGURE 5.4: Intuitive example of data points in the semantic space.

The semantic representations that were used are averages over observations where each
sentence is true. In Figure 5.4 we can see an intuition of the relative position of different
belief vectors in the semantic space. For example, the representation of “charlie plays
in the street.” is equal to the average of the observations where charlie is playing in the
street and likewise for “charlie plays in the playground.”. However, the representation for
“charlie plays outside.” encompasses all the observations in which charlie plays either
in the street or in the playground, therefore, the semantic representation of “charlie
plays outside.” should be in a central position in the semantic space with respect to the
other two, as shown in the upper part of Figure 5.4. Similarly, the representation of
“charlie plays inside.” would be placed in a central position with respect to “charlie plays
in the bedroom.” and “charlie plays in the bathroom.”. Finally, the representation of
“charlie plays.” is equal to the average among all of the previously mentioned situations,

consequently, its location in the semantic space would be at the center of all these points.

Let us consider only the 3 points in the upper part of Figure 5.4. As we saw before, the

model has difficulties with situations that are close to each other in the semantic space,
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so we can predict that the model is likely to have difficulties differentiating “charlie plays
in the street.” from “charlie plays outside.”, and similarly “charlie plays outside.* from
“charlie plays in the playground.”. Now, if the model is probed 3 times (once per situa-
tion/belief vector), in two out of three times the model could make an underspecification
error (producing “charlie plays outside.” when one of the other 2 points were tested);
while only in one time an overspecification could be made (when the model is probed
with “charlie plays outside.”). Since underspecifying sentences are in general centroids
of more specific sentences, there are many more situations where the model is probed

43

to generate sentences that are more specific (similar to “ charlie plays in the street.”).
Thus, we should expect fewer overspecifications than underspecifications simply because
there are less situations that could generate overspecifications than situations that can

generate underspecifications in the dataset.

In conclusion, we can relate overgenerations to states in which the model is confused
between different semantic representations, while undergenerations are more related to
preferences between sentences that encode the same information. Then, based on the
undergenerated patterns, the model prefers to be more explicit while encoding informa-
tion, following the statistical properties of the training set. However, the model elicits
more underspecification errors because there are more situations in the dataset that can

elicit underspecification than overspecification.

As we see again, the structure of the input space determines the behavior of the model,
including the errors, showing indeed that the model was able to reconstruct this structure

and the related linguistic patterns.

5.3.5 Undefined Passive Sentences

In conditions 4 and 5, passive sentences are not defined by the microlanguage for these
semantic representations. Therefore, a quantitative analysis is not possible. Rather, a
qualitative manual analysis was performed taking the output of the model for the same
3 folds as before.

These representations correspond to areas in semantic space for which the model was
never trained to produce passive sentences. As a consequence, the model is more un-
certain, such that at each time step more words are activated, producing relatively
more sentences. The majority of these sentences is accurate, however, productions with

relatively low probability present errors similar to those previously reported.
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Generally speaking, the sentences obtained by producing the most activated words are

the best, and as one goes further away from the most activated words, errors start to ap-

pear, first producing underspecification/overspecification, and then eliciting repetitions

or syntactic errors, as word probabilities decrease. Most of these errors could be avoided

by setting a higher threshold 7, however these are reported in order to show the internal

preferences of the model.

Active Sentence
a girl plays in the street.

someone plays.

Output

a game is played with in the street.
a toy is played with in the street.
a toy is played with by someone.

a game is played with by someone.

heidi beats charlie with ease outside.

charlie loses to sophia in the bedroom.

heidi is won with ease by charlie outside.

a game is won with ease by charlie outside.
sophia is lost by charlie in the bedroom.
sophia is won by the boy in the bedroom.

charlie beats heidi at hide and seek inside.

sophia loses to charlie at hide and_ seek in the bedroom.

hide_and_ seek is lost by heidi inside.
hide_and_ seek is won by heidi inside.
hide and_ seek is won by sophia in the bedroom.

TABLE 5.9: Examples of sentences produced for conditions where passive sentences are

not defined.

The situations handled in conditions 4 and 5 can be divided into two main categories:

o Unspecified Object (7 situations): These situations do not specify whether

the object of the action is a game or a toy (e.g., “someone plays”, examples 1-2
in Table 5.9). In these cases, the model produces most of the time both sentences
where “a game” is mentioned as object of the action and also sentences where “a
toy” is mentioned as the object (4 situations). In some situations however, only
one option is produced, either “a toy” (2 situations) or “a game” (1 situation).

Apart from this, the sentences are in accordance to the semantics.

Winning/Losing (77 situations): These are situations involving two players,
one winner and one loser. The microlanguage does not define passive sentences
where a person is the object of the action (e.g., “Charlie is beaten.”), consequently
the model mentions the game that is being played, and then only one of the
players, either the winner or the loser (e.g., “a game is lost by Charlie.”). Apart
from common errors that appear with all situations, for this kind of situation the

model elicits errors that can be fit in two categories:

— Active-like (12 situations, examples 3-4 in Table 5.9): For these situations,
amongst the sentences produced there are some with the name of a person at

the beginning, mostly replacing the object of the action.

— Winner/Loser Confusion (39 situations, examples 5-6 in Table 5.9): The

model produces sentences where the winner and loser are switched. While
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most of the time the correct role is preferred, for some situations both options

are produced.

Concerning the situations where the object is not specified, the model has no way to
identify the correct object to produce. Then it is reasonable that both options are

produced (“a toy” and “a game”).

About the situations where the active-like sentences are produced, one could explain this
as arising also from the uncertainty of the model for this kind of situation. At time t=0,
the monitor and context units contain zeros, consequently, the first word production
depends only on the semantic representation. Hence, the model activates the words
that are semantically related and that could begin a sentence. However, if the model
is uncertain, many words would have some, although relatively low, activation. Then,
after normalization at the softmax layer, it is possible that semantically related words

get an activation beyond 7 even if they are not allowed for the current word position.

Concerning the confusion of winners/losers, during training and regarding passive sen-
tences, the model is fed with situations in which there is only one player. This translates
into belief vectors in which only one dimension of the type “win(X)” or “lose(X)” is fully
activated. Then, it might be that the model learns to detect the kind of situation based
on that information, either one in which someone wins or someone loses, and produces
the only player in the situation. This strategy would work for situations with only
one player, but for situations where both players are included, the belief vectors would
contain two dimensions of the type “win(X)” or “lose(X)” that are fully activated, one
corresponding to the winner and one to the loser. Then, the model would be uncer-
tain about whether the situation is concerning winning or losing, thus, producing both

alternatives, and also producing both participants as possible winner /loser.

In sum, we can see that even though the model exhibits, as expected, some confusion
regarding some aspects of the given semantics, it is still able to process most information
of each representation. For these test conditions, not only the specific representations are
novel to the model, but also the model has never seen this kind of situation coupled with
passive sentences. It is only because of the systematic behavior of the model that it is
able to produce coherent sentences for these areas of the semantic space. If one takes into
consideration the behavior of a classical symbol system under these circumstances, the
classical model would be unable to produce any output, as the grammar rules describing
passive sentences for these situations are simply non-existent in this microlanguage. In
this view, this production model can be regarded as behaving more robustly and perhaps

even more systematically.
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5.4 Discussion

5.4.1 Semantic Systematicity

Systematicity has been commonly defined as the ability to correctly process novel input
instances, generalizing from a set of known ones. This is already widely accepted to be
learnable to some degree by neural networks, and is the basis for current computational
systems of computer vision and natural language processing, among other applications
that are based on deep learning methods (e.g., LeCun et al., 2015). The question we try
to address here is that of semantic systematicity, which is the ability to map a correct
and possibly unseen meaning representation to an appropriate novel sentence. This
behavior is argued to be a sign of human level systematic behavior [Hadley| (1994alb). If
a connectionist model shows semantic systematicity, it would mean that connectionist
architectures are capable of showing a human level systematic behavior, and thus, that

connectionist models can be plausible models of human cognition.

In this chapter, this issue is approached from a production perspective: for a given
novel meaning representation, produce novel sentences. As we saw in the previous
sections, the proposed model indeed learns to generate sentences from the rich situation
representations described in Chapter 3, and most importantly it is able to generalize to

novel sentences and situations.

First, we can see that the model is able to learn the syntactic patterns of the microworld
and does not just memorize sentences, thus showing syntactic generalization. This was
observed in all test conditions, where the model was able to generate new combinations
of words in such a way that the new combinations are in line with the syntactic patterns
of the microlanguage, while at the same time being coherent with the semantic structures

to which they are related.

Crucially, the model also generalizes semantically, as demonstrated in test conditions 3
and 5, where the model was fed with semantic representations that it had never seen, so
any correct output can be regarded as arising from the regularities within the microworld
from which the DSS representations are derived—cf. the comprehension results by [Frank
et al.| (2009).

Regarding conditions 4 and 5, where a passive sentence is queried but the microlanguage
does not define such structures, one can see a behavior that could not be addressed by
a classical symbolic model, at least not in an intuitive way. A symbolic model operates
over a set of discrete units or symbols, and the operations available are a set of rules that
work on these symbols in a predefined and precise way. Then, such a model would find

difficulties with items that do not fit into any of the discrete and predefined symbolic
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units, and furthermore, it would not be able to process combinations of symbols that
are not defined by any of the predefined rules. In other words, a symbolic model would
have the capability of defining a perfect combinatorial predefined behavior, but would be
unable to handle semantic representations for which no specific symbolic rule is defined.
The model proposed does not have that issue, it is also able to operate over discrete
units, in this case words, but the definition of the semantic space is a continuous one,
where unknown areas can still be interpreted. As one can see, the sentences produced
by the model for these conditions, are in general semantically and syntactically correct,

it is unclear how a symbolic system would behave in this situation.

The fact that the difficulties of the model arise encoding highly similar situations suggests
that the model is able to reconstruct the topography of the microworld semantic space,
clustering situations that are semantically related. At the same time, the model assigns
linguistic structures to each area in this semantic space such that semantically similar
situations are assigned linguistically similar realizations. Given that in practice the
semantic space is a continuous 44-dimensional space, in theory the model should be able
to generate sentences for unseen areas as long as it is given enough information during
training in order to reconstruct the semantic space and the mapping between semantics

and linguistic realizations, as proposed by |[Frank et al.| (2009).

The results of the test conditions show that this is indeed the case. Conditions 1 and
2 demonstrated that the model is able to generate sentences for semantically known
situations but with a different voice (active/passive), showing syntactic systematicity.
Conditions 3 and 5 demonstrated that the model is able to generate sentences for unseen
areas in the semantic space, thus showing semantic systematicity. Conditions 4 and 5,
where passive sentences are queried, demonstrated that the model is able to produce
coherent sentences even if the grammar that was used to construct the training/testing
sets does not associate passive constructions with these situations. Finally, as we saw
during multisentence encoding, the model is not only able to produce a novel sentence
for a novel semantic representation, but also it is able to produce most (if not all) of the

sentences that are related to the given semantics and that are allowed by the grammar.

5.4.2 Symbol System?

Another argument that has been raised against connectionist models is the following: a
connectionist model cannot behave systematically unless it implements a symbol system,
if that is the case, then the explanatory value of connectionism is little, and the focus

of analysis should be the symbol systems that are implemented on top of it.



Chapter 5. Connectionist Semantic Systematicity 90

One feature of the symbol systems that are mentioned above is that their processing
involves the construction of a hierarchical symbolic structure, similar to a syntactic tree
using a context free grammar formalism. However, the DSS representations that are
used as input for the model presented here do not posses a hierarchical constituent
structure, but rather they are better described as points or areas in a continuous space.
The fact that the model is able to exhibit systematicity without operating over symbols

suggests that a symbol system is not a necessary attribute for systematicity.

Another property of symbol systems is that arbitrary entities can be arbitrarily assigned
to symbols, and these symbols are the ones over which the system operates. This process
of binding arbitrary entities to symbols is taken for granted in symbol systems, however,
the specific details of its algorithmic mechanism or its neural implementation are not

clear.

Endowing a connectionist model with this binding mechanism could allow the model to
operate with arbitrary inputs. The model of Chang| (2002)) introduces such a mechanism,
where a recurrent neural network essentially operates over semantic role fillers, while an
external binding mechanism makes sure that each role is attached to the proper entity.
As a result the model is able to produce words in semantic roles that were not seen

during training.

While the bindings used by |Chang (2002) serve to achieve high degrees of generalization,
they are in essence bindings between localist units, and consequently the difficulties
assessing similarity between them would also arise. It would be interesting to develop a

similar binding mechanism but between distributed representations.

Perhaps such a mechanism is already implicitly in place in some neural network architec-
tures. As we saw before, each layer in a neural network projects the input of the previous
layer onto a space that could be regarded as an abstraction of the original. For instance,
a layer representing words can be mapped to a layer representing syntactic categories.
Then, the only problem is the binding of novel items to the correct areas/symbols, which
can be seen as a classification task. Now, it is easy to imagine a mechanism that infers
information of a particular novel word from the context in which it appears, in order to

assign the word to the correct area in the next level of processing.

This intuition has been shown to be implemented by some neural network architectures.
For example, in computer vision using convolutional deep neural networks, it has been
shown that each layer contains units that are particularly sensitive to specific features,
and that these features become increasingly more abstract with the position of the layer

within the architecture (e.g., |[Yosinski et al., 2015} Zeiler and Fergus, [2014).
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Moreover, similar architectures to the one presented here that are used in computational
linguistics (e.g., Mikolov et al.l [2010; Sutskever et al., |2014) further demonstrate that
generalization can be achieved without resorting to the kind of binding proposed by
Chang (2002]).

In sum, the results of the evaluation demonstrate a systematic behavior of the model,
even if the representations used do not possess a hierarchical symbolic structure. Fur-
thermore, the ability to bind symbols to arbitrary entities as in the model of [Chang
(2002)), an attribute that has been proposed to be necessary for systemticity, might
already be present to a certain degree in some architectures, as one can see in the gen-
eralization results of larger connectionist models that are able to process language in an
open domain. These notions suggest that indeed systematicity can be achieved without

the need of a full symbol system.

5.4.3 Requirements for Systematicity

An argument that has been posited as fundamental is that while different connectionist
models may show systematic behavior, it is necessary to show how systematicity arises
a consequence of a neural network architecture and not as a mere coincidence, product

of a complicated and tailored training process.

A cognitive system can be defined as a function, where a given input is translated
through a set of operations into a specific output. A model trying to learn this function
could either memorize each mapping, or could infer the internal computations that the
function performs. Since memorization would lead to no generalization, the model would
have to infer and approximate the internal process of the function in order to achieve

systematicity.

Theoretical analysis have shown that multilayer perceptrons are universal function ap-
proximators (Cybenkol [1989)). Further, recurrent neural networks have been shown to
be at least as powerful as a Turing Machine (Siegelmann, 2012; Siegelmann and Sontag,
1995). Then, the problem of systematicity is not about computational power, but about
learning. While a set of connection weights with systematic behavior exists in theory
for any given function, the difficulty to learn such weights depends on different factors,
such as the complexity of the function to be learned, the representations that are used,

or the amount of training data.

The ability to correctly map novel inputs onto their respective outputs implies first, that
the outputs depend on the nature of the inputs with some determinism; and second, that

the novel inputs share regularities with previously seen items, such that the behavior
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learned in the past can be applied to the novel inputs. Then, we can recognize factors
that could affect systematicity or learnability, some related to the systematicity of the
function that the model is supposed to learn, and some other to the systematicity of the
input and output spaces and the representations that are used by to the model. A lack
of any of these factors would result in lack of learning, regardless of the architecture of

the model.

Without discarding the impact that certain architectures have on facilitating learning
and/or generalization, the following subsections try to define some conditions about
the function to be learned, and the representations that are used, that are necessary
and that could index the difficulty for learning a particular behavior. These conditions
are defined in the context of connectionist models, but they apply to general learning,
assuming that a model trying to learn a given function has no other information than

the training set.

5.4.3.1 Structured Input Space

As first condition for generalization is that the input space has to present a structure.
If a model with no previous knowledge is trained on a given input set, the knowledge
it can acquire is determined only by that set. Then, the information about a given
novel input would only be useful if it can be related to those input instances that it has
seen before during training. Consequently, the input space has to be to some degree
structured, such that regularities can be recognized, learned by the model and applied

to new instances.

The degree to which the input space is structured would determine the number of train-
ing examples that are needed to reconstruct this space, where more complex spaces
would require more training examples. A training set that does not contain enough rep-
resentative examples of the input space, would not give the model enough information in
order to reconstruct the structure of that space. This is similar to the case of inferential
statistics, where one tries to generalize the behavior of a complete population given a
sample of it. A requirement in such case is that the sample forms part of the population,
and that it is representative enough in order to draw conclusions about the complete

population.

The events that form the input set of our model and the output set of [Frank et al.
(2009)’s model are defined in terms of a set of basic events. The space defined by all
possible combinations of basic events is structured in the sense that some pairs of basic

events always co-occur, some others are not allowed, and other pairs co-occur with some
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probability distribution. These regularities can be recognized during training, allowing

the model to interpolate and infer information about unseen events.

5.4.3.2 Systematic Output

Another requirement for the function to be learned is that it should be systematic. A
given function is general or systematic if the same process is applied to all its inputs,
whether seen before or not. Then, independently of the number of operations involved,
such a function would be at least in theory learnable if its behavior presents regularities
with respect to the input space, such that the processing needed for a particular input
can be inferred by looking at the processing performed on similar inputs. In other words,

similar inputs should be processed similarly.

If that is the case, then for a given novel input, the model would be able to infer the
correct processing needed for that particular input, as it should be similar to the process
performed on similar inputs in the training set. These regularities would mean also that
the output space would present a topology similar or in function of the input space.
Then we can speculate that the difficulty of learning a particular function would also
depend on the regularity of the output space. For example, we can envision that training
a classifier of two linearly separable classes should be far easier than trying to infer the

process of a pseudo random number generator.

In our case, the output set of the model is formed by sequences of words that form
sentences. These sentences present regularities as they were all constructed using the
same grammar, defining a space where some constructions are allowed and some are not.
Because of these regularities, the model is able to learn the syntactic patterns of the mi-
crolanguage. Furthermore, the mapping between semantic representations and sentences
is such that similar semantic representations are processed similarly, as demonstrated
by the errors performed by the model. These regularities in the mapping of inputs to

outputs permitted the model to process correctly novel inputs.

5.4.3.3 Analogous Informative Representations

We can distinguish between analogous and symbolic representations. Analogous repre-
sentations depend and show the nature of what is being represented, such that relations
between represented items are apparent by looking at the representations (see [Frank
et al.; 2009). In this view, entities that are similar in nature will also have similar

representations. Symbolic representations, correspond to arbitrary relations between
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representations and what is represented, such that the form of the representation is

independent of what is being represented.

For example, a photo of a house is an analogous representation of the house that was
photographed because it reflects and depends on the nature of that particular house,
allowing us to compare that house with other entities by merely looking at their photos;
while the phrase “the house” referring to the same house is an arbitrary reference that

is only useful if one knows beforehand the mapping between reference and referent.

Assuming that generalization implies the extraction of patterns among known input
representations and then using this information in order to process novel inputs, then if
there is no link between the nature of what is being represented and the representation,
it will also be impossible for any model to draw inferences over the representations of
the novel inputs. As a consequence, a necessary condition for the model to learn and
generalize is that the representations that are used as inputs contain enough information
about the nature of what is being represented, such that this information is enough to

discriminate and draw relations with other representations whether known or not.

The situation vectors defined by Frank et al| (2009) and the belief vectors described
here are analogous, as their form depends on what is being represented, permitting the

comparison of any pair of events just by looking at their corresponding vectors.

Another important and related aspect is informativity. In this case we assume that
representations are not perfect reproductions of what they represent, a photo of a house
represents the house but it is not the house, consequently not all aspects of the house
are available by looking at the photo. Then a representation is informative if it contains
the relevant information that is necessary for the task at hand. If for instance, we are

interested about the interior of houses, photos from outside would not be very helpful.

The 25,000-dimensional situation vectors defined by [Frank et al.| (2009) contain very
detailed information about the observations in which each event is true. However, after
the dimensionality reduction used to create the 150-dimensional situation vectors, some
aspects regarding modification are lost, which meant that the model was not able to
accurately produce such patterns. In turn, belief vectors do not contain as detailed
information as the original 25,000-dimensional situation vectors, only representing av-
erages over observations. In both cases, going from the original 25,000-dimensional
situation vectors to belief vectors or to the 150-dimensional situation vectors involved
loss of information. Nonetheless in the case of belief vectors, they still contained the
required information in order to perform the task at hand, including the aspects of

modification.
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5.5 Conclusion

In this chapter the language production model proposed in Chapter 4 was tested in order
to see first whether it was able to successfully learn to produce sentences utilizing the

semantic representations defined in Chapter 3.

The results of the testing conditions showed that indeed that was the case, being able to
produce correct sentences for a given semantic representation. An analysis of the elicited
errors revealed that the errors were related to highly similar situations, reproducing
relevant findings of the speech error literature. Moreover, the errors also reflected the
statistical patterns of the training set, showing that the model was able to learn such

patterns.

In addition, the model was tested to see whether it was able to exhibit systematicity,
being able to generalize and process novel message representations. The results showed
that the model able to handle novel message representations. Indeed, the model was
able to produce novel sentences and for novel semantic representations. Additionally,
the model was able to produce passive sentences for areas in the semantic space for
which the microlanguage does not define passive sentences, showing a high degree of
systematicity. Furthermore, the model was able to produce not only one sentence but
most if not all of the sentences that were related to a particular semantic representation,

further demonstrating a systematic behavior.

The results of these tests were partly due to the architecture but more importantly to
the semantic representations that were used as input for the model. These are points
in a multidimensional continuous space, containing rich information about the situation

that a sentence describes.

Finally, a set of conditions were outlined about the nature of the function to be learned
and the representations used by the model, in order to learn a particular function showing
systematicity. Specifically, the input and output spaces have to be structured, the
mapping input-output must be such that similar inputs are processed similarly, and
finally, the representations used by a model must reflect the properties of the represented
elements. As we saw, these conditions were met by the function and the representations
that were used, permitting the model to learn the expected behavior and to exhibit

systematicity.



Chapter 6

Sentence Production Dynamics

A Recurrent Neural Network (RNN) is an artificial neural network that contains at least

one layer whose activation at a time step t serves as input to itself at a time step ¢ + 1.

Theoretically, RNNs have been shown to be at least as powerful as a Turing Machine
(Siegelmann, 2012; Siegelmann and Sontag), [1995)). Empirically they have been shown to
be able to learn regular, context-free and context-sensitive languages (Holldobler et al.|
1997}, [Steijvers and Griinwald), [1996)). In computational linguistics they achieve remark-
able results in several tasks, most notably in language modeling and machine translation
(e.g. Mikolov et al 2010; Sutskever et al., 2014)). In the human language processing lit-
erature, they have been used to model language comprehension (e.g. Brouwer) 2014}
Brouwer et al., [2017; Frank et al.l [2009; Mayberry et al., 2009; |Rabovsky et al., 2016])
and production (e.g. Chang, 2002; Dell et al., (1993, the results in the previous chapter).

In spite of their success, RNNs are often used as a black box with little understanding of
their internal dynamics, and evaluated rather in terms of prediction performance. This
is due to the typically high dimensionality of the internal states of the network, coupled

with highly complex interactions between layers.

In this chapter, we try to open the black box presenting an analysis of the internal
behavior of the language production model presented in Chapter 4. This model can be
seen as a semantically conditioned language model that maps a semantic representation
onto a sequence of words forming a sentence, by implementing an extension of a Simple
Recurrent Network (SRN, Elman) 1990; | Jordan) 1986)). Because of its simple architecture
and its relatively low dimensionality, this model can be analyzed as a whole, showing

clear patterns of computation.

The method that was applied is based on Layer-wise Relevance Propagation (Bach et al.,

2015)). This algorithm is similar to the backpropagation algorithm (Rumelhart et al.,

96
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1986). It starts at the output layer and moves in the graph towards the input units,
tracking the amount of relevance that each unit in layer /;_; has on the activation of
units in layer I;, back to the input units, which are usually human-interpretable. For a
review of this and some other techniques for interpreting neural networks, see Montavon
et al| (2017); for related work see |Arras et al.| (2017); Ding et al.| (2017); Kadar et al.
(2017); [Karpathy et al.|(2015); Li et al.| (2015).

The analysis, whose details are provided in the rest of this chapter, reveals that the over-
all behavior of the model is approximately as follows: the input semantic representation
activates the hidden units related to all the semantically relevant words, where words
that are normally produced early in the sentence receive relatively more activation; af-
ter producing a word, the word produced activates syntactic and semantic constraints
for the production of the next word, for example, after a determiner, all the nouns are
activated, similarly, after a given verb, only semantically fit objects are activated; mean-
while, the recurrent units present a tendency for self-activation, suggesting a mechanism
where activation is preserved over time, allowing the model to implement dynamics over

multiple time steps.

While some of the results presented here have been suggested previously (e.g., Karpathy
et al., 2015), this work represents a holistic integrative view of the internal mechanics

of the model, in contrast to previous analyses that focus on specific examples.

The rest of this chapter presents the details of the analysis. The next section gives a
reminder of the architecture of the model that was presented in Chapter 4. Afterwards,
the model is divided into each of its parts, which are analyzed respectively in each of
the following sections. The final two sections correspond to Discussion and Conclusion,

which review the main findings.

The results and most content of this chapter were presented in |Calvillo and Crocker
(2018).

6.1 Sentence Production Architecture

As a reminder, we review the architecture presented in Chapter 4, which is shown in
Figure 6.1. The architecture consists of an input layer containing the representation of
the message to be conveyed (150-dimensional situation vector or 44-dimensional belief
vector), plus one bit indicating if the model should produce an active sentence (1) or
a passive one (0); a 120-unit recurrent hidden (sigmoid) layer; and a 43 unit (softmax)

output layer where each unit corresponds to a word in the vocabulary.
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FIGURE 6.1: Model architecture.

Time in the model is discrete. At each time step ¢, activation of the input layer dss
is propagated to the hidden recurrent layer. This layer also receives a copy of its own
activation hy—1 at time-step ¢ — 1 (zeros at ¢t = 0) through context units. Additionally,
the hidden layer receives the identity of the word mon;_1 produced at time-step ¢t — 1
(zeros at t = 0) through monitoring units, where only the unit corresponding to the

word produced at time-step ¢ — 1 is activated (set to 1).

More formally, activation of the hidden layer is given by:
h = U(Wih ~dss + Wy - hi_1 + W - mong_1 + bh> (6.1)

where W;;, is the weight matrix connecting the input layer to the hidden layer, Wj;,
is the weight matrix connecting the hidden layer to itself, W,,; is the weight matrix
connecting the monitoring units to the hidden layer, and b, corresponds to the bias unit

of the hidden layer.

Then, the activation of the hidden layer h; is propagated to the output layer, which

yields a probability distribution over the vocabulary, and its activation is given by:
outputy = softmax(Whe - hy + by) (6.2)

where Wp, is the weight matrix connecting the hidden layer to the output layer and b,

is the vector corresponding to the output bias unit.

An aspect that facilitates the analysis of this architecture is that the activation of all
layers is positive, ranging from 0 to 1. Then, the difference between activation or inhi-

bition of any unit onto another is given by the sign of the connection weight between
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them. Thus, units inhibiting a particular unit u; will be those with a negative connection

weight to u;, and activating units will be those with a positive connection weight to u;.

Having this in mind, the analysis is performed. In this architecture the output layer
depends solely on the activation of the recurrent hidden layer. Thus, we will first ana-
lyze the influence of the hidden layer onto the output layer, and later we will see how

monitoring, input and context units affect production via the hidden layer.

6.2 Word-Producing Hidden Units

As the first step, we would like to know which hidden units are most relevant for the

production of each word.

We begin by identifying the hidden layer activation patterns that co-occur with the pro-
duction of each word. In order to do so, the model was fed with the training set. For
each training item, the model was given as input the corresponding message representa-
tion, and at each time step the monitoring units were set according to the corresponding
sentence of the training item. This process is very similar to one epoch of training, ex-
cept that no weight updates are made. During this process, for each time a word had an
activation greater than 0.2, the activation of the hidden layer was saved. This value was
chosen in order to focus the analysis on activation patterns where the target word was
clearly activated. At the end, for each word oy a set of vectors was obtained, each vector
corresponding to a pattern of activation of the hidden layer that led to the activation of
0. Then these vectors were averaged, obtaining a vector that shows which hidden units

are generally active/inactive during the production of oy.

Having these patterns, one can further infer the direction and magnitude of their effect

by looking at the connection weights that connect the hidden layer to the output layer.

A hidden unit h; having a high average activation a; when producing a word o; means
in general that h; is relevant for o,. However, if the weight connecting h; to oy is close
to 0, then the production of o; will not be so affected by h;. In this case, it could be
that h; is only indirectly affecting the production of oy by activating/inhibiting other

words.

Intuitively, hidden units can lead to the production of o directly by activating oj or
indirectly by inhibiting other words. Similarly, they can lead to the inhibition of o
directly by inhibiting oy, or indirectly by activating other words that compete against
ox. Because of the large number of configurations that can possibly influence production,

we will only focus on direct activation/inhibition.
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For the case of activation, we obtain a score Ay, ,, conveying the relevance of the hidden
unit h; on the activation of the word o, equal to the average activation that oy receives

from h; when o, is produced, normalized by the sum of all activation that oy receives:

| ik
Apjop = ]7]+ (6.3)

where a;? is the average activation of unit h; when the word o, is produced, and w;.jc is
the positive weight connecting h; to oj. This score is only defined for hidden units with

a positive connection weight to o, which we call activating units.

Inhibiting hidden units are units with negative weights to a word o. For inhibition the
average activation of an inhibiting hidden unit during the production of oy is expected
to be close to 0. Then, the connection weight is irrelevant, as the product would be close
to 0 as well. Thus, for inhibition we do not take into account the average activation, but
rather its complement. That is, for each hidden unit h;, with average activation a;, we
obtain 1 — a; and multiply it by the corresponding connection weight. The result gives
us the relevance regarding inhibition of each hidden unit on a particular word:

(6.4)

(1—af)ws,
Ihjo, = ]k :
J

TS —dhu,

Jl

Based on these definitions, for each hidden unit activation/inhibition relevance scores
were obtained for each word in the vocabulary. This gives us an idea of the function
of each hidden unit. Examples for some hidden units are shown in Figure 6.2, where
columns represent hidden units and rows are words in the output layer. The first 5
columns show a sample of the relevance patterns in general, while the rest were cho-
sen because they show some kind of specialization. With the exception of Figure 6.5,
the words (rows) in these heatmaps are ordered intuitively according to syntactic and
semantic similarity, having in order: determiners, nouns related to persons, nouns re-
lated to objects/games, nouns related to locations, verbs, adverbs, prepositions and the

period.

One can see that the model takes advantage of redundancy and context sensitivity,
where hidden units activate many different words depending on the context. As a result,
production of a specific word depends on the combined behavior of all the hidden units,

where a word is produced if it receives support from several units.

Nonetheless, some units suggest a specialization (see also |[Karpathy et al.l 2015)), acti-

vating/inhibiting related words: there are units related to games (e.g., 0, 80), toys (e.g.,
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FIGURE 6.2: Relevance scores of some hidden units on output units. Red represents
activation, blue inhibition.

4, 36), places (e.g., 30, 34, 35, 69), people (e.g., 35, 115), winning/losing (e.g., 10, 115),
prepositions (e.g., 30, 36, 111) and adverbs (e.g., 36).

One can also see that similar words have similar relations with the hidden neurons,
suggesting syntactic/semantic categories. A clear example are synonyms, with almost
identical relevance patterns, as shown by the rows corresponding to football/soccer,

jigsaw /puzzle and bathroom/shower.
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While relevance scores of hidden units may be difficult to interpret, they provide a
proxy through which one can see the effect of input, monitoring and context units on

the output layer, which will be addressed in the next subsections.

6.3 Monitoring Units

Having the relevance values of the hidden layer, one can infer the influence that mon-
itoring units have on the production of each word by looking at their influence on the

hidden layer.

The monitoring units feed the hidden layer with the identity of the word produced at
the previous time step, where only the unit related to that word is activated (set to 1).
Consequently, the effect on the hidden layer depends only on the connection weights of
that word. Then, total relevance R;; of the monitoring unit ¢ on the output unit k, is
given by:
Rip =Y wijRj (6.5)
J

where w;; is the weight connecting the monitoring unit ¢ to the hidden unit j, and Ry is
the relevance score of the hidden unit j onto the output unit k£, which can be activation

(Ap,o,) or inhibition (Ip,e,)-

Having this, one can further separate and normalize, giving activation A;; and inhibition
Iik’:

Rt
Ay = —2k 6.6
k
R
Iy = -k (6.7)

Figure 6.3 presents these scores. In general, each monitoring unit promotes the activa-

tion of words that are allowed after it. Determiners activate the possible nouns that can

)

follow them: “a” activates all toys, “game” and “girl”; and “the” activates “boy” and

YW

all locations. Nouns referring to people (e.g., “charlie”, “girl”) activate all present tense
verbs and the adverbs “inside” and “outside”. Games and toys activate “is”, in order
to form passive constructions. Given that locations appear always at the end of the
sentence, they activate the period “”. Verbs activate words that can serve as their com-
plements, for example “beats” activates all person-related nouns. Similarly, prepositions

activate all their possible complements.
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F1GURE 6.3: Relevance scores of monitoring units on output units. Red represents
activation, blue inhibition.

Output (next word)
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Inhibition works very similarly, where monitoring units inhibit words that should not
follow them. For example, determiners inhibit all prepositions, nouns inhibit other
nouns as two nouns never occur together, prepositions inhibit also other prepositions,
etc. Finally, some words inhibit themselves avoiding repetitions, for example “well” and

“badly”.
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In general we can see that the monitoring units enforce patterns related at least to bi-
grams in the training set, with possibly more long distance dependencies introduced via
context units. This can be further verified in Figure 6.4, which shows the activating
relevance scores of the monitoring units (above), and the conditional probability of
the production of each word given a previous one in the training sentences (bi-gram
probabilities, below). As one can see, the main tendencies of the bi-gram probabilities
are present in the relevance values, while introducing more information possibly related
to dependencies that go beyond bi-grams. We should also note that the relevance scores
permit the estimation of graded inhibition relations, something that is not possible using

only probabilistic information.

6.4 Input Units

Similar to the analysis performed to the monitoring units, the input units were analyzed

in order to see their effect on each output unit.

Using equation 6.5, activation and inhibition scores for the input units were computed,
where 7 would be in this case the index of each input unit. In contrast with monitoring
units, many input units can be active simultaneously. Because of that we would like to
infer not only the direction of their effect, but also its magnitude in relation to other
input units. Hence, the normalization introduced by equations 6.6 and 6.7 was skipped.
In this case activation and inhibition correspond respectively to positive and negative

values of R;; in equation 6.5. The resulting scores are shown in Figure 6.5.

In general, the input units activate words that are related to their semantics. For ex-
ample, the input unit play(sophia, soccer) activates words related to sophia, soccer and
places where soccer is played (in the street). Similarly, the input unit manner(win,diffi-
culty) activates “beats”, “difficulty” and “with”, which are used to convey this aspect.
At the same time, each input unit inhibits words that are in conflict with its semantics.
For example, the unit play(charlie, hide& seek) inhibits words concerning other games
and the place where that game is not allowed (in the street). This behavior of activation

and inhibition can be seen to some degree in all input units.

Of special interest is the last input unit (actives in Figure 6.5), which marks whether
the model should produce an active or a passive sentence. When this unit is active,
words concerning people are activated (e.g., “charlie”, “someone”, “heidi”); at the same
time, this unit inhibits words concerning games and passive constructions (e.g., “chess”,
“hide&seek”, “soccer”, “is”, “by”). Thus, production of active/passive constructions

seems to be determined by giving relatively more activation to words related to people
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sentences.
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in the case of active sentences, or games in the case of passive sentences. This is similar to

experimental evidence showing that more conceptually available elements in the message

are placed in more prominent grammatical roles (Bock and Warren|, |1985; [Ferreira, [1994]).
b b g

In the Structural Priming model (Chang et al. [1997)) this behavior was implemented

by assigning relatively more activation to some parts of the message representation
depending on the voice that was to be produced (passive or active). In the model

presented here, this behavior was learned by the actives unit in the input layer, which
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as one can see, promotes specific aspects of the message representation depending on

the expected voice of the sentence to be produced.

At time step 0, the activation of monitoring and context units is equal to 0. Con-
sequently, the activation of the hidden layer at this point only depends on the input
semantic representation. Then, we would expect that the input units should activate
more the words that can appear at the beginning of a sentence, relative to other words.
This would ensure that the words starting a sentence are correct. Afterwards, mon-
itoring and context units would be able to enforce syntactic and semantic sequential

constraints, such that the resulting sentence is coherent.

The words shown in Figure 6.5 are ordered such that the first 10 words are those that
can appear at the beginning of a sentence. As one can see, those words seem to receive
relatively more activation/inhibition than the rest. Furthermore, the actives unit has a
very strong relevance, such that when an active sentence is queried, the words that can

start an active sentence are more activated.

In sum, the input units influence production by activating hidden units that are related
to the semantics that is to be encoded, while additionally giving an idea of the word

order that they should follow, specially at time step O.

6.5 Context Units

At each time step, context units feed the hidden layer with its own activation at the
previous time step, providing the model with some kind of memory over possibly un-
limited time steps. This is perhaps the most interesting part of the model, however, it
is also the most difficult to analyze, given that its content is not directly interpretable,

and a relation of causality can involve a variable number of time steps.

We will use the notation h; to refer to a hidden unit ¢ in the hidden layer, and ¢; to refer
to the corresponding context unit which contains the activation of h; at the previous

time step.

A way to preserve information over time is by reverberating activation over different time
steps. For example, if the hidden unit h, gets active, then the corresponding context
unit ¢, will be active at the next time step; if the weight connecting ¢, to h, is such that
the activation of ¢, causes the activation of h,, then this would form a cycle in which h,

will be active indefinitely or until other units introduce inhibition, breaking the cycle.

The connection weights between the context and hidden layers were analyzed in order

to see if these cycles were present. In such cases, the effect of h, in the current time step
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would be similar to the effect of ¢, in the next time step. Thus, for each pair (h;,¢;),
if the effect of ¢; is similar to the one of A;, it would mean that ¢; is mainly activating
h; or units similar to h;, forming a cycle. Note that if ¢; does not activate h; directly
but other units similar to A;, it would mean that while the activation of the specific unit
might not be preserved, the model would still remain in the same area within the hidden

space.

As an example, for the first 15 hidden units Figure 6.6 presents these values. For each
pair of columns, the first column represents the direct effect of each hidden unit on the
output, identical to the values in Figure 6.2, but normalized for each hidden unit; the
second column represents the effect of the corresponding context unit at the next time
step, calculated using the equations 6.5-6.7, where in this case i is the index of each

context unit.

The column of the right side (DimCorr) presents for all hidden units, the correlations
between the relevance values of the hidden units and the relevance values of the con-
text units, related only to each specific word; intuitively showing the degree to which
activation related to each word is preserved by all hidden units. The results suggest
that the context units tend to preserve activation related to most words, but to different
degrees, where activation of words related to toys, locations and adverbs is preserved
more than activation of words related to people. Out of the 43 words, 11 presented
moderate correlation (0.4 < r < 0.6,n = 120,p < 0.00001), and 15 weak correlation
(0.2 <r<04,n=120,p < 0.11).

The row at the bottom (UnitCorr) presents correlations between all the relevance values
of each hidden unit and the corresponding context unit, that is, between the values
of the two columns above. As we can see, some units seem to behave like memory,
while others seem to erase their content. For example, units 2, 3, 4, 5, 8, 10 and 14
have a high correlation between the hidden and context relevances, implying a cycle as
described above, while units 9 and 11 present an anticorrelation, which means that the
context unit is actually inhibiting its corresponding hidden unit. Out of the 120 context
units, 14 presented strong correlation (r > 0.6,n = 43,p < 0.00001), 26 moderate
correlation (0.4 < r < 0.6,n = 43,p < 0.006) and 20 weak correlation (0.2 < r <
0.4,n = 43,p < 0.2). Regarding anticorrelation, there were 3 units with moderate
anticorrelation (—0.6 < r < —0.4,n = 43,p < 0.0036) and 6 with weak anticorrelation
(=04 <r<-02,n=43,p<0.2).

As we can see, about half of the context units have a tendency to preserve their activa-
tion, which varies according to each unit, and to the kind of related information. This
suggests a tangible mechanism that preserves information over time, which in the case

of language is necessary in order to enforce long distance dependencies.



Chapter 6. Sentence Production Dynamics 109

=]
3
g
0 Oc 1 1¢c 2 2¢ 3 3c 4 4 5 5¢ 6 6 7 7c 8 8 9 9c 10 10c 11 11c 12 12¢ 13 13c 14 14c I
I 1 1 I 1 1 I 1 1 1 1 I 1 1 I 1 1 I 1 1 1 1 I 1 1 I 1 1 I 1
a-
the - .
charlie -
heidi~ [ |
sophia - .
boy -
girl-

someone -
chess —. .
—— s K
football -
soccer —| 1
ball- B
doll- B B

jigsaw -
puzzle-

N

toy -

0.5
bathroom -
shower -

bedroom - .
playground - . l .

street -
inside -
outside -

beats- . .

is-

loses—

=0.5
plays- .
wins— . .

lost- .
played - I
won - .
badly - | -1
well - I I
difficulty -

ease -

at- . a
by - .

FIGURE 6.6: Relevance scores of hidden and context units. Right: correlations for each

word between the relevance values of the hidden units and the context units. Bottom:

correlations between all relevance values of each hidden unit and the corresponding
context unit.

6.6 Discussion

In the above sections, the language production model was separated into its different

modules in order to determine their function. The results show that each layer in the
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model serves a different purpose in the architecture. Trying to integrate these parts into

a global explanation of the internal mechanics of the model, we arrive to the following:

1. Production starts when the model is fed a semantic representation at time step 0.
At this point, the semantic representation is the only source of information, as the

context and monitoring units are set to zeros.

2. Based on the activation of the input layer, the model must produce a word that is
in accordance to the semantics and that is syntactically plausible for the beginning
of the sentence. As we saw, the input units seem to select the words necessary
for production, and depending on the voice expected (active or passive) more

activation is given to the words that can fulfill the first position.

3. After the initial word has been produced, monitoring and context units gain in-
fluence. Monitoring units promote the production of words that can follow the
previous word, and inhibit words that should not follow. At the same time, con-
text units keep information regarding previous and current activation, suggesting
a sort of memory, where information remains latent until the right time to be
produced. This happens until a period is produced, in which case production

halts.

These patterns are in line with the view of the lexicon as a productive system, and not
just a collection of lexical items upon which operations are made (Elman, 2014). Viewed
from this perspective, the network is a dynamical system where the model moves within
a continuous multidimensional space represented by the hidden layer states. These
movements are determined by the semantic representation that serves as input to the
model and the lexical transitions that unfold over time, such that each lexical item that
is activated modifies the state of the dynamical system moving it in certain directions
within the hidden space (see Elman,|1995). As we saw, the model analyzed here exhibits
a similar behavior: the semantic representation modifies the state of the hidden layer
promoting the aspects that are relevant for the given semantics; meanwhile, at each
time step a lexical item is activated, which in turn modifies the hidden state through
the monitoring units, introducing syntactic and semantic constraints. In this case, each
lexical item in the monitoring layer operates over the hidden states and not the other

way around, as described by Elman| (2014).

Because of the high architectural similarity, one could expect that the production pro-
cess presented here might generalize to some of the models described in Chapter 2
that also use a recurrent architecture; particularly, the Phonological Error model (Dell
et al., 1993)), the Structural Priming model (Chang et al., [1997) and the Prod-SRN
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model |Chang] (2002), whose architectures are almost identical to the one presented here.
While the Dual-Path model also implements a recurrence, its binding-by-weight mecha-
nism makes more difficult to draw commonalities between that architecture and the one

analyzed here.

Some larger models used in computational linguistics possess also a relatively similar
architecture (e.g., [Mikolov et al., 2010; Sutskever et al.l 2014]). These models typically
employ a higher dimensionality and more complex hidden units such as Long-Short Term
Memory (LSTM, Hochreiter and Schmidhuber} (1997) or Gated Recurrent Units (GRU,
Cho et al., [2014). Nonetheless, the main paths of computation are largely similar to
the ones described here: at each time step the word previously produced is fed to a
recurrence that in turn feeds another layer yielding a probability distribution over the
vocabulary (e.g., Mikolov et al., 2010)); additionally, a semantics is fed into the recurrence
in semantically conditioned models, such as some used in machine translation (e.g.,
Sutskever et al., 2014) or image caption generation (e.g., Chen and Lawrence Zitnick,
2015)). Furthermore, the individual results presented here are coherent with previous
findings on larger architectures (for example, similar words are known to have similar

word embeddings), suggesting that these results can be generalized to such models.

While some adaptation might be needed for specific cases, the algorithm described above
might serve as intuition of how those models work, and the methodology outlined here

could serve to test such a hypothesis in future work.

6.7 Conclusion

This chapter presented an analysis of the internal mechanism of the language production
model that was described in Chapter 4. The results show clear patterns of computation

that permit us to infer its internal mechanism.

As we saw, each hidden unit is related to a variable degree to each word in the output
layer, such that some hidden units promote the activation of some words while inhibit-
ing some others. In turn, the input semantic representation constantly promotes the
activation of areas in the hidden space that are related to words that are relevant for
the expression of the given semantics. Regarding the monitoring units, they enforce
syntactic and semantic constraints of words sequences. Finally, the context units pre-
serve information over different time steps, and thereby are able to enforce long distance

dependencies.

Because of architectural similarities with other language models, we expect that this

mechanism reflects the behavior of similar models models of language production (e.g.,
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|Chang, [2002; |Chang et al.,|1997; Dell et al.,|1993)), as well as larger models used in com-

putational linguistics, such as those used in language modeling (e.g.,[Mikolov et al.,|[2010)

or machine translation (e.g., |Sutskever et al. 2014), among others. The methodology

here outlined could also serve to test such a hypothesis in future work.



Chapter 7

Approximating UID

For a given semantics, humans are able to produce a large number of utterances that
express its meaning. However, some constructions are preferred over others, some sen-
tences are easier to understand, while some others are more difficult, so people tend to

avoid them.

As described in Chapter 2, the Uniform Information Density Hypothesis (UID, Jaeger,
2010; [Levy and Jaeger, 2007) presents one way to rank sentences according to how
uniform their surprisal profiles are, where a sentence is preferred if the surprisal of each of
its words is more uniform than for alternative encodings. This is proposed as a rational
strategy of language production at the computational level of analysis, since such a
strategy maximizes the probability of successful communication in a bandwidth-limited
noisy channel while maximizing information transmission. Alternatively, and without
the assumption of a noisy channel, comprehension effort is also minimized utilizing a UID
strategy (Levy and Jaeger, 2007)), provided that the effect of surprisal on comprehension
effort is superlinear (Hale, |2001a}; Levyl 2008).

Empirical evidence supports this hypothesis (e.g., |Aylett and Turkl 2004; Bell et al.,
2003)), however, we are aware of no modeling attempts that explore this at the algorithmic
or implementational levels. In this chapter, a mechanistic account of sentence production
is presented, which balances on the one hand the rate of information transmission and
on the other hand comprehension and production effort. The sentences produced by
this strategy present more uniform surprisal profiles, compared to other strategies, and

thus, offer a first algorithmic approximation to UID.

In particular, the model assumes that, while achieving the goal of producing sentences

that convey the intended message, speakers act under three different pressures: a first

113
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one, pushing speakers to be fast under time restrictions; a second one, related to pro-
duction effort, pushing speakers to produce available content first (see Ferreira and Dell,
2000)); and a third one, related to comprehension effort, pushing speakers to avoid high
information density structures. This chapter describes a way to balance these pressures
in order to obtain sentences with more uniform surprisal profiles, which could be later

linked to a bandwidth-limited communication channel.

The results and most content of this chapter have been published in (Calvillo| (2017)).

7.1 UID Model

The language production model proposed here extends the one described in Chapter 4.
Its architecture, shown in Figure 7.1, consists of two paths of processing: the first one
(above, inside the dotted rectangle), computes word probabilities given the context, and
is identical to the model described in Chapter 4; and the second one (below), receives
the output of the former and computes derivation length estimations, i.e., how long
a sentence can be if a particular word is produced. We call probabilities the layer
containing the output of the first path, and der_lengths the layer containing the output
of the second path.

The output of these two paths is then combined in a final layer (words) that receives
unmodified copies of the activation of probabilities and der_lengths, and whose activation
is a combination of these two types of information. At this point the model produces
the word with the highest activation in words, whose identity is then passed to the
first hidden recurrent layer through monitoring units in order to process the next word

production. Finally, production stops when an end-of-sentence marker is produced.

The rest of this section presents in more detail each of these parts, along with their

justification.

7.1.1 Semantic and Linguistic Information

The information content or surprisal of a sentence s is defined as its negative log prob-
ability —logP(s). Moreover, sentences express events or situations in the world, such
that a sentence can be paired with one or more events, and vice versa. Therefore, we

can decompose the probability of a sentence s into:

P(s) = Z P(s,e;) (7.1)



Chapter 7. Approximating UID 115

monitoring

)
o
O o =
Hidden
| > i
12, (120 units) — o \) g
wn = a.
= =
Output
Input ) _
(45 unts)\ o (43 units)
gu
Hidden : -
(30 units) g
(0)e]
—+
-
w
(43 units)

FIGURE 7.1: UID Production Model.

= ZP(S|6¢)P(6¢) (7.2)

where e; is each event in the world that is paired with s (e.g., if 5 events are paired to

a particular sentence, ¢ would range from 1 to 5).

From this, we can distinguish two kinds of information: P(e;), related to each event that
can be paired with the sentence; and P(sle;), related to the linguistic elements used in

this particular sentence to express e;.

We call the first one semantic surprisal, and the second one linguistic surprisal. Se-
mantic surprisal represents how unexpected the events conveyed by the sentence are.
Linguistic surprisal can be seen as the information that the sentence conveys, when the
semantics is already known; thus, it is not information about the world, but about the

sentence itself.

Frank and Vigliocco| (2011]) use a similar terminology for similar concepts. Like them, we
use the term semantic surprisal to refer to —logP(e), which is the information related
to an event in the world. Nonetheless, they use the term syntactic surprisal referring to

—logP(s), while we use the term linguistic surprisal referring to —logP(s|e).

These two types of information, semantic and linguistic surprisal, cannot be easily disen-

tangled because they are embedded in each sentence/event. Knowing the identity of an
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event gives information about the possible related sentences, and vice versa. Nonethe-
less, based on our definition, we can express total semantic surprisal of a sentence s

SemSurp(s) = flogZ P(e;) (7.3)

where e; is each event that can be expressed by s.

While one sentence can be paired with several events, normally when a speaker produces
a sentence, he/she has one specific event in mind e,. For example, for the sentence “the
girl sees the man with the telescope.”, we can distinguish two different interpretations:
one where the girl is using a telescope to see a man, and another one where a girl is
seeing a man who carries a telescope. While the sentence is ambiguous, the speaker
would already have a concrete situation model in mind while producing the sentence,
which can be either of the interpretations, but not both. Similarly, while a word might
have multiple meanings, when a speaker produces a word, he/she usually refers to one

single meaning.

To differentiate the meaning to which the speaker refers from other possible interpreta-
tions, we use e,. Then, while total semantic surprisal is as described above, the semantic

information/surprisal that the speaker is trying to communicate is only:

—logP(ea)

As a result, the relevant information associated with a specific sentence s assuming that

the speaker is trying to communicate the event e, is given by:
Surpe,, (s) = —logP(s|eq)P(eq) (7.4)

= —logP(s’ea) — logP(ea) (7'5)

where the semantic information —logP(e,) remains constant across all different surface
realizations that could convey it; in contrast to the linguistic information —logP(sles,),
which can vary widely depending on the specific syntactic structures or words that the

speaker chooses.

7.1.2 Being Easy to Produce

Surprisal Theory (Hale, 2001a; Levyl |2008) states that the cognitive effort associated to
the processing of a word is proportional to its surprisal. Evidence supporting this has

been shown for comprehension (e.g., Hale, 2001a; Levy}, 2008), and production (e.g.,
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Jescheniak and Levelt, 1994). Therefore, one can assume that a rational model of

production would try to minimize effort for both interlocutors.

While comprehension effort is minimized when speakers follow a UID strategy, produc-
tion effort can be minimized by following an Availability Based Production strategy
(ABP, [Ferreira and Dell, 2000), where items are produced as they are available. As-
suming that more probable words are also more available, then producing the most
probable word at each time step minimizes (to some extent) production effort by locally

minimizing linguistic surprisal:
wi41 = argmin —logP(w|DSS, wo, ..., wy) (7.6)
w

where w is a word in the vocabulary and DSS is the semantic representation related to
e«. This is already implemented by the model described in Chapter 4, where the word
produced at each time step is the one with highest conditional probability given the
semantics and the previously produced words. In the model presented in this chapter,

these probabilities are obtained at the Probabilities layer in Figure 7.1.

Additionally, we can note that such a model produces sentences with low information
content by minimizing their linguistic surprisal, and therefore minimizes to some degree

comprehension effort.

7.1.3 Being Fast

The information contained by a sentence results from the sum of the information con-
tained by each of its words. Thus, knowing that the semantic surprisal related to e,
should sum up to —logP (e, ), and that this information is distributed among the words in
the sentence, we can calculate average word semantic information/surprisal with respect
to eq:

E[WordSemSurpe,] = _ZOQTLM (7.7)
where n is the number of words in the sentence. Hence, if one wants to maximize average
semantic information transmission of the desired event e, it suffices to minimize n. We
hypothesize that in general speakers tend to maximize information transmission of the

desired semantics e, by minimizing n, and therefore by favoring shorter sentences.

The model presented minimizes sentence lengths by estimating at each time step a score
that reflects the expected derivation length that would follow the production of a certain

word. This is done by the second path shown in Figure 7.1, below.
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This path is constituted by a hidden recurrent layer followed by a softmax layer. The
recurrent layer contains 30 sigmoid units and receives as input the DSS semantic rep-
resentation, the output of probabilities, and its own activation at time step ¢ — 1 (zeros
at t = 0). Activation of this layer is then propagated to a softmax layer (der_lengths)
with dimensionality equal to the size of the vocabulary(43), and that calculates for each
word a score DL that resembles a probability distribution, where values closer to 0 rep-
resent longer derivations and values closer to 1 represent shorter derivations, and where
probability mass is distributed among all words that can be produced at the given time
step. Finally, these layers receive also input from a bias unit with a constant activation
of 1.

A model that produces at each time step the word that maximizes this score would

prefer words leading to shorter derivations, regardless of their information content:
wi1 = argmax DL(w|DSSS, probabilities; ) (7.8)
w

Nonetheless, if a model were to follow solely this tendency, the resulting sentences would
tend to have high information density because it would choose highly informative words

in order to minimize derivation lengths.

7.1.4 Being Easy to Comprehend

Intuitively, a model combining the previous two strategies would produce sentences with
more uniform surprisal profiles, compared to a model that only applies one of them.
However, these strategies do not take into account that world events with high surprisal

represent a higher comprehension effort.

Speakers know beforehand how unexpected the event they are trying to communicate
is. Therefore, one can propose that they balance these two strategies according to this
information. That is, when a speaker is trying to communicate an event e, with low
surprisal, the speaker would prefer to be faster, minimizing derivation lengths; but,
when the event represents high surprisal, the speaker would prefer sentences with lower
linguistic surprisal and possibly longer. Thus, at each time step, the model would

produce the word that maximizes the score:

Wi = arglrunax{(l — P(eq))P(w|...) + P(eq) DL(w|...) } (7.9)

This final model is expected to produce sentences with more uniform surprisal profiles,
compared to strategies that only maximize one of these measures, or that do not take

into account semantic surprisal.
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In the model this is computed at the words layer (see Figure 7.1), which receives P(w|...)

values from the probabilities layer and DL(w|...) scores from the der_lenghts layer.

The use of semantic surprisal to balance brevity and minimization of linguistic surprisal
could be partially explained in terms of production effort. Since the semantics to be
communicated is known by the speaker, no semantic processing is needed from the
speaker side, and therefore we could assume that production effort is driven mainly by
linguistic information. However, speakers still need to access the lexical information of
the words that are needed. For example, we can imagine an event eg with high surprisal,
and that is so specific that only one sentence can encode it. Then, the sentence encoding
it sg3 would have a conditional probability of 1 given the semantics, and thus, 0 linguistic
surprisal. Nevertheless, if the words needed to construct sg are very infrequent, we can

still predict a higher effort in order to retrieve their lexical information.

Assuming that infrequent words tend to have higher semantic surprisal, then we can
use semantic surprisal as a surrogate to measure the effort of lexical retrieval during
production. Then, under high retrieval effort contexts, minimization of linguistic sur-
prisal is preferred as a way to overall minimize production effort. And likewise, under
low retrieval effort contexts, brevity is preferred because the production system still has

resources to minimize derivation lengths.

However, this would not be the case for function words such as “that”, which have
high frequency and therefore would not represent high retrieval effort. Then, omission
or addition of “that” where both options are available, would not be driven by lexical
retrieval, but rather by information density in order to reduce comprehension effort, as

the UID Hypothesis proposes (Jaeger}, 2010)).

7.2 Training and Evaluation

7.2.1 Examples Set

The model was trained and evaluated using the dataset described in Chapter 3, which
consists of a set of pairs {(DSS1,¢1),...,(DSSy, ¢n)}, where each DSS; is a message
representation plus a bit that indicates if the pair is related to active (1) or passive (0)
sentences, and ¢; is the set of the sentences that describe the situation that is related
to DSS; and in the expected voice. In this case, the model uses belief vectors, as they
showed a high performance during the sentence production task in Chapter 5, eliciting

fewer mistakes than when using situation vectors.
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This set relates each message representation DSS; to several sentences, permitting the
definition and evaluation of different ranking functions. Nonetheless, the distribution of
sentences was not especially designed for the experiments performed, in future work a

new set could be defined in order to obtain a more clear setting.

In addition, the model uses two more types of scores that are related to each pair
(DSS;, pi), namely, scores related to the length of a sentence after the production of a
given word, and scores related to the prior probability of a particular semantic repre-

sentation. These are explained below.

7.2.1.1 Derivation Length Scores

For each DSS representation, it is known beforehand the sentences that can encode
it according to the microlanguage. Furthermore, it is known at each derivation point
what words can be produced and how long the sentences would be if a particular word
is produced. Using this information, we compute a score that resembles a probability
distribution over the vocabulary, but that reflects the length of the sentences that one can
expect after producing a particular word, such that values close to 1.0 denote relatively

short sentences, while values close to 0 denote relatively long sentences.

More specifically, given a DSS representation and a derivation point, for each possible
word production w;, we obtain its minimum derivation length min_ dl(w;), which is the
length of the shortest sentence that can be produced if w; is produced. Afterwards we

calculate a score di(w;):
dl(w;) = max{min_dl(w)} — min_dl(w;) + 1 (7.10)

which is equal to the difference between the greatest min_ dl value among all the words
that can be currently produced and the min__dl associated to each specific word w;, plus
1. Finally, we normalize by dividing by the sum over all the possible word continuations.

dl(w;) = S dl{uy) (7.11)
J

According to these scores, all possible word productions at a specific derivation point
have a positive value that is inversely proportional to the length of the shortest sentence
that can be obtained by following that production. In the UID model, these are the

values expected as activation of the layer der_lengths.
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7.2.1.2 Semantic Probability

For each DSS representation related to an event e; in the examples set, a semantic
probability value P(e;) was also computed. Using the original situation vectors, the prior
probability of an event can be calculated by averaging the values of each dimension of the
corresponding situation vector, as explained in Chapter 3. However, one should consider
that the proportions of sentences and events in the dataset should be in concordance

with the event probabilities.

The probability of an event e; can also be calculated by:
P(e;) =Y Plei,s)) (7.12)
J

where s; is each of the sentences that describe the event e;. This formulation suggests
that whenever e; occurs, a corresponding sentence describing e; is also produced. In
a natural setting this is not the case, in fact a large proportion of possible events are
never uttered. This necessarily means that in the calculation above, one must include
the case where an event occurs without a sentence being uttered, in order to obtain the
total probability of that event. Furthermore, given a particular event to be conveyed e;,
some of the sentences that can express the event might be more frequent than others,

that is, for each sentence s; related to e;, the value of P(e;, s;) might be different.

Consequently, in order to obtain a dataset with these characteristics one should on the
one hand pair events to empty utterances for the cases where an event is not described
linguistically, and on the other hand, the distribution of sentences given an event should
also reflect the intuition that some encodings are more common than others, even if they

refer to the same semantics.

Unfortunately, because of time restrictions when the experiments were conducted, such
a dataset was not built. Rather, the original dataset was used, and therefore, the
semantic probability values were computed accordingly. Considering that the model is
trained only on the pairs given in the examples set and that all sentences are presented
an equal number of times during training, then the probability of a DSS representation
related to an event e; is given by the number of sentences related to that representation

divided by the total number of sentences in the examples set:

Ple;) = % (7.13)

where n; is the number of sentences that describe the event e;, and N is the total number

of sentences in the dataset. Thus, semantic probability is proportional to the number of
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sentences related to a given semantics. While these values might seem in conflict with
the event prior probabilities that can be obtained through the situation vectors, the
belief vectors only contain conditional probabilities, and therefore the notion of prior

probability of an event would rather be inferred from the dataset.

Additionally, since P(eq) is used to balance word probabilities and derivation lengths
in the model, less biased values are needed because as it is, P(e,) is in general very
low, while 1 — P(eq) is very high. Therefore instead of normalizing by the total number
of sentences IV, normalization is done with respect to the highest number of sentences
that can be related to a DSS representation, which is 130. Hence, for each DSS, its
probability P(e;), or henceforth P(DSS), is given by the number of sentences paired
with the representation, divided by 130.

7.2.2 Training Procedure

Since the output layer receives unmodified copies from probabilities and der lengths, the
connections from the latter to the former are fixed one-to-one and do not need training.
In other words, the i*” unit of probabilities is only connected to the i*" unit of words with
a connection weight fixed to 1, and likewise for the connections between der_lenghts and

words.

Prior to training, all weights on the projections between layers (with the exception of
those mentioned in the last paragraph) were initialized with random values drawn from
a normal distribution A(0,0.1). Weights on the bias projections were initially set to

Zero.

Training consists of setting the connection weights leading to the computation on the
one hand of probabilities and on the other hand of der_lengths, corresponding to the
two paths of processing. Accordingly, training is performed in two phases, in both cases
using cross-entropy backpropagation (Rumelhart et al., |1986) with weight updates after

each word in the sentence of each training item. These two phases are explained below.

e probabilities: The first phase corresponds to the training of the path leading
to probabilities, which is performed as described in Chapter 4, where the model
is trained to predict the next word given the semantic representation and the

previously produced words.

During this phase, the monitoring units were set at time ¢ to what the model was
supposed to produce at time ¢t — 1 (zeros for ¢t = 0). This reflects the notion that
during training the word contained in the training sentence at time-step t—1 should

be the one informing the next time step, regardless of the previously produced (and
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possibly different) word. During production, the monitoring units are set to 1.0

for the word that was actually produced and 0.0 everywhere else.

This path was trained for a maximum of 200 epochs, each one consisting of a full
presentation of the training set, which was randomized before each epoch. Note
that each item of this set consisted of a DSS; paired with one of the possible
sentence realizations describing the state of affairs represented in DSS;. Hence,
during each epoch, the model saw all the possible realizations of D.SS;. An initial
learning rate of 0.124 was used, which was halved each time there was no improve-
ment of performance during 15 epochs. No momentum was used. Training halted
if the maximum number of epochs was reached or if there was no performance

improvement over a 40-epoch interval.

e der__lengths: The second path is trained after the training of the first one is
completed. During this phase, the connection weights calculated during the first

phase are fixed, so that only the second path weights are modified.

At each time step, the DSS is fed into the first path, which outputs a probability
distribution over the vocabulary. This is fed into the second recurrence, as well
as the DSS representation. Monitoring units are handled exactly as in the first
training phase. The activation of the second recurrence is then propagated to
der_lengths. Its output is compared to the derivation length values, as defined in

the previous section, and finally the connection weights are updated.

Training of this path was performed for a maximum of 80 epochs, with the train-
ing items arranged in the same way as in the previous phase. An initial learning
rate of 0.24 was used, which was halved each time there was no improvement of
performance during 10 epochs. No momentum was used. Training halted if the
maximum number of epochs was reached or if there was no performance improve-

ment over a 20-epoch interval.

7.2.3 Evaluation

The UID model defines a production strategy as an interaction between production goals.
In order to assess the behavior of the model, its productions were compared to those
obtained by using alternative strategies, where at each time step the model produces

the word according to:

1. Minimum Linguistic Surprisal

2. Minimum Derivation Length
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3. Maximum (Word Probability +/* Derivation Length Score)

4. Complete UID Model

The third strategy refers to a combination of minimizing linguistic surprisal and mini-
mizind derivation lengths through a sum or a product of the related scores. Complete
UID Model refers to the model where linguistic surprisal and derivation lengths are

balanced using the semantic surprisal.

For each DSS representation in the examples set that was related to more than one

sentence (968), the model generated a sentence according to each production strategy.

In order to measure surprisal, a language model was trained implementing a Simple
Recurrent Network (Elman, 1990). This model is constituted by a recurrent hidden
layer that receives at each time step the identity of the previous word, as well as its
own activation at the previous time step. The activation of this layer is then forwarded
to a softmax layer that computes a probability distribution over the vocabulary, given
the previous words. This architecture is very similar to the production model presented

here in Chapter 4, except that it contains no input semantic representation.

This model was trained on the whole set of sentences for 200 epochs with a learning rate

of 0.24 which was halved each time there was no improvement in performance.

Using this language model, surprisal values were calculated for each word w; of the

produced sentences as folows:
surp(w;) = —logP(w;) (7.14)

where P(wj;) is the probability that the model assigned to that word given the context

(its activation).

Uniformity of information density was measured in terms of standard deviation of word
surprisal, assuming that complete uniformity would produce a standard deviation of 0

across all the sentences that were produced:

N
1
Osurpw — N Z(surp(wi) - ,Usurpw)Q (715)
7

where 0 4yrp,, is the standard deviation of word surprisal, N is the total number of words
produced, surp(w;) is the word surprisal of each indivual word w; that was produced,

and psyrp,, is the mean word surprisal of all the words that were produced.
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7.3 Results and Discussion

The results can be seen in Table 2. The first column denotes the production strategy
that was used by the model in each case. The second column presents the production
performance, similar to the evaluation in Chapter 5, where each value equals the average
similarity between the sentences produced by the model and the sentences that describe
the corresponding DSS representations in the dataset. The third column shows the
average sentence or derivation length (perren) of the sentences produced by the model.
Similarly, the fourth column shows the average word surprisal (tsurp,, ). And finally, the

last column shows the standard deviation of word surprisal (surp,, )-

Accuracy | fiperLen Hsurpy | Osurpy

Minimum Linguistic Surprisal 99.67 9.01 1.0 0.89
Minimum Derivation Length 99.86 7.55 1.20 0.97
Max P(+/*)DL 99.82 7.77 1.16 0.95

Max 3P-2DL 98.23 10.15 0.89 0.84
Complete UID Model 97.67 10.17 0.89 0.83

TABLE 7.1: Results of each production strategy.

As expected, minimizing linguistic surprisal led to lower word surprisal values and longer
sentences, compared to minimizing derivation lengths. Combining these two strategies
by a sum or product led to results almost identical to each other, and very close to mini-
mizing derivation lengths, suggesting that derivation length scores were mostly dominat-
ing production. Nonetheless, the sentences produced by this naive combination already
present slightly higher uniformity and lower average word surprisal, compared to the

sentences produced minimizing only derivation lengths.

Given that linguistic surprisal and derivation lengths are different in nature, one can
expect a more complex relation between them, other than a sum or product, in order
for the resulting score to be helpful. In order to explore slightly more complex relations,
a grid search was performed in order to find linear factors that would minimize the
standard deviation of word surprisal. The resulting model corresponds to the fourth

row in Table 7.1, where the model produces at each time step the word that maximizes:
3P(w|DSS, w0, ..,wy,) — 2DL(w|DSS, probabilities) (7.16)

where one can see that minimizing linguistic surprisal is favored, while minimizing deriva-
tion lengths is penalized. As a result the sentences produced are longer than only min-
imizing linguistic surprisal. However, uniformity of information density is higher than

with the previous models and additionally average surprisal is lowest.
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The final row in Table 2 presents the results of the model that incorporates semantic
probabilities. For this case grid search was also used, which led to a model that at each

time step produces the word that maximizes:
(3.5 = P(DSS))P(w|...) + (P(DSS) — 2.5)DL(w|...) (7.17)

which is very similar to the previous model, but with some influence from semantic
probabilities. While the performance of this model is very similar to the previous one,
its sentences present slightly higher uniformity of information density; and the influence
of semantic surprisal is in the expected direction, where semantics with high surprisal

produce longer sentences and vice versa.

Interestingly, while uniformity of information density increases for the last two models,
production accuracy decreases, suggesting something similar to|/Degen and Jaeger| (2011)),

where speakers sacrifice precision in order to accommodate robust communication.

As one can see, maximizing uniformity of information density led to models that produce
longer sentences, reducing the efficiency of communication. It is possible that the pro-
duction strategy previously outlined is the one that maximizes information density given
the possible encodings in the language, however, at the cost of production efficiency. Ev-
idently, it is not only necessary to obtain sentences with uniform surprisal profiles, but
also, one must specify the channel capacity to which the surprisal profiles should adapt.
A proper definition and operationalization of the capacity of the communication channel

remains for possible future work.

The small difference between the last two strategies highlighted some issues of the models

presented that could cause this behavior, and that will be addressed also in future work:

o First, the nature of the language model used to test the model, which receives no
semantic information during training, which means that rather than being a joint

model of semantics and sentences, it only considers word sequences.

e Then, the production model proposed here uses semantic surprisal at a sentence
level, while speakers can be sensitive to this information incrementally at a word

level.

e Finally, the dataset used to train the model did not contain specific contrasts
between event and sentence probabilities that could permit the use of semantic

surprisal as a strong factor to modify the behavior of the model.
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In general the model outlined here shows: first, that as expected, shorter sentences are
more dense in terms of information content. Second, that longer sentences can encode in-
formation in a more uniform way. Third, that sentences with more uniform information
densities present in average lower word surprisal, therefore minimizing comprehension
effort. And finally and most importantly, that sentences with higher uniformity of infor-
mation density can be produced by balancing sentence lengths and word probabilities.

In future work, this can help to address uniformity for a given channel capacity.

7.4 Conclusion

This chapter presented a model of language production that takes into account word
probabilities and sentence lengths in order to produce sentences with uniform surprisal

profiles, and in order to model the Uniform Information Density Hypothesis.

The sentences produced by this model were compared to those produced using other
strategies, showing that the proposed model produces sentences with more uniform
surprisal profiles and lower average word surprisal, by balancing sentence lengths and

linguistic surprisal.

This model represents a first attempt to model the Uniform Information Density Hy-
pothesis at the algorithmic level, where uniformity arises by balancing word probabilities
and sentence lengths in a mechanistic way. As first attempt, it requires further work,
however, it serves to highlight some issues that need to be addressed regarding UID,

namely:

e The difference between comprehender and producer in terms of information pro-
cessing. During communication, the producer already knows the message to be
conveyed, therefore most of his/her effort would be focus on the retrieval of lexical
items and the construction of syntactic structures. In contrast, the comprehender
has to infer the message, disambiguating incrementally according to the infor-
mation given by the sentence. In such case, the effort would be related to the
recognition of the linguistic input, as well as the construction of a proper mes-
sage representation. Consequently, one can speculate that speakers would rather
focus on the processing of linguistic surprisal, building linguistic structures; while
comprehenders would emphasize the processing of semantic surprisal, building a

message representation.

e In order to properly train a UID model as the one proposed, one needs a proper

dataset that reflects in a naturalistic fashion the relations that sentences and events
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have, such that the probability of producing a sentence can be related to the
probability of the corresponding event. This is important because this information
is learned implicitly by the model, so any related and expected behavior needs to

be present in the dataset during training.

e In order to test the model measuring surprisal from the point of view of a compre-
hender, it is necessary not only to measure the probability of the specific sequence
of words, but also, one should also consider the probability of the related events.
For example, a very common syntactic structure utilizing very common words,
would represent low linguistic surprisal; however, it might convey an event that
hardly ever occurs, meaning a high semantic surprisal. In such case, a language
model that has no notion of world events, would not consider the effort that a

comprehender would need in order to process such an utterance.

e Finally, the definition and quantification of the capacity of the communication
channel is necessary in order to properly define efficient communication. As seen
in the results, one can obtain very uniform surprisal profiles by selecting words
whose probability is close to 1, carrying very little information and resulting in
very long sentences. Perhaps those long sentences can be considered efficient in
environments where the capacity of the communication channel is very low, while
in some other environments one would prefer shorter sentences. Then, it is not
sufficient to obtain sentences with uniform surprisal profiles, they also have to
be close to the capacity of the current communication channel in order to be
considered efficient. Therefore, it is important to be able to estimate the capacity

of the communication channel, which to these days remains rather unclear.

These issues remain for future work, where the architecture proposed here might serve

as starting point towards an account of UID at the algorithmic level of analysis.



Chapter 8

Conclusion

The task of modeling human sentence production was approached from a connectionist
point of view and using distributed semantic representations. The results have led to

different conclusions in each chapter, which will be summarized here.

This work focused on three main topics: i) the use of distributed representations for
connectionist modeling of language production concerning systematicity, ii) the internal
dynamics of language production models with recurrent neural networks, and iii) the

implementation of a model that reflects the intuitions of UID.

Considering the semantic representations that were used as input for the models (sit-
uation and belief vectors), these possess some properties that facilitate the modeling
of certain aspects of human language processing, compared to symbolic discreet rep-
resentations. First, each representation is a multidimensional continuous vector that
corresponds to a point in a vector space; consequently, the number of representations
that can be obtained from that space is possibly infinite, an attribute that is necessary
if one wants to represent infinite sets, such as the set of sentences that are related to a
language. Second, these representations contain full descriptions of the situation models
that are related to each sentence, allowing for direct inference and for the estimation
of probabilistic information related to the events conveyed in each semantic represen-
tation. Finally, another importat property of DSS representations is that since they
are continuous vectors, similarity between representations can be assessed simply by
measuring the distance between the related vectors. This property is important as was
argued in Chapter 5 in order for the model to exhibit systematicity. As explained in
said chapter, the input representations have to be comparable amongst each other, in
order for a model to draw relations from known inputs to novel ones and thus achieve

generalization.

129
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Because of these properties, situation and belief vectors can be regarded as good candi-
dates to model human language processing, in this case language production, compared
to symbolic discrete representations; something that was reflected in the positive results

of the simulations.

Indeed, concerning systematicity, the language production model was able to learn to
produce sentences generalizing across novel input representations and with a very good
performance in all test conditions. Furthermore, the errors that were elicited were
related to messages that were very similar, demonstrating that the model was processing
similar representations in a similar way, and thus further demonstrating systematicity.
Moreover, these errors matched relevant findings reported in the speech error literature,
where speech errors are elicited involving similar elements. Finally, the model was not
only able to produce one encoding per message representations, but most if not all of the
encodings that the microlanguage allows, thereby further demonstrating systematicity.
All of this was shown using an architecture very similar if not identical to the one of the
Prod-SRN model of (Chang| (2002), suggesting that perhaps the level of systematicity
needed for human language processing can be achieved without the need for a highly

complex architecture as the Dual-Path model (Chang, 2002).

While the behavior of the production model showed that it was able to produce correct
sentences exhibiting systematicity, the internal mechanism of the model was still rather
unclear and, because of that, an analysis of its internal dynamics was performed. This
analysis consisted on tracking the flow of activation that goes from the input units to the
output units, showing the relations of activation or inhibition that exist between different
units. As we saw, each input pattern promotes the activation of words that are related
to its semantics, while inhibiting the words that are in conflict. After the production of
each word, syntactic and semantic constraints are introduced that condition the following
word productions, while the context units preserve information through time. In this
view, the behavior of the model can be explained by a set of units where each unit has
a specific function and the model learns the proper interactions between units such that
a correct global behavior arises. Then, a correct processing of novel inputs results if the
rules learned during training that govern the interactions between units is coherent with

the rules of the production task.

The analysis also revealed patterns that have been previously suggested with regards
to language processing with recurrent neural networks: some hidden units seem to be
related to specific functions (Karpathy et al., 2015), the activation patterns related
to each word reflect similarity between words (Mikolov et al. 2013), and the general
intuition that the recurrence serves to preserve information over time. The results

presented here further demonstrate such intuitions and provide a mechanistic holistic
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account of how the model works, which could give insight into the mechanism that is

implemented by other models with similar architecture.

Concerning an implementation of UID, an extension of the sentence production model
was proposed, profiting from the ability of said model to produce several encodings
for a given message representation. This extension implements the two main rational
goals that have been suggested to govern UID: on the one hand, the model can show
a tendency to maximize the amount of information transmitted per time step, being
quick; and on the other hand, the model tries to stay below the limit of the channel
capacity in order avoid miscommunication errors. By balancing these two tendencies
one could achieve different levels of uniformity, providing a starting point to model UID

at the algorithmic level of analysis.

During the development of the UID model some issues arose highlighting some aspects
that need to be further explored. First, the information processing from the point of view
of the comprehender is different from the point of view of the producer: the producer
knows beforehand the message that he/she tries to convey, while the comprehender needs
to infer the intended message from the sentence produced. Then, the effort of production
is related more to the access of the linguistic units needed to build the sentence, while the
effort of comprehension would be related more to the recognition of said units and the
construction of a message representation coherent with the sentence. Second, considering
that the information content related to a given sentence is related both to the probability
of the event that the sentence conveys and the probability of the linguistic elements used
to build the sentence, in order to properly assess the information content of sentences it is
necessary to build a dataset that reflects in a naturalistic fashion the relative distribution
of events and their respective sentences, such that a model trained on such dataset is
able to infer how likely a given event is, and how likely a given sequence of linguistic units
is. Finally, it is necessary to define the upperbound or capacity of the communication
channel. A given sentence can have a very uniform surprisal profile while transmitting
very little or very much information per time unit. Then, while uniform surprisal profiles
are desirable, they have to be uniform with respect to the channel capacity, which to

this day is not clear.

While the results in this dissertation offered evidence to draw some conclusions, they

also highlighted some areas that could be explored further in future work:

e Naturalistic dataset: The dataset used to train the models here was artificially
generated. This allowed a very controlled setting, but raises the question of how
this framework could work on real-world data. One possibility would be the use

of images or videos as semantic representations and turn the task into a caption
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generation task. Another possibility would be to use some existing datasets of
sentence-semantics items, as the one of [Modi et al.| (2016)), with possible combi-
nations of different datasets and unsupervised methods. The latter is in view of
the large quantity of training items that are needed to train large-scale neural

networks.

o Systematicity of complex syntax: This dissertation approached the topic of
systematicity through different test conditions related to different degrees of gen-
eralization. Further testing in this direction could serve to determine whether the
approach pursued here is able to account for systematicity in the test conditions
of (Chang) (2002), where the model is tested with more difficult structures such as
sentences of the form ”a blicket is a blicket”, where a word has to appear in two

different positions where it has not been placed before (Marcus, [1998b)).

o Systematicity of impossible/imaginary events: One benefit of using belief
vectors over situation vectors is that the former are not linked to prior probabilities,
which means that they have the potential to be used to represent events with
zero probability. Future work could include the definition or construction of such
representations and testing whether the model would be able to produce sentences

for them.

e Production dynamics of larger models: The methodology of Chapter 6 could
be applied to describe the dynamics of larger models trained on real-world data,
such as those used in computational linguistics for language modeling, machine

translation or caption generation.

o UID dataset: As mentioned in Chapter 7, one issue that remained was the testing
using a more naturalistic dataset, although still artificial, that could permit the
manipulation of differences between semantic and linguistic surprisal, such that

the results of the UID modeling are more conclusive.

In general, the results show that indeed the distributed semantic representations of
Frank et al. (2009) can be used to model sentence production, exhibiting systematicity
and in general a high performance in all the simulations. Additionally, we arrived to an
algorithmic account of the behavior of the model by analyzing its internal structure, and
which has the potential to generalize to other models with similar architecture. And
finally, we saw that UID can be approached using the proposed model, and by doing
so, we were able to detect some aspects that need to be defined in order to go from the
formulation of UID at the computational level of analysis to a mechanistic account at

the algorithmic level.
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Sample of Sentences of the

Microlanguage

The following is a random sample of 100 of the sentences that were obtained from the
microlanguage of Frank et al.| (2009)). It is intended to given an idea of the kind of
syntactic and semantic patterns that are present. A full list of the sentences can be

found in the following link:

https://github.com/iesus/thesis-production-models/blob/master/sentences.txt

o the boy beats heidi with ease inside .

e someone beats charlie at hide_ and_ seek with difficulty .
e hide_and_ seek is played in the playground .

e someone beats charlie in the playground at a game .

e heidi plays with a toy outside .

e sophia loses to someone in the bedroom at hide_and_ seek .
e charlie wins with ease at a game .

o football is won with ease by the boy outside .

 charlie loses in the street at football .

e heidi beats the boy in the bathroom .

e a girl beats someone at a game .

e charlie wins with difficulty at football in the street .

e soccer is lost by charlie in the street .

133
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e a game is won by charlie in the playground .

e a girl loses to sophia at football .

e charlie beats heidi with ease at hide and_seek in the shower .
e charlie beats a girl in the bedroom .

e a girl beats charlie at football in the street .

e sophia beats someone with ease outside .

e sophia loses to someone outside .

e sophia loses to someone at football outside .

« football is won outside .

e sophia loses to the boy in the playground at hide_and_ seek .
e the boy loses to sophia inside at hide_and_ seek .

e heidi loses to a girl at a game inside .

e someone loses to a girl at football .

e someone beats the boy at chess with difficulty .

e soccer is played badly by a girl in the street .

e the boy beats a girl with ease at a game outside .

e charlie plays a game badly in the bedroom .

e the boy loses at hide_and_ seek in the playground .
e charlie beats sophia in the bathroom .

e sophia wins with difficulty at football in the street .
o football is won with difficulty by sophia .

e a game is played by charlie in the playground .

o football is lost by sophia in the street .

e the boy beats sophia at chess .

e someone beats a girl at soccer outside .

e a toy is played with by the boy .

e charlie beats heidi with difficulty at chess inside .

e a game is played by the boy in the playground .

e sophia loses in the shower at hide_and_ seek .

e heidi plays football badly .

e someone beats sophia at a game with ease .
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e a game is played in the street .

e a girl loses to someone at a game in the playground .

e a girl wins at football .

e sophia beats a girl with ease at a game outside .

e heidi beats the boy with ease at hide_and_ seek in the shower .

e someone loses in the shower at hide and seek .

e someone beats sophia in the bathroom at hide_and_ seek .

e hide_and_ seek is played by heidi in the bathroom .

e a game is lost by the boy in the shower .

e a jigsaw is played with by heidi in the bedroom .

e heidi loses to the boy in the bedroom at chess .

e heidi beats sophia at a game with ease .

e a girl beats charlie with ease at hide_and_ seek in the bathroom .
e hide_and_ seek is played well by heidi inside .

e sophia wins with difficulty at hide_and_ seek in the shower .

« someone loses in the street at soccer .

o football is won with difficulty .

o a girl beats sophia with ease at chess inside .

e sophia plays hide_and_ seek well in the shower .

e hide_and_ seek is played by a girl .

e heidi beats sophia with ease at hide_and_ seek in the bathroom .
o a girl beats charlie with difficulty at a game .

e charlie beats a girl with difficulty at hide_and_ seek in the bedroom .
e a girl loses to someone at hide_and_ seek in the bedroom .

e charlie loses to heidi in the shower .

e a ball is played with in the playground by a girl .

« charlie wins at soccer outside .

e a doll is played with in the bedroom by sophia .

e soccer is played by charlie in the street .

e heidi beats a girl outside at football .

e the boy beats sophia with difficulty in the bathroom .
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e a girl beats charlie in the bathroom .

e heidi beats charlie at a game with difficulty .

e sophia beats someone with ease at soccer in the street .
e someone beats charlie with difficulty at hide_ and_ seek in the bathroom .
¢ charlie beats heidi with difficulty at football outside .

e sophia beats the boy with ease outside .

o charlie beats a girl with difficulty at soccer outside .

e hide_and_ seek is played by the boy .

e sophia loses to charlie at hide_and_ seek .

o someone wins with difficulty in the bathroom .

e a girl beats heidi inside at hide_and_ seek .

e the boy loses to sophia in the bathroom at a game .

e hide_and_ seek is played well by someone inside .

e sophia beats charlie with ease at soccer in the street .

o football is played by heidi outside .

e a girl beats someone with ease in the shower .

e a girl beats heidi with difficulty at a game outside .

e hide_ and_ seek is won with ease by a girl .

e sophia loses at chess .

e the boy loses to a girl at football outside .

e hide_and_ seek is won with difficulty by a girl in the shower .
o a girl beats sophia at hide and_ seek .

e heidi loses to the boy at a game inside .

¢ heidi beats sophia at football .

e hide_and_ seek is played badly by a girl outside .



Appendix B

Language Production Model
Code

The basic structure of the language production model presented in Chapter 4 is defined
by the following code, which was implemented using Python 2.7 and the library Theano.

This class is later used by the functions shown in Appendix C.

import theano,numpy, os
from theano import tensor as T

from collections import OrderedDict

Recurrent Neural Network to model language production, receives a DSS input and outputs a word per time
step it learns with backpropagation. One could also use backpropagation through time, however, there is
no apparent difference in performance, it only takes more time to train if one uses backpropagation
through time.

class model(object):

def __init _ (self, inputDimens,hiddenDimens,outputDimens):

def sample_weights(sizeX, sizeY):
values = numpy.ndarray ([sizeX, sizeY], dtype=theano.config.floatX)
for dx in xrange(sizeX):
vals=numpy.random.normal(loc=0.0, scale=0.1,size=(sizeY,))
values[dx,:] = vals

return values

# parameters of the model

self W_xh = theano.shared (sample_weights(inputDimens, hiddenDimens))

self W_ch = theano.shared (sample_ weights(outputDimens, hiddenDimens))
self W_hh = theano.shared (sample_weights(hiddenDimens, hiddenDimens))
self W_hy = theano.shared (sample_weights(hiddenDimens,outputDimens))

self.bh = theano.shared(numpy.zeros(hiddenDimens, dtype=theano.config.floatX))
self.b = theano.shared (numpy. zeros (outputDimens, dtype=theano.config.floatX))

#fixed constants
self .h0 = numpy.zeros(hiddenDimens, dtype=theano.config.floatX) # @UndefinedVariable
self.00 = numpy.zeros(outputDimens, dtype=theano.config.floatX) # @UndefinedVariable

# bundle

self .params = [self .W_xh self .W_oh, self W_hh self.W_hy, self.bh, self.b]
self.names = ["W_xk,’W_oh',”"W_hkv, "W_hy, ’bh’, ’b’]
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dss = T.vector(”dss”)
wordLoc = T.vector(”y”) #words in localist representation
h tml = T.vector(”h_tml”)

o_tml = T.vector(”o_tml”)

h_t = T.nnet.sigmoid (T.dot(dss, self W _xh) 4+ T.dot(h_tml, self W_hh) + \
T.dot(o_tml, self W_d)+ self.bh)

outputWordProbs = T.nnet.softmax(T.dot(h_t, self .W_hy) + self.b)
wordPredLoc = T.argmax(outputWordProbs, axis=1)

# loss, gradients and learning rate

Ir = T.scalar(’1r’)

loss = —T.mean(wordLoc * T.log(outputWordProbs) + (1.— wordLoc) * T.log(1l. — outputWordProbs))
#Cross entropy loss

gradients = T.grad(loss, self.params )

updates = OrderedDict(( p, p-lr*g ) for p, g in zip( self.params , gradients))

# theano functions

self.classify = theano.function(inputs=[dss,h tml,o tml],
outputs=[wordPredLoc,h_t,outputWordProbs[0]])
#HoutputWordProbs at this time is the future o_tml

self.train = theano.function( inputs = [dss, wordLoc, Ir,h tml,o tml],
outputs = [loss,h_t,outputWordProbs[0]],
updates = updates )

def save(self, folder):
for param, name in zip(self.params, self.names):

numpy. save (os.path.join(folder, name + ’.npy’), param.get_value())

def load(self, folder):
for param, name in zip(self.params, self.names):
values =numpy.load (os.path.join(folder, name + ’.npy’))

param.set__value(values)

def epochTrain(self ,trainSet,learningRate):
s
Takes the randomized training set (a set of TrainingElement) and trains an epoch
returns a list with error values for each 25th training item
59
errors=|]
for sentIndex in xrange(len(trainSet)):

sentence=trainSet [sentIndex]

h_tml=self.h0

o_tml=self.o0

errSent=0

for word in sentence.wordsLocalist:
[e,h_tml, ]=self.train(sentence.input,word,learningRate,h_ tml,o tml)
o_tml=word

errSentt=e

if sentIndex%25==0:

errors.append(errSent)

return errors

def getSentenceProb(self ,semantics,wordsLocalist):
55
Takes a semantic representation, and a sentence in localist form, and calculates its
conditional probability P(sent|DSS)
sentenceWordIndices=[numpy.argmax(localist) for localist in wordsLocalist]
wordInLoc=self.o0
h_tml=self.h0
sentP=1.0

for wordOutLoc,wordIndex in zip(wordsLocalist,sentenceWordIndices):
[_,h_tml,outProbs]=self.classify (semantics,h_tml,wordInLoc)
wordInLoc=wordOutLoc
wordP=outProbs [wordIndex]
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sentP=sentP*wordP
print wordP

return sentP

def getModelProductions(self ,testSet,periods=True):
Takes a testSet (a list of TrainingElement) and whether the predictions should stop by a period or by
the expected sentence length.
Returns the word indices of the sentences produced by the model

RN}

productions=(]

for item in testSet:
sentenceProduced =]
h tml=self.h0
o_tml=self.o0
predWord=0

if periods:
while predWord<42 and len (sentenceProduced)<20:
[predWord,h_tml,0_tml]=self.classify (item.input,h tml,o_tml)
predWord=predWord [0]
o_tml=self.o00.copy()
o_tml[predWord]=1.0

sentenceProduced . append (predWord)
else:
for _ in xrange(len (item.wordsLocalist)):
[predWord,h_tml,0_tml]=self.classify (item.input,h tml,o tml)
predWord =predWord[0]
o_tml=self.o0.copy()
o_tml[predWord]=1.0

sentenceProduced . append (predWord)

productions.append (sentenceProduced)

return productions
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Training/Testing Code

The following code contains the main methods used to train and test the language
production model presented in Chapter 4 and tested in Chapter 5. This code was
written using Python 2.7 and the library Theano.

While this code references classes not contained here, it serves to give an idea of the
pipeline and hyperparameters that were used to train and test the model. A full working

version can be found in:

https://github.com/iesus/thesis-production-models

import numpy,random, os, sys

import matplotlib.pyplot as plt

import data.loadFiles as loadFiles

from data.crossValidation import Fold

from tools.similarities import levenSimilarity
from tools.plusplus import xplusplus

import rnn.prodSRNN_notBPTT mon

sys.path.append(”../data”)
corpusFilePath="../data/dataFiles/files—thesis/trainTest_Cond—thesis_0.pick”
wordLocalistMapPath="../data/dataFiles/map_localist words.txt’
outputsPath="../outputs”

def localistToIndices(localistMatrix):
return [numpy.argmax(localist) for localist in localistMatrix]

def indicesToWords(indices ,indexWordMapping) :
return [indexWordMapping[index] for index in indices]

def wordsTolndices(words,wordIndexMapping ) :
return [wordIndexMapping [word] for word in words]

def getEquivSentencesIndicesSet(trainElem):

return [localistToIndices(equivalent.wordsLocalist) for equivalent in trainElem.equivalents]

def getFolders(outputsPath, params):

EXIEN)

Creates the 3 folders where all results/models will be stored
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folderThisRun: folder containing all the files of this particular run, will be contained in

folderThisModel which contains all runs of this specific python file

bestModel: parameters that achieved best performance on the training set

lastModel: parameters that the model has at the end of training

EXIEY

#Create folder that contains all the runs for this python file
currentFolder=outputsPath+”/"+os.path.basename(__ file__).split (’.”)[0]
folderThisModel=currentFolder+”_ outputs”

if not os.path.exists(folderThisModel): os.mkdir(folderThisModel)

#Create folder for all the files of this specific run
folderThisRun=folderThisModel+”/output”

folderThisRun+="_"+params|’inputType’]
folderThisRun+="_"+str (params|’nhidden’])+"h”
folderThisRun+=""+str (params|[’1r’])+"1r”
folderThisRun+=" "+str (params| ’nepochs’])+"ep”
if params[’periods’]: folderThisRunt="_dots”
folderThisRun+="_"4params|’label ’]

if not os.path.exists(folderThisRun): os.mkdir(folderThisRun)

#Create folder for plots
plotsFolder=folderThisRun+”/plots”
if not os.path.exists(plotsFolder): os.mkdir(plotsFolder)

#Create folders for best and last model parameters
bestModel=folderThisRun+"/bestModel”

if not os.path.exists(bestModel): os.mkdir(bestModel)
lastModel=folderThisRun+”/lastModel”

if not os.path.exists(lastModel): os.mkdir(lastModel)

return folderThisRun,bestModel,lastModel, plotsFolder

def mostSimilarEquivalentsLevens(trainingElement, modelProduction):
I
Compares the sentence produced by the model with the set of possible sentences related to the DSS,
obtains the most similar one with its similarity score
#Get the possible sentences using word indices
equivalentsIndices=[localistToIndices(equivalent.wordsLocalist) for equivalent in trainingElement.equivalents]
#Compare each possible sentence with the sentence the model produced
similarities=[levenSimilarity (eq,modelProduction) for eq in equivalentsIndices]
#Get the most similar one

mostSimilar=numpy.argmax(similarities, 0)
return (similarities [mostSimilar],equivalentsIndices[mostSimilar])

def evaluateSRNN(srnn, outFile, evalSet):
productions_test=srnn.getModelProductions(evalSet)
simgolds=[mostSimilarEquivalentsLevens(sent,pred) for sent,pred in zip(evalSet,productions_test)]
similarities=[acc for (acc,_) in simgolds]

golds=[gold for (_,gold) in simgolds]

predWords=[indicesToWords(pred ,mapIndexWord) for pred in productions_ test]
labelWords=[indicesToWords(label ,mapIndexWord) for label in golds]

printResults(outFile,predWords,labelWords, similarities ,evalSet)

def printResults(outFile, predWords,labelWords, similarities, evalSet):
accuracyGlobalmnumpy.sum(similarities)/len(similarities)

perfect=(]
almostPerfect=[]
mildlyBad=(]
worst=[]

def printSubSet(label,setValues,superSize):
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print label
outFile.write(label+"\n”)

for (pw,lw, ) in setValues:
print pw,lw

outFile.write(str (pw)+” "+str (lw)+"\n”)

print len(setValues) #number of sentences that fell under this range

outFile.write(str(len(setValues))+”\n”)

print len(setValues)/float (superSize)#proportion of these sentences with respect to whole condition

outFile.write(str(len(setValues)/float (superSize))+”\n\n”)
print

for pw, lw, acc,item in zip(predWords, labelWords, similarities, evalSet):

print item.testltem

print pw,lw

print acc

print

outFile.write(item.testItem+"\n")
outFile.write(str (pw)+” "+str (lw)+"\n”)
outFile.write(str(acc)+”\n\n")

if acc==1.0: perfect.append((pw,lw,acc))
elif acc>=0.8: almostPerfect.append((pw,lw,acc))
elif acc>=0.5: mildlyBad.append((pw,lw,acc))

else: worst.append((pw,lw,acc))

printSubSet ("PERFECT INSTANCES” , perfect ,len (evalSet))
printSubSet ("ALMOST PERFECT” ,almostPerfect ,len (evalSet))
printSubSet ("MILDLY BAD”, mildlyBad,len(evalSet))
printSubSet ("WORST INSTANCES”, worst,len (evalSet))

print

print accuracyGlobal
outFile.write(”\n"+str (accuracyGlobal)+"\n”)

if name =

if len(sys.argv)>1:

x=1

s=(

’1r ’: float (sys.argv[xplusplus(”x”)]), #learning rate

’decay’:int (sys.argv[xplusplus(”x”)]),

#decay on the learning rate if improvement stops

}

’nhidden’: int (sys.argv[xplusplus(”x”)]),
’seed ’:int (sys.argv[xplusplus(”x”)]),
’nepochs’:int (sys.argv[xplusplus(”x”)]),
’label ':sys.argv[xplusplus(”x”)],
’periods’:int (sys.argv[xplusplus(”x”)]),
’load’:int (sys.argv[xplusplus(”x”)]),
’inputType’:sys.argv[xplusplus(”x”)],
’actpas’:sys.argv[xplusplus(”x”)],
’inputFile ’:sys.argv [xplusplus(”x”)]

1r’:0.24,
’decay’: True,
’nhidden’:120,
’seed’:345,
’nepochs’:200,
’label’:”15_40_monitor_sigm_anewl”,
’periods’: True,
’load ’: True,

#learning rate

#number of hidden units

#seed for random

#max number of training epochs
#label for this run

#whether the corpus has periods

#whether the model is already trained or not

#dss or sitVector or compVector
#if the inputs are divided in actpas
#ILE containing the input data

#decay on the learning rate if improvement stops
#number of hidden units

#seed for random

#max number of training epochs

#label for this run

#whether the corpus has periods

#whether the model is already trained or not

’inputType’: ’beliefVector’,#dss or sitVector or compVector

’actpas’:True,

#if the inputs are divided in actpas

’inputFile ’: corpusFilePath  #FILE containing the input data

if s[’periods’]: s[’vocab_ size’]=43

else: s|

if s[’inputType’]==’sitVector’ or s[’inputType’]==’compVector’ or s[’inputType’]=="beliefVector”:

’vocab__size’|=42

s [’inputDimension’]=44

if s[’inputType’]=="dss:

s [’inputDimension’]=150
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if s[’actpas’]:s[’inputDimension’]=s[’inputDimension’]+1

#0AD FILES
maplndexWord=loadFiles.getWordLocalistMap (wordLocalistMapPath)

fold=Fold ()
fold .loadFromPickle(s[’inputFile’])
trainLists=fold.trainSet

testLists=fold.valtestSet

loadFiles.setInputType(trainLists [0],s[ ’inputType’])
for tList in testLists:
loadFiles.setInputType(tList,s [ inputType’])

train=trainLists [0]
validateList=trainLists[1]# Traintest is used instead of validation

folderThisRun, bestModel,lastModel , plotsFolder=getFolders (outputsPath,s)

# REATE SRNN AND INITTALIZE VARS

srnn = rnn.prodSRNN_notBPTT mon. model (
inputDimens=s [ ’inputDimension’] ,
hiddenDimens = s[’nhidden’],
outputDimens= s[’vocab_ size’]

)

random.seed (s[’seed’])

#IF THE MODEL HASNT BEEN TRAINED
if not s[’load’]:
outputFile= open(folderThisRun+’/output.txt’, ’‘w+’)
best__sim = —numpy. inf
bestEp=0
epErrors=[]
epSimilarities=(]
s[’clr’] = s[’1r’]

for epoch in xrange(s[ nepochs’]):
random. shuffle (train)

#TRAIN THIS EPOCH
errors=srnn.epochTrain(train,s[’clr’])

epErrors.append(sum(errors))

predictions_ validate=srnn.getModelProductions(validateList ,False)#We don’t stop on
#periods because at the beginning the model may not know that it has to put a period

#Get a list of pairs (sim,mostSimilar) where sim is the similarity of the most similar
#sentence in the gold sentences of the given dss
simgolds=[mostSimilarEquivalentsLevens(sent,pred) for sent,pred in \

zip (validateList , predictions__validate)]

#Get only the list of similarities
similarities=[sim for (sim,mostSimilar) in simgolds]
similarity=numpy.sum(similarities)/len(similarities)

epSimilarities.append(similarity)
outputLine="Epoch: ’+str(epoch)+’ Ir: '+str(s[’clr’])+’ similarity: ’+str(similarity)

if similarity > best_sim:
srnn.save (bestModel)
best__sim = similarity
bestEp=epoch
lastChange LR=epoch
outputLine=NEW BEST ’+outputLine

outputFile.write (outputLine+’\n’)
print outputLine

errorsPlot=plt . figure(100000)
plt.plot(epErrors)
plt.savefig(folderThisRun+”/errorsTrainEp.png”)

simPlot=plt . figure(1000000)
plt.plot(epSimilarities)
plt.savefig(folderThisRun+”/similarities.png”)



Appendix C. Training/Testing Code 144

# learning rate halves if no improvement in 15 epochs
if s[’decay’] and (epoch-astChange LR) >= 15:
s[’clr’] *= 0.5
lastChange LR=epoclh#we have to reset lastChange LR,
#otherwise it will halve each epoch until we get an improvement

#TRAINING STOPS IF LEARNING RATE IS BELOW THRESHOLD OR IF NO IMPROVEMENT IN 40 EPOCHS
if s[’clr’] < le—3 or (epoch—bestEp)>=40:
break

srnn.save (lastModel)

outputLine="BEST RESULT: epoch ’'+str(bestEp)+’ Similarity: '+str(best_sim)+ \
’ with the model ’+folderThisRun

print outputLine

outputFile.write (outputLine)

outputFile.close()

else:
#F THE MODEL WAS ALRFADY TRAINED AND WE ARE ONLY LOADING IT FOR TESTING
srnn.load (lastModel)

outFileTrain= open(folderThisRun+’/outputlast_train.txt’, ’w+’)
outFileTest= open(folderThisRun+’/outputlast__test.txt’, ’‘w+’)

evaluateSRNN (srnn, outFileTrain, validateList)

outFileTrain. close ()

for index in xrange(len(testList)):
print ”\nCONDITION:”+str (index+1)+"\n"
outFileTest.write(”\nCONDITION:”+str (index+1)+"\n")
evaluateSRNN (srnn, outFileTest, testLists[index])

outFileTest.close ()
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