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Abstract

Proving timeliness is an integral part of the verification of safety-critical
real-time systems. To this end, timing analysis computes upper bounds on
the execution times of programs that execute on a given hardware platform.
Modern hardware platforms commonly exhibit counter-intuitive timing
behaviour: a locally slower execution can lead to a faster overall execution.
Such behaviour challenges efficient timing analysis.
In this work, we present and discuss a hardware design, the strictly

in-order pipeline, that behaves monotonically w.r.t. the progress of a pro-
gram’s execution. Based on monotonicity, we prove the absence of the
aforementioned counter-intuitive behaviour.
At least since multi-core processors have emerged, timing analysis sepa-

rates concerns by analysing different aspects of the system’s timing behaviour
individually. In this work, we validate the underlying assumption that a
timing bound can be soundly composed from individual contributions. We
show that even simple processors exhibit counter-intuitive behaviour—a
locally slow execution can lead to an even slower overall execution—that
impedes the soundness of the composition. We present the compositional
base bound analysis that accounts for any such amplifying effects within its
timing contribution. This enables a sound compositional analysis even for
complex processors. Furthermore, we discuss hardware modifications that
enable efficient compositional analyses.
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Zusammenfassung

Echtzeitsysteme müssen unter allen Umständen beweisbar pünktlich
arbeiten. Zum Beweis errechnet die Zeitanalyse obere Schranken der für die
Ausführung von Programmen auf einer Hardware-Plattform benötigten Zeit.
Moderne Hardware-Plattformen sind bekannt für unerwartetes Zeitverhalten
bei dem eine lokale Verzögerung in einer global schnelleren Ausführung
resultiert. Solches Zeitverhalten erschwert eine effiziente Analyse.
Im Rahmen dieser Arbeit diskutieren wir das Design eines Prozessors

mit eingeschränkter Fließbandverarbeitung (strictly in-order pipeline), der
sich bzgl. des Fortschritts einer Programmausführung monoton verhält. Wir
beweisen, dass Monotonie das oben genannte unerwartete Zeitverhalten
verhindert.

Spätestens seit dem Einsatz von Mehrkernprozessoren besteht die Zeit-
analyse aus einzelnen Teilanalysen welche nur bestimmte Aspekte des
Zeitverhaltens betrachten. Eine zentrale Annahme ist hierbei, dass sich die
Teilergebnisse zu einer korrekten Zeitschranke zusammensetzen lassen. Im
Rahmen dieser Arbeit zeigen wir, dass diese Annahme selbst für einfache
Prozessoren ungültig ist, da eine lokale Verzögerung zu einer noch größeren
globalen Verzögerung führen kann. Für bestehende Prozessoren entwickeln
wir eine neuartige Teilanalyse, die solche verstärkenden Effekte berücksich-
tigt und somit eine korrekte Komposition von Teilergebnissen erlaubt. Für
zukünftige Prozessoren beschreiben wir Modifikationen, die eine deutlich
effizientere Zeitanalyse ermöglichen.
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Chapter 1
Introduction

Real-time systems have to not only produce computationally correct
results but also have to deliver their results within a certain time. A
violation of these timing requirements can have consequences of different
severity. Possible consequences range from degraded quality of service, e.g.
lag in a video stream, to complete system failure, e.g. causing harm to
humans. In the latter case, not a single violation of the timing requirements
is acceptable. Such a system is named hard real-time system.
Hard real-time systems are often found embedded into physical objects

that they control. Examples include the flight control system in an airplane
and the airbag controller in a car. Figure 1.1 shows the general structure of
an embedded control system using the example of an airbag controller. The
environment of the car is sensed by measuring relevant properties such as
the acceleration of the car and the distances to surrounding objects. With
the sensor readings as input, a controller gauges the situation and decides
on appropriate reactions, e.g. to inflate the airbag. Actuators such as the
inflator take action according to the controller’s output to manipulate the
physical environment.
Besides the delay incurred by the sensors and actuators, the latency of

the controller is crucial for satisfying the hard timing requirements. As a
consequence, a hard real-time controller has to undergo a timing verification
process prior to the deployment of the system. In the timing verification
process, the controller must be proven to adhere to the timing requirements
in all cases including the worst possible case. This thesis contributes to
state-of-the-art techniques for the verification of the timing behaviour of
such systems.
Nowadays, a controller is usually implemented in software running on

a particular hardware platform. Thus, timing verification is a software
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Figure 1.1: A car as an example of an embedded control system with hard
real-time requirements.

verification problem. Unlike the functional behaviour of a program that
is determined by the state of the program itself and its inputs, the timing
behaviour of a program additionally depends on the hardware state and the
concurrently executing programs. As a consequence, timing verification has
to take the hardware and the execution environment into account as well.

To verify the adherence to the timing requirements, timing analysis derives
bounds on the possible execution times of a given program as illustrated
in Figure 1.2. Each technique for timing analysis

• must give sound results. The derived bounds are never exceeded for
any input, any initial hardware state, and any concurrently executing
programs.

• should give precise results. In particular, the overestimation, i.e. the
minimal distance between an actual execution time and the derived
upper bound, should be low in order to avoid an over-provisioning of
system resources.

• should be efficient w.r.t. the available computational resources. In
general, there is a trade-off between the efficiency of the analysis and
the precision of the obtained results.

In theory, it is conceivable to enumerate all possible execution behaviours
of a (machine) program as the actual system has finitely many states.
However, such an explicit enumeration is practically infeasible due to the

2
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Figure 1.2: Hypothetical histogram of a program’s possible execution times
and basic notions in timing verification.

enormous size of the (finite) state space. Measurement-based approaches to
timing analysis execute the given program with various inputs, in different
initial hardware states, and with different concurrently executing programs.
The timing estimate is then derived from the various observed execution
times. As a consequence of the size of the state space, measurement-based
approaches can never reach full coverage of the possible execution behaviours
and thus cannot deliver provably sound bounds in general. In this thesis,
we use static approaches to timing verification: We employ abstractions
to derive guarantees about all concrete execution behaviours without the
need to actually execute the program. If we base the abstractions on formal
models of the concrete system, we obtain provably sound timing bounds.

Static timing analysis is commonly performed in two phases following the
principle of separation of concerns. First, a low-level analysis characterises
a program’s behaviour when executed in isolation, i.e. without concurrently
executing programs. The low-level analysis accounts for the effects of the
inputs and the initial hardware states on the execution behaviour. This
first phase is also known as worst-case execution time (WCET) analysis
[Wilhelm et al., 2008] since the upper bound on a program’s execution time
has originally been the only program characterisation. Second, a high-level
analysis incorporates the effects of the concurrently executing programs
into a program’s timing bound. To this end, the high-level analysis uses the
characteristics of all programs in the system, as derived by the preceding
low-level analysis.

3



Chapter 1 Introduction

Compositionality

The soundness of this two-phase approach to timing analysis relies on the
assumption that an upper timing bound can be composed from character-
istics that capture the programs’ behaviour when run in isolation. This
assumption that links the low-level and the high-level analysis, is commonly
referred to as timing compositionality. Compositionality is important for
a sound and efficient two-phase analysis of modern systems that feature
preemptive scheduling or multi-core processors. The impact of preemptions
and shared resource interference on the execution time of a program de-
pends on the actual program schedule and can thus only be determined
within the high-level analysis. Compositionality allows to account for this
schedule-dependent impact on the execution time using solely the program
characteristics derived by the low-level analysis. Despite its key role to
overall soundness, compositionality is usually just taken for granted in the
existing literature. As a consequence, it has only attracted little attention
in research.
In this thesis, we demonstrate that naively composing per-program

characteristics—as it is usually done in the literature—is not sound: it
might underestimate the timing in the worst case. The concurrent execution
of programs on a single hardware platform results in competition for the ex-
clusive access to shared resources such as the processor or the memory. Due
to this competition, a program’s execution might be blocked if a required
resource is already occupied by another program. The high-level analyses
found in the literature take such direct blocking effects into account. Besides
these direct effects, the execution of concurrent programs also has an impact
on the state of the hardware. As a consequence, a program might encounter
hardware states during its execution that could not arise when executed in
isolation and that are thus not considered by the low-level analysis. These
hardware states might however trigger a worse timing behaviour than the
states that arise during an isolated execution. Such indirect effects are
either not or only incompletely considered in the literature.

In this work, we make the following contributions in the context of timing
compositionality. First, we show that indirect effects occur unexpectedly
even on simple hardware platforms. Second, we present and discuss hard-
ware mechanisms that provably prevent or at least limit indirect effects.
Last but not least, we propose a new low-level analysis technique termed
compositional base bound that accounts for all possible indirect effects

4



caused by any concurrently executing programs. For the first time, the
compositional base bound enables a sound two-phase timing analysis with
no restrictions on the hardware platform to analyse.

Towards Pipeline Abstraction
The low-level analysis is the most demanding part of timing analysis w.r.t.
computational resources. It needs to consider all initial hardware states
and program inputs while avoiding to explicitly enumerate all possibilities.
Abstraction allows to approximate a set of concrete elements, e.g. hard-

ware states, by a more compact abstract element that only keeps relevant
properties of the concrete elements. The problem is to find an abstraction
such that the abstract elements are (a) compact enough to allow for an
efficient analysis and (b) precise enough to derive meaningful results such
as timing bounds that fulfil the timing requirements. For some parts of the
state space, such abstractions are known, e.g. the interval abstraction to
represent possible (input) values or the must- and may-cache abstraction for
cache memories. However, no abstractions have been found for the control
part of processor pipelines. As a consequence, state-of-the-art low-level
analyses explore concrete pipeline control states that arise during program
execution.
In this thesis, we examine a novel idea for an abstraction based on the

notion of progress of a program’s execution in a processor pipeline. An
abstract pipeline state hereby represents all concrete pipeline states in
which the program’s execution has progressed at least as much. We provide
the necessary formal background to reason about the soundness of the
progress-based abstraction.
We show how to instantiate the progress-based abstraction for the sub-

category of processor pipelines that behave monotonically: If a program’s
execution in one pipeline state has progressed at least as much as in another
one, this order is preserved after processing an additional clock cycle.

We present a new pipeline specifically designed with monotonicity in mind:
the strictly in-order pipeline. In contrast to a conventional in-order pipeline,
the strictly in-order pipeline additionally ensures that all—instruction and
data—accesses on the memory bus are processed in the order given by
the machine program. Based on monotonicity, we discuss and prove more
sophisticated properties of the strictly in-order pipeline, including timing
compositionality, which are useful in timing analysis.

5



Chapter 1 Introduction

Structure of the Thesis and Own Prior Work
In Chapter 2, we formally introduce the basic notions relevant for timing
analysis. This includes but is not limited to the notions of abstraction, join-
ing, and compositionality. Our formal definition of timing compositionality
has first been published in [Hahn et al., 2015b]. In Chapter 3, we present the
overall analysis flow for timing verification. This includes the algorithmic
realisation of timing analysis as well as details on an actual implementation.
Both chapters present mostly well-known material in a novel way, and thus
serve as an introduction to timing analysis which provides the necessary
background for this thesis.
We introduce the progress-based abstraction of processor pipelines in

Chapter 4. To this end, we extend the formalism described in Chapter 2.
In addition, we describe the strictly in-order pipeline in detail and prove its
monotonic timing behaviour. We evaluate the performance of the proposed
pipeline design. The initial ideas have been developed in [Hahn et al., 2015a].
The formal definition of the strictly in-order pipeline, the relevant proofs,
and a thorough evaluation have been published in [Hahn and Reineke, 2018].

In Chapter 5, we first discuss the validity of the timing compositionality
assumption. Then, we examine three possible options to achieve compo-
sitionality. We evaluate the precision and the efficiency of the presented
techniques. The compositional base bound technique has first been discussed
and published in [Hahn et al., 2016].
Chapter 6 presents work related to timing analysis. We structure the

discussion of related work along the main chapters of this thesis. The
individual parts are self-contained and can be read in parallel to the corre-
sponding chapters. In Chapter 7, we conclude and outline future research
directions.

6



Chapter 2
Formal Foundations

Timing analysis is an instance of the more general problem to determine
behavioural properties of a given discrete system. The overall approach
is to approximate the behaviour of the system in an efficient manner and
to derive the behavioural properties based on this approximation. In this
section, we present the formal concepts used to reason about the soundness
of such approximations.

2.1 Setting
We consider systems whose behaviour can be modelled by means of labelled,
non-deterministic transition systems as first introduced in [Keller, 1976]. A
configuration, i.e. a node in this transition system, comprises everything
that influences the future behaviour of the given system. We denote the
space of configurations by C.
We describe the system behaviour at a discrete time granularity, e.g.

at the level of individual processor cycles. A set E comprises events that
occur during the transition between two configurations in a single cycle.
The system behaviour, given by the relation cycle ⊆ C × 2E × C, determines
the possible transitions between two configurations with the respective set
of occurred events. If the system behaves deterministically based on the
information in configurations in C, the cycle transition is described by a
function cycle : C → 2E × C. We use the notation R(a)(b)(c) to express
(a, b, c) ∈ R.

Given a terminating program p, we are interested in the portion of
the overall transition system (C, cycle) that describes the execution of
program p. We denote the set of initial configurations by Ip ⊆ C and the
set of final events by Fp ⊆ E. If a final event is observed during a cycle

7



Chapter 2 Formal Foundations

transition, we call the successor configuration final as well. We consider
those behaviours of the system that start in an initial configuration and
end in a final configuration, i.e. after a final event has been observed. We
use the directed, labelled execution graph Gp := (Vp, Ep, Ip, Fp) to describe
the relevant portion of the system behaviour. The nodes Vp ⊆ C and edges
Ep ⊆ Vp × 2E × Vp are the minimal set and relation such that

∀c ∈ Vp∪Ip. c not final ∧cycle(c)(evs)(c′)⇔ c′ ∈ Vp∧Ep(c)(evs)(c′). (2.1)

The execution graph Gp induces a set of finite traces T (Gp) through the
graph that start in an initial configuration from Ip and end by a final event
from Fp:

T (Gp) := {τ ∈ Vp × (2E × Vp)∗ | τ0.c ∈ Ip ∧ τ|τ |.evs ∩ Fp 6= ∅∧
∀ i ∈ [1, |τ |]. Ep(τi−1.c)(τi.evs)(τi.c)}. (2.2)

|τ | denotes the length of the trace, i.e. the number of transitions, or in other
words, the number of event-configuration pairs. τi denotes the i-th such
pair in τ and τi.c (τi.evs) the configuration (set of events) of this pair. To
simplify notation, τ0.c denotes the first configuration in τ and τ0.evs = ∅.
We employ weight functions w :

(
2E
)∗ →W to characterise individual

execution traces based on the occurred events. We require the set of possible
weight values W to be a complete lattice with partial order ≤ and least
upper bound max and greatest lower bound min. As an example, a weight
function might calculate the length of a trace or the number of specific
events encountered on a trace. In these cases, the set of possible weight
values W is N0 ∪{∞}. For convenience, we write w(τ) to denote the weight
of the events sequence extracted from trace τ . We call a weight additive if

∀τ ∈ C × (2E × C)∗ ∀i ∈ [0, |τ |]. w(τ) = w(τ0..i) + w(τi..|τ |), (2.3)

where τk..l denotes the subtrace of τ starting at position k with τk.c and
ending at position l with τl. For the sake of brevity, we focus on the
maximisation of additive weights in the following, if not stated otherwise.

2.2 Abstraction
An explicit construction of the execution graph Gp and subsequent weight
maximisation over traces T (Gp) is computationally infeasible due to the

8



2.2 Abstraction

system’s complexity. To reduce the computational demand, we employ
abstractions. An abstraction is a compact approximate representation of
the system’s behaviour as described by Gp. The compactness ensures
the computational feasibility of constructing the abstract representation.
To achieve compactness, abstraction focuses on the most relevant aspects
of the system while leaving other aspects aside. Based on the abstract
representation, we compute upper weight bounds.
In this section, we treat the conditions under which an abstraction is

sound, i.e. correctly approximates the system’s behaviour. The ideas that
we discuss in the following are found in abstract interpretation [Cousot and
Cousot, 1977] and model checking [Clarke et al., 1994], both of which are
frameworks to reason about the soundness of abstractions. In Chapter 3,
we provide details on how to actually construct an abstract representation
in our specialised setting of timing analysis.
An abstract configuration compactly describes a set of concrete con-

figurations. This is formally captured by a configuration concretisation
function γconf : Ĉ → 2C in the sense of abstract interpretation. We denote
the set of abstract configurations by Ĉ.
There are different possibilities to abstractly represent a set of concrete

configurations. In general, the choice of Ĉ impacts the precision of the
obtainable upper bound and the efficiency to construct the abstract repre-
sentation. We provide examples in Section 3.3 (Microarchitectural Analysis)
and Chapter 4 (Progress-based Abstraction).
Besides the abstract configurations, an abstraction includes an abstract

cycle behaviour operating on these abstract configurations. The abstract cy-
cle behaviour approximates the concrete cycle behaviour cycle ⊆ C × 2E × C.
The configuration abstraction can introduce uncertainty to the cycle be-
haviour. This uncertainty results in non-determinism within the abstract
cycle behaviour leading to multiple abstract successor configurations. The
abstract cycle behaviour is thus described by a relation ĉycle ⊆ Ĉ × 2E × Ĉ—
even if the concrete cycle behaviour is deterministic. We require the abstract
cycle relation ĉycle to be locally consistent w.r.t. the concrete cycle be-
haviour cycle, i.e. each concrete cycle transition is captured by an abstract
cycle transition:

∀c, c′ ∈ C ∀evs ⊆ E ∀ĉ ∈ Ĉ. c ∈ γconf (ĉ) ∧ cycle(c)(evs)(c′)

⇒ ∃ĉ′ ∈ Ĉ. ĉycle(ĉ)(evs)(ĉ′) ∧ c′ ∈ γconf (ĉ′). (2.4)

9
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c

ĉ ĉ′

c′
evs

cycle

evs
ĉycle

γconf γconf

Figure 2.1: Local consistency of the abstract ĉycle behaviour w.r.t. the
concrete behaviour.

Figure 2.1 illustrates the definition of local consistency.
We consider the portion of the overall abstract transition system (Ĉ, ĉycle)

that approximates the concrete execution graph Gp = (Vp, Ep, Ip, Fp). We
require the initial abstract configurations Îp ⊆ Ĉ to cover all concrete initial
configurations:

∀i ∈ Ip ∃̂i ∈ Îp. i ∈ γconf (̂i). (2.5)

Since we use the same set of events E in ĉycle and cycle, the final events
remain the same, i.e. F̂p = Fp.

An abstract execution graph Ĝp := (V̂p, Êp, Îp, F̂p) is a directed, labelled
graph that describes the approximate system behaviour which starts from
any initial configuration in Îp and ends by observing a final event from F̂p.
The nodes V̂p ⊆ Ĉ and edges Êp are the minimal set and relation such that

∀ĉ ∈ V̂p∪ Îp. ĉ not final∧ĉycle(ĉ)(evs)(ĉ′)⇔ ĉ′ ∈ V̂p∧Êp(ĉ)(evs)(ĉ′). (2.6)

An abstract execution graph approximating Gp might not be uniquely
defined due to the choice of initial abstract configurations in Equation 2.5.
A graph Ĝp induces a set of abstract traces denoted by T (Ĝp). The

concretisation function of traces γtraces : 2Ĉ×
(

2E×Ĉ
)∗
→ 2C×(2E×C)∗ relates

sets of abstract traces to sets of concrete traces. A single abstract trace τ̂
represents only concrete traces of equal length |τ̂ |. We define the trace

10



2.2 Abstraction

concretisation function by element-wise application of the configuration
concretisation γconf :

γtraces(T̂ ) := {τ | ∃τ̂ ∈ T̂ . |τ | = |τ̂ | ∧ ∀i ∈ [0, |τ̂ |]. τi.c ∈ γconf (τ̂i.c)
∧τi.evs = τ̂i.evs}. (2.7)

We can now prove that the traces through the abstract execution graph
approximate all traces through the concrete execution graph.

Theorem 2.2.1 (Trace Coverage). Let Ĉ be a set of configurations that
abstract from C and ĉycle a relation which is locally consistent w.r.t. cycle.
Let Gp be an execution graph and Ĝp an abstract execution graph, i.e.
satisfying Equations 2.5 and 2.6.
The set of abstract traces covers all concrete traces:

T (Gp) ⊆ γtraces(T (Ĝp)). (2.8)

Proof. The proof can be carried out by structural induction on traces using
Equation 2.5 in the base case and Equations 2.4 and 2.6 in the induction
step. A proof of the generalised Theorem 2.3.1 is shown in Section 2.3.

Finally, as a corollary, the maximised weight over abstract traces T (Ĝp)
constitutes an upper bound on the weights of the concrete traces T (Gp).

Corollary 2.2.2 (Sound weight bound). Let the conditions of Theo-
rem 2.2.1 be given. Furthermore, let w :

(
2E
)∗ →W be a weight function.

The maximum weight w over all traces through the abstract graph provides
an upper bound on the weights of the concrete traces:

max
τ∈T (Gp)

w(τ) ≤ max
τ̂∈T (Ĝp)

w(τ̂). (2.9)

Proof. Let τ ∈ T (Gp) be the trace with the maximal weight w(τ). According
to Theorem 2.2.1, there is a τ̂ ∈ T (Ĝp) such that τ ∈ γtraces({τ̂}). By
definition of γtraces, τ and τ̂ have the same extracted event sequences and
thus w(τ) = w(τ̂). Thus, the claim follows by the definition of max.

Note that due to the employed abstraction, T (Ĝp) might contain abstract
traces that do not represent any concrete trace. However, such traces might
exhibit the maximal weight in the abstract execution graph. We refer to
Section 2.4 (Cooperation) for further details.

11
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a b  a t b

Figure 2.2: Merging of similar configurations reduces the complexity of the
abstract execution graph.

2.3 To Join or Not to Join
In the previous section, we introduced abstraction in the form of abstract
execution graphs that approximate the concrete execution graph. The
construction of an abstract execution graph can still be expensive, e.g. due
to the non-deterministic splits of the ĉycle transformer caused by uncertain
information in the abstract configurations. However, there is usually redun-
dancy in the graph that we can exploit: separate abstract configurations
are similar and exhibit similar subsequent behaviour. It would be beneficial
to “merge” such similar configurations into one abstract configuration and
thus to examine their behaviour together at once. As an example consider
Figure 2.2. Merging complements the aforementioned splitting of configura-
tions in ĉycle and reduces the complexity of the execution graph, i.e. the
number of nodes and edges.
Let Ĉ be the set of abstract configurations. We employ a partial order

v ⊆ Ĉ × Ĉ to describe whether an abstract configuration represents, com-
pared to another one, a subset of the concrete configurations and thus
execution behaviours:

a v b⇒ γconf (a) ⊆ γconf (b). (2.10)

In other words, the concretisation function γconf : Ĉ → 2C is monotonic
w.r.t. the partial order v. The partial order thereby models the usual
notion of precision in the sense of static program analysis [Cousot and
Cousot, 1977; Nielson et al., 1999].
In an abstract execution graph Ĝp = (V̂p, Êp, Îp, F̂p), we can replace a

node v ∈ V̂p ⊆ Ĉ by an abstract configuration w with v v w. As w describes
more concrete configurations, a locally consistent abstract cycle behaviour
ĉycle might yield more and different abstract successor configurations for w

12
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than for v. Consequently, the subgraph starting at w differs from the one
started at v.
To effectively reduce the graph complexity, multiple different nodes

vi ∈ V̂p should be merged, i.e. replaced by a common configuration w such
that vi v w for all vi. We call such a common configuration w an upper
bound of vi. If the partially-ordered set of abstract configurations (Ĉ,v)
constitutes a complete lattice, each subset of elements has a well-defined
least upper bound

⊔
: 2Ĉ → Ĉ. The least upper bound operator is also

called join operator. Among all upper bound operators to merge a set of
abstract configurations, the join operator provides the most precise result.

An edge in an abstract execution graph Ĝp now entails a ĉycle transition
followed by an optional configuration replacement according to v. We
account for this relaxed edge interpretation by revising Equation 2.6:

∀ĉ ∈ V̂p ∪ Îp. ĉ not final ∧ ĉycle(ĉ)(evs)(ĉ′)
⇔ ∃ĉ′u ∈ V̂p. ĉ′ v ĉ′u ∧ Êp(ĉ)(evs)(ĉ′u). (2.11)

Note that this condition subsumes the previous one as the partial order v
is reflexive. In particular, an abstract execution graph without any merges
and replacements remains valid.

Theorem 2.3.1 (Trace Coverage). Let Ĉ be a set of configurations ab-
stracted from C and ĉycle a relation which is locally consistent w.r.t. cycle.
Let Gp be an execution graph and Ĝp an abstract execution graph allowing
replacements, i.e. satisfying Equations 2.5 and 2.11. The set of abstract
traces covers all concrete traces:

T (Gp) ⊆ γtraces(T (Ĝp)). (2.12)

Proof. Let a concrete trace τ ∈ T (Gp) be given. We need to show that
τ ∈ γtraces(T (Ĝp)). First, we show that each prefix τ (i) = τ0 . . . τi−1τi with
i ≤ |τ | has an abstract counterpart τ̂ (i) in Ĝp such that τ (i) ∈ γtraces({τ̂ (i)}).
We prove this by induction over i.

Induction base:
We consider the case i = 0. By definition, τ (0) = τ0 and τ0.c ∈ Ip.
Equation 2.5 provides an î ∈ Îp such that τ0.c ∈ γconf (̂i). Choosing
τ̂ (0) = î ∈ V̂p concludes the base case.

13
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Induction step:
Now, we consider the step from i to i+ 1 with i < |τ |. By the induction
hypothesis, we know that for the concrete prefix τ (i) there exists an abstract
prefix τ̂ (i) in Ĝp such that τ (i) ∈ γtraces({τ̂ (i)}). In particular, we know
that τi.c ∈ γconf (τ̂i.c). By definition and i < |τ |, we also know that
cycle(τi.c)(τi+1.evs)(τi+1.c) and τi.c is not final.

Using local consistency of ĉycle, we get a configuration ĉ′ ∈ Ĉ such that
ĉycle(τ̂i.c)(τ̂i+1.evs)(ĉ′) with τi+1.evs = τ̂i+1.evs and τi+1.c ∈ γconf (ĉ′). Ap-
plying the ⇒ part of Equation 2.11, we obtain a configuration ĉ′u ∈ V̂p with
Êp(τ̂i.c)(τ̂i.evs)(ĉ′u). Furthermore, we obtain ĉ′ v ĉ′u and by Equation 2.10,
τi+1.c ∈ γconf (ĉ′u). Using τ̂i+1.c = ĉ′u concludes the induction step.

Finally, it remains to show that the candidate trace τ̂ = τ̂ (|τ |) is an ac-
tual member of T (Ĝp), i.e. τ̂ ends with a final event. As τ ∈ T (Gp) and
τ ∈ γtraces({τ̂}), we get τ̂|τ̂ |.evs ∩ F̂p 6= ∅. This concludes the overall
proof.

Different replacements of nodes lead to different, sound abstract execution
graphs Ĝp. Thus, Ĝp is not uniquely defined by the choice of initial states Îp
any more. The choice which configurations to join trades off the precision
of the resulting graph against the efficiency of the graph construction.
We provide details on a possible join strategy in Section 3.3 (Low-Level
Analysis).

2.4 Cooperation

In general, we employ several different abstractions. Each abstraction
focuses on a specific aspect of the concrete system behaviour, e.g. the values
computed during execution or the evolution of the microarchitectural state.
To obtain precise results, the different abstractions cooperate by exchanging
information.
Consider n abstractions with the respective abstract execution graphs

Ĝ1, . . . , Ĝn such that the traces of each Ĝi approximate the concrete traces
through Gp via γtraces

i . If all abstractions satisfy the trace coverage property

14
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in Equation 2.8, the combined graph Ĝ =
∏n
i=1 Ĝi with the following

concretisation function satisfies it as well

γtraces
(
T (Ĝ)

)
= γtraces

(
T ((Ĝ1, . . . , Ĝn))

)
=

n⋂
i=1

γtraces
i (T (Ĝi)). (2.13)

Note that if some abstract execution graph Ĝi does not fulfil Equation 2.8,
it is unsound to take the intersection as it might miss the trace leading to
the maximal weight.
In practice, it is computationally infeasible to first concretise and then

compute the intersection. Instead, we want to perform the intersection
efficiently on the abstract execution graphs directly.

Infeasible Abstract Traces We call an abstract trace τ̂ ∈ T (Ĝj) infeasible
if

γtraces({τ̂}) ∩ T (Gp) = ∅. (2.14)
Infeasible abstract traces arise due to the approximative character of ab-
stractions.
A sufficient criterion for infeasibility based on cooperation with other

abstractions is
γtraces({τ̂}) ∩ γtraces

i (T (Ĝi)) = ∅, (2.15)
as γtraces

i (T (Ĝi)) ⊇ T (Gp). For soundness in the sense of Equation 2.8, it
is sufficient to only consider feasible traces.

In practice, there are two possibilities to prune abstract infeasible traces:
Either when constructing Ĝj or when searching the maximal-weight trace
through Ĝj . In both cases, we use the (number of) occurrences of specific
events to exchange information between abstractions. In the first case, we
can prune a successor configuration of ĉycle if this cycle transition emits
an event that does not occur in Ĝi. In the second case, we formulate
constraints for the search of the maximal-weight trace. As an example, we
exclude traces through Ĝj that exhibit more events of a certain type than
any trace through Ĝi.
We provide concrete examples and the realisation of such constraints in

Section 3.3 (Low-Level Analysis) explaining the implementation aspects.
More information about the formal background on pruning infeasible ab-
stract traces as well as its applications in the analysis of multi-core systems
can be found in [Jacobs, 2014, 2018; Jacobs et al., 2016].
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c

cbca

evsbevsa

τ̂a1..i = τ̂ b1..i

τ̂ b
i+1..|τ̂b|τ̂a

i+1..|τ̂a|

Figure 2.3: Excerpt from an abstract execution graph illustrating the notion
of domination.

2.5 Domination

Up to now, we have studied techniques to approximate the set of concrete
execution traces which guarantee trace coverage (Equation 2.8) and conse-
quently sound weight bounds (Equation 2.9). The idea behind domination
is that it is not necessary to construct a full abstract execution graph that
covers all concrete traces. Rather, it is sufficient to construct the part of
an abstract graph that contains a maximal-weight abstract trace. As a
consequence, such a partial abstract execution graph does not satisfy the
trace coverage, but the sound weight bound property.

Intuitively, upon a non-deterministic choice during a cycle transition,
there is often one seemingly worst configuration among the successor con-
figurations that should lead to a maximal-weight trace. If we can prove
that this intuition is right, we can reduce the complexity of the abstract
execution graph by only considering such worst successor configurations.

First, we need to formalise our notion of a successor configuration ca
being “worse” than cb. As an example, consider the fragment of an abstract
execution graph in Figure 2.3. We say configuration ca dominates cb—
alternatively cycle transition Ê(c)(evsa)(ca) dominates Ê(c)(evsb)(cb)—if
each abstract trace τ̂ b through Ê(c)(evsb)(cb) is outweighed by a trace τ̂a
through Ê(c)(evsa)(ca) w.r.t. a given weight w.

16



2.5 Domination

Definition 2.5.1 (Configuration Domination). Let a weight function
w :
(
2E
)∗ →W and an abstract execution graph Ĝp = (V̂p ⊆ Ĉ, Êp, Îp, F̂p)

be given. Furthermore, let c, ca, cb ∈ V̂p be configurations such that
Êp(c)(evsa)(ca) and Êp(c)(evsb)(cb).
We say ca dominates cb w.r.t. w if and only if

∀τ̂ b ∈ T (Ĝp) ∀i. τ̂ bi .c = c ∧ τ̂ bi+1 = (evsb, cb)⇒
∃τ̂a ∈ T (Ĝp). τ̂a1..i = τ̂ b1..i ∧ τ̂ai+1 = (evsa, ca)∧

∀τ b ∈ γtraces({τ̂ b}). w(τ b) ≤ w(τ̂a). (2.16)

In a scenario as described in Definition 2.5.1, an abstract trace containing
the edge Êp(c)(evsb)(cb) can never solely lead to the maximal weight. Thus,
it is sound to only follow the edge to successor ca and to ignore the edge to
successor cb. The subgraph that starts in cb and is not reachable by any
other initial configuration can be pruned from the abstract execution graph.
For technical reasons, we assume that no configuration joining (Sec-

tion 2.3) has been performed in the subgraph that starts in cb. Joining
a node of this subgraph with another configuration could introduce new,
potentially infeasible traces through cb such that their weight exceeds the
weight of any τ̂a. Thus, joining would void the domination property. Note
however, that joining can still be employed in the remaining execution
graph. A practical algorithm to construct the abstract execution graph,
e.g. as described in Section 3.3 (Low-Level Analysis), never creates the
subgraph starting in cb anyway.

Theorem 2.5.2 (Sound Weight, Domination). Let Ĉ be a set of configu-
rations abstracted from C and ĉycle a relation locally consistent to cycle.
Let ca and cb be abstract successor configurations of c such that ca domi-
nates cb. Let Gp be an execution graph and Ĝp a partial abstract execution
graph, i.e. Ĝp satisfies Equations 2.5 and 2.6 for ĉ′ 6= cb. Furthermore, let
w :
(
2E
)∗ →W be a weight function. The maximum of w on traces through

the abstract graph provides an upper bound on weights on concrete traces:

max
τ∈T (Gp)

w(τ) ≤ max
τ̂∈T (Ĝp)

w(τ̂). (2.17)
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Proof. Let τ ∈ T (Gp) be a concrete trace with maximal weight. In a full
abstract execution graph, there is a corresponding abstract trace τ̂ such
that τ ∈ γtraces({τ̂}) and w(τ) ≤ w(τ̂). If τ̂ does not contain a transition
from c to cb, then τ̂ ∈ T (Ĝp) and the claim follows. If τ̂ does contain the
transition from c to cb, then it is not a trace through the partial graph Ĝp.
However, due to domination there is a trace τ̂a such that w(τ) ≤ w(τ̂a).
As τ̂a does not contain the transition from c to cb, it is a trace through the
partial graph Ĝp.

Note that the domination property is always linked to a given weight
function. This is important, because the fact that ca dominates cb w.r.t. w1
does not imply domination w.r.t. w2 . As an example, consider w1 to assess
the execution time while w2 assesses the number of cache hits. Thus, in
a setting where multiple weights are maximised and/or minimised, the
pruning described above might not be applicable.

Proving domination for individual situations c, ca, cb, evsa, evsb is tedious
and the savings during graph construction are small. Instead, we want to
prove domination once for many similar situations, e.g. all splits caused
by a specific kind of non-determinism. To reason about specific kinds of
non-determinism, we use labels to group similar events that describe similar
causes of a split. Formally, a set of labels L ⊆ 2E partitions a subset of all
events:

∀l, l′ ∈ L. l ∩ l′ 6= ∅ ⇒ l = l′. (2.18)

Definition 2.5.3 (Label/Weight Domination). Let {la, lb, . . .} ⊆ 2E be a
set of labels that describe a non-deterministic choice (Equation 2.18). Fur-
thermore, let w :

(
2E
)∗ →W be a weight function. We say la dominates lb

w.r.t. weight w if and only if for all abstract execution graphs Ĝp

∀c, cb ∈ V̂p. Ê(c)(evsb)(cb) ∧ lb ∩ evsb 6= ∅ ⇒ (2.19)
∃ca ∈ V̂p. Ê(c)(evsa)(ca) ∧ la ∩ evsa 6= ∅ ∧ ca dominates cb w.r.t. w.

Alternatively, we say w∗ dominates w, where w∗ is a partially defined
weight function that coincides with w on traces without lb and is undefined
otherwise.

Based on this extended definition, an algorithm to construct the abstract
execution graph can decide locally based on lb to ignore the associated
successor configurations.
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Upon a non-deterministic choice, one label la ∈ {la, lb, . . .} is often
intuitively considered as the “locally worst case”, i.e. la exhibits the largest
weight in a locally bounded part of the following execution. According to
Definition 2.5.3, a single scenario c, cb ∈ Ĉ such that no ca ∈ Ĉ (globally)
dominates cb causes the locally worst case la to not dominate lb. Such a
counter-intuitive scenario is commonly referred to as timing anomaly. In
other words, a timing anomaly describes a situation in which the “locally
worst” decision does not imply the globally worst case. We call a situation
domino effect [Lundqvist and Stenström, 1999], if the difference in weight
among the possible cases {la, lb, . . .} is not bounded by a constant.
Abstractions of complex microarchitectures are known to be prone to

timing anomalies such as scheduling anomalies or speculation anoma-
lies [Lundqvist and Stenström, 1999; Reineke et al., 2006]. Note that
the definitions of domination and timing anomaly inherently depend on the
chosen abstraction Ĉ. Abstractions with and without anomalous behaviour
can exist for the same microarchitecture.
Finally, we present a sufficient condition for domination that can be

checked by examination of the cycle transition relation. Consider Figure 2.4a
for an example. The intuition behind the sufficient condition is that the
traces starting from the locally worst successor configuration ca cover all
traces starting from any other successor cb.

Theorem 2.5.4. Let the set of abstract configurations Ĉ, the abstract cycle
behaviour ĉycle ⊆ Ĉ × 2E × Ĉ, an additive weight function w :

(
2E
)∗ →W,

and {la, lb, . . .} ⊆ 2E a set of labels describing a non-deterministic choice
in ĉycle (Equation 2.18) be given. Furthermore, let v ⊆ Ĉ × Ĉ be a partial
order consistent with γconf (Equation 2.10).
la dominates lb w.r.t. weight w if

∀c, cb ∈ Ĉ. ĉycle(c)(evsb)(cb) ∧ lb ∩ evsb 6= ∅ ⇒

∃ca ∈ Ĉ. ĉycle(c)(evsa)(ca) ∧ la ∩ evsa 6= ∅ ∧
cb v ca ∧ w(c ◦ (evsb, cb)) ≤ w(c ◦ (evsa, ca)). (2.20)

Proof. See generalised Theorem 2.5.5.

As a consequence of Theorem 2.5.4, an abstraction that satisfies the
above condition is free of anomalies w.r.t. la and lb and the given weight w.
The condition can thus be used to formally verify the absence of timing
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c

ca cb

evsa evsb
w

(a) Theorem 2.5.4: Matching im-
mediate successor configurations.

c

ca cb

πa|πa|.c

πbk.c

evsa evsb

πa∈Pp(ca)
πb∈Fp(cb)w

(b) Relaxed Theorem 2.5.5: Matching subse-
quent configurations.

Figure 2.4: Excerpt from an abstract execution graph illustrating the suffi-
cient condition for domination.

anomalies of a given microarchitectural abstraction. Unfortunately, it is
generally hard to find a microarchitecture such that an abstraction is free
of anomalies. In Chapter 4 (Progress-based Abstraction), we propose a
hardware design and an abstraction thereof that satisfies the condition in
Theorem 2.5.4.

The condition in Theorem 2.5.4 is restrictive as the immediate successor
configurations are matched. It is however sufficient to match some configu-
ration on each partial final trace starting from cb with some configuration
on some partial trace starting from ca. Figure 2.4b illustrates this generali-
sation. The set of partial traces starting from a configuration c is defined
as

P(c) := {τ̂ ∈ Ĉ × (2E × Ĉ)∗ | τ̂0.c = c∧

∀ i ∈ [1, |τ̂ |]. ĉycle(τ̂i−1.c)(τ̂i.evs)(τ̂i.c)}. (2.21)

For a given program p, we restrict the partial traces to the actual execution
of p:

Pp(c) := {τ̂ ∈ P(c) | ∀ i ∈ [1, |τ̂ | − 1]. τ̂i.evs ∩ F̂p = ∅}. (2.22)
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We define the set of partial final traces, i.e. the partial traces that end with
a final event F̂p, as

Fp(c) := {τ̂ ∈ Pp(c) | τ̂|τ̂ |.evs ∩ F̂p 6= ∅}. (2.23)

We use this relaxed condition when proving compositionality properties in
Chapter 5 (Achieving Timing Compositionality).

Theorem 2.5.5. Let the set of abstract configurations Ĉ, the abstract cycle
behaviour ĉycle ⊆ Ĉ × 2E × Ĉ, an additive weight function w :

(
2E
)∗ →W,

and {la, lb, . . .} ⊆ 2E a set of labels describing a non-deterministic choice
in ĉycle (Equation 2.18) be given. Furthermore, let v ⊆ Ĉ × Ĉ be a partial
order consistent with γconf (Equation 2.10).
la dominates lb w.r.t. weight w if for all programs p

∀c, cb ∈ Ĉ. ĉycle(c)(evsb)(cb) ∧ lb ∩ evsb 6= ∅ ⇒

∃ca ∈ Ĉ. ĉycle(c)(evsa)(ca) ∧ la ∩ evsa 6= ∅∧
∀πb ∈ Fp(cb) ∃k ≥ 0 ∃πa ∈ Pp(ca). πbk.c v πa|πa|.c ∧

w
(
c ◦ (evsb, cb) ◦ πb0..k

)
≤ w (c ◦ (evsa, ca) ◦ πa) . (2.24)

Proof. We need to prove that la dominates lb given that the above criterion
is fulfilled. Let an abstract execution graph Ĝp with configurations c and cb
be given such that ĉycle(c)(evsb)(cb) and lb ∩ evsb 6= ∅. Our condition
above provides a witness configuration ca such that ĉycle(c)(evsa)(ca) and
la ∩ evsa 6= ∅. For a graphical representation of the described scenario,
consider Figure 2.4b.
Using the witness ca in the definition of label domination, it remains

to be shown that ca dominates cb. Thus, let τ̂ b ∈ T (Ĝp) be a trace
through c = τ̂ bi .c and cb = τ̂ bi+1.c. We need to show the existence of a trace
τ̂a ∈ T (Ĝp) such that

τ̂a1..i = τ̂ b1..i ∧ τ̂ai+1 = (evsa, ca) ∧ ∀τ b ∈ γtraces({τ̂ b}).w(τ b) ≤ w(τ̂a).

Using the remaining assumption of the theorem with πb = τ̂ b
i+1..|τ̂b|

, we
obtain a k ≥ 0 and a partial trace πa such that

τ̂ bi+1+k.c v πa|πa|.c.
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lb lg

lb lg

 lb

lb

Figure 2.5: Excerpt from an abstract execution graph. On the right after
pruning dominated configurations. Excluding the infeasible trace with
multiple events from lb yields an empty set of traces.

Joining both configurations would result in πa|πa|.c. By the correctness of
joining, we obtain a trace τ ],b that describes at least the same concrete
traces as τ̂ b and thus w(τ b) ≤ w(τ ],b) for any τ b ∈ γtraces({τ̂ b}).
Now, we can construct an abstract trace τ̂a by replacing the part

c ◦ (evsb, cb) ◦ πb0..k of τ ],b by c ◦ (evsa, ca) ◦ πa. By using additivity of w
and the theorem assumption

w
(
c ◦ (evsb, cb) ◦ πb0..k

)
≤ w (c ◦ (evsa, ca) ◦ πa) ,

we conclude for all τ b ∈ γtraces({τ̂ b})

w(τ b) ≤ w(τ ],b) ≤ w(τ̂a).

Domination and Cooperation Cooperation of abstractions requires that
each abstraction satisfies the trace-coverage condition in Equation 2.8. If
one of them only satisfies weight correctness in Equation 2.9, cooperation
might yield an unsound result. Thus, domination and cooperation cannot
be combined in general.
Assume an abstract trace τ̂ ∈ T (Ĝp) provides the maximal weight such

that Equation 2.9 holds. Furthermore, assume that other abstract traces
that provide a sufficiently high weight have been pruned from Ĝp due
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to domination. In this case, the trace-coverage condition is not fulfilled
for T (Ĝp). If a cooperating abstraction detects trace τ̂ to be infeasible, the
resulting set of traces T (Ĝp) \ {τ̂} does not fulfil Equation 2.9 any more,
thus yielding unsound results.
As an example, consider Figure 2.5 and assume that a cooperating

abstraction learns that at most one event of label lb can occur. Consequently,
the worst feasible trace has to encounter label lg at least once. However, if
lb dominates lg, the lg successor configurations have been ignored during
the graph construction which results in the graph on the right of Figure 2.5.
By excluding infeasible traces via cooperation, the trace exhibiting two
events of lb—which is essential to overall correctness—would be pruned.

2.6 Compositionality
In the previous sections, we discussed techniques that tackle the problem of
efficiently computing the maximal (minimal) weight of any trace through an
(abstract) execution graph. This section deals with compositionality, i.e. the
ability to decompose the problem into smaller sub-problems whose partial
solutions can be used to derive an overall solution. The sub-problems can
hopefully be solved more efficiently than the original problem.

Let a set C of configurations, either concrete or abstract, and the associ-
ated cycle behaviour cycle ⊆ C × 2E × C be given. T (Gp) denotes the set
of traces through any (abstract) execution graph Gp of any program. Fur-
thermore, we consider a weight w :

(
2E
)∗ →W that we want to maximise.

A system under analysis has different constituents that contribute their
share to the weight w(τ) of any trace τ ∈ T (Gp). The contribution of
constituent i is given by wci :

(
2E
)∗ →Wi , where Wi and W do not neces-

sarily coincide. The individual contributions are combined by a monotonic
composition operator

⊕
:
∏n
i=1Wi →W.

Definition 2.6.1 (Decomposition). Let a weight function w :
(
2E
)∗ →W

be given. A family of contribution functions (wci :
(
2E
)∗ →Wi)i=1..n to-

gether with a monotonic composition operator
⊕

:
∏n
i=1Wi →W forms a

decomposition of weight w if for any execution graph Gp

∀τ ∈ T (Gp).w(τ) ≤
n⊕
i=1

wci(τ). (2.25)
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If Inequality 2.25 satisfies equality, i.e. the composed contributions equal
the weight w for each trace, the decomposition is referred to as fully
compositional.

In the end, each contribution wci is approximated by an individual
analysis Analysisi such that by monotonicity of

⊕
:

max
τ∈T (Gp)

w(τ) ≤ max
τ∈T (Gp)

n⊕
i=1

wci(τ) (2.26)

≤
n⊕
i=1

max
τ∈T (Gp)

wci(τ) (2.27)

≤
n⊕
i=1

Analysisi(p). (2.28)

The first inequality 2.26 holds by definition and models the inherent pes-
simism introduced by the decomposition. The second inequality 2.27 holds
by monotonicity of

⊕
. It models the pessimism introduced by the separate

maximisation of the weight contributions: If the traces with the respective
worst wci do not coincide, no trace τ ∈ T (Gp) can maximise all weight
contributions. The third inequality 2.28 holds by monotonicity of

⊕
and

the soundness of the individual abstractions. It models the pessimism
introduced by the respective abstraction used in Analysisi.
Definition 2.6.1 introduces the decomposition of a weight w at the level

of a single execution trace. During the analysis, we are finally interested
in the maximal weight over all execution traces. Thus, it suffices if the
maximal weight is bounded by the combination of the respective maximal
weight contributions. We call this relaxed variant max-decomposition.

Definition 2.6.2 (max-Decomposition). Let w :
(
2E
)∗ →W be a weight

function. A family of contribution functions (wci :
(
2E
)∗ →Wi)i=1..n to-

gether with a monotonic composition operator
⊕

:
∏n
i=1Wi →W forms a

max-decomposition of weight w if for any execution graph Gp

max
τ∈T (Gp)

w(τ) ≤
n⊕
i=1

max
τ∈T (Gp)

wci(τ). (2.29)

Note that a decomposition at the level of single execution traces also
constitutes a max-decomposition. Throughout this thesis, we usually do
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not distinguish both variants and thus we use the term decomposition to
refer to Definition 2.6.2.

An interesting instance of compositionality is timing compositionality, i.e.
(discrete) time as weight. The first formal definition of compositionality in
the context of execution time analysis has been introduced in [Hahn et al.,
2015b]. In later sections, we provide details on the use of timing composition-
ality including example decompositions in Section 3.4 (Scheduling Interface
and Compositionality) as well as a discussion how we can achieve and prove
compositionality in Chapter 5 (Achieving Timing Compositionality).

2.7 Composability

Despite the shared etymological roots, compositionality and composability
denote two different concepts in timing analysis. In order to discriminate
both terms, we give a definition of composability in this section.

The computation of a weight w :
(
2E
)∗ →W on an execution trace does

not necessarily require all aspects captured by full configurations C along
the traces. In case the computation is or can be made independent of parts
of the configurations, we call the weight w composable w.r.t. these parts.

Formally, composability is a type of abstraction in the sense of Section 2.2
that projects only a part of the configurations.

Definition 2.7.1 (Composability). Let C = Cr×Ci be a set of configurations
and w :

(
2E
)∗ →W a weight function. We call w composable w.r.t. Ci if

the following holds: For all execution graphs Gp = (Vp⊆C, Ep, Ip, Fp) of
any program, and abstract execution graph Ĝp = (V̂p⊆Cr , Êp, Îp, F̂p) with
γconf (cr) = {(cr, ci) | ci ∈ Ci}

max
τ∈T (Gp)

w(τ) ≤ max
τ̂∈T (Ĝp)

w(τ̂). (2.30)

Stronger notions of composability exist, e.g. that require the result not
only to be sound, but to be tight:

max
τ∈T (Gp)

w(τ) = max
τ̂∈T (Ĝp)

w(τ̂). (2.31)
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An even stronger notion requires the cycle behaviour to be inherently
independent of Ci :

∃c′i ∈ Ci ∃evsi ⊆ E. cycle((cr, ci))(evsr ∪ evsi)((c′r, c′i))

⇔ ĉycle(cr)(evsr)(c′r). (2.32)

In contrast to these stronger notions, Definition 2.7.1 allows a weight w
to be composable w.r.t. Ci while the concrete system has originally not
been designed for composability, i.e. the concrete behaviour cycle actually
depends on Ci. As an example, composability can be achieved by an
abstract behaviour ĉycle that uses non-deterministic splits to conservatively
approximate the possible influence of Ci on the system’s behaviour.
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Chapter 3
Timing Analysis

In this chapter, we instantiate the formal foundations of Chapter 2 for the
timing analysis problem. We provide an example system and give details on
the respective configurations and events. Furthermore, we explain how we
perform the actual timing analysis. This includes the actual construction
of an abstract execution graph to model the behaviour of a program.

3.1 System under Analysis
A system consists of a set of software tasks that execute on a hardware plat-
form and interact with the physical environment via sensors and actuators.
In addition to the actual machine program, a task comprises parameters
that specify its (timing) requirements. In Figure 3.1, we depict a generic
modern hardware platform.

The software tasks are initially placed in the common memory. The cores
of the processor execute those tasks. A core loads the necessary code and

Core 1
I-Cache

D-Cache

. . . . . . . . . . . .

Core n
I-Cache

D-Cache

Shared Bus

Memory:
-Programs
-Data

I/O-Devices Physical
Environment

interact

Figure 3.1: Overview of the components of a generic hardware platform.
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data from the memory via a shared bus. Caches for instructions and data
are employed to bridge the performance gap between the fast cores and
the slow memory. I/O-devices allow the cores to interact with the physical
environment.
One of the tasks is the operating system. The operating system task is

the first task that is executed after power-up. It schedules the execution of
all other tasks. A periodic timer invokes the operating system task on each
core via interrupt to allow for non-cooperative scheduling decisions. For
the sake of simplicity, we treat the operating system as an ordinary task.
The space of concrete configurations of our generic example system in

Figure 3.1 can be described on a high-level as

C := (Core × Caches)n × SharedBus ×Memory × PhysicalEnvironment.

A Core features for example a set of registers with recent values used for
execution, the state of its pipeline, and the state of the timer. One register,
the program counter, points to the next machine instruction to be executed.
A Cache comprises the data buffered from memory as well as its management
structures such as the state of the replacement policy. The SharedBus
describes the state of the arbiter that arbitrates the access requests to the
memory. The Memory includes the values placed in memory as well as
the state of the controller that serves accesses. The PhysicalEnvironment
comprises the state of the physical world which is sensed and modified
through the I/O devices.
A configuration c ∈ C encompasses everything that influences the be-

haviour of the above system. The behaviour at the granularity of processor
cycles is given by a relation cycle ⊆ C × 2E × C. Example events are the
release and completion of a task, a cache hit or miss of an access, or the
blocking of an access at the shared bus. The precise definition of C, E, and
cycle depends on the actual system under analysis. Providing these defini-
tions for an entire system is out of the scope of this thesis. In Appendix A
(Computer Architecture: Concepts), we describe the behaviour of modern
hardware components, including a formal definition of the behaviour of an
in-order pipeline. More details on the precise modelling of actual complex
systems, e.g. based on the PowerPC 755, can be found in the dissertation
of Thesing [2004]. For a broader overview of hardware systems, we refer to
[Hennessy and Patterson, 2012].
During the analysis, we will focus on the behaviour of single tasks. We

call a configuration initial for task t if t has just been released for execution
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3.2 Analysis Overview

by the operating system task. We call a configuration final for task t if
its last instruction has left the core and all effects of t have manifested
themselves in memory. Based on these notions of initial and final, the
concrete execution graph Gt is determined.

3.2 Analysis Overview
In timing verification, we want to prove the timeliness of a given system.
Each task of the system has a deadline, which is dictated by the physical
environment. Timing analysis calculates—per task—an upper bound on
the so-called response times, i.e. the maximal time between the release of
the task and the completion of the task. If the computed bounds do not
exceed the respective deadlines, the timeliness of the system is guaranteed.

Formally, we define the worst-case response time of a task t as the maximal
length of any trace through the concrete execution graph Gt:

WCRT t := max
τ∈T (Gt)

wtime(τ) = max
τ∈T (Gt)

|τ |.

Multiple factors influence the response time of a task t, e.g.

• the inputs provided by previous tasks or sensors observing the physical
environment,

• the microarchitectural state including cache contents and pipeline
occupancy, and

• the interference from co-running tasks that compete for the access to
the shared resources.

Which tasks run concurrently on other cores or which tasks preempt the
task t depends on the scheduling policy used inside the operating system
task.

The construction of an execution graph that takes the scheduling policy
and the resulting interleaving of tasks into account is commonly consid-
ered computationally infeasible. The de-facto standard approach to timing
analysis is to decompose the problem in the sense of Section 2.6 (Compo-
sitionality). First, we analyse the behaviour of a single task in isolation.
Second, we check the schedulability of all tasks with the given schedul-
ing policy while taking the interference effects of co-running tasks into
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Figure 3.2: General Overview of Timing Analysis.

account. In Figure 3.2, we depict the overall approach involving low-level
and schedulability analysis.

Low-level analysis computes weight characteristics for individual tasks.
These weight characteristics, or weights for short, describe properties of
all execution behaviours of the given task. Examples include the number
of executed cycles or the number of memory accesses performed. The
low-level analysis accounts for the effect of varying inputs and different
microarchitectural states on the weights. In Section 3.3, we provide details
on the techniques used in low-level analysis to compute the weights of a
task.

The interface between low-level and schedulability analysis, i.e. the set of
weights to be computed, depends on the chosen decomposition of the system
under analysis. Some decompositions allow for a more efficient analysis
while others allow for more precise results or impose fewer restrictions on the
underlying hardware platform. In Section 3.4, we discuss different possible
decompositions.

Based on the computed weights, the schedulability analysis computes for
each task a bound on the task’s response times considering the interference
effect of the other tasks in a compositional way. The schedulability analysis
is specific to the scheduling policy employed by the operating system task.
In Section 3.5, we present the response-time analysis used for fixed-priority
scheduling policies.
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ins0

ins1

ins3 ins2

(a) Control-flow graph without context
sensitivity.

ins0

ins(0)
1

ins3 ins(0)
2

ins(≥1)
1

ins(≥1)
2

(b) Refined control-flow graph with con-
text sensitivity discriminating the first
loop iteration.

Figure 3.3: Two possible control-flow graphs for a program with a loop.

3.3 Low-Level Analysis
Low-level analysis computes weight characteristics of a given task t. The
weights characterise the execution of a single instance of t, i.e. a single
execution of the underlying program p. The main task within low-level
analysis is the construction of an abstract execution graph.

The program p is given as a control-flow graph (CFG) that describes all
paths through the program during its execution. The nodes represent single
instructions or basic blocks, and the edges model the control flow between
these nodes. The CFG of a program can either be obtained by compilation
or by reconstruction from a binary.

A CFG can be refined using context sensitivity. A context describes the
circumstances under which an instruction is executed. Using contexts, the
CFG can distinguish between different iterations of a loop or function calls
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Figure 3.4: Overview of the general steps in low-level analysis.

from different call sites. For the sake of brevity, we do not provide details
on the formalisation of contexts, but we refer the interested reader to the
formalisation of trace partitioning in [Mauborgne and Rival, 2005; Rival
and Mauborgne, 2007]. As an example, consider Figure 3.3.

The control-flow graph, with or without contexts, is already an abstract
execution graph. However, the control-flow graph contains too little in-
formation about the program execution to estimate most weights, such as
the timing. Thus, we will construct abstract execution graphs with more
information. Those can be seen as enriched version of the control-flow
graph.

The overall low-level analysis flow is depicted in Figure 3.4. First, we run
preprocessing analyses which compute information that does not depend
on the microarchitectural behaviour. These analyses include value analysis
that approximates the values of registers and memory cells, and control-flow
and loop analysis that approximate feasible paths through the control-
flow graph. The resulting abstract execution graphs are isomorphic to
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3.3 Low-Level Analysis

the control-flow graph, but contain additional information about possible
program executions.
Second, we analyse the microarchitectural behaviour of the program

using the information from the preprocessing analyses. The resulting
abstract execution graph models the detailed program execution on the given
hardware platform. This graph is now suited for the weight computations.

Finally, path analysis maximises weights on the abstract execution graph.
As the graph is usually large, we reduce it by combining edges and nodes.
The worst-case trace is found by using Integer Linear Programming (ILP).
The ILP framework is well-suited to incorporate information from previous
analyses as linear constraints.

While the preprocessing analyses traditionally fit the framework of static
program analysis via abstract interpretation, the microarchitectural analysis
is more closely related to model checking approaches. Beyer et al. [2007]
present the unified configurable program analysis that can be tuned between
precision-driven model checking techniques and efficiency-driven abstract
interpretation techniques. We present their general algorithm before we
show the respective instantiations for preprocessing and microarchitectural
analyses.

Configurable Program Analysis

The configurable program analysis by Beyer et al. [2007] computes a set of
reachable abstract configurations. We modified the original algorithm to
construct abstract execution graphs, i.e. to additionally maintain the set of
edges between the configurations. The result is shown in Algorithm 1.

The algorithm takes an abstraction as input given by a partially-ordered
set of configurations (Ĉ,v) and the respective abstract transition relation
ĉycle. Furthermore, it takes an operator merge : Ĉ × Ĉ → Ĉ that is used to
merge two abstract configurations into a single one. The decision which
configurations to merge influences the precision of the resulting graph and
the efficiency of the construction algorithm. In contrast to [Beyer et al.,
2007], we require the merge operator to either not merge merge(c1, c2) = c2
or to return an upper bound merge(c1, c2) w c1, c2. Finally, the input I ⊆ Ĉ
denotes the set of initial configurations and F ⊆ E the set of final events.
The algorithm starts from the initial configurations I to construct an

abstract execution graph up to the occurrence of final events. During the
construction, it maintains a set worklist of configurations that still need
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Algorithm 1: Construct an abstract execution graph
Input : abstract configurations (Ĉ,v) with transition relation ĉycle,

merge-operator, initial configurations I, final events F
Output : abstract execution graph (V,E, I, F )
worklist := I
V := I
E := ∅
while worklist 6= ∅ do

pop c from worklist
foreach evs, c′ with ĉycle(c)(evs)(c′) do

// Explore new, non-final successor configuration
if (c′ 6∈ V ∧ evs ∩ F = ∅) then

worklist := worklist ∪ {c′}
end
// Add successor configuration to graph
V := V ∪ {c′}
E := E ∪ {(c, evs, c′)}
// Try to merge graph nodes
foreach v ∈ V \ {c′} do

if (c′ v merge(c′, v)) then
cnew := merge(c′, v)
V := V [cnew/v][cnew/c

′]
E := E[cnew/v][cnew/c

′]
worklist := worklist[cnew/v][cnew/c

′]
break

end
end

end
end
return (V,E, I, F )
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to be explored. In each iteration of the outermost loop, the ĉycle transitions
of a configuration from the worklist are explored and added to the graph.
New successor configurations that have not yet encountered a final event
are added to the worklist. Using the merge-operator, the algorithm tries
to combine the successors with existing graph nodes. We denote by V [a/b]
that each occurrence of b in V is replaced by a.
As outlined in [Beyer et al., 2007], it is expensive to iterate over the

complete set of nodes V to find merge candidates in each step. If the
datastructure holding V is sorted, it might be possible to efficiently identify
a small subset of V as potential merge candidates. We provide more details
later in this section.

There are further extensions to Algorithm 1 to increase efficiency, which
we omit in the above presentation for the sake of brevity. First, the algo-
rithm can be enhanced to exploit cooperation as introduced in Section 2.4.
Abstract execution graphs from preceding analyses or knowledge about
properties of the concrete system can be used to detect infeasible cycle
transitions. If every partial trace ending in (evs, c′) is found to be infeasible,
the algorithm does not need to explore c′ further. As an example, microar-
chitectural analysis does not need to explore the behaviour along program
paths that cannot be taken according to the preceding control-flow analysis.
Second, the algorithm can account for information about domination as
introduced in Section 2.5. If a cycle transition has multiple successor config-
urations due to non-determinism, the configurations that are dominated by
others do not need to be explored. While the resulting graph is sound for
weight characterisations, the use of cooperation is restricted as discussed in
Section 2.5.

Preprocessing Analysis

In the first phase of low-level timing analysis, we compute information about
the program that can be obtained from the behaviour at the instruction-
set-architectural (ISA) level. This includes information about the values of
registers and memory cells and the control-flow inside the program.
As an example, consider a value abstraction given by an abstract value

domain D]
val . It compactly represents the values of registers and memory

cells at a certain point of execution. The domain D]
val usually constitutes a

complete lattice with a well-defined least upper bound operator. Examples
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for such value abstractions are intervals [Cousot and Cousot, 1976] and
octagons [Miné, 2006].

These abstractions are defined relative to the ISA-level behaviour which
itself is already an abstraction of the concrete system behaviour. The
ISA-abstraction does not exactly fit into the formal framework presented
in Chapter 2. The reason is that one computation step on the ISA-level
approximates multiple cycles on the actual hardware level. The formal
definition of this relation is not the topic of this thesis. We refer the
interested reader to [Kovalev et al., 2014] that discusses such a relation
in the scope of a hardware correctness proof. Note that the physical
environment, which influences the values of registers and memory cells via
sensor reads, is not modelled explicitly. Upon a sensor read, we can use the
top element > ∈ D]

val of the abstract-value lattice to soundly model any
possible value returned by the sensor.

The value analysis is performed along the paths through the control-flow
graph of the given program. Let L denote the program locations, i.e. the
nodes of the CFG. The abstract configurations are given by Ĉ := L ×D]

val .
The first component hereby represents the value of the program counter, i.e.
the next instruction to execute. Upon ĉycle, which denotes an ISA step,
the program counter is adjusted according to the structure of the CFG. The
abstract value state is updated according to the abstraction D]

val and the
instruction that is executed.

Value analysis is usually flow-sensitive, i.e. we distinguish value informa-
tion for different program locations. Abstract configurations with different
program locations are considered incomparable:

(pc, v) v (pc, v′)⇔ v v]val v
′,

where v]val denotes the partial order of D]
val .

Consequently, we define the merge-operator to not join the abstract value
information if the program locations differ:

merge((pc, v), (pc′, v′)) :=
{

(pc′, v′) : if pc 6= pc′

(pc, v t]val v
′) : otherwise

,

where t]val denotes the least-upper-bound operator of D]
val . If additional

context-sensitivity is used, different contexts are distinguished as well.
As initial configuration, we choose I = {(pc0,>)} where pc0 denotes

the first instruction of the program and > denotes the top element of the
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lattice D]
val . The abstract top element > hereby compactly represents all

possible concrete configurations, i.e. all possible valuations of registers and
memory cells. The final events F are the completion events of those instruc-
tions that end the program. The completion event of an instruction ins is
emitted if the cycle transition evolves from ins to the next program counter
value.

Microarchitectural Analysis

In this phase of the low-level timing analysis, we analyse the microarchitec-
tural behaviour of the given program executed on one processor core of the
system. This includes the behaviour of the processor core’s pipeline and
the caches.

An abstraction is the first input to the algorithm that constructs an ab-
stract execution graph. Let us consider an example for a microarchitectural
abstraction of system configurations:

Ĉ := Ĉore × Ĉaches × M̂emory.

The microarchitectural abstraction abstracts from any values that are
computed during program execution. Those only depend on the instruction-
set-architectural behaviour and are approximated by the preceding value
analysis. During the microarchitectural analysis, we use the result of
the value analysis to e.g. compute the addresses accessed by a memory
instruction.

The set Ĉore encompasses the abstract states of the processor core that
executes the given program. These abstract core states comprise the current
program counter and the state of the core’s pipeline, i.e. which instructions
occupy which pipeline stages. The state of the pipeline hereby corresponds
to the pipeline state of concrete system configurations. This allows a precise
modelling of the core behaviour. The program counter is updated during
a ĉycle transition according to the possible program paths through the
control-flow graph of the given program. Upon uncertainty, e.g. multiple
successor instructions due to a branch or uncertainty whether a cache hit
or miss happens, the abstract configuration is split into all possible cases.
This allows the core state to be updated analogously to the concrete cycle
transition.
Compact abstract domains Ĉaches in the form of complete lattices for

the analysis of caches are known for quite some time. An abstraction for
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caches with LRU replacement policy was presented in [Alt et al., 1996].
The cache abstraction maintains over- and under-approximations of the
cache contents in the form of may- and must-caches. The abstract cache is
updated during a ĉycle transition according to the memory blocks accessed
by the instructions inside the pipeline. The transition of the processor core
state itself relies on the cache abstraction to classify memory blocks as
either always hit, always miss, or unknown. If an accessed block is classified
as unknown, a split is performed in ĉycle to explore both possible cases:
cache hit and cache miss.

The abstract memory states M̂emory essentially comprise the state of the
memory controller. An abstract memory state is updated during a ĉycle
transition according to the memory operations within the core pipeline. If
the state of the memory controller is kept rather concrete, the latency of a
memory access is determined by this state. Another possibility is to abstract
the memory state to a single value that models the remaining latency of
the ongoing access. During an abstract cycle transition, the remaining
latency is decremented by one. Upon a new access, the remaining latency
is drawn non-deterministically among all possible latencies. To model this
non-deterministic choice, the abstract configuration is split to consider all
possible remaining latencies.
Note that our presented abstraction does not consider the state of the

other cores of the system or the shared bus. This is due to the fact
that the low-level timing analysis computes weight characteristics of a
program in isolation. We consider the effects of the other cores later during
schedulability analysis. However, it is possible to model these effects already
during the low-level analysis. As an example, Jacobs et al. [2015] propose a
low-level analysis that incorporates the effect of interference on a shared bus
with round-robin arbitration. To this end, the bus interference is modelled as
a non-deterministic latency prolongation of memory accesses. We will revisit
this possibility when we present approaches to achieve compositionality in
Chapter 5.
The microarchitectural abstraction sketched here fits the formalisation

presented in Chapter 2. The local consistency of ĉycle can be shown based
on the local consistency of the abstract cache update.

For more detailed descriptions of abstractions for realistic microarchitec-
tures, we refer the interested reader to [Langenbach et al., 2002; Thesing,
2004].
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While the abstract cache domains with partial order vc are usually
complete lattices, it is not obvious how to order pipeline or memory controller
states. As a consequence, the de-facto standard way [Langenbach et al.,
2002; Thesing, 2004] is to keep different pipeline and memory controller
states separate, i.e. to treat them as incomparable. This results in the
following overall partial order v ⊆ Ĉ × Ĉ:

(p, c1,m) v (p, c2,m)⇔ c1 vc c2.

Note that the set of abstract configurations Ĉ does not constitute a complete
lattice. As a consequence, no least-upper-bound operator exists for sets of
abstract configurations. However, this does not influence the applicability
of our Algorithm 1 (Configurable Program Analysis).

As initial abstract configurations I we need to conservatively consider any
pipeline state where the program counter corresponds to the first instruction
of the given program, any cache state, and any memory controller state.
While all possible cache states can be compactly represented by the top
element >c of the abstract cache lattice, the pipeline and memory states have
to be explicitly enumerated. To reduce the number of initial configurations,
the concrete system can be designed such that each program starts with an
empty pipeline and an idle memory controller. The final events F are the
same as in the concrete case: a final events occurs when an instruction that
ends the program execution leaves the pipeline.

The merge-operator can join abstract cache states if the remaining parts
of the abstract configurations coincide

merge((p, c,m), (p′, c′,m′)) :=
{

(p′, c′,m′) : if p 6= p′ ∨m 6= m′

(p, c tc c′,m) : otherwise
,

where tc denotes the least-upper-bound operator of the abstract cache
lattice.
As hinted in the discussion of Algorithm 1, it is expensive to search the

full set V for merge candidates in each step. There are two techniques that
can be used to reduce this overhead. First, we invoke the search for merge
candidates only at specific points, e.g. if an instruction just left the pipeline
or a memory access finished. This can reduce the number of calls to merge
significantly at the cost of a slightly larger execution graph. Second, we
keep the nodes of the graph V in a sorted datastructure. As an example,
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we can sort the nodes according to the next-to-complete instruction in the
respective abstract configuration. In Algorithm 1, it is sufficient to only
consider nodes v ∈ V with the same sorting key as c′ as merge candidates.

Abstract Execution Graph Compression

In the previous sections, we have shown how to construct an abstract
execution graph at the granularity of individual processor cycles. To obtain
the per-task weight characteristics needed for the schedulability analysis,
we are left with finding a path through this graph that maximises certain
weights.

As a first step, we transform the abstract execution graph into a form that
is more suitable for the remaining analysis steps. In the transformed graph,
nodes are sets of abstract configuration V̂p ⊆ 2Ĉ with a node c in the original
graph being replaced by the singleton set {c}. The edges Êp ⊆ V̂p × V̂p
are no longer labelled with individual events, but with per-edge weight
characteristics that count the number of occurrences of certain events. We
model these by functions w : Êp →W.
As the abstract execution graph at cycle granularity can be large, we

want to reduce its size prior to the search for the longest path. Stein [2010]
provides an overview of techniques to compress the abstract execution graph.
Some of them preserve the weight characteristics exactly, while others trade
off smaller graph size for sound but more imprecise weight characteristics.
In the following, we present two of these techniques.
The first technique, termed chain compression by Stein, replaces a se-

quence of edges by a single edge. All nodes within this sequence except the
start and end node are required to have a single predecessor and successor.
The weights along the sequence are added up according to Equation 2.3.
This compression technique preserves weight characteristics exactly, because
all edges in the sequence must be taken the same number of times. For an
example, consider Figure 3.5.

The second technique, termed lossy buddy node merging by Stein, merges
two buddy nodes, i.e. nodes with the same predecessor or successor nodes,
into a single node. Edges with the same source and destination are conse-
quently merged as well. If the weights on the edges to be merged coincide,
this technique preserves per-edge weight characteristics exactly. If the
weights on the edges to be merged do not coincide, we maintain lower
and upper bounds on the per-edge weights, i.e. the functions become
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(a) Execution graph at single-cycle granularity.

s1

s4

icmiss = 1
time = 3

(b) Compressed execution graph.

Figure 3.5: Chain compression. icmiss denotes the number of instruction
cache misses and time the number of elapsed cycles.

w : Êp → W ×W. These bounds are determined using the minimum or
maximum, respectively. Depending on whether a weight is maximised or
minimised, the upper or lower bound is used in the later path analysis.
The correctness of this compression technique follows from the fact that
every path through the original graph has a corresponding path through
the compressed graph. For an example, consider Figure 3.6. The example
demonstrates that the compression comes at the cost of imprecision of the
overall weight characteristics: the worst-case time through the depicted
graph fragment increases from seven to eight cycles. The applied buddy
compression opens up new possibilities for the chain compression.
The above compression techniques, especially the buddy compression,

can be applied with varying degrees of aggressiveness. This can be used
to trade off graph size, i.e. efficiency of the later path analysis, against
precision of the obtained weight characteristics. Note that the formulation
of the path analysis is independent of the compression techniques used.

There are two commonly used variants of compressed execution graphs: a
state-sensitive and a state-insensitive variant. The state-insensitive variant
has been used in the early work on path analysis, e.g. by Li and Malik [1995]
or Theiling [2002]. This variant originates from a control-flow-graph-centric
view on program verification. Consequently, the abstract execution graph is
compressed such that each basic block of the program’s CFG corresponds to
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(a) Graph after chain compression.
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(b) Graph after buddy compression.

Figure 3.6: Buddy compression. icmiss denotes the number of instruction
cache misses and time the number of elapsed cycles.

a single weighted edge in the compressed graph. While this variant results
in a compact graph and a fast path analysis, the precision of the weight
characteristics deteriorates due to infeasible paths.

Matthies [2006] and Stein [2010] use a state-sensitive variant which they
term “prediction-file based”. This variant explicitly keeps the abstract
configurations that correspond to basic block transitions separate. The
edges and nodes in between are compressed using the above methods.
Depending on the later path analysis, it can be useful to restrict the buddy
compression such that certain weights stay precise. We will see examples in
the next section.

Path Analysis

The path analysis takes a possibly compressed abstract execution graph
and maximises (minimises) a weight on any path through the graph. Fur-
thermore, the path analysis implements cooperation between different ab-
stractions as outlined in Section 2.4 (Cooperation). The information of
other abstractions helps to identify infeasible paths that do not need to be
considered.

An explicit consideration of all (feasible) paths through the graph will be
expensive. Instead of an actual worst-case path, we are interested in the
worst-case weight. This observation leads to the implicit path enumeration
technique introduced by Li and Malik [1995]. They compute how often each
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edge in the graph is taken in the worst case ignoring the order of edges in a
path.

Li and Malik chose to encode the implicit path enumeration as an integer
linear program (ILP) for which good solvers exist. The modularity of the
ILP encoding enables straightforward cooperation if additional information
can be described in the form of linear constraints. The ideas of Li and
Malik have been used and refined many times [Theiling, 2002; Stein, 2010]
and thus establish today’s de-facto standard approach to path analysis. In
the following, we present how to encode an implicit path enumeration for
our abstract execution graph as integer linear program.

We use integer variables xe that determine how often edge e in the graph
is taken in the worst case. The objective to maximise a weight, e.g. the
execution time, reads as

max
∑
e∈Êp

timeub(e) · xe .

Note that due to the possible graph compression, we use the per-edge upper
bound of the time weight, denoted by timeub(e). The final objective value
obtained from an ILP solver is a sound upper bound on the execution times
of any path through the graph. From a valuation of the variables xe, it is
often possible to reconstruct a worst-case path.
The above maximisation problem is subject to constraints. First, con-

straints encode the structure of the abstract execution graph. For conve-
nience, we add a special vertex v0 to the graph. We add edges from v0 to
each initial node and edges from each final node to v0.

Every path through the execution graph satisfies the conservation of flow.
Each time a node in the execution graph is entered, the node is left again:

∀v ∈ V̂p.
∑

e=(.,v)∈Êp

xe =
∑

e=(v,.)∈Êp

xe .

As we are interested in the weight characteristics of a single program
execution, only one edge to an initial node is taken:∑

e=(v0,.)∈Êp

xe = 1.

If a function is called from multiple call sites, there are edges from each
call site to the function start and back from the function end. Naturally, if

43



Chapter 3 Timing Analysis

a function is called from a call site, the function returns to that call site
again:

∀ function f, call site i.
∑
e∈Êp

calli,f (e) · xe =
∑
e∈Êp

returni,f (e) · xe .

The binary weight calli,f describes whether instruction i calls function f on
a given edge. Analogously, the binary weight returni,f describes whether
function f returns to the instruction subsequent to i on a given edge. These
weights are kept precise during the graph compression.

Second, constraints exclude infeasible paths due to information from other
abstractions or knowledge about the system. Thus the set of constraints
depends on the actual system and the other analyses being used. In the
following, we present a collection of constraints that demonstrates the
variety of application scenarios.

Li and Malik already considered loop bound information, i.e. information
about how often each loop in the given program can iterate at most. This
information is either provided by control-flow analyses [Ermedahl et al.,
2007; Cullmann and Martin, 2007] or by user annotations. Without upper
loop bounds, the objective of the ILP would become infinite for programs
containing loops. The generated loop constraints enforce that a loop can
iterate at most loopbound many times for each entrance of the loop:

∀ loop l.
∑
e∈Êp

backedgel(e) · xe ≤ loopbound ·
∑
e∈Êp

enter l(e) · xe .

The weight backedgel(e) describes how often a backedge of loop l in the
control-flow graph has been taken on execution-graph edge e. The weight
enter l(e) describes how often loop l has been entered from the outside on
execution-graph edge e. For precision reasons, these events are usually
binary and kept precise during graph compression. Note that for programs
with recursive functions, the recursion depth can be bounded analogously
to the loop constraints.
Additional control-flow properties, often called flow facts, can often be

expressed as linear constraints as well. An example is the infeasibility of
certain paths through consecutive conditionals with contradicting conditions.
Raymond [2014] has investigated the limits of expressing such control-flow
infeasible paths as linear constraints without further graph transformations.

44



3.3 Low-Level Analysis

Besides abstractions that focus on control-flow properties, there are
cooperating abstractions that concentrate on microarchitectural events. A
commonly known example is cache persistence analysis [Cullmann, 2013].
A memory block is called persistent, if it stays in the cache once it has been
loaded. Persistence information is usually available within a certain scope,
i.e. a portion of the program execution such as the iterations of a loop. A
memory block b which is persistent in the instruction cache within scope
S ⊆ Êp can thus cause at most one miss for each entrance of S:∑

e∈S
icmisslb

b (e) · xe ≤
∑
e∈Êp

enterub
S (e) · xe .

The weight icmisslb
b (e) is a lower bound on the number of instruction cache

misses when accessing memory block b on edge e. The weight enterub
S (e)

is an upper bound on the number of scope entrances on edge e. If the
above constraint is violated for an abstract trace, it is guaranteed that every
represented concrete trace exhibits at least two misses for a scope entrance
which is infeasible. For a formal argument when to use lower and upper
bounds on per-edge weights, we refer the interested reader to [Jacobs, 2018].

For a system with write-back data caches, it is often hard to locally decide
whether a cache miss causes a write-back or not. However, an analysis can
compute an overall upper bound on the number of possible write-backs
by counting the number of dirtifying stores. Blaß et al. [2017] call a store
dirtifying if it might turn a previously clean cache line dirty, thus causing a
write back in the future. This information can be encoded via the following
linear constraint:∑

e∈Êp

writeback lb(e) · xe ≤
∑
e∈Êp

dfstoreub(e) · xe .

The weight writeback lb(e) is a lower bound on the number of write backs
that happen on edge e. The weight dfstoreub(e) is an upper bound on the
number of dirtifying stores on edge e.
In a system with Dynamic Random-Access Memory (DRAM), periodic

refreshes are necessary to keep the memory content stable. It is hard
to determine the individual accesses that are delayed by those refreshes.
However, using system knowledge such as the minimum time between the
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arrival of two refreshes, a global upper bound on the number of refreshes
started during program execution can be obtained:

(maxRefreshes − 1) · refreshInterArrivalTime + 1 ≤
∑
e∈Êp

timeub(e) · xe .

This upper bound is then used to restrict the frequency of edges that
correspond to refreshes:∑

e∈Êp

refreshlb(e) · xe ≤ maxRefreshes.

The weight refreshlb(e) is a lower bound on the number of refreshes that
might happen on edge e.

The presented microarchitectural abstraction has been designed for pro-
grams run in isolation, i.e. without interference of other tasks on the shared
resources. Instead of accounting for the interference effects during schedula-
bility analysis, it is also possible to account for the effects of interference
during low-level analysis at higher analysis cost. Jacobs et al. [2015] con-
sider the timing effects of shared-bus blocking within the low-level analysis
by modelling interference as non-deterministic delays. Additionally, the
maximal possible interference I of the co-running cores on the execution of
the program p has been determined. Any abstract trace that encounters
more interference than I cycles is thus infeasible. The resulting constraint
reads as ∑

e∈Êp

blocked lb(e) · xe ≤ I.

The weight blocked lb(e) is a lower bound on the number of blocked cycles
that happen on edge e.

This section ends the discussion of how state-of-the-art low-level analysis
is performed. It includes the derivation of instruction-set-level program
properties and the microarchitectural analysis that constructs an abstract
execution graph. The path analysis computes weight characteristics from
the compressed execution graph using additional information to exclude in-
feasible paths. These weight characteristics serve as inputs to the subsequent
schedulability analysis.
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3.4 Scheduling Interface and Compositionality
In the early 70s, a simple interface between low-level analysis and high-
level schedulability analysis emerged [Liu and Layland, 1973; Muntz and
Coffman Jr., 1970]. A low-level analysis hereby computes per-task weight
characteristics that capture the execution time of a task on the underlying
processor in isolation. This characteristic of task ti is denoted by wi [Muntz
and Coffman Jr., 1970] or, more commonly in use, Ci [Liu and Layland,
1973]. Based on these characteristics, either a schedule is calculated or the
existence of a schedule is checked.
The system under analysis operates in a timely manner if the worst-

case response time of every task as defined in Section 3.2 does not exceed
its deadline. To prove the timeliness of the system, it is sufficient to
show that an upper bound on the response times of each task is within
the respective deadline. Upper bounds on the response times of tasks
are obtained by additive operations among the per-task weights. As an
example, the response time of a task t2 that is preempted twice by a task t1
is bounded by

WCRT2 ≤ C2 + 2 · C1.

Thus, the associated schedulability analysis requires timing compositional-
ity to be sound. To satisfy the decomposition into per-task execution times,
all schedulability analyses that build upon this interface make simplifying
assumptions. Muntz and Coffman Jr. [1970] argue that the preemption
and task-switching costs are negligible in their setting and consequently
assume them to be zero. Liu and Layland [1973] assume that the weights Ci
take the task-switching and preemption costs into account—offloading the
responsibility on to the low-level analysis.

Preemptions In modern embedded systems with complex microprocessors,
the above assumptions become problematic. Stärner and Asplund [2004]
measure the effect of cache-related preemption delay, i.e. the cost to reload
cache lines evicted due to preemption, on the execution time. They conclude
that the preemption cost can be significant and needs to be considered in
a timing analysis. More importantly, the cache-related preemption delay
depends on the actual task schedule, i.e. which tasks are preempting and
how often. Thus, offloading the computation of preemption cost on to the
low-level analysis is not an option without giving up the useful separation
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of concerns. Even if a schedule-independent preemption cost bound can
be computed, it will lead to overly pessimistic results. The above interface
should be refined in order to keep the separation of concerns between per-
task low-level analysis and schedulability analysis, and to enable a precise
overall timing analysis.
Busquets-Mataix et al. [1996] propose to account for the cache-related

preemption delay of a single preemption by adding the cost to refill either
the entire cache or only the cache lines evicted by the preempting task.
Later, Tomiyama and Dutt [2000] show how to actually compute the worst-
case number of cache lines accessed by a task. The underlying scheduling
interface is the following:

• Ci is the execution time of task ti in isolation assuming the absence
of preemptions, and

• ECBi is the number of evicting cache blocks, i.e. the number of cache
lines accessed by task ti.

If a task tj preempts a task ti, ECBj is used to bound the cache-related
preemption delay. As an example, consider task t2 preempted by t1 on a
system with direct-mapped cache:

WCRT2 ≤ C2 + C1 + ECB1 · brt,

where the block reload time (brt) denotes the time needed to reload a cache
line from memory.

Lee et al. [1996] extend the scheduling interface by the number of useful
cache blocks UCBi of task ti. The term “useful cache block” has first been
used by Lim et al. [1994]: A cache line is considered useful at a program
point of task ti if it might be cached at this point and might be reused later.
The worst-case number of useful cache blocks is obtained by taking the
maximum over all program points. If a task ti is preempted by another task,
only useful blocks can cause preemption-induced reloads. Thus, UCBi is
used to bound the cache-related preemption delay. As an example, consider
task t2 preempted by t1 on a system with direct-mapped cache:

WCRT2 ≤ C2 + C1 + UCB2 · brt.

Building up on this new interface, researchers have proposed further
refinements, e.g. definitely-cached useful cache blocks, and more powerful
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schedulability analyses. An overview of the work in this area can be found
in [Altmeyer, 2013].

The cache-related preemption delay is not the only cost associated with
preemptions. A preemption is realised by the scheduler of the operating
system that is invoked via periodic timer interrupts. Thus, the preemption
delay also encompasses the pipeline-related interrupt cost as well as the
execution time of the interrupt service routine (ISR) which in turn invokes
the scheduler. The pipeline-related interrupt cost can be hard or impossible
to determine, especially when the pipeline features domino effects as shown
in [Lundqvist and Stenström, 1999]. In Section 5.4 (Compositionality by
Sound Penalty), we bound this cost for our strictly in-order pipeline which
we propose in Section 4.5. The ISR can be modelled as an individual task
with its own weights such as its execution time CISR. The ISR has the
highest priority among all tasks and is invoked periodically with the period
given by the external timer component. A sound high-level schedulability
analysis has to account for the effects of the ISR, including the cache-related
preemption delay and the interrupt-related pipeline cost. For more details
on how to model the operating system in schedulability analysis, we refer
to the dissertation of Schneider [2003].
The extension of the interface between low-level and high-level analysis

comes at a cost which is neglected in the literature. For an overall soundness
guarantee, the authors of schedulability analyses need to formally prove
that the proposed interface, i.e. the set of weight characteristics, together
with a combination operator actually forms a decomposition of the response
time in the sense of Section 2.6 (Compositionality). This involves the
choice of the penalty brt. Choosing the memory latency as the obvious
penalty might not be sufficient due to anomalous timing effects inside the
system. In general, it is an open question how to compute this penalty
or how to prove that a given penalty is sufficient. The, often “hidden”,
compositionality assumption is an actual show-stopper for the applicability
of these schedulability analyses to modern systems. In Chapter 5 (Achieving
Timing Compositionality), we approach this problem and propose solutions.

Multi-Core Processors With the advent of multi-core processors, the
response time of a task is additionally influenced by concurrent tasks on
other cores due to the competition for shared resources such as buses and
memory. The same questions as in the case of the cache-related preemption
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delay arise. The interference that a task experiences depends on the tasks
concurrently executed, i.e. the actual task schedule. Incorporating the
maximal possible interference effects into the weight Ci during the low-level
analysis is likely to lead to overly pessimistic results [Abel et al., 2013].
Recently, Altmeyer et al. [2015] have presented an interface extension

to additionally account for shared-bus interference within schedulability
analysis. The weight Ci captures the execution time of task ti in isolation
assuming the absence of preemptions and shared resource interference.
Besides the weights ECBi and UCBi to characterise the cache-related
preemption delay, they introduce the memory demand MDi, i.e. the maximal
number of accesses of task ti to the shared bus. Based on these weight
characteristics and the memory latency, they compute the effect of shared-
bus interference for different arbitration policies. The calculated effect is
added to the execution times in a similar fashion as above to obtain the
worst-case response time.

The proof obligations that arise w.r.t. compositionality are similar to
the obligations associated with the cache-related preemption delay. Thus,
without modifications, the approach in [Altmeyer et al., 2015] is not sound
to use for most modern systems. The techniques we present in Chapter 5
(Achieving Timing Compositionality), however, enable its application for
any multi-core system with shared resource interference.

3.5 Schedulability Analysis
In the previous sections, we have presented a generic low-level analysis
to derive weight characteristics of individual program runs in isolation.
Furthermore, we have shown possible interfaces between low-level and
schedulability analysis, i.e. the set of weight characteristics to be passed.
Finally, we want to shed some light on the schedulability analysis itself.
Schedulability analysis determines whether a set of tasks with weight

characteristics according to the above interface is schedulable with a given
scheduling policy. The task set is schedulable if all deadlines of all tasks are
met by the schedule obeying the given policy.

A task is a program with additional scheduling parameters. The schedul-
ing parameters describe how dynamic instances of the task, called jobs, are
released and which timing requirements must be met. We distinguish three
categories of tasks. Periodic tasks release new jobs separated by a constant
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time interval, the period T . A periodic task specifies a relative deadline D,
i.e. the deadline of a job is given relative to its release. The deadlines are
usually implicitly given or constrained by the period, i.e. either D = T or
D ≤ T . Aperiodic tasks release new jobs at irregular time intervals. A
special type of aperiodic tasks are sporadic tasks. A sporadic task is char-
acterised by a relative deadline and a minimum inter-arrival time between
consecutive jobs. Scheduling parameters such as periods, inter-arrival times,
and deadlines are dictated by the physical environment and provided by the
system engineer. As an example, the period of a task could be determined
by the sampling frequency of a sensor which must be twice the highest input
frequency to prevent aliasing. Timing requirements, i.e. the periods and
deadlines of tasks, might also originate from the discretisation of continuous
closed-loop PID controllers as described by Åström and Wittenmark [1996].
To summarise, a task description is given by the weight characteristics of
the underlying program and the set of scheduling parameters.
The scheduling policy decides which job to execute among all currently

available jobs. We distinguish preemptive scheduling, where a job’s execution
can get interrupted by another job, and non-preemptive scheduling, where a
job’s execution is atomic. The scheduler that implements a policy is invoked
either directly by a job or at regular intervals by hardware timer interrupts.
The time between two interrupts, called a time unit, is usually in the range
of micro- to milliseconds.

In hard real-time systems, priority-driven schedulers as presented by Liu
and Layland [1973] are common. Liu and Layland distinguish policies that
dynamically assign priorities to jobs (e.g. earliest deadline first scheduling)
from policies that use statically fixed task-level priorities (e.g. rate monotonic
scheduling).
Scheduling a set of tasks on a multi-core or multiprocessor offers an

additional degree of freedom: migration. The possibilities range from global
scheduling, where jobs can migrate freely among the available cores, to
partitioned scheduling, where all jobs of a task are mapped to a fixed core. A
survey of multiprocessor scheduling including a recap of scheduling notation
can be found in [Davis and Burns, 2011].

Given a set of tasks and a scheduling policy, schedulability analysis checks
whether all jobs of all tasks will meet their deadlines without constructing
the actual schedule. There are sufficient tests based on the notion of
processor utilisation U =

∑n
i=1

Ci

Ti
, e.g. a set of tasks is guaranteed to

be schedulable by fixed-priority scheduling on a uniprocessor if U ≤ ln 2.
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A more precise schedulability analysis is the response-time analysis that
computes worst-case bounds on the response times of each task.

Example: Response-Time Analysis

For the sake of brevity, we limit ourselves in the following to partitioned,
fixed-priority, preemptive scheduling of a set of periodic tasks with implicit
deadlines. The tasks execute on a multi-core system as depicted in Sec-
tion 3.1 with direct-mapped caches. We present a response-time analysis
similar to the one proposed by Altmeyer et al. [2015].
We are given a set of periodic tasks ti with respective period Ti. We

assume the tasks to have globally unique fixed priorities. As we consider
a partitioned setting, function c maps each task to the core it is executed
on. We use the functions lp(i), hp(i), hep(i) to denote the set of tasks on
core c(i) with lower, higher, or higher or equal priority than task ti.

Similar to the proposed interfaces in Section 3.4, a task ti has the following
weight characteristics:

• Ci, the computation time of task ti when executed in isolation,

• MDi, the memory demand of task ti, i.e. the number of memory
accesses when executed in isolation,

• ECBdata/ins
i , the set of all cache sets with evicting cache blocks, and

• UCBdata/ins
i , the set of all cache sets with useful cache blocks.

Note that the characterisations of the evicting and useful cache blocks used
here are more informative than their overall number as used in Section 3.4.
The response-time analysis calculates an upper bound on the response

times of each task. The timeliness of the overall system is guaranteed if
the upper bound—and thus the worst-case response time—of each task is
within the respective deadline.

Response Time The upper bound Ri on the response times of task ti is
derived from the computation time in isolation and the interference effects
on all shared resources:

Ri = Ci + Corei(Ri) + Cachei(Ri) ·ml + Busi(Ri) ·ml + Drami(Ri) · rl,
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where ml (rl) denotes the access (refresh) latency of the main memory. The
interference on the processor cores and the local caches is due to preemption,
while the interference on the shared bus is caused by tasks running on other
cores.

The amount of interference depends on the time available to generate the
interference, i.e. it depends on the response time itself. Thus, the response
time equation is recursive and the calculation of its least solution requires
a fixed-point iteration.
Note the inherent compositionality assumption, that the individual in-

terference contributions can be added up to a sound response time. The
calculation of the individual contributions based on the provided per-task
weight characteristics is discussed in the following.

Interference on the Core The response time of a task ti is prolonged by
the computation of higher-priority tasks that preempt ti. This has been
addressed in the early work by Liu and Layland [1973]. They showed that
the critical instant for ti which leads to the longest response time occurs
when all tasks with higher priority are released simultaneously with ti. As
a consequence, the interference on the processor core can be estimated by

Corei(t) =
∑

j∈hp(i)

⌈
t

Tj

⌉
· Cj .

The fraction d tTj
e describes how often a task tj of higher priority can

preempt ti during time interval t.

Interference on the Local Caches As a first step, we calculate the cache-
related preemption delay γi,j of a task tj preempting ti once. An approach
to determine γi,j from the UCB and ECB characteristics is the ECB-Union
approach proposed in [Altmeyer et al., 2011]. Task tk denotes the task that
is directly preempted by tj . Due to nested preemptions, evicting cache
blocks of tj and all tasks of higher priority can evict useful cache blocks
of tk. We obtain the cache-related preemption delay by considering all
possible tk:

γi,j = max
k∈hep(i)∩lp(j)

∣∣∣UCBk ∩
⋃

h∈hep(j)

ECBh

∣∣∣.
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The delay γi,j is calculated for the instruction and the data cache, respec-
tively.

Similar to the interference on the core, we finally obtain the interference
on the local caches due to preemptions by

Cachei(t) =
∑

j∈hp(i)

⌈
t

Tj

⌉
·
(
γdata
i,j + γins

i,j

)
.

Interference on the Shared Bus First, we estimate the maximal number
of bus accesses started by core c(i) during the execution of task ti. Task ti
can be preempted by tasks tj of higher priority. Each such task tj accesses
the memory MDj times and causes additional accesses due to the cache-
related preemption delay γi,j . The critical instant occurs when the tasks of
higher priority are released simultaneously:

Si(t) =
∑

j∈hep(i)

⌈
t

Tj

⌉
·
(
MDj + γins

i,j + γdata
i,j

)
.

Second, we estimate the maximal number of bus accesses started on
concurrent core c(k) by tasks of higher or equal priority than tk during
any time interval t. The critical instant does not occur when the tasks
on core c(k) are released simultaneously to ti. Rather, the critical instant
occurs when all tasks with higher or equal priority than tk start with their
maximal number of accesses at the end of their respective executions. In
the worst case, we thus need to consider the number of bus accesses of a
task tj for d tTj

e+ 1 times:

Ak(t) =
∑

j∈hep(k)

(⌈
t

Tj

⌉
+ 1
)
·
(
MDj + γins

k,j + γdata
k,j

)
.

A more precise, but also more complicated formulation can be found in [Alt-
meyer et al., 2015].

For a shared bus with round-robin arbitration, we can derive the amount
of interference as described in [Altmeyer et al., 2015]:

Busi(t) = 1 +
∑

ly s.t. y 6=c(i)

min{Aly (t), Si(t)},
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where ly denotes the index of the lowest-priority task on core y. Each
access on core c(i) can be blocked by one access of each concurrent core y.
As round-robin does not care about priorities, even a low-priority task
on core y can cause an access of ti to be blocked. In addition, ti can be
delayed initially by a single ongoing (non-preemptive) memory access of a
lower-priority task on core c(i).

Interference on the Memory For certain types of main memory, such as
dynamic random-access memory, there is additional interference that affects
the response time of a task. The interference on the dynamic random-access
memory is caused by the memory controller issuing refreshes to each row at
least once per time interval Trefr to keep the memory content. The amount
of interference depends on the policy of the controller to schedule refreshes.
One possible policy is to evenly distribute the refreshes to each row within
Trefr , i.e. a refresh occurs every Trefr

#rows time units. A bound on the number
of refreshes that can happen during time t is determined by

Drami(t) =
⌈
t ·#rows
Trefr

⌉
.

Note that the number of refreshes is calculated from the characteristics
of the used memory controller and thus does not require an additional
preceding low-level analysis. A refined formula, also extended to other
refresh policies, can be found in [Altmeyer et al., 2015].

3.6 Implementation/Tool Support
We implemented a low-level analysis tool following the scheme sketched in
Figure 3.4 in Section 3.3 (Low-Level Analysis). In this section, we provide
details on the tool. Our tool, called llvmta, is based on the LLVM compiler
infrastructure [Lattner and Adve, 2004]. llvmta is hooked into the common
LLVM compilation flow as depicted in Figure 3.7.

Overall Tool Architecture Given a C program, the compiler frontend
clang1 translates the program into the LLVM intermediate representa-
tion. After an optional optimisation phase (opt), the program is further

1https://clang.llvm.org
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Figure 3.7: Overview of the common LLVM compilation flow (clang, opt,
llc) including the integration of our low-level analysis tool llvmta.
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translated to the assembler code (llc) which results in the final binary
after the linking step. Our analyses are implemented on the final assembler
representation in the LLVM backend which is the representation closest to
the machine level. The timing bound determined by llvmta is valid for
the resulting binary, i.e. it will change accordingly if the binary changes,
e.g. due to different compiler optimisations.

The integration of low-level timing analysis and compilation offers several
advantages. First, no control-flow reconstruction of the binary is required
because control-flow elements such as functions, basic blocks, and loops are
provided by the prior compilation step. Second, the low-level analysis in
the backend can make use of (high-level) information obtained at earlier
stages and maintained during compilation. On the downside, the analysis
requires the high-level source program, for example given in C, and provides
timing estimates only for the binary produced by the specific compiler.
Furthermore, the addresses of the instructions and the static data are
only known after the linking step and need to be fed back to the low-level
analysis.

LLVMTA To obtain precise results, we have implemented context-sensitive
analyses, i.e. the analyses distinguish different contexts that influence the
execution behaviour. As an example, the execution behaviour of the first
iteration of a loop usually differs from the behaviour of later iterations
because the caches are being filled during the first iteration. To establish
a context-sensitive analysis framework, we implemented trace partition-
ing [Mauborgne and Rival, 2005] on the final assembler representation in
the LLVM backend. Context sensitivity is achieved by partitioning the set
of execution traces according to some predicate on traces. We implemented
predicates to discriminate different iterations of a loop, as well as different
call sites of a function. The degree of context sensitivity, i.e. the number
and size of these predicates, is an analysis parameter.

Based on our context-sensitive analysis framework, we have implemented
a value analysis that tracks constant values of registers and memory cells.
This value information is used to derive address information for data accesses.
Despite the simplicity of the analysis domain, it is sufficient to precisely
analyse stack-relative accesses. For accesses to globally defined objects such
as global arrays, our tool uses information provided by the compiler to
determine the range of possible addresses.
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In order to derive loop bounds, we use the LLVM-internal scalar evolution
analysis that provides (an upper bound on) the iteration count of loops in
their intermediate representation. Our tool additionally matches loops in the
assembler representation to loops in intermediate representation in order to
automatically obtain upper loop bounds on the assembler level. Manual loop
annotations can be provided by the user for loops with complex iteration
patterns. The scalar evolution analysis, originally based on [Bachmann
et al., 1994] and extended in [Calman and Zhu, 2010], computes a closed
form expression to describe how the values of variables evolve within a single
loop iteration. These expressions are used to derive upper loop bounds,
either in the form of numeric values or symbolic expressions w.r.t. the
function parameters.
Our tool supports the analysis of different generic hardware platforms

rather than proprietary industrial platforms. This is sufficient to evaluate
the general concepts used in timing analysis and takes significantly less
effort to implement. We model textbook pipelines (cf. [Hennessy and
Patterson, 2012]) with in-order, strictly in-order, and out-of-order execution.
The microarchitectural analysis supports fast local scratchpad memory,
as well as caches with least-recently-used replacement policy and both
write-through and write-back policy. We have implemented must, may,
and persistence cache analysis. As background memory, the tool supports
fixed-latency memory as well as dynamic random-access memory with a
closed-page controller and distributed refreshes.

llvmta implements the fast-forwarding technique presented in [Jacobs
et al., 2015] to increase the performance of the microarchitectural analysis.
This optimisation exploits the fact that pipelines tend to converge while
waiting for memory, i.e. the pipeline cannot advance further until the cur-
rent memory request is finished. Once converged, the (abstract) state of
the pipeline stays the same as long as the memory is busy. The microar-
chitectural analysis detects whether the pipeline state has converged and
fast-forwards the subsequent execution to the point at which the memory
is no longer busy. For more details, we refer to the explanations in [Jacobs
et al., 2015].

The abstract execution graph produced by the microarchitectural analysis
is compressed afterwards. llvmta supports two different levels of compres-
sion. Either all start and end nodes within a basic block are kept separate
to allow for a precise path analysis, or the graph is compressed into a single
edge per basic block to allow for an efficient path analysis. Our tool sup-

58



3.6 Implementation/Tool Support

ports multiple solvers to solve the ILP formulation resulting from the path
analysis, including the commercial tools IBM ILOG CPLEX Optimization
Studio2 and Gurobi Optimizer3 that exhibit the best performance [Meindl
and Templ, 2012].

Last but not least, llvmta supports compositional analysis approaches,
i.e. several weights can be chosen for maximisation such as useful cache
blocks or accesses to the shared bus. In particular, our tool can sample
interference response curves and calculate compositional base bounds as
introduced in Chapter 5 (Achieving Timing Compositionality).

2https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
3https://www.gurobi.com
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Chapter 4
Progress-based Abstraction

Abstractions for caches and values processed in the processor pipeline
are well-known in the literature [Alt et al., 1996; Cousot and Cousot, 1977].
However, no abstractions for the control of processor pipelines have been
found yet.
Modern processors employ complex pipelines with a large space of con-

crete pipeline (control) states. The missing abstraction is an obstacle to an
efficient microarchitectural analysis because the analysis needs to explicitly
explore the reachable concrete pipeline states. Furthermore, the analysis
of the pipeline control cannot cope implicitly with uncertain information
provided by other analyses such as the cache analysis. As described in
Section 3.3 (Microarchitectural Analysis), the pipeline control state needs
to be split to explicitly explore the concrete possibilities permitted by the
uncertain information. Due to the complexity of the pipeline behaviour,
the pipeline analysis is prone to timing anomalies (Section 2.5). As a conse-
quence, a sound analysis is required to explore all possibilities permitted
by uncertain information. The huge size of the explored state space makes
the pipeline analysis the most expensive part of the low-level analysis.

In 2006, Li et al. have introduced a new type of microarchitectural analysis
for out-of-order pipelines. For each program instruction, they compute the
time span in which the instruction might occupy a certain pipeline stage.
Their presented algorithm does not rely on explicitly enumerating reachable
pipeline states. However, there is no formal reasoning about the correctness
of this approach.
In [Hahn et al., 2015a], we have proposed an approach to abstract the

pipeline control with a similar basic idea as [Li et al., 2006]. It is based
on the notion of pipeline progress describing how far individual instruc-
tions have advanced in the pipeline towards their completion. Intuitively,
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pipeline states should be ordered according to the progress of the program
instructions. A pipeline state p with less progress than a state p′ should
subsume p′ as it should not finish earlier. Two arbitrary pipeline states can
be joined to a single state by taking the minimal progress of the two.
In the following, we provide the formal background to reason about

pipeline abstractions based on the notion of progress. For a given complex
processor pipeline, the design of a correct and useful abstract transformer
turns out to be very difficult in general. However, we show that the
concrete transformer constitutes an abstract transformer in case it behaves
monotonically w.r.t. the progress order.
Unfortunately, even a conventional in-order pipeline does not behave

monotonically and thus prevents this straightforward use of the progress-
based abstraction. In Section 4.5, we present a modified in-order pipeline
design which we term strictly in-order and which has first been sketched
in [Hahn et al., 2015a]. We prove the monotonicity of its cycle behaviour
as well as interesting advanced properties such as timing compositionality
(in Chapter 5) and the absence of timing anomalies (in Section 4.7). These
properties enable an efficient timing verification and thus make the strictly
in-order pipeline well-suited for the use in hard real-time systems. We
conclude with an outlook on how to increase the processor performance
while preserving monotonicity.

4.1 Formalisation of Progress-based Abstraction

The state-of-the-art microarchitectural abstraction described in Section 3.3
keeps the processor control state concrete. In particular, an abstract con-
figuration is never uncertain about the progress of program instructions
within the pipeline. This fact manifests itself in the definition of local con-
sistency and the concretisation function of traces as presented in Section 2.2
(Abstraction): The occurrence of events in the abstract and concrete cycle
behaviour is synchronised. An abstract cycle transition emits an event if
and only if the represented concrete cycle transition emits this event.
In contrast, a progress-based abstract configuration describes multiple

concrete configurations with different levels of progress of the instructions
within the pipeline. As a consequence, we need to generalise the notion of
local consistency as well as the concretisation function of traces. Before we
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provide the formal background of the progress-based pipeline abstraction,
we shed some light on the structure of the concrete pipeline domain.

Concrete Pipeline Domain
A machine program comprises a set of static assembler instructions. A
concrete execution of a program on a specific input generates a sequence
of dynamic instances of the program’s instructions that is executed within
the processor pipeline. As an example, the execution of a static instruction
within a loop will generate a new dynamic instance of this instruction in
each loop iteration. In the following, we consider a single fixed sequence
of dynamic instruction instances ins0ins1ins2 . . . that arises during the
execution of a specific program for a specific input. We will outline in
Section 4.2 how to deal with multiple instruction sequences, e.g. due to
unknown inputs, during analysis. We denote the set of dynamic instruction
instances within the sequence by Id = {ins0, ins1, . . .}. Dynamic instruction
instances are totally ordered by their position within the sequence, i.e.
insn < insm if and only if n < m.

The state of the pipeline control is determined by the progress that the
instruction instances of Id have made within the pipeline. An instruction
instance has either been finished already, resides currently in a certain
pipeline stage, or has not entered the pipeline yet. The definition of the
possible levels of progress, denoted by P , depends on the actual pipeline
construction. In Section 4.3 we define the notion of progress for the five-stage
in-order pipeline described in Appendix A.1.

To summarise, as the set of concrete configurations we choose

C := Id → P,

where P denotes the partially-ordered set of possible progress of an instruc-
tion within the pipeline. Note that not every instruction-progress mapping
constitutes a concrete pipeline state, e.g. if two different instructions are
mapped to the same progress or if a fetch and data bus access are served at
the same time. For the sake of simplicity, we nevertheless use the superset
Id → P in the following.
To focus on the essence of progress-based abstraction, we have dropped

all non-pipeline parts from the configuration space. The pipeline cycle
behaviour cycle ⊆ C × 2E × C, however, still depends on the state of the
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non-pipeline parts. We model the effect of the non-pipeline parts as external
functions that can be queried within cycle, e.g. to determine whether a
memory access hits the cache. As an example, consider the cycle behaviour
of a five-stage in-order pipeline provided in Appendix A.1. In a more
complicated system, the behaviour of the non-pipeline parts might itself
depend on the pipeline behaviour, e.g. the pipeline might reorder memory
accesses which influences the cache behaviour. The analysis of the non-
pipeline parts that provides the valuation of the external functions has to
conservatively take the possible pipeline behaviour into account. The cache
analysis, for example, should consider all possible access orderings.

In the concrete domain, cycle is a deterministic function as the external
functions provide definite answers. If abstraction is employed for the non-
pipelined part, e.g. a cache abstraction, the external functions might provide
uncertain answers. The cycle behaviour becomes non-deterministic because
it has to account for all successor configurations permitted by the uncertain
external information.

During a cycle transition, a set of events evs ⊆ E is emitted. An event is
a descriptor for the occurrence of an action in the system, e.g. a cache miss
or a newly finished instruction. An action can only happen when a program
instruction progresses in the pipeline. Thus, we associate each event with
the respective causal instruction instance ins ∈ Id and a cycle transition
from progress p to progress p′. Consequently, each event can happen at
most once during a single program execution. An example of an event is

a cache miss caused by the second instance of the instruction at
address 0x480 when entering the memory stage of the pipeline.

Progress Abstraction
We assume that the progress of individual instructions in the pipeline is
ordered by vP ⊆ P × P such that p vP p′ if p represents at least the
progress p′, e.g. a later or equal pipeline stage. The definition of the
progress order depends on the actual pipeline construction. In Section 4.3,
we provide an order on the progress of instructions within the five-stage
in-order pipeline described in Appendix A.1.

This ordering can be extended to a partial order v ⊆ C × C relating the
progress of all instructions in the instruction sequence:

c v c′ ⇔ ∀ins ∈ Id. c(ins) vP c′(ins).
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We say that configuration c has more or equal progress than configuration c′
if each instruction has progressed in c at least as much as in c′.
The core of the abstraction is that an abstract configuration ĉ captures

all concrete configurations that have made at least as much progress as ĉ.
We observe that it is possible to use elements from the concrete domain C
as abstract configurations. This yields a non-relational abstraction since
individual instructions and their progress are considered independently of
each other. More powerful, relational abstractions are conceivable as we
briefly sketch in Section 4.10. A detailed discussion of relational abstractions
exceeds the scope of this thesis. Consequently, we choose the set of abstract
configurations Ĉ as

Ĉ := C = Id → P

with the above partial order v based on the notion of progress. Note,
however, that not every abstract pipeline state is necessarily a valid concrete
pipeline state. As an example, a state with two concurrently ongoing bus
accesses can arise in the abstract but not the concrete domain.

The concretisation function γconf : Ĉ → 2C for abstract configurations is
given by

γconf (ĉ) := {c | c v ĉ}.

An abstract configuration thus describes all concrete configurations with
more or equal progress. The consistency of the partial order and the
concretisation function (Equation 2.10) follows by definition and transitivity
of the partial order.
The next step is the definition of an abstract cycle behaviour ĉycle for

the progress domain and the formulation of local consistency. Unlike the
cycle behaviour of the previous non-progress-based abstractions, the cycle
behaviour of a progress-based abstraction applied to ĉ cannot be expected
to produce the same events as the cycle transition from each concrete
configuration c ∈ γconf (ĉ). The reason is that c can have more progress
than ĉ. Therefore, the concrete cycle transition exhibits events that are only
produced by future abstract cycle transitions that are transitively reachable
from ĉ. This asynchronicity of event occurrences requires a generalised
version of the local consistency condition.
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The abstract cycle behaviour ĉycle ⊆ Ĉ × 2E × Ĉ is locally consistent w.r.t.
the concrete cycle behaviour cycle ⊆ C × 2E × C if

∀i ∈ Ip ∀τ ∈ P(i)∀c′ ∈ C ∀evs ⊆ E ∀ĉ ∈ Ĉ.
cycle(τ|τ |.c)(evs)(c′) ∧ τ|τ |.c ∈ γconf (ĉ)

⇒ ∃ĉ′ ∈ Ĉ ∃êvs ⊆ E. ĉycle(ĉ)(êvs)(ĉ′) ∧ c′ ∈ γconf (ĉ′)∧⋃
ins∈Id

events(τ ◦ (evs, c′), ins, ĉ(ins), ĉ′(ins)) = êvs. (4.1)

The function events(τ, ins, p, p′) returns the events that occur on trace τ
when instruction ins progresses from p to p′. P(c) represents the set of
partial traces that start in configuration c, i.e.:

P(c) := {τ ∈ C × (2E × C)∗ | τ0.c = c∧
∀ i ∈ [1, |τ |]. cycle(τi−1.c)(τi.evs)(τi.c)}.

A trivial choice for ĉycle is the identity relation, i.e. each configuration c
is mapped to c again with no events happening. Clearly, this definition
fulfils the local consistency criterion. However, this abstract cycle relation
is useless: an initial configuration ci is stuck without progress in the cyclic
transition ĉycle(ci)(∅)(ci) and never reaches final events. Consequently,
there are no traces through the abstract execution graph from initial to
final configurations. Besides local consistency, we thus require ĉycle to have
some progress during each cycle transition:

∀ĉ, ĉ′ ∈ Ĉ ∀evs ⊆ E. ĉycle(ĉ)(evs)(ĉ′)⇒ ĉ′ @ ĉ, (4.2)

where ĉ′ @ ĉ is defined as ĉ′ v ĉ ∧ ĉ 6v ĉ′.
As the domains of abstract and concrete configurations coincide, an

obvious choice for the abstract cycle transition is to reuse the concrete cycle
transition relation, i.e. ĉycle = cycle. ĉycle is guaranteed to have progress as
the concrete machine is guaranteed to make progress in each step. The local
consistency, leaving events aside, degenerates to a monotonicity property of
the concrete cycle behaviour:

∀c1, ĉ1, c2 ∈ C. c1 v ĉ1 ∧ cycle(c1)(.)(c2)
⇒ ∃ĉ2 ∈ C. cycle(ĉ1)(.)(ĉ2) ∧ c2 v ĉ2,
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where (.) denotes arbitrary events. This is a key insight: If the concrete
pipeline control behaves monotonically w.r.t. progress, there exists an
efficient non-relational pipeline abstraction based on progress.

In general, however, modern pipelines do not behave monotonically due to
features such as speculation or dynamic reordering of instructions. Pipelines
that behave monotonically need to be designed carefully. In Section 4.5,
we will present the strictly in-order pipeline that we prove monotonic.
Conventional pipeline designs that do not behave monotonically require a
different locally-consistent abstract cycle transition ĉycle. In Section 4.4
(Non-Monotonicity of In-Order Pipeline), we conclude that a relational
abstraction is needed to capture the progress behaviour of such pipelines.
A non-progressing abstract cycle transition ĉycle is not the only source

of loops in the abstract execution graph which render the approach useless.
In the progress-based abstraction, any two abstract configurations can be
joined to a configuration with less or equal progress. If a configuration c′
is joined with a configuration c from which c′ evolved via ĉycle, the least
upper bound is c which results in a loop in the execution graph. Using
Algorithm 1 (Configurable Program Analysis) and the heuristics presented
in Section 3.3, however, results in an abstract execution graph that is
guaranteed to be loop-free. According to the heuristics, we only perform
joins when an instruction just left the pipeline. After a join, we wait until
the next instruction has left the pipeline before joining again. Furthermore,
we limit ourselves to only join configurations that coincide w.r.t. their
respective next-to-complete instruction. Combining the two arguments, we
conclude that joining cannot introduce loops.
Finally, we generalise the concretisation function on abstract traces in

order to account for the asynchronicity of event occurrences:

γtraces(T̂ ) := {τ | ∃τ̂ ∈ T̂ . |τ | ≤ |τ̂ | ∧ ∀i ∈ [0, |τ̂ |]. τi.c ∈ γconf (τ̂i.c)∧ (4.3)
(∀e ∈ τ̂i.evs ∃k ≤ i. e ∈ τk.evs ∨ τ0.c(e.ins) @P e.p)∧ (4.4)
(∀e ∈ τi.evs ∃k ≥ i. e ∈ τ̂k.evs ∨ τ̂|τ̂ |.c(e.ins) wP e.p)}. (4.5)

An abstract trace can describe shorter concrete traces. Thus we extend the
notation τi to return the last configuration of τ and an empty set of events
if i exceeds the length of τ . Furthermore, each event e is associated to an
instruction instance e.ins ∈ Id when progressing from e.p ∈ P to e.p′ ∈ P .
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The concretisation function on traces uses a three-fold condition:

(4.3) As before, the ith concrete configuration needs to be described by the
ith abstract configuration.

(4.4) An event on the abstract trace must have happened before on the
concrete trace, or the concrete trace started only after the event
occurred. This means, no additional events appear on the abstract
trace if the concrete trace starts with an initial configuration.

(4.5) An event on the concrete trace must happen afterwards on the abstract
trace, or the abstract trace stops before the event could occur. This
means, no events disappear due to the abstraction if the abstract
trace ends in a final configuration.

The presented progress-based microarchitectural abstraction satisfies the
following correctness theorem.

Theorem 4.1.1 (Trace Coverage). Let Ĉ be a set of configurations that
abstract from C and ĉycle a relation that is locally consistent to cycle (Equa-
tion 4.1) and is guaranteed to make some progress in each cycle transition
(Equation 4.2). Let Gp be an execution graph and Ĝp a loop-free abstract
execution graph allowing for replacements, i.e. satisfying Equations 2.5
and 2.11. The set of abstract traces covers all concrete traces:

T (Gp) ⊆ γtraces(T (Ĝp)).

Proof. Let a program p and a concrete trace τ ∈ T (Gp) be given. We
need to show that there exists an abstract trace τ̂ through the abstract
execution graph Ĝp such that τ ∈ γtraces(τ̂). First, we prove by induction
that for each prefix trace τ (i) we find an abstract partial trace τ̂ (i) such
that τ (i) ∈ γtraces(τ̂ (i)). Second, we show that τ̂ (|τ |) can be extended to
τ̂ ∈ T (Ĝp) with τ ∈ γtraces(τ̂).
First Statement:
We consider i = 0 as induction base case. By definition τ (0) = τ0 with
τ0.c ∈ Ip. Equation 2.5 provides an abstract initial state î ∈ Îp such that
τ0.c ∈ γconf (̂i). Choosing τ̂ (0) = î concludes the base case as no events have
happened so far, i.e. τ0.evs = τ̂0.evs = ∅.
Now, we consider the induction step from i to i + 1. Using the induc-

tion hypothesis, we know that for τ (i) there exists an abstract partial
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trace τ̂ (i) such that τ (i) ∈ γtraces(τ̂ (i)). In particular, we can deduce that
τ

(i)
i .c ∈ γconf (τ̂ (i)

i .c). By definition of τ (i+1) = τ (i) ◦ (evsi+1, ci+1), we know
that cycle(τ (i)

i .c)(evsi+1)(ci+1).
By using local consistency of the abstract cycle behaviour, instantiated

with τ (i) and τ̂ (i)
i .c, we obtain

∃ĉ′, êvs. ĉycle(τ̂ (i)
i .c)(êvs)(ĉ′) ∧ ci+1 ∈ γconf (ĉ′)∧⋃

ins∈Id

events(τ (i) ◦ (evsi+1, ci+1), ins, τ̂ (i)
i .c(ins), ĉ′(ins)) = êvs,

as the premises are satisfied as just shown before. This provides the
abstract partial trace τ̂ (i+1) = τ̂ (i) ◦ (êvs, ĉ′). It remains to be shown that
τ (i+1) ∈ γtraces(τ̂ (i+1)) which comprises the three parts 4.3, 4.4, and 4.5.

The first part 4.3 follows from the induction hypothesis for all indices up
to i. For the index i+ 1, the claim follows from local consistency and, if
joining is employed, from the consistency of the partial order w.r.t. γconf in
Equation 2.10.
For the second part 4.4, we only need to consider the newly added

events êvs. By local consistency, the events êvs only comprise events
of τ (i+1).
Part 4.5 is more involved. Let e be an event in evsi+1. Depending on

the progress ĉ′(e.ins), either the right hand side is true (ĉ′(e.ins) wP e.p)
or otherwise, by local consistency, e ∈ êvs. This is because

e.p = τ
(i+1)
i .c(e.ins) vP τ̂ (i+1)

i .c(e.ins)

and
τ̂

(i+1)
i+1 .c(e.ins) = ĉ′(e.ins) @P e.p,

i.e. e.ins has progressed enough on the abstract trace to emit e as part
of êvs.
There is another case to account for. Consider an older event e on

the concrete trace such that the condition τ̂|τ̂ |.c(e.ins) wP e.p is not valid
anymore. This can happen because the abstract trace has been extended
by an abstract configuration with more progress during the induction step.
Formally, this means that τ̂ (i+1)

i .c(e.ins) = e.p and τ̂ (i+1)
i+1 .c(e.ins) @P e.p.

By local consistency again, we know that event e must be in êvs.
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This concludes the proof for the induction step, and thus the proof of
the first statement.
Second Statement:
The first statement provides an abstract (partial) trace τ̂ (|τ |) through the
abstract execution graph Ĝp. We need to show that it is a complete trace,
i.e. an element of T (Ĝp) according to Equation 2.2. After the proof of the
first statement, it remains to show that the abstract trace ends with a final
event e ∈ F̂p. Since τ ∈ T (Gp) and τ ∈ γtraces(τ̂ (|τ |)), the final event that
terminates τ has either occurred during the last cycle of τ̂ (|τ |) or has not
occurred yet. In the first case, τ̂ (|τ |) ends with a final event. In the second
case, we extend τ̂ (|τ |) to a complete trace τ̂ such that τ ∈ γtraces({τ̂}).
The cycle behaviour of the concrete system does not end at a final

configuration for program p but executes the next program. The cycle
behaviour beyond p allows us to use local consistency to extend our abstract
trace τ̂ (|τ |) along the lines of the proof of the first statement. We continue
until we reach a final event. We call the resulting abstract trace τ̂ . Note
that we always reach such an event because the abstract execution graph
is loop-free and the abstract cycle behaviour is guaranteed to have some
progress during each cycle transition.

We need to show that τ ∈ γtraces({τ̂}), especially for the positions i > |τ |.
The conditions 4.4 and 4.5 are met by local consistency along the lines of the
proof of the first statement. For condition 4.3, consider the configurations
τi.c = τ|τ |.c that are final. All instruction in Id have the maximal possible
progress in τi.c. All configurations τ̂i.c have thus less or equal progress than
τ|τ |.c which satisfies the condition 4.3 in the definition of γtraces.
This concludes the proof of the second statement and thus the overall

correctness proof.

As before, the above trace coverage is sufficient to conclude that weights
are maximised correctly. However, there is a pitfall of counting events
on abstract traces. While each event can occur at most once during a
concrete execution, it can occur multiple times on an abstract trace due to
the progress-based joining. Nevertheless, all occurrences of an event on an
abstract trace relate to the same single event during a concrete execution.
Thus, w(τ̂) counts each event at most once even if it occurs multiple times.

Corollary 4.1.2 (Sound weight bound). Let the conditions of Theo-
rem 4.1.1 be given. Furthermore, let w :

(
2E
)∗ →W be a weight function.
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The maximum of w on traces through the abstract graph provides an upper
bound on weights on concrete traces:

max
τ∈T (Gp)

w(τ) ≤ max
τ̂∈T (Ĝp)

w(τ̂).

Proof. Let τ ∈ T (Gp) be the trace with maximal weight. According to
Theorem 4.1.1, there is a τ̂ ∈ T (Ĝp) such that τ ∈ γtraces({τ̂}). By
definition of γtraces, an event in τ also occurs in τ̂ , because τ̂ ends in a
final configuration and all events of the program of interest have happened:
∀e ∈ E. τ̂|τ̂ |.c(e.ins) @P e.p. We conclude w(τ) ≤ w(τ̂). Thus, the claim
follows by the definition of max.

For the minimisation of event-based weights, there is an analogous argu-
ment using the second part of the concretisation function and the fact that
complete concrete traces start in initial configurations where no relevant
event has happened yet.

4.2 Low-Level Analysis
Microarchitectural Analysis The concrete and abstract pipeline configu-
rations presented in the previous section are based on a single sequence of
unique instructions. In this section, we want to give an intuitive overview
how the approach can be practically applied to whole programs. Given a
program, there are usually multiple instruction sequences due to condition-
als. Therefore, we consider multiple different partial sequences that span
those instructions that might be in the pipeline at the same time. While
executing an instruction inside a loop, multiple subsequent instances of the
same instruction can occur inside the pipeline. Therefore, we symbolically
distinguish multiple instances of the same instruction in an instruction
sequence using indices.

As an example, consider the abstract execution graph in Figure 4.1 based
on the control-flow graph from Figure 3.3. For simplicity, we illustrate a
three-stage pipeline without hazards. Dashed nodes and edges correspond
to nodes and edges in the control-flow-graph. Each pipeline state is associ-
ated to the instruction that finishes execution next. The end state of an
instruction serves as initial state of the respective next instruction.
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Figure 4.1: Abstract execution graph of the program given in Figure 3.3
using the progress abstraction of a three-stage pipeline.
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s1 s2

s3

s4

te1 e2, event evs

e3 event evs

Figure 4.2: Path analysis for progress-based abstraction. Unique events can
occur multiple times due to joining.

In the dashed box that corresponds to the execution of instruction ins0,
we distinguish two partial sequences of instructions depending on whether
the loop is entered or not. Configurations associated to different instruction
sequences are kept separate during analysis and are not considered as join
candidates. They are kept separate as long as any distinctive instruction is
processed in the pipeline.
The instructions within the loop are symbolically indexed by a loop

iteration counter l to distinguish different instances of the same instruction.
As soon as all instructions that belong to an iteration l left the pipeline,
we adjust the counter (l = l + 1). This way, we analyse a single symbolic
loop iteration that covers all behaviours of any possible loop iteration.
Note that control-flow loops do not impose a problem on the correctness
in Theorem 4.1.1: On each round through the loop, the configurations
progress to the next loop iteration. The total number of loop iterations is
bounded. This is different from the problematic loops where the progress
of the pipeline is stuck.

Path Analysis Path analysis determines the maximal weight on any path
through the abstract execution graph as computed by the microarchitectural
analysis. For this purpose, constraints are formulated on the number of
times an edge can be taken or on the number of events that can occur
during execution. Although events occur at most once during a concrete
execution, an event can occur multiple times on an abstract execution
trace. The joining of two abstract configurations can yield a configuration
that exhibits less progress than the original configurations. Consequently,
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an event, which is associated to an advance in progress of an instruction
instance, can occur multiple times in the abstract execution graph. As an
example, see Figure 4.2. Note that this behaviour does not occur when
using state-of-the-art abstractions that keep the pipeline state, and thus
the progress of instructions, concrete.
In the original path analysis described in Section 3.3, we could derive

the constraint xe2 + xe3 ≤ 1 for the graph in Figure 4.2 since we know
that the event evs can only occur once. However, this constraint precludes
feasible abstract traces, namely the trace s2e2s3e3s4, if a progress-based
abstraction is used. One possible solution to express the above knowledge
is to introduce a new binary variable yevs to the integer linear program
that describes whether the specific event evs occurs or not. The resulting
constraints become yevs ≤ 1, xe2 ≤ yevs, and xe3 ≤ yevs. This technique
also extends to more complex constraints such as persistence constraints.

4.3 Progress of In-Order Pipeline
We have introduced the formal background for a progress-based pipeline
abstraction. Next, we instantiate the notion of progress of an instruction for
a five-stage in-order pipeline. The progress of an instruction is determined
by the pipeline stage it resides in and the number of cycles remaining to
complete the current stage. We use the number of remaining cycles to
model latencies of e.g. the functional units and the main memory. The set
of possible progress is then defined as

P := S × N0

where S denotes the set of pipeline stages. The set of pipeline stages is
defined as

S := {pre, IF , ID,EX ,MEM ,WB, post}.
The set S features artificial stages to model that an instruction has not yet
entered (pre) or has already left (post) the pipeline. The other elements of S
correspond to the classic five stages: instruction fetch, instruction decode,
execute, data memory access, and register write-back. In Appendix A.1,
we provide a definition of the cycle behaviour of a five-stage pipeline using
the above progress notation.
In static program analysis, the order of abstract elements models the

notion of precision, i.e. a v b if and only if b describes at least the concrete
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elements that a describes. In the progress abstraction, an (abstract) config-
uration describes all configurations such that instructions have advanced at
least as much in the pipeline. Thus, a progress p ∈ P is less than or equal
to p′ if p describes a later or equal pipeline stage. We define the order vS
on pipeline stages as

post vS WB vS MEM vS EX vS ID vS IF vS pre.

Within the same pipeline stage, fewer remaining cycles indicate more
progress. Thus, we define the total order of progress in a five-stage pipeline
as

(s, n) vP (s′, n′)⇔ s @S s
′ ∨ (s = s′ ∧ n ≤ n′),

where s @S s′ is defined as s vS s′ ∧ s′ 6vS s. The least-upper-bound
operator takes the maximum according to the above total order which
corresponds to the least progress:

p tP p′ =
{
p′ : p vP p′

p : otherwise.

4.4 Non-Monotonicity of In-Order Pipeline
We consider a conventional five-stage pipeline with caches and a single main
memory for code and data, as given in Appendix A.1. The instruction and
the data cache share a bus to the common main memory. If both caches
want to start a memory access at the same time, an arbiter grants one of
the caches access to the bus. Without loss of generality, we assume that
accesses of the data cache are prioritised.

The cycle behaviour of the described in-order pipeline is not monotonic.
As a counterexample, consider Figure 4.3. The problem originates from the
fact that the ongoing fetch of an instruction (add) from main memory can
block the main memory access of a previous instruction (load) which resides
in the memory stage. In this case, more progress of the add-instruction
turns out to be detrimental to the progress of the load—and potentially
detrimental to the overall progress. In [Hahn et al., 2015a], we demonstrate
that this non-monotonicity can result in a timing anomaly under certain
circumstances.
In the context of the progress-based abstraction, non-monotonicity pre-

cludes the use of the concrete cycle behaviour as abstract ĉycle behaviour
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6vP
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Figure 4.3: Example of non-monotonic cycle behaviour of the in-order
pipeline described in Appendix A.1.

according to Equation 4.1. Can another ĉycle be found that is locally
consistent with cycle? Unfortunately, this is not possible if the progress of
individual instructions is abstracted independently of each other. Consider
the abstract state depicted in Figure 4.4. Assume that the fetch of the
add-instruction and the data access of the load-instruction miss the cache,
respectively. On the one hand, the abstract state describes a concrete state
where the load-instruction has more progress and blocks the fetch of the
add-instruction. On the other hand, it describes a concrete state where
the add-instruction has more progress and blocks the data access of the
load-instruction. Thus, no sound abstract cycle behaviour can advance
load or add within the abstract pipeline state. As a consequence, any sound
ĉycle gets stuck for this abstract state and no upper execution-time bound
can be derived.
Non-monotonicity is an issue for progress-based abstractions that oper-

ate on cycle-granularity and treat the progress of individual instructions
separately. In Section 4.10, we briefly sketch alternative progress-based
abstractions that might be able to deal with non-monotonic behaviour by
changing one of these premises.
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. . .

γconf
miss

miss

Figure 4.4: No abstract cycle behaviour can guarantee any progress when
applied to this progress-based abstract state. On the left, we depict two
concrete pipeline states represented by the abstract state.

In this work, we consider a memory system that shares code and data
according to the von-Neumann architecture. Most modern computer systems
follow this scheme because it offers more flexibility and, if used with caches,
incurs only a small performance degradation due to bus contention. However,
some microcontrollers feature physically separated code and data memory
with individual buses and thus follow the Harvard architecture. Note that
physically separate memories combined with a conventional in-order pipeline
cannot trigger non-monotonic behaviour. In the next section, we show how
to achieve monotonic behaviour even in the presence of shared code and
data memory.

Another source of non-monotonic cycle behaviour is branch prediction
with speculative instruction fetches. As described in Appendix A.1, spec-
ulative instruction fetches aim to reduce the impact of control hazards.
If, however, a misprediction is encountered while a speculative fetch is
performed in main memory, it is not always possible to abort the ongoing
memory access. A pipeline state with more progress than another state due
to having already started a speculative fetch can consequently fall behind
w.r.t. progress if the prediction turns out to be wrong. This phenomenon is
also known as speculation timing anomaly [Reineke et al., 2006].
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4.5 Strictly In-Order Behaviour
In the previous section, we have discussed the reasons behind the non-
monotonic behaviour of a conventional in-order pipeline. We want to
modify the pipeline design in order to achieve a monotonic cycle behaviour
while keeping as much performance of the original design as possible.

First of all, we conservatively refrain from any branch prediction and
speculative memory accesses. In Section 4.9, we discuss to which extent
speculation might be reintroduced in a monotonic design. Second, we ensure
that all bus memory accesses, i.e. instruction fetches and data accesses,
happen in program order. To this end, we delay the memory access caused by
an instruction cache miss until every preceding instruction that potentially
accesses the data memory reaches the memory pipeline stage. This strict
bus access ordering inspired the name of the modified design: the strictly
in-order pipeline.

Analogously to the cycle behaviour of the conventional in-order pipeline
in Appendix A.1, we formally define the cycle behaviour of the strictly
in-order pipeline. This definition allows us to formally prove monotonicity.
As the structure of the pipeline has not changed, we use the same notion of
progress as introduced in Section 4.3.

The cycle behaviour of the strictly in-order pipeline, i.e. cycle(p)(evs)(p′),
is given by the equations in Figure 4.5. A pipeline state p ∈ Id → S × N0
maps each instruction to its current pipeline stage and the number of
remaining cycles to finish the current stage. The state can also be expressed
as a pair of functions p = (stage, cnt) ∈ (Id → S)× (Id → N0). Id denotes
the set of dynamic instruction instances from the instruction sequence
processed during a specific program execution. We order the instruction
instances according to their position within the sequence, i.e. insn < insm
denotes that instruction instance insn occurs before insm. With each
dynamic instruction ins ∈ Id, we associate its operation code opc(ins), its
operand registers ops(ins), and its destination registers target(ins). Parts
that do not belong to the pipeline control are modelled by external functions.
The function ichit(ins) (dchit(ins)) returns true if and only if the fetch
(data) access of instruction instance ins hits the instruction (data) cache.
exlat(ins) returns the execution latency of instruction instance ins which
might generally depend on the operand values. In our implementation, the
multiply-accumulate instruction takes two cycles for execution while all other
instructions execute within a single cycle. memlatf (ins) (memlatd(ins))

78



4.5 Strictly In-Order Behaviour

p′ := λi ∈ Id.

{
(stage′(i), latency(i)) : ready(i) ∧ willbefree(stage′(i))
(stage(i), cnt′(i)) : otherwise

cnt′(i) :=
{
cnt(i)− 1 : cnt(i) > 0
0 : cnt(i) = 0

stage′(i) :=



post : stage(i) = WB
WB : stage(i) = MEM
MEM : stage(i) = EX
EX : stage(i) = ID
ID : stage(i) = IF
IF : stage(i) = pre

ready(i) := cnt(i) = 0
∧ (stage(i) = ID ⇒ ¬ophaz(i))
∧ (stage(i) = pre ⇒ ¬brpending(i)∧

next(i)∧
(ichit(i) ∨ ¬mempending(i)))

willbefree(s) := s = post
∨ (¬∃i. stage(i) = s)
∨ (∃i. stage(i) = s ∧ ready(i) ∧ willbefree(stage′(i)))

latency(i) :=


memlatf (i) : stage′(i) = IF ∧ ¬ichit(i)
memlatd(i) : stage′(i) = MEM ∧ (¬dchit(i) ∨ opc(i) = store)
exlat(i) : stage′(i) = EX
0 : otherwise

brpending(i) := ∃j < i. opc(j) = branch ∧ p(j) A (EX , 0)
next(i) := stage(i) = pre ∧ ∀j < i. stage(j) 6= pre

mempending(i) := ∃j < i. opc(j) ∈ {load, store} ∧ p(j) A (MEM , 0)
ophaz(i) := ∃o ∈ ops(i) ∃j < i. p(j) A (MEM , 0) ∧ opc(j) = load ∧ o ∈ target(j)

evs := {(dcmiss, i, p(i), p′(i)) | p′(i) @ (EX , 0) = p(i) ∧ ¬dchit(i) ∧ opc(i) = load}
∪ {(dchit, i, p(i), p′(i)) | p′(i) @ (EX , 0) = p(i) ∧ dchit(i) ∧ opc(i) = load}
∪ {(icmiss, i, p(i), p′(i)) | p′(i) @ (pre, 0) = p(i) ∧ ¬ichit(i)}
∪ {(ichit, i, p(i), p′(i)) | p′(i) @ (pre, 0) = p(i) ∧ ichit(i)}

Figure 4.5: Equations expressing the cycle behaviour of the five-stage strictly
in-order pipeline. Variables i and j denote instruction instances from Id.
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returns the memory latency that the fetch (data) access of instruction
instance ins experiences. If abstraction is employed for the non-pipelined
part, e.g. a cache abstraction, the external functions might provide uncertain
answers. In this case, the cycle behaviour follows all successor configurations
permitted by the uncertain external information.

From a high-level perspective, there are three possibilities how the progress
of an instruction instance ins can evolve during a cycle transition. If the
remaining cycles counter is greater than zero, the instruction instance ins
stays in the current stage and the remaining cycles counter is decreased
by one. In case the remaining cycles counter is zero, we consider two
possibilities. If the instruction instance ins is ready and the target pipeline
stage will be free from previous instruction instances, ins advances to the
target stage. If ins is not ready or the target pipeline stage will still be
occupied, ins is stalled, i.e. its progress stays unchanged.

4.6 Monotonicity
In the process of proving monotonicity of the strictly in-order pipeline, we
use the following lemmas.
The definition of the cycle behaviour in Figure 4.5 uses auxiliary func-

tions such as ready. We use the notation a.f to denote that the auxiliary
function f is evaluated for the pipeline configuration a ∈ C.

Lemma 4.6.1 (Update enable). Let a, b ∈ C be two configurations. Fur-
thermore, let insi ∈ Id be an instruction with equal progress in a and b
(a(insi) = b(insi)) and all previous instructions insj < insi have progressed
more in a than in b (a(insj) v b(insj)). For any given valuation of the
external functions used in ready, if b advances to the next pipeline stage,
a advances as well:

b.ready(insi)⇒ a.ready(insi)
b.willbefree(b.stage′(insi))⇒ a.willbefree(b.stage′(insi))

Proof. Part 1: ready
By b.ready(insi), we get b.cnt(insi) = 0 and by a(insi) = b(insi) also
a.cnt(insi) = 0. For all pipeline stages except pre and ID this is sufficient
to conclude a.ready(insi). We prove the claim for ID and pre each by
contradiction.

80



4.6 Monotonicity

• For stage ID, ¬a.ready(insi) requires an operand hazard a.ophaz(insi).
This means, there is a load instruction insj < insi with progress
a(insj) A (MEM , 0) that writes our operand. By a(insj) v b(insj),
we conclude that b(insj) A (MEM , 0), i.e. there is an operand hazard
in b. This contradicts b.ready(insi).

• For stage pre, ¬a.ready(insi) requires either a.brpending(insi), or
¬a.next(insi), or ¬ichit(insi)∧a.mempending(insi). In all three cases,
an argument analogous to ophaz applies. If a memory operation insj
is pending in a during the instruction cache miss of insi, insj is also a
pending memory operation in b as a(insj) v b(insj) during the miss
of insi. If there is an older instruction insj < insi to be fetched next,
insj is also in the pre stage in b and is to be fetched next in b. If there
is a branch insj pending in a, insj is also a pending branch in b as
a(insj) v b(insj). If any of the three expressions above evaluates to
true for a, it also evaluates to true for b resulting in ¬b.ready(insi).
This is a contradiction.

This concludes the proof for ready.

Part 2: willbefree
We prove the claim by contradiction. Let s = b.stage′(insi). Assume
b.willbefree(s) and ¬a.willbefree(s). By ¬a.willbefree(s), it follows that there
is an instruction insj < insi in stage s in a. As a(insj) v b(insj), insj must
be in stage s in b as well, because the predecessor stage is occupied by
instruction insi > insj . As b.willbefree(s) and insj is in s, we know that
b.ready(insj) and b.willbefree(b.stage′(insj)). By b.ready(insj), we know
that b.cnt(insj) = 0 and thus a(insj) = b(insj).

We can now inductively use this Lemma 4.6.1 for insj which is in a later
stage than insi. We repeat this argument until we hit either a free stage or
stage post. Thus by applying Lemma 4.6.1 for insj , we get a.ready(insj) and
a.willbefree(b.stage′(insj)). This results in a.willbefree(s) which contradicts
our assumption.

Lemma 4.6.2 (Progress Dependence). For the above cycle behaviour, the
progress of an instruction insi ∈ Id depends solely on the progress of
previous instructions insj < insi and never on the progress of subsequent
instructions insj > insi.
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Proof. The progress of an instruction insi depends on the progress of other
instructions exclusively via ready and willbefree. By Lemma 4.6.1, we
know that ready and willbefree solely depend on the progress of previous
instructions insj < insi.

Lemma 4.6.3 (Positive Progress). The cycle behaviour applied to a con-
figuration c yields successor configurations with more progress than c:

∀c, c′ ∈ C ∀evs ⊆ E. cycle(c)(evs)(c′)⇒ c′ @ c.

Proof. First, we prove c′ v c by case distinction of cycle. Let an instruction
insi ∈ Id be given. If c(insi) is stalled, we obtain c′(insi) = c(insi) and
thus c′(insi) v c(insi). If c(insi) reduces the number of remaining cycles,
c′(insi) = (c.stage(insi), c.cnt(insi) − 1) and thus c′(insi) @ c(insi). If
c(insi) advances to the next pipeline stage, c′.stage(insi) @ c.stage(insi)
and thus c′(insi) @ c(insi).

To prove the strictness of c′ @ c, it is sufficient to show that not every in-
struction is stalled in the pipeline. We will show that the instruction farthest
down the pipeline is not stalled. Let instruction insi be the farthest instruc-
tion, i.e. all instructions insj < insi already left the pipeline. All stages
below c.stage(insi) are empty, which results in willbefree(c.stage′(insi)). If
c.cnt(insi) > 0, insi is not stalled as the number of remaining cycles is
reduced. If c.cnt(insi) = 0, c.ready(insi) and thus insi would progress to the
next stage. Even if the current stage of insi is ID or pre, the readiness of insi
cannot be prevented by operand hazards or pending branches/memory op-
erations as the pipeline in front of insi is empty.

Theorem 4.6.4 (Monotonicity). The cycle behaviour of the strictly in-order
pipeline is monotonic.

∀i ∈ Ip ∀τ ∈ P(i)∀c′, ĉ ∈ C ∀evs ⊆ E.
cycle(τ|τ |.c)(evs)(c′) ∧ τ|τ |.c v ĉ

⇒ ∃ĉ′ ∈ C ∃êvs ⊆ E. cycle(ĉ)(êvs)(ĉ′) ∧ c′ v ĉ′∧⋃
ins∈Id

events(τ ◦ (evs, c′), ins, ĉ(ins), ĉ′(ins)) = êvs

Proof. Let i, τ, c′, ĉ, evs be given and let c denote τ|τ |.c. Furthermore, we
know that c v ĉ and cycle(c)(evs)(c′). We need to prove that cycle applied
to ĉ yields ĉ′ such that c′ v ĉ′ with compatible events êvs.
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Let ins ∈ Id be an arbitrary dynamic instruction instance. It is sufficient
to show that the concrete cycle behaviour relates ĉ(ins) with a ĉ′(ins)
via events(τ ◦ (evs, c′), ins, ĉ(ins), ĉ′(ins)) such that c′(ins) vP ĉ′(ins). We
distinguish three possible cases for cycle applied to ĉ: (1) ins is stalled,
(2) ins counts down its remaining cycles, or (3) ins advances to the next
pipeline stage.

Pipeline stall
If instruction ins is stalled in configuration ĉ, we obtain ĉ′(ins) = ĉ(ins).
By assumption, we know c(ins) v ĉ(ins) = ĉ′(ins). By Lemma 4.6.3, we
conclude that c′(ins) v ĉ′(ins). Due to stalling, no events are emitted.

Remaining cycles countdown
If instruction ins reduces its remaining cycles in ĉ, we obtain ĉ.stage(ins) =
ĉ′.stage(ins) and ĉ.cnt(ins)−1 = ĉ′.cnt(ins). If c(ins) = ĉ(ins), by definition
of cycle we obtain c′(ins) = ĉ′(ins). Otherwise, c(ins) @ ĉ(ins):

• If c.stage(ins) @ ĉ.stage(ins), we conclude by Lemma 4.6.3 that
c′.stage(ins) @ ĉ′.stage(ins).

• Otherwise c.cnt(ins) < ĉ.cnt(ins). If c.cnt(ins) = 0, either ins ad-
vances in the pipeline resulting in c′.stage(ins) @ ĉ′.stage(ins) or ins is
stalled in c resulting in c′.cnt(ins) = c.cnt(ins) = 0 ≤ ĉ.cnt(ins)− 1 =
ĉ′.cnt(ins). If c.cnt(ins) 6= 0, by definition of cycle we conclude
c′.cnt(ins) = c.cnt(ins)− 1 < ĉ.cnt(ins)− 1 = ĉ′.cnt(ins).

Again, no events are emitted during the remaining cycles countdown.

Pipeline stage advance
If instruction ins advances in the pipeline, any possible successor ĉ′(ins)
has stage ĉ.stage′(ins) and some latency. We need to find a ĉ′(ins) such
that c′(ins) v ĉ′(ins).
First, we show that c′.stage(ins) v ĉ′.stage(ins) holds for any possible

successor ĉ′(ins). We know that c(ins) v ĉ(ins), i.e. either c(ins) = ĉ(ins)
or c(ins) @ ĉ(ins). We consider the case c(ins) = ĉ(ins) first. As we
are in the pipeline stage advance case, we know that ĉ.ready(ins) and
ĉ.willbefree(ĉ.stage′(ins)). By using Lemma 4.6.1 with c, ĉ, and ins, we
get c.ready(ins) and c.willbefree(ĉ.stage′(ins)). Consequently, we know that
instruction ins will also advance its pipeline stage in c which results in
c′.stage(ins) = ĉ′.stage(ins). In the second case, i.e. c(ins) @ ĉ(ins), we
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know c.stage(ins) @ ĉ.stage(ins) since we are in the pipeline stage advance
case which implies ĉ.cnt(ins) = 0. By definition of stage′, ins can at most
move to the consecutive stage and thus c′.stage(ins) v ĉ′.stage(ins).

As c′.stage(ins) v ĉ′.stage(ins) and τ starts in initial configuration i, any
events of ins for the progress transition from ĉ.stage(ins) to ĉ′.stage(ins)
must have happened on τ ◦ (evs, c′). We consider the same valuation of
the external functions ichit, dchit, exlat, and memlatf/d that has been used
to generate τ . This valuation now fully determines ĉ′(ins). Furthermore,
cycle emits the same events that have been seen on τ ◦ (evs, c′), namely
events(τ ◦ (evs, c′), ins, ĉ(ins), ĉ′(ins)).

To conclude the argumentation for c′(ins) v ĉ′(ins), we need to prove that
c′.cnt(ins) ≤ ĉ′.cnt(ins) if c′.stage(ins) = ĉ′.stage(ins). Immediately after
the pipeline advance, ĉ′.cnt(ins) is the highest possible latency according to
the valuation of the external functions and thus c′.cnt(ins) cannot be higher
because the number of remaining cycles is never increased during cycle.

4.7 Anomaly Freedom
The progress-based abstraction of the strictly in-order pipeline with its
monotonic cycle behaviour does not exhibit timing anomalies. This enables
the low-level analysis to solely follow the local worst-case upon a non-
deterministic choice.
All non-deterministic choices that we consider—such as cache miss/hit,

(no) cache write back, (no) shared-bus blocking—have a similar impact on
the pipeline state. These choices result in different latencies for the affected
instructions inside the pipeline. For the rest of this section, we focus on the
data cache miss/hit choice.

We prove the absence of timing anomalies related to the data cache using
the sufficient criterion for domination from Theorem 2.5.4 in Section 2.5.
As we are concerned about execution time, we choose w = wtime, where
wtime yields the number of cycle transitions on a given trace. We now prove
that the sufficient criterion required in Theorem 2.5.4 is fulfilled for the
strictly in-order pipeline.

Lemma 4.7.1. In the strictly in-order pipeline, the cache miss case domi-
nates the cache hit case w.r.t. the execution time wtime.
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Figure 4.6: There are no timing anomalies related to the data cache hit/miss
choice.

Proof. We prove the claim by using Theorem 2.5.4 and showing the required
sufficient condition.

Consider Figure 4.6. In configuration c, instruction ins3, which we assume
to be a memory instruction, is about to advance to the memory stage. The
time ins3 will spend in the memory stage depends on whether the memory
access performed by ins3 hits or misses the data cache.

Consider the cache hit case resulting in cb and ins3 having zero cycles to
wait. Depending on hazard signals which are determined by dependencies
between the instructions or the instruction cache, instructions ins4 to ins6
could advance or stay at their current stage. We illustrate the possible
positions in Figure 4.6 by using a set notation.
We pick the dominating configuration ca such that cycle(c)(evsa)(ca)

takes the same non-deterministic choices as cycle(c)(evsb)(cb) except that
the data memory access misses the cache. Instruction ins3 progresses to the
memory stage having to wait for memory-latency many cycles to further
advance. Trivially, wtime(c ◦ (evsb, cb)) = 1 ≤ 1 = wtime(c ◦ (evsa, ca)).
Consequently, it remains to be shown that cb v ca.
The progress of instructions older than ins3, i.e. ins1 and ins2, is the

same in cb and ca as their progress does not depend on the progress of later
instructions including ins3 (Lemma 4.6.2). The progress of an instruction
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ins ∈ {ins3, ins4, . . .} in cb should at least be equal to the progress of ins
in ca. Whether ins advances in the pipeline depends on the predecessor
configuration c and whether ins is ready which can depend on a non-
deterministic choice. However, if ready(ins) holds under a data cache miss,
ready(ins) also holds under a data cache hit. This concludes cb v ca.

Note: The only dependence of ready(ins) on a non-deterministic choice
is upon ichit. The absence of anomalies related to the instruction cache
can still be shown analogously to the above proof. If ready(ins) holds
under an instruction cache miss ¬ichit, then ready(ins) also holds under an
instruction cache hit ichit.

Using this sufficient condition in Theorem 2.5.4, we conclude that the
local worst-case, the data cache miss, dominates the local best-case, the data
cache hit. Thus, there are no anomalies related to data cache classifications
and we can safely follow the local worst-case during low-level analysis.

4.8 Performance Evaluation
The design of the strictly in-order pipeline proposed in Section 4.5 causes
more stalls than the underlying in-order pipeline. The fetch stage is stalled
if a branch is pending, or if a fetch misses the cache while a data memory
operation is pending in the pipeline. Consequently, the actual performance
of the strictly in-order pipeline will be lower on average.

In this section, we compare the actual performance of the strictly in-order
pipeline with the performance of the underlying, conventional in-order
pipeline described in Appendix A. We also evaluate a non-pipelined version
of the processor core for comparison. The non-pipelined core uses the
same multi-cycle datapath as the in-order pipelined core, however, only one
instruction is executed at a time.
In [Liu et al., 2012], Liu et al. propose a thread-interleaved five-stage

pipeline with four hardware threads, called PTARM, to implement a pre-
cision timed machine designed for determinism and predictability. From
the perspective of a single thread, the pipeline fetches the next instruction
once the previous instruction of the same thread has finished the memory
stage of the pipeline. In the meantime, the pipeline executes instructions
of the three other hardware threads. The distance between consecutive
instructions of the same thread is sufficient to eliminate control and data
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Table 4.1: Comparison of FPGA-related characteristics of different core
designs. All designs took between 2,124,544 and 2,303,488 Bits in block-
RAM (caches, main memory), depending on the cache size, and 8 DSP
Slices (multiplier).
Design Max. Frequency Logical Elements
in-order with branch prediction 62.0 MHz 5037
strictly in-order 61.3 MHz (-1.1%) 5046 (+0.2%)
non-pipelined 65.1 MHz (+5.0%) 4292 (-14.8%)
single PTARM thread 64.3 MHz (+3.7%) 4294 (-14.8%)

hazards in the pipeline which simplifies the design. In order to compare
PTARM with our strictly in-order pipeline, we use a fourth variant of our
core design that imitates the behaviour of a single thread in the PTARM
machine. To this end, we modify the non-pipelined variant to start the next
instruction once the memory stage is completed.
In the following, we first provide the characteristics of the respective

FPGA implementations. Second, we determine the number of cycles needed
for the actual execution of our benchmark programs.

FPGA implementation and design characteristics

All four microarchitectural design variants implement the same subset of
the ARMv4 instruction set architecture. Each core design is connected via
separate direct-mapped instruction and data caches of sizes between 1 KiB
and 8 KiB to a unified static random-access memory of size 256 KiB, respec-
tively. For each cache configuration, we have synthesised the four versions
of our microarchitecture targeting an Altera Cyclone IV E (EP4CE115)
FPGA on a Terasic DE2-115 development board. We have configured the
synthesis tool to optimise for high clock frequency. The FPGA-related
characteristics of the different core designs—arithmetically averaged over
all cache configurations—are depicted in Table 4.1. The logical element
count only covers the processor core module and excludes the logic needed
to implement the memory hierarchy.
The slight increase in logical element usage for the strictly in-order

pipeline originates from the circuitry needed to implement the additional
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stalls. Although the additional control circuitry is not part of the longest
path, any design change influences the physical layout produced by the
probabilistic synthesis algorithm. Such changes in layout explain the small
change in maximal clock frequency. Overall, the differences in FPGA-related
characteristics between the in-order and the strictly in-order design are
negligible.

The non-pipelined and the PTARM-like core improve upon the in-order
pipeline in terms of clock frequency as well as logical element usage. Both
changes are mainly caused by the elimination of the forwarding circuits
which are not needed in these non-pipelined core designs. We discuss the
impact of the increased clock frequency on the performance after the next
section. In the next section, we estimate the cycle-level performance of the
different core designs.

Estimation of the cycle-level performance

To assess the performance of the different core designs, we determine the
respective number of clock cycles needed to execute a given program. Due
to the number and size of our benchmark programs as well as the number
of hardware configurations under test, an evaluation based on Verilog-level
simulations has not been feasible w.r.t. time. In order to perform our
experiments in real-time on an FPGA, we equip our Verilog design with a
cycle counter and means to remotely control our FPGA via a USB/JTAG
connection. The host processor first uploads the synthesised FPGA design,
transfers the given program to the program memory on the FPGA, and
resets the FPGA core to start simulation. After the program terminates,
the host processor downloads the current value of the cycle counter and
proceeds to the next program.
As benchmark programs, we use parts of the Mälardalen [Gustafsson

et al., 2010] and TACLeBench [Falk et al., 2016] benchmark suite as well as
test cases generated from model-based designs. We refer to Appendix B for
more details on our benchmarks. Each benchmark program is run with a
fixed input and on an initial microarchitectural state with empty caches
and an empty pipeline.
For the non-pipelined, the PTARM-like, and the strictly in-order core

design, we provide the cycle ratio compared to the underlying in-order
pipeline, respectively. We plot the maximal and the minimal ratio as well
as the geometric mean over all benchmark programs. Furthermore, we
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Figure 4.7: Performance in clock cycles relative to a standard in-order
pipeline. Different memory configurations ((cache line size in words,
number of sets)@memory word latency). Minimum, maximum, and
geometric mean over all our benchmarks (optimised version). Lower is
better.

repeat the measurements for different parameters, e.g. cache configurations
and memory latencies. The results are shown in Figures 4.7 and 4.8 and
discussed below.

Figure 4.7 shows the resulting cycle ratios averaged over our benchmark
programs compiled with optimisations. We provide the cycle ratios for
different memory configurations, i.e. different cache sizes and memory
latencies. The non-pipelined design takes on average between 1.96 and
2.53 times the number of cycles needed by the in-order pipeline design (up
to 4 times in the worst-case). The single PTARM hardware thread improves
on the non-pipelined design by roughly 14% as an instruction fetch starts
as soon as the previous instruction completes the memory phase. Thus,
a single thread of the PTARM core takes on average between 1.72 and
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2.14 times the number of cycles needed by a conventional in-order pipeline.
The reduced single-thread performance has motivated the design of a more
flexible thread-interleaved pipeline which allows multiple instructions of the
same thread to execute in a pipelined fashion [Zimmer et al., 2014].

The high variance in cycle-level performance of the non-pipelined designs
compared to the in-order pipeline is explained by the different demands of
the benchmark programs. A memory-intensive program that causes many
cache misses does not profit much from the in-order pipeline since the cache
misses stall the execution. In contrast, a program whose accesses mostly
hit the cache during execution experiences a significant speedup due to the
better utilisation of the pipeline.

The strictly in-order pipeline needs on average 5% to 7% more clock cycles
than the underlying in-order pipeline. This originates from the missing
branch prediction and the additional stalls of instruction cache misses when
a data memory operation is pending. Overall, the strictly in-order pipeline
preserves most of the benefits of pipelined execution.

Figure 4.7 also illustrates the influence of different memory configurations
(i.e. cache size and memory word latency) on the relative performance
of the designs. On average over our benchmarks, larger caches increase
the relative performance of the conventional in-order pipeline compared
to the non-pipelined and PTARM-like design. The lower cache miss rates
reduce the impact of waiting for main memory on the performance and thus
emphasise the difference between pipelined and non-pipelined execution.
Larger caches have almost no impact on the relative performance of the
strictly in-order pipeline. On the one hand, the overhead of enforcing the
strict access order on the bus diminishes with lower instruction cache miss
rates. On the other hand, a lower data cache miss rate does not reduce
the overhead introduced by enforcing the strict order of memory accesses
on the bus: A pending memory-accessing instruction blocks an instruction
cache miss even if it finally turns out to hit the data cache. A lower data
cache miss rate reduces the absolute number of clock cycles required by the
strictly and the conventional in-order pipeline by roughly the same amount.
Thus, the relative performance of the strictly in-order pipeline can even
decrease slightly for a lower data cache miss rate.

As opposed to the effect of a larger cache, higher memory latencies increase
the influence of waiting for main memory on the overall performance. Thus,
performance differences between the microarchitectural core designs tend to
vanish for higher memory latencies. Consequently, the relative performance
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Figure 4.8: Performance in clock cycles relative to a standard in-order
pipeline. Different memory configurations ((cache line size in words,
number of sets)@memory word latency). Minimum, maximum, and
geometric mean over all our benchmarks (non-optimised version). Lower
is better.

of all three designs w.r.t. the conventional in-order pipeline improves. While
the strictly in-order pipeline needs on average 7% more cycles to execute a
program for a memory word latency of 5 cycles, the overhead reduces to 5%
for a memory word latency of 10 cycles.
As it has been and probably still is common to employ non-optimised

programs in safety-critical embedded systems [França et al., 2011], Figure 4.8
shows the cycle ratios averaged over our benchmarks compiled without
optimisations. Non-optimised programs have a higher density of memory
operations within their binaries compared to optimised programs. For
our set of benchmarks, we identified 50% of all instructions in the non-
optimised binaries as memory operations—in contrast to 28% for optimised
binaries. Consequently, the influence of the memory hierarchy on the overall
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performance is significantly higher. The higher cache miss rates due to the
larger memory footprint of the programs as well as the higher number of
store instructions result in more accesses to main memory. The dominant
share of a program’s execution time is thus spent waiting for main memory
and not for the potentially pipelined execution of instructions. Hence, this
results in the lower cycle ratios shown in Figure 4.8.

Towards a fair comparison with PTARM

In the previous section, we have compared the relative performance of our
different microarchitectural designs using the number of needed clock cycles
for execution. As an example, consider the memory configuration with a
word latency of 10 cycles and caches with 128 sets and 8 words per line. The
results given in Figure 4.7 show that a single thread of the PTARM core
takes—averaged over all programs compiled with optimisations—1.78 times
more cycles than our strictly in-order pipeline.

A fair comparison between (a multi-core variant of) our strictly in-order
system and the actual PTARM system [Liu et al., 2012] has to consider more
than the single-thread performance in clock cycles. Although a thorough
evaluation is out of the scope of this thesis, we list important aspects that
need to be considered in a fair comparison. In addition, we derive rough
estimates on the relative performance accounting for the listed aspects.

Perceived Memory Latency While the PTARM core can run at a higher
clock frequency than the strictly in-order core, the main memory’s clock
frequency cannot be increased (arbitrarily). In terms of processor cycles, a
memory access perceives a “higher” latency when executed on a core that is
clocked at a higher frequency. Furthermore, due to the nature of a thread-
interleaved pipeline with four threads, a single thread can use the memory
stage only in every fourth cycle. As a consequence, the perceived latency in
cycles is a multiple of four. In our example scenario, the additional latency
to load a whole cache line amounts to 17 cycles—10 cycles to load the first
word plus one cycle per additional word of the cache line. Accounting for
the increased clock frequency of the PTARM core and rounding to the
next multiple of four yields a perceived overall latency of 20 cycles. The
average ratio of processor cycles needed for execution on the PTARM core
compared to the strictly in-order core then becomes 1.91.
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Clock Frequency In Table 4.1, we show the maximal clock frequency
for each design as computed by the synthesis tool. In the end, we are
interested in the ratio of the actual execution time rather than the cycle
ratio. Thus, we need to account for the difference in maximal clock speed
between the strictly in-order and the PTARM-like design. The difference
sums up to 4.8%. The ratio of execution time can now be obtained from
the cycle ratio: 1.82.

Memory Hierarchy The PTARM system as introduced in [Liu et al., 2012]
employs a fast scratchpad memory instead of caches and it accesses the
DRAM via a specifically designed controller that allows the interference-free
access for the four hardware threads. As noted in [Liu et al., 2012], it
is challenging to efficiently program the PTARM system with its specific
memory hierarchy. In contrast, our strictly in-order processor is equipped
with a standard hierarchy with separate instruction and data caches and a
background memory that serves one access at a time. In order to circumvent
the complexity of comparing the different memory hierarchies, our PTARM-
like design which focuses on the single-thread perspective uses the same
memory hierarchy as our strictly in-order design. As a consequence, the
single thread could fully use instruction and data caches which serve a
similar purpose as the scratchpad in the original design. In a system with
four threads, however, the threads would need to share the space of a local,
fast memory. To account for this spatial sharing, we evaluate the relative
performance of the single PTARM thread when reducing the cache size
from 4KiB to 1KiB. The impact of the spatial sharing on the execution time
heavily depends on the actual benchmarks. For a memory word latency
of 10 processor cycles, the number of needed cycles increased by 16% on
average over our benchmarks. Taking this increase into account, the ratio
of execution time becomes 2.11.

Implementation Cost The implementations of the different designs take a
varying amount of resources, e.g. die space for a hardware implementation,
or number of logical elements on an FPGA. Thus, a varying number of
cores can be fitted on a chip of a given fixed size. Our PTARM-like design
with a single thread needs 4294 logical elements. To support four threads,
it requires three additional sets of the 16 general-purpose 32-bit registers,
i.e. 1536 logical elements, which leads to a total demand of 5830 logical
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elements. Compared to our strictly in-order design (5046 logical elements),
a four-thread PTARM design needs at least 15.5% more elements on an
FPGA. Accounting for the difference in implementation cost, the ratio of
execution time per logical element becomes 2.44.

Multiple Threads So far, we have focused on the relative performance of a
single thread. Executing four independent threads in the thread-interleaved
pipeline of the PTARM core takes no longer than executing only the longest
thread in isolation. In the strictly in-order pipeline, however, the threads
need to be executed sequentially and thus their execution times add up.
In the worst case, all four threads have the same execution time demand.
Compared to the execution of a single thread, the execution time of the
PTARM core remains unchanged while the strictly in-order pipeline takes
four times longer than before. Thus, the ratio of overall execution time
per logical element reduces to 0.61. In terms of throughput, the thread-
interleaved PTARM can execute 1.64 times as many instructions per time
unit and per logical element as the strictly in-order pipeline.

Summary

To summarise, our above evaluation has demonstrated that the performance
penalty for enforcing a strict access order in an in-order pipeline amounts
to around 6%. In exchange, we are able to prove anomaly freedom and
compositional timing behaviour for the strictly in-order pipeline, which
helps to simplify timing analysis. The impact on analysis time is explored
later in Section 5.6.3 (Compositional Base Bound) in the context of the
compositional analysis of shared-bus interference.
In addition, we have presented our findings concerning a fair compar-

ison between the strictly in-order processor and the thread-interleaved
PTARM. The designs differ roughly by a factor of two w.r.t. single-thread
performance—in favour of the strictly in-order processor—and instruction
throughput—in favour of the thread-interleaved PTARM.

4.9 Outlook: Monotonic Extensions
In this section, we take a closer look at a selection of microarchitectural
features used in the past to increase the performance of processors. Unfor-
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tunately, these features have been designed without predictability in mind.
Starting from the above strictly in-order pipeline, we want to briefly discuss
whether and to which extent these features could be incorporated in our
design without sacrificing the monotonicity property. Note that this section
is rather speculative by nature because a formally thorough treatment is
outside the scope of this thesis.

Store Buffer

A store buffer allows the pipeline to advance its execution without waiting
for a store to complete. We describe the functionality of store buffers
including their design parameters in Appendix A.2.4.

In this section, we briefly discuss whether a strictly in-order pipeline with
added store buffer still behaves monotonically. There is no simple answer
to this question as the answer depends on the design choices made for the
store buffer. In particular, the policy when to flush the buffer plays an
important role.

First, we consider a store buffer without forwarding and coalescing that
drains a single entry in FIFO order upon a store request when the buffer
is full. We extend the set of pipeline stages by two additional stages STB
and ST , which represent a store instruction being present in the store buffer
or being executed in memory, respectively. While store instructions now
pass through the separate STB and ST stages until completion, non-store
instructions still pass through the WB stage. Note that, in contrast to
the other pipeline stages WB . . . IF , multiple different instructions can be
present in the STB stage according to the size of the store buffer. The
order vS on pipeline stages could be refined as

post
WB

ST vS STB
MEM vS EX vS ID vS IF vS pre.vS

vS
vS
vS

Based on this notion of progress and the above flush policy, we conjecture
that the overall system still behaves monotonically. Consider two config-
urations c v c′. Assume a store buffer entry needs to be drained due to
an advance in progress of an instruction ins during the next cycle starting
from c, e.g. ins performing a store to a full buffer or a load that collides
with a store buffer entry. Starting from c′, the same store buffer entry needs
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a

b1

a c
a

c

b2

State s1 State s2

last-in
first-in w 6w

b2, c

Figure 4.9: Coalescing b1, b2 causes non-monotonic behaviour for access
sequence b2, c on the given store buffer states. s2 has progressed further
than s1 (s2 v s1) since the instruction that stored b1 has already finished
execution in s2.

to be drained during a future cycle transition—due to c v c′—as soon as
instruction ins reaches the required level of progress.

Forwarding can render the overall system non-monotonic: a store buffer
entry in c′ which is already written back in c v c′ could be used to forward
the data requested by a load. In configuration c, the requested data is
instead fetched from the main memory which takes longer.
Coalescing makes the store buffer behave as an ordinary FIFO cache

which is known to exhibit timing anomalies [Berg, 2006]. A coalescing store
buffer behaves non-monotonically w.r.t. the above order vS as illustrated
by the example in Figure 4.9. Coalescing store buffers that employ the
least-recently-used retirement order are not prone to such effects and thus
might keep the overall system monotonic.
For the above store buffer designs, the sequence of memory accesses is

sufficient to determine their behaviour. In case of the strictly in-order
pipeline, this sequence does not depend on the pipeline state and can be
derived at the instruction-set-architecture level. Thus, similar to caches,
the behaviour of store buffers, even with forwarding and coalescing, can be
analysed prior to the pipeline analysis using techniques from cache analysis.
The pipeline analysis then uses the results of the store buffer analysis to
determine possible latencies of load and store instructions.

Last, we examine a store buffer that can flush entries that persist for too
long—independent of the pipeline progress. Consequently, the progress of
a store buffer entry depends on the time spent waiting in the store buffer.
The longer a store has waited in the buffer, the more progress the associated
store instruction has.
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Figure 4.10: Non-monotonic cycle behaviour of a two-entry store buffer with
a time-based draining strategy. On the left, the store buffer drains an
entry to main memory. On the right, the store buffer still waits to reach
the time threshold.

If a certain time threshold is reached, the respective store buffer entry
is drained—regardless of the pipeline state. Figure 4.10 shows an example
for the non-monotonic behaviour of such a system. Initially, the left con-
figuration has more progress than the right one: the pipelines’ progress is
identical and the store buffer on the left already drains an entry while the
store buffer on the right is still waiting. The pipelines are about to start a
load memory access in the next cycle. As the store buffer on the left drains
an entry, the load memory access has to wait for the bus to become free
again. The pipeline on the right starts the load memory access immediately
and drains the store buffer later—potentially without any conflict on the
bus. For systems with a fully-pipelined memory path, the above problem
might not occur as the bus is never blocked by previous accesses.

To summarise, whether or not a strictly in-order pipeline equipped with a
store buffer behaves monotonically depends on the specific design decisions.
On the one hand, we sketched that it is possible to use store buffers in
monotonic systems. On the other hand, we demonstrated by example that
certain store buffer features found in realistic systems break monotonicity.
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branch outcome

a b target

speculation

time

v 6v

a target
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Figure 4.11: Branch speculation can result in non-monotonic behaviour in
the fetch stage as memory accesses cannot be preempted. This can lead
to speculation anomalies as shown above.

Speculative Execution

The strictly in-order pipeline we have proposed above does not exhibit
speculative processing of instructions. In particular, upon a branch whose
condition evaluates late, the pipeline stalls the instruction fetch instead of
speculatively fetching from the predicted branch target.
While speculation can increase the performance, it generally leads to

non-monotonic behaviour of the system. The non-monotonicity originates
from the fact that the pipeline might not be able to immediately stop
all speculative actions once a misspeculation is detected. For example, a
(speculative) memory access can usually not be aborted immediately but
only when the memory subsystem is ready.
In Figure 4.11, we illustrate an example for non-monotonic behaviour

which is known as speculation anomaly [Reineke et al., 2006]. After the fetch
of a branch instruction, we speculatively continue fetching from address a.
In case of a fast cache hit (more progress), the speculative fetching advances
to address b which then misses the cache. As soon as the misspeculation is
detected, the access to b cannot be aborted but must be finished first. The
case of a missing the cache thus turns out to be the overall faster case.

If speculative actions can be undone immediately once a misspeculation
is detected, we conjecture that speculation can be employed in a monotonic
pipeline. The behaviour of the memory subsystem determines whether an
ongoing memory access can be stopped at no additional cost. This can

98



4.9 Outlook: Monotonic Extensions

be possible in specific scenarios, e.g. a fully-pipelined datapath to a static
memory with single-cycle latency [de Dinechin et al., 2014]. However, in
general, this is not the case: in DRAM-based systems for example, there is
a penalty related to switching the active row.
Even if speculative memory accesses are prohibitive, the pipeline could

nevertheless speculatively fetch instructions from the cache as long as the
cache is hit. Instruction cache hits are usually served within a single
cycle. Thus, when a misspeculation is detected, the pipeline can flush the
speculatively fetched instructions and continue normal execution without
any additional delay. Upon a cache miss, the pipeline would still stall the
fetch stage until the branch condition is evaluated.
However, speculation, even speculation-while-hit, has an impact on the

cache behaviour: the access sequence including speculative accesses now
depends on the pipeline states during execution. Under speculation-while-
hit, the behaviour of caches that are not sensitive to cache hits, such as
direct-mapped or set-associative caches with FIFO replacement, can still
be analysed at the ISA level. The analysis of caches with LRU replacement
would need to conservatively approximate the effects of potential, specula-
tive accesses. Another, hardware-based, approach to catch the effects of
speculative cache hits is to employ what one might name a timing-committed
cache state. There is a shadow copy of the replacement state that is up-
dated upon speculative accesses while the original replacement state stays
unchanged. If the speculation turns out to be correct, the shadow state
is copied into the original state; otherwise, the shadow state is reset to
the original state. When using this mechanism, speculative cache hits do
not influence the replacement policy’s logical state and thus future cache
behaviour. The term “timing-committed” is inspired by the term “commit”
used to describe that a (speculatively) executed instruction takes effect on
the logical machine state [Smith and Pleszkun, 1985].

Interrupts

Interrupts are a mechanism to enable the pipeline to react to external
events irrespective of the ongoing execution. Upon an interrupt, the current
execution is paused, the external event is handled using a special service
routine, and finally the original execution is resumed. Interrupts are used
for example to implement non-cooperative, preemptive scheduling using a
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timer that generates interrupts periodically. Similar mechanisms are used
to implement exceptions (e.g. division by zero) or privileged system calls.

The straightforward realisation of the interrupt mechanism likely results
in non-monotonic behaviour. If an interrupt is detected in a certain pipeline
stage, the instructions in later stages complete normally while instructions
in earlier stages are aborted. Similar to the speculation example, a pipeline
state with more progress that just started an instruction fetch memory
access can turn out detrimental for the overall progress in case an interrupt
occurs.

The non-monotonicity described above can be avoided at the expense of a
longer interrupt latency, i.e. the latency between detecting and servicing an
interrupt. As an example, an artificial delay between detecting and servicing
could be introduced such that the pipeline is guaranteed to complete all
potentially ongoing memory accesses during this delay. The additional
delay is incurred in any case, even if no memory accesses are ongoing.
This prolongs the average-case interrupt latency. The worst-case interrupt
latency remains the same because a longer artificial delay brings no further
advantage.
However, the non-monotonic behaviour upon interrupts is not a real

issue. Interrupts are calls to the underlying execution environment such
as an operating system that the high-level system analysis takes care
of. Thus, we want to decompose the behaviour of interrupts from the
uninterrupted execution of a program. In Section 5.3 (Compositionality by
Hardware Design), we show that interrupts can be treated in a compositional
manner as long as the cycle behaviour under the absence of interrupts
is monotonic. Consequently, low-level analysis only needs to consider
uninterrupted executions of a program.

Out-of-Order Execution

The execution of instructions in program order limits the amount of
instruction-level parallelism that can be exploited to increase performance.
Dynamic scheduling algorithms implemented in hardware, e.g. Tomasulo’s al-
gorithm [Tomasulo, 1967], can execute instructions as soon as their operands
are ready. This can lead to instructions being executed out-of-(program)-
order. Furthermore, pipelines featuring out-of-order execution have multiple
functional units that operate in parallel. For each functional unit, the dy-
namic scheduling algorithm greedily selects an instruction for execution
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Figure 4.12: Scheduling anomaly. A shorter latency of a entails the overall
worst case. Arrows denote precedence constraints. Instructions a and e
execute on resource 1 while, b, c, and d execute on resource 2.

among all instructions with ready operands. As an example, the scheduler
might select the oldest instruction that is ready.

Multiprocessing systems are generally known to exhibit timing anomalies
for a long time [Graham, 1969]. Consequently, out-of-order execution is
prone to timing anomalies as well [Lundqvist and Stenström, 1999]—due
to its non-monotonic behaviour. Consider the example in Figure 4.12
that has been presented in [Li et al., 2006]. A longer execution latency of
instruction a results in a reordering of instructions d, b, and c which suits
the further execution better. Thus the longer latency case leads to a shorter
overall execution time.
Such instruction reorderings that can cause non-monotonic behaviour

are essential for dynamic scheduling. Modifying an out-of-order pipeline to
support monotonicity—if possible at all—will likely come at a high price in
terms of additional hardware cost and/or reduced performance.
Over-provisioning of functional units might be an option to avoid the

above behaviour. Imagine the system features another instance of resource 2.
In this case, instruction d could always be executed as soon as it is ready
and e would finish at the same time independent of instruction a. The
required headroom of additional resources should generally be related to
the number of instructions that can be overtaken, i.e. the size of the reorder
window. Replicating resources will be expensive and small reorder windows
will limit the possible reorderings and thus the performance. Furthermore,
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it is an open question whether the above mechanism is really sufficient to
provide monotonicity.
Another solution might be to allow reorderings only within individual

functional units. While the computations of instructions can be performed
out-of-order, their results are queued at the end of the functional unit
and put onto the common data bus in program order. In the case below
the time axis in Figure 4.12, d could be computed out-of-order while its
result is made available right after c. Consequently, the execution of e is
delayed and does not finish earlier than in the case above the time axis. The
technique is only useful if the execution latency is (significantly) larger than
the latency to put the results on the data bus. Furthermore, the functional
units must be preemptable to avoid that an instruction is blocked by the
ongoing execution of younger instructions. The performance gain over a
strictly in-order pipeline is, however, unclear. Again, a formal proof of
monotonicity for such a pipeline is required.

To summarise, out-of-order execution is hard to turn monotonic. Even if
it might be possible, the gain in performance might not be worth the effort.
Nevertheless, the sketched ideas could be explored as future work.

4.10 Outlook: Enriched Abstractions
In Section 4.4 (Non-Monotonicity of In-Order Pipeline), we discussed that
non-monotonicity is an issue for progress-based abstractions that operate on
cycle-granularity and treat the progress of individual instructions separately.
In this section, we briefly sketch two similar alternative progress-based
abstractions that can deal with non-monotonic behaviour.
The first approach still treats the progress of individual instructions

separately, but operates at coarser granularity than processor cycles. Recall
the example in Figure 4.4 that depicts an abstract configuration ĉ where
two instructions compete for the memory. In the described set of concrete
configurations γconf (ĉ), there are configurations that perform the instruction
fetch or the data memory access in the next cycle, respectively. Thus, for
neither of the instructions, progress can be guaranteed in the next cycle.
What information can be derived if we consider a longer time span at once,
e.g. twice the worst-case memory latency? For each concrete configuration
in γconf (ĉ), both the instruction fetch and the data memory access will have
progressed to their respective next stage after that many cycles. Either
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the fetch has been followed by the data access or vice versa. Thus, it is
possible to derive a ĉycle-relation that progresses in each step and is locally
consistent w.r.t. the iterated cycle-relation. In [Li et al., 2006], Li et al.
approximate the maximal time interval for which an instruction can occupy
a stage of an out-of-order pipeline. Their analysis operates at a granularity
coarser than individual processor cycles which circumvents issues caused by
non-monotonic behaviour.
Besides the progress of individual instructions, a relational analysis

approach additionally approximates the combined progress of pairs of
instructions. Although we do not know which of the two instructions
progresses in the next cycle, we know that at least one of the two instructions
progresses. At some point, the combined progress exceeds twice the memory
latency. Similar to the first approach, we can then normalise our abstract
configuration by advancing both instructions to their next respective pipeline
stage. We can use our usual criterion for local consistency but we need to
additionally prove the correctness of the normalisation operator.

In the end, both approaches are based on the same insight: global knowl-
edge can help to provide progress-based abstractions for non-monotonic
systems. However, the derivation of such global knowledge is hard, espe-
cially for more complex systems. Furthermore, coarser abstractions will
introduce additional pessimism to the analysis.
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Chapter 5
Achieving Timing Compositionality

Compositionality is the foundation of the separation of the timing verifica-
tion problem into the low-level analyses and the higher-level schedulability
analyses. The separation of concerns enables a more efficient overall timing
analysis. Furthermore, different research communities can focus on their
respective subproblem: low-level or schedulability analysis. The validity
of the compositionality assumption is usually taken for granted without a
closer look at the system under analysis.

In this chapter, we shed some light on this often neglected compositionality
assumption. First, we recap the meaning of compositionality from the
perspective of an actual analysis. Second, we show by experiments that
even rather simple systems do not behave compositionally. We provide
explanations why this is the case. Last but not least, we discuss three
approaches to achieve compositionality and provide the respective proofs.

5.1 Validation of Compositionality Assumption
Recall the example scheduling interface from Section 3.5 (Schedulability
Analysis). An upper bound Ri on the response times of a task i is composed
from constituents provided by low-level analyses as follows:

Ri = Ci + Corei(Ri) + Cachei(Ri) ·ml + Busi(Ri) ·ml + Drami(Ri) · rl,

where Ci denotes the non-interfered execution time, Corei, Cachei, Busi,
Drami the interference on the respective shared resource, and ml (rl) the
access (refresh) latency of the main memory. Note that most approaches
to schedulability analysis in literature—especially in multi-core timing
analysis—use similar formulas to calculate bounds on the response times:
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Atanassov and Puschner [2001]; Schliecker and Ernst [2010]; Schranzhofer
et al. [2011]; Altmeyer et al. [2015].
Let Ij denote the amount of interference on the j-th shared resource,

e.g. the shared bus, with the respective penalty factor pj , e.g. the memory
latency. We can rewrite the formula above as a function in terms of Ij :

Ri(I1, . . . In) = Ci +
n∑
j=1

Ij · pj . (5.1)

In other words, the response time bound Ri is assumed to behave linearly
w.r.t. the amount of interference.

In 2015, Jacobs et al. propose a low-level analysis that computes the
worst-case response time of a non-preemptive task given a certain amount
of interference on a shared bus with round-robin arbitration. The low-level
analysis can capture fine-grained effects on the task’s timing caused by the
given amount of shared-bus interference. In order to validate the linearity
of Ri in terms of Ij , we use the approach proposed by Jacobs et al. to
sample upper bounds on the response times of a task for several values
of Ij . We call the resulting curve the interference response curve of the
given task.
As an example, we consider the non-preemptive execution of tasks on a

dual-core machine with round-robin event-driven shared bus arbitration.
The cores feature a five-stage in-order pipeline with private caches and a
single-entry store buffer. Figure 5.1 shows the sampled interference response
curves for selected programs of our benchmark pool. We use 40 samples
per program to obtain the respective curve.
The x-axis corresponds to the only source of interference: shared-bus

blocking. Due to round-robin arbitration, each memory access can be
blocked by at most one concurrent access per co-running core. Thus, there
is a well-defined maximal amount of interference per program on a dual-core
machine: MD, the maximal number of memory accesses performed by the
program. The y-axis shows the additional execution time due to interference,
relative to the direct effect of the maximal interference MD ·ml. The curve
of a program behaving compositionally would have a slope of one with a
y-intercept of zero.

We make the following observations:
Observation 5.1.1. For some programs, e.g. statemate, the additional
execution time due to shared-bus interference exceeds the expected penalty.
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Figure 5.1: Interference response curves for selected programs.

107



Chapter 5 Achieving Timing Compositionality

Observation 5.1.2. For some programs, e.g. prime, a significant portion
of the expected additional latency is hidden.

Observation 5.1.3. For some programs, e.g. ns, additional interference
beyond a certain amount does not increase the execution time further.

In the following, we provide detailed explanations for these observations.

Amplifying Timing Anomalies A non-deterministic choice during low-
level analysis where the local worst case does not imply the global worst
case is commonly known as a timing anomaly (Section 2.5). The implications
of timing anomalies on the efficiency of low-level analysis are discussed in
the literature, e.g. in [Reineke et al., 2006]. Such anomalies are in general
not an issue for the validity of the compositionality assumption.
However, Lundqvist and Stenström [1999] already described a second

type of anomaly. A prolongation in the local worst case, e.g. an increase
in execution latency of a single instruction, can lead to a global increase
in execution time that exceeds the local prolongation. While servicing the
local worst case, the abstract pipeline state can change in a way that leads
to an indirect effect, i.e. an additional execution time increase beyond the
local prolongation. Accordingly, we term the local prolongation the direct
effect. We call a non-deterministic choice an amplifying anomaly if the
overall execution time increases by more than the direct effect, i.e. there is
an indirect effect.

In the above scenario, an amplifying timing anomaly occurs if a concur-
rent memory access, which occupies the shared bus for ml cycles, leads to
an increase in worst-case response time of more than ml. Obviously, ampli-
fying timing anomalies render the compositional response time calculation
unsound. Ignoring indirect effects leads to estimates that do not constitute
upper bounds, which is supported by our Observation 5.1.1.
Amplifying anomalies are known to occur in the analysis of complex,

dynamically scheduled processors. We observe amplifying timing anomalies
even in the analysis of low-complexity processors comparable to commercial
microcontrollers. In the following, we provide an example that we encoun-
tered during the low-level analysis of the benchmark program bsort100.c
taken from the Mälardalen benchmark suite [Gustafsson et al., 2010]. We
found this anomaly during the analysis of a conventional five-stage in-order
pipeline with a single-entry store buffer as described in Appendix A. As
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Figure 5.2: Amplifying timing anomaly upon uncertainty of the length of
store access str, e.g. due to shared-bus blocking.

discussed in Section 4.4 (Non-Monotonicity of In-Order Pipeline), such a
pipeline can perform memory accesses out of program order.

In Figure 5.2, we show the program snippet and the amplifying anomaly
triggered by the uncertain duration of the store memory access str. In
Scenario A, the memory access of instruction str finishes fast. In Scenario B,
the access of str is prolonged, e.g. by shared-bus blocking. In both scenarios,
the access of instruction str is handled by the store buffer in order to not
block the actual pipeline. Consequently, the execution of instructions
subsequent to str can advance in the pipeline.
As a result, the fetch of instruction mul becomes ready, but is blocked

at first because the memory is busy with str. As soon as the write access
of str finishes in Scenario A, the fetch of mul is started as it is the only
ready access. During the prolonged write access of str in Scenario B,
however, the read access of the load instruction ldr becomes ready as well.
Thus after the access of str has finished, there are two ready accesses in
Scenario B: the fetch of mul and the data access of ldr. As data accesses
are commonly prioritised over instruction fetches, ldr starts first.
In both scenarios, instruction mul can only execute after it has been

fetched. In Scenario A, mul’s execution can be overlapped with the (in-
dependent) load. In the five-stage in-order pipeline, the multiplication is
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Figure 5.3: The execution of two subsequent arithmetic instructions hiding
the latency prolongation of a preceding store.

performed in the execute stage while the load is concurrently performed in
the subsequent memory stage. This overlapping is not possible in Scenario B
as the load has been performed prior to the mul fetch. Ultimately, the
incurred penalty on the execution time in Scenario B is larger than the
actual prolongation of the write access of str. The indirect effect in this
example is bounded by the execution latency of mul as well as the memory
load latency.
Note that an analogous amplifying anomaly can be constructed in case

instruction fetches are prioritised over data accesses.

Hiding Latencies Modern processors try to exploit instruction-level par-
allelism, i.e. they process multiple consecutive instructions at the same
time. Consequently, a latency increase of a single instruction can often be
(partially) hidden by the execution of other instructions. Thus, the local
latency increase is not (fully) visible in the overall response time as seen in
Observation 5.1.2.
As an example for our system scenario, consider Figure 5.3. The store

operation str is performed in the background memory, while subsequent
independent arithmetic instructions mul and div execute concurrently—due
to pipelining and the presence of the single-entry store buffer. For the
overall execution time, it is irrelevant whether the store is prolonged or not
as the memory latency is hidden by the execution of useful independent
operations in both cases.

Unlike amplifying timing anomalies, latency hiding effects do not challenge
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the soundness of the compositional response time calculation. However, a
timing bound that is derived compositionally may overestimate the bound
derived by a more integrated analysis such as [Jacobs et al., 2015]. The better
a microarchitecture can hide latencies, the less precise will compositionally
derived bounds be.

Distinct Worst-Case Paths To a certain extent, latency hiding effects
also explain Observation 5.1.3. Another reason for this observation has
been briefly mentioned in Section 2.6 (Compositionality): the separate
maximisation of the different weight contributions.

In our example scenario, we consider two different weights characterising
the execution of a task i: the non-interfered execution time Ci and the
memory demand MDi used to determine the shared-bus interference. Those
weights are individually maximised over all execution traces of the program
under analysis. The traces exhibiting the respective worst-case behaviour
do not have to coincide. Consequently, the trace resulting in the maximal
execution time might be less affected by shared-bus interference compared
to the trace with maximal memory demand.

By design, the commonly used scheduling interfaces do not take such de-
pendencies into account. Thus, the compositional response time calculation
overestimates the response times by combining the individually maximised
weight contributions.

Remarks on the Curve Shape In Figure 5.1, the interference response
curves feature concave shapes. The reason behind the concave shapes is
two-fold. First, we consider the interference at the granularity of individual
interfering memory accesses. These individual accesses and their respective
blocking behaviour are usually independent of each other. Second, in order
to maximise the overall response time, the path analysis in [Jacobs et al.,
2015] distributes the given interference budget in decreasing order w.r.t. the
timing impact of the individual interfering accesses. As a consequence, the
additional increase in execution time either stays constant or reduces with
each additional interfering access.
However, the interference response curves are not guaranteed to be

concave. Rare scenarios are conceivable in which an amplifying timing
anomaly is only triggered if multiple interfering accesses occur together.
Such scenarios would render the curve non-concave.

111



Chapter 5 Achieving Timing Compositionality

To summarise, the worst-case response time does not always grow linearly
w.r.t. the amount of interference Ij . We illustrated that latency hiding
techniques in the microarchitecture as well as the separate maximisation of
individual weight contributions can lead to overestimation in a compositional
response time calculation. To make matters worse, the compositionality
assumption is invalid, even for common low-complexity processors, due to
the presence of amplifying timing anomalies.

In the following, we discuss the decomposition that underlies the response
time formula in Equation 5.1. Thus, we close the gap between the formulas
used in schedulability analysis and the formal definition of compositionality
(Section 2.6). Afterwards, we propose three approaches to satisfy the
compositionality assumption, i.e. how to soundly deal with amplifying
timing anomalies. Finally, we provide a qualitative and a quantitative
comparison of the approaches in Section 5.6.

5.2 Underlying Decomposition
In the following, we call events that cause an increase in execution time
timing accidents according to [Wilhelm et al., 2010]. A timing accident is
associated with its penalty pacc, i.e. the local increase in execution time—its
direct effect. Without loss of generality, we consider a single generic source
of interference modelled as the number of timing accidents.

The overall goal of timing analysis is to compute a bound on the response
times of a given task t, i.e. the number of cycle transitions wtime(τ) in
each trace τ through the corresponding execution graph Gt. In order
to calculate such bounds, the schedulability analysis composes the ideal
execution time Ct and the number of interfering timing accidents Iacc
obtained from the preceding low-level analyses. The ideal execution time Ct
approximates the partially defined weight contribution wcideal(τ) that yields
the number of cycle transitions in τ if τ does not exhibit a timing accident.
Iacc bounds the number of timing accidents wcacc(τ) on a given trace τ .
The combination operator

⊕
is given by⊕

(Ct, Iacc) := Ct + Iacc · pacc.

The schedulability analysis is only sound if the weights wcideal ,wcacc, and
the operator

⊕
form a max-decomposition in the sense of Definition 2.6.2 in
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Section 2.6 (Compositionality). Note that they do not form a decomposition
at the level of individual traces as wcideal is only partially defined.
We define another weight contribution function wcbase that counts the

number of cycle transitions in a trace except for the transitions in which
a timing accident is rectified. Each accident is rectified within pacc many
cycle transitions, where pacc denotes the direct effect penalty. Note that
wcbase accounts for any indirect effects caused by an accident. By definition,
wcbase,wcacc, and

⊕
form a decomposition at the level of individual traces

in the sense of Definition 2.6.1:

∀program p∀τ ∈ T (Gp). wtime(τ) ≤
⊕

(wcbase(τ),wcacc(τ)).

Unlike wcideal , an approximation of wcbase has to consider the influence of
timing accidents in order to account for potential indirect effects. From the
perspective of low-level analysis efficiency, there is no gain in approximating
wcbase rather than wtime.

On execution traces that do not contain a timing accident, the weight con-
tributions wcbase and wcideal coincide by definition. If there are no indirect
effects caused by the considered timing accidents, wcideal dominates wcbase
in the sense of Definition 2.5.3 in Section 2.5 (Domination). Consequently,
wcideal ,wcacc, and

⊕
form a max-decomposition.

Theorem 5.2.1. If wcideal dominates wcbase, the weight contributions
wcideal and wcacc together with the combination operator

⊕
form a max-

decomposition of wtime.

Proof. Let a task t be given. We derive

max
τ∈T (Gt)

wtime(τ)

≤ max
τ∈T (Gt)

⊕
(wcbase(τ),wcacc(τ)) Definition

≤
⊕(

max
τ∈T (Gt)

wcbase(τ), max
τ∈T (Gt)

wcacc(τ)
)

Monotonicity of
⊕

≤
⊕(

max
τ∈T (Gt)

wcideal(τ), max
τ∈T (Gt)

wcacc(τ)
)

Domination

≤
⊕

(Ct, Iacc) = Ct + Iacc · pacc =: Rt Analysis
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Finally, we are left with the proof obligation that wcideal dominates
wcbase. To prove domination for a concrete type of timing accident and
an actual hardware platform, we will show that the sufficient condition of
Theorem 2.5.5 in Section 2.5 (Domination) is satisfied. This will either
require the absence of indirect effects (Section 5.3) or an adjustment of the
penalty used in the combination operator

⊕
(Section 5.4).

In the following, we consider as timing accidents:

• the prolongation of the memory access latency which might be caused
by shared-bus blocking, cache write backs, or DRAM refreshes,

• instruction and data cache misses—both together and in isolation,
and

• the handling of processor interrupts.

5.3 Compositionality by Hardware Design
In this section, we revisit our strictly in-order pipeline design from Sec-
tion 4.5 with a focus on compositionality. Furthermore, we propose a
hardware modification which is applicable to any processor and enables
compositionality with efficient low-level analysis. For both hardware tech-
niques, we provide formal proofs of domination as demanded in Section 5.2.
Note that such custom hardware modifications might currently not be
economically feasible. However, they may serve as guidelines for how to
design future predictable microarchitectures that allow for rigorous static
timing verification.

5.3.1 Stalling
During the rectification of a timing accident in a pipeline stage, an ordinary
pipeline greedily continues the execution in the other stages to hide as much
of the associated penalty as possible. Due to the greediness, the pipeline
might make decisions that actually do not suit the further global execution.
As an example, the pipeline might start a long-running and non-preemptive
operation such as a memory access which cannot be aborted once the access
turns out unnecessary. We call the additional increase in execution time
caused by such greedy decisions the indirect effect of the timing accident.
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We say a pipeline stage stalls if it stops the execution of its current
instruction, i.e. the stage does not change its state. A common reason for
stalls are pipeline hazards, e.g. a data hazard where the decode stage waits
for a data memory operation to complete.

Mechanism A mechanism to prevent indirect effects upon a timing acci-
dent is to cause all pipeline stages to stall. This way, the whole processor
core does not change its state during the rectification of a timing accident,
e.g. while waiting for the shared bus to become available. Consequently,
the core cannot make a decision which additionally prolongs the execution
time. On the downside, there is no potential to hide the penalty by over-
lapped execution of surrounding instructions. Thus, stalling counteracts
Observation 5.1.1 and Observation 5.1.2 in Section 5.1.
In order to implement this mechanism in hardware, we introduce a

new signal that stalls all pipeline stages except for the stage that incurs
the timing accident. The stage that incurs the accident is identified by
the signal stallcore. The corresponding instruction is allowed to progress
within its stage to rectify the timing accident. The signal stallcore is
generated by the respective hardware component that detects the accident.
The cycle behaviour cycle((stage, cnt))(evs)(p′) of the in-order pipeline in
Appendix A.1 equipped with the stalling mechanism is described as:

p′ := λi ∈ Id.


(stage′(i), latency(i)) : stallcore = ⊥

∧ready(i) ∧ willbefree(stage′(i))
(stage(i), cnt(i)) : ⊥ 6= stallcore 6= stage(i)
(stage(i), cnt′(i)) : otherwise

where ⊥ denotes that the signal stallcore is absent, i.e. no timing accident
is happening.

Next, we discuss for several types of timing accidents whether the explained
mechanism is applicable. If applicable, we prove that wcideal that ignores
traces exhibiting such accidents dominates wcbase. We choose Ĉ, ĉycle,
and v according to Section 3.3. The abstraction Ĉ keeps the state of the
pipeline’s control path concrete while abstracting from the state of the data
path. In particular, we thus use the equality of pipeline states as partial
order.
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Figure 5.4: wcideal dominates wcbase—or in other words: the no-timing-
accident case dominates the prolonged-latency case w.r.t. wcbase—when
stalling is employed.

Latency Prolongation A group of timing accidents such as shared-bus
blocking, cache write backs, or DRAM refreshes has a similar effect: they
prolong the latency of an instruction that accesses main memory. The
hardware components that encounter the accident, i.e. the shared bus
arbiter, the cache controller, or the DRAM controller, signal the processor
via stallcore that an accident is happening. Consequently, the processor
core stalls as long as a timing accident is signalled. This prevents any
indirect effects and results in wcideal dominating wcbase.

Lemma 5.3.1. The weight wcideal that ignores any execution trace with
latency-prolonging timing accidents dominates wcbase.

Proof. We prove the lemma by showing that the sufficient condition of
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Theorem 2.5.5 is satisfied. Consider Figure 5.4 as illustration. lb denotes
the presence of a timing accident that prolongs the memory latency by pacc,
e.g. a concurrent access blocking the shared bus. la denotes the absence
of the timing accident. Let a program p, configurations c, cb ∈ Ĉ be
given such that ĉycle(c)(evsb)(cb) and lb ∩ evsb 6= ∅. We choose ca as the
configuration that succeeds c taking the same non-deterministic choices as
ĉycle(c)(evsb)(cb) except for the timing accident, i.e. evsa \ la = evsb \ lb.
Let πb ∈ Fp(cb) be a partial final trace. We choose k as the penalty pacc.
We choose πa = ca to be a path of length zero.

We need to show that πbk.c = c′b v ca and

wcbase(c ◦ (evsb, cb) ◦ πb0..k) ≤ wcideal(c ◦ (evsa, ca)).

As the timing accident has only an influence on the latency of the
memory operation, the immediate successors ca and cb are identical up
to the latency of ins3 in the memory stage. According to the stalling
mechanism, the core stalls for the next pacc cycles following cb. Thus, the
resulting configuration c′b is identical to cb up to the latency of ins3 that
decreased once per cycle. Consequently, ca and c′b are indeed identical and
thus c′b v ca.

According to our choice of wcbase, the cycles between cb and c′b which are
needed to rectify the accident do not contribute to wcbase. We conclude the
proof by using the linearity of weights:

wcbase(c ◦ (evsb, cb) ◦ πb0..k) = wcbase(c ◦ (evsb, cb)) + 0
= 1
= wcideal(c ◦ (evsa, ca)).

Data Cache Miss The cache behaviour of a program is usually already
taken into account in the non-interfered execution time wcideal . In this
paragraph, we consider the behaviour of one of the caches in a compositional
way. Such a decomposition could for example be desirable for a cumulative
analysis of the data cache behaviour. We discuss the behaviour of the data
cache in the following, although similar arguments apply for instruction
caches as well.
The fetch and memory stage of an in-order pipeline following the von-

Neumann architecture scheme share a bus to the common memory that
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(ins5, ml)
ins4

(ldr, 0)
ins2

ins1

Figure 5.5: Pipeline state that leads to indirect effects caused by ldr missing
the data cache.

holds code and data. An additional data cache miss can trigger significant
indirect effects.
As an example, consider the execution time of instruction ins4 in the

pipeline state depicted in Figure 5.5. If the load ldr hits the data cache,
instruction ins4 leaves the pipeline after four cycles assuming the absence of
further hazards. If the load ldr misses the data cache, the load instruction
and consequently ins4 are stalled because the memory bus is blocked by
the instruction fetch of ins5. The data memory access of ldr starts as
soon as the fetch of ins5 finishes. As soon as the load access completes,
instruction ins4, which occupied the execute stage in the meantime, needs
three cycles to leave the pipeline. The overall timing difference amounts
to 2 · ml − 1, which is almost twice the direct effect penalty for a cache
miss—namely the memory latency ml. Even worse, the pipeline states
resulting from the hit and miss case are incomparable according to the
chosen partial order v≡=.

The stall mechanism described above cannot be applied in this particular
case. As a data cache miss might need to wait for a fetch to complete, the
fetch stage cannot stall during this timing accident without deadlocking
the core. Stalling the core only when the cache miss has access to the bus
is not sufficient. The resulting states are still incomparable as the pipeline
advances while waiting for the bus to become free.

Instruction and Data Cache Miss In a preemptive setting, evictions of a
preempting task can cause additional cache misses in the preempted task.
As the cache-related preemption delay depends on scheduling decisions, it
is considered during the high-level schedulability analysis. This requires a
decomposition into non-preempted execution and additional cache misses
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due to preemption. In this paragraph, we consider both data and instruction
caches in a compositional manner at the same time.
The stalling mechanism causes the processor core to stall while an in-

struction or data cache miss is rectified, i.e. a cache line is transferred from
main memory to the respective cache. Consequently, a memory access
resulting from a cache miss can never be blocked by an ongoing access to
the common bus. The only corner case arises if two instructions miss both
caches, instruction and data, at the same time. The requested cache lines
are loaded one after another taking 2 ·ml cycles, i.e. the direct effect penalty
for a data miss plus the penalty for an instruction miss. During this time,
the processor core is stalled resulting in the same pipeline state as if both
instructions hit the caches.
Thus, the weight wcideal , which is only defined on execution traces ex-

hibiting cache hits exclusively, dominates the weight wcbase. Therefore, the
efficient low-level analysis can be employed that approximates wcideal and
only follows the cache hit cases. The formal proof is along the lines of the
proof for the latency prolongation accident (see Figure 5.4).

Interrupts The stalling mechanism to ensure compositionality is not com-
patible with interrupts. Upon an interrupt, the pipeline stops the execution
of the current program in order to rectify the timing accident, i.e. to execute
the interrupt service routine. As soon as the service routine completes,
the execution of the original program is resumed. Since the rectification
requires the pipeline, stalling the pipeline upon an interrupt cannot be a
solution.

5.3.2 Strictly In-Order Pipeline
In Section 4.5, we introduced a strictly in-order pipeline which we designed
with predictability in mind. Indeed, we have been able to demonstrate in
Section 4.7 that our progress-based abstraction does not exhibit anomalous
behaviour w.r.t. wtime, i.e. a low-level analysis could safely follow the locally
worst case only. In this section, we investigate the influence of the strictly
in-order design principle on compositionality and whether we can prove the
absence of amplifying timing anomalies.

The progress-based partial order v offers more flexibility in the domina-
tion proofs than the equality of pipeline states. This increased flexibility
allows to partially overlap timing accidents with the execution of other
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instructions (cf. Observation 5.1.2)—in contrast to the above stalling mech-
anism. We can still prove that wcideal dominates wcbase. This is important
to enable an efficient low-level analysis that can ignore the timing accident
cases.

Latency Prolongation States of the strictly in-order pipeline are partially
ordered according to the progress of instructions within the pipeline. The
more progress a pipeline state has, the shorter the remaining execution time
to finish the current program. Furthermore, the progress of a pipeline state
can only increase by a cycle transition. Consequently, after the rectification
of a timing accident, the respective pipeline state has at least the same
progress as the state without the accident.
The strictly in-order design prevents any indirect effects and results in

wcideal dominating wcbase.

Lemma 5.3.2. The weight wcideal that ignores any execution trace with
latency-prolonging timing accidents dominates wcbase.

Proof. We prove the lemma by showing that the sufficient condition of
Theorem 2.5.5 is satisfied. lb denotes the presence of a timing accident
that prolongs the memory latency by pacc, e.g. a concurrent access blocking
the shared bus. la denotes the absence of the timing accident. Let a
program p, configurations c, cb ∈ Ĉ be given such that ĉycle(c)(evsb)(cb)
and lb ∩ evsb 6= ∅. We choose ca as the configuration that succeeds c
taking the same non-deterministic choices as ĉycle(c)(evsb)(cb) except for
the timing accident, i.e. evsa \ la = evsb \ lb. Let πb ∈ Fp(cb) be a partial
final trace. We choose k as the penalty pacc. We choose πa = ca to be a
path of length zero. Figure 5.6 illustrates such a scenario.

We need to show that πbk.c = c′b v ca and

wcbase(c ◦ (evsb, cb) ◦ πb0..k) ≤ wcideal(c ◦ (evsa, ca)).

As the timing accident has only an influence on the latency of the
memory operation, the immediate successors ca and cb are identical up to
the latency of ins3 in the memory stage. According to the strictly in-order
design, the pipeline progresses from cb to c′b @ cb during the pacc many
cycles, Lemma 4.6.3 (Positive Progress). Furthermore, the latency of
memory operation ins3 decreases from ml + pacc to ml in the meantime.
Consequently, c′b v ca.
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Figure 5.6: wcideal dominates wcbase in our strictly in-order design, or in
other words: the case without timing accident dominates the prolonged-
latency case w.r.t. wcbase. In contrast to the stalling mechanism, all
instructions can make progress during the rectification of the timing
accident.
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According to our choice of wcbase, the cycles between cb and c′b needed
to rectify the accident do not contribute to wcbase. We conclude the proof
by using the linearity of weights:

wcbase(c ◦ (evsb, cb) ◦ πb0..k) = wcbase(c ◦ (evsb, cb)) + 0
= 1
= wcideal(c ◦ (evsa, ca)).

Data Cache Miss Unlike ordinary in-order pipelines, the strictly in-order
design guarantees that the common bus is free if an instruction misses
the data cache. In particular, a data cache miss cannot be blocked by an
ongoing fetch of a succeeding instruction.
While the cache miss is served, i.e. the requested cache line is loaded

from main memory, the pipeline can only progress further according to
Lemma 4.6.3 (Positive Progress). This precludes any indirect effects caused
by a data cache miss. The formal domination proof follows the lines of the
proof for the latency-prolongation accident.

Instruction Cache Miss For instruction cache misses, the situation is more
complicated compared to data cache misses. In order to prevent reordering
effects on the common bus, the strictly in-order pipeline stalls instruction
cache misses as long as preceding instructions might perform data accesses
on the bus. Besides the memory latency ml needed to fetch a cache line,
an instruction cache miss causes additional pipeline stalls while waiting
for data memory instructions to finish. Thus, an instruction cache miss
can cause indirect effects. Note that these indirect effects occur no matter
whether the preceding memory instructions hit or miss the data cache.

Consequently, wcideal does not dominate wcbase w.r.t. instruction cache
misses. The weight contributions wcideal and wcacc together with the
combination operator

⊕
that employs the direct effect penalty, do not

constitute a decomposition. Nevertheless, the two following sections on
sound penalties and the compositional base bound provide solutions to
compositionally account for the effects of instruction cache misses in a
strictly in-order pipeline design.
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Interrupts Interrupts in the strictly in-order pipeline can be accounted
for in a compositional manner. In Section 5.4.2, we provide details on how
to derive a sound penalty for this timing accident.

5.4 Compositionality by Sound Penalty
Consider the decomposition presented in Section 5.2. Our goal is still to show
that wcideal dominates wcbase, where wcbase accounts for all additional cycles
caused by a timing accident except for those accounted by the penalty pacc
used in

⊕
. As a consequence, the results obtained by an efficient low-level

analysis approximating wcideal , i.e. assuming the absence of timing accidents,
could be safely used within a compositional schedulability analysis.
Up to now, we assumed that the penalty pacc covers the direct effect of

a timing accident, i.e. the time needed to rectify it. If an accident can,
however, cause indirect effects, the above statement does not hold any
longer. Consequently, no analysis component—neither wcideal nor wcacc
nor

⊕
—will account for the indirect effect. One possibility to remedy this

situation is to adjust the penalty pacc associated with the timing accident
such that the penalty, and thus

⊕
, accounts for all possible indirect effects

caused by a single occurrence of the respective accident—additionally to
the direct effect. Using such a penalty, wcideal trivially dominates wcbase.
While this approach tackles the soundness issue in Observation 5.1.1, it
aggravates the imprecision found in Observation 5.1.2.

Given a microarchitecture, finding such a penalty that is valid under all
circumstances is difficult. It requires an in-depth analysis of the microarchi-
tectural behaviour to determine the maximal indirect effect triggered by
the respective timing accident. To the best of our knowledge, there is no
(automated) technique known to bound the maximal indirect effect. A part
of this problem is to identify whether a microarchitecture exhibits domino
effects. In this case, the indirect effect is not bounded at all and thus no
sound penalty can be found.
For the strictly in-order pipeline with its progress-based partial order,

the problem is less complicated. In case of a timing accident, after some
fixed amount of cycles, the respective configuration has more progress than
the immediate successor in the non-accident case. Due to monotonicity, we
know that the indirect effects are bounded by this amount of cycles. We
provide examples below that illustrate how sound penalties for instruction
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cache misses and interrupts can be derived for the strictly in-order pipeline
design.
For general microarchitectures, we are not able to derive penalties that

capture indirect effects experienced by any program. For an individual
program, however, we can compute its interference response curve. Based
on its slope, we can derive an upper bound on the indirect effects of a
timing accident experienced by that particular program. A sound, program-
independent penalty would have to be at least as high.

5.4.1 Per-program Sound Penalties
We can experimentally derive sound penalties that account for the indirect
effects of a timing accident for a particular program. We use these program-
specific penalties in the experimental evaluation in Section 5.6 to evaluate
the sound penalty approach. However, the overestimation turns out to be
too excessive to obtain meaningful results. Furthermore, the computational
effort to calculate the program-specific penalties is significant. Thus, we
present this approach only for the sake of completeness.

In order to derive a penalty specific to a given program, we use the integer
linear program that encodes the interference response curve of Section 5.1.
This linear program is generated as part of the low-level analysis proposed
in [Jacobs et al., 2015]. We present the formulation of the ILP for shared-bus
interference, but it applies in a similar way to other sources of interference
as well.
First, we compute an upper timing bound t0 assuming no interference.

This bound t0 corresponds to the y-intercept of the interference response
curve. Next, we introduce an integer variable i to model a variable amount
of interference and change the corresponding interference constraint (cf.
Section 3.3): ∑

e∈Êp

blocked lb(e) · xe ≤ i.

The curve itself is described by the maximisation objective:∑
e∈Êp

timeub(e) · xe.

We are searching for the smallest penalty p, such that the linear function
t0 + p · i, which corresponds to the compositional combination operator,
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over-approximates the interference response curve. As i is already a variable,
p cannot be a variable as well because the resulting term p · i is no longer
linear and we could not use our linear solver for this problem.

However, we can conjecture a constant penalty pc and use an ILP formu-
lation to check whether pc is sufficient to capture all indirect effects. To
this end, we add the following constraint:∑

e∈Êp

timeub(e) · xe > t0 + pc · i.

As we only need to check for feasibility of the above ILP, the objective
function is irrelevant. If the above ILP is feasible, the solver has found an
amount of interference—given by the valuation of i—such that the linear
function is below the interference response curve. Thus, the conjectured
penalty pc was not sufficient. If the above ILP is infeasible, we know that
pc was sufficient to guarantee that the linear function t0 + pc · i is above
the interference response curve for all i.
We employ this check in a binary search to obtain a sound penalty for

the given program. We start with a lower bound l and an upper bound u
such that the ILP is feasible for pc = l and infeasible for pc = u. Next, we
perform the above ILP check with pc =

⌈
l+u

2
⌉
. If the ILP is feasible, we

found a counterexample and can refine l. If the ILP is infeasible, we have a
sound penalty and can refine u. We repeat the search until the difference
between l and u is below a certain precision threshold, e.g. 0.001.

Note that the approach to calculate a sound per-program penalty requires
the less efficient low-level analysis from [Jacobs et al., 2015] that takes the
potential interference caused by the respective timing accident already into
account.

5.4.2 Strictly In-Order Pipeline
At the end of Section 5.3.2, we have seen that the direct effect penalty is
not enough to handle instruction cache misses in a compositional way. In
the next paragraph, we calculate a sound penalty that incorporates any
indirect effects caused by an instruction cache miss in the strictly in-order
pipeline.
Additionally, we describe how interrupts can be soundly decomposed

from uninterrupted execution time. This involves the computation of upper
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bounds on the interrupt latency—the time between an active interrupt
signal and the start of the service routine—and the restart latency—the
time needed after the termination of the service routine to reach a pipeline
state with at least as much progress as before the interrupt.

Instruction Cache Miss An instruction cache miss can cause indirect
effects in a strictly in-order pipeline design. In this paragraph, we compute
an upper bound on the indirect effects in terms of clock cycles. Adding
this upper bound to the direct effect penalty results in a sound penalty
for an instruction cache miss. Using this sound penalty, the weight wcideal
trivially dominates wcbase which allows for an efficient low-level analysis.

We provide two ways of bounding the indirect effects related to an instruc-
tion cache miss. Consider Figure 5.7. In configuration c, instruction ins6 is
about to be fetched and either hits or misses the instruction cache, resulting
in ca and cb. In the cache miss case, the fetch is blocked until all data mem-
ory operations reach the end of the memory stage (configuration c′b). In the
worst case, all preceding instructions ins3, ins4 and ins5 are data-dependent
and perform memory operations that access the common bus. Thus, it
might take up to 3 ·ml + 3 cycles until ins5 has finished its access and the
fetch of ins6 can start. The fetch of ins6 itself takes ml +1 cycles—one cycle
to start the access and ml many cycles to transfer the cache line—resulting
in configuration c′′b . We know that c′′b v ca: ins6 has the same progress in
both configurations, and the preceding instructions have progressed in c′′b at
least as much as in ca because they do not depend on ins6 (see Lemma 4.6.2
(Progress Dependence)). Consequently, 4 ·ml + 4 is a sound penalty, taking
into account direct and indirect effects.
However, the penalty 4 · ml + 4 is quite pessimistic. It comprises the

cycles required to execute ins3, ins4 and ins5 between cb and c′b. These
cycles will also occur in the cache hit case after ca. If these instructions take
many cycles to complete, they will eventually block the execution of later
instructions ins6, ins7, . . . in the hit case due to the limited pipeline length.
To put it in a nutshell, only the overlapping of the execution of ins6, ins7, . . .
with the execution of ins3, ins4, ins5 in the hit case is prevented in the miss
case. Thus, an upper bound on the indirect effects should only account for
this overlapping.
This observation leads us to the second way of bounding the indirect

effects. We consider the further execution from ca and c′′b . Let c′a de-
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Figure 5.7: Deriving a sound penalty for an instruction cache miss of
instruction ins6 in our strictly in-order design. ins6 is the instruction
to fetch next and the fetch stage becomes available for ins6 in the cycle
following c, i.e. all instructions ins5, ins4, ins3, ins2, and ins1 are ready
in c.

127



Chapter 5 Achieving Timing Compositionality

note the configuration reached from ca by executing ins3, ins4 and ins5 as
long as they could block an instruction memory access. The progress of
instructions up to ins5 in c′a matches the progress of those instructions
in c′b. Furthermore, c′a exhibits the maximal progress that ins6, ins7, . . . can
reach while executing in an overlapped fashion with the earlier instructions.
Now, consider the successor configurations of c′′b until they catch up with
the progress of c′a. The number of cycles between c′′b and c′′′b corresponds
to the time ins6 needs to progress from (IF , 0) to (EX , 0). Assuming a
maximal latency of two cycles for an instruction in the execute stage, the
pipeline needs at most three cycles to catch up with the hit case. Overall,
the effective indirect effect cannot exceed four cycles. Summing up the
individual parts leads, due to the linearity of weights, to a sound penalty of
ml + 4 cycles that accounts for direct and indirect effects.

The penalty ml + 4 assumes that the overlap of the execution of instruc-
tions ins6, ins7, . . . with the execution of ins3, ins4, and ins5 amounts to a
maximum of three cycles. Variants of our strictly in-order pipeline could
feature techniques to complete instructions in early stages, e.g. the early
execution of unconditional branches or nop instructions. If the subsequent
instructions ins6, ins7, . . . are unconditional branches, they could execute
and complete in the fetch or decode stage in parallel to and independently
of ins3, ins4, ins5. The maximal amount of overlap in this case would only
be bounded by the latencies of ins3 to ins5. Consequently, for such archi-
tectural variants, we need to resort to the conservative penalty 4 ·ml + 4
which we derived first.

Interrupts Interrupts are used to handle events asynchronously to the
execution of user programs. As an example, periodic timer interrupts
are used to regularly invoke the operating system in order to implement
preemptive scheduling. As described in Section 3.4 (Scheduling Interface
and Compositionality), there is a pipeline-related timing penalty associated
with the handling of interrupts: the interrupt latency—the time between an
active interrupt signal and the start of the service routine—and the restart
latency—the time needed after the termination of the service routine to
reach a pipeline state with at least as much progress as the state before
the interrupt. In this paragraph, we calculate an upper bound on the
pipeline-related interrupt cost for our strictly in-order pipeline design.

Before we derive the interrupt cost, we describe an implementation of the
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interrupt mechanism. While servicing interrupts, the core is in a privileged
mode that has unlimited access to all resources such as external devices.
To cleanly separate execution in privileged and normal user mode, we
do not allow to overlap instructions that should be executed in different
modes. There are two contrary optimisation goals w.r.t. the timing of
(external) interrupts, e.g. caused by a timer component. On the one hand,
the interrupt should be serviced as soon as possible which requires to flush
(parts of) the pipeline, i.e. the currently executed instructions of the user
mode program. On the other hand, flushed instructions need to be restarted
after the interrupt resulting in work, such as e.g. fetch or decode, being
done twice. Our implementation completes instructions in the memory
and write-back stages and flushes all other instructions upon an external
interrupt. Furthermore, there are operations such as memory accesses that
are not interruptible and thus need to completed before jumping to the
interrupt service routine.
We need to calculate a sound penalty such that wcideal , which is only

defined on execution traces without interrupts, dominates wcbase. In this cal-
culation, we want to exploit the progress-based partial order v introduced in
Chapter 4 (Progress-based Abstraction). We discussed in Section 4.9 (Out-
look: Monotonic Extensions) that the strictly in-order pipeline equipped
with an interrupt mechanism as sketched above does not behave monotoni-
cally and thus precludes the use of the progress-based order v. However,
consider an (abstract) execution graph where interrupts are modelled ex-
plicitly as non-deterministic choices (Figure 5.8). The goal is to decompose
the interrupt cases from the execution graph: i.e. to remove the interrupt-
related execution parts from the graph and to add the interrupt-related
cost to the composition operator. Assume we decompose the interrupt
cases step-by-step in a backwards manner from the end to the start of
the given execution graph. As a consequence, we can use v defined for
the strictly in-order pipeline without interrupts in each single step as no
interrupt occurs in the further execution, respectively. Thus, despite the
non-monotonicity introduced by interrupts, we can still use v to calculate
sound bounds on the interrupt and restart latencies.

We are now left with calculating upper bounds on the interrupt and restart
latency. Using them as timing penalty, the non-interrupt case dominates
the interrupt case w.r.t. wcbase, or in other words wcideal dominates wcbase.
This enables an efficient low-level analysis that considers only uninterrupted
task executions.
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Figure 5.8: Deriving a sound penalty for a single interrupt in our strictly
in-order design. The configuration c depicts only one possible example.
To derive a sound penalty, we need to consider all possible configurations
that could encounter an interrupt.
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Consider Figure 5.8 which depicts the timing behaviour of an interrupt
triggered in an example configuration c. The worst interrupt latency is
caused by a memory instruction that has just started before the interrupt
signal becomes active. The pipeline has to wait up to ml − 1 cycles for the
memory access to finish, and—in case of a data memory access—another
cycle to advance the instruction to the write-back stage.
The resulting configuration is an initial configuration for the interrupt

service routine. The following cycles, until the last instruction of the ISR
has left the pipeline, are accounted for by the execution time weight of the
interrupt service routine. These cycles do not contribute to the interrupt-
related pipeline cost and are upper bounded by CISR that is determined by
a separate low-level analysis.
The restart latency covers the cycles needed to reach a state with at

least as much progress as in ca, the non-interrupt case. As instructions ins1
and ins2 finish before the interrupt service routine is executed, they have
the maximally possible progress afterwards. Instructions ins3, ins4, . . . have
not progressed further than (EX , 0) in c before the interrupt signal became
active. In configuration ca, the maximal progress of these instructions is
thus (MEM , l) where l is the latency associated to ins3. How many cycles
does it take to reach at least the progress of any possible configuration ca?
A configuration ca without pipeline bubbles—i.e. with the maximal number
of ongoing instructions—is the worst configuration w.r.t. the restart latency.
We assume that all instruction fetches are cache hits since they have been
loaded into the cache before the interrupt. The cache-related preemption
delay accounts for the potential cache reloads in case the execution of the
service routine evicts useful cache blocks. The maximal restart latency
amounts to 4 cycles in order to advance instruction ins3 from (IF , 0) to
(MEM , l)—assuming a maximal execution latency of two cycles in stage EX .

To conclude, the combination operator
⊕

needs to account for additional
ml + 4 cycles per interrupt as interrupt-induced pipeline overhead. Then,
wcideal dominates wcbase and a sound low-level analysis can assume the
absence of interrupts.

5.5 Compositional Base Bound
In Section 5.4, we presented one possibility to deal with indirect effects,
namely to incorporate them into the penalty part of the decomposition.
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In that case, wcideal dominates wcbase and a sound low-level analysis can
assume the absence of the respective timing accidents. The approach
has the advantage that the overall analysis is computationally efficient.
However, the approach attributes the maximally possible indirect effect to
each occurrence of the respective timing accident which introduces severe
pessimism. In practice, indirect effects occur only rarely and under certain
circumstances.
Another possibility to deal with indirect effects is to account for them

during a low-level analysis that approximates wcbase. On the one hand, we
do not longer require that wcideal dominates wcbase. On the other hand,
such an analysis cannot assume the absence of timing accidents but has
to analyse their (indirect) effect on the execution time. Thus, we trade
off the efficiency of the individual low-level analyses against precision: we
account for indirect effects only when they can actually happen and not
at each occurrence of an accident. The program characteristics which
is obtained by the low-level analysis approximating wcbase accounts for
possible indirect effects. We term this characteristic the compositional
base bound Bp of a program p. The compositional base bound captures
all processor cycles that are not explained by the direct effect of timing
accidents. The compositional base bound Bp can be used as a replacement
for the non-interfered execution time bound Cp in existing schedulability
analyses such as presented in Section 3.5. This enables the sound timing
analysis of systems that exhibit indirect effects, i.e. amplifying anomalies
and even domino effects (cf. Observation 5.1.1).

The computation of the compositional base bound for a given program is
based on the integer linear program that encodes its interference response
curve. This linear program is generated as part of the low-level analysis
that takes the effect of timing accidents into account. Jacobs et al. [2015]
proposed such an analysis for shared-bus interference.
Recall the integer linear program used for path analysis described in

Section 3.3. We introduce an additional integer-valued variable i to model
a variable amount of interference caused by the considered timing accidents.
We change the corresponding interference constraint, e.g. for shared-bus
interference, by replacing the constant amount of shared-bus interference I
by the new variable i: ∑

e∈Êp

blocked lb(e) · xe ≤ i.
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The interference response curve is implicitly given by the objective

max
∑
e∈Êp

timeub(e) · xe.

We obtain the compositional base bound by maximising

max

∑
e∈Êp

timeub(e) · xe

− pn · i,

where pn denotes the direct effect penalty.
The first term captures the entire execution time of the program, including

interference by timing accidents. The second term, pn · i, captures the share
of execution time that is explained by the direct effects of i occurrences of
the respective timing accident. Thus, the difference between the two terms
captures the share of execution time not explained by the direct effects of
interference. This includes the ideal execution time but also indirect effects
caused by timing accidents. By maximising over all possible amounts of
interference i, the solution to the above ILP provides an upper bound on
the compositional base bound. The compositional base bound includes the
maximum possible indirect effects for the program under analysis.

The compositional base bound can also be interpreted graphically. Con-
sider the interference response curve in Subfigure 5.9a. Imagine a linear
curve with slope equal to the direct effect penalty pn. Now, move this linear
curve vertically until the curve is fully above the interference response curve
of interest. The y-intercept of the linear curve then corresponds to the
compositional base bound computed by the above integer linear program.

The compositional base bound approach is not limited to the direct effect
penalties. The above ILP formulation provides a sound base bound that
satisfies the compositional assumption for any penalty. Using a lower penalty
than the direct effect penalty can be useful to obtain tighter approximations
in the regions where the interference response curve levels off. In the
extreme case pn = 0, the compositional base bound corresponds to an
interference-insensitive bound. Consider Subfigure 5.9b for an illustration.
The use of lower penalties tackles the potential precision loss found in
Observations 5.1.2 and 5.1.3. To increase overall precision, the interface
between low-level and schedulability analysis could be enhanced to allow
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(a) Graphical interpretation of the com-
positional base bound calculation.

0% 100%

Cp

Bp

amount of interference

w
or
st
-c
as
e
re
sp
on

se
tim

e

(b) Improved precision by multiple com-
positional base bounds using different
penalties.

Figure 5.9: Sound linear approximations of a given interference response
curve (dashed) using the compositional base bound approach. Cp denotes
the execution time of program p in isolation, Bp denotes the compositional
base bound using the direct effect penalty.
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for multiple linear approximations with different penalties. The high-level
schedulability analysis can finally pick the lowest value among all sound,
linear approximations.

The compositional base bound approach is not limited to a single type of
timing accidents causing interference. In practice, there are multiple different
sources of interference, e.g. cache reloads due to preemption, shared-bus
blocking, and DRAM refreshes. The above ILP formulation can be extended
to account for multiple sources of interference. Let i1, i2, . . . , in be integer-
valued variables such that ik models the variable amount of interference
caused by timing accidents of type k. In the corresponding interference
constraints of the implicit path enumeration, we use these variables instead
of constant values for the respective amount of interference. The objective
function to compute the compositional base bound becomes

max

∑
e∈Êp

timeub(e) · xe

− n∑
k=1

pnk · ik,

where pnk denotes the (direct effect) penalty associated with timing ac-
cidents of type k. Note that the runtime of the low-level analysis which
accounts for the indirect effects can increase significantly with the number
of different types of timing accidents.

Next, we prove the correctness of the compositional base bound approach
relative to the low-level analysis used to compute the interference response
curve.

Theorem 5.5.1. Let n be the number of different timing accidents that
affect the execution time. Let irc(I) be the value of the interference response
curve for a given amount of interference I = (I1, . . . , In) and b the respective
compositional base bound as computed above. The compositional base bound
can be used to bound the interference response curve:

∀I. irc(I) ≤ b+
n∑
k=1

pnk · Ik =
⊕

(b, I).
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Proof. Let irc(I) be the value of the interference response curve for a given
amount of interference I, i.e.:

irc(I) = max
x

∑
e∈Êp

timee · xe,

s.t. A · x ≤ I,

B · x ≤D,

x ≥ 0

where x is the vector of frequency variables xe, D and I are vectors of
integer-valued coefficients, and A and B are integer-valued matrices, such
that A · x ≤ I encodes the interference constraints and B · x ≤D encodes
flow constraints and loop bounds. More details on the constraints can be
found in Section 3.3.

The compositional base bound b is obtained by the following ILP:

b = max
i,x

∑
e∈Êp

timee · xe −
n∑
k=1

pnk · ik,

s.t. A · x ≤ i,

B · x ≤D,

x ≥ 0

where x, A,B, and D are the same as in the previous ILP and i is a vector
of additional integer-valued variables—one per type of timing accident.

We need to show that for any amount of interference I, we have

b+
n∑
k=1

pnk · Ik ≥ irc(I),

which is equivalent to b ≥ irc(I)−
∑n
k=1 pnk · Ik.
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Due to the maximisation over i, we have for any I,

b ≥ max
x

∑
e∈Êp

timee · xe

− n∑
k=1

pnk · Ik,

s.t. A · x ≤ I,

B · x ≤D,

x ≥ 0

= irc(I)−
n∑
k=1

pnk · Ik.

Corollary 5.5.2. Let wtime denote the number of cycle transitions on a
given execution trace, and the vector wcacc denote the number of timing
accidents with respective penalties pnacc. The base weight contribution
wcbase(τ) is given as wtime(τ)−wcacc(τ) · pnacc, counting all cycle transi-
tions not covered by the given penalties. Given the analysis computing irc
is sound for every task t, i.e.

∀τ ∈ T (Gt).wtime(τ) ≤ irc(wcacc(τ)),

the adjusted analysis computing the compositional base bound b is sound,
i.e.

max
τ∈T (Gt)

wcbase(τ) ≤ b.

Proof. Let τ be the execution trace that maximises wcbase.
We derive

wcbase(τ) = wtime(τ)−wcacc(τ) · pnacc Definition
≤ irc(wcacc(τ))−wcacc(τ) · pnacc Assumption
≤ b Theorem 5.5.1
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Efficient Computation

Last, we make a remark on the efficiency of the compositional base bound
calculation. In order to obtain a reasonable compositional base bound,
the abstract execution graph distinguishes edges that differ w.r.t. blocked lb.
This distinction negatively affects the size of the execution graph and thus
the size of the linear program to be solved. Consider the ILP formulation
to compute the compositional base bound. The objective is maximised if
and only if

i =
∑
e∈Êp

blocked lb(e) · xe.

We can substitute i within the objective function and obtain by associativity

max
∑
e∈Êp

(
timeub(e)− blocked lb(e) · pn

)
· xe.

Thus, during the construction of the abstract execution graph, we can
directly calculate the edge weight baseub(e) := timeub(e)− blocked lb(e) · pn.
Edges with different baseub-weights can be merged to reduce the graph
size without sacrificing precision in the overall compositional base bound
calculation. On the downside, the calculated edge weights and thus the
execution graph construction are no longer independent of the chosen
penalty. Additionally, the abstract execution graph does not encode the
full interference response curve.

5.6 Evaluation
In the previous sections, we have presented three approaches to establish
timing compositionality. In the first approach, we adjust the processor
hardware to ensure the existence of provable bounds on the effect of timing
accidents. Here, we assess the impact of the required hardware changes on
the actual performance.

The second approach requires sound penalties that incorporate all possible
indirect effects caused by a timing accident. We employ the technique
proposed in Section 5.4 to determine sound penalties per benchmark.

Last but not least, we evaluate our compositional base bound approach.
We compare the precision of the obtained results w.r.t. the respective

138
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interference response curves and examine the computational demand in
terms of runtime and memory consumption.

5.6.1 Hardware Design
In this section, we explore the performance impact of the two designs
proposed in Section 5.3—the stalling mechanism and the strictly in-order
pipeline—to establish compositionality. As a reference for both designs,
we use our FPGA soft-core with its conventional in-order pipeline from
Section 4.8.
The only source of interference present in our Verilog prototype are

additional cache misses, e.g. due to a preemption. The strictly in-order
pipeline stalls instruction miss fetches when any data memory operation
is pending—even if it results in a data cache hit later. Furthermore, the
strictly in-order pipeline does not support branch prediction as it can lead
to non-monotonic behaviour. The stalling approach requires the entire
pipeline to stall upon each instruction and data miss in order to achieve
compositionality.
To compare the performance overhead relative to our reference, a con-

ventional in-order pipeline, we calculate the ratios of clock cycles needed to
execute a given program on the modified processor relative to the reference.
We obtain the clock cycles needed to execute a program using the same
experimental setup as described in Section 4.8. We conduct the experi-
ments for all our benchmarks, compiled with and without optimisations, as
described in Appendix B. We provide results for different cache sizes and
memory latencies. Figure 5.10 shows one scatter plot for selected config-
urations to compare the overhead introduced by the stalling mechanism
and the strict memory access order. Each cross corresponds to one bench-
mark program. The x-coordinate (y-coordinate) of a cross represents the
overhead introduced by the strictly in-order pipeline (stalling mechanism).
A program whose cross is below (above) the diagonal line experiences less
(more) overhead by the stalling approach than by the strict access order. In
contrast to the stalling approach, the strictly in-order pipeline can perform
better than the conventional in-order pipeline. In such a case, the cross is
left of the dotted vertical line.
For all configurations, Figure 5.11 depicts the range and the geometric

mean of the ratios over all benchmark programs. The average performance
degradation caused by both hardware changes to establish compositionality
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Figure 5.10: Scatter plot of the performance ratios relative to a standard
in-order pipeline. Each cross corresponds to a benchmark program,
compiled without (on the left) or with (on the right) optimisations.
Different memory configurations ((cache line size in words, number of
sets)@memory word latency).
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Figure 5.11: Performance in clock cycles relative to a standard in-order
pipeline. Different memory configurations ((cache line size in words,
number of sets)@memory word latency). On the left (right), minimum,
maximum, and geometric mean over all our benchmarks without (with)
compiler optimisations. Lower is better.
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is well below 10% in terms of additional clock cycles required for execution.
While the stalling approach performs better than the strictly in-order
pipeline for optimised programs, the situation is reversed for non-optimised
programs. This is explained by the different density of load/store instruction
in the binaries: 28% for optimised binaries and 50% for non-optimised
binaries. The stalling approach causes the pipeline to stall upon each data
cache miss while the strictly in-order pipeline can hide a (small) part of the
latency by overlapping execution of other instructions.
Larger instruction and data caches lead to lower cache miss rates. As

a consequence, the stalling overhead upon cache misses reduces and the
relative performance of the stalling approach improves. In a similar manner,
the lower instruction cache miss rate improves the relative performance of
the strictly in-order pipeline. Its relative performance, however, does not
profit from a lower data cache miss rate as it does not reduce the overhead
introduced by enforcing the strict order of memory accesses on the bus. A
pending data memory access stalls an instruction miss fetch until the access
reaches the memory pipeline stage even if it then turns out to hit the data
cache. A lower data cache miss rate reduces the absolute number of clock
cycles required by the strictly and the conventional in-order pipeline by
roughly the same amount. Thus, the relative performance of the strictly
in-order pipeline can even decrease slightly for a lower data cache miss rate.
A higher memory latency increases the impact of the memory on the

overall performance and thus decreases the impact of differences in the
pipeline design. Consequently, the ratio of clock cycles decreases with higher
memory latencies, albeit only slightly. Last, we observe that the strictly
in-order pipeline can indeed lead to shorter execution times compared to
the conventional pipeline—in contrast to the stalling approach.

The performance degradation due to stalling or the enforcement of mono-
tonic behaviour applied to a conventional in-order pipeline has been demon-
strated to be in a small, acceptable range. However, this result cannot
be transferred to more complex processors—e.g. with speculation and out-
of-order execution—as they offer significantly more opportunities to hide
the latency of timing accidents. Consequently, the impact of our hardware
modifications on the performance of such processors will be significantly
higher. We consider such an evaluation for a complex processor as important
future work.
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For interference on other resources which are not as tightly coupled with
the pipeline as the caches—e.g. blocking at a shared bus—we expect the
stalling approach to have a smaller impact on the overall performance.
To observe a performance degradation, the processor pipeline requires
significant capabilities to hide latency: not only the latency of the memory
access itself but also the additional increase in latency needs to be hidden.

In this section, we have evaluated the actual performance impact of
two hardware designs that support timing compositionality. We have not
yet examined the benefits w.r.t. time and memory consumption of the
timing analysis. In Section 5.6.3, we evaluate the compositional base bound
approach—the only viable choice to establish compositionality by analysis
for hardware platforms that do not support timing compositionality. There,
we compare the resource consumption of the compositional base bound
analysis and an analysis that can assume compositionality right away.

5.6.2 Sound Penalties
In this section, we want to estimate sound penalties required for compo-
sitional reasoning based on bounds that are valid under the absence of
interference. To this end, we use the technique presented in Section 5.4 to
compute per-benchmark penalties. A penalty that is sufficient to soundly
cover the interference response curve of any program executed on the
given hardware platform must be at least as high as these per-benchmark
penalties.

As source of interference, we consider shared-bus blocking in a multi-core
system. As a consequence, the latency of memory accesses performed by
one core can be prolonged due to competing memory accesses generated by
the concurrent cores.

Experimental Setup We have implemented the analysis that is necessary
to compute per-benchmark penalties as part of our low-level timing anal-
ysis framework llvmta introduced in Section 3.6 (Implementation/Tool
Support). As the analysis is computationally expensive, we limit our exper-
iments to the Mälardalen benchmark suite and our SCADE test cases as
described in Appendix B. We conduct our experiments for the programs
compiled with and without optimisations.
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We compute the per-benchmark penalties on hardware configurations of
varying complexity. We consider two different types of cores: the simpler
type features a five-stage in-order pipeline, while the more complex one
features an out-of-order pipeline with Tomasulo dynamic scheduling and
speculative execution. Both pipeline types are described in more detail
in Appendix A. Optionally, store instructions pass through a store buffer
of size one that allows the pipeline to continue execution while the actual
memory operation is performed in the background. The processors under
analysis feature two cores.
The cores access the shared bus via private instruction and data caches

of size 1 KiB respectively. Each cache has a line size of 16 bytes and two
cache ways that are managed by the LRU replacement policy. The shared
bus employs round-robin event-driven arbitration and is directly connected
to an SRAM background memory with either 5 or 10 cycles word latency.

Results For each of our benchmarks, we compute the minimal penalty
needed to soundly approximate the respective interference response curve.
We present the results in the form of histograms, i.e. we map each possible
penalty to the number of benchmarks that require at least this penalty. For
the benchmarks compiled without optimisations and executed on the in-
order pipeline with varying parameters, we show the results in Figure 5.12.
Figure 5.13 depicts the corresponding results for the out-of-order pipeline.
Figures 5.14 and 5.15 show the histograms for the benchmarks compiled
with optimisations.

Figure 5.12a shows the results for the simplest hardware configuration
with in-order pipeline and blocked stores, i.e. without store buffer. No
benchmark experiences more than the worst-case direct effect penalty of
eight clock cycles. The worst-case direct effect penalty is the time during
which a load of an entire cache line can occupy the shared bus. It is
composed of the memory latency—the time from the access request to the
delivery of the first word of a cache line—plus one additional cycle per
consecutive word loaded. Since store instructions occupy the memory stage
of the pipeline until the access finishes, the in-order pipeline converges after
a few cycles waiting for memory. Consequently, additional blocking on the
shared bus has no impact on the pipeline state and thus cannot trigger any
indirect effects.
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Figure 5.12: Histograms of the per-
benchmark penalties required for a
sound naive compositional analysis
when the benchmark is executed
on our in-order pipeline. Compiled
without optimisations.
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Figure 5.13: Histograms of the per-
benchmark penalties required for a
sound naive compositional analysis
when the benchmark is executed on
our out-of-order pipeline. Compiled
without optimisations.

145



Chapter 5 Achieving Timing Compositionality

The out-of-order pipeline exhibits indirect effects for a few benchmarks
despite the blocked stores (Figure 5.13a). Due to its superscalarity, the
out-of-order pipeline can continue execution in its parallel functional units
while waiting for memory. Such dynamically-scheduled pipelines are known
to show (amplifying) timing anomalies [Lundqvist and Stenström, 1999].

Figure 5.12b depicts the results for the in-order pipeline with unblocked
stores, i.e. with a single-entry store buffer, and a memory word latency
of five clock cycles. A significant number of benchmarks exhibits indirect
effects when executed on this hardware platform. A single benchmark,
compress from the Mälardalen suite, even exhibits a penalty slightly more
than twice as high as the direct effect penalty. The examination of the
abstract execution graph reveals an anomaly similar to the one in Figure 5.2
presented in Section 5.1 (Validation of Compositionality Assumption). In
contrast to the reordering of a single load with an instruction fetch, here,
two memory operations are interchanged with the fetch of the consecutive
instruction due to the latency prolongation of a preceding store.

Figure 5.13b shows the corresponding results for the out-of-order pipeline.
The number of test cases affected by indirect effects remains similar. As
expected, the amount of indirect effects increases due to the higher com-
plexity of the out-of-order pipeline. In the worst observed case, a sound
penalty needs to be almost as high as three times the direct effect penalty.
The results for a higher memory word latency of ten clock cycles are

depicted in Figures 5.12c and 5.13c. Compared to the lower memory word
latency, fewer benchmarks are affected by indirect effects. For higher
memory latencies, it is more likely that the processor pipeline converges
before the pipeline could experience a latency prolongation due to shared-
bus blocking. In these cases, additional blocking on the shared bus has no
impact on the pipeline state and thus cannot trigger any indirect effects.
Those benchmarks that are affected by indirect effects require a sound
penalty of up to 2.1 times (in-order pipeline) or 2.7 times (out-of-order
pipeline) the direct effect penalty.

Figures 5.14 and 5.15 show the results when the benchmark programs are
compiled with optimisations. Overall, we observe that fewer programs ex-
hibit indirect effects compared to the results for the non-optimised programs.
As explained in Appendix B, the compilation of programs with optimisa-
tions yields binaries that contain a smaller share of store instructions—on
average 10% instead of 21% for non-optimised programs. When a store
buffer is employed, the latency (prolongation) of store instructions can
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Figure 5.14: Histograms of the per-
benchmark penalties required for a
sound naive compositional analysis
when the benchmark is executed on
our in-order pipeline. Compiled with
optimisations.
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Figure 5.15: Histograms of the per-
benchmark penalties required for a
sound naive compositional analysis
when the benchmark is executed on
our out-of-order pipeline. Compiled
with optimisations.
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usually be well overlapped with the execution of other instructions. As a
consequence, the bus blocking of store instructions is often the source of
amplifying timing anomalies. The smaller share of store instructions thus
results in less potentially anomalous situations during execution and fewer
affected programs.

However, the optimising compilation of programs can create code patterns
that allow for amplifying timing anomalies even for very high memory
latencies. Due to the lower number of load and store instructions, optimised
programs exhibit longer sequences of instructions that do not access data
memory. In particular within an out-of-order pipeline, the execution of
a memory instruction can be overlapped with the execution of such a
long chain of subsequent non-memory instructions—if data dependencies
permit. As a consequence, the pipeline might not converge as fast as for non-
optimised programs even for higher memory latencies. If the pipeline does
not converge, there is potential for amplifying timing anomalies. During the
inspection of our analysis results, we have found a code pattern with a store
instruction in front of a loop without any memory instructions. Depending
on the number of loop iterations, the execution of the store instruction
could be overlapped with the execution of the loop for arbitrarily high
memory latencies. If the code behind the loop follows a pattern similar to
Figure 5.2, such a scenario could result in an amplifying timing anomaly for
high memory latencies. This observation negates any intuitive reasoning to
establish timing compositionality based on the assumption that the pipeline
converges during a memory access, e.g. as found in [Wegener, 2017].

Conclusion In this section, we have evaluated a technique to derive a
sound penalty for a given program, i.e. a penalty that accounts for any
potential indirect effects. We have found that some programs exhibit
amplifying timing anomalies that require a penalty of up to three times the
direct effect penalty. The computation of a penalty that is sound for any
program executed on a given microarchitecture is an open problem. Our
experiments show, however, that such a general penalty needs to be at least
three times higher than the direct effect penalty that is usually assumed in
the literature. Depending on the amount of experienced interference, the
usage of such a sound penalty will result in an intolerable amount of overall
overestimation.
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5.6.3 Compositional Base Bound

In this section, we evaluate the compositional base bound approach in terms
of precision of the results and efficiency of the analysis. To this end, we
compare the results obtained by the compositional base bound approach
with the values of the interference response curve obtained by the analysis
of [Jacobs et al., 2015]. In order to assess the efficiency of the compositional
base bound computation, we compare its analysis runtime and memory
consumption with the resource usage of the naive analysis that assumes the
absence of interference. Note that the naive analysis only yields provably
sound results for hardware platforms that support compositionality, e.g.
those presented in Section 5.3.

As source of interference, we consider shared-bus blocking in a multi-core
system. As a consequence, the latency of memory accesses performed by
one core can be prolonged due to competing memory accesses generated by
the concurrent cores.

Experimental Setup We have implemented the compositional base bound
analysis in our low-level timing analysis framework llvmta introduced
in Section 3.6 (Implementation/Tool Support). As benchmark programs,
we use all the programs listed in Appendix B. We conduct our experiments
for the programs compiled with and without optimisations separately.

We evaluate our compositional analysis approaches on hardware configu-
rations of varying complexity. We consider two different types of cores: the
simpler type features a five-stage in-order pipeline, while the more complex
one features an out-of-order pipeline with Tomasulo dynamic scheduling
and speculative execution. Both pipeline types are described in more detail
in Appendix A. Optionally, store instructions pass through a store buffer
of size one that allows the pipeline to continue execution while the actual
memory operation is performed in the background. The processors under
analysis feature either two, four, or eight cores.

The cores access the shared bus via private instruction and data caches of
size 1 KiB respectively. Each cache has a line size of 16 bytes and two cache
ways that are managed by the LRU replacement policy. The shared bus
employs round-robin event-driven arbitration and is directly connected to an
SRAM background memory with fixed latencies. We conduct experiments
with different memory latencies.
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Results: Precision In order to assess the analysis precision, we first com-
pare our sound compositional base bound approach with the unsound naive
compositional approach. Additionally, we compare the results of the com-
positional base bound approach with the values of the interference response
curve computed by the analysis of [Jacobs et al., 2015]. We choose the
analysis of [Jacobs et al., 2015] as reference because it is sound—i.e. captures
potential indirect effects—, reasonably precise—i.e. captures latency-hiding
effects—, and computationally feasible in contrast to a more integrated and
precise approach such as [Kelter and Marwedel, 2017].
As discussed at the end of Section 5.1, the shape of the interference

response curves is usually concave. The compositional approaches approxi-
mate these curves by linear functions. The difference function of a linear
and a concave curve is maximised at the boundaries of its domain. Since
we employ event-driven round-robin bus arbitration, each program has
a well-defined maximal amount of interference: each memory access can
at most be blocked by one access per concurrent core. Consequently, we
observe the largest difference in the computed bounds at zero or maximal
interference.
For each (hardware) configuration, we compute the geometric mean of

the ratios of the compositional bounds to the interference response curve
values over all benchmarks. To assess the variance of the per-benchmark
results, we provide histograms of the ratios. For the sake of brevity, we
show the histograms for only one configuration in Figure 5.17. We refer to
Appendix C for the histograms of the remaining configurations.

Figure 5.16 and Subfigure 5.17a depict the results in case no interference
occurs. Note that the results of the naive compositional analysis and the
values of the interference response curves coincide at zero interference.
Subfigure 5.16a illustrates the impact of a single-entry store buffer and a
varying number of overall cores. Subfigure 5.16b illustrates the impact of
different main memory latencies. While Subfigures 5.16a and 5.16b show the
results for the benchmarks compiled without optimisations, Subfigures 5.16c
and 5.16d show the results for the benchmarks compiled with optimisations.
The ratios in Figure 5.16 reveal how much indirect effects a program

experiences on average due to shared-bus interference. For all considered
configurations, the amount of indirect effects experienced during a whole
execution run is, on average, below one percent. Looking at the histograms
at zero interference—in Subfigure 5.17a and Appendix C—no benchmark
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Figure 5.16: Compositional base bound versus interference response curve at
zero interference. In-order (io) or out-of-order (ooo) pipelined processor
cores. Without (bs) or with single-entry store buffer (ubs). Varying
number of cores and memory word latency (wl).
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(b) At maximal interference.

Figure 5.17: Histogram of ratios of compositional base bound (left, blue bar)
and naive compositional bound (right, red bar) to the interference response
curve. Non-optimised programs executed on a dual-core machine with
out-of-order pipeline, unblocked stores, and a memory word latency of 5.

exhibits indirect effects of more than four percent. This substantiates our
intuition that it is more precise to account for the rare indirect effects in
the base bound instead of the penalty.

For the simplest hardware configuration “in-order pipeline, no store buffer
(io, bs)”, no indirect effects are encountered. Configurations featuring the
out-of-order pipeline exhibit slightly higher indirect effects compared to
the corresponding configurations with the in-order pipeline. An increase
in the number of cores has almost no impact, i.e. additional cores and
thus potentially longer bus blocking do not trigger more amplifying timing
anomalies. Subfigure 5.16b shows the tendency of lower memory latencies
to exhibit higher indirect effects. For lower memory latencies, it is more
likely that the processor pipeline does not converge before it experiences
the latency prolongation due to shared-bus blocking. The changes in the
pipeline state while being blocked at the bus can then trigger amplifying
anomalies. These observations are in accordance with our observations in
Section 5.6.2.
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The optimised programs tend to exhibit lower indirect effects on average
as opposed to the programs compiled without optimisations. As can be
seen in Appendix B, the programs compiled with optimisations contain
a smaller share of store instructions. The latency (prolongation) of store
instructions, however, can usually be well hidden when a store buffer is
employed. The bus blocking of store instructions is thus often the source of
amplifying timing anomalies.

Figure 5.18 and Subfigure 5.17b depict the analysis results in case each
program experiences its maximal interference on the shared bus. We consider
a processor with n cores that are connected to memory via a shared bus
with event-driven round-robin arbitration. Consequently, the maximal bus
interference that a program p can experience is given by m · (n− 1), where
m denotes the number of memory accesses of p in the worst-case. The direct
effect under maximal bus interference amounts to m · (n− 1) ·ml, where ml
denotes the latency of the main memory. In a naive compositional analysis,
the response time bound that corresponds to the maximal bus interference
is computed as ideal +m ·(n−1) ·ml, where ideal is the worst-case execution
time under the absence of interference. In the compositional base bound
approach, ideal is replaced by the base bound that accounts for potential
indirect effects due to interference. The respective bounds are normalised
w.r.t. the maximal value of the interference response curve. The geometric
means over all benchmarks are shown in Figure 5.18 that follows the same
structure as Figure 5.16.
The results show that the differences between the naive compositional

and the base bound approach are marginal on average. This means that
accounting for potential indirect effects in the base bound has almost no
effect on the precision of the results at maximal interference. However, it is
strictly necessary to guarantee soundness: the naive compositional approach
might underestimate the worst-case execution time in the presence of
interference. Subfigure 5.17b reveals that the naive compositional approach
underestimates the interference response curve at maximal interference for
eight benchmarks by up to two percent. Though the results confirm that the
compositional base bound approach introduces overestimation compared
to the interference response curve—as the latency hiding effects are lost in
any compositional analysis—it is still sufficiently precise.

Furthermore, Subfigures 5.18b and 5.18d reveal that lower memory laten-
cies allow for better hiding of the blocking effects. This is expected because
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Figure 5.18: The naive compositional bound (upper, red bar) and the com-
positional base bound (lower, blue bar) versus interference response curve
at maximal interference. In-order (io) or out-of-order (ooo) pipelined
processor cores. Without (bs) or with single-entry store buffer (ubs).
Varying number of cores and memory word latency (wl).
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the longer a memory access takes on its own, the harder it is to hide any of
the additional blocking. For the same reason, an increase in the number
of processor cores reduces the relative amount of bus blocking hidden by
overlapped execution.

Maybe surprisingly, the configurations featuring an in-order pipeline show
similar results w.r.t. hiding of additional latency as the configurations with
an out-of-order pipeline. The main reason is that the modelled out-of-order
pipeline as described in Appendix A is rather simple, e.g. it does not feature
speculative memory accesses or multiple pending memory accesses. For a
more complex pipeline, we expect better latency hiding capabilities and thus
more overestimation introduced by compositional approaches compared
to the interference response curve. Nevertheless, there are cases in which
the in-order pipeline is indeed better at hiding latency than the out-of-
order pipeline. Consider a store instruction followed by several independent
arithmetic instructions. While the in-order pipeline has to execute the
arithmetic instructions sequentially, the out-of-order pipeline can execute
them in parallel due to its superscalarity. When the store experiences a
prolongation due to bus blocking, the out-of-order pipeline might already
be done executing the arithmetic instructions while the in-order pipeline
can still overlap the waiting for memory with the execution of its remaining
arithmetic instructions.
Compared to the benchmarks compiled without optimisations, the op-

timised benchmarks tend to exhibit a smaller or equal amount of latency
hiding effects as can be seen in Figure 5.18. This is due to the lower share
of store instructions among the overall number of memory accesses. The
execution of store instructions can often be overlapped with the execution
of the subsequent instructions if a store buffer is present. In case of load in-
structions, however, the subsequent instructions are usually data-dependent
on the loaded value which hinders an overlapped execution.

Results: Efficiency In this paragraph, we compare the resource consump-
tion of the compositional base bound analysis with the consumption of
the naive compositional analysis, i.e. a low-level analysis that assumes the
absence of interference. To soundly account for any indirect effect, the
compositional base bound analysis has to explore the effects of shared-bus
interference on the microarchitectural behaviour of the given program. In
our low-level analysis tool, we model shared-bus interference as a non-
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Figure 5.19: Compositional base bound analysis runtime versus naive com-
positional analysis runtime.
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deterministic prolongation of each bus access. The exploration of this
non-determinism is responsible for the increase in resource consumption of
the compositional base bound analysis.

For hardware platforms that support compositionality, e.g. the strictly in-
order pipeline, the naive compositional analysis yields already sound results.
Thus, the results provided in this paragraph can also be interpreted as the
savings in computational resources for the analysis when such platforms
are used instead of conventional ones.

We have conducted all experiments on a desktop machine with an Intel R©

CoreTM i7-7700 processor, clocked at 3.6GHz, and 64GB of main memory.
For each benchmark, we compute the ratio of resource consumption

of the compositional base bound analysis w.r.t. the naive compositional
analysis. Figure 5.19 shows the geometric mean of the analysis runtime
ratios over all benchmarks for different configurations. In Appendix C,
we additionally provide the sum of absolute analysis runtime over all
benchmarks. Furthermore, we include the results for the main memory
usage which show similar trends as the analysis runtime and are thus
omitted here.
For the simpler configurations without a store buffer, the increase in

resource consumption is relatively low. Recall from Section 3.6 that we
can fast-forward the microarchitectural analysis to the end of an access
if we detect that the pipeline state has converged. In these cases, the
exploration of the effects of shared-bus interference is fast-forwarded and
thus considered in an implicit manner. As a consequence, the compositional
base bound analysis explicitly explores additional pipeline states only if the
pipeline has not converged and thus might exhibit indirect effects.
As main memory latency increases, it is more likely that the pipeline

converges before a memory access experiences a prolongation due to bus
blocking. Due to the fast-forward technique, the analysis runtime ratio thus
decreases for higher memory latencies.
Each additional concurrent core increases the potential prolongation

of a blocked memory access and thus analysis runtime. However, with
each additional core, it is more likely that the pipeline converges before
it experiences the prolongation caused by the additional core. Taking our
fast-forward technique into account, the analysis runtime ratio first increases
and then levels off for higher numbers of concurrent cores.
The relative increase in analysis runtime for configurations with the

out-of-order pipeline is similar to the relative increase for the corresponding
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in-order pipeline configurations. The absolute numbers in Appendix C show
that the analysis of the out-of-order pipeline is in general significantly more
expensive.
The average increase in analysis runtime for the benchmarks compiled

with optimisations is higher than for the non-optimised benchmarks for
most hardware configurations. Optimised programs feature longer sequences
of non-memory instructions compared to non-optimised programs. The
execution of such an instruction sequence can be overlapped with the
execution of a memory instruction within the pipeline. Consequently, upon
a memory access, the pipeline takes longer to converge, which hinders our
fast-forward technique.

Conclusion In this section, we have evaluated the compositional base
bound approach. To the best of our knowledge, it is the only analysis
approach that gives sound results for hardware platform that feature am-
plifying timing anomalies. We have demonstrated that the approach yields
precise results compared to the naive compositional approach found in
literature. The soundness comes at the price of increased analysis resource
consumption because the analysis explores the (indirect) effects of interfer-
ence on the execution time. However, the increase in resource consumption
is usually well within a single order of magnitude. Consequently, we ad-
vocate the compositional base bound approach as the approach of choice
to fulfil the compositionality assumption of state-of-the-art schedulability
analyses.
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Related Work
In this chapter, we provide an overview of the literature related to the

topics covered by this thesis. We structure the discussion of related work
along the main chapters of this thesis.

6.1 Low-Level Analysis
A general introduction to low-level timing analysis can be found in the
survey by Wilhelm et al. [2008]. The survey features a discussion of different
methodologies to obtain timing bounds including static and measurement-
based methods. The article concludes with an overview of the tools available
at the time.
More recently, a trend towards probabilistic timing analysis and ran-

domised hardware designs has evolved [Cazorla et al., 2013]. Such analyses
provide a probability distribution of execution times either based on mea-
surements and statistical methods or on a static model of the randomised
hardware. The hope is that probabilistic timing analysis is more efficient
and can derive high-confidence estimates that are tighter than the bounds
provided by traditional timing analysis on deterministic hardware. To the
best of our knowledge, it has neither been demonstrated how to actually
build the required randomised hardware nor has it been shown that proba-
bilistic timing analysis actually outperforms traditional timing analysis. In
contrast, Reineke [2014] argues that randomised caches are not suitable for
the use in hard real-time systems.
In this section, we limit ourselves to work related to static, non-prob-

abilistic timing analysis. These techniques have been shown to provide
reasonably tight bounds for realistic contemporary systems with acceptable
analysis effort [Tan, 2006].
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Control-Flow Reconstruction The compiler and linker influence the tim-
ing behaviour of a program, e.g. by optimisations and code/data placement
in the address space. Consequently, low-level timing analysis takes a binary
as input. The individual analyses are, however, based on control-flow graphs
to represent programs. The first step in state-of-the-art analysers is the
reconstruction of such control-flow graphs from the given binary.

Theiling [2002] describes a generic framework to reconstruct control-flow
graphs from binaries. The framework comprises two parts. First, a classifier
reads the raw bytes at a given address and decodes them into a machine
instruction. Second, a bottom-up algorithm reconstructs the control-flow
graph, starting from the entry-point address, using the classifier to correctly
recognise instructions. To resolve switch tables and calls, the algorithm
relies on knowledge about the used compiler and the patterns it generates.
Kinder et al. [2009] and Flexeder et al. [2010] propose static analyses

based on abstract interpretation to reconstruct the control-flow graph.
Their approaches do not rely on knowledge about the used compiler and
can (partially) handle indirect jumps and calls whose target addresses
are computed at runtime. To achieve this, they combine the control-flow
reconstruction with a data-flow analysis.

In contrast to this general flow, our analysis tool (see Section 3.6) performs
the analysis on the backend datastructures which LLVM provides through
compilation. At this point, all compiler optimisations have happened and
the machine program is ready to be passed to the linker. While this approach
eliminates issues related to reconstruction, information about the actual
address mapping is not directly available to the compiler.

Value and Control-Flow Analysis Prior to the hardware-specific analysis,
value and control-flow analysis approximate the program semantics on the
level of the instruction set architecture. Value analysis is used to bound the
possible values of operands and the set of addresses possibly accessed by a
memory operation. Control-flow analysis, in particular loop bound analysis,
approximates the feasible paths through a program, e.g. how often a loop
can execute.
The most common abstract domain for value analysis is the interval

domain, where an interval [l, u] describes all values between l and u. For
each machine register and memory cell, an interval approximates the possible
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values, respectively. This domain is discussed, among other value domains,
by Cousot and Cousot [1977].
Miné [2006] extends the interval domain to octagons that describe the

relation between two program variables x and y by constraints of the form
±x ≤ c and ±x± y ≤ c, where c is a constant.
Granger [1991] introduces an abstract domain that captures linear con-

gruences, i.e. constraints of the form
∑n
i=1 ai · xi ≡ c mod m, where xi are

integer-valued program variables and ai, c, and m are integers. This repre-
sentation subsumes simple congruences that constrain the possible values
of a single variable. Such information is useful to describe the alignment of
memory addresses.
Gustafsson et al. [2003] provide two approaches to bound the number

of loop iterations from above. The first approach tries to match loops
in the program to certain patterns such as a simple counting loop and
to extract the loop bound from this pattern. If this approach fails, the
second approach instruments the loop with a new loop counter variable
and employs a value abstraction to derive loop bounds. In [Gustafsson
et al., 2006], they extend their previous work to the detection of infeasible
program paths, e.g. branches that are mutually exclusive.

Cullmann and Martin [2007] employ a three-step approach to loop bound
analysis. First, an analysis identifies potential loop counter variables.
Second, a data-flow analysis computes invariants on how these variables
can change within a single iteration. Last, using their previous results and
the actual loop condition, they calculate bounds on the number of loop
iterations.

In [Ermedahl et al., 2007], the authors use value analysis to identify the
number of possible states of all (integer-valued) variables that are involved
in the loop condition. An additional invariant analysis is used to determine
which of the variables can actually change during loop execution. Finally,
assuming that all loops terminate, the number of different states of the
non-constant variables provides an upper loop bound.

Microarchitectural Analysis The behaviour of caches has a major impact
on the performance of a program. Consequently, there is a significant
amount of work on caches in worst-case timing analysis. For reasons of
brevity, we only provide an overview of the problems faced in cache analysis
and refer to the recent cache survey by Lv et al. [2016] for details.
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The field of cache analysis can be roughly divided into two lines of
research. First, there are analyses that try to statically classify individual
accesses as either cache hit, miss, or unknown, e.g. using under- and over-
approximations of the cache contents [Alt et al., 1996]. Second, there
are analyses that have a more global perspective and derive cumulative
information such as “at most one of these accesses misses the cache”. An
example for the second type is persistence analysis such as presented in
[Cullmann, 2013].
Different cache replacement policies pose different problems for cache

analysis. An overview of the general predictability of cache replacement
policies is given in [Reineke, 2009] while different abstract cache domains
are described in [Grund, 2012]. Other common issues are imprecise address
information for data cache analysis [Hahn and Grund, 2012], the analysis of
multi-level caches [Sondag and Rajan, 2010], or the analysis of write-back
caches [Blaß et al., 2017].

Besides cache analysis, the modelling of the pipeline in low-level analysis
is important. In the following, we provide a brief overview of existing work
on pipelines in low-level analysis.

In his dissertation, Engblom [2002] examines how to treat pipelines within
low-level analysis. He presents a modular tool structure that is similar to
the state-of-the-art tool architecture described in Section 3.3. Instead of
performing a state-based microarchitectural analysis, he employs a simulator
to estimate the timing of (sequences of) instructions under different so-called
execution facts. He introduces execution facts to model all circumstances
that influence the latency of instructions, e.g. the cache behaviour. The
simulation of instruction sequences captures overlapping effects, but also
anomalous behaviour that leads to an additional increase in execution time.
His low-level analysis algorithm considers all sequences which can exhibit
anomalous behaviour triggered by the first instruction in the sequence. He
provides actual analyses for in-order pipelines while he classifies the analysis
of out-of-order pipelines as too complex at that time.
Thesing has laid the foundation of today’s state-of-the-art integrated

pipeline and cache analysis in his dissertation [Thesing, 2004]. He introduces
abstract pipeline states that explicitly maintain the control structure of
concrete pipeline states and cut off the data-related parts which are approx-
imated by the preceding value analysis. The abstract pipeline states are
combined with the corresponding abstract cache states allowing for a precise
analysis of this tightly-coupled system. The pipeline analysis determines
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the set of reachable abstract cache/pipeline states for each basic block of
the program. Uncertainty upon a cycle transition, caused by abstraction,
is resolved by splitting the abstract state and following all possible cases.
Consecutive splits lead to an exponential growth of the number of abstract
states which results in a state space explosion, especially for complex sys-
tems. This analysis corresponds to our description of the microarchitectural
analysis in Section 3.3. Thesing does not only provide the formal framework
but also instantiates it for the analysis of two complex microprocessors,
namely the Motorola ColdFire 5307 and the Motorola PowerPC 755.
Wilhelm [2012] tackles the state space explosion problem which results

from analysis uncertainty in the explicit enumeration of abstract pipeline
states. He uses techniques from symbolic model checking to represent
sets of pipeline states as binary decision diagrams and to perform the
analysis on this representation. The crucial requirement for this analysis
technique is to keep the number of bits needed to encode the pipeline
states low. He describes techniques to compress 32-bit addresses or larger
hardware buffers into a small number of bits, e.g. by explicitly enumerating
instructions and addresses relevant for the analysis of a single basic block.
This enumeration is similar to our sketch in Section 4.2 of how to lift the
progress-based abstract pipeline domain from a single instruction sequence
to the microarchitectural analysis of whole control-flow graphs. Wilhelm
also sketches an interaction between the symbolic pipeline analysis and the
traditional cache analysis.

Heckmann et al. [2003] focus on the influence of the processor architecture
on the precision and efficiency of the microarchitectural analysis. They
discuss the influence of different cache replacement policies and show that
the policies employed in commercial microprocessors do not necessarily
allow for a precise analysis. Furthermore, they examine the interdependen-
cies between cache, pipeline, and branch prediction. They experimentally
determine the precision lost when the cache is modelled in isolation and the
cache analysis needs to account for potential speculative accesses. They con-
clude that separate analyses are prohibitive and advocate for an integrated
analysis as described in [Thesing, 2004].

In his dissertation, Maksoud [2015] evaluates the impact of the load-/store-
buffer of the PowerPC 7448 on low-level analysis. He shows that smaller
hardware buffers do not harm the worst-case timing predictions while
significantly lowering the analysis time. Finally, he describes a compiler
optimisation that introduces so-called sync instructions at specific pro-
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gram points to normalise the abstract pipeline states and thus to help the
microarchitectural analysis.

Path Analysis The early approaches to path analysis operate at the gran-
ularity of control-flow graphs of programs. The input to path analysis has
been a control-flow graph annotated with a timing bound for each individual
basic block. From the perspective of our low-level analysis in Section 3.3,
this corresponds to a heavily compressed abstract execution graph.
Li and Malik have laid the foundation for state-of-the-art path analysis

with their work on implicit path enumeration [Li and Malik, 1995]. The
previous approaches to path analysis relied on an explicit enumeration of
program paths which is very expensive. The key innovation is the encoding
of the control-flow graph as a compact set of linear constraints that implicitly
encodes all paths through the program. Furthermore, this encoding allows
to easily add (linear) constraints to exclude infeasible paths, e.g. to bound
the number of loop iterations. The calculation of an upper timing bound is
then left to an off-the-shelf ILP solver.
Shortly after, Puschner and Schedl published their work on path analy-

sis [Puschner and Schedl, 1997] which is very similar to [Li and Malik, 1995].
The authors take a more abstract perspective, viewing the path analysis
problem as an instance of a maximum cost circulation in graphs. Besides
the description of the ILP formulation, they observe that the encoding as
integer linear program is only an approximation. The valuation returned by
the ILP solver might not describe a connected path but unconnected path
fragments. We have made similar observations, related to context-sensitive
graphs and loop bound constraints, during the development of our low-level
analysis tool described in Section 3.6.

In his dissertation, Theiling [2002] extends the implicit path enumeration
introduced by Li and Malik to distinguish different execution contexts.
Contexts are for example used to distinguish the behaviour of a callee for
different function call sites. The microarchitectural analysis consequently
determines a timing bound for each basic block in each possible context.

The weight maximisation within basic blocks (and context) prior to the
path analysis leads to overestimation because it might introduce infeasible
microarchitectural traces. Consider two consecutive basic blocks with their
respective worst-case partial traces τ̂1 and τ̂2. If the microarchitectural state
at the end of τ̂1 does not coincide with the start state in τ̂2, the addition of
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their length exceeds the length of the worst-case trace through both basic
blocks. To eliminate this overestimation, the idea of a state-sensitive graph
as input to path analysis has evolved. This corresponds to the abstract
execution graph in Section 3.3.
Matthies discusses a path analysis based on such abstract execution

graphs, which he terms prediction files, in his diploma thesis [Matthies, 2006].
In contrast to previous ILP-based techniques, he proposes an algorithm
based on depth-first search to compute upper timing bounds for the given
acyclic graph. If the provided graph is cyclic, e.g. due to loops in the
program, he applies his algorithm to the acyclic loop body first and then
replaces the cycle by the calculated upper bound for the loop body. While
this explicit approach offers better precision at higher analysis cost, a
disadvantage is that additional constraints on infeasible traces cannot be
added as easily and modularly as it is the case for an ILP formulation.

In his dissertation, Stein [2010] reconciles the implicit path enumeration
with the more precise abstract execution graph. He tackles the problem
of the larger input graph, compared to the previously used control-flow
graphs, by applying a series of lossless and lossy compression steps. Next,
he adapts the original encoding as integer linear program to the new
input graph. Finally, he demonstrates how to incorporate constraints to
eliminate infeasible microarchitectural behaviour using the example of cache
persistence analysis.

6.2 High-Level Schedulability Analysis
Schedulability analysis determines for a certain scheduling policy whether
a set of tasks is schedulable on a given hardware platform, i.e. whether
all tasks meet their deadlines. Most schedulability analyses in literature
follow the compositional approach. They use the results of preceding
low-level analyses which characterise the execution behaviour of each task
in isolation. Based on these characteristics, they incorporate additional
schedule-dependent effects such as preemption delays or interference on
shared resources. In this section, we only discuss related work that follows
such a two-step approach. Other approaches that follow a more integrated
view are discussed below in Section 6.5.

The foundation for contemporary real-time scheduling research has been
laid by Liu and Layland [1973]. The authors discuss preemptive single-core
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scheduling with fixed priorities (rate monotonic) as well as with dynamically
adjusting priorities (earliest deadline first). Furthermore, they provide
sufficient and necessary schedulability tests without the construction of an
actual schedule.
This initial work has some simplifying assumptions such as neglectable

preemption cost and context-independent task characteristics. For mod-
ern architectures with caches, dynamic random-access memory, or shared
resources, these assumptions are either not true or introduce significant
pessimism. Consequently, much research effort has gone into the elimination
of these assumptions.
For reasons of brevity, we only discuss selected work related to the

extension of the interface between low-level and schedulability analysis
which affects the compositionality assumption. For a survey of multi-
processor real-time scheduling, we refer the interested reader to [Davis and
Burns, 2011].
Atanassov and Puschner [2001] integrate the timing effect of DRAM re-

freshes into the response-time analysis for fixed-priority, preemptive schedul-
ing. Refreshes are rare events that happen asynchronously to task execution
and can prolong the affected memory accesses. A context-independent
timing bound needs to consider refreshes for each memory access which
introduces severe pessimism. The schedulability analysis can calculate the
maximal number of refreshes during the worst-case response time of a task
and account for their timing effect.

Schliecker and Ernst [2010] propose an analysis of multi-core systems with
shared memory. The tasks, partitioned to individual cores, are preemptively
scheduled with fixed priorities. First, the number of shared resource requests
by each task within time intervals is approximated. Second, they derive the
maximal amount of interference a task experiences given a certain arbiter,
e.g. a work-conserving arbiter. Finally, the amount of interference is added
to the computation time in isolation to obtain the worst-case response
time. In a similar setting, Schranzhofer et al. [2011] present a different
analysis of shared resource interference for adaptive arbiters. Their dynamic
programming approach operates at the level of so-called superblocks that
cannot be preempted and are characterised by maximal execution time and
maximal number of accesses to the shared resource.
The cache-related cost incurred due to preemption has attracted quite

some attention [Busquets-Mataix et al., 1996; Lee et al., 1996; Altmeyer et al.,
2011; Lunniss et al., 2013]. The approaches use low-level characteristics of
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the preempting and/or the preempted task to calculate the cache-related
preemption delay within the respective schedulability analysis. While
the authors of [Busquets-Mataix et al., 1996; Lee et al., 1996; Altmeyer
et al., 2011] consider fixed-priority scheduling, Lunniss et al. [2013] examine
scheduling with dynamic priorities according to earliest deadline first.
Recently, Altmeyer et al. [2015] have summarised the previous findings

on DRAM refreshes, cache-related preemption delay, and shared resource
interference in a generic compositional framework. We have presented
their response-time analysis in more detail in Section 3.5 (Schedulability
Analysis).

6.3 Progress-based Pipeline Abstraction
The major obstacle to efficient microarchitectural analysis is anomalous
timing behaviour. Due to timing anomalies, a sound microarchitectural
analysis needs to consider all possible successors upon a non-deterministic
choice. We briefly review work on the definition and classification of timing
anomalies as well as conditions that guarantee anomaly freedom. Last,
we consider work towards more efficient microarchitectural analysis in the
presence of anomalies.

Timing Anomalies In the common understanding, a timing anomaly de-
scribes a non-deterministic choice during analysis where the locally worst
successor does not entail the global worst-case. This is in contrast to what
we term an amplifying anomaly, i.e. a situation in which a local prolongation
causes an even longer global prolongation. Some of the papers mentioned
below treat both types of anomalies at once.

In 1969, Graham has already examined timing anomalies in the context
of multi-processor systems. He has observed that reducing the execution
time of tasks, relaxing dependencies, or adding additional cores can lead
to a worse overall execution time. Most of his insights translate to the
behaviour of modern dynamically scheduled out-of-order processors.

Initial work on timing anomalies in microarchitectural analysis has been
conducted by Lundqvist and Stenström [1999]. They give definitions for
anomalies, amplifying anomalies, as well as domino effects. A program
modification technique is proposed to eliminate anomalies.
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Besides the intuitive meaning of a timing anomaly, its formal definition has
been an active research topic. Different definitions are given for example in
[Wenzel et al., 2005; Reineke et al., 2006; Eisinger et al., 2006; Gebhard, 2010;
Cassez et al., 2012]. The interpretation of the term “anomaly” thereby ranges
from a purely hardware-based property (“consistently slower hardware”
[Cassez et al., 2012]) to definitions based on analysis abstractions. Our
definition given in Section 2.5 (Domination) belongs to the latter category.
For reasons of brevity, we will not provide a comparison of the definitions.

Reineke et al. [2006] propose a definition based on transition systems and
provide a classification into scheduling, speculation, and cache anomalies.
Gebhard [2010] provides more examples including a domino effect triggered
by MRU cache replacement and an anomaly caused by a mechanism of the
in-order LEON2 processor to only partially fill lines in its LRU caches.
The automatic identification of anomalies or the automated proof of

anomaly freedom has been a research objective for a long time. Eisinger
et al. [2006] present a technique based on bounded model checking to
automatically identify timing anomalies as counter examples to the query of
anomaly freedom. The authors demonstrate their technique by identifying
an anomaly on a simplified hardware model. For realistic systems, the
proof of anomaly freedom or even the identification of an anomaly might
be infeasible due to the computational complexity.

Reineke and Sen [2009] describe an approach to efficient low-level analysis
in the presence of anomalies. They compute, for pairs of microarchitectural
states, the maximal difference in execution time for any sequence of instruc-
tions. This difference can then be used to prune states during analysis. The
maximal differences are computed by solving a recursive constraint system
which encodes the possible state transitions. The approach might, however,
not scale to the analysis of complex microprocessors.

Anomaly Freedom In [Engblom, 2002; Engblom and Jonsson, 2002], the
authors model the pipeline behaviour for a sequence of instructions as an
acyclic constraint graph. The graph has a node for each pair of instruction
and pipeline stage and uses directed edges to describe dependencies, e.g.
data dependencies and resource dependencies such as “ins2 is fetched only
after ins1”. As the authors state, this modelling is limited to simpler in-
order pipelines. Out-of-order execution or a common memory bus as in the
Princeton architecture will introduce cycles in the constraint graph. Note
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that this cyclicity is closely related to the non-monotonicity of pipelines
as we discussed in Chapter 4. Based on the above modelling, they derive
interesting properties of pipelines. As an example, they show that any
in-order pipeline is free of anomalies. Please note, that this statement does
not conflict with our earlier observation in Chapter 4 as we consider a
common memory bus. Even for an in-order pipeline, the common memory
bus does, however, not perform all accesses in program order. If we model
the common memory bus as pipeline stage in the constraint graph, we will
thus obtain a cyclic constraint graph.

Similar to the above condition, Lundqvist and Stenström [1999] state that
a processor with only in-order resources cannot exhibit any (amplifying)
timing anomaly. In our work, we have discussed that this is not entirely true,
even if the common memory bus behaves as an in-order resource. We have
shown in Section 5.4 (Compositionality by Sound Penalty) that our strictly
in-order pipeline design still exhibits (bounded) amplifying anomalies w.r.t.
instruction cache misses.
Wenzel et al. [2005] introduce the notion of resource allocation decision

as the principle behind timing anomalies. A resource allocation decision
describes the possibility of different instruction orderings within a functional
unit during execution, caused by a latency variation of an earlier instruction.
The authors claim that the absence of such decisions implies that the
processor does not feature timing anomalies. This is not true, unless the
common memory bus is considered a functional unit [Hahn et al., 2015a].
Even in this case, the condition is not sufficient to eliminate amplifying
anomalies.

Progress-based Pipeline Modelling In contrast to the enumeration of
reachable pipeline states, Li et al. [2006] propose a new technique to deal
with out-of-order processors in low-level timing analysis. The authors aim
to compute for each instruction a timing interval in which the instruction
enters or leaves the pipeline. This representation is closely related to our
notion of progress of an instruction introduced in Chapter 4. Although not
explicitly mentioned, their basic pipeline modelling, i.e. execution graph
and dependence relation, coincides with the pipeline modelling of simpler
in-order pipelines by Engblom [2002]. They extend the constraint graph
proposed by Engblom with additional relations, called contention and
parallelism relation, to model the behaviour of instructions in a superscalar
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out-of-order pipeline. Using these additional relations, they prevent the
problematic cycles in the dependence relation mentioned by Engblom. Based
on the extended constraint graph, they present a fixed-point algorithm to
calculate the timing intervals mentioned above. In contrast to state-of-the-
art approaches, the algorithm neither enumerates the reachable pipeline
states nor operates at the granularity of individual clock cycles. This
promises higher efficiency but also lower precision than the state-of-the-art
technique.
However, the approach has limitations as well. First, in out-of-order

pipelines, the access sequences to the caches can vary due to reorderings
and speculation in the pipeline. This becomes problematic if caches and
pipelines are analysed separately. Second, to capture the overlapping
between basic blocks, they incorporate so-called pro- and epilogues, i.e.
instructions of the preceding and subsequent basic blocks that influence the
execution of the current block. For complex out-of-order processors with
several buffers, these pro- and epilogues might become prohibitively large.

Mohan and Mueller [2008a] introduce a hybrid approach to timing anal-
ysis that is claimed to handle even complex out-of-order processors. The
approach requires processors with the ability to save and restore their
physical implementation state, which they call snapshot. Based on this
mechanism, they execute fragments of paths through the control-flow graph
of a program from defined snapshots to obtain the fragments’ timing. It
remains unclear how to practically save and restore such snapshots on a real
processor. Furthermore, an analysis that accounts for all possible machine
states that arise during the execution will be expensive.

To improve efficiency, in [Mohan and Mueller, 2008b], the authors extend
their approach by means to merge snapshots of machine states. As a
motivating example, consider a program point where the control-flow of
two paths A and B join and path B has taken more cycles to execute. An
analysis of the subsequent instructions based on the snapshot at the end
of B is not sufficient: path A, despite being shorter, might end in a snapshot
that results in worse timing behaviour for the subsequent instructions. A
sound, but expensive, analysis would need to consider such “anomalous”
behaviour by exploring both snapshots. The authors propose to reduce the
number of snapshots by merging, i.e. finding a snapshot that exhibits a
timing behaviour that is at least as bad as the snapshots obtained at the
end of A and B.
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To construct such a snapshot, the authors take the respective maximum
times at which an instruction can enter and leave a unit in the processors.
This approach resembles the idea behind the progress-based join presented in
Chapter 4 (Progress-based Abstraction). However, as they use the concrete
cycle transformer implemented in silicon, recall that such a join is only
sound if the machine behaves monotonically as discussed in Section 4.1
(Formalisation of Progress-based Abstraction). As discussed in Section 4.9
(Outlook: Monotonic Extensions), out-of-order pipelines—as considered by
the authors—do not behave monotonically in general. Consequently, the
merge operator as described in the paper cannot be sound. As an example,
consider an instruction i after a control-flow join that needs a functional
unit which is only available after the currently occupying instruction leaves
the unit. Taking the maximum of the exit times, the merge rules out
the case that i might actually start earlier on some execution path. But
due to timing anomalies—similar to Figure 4.12 in Section 4.9—the case
that i executes earlier can actually lead to the globally worst behaviour.
Similarly, the authors make assumptions that are incorrect in the presence
of timing anomalies, e.g. that a variable-latency instruction whose operands
and thus latency are not known, always takes the maximum latency.

6.4 Compositionality
Most approaches to schedulability analysis, including the work discussed in
Section 6.2, assume timing compositionality. While compositionality has
been understood well intuitively—“in the sense that any shared resource
delays are additive to the execution times” [Schliecker and Ernst, 2010]—
there has been little research on the formal meaning or on how to achieve
compositionality at all. Our work aims at bridging this gap by providing a
formal definition in [Hahn et al., 2015b] and Section 2.6, and a comprehensive
overview of techniques to achieve compositionality in Chapter 5.

The first definition of compositionality has been given by Wilhelm et al.
[2009]. They classify an architecture as fully compositional if its abstract
model does not exhibit timing anomalies, as compositional with constant-
bounded effects if it does not exhibit domino effects, and as non-compositional
otherwise.

The authors conclude that it suffices for an analysis of such a fully compo-
sitional architecture to only follow the local worst-case path. Although this
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statement is true, it is in contrast to the intuitive idea of compositionality,
namely to follow the local best-cases only and add timing penalties later on.
At least, they mention that such an “even simpler timing analysis” [Wilhelm
et al., 2009] is possible for the ARM7 that stalls upon each timing accident.
Their definition is based on “the” abstract model of an architecture,

which is, however, not uniquely defined: there might exist different abstract
models with and without timing anomalies. We base our definition on a
given abstract model from the set of possible models. Consequently, we do
not associate the compositionality property with an architecture itself.

An architecture whose abstract model exhibits domino effects is generally
classified as non-compositional because an analysis has to follow all possible
cases. In Section 5.5 (Compositional Base Bound), we have presented an
analysis which follows all possible cases but still enables compositional
schedulability analysis.
The definition of Wilhelm et al. [2009] is not sensitive to a chosen de-

composition, i.e. it is not aware of the parts of the system which should be
accounted for in a compositional manner. As a consequence, their require-
ment of complete anomaly freedom is overly restrictive. As an example,
consider a model of an out-of-order pipeline which exhibits scheduling
anomalies but stalls upon shared-bus blocking. The shared-bus interference
can be handled in a compositional way, despite the timing anomalies.

Besides the issues we identified in the definition of [Wilhelm et al., 2009],
the authors are right that timing anomalies, more precisely amplifying
anomalies, seriously threaten efficient compositional analysis as we discuss
in Chapter 5. Amplifying timing anomalies are known since the initial
paper on timing anomalies in low-level analysis by Lundqvist and Stenström
[1999]. But besides that, not much attention has been paid to amplifying
anomalies in the past: they only prolong the local worst-case path and thus
do not hinder a sound and efficient low-level analysis from ignoring the local
best-case. Concerning compositionality, however, these anomalies turn out
as the essential threat. Lundqvist and Stenström [1999] provide examples of
amplifying timing anomalies triggered in dynamically-scheduled processors
by uncertainty about the cache behaviour and the varying latencies for cache
hits and misses. Such anomalies can also be triggered by uncertainty about
the memory latency due to shared-bus blocking or DRAM refreshes. We
show in Section 5.1 (Validation of Compositionality Assumption) that even
a simple in-order pipeline with a small store buffer can cause amplifying
anomalies.
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In Section 5.4 (Compositionality by Sound Penalty), we state that there
is no automated tool to calculate an upper bound on the maximal indirect
effect caused by a timing accident. The work closest to such an automated
tool is the technique of Reineke and Sen [2009] to calculate the maximal
difference in execution time for a pair of microarchitectural states. However,
the presented approach has not been demonstrated to scale to realistic
architectures.
Whether a decomposition is successful in terms of increased efficiency

and acceptable precision depends on how tightly-coupled the individual
constituents are. The general decomposition of cache and pipeline behaviour
leads to overestimation in the worst-case execution time without gaining
much efficiency compared to an integrated approach [Heckmann et al., 2003;
Faymonville, 2015]. The main reason for the observed imprecision is the fact
that modern pipelines with speculation and out-of-order execution influence
the cache access sequence. A sound cache analysis either needs to run a
full-fledged pipeline analysis anyway or has to conservatively approximate
any potential speculative and reordered accesses. For other cases, such as
cache-related preemption delay or shared-bus blocking which depend on the
actual schedule, a compositional approach will be the more viable choice.

6.5 Beyond Compositionality
Not all approaches to the analysis of multi-core or preemptively scheduled
systems follow the common trend of assuming compositionality. In this
section, we provide a brief overview of work beyond the compositionality
trend. On the one hand, there are more integrated approaches that consider
the effects of interference already during low-level analysis. On the other
hand, there is the research area of composability and temporal isolation to
mitigate interference by careful design of the system.

Integrated Approaches In his dissertation, Schneider [2003] proposes an
approach to the analysis of preemptively scheduled systems with real-time
operating system. The abstract model of the processor he investigates
features domino effects caused by an additional cache miss. As a conse-
quence, the block reload time cannot be bounded by a constant precluding
a compositional treatment of the cache-related preemption delay. His ap-
proach partly integrates high-level schedulability analysis with low-level
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WCET analysis. Scheduling information is fed to the low-level analysis to
account for the additional cache misses due to preemption already in the
computation time characteristics. Our compositional base bound approach
can serve as compositional alternative for the analysis of such systems.
Dietrich et al. [2017] propose a response-time analysis for fixed-priority

scheduled systems integrating the analysis of the real-time operating systems.
Instead of bounding the execution time of each task, including the interrupt
service routine and the operating system itself, in isolation, they examine
the possible system-level contexts in which tasks are executed. Their work is
based on a state transition graph that explicitly enumerates possible system
states—including runnable threads, allocated resources, and active tasks—,
and transitions between them. They also model the effect of asynchronous
interrupt handling. Furthermore, they integrate cross-kernel flow facts
excluding infeasible system-level paths to reduce pessimism. Although the
approach does not inherently require timing compositionality, it might be
necessary for efficiency reasons once complex hardware platforms, cache-
related preemption delay, or interference on a multi-core are considered.
Kelter and Marwedel [2017] present their parallelism analysis to obtain

precise timing bounds on multi-core systems. Their analysis explores all
possible interleavings of co-running tasks on the multi-core. To limit the
search space, a criterion is presented to identify infeasible interleavings.
While low-level and high-level analysis are integrated, the authors make
severe assumptions on the possible schedules: all tasks have the same
period and each task is executed non-preemptively on a separate core. The
evaluation shows benefits in precision, but also an increase in analysis
runtime of two to three orders of magnitude, depending on the system
under analysis.
If the state of the shared bus arbiter and the co-running tasks in a

multi-core system are part of the abstract model, interference-induced
timing anomalies show up. Shah et al. [2014] demonstrate by example
that more interfering accesses of co-runners can influence the state of a
round-robin arbiter such that it is more favourable for the timing of the
remaining accesses of the considered task. If the arbiter state is not part of
the abstract model, such as in [Jacobs et al., 2015], no timing anomalies
occur. This substantiates the dependence on the chosen abstraction for the
definition of an anomaly.

The multi-core analysis proposed by Jacobs et al. [2015] ranges between
an integrated analysis in the sense of [Kelter and Marwedel, 2017] and a
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low-level analysis assuming the absence of interference as performed in a
compositional setting. The proposed microarchitectural analysis is core-
modular, i.e. it only tracks the state of a single core, but incorporates the
direct and indirect effects of interfering accesses. Each memory access can be
non-deterministically blocked at the shared bus which allows a fine-grained
analysis of the effect of interference on the core’s state. Together with a core-
modular arrival curve analysis that bounds the amount of interference per
time interval, the authors calculate co-runner-sensitive worst-case response
times. The evaluation is performed for a system with event-driven round-
robin bus arbitration. In this thesis and in [Hahn et al., 2016], we use
this interference-sensitive analysis to sample interference response curves
(Section 5.1 (Validation of Compositionality Assumption)) and to compute
compositional base bounds (Section 5.5 (Compositional Base Bound)).

Composability and Temporal Isolation Composability allows to combine
different components without changing the behaviour of the components.
As an example, if a set of tasks is integrated on a single, composable multi-
core platform, the timing behaviour of the individual tasks should not be
influenced by the co-running tasks. In other words, the tasks are temporally
isolated. In such a system, the traditional analysis methods known from
single-core verification can be reused.
Designing a timing-composable system is difficult as each component

has to support temporal isolation. Akesson et al. [2010] distinguish the
concepts of composability and predictability. They discuss how to achieve
both properties at the level of processor cores, the interconnect, and the
background memory. Bui et al. [2011] survey the components that have
to provide temporal isolation including the pipeline, the local memories,
the interconnect, and the DRAM controller. Goossens et al. [2013] survey
their previous work on the CompSOC architecture that provides temporal
isolation between applications by, e.g., employing time-division multiplexing
techniques.

Time-division multiple-access (TDMA) techniques are popular to achieve
access to a shared resource in a temporally isolated fashion. Kelter et al.
[2011] propose a low-level analysis to track the current offset within a
TDMA cycle to obtain a bus-aware worst-case execution time bound.

A technique to achieve temporal isolation of state-based resources such as
caches is partitioning. Cache partitioning can either be realised in hardware
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or in software, i.e. by an operating system. A hardware-based solution is to
partition the set of cache ways as described as column caching by Chiou
et al. [2000]. Taylor et al. [1990] mention a software-based technique called
page colouring which has later been used to partition shared caches [Lin
et al., 2008]. Plazar et al. [2009] employ instruction cache partitioning to
tighten timing bounds in a multi-task setting. The partitioning of shared
caches is commonly used to achieve temporal isolation in multi-core systems.
Guan et al. [2009] extend their task model by cache capacity demands and
adjust the schedulability analysis to ensure that the capacity demands are
always met.

6.6 Hardware Design for Predictability
General-purpose hardware design aims at high average-case performance.
When it comes to timing-critical systems where upper timing bounds matter,
such designs cause issues in the timing verification process. General-purpose
hardware is considered to be unpredictable w.r.t. timing performance due
to high timing variability and a strong history-dependence. Additionally,
timing anomalies and domino effects hinder efficient analyses. The ultimate
goal is to design a processor that is predictable and efficiently analysable
while showing good performance. Our work contributes the strictly in-
order pipeline design which supports compositionality and anomaly freedom
without sacrificing too much performance. In the following, we survey
related work in the field of predictable hardware design.

In the scope of the PREDATOR project, Wilhelm et al. [2009] give advice
concerning the design of future architectures for the time-critical domain.
Their work covers pipelines, buses, and memory hierarchies with a strong
focus on caches and their analysis. They recommend to use predictable
pipelines such as the one found in the simple ARM7 processor which they
conjecture to be compositional.
The MERASA project [Ungerer et al., 2010] targets hardware design

and analysis tools for multi-core embedded processors in a mixed-criticality
setting. They implement temporal isolation for hard real-time tasks against
other tasks. The proposed processor cores feature simultaneous multi-
threading that prioritises the hard real-time thread. As core-local memories,
they use scratchpads for the hard-real time threads and caches for the
remaining threads. The shared bus with bounded waiting time connects the
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cores to a dynamically partitioned cache. The DRAM device is accessed
through a closed-page, predictable memory controller with round-robin
arbitration. Their low-level analysis calculates context-independent charac-
teristics, i.e. the low-level analysis accounts for the maximal interference
effects.
The aim of a precision-timed (PRET) machine is repeatable timing, i.e.

a program always takes the same execution time for a given input. Liu
et al. [2012] describe an implementation of such a PRET machine whose
timing is repeatable and predictable with competitive performance. They
employ a five-stage, thread-interleaved pipeline with four threads, local
scratchpad memories, and the repeatable DRAM controller of Reineke
et al. [2011]. The interleaved execution of hardware threads eliminates
hazards and requires no forwarding circuits. While the performance w.r.t.
throughput is competitive, the single-thread performance is significantly
decreased as each thread is only executed every fourth cycle. The FlexPret
extension [Zimmer et al., 2014] introduces flexibility to the hardware thread
schedule. The single-thread performance of a thread can be increased by
scheduling the thread more often. FlexPret targets at mixed-criticality
systems and consequently supports hard and soft real-time threads.
De Dinechin et al. [2014] present the Kalray MPPA R©-256 many-core

processor that suits time-critical applications. The many-core is divided into
16 clusters that are connected via a Network-on-Chip. Each cluster features
16 cores with a seven-stage, statically scheduled pipeline that can issue up
to five instructions per cycle. Each core has separate instruction and data
caches following the LRU replacement policy, and a small write buffer. The
authors state without further explanation that their core qualifies as fully
timing compositional in the sense of [Wilhelm et al., 2009], i.e. it does not
exhibit timing anomalies.
Recently, within the T-Crest project, Schoeberl et al. [2015] have pro-

posed a design for a predictable multi-core platform. A TDMA-based
Network-on-Chip provides core-to-core communication while a memory
tree provides access to a single DRAM controller for all cores. Each core,
called Patmos, features a dual-issue, statically scheduled pipeline and a
variety of local memories such as method, stack, and data cache as well as
an optional scratchpad. In contrast to ordinary processors, all caches are
filled in the memory pipeline stage only: upon a call or return instruction
in the memory stage, the method cache is filled with the next function.
Although the authors claim in [Schoeberl et al., 2014] that Patmos supports
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compositionality and is free of anomalies, to the best of our knowledge,
there is neither a formal proof nor an (intuitive) argument to support that
claim.
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Chapter 7
Conclusions and Future Work

In hard real-time systems, it is crucial to verify that the system meets its
timing requirements under all circumstances. To this end, timing analysis
computes the worst-case response time of each task in the system. To
ensure soundness, timing analysis accounts for the influence of the program
inputs, the microarchitectural state, and the concurrent tasks competing
for shared resources.
Modern microarchitectures commonly exhibit counter-intuitive timing

behaviour that complicates the timing analysis or renders it less efficient.
Timing anomalies prevent the (low-level) analysis from pruning parts of the
search space because a locally fast execution might result in a globally slow
execution. Indirect effects hinder a compositional (high-level) analysis since
a locally slowed-down execution can lead to an even slower global execution.
How to deal with such counter-intuitive behaviour is thus a key concern of
timing analysis.

Contributions
In this thesis, we have made the following contributions to state-of-the-art
timing analysis.

First, we have introduced the idea of abstracting pipeline states based
on the progress of a program’s execution within the pipeline. An abstract
pipeline state p̂ thereby compactly represents all concrete pipeline states
with at least the progress of p̂. We have presented a generalised formalism
that allows to reason about the soundness of progress-based abstractions.
Defining the abstract cycle behaviour of a given microarchitecture is difficult
in general. However, if a microarchitecture behaves monotonically w.r.t.
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progress, its concrete cycle behaviour can be used as the abstract cycle
behaviour.

Second, we have presented the strictly in-order pipeline that behaves
monotonically w.r.t. the progress of a program’s execution. In contrast
to a conventional in-order pipeline, it enforces that all operations on the
memory bus, i.e. instruction and data accesses, occur in program order.
The monotonicity of the cycle behaviour enables us to prove the absence of
timing anomalies which in turn enables a more efficient timing analysis.

Third, we have examined the compositionality assumption that is crucial
for the soundness of many approaches to high-level analysis proposed in
the literature. An experimental validation has revealed that even simple
microarchitectures exhibit indirect effects that have previously been ignored.
As a consequence, we have introduced the compositional base bound analysis
that accounts for potential indirect effects already during the low-level
analysis. While the compositional base bound analysis is applicable to
any microarchitecture, the analysis demands more computational resources.
Last but not least, we have shown how to adjust microarchitectures in order
to achieve timing compositionality on the hardware level.

Conclusions

In conclusion, a sound compositional timing analysis of modern real-time
systems that feature multi-core processors and preemptive execution is
possible when indirect effects are considered. For the first time, our com-
positional base bound analysis enables the sound application of existing
high-level schedulability analyses to realistic and contemporary hardware
platforms.
On the downside, timing analysis demands an immense amount of com-

putational resources to account for all anomalies and indirect effects present
in contemporary microarchitectures. We advocate that the (provable) pre-
dictability of a microarchitecture’s timing behaviour should be a major de-
sign goal for future processors used in a hard real-time context. The strictly
in-order pipeline that behaves monotonically w.r.t. execution progress is a
first step in this direction.
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Future Work
The strictly in-order pipeline has been designed with monotonicity in mind
to ensure timing predictability, i.e. timing compositionality and the absence
of timing anomalies. It is future work to review performance-enhancing
features other than pipelining in order to decide to what extent they can
be employed in a processor with monotonic timing behaviour—if at all
possible.
Since the (timing) behaviour of processors is generally complex and

often subtle, it is important to have formal proofs of properties such as
monotonicity. To this end, it is desirable to carry out the proofs in an
automatic or interactive theorem prover.
A non-relational progress abstraction is sufficient to analyse pipelines

with a monotonic timing behaviour. However, for non-monotonic pipelines,
e.g. a conventional in-order pipeline, no sound abstract cycle transformer
could be found that is guaranteed to make progress. A relational abstract
domain that additionally tracks the combined progress of instruction pairs
might be powerful enough to enable such a sound abstract transformer.
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Appendix A
Computer Architecture: Concepts

A.1 In-Order Pipeline
Pipelining is a technique to increase the instruction throughput of a proces-
sor, i.e. to increase the number of completed instructions per clock cycle.
The fundamental observation is that during execution, each instruction
performs roughly the same operations where each operation requires only a
subset of the processor’s logic. Consequently, consecutive instructions can
perform distinct operations in parallel to better utilise the overall processor.
In accordance with these operations, the processor’s logic is grouped into
consecutive pipeline stages of similar length where each stage performs one
operation.

A common separation of an instruction’s execution into five operations is
the following [Hennessy and Patterson, 2012]:
(i) fetch the instruction from the instruction memory to the processor

core,
(ii) decode the instruction and fetch the required register operands,
(iii) execute the instruction using the respective operand values,
(iv) optionally perform a data memory access, and
(v) write back the respective result into a register.

In an in-order pipeline, each stage processes the instructions in the order
given by the binary program. This is in contrast to an out-of-order pipeline
as described in Appendix A.3 that dynamically reorders the execution of
instructions. In Figure A.1, we depict a conventional in-order pipeline with
five stages, described in more detail e.g. in [Hennessy and Patterson, 2012].
In the ideal case, the instruction throughput of an n-stage in-order

pipeline increases by a factor n w.r.t. a non-pipelined machine. Note that
the latency of a single instruction is not reduced by pipelining. There are
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Figure A.1: Schematic view of a five-stage in-order pipeline with memory
hierarchy.

multiple reasons why this theoretical speed-up is never reached. First, not
each instruction requires all operations, e.g. an addition performs no data
memory access and a branch does not write-back a result. Second, the
circuit delays of the individual stages differ. The maximal clock frequency
of the pipelined machine is determined by the slowest stage. Third and
most importantly, the operations of the different instructions within the
pipeline are often not independent which hinders their parallel execution.
Such cases are called pipeline hazards.
We distinguish three types of hazards. A data hazard occurs if an

instruction in the decode stage needs to read a register that will be written
by previous instructions still in the pipeline. Certain data hazards can be
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resolved by a technique called forwarding that forwards the required value
from the respective pipeline stage as soon as it is ready. If the register
of interest is written by a preceding load instruction, the decode stage is
stalled and has to wait until the data memory access has been finished. A
control hazard arises if the outcome of a branch, and thus which instruction
to fetch next, is not known yet. Instead of waiting for the branch to resolve,
the pipeline can speculatively fetch the next instructions. If the speculation
turns out to be wrong, the speculatively fetched instructions are rolled back
and the pipeline restarts at the correct program location. Last, structural
hazards describe scenarios in which different instructions want to access
the same resource at the same time. As an example, consider a memory
load and an instruction fetch that both miss their respective cache and thus
need to access the background main memory. The pipeline grants access to
one stage and stalls all other requesting stages.

In the evaluation in Sections 4.8 and 5.6, we use a variant of the described
five-stage in-order pipeline. First, it features forwarding to reduce the
number of data hazards. Second, its fetch stage can detect and execute
unconditional branches right away which reduces the number of control
hazards. Furthermore, to limit the impact of control hazards caused by
conditional branches, our pipeline features a simple branch speculation.
Based on the branch offset encoded in the branch instruction, it predicts
backward branches as taken and forward branches as not-taken. The
rationale behind this scheme is that branches with a backward heading
offset are usually used to implement the condition of a loop.

Formalisation of Cycle Behaviour In this paragraph, we formally define
the behaviour of our five-stage in-order pipeline. In accordance with Sec-
tion 4.1 (Formalisation of Progress-based Abstraction), we provide the
pipeline cycle behaviour for a fixed sequence of instruction instances which
represents the instructions fetched during a specific program execution.
Id denotes the set of dynamic instruction instances from this sequence.
We order the instruction instances according to their position within the
sequence, i.e. insn < insm denotes that instruction instance insn occurs
before insm. With each dynamic instruction ins ∈ Id, we associate its
operation code opc(ins), its operand registers ops(ins), and its destination
registers target(ins).
To model speculative fetching, the set Id includes instruction instances
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evs := {(dcmiss, i, p(i), p′(i)) | p′(i) @ (EX , 0) = p(i) ∧ ¬dchit(i) ∧ opc(i) = load}
∪ {(dchit, i, p(i), p′(i)) | p′(i) @ (EX , 0) = p(i) ∧ dchit(i) ∧ opc(i) = load}
∪ {(icmiss, i, p(i), p′(i)) | p′(i) @ (pre, 0) = p(i) ∧ ¬ichit(i)}
∪ {(ichit, i, p(i), p′(i)) | p′(i) @ (pre, 0) = p(i) ∧ ichit(i)}

Figure A.2: Definition of the events that occur during a cycle transition of
a five-stage in-order pipeline.

that are fetched speculatively but never executed. With each branch
instruction, we associate whether the subsequent speculation will result in
a flush (missspec) for the specific program execution and which instructions
have been potentially fetched speculatively while resolving the branch
condition (specfetch).

Parts that do not belong to the pipeline control are modelled by external
functions. The function ichit (dchit) returns true if and only if the fetch
(data) access of an instruction instance hits the instruction (data) cache.
exlat returns the execution latency of an instruction instance whose latency
might depend on the operand values, in particular for floating-point instruc-
tions. memlatf (memlatd) returns the memory latency that the fetch (data)
access of an instruction instance experiences. If abstraction is employed
for the non-pipelined part, e.g. a cache abstraction, the external functions
might provide uncertain answers. In this case, the cycle behaviour follows
all successor configurations permitted by the uncertain external information.
A pipeline state p ∈ Id → S × N0 maps each instruction to its current

pipeline stage and the number of remaining cycles to finish the current
stage. The state can also be expressed as a pair of functions

p = (stage, cnt) ∈ (Id → S)× (Id → N0) .

We formally define the cycle behaviour cycle(p)(evs)(p′) of an in-order
pipeline by the equations in Figures A.2 and A.3. The primed variables
correspond to the pipeline configuration p′ after the cycle transition. v cor-
responds to the progress order described in Section 4.3 (Progress of In-Order
Pipeline). Variables i and j denote instruction instances from Id.
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p′ := λi ∈ Id.

{
(stage′(i), latency(i)) : ready(i) ∧ willbefree(stage′(i))
(stage(i), cnt′(i)) : otherwise

cnt′(i) :=
{
cnt(i)− 1 : cnt(i) > 0
0 : cnt(i) = 0

stage′(i) :=



post : stage(i) = WB ∨ flush(i)
WB : stage(i) = MEM
MEM : stage(i) = EX
EX : stage(i) = ID
ID : stage(i) = IF
IF : stage(i) = pre

ready(i) := cnt(i) = 0
∧ ((stage(i) = EX ∧ opc(i) = store)⇒ busfree)
∧ ((stage(i) = EX ∧ opc(i) = load)⇒ dchit(i) ∨ busfree)
∧ ((stage(i) = EX ∧ opc(i) = branch ∧missspec(i))

⇒ ¬∃j. j ∈ specfetch(i) ∧ stage(j) = IF ∧ cnt(j) 6= 0)
∧ (stage(i) = ID ⇒ ¬ophaz(i))
∧ (stage(i) = pre ⇒ next(i) ∧ (ichit(i) ∨ ibusfree))

willbefree(s) := s = post
∨ (¬∃i. stage(i) = s)
∨ (∃i. stage(i) = s ∧ ready(i) ∧ willbefree(stage′(i)))

busfree := ¬∃i. (stage(i) = IF ∨ stage(i) = MEM) ∧ cnt(i) > 0
ibusfree := busfree ∧ ¬∃i. opc(i) ∈ {load, store} ∧ p(i) = (EX , 0) ∧ ¬dchit(i)

latency(i) :=


memlatf (i) : stage′(i) = IF ∧ ¬ichit(i)
memlatd(i) : stage′(i) = MEM ∧ ¬dchit(i)
exlat(i) : stage′(i) = EX
0 : otherwise

next(i) := stage(i) = pre ∧ ∀j < i. stage(j) 6= pre
flush(i) := ∃j. stage(j) = EX ∧ cnt(j) = 0 ∧ j = branch

∧misspec(j) ∧ i ∈ specfetch(j) ∧ (stage(i) = IF ⇒ cnt(i) = 0)
ophaz(i) := ∃o ∈ ops(i) ∃j. p(j) A (MEM , 0) ∧ opc(j) = load ∧ o ∈ target(j)

Figure A.3: Equations expressing the cycle behaviour of a five-stage in-order
pipeline.
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A.2 Memory Hierarchy
In an ideal world, a processor connects to an inexpensive, large, and fast
memory that stores code and data. However, there is no single type of
memory that has these properties. Rather, there is a multitude of different
semiconductor technologies to implement memory, each with its specific
advantages and drawbacks. To create the illusion of a large and fast memory
at an acceptable cost, a hierarchy of memories is employed [Hennessy and
Patterson, 2012]. A large but slow main memory can store a large amount
of data while fast but small memories provide a fast access path to the
processor by buffering the most frequently used data. In the following, we
review some of the major components of the memory hierarchy as found in
contemporary systems.

A.2.1 Main Memory
There are different semiconductor technologies to manufacture memory
with specific characteristics. For an in-depth discussion of the different
memory types, we refer the interested reader to [Veendrick, 2017].

Static random-access memory (SRAM) is a volatile and very fast memory.
As its speed can match the processor speed, SRAM is used to build caches
and processor-local scratchpad memories. Due to high area demand per
bit stored, it is usually not used as the main memory except for simple,
low-power microcontrollers.

Dynamic random-access memory (DRAM) is a volatile and fast memory
that stores information as charge in a capacitor. Its relatively high speed
and—compared to SRAM—lower area demand per bit made DRAM the
predominant type of main memory in contemporary systems. In general, a
DRAM access consists of two parts. First, a bigger chunk of consecutive
bits, called row, is loaded into a fast SRAM-based buffer, called row buffer.
Second, the requested data is taken from the row buffer. If the next access
targets the currently loaded row, the first step can be omitted which reduces
the latency of the access. This timing scheme motivates so-called burst
accesses that transfer multiple consecutive words per access—roughly at
the latency of a single word access. Before data from a different row can be
loaded, the currently loaded row has to be written back to the DRAM cells
which can increase the access latency. Furthermore, due to the leakage of the
employed capacitors, their charge has to be refreshed in regular periods to
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prevent data loss. An ongoing refresh can then block an incoming memory
access. The overall complexity of the DRAM chips necessitates a dedicated
memory controller that manages the refreshes and the required steps to
perform an access.
Flash memory is non-volatile and thus used to permanently store data,

e.g. the firmware code of a system. A flash chip usually stores more bits than
a DRAM chip of similar size but at the cost of slower accesses. There are
two main categories of flash memory architecture: NOR and NAND flash.
NOR flash supports random access reads of memory words and thus can be
used directly as instruction memory. NAND flash can only be accessed at a
larger granularity but enables chips with high storage capacity at low cost.
To reduce the average access latency, flash memory is usually combined
with a buffer that can serve sequential accesses faster (burst access). All
flash memories are organised in so-called blocks. A write access generally
requires to first erase the surrounding block as a whole. The lifetime of the
flash memory is given by the maximal number of erasures per block.

In our low-level timing analysis tool llvmta, we use a parametric main
memory model that can be instantiated to mimic the timing behaviour of
most actual main memory types. The first parameter defines the latency to
access a single word, i.e. the time after the access has started until either the
loaded data arrives or the data has been stored to memory. We refer to the
first parameter as the word latency of the memory. The second parameter
specifies the additional latency for any sequentially loaded/stored word to
capture the behaviour of burst accesses. To account for the variable timing
of accesses, e.g. due to DRAM refreshes, the third parameter provides an
upper bound on this variable latency part. Throughout this dissertation,
the second (third) parameter is assumed to be one (zero) if not stated
otherwise. We use the term memory latency to refer to the overall combined
latency of an access, i.e. the latency to load a whole cache line from memory
into the cache.

A.2.2 Interconnect

In order to access the memory or other peripherals, the processor core needs
to be interconnected with the memory subsystem and the peripherals. One
type of interconnect is a global bus that offers a shared path to directly
communicate between two components. A survey of different interconnect
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structures and a common taxonomy can be found in [Anderson and Jensen,
1975] or in Appendix F of [Hennessy and Patterson, 2012].

In Figures A.1 and A.5, we consider a bus with two masters—the in-
struction and the data cache—and a single slave—the main memory. Upon
concurrent instruction and data cache misses, the data access is prioritised
over the instruction access as for example done in [ARM R©, 2015a]. For the
sake of simplicity, we assume that the bus can handle at most one access at
a time and that bus accesses cannot be preempted or aborted. Furthermore,
we assume that the processor, the bus, and the memory operate at the
same frequency. While these assumptions are reasonable for older bus
designs, contemporary bus designs are more complex. As an example, they
split accesses into address and data phase and support pipelined accesses.
Additionally, the processor usually operates at higher speed than the bus
and memory introducing timing jitter when accessing the bus. The analysis
of these more complex bus designs is, however, out of the scope of this
dissertation.

In a multi-core processor, each core can act as a bus master to initiate an
access to the memory. To resolve the resulting bus contention, a bus arbiter
is employed to grant exclusive access to the bus. The arbitration policy
determines which core is granted exclusive access to the bus in the next
cycle. Time division multiple access (TDMA) is a time-triggered arbitration
policy based on a static mapping of time slots to processor cores. TDMA
achieves temporal isolation between the cores but it is not work-conserving,
i.e. an access might not be granted although there are no other requests.
In fixed-priority event-driven arbitration, each processor core is assigned a
unique priority. Upon multiple requests, the core with the highest priority
is granted access to the bus. Round-Robin is an event-driven arbitration
policy that rotates the priorities of the cores. To this end, it remembers
the core cl that has accessed the bus last. Upon request, it grants access to
the core that is next behind cl. For a comparison of different arbitration
policies and their impact on performance, we refer to [Kelter et al., 2013].
In a system with multiple masters and multiple slaves, e.g. individual

memory banks or multiple peripheral devices, the bus topology with its
single shared path might be inadequate. To increase performance, crossbar
interconnects [Murali, 2009] with multiple parallel paths have emerged. In
a full crossbar, each master has even a dedicated path to each slave which
increases implementation cost.

In many-core systems, an interconnect topology with direct paths between
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components becomes too expensive. Instead of direct transfers, data is
transferred via multiple hops in a network on chip (NoC) [Bjerregaard and
Mahadevan, 2006].

A.2.3 Cache
In general, a cache is a fast but relatively small buffer to reduce the perceived
access time of a large but slow data storage. In the context of processors,
a cache provides fast average access to the main memory. Unlike main
memory, caches are realised in SRAM technology and located close to the
core. Modern processors feature a hierarchy of caches with increasing size
but decreasing speed. While there are usually separate first-level caches for
code and data to allow contention-free parallel access, the other cache levels
are commonly unified to allow a better overall utilisation. Throughout this
dissertation, we consider a single level of separate instruction and data
caches.
Despite their small size, caches significantly improve the system perfor-

mance due to the principle of locality. It is observed, that a memory access
is often followed by an access to a close-by address (spatial locality), e.g.
when fetching straight-line code or iterating an array. Furthermore, a block
that has been accessed is likely to be accessed soon again (temporal locality),
e.g. fetching instructions of a loop.
To address spatial locality, caches operate at the granularity of cache

lines that span multiple consecutive words. If a word in a cache line is
requested, the whole surrounding cache line is loaded into the cache. Note
that the transfer of a whole line is only slightly more expensive than the
transfer of a single word due to the burst mode of main memory.

To enable fast lookups, the cache is organised as an array of independent
cache sets. A part of the memory address, called index, determines the
mapping of the corresponding cache line to a set. If the memory block is
found within its set, called a cache hit, the data is directly transferred to
the core. Otherwise, in case of a cache miss, the data is first brought into
the cache by performing a main memory access and evicting another cache
line.
The cache line to evict upon a miss is determined by the replacement

policy. Consequently, the replacement policy tries to exploit the temporal
locality while being efficient to implement. There is a multitude of re-
placement policies, e.g. least-recently-used (LRU), first-in first-out (FIFO),
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Figure A.4: Schematics of processors with store buffers, private caches, and
a shared bus.

or pseudo least-recently-used (PLRU). An overview of cache replacement
policies and their impact on timing predictability can be found in [Reineke,
2009].

The size of the individual cache sets is called associativity. A higher
associativity offers more flexibility and a better overall cache utilisation
while increasing the cost to perform cache lookups. In the extreme cases, a
cache has associativity one, called direct-mapped cache, or the associativity
equals the number of lines in the caches, called fully-associative.
The write policy determines how stores to memory are handled by the

cache. In a write-through cache, the data is directly written to main memory.
In a write-back cache, the store is performed locally in the cache and only
written back to main memory once the corresponding line is evicted. If the
store misses a write-back cache, the unmodified cache line is first loaded
from main memory (write-allocate).

More details on caches, their taxonomy, and their impact on performance
can be found in [Hennessy and Patterson, 2012].

A.2.4 Store Buffer

A store buffer is a small memory that buffers store requests generated by
the processor core. Consequently, the store buffer is located between the
processor core and the data cache. The store buffer allows the processor
core to continue execution beyond the store instruction while the actual
store is performed by the memory subsystem.
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There is a variety of design choices for store buffers which influence
the performance as well as the predictability of the overall system. For
details on the design choices and their influence on performance, we refer
to [Skadron and Clark, 1997].

In the embedded domain, store buffers with four [ARM R©, 2011, 2015b]
or eight [Saidi et al., 2015] entries are common. The data width of a store
buffer entry ranges from word size up to the size of a cache line.

One design choice is to allow write combining of store buffer entries,
also called merging or coalescing. If write combining is enabled, a store
request to an address equal to the destination address of any store buffer
entry is combined with this entry to a single one. While write combining
can save expensive memory operations, it has implications for the memory
consistency model of the system. As an example, write combining is not
allowed if memory access order must be maintained, e.g. accesses to device
memory [ARM R©, 2011, 2015b].

The retirement order of the store buffer determines in which order the
entries are actually written to memory. In the simplest case, the store buffer
is drained in first-in, first-out (FIFO) order. The store buffer of the Kalray
MPPA-256 Bostan processor aimed for timing-critical embedded systems
drains the buffer in least-recently-used order [Saidi et al., 2015].

Another design choice is the retirement policy, i.e. when to actually drain
the store buffer. One possibility is to drain the store buffer when it is full or
will become full soon [ARM R©, 2011]. Additionally, a store buffer entry can
also be drained if it has been inside the store buffer for too long [ARM R©,
2015b]. A memory barrier instruction can even explicitly drain the store
buffer. Note that the actual conditions can be more complicated, but we
limit ourselves to these simpler conditions for reasons of brevity.

Last but not least, the load-hazard policy defines what to do upon a
load from an address of a store buffer entry. If the store buffer supports
forwarding, the data from the relevant store buffer entry is forwarded to
the processor. If the buffer does not support forwarding or an entry covers
only part of the requested data, the colliding store buffer entries need to be
drained before such a load.
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A.3 Out-of-Order Pipeline

An in-order pipeline executes instructions in the order in which they appear
in the program. As a consequence, when a pipeline stage stalls due to a
hazard, e.g. an unsatisfied data dependency or a cache miss, the preceding
stages—filled with the subsequent instructions—have to stall as well after
very few cycles. The subsequent instructions thus wait for the hazard to be
resolved although they might not even depend on the stalled instruction.
To gain performance, an out-of-order pipeline relaxes the condition to

execute instructions in the program order. It can reorder the execution of
independent instructions. As an example, it can already execute instructions
while a preceding instruction waits for its dependencies to be satisfied. In
addition, out-of-order pipelines are usually superscalar, i.e. they can execute
instructions in parallel.

Modern pipelines commonly use Tomasulo’s algorithm [Tomasulo, 1967]
to implement out-of-order execution. Figure A.5 shows a brief schematic
view of such a pipeline.

First, instructions are fetched from the main memory via an instruction
cache and placed in an instruction queue. Next, the pipeline decodes an
instruction from the queue and determines in which functional unit the
instruction should execute. The pipeline issues the instruction, together
with the operands that are already available, to the reservation station of the
chosen functional unit. At the same time, it allocates a slot in the reorder
buffer for this instruction. The issue width of the pipeline determines how
many instructions can be issued within a single clock cycle.
The reservation stations snoop on the common data bus for operands

that have just been computed. Once all operands of an instruction are
available, the instruction becomes ready for execution. If a functional unit
becomes idle, the corresponding reservation station chooses the instruction
to execute next among the ready instructions. After the execution within
the functional unit, the calculated result is put on the common data bus.

The result of an instruction, taken from the common data bus, is stored in
the slot of the reorder buffer that has been allocated during the instruction
issue. The reorder buffer finally commits the instructions in program order
by writing their results to the register file. Despite being executed out-of-
order, the reorder buffer maintains the program order of the instructions
that are currently in the pipeline. The reorder buffer is thus essential to
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Figure A.5: Schematic view of an out-of-order pipeline according to
Tomasulo’s algorithm.
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handle data dependencies such as write-after-write and to implement precise
exceptions.

To be effective and keep the pipeline filled, the out-of-order pipeline needs
to be able to continue execution beyond (conditional) branches. Besides an
effective branch prediction that allows to speculatively fetch instructions, an
out-of-order pipeline can speculatively execute instructions—in some cases
even speculatively access data memory. The reorder buffer is essential for
the functional correctness of speculation. Speculatively computed results are
committed to the register file only if the corresponding prediction turns out
to be correct. Upon a misspeculation, all speculatively executed instructions
and their results are cleared and the instruction fetch is redirected to the
right branch target.

For more details about out-of-order execution or hardware-based specula-
tion, we refer to [Hennessy and Patterson, 2012].

In our low-level timing analyser llvmta, we model a simple out-of-order
pipeline with a reorder buffer of size 8 and a 4-entry instruction queue.
Multiple instructions are issued per cycle to either the Load-/Store-Unit or
one of two arithmetic functional units executing instructions with variable
latency. Similar to the in-order pipeline, our out-of-order pipeline employs
a static branch prediction, where conditional branches that head backwards
(forwards) are predicted taken (not taken). Additionally, the pipeline
features speculative execution. Data memory accesses are performed non-
speculatively in program order.
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Benchmark Programs

In this section, we provide details on the benchmark programs that we
have used for the evaluation of our contributions. We have three main
sources of benchmarks. First, we use the Mälardalen WCET benchmark
suite [Gustafsson et al., 2010] that has served as the standard benchmark
in the timing analysis area for a long time. Second, we use the more recent
TACLeBench suite [Falk et al., 2016] that includes most programs of the
Mälardalen suite in a (heavily) edited version. In addition, TACLeBench
includes new and more complex programs that are harder to analyse. We
use the programs provided in the folders app, kernel, and sequential.
Third, we use programs generated from models designed in the SCADE
Suite R©. The programs are generated from own models (es_lift, roboDog)
or the example models delivered with the SCADE Suite R© (cruise_control,
flight_control, pilot, digital_stopwatch). The trolleybus bench-
mark is provided by Benjamin Meyer who developed the model in the
scope of his Master’s thesis at DIaLOGIKa Gesellschaft für angewandte
Informatik mbH. As our timing analyser llvmta does currently not sup-
port programs with recursion or irreducible control-flow, we exclude those
programs that make use of these features. The resulting set of C programs
is listed in Table B.1.
Software for safety-critical embedded systems is often compiled without

optimisations to ease the subsequent verification of the produced binary w.r.t.
the underlying high-level model. Recently, with the emergence of formally
verified compilers [Leroy, 2009], optimising compilation seems to be within
reach for safety-critical systems [França et al., 2011]. To account for this
development, we perform our experiments with the benchmarks compiled
using clang 5.0.0 with optimisations (-O2 but disabled if-conversion) and
without optimisations (-O0), respectively.
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Appendix B Benchmark Programs

For each program binary, we provide the number of instructions in
the binary and, additionally, we determine the share of load and store
instructions. The results for the non-optimised binaries are shown in
Table B.1 and for the optimised binaries in Table B.2. On average, the
optimised binary of a given program has 46% fewer instructions than the
non-optimised binary. The share of load (store) instructions on the overall
instructions decreases significantly from 28.1% to 18.0% (21.4% to 10.3%).
This change in the instruction mix impacts the evaluation results as the
memory hierarchy of the system is stressed more by the non-optimised
binaries. Furthermore, the non-optimised binary of a given program takes—
on average—2.89 times the number of processor cycles than the optimised
binary, when executed on a conventional in-order pipeline as described in
Appendix A.1.

Benchmark Suite #Instr. #Load % #Store %
lift tb/a 950 304 32.0 166 17.5
powerwindow tb/a 2238 658 29.4 508 22.7
binarysearch tb/k 158 44 27.8 35 22.2
bsort tb/k 163 39 23.9 34 20.9
complex_updates tb/k 229 75 32.8 61 26.6
countnegative tb/k 253 85 33.6 64 25.3
fft tb/k 465 128 27.5 106 22.8
filterbank tb/k 340 71 20.9 61 17.9
fir2dim tb/k 536 179 33.4 134 25.0
iir tb/k 204 68 33.3 50 24.5
insertsort tb/k 187 70 37.4 36 19.3
jfdctint tb/k 313 57 18.2 46 14.7
lms tb/k 362 99 27.3 70 19.3
ludcmp tb/k 516 158 30.6 89 17.2
matrix1 tb/k 197 56 28.4 51 25.9
md5 tb/k 1422 427 30.0 218 15.3
minver tb/k 731 214 29.3 153 20.9
pm tb/k 1841 624 33.9 442 24.0
prime tb/k 175 37 21.1 33 18.9
sha tb/k 1142 337 29.5 336 29.4
st tb/k 439 136 31.0 94 21.4
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adpcm_dec tb/s 1133 378 33.4 290 25.6
adpcm_enc tb/s 1160 369 31.8 272 23.4
audiobeam tb/s 2418 677 28.0 491 20.3
cjpeg_transupp tb/s 1951 577 29.6 537 27.5
cjpeg_wrbmp tb/s 359 92 25.6 82 22.8
dijkstra tb/s 361 107 29.6 176 48.8
epic tb/s 2144 783 36.5 599 27.9
g723_enc tb/s 1531 387 25.3 304 19.9
gsm_dec tb/s 2615 653 25.0 592 22.6
gsm_encode tb/s 5571 1465 26.3 1086 19.5
h264_dec tb/s 1108 180 16.2 106 9.6
huff_dec tb/s 617 165 26.7 128 20.7
mpeg2 tb/s 7393 2669 36.1 2084 28.2
ndes tb/s 859 282 32.8 209 24.3
petrinet tb/s 1435 615 42.9 212 14.8
rijndael_dec tb/s 2057 829 40.3 283 13.8
rijndael_enc tb/s 2174 858 39.5 306 14.1
statemate tb/s 2482 1019 41.1 463 18.7
susan tb/s 9091 3388 37.3 1389 15.3
cruise_control sc 971 250 25.7 209 21.5
digital_stopwatch sc 1200 308 25.7 266 22.2
es_lift sc 1205 292 24.2 290 24.1
flight_control sc 2989 791 26.5 801 26.8
pilot sc 1060 264 24.9 231 21.8
roboDog sc 2588 619 23.9 558 21.6
trolleybus sc 7686 1974 25.7 2160 28.1
adpcm m 1602 596 37.2 401 25.0
bs m 87 28 32.2 23 26.4
bsort100 m 116 29 25.0 25 21.6
cnt m 245 74 30.2 68 27.8
compress m 778 253 32.5 174 22.4
cover m 1082 228 21.1 222 20.5
crc m 258 68 26.4 47 18.2
edn m 723 222 30.7 168 23.2
expint m 205 52 25.4 48 23.4
fdct m 256 55 21.5 37 14.5
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Appendix B Benchmark Programs

fft1 m 468 117 25.0 89 19.0
fibcall m 56 12 21.4 15 26.8
fir m 157 49 31.2 49 31.2
insertsort m 59 12 20.3 19 32.2
janne_complex m 77 19 24.7 19 24.7
jfdctint m 272 48 17.6 39 14.3
lcdnum m 116 11 9.5 25 21.6
lms m 539 151 28.0 101 18.7
ludcmp m 420 129 30.7 75 17.9
matmult m 170 41 24.1 36 21.2
minver m 625 190 30.4 133 21.3
ndes m 799 247 30.9 206 25.8
ns m 108 26 24.1 18 16.7
nsichneu m 6761 3028 44.8 959 14.2
prime m 126 21 16.7 25 19.8
qsort-exam m 283 113 39.9 61 21.6
qurt m 268 67 25.0 77 28.7
select m 317 122 38.5 79 24.9
sqrt m 123 29 23.6 27 22.0
st m 395 112 28.4 89 22.5
statemate m 2431 1002 41.2 453 18.6
ud m 356 122 34.3 70 19.7

28.1% 21.4%

Table B.1: The 79 benchmarks that we use in our experiments. They
are generated from models developed in or provided by the SCADE
Suite R© (sc) and are taken from the TACLeBench (tb) suite (folders
app, kernel, sequential) and the Mälardalen (m) suite. The instruction
characterisations are obtained by compilation without optimisations.
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Benchmark Suite #Instr. #Load % #Store %
lift tb/a 632 213 33.7 88 13.9
powerwindow tb/a 1507 302 20.0 292 19.4
binarysearch tb/k 92 17 18.5 9 9.8
bsort tb/k 83 13 15.7 6 7.2
complex_updates tb/k 125 33 26.4 18 14.4
countnegative tb/k 121 28 23.1 12 9.9
fft tb/k 266 54 20.3 33 12.4
filterbank tb/k 195 21 10.8 19 9.7
fir2dim tb/k 250 49 19.6 21 8.4
iir tb/k 98 25 25.5 9 9.2
insertsort tb/k 131 45 34.4 24 18.3
jfdctint tb/k 272 44 16.2 31 11.4
lms tb/k 218 36 16.5 17 7.8
ludcmp tb/k 260 47 18.1 18 6.9
matrix1 tb/k 91 16 17.6 9 9.9
md5 tb/k 956 155 16.2 66 6.9
minver tb/k 347 44 12.7 25 7.2
pm tb/k 996 225 22.6 112 11.2
prime tb/k 120 24 20.0 13 10.8
sha tb/k 542 81 14.9 69 12.7
st tb/k 258 59 22.9 19 7.4
adpcm_dec tb/s 632 209 33.1 102 16.1
adpcm_enc tb/s 622 189 30.4 82 13.2
audiobeam tb/s 1260 206 16.3 88 7.0
cjpeg_transupp tb/s 831 135 16.2 101 12.2
cjpeg_wrbmp tb/s 197 37 18.8 22 11.2
dijkstra tb/s 218 54 24.8 83 38.1
epic tb/s 960 199 20.7 138 14.4
g723_enc tb/s 793 104 13.1 63 7.9
gsm_dec tb/s 1389 203 14.6 178 12.8
gsm_encode tb/s 3047 504 16.5 213 7.0
h264_dec tb/s 426 91 21.4 40 9.4
huff_dec tb/s 326 52 16.0 35 10.7
mpeg2 tb/s 3918 1120 28.6 627 16.0
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ndes tb/s 510 141 27.6 85 16.7
petrinet tb/s 894 343 38.4 135 15.1
rijndael_dec tb/s 1556 578 37.1 148 9.5
rijndael_enc tb/s 1613 582 36.1 150 9.3
statemate tb/s 1717 752 43.8 325 18.9
susan tb/s 5117 1573 30.7 443 8.7
cruise_control sc 495 79 16.0 51 10.3
digital_stopwatch sc 616 93 15.1 93 15.1
es_lift sc 491 62 12.6 101 20.6
flight_control sc 1793 363 20.2 487 27.2
pilot sc 548 81 14.8 59 10.8
roboDog sc 1167 150 12.9 114 9.8
trolleybus sc 3114 565 18.1 390 12.5
adpcm m 901 340 37.7 146 16.2
bs m 35 6 17.1 2 5.7
bsort100 m 61 11 18.0 6 9.8
cnt m 101 16 15.8 11 10.9
compress m 467 135 28.9 73 15.6
cover m 253 8 3.2 5 2.0
crc m 138 25 18.1 10 7.2
edn m 426 83 19.5 56 13.1
expint m 100 6 6.0 4 4.0
fdct m 259 57 22.0 43 16.6
fft1 m 280 36 12.9 21 7.5
fibcall m 25 1 4.0 1 4.0
fir m 75 15 20.0 9 12.0
insertsort m 45 6 13.3 11 24.4
janne_complex m 29 1 3.4 1 3.4
jfdctint m 245 39 15.9 29 11.8
lcdnum m 85 5 5.9 2 2.4
lms m 320 61 19.1 19 5.9
ludcmp m 194 31 16.0 12 6.2
matmult m 96 14 14.6 9 9.4
minver m 287 36 12.5 22 7.7
ndes m 451 99 22.0 78 17.3
ns m 55 8 14.5 2 3.6
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nsichneu m 4295 1705 39.7 703 16.4
prime m 81 11 13.6 8 9.9
qsort-exam m 133 29 21.8 20 15.0
qurt m 163 27 16.6 36 22.1
select m 119 27 22.7 16 13.4
sqrt m 60 7 11.7 3 5.0
st m 239 37 15.5 19 7.9
statemate m 1655 734 44.4 321 19.4
ud m 155 29 18.7 12 7.7

18.0% 10.3%

Table B.2: The 79 benchmarks that we use in our experiments. They
are generated from models developed in or provided by the SCADE
Suite R© (sc) and are taken from the TACLeBench (tb) suite (folders
app, kernel, sequential) and the Mälardalen (m) suite. The instruction
characterisations are obtained by compilation with optimisations.
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Appendix C
Additional Evaluation Results:
Compositional Base Bound

C.1 Precision w.r.t. Interference Response Curve
Histograms Zero Interference
Here, we assess the precision of the compositional base bound in comparison
with the interference response curve in the case that a program experiences
no interference. We show the distribution of the ratios for all benchmarks in
the form of histograms. For a specific interval of ratio values, the histogram
shows the number of benchmarks that exhibit a ratio within this interval.
We use the dot in [a, ·) to refer to the lower bound of the subsequent
interval. We show histograms for programs executed on different hardware
platforms. The histograms on the left (right) show the distribution of
programs compiled without (with) optimisations.
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In-Order Pipeline
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Figure C.1: Dual-core, blocked stores, and memory word latency of 5.
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Figure C.2: Dual-core, unblocked stores, and memory word latency of 5.
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C.1 Precision w.r.t. Interference Response Curve
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Figure C.3: Dual-core, unblocked stores, and memory word latency of 2.
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Figure C.4: Dual-core, unblocked stores, and memory word latency of 10.

10
0%

(1
00

%
,·)

[1
00

.2
5%

,·)
[1

00
.5

%
,·)

[1
00

.7
5%

,·)

0

20

40

60

80

10
0%

(1
00

%
,·)

[1
00

.2
5%

,·)
[1

00
.5

%
,·)

[1
00

.7
5%

,·)
[1

01
%

,·)
[1

01
.2

5%
,·)

[1
01

.5
%

,·)
[1

01
.7

5%
,·)

0

20

40

60

80

Figure C.5: Dual-core, unblocked stores, and memory word latency of 20.
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Appendix C Additional Evaluation Results: Compositional Base Bound

Out-of-Order Pipeline
10

0%
(1

00
%

,·)
[1

00
.2

5%
,·)

[1
00

.5
%

,·)
[1

00
.7

5%
,·)

[1
01

%
,·)

[1
01

.2
5%

,·)
[1

01
.5

%
,·)

[1
01

.7
5%

,·)
[1

02
%

,·)
[1

02
.2

5%
,·)

[1
02

.5
%

,·)
[1

02
.7

5%
,·)

[1
03

%
,·)

[1
03

.2
5%

,·)
[1

03
.5

%
,·)

[1
03

.7
5%

,·)
[1

04
%

,·)
[1

04
.2

5%
,·)

[1
04

.5
%

,·)
[1

04
.7

5%
,·)

0

20

40

60

80

10
0%

(1
00

%
,·)

[1
00

.2
5%

,·)
[1

00
.5

%
,·)

[1
00

.7
5%

,·)
[1

01
%

,·)
[1

01
.2

5%
,·)

[1
01

.5
%

,·)
[1

01
.7

5%
,·)

0

20

40

60

80

Figure C.6: Dual-core, blocked stores, and memory word latency of 5.
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Figure C.7: Dual-core, unblocked stores, and memory word latency of 5.
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C.1 Precision w.r.t. Interference Response Curve
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Figure C.8: Dual-core, unblocked stores, and memory word latency of 2.
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Figure C.9: Dual-core, unblocked stores, and memory word latency of 10.
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Figure C.10: Dual-core, unblocked stores, and memory word latency of 20.
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Appendix C Additional Evaluation Results: Compositional Base Bound

Histograms Maximal Interference
Here, we assess the precision of the compositional base bound (blue bar) and
the naive compositional bound (red bar) in comparison with the interference
response curve in the case that a program experiences maximal interference
on a shared bus with round-robin arbitration. We show the distribution
of the ratios for all benchmarks in the form of histograms. For a specific
interval of ratio values, the histogram shows the number of benchmarks
that exhibit a ratio within this interval. We use the dot in [a, ·) to refer
to the lower bound of the subsequent interval. We show histograms for
programs executed on different hardware platforms. The histograms on
the left (right) show the distribution of programs compiled without (with)
optimisations.
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C.1 Precision w.r.t. Interference Response Curve

In-Order Pipeline
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Figure C.11: Dual-core, blocked stores, and memory word latency of 5.
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Figure C.12: Four cores, blocked stores, and memory word latency of 5.
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Figure C.13: Eight cores, blocked stores, and memory word latency of 5.
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Figure C.14: Dual-core, unblocked stores, and memory word latency of 5.
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Figure C.15: Four cores, unblocked stores, and memory word latency of 5.
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C.1 Precision w.r.t. Interference Response Curve
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Figure C.16: Eight cores, unblocked stores, and memory word latency of 5.
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Figure C.17: Dual-core, unblocked stores, and memory word latency of 2.
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Figure C.18: Dual-core, unblocked stores, and memory word latency of 10.
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Figure C.19: Dual-core, unblocked stores, and memory word latency of 20.
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C.1 Precision w.r.t. Interference Response Curve
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Figure C.20: Dual-core, blocked stores, and memory word latency of 5.
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Figure C.21: Four cores, blocked stores, and memory word latency of 5.
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Figure C.22: Eight cores, blocked stores, and memory word latency of 5.
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Figure C.23: Dual-core, unblocked stores, and memory word latency of 5.
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Figure C.24: Four cores, unblocked stores, and memory word latency of 5.
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Figure C.25: Eight cores, unblocked stores, and memory word latency of 5.
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Figure C.26: Dual-core, unblocked stores, and memory word latency of 2.
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Figure C.27: Dual-core, unblocked stores, and memory word latency of 10.
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Figure C.28: Dual-core, unblocked stores, and memory word latency of 20.
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Figure C.29: Runtime of compositional base bound analysis (lower, blue bar)
and naive compositional analysis (upper, red bar) as sum of per-benchmark
runtimes in hours. Experiments run on a single core of an Intel R© CoreTM

i7-7700 processor, clocked at 3.6GHz.

219



Appendix C Additional Evaluation Results: Compositional Base Bound

C.3 Memory Consumption

0 1 2 3

ooo, bs, 2 cores
ooo, bs, 4 cores
ooo, bs, 8 cores

ooo, ubs, 2 cores
ooo, ubs, 4 cores
ooo, ubs, 8 cores

io, bs, 2 cores
io, bs, 4 cores
io, bs, 8 cores

io, ubs, 2 cores
io, ubs, 4 cores
io, ubs, 8 cores

1.11
1.12
1.12

2.15
2.44
2.48

1.02
1.04
1.05

1.61
1.93
2.05

(a) Non-optimised programs.
Memory word latency of 5.

0 1 2 3

ooo, wl 2
ooo, wl 5

ooo, wl 10
ooo, wl 20

io, wl 2
io, wl 5

io, wl 10
io, wl 20

3.10
2.15

1.57
1.23

1.66
1.61

1.48
1.30

(b) Non-optimised programs.
Unblocked Stores, two cores, and
varying memory word latency wl.

0 1 2 3

1.15
1.15
1.15

1.91
2.49

2.70
1.01
1.03
1.04

1.39
1.81

2.07

(c) Optimised programs.

0 1 2 3

2.51
1.91
1.84

1.60
1.33
1.39
1.53
1.53

(d) Optimised programs.

Figure C.30: Compositional base bound analysis memory consumption
versus naive compositional analysis memory consumption. Geometric mean
over all benchmarks.
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Figure C.31: Maximal memory consumption of compositional base bound
analysis (lower, blue bar) and naive compositional analysis (upper, red bar)
in Gibibytes.
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