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Abstract

Answering complex natural language questions with crisp answers is crucial to-

wards satisfying the information needs of advanced users. With the rapid growth

of knowledge bases (KBs) such as Yago and Freebase, this goal has become at-

tainable by translating questions into formal queries like SPARQL queries. Such

queries can then be evaluated over knowledge bases to retrieve crisp answers.

To this end, three research issues arise: (i) how to develop methods that are

robust to lexical and syntactic variations in questions and can handle complex

questions, (ii) how to design and curate datasets to advance research in question

answering, and (iii) how to efficiently identify named entities in questions. In

this dissertation, we make the following five contributions in the areas of question

answering (QA) and named entity recognition (NER). For issue (i), we make the

following contributions:

We present QUINT, an approach for answering natural language questions

over knowledge bases using automatically learned templates. Templates are an

important asset for QA over KBs, simplifying the semantic parsing of input

questions and generating formal queries for interpretable answers. QUINT is

capable of answering both simple and compositional questions.

We introduce NEQA, a framework for continuous learning for QA over KBs.

NEQA starts with a small seed of training examples in the form of question-

answer pairs, and improves its performance over time. NEQA combines both

syntax, through template-based answering, and semantics, via a semantic sim-

ilarity function. Moreover, it adapts to the language used after deployment by

periodically retraining its underlying models.

For issues (i) and (ii), we present TEQUILA, a framework for answering

complex questions with explicit and implicit temporal conditions over KBs.

TEQUILA is built on a rule-based framework that detects and decomposes tem-

poral questions into simpler sub-questions that can be answered by standard

KB-QA systems. TEQUILA reconciles the results of sub-questions into final an-

swers. TEQUILA is accompanied with a dataset called TempQuestions, which

consists of 1,271 temporal questions with gold-standard answers over Freebase.

This collection is derived by judiciously selecting time-related questions from
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existing QA datasets.

For issue (ii), we publish ComQA, a large-scale manually-curated dataset for

QA. ComQA contains questions that represent real information needs and ex-

hibit a wide range of difficulties such as the need for temporal reasoning, compari-

son, and compositionality. ComQA contains paraphrase clusters of semantically-

equivalent questions that can be exploited by QA systems. We harness a com-

bination of community question-answering platforms and crowdsourcing to con-

struct the ComQA dataset.

For issue (iii), we introduce a neural network model based on subword units

for named entity recognition. The model learns word representations using a

combination of characters, bytes and phonemes. While achieving comparable

performance with word-level based models, our model has an order-of-magnitude

smaller vocabulary size and lower memory requirements, and it handles out-of-

vocabulary words.



Kurzfassung

Die Beantwortung komplexer natürlich-sprachlicher Fragen mit treffenden Antw-

orten ist ein wichtiger Schritt Richtung Informationsbedürfnisse fortgeschrittener

Benutzer zu erfüllen. Dieses Ziel ist durch das rapide Anwachsen von Wissens-

banken (WB), wie Yago und Freebase, in erreichbare Nähe gerückt, indem Fra-

gen in formale Anfrage, wie zum Beispiel SPARQL Anfragen, übersetzt wer-

den. Solche Anfragen werden dann mittels einer Wissensbank ausgewertet um

Antworten zu erhalten. In diesem Zusammenhang ergeben sich drei Forschungsp-

robleme: (i) wie können Methoden entwickelt werden, die robust in Bezug auf

lexikalische und syntaktische Veränderungen von Fragen sind und komplexe Fra-

gen handhaben können, (ii) wie müssen Datensätze gestaltet und kuratiert wer-

den um Forschungsanstrengungen zur automatischen Fragebeantwortung voranz-

utreiben, und (iii) wie können benannte Entitäten effizient in Fragen erkannt

werden. In dieser Dissertation leisten wir folgende fünf Beiträge im Bereich der

automatischen Fragebeantwortung und der Erkennung benannter Entitäten. Zur

Problemstellung (i) leisten wir folgende Beiträge:

Wir präsentieren ein Verfahren, genannt QUINT, zur Beantwortung natürlich-

sprachlicher Fragen über Wissensbanken durch automatisch gelernte Mustervor-

lagen. Diese Mustervorlagen sind wichtige Mittel zur automatischen Fragebeant-

wortung durch Wissensbanken, da sie das semantische Parsen von Eingabefragen

vereinfachen, sowie formale Anfragen fr interpretierbare Antworten generieren.

QUINT ist dabei in der Lage einfach als auch zusammengesetzte Fragen zu beant-

worten.

Wir stellen NEQA, ein Framework fürs kontinuierliche Lernen für die automa-

tische Fragebeantwortung über Wissensbanken vor. NEQA kombiniert Syntax

durch vorlagenbasiertes Antworten mit Semantik mittels semantischer Ähnlichke-

itsfunktionen. Darüber hinaus adaptiert es die benutzte Sprache zur Laufzeit

durch periodisches Neuerlernen des zugrundeliegenden Models.

Für Problemstellungen (i) und (ii) präsentieren wir TEQUILA, welches ein

Rahmenwerk zur Beantwortung komplexer Fragen mit expliziten und impliziten

temporalen Bedingungen auf Wissensbanken ist. TEQUILA basiert auf einem

regelbasierten Rahmenwerk, das temporale Fragen entdeckt und in einfachere
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Unterfragen zerlegt, die dann mittels üblicher wissensbasierter Frageantwortsys-

teme beantwortet werden können. TEQUILA gleicht die Ergebnisse von Unter-

fragen ab um finale Antworten zu erstellen. TEQUILA geht mit einem Daten-

satz, genannt TempQuestions, einher. Dieser besteht aus 1271 temporaler Fra-

gen mit Goldstandardantworten aus Freebase. Zur Sammlung der Daten wurden

zeitrelevante Fragen aus einem bestehenden Frage-Antwortdatensatz umsichtig

ausgewählt.

Für Problemstellung (ii) veröffentlichen wir einen groß angelegten und manuell

editierten Datensatz zur Fragebeantwortung, genannt ComQA. ComQA enthält

Fragen, die wirkliche Informationsbedürfnisse repräsentieren und ein breites Spek-

trum an Schwierigkeiten aufweisen, wie z.B. temporales Schlussfolgern, Vergle-

iche, und eine kompositorische Struktur haben. ComQA enthält Paraphrasgrup-

pen von semantisch gleichen Fragen, die durch Frageantwortsysteme ausgenutzt

werden können. Zur Erstellung des Datensatzes nutzen wir eine Kombination

aus Frageantwortplattformen und Crowdsourcing.

Für Problemstellung (iii) stellen wir ein neurales Netzwerkmodell vor, welches

auf Unterworteinheiten zur Erkennung benannter Entitäten basiert. Das Modell

lernt Wortrepräsentationen, indem es eine Kombination aus Buchstaben, Bytes

und Phonemen benutzt. Bei gleichbleibender Performanz im Vergleich zu an-

deren wortlevelbasierten Modellen, hat das Modell einen um eine Größenordnung

kleineren Wortschatz, geringere Speicheranforderungen, und es ist in der Lage

Wörter zu verarbeiten, welche nicht im Vokabular enthalten sind.
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1 Introduction

1.1 Motivation

Returning crisp answers to users in response to their natural language questions

is crucial to satisfying the information needs of users with minimal effort on their

part. For example, the answer set for “Which actors starring in The Departed

were born in Cambridge, MA?” is { MattDamon, MarkWahlberg }. This goal

of crisply answering questions becomes a necessity with the wide availability

of smart voice-controlled assistants such as Amazon Echo, Google Home, Siri

and Cortana. Moreover, such modalities make it more natural to ask verbose,

compositional and complex questions. To this end, models need to understand

the meaning of questions by translating them into semantic representations that

can be evaluated over a repository of knowledge to retrieve crisp answers.

Traditionally, users receive a list of documents in response to their keyword

queries over a typical search engine. For example, the user might receive sev-

eral documents about The Departed movie and Cambridge, MA as a result for

the above question. Going through the retrieved documents to spot relevant

information with respect to the user’s query is a time-consuming and sometimes

hopeless task. Passage retrieval and answer ranking methods have been proposed

to distill focused answers from retrieved documents. However, with the increas-

ing complexity of questions, the need to combine different answering sources for

cross-topical questions (e.g., evidence from multiple documents) and the need to

reason over intermediate results, answers can not be found directly in a single

document. Moreover, joining and reasoning over evidence from different, seem-

ingly unrelated documents can be challenging. For instance, the above example

requires retrieving the actors of The Departed, retrieving actors who were born

in Cambridge, MA, and finally, intersecting the two sets.

Knowledge bases (KBs) are a key enabler and a first step towards satisfying

complex information needs and returning crisp answers. KBs store world knowl-

edge in the form of subject-predicate-object (SPO) triples, where each triple

represents a real-world fact. For example,

TheDeparted hasActor MattDamon

1



2 CHAPTER 1. INTRODUCTION

and

MattDamon placeOfBirth CambridgeMassachusetts

KB predicates express crisp relationships among entities. Freebase (Bollacker

et al., 2008), Yago (Suchanek et al., 2007), DBpedia (Auer et al., 2007) and,

recently, Wikidata (Vrandecic and Krötzsch, 2014) are examples of large-scale

knowledge bases with billions of facts, millions of entities and thousands of pred-

icates. Formal query languages like SPARQL are required to access such knowl-

edge, which poses a challenge for the average user. In addition to learning how

to construct complex queries using the terminology of a specific formal language,

users have to familiarize themselves with the underlying KB.

Question answering over knowledge bases (KB-QA) is a more recent trend,

which aims to answer natural language questions over large knowledge bases,

and hence, shields users from all the underlying complexity. KB-QA systems

take as input questions such as: “Which actors starring in The Departed were

born in Cambridge, MA?” and translate them into structured queries, in a formal

language like SPARQL:

SELECT ?x WHERE {
?x type movieActor .

TheDeparted hasActor ?x .

?x placeOfBirth CambridgeMassachusetts

}

and execute the queries to retrieve answers from the KB (Unger et al., 2012;

Yahya et al., 2012). Translating questions into formal queries is a challeng-

ing problem due to the countless lexical and syntactic variations users use in

formulating questions and the vocabulary mismatch between phrases in the in-

put question and entities, classes and predicates in the KB. For example, map-

ping ‘Cambridge, MA’ to the uniquely identified entity, ‘actor ’ to the KB type

movieActor and ‘starring ’ to the KB predicate hasActor.

The initial step towards translating questions into formal queries is to iden-

tify mentions of named entities in questions like movies and locations. For in-

stance, the question above contains two mentions: a movie, ‘The Departed ’ and

a location, ‘Cambridge, MA’. However, while current methods focus only on

accuracy, designing efficient entity recognizers is also needed, particularly, in sit-

uations where systems operate under certain constraints like memory constraints;

in handheld or voice-controlled devices.

To this end, three main research questions arise:
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Who invented the Internet? SELECT ?x WHERE {
     ?x developed WorldWideWeb
}

Who VPpred NPent SELECT ?x WHERE {
     ?x pred ent
}

Question Query

Question Template Query Template

Figure 1.1: An example of a hand-crafted role-aligned question-query template

(top). Shared pred and ent annotations indicate an alignment be-

tween a phrase in the question template and a KB semantic item in

the corresponding query template. An instantiation of the template

is shown at the bottom.

i. how to develop methods that are robust to lexical and syntactic variations

in questions and can handle complex questions,

ii. how to design and curate datasets for QA with complex questions that ex-

press real information needs to advance research in QA, and

iii. how to efficiently identify mentions of named entities in text.

1.2 Contributions

In this dissertation, we present three approaches for KB-QA: QUINT, NEQA

and TEQUILA to address the research question (i). Moreover, to address (ii),

we introduce a large-scale dataset, ComQA, for evaluating question answering.

Finally, for issue (iii), we present a neural network model based on subword units

for named entity recognition.

1.2.1 Question Answering over Knowledge Bases

• QUINT: Given the numerous lexical and syntactic variations that users

use in formulating natural language questions, a data-driven approach for

learning the mapping between syntactic structures on the question side and

semantic ones on the KB side is desired. Relying on hand-crafted rules or

templates to map natural language questions to formal queries is a com-

mon characteristic of many state-of-the-art approaches to KB-QA (Bast
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and Haussmann, 2015; Berant et al., 2013; Fader et al., 2013). However,

such methods suffer from low coverage. The problem is further exacer-

bated when dealing with complex and compositional questions. Figure 1.1

shows an example of a hand-crafted question-query template (top) and an

instantiation of the template (bottom).

As a remedy, we introduce QUINT, a data-driven approach that automat-

ically learns pairs of role-aligned question-query templates using questions

paired with answer sets over knowledge bases. Templates play an impor-

tant role in KB-QA, guiding the mapping of question constituents onto

query components. A benefit of templates is that the mappings to the

KB are traceable and can be leveraged to generate explanations for the

user to understand why she receives specific answers. QUINT harnesses

language compositionality to answer compositional questions for which no

matching templates could be found like “actors starring in The Departed

who were born in Cambridge, MA”. In doing so, QUINT uses the templates

learned from simple questions to capture sub-questions within the compo-

sitional question (“actors starring in The Departed” and “actors were born

in Cambridge, MA” for the above question), and answers them indepen-

dently. Results of sub-questions are then intersected to deliver the final

answer to the full question.

• NEQA: QA methods rely on a clear separation between an offline training

phase, where a model is either learned or manually crafted, and an online

phase where this model is deployed to answer users’ questions (Bast and

Haussmann, 2015; Berant et al., 2013; Fader et al., 2013; Yahya et al., 2012;

Yih et al., 2015). This necessitates the need to access reasonably large

training sets with sufficient syntactic and lexical coverage representative

of the kinds of questions users pose. These are expensive to construct,

particularly, for new domains. Furthermore, methods are limited to the

language learned at training time, therefore, they fail on questions from

domains not observed previously.

Our second contribution is NEQA, a continuous-learning paradigm for KB-

QA. NEQA is initialized with a small training set and improves its perfor-

mance over time. Moreover, it adapts to the language used after deploy-

ment by periodically retraining its underlying models. NEQA combines

both syntax, through template-based answering, and semantics, through

answering via a semantic similarity function, when templates fail to do so.

NEQA first uses its template bank, learned from a small seed using QUINT,



1.2. CONTRIBUTIONS 5

to answer incoming questions. For example, it uses a template gener-

ated from “Which film awards was Brad Pitt nominated for?” to answer

the syntactically isomorphic question “Which president was Lincoln suc-

ceeded by?”. Given a new question for which no matching templates were

found, say, “What are the film award nominations that Brad Pitt received?”,

NEQA uses a semantic similarity function to find a correctly answered and

semantically-similar question from its history. By harnessing light-weight

user feedback on the answers retrieved by the similarity function, NEQA

learns new templates, which are then added to the collection of templates

learned thus far, improving the ability of the system to directly answer

questions using templates.

• TEQUILA: Time-related information needs occur very often in web search

(Metzler et al., 2009), with explicit or implicit temporal conditions, for ex-

ample, “Which teams did Neymar play for before joining PSG?”. However,

handling such complex questions poses a challenge to existing KB-QA sys-

tems, as they are geared towards simple questions without any such con-

straints.

Our solution, called TEQUILA, is built on a rule-based framework that

encompasses four stages of processing: (i) detecting temporal questions

(e.g., using temporal prepositions like ‘before’ in the above example), (ii)

decomposing questions and rewriting sub-questions, if needed, (e.g., de-

composing the above question into “Which teams did Neymar play for”

and “When did Neymar join PSG?” ) (iii) retrieving candidate answers

for sub-questions ({ParisSaintGermain, FCBarcelona, SantosFC} and

{2017} for sub-questions 1 and 2, respectively), and (iv) temporal reason-

ing to combine and reconcile the results of the previous stage into final

answers ({FCBarcelona, SantosFC} for the above question). For stage

(iii), we leverage existing KB-QA systems (e.g., QUINT or NEQA). Along

with TEQUILA, we introduce TempQuestions, a dataset of 1,271 time-

related questions with answers over Freebase. The questions are chosen

such that many of them require a combination of evaluating sub-questions

and reasoning over sub-results (results of the sub-questions). This collec-

tion is derived by judiciously selecting time-related questions from existing

QA datasets.

• ComQA: To advance experimental research on QA, it is important to

have access to benchmarks that reflect real user information needs and

cover question phenomena users are interested in (e.g., compositionality,



6 CHAPTER 1. INTRODUCTION

temporal reasoning, comparatives and superlatives, etc.). Moreover, such

benchmarks should capture the wide lexical and syntactic variety in ex-

pressing these information needs. The benchmarks should be large enough

to cover these phenomena and facilitate the use of data-hungry machine

learning methods, and they should facilitate providing answers grounded in

widely adopted semantic resources like Wikipedia. Existing large datasets

with complex questions are mostly composed of synthetically generated

questions (Bordes et al., 2015; Su et al., 2016; Talmor and Berant, 2018;

Trivedi et al., 2017). Moreover, existing benchmarks are tied to specific

answering resources such as a specific knowledge base or a specific textual

corpus. Recent research has shown that significant improvements can be

obtained from combining various resources for answering (Savenkov and

Agichtein, 2016; Sun et al., 2018; Xu et al., 2016b).

We present a large dataset for QA, called ComQA, which contains 11,214

real user questions with various challenging phenomena such as the need for

temporal reasoning (e.g., “Who was Britain’s leader during WW1?”), com-

parison (e.g., “Who was the first US president to serve 2 terms?”, “What

is the population of the largest city in Egypt?”, “What was the name of

Elvis’s first movie?”), compositionality (e.g., “Who were the parents of the

13th president of the US?”), and questions with empty answer sets (e.g.,

“Who was the first human being on Mars?”). Through a large crowdsourc-

ing effort, questions in ComQA are grouped into 4,834 paraphrase clusters

that express the same information need. Paraphrases are valuable for learn-

ing reformulation patterns for questions with equivalent information needs.

Each cluster is annotated with its answer(s). Building on the wide adoption

of Wikipedia, ComQA answers come in the form of Wikipedia entities wher-

ever possible (e.g., https://en.wikipedia.org/wiki/Love Me Tender

(film), the first movie of Elvis). Wherever the answers are temporal or

measurable quantities, TIMEX3 and the International System of Units are

used for normalization.

1.2.2 Neural Named Entity Recognition

Named Entity Recognition (NER) is an important task in language technology

applications. For example, the following utterance “play we are the champions by

queen” contains two mentions, a song, ‘we are the champions ’ and an artist,

‘queen’. Recently, several neural models for NER have been proposed. How-

ever, these models mostly rely on word-level representations, which suffer from
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three shortcomings: (1) the vocabulary size is large, yielding a large number of

parameters, and hence, large memory requirements and training time, which is

problematic if large amounts of data are available, (2) out-of-vocabulary (OOV)

words can be problematic, and (3) models cannot learn subword representations,

which can improve performance by taking advantage of morphology.

Our last contribution in this dissertation is a neural network for NER relying

on subword units, namely characters, phonemes and bytes. For each word in an

utterance, we learn representations from each of the three subword units. The

character-level unit looks at the characters of each word, while the phoneme-

level unit treats a word as a sequence of phonemes, using lexica that map a

given word into its corresponding phoneme sequence. The byte-level unit reads

a word as bytes, where we use the variable length UTF-8 encoding. A major

advantage of subword-based models is the small vocabulary size which reduces

memory requirements and training time of models, which is particularly rele-

vant for large-scale applications and embedded devices. In addition, the use of

subword-units improves modelling out-of-vocabulary words and supports learn-

ing of morphological features.

1.2.3 Publications

This dissertation is based on results presented at the following conferences:

• Abujabal, A., Yahya, M., Riedewald, M., and Weikum, G. (2017b). Au-

tomated Template Generation for Question Answering over Knowledge

Graphs. In Proceedings of WWW 2017, pages 1191-1200.

• Abujabal, A., Roy, R. S., Yahya, M., and Weikum, G. (2017a). QUINT:

Interpretable Question Answering over Knowledge Bases. In Proceedings

of EMNLP 2017, pages 61-66.

• Abujabal, A., Roy, R. S., Yahya, M., and Weikum, G. (2018). Never-

Ending Learning for Open-Domain Question Answering over Knowledge

Bases. In Proceedings of WWW 2018, pages 1053-1062.

• Jia, Z., Abujabal, A., Roy, R. S., Strötgen, J., and Weikum, G. (2018a).

TEQUILA: Temporal Question Answering over Knowledge Bases. In Pro-

ceedings of CIKM 2018, pages 1807-1810.

• Jia, Z., Abujabal, A., Roy, R. S., Strötgen, J., and Weikum, G. (2018b).
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Tempquestions: A Benchmark for Temporal Question Answering. In Com-

panion of WWW 2018, pages 1057-1062.

• Abujabal, A., Roy, R. S., Yahya, M., and Weikum, G. (2019). ComQA:

A Community-sourced Dataset for Complex Factoid Question Answering

with Paraphrase Clusters. In Proceedings of NAACL 2019

work on NER is available on arXiv:

• Abujabal, A. and Gaspers, J. (2018). Neural Named Entity Recognition

from Subword Units. CoRR, abs/1808.07364.

1.3 Organization of the Dissertation

The thesis is organized as follows. In Chapter 2 we introduce knowledge bases,

lexica of natural language phrases and KB semantic items, and the concept of

named entity recognition. Chapter 3 presents our first contribution, QUINT, our

approach for template-based question answering over knowledge bases, followed

by NEQA in Chapter 4, which extends QUINT by continuously learning new

templates on-the-fly by harnessing a semantic similarity function and light-weight

non-expert user feedback on answers. In Chapter 5, we present TEQUILA, our

framework for addressing complex temporal questions with implicit and explicit

temporal conditions, accompanied with the TempQuestions dataset. ComQA,

a large-scale dataset for complex KB-QA is introduced in Chapter 6. Chapter

7 presents our neural model for named entity recognition. Finally, Chapter 8

concludes this dissertation and presents possible directions for future work.



2 Background

This chapter introduces the concepts needed for this dissertation. In Section

2.1 we present knowledge bases and how semantic items (entities, classes, and

predicates) are modeled. We then introduce Freebase, a concrete knowledge

base that we use in the rest of this dissertation. Finally, we explain how such

knowledge can be queried. Section 2.2 gives an overview of how to construct

lexica that bridge the gap between how natural language questions are formulated

and how semantic items in KBs are represented. Finally, in Section 2.3 we explain

the task of named entity recognition.

2.1 Knowledge Bases

A knowledge base (KB) can be seen as a massive table with three columns:

subject, predicate and object. Each entry in this table forms a fact f ∈ F like:

AlbertEinstein placeOfBirth Ulm

where AlbertEinstein corresponds to the subject of the fact, placeOfBirth is

the predicate, and Ulm corresponds to the object. This model for representing

knowledge is called the subject-predicate-object (SPO) model or triples model.

Subjects are entities E (e.g., AlbertEinstein) or classes C (e.g., person).

Objects can be entities, classes or literal values L (e.g., dates). Predicates P

represent relationships between entities (e.g., AlbertEinstein placeOfBirth

Ulm), classes (e.g., physicist subclassOf person), a pair of an entity and a

class (e.g., AlbertEinstein type physicist) or a pair of an entity and a literal

value (AlbertEinstein bornOn 14.03.1879). Entities, predicates, and classes

are collectively called semantic items.

Definition 2.1 (Semantic Item): A semantic item s in a knowledge base KB is

an element of the set S = E ∪ C ∪ P .

Literals do not serve as subjects of facts in a KB since they express constant

values that are not described by other facts in the KB. The purpose of literals

in a KB is to describe semantic items, hence, they appear as objects in a fact.

Literal values include dates, numbers and strings.

9
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A fact f can be now defined as:

Definition 2.2 (Fact): Given a KB with semantic items E, C and P and literal

values L, a fact f ∈ F is a triple f ∈ (E ∪ C)× P × (E ∪ C ∪ L).

Now, we can define a knowledge base as:

Definition 2.3 (Knowledge Base): A knowledge base KB is a set of facts F .

Figure 2.1(a) shows a fragment of a knowledge base in a tabular form. A

knowledge base can also be seen as a massive graph whose nodes correspond to

entities, classes or literal values. An edge in this graph represents a relationship

between a pair of entities or classes, or a relationship between an entity and a

class or between an entity and a literal value. Figure 2.1(b) shows a graphical

representation of a KB fragment.

2.1.1 Semantic Items

Entities

Entities are the main kinds of semantic items of a KB. Indeed, knowledge bases

were designed to describe entities by connecting them to other entities, classes or

literal values through predicates. Note that a clear definition of an entity is con-

troversial (Smith, 2008), however, we follow the definition of Suchanek (2008),

which meets our needs: “any abstract or concrete thing that is uniquely identi-

fiable is an entity”. Example entities are: AlbertEinstein, Ulm, NobelPrize.

Classes

Entities sharing common characteristics are grouped into classes (also called

types). A class c is a named set of entities in a KB i.e., c ⊆ E. In Figure 2.1

both AlbertEinstein and ErwinSchrödinger belong to the class of physicist,

while the entity MilevaMarić is a member of the mathematician class. In total,

we have five distinct classes in Figure 2.1, namely physicist, mathematician,

person, prize, and entity. Typically, entities are connected to the classes

they belong to using the type predicate. The subclassOf predicate connects

two classes and defines hyponymy/hypernymy relations. For example, the class

physicist is a sub-class of person, which in turn is a sub-class of entity. Using

subclassOf relation among classes, we can generate the type taxonomy of a KB:

a directed acyclic graph whose root is the type entity.

Predicates

Predicates represent relations between entities or attributes of entities. Predi-

cates have two arguments: a subject and an object, and hence, are called binary
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# Subject Predicate Object

1 AlbertEinstein placeOfBirth Ulm

2 AlbertEinstein spouse MilevaMarić

3 MilevaMarić placeOfBirth Titel

4 AlbertEinstein wonPrize NobelPrize

5 AlbertEinstein bornOn ‘14.03-1879 ’

6 AlbertEinstein alias ‘Einstein’

7 MilevaMarić type mathematician

8 AlbertEinstein type physicist

9 ErwinSchrödinger type physicist

10 NobelPrize type prize

11 Ulm type city

12 mathematician subclassOf person

13 physicist subclassOf person

14 person subclassOf entity

(a)

Ulm Titel

MilevaMarićAlbertEinstein

physicist mathematician

person

entity

ErwinSchrödingerNobelPrize

’14.03.1879’

‘Einstein’

prize

subcl
assOf

subclassOf

type

placeOfBirthplaceOfBirth

type

type

wonPrize

spouse

alias

bornOn

wonPr
ize

subclassOf

type

subclassOf

(b)

Figure 2.1: A fragment of a knowledge base in (a) tabular and (b) graph form.
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relations. When both arguments are entities, the predicate corresponds to a re-

lation between them, however, when the object is a literal value, the predicate

represents an attribute of the subject entity. Each predicate in a KB has a type

signature, which defines the types of both the subject and object. For example,

the type signature of placeOfBirth is (person, city).

To accommodate higher-arity relations i.e., n-ary relations, knowledge bases

such as Yago attach SPO triples with meta or provenance attributes e.g., spatio-

temporal attributes through reification. The idea is to decompose the higher-

arity relation into a set of binary relations. It works as follows: the main fact

is given a unique identifier, which is then used to state more information about

the fact. This allows us to create facts (triples) about facts. For example:

AlbertEinstein spouse MilevaMarić

is deemed the main fact and is given the identifier fact1, which is then used to

add information about the fact:

fact1 startDate 1903

fact1 endDate 1919

fact1 location Bern

Note that with reification there has to be a main fact that can be described

with further meta information, which is not always the case. As a solution, in

Freebase, higher-arity facts are encoded using so-called Compound Value Types

(CVTs), which we describe in the next section.

2.1.2 Freebase

Freebase (Bollacker et al., 2008) is a large-scale knowledge base that was orig-

inally released by Metaweb Technologies, Inc. in 2007 and later acquired by

Google in 2010. Freebase is a collaboratively edited knowledge base, with billions

of facts, millions of distinct entities and thousands of distinct predicates. When-

ever applicable, entities in Freebase are linked to their corresponding Wikipedia

articles.

Freebase follows the triples model to represent its knowledge and extends it

to accommodate higher-arity relations using Compound Value Types (CVTs).

Given a higher-arity relationship like the marriage relation with multiple actors,

either of them is chosen as the subject of a binary relation whose object is a CVT

with a unique identifier e.g., cvt1. The CVT is then connected to all other actors

(entities) or literal values using predicates. For example, the marriage relation-

ship between AlbertEinstein and MilevaMarić is represented as follows:
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AlbertEinstein marriage cvt1

cvt1 spouse MilevaMarić

cvt1 startDate 1903

cvt1 endDate 1919

cvt1 location Bern

2.1.3 Querying Knowledge Bases

Given the volume of knowledge bases with billions of facts and the complexity

of constructing correct formal queries, it is very hard for a non-expert user to

directly query knowledge bases to satisfy her information needs. However, users

are quite familiar with search engines where, given a keyword query, a list of

relevant documents is returned. In entity search, work has utilized the familiarity

of users with keyword querying to return a set of entities from the KB in response

to a keyword query (Balog et al., 2010; Blanco et al., 2011; Joshi et al., 2014; Tran

et al., 2007, 2009). For example, in response to “vice president barack obama”,

the entity JoeBiden is returned.

Keyword queries are “telegraphic” in nature (Joshi et al., 2014), and hence,

suffer from inherent limited expressiveness. This potentially restricts the type

of information needs that users can express to simple ones. To overcome this

limitation, natural language questions were adopted as a means to provide users

with an easy access to knowledge bases. Natural language questions allow users

to express complex information needs in a more intuitive way.

Triple pattern queries

On the knowledge base side we use graph-matching queries based on SPARQL

triple patterns. A triple pattern is a fact with one or more of its components

replaced by variables (e.g., ?x placeOfBirth CambridgeMassachusetts ). A

formal query q is a set of triple patterns, for example:

SELECT ?x WHERE {
?x type movieActor .

TheDeparted hasActor ?x .

?x placeOfBirth CambridgeMassachusetts

}

The variable ?x is designated as the projection variable. An answer a to a

query q over a KB is a set of entities which is obtained by mapping variables of

q to KB items where the projection variable maps to a. For example, the answer

to the above query is { MattDamon, MarkWahlberg }.
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Phrase Semantic Item w Phrase Semantic Item w

‘married to’ marriage.spouse 0.7 ‘role’ cast.character 0.6

‘married in’ marriage.location 0.6 ‘actress ’ actress 0.7

‘play on’ cast.actor 0.6 ‘actress ’ person 0.3

Table 2.1: Fragment of our lexica: LP and LC . Semantic items are from Freebase.

2.2 Lexica

To connect the question vocabulary to semantic items in the knowledge base, we

require a lexicon L that relates natural language tokens/phrases to KB entities,

predicates and classes. Our lexicon consists of a predicate lexicon LP and a

class lexicon LC . For identifying mentions of entities we rely on off-the-shelf

named entity recognition systems. Hakimov et al. (2015) addressed the lexical

gap between the vocabulary used by users and the knowledge base semantic

items and showed that when high quality lexicons are used, the performance

of QA systems substantially improves. We construct LP and LC using distant

supervision (Mintz et al., 2009), similar to the QA work of Bast and Haussmann

(2015), Berant et al. (2013), and Yih et al. (2015). We utilize ClueWeb09-

FACC11, a corpus of 500M Web pages annotated with Freebase entities.

Definition 2.4 (Lexicon): A lexicon L is a weighted dictionary that maps nat-

ural language phrases to KB semantic items.

To create the predicate lexicon, LP , we run the following extraction pattern

over the ClueWeb09-FACC1 corpus: “e1 r e2”, where e1 and e2 are entities and

r is a phrase. For example,

“[[Albert Einstein — AlbertEinstein]] was born in [[Ulm — Ulm]] ...”

Following the distant supervision assumption, if (e1 p e2) is a triple in the

knowledge base, then r expresses p and we add r 7→ p to LP . For the knowl-

edge base triple (AlbertEinstein placeOfBirth Ulm) we add “was born in” 7→
placeOfBirth to LP . Of course, this assumption will not always hold, so we

assign the mapping a weight w proportional to how many times it was observed

in ClueWeb09-FACC1.

For the class lexicon, LC , we run Hearst patterns (Hearst, 1992) over the

annotated corpus, where one argument is an entity and the other is a noun

phrase. For example, for “e and other np”, we add to LC the entry np 7→ c for

each c such that (e type c) ∈ KB. For example, given the sentence “[[Albert

Einstein — AlbertEinstein]] and other scientists ...” we add, for each type

1http://lemurproject.org/clueweb09/FACC1/

http://lemurproject.org/clueweb09/FACC1/


2.3. NAMED ENTITY RECOGNITION 15

c to which the entity AlbertEinstein belongs, the entry “scientist” 7→ c to

our LC . Entries are assigned a weight w proportional to their frequencies in

ClueWeb09-FACC1. Table 2.1 shows a fragment of our lexica LP and LC .

2.3 Named Entity Recognition

Named entity recognition (NER) is the task of identifying mentions of named

entities in text and classifying them into one of a predefined set of types like

person or organization (Finkel et al., 2005; Klein et al., 2003; Lample et al.,

2016). NER is at the heart of information extraction tasks for recognizing men-

tions in text. For example, the following sentence “play we are the champions by

queen” contains two mentions, a song, ‘we are the champions ’ and an artist,

‘queen’. NER is an important task for question answering and is applied first

in any QA pipeline. Classifying mentions into types reduces the search space of

candidate entities and candidate predicates, which leads to efficient answering.

Usually, NER systems operate on a handful of coarse-grained types; person,

location and organization (Sang, 2002; Sang and Meulder, 2003). While

NER classifies mentions into coarse-grained types, the task of named entity

typing (NET) handles finer types such as scientist, park or primarySchool

(Del Corro et al., 2015; Yosef et al., 2012). However, the main focus of NET is

to type mentions, not detecting their boundaries. Therefore, the starting point

of many NET approaches is an off-the-shelf NER system to identify mentions.

NET then tries to type the identified mentions with the most fine-grained type

given the context. In our work, we propose an approach for NER, with a larger

set of coarse and fine-grained types.





3 Automated Template Generation

for Question Answering over

Knowledge Bases

3.1 Introduction

Templates play an important role in question answering (QA) over knowledge

bases (KBs), where user utterances are translated to structured queries via se-

mantic parsing (Berant et al., 2013; Unger et al., 2012; Yahya et al., 2012). Ut-

terance templates are usually paired with query templates, guiding the mapping

of utterance constituents onto query components.

Table 3.1 shows two utterance-query templates used by Fader et al. (2013).

Each template i) specifies how to chunk an utterance into phrases, ii) guides

how these phrases map to KB primitives by specifying their semantic roles as

predicates or entities, and iii) aligns syntactic structure in the utterance to the

semantic predicate-argument structure of the query.

A benefit of templates is that the mappings to the KB are traceable and

can be leveraged to generate explanations for the user to understand why she

receives specific answers. For example, when the utterance “Who invented the

Internet?” returns the answer Al Gore (known for funding the Internet), an

explanation might tell us that it was answered from the first template of Table

3.1, and that the KB predicate used was knownFor, originating from ‘invented ’

# Utterance Template Query Template

1 Who VPpred NPent (?x, pred, ent)

2 What NPpred is NPent (ent, pred, ?x)

Table 3.1: Curated templates by Fader et al. (2013). Shared pred and ent an-

notations indicate an alignment between a phrase in the utterance

template and a KB semantic item in the corresponding query tem-

plate.

17
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in the utterance through the pred alignment.

Many prior approaches to QA over KBs rely on hand-crafted templates or

rules, which inevitably results in limited coverage. Some methods use utterance-

query templates with alignments as in Table 3.1 (Fader et al., 2013; López et al.,

2016; Reddy et al., 2016; Unger et al., 2012; Yahya et al., 2012; Yin et al., 2015).

Bast and Haussmann (2015) rely on three manually constructed query templates

without any utterance templates. Instead, they exhaustively instantiate each

query template from the utterance. Yih et al. (2015) define a sequence of stages

for generating queries, each relying on a set of manually defined rules for how

query conditions are added. Berant et al. (2013) rely on a manually specified

grammar for semantic parsing and mapping text spans onto KB primitives.

Our method supports complex compositional questions that require multiple

KB predicates to obtain an answer. For example, the question “actors starring

in The Departed who were born in Cambridge, MA” is answered by multiple

KB predicates. Our system, called QUINT, is able to exploit natural language

compositionality and templates learned from simple questions to answer complex

questions without any templates that capture the complete question.

Our approach is to automatically learn utterance-query templates with align-

ments between the constituents of the question utterance and the KB query

(Section 3.3). These templates are learned by distant supervision, solely from

questions paired with their answer sets as training data (Kwiatkowski et al., 2013;

Liang et al., 2011). Prior work used the same input for training QA systems over

KBs, but relying on hand-crafted templates (Bast and Haussmann, 2015; Yih

et al., 2015) or hand-crafted rules in various formalisms such as DCS (Berant

et al., 2013) to generate the structure of KB queries. In contrast, our automati-

cally learned utterance templates are based on standard dependency parse trees,

thus benefiting from methodological progress and tools on mainstream pars-

ing (Del Corro and Gemulla, 2013). Dependency parse representations also en-

able us to cope with compositional utterances. On the KB query side, templates

are expressed in a SPARQL-style triple-pattern language 2.1. Our templates in-

clude automatic support for semantic answer typing, an important aspect where

prior work relied on manually specified typing patterns (Bast and Haussmann,

2015; Berant et al., 2013). The alignments between utterance and query are

computed by integer linear programming.

Template learning is an offline step. Online (Section 3.4), when the user inter-

acts with the system, QUINT performs light-weight template matching. QUINT,

uses basic templates to answer structurally complex compositional questions

without observing such questions during training. QUINT accomplishes this
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producer

BadTeacher

JakeKasdan

director

LucyPunch

AmySquirrel

cvt1 cvt2 JasonSegel

RussellGettis

cast castactor

char

actor

char

type type

typetype

actress

person

JimmyMiller

subClassOf

Figure 3.1: Example KB fragment.

by i) automatically decomposing the question into its constituent clauses, ii)

computing answers for each constituent using our templates, and iii) combining

these answers to obtain the final answer.

Our salient contributions are: i) automatically learning role-aligned question-

query templates, ii) handling compositional complex questions, and iii) experi-

ments with the WebQuestions (Berant et al., 2013) and Free917 (Cai and Yates,

2013) benchmarks and with complex questions.

New Utterance

Template Matching & Instantiation
Templates

Query Ranking

Top-1 Query Candidate

Answer(Utterance, Answer)

(Utterance, Backbone Query)

Role-aligned 
(Utterance, Query)

Role-aligned 
(Utterance Template, Query Template)

Backbone query & Typing

ILP Alignment

Generalization

Template Generation Question Answering

Figure 3.2: An outline of how QUINT generates role-aligned templates at train-

ing time and how it uses them for question answering.
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3.1.1 Overview

Figure 3.2 outlines our system for learning and subsequently using templates to

answer natural language questions over knowledge bases. Templates are gener-

ated at training time (Figure 3.2, left), and are used at testing (answering) time

(Figure 3.2, right) for answering questions. The input to the training stage is

pairs of question utterance u and its answer set Au from the KB. An example

of a training utterance is u =“Which actress played character Amy Squirrel on

Bad Teacher?” [sic], which is paired with the answer set Au = {LucyPunch}.
We use the letter u to refer to both the utterance and its dependency parse tree

interchangeably. A dependency parse tree (Klein and Manning, 2003) of an ut-

terance is a directed rooted tree whose nodes correspond to utterance tokens and

edges represent grammatical relations between the nodes. Our utterance tem-

plates are based on the dependency parse of utterances. Our motivation is that a

dependency parse (1) can capture long range dependencies between the tokens of

an utterance which helps when answering compositional questions (Section 3.5)

and (2) gives great flexibility allowing QUINT to skip irrelevant tokens when

instantiating query templates (Section 3.4.1). Figure 3.3 shows the dependency

parse of the above utterance.
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Figure 3.3: The dependency parse tree of our example utterance (top) together

with the answer set (bottom).

QUINT starts by heuristically constructing a KB query q that captures u. It

constructs a backbone query q̂ for q by finding for each a ∈ Au the smallest

subgraph connecting the KB entities detected in u and a (Section 3.3). For our

example in Figure 3.3, this is the subgraph connecting the black nodes in Figure

3.1. QUINT forms q̂ from this subgraph by replacing the nodes corresponding

to a or a CVT with variables (Figure 3.4). To account for types, it extends

q̂ by adding the type constraints connected to a to the corresponding variable

(Section 3.3.2) – the gray nodes in Figure 3.1. Figure 3.5 shows the resulting q̂.

Next, QUINT aligns q̂ with u, which gives us q ⊆ q̂ that best captures u,

a chunking of u, and an alignment between the constituents of u and q. The
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alignment is carried over to the templates created from u and q. We formulate

the alignment problem as a constrained optimization and find the best alignment

m using integer linear programming (ILP) (Section 3.3.3). Figure 3.7 shows u,

the resulting q, and alignment m indicated with shared ent, pred, and type

annotations between nodes in u and q, which also specify the semantic role for

this alignment.

Next, QUINT performs generalization to generate a template from a concrete

pair of aligned utterance dependency parse tree and query graph (Section 3.3.4).

It removes the concrete text in the nodes participating in m and similarly for the

semantic items in q, keeping the annotations ent, pred, and type, thereby turning

these nodes into placeholders (Figure 3.8). The result is template t = (ut, qt,mt)

composed of an utterance template ut, a query template qt, and an alignment

mt between the two.

When the user issues a new question, QUINT matches its dependency parse

tree against the template library created during training (Section 3.4.1). In

Figure 3.9 the bold edges and nodes in u′ are those matched by ut (Figure 3.8).

For each match, the corresponding query template qt is instantiated using the

alignment mt and the lexicon. Figure 3.9 also shows a query resulting from

such an instantiation. Finally, QUINT ranks these candidate queries using a

learning-to-rank approach (Section 3.4.2). The answers of the top-ranked query

are returned to the user. By showing which template was used and how it was

instantiated, QUINT can explain answers to the user.

3.2 Related Work

Question answering. One of the earliest work on question answering was the

work of Green et al. (1961), coined BASEBALL, where the answering resource is

a database of baseball games. BASEBALL enabled end users to ask full-fledged
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Figure 3.4: Backbone query q̂.
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natural language questions in a specific domain, namely sport. LUNAR (Woods,

1972) could answer questions about the Apollo 11 mission to the moon. LAD-

DER (Hendrix et al., 1978) is a rule-based QA method over a navy database.

QA has a long tradition in IR and NLP communities, including benchmark-

ing tasks in TREC (Dang et al., 2006; Dietz and Gamari, 2017; Voorhees and

Tice, 2000), CLEF Magnini et al. (2004); Herrera et al. (2004) and SemEval.

This has predominantly focused on retrieving answers from textual sources (Fer-

rucci, 2012; Harabagiu et al., 2006; Lin, 2002; Lin and Katz, 2003; Prager et al.,

2004; Ravichandran and Hovy, 2002; Saquete et al., 2004, 2009; Yin et al., 2015).

TREC QA evaluation series (1999-2007) provide hundreds of factoid questions

to be answered over a collection of documents (Dang et al., 2007). Typically,

IR-based QA methods answer a question over a collection of documents in two

phases: i) question analysis and ii) answer retrieval (Katz, 1997). In in the

first phase, the expected type of the answer is identified using either a handful

of lexico-syntactic rules or machine-learning methods (Hovy et al., 2000; Li and

Roth, 2002; Pasca and Harabagiu, 2001; Ravichandran and Hovy, 2002). Then, a

query is formulated from the question at hand to be issued against the underlying

collection of documents (Hovy et al., 2000; Xu and Croft, 1996). In the second

phase, a list of relevant documents is retrieved in response to the formulated

query. Next, a more comprehensive syntactic and semantic analysis of the re-

trieved list of documents is applied in order to identify highly relevant passages

that might contain the answer of interest, including dependency/constituency

parsing, chunking, POS tagging, named entity recognition and typing (Salton

et al., 1993; Srihari and Li, 1999). Finally, answers are extracted from the

retrieved passages (Brill et al., 2002; Lin, 2007). For a more comprehensive

overview of IR-based QA (Hirschman and Gaizauskas, 2001; Jurafsky and Mar-

tin, 2009).

Semantic search. With traditional Web search over textual corpora reaching

maturity, there has been a shift towards semantic search focusing on entities,

and more recently on relationships. This shift was brought on by an explosion

of structured (Bizer et al., 2009) and semi-structured data (Guha et al., 2016).

Entity search over KBs has gained wide attention (Balog et al., 2010; Blanco

et al., 2011; Joshi et al., 2014; Tran et al., 2007, 2009). These are keyword

queries asking for entities (or other resources), and have been shown to be very

common (Pound et al., 2010).

Question answering over knowledge bases. More recent efforts have fo-

cused on natural language questions as an interface for knowledge bases. Ques-

tions express complex relation-centric information needs more naturally, allowing
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for better KB utilization. They are also more natural when dealing with new

modalities such as voice interaction (e.g., Amazon Alexa, Google Home). Multi-

ple benchmarks have been introduced for this problem (Berant et al., 2013; Cai

and Yates, 2013; Tsatsaronis et al., 2012; Unger et al., 2015). These differ in the

underlying KBs and supporting resources, size, and question phenomena they

evoke, resulting in various solutions from those heavily relying on machine learn-

ing to more hybrid approaches using a combination of rules and hand-crafted

scoring schemes. We presented experimental results for QUINT on the bench-

marks introduced by Berant et al. (2013) and Cai and Yates (2013). We could

not conduct experiments on benchmarks such as QALD (Unger et al., 2015) and

BioASQ (Tsatsaronis et al., 2012) due to the small size of their training sets, and

because they emphasize aspects not addressed by QUINT (e.g., aggregation, or-

dering).

Templates play an important role in QA over KBs. Unger et al. (2012); Unger

and Cimiano (2011), Yahya et al. (2012, 2013), and Zou et al. (2014) present ap-

proaches that use manually defined templates to handle complex questions with

compositionality. These systems use regularities in how syntactic patterns map

to semantic ones to create their templates. The drawback of these approaches

is the limited coverage of templates, making them brittle when it comes to un-

conventional question formulations. By automating template generation, we can

learn new templates dynamically.

Fader et al. (2013) use a small number of handcrafted templates for QA, fo-

cusing on simple queries with a single triple pattern, as illustrated in Table 3.1.

In contrast, we use dependency parsing on the utterance side, allowing for better

generalization. On the query side, we are not limited to single triple patterns.

Zheng et al. (2015) tackle the problem of utterance-query template construc-

tion in a setting different than ours with a query workload and a question repos-

itory as input. The task is to pair questions with workload queries that best

capture them. Each pair is subsequently generalized to a template. In contrast,

our approach does not rely on the availability of observed SPARQL queries.

Berant et al. (2013) use a set of rules for composing logical forms in the DCS

semantic representation constructed from all pairs of non-overlapping text spans.

Bast and Haussmann (2015) use three manually defined query templates, with

no corresponding utterance templates. These are exhaustively instantiated based

on the utterance. This is similar to our query generation, but is performed at

answering time. Yih et al. (2015) use a staged approach to map utterances

to queries. Each stage uses a set of rules for adding conditions to a query at

answering time. Other works rely on embedding both questions and KB entities,
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paths, and subgraphs in a shared space (Bordes et al., 2014; Dong et al., 2015;

Yang et al., 2014).

Yao and Durme (2014) address QA over KBs as an information extraction

problem, reminiscent of traditional QA over text corpora. This approach makes

heavy use of manually defined templates for extracting cues about the answer

entity and the relevant KB predicates.

A popular formalism for mapping utterances into logical forms is CCGs (Steed-

man, 2000; Zettlemoyer and Collins, 2005). Kwiatkowski et al. (2013) use a prob-

abilistic CCG to build a linguistically motivated logical form. The subsequent

translation to a KB-specific semantic representation is performed by a trained

ontology matching model. Cai and Yates (2013) combine learning a CCG gram-

mar from question-query pairs with an approach for lexicon extension. We work

with dependency parsing to capture question syntax. This is a pragmatic choice

to benefit from the methodological progress and tools available (Del Corro and

Gemulla, 2013). Reddy et al. (2016) propose an approach to map a dependency

parse to a logical form in two steps. First, using a repository of manual rules,

a dependency parse is transformed into a logical form whose symbols are words

and edge labels. This is transformed into a semantic representation following

Reddy et al. (2014) using graph matching.

Combining KBs and text. Work has also been done to combine KBs with

supporting textual data for QA. The role of text here is either to support ranking

of answer candidates (Savenkov and Agichtein, 2016; Xu et al., 2016b), or as a

source of answers (Fader et al., 2013; Usbeck et al., 2015). In our work we use a

text corpus linked to our KB for lexicon construction offline. However, we stick

to answering exclusively over the KB at answering time.

Multiple KBs. Finally, going beyond a single KB, people have looked at

QA over interlinked KBs. PowerAqua (López et al., 2010) answers questions in

this setting, focusing on how to combine answers obtained from different sources.

Shekarpour et al. (2015) describe a two-stage system for answering questions and

keyword queries over linked data, composed of two stages: question segmentation

and segment disambiguation, followed by query generation.

3.3 Template Generation

We now present the details of the offline template generation stage. The input

to this stage is pairs of utterance u and its answer set Au as in Figure 3.3.
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3.3.1 Backbone Query Construction

To generate the backbone query q̂, QUINT starts by annotating a training ut-

terance u with the named entities it contains and disambiguating these to Free-

base entities using an off-the-shelf named entity recognition and disambiguation

(NERD) system (Yang and Chang, 2015). For our example, the resulting anno-

tated question is:

“Which actress played character [[Amy Squirrel — AmySquirrel]] on [[Bad

Teacher — BadTeacher]]?”

Next, for each answer a ∈ Au, QUINT finds the smallest connected subgraph

of the KB that contains the above entities found in the question as well as a. For

our example and the KB of Figure 3.1, this is the subgraph with black nodes.

To this end, starting with an entity found in the question, QUINT explores all

paths of length two when the middle node is a CVT node and paths of length

one otherwise, to restrict the search space, similarly to (Yih et al., 2015). If the

middle node is a CVT node and the question contains multiple entities, QUINT

explores paths of length one connecting the CVT node with these entities. We

assume that this subgraph captures the meaning of the question and connects

it to one of its answers a. There may be multiple such graphs. QUINT then

transforms this subgraph into a query by replacing a with the variable ?x and

any CVT nodes with distinct variables (e.g., ?cvt1). The above procedure is

performed for each a ∈ Au for a given u, resulting in multiple queries. We keep

the query with the highest F1 with respect to Au. Figure 3.4 shows q̂ for our

example.

3.3.2 Capturing Answer Types

Capturing the answer types given in the question is important for precision. In

the question “Which actor died in New York?”, q̂ generated thus far would be

{?x deathPlace NewYork}, which does not capture the fact that the question is

only interested in actors, hurting precision. Walker et al. (2015) showed that

identifying the expected answer type of an utterance boosts the performance of

QA systems. This conclusion is proven in our experiments as well (Section 3.6).

Earlier QA systems either use manual rules to find phrases in the question that

evoke one of a number of predefined set of possible types in the query (Bast and

Haussmann, 2015; Berant et al., 2013), or neglect type constraints altogether (Yih

et al., 2015). QUINT automatically creates templates that capture which phrases

in the question evoke types in the query, and uses the full Freebase type system

as potential mapping targets.
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Starting with q̂ generated thus far (Figure 3.4), QUINT connects to the answer

variable node in q̂ one type constraint for each c ∈ C such that the variable

originates from the answer entity a ∈ Au and (a type c) ∈ KB. In the KB of

Figure 3.1, LucyPunch ∈ Au has the types person and actress, the resulting q̂

is shown in Figure 3.5. q̂ now contains more type constraints than actually given

in the question. In the next section we show how the correct one is determined

as part of the alignment step.
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Figure 3.5: Backbone query q̂ with types.

3.3.3 Utterance-Query Alignment

With (u, q̂) pairs at hand, QUINT proceeds to aligning the constituents of the

two. The alignment i) gives us a chunking of u into phrases that map to semantic

items in q̂, ii) removes spurious type constraints from q̂, resulting in q ⊆ q̂, and

iii) gives us an alignment m between the constituents of u and q.

Alignment is driven by our lexicons LP and LC (Section 2.2), but faces inherent

ambiguity, either from truly ambiguous phrases or from inevitable noise in the

automatically constructed lexicons. We model the resolution of this ambiguity as

a constrained optimization and use an ILP to address it. We start by building a

bipartite graph with Ph, the set of all phrases from u, on one side and Sq̂, the set

of semantic items in q̂, on the other as shown in Figure 3.6. Ph = {ph1, ph2, ...}
is generated by taking all subsequences of tokens in u. We add an edge between

each phi ∈ Ph and sj ∈ Sq̂ where (phi 7→ sj) ∈ LP ∪ LC with a weight wij from

the lexicon. Table 3.2 shows a fragment of our lexicons.

Additionally, we add an edge connecting each entity in q̂ to the phrase that

evokes it in u. Entities are added to prevent their surface forms in the question

from mapping to a class or a predicate. We use an off-the-shelf NERD system

to identify entities in u.To resolve the ambiguity in the mapping of types and
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predicates and obtain the intended alignment, the ILP decides which subset of

the edges we need to keep.

We extend our notation before presenting our ILP. For semantic item sj, Ej,

Cj and Pj are 0/1 constants indicating whether sj is an entity, type, or predicate,

respectively. Xij is a 0/1 decision variable whose value is determined by the so-

lution of the ILP. The edge connecting phi to sj in the bipartite graph is retained

iff Xij = 1. Given a set of types connected to a variable v from which we want

to pick at most one, this set of types is S(v) = {c1, c2, ...} ({actress,person} in

our example) and the set of phrases that can map to types in S(v) is Ph(v).

AmySquirrelBadTeacheractressperson

bipartite graph

play character

play onBad Teacher

character

actress

actress play

play

which

characterAmy Squirrel

cast.char cast.actor
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play character
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onBad Teachercharacter actress

actress 
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which

character Amy Squirrel
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Figure 3.6: Bipartite graph provided to the ILP, with phrases at the top and

semantic items at the bottom. An edge corresponds to a mapping

from a phrase to a semantic item, and its thickness corresponds to the

mapping weight. Dashed box represents S(?x) for ?x in Figure 3.5.

The objective of the ILP is to maximize the total weight of the mapped phrases:∑
i,j wijXij,

where wij comes from the lexicon. The constraints make sure that the resulting

alignment is a meaningful one:

1. Each semantic item is obtained from at most one phrase: ∀sj ∈ Sq̂ :∑
i,j Xij ≤ 1. In Figure 3.6, this means that cast.actor comes either

from ‘play on’ or ‘play ’.

2. A token contributing to an entity phrase cannot contribute to any other

phrase: ∀phi ∈ Ph, phi′ ∈ Ph(t), t ∈ phi, sj, sj′ ∈ Sq̂ : Xij + Ej ≤∑
i′,j′ Xi′j′ + 1. In Figure 3.6, this means that the tokens of ‘Amy Squirrel ’

cannot be part of a mention of a semantic item other than AmySquirrel

(if there was such a candidate).

3. For each variable v, at most one phrase in Ph(v) can map to at most one

type in S(v): ∀v, phi ∈ Ph(v), cj ∈ S(v) :
∑

i,j Xij ≤ 1. In Figure 3.6, this

means that either person or actress will be chosen, and only one of the

phrases mapping to the chosen type among these.
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Figure 3.7: Aligned utterance query pair (u, q,m). m is indicated by shared

ent, pred, and type annotations (e.g., “played on” is aligned with

cast.actor).

Phrase Semantic Item w Phrase Semantic Item w

‘play on’ cast.actor 0.5 ‘role’ cast.char 0.6

‘play ’ cast.actor 0.3 ‘actress ’ actress 0.7

‘character ’ cast.char 0.6 ‘actress ’ person 0.3

Table 3.2: Fragment of our lexicons: LP and LC .

We solve the ILP using Gurobi to obtain the intended alignment m, indicated

by shared ent, type, and pred semantic annotations between u and q̂. Addition-

ally, by discarding all type constraints not connected to a phrase in m (?x type

person in our example), we obtain q from q̂. Figure 3.7 shows the utterance from

our running example aligned with q (contrast with q̂ in Figure 3.5).

An important by-product of alignment at training time is a lexicon LPtrain
⊆

LP , composed of the phrase-predicate alignments observed during training. This

lexicon is much cleaner than the noisier LP . We will use both at testing time,

giving precedence to mappings obtained from LPtrain
when they exist.

3.3.4 Generalization to Templates

Next, QUINT constructs templates from aligned utterance-query pairs (u, q,m)

obtained from the alignment process above. On the utterance side, QUINT takes

the utterance u represented using its dependency parse tree and restricts it to the

smallest connected subgraph that contains the tokens of all phrases participating

in m. In Figure 3.7 this results in removing the node corresponding to ‘which’.
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Figure 3.8: A template t = (ut, qt,mt). mt is indicated by shared ent, pred, and

type annotations. Figure 3.7 shows the concrete utterance-query pair

used to generate this template.

To create a template from this subgraph, we turn the nodes participating in m

into placeholders by removing their text and keeping the POS tags and semantic

alignment annotations (ent, type, pred). We use universal POS tags (Petrov

et al., 2012) for stronger generalization power. We replace compound nouns

with a noun token that can be used to match compound nouns at testing time to

ensure generalization. At testing time, our templates allow for robust chunking

of an incoming question into phrases corresponding to entities (i.e., as named

entity recognizers), predicates (i.e., as relation extractors) and types (i.e., as

noun phrase chunkers). For NER, we show that using our templates at testing

time gives superior results when compared to using an off-the-shelf NER system.

On the query side, we take the query and remove the concrete labels of edges

(predicates) and nodes (entities and types) participating in m, keeping the se-

mantic alignment annotations. We use the number of utterance-query pairs

which generate a template as a signal in query ranking (Section 3.4).

3.4 Simple Question Answering with Templates

3.4.1 Candidate Query Generation

At answering time, when a user poses a new utterance u′, QUINT matches it

against all templates in our repository. u′ matches a template (ut, qt,mt) if a

subgraph of its dependency parse tree is isomorphic to ut considering their edge
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labels and the POS tags in their nodes. Figure 3.9 shows an example of u′ whose

dependency parse matches the utterance template ut in Figure 3.8. Bold edges

and nodes are the ones participating in the isomorphism with ut. Note how

using a dependency parse to represent an utterance allows us to ignore the token

‘popular ’ in u′, which does not carry any semantics that can be captured by our

specific KB. If the question asked, say, for an ‘American’ actress instead, then

another template learned at training time would allow us to instantiate a query

that captures this important constraint. Our ranking scheme described below

decides which is the best match.

For each matching utterance template (usually several), QUINT instantiates

the corresponding query template qt based on the alignment mt and the lexicon

L. Lexicon lookups are guided by the semantic alignment annotations in the

query template, which restrict specific parts of the query to types, entities, or

predicates. For predicates, QUINT first performs a lookup in the cleaner LPtrain

created at training time (Section 3.3.3). If no results are returned, QUINT

queries the full predicate lexicon LP (Section ??). Figure 3.9 bottom shows a

query q′ obtained from instantiating the template of Figure 3.8 based on u′ shown

at the top of the same figure.
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Figure 3.9: Template instantiation (using t in Figure 3.8).

3.4.2 Query Ranking

Query generation yields multiple candidate queries for an utterance, either due

to multiple matching templates as discussed above or due to ambiguity of phrases
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Category # Description

Alignment 1,2 Average & sum of lexicon weights for predicates

3,4 Average & sum of lexicon weights for entities

5 # of utterance tokens literally matching their predicate

6 # of entity mentions matching their canonical

name in the KB

7 Indicator: question n-gram ∧ predicate p,

n = 1, 2 and 3

Semantic 8,9 Average & sum of entity popularity scores

10 # of predicates in the query

11 # of entities in the query

Template 12 Indicator: t captures a type constraint

13 # of training utterances that generate t

14 t coverage: % of tokens in utterance matched by ut
15 Indicator: utterance node with type annotation ∧

semantic answer type (if t is typed)

Answer 16 Indicator: answer set size

(=1, =2, =3, ∈ [4-10], > 10)

Table 3.3: Query candidate ranking features.

in the lexicon. We adopt a learning-to-rank approach, analogously to Bast and

Haussmann (Bast and Haussmann, 2015), to rank the obtained queries, and

return the highest ranking query as the one intended by the question. We

use a random forest classifier to learn a preference function between a pair of

queries (Breiman, 2001). Table 3.3 lists the features used for the feature vec-

tor φ(u′, t, q′) associated with the instantiation of template t from utterance u′

resulting in query q′, which we discuss below. For instantiations of a pair of

templates t1 and t2 matching utterance u′ and resulting in the queries q1 and

q2, respectively, the feature vector used is a result of concatenating φ(u′, t1, q
′
1),

φ(u′, t2, q
′
2), and φ(u′, t1, q

′
1)− φ(u′, t2, q

′
2).

We compute four types of features as shown in Table 3.3. Alignment features

measure the association between utterance tokens and KB semantic items. Se-

mantic features consider the query exclusively. Template features measure the

appropriateness of a template t for a given an utterance. The answer feature

template indicates which of the predefined ranges the query answer set size be-

longs to. Answer size is a good cue as empty answer sets or very large ones are

indicators of incorrect queries that are over or under-constrained. Features 7,

15, and 16 define feature templates that are instantiated based on the training
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data. For example, instantiations of feature 7 are pairs of utterance n-gram and

query predicate. Indicator features take boolean values. For instance, from the

utterance and the query in Figure 3.9 we generate the feature “actress play ∧
cast.actor” with value 1.

3.5 Compositional Question Answering with

Templates

The class of complex questions we target are those composed of multiple clauses,

each centered around a relationship, which collectively describe a single “vari-

able” (with possibly multiple bindings in the KB). For example, the question “ac-

tors starring in The Departed who were born in Cambridge, MA” is composed of

two clauses: “actors starring in The Departed” (e.g., MattDamon, MarkWahlberg,

JackNicholson) and the relative clause “actors who were born in Cambridge,

MA” (e.g., MattDamon, UmaThurman, MarkWahlberg). MattDamon and MarkWahlberg

are answers to the complete question.

Handling complex questions is a natural extension of the procedure in Sec-

tion 3.4.1. We do this in three steps: i) automated dependency parse rewriting

when necessary, ii) sub-question answering, and iii) answer stitching.

Automated dependency parse rewriting. The need for rewriting arises

when we have complex questions that we are unable to fully capture with our

template repository. An example is “Who acted in The Green Mile and Forrest

Gump?”. For this question, our templates trained on the simpler WebQuestions

dataset, would be unable to capture the second constraint, expressed through

a coordinating conjunction (using ‘and ’). The problem can be seen in Figure

3.10(a), where there is no direct connection between ‘Forst Gump’ and the re-

lation phrase ‘acted in’, which our templates would expect given the data used

to learn them. To overcome this, we perform simple automated rewriting to get

two separate interrogative propositions following Del Corro and Gemulla (2013)

for relative clauses and coordinating conjunctions. In our concrete example, this

is done by connecting ‘Gump’, the target of the conj edge, to ‘in’, the head of

‘Mile’ which is the source of the conj edge. We give the new edge the label

pobj, the same as the one connecting the head of conj to its parent. The conj

and cc edges are subsequently removed. The resulting dependency graph and

sub-questions captured by our templates are shown in Figure 3.10(b).

More generally, a rewriting is triggered if i) we detect a coordinating conjunc-

tion or relative clause (Del Corro and Gemulla, 2013) and ii) matches against
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our template repository result in less sub-questions than expected (e.g., a single

coordinating conjunction or relative clause should result in two matched sub-

questions). While the question above requires rewriting, the question “What

film directed by Steven Spielberg did Oprah Winfrey act in?”, where both rela-

tions are spelled out, requires no rewriting by QUINT.
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Figure 3.10: (a) shows the original dependency parse of the question before

rewriting (b) shows the dependency parse after rewriting i.e., drop-

ping dashed edges in (a) and adding a new edge (bold) connecting

“Gump” to “in”.

Sub-question answering. We match our templates against the complete

automatically rewritten (if needed) dependency parse . Each match corresponds

to a sub-question that can be answered independently. Here, we follow the

procedure described in Sections 3.4.1 and 3.4.2 for each question independently,

and keep the ranked list of queries returned for each subquestion.

Stitching. For each sub-question detected and mapped to a list of queries,

we assign a query in its ranked list of queries (Section 3.4.2) a score of 1
r
, where

r is the rank of the query within the list. The idea here is to assign a higher

numerical score to a higher ranked query. We return the answers resulting from
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the combination of queries, one for each sub-question, such that the intersection

of their answer sets is non-empty and the sum of their scores is highest.

3.6 Experimental Evaluation

We evaluate QUINT on the WebQuestions and Free917 datasets, as well as a

newly introduced set of complex questions. These experiments serve two goals:

(1) to show that automatically learned templates can deliver high-quality results,

and (2) that our templates provide a natural path toward handling complex

questions.

3.6.1 Benchmark

We compare QUINT to previous work using the following benchmarks over Free-

base:

• WebQuestions (Berant et al., 2013), which consists of 3778 training ques-

tions and 2032 test questions, each paired with its answer set, collected using

the Google Suggest API and crowdsourcing.

• Free917 (Cai and Yates, 2013), which consists of 917 questions manually

annotated with their Freebase query; 641 training and 276 test questions.

For Free917, we made use of a manually crafted entity lexicon provided by

the designers of the benchmark for entity linking. All other systems in Table

3.4 used this lexicon. We used the standard train/test splits for WebQuestions

and Free917.

• ComplexQuestions. This benchmark is composed of 150 test questions

that exhibit compositionality through multiple clauses, e.g., “What river flows

through India as well as China?” Crucially, ComplexQuestions contains no

training questions: its purpose is to demonstrate that our template-based

approach, while trained only on the simpler single-clause WebQuestions, can

handle more complex questions. We constructed this benchmark using the

crawl of WikiAnswers (http://wiki.answers.com), a large, community-authored cor-

pus of natural language questions, collected by Fader et al. (2013). We asked

a human annotator to collect questions with multiple clauses and also to pro-

vide the gold standard answer set for them from Freebase. We make this

benchmark available to the community 1.

1http://qa.mpi-inf.mpg.de/complex-questions-wikianswers-150.json

 http://wiki.answers.com
http://qa.mpi-inf.mpg.de/complex-questions-wikianswers-150.json
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3.6.2 Performance Measures

We use the evaluation metric adopted by each of the benchmarks. For WebQues-

tions this is the average F1 score across all test questions. We also adopt F1 for

evaluating systems on ComplexQuestions. For Free917, the metric is accuracy,

defined as the fraction of questions answered perfectly i.e., with the exact gold

standard answer set.

3.6.3 Template Generation

We analyze our templates generated at training time. For WebQuestions, QUINT

generates q̂ queries (Sections 3.3.1, 3.3.2) for 3555 of the 3778 training questions.

For the others, either no entity candidates were identified by the NERD system

or no subgraphs connecting the identified entities were found. The ILP suc-

cessfully aligned (Section 3.3.3) 3003 of the 3555 u–q̂ pairs, resulting in 3003

(u, q,m) triples. The others could not be aligned due to lexicon misses. These

produced 1296 distinct (ut, qt,mt) templates. We use these templates to answer

test questions in WebQuestions and ComplexQuestions later on.

For Free917, QUINT generates q̂ queries for 602 of the 641 training questions.

For the others, no subgraphs connecting the identified entities were found. The

ILP successfully aligned 571 of the 602 u–q̂ pairs, resulting in 571 (u, q,m) triples.

These produced 284 distinct (ut, qt,mt) templates.

3.6.4 Results on WebQuestions and Free917

Question answering performance. Table 3.4 shows the results on the test

sets for WebQuestions and Free917 with additional entries for earlier work on

these benchmarks. QUINT uses the templates generated by our full system

described in Sections 3.3 and 3.4. QUINT-untyped uses templates where we skip

the step described in Section 3.3.2 that allows the capturing of answer types.

On WebQuestions, QUINT outperforms existing approaches, while performing

slightly below the system of Yih et al. (2015). However, the difference in F1 scores

between our results and that of Yih et al. is not statistically significant using

a two-sided paired t-test at 95% confidence level. Recent work has looked at a

different setup combining KBs with additional textual resources for answering

questions. For example, Xu et al. (2016b) and Savenkov and Agichtein (2016) use

Wikipedia and Web search results combined with community question answering

data, respectively. These systems achieve slightly higher F1 scores than our

system with these resources (53.3 and 52.2, respectively), but the performance
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WebQuestions Free917

Method Average F1 Accuracy

Cai and Yates (2013) - 59.0

Berant et al. (2013) 35.7 62.0

Kwiatkowski et al. (2013) - 68.0

Yao and Durme (2014) 33.0 -

Berant and Liang (2014) 39.9 68.6

Bao et al. (2014) 37.5 -

Bordes et al. (2014) 39.2 -

Yao (2015) 44.3 -

Dong et al. (2015) 40.8 -

Bast and Haussmann (2015) 49.4 76.4

Liang and Potts (2015) 49.7 -

Yih et al. (2015) 52.5 -

Reddy et al. (2016) 50.3 78.0

This Work

QUINT-untyped 50.8 78.6

QUINT 51.0 72.8

Table 3.4: Results on the WebQuestions and Free917 test sets.

drops without these (47.1 and 49.4, respectively). QUINT uses entity-annotated

text corpora for creating lexicons offline, but following the original benchmark

setup, does not invoke any other resources at answering time.

On Free917, QUINT-untyped outperforms all other methods and obtains the

best result to date. Interestingly, QUINT-untyped outperforms QUINT on this

benchmark. We comment on this below.

Templates as named entity recognizers. In the above experiment, we

used our templates for named entity recognition, and relied on the S-MART

NERD system for generating the top entity candidates for each recognized entity

mention, with the final entity resolution being done by our ranking stage. On

average, S-MART generated 2 entity candidates per mention. We tried fully

relying on S-MART, by adopting its NER annotations as well. In this case, we

restricted matches to those templates compatible with S-MART’s annotations

(i.e., their ent annotations agree with the entity annotations produced by S-

MART). In this case, our F1 score drops to 49.0 as the number of questions with
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no matching templates increases. This shows the value of our templates as entity

recognizers in questions.

Effect of answer typing. In our experiments, answer typing had a positive

impact on the results for WebQuestions, and a negative one on Free917. In

both cases, this shows the importance of typing. For Free917, a large portion

of the test questions ask for literals such as dates or monetary values. However,

our type system does not capture these in a fine grained manner, limiting our

ability to distinguish between, say monetary values and sizes. This is something

to explore in future work. For WebQuestions, our type system comprehensively

covers those types used by the entities, so we see a positive impact, which is in

line with previous work (Walker et al., 2015).

Table 3.5 shows answers produced by QUINT for four sample questions. In the

first and second questions, QUINT (typed) was able to restrict the answer set to

only college/high school respectively where the QUINT-untyped failed. In the

third question, the gold answer does not conform with answer type constraint in

the question (“city”). Therefore, QUINT (typed) produced only the city as final

answer, however, QUINT-untyped produced the correct answer. For the fourth

question, typing the answer entity does not add value since both the answer

type (HumanLanguage) as well as the type of the object of the KB predicate

(languageSpoken) agree. The type signature for this KB predicate is Country

and HumanLanguage for the subject and the object, respectively.

3.6.5 Results on ComplexQuestions

Results on ComplexQuestions reveal the full potential of QUINT. For prior works

to fully answer ComplexQuestions they would need to have their manually cre-

ated templates manually extended: a cumbersome task that quickly blows up.

In contrast, QUINT trains on the structurally simple training subset of We-

bQuestions, which does not capture the full complexity of ComplexQuestions. It

exploits language compositionality to automatically decompose complex question

utterances to their constituent clauses and form simpler “sub-questions” which

it answers individually before combining their answers to answer the complete

question (Section 3.5).

Table 3.6 shows the results on ComplexQuestions achieved by QUINT and

the system of Bast and Haussmann (2015) (AQQU), the best publicly avail-

able system on WebQuestions (Table 3.4). It is important to keep in mind that

AQQU is not designed to handle ComplexQuestions. To guarantee a fair com-

parison, we ran two variants of this system; AQQU is the officially published
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Question “what college did john stockton go to?”

Gold Gonzaga University

QUINT (typed) Gonzaga University

QUINT (untyped) Gonzaga Prep. School, Gonzaga University

Question “where did aaron rodgers go to high school?”

Gold Pleasant Valley High School

QUINT (typed) Pleasant Valley High School

QUINT (untyped) Butte College, UC Berkeley, Pleasant Valley High School

Question “what city is acadia university in?”

Gold Canada, Nova Scotia, Wolfville

QUINT (typed) Wolfville

QUINT (untyped) Canada, Nova Scotia, Wolfville

Question “what language does cuba speak?”

Gold Spanish Language

QUINT (typed) Spanish Language

QUINT (untyped) Spanish Language

Table 3.5: Anecdotal results from WebQuestions for both variants of QUINT:

typed and untyped.

system and AQQU++ where we i) manually decompose each complex question

into its constituent sub-questions, ii) answer each sub-question using Bast and

Haussmann-basic, and iii) run our stitching mechanism on the answer sets of

sub-questions to answer the complete question.

QUINT achieves an F1 of 49.2, outperforming the other two systems. The

difference between QUINT and AQQU++ comes from the difference between

the two systems already observed in Table 3.4. In both cases, this shows the

effectiveness of our procedure for handling complex question detailed in Section

3.5. When looking at the results of AQQU, we see that this system is capturing

one sub-question at most, to the detriment of its precision. For the first sample

complex question shown in Table 3.7, AQQU captured only one sub-question

(movie starred Woody Harrelson) leading to low precision, while QUINT cor-

rectly answered it. For the second question, capturing one sub-question is suf-

ficient. QUINT failed on the third question since it could not stitch the answer

sets for the sub-questions. It was able to generate the correct query for the first
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Method Average F1

AQQU 27.8

AQQU++ 46.7

QUINT 49.2

Table 3.6: Results on ComplexQuestions.

sub-question (“everton”) but not for the second (“leeds”). AQQU could not rank

the correct query for the first sub-question (the only one it could capture) on

top.

3.6.6 Discussion

A detailed analysis of the results on the WebQuestions test set reveals that of the

2032 test questions, 3 could not be matched to any of our templates. Another 33

test questions were matched to a template, but no query candidates were gener-

ated. The first cause of this issue is the incompleteness of our predicate lexicon,

resulting in empty lookups. This suggests that we can benefit from extend-

ing our lexicon construction scheme. The second cause is incorrect dependency

parse trees and POS tag annotations. For example, for “what influenced william

shakespeare to start writing?”, the verb ‘influenced ’ was tagged as a noun, and

therefore the question was mapped to templates which could not generate any

suitable query. Methodological progress on mainstream parsing and POS tagging

would positively affect our system.

For 260 test questions, some query candidates were generated, but none of

them returned any correct answers. We identified mistakes made by the NERD

system, missing entries in our lexicon L as well as wrong gold standard as the

causes. This meant that QUINT could not generate the right query as input to

the ranking stage to begin with. Another important cause for this issue is the lack

of any appropriate templates for some questions. For example, for the utterance

“what countries are located near egypt?”, none of the utterance templates that

match this question are paired with the appropriate query template. In this case,

we need a query template that connects Egypt to adjoining countries through a

CVT node.

This leaves 1736 test questions for which QUINT generates at least one can-

didate query that returns at least one correct answer. It is also interesting to

establish an upper bound on our performance with the above issues. For this,

we created an oracle ranker that returns the generated query with the highest
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Question “which movie starred woody harrelson and wesley snipes?”

Gold White Men Can’t Jump, Wildcats, Money Train

QUINT White Men Can’t Jump, Wildcats, Money Train

AQQU White Men Can’t Jump, Wildcats,

Rampart, Cheers, Money Train, ...

Question “what movie included characters named louis tully and

dr peter venkman?”

Gold Ghostbusters

QUINT Ghostbusters

AQQU Ghostbusters

Question “which players have played for everton and leeds?”

Gold Ross Barkley

QUINT -

AQQU Goodison Park

Table 3.7: Sample ComplexQuestions for both QUINT and AQQU (Bast and

Haussmann, 2015).

F1 for each question. The result was an F1 of 70.0, which means that further

improvement to our ranking scheme is possible.

On Free917, a detailed analysis reveals that of the 276 test questions, 3 could

not be matched to any of our templates. Another 31 test questions were matched

to a template, but no query candidates were generated. For 13 questions, some

query candidates were generated, but none of them returned any correct answer.

This leaves 229 test questions for which QUINT generates at least one candidate

query that returns at least one correct answer.

On ComplexQuestions, we could answer 81 of 150. The remaining 69 ques-

tions were not answered because either one of the sub-questions did not have its

correct query in the top-ranked ones, or our templates failed to capture some

sub-questions.



4 Never-Ending Learning for

Open-Domain Question

Answering over Knowledge Bases

4.1 Introduction

Open-domain question answering over knowledge bases (KB-QA) is an active

research area where the goal is to provide crisp answers to natural language

questions (Abujabal et al., 2017; Bast and Haussmann, 2015; Berant et al., 2013;

Fader et al., 2014; Savenkov and Agichtein, 2016; Yahya et al., 2013, 2016; Yin

et al., 2015) or telegraphic queries (Sawant and Chakrabarti, 2013; Joshi et al.,

2014). An important direction in KB-QA performs this answering via semantic

parsing: translating a user’s question to a SPARQL query that is subsequently

executed over a KB like Freebase (Bollacker et al., 2008), DBPedia (Auer et al.,

2007) or YAGO (Suchanek et al., 2007). Existing approaches rely on a clear

separation between an offline training phase, where a model is either learned or

manually crafted, and an online phase where this model is deployed to answer

users’ questions. Such approaches suffer from three major shortcomings: (i)

they require access to reasonably large training sets with sufficient syntactic

and lexical coverage representative of the kinds of questions users pose, which

are expensive to construct, (ii) they provide no mechanism for improving their

performance over time by learning from failure cases on questions received after

deployment, and (iii) they are limited to the language learned at training time,

therefore, they fail on questions from domains not observed previously.

In this work, we present a continuous-learning framework for template-based

KB-QA called NEQA (N ever Ending QA) that (i) is initialized with a small

training set, (ii) improves its performance over time by judiciously invoking user

feedback on answers from non-expert users on the failure cases of the underly-

ing template-based answering mechanism, and (iii) adapts to the language used

after deployment by periodically retraining its underlying models. A simplified

workflow is shown in Figure 4.1.

41
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New question: unew

Template-based
Answering

Similarity-based 
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{ut1, qt1}
 {ut2, qt2}

…
{utn, qtn} 

 

{utnew, qt2}

Generalize

Figure 4.1: Continuous learning: if a new question unew cannot be satisfactorily

answered via templates, we utilize user feedback on the output of a

semantic similarity function to learn a new template (utnew, qt) based

on unew.

Training a well-performing open-domain KB-QA system requires a massive

annotation effort, in terms of cost, time and expertise. Some methods use la-

beled SPARQL queries (Cai and Yates, 2013), while others train their systems

on question/answer pairs as a form of weak supervision (Bast and Haussmann,

2015; Berant et al., 2013), which has been proven to work well. We adopt this

form of supervision, however, for only a small training seed to minimize the an-

notation effort required. We rely on non-expert user feedback to acquire more

question/answer pairs over time. In our experiments, we show that NEQA was

able to successfully answer questions from domains it has not seen before.

We harness non-expert user feedback on answer sets generated as a response

to a given question, which is related to a number of recent ideas in semantic

parsing and natural language interfaces to databases (NLIDB). Li and Jagadish

(2014) invoke user feedback to resolve ambiguous words/phrases in the users’

questions, while Iyer et al. (2017) ask expert users to provide a full SQL query

that answers a question over a database. In Wang et al. (2016), an end user

teaches the model new concepts through direct interaction. Other approaches
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utilize crowdsourcing as a sort of interactivity (Wang et al., 2015; Werling et al.,

2015).

NEQA builds on an established line of work that performs semantic parsing by

translating syntactic dependency structures of utterances to semantic predicate-

argument structures using templates that are either manually crafted (Fader

et al., 2013, 2014; Reddy et al., 2016; Unger et al., 2012; Yahya et al., 2013),

or automatically learned (Abujabal et al., 2017). By exploiting syntax, such

template-based approaches achieve better generalization (Bender et al., 2015).

As an example, such systems can use a template generated from u1 = “which film

awards was bill carraro nominated for?” to answer the syntactically isomorphic

question “which president was lincoln succeeded by?”, despite the fact that it

invokes a different semantic KB predicate.

The main drawback of such systems is their inability to handle new syntactic

structures beyond those observed in the static training set. Take, for example,

a new question unew =“what are the film award nominations that bill carraro

received?”. Even if the above systems had seen u1 during training, they cannot

answer this new semantically related (but syntactically different) question. This

problem is exacerbated if these systems are trained on a small number of training

examples. NEQA rectifies this limitation by using a state-of-art similarity func-

tion (Zhang et al., 2016) to find a correctly answered and semantically-similar

question from its history, and subsequently learns a new template based on the

new question.

4.1.1 Overview

NEQA is driven by two intuitions. First, syntactic isomorphism of questions is a

strong cue for the isomorphism of their respective predicate-argument structures

(SPARQL queries). This intuition underlies template-based approaches outlined

above. Second, where syntactic isomorphism fails, NEQA invokes a semantic

similarity function together with user feedback to transfer semantics across syn-

tactic structures and triggers the learning of new templates. NEQA combines

these intuitions into a continuous learning framework that gradually overcomes

the limitations of small training sets and evolves over time.

NEQA starts by automatically learning a few templates from a small number

of questions offline, using our approach outlined in Section 3.3. Figure 4.1 shows

what happens when NEQA receives a new question unew online. It adds sat-

isfactorily answered questions to an ever-growing bank of question-query (u, q)

pairs, initially composed of a small training set. Questions in this bank will be

called upon when our template-based answering mechanism fails to satisfactorily
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answer a new question. In such cases, NEQA learns new syntactic structures to

improve its future answering performance.

When unew is unsatisfactorily answered using our template-based answering

mechanism, NEQA triggers the learning of a new template from this question.

It first consults a semantic similarity function to find the k previously answered

questions closest to unew. NEQA then instantiates the corresponding queries

with entities from unew. Leveraging user feedback on answer sets generated by

executing these queries over the KB, one of the resulting queries (q2 in Figure 4.1)

is determined to be the best fit for unew. NEQA then uses a lexicon and an Integer

Linear Program to align the constituents of unew and q2. A new template (utnew,

qt2) is created from this pair, which is then added to the template bank.

Question and Query Templates

Templates play an important role in KB-QA (Abujabal et al., 2017; Fader

et al., 2014; Reddy et al., 2016; Unger et al., 2012). They guide the mapping

of the syntactic structures of natural language utterances to semantic predicate-

argument structures in SPARQL queries. Figure 4.3 shows an example template.

It consists of a question template ut and its corresponding query template qt,

where ut and qt are derived from generalizations over the dependency parse and

the query, respectively. Alignment of the constituents of ut and qt is indicated

by shared ent, pred, and class annotations.

Generating templates. We follow our approach outlined in Section 3.3 (Abu-

jabal et al., 2017)) for learning templates. The approach is designed for a weakly

supervised setting where a training instance is a question u paired with its an-

swer set Au (Berant et al., 2013). NEQA uses this form of supervision for the

initial training phase. The approach heuristically generates a query q that cap-

tures each training question u from the corresponding training pair (u,Au). For

u =“Which film awards was Bill Carraro nominated for?”, the corresponding

query would be q = BillCarraro nominatedFor ?x . ?x type movieAward. We now

have a question query pair (u, q). The rest of the discussion explains how a tem-

plate is generated from such a pair. This process is invoked in NEQA both as

part of initial training (where we start with (u,Au) pairs), and during continu-

ous learning, where NEQA generalizes a (u, q) pair resulting from the similarity

function and user feedback to a template (Figure 4.1).

Next, nodes in the dependency parse of u are aligned with semantic items in

q. A dependency parse is a tree whose nodes correspond to words in a sentence

and edges represent grammatical relations between words. We use the Stan-

ford dependency parser (Chen and Manning, 2014) in this work. For example,
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‘film awards ’ in u above is aligned with the KB class movieAward in the corre-

sponding q. A weighted lexicon L (Section 2.2) is used to connect phrases in u

to all candidate semantic items in q, forming a weighted bipartite graph. The

alignment problem is formulated as a constrained optimization problem solved

using an Integer Linear Program (ILP) 3.3.3. The solution to the ILP is a role-

aligned question-query pair (Figure 4.2) where phrases in u that are not part

of the alignment are dropped (e.g., ‘Which’). Finally, concrete values in both u

and q are dropped to produce a role-aligned question-query template pair (ut, qt)

(Figure 4.3).

Using templates. During answering, when a new question unew is encoun-

tered, question templates matching its dependency parse are identified (see Sec-

tion 4.3.2). Corresponding query templates are then instantiated using align-

ment information and the lexicon (Section 2.2). This step potentially generates

multiple query candidates due to lexicon ambiguity, which are ranked using a

learning-to-rank (LTR) model (Section 3.4.2). Finally, the answer of the top-

ranked query is presented to the user.

This work presents NEQA, the first continuous learning framework for KB-QA,

and make four novel contributions:

• a KB-QA system that can be seeded with a small number of training examples

and supports continuous learning to improve its answering performance over

time;

• a similarity function-based answering mechanism that enables NEQA to an-

swer questions with previously-unseen syntactic structures, thereby extending

its coverage;

• a user feedback component that judiciously asks non-expert users to select

satisfactory answers, thus closing the loop between users and the system and

enabling continuous learning;

• extensive experimental results on two benchmarks demonstrating the viability

of our continuous learning approach, and the ability to answer questions from

previously-unseen domains.

4.2 Related Work

Question answering. KB-QA has seen broad interest in recent years with the

wide availability and rapid growth of KBs and voice-based interaction with de-

vices (e.g., Alexa, Cortana). We adopt a template-based approach for mapping

syntactic structures to semantic predicate-argument structures (Reddy et al.,
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2016; Unger et al., 2012; Yahya et al., 2013; Zheng et al., 2015; Zou et al., 2014).

Another way of exploiting syntax is to use grammatical formalisms that derive

syntax and semantics in tandem, most prominent among these being CCGs (Cai

and Yates, 2013; Kwiatkowski et al., 2013). Some techniques disregard syntax

altogether, and rely on combinatorial over-generation of queries followed by a

ranking of such candidate queries (Bast and Haussmann, 2015; Berant et al.,

2013; Yih et al., 2015; Yao and Durme, 2014). Finally, with the recent pop-

ularity of deep learning, some methods use large amounts of training data to

learn a function for embedding questions and answer entities in a shared latent

space (Bordes et al., 2015; Yang et al., 2014). We opted to base NEQA on the

systems that use syntax as they achieve better generalization (Bender et al.,

2015), allowing the transfer of semantics between syntactic structures. We rely

on dependency parsing for capturing syntax to exploit the rapid progress on this

task (Chen and Manning, 2014). In contrast to all the above, our system uses

continuous learning that allows starting from small training sets and improving

over time.

The framing of the QA task depends on the type of the underlying data and

associated annotations. An important QA setting is answering over textual cor-

pora. One way to approach this is using traditional IR methods to retrieve rele-

vant documents and extract passages or phrases that answer the question (Du-

mais et al., 2002; Harabagiu et al., 2000; Brill et al., 2002; Ribarov, 2004). An-

other way has been to use OpenIE to turn such corpora into open-vocabulary

knowledge bases and answer over these (Fader et al., 2013, 2014; Krishnamurthy

and Mitchell, 2015). Finally, in a setting where both textual and structured

data are used, hybrid approaches have been explored for QA (Sun et al., 2015;

Xu et al., 2016a; Savenkov and Agichtein, 2016; Xu et al., 2016b; Yahya et al.,

2016).

In entity search (Balog et al., 2011; Dalton et al., 2014; Blanco et al., 2011;

Joshi et al., 2014; Tran et al., 2007; Sawant and Chakrabarti, 2013), the user

searches for a list of entities using keyword-based queries (e.g., ‘dutch artists

paris ’). The underlying corpus for retrieval may be Wikipedia pages (Balog et al.,

2011), documents with Freebase annotations (Sawant and Chakrabarti, 2013),

or general RDF-stores (Blanco et al., 2011). Techniques vary from probabilistic

language models (Blanco et al., 2011), query segmentation (Joshi et al., 2014),

to category models for entities (Balog et al., 2011; Tran et al., 2007).

Continuous learning and user feedback. Our work draws inspiration

from the never-ending learning paradigm (Mitchell et al., 2015) and its use case

NELL (Never-Ending Language Learning) in machine reading (Carlson et al.,
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2010). NEQA also leans on the principle of online learning (Kivinen et al.,

2004) where incoming questions are fed into the system in a sequential order,

thus improving the system’s performance over time.

User feedback has always been vital for IR systems: be it solely for evaluation

as relevance judgments in the early days (Voorhees, 2001), or in more implicit

forms like clicks (Joachims, 2002) and reformulations (Radlinski and Joachims,

2005) for improving personalized ranking models (Agichtein et al., 2006a,b; Ben-

dersky et al., 2017) and automatically completing queries (Li et al., 2017b). User

interactions play a key role in closing the loop in a continuous learning frame-

work, where they improve the system iteratively. In the NELL system (Mitchell

et al., 2015), feedback is incorporated as periodic expert judgment on extracted

beliefs. Recently, user feedback was leveraged on graph queries, and evaluated

with simulated judgments (Su et al., 2015). User feedback has been leveraged in

natural language interfaces to databases (NLIDB), where Li and Jagadish (2014)

invoke user feedback to resolve ambiguous words/phrases in the users’ questions,

while Iyer et al. (2017) ask expert users to provide a full SQL query that answers

a question over a database.

Question retrieval. NEQA relies on question retrieval to drive continuous

learning when templates fail, where it looks for previously answered questions

most similar to the current one. This is a central task in community question

answering (CQA) (Jeon et al., 2005; Chen et al., 2016; Zhang et al., 2016; Zhou

et al., 2015; Wang et al., 2009; Zhang et al., 2014), where the goal is to answer

a user’s question by presenting answers to similar questions that have already

been answered. Various methods have been proposed, including those that use

syntactic parse trees (Wang et al., 2009) and language models (Zhang et al.,

2016). Our method takes inspiration from the latter work.

Notions of similarity have been leveraged in KB-QA systems based on para-

phrasing. Berant and Liang (2014) use a supervised paraphrasing model that

finds the logical form whose machine-generated verbalization best paraphrases

the input question. Fader et al. (2013, 2014) perform QA over an open-predicate

KB by learning a paraphrase model for rewriting a question to a set of similar

canonical question forms, each of which maps to a unique query.

4.3 The NEQA Framework

Initially, NEQA goes through an offline training stage that populates its question-

query and template banks with their seed data (Section 4.3.1). Online, when

NEQA is deployed, a stream of questions arrives from users. NEQA attempts
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Figure 4.2: An aligned question-query pair (u, q). Alignment is indicated by

shared ent, pred, and class annotations.

to answer each incoming question using the templates it has learned so far (Sec-

tion 4.3.2). If this fails, it falls back to answering using the semantic similarity

function against the set of already answered questions in the question-query bank

(Section 4.3.3). In both cases, NEQA utilizes user feedback on answer sets to

extend its banks (Section 4.3.4). After each batch of questions, NEQA retrains

its learning-to-rank (LTR) ranking model on the accumulated data in its banks

to improve system performance for subsequent questions.

4.3.1 Initial Training

NEQA is initialized through an automated template generation stage. This stage

relies on weak supervision through a small number of questions, each paired with

its answer set. This training stage results in populating the question-query and

template banks (Figure 4.1) with their seed data that are used for bootstrapping

the continuous learning process. Moreover, it results in NEQA’s first LTR model.

NEQA’s continuous learning improves all three components once the system goes

online.

Questions in the question-query bank are stored in a generalized form that

facilitates improved matching by the semantic similarity function. Specifically,

entities in both questions and queries in the question-query bank are replaced by

placeholders. For example, “Which film award was ENTITY nominated for?”

(question) is paired with ENTITY nominatedFor ?x . ?x type movieAward (query).

4.3.2 Question Answering with Templates

Once the system goes online, it starts receiving new question utterances from

users. Given a new question unew, NEQA identifies matching question templates

{ut} in its template bank. A match is deemed successful if edge labels and
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Figure 4.3: A template composed of aligned question and query templates (ut,

qt). Shared ent, pred, and class annotations indicate alignment be-

tween ut and qt.

POS tags in the dependency parse of unew and ut agree. For example, the

dependency parse of “which president was lincoln succeeded by?” matches the

utterance template in Figure 4.3. When this happens, the associated query

template qt is instantiated with concrete semantic items using the phrases in

unew, the alignment information between ut and qt, and the underlying lexicon

L. For example, based on the alignment information in Figure 4.3, the verb

phrase ‘succeeded by ’ is used to instantiate a KB predicate.

Note that a single utterance may match multiple utterance templates, and

these templates may result in multiple queries due to ambiguity in L. The

learning-to-rank (LTR) model is used to rank this set of candidate queries. Fea-

tures for training the LTR model are borrowed from past work (Abujabal et al.,

2017; Bast and Haussmann, 2015), and are derived from lexicon weights, en-

tity popularity scores, answer type constraints, and sizes of answer sets, among

others. The full list of features is depicted in Table 3.3 in Section 3.4.2. The

top-ranked queries, as detailed below, are then executed over the KB to fetch

answer sets.

Next, user feedback is obtained on these retrieved answer sets. To be realis-

tic, note that we obtain feedback on answer sets of the top-k queries where k

is small. If an answer set is chosen (e.g., {AndrewJohnson}) by the user, then

this validates the choice of the query q∗ that generated this answer set as correct

(e.g., AbrahamLincoln succeededBy ?x . ?x type president). On the other hand,

when none of the shown answer sets is chosen, NEQA proceeds differently (Sec-

tion 4.3.3). Finally, the correct query q∗ is paired with unew and is then added to

our question-query bank after entity generalization. For the example above, q∗

after entity generalization is: ENTITY succeededBy ?x . ?x type president. Such

an augmentation of the question-query bank potentially results in the system
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gaining questions with unseen KB predicates. We validate this postulate in our

experiments on open-domain answering. When a batch of questions has been

received, we use the questions answered satisfactorily by the templates to retrain

the LTR model to further boost the performance of the system on subsequent

questions.

4.3.3 Question Answering via Similarity Function

A core contribution of NEQA is to extend coverage of template-based answer-

ing using a semantic similarity function. A typical template-based KB-QA sys-

tem fails when an input utterance represents previously unseen syntactic struc-

ture (Abujabal et al., 2017; Fader et al., 2013; Unger et al., 2012; Yahya et al.,

2013). Further, even when a matching utterance template is identified, the KB-

QA system might fail to deliver answers due to errors in the alignment informa-

tion between the question and the query templates.

NEQA, on the other hand, builds on failure cases to improve its future QA

performance. Whenever a question cannot be answered satisfactorily using tem-

plates, NEQA uses a semantic similarity function to retrieve the k most seman-

tically similar questions to unew from its question-query bank. For example, say,

the utterance unew = “what are the film award nominations that bill carraro

received?” represents a syntactic structure beyond the coverage of our current

templates. However, our question-query bank contains a similar question: “which

film awards was bill carraro nominated for?”. The goal of our similarity function

is to identify such questions and allow the transfer of semantics across syntactic

structures.

We first use an off-the-shelf NERD system to link mentions of entities in unew
to KB entities (Yang and Chang, 2015). Identified entities in unew are then

replaced by placeholders to ensure better generalization. Similar generalization

is also done on (u, q) pairs in our question-query bank (Section 4.3.1). Next,

the corresponding queries {q1 . . . qk} for these similar utterances are instantiated

with entities from unew and then executed over the KB to retrieve answer sets.

Next, we obtain user feedback on the answer sets of the k queries. If an answer

set is chosen (e.g., {BlackReel}), the corresponding query q∗ (e.g., BillCarraro

nominatedFor ?x . ?x type movieAward) is paired with unew. The newly generated

pair (unew, q
∗) is then added to our question-query bank after entity generaliza-

tion. A vital step of NEQA is the subsequent on-the-fly alignment and gener-

alization of unew and q∗, to obtain a new template (ut, qt). This is performed

by casting the problem as an integer linear program (Section 3.3.3). The new

template (ut, qt) is then added to NEQA’s template bank. By acquiring more



4.3. THE NEQA FRAMEWORK 51

templates, the system’s capability to handle syntactic variation increases, i.e., it

learns how to directly answer questions with new syntactic structures.

Similarity Function

Following recent work on question retrieval in community question answer-

ing (Zhang et al., 2016), we opt for an unsupervised semantic similarity func-

tion. Note that we treat the similarity function as a plug-in, where supervised

methods can also be used if required. Our similarity function consists of two

components: (i) question likelihood based on a language model, and (ii) word

embedding-based similarity obtained through word2vec.

Given a new question unew and a question ui from our question-query bank,

our first component, based on language model, computes question likelihood as

follows:

scoreLM(unew, ui) =
∏

w∈unew

[(1− λ) · Pml(w|ui) + λ · Pml(w|C)] (4.1)

where Pml(w|ui) represents the maximum likelihood probability estimate of w

estimated from ui and w is a unigram, bigram or trigram generated directly

from unew or from paths of lengths one and two in the dependency parse of unew.

Pml(w|C) is a smoothing term calculated as the maximum likelihood of w in a

corpus C of questions from our question-query bank, and λ ∈ [0, 1] is a smoothing

parameter.

The second component uses a word2vec model pre-trained on Google News

corpora (Mikolov et al., 2013):

scorew2v(unew, ui) =
1

|P|
∑

(wj ,wk)∈P

cos(w2v(wj), w2v(wk)), (4.2)

where, wj ∈ unew, wk ∈ ui, w2v(w) is the word2vec embedding vector of w, and

P is the set of word pairs from unew and ui whose cosine similarity is above a

threshold τ .

The final score is a linear combination of the two components presented above,

where α is a trade-off parameter:

scoresim(unew, ui) = α · scoreLM(unew, ui) + (1− α) · scorew2v(unew, ui) (4.3)

4.3.4 Harnessing User Feedback

NEQA resorts to user feedback in two cases. The first is when an incoming

utterance unew is answered using templates in the template bank. In this case,
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the user is asked to give feedback on the relevance of the answer sets shown to

her by either choosing the one that satisfies her information needs or none of

them, if none is satisfactory. By propagating answer quality back to queries,

this feedback is leveraged to extend the question-query bank. The second case is

when NEQA returns answers using the semantic similarity function. The answers

obtained from the top-k previously answered questions that are most similar to

unew are shown to the user for assessment. This feedback is used to extend both

the template and the question-query banks.

In both cases above, it is important to keep k small to ensure the feasibility

of asking for user feedback. In the experiments, we show that this is the case

for our choices of LTR and semantic similarity functions. Additionally, we look

at the extreme case where k = 1 and user feedback is bypassed by making the

assumption that answers returned by our system are correct, and can be used

for continuous learning.

4.4 Experimental Evaluation

We present extensive experimental evaluation and analysis of continuous learning

in NEQA. Our experiments demonstrate NEQA’s ability to continuously improve

its answering performance over time starting with a very limited training set. We

show that the answering performance of traditional state-of-the-art QA systems

where periodic re-training is done is inferior to that of NEQA, which was designed

specifically to support continuous learning. We also show that the manner in

which NEQA exploits the interaction between syntax and semantics allows it to

support truly open-domain QA by answering questions requiring predicates it

has not seen before.

4.4.1 Benchmark

We use the following KB-QA benchmarks over Freebase to evaluate NEQA:

• WebQuestions (Berant et al., 2013): This benchmark was created using

Google’s suggest API and crowdsourcing, and is composed of 5810 questions,

each paired with its answer set. These are split into 3778 training and 2032

test instances.

• ComplexQuestions (Bao et al., 2016): This very recent benchmark focuses

on more challenging multi-constraint questions. It contains 2100 question-

answer pairs from (i) a commercial search engine, (ii) WebQuestions and,
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Property WebQuestions ComplexQuestions

Size of initial training set 300 105

Size of development set 300 300

Initial templates acquired 223 85

Table 4.1: NEQA initialization statistics.

(iii) the benchmark released by Yin et al. (2015). It is split into 1300 training

and 800 test cases.

We base our extended analyses and comparisons with baseline systems on We-

bQuestions due to the lack of publicly available KB-QA systems designed for han-

dling complex questions in ComplexQuestions. As detailed below, small subsets

of the respective training sets are used for initial training, followed by streaming

the complete test sets in batches to simulate online answering and continuous

learning.

4.4.2 Training

Table 4.1 gives a summary of the initial training stage. A main motivation for re-

sorting to continuous learning is the cost associated with obtaining a large train-

ing set upfront. To simulate small seed training sets, we randomly sample only

about 8% of the standard WebQuestions and ComplexQuestions training sets.

These seed training sets were used to initialize the (i) question-query and tem-

plate banks (Section 4.3.1), (ii) learning-to-rank (LTR) models (Section 4.3.2),

and (iii) language model component of the similarity function (Section 4.3.3).

The development sets (randomly sampled from the training set) were used to

tune the λ and α parameters of the similarity function. Crucially, NEQA is

never exposed to the full WebQuestions or ComplexQuestions training sets in

our experiments beyond the above seed examples. After initial training, NEQA

is deployed to answer incoming questions, performing continuous learning when

necessary.

Continuous learning. During answering, NEQA receives test questions from

the respective benchmark in batches. At the end of each batch, we retrain the

LTR component and re-estimate the language model with the data seen thus

far. We set our batch size to 100 questions, so that we can observe the effect

of continued learning over a larger number of batches (20 for WebQuestions, 8

for ComplexQuestions). Varying batch size did not have any significant effect on
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the observed trends.

We report system performance in two modes, which differ in their invocation

of user feedback during continuous learning:

• NEQA (with user feedback): Here, we invoke user feedback to select the

most appropriate answer set among the top-k answer sets obtained using

templates and, if none are appropriate, among the top-k obtained using the

similarity function. We use gold answer labels provided with the benchmarks

to simulate user feedback. We use k = 5 in both cases, as we find that it

provides a good balance between recall and the number of answer sets a user

needs to look at.

• NEQA-No-User-Feedback: In this configuration, we perform continuous

learning without user feedback. Instead, we take the top-ranked answer set

in either of the two lists of answer sets above to be the correct one. We

consider the list of answer sets obtained using the similarity function only if

the list obtained using templates (ranked by the LTR function) is empty. This

configuration demonstrates the quality of our template-based and similarity

function-based answering mechanisms and helps understand the gap filled by

user feedback.

Method Avg. Avg. Avg.

Precision Recall F1

QUINT (Abujabal et al., 2017) - No Feedback 25.5 30.2 25.7

QUINT (Abujabal et al., 2017) - Feedback 35.2 44.1 35.9

AQQU (Bast and Haussmann, 2015) - No Feedback 24.5 29.6 24.8

AQQU (Bast and Haussmann, 2015) - Feedback 36.3 45.2 37.6

NEQA-No-User-Feedback 36.6 45.4 37.0

NEQA 40.6 49.5 40.8

Table 4.2: Performance of continuous learning-based methods on the WebQues-

tions test set. User Feedback is used to re-train the systems after each

batch.
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Figure 4.4: Performance of NEQA with and without user feedback as a func-

tion of batch number, on the WebQuestions and ComplexQuestions

datasets.
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4.4.3 Results

Answering performance over time. Figure 4.4 shows how NEQA performs

after deployment, as it receives user questions and invokes continuous learning

where necessary. The cumulative average F1 scores in Figures 4.4a and 4.4b

show an improvement over time for both benchmarks and for both feedback

configurations. We compute the F1 score of a given batch after observing all

questions in that batch, but before updating our ranking models based on that

batch. The cumulative F1 score at batch n is the mean of these scores over

all n batches. On both benchmarks, the general trend is for the cumulative

F1 to increase as NEQA sees more questions and invokes continuous learning

as needed to learn new templates and improve its ranking model. In general,

the numbers on ComplexQuestions are lower due to its more challenging nature

stemming from multi-relation questions. We can see some fluctuation in the

initial batches for both datasets. We attribute such variations to the modest

ranking performance of the underlying LTR model during the very first iterations

due to the small number of instances it was trained on. As expected, NEQA’s F1

increases significantly when user feedback is invoked. We observe an F1 increase

of 3.8 and 2.8 points over the no-feedback configuration for WebQuestions and

ComplexQuestions, respectively.

Augmentation of banks. NEQA extends its banks with new templates

and question-query pairs over time. Figures 4.4c and 4.4d show the number of

templates learned over time. Each template captures a distinct syntactic struc-

ture and its mapping to the appropriate semantic predicate-argument structure.

Each template in the template bank corresponds to one or more question-query

pairs in the question-query bank: it was either generated from such a pair during

training or continuous learning, or was used to answer u in that pair by mapping

it to q. In general, having more correct (u, q) pairs in the question-query bank

means: (i) NEQA has learned more correct templates, and, (ii) NEQA can better

transfer these new templates to new syntactic structures with semantics similar

to that of q. Figures 4.4e and 4.4f show the numbers of correctly answered new

(u, q) pairs for WebQuestions and ComplexQuestions, respectively with the two

modes of feedback. A (u, q) pair is deemed correct if the gold answer set of u

overlaps with the answer set of q when executed over the KB. For 1393 out of

2032 test questions in WebQuestions (338 out of 800 in ComplexQuestions), user

feedback indeed yielded the ground-truth answer set.

Contrasting these figures gives interesting insights. For WebQuestions, the

number of templates obtained from user feedback is higher than that obtained

without. This is because the similarity function does a good job at surfacing
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the correct answer set to the top-k from which the user selects the correct one.

However, without feedback, the top-1 may be incorrect, in which case alignment

between the corresponding query and the question at hand fails (as opposed to

generating a spurious alignment), resulting in no templates. The question-query

bank in the configuration with feedback contains more correct (u, q) pairs, mean-

ing that we have more correct alignments (and hence less spurious templates).

When looking at ComplexQuestions, we see that the no-feedback configuration

results in more templates. The reason here is that with the complexity of the

dataset and the limitations of the similarity function, users are more likely to de-

cide that no answer set produced through the similarity function is appropriate.

In the no-feedback case, the topmost answer set from the similarity function is

always chosen, and alignments (including spurious ones) are more likely here due

to the length of the questions. Despite the large number of templates for the no-

feedback configuration, we can see that NEQA with user feedback results in more

correct (u, q) pairs (Figure 4.4f), indicating that the no-feedback configuration

has more spurious templates than the one with feedback, as expected.
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Figure 4.5: Performance of AQQU (Bast and Haussmann, 2015), QUINT (Abuja-

bal et al., 2017) and NEQA over the 20 batches of the WebQuestions

test set.

Comparison with state-of-the-art. An intuitive baseline for evaluating

continuous learning in NEQA is to extend existing static-learning based meth-

ods to our setting of continuous learning through user feedback and periodic

retraining. Concretely, we trained both QUINT (Abujabal et al., 2017), and

AQQU (Bast and Haussmann, 2015) on the same initial training seed as NEQA

(300 question-answer pairs for WebQuestions). Then, we streamed the 2032 test

questions in batches of size 100, where user feedback is harnessed on the top-5

answer sets generated by the two systems. After each batch, the baseline sys-
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tems were re-trained using the initial seed plus those questions from the batches

seen thus far. Additionally, similar to NEQA-No-User-Feedback configuration,

we performed continuous learning without user feedback for the two baselines.

Aggregate results over the WebQuestions test questions are shown in Table 4.2,

where NEQA outperformed both QUINT and AQQU in the two modes of op-

eration (with and without user feedback). To gain more insights, the per-batch

cumulative average F1 for the three systems in both configurations is depicted in

Figures 4.5a and 4.5b. NEQA starts off with a high F1 score (36.5) in batch one,

compared to AQQU and QUINT with F1 scores of 20.0 and 25.5, respectively.

This is due to two reasons: (i) NEQA learns templates online and adds them

directly to the template bank, while QUINT, for example, learns new templates

after each batch and (ii) when a question has no matching templates, our sim-

ilarity function is invoked and might be able to correctly answer the question

at hand, and hence, positively affects the performance. AQQU disregards the

syntax of questions and relies on three query templates with exhaustive instan-

tiation. This makes the underlying ranking module of AQQU very crucial to the

overall performance, which explains the low values for the very first batches (the

ranking module was trained on a relatively small number of training instances).

When user feedback is bypassed, the performance of the baselines deteriorates,

as shown in Figure 4.5b, where the two baselines were not able to improve their

performance over time. On the other hand, NEQA showed improvement in per-

formance over time. We attribute this to our unsupervised similarity function,

which is used to answer questions when the template-based answering mechanism

fails and subsequently trigger the learning of new templates with new syntactic

structures. The similarity function plays a vital role in distinguishing our system,

built with continuous learning in mind, from systems where continuous learning

is achieved through simple periodic retraining.

For completeness, we also show results for NEQA when used as a traditional

static-learning based QA system, with distinct training and testing phases and

with continuous learning disabled. Table 4.3 shows the results for NEQA and

baseline systems on the WebQuestions test set after training each on the full

WebQuestions training set. The results show that NEQA achieves competitive

results, with no significant differences from the best system, but with the added

advantage of being able to perform continuous learning when limited training

data is available. As described in Sections 4.1.1 and 4.3, NEQA is a continuous-

learning extension of Abujabal et al. Abujabal et al. (2017), hence when used in

the classical QA setup it obtains the same results as that work.

Open-domain question answering. NEQA exploits the interaction be-
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Method Avg. Precision Avg. Recall Avg. F1

Berant et al. (2013) 48.0 41.3 35.7

Yao and Durme (2014) - - 33.0

Bordes et al. (2014) - - 39.2

Yao (2015) - - 44.3

Bast and Haussmann (2015) 49.8 60.4 49.4

Yin et al. (2015) 52.8 60.7 52.5

Reddy et al. (2016) - - 50.3

Savenkov and Agichtein (2016) (w/o text) 49.8 60.4 49.4

Xu et al. (2016b) (w/o text) - - 47.1

Abujabal et al. (2017) 52.1 60.3 51.0

NEQA 52.1 60.3 51.0

Table 4.3: Performance of state-of-the-art static learning-based methods on the

WebQuestions test set.

tween syntax and semantics to perform continuous learning on questions com-

ing while the system is deployed. This interaction allows NEQA to perform

truly open-domain question answering, where it answers questions that require

previously-unseen semantic predicates. To test how well NEQA performs on

this task, we restrict the test questions from WebQuestions to 693 questions

whose corresponding query contains predicates from the following three domains:

sports, government and people. Note that the domain information is encoded

in the names of Freebase predicates (e.g., sports.sports team.championships),

allowing us to systematically make this restriction. We then removed the 56 ques-

tions with queries containing predicates from the above domains from the seed

training set used for NEQA (resulting in 300 − 56 = 244 new seed training ex-

amples). To provide a baseline, we used the best publicly available traditional

KB-QA system of Bast and Haussmann (2015) as a baseline. We train this sys-

tem on the standard WebQuestions training set with the 1315 questions from the

three domains above excluded (a total of 3778− 1315 = 2463 training samples).

NEQA achieved an F1 score of 50.3 and 41.5 with and without user feed-

back, respectively, on the above test set. The system of Bast and Haussmann

(2015), AQQU, had an F1 score of 20.3. The exhaustive instantiation of the three

query templates with all possible KB predicates explains the F1 score achieved

by AQQU. This experiment shows that NEQA, in both modes of feedback, an-

swered questions from domains it had never seen during the initial training with

a high F1 on par with the results obtained without filtering the seed training set.

We attribute these gains to a combination of (i) using templates that account
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for syntax and using lexicons for instantiating predicate-argument queries as a

foundation for NEQA, (ii) re-training the underlying models using test questions

which helps NEQA to adapt to the terminology of the new domain, and (ii) the

extension of these methods to allow for continuous learning to account for new

syntactic structures.

4.4.4 Discussion

Impact of templates and similarity function. We studied the two branches

of NEQA individually: answering with templates, and via the similarity func-

tion when the basic answering with templates fails and continuous learning is

triggered. Note that we cannot completely decouple both branches since the

similarity function feeds our template-based answering with new templates over

time, resulting in better coverage and performance. On WebQuestions, with user

feedback, 1184 questions were answered with templates, while 848 were answered

via the similarity function. For the no-feedback configuration, 1788 out of 2032

were handled by the learned templates, and the similarity function answered

244 questions. The contrast between 1184 and 1788 shows cases where feedback

helped weed out erroneous answers obtained through templates.

There are various possible failure cases in our pipeline. During the very first

batches, the LTR model had a modest ranking performance due to the small num-

ber of examples used to train it. However, as more questions were observed, the

ranking performance of the LTR model improved substantially, especially when

user feedback was harnessed. The impact of this was either incorrect answering,

triggering continuous learning, or, once continuous learning was triggered, no

answer sets in the top-k being correct, triggering answering via the similarity

function. In some cases, none of the generated queries that were fed to the LTR

model was correct to start with. This is explained either by the lack of appropri-

ate templates, especially in early batches, or the incompleteness of the underlying

lexicons used to instantiate our templates with concrete SPARQL queries. As

future work, we plan to add textual resources to build better lexicons. In other

cases, the NERD system failed to link mentions to the correct KB entities.

For some questions, our similarity function failed to retrieve semantically simi-

lar questions from our question-query bank. In some of these cases, our bank did

not contain any question that is semantically similar to the question at hand. In

other cases, although a correct similar question was retrieved, no new template

was generated. Again, this is explained by deficiencies in our lexicons, or the

NERD system we use.
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Components NEQA NEQA-No-User-Feedback

Both 40.8 37.0

Only LM 38.3 35.1

Only word2vec 35.0 33.4

Table 4.4: F1 scores for a component ablation analysis of our similarity function.

“what is the name of the currency used in italy?”

“what is the head judge of the supreme court called?”

“where did the battle of waterloo occur?”

Table 4.5: Sample questions correctly answered via templates learned online.

Similarity function ablation study. Our similarity function consists of

two components: (i) a language model (LM), and (ii) word2vec similarity. We

conducted an ablation study to measure the effect of each component on the

overall performance of the system. F1-scores are shown in Table 4.4. The highest

F1 score is achieved when the two components are used. While the LM plays

the most vital role, the word2vec component also contributes significantly to the

final performance.

Anecdotal results. Table 4.5 shows sample test questions from the We-

bQuestions that were correctly answered using templates learned online. These

questions represent new syntactic structures that NEQA learned online. Ta-

ble 4.6 shows questions that were correctly answered using our similarity func-

tion together with the top-1 most similar question retrieved by the similarity

function. For every pair of questions in this table, note the differing syntactic

structures conveying similar semantics, e.g., ‘what is the currency ’ and ‘what

kind of money ’.
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Question: “what is the currency in [italy?]”

Most similar: “what kind of money is used in [israel]?”

Question: “what films has [scarlett johansson] been in?”

Most similar: “what movies did [zoe saldana] play in?”

Question: “what was [sir isaac newton]’s inventions?”

Most similar: “what inventions did [robert hooke] made?”

Table 4.6: Sample questions correctly answered using the similar questions re-

trieved from the question-query bank. Entities are generalized using

[. . .] placeholders.



5 Temporal Question Answering

over Knowledge Bases

5.1 Introduction

Question answering over knowledge bases (KB-QA) aims to answer natural lan-

guage questions over large knowledge bases (e.g., DBpedia, Wikidata, Yago,

Freebase etc.) or other structured data. KB-QA systems take as input questions

such as:

Q1: “Which teams did Neymar play for?”

and translate them into structured queries, in a relational language like SPARQL,

and execute the queries to retrieve crisp answers from the KB. In doing so, KB-

QA methods need to address the vocabulary mismatch between phrases in the

input question and entities, classes and predicates in the KB: mapping ‘Ney-

mar ’ to the uniquely identified entity, ‘teams ’ to the KB type footballClub

and ‘played for ’ to the KB predicate memberOf. State-of-the-art KB-QA (see

surveys (Diefenbach et al., 2018; Moschitti et al., 2017)) can handle simple ques-

tions like the above example very well, but struggle with complex questions that

involve multiple conditions on different entities and need to join the results from

corresponding sub-questions. For example, the question:

Q2: “After whom did Neymar’s sister choose her last name?”

would require a three-way join that connects Neymar, his sister Rafaella Beckran,

and David Beckham.

An important case of complex questions are temporal information needs. Search

often comes with explicit or implicit conditions about time (Metzler et al., 2009).

Consider the two examples:

Q3: “Which teams did Neymar play for before joining PSG?”

Q4: “Under which coaches did Neymar play in Barcelona?”

In Q3, no explicit date (e.g., August 2017) is mentioned, so a challenge is to detect

its temporal nature. The phrase ‘joining PSG ’ refers to an event (Neymar’s

transfer to that team). We could detect this, but have to properly disambiguate

it to a normalized date. The temporal preposition ‘before’ is a strong cue as well,

63
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but words like ‘before’, ‘after ’, etc. are also used in non-temporal contexts; Q2 is

an example for this. Q4 does not seem to be time-dependent at all, when looking

at its surface form. However, it is crucial for correct answers that only coaches

are selected whose job periods at FC Barcelona overlap with that of Neymar.

Here, detecting the temporal nature is a big challenge. A second challenge is how

to decompose such questions and ensure that the execution contains an overlap

test for the respective time periods.

The key idea of this work is to judiciously decompose such temporal questions

and rewrite the resulting sub-questions so that they can be separately evaluated

by a standard KB-QA system. The answers for the full questions are then com-

puted by combining and reasoning on the sub-question results. For example, Q3

should be decomposed and rewritten into

Q3.1: “Which teams did Neymar play for?” and

Q3.2: “When did Neymar join PSG?”.

For the results of Q3.1, we could then retrieve time scopes from the KB, and

compare them with the date returned by Q3.2, using a BEFORE operator. Anal-

ogously, Q4 would require an OVERLAP comparison as a final step. With the

exception of the work by Bao et al. (2016), to which we experimentally com-

pare our method, we are not aware of any KB-QA system for such composite

questions.

Our solution, called TEQUILA, is built on a rule-based framework that en-

compasses four stages of processing: (i) detecting temporal questions, (ii) decom-

posing questions and rewriting sub-questions, (iii) retrieving candidate answers

for sub-questions, and (iv) temporal reasoning to combine and reconcile the re-

sults of the previous stage into final answers. For stage (iii), we leverage existing

KB-QA systems that are geared for answering simple questions. In experiments,

we use AQQU (Bast and Haussmann, 2015) and QUINT (Abujabal et al., 2017),

but TEQUILA allows plugging in any other KB-QA engine.

The quality of QA is usually evaluated by benchmarks. As a first step to-

wards addressing the challenge of handling temporal questions, we offer a new

benchmark set of temporal questions. The questions are chosen such that many

of them require a combination of evaluating sub-questions and reasoning over

sub-results (results of the sub-questions).

There already exists a variety of QA benchmarks. For KB-QA, the Free917 (Cai

and Yates, 2013) and WebQuestions (Berant et al., 2013) collections are the most

popular. Both are vastly dominated by simple questions and do not exercise a

system’s capability to decompose and process complex questions. The QALD

series of evaluation tasks (Usbeck et al., 2017) includes both simple and complex
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questions. However, the number of questions per year is relatively small (50−250

questions). The ComplexQuestions collection of Bao et al. (2016) contains var-

ious types of complex questions: however, temporal questions present only a

small fraction. For text-oriented QA, the TREC (Voorhees, 2010; Agichtein

et al., 2015) and CLEF (Peñas et al., 2015) conference series offer a wealth of

benchmark questions, but there is no design consideration on harnessing struc-

tured data at all.

In this work we propose a benchmark, called TempQuestions, consists of 1,271

temporal questions with gold-standard answers over Freebase. This collection

is derived by judiciously selecting time-related questions from the Free917, We-

bQuestions and ComplexQuestions sets, with additional curation and tagging of

temporal cues.

5.2 Related Work

Question answering. QA has a long tradition in IR and NLP, including bench-

marking tasks in TREC, CLEF and SemEval. This has predominantly focused

on retrieving answers from textual sources. The recent TREC CAR (complex

answer retrieval) resource (Dietz and Gamari, 2017), explores multi-faceted pas-

sage answers, but information needs are still simple. In IBM Watson (Ferrucci,

2012), structured data played a role, but text was the main source for answers.

Question decomposition was leveraged, for example, in (Ferrucci, 2012; Saquete

et al., 2009; Yin et al., 2015) for QA over text. However, re-composition and

reasoning over answers work very differently for textual sources (Saquete et al.,

2009), and are not directly applicable for KB-QA. Compositional semantics of

natural-language sentences has been addressed by Liang et al. (2011) from a gen-

eral linguistic perspective. Although applicable to QA, existing systems support

only specific cases of composite questions.

KB-QA is a more recent trend, starting with (Berant et al., 2013; Cai and

Yates, 2013; Fader et al., 2014; Unger et al., 2012; Yahya et al., 2012). Most

methods have focused on simple questions, whose SPARQL translations contain

only a single variable (and few triple patterns for a single set of qualifying enti-

ties). For popular benchmarks like WebQuestions (Berant et al., 2013), the best

performing systems use templates and rules or grammars (e.g., (Abujabal et al.,

2017; Bast and Haussmann, 2015; Reddy et al., 2014)), leverage additional text

sources (e.g., (Savenkov and Agichtein, 2016; Xu et al., 2016b)), or rely on exten-

sive training data for end-to-end learning (e.g., (Li et al., 2017a; Xu et al., 2016b;

Yih et al., 2015)). These techniques do not cope well with complex questions.
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Bao et al. (2016) combined rules with deep learning to address different types of

complex questions accompanied by the ComplexQuestions dataset.

Datasets for KB-QA. Multiple datasets have been proposed for question

answering over knowledge bases, which differ in the underlying knowledge base

(DBpedia or Freebase), size (a couple of hundreds to a few thousands), and

question phenomena they evoke (simple, compositional, and/or questions with

conditions, among others) (Abujabal et al., 2017; Bao et al., 2016; Berant et al.,

2013; Bordes et al., 2015; Cai and Yates, 2013; Unger et al., 2015; Usbeck et al.,

2017).

Datasets with complex questions are still ad hoc. QALD (Unger et al., 2015;

Usbeck et al., 2017) is a series of evaluation campaigns on QA over linked data,

and releases datasets every year to evaluate KB-QA systems. Questions in QALD

cover many interesting phenomena such as aggregation, count, and additional

conditions, (for example, “Which German cities have more than 250000 inhabi-

tants?”). However, the main shortcoming is the very small size (50− 250 ques-

tions). Recently, Abujabal et al. (2017) released 150 questions paired with their

answers over Freebase. While all questions in this dataset contain more than

one entity/relation, the underlying SPARQL query would still require joining

over a single variable only. Questions were collected using a public crawl of

WikiAnswers, a large, community-authored corpus of questions. The WebQues-

tions (Berant et al., 2013) and SimpleQuestions (Bordes et al., 2015) datasets

contain a majority of simple factoid questions, e.g., “what language does cuba

speak?”, with a few exceptions. While questions in WebQuestions (Berant et al.,

2013) are only paired with answers, they are paired with SPARQL queries in

Bordes et al. (2015). Bao et al. (2016) release a new dataset with complex ques-

tions paired with their answers over Freebase (2, 100 question-answer pairs). The

LC-QuAD dataset (Trivedi et al., 2017) contains 5, 000 questions and their corre-

sponding SPARQL queries over DBpedia. Questions in LC-QuAD exhibit high

syntactic and structural variation. These were generated using a set of hand-

written templates that verbalize SPARQL queries, which are then corrected and

paraphrased by humans.

5.3 Setup

There are diverse types of temporal aspects in questions. Questions can con-

tain temporal expressions or signals to express temporal relations. Furthermore,

questions may ask for temporal information, e.g., a date. We first explain what

temporal expressions and temporal signals are. Then, we define temporal ques-
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tions.

Temporal Expressions

The temporal markup language TimeML (Pustejovsky et al., 2005) is used

for annotating temporal information in text documents. It is also the annota-

tion standard adopted by most tools that perform temporal tagging automati-

cally (Strötgen and Gertz, 2016).

TimeML contains TIMEX3 tags for temporal expressions and SIGNAL tags for

temporal signals. The TIMEX3 tag is used to annotate temporal expressions of

four types: date, time, duration, and set expressions. The semantics of all tem-

poral expressions can be normalized to some value in a standard format, which

allows the comparison between temporal expressions – a characteristic of tempo-

ral information, which can also be exploited for temporal QA. TimeML’s most

important attribute to capture the temporal information of temporal expressions

is the value attribute. In the case of duration and set expressions, the value

attribute captures the length of the interval, and the value attribute of date

and time expressions contains information how to anchor the point in time on a

timeline of the respective granularity.

According to TimeML’s specifications, set expressions refer to the re-occurring

nature of an event. Examples are ‘once a week ’ and ‘daily ’. Duration expres-

sions are used to specify the length of an interval. For instance, ‘three weeks ’ and

‘several years ’ are two duration expressions. Note that the temporal information

might be concrete as in ‘three weeks ’ or vague as in ‘several years ’. Date and

time expressions both refer to points in time – though the points in time are

of different granularities: all granularities smaller than ‘day ’ are considered as

time expressions, for instance, expressions referring to parts of a day (e.g., ‘Mon-

day morning ’ and ‘yesterday night ’) and expressions referring to a specific time

(e.g., ‘9 pm’, ‘three o’clock ’ and ‘February 5, 2018 23:59:59 CET ’). In contrast,

date expressions may refer to a particular day (e.g., ‘last Thursday ’ and ‘23rd

of November ’) or to any point in time of a coarser granularity (e.g., ‘the 21st

century ’, ‘last year ’ and ‘September 2016 ’).

Note that these examples directly show that date and time expressions can be

realized in different ways: fully-specified, relatively specified, underspecified, or

implicitly specified (Strötgen and Gertz, 2016). Fully-specified expressions can

be normalized without any further context information (e.g., ‘September 2016 ’

as 2016-09). In contrast, relative expressions require a reference time (e.g., ‘last

Thursday ’) and underspecified expressions need a reference time and a relation

to the reference time (e.g., ‘(on) Thursday ’). In both cases, the reference time

might be the time of the sentence or a date mentioned in the textual context.
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1) X equal Y

2) X before Y

3) X meets Y

4) X overlaps Y

5) X during Y

6) X starts Y

7) X finishes Y

XXX

YYY

XXX YYY

XXX YYY

XXX

YYY

XXX

YYYYYY

XXX

YYYYYY

XXX

YYYYYY

Figure 5.1: The 13 temporal relations (nos. 2 through 7 have inverses) between

two intervals X and Y, as in Allen (1983).

If relative and underspecified date and time expressions occur in questions, it is

thus important that the information about when the question was formulated

is also available. Otherwise, questions such as “Who was the US president two

years ago?” cannot be answered as it is impossible to determine to which year

‘two years ago’ refers.

Finally, non-standard temporal knowledge is required for normalizing implicit

expressions such as holidays (e.g., ‘Columbus Day 2018 ’ – which is, in the US,

the second Monday in October). In some works, the definition of implicit tem-

poral expressions has been extended to further include all types of free-text tem-

poral expressions, such as event names or other textual phrases with temporal

scopes (Kuzey et al., 2016) (e.g., ‘Obama’s presidency ’, which can be normalized

to an interval with a particular start and end date).

Temporal Signals

TimeML defines temporal signals as textual elements that make explicit the

temporal relation between two TimeML entities (events or temporal expressions),

such as ‘before’ or ‘during ’. In natural language questions, signals occur, for

instance, to explicitly specify a valid time interval for the searched information,

as in: “Which movies did Besson work on before his marriage to Jovovich?”.

In general, any of the 13 temporal relations defined in Allen’s interval algebra

for temporal reasoning (Allen, 1983) can be the described relation, that is, the

equal relation as well as the six relations before, meets, overlaps, during,

starts, and finishes with respective inverses (see Figure 5.1 for visualizations

of the relations). However, due to ambiguities, it is often not possible to select

a unique temporal relation for a temporal question. For example, the ques-

tion “What did Besson work on before his marriage to Jovovich?” could be

interpreted as asking for either the movie he was working on directly before his

marriage or all movies which he was working on any time before his marriage.

It is crucial to point out that questions are often formulated with even further
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ambiguities. While the question “Which movies did Besson work on before his

marriage to Jovovich?” as well as “Which movie did Besson work on before

his marriage to Jovovich?” concisely describe the required number of answer

movies (several due to plural and one due to singular, respectively), the latter

requires the movie which Besson worked on directly before his marriage, i.e., the

temporal constraint cannot be simply validated, but valid answers have to be

sorted and the closest one has to be chosen. In addition, the slightly reformulated

question “What did Besson work on before his marriage to Jovovich?” could be

interpreted one way or the other (singular or plural) – a fact that also makes

it sometimes difficult, even for humans, to determine the correct answer of a

question.

Due to such ambiguities, in the context of temporal QA, temporal relations

could be simplified as the following three types:

(i) before and meet are treated as the relation BEFORE

(ii) before inverse and meet inverse are treated as AFTER

(iii) all other relations are treated as OVERLAP

Typical trigger words suggesting the three temporal relations above, respec-

tively, are the temporal signals:

(i) ‘before’, ‘prior to’

(ii) ‘after ’, ‘following ’

(iii) ‘during ’, ‘while’, ‘when’, ‘until ’, ‘in’, ‘at the same time’

In addition to the trigger terms defined in TimeML, we add ordinals to the

class of temporal signals, as they are often used in questions to specify particular

instances of items which can be sorted chronologically. An example is ‘last ’ in

“What was Besson’s last movie before his marriage to Jovovich?”.

Based on our discussion of temporal expressions and temporal signals above,

we can define a temporal question:

Definition 5.1: A temporal question is any question, which contains a temporal

expression, a temporal signal, or whose answer is of temporal nature.
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Expected input: wh∗ w1 . . . wn SIGNAL wn+1 . . . wp?

Case 1: Constraint has both an entity and a relation

Sub-question 1 pattern: wh∗ w1 . . . wn?

Sub-question 2 pattern: when wn+1 . . . wp?

Example: “where did neymar play before he joined barcelona?”

Sub-question 1: “where did neymar play?”

Sub-question 2: “when neymar joined barcelona?”

Case 2: Constraint has a relation only

Sub-question 1 pattern: wh∗ w1 . . . wn?

Sub-question 2 pattern: when sq1-entity wn+1 . . . wp?

Example: “where did neymar live before playing for clubs?”

Sub-question 1: “where did neymar live?”

Sub-question 2: “when neymar playing for clubs?”

Case 3: Constraint has an entity only

Sub-question 1 pattern: wh∗ w1 . . . wn?

Sub-question 2 pattern: when wn+1 . . . wp w1 . . . wn ?

Example: “who was the brazil team captain before neymar?”

Sub-question 1: “who was the brazil team captain?”

Sub-question 2: “when neymar was the brazil team captain?”

Case 4: Constraint is an event name

Sub-question 1 pattern: wh∗ w1 . . . wn?

Sub-question 2 pattern: when did wn+1 . . . wp happen?

Example: “where did neymar play during south africa world cup?”

Sub-question 1: “where did neymar play?”

Sub-question 2: “when did south africa world cup happen?”

Table 5.1: Decomposition and rewriting of questions. The constraint is the frag-

ment after the SIGNAL word. wh∗ is the question word, e.g., who,

and wi are tokens in the question.

5.4 The TEQUILA Framework

Given an input question, TEQUILA works in four stages: (i) detect if the ques-

tion is temporal (in the sense of Section 5.3), (ii) decompose the question into

simpler sub-questions with some form of rewriting, if needed, (iii) obtain can-

didate answers and dates for temporal constraints from a KB-QA system (and
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possibly direct KB-lookups), and (iv) apply constraint-based reasoning on the

candidates using the temporal signals and constraints to produce final answers.

Our method builds on ideas from the literature on question decomposition for

general QA (Abujabal et al., 2017; Bao et al., 2014; Saquete et al., 2009), but

goes much further and provides a comprehensive solution for temporal QA.

5.4.1 Detecting Temporal Questions

A question is identified as temporal if it contains any of the following: (a) explicit

or implicit temporal expressions (dates, times, events), (b) temporal signals (i.e.,

cue words for temporal relations), (c) ordinal words (e.g., first), (d) an indication

that the answer type is temporal (e.g., the question starts with ‘When’). We use

HeidelTime (Strötgen and Gertz, 2010) to tag TIMEX3 expressions in questions.

Named events e.g., ‘World War II ’ are identified using a dictionary curated from

Freebase. Specifically, if the type of an entity is ‘time.event ’, its surface forms are

added to the event dictionary. SIGNAL words and ordinal words are detected

using a small dictionary, and a list of temporal prepositions. To spot questions

whose answers are temporal, we use a small set of patterns like when, what date,

in what year, and which century.

5.4.2 Decomposing and Rewriting Questions

TEQUILA decomposes a composite temporal question into one or more non-

temporal sub-questions (returning candidate answers), and one or more temporal

sub-questions (returning temporal constraints). Results of non-temporal sub-

questions are combined by intersecting their answers. The constraints are applied

to time scopes associated with the results of non-temporal sub-question. For

brevity, we focus on the case with one non-temporal sub-question, and zero/one

temporal sub-question.

For questions with either an ordinal word, an explicitly stated temporal con-

straint or no temporal constraints at all, we generate zero temporal sub-questions.

Concretely, for those questions with ordinal constraints e.g., “who was the first

coach of the bucaneers?”, we simply drop the ordinal value (‘first ’) and proceed to

answering the non-temporal sub-question “who was the coach of the bucaneers?”

(Section 5.4.3). During reasoning, we make use of the ordinal value by sorting

candidate answers over temporal dimension. For questions with explicit tempo-

ral constraints e.g., “what kind of government does iran have after 1979?”, we

generate a non-temporal sub-question e.g., “what kind of government does iran

have?” by dropping the signal word and what follows it. We use the temporal
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relation (‘after ’) and the explicit temporal value (‘1979 ’) during reasoning to ob-

tain the final answer set (Section 5.4.4). Questions with no temporal constraints

are directly answered by the underlying KB-QA system. For example, “when

was the united nations founded?”. Such questions require no further processing.

The more interesting questions are those with implicit temporal constraints,

where converting such implicit constraints to explicit ones requires generating

sub-questions seeking temporal information. For example, the question “Which

teams did Neymar play for before joining PSG?” is decomposed into the non-

temporal sub-question “Which teams did Neymar play for?”, which returns can-

didate answers, and the temporal sub-question “When Neymar joining PSG?”,

which returns temporal constraints to filter the candidate answers from the non-

temporal sub-question. To decompose a composite question, we use a set of

lexico-syntactic rules designed from first principles to decompose and rewrite a

question into its components. The intuition behind generating temporal sub-

questions is to convert implicit temporal constraints into explicit ones that can

be evaluated over the time scopes of the candidate answers. Basic intuitions

driving these rules are as follows:

• The signal word usually separates the non-temporal sub-question and the

implicit temporal constraint, acting as a pivot for decomposition;

• Each sub-question needs to have an entity and a relation (generally rep-

resented using verbs), so as to enable the underlying KB-QA systems to

handle sub-questions;

• If the second sub-question lacks the entity or the relation, it is borrowed

from the first sub-question;

• KB-QA systems are robust to ungrammatical constructs, thus precluding

the need for linguistically correct sub-questions.

Table 5.1 shows our rules to decompose and rewrite questions with implicit

temporal constraints, accompanied with examples. The rules cover four cases,

which differ in how the implicit temporal constraint is represented:

1. Constraint constitutes a full sub-question: This means, the constrains has

both an entity and a relation. In this case, the constraint is used as the

second sub-question and nothing is borrowed from the first sub-question.

2. Constraint has an entity only: In this case, we borrow the relation from

the first sub-question.
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Relation Signal word(s) Constraint

BEFORE ‘before’, ‘prior to’ endans ≤ begincons

AFTER ‘after ’ beginans ≥ endcons

OVERLAP ‘during ’, ‘while’, ‘when’ beginans ≤ endcons ≤ endans
‘since’, ‘until ’, ‘in’ beginans ≤ begincons ≤ endans
‘at the same time as ’ begincons ≤ beginans ≤ endans ≤ endcons

Table 5.2: Temporal reasoning constraints.

3. Constraint has a relation only: Here, we borrow the entity from the first

sub-question.

4. Constraint corresponds to a named event: In this case, we simply generate

a sub-question asking for the date of the event.

5.4.3 Answering Sub-questions

The sub-questions are passed on to a KB-QA system, which translates them into

SPARQL queries and executes them on the KB. This produces a result set for

each sub-question. Results from the non-temporal sub-question(s) are entities of

the same type (e.g., football teams). These are the candidate answers for the full

user question. With multiple sub-questions, the candidate sets are intersected.

The temporal sub-questions, on the other hand, return temporal results such

as dates, which act as constraints to filter the non-temporal candidate set. The

candidate answers need to be associated with time scopes, so that we can evaluate

the temporal constraints.

Retrieving time scopes. To obtain time scopes for the candidate answers,

we introduce additional KB lookups; the details depend on the specifics of

the underlying knoweldge base. Freebase, for example, associates SPO triples

with time scopes by means of compound value types (CVTs); other KBs may

use n-tuples (n > 3) instead of triples to attach spatio-temporal attributes

to facts (Section 2.1.2). For example, in Freebase, marriage relationship is a

CVT with attributes including marriage.spouse, marriage.startDate and

marriage.endDate. When the underlying KB-QA system return answers us-

ing the KB predicate marriage.spouse, the time scope is easily retrieved by

looking up marriage.startDate and marriage.endDate in the KB.
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Representation of time scopes is not always properly reflected in the knowl-

edge base structure. For example, playing for a football club could be captured

in a predicate like team.players without temporal information attached, and

the job periods are represented as events in predicates like footballPlayer.

team. joinedOnDate and footballPlayer.team.leftOnDate. In such cases,

TEQUILA considers all kinds of temporal predicates associated with the can-

didate entity, and chooses one based on a similarity measure between the non-

temporal predicate (e.g., team.players) and the potentially relevant temporal

predicates (e.g., footballPlayer.team.joinedOnDate, footballPlayer.award.

date, etc.). The similarity measure is implemented by selecting tokens in a pred-

icate name (e.g., footballPlayer, team, etc.), computing word2vec embeddings

for them (to contextualize the tokens), superimposing the per-token vectors,

and comparing the cosine distance between predicate vectors (Wieting et al.,

2015). The best-matching temporal predicate is chosen for use. When time pe-

riods are needed (e.g., for a temporal constraint using OVERLAP), a pair of

begin/end predicates is selected (e.g., footballPlayer. team. joinedOnDate

and footballPlayer. team. leftOnDate).

5.4.4 Reasoning on Temporal Intervals

By now, time scopes of candidate answers have been retrieved from the KB, and

implicit temporal constraints have been disambiguated and normalized through

generating temporal sub-questions. In case the question contains ordinal word

or explicit temporal expression, no normalization is needed. We cast time scopes

and temporal constraints into intervals with start point beginans, begincons and

end point endans, endcons, respectively. The test itself depends on the tempo-

ral operator derived from the input question (e.g., BEFORE, OVERLAP, etc.)

(Table 5.2). For questions with ordinal constraints (e.g., last), we sort the time

scopes to select the appropriate answer.

5.5 Experimental Evaluation

We evaluate TEQUILA on a newly introduced set of temporal questions, called

TempQuestions. Our experiments serve two goals: (1) to show that TEQUILA

enables existing standard KB-QA systems to handle temporal complex questions,

and (2) that TEQUILA outperforms KB-QA systems that address complex ques-

tions.
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Question Tag Free917 WebQuestions ComplexQuestions Total

Explicit temporal 41 344 222 607

Implicit temporal 3 81 125 209

Temporal answer 88 254 51 393

Ordinal constraint 18 111 26 155

Total 150 790 424 1, 364

Table 5.3: Distribution of question types by source. The total is greater than

1, 271 as some questions have multiple tags.

5.5.1 Setup

Benchmark. Current KB-QA benchmarks datasets (Bao et al., 2016; Berant

et al., 2013; Cai and Yates, 2013) individually contain small fractions of tem-

poral questions. Thus, methods that ignore temporal conditions in questions

manage to get good overall performance. This motivated us to compile a new

benchmark, coined TempQuestions. TempQuestions is a high-quality benchmark

with a total of 1,271 temporal questions paired with their answers over Freebase.

To this end, we ran our temporal question detection (Section 5.4.1) on three

existing datasets: Free917 (Cai and Yates, 2013) (917 question-query pairs),

WebQuestions (Berant et al., 2013) (5, 810 question-answer pairs), and Com-

plexQuestions (Bao et al., 2016) (2, 100 question-answer pairs). For Free917, we

evaluated the SPRAQL queries paired with questions over Freebase to retrieve

answers. While the first two have been popular in the KB-QA community over

the last years, ComplexQuestions is recent and contains questions that are syn-

tactically more complex than those in the other two datasets. The output of

the automated detection step was manually curated, which resulted in remov-

ing 245 non-temporal questions (e.g., “what countries speak german as a first

language?”). a misinterpretation of the ordinal tag), along with redundant and

noisy answers.

Questions in our benchmark are between 4 and 15 words long, and the aver-

age question length is 8.28 words. Sample questions are depicted in Table 5.4,

segmented by the following three dimensions: temporal category, numbers of

entities and relations, and question source.

We provide a breakdown into the four classes of temporal questions (explicit,

implicit, temporal answer and ordinals), along with the input source, in Ta-

ble 5.3. TempQuestions has a good number of questions with implicit temporal

expressions (209) and ordinals (155) – both these classes require additional rea-



76 CHAPTER 5. TEMPO

Property Question

Segmentation by temporal category

Explicit “who won the state of texas in 2008?”

“what kind of government does iran have after 1979?”

Implicit “who was the president after jfk died?”

“what team did michael jordan play for after the bulls?”

Temporal answer “what years did the knicks win the championship?”

“when was the united nations founded?”

Ordinal constraint “who was the first coach of the bucaneers?”

“who was andy williams second wife?”

Segmentation by question concepts

Multi-entity “what did france lose to the british in the treaty of paris in 1763?”

“when was the last time the oakland raiders won the super bowl?”

Multi-relation “who won best supporting actor when alfred junge won best art direction?”

“what book was written by george orwell and published in 1945?”

Segmentation by question source

Free917 (Cai and Yates, 2013) “when was the airspeed oxford first flown?”

“in 1981 what award did danny devito win?”

WebQuestions (Berant et al., 2013) “what was the currency in france before euro?”

“who is julia roberts married to 2012?”

ComplexQuestions (Bao et al., 2016) “who was us president when vietnam war started?”

“who did michael jordan play for after the bulls?”

Table 5.4: Representative examples from TempQuestions.

soning and ranking on part of the QA-system, and thus add a level of difficulty;

(b) the total 1, 364 is higher than 1, 271, showing that there are several questions

that belong to more than one category, and are thus quite challenging for current

QA systems (like “who was elected the first governor of virginia in 1776?”, with

both explicit and ordinal tags).

Baselines. We use three state-of-the-art KB-QA systems as baselines: AQQU

(Bast and Haussmann, 2015), QUINT (Abujabal et al., 2017), and the system of

Bao et al. (2016). The first two are template-based methods geared for simple

questions, while the system of Bao et al. (2016) handle complex questions, in-

cluding temporal ones. We use TEQUILA as a plug-in for the first two systems,

and directly evaluate against the system of Bao et al. (2016) on 341 temporal

questions from the ComplexQuestions test set (Bao et al., 2016).

Metrics. For evaluating baselines, the full question was fed directly to the

underlying system. We report precision, recall, and F1-scores of the retrieved

answer sets with respect to the gold answer sets, and average them over all test

questions.
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5.5.2 Results

Results on TempQuestions and the 341 temporal questions in ComplexQuestions

are shown in Table 5.5. AQQU + TEQUILA and QUINT + TEQUILA refer to

the TEQUILA-enabled versions of the respective baseline systems.

TEQUILA enables standard QA over KBs systems to answer composite ques-

tions with temporal conditions. Overall and category-wise F1-scores show that

TEQUILA-enabled systems to significantly outperform the baselines. For exam-

ple, while AQQU achieved an F1 score of 26.9 on TempQuestions, the TEQUILA-

enabled version of AQQU achieved 36.7 F1 value (9.8 F1 points increase). Note

that these systems neither have capabilities for handling compositional syntax

nor specific support for temporal questions. Our decomposition and rewrite

methods are crucial for compositionality, and constraint-based reasoning on an-

swers is decisive for the temporal dimension. The improvement in F1-scores

stems from a systematic boost in precision, across most categories. Despite ig-

noring temporal constraints, baseline systems were able to deliver answers to the

full question, which explains their reasonable performance on TempQuestions.

With TEQUILA framework, temporal constraints were taken care of by filtering

out candidate answers that do not respect the constraints, and hence, boosting

precision.

TEQUILA-enabled systems outperform the system of Bao et al. (2016) on the

temporal slice of ComplexQuestions. The system of Bao et al. (2016) represents

the state-of-the-art in KB-QA, with a generic mechanism for handling constraints

in questions. This shows that a tailored method for temporal information needs

is worthwhile. Some questions that TEQUILA enabled both QUINT and AQQU

to answer are: “who is the first husband of julia roberts?”, and “who was governor

of oregon when shanghai noon was released?”.

5.5.3 Discussion

Analyzing cases when TEQUILA fails yields various insights towards future work:

(i) Incorrect decomposition and rewriting: For example, in “where did the pil-

grims come from before landing in america?”, ‘landing ’ is incorrectly labeled as

a noun, triggering case 3 instead of case 1 in Table 5.1; (ii) Incorrect time scope

predicate: These cases happen when the correct temporal predicate is not found

due to limitations of the similarity function. (iii) Reasoning errors: Wrongly

identifying the temporal constraint or the time scope to use during reasoning, is

another point of failure for TEQUILA.

TEQUILA was able to improve the performance of QUINT across categories
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except for questions with implicit constraints. While QUINT achieved an F1

score of 25.4 on the slice of TempQuestions with implicit constraints, TEQUILA-

enabled version of QUINT achieved an F1 value of 17.4. We attribute this de-

terioration in performance to the fact that QUINT relies heavily on well-formed

questions, however, our decomposition and rewriting rules might generate linguis-

tically ill-formed temporal sub-questions, and hence, were not correctly answered

by QUINT.





6 ComQA: A Community-sourced

Dataset for Complex Factoid

Question Answering with

Paraphrase Clusters

6.1 Introduction

Factoid QA is the task of answering questions whose answer is one or a small

number of entities (Voorhees and Tice, 2000). Traditionally, approaches have

mostly tapped into textual sources using passage retrieval and answer ranking

techniques (Ferrucci, 2012; Harabagiu et al., 2003; Ravichandran and Hovy, 2002;

Saquete et al., 2009). In the last few years, the paradigm of translating ques-

tions into formal queries over structured knowledge bases (KB-QA) has become

prevalent (Bast and Haussmann, 2015; Berant et al., 2013; Unger et al., 2012;

Yahya et al., 2013). Recently, methods have combined both textual and struc-

tured resources to boost answering performance (Savenkov and Agichtein, 2016;

Xu et al., 2016b). To advance research on QA in a manner consistent with the

needs of end users, it is important to have access to QA benchmarks that reflect

real user information needs by covering various question phenomena, capture the

wide lexical and syntactic variety in expressing these information needs, and are

large enough to facilitate the use of data-hungry machine learning methods. In

this paper, we present ComQA, a large dataset of 11,214 real user questions col-

lected from the WikiAnswers community QA website. As Figure 6.1 shows, the

dataset contains various question phenomena. ComQA questions are grouped

into 4,834 paraphrase clusters through a large-scale crowdsourcing effort, which

capture lexical and syntactic variety. Crowdsourcing is also used to pair para-

phrase clusters with answers to serve as a supervision signal for training and as

a basis for evaluation.

Table 6.1 contrasts ComQA with other publicly available QA datasets. The

foremost issue ComQA tackles is ensuring research is driven by real information

81
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A: [https://en.wikipedia.org/wiki/cairo]

Q: “largest city located along the Nile river?”
Q: “largest city by the Nile river?”
Q: “What is the largest city in Africa that is on the banks of the 
       Nile river?”

Cluster 2 comparison

Q: “Who was the Britain’s leader during WW1?”
Q: “Who ran Britain during WW1?”
Q: “Who was the leader of Britain during World War One?”

Cluster 1

A: [https://en.wikipedia.org/wiki/h._h._asquith, 
      https://en.wikipedia.org/wiki/david_lloyd_george] 

temporal

Q: “John Travolta and Jamie Lee Curtis acted in this film?”
Q: “Jamie Lee Curtis and John Travolta played together in this
      movie?”
Q: “John Travolta and Jamie Lee Curtis were actors in this
      film?”

Cluster 3

A: [https://en.wikipedia.org/wiki/perfect_(film)

compositional

Q: “Who is the first human landed in Mars?”
Q: “Who was the first human being on Mars?”
Q: “first human in Mars?”

Cluster 4

A: []

empty answer

Figure 6.1: Paraphrase clusters from ComQA, covering a range of question as-

pects, with lexical and syntactic diversity.

needs. Most benchmarks resort to synthetically generated questions (Bordes

et al., 2015; Cai and Yates, 2013; Su et al., 2016; Talmor and Berant, 2018;

Trivedi et al., 2017). Other benchmarks utilize search engine logs to collect their

questions Berant et al. (2013), which creates a bias towards simpler questions

that search engines can already answer reasonably well. In contrast, ComQA

questions come from WikiAnswers, a community QA website where users pose

questions to be answered by other users. This is often a reflection of the fact

that such questions are beyond the capabilities of commercial search engines and

QA systems. Questions in our dataset exhibit a wide range of interesting as-

pects such as the need for temporal reasoning (Figure 6.1, cluster 1), comparison

(e.g., comparatives, superlatives, ordinals) (Figure 6.1, cluster 2), composition-

ality (multiple, possibly nested, subquestions with multiple entities) (Figure 6.1,

cluster 3), and unanswerable questions e.g., Figure 6.1, cluster 4.

ComQA is the result of a carefully designed large-scale crowdsourcing effort

to group questions into paraphrase clusters and pair them with answers. Past

work has demonstrated the benefits of paraphrasing for QA (Abujabal et al.,

2018; Berant and Liang, 2014; Dong et al., 2017; Fader et al., 2013). Motivated

by this, we judiciously use crowdsourcing to obtain clean paraphrase clusters
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Dataset Large scale Real Information Complex Question

(> 5K) Needs Questions Paraphrases

ComQA (This work) 3 3 3 3

Free917 (Cai and Yates, 2013) 7 7 7 7

WebQuestions (Berant et al., 2013) 3 3 7 7

SimpleQuestions (Bordes et al., 2015) 3 7 7 7

QALD (Usbeck et al., 2017) 7 7 3 7

LC-QuAD (Trivedi et al., 2017) 3 7 3 7

ComplexQuestions (Bao et al., 2016) 7 3 3 7

GraphQuestions (Su et al., 2016) 3 7 3 3

ComplexWebQuestions (Talmor and Berant, 2018) 3 7 3 7

TREC (Voorhees and Tice, 2000) 7 3 3 7

Table 6.1: Comparison of ComQA with existing QA datasets over various dimen-

sions.

from WikiAnswer’s noisy ones, resulting in ones like those shown in Figure 6.1,

with both lexical and syntactic variations. The only other existing dataset to

provide such clusters is that of Su et al. (2016), but that is based on synthetic

information needs as detailed above.

For answering, recent research has shown that combining various resources for

answering significantly improves performance (Savenkov and Agichtein, 2016;

Sun et al., 2018; Xu et al., 2016b). Therefore, unlike earlier work, we do not

pair ComQA with a specific knowledge base (KB) or text corpus for answering.

We call on the research community to innovate in combining different answering

sources to tackle ComQA and advance research in QA. We also use crowdsourc-

ing to pair paraphrase clusters with answers. ComQA answers are primarily

Wikipedia entity URIs. This has two motivations: (i) it builds on the example

of search engines that use Wikipedia as a primary way of answering entity-centric

queries (e.g., through knowledge cards), and (ii) most modern KBs ground their

entities in Wikipedia. Wherever the answers are temporal or measurable quanti-

ties, TIMEX31 and the International System of Units (SI)2 are used for normal-

ization. Providing canonical answers allows for better comparison of different

systems.

We present an extensive analysis of ComQA, where we introduce the various

question phenomena in the dataset. Finally, we analyze the results of running

five state-of-the-art QA systems on ComQA. The main result is that ComQA

exposes major shortcomings in these systems, mainly related to their inability

to handle compositionality, time, and comparison. Our detailed error analysis

1http://www.timeml.org
2https://en.wikipedia.org/wiki/SI

http://www.timeml.org
https://en.wikipedia.org/wiki/SI
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provides inspiration for avenues of future work to ensure that QA systems meet

the expectations of real users. To summarize, in this paper we make the following

contributions:

• We present a large dataset of 11,214 real user questions collected from a

community QA website. The questions exhibit a wide range of phenomena

that are important for end users and challenging for existing QA systems.

Using crowdsourcing, questions in the dataset are grouped into 4,834 para-

phrase clusters that are annotated with their Wikipedia-grounded answers.

The dataset is available at http://qa.mpi-inf.mpg.de/comqa.

• We present an extensive analysis of the dataset, and quantify the various

phenomena found within. Moreover, we present the results of various state-

of-the art QA systems on ComQA, and a detailed error analysis.

6.2 Related Work

There are two main variants of the factoid QA task, with the distinction tied to

the underlying resources used for answering and the nature of these answers. Tra-

ditionally, the problem of QA has been explored over large textual corpora (Cui

et al., 2005; Dietz and Gamari, 2017; Ferrucci, 2012; Ravichandran and Hovy,

2002; Saquete et al., 2009; Voorhees and Tice, 2000) with answers being textual

phrases. More recently the problem has been explored over large structured data

sources such as knowledge bases (Berant et al., 2013; Unger et al., 2012; Yahya

et al., 2013), with answers being semantically grounded entities. Very recent

work demonstrated that the two variants are complementary, and a combination

of the two results in the best answering performance (Savenkov and Agichtein,

2016; Sun et al., 2018; Xu et al., 2016b).

QA over textual corpora. QA has a long tradition in IR and NLP com-

munities, including benchmarking tasks in TREC (Dang et al., 2006; Dietz and

Gamari, 2017; Voorhees and Tice, 2000), CLEF Magnini et al. (2004); Herrera

et al. (2004) and SemEval. This has predominantly focused on retrieving an-

swers from textual sources (Ferrucci, 2012; Harabagiu et al., 2006; Lin, 2002;

Prager et al., 2004; Ravichandran and Hovy, 2002; Saquete et al., 2004, 2009;

Yin et al., 2015). In IBM Watson system (Ferrucci, 2012), structured data played

a role, but text was the main source for answers combined with learned models

for question types. TREC QA evaluation series provide hundreds of questions to

be answered over a collection of documents, which have become one of the most

widely adopted benchmarks for answer sentence selection (Wang and Nyberg,

http://qa.mpi-inf.mpg.de/comqa
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2015; Yang et al., 2016a). Wang et al. (2007) constructed a benchmark using the

data from TREC QA 8-13, where questions in TREC 8-12 are used for training

and questions in TREC 13 are used for development and testing. ComQA is

orders of magnitude larger than TREC QA data, accompanied with paraphrase

clusters.

Reading comprehension is a recently introduced task, where the goal is to

answer a question from a given textual paragraph (Joshi et al., 2017; Kociský

et al., 2018; Lai et al., 2017; Rajpurkar et al., 2016; Trischler et al., 2017; Yang

et al., 2015; Welbl et al., 2018). This setting requires understanding of natural

language and is intended to improve answering from a given text (mimicking

school children), rather than the general ability to efficiently obtain answers

from large amounts of data. ComQA reflects the general QA setting, where

finding answers requires searching through a collection of documents.

QA over knowledge bases. Recent efforts have focused on natural lan-

guage questions as an interface for knowledge bases, where questions are trans-

lated to structured queries via semantic parsing (Bao et al., 2016; Bast and

Haussmann, 2015; Berant et al., 2013; Fader et al., 2013; Reddy et al., 2014;

Mohammed et al., 2018; Savenkov and Agichtein, 2016; Talmor and Berant,

2018; Xu et al., 2016b; Yang et al., 2014; Yao and Durme, 2014; Yih et al.,

2015). Over the past five years, many datasets were introduced, however, they

are either small in size (QALD, Free917, and ComplexQuestions), composed of

synthetically generated questions (SimpleQuestions, GraphQuestions, LC-QuAD

and ComplexWebQuestions), or structurally simple (SimpleQuestions and We-

bQuestions). ComQA tackles all these shortcomings. The ability to return se-

mantic entities as answers allows users to further explore these entities in various

resources such as their Wikipedia pages, Freebase entries, etc. It also allows QA

systems to tap into various interlinked resources for improvement (e.g., to obtain

better lexicons, or train better NER systems). Because of this, ComQA proivdes

semantically grounded reference answers where possible. ComQA answers are

primarily Wikipedia entities (without committing to Wikipedia as an answer-

ing resource). For numerics and dates, ComQA adopts the SI and TIMEX3

standards, respectively.

6.3 Setup

In this work, a factoid question is a question whose answer is one or a small

number of entities (Voorhees and Tice, 2000). For example, “Who were the

secretaries of state under Barack Obama?” and “When was Germany’s first



86 CHAPTER 6. COMQA

post-war chancellor born?”.

6.3.1 Questions in ComQA.

A question in our dataset can exhibit one or more of the following phenom-

ena:

• Simple: These are questions that ask about a property of a named entity.

e.g., “Where was Einstein born?”

• Compositional: A question is compositional if obtaining its answer requires

answering more primitive questions and combining these. These can be in-

tersection or nested questions. Intersection questions are ones where two

or more subquestions can be answered independently, and their answers in-

tersected (e.g., “Which films featuring Tom Hanks did Spielberg direct?”).

Nested questions are those where the answer of one subquestion is necessary

to answer another e.g., “Who were the parents of the 13th president of the

US?”

• Temporal: These are questions that require temporal reasoning for deriving

the answer, be it explicit (e.g., ‘in 1998 ’), implicit (e.g., ‘during the WWI ’),

relative (e.g., ‘current ’), or latent (e.g. ‘Who is the US president? ’). Tempo-

ral questions also include those whose answer is an explicit temporal expres-

sion.

• Comparison: We consider three types of comparison questions, namely

comparatives (e.g., “Which rivers in Europe are longer than the Rhine?”),

superlatives (e.g., “What is the population of the largest city in Egypt?”) and

ordinals (e.g., “What was the name of Elvis’s first movie?”).

• Telegraphic (Joshi et al., 2014): These are short questions formulated in

a very informal manner similar to keyword queries e.g., “First president In-

dia?”. Systems that rely on linguistic analysis of questions often fail on such

questions.

• Answer tuple: Where an answer is a tuple of connected entities as opposed

to a single entity, e.g., “When and where did Geroge H. Bush go to college,

and what did he study?”

6.3.2 Answers in ComQA.

Recent work has showed that the choice of answering resource, or the combi-

nation of resources significantly improves answering performance (Savenkov and

Agichtein, 2016; Sun et al., 2018; Xu et al., 2016b). Inspired by this, ComQA is
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“When did henry 7th oldest son die?”

“Henry VII of England second son?”

“Who was henry VII son?”
“Who was henry's vii sons?”

“Who was Henry vii's oldest son?”
“Who is king henry VII eldest son?”
“What was the name of Henry VII first son?”
“Who was henry vII eldest son?”
“What was henry's vii oldest son?”
“Who was the oldest son of Henry VII?”

Figure 6.2: All ten questions belong to the same original WikiAnswers cluster.

AMT Turkers split the original cluster into four new ones.

not tied to a specific resource for answering. To this end, answers in ComQA are

Wikipedia URIs, wherever this is possible. This enables QA systems to combine

different answering resources which are linked to Wikipedia (e.g., DBpedia, Free-

base, Yago, Wikidata, Wikipedia, ClueWeb09-FACC1, etc). This also enables

seamless comparison across QA systems whose individual answering resources are

different, but are linked to Wikipedia. Literal value answers follow the TIMEX3

and SI standards. An answer in ComQA can be:

• Entity: ComQA entities are grounded in Wikipedia. However, Wikipedia is

inevitably incomplete, so answers that cannot be grounded in Wikipedia are

represented as plain text. For example the answer for “What is the name of

Kristen Stewart adopted brother?” is {Taylor Stewart, Dana Stewart}.
• Literal value: Temporal answers follow the TIMEX3 standard. For mea-

surable quantities, we follow the International System of Units.

• Empty: Some questions are based on false premises, and hence, are unan-

swerable e.g., “Who was the first human being on Mars?” (no human has

been on Mars, yet). The correct answer to such questions is the empty set.

Such questions allow systems to cope with these cases. Recent work has

started looking at this problem (Rajpurkar et al., 2018).
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6.4 Dataset Collection

Our goal is to collect a dataset of factoid questions that represent real informa-

tion needs and cover a wide range of question phenomena. Moreover, we want

to have different paraphrases for each question. To this end, we tap into the

potential of CQA platforms. Questions posed there represent real information

needs and often cannot be answered by commercial search engines or QA tech-

nology, making them more interesting for driving future research compared to

those collected from an engine’s query log. Moreover, users of CQA platforms

provide (noisy) annotations around questions. Marking questions with the same

information needs as duplicates, by the users of CQA, is harnessed in construct-

ing the ComQA dataset. Concretely, we started with the WikiAnswers crawl by

Fader et al. (2014). We obtained ComQA from this crawl primarly through a

large scale crowdsourcing effort to ensure it is of high quality. We describe this

effort in what follows.

The crawl contains 763M questions. While our focus is on factoid questions,

that crawl contains other types of questions like Why? or comparison questions.

Moreover, the questions are grouped into 30M paraphrase clusters based on feed-

back from the users of WikiAnswers. This clustering has low accuracy (Fader

et al., 2014), and therefore needs to be cleaned for a high-accuracy dataset.

6.4.1 Preprocessing of WikiAnswers

To remove non-factoid questions we applied the following two filters: (i) re-

moving questions starting with ‘why ’ and (ii) removing those containing words

like (dis)similarities, differences, (dis)advantages, benefits and their synonyms.

Questions matching these filters require a narrative as an answer, and are there-

fore out of scope.We also removed questions with less than three or more than

twenty words, as we found these to typically be noisy or non-factoid questions.

This left us with about 21M questions belonging to 6.1M clusters.

To further focus on factoid questions, we automatically classified the remaining

questions into one or more of the following four classes: (1) temporal, (2) com-

parison, (3) single entity and (4) multi-entity questions. We used the SUTime to

identify temporal questions (Chang and Manning, 2012) and the Stanford named

entity recognizer to detect named entities (Finkel et al., 2005). We used part-

of-speech patterns to identify comparatives, superlatives and ordinals. Clusters

which did not have questions belonging to any of the above classes were discarded

from further consideration. Although these clusters contain false negatives e.g.,

“What official position did Mendeleev hold until his death?” due to errors by
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Figure 6.3: Distribution of the number of questions per cluster.

the tagging tools, most discarded questions are out-of-scope e.g., “How does the

government help fight poverty?”.

Manual inspection. We next applied the first stage of human curation

of the dataset. Each WikiAnswers cluster was assigned a class label based on

the majority label of the questions within. We then randomly sampled 15K

clusters from each of the four classes (60K clusters in total with 482K questions).

We then sampled a representative question from each cluster at random (60K

questions). We relied on the assumption that questions within the same cluster

are semantically equivalent. These 60K questions were manually examined by the

authors and those with unclear or non-factoid intent were removed along with

the cluster that contains them. As a result, we ended up with 2.1K clusters with

13.7K questions.

6.4.2 Curating Paraphrase Clusters

We manually inspected a random subset of the 2.1K clusters, and found that

questions of the same cluster are semantically related but not equivalent as has

been observed by previous work (Fader et al., 2014). Dong et al. (2017) reported

that 45% of question pairs were related rather than genuine paraphrases. For ex-

ample, Figure 6.2 shows an original WikiAnswers cluster. The accuracy of para-

phrase clustering can have a large impact on QA performance (Abujabal et al.,

2018; Berant and Liang, 2014). We therefore utilized crowdsourcing to clean the

Wikianswers paraphrase clusters. We used Amazon Mechanical Turk (AMT) to
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identify semantically equivalent questions within a WikiAnswers cluster, thereby

obtaining cleaner clusters for ComQA. Once we had the clean clusters, we set up

a second AMT task to collect answers for each ComQA cluster of questions.

Task design. In designing the AMT task to clean up clusters of question

paraphrases from WikiAnswer’s question clusters, we had to ensure that the

task was simple enough to obtain high quality results. Therefore, rather than

giving workers a WikiAnswers cluster and asking them to partition it into clus-

ters of paraphrases, we showed them pairs of questions from a cluster and asked

them whether they are paraphrases. To improve the efficiency of this annota-

tion effort, we utilized the transitivity of the paraphrase relationship. Given a

WikiAnswers cluster Q = {q1, ..., qn}, we proceed in rounds to form ComQA

paraphrase clusters. In the first round, we collect annotations for each pair

(qi, qi+1). The majority annotation among five annotators is taken. An initial

clustering is formed accordingly. In subsequent iterations, a question is chosen

from a cluster and paired with questions from other clusters for annotation to

determine whether these two clusters can be combined. This continues until no

new clusters can be formed.

Task statistics. We obtained annotations for 18,890 question pairs. Each

pair was shown to five different workers, with 65.7% of the pairs receiving unan-

imous agreement, 21.4% receiving four agreements and 12.9% receiving three

agreements. By design, with five judges and binary annotations, no pair can

have less three agreements. This resulted in questions being placed in para-

phrase clusters, and no questions were discarded at this stage. At the end of

this step, the original 2.1K WikiAnswers clusters became 6.4K ComQA clusters

with a total of 13.7K questions. Figure 6.3 shows the distribution of questions

in clusters.

To test whether relying on the transitivity of the paraphrase relationship is

suitable to reduce the annotation effort, we asked annotators to annotate 1,100

random pairs (q1, q3), where we had already received positive annotations for

the pairs (q1, q2) and (q2, q3) being paraphrases of each other. In 93.5% of the

cases there was agreement. Additionally, as experts on the task, the authors

manually assessed 600 pairs of questions, which serve as honeypots. There was

96.6% agreement with our annotations. An example result of this task is shown

in Figure 6.2, where Turkers split the original WikiAnswers cluster into the four

clusters shown.
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6.4.3 Answering Questions

With clean paraphrase clusters, we were now in a position to obtain an answer

annotations for each of the 6.4K clusters.

Task design. To collect answers, we designed another AMT task, where

workers were shown a question randomly drawn from a cluster and asked to use

the Web to find answers and to provide the URL of Wikipedia entities that are

suitable answers. Due to the inevitable incompleteness of Wikipedia, workers

were asked to provide the surface form of an answer entity in case it does not

have a Wikipedia page. If the answer is a full date, workers were asked to follow

dd-mmm-yyyy format. For other temporal answers e.g., centuries, workers were

asked to provide the value followed by a temporal unit e.g., ‘12th century ’. For

measurable quantities, workers were asked to provide units. TIMEX3 and the

international system of units are used for standardizing temporal answers and

measurable quantities e.g., ‘12th century ’ to 11XX. If no answer is found, workers

were asked to type in ‘no answer ’ as an answer.

Task statistics. Each question was shown to three different workers. An

answer is deemed correct if it is common between at least two workers. 1.3K

representative questions received a single unanimous answer, 1.7K received at

least one unanimous answer, while 4.8K out of 6.4K received at least one com-

mon answer between two annotators or more. This resulted in 1.6K clusters

(containing 2.4K questions) with no agreed-upon answers, which were dropped.

We manually inspected some questions with no agreed-upon answers. Some

questions were subjective, for example, “Who was the first democratically elected

president of Mexico?”. Other questions received related answers e.g., “Who do

the people in Iraq worship?” with Allah, Islam and Mohamed as answers from

the three annotators. Other questions were underspecified e.g., “Who was elected

the vice president in 1796?”, which misses the entity, making agreement harder.

At the end of the task, we had 4,834 clusters with 11,214 question-answer pairs,

which form ComQA.

6.5 Dataset Analysis

In this section, we present a manual analysis of 300 questions sampled at random

from the ComQA dataset. This analysis helps understand the different aspects

of our dataset. A summary of the analysis is presented in Table 6.2.

Question categories. We categorized each question into either a simple or

complex question. A question is deemed complex if it contains temporal and/or
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(a) Answer types (b) Question topics

Figure 6.4: Answer types and question topics on 300 annotated examples as word

clouds. The bigger the font, the more frequent the concept.

comparison conditions or it is of a compositional nature (see Section 6.3). 56.33%

of the questions were complex, with 32% compositional, 23.67% temporal, and

29.33% contain comparison conditions. Note that a question might contain a

combination of conditions e.g., “What country has the highest population in the

year 2008?” (comparison and temporal constraint).

We also identified questions of telegraphic nature e.g., “Julia Alvarez’s par-

ents?”, with 8% of our questions are telegraphic. Such questions pose a challenge

for systems that rely on linguistic analysis of questions as shown in Joshi et al.

(2014).

We counted the number of named entities in questions, with 23.67% contain

two or more entities, indicating the compositional nature of questions. 2.67%

have no entities e.g., “What public company has the most employees in the

world?”. Such questions are hard since current methods assume the existence of

a pivotal entity.

Finally, 3.67% of questions are unanswerable, e.g., “Who was the first human

being on Mars?”. Such questions incentivise QA systems to return non-empty

answer sets only when suitable. We also compared ComQA with other current

datasets over different question categories (Table 6.3).

Answer types. We annotated each question with the most fine-grained an-

swer type given the context. Answers in ComQA belong to a diverse set of

types that range from coarse-grained e.g., person to fine-grained e.g., sports

manager. Types include literals e.g., number and date. Figure 6.4 (a) shows the

set of answer types on 300 annotated examples as word cloud.

Question topics. We annotated questions with topics they belong to e.g.,
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geography or movies. The topics, shown in Figure 6.4 (b), demonstrate that

questions belong to a diverse set of topics.

Question length. Questions in ComQA are fairly long, with a mean length

of 7.73 words, indicating the compositional nature of questions.

6.6 Experimental Evaluation

We experimented with various state-of-the-art QA systems, which achieved hum-

ble performance on ComQA, highlighting the need to new methods to handle the

question phenomena within ComQA.

6.6.1 Experimental Setup

Splits. In total, ComQA contains 11,214 question-answer pairs. We generated

random split of 70% (7,850), 10% (1,121) and 20% (2,243), which serve as train,

development and test sets.

Evaluation Metrics. We follow standard evaluation metrics adopted by the

community: we compute average precision, recall, and F1 scores across all test

questions. However, because ComQA includes unanswerable questions whose

correct answer is the empty set, we define precision and recall to be 1 for a

system that returns an empty set in response to an unanswerable question, and

0 otherwise (Rajpurkar et al., 2018).

Baselines We evaluated two types of QA systems that differ in the underlying

answering resource: either KBs or textual extractions. We ran the following QA

systems using their publicly available code: 1) Abujabal et al. (2017), which

generates question-query templates using question-answer pairs. 2) Berant and

Liang (2015), which relies on agenda-based parsing to train QA systems. 3) Bast

and Haussmann (2015), which instantiates query templates at answering time.

Candidate queries are ranked using a learning-to-rank model. 4) Berant et al.

(2013), which uses rules to build logical forms from questions. 5)Fader et al.

(2013), which maps questions to queries over open vocabulary facts extracted

from a large text corpus of Web documents. Note that our intention is not

to assess the quality of current systems, but to show the challenging nature of

ComQA.

All systems were run over the data sources for which they were designed. The

first four baselines are over Freebase, therefore, we mapped ComQA answers

(Wikipedia entities) to the corresponding Freebase names using the information

stored with entities in Freebase. We observe that the Wikipedia answer entities
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have no counterpart in Freebase for only 7% of the ComQA questions. This

suggests an oracle F1 score of 93.0. For Fader et al. (2013), which is over web

extractions, we mapped Wikipedia URLs to their titles.

6.6.2 Results

Table 6.4 shows the performance of baselines on the ComQA test set. Overall,

the systems achieved poor performance, suggesting that current methods cannot

handle the complexity of our dataset, and that new models for QA are needed.

Table 6.5 compares the performace of the systems on different datasets. For

example, while Abujabal et al. (2017) achieved an F1 score of 51.0 on WebQues-

tions, it achieved 22.4 on ComQA.

The performance of Fader et al. (2013) is worse than the others due to the in-

completeness of its underlying extractions and the complexity of ComQA ques-

tions that require higher-order relations and reasoning. However, the system

answered complex questions, which KB-QA systems failed to answer. For ex-

ample, it successfully answered “What is the highest mountain in the state of

Washington?”. The answer to such a question is more readily available in Web

text, compared to a KB, where more sophisticated “reasoning” would be re-

quired to handle the superlative. While text can easily answer questions like the

one above, a slightly modified question e.g., “What is the fifth highest moun-

tain in the state of Washington?” might not be explicitly found in text, which

can be answered using KBs. Both examples above demonstrate the benefits of

combining text and structured resources.

6.6.3 Discussion

For the two best performing systems on ComQA, QUINT (Abujabal et al., 2017)

and AQQU (Bast and Haussmann, 2015), we manually inspected ComQA ques-

tions on which they failed, 100 questions per system. We classified failure sources

into four categories: compositionality, temporal, comparison or NER. Table 6.6

shows the distribution of failure sources of both systems.

Compositionality. Both systems could not handle the compositional nature

of questions. For example, they returned the father of Julius Caesar as an answer

for “What did Julius Caesar’s father work as?”. However, the question requires

another KB predicate that connects the father to his profession. For “John

Travolta and Jamie Lee Curtis starred in this movie?”, both systems returned

the movies Jamie Lee Curtis appeared in, ignoring the part constraint that John
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Travolta should appear in them as well. Answering multi-relation questions over

KBs remains an open problem given the large number of KB relations.

Temporal. Our analysis reveals that the tested systems often fail to cap-

ture temporal constraints in questions, be it explicit or implicit. For example,

for “Who won the Oscar for Best Actress in 1986?”, both systems returned all

winners and ignored the explicit year in the question together with the temporal

aspect ‘in 1986 ’. Implicit temporal constraints e.g., named events like ‘Viet-

nam war ’ in “Who was the president of the US during Vietnam war?” pose

a challenge to current methods. Such constraints need first to be detected and

normalized to a canonical time interval (Novermber 1st, 1955 to April 30th, 1975

for the Vietnam war). Then, these systems need to compare the terms of the US

presidents with above interval to account for the temporal relation of ‘during ’.

While detecting explicit time expressions can be done reasonably well using ex-

isting time taggers (Chang and Manning, 2012), identifying implicit ones is still

a challenge. Furthermore, retrieving the correct temporal scopes of entities in

questions (e.g., the terms of the US presidents) is hard due to the large number

of temporal KB predicates associated with entities.

Comparison. Both systems perform poorly on comparison questions (com-

paratives, superlatives, and ordinals), which is expected since they were not

designed to address those. To the best of our knowledge, no existing KB-QA

system can handle comparison questions. Note that our goal is not to assess

the quality the of current methods, but to highlight that these methods miss

categories of questions that are important to real users. For “What is the first

film Julie Andrews made?” and “What is the largest city in the state of Wash-

ington?”, both systems returned the list of Julie Andrews’s films and the list of

Washington’s cities, for the first and the second questions, respectively. While

the first question requires the temporal attribute of filmReleasedIn to order

by, the second question needs the attribute of hasArea. Identifying the correct

attribute to order by as well as determining the order direction (ascending for the

first and descending for the second) is challenging and out of scope for current

methods.

NER. NER errors come from false negatives, where entities are not detected,

or false positives, where systems identify entities not intended as such. For

example, in “On what date did the Mexican Revolution end?” QUINT identified

‘Mexican’, rather than ‘Mexican Revolution’ as an entity. For the latter case,

the question “What is the first real movie that was produced in 1903?” does

not ask about a specific entity. QUINT could not generate SPARQL queries

and returned empty answer. Existing QA methods expect a pivotal entity in a
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question, which is not always the case.

Note that while baseline systems achieved low precision, they achieved higher

recall (21.2 vs 38.4 for QUINT, respectively) (Table 6.4). This reflects the fact

that these systems often cannot cope with the full complexity of ComQA ques-

tions, and instead end up evaluating underconstrained “interpretations” of the

question.

To conclude, current methods can handle simple questions very well, but strug-

gle with complex questions that involve multiple conditions on different entities

or need to join the results from sub-questions. Handling such complex questions,

however, is important if we are to satisfy information needs expressed by real

users.
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Property Example Percentage%

Compositional questions

Conjunction “What is the capital of the country whose

northern border is Poland and Germany?” 17.67

Nested “When is Will Smith’s oldest son’s birthday?” 14.33

Temporal questions

Explicit time “Who was the winner of the World Series in 1994?” 4.00

Implicit time “Who was Britain’s leader during WW1?” 4.00

Temporal answer “When did Trenton become New Jerseys capital?” 15.67

Comparison questions

Comparative “Who was the first US president to serve 2 terms?” 1.00

Superlative “What ocean does the longest river

in the world flow into?” 14.33

Ordinal “When was Thomas Edisons first wife born?” 14.00

Question formulation

wh- word “When did Trenton become New Jerseys capital?” 92.00

Telegraphic “Neyo first album?” 8.00

Entity distribution in questions

Zero entity “What public company has the most

employees in the world?” 2.67

Single entity “Who is Brad Walst’s wife?” 75.67

Multi-entity “What country in South America lies

between Brazil and Argentina?” 21.67

Other features

Answer Tuple “Where was Peyton Manning born

and what year was he born?” 2.00

Empty answer “Who was the first human being on Mars?” 3.67

Table 6.2: Results of the manual analysis of 300 questions. Note that properties

are not mutually exclusive.

Dataset Size Compositional Temporal Comparison Telegraphic Empty Answer

ComQA 11, 214 32% 24% 30% 8% 4%

WebQuestions (Berant et al., 2013) 5, 810 2% 7% 2% 0% 0%

ComplexQuestions (Bao et al., 2016) 2, 100 39% 34% 9% 0% 0%

Table 6.3: Comparison of ComQA with existing datasets over various phenom-

ena. We manually annotated 100 random questions from each dataset.
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Avg. Precision Avg. Recall Avg. F1

Abujabal et al. (2017) 21.2 38.4 22.4

Bast and Haussmann (2015) 20.7 37.6 21.6

Berant and Liang (2015) 10.7 15.4 10.6

Berant et al. (2013) 13.7 20.1 12.0

Fader et al. (2013) 7.22 6.59 6.73

Table 6.4: Results of baselines on ComQA test set.

WebQuestions Free917 ComQA

F1 Accuracy F1

Abujabal et al. (2017) 51.0 78.6 22.4

Bast and Haussmann (2015) 49.4 76.4 21.6

Berant and Liang (2015) 49.7 − 10.6

Berant et al. (2013) 35.7 62.0 12.0

Table 6.5: Results of baselines on different KB-QA datasets including ComQA.

Category QUINT AQQU

Compositionality error 39% 43%

Missing comparison 31% 26%

Missing temporal constraint 19% 22%

NER error 11% 9%

Table 6.6: Distribution of failure sources on ComQA questions on which QUINT

and AQQU failed.



7 Neural Named Entity

Recognition from Subword Units

7.1 Introduction

Named Entity Recognition (NER) is an important task in language technology

applications, such as smart voice-controlled devices like the Amazon Echo or

Google Home. For example, if a user requests a voice-controlled assistant to

“play we are the champions by queen”, a named entity recogniser determines that

the phrase ‘we are the champions ’ refers to a song and ‘queen’ to an artist. As

new utterances are collected over time, which are annotated with named entities,

regular retraining with increasing data amounts is needed.

Recently, several neural models for NER have been proposed (e.g., (Chiu and

Nichols, 2016; Lample et al., 2016)), indicating promising performance on a

rather small and artificially generated dataset (Sang, 2002; Sang and Meulder,

2003). However, these models rely mostly on dedicated word-level representa-

tions, which suffer from three main shortcomings:

• The vocabulary size is large, yielding a large number of parameters, and

hence, large memory requirements and training time, which is particularly

problematic if large amounts of data are available.

• The models cannot learn subword representations, which can potentially im-

prove performance by taking advantage of morphology.

• Out-of-vocabulary words cannot be handled.

In this paper, we adopt a neural solution relying on subword units, namely

characters, phonemes and bytes. For each word in an utterance, we learn repre-

sentations from each of the three subword units. The character-level unit looks

at the characters of each word to learn morphological information, while the

phoneme-level unit treats a word as a sequence of phonemes, using lexica that

map a given word into its corresponding phoneme sequence. The byte-level unit

reads a word as bytes, where we use the variable length UTF-8 encoding.

Subword-based models have much smaller vocabulary sizes compared to mod-

99
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els that rely on dedicated word-level embeddings (332 vs 74K for English). Fur-

thermore, subword units enable the model to mitigate the out-of-vocabulary

problem. Character-level networks have already proven to boost the performance

of many sequence tagging tasks, including POS tagging and NER, in particular

for morphologically rich languages (Chiu and Nichols, 2016; Klein et al., 2003;

Lample et al., 2016; Yang et al., 2016b). However, while characters have been

successfully used to boost NER performance, combining different types of sub-

word units has not yet been explored.

We opt for a neural solution based on bidirectional LSTMs and conditional

random fields (CRF) (Chiu and Nichols, 2016; Huang et al., 2015; Lample et al.,

2016) in which we integrate the subword units. The output of the three subword

units concatenated is fed into a bidirectional LSTM that captures word-level

dependencies, and subsequently, into a CRF layer for decoding (Figure 7.1).

We present experiments on a real-world large dataset covering four languages

(English, German, and two more Eurpoean languages), with up to 5.5M ut-

terances per language. The utterances constitute customer requests to voice-

controlled devices; all utterances were manually transcribed and annotated with

named entities. Our experiments show that:

• With increasing training data size, performance of models trained solely on

subword units becomes closer to that of models with dedicated word-level

embeddings (91.35 vs 93.92 F1 for English), however, with much smaller

vocabulary size (332 vs 74K).

• Subword units can enhance models with dedicated word-level embeddings, in

particular, for languages with smaller training data sets.

• Combining the three subword units (character-, phoneme- and byte-level)

yields better results than using only one or two of them.

7.2 Related Work

Traditional NER. NER is a widely studied problem in the NLP community,

where methods have been characterized by the use of CRFs with heavy feature

engineering, gazetteers and external knowledge resources (Finkel et al., 2005;

Florian et al., 2003; Kazama and Torisawa, 2007; Klein et al., 2003; Lin and Wu,

2009; Radford et al., 2015; Ratinov and Roth, 2009; Zhang and Johnson, 2003).

Ratinov and Roth (2009) use non-local features and gazetteers extracted from

Wikipedia, while Kazama and Torisawa (2007) harness type information of can-

didate entities. In our work, we opt for a neural solution without hand-crafted
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features or external resources.

Neural NER. Recently, the focus has shifted towards adopting neural ar-

chitectures for NER (Chiu and Nichols, 2016; Collobert et al., 2011; Gillick

et al., 2016; Huang et al., 2015; Lample et al., 2016; dos Santos and Guimarães,

2015; Yadav et al., 2018; Yang et al., 2016b). Huang et al. (2015) use a word-

level bidirectional LSTM-CRF for several sequence tagging problems including

POS tagging, chunking and NER. However, instead of using subword units e.g.,

character-level, they made use of heavy feature engineering to extract character-

level features. Lample et al. (2016) extend the previous model by appending a

character-level bidirectional LSTM-based unit, where a word is represented by

concatenating dedicated word-level embeddings and embeddings learned from its

characters. Bharadwaj et al. (2016) represent words as sequences of phonemes,

which serve as universal representation across languages to facilitate cross-lingual

transfer learning. Chiu and Nichols (2016) use a convolutional nerual network

to learn character-level embeddings and LSTM units on the word level. dos

Santos and Guimarães (2015) propose the CharWNN network, a similar neural

architecture to that of Chiu and Nichols (2016). Gillick et al. (2016) employ a

sequence-to-sequence model with a novel tagging scheme. The model relies on

bytes, allowing the joint training on different languages for NER and eliminating

the need for tokenization. Finally, Yang et al. (2016b) adopt a very similar archi-

ture to that of Lample et al. (2016), however, they replaced LSTMs with GRUs

units. Furthermore, they stud the multi-lingual and multi-task joint training,

which we plan to address in the future.

Overall, existing methods mostly utilize dedicated word embeddings rather

than subword units. While some work has also addressed characters or bytes,

using phonemes or a combination of different subword units have not been ex-

plored, which we address in this work.

7.3 Model

We follow recent works on named entity recognition and base our soultion on

bidirectional LSTMs and conditional random fields (CRF) (Chiu and Nichols,

2016; Huang et al., 2015; Lample et al., 2016). Our model relies on bidirectional

LSTM-based subword units to learn word representations, namely character-

level, phoneme-level and byte-level units. For each word in an utterance, our

model learns a low-dimensional representation from each subword unit, which are

then concatenated together and fed into a word-level bidirectional LSTM. The

output of the word-level bidirectional LSTM is fed into a CRF layer for decoding.
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Forward LSTM

Backward LSTM

CRF Layer

darkplay not yet

Other SongName SongName SongName

Word embeddingsEmbeddings from characters Embeddings from phonemes Embeddings from bytes

Figure 7.1: Our model with a bidirectional LSTM layer and CRF layer for de-

coding. For each word in an utterance, our model learns embeddings

from the three subword units. Note that the word embeddings are

optional.

Our model is depicted in Figure 7.1. Next we describe the different components

of our model, including the existing bidirectional LSTM-CRF network and our

subword units.

7.3.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are powerful models for sequential data that

enable modeling dependencies among input tokens, be they words, characters,

phonemes or bytes. By using RNNs we can condition on entire utterances, al-

lowing us to abandon the Markov assumption that was prevalent in statistical

NLP (Goldberg, 2017). The input of an RNN network is a sequence of fixed-sized

d-dimensional vectors (x1,x2, ...xn), where each vector xt represents the token at

position t and n is the number of tokens. The intermediate output of an RNN

is another sequence of fixed-sized vectors (h1,h2, ...hn) that encodes information

about the input sequence at every time step:

ht = f(Uxt +Wht−1), yt = g(V ht), (7.1)

where U,W, V are shared weight matrices, f is a nonlinearity such as tanh or

ReLU, g is a softmax function and yt is the final output at time t. RNNs are also

good at summarizing/encoding sequences by translating an input sequence into a
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low-dimensional fixed-sized vector that encompasses the important information

required for the task at hand. In this scenario, the last hidden state hn represents

the summary.

7.3.2 Bidirectional LSTMs

In theory, RNNs are capable of capturing long-term dependencies, however,

in practice, they fail to do so due to the vanishing/exploding gradient prob-

lem (Bengio et al., 1994). As a remedy, new architectures have been proposed

including Long Short-term Memory networks (LSTMs) and Gated Recurrent

Units (GRUs), where memory-cells are incorporated to retain relevant informa-

tion from the history and to propagate it through the network Cho et al. (2014);

Hochreiter and Schmidhuber (1997). Different gates control the proportion of

the input and history to retain in memory cells. In this work we use the follow-

ing LSTM implementation, which was adopted by existing works (Lample et al.,

2016):

it =σ(Wxixt +Whiht−1 + bi)

ct =(1− it)� ct1+
it � tanh(Wxcxt +Whcht1 + bc)

ot =σ(Wxoxt +Whoht1 +Wcoct + bo)

ht =ot � tanh(ct),

(7.2)

where W’s are shared weight matrices, b’s are the biases, σ is the element-wise

sigmoid function, and � is the element-wise product.

A forward LSTM network, as described above, captures the past at a given

token. However, for certain tasks including NER, capturing the future is also

desirable and can lead to significant performance improvement. This can be

achieved by reading the same input sequence in a reverse order using another

LSTM network. A network that captures the future is called backward LSTM.

To capture both the past and future at a given token, Graves and Schmidhuber

(2005) coined the bidirectional LSTM network, where the outputs of the forward

(
−→
ht) and backward (

←−
ht) networks are concatenated together at each time step of

the input sequence ht = [
−→
ht ;
←−
ht ]. For sequence tagging problems, a softmax layer

is used on top of the output of the bidirectional LSTM network to calculate a

probability distribution of output tags for a given token.
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7.3.3 Conditional Random Fields

Bidirectional LSTM networks capture dependencies among input tokens, how-

ever, they assume independence among output tags, which is not practical for

several tasks including NER. To remedy this, instead of using a softmax layer, a

CRF layer is incorporated Lafferty et al. (2001), where ht’s are treated as features

of the CRF layer (Huang et al., 2015; Yang et al., 2016b).

Concretely, a CRF layer has a transition matrix A of size k×k as parameters,

where k is the number of distinct tags, and Ai,j represents the score of a transition

from the tag i to tag j. For a given input sequence x = (x1, x2, ..., xn), we treat

the output matrix P of size n× k of the word-level bidirectional LSTM network

as the network scores, where Pi,j represents the score of the jth tag of the ith

token in a sequence. For an output tag sequence y = (y1, y2, ..., yn), we define its

score to be the sum of transition scores and network scores:

s(x,y) =
n∑

i=1

Ayi−1,yi +
n∑

i=1

Pxi,yi ,

where we set y0 to be a START token. During training, we maximize the log-

probability of the correct tag sequence log(p(y|x)), where

p(y|x) =
es(x,y)∑
ỹ∈Y e

s(x,ỹ)
,

where Y represents all possible output tag sequences. We use dynamic program-

ming to compute A and the optimal output tag during decoding. See (Lafferty

et al., 2001) for details.

7.3.4 Subword Units

In this work we rely on subword units, namely characters, phonemes and bytes to

learn embeddings that represent the full word. Subword units enable the model

to mitigate the out-of-vocabulary problem and to have smaller vocabulary sizes

compared to models that rely on dedicated word-level embeddings. Our model

extends the state-of-the-art by using phoneme-level and byte-level networks as

shown in Figure 7.2. Each subword unit in our model is a bidirectional LSTM

network, where the last hidden state of the forward and the backward networks

are concatenated, which constructs Vc, Vph and Vby from the character-, phoneme-

and byte-level networks, respectively. The vectors Vc, Vph and Vby are, in turn,

concatenated to represent the final embeddings of a word. Optionally, we can
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Character-level unit Byte-level unit

Phoneme-level unit

d a k 0x44 0x61 0x6b

d_B A k_E

0x72

r\

r

dark

Figure 7.2: Our bidirectional LSTM-based subword units. The outputs of the

three units are concatenated to learn embeddings for the whole word.

concatenate dedicated word embeddings that are either randomly initialized or

pre-trained.

For the phoneme-level unit, we use lexica that map a given word to its phoneme

sequence. We use the X-SAMPA phoneme set. For example, the word ‘dark ’

is mapped to {d B,A, r\, k E}, where B marks the first phoneme in a word,

while E marks the last one. We add a special symbol UNK to the phoneme

set, to which we map missing words in our lexica. With these extra symbols and

others to express stress and diacritics we have 265 phonemes in total, with 60

unique ones. In general, for the setting explored in our work, i.e. voice-controlled

devices, phoneme lexica with good coverage are developed for the agents text to

speech (TTS) and automated speech recognition (ASR) components which can

be re-used. In case lexica with good coverage are not available, tools for grapheme

to phoneme conversion can be used.

For the byte-level unit, we use the variable length UTF-8 encodings to keep

the vocabulary as small as possible. For example, ‘Guimarães ’ is represented as

{0x47 0x75 0x69 0x6d 0x61 0x72 0xc3 0xa3 0x65 0x73}. Note that the character
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EN DE FR ES

Size of train set 3.3M 0.6M 12K 8K

Size of dev set 1.1M 0.2M 4K 2.6K

Size of test set 1.1M 0.2M 4K 2.6K

Table 7.1: Number of utterances of per language.

ã corresponds to two bytes, {0xc3 0xa3}. This distinguishes this unit from the

character-level one.

7.4 Experimental Evaluation

Our experiments serve two goals: 1) to show that models trained on the three

subword units combined achieve reasonable performance across languages, which

is very close to the performance of those models with dedicated word-level em-

beddings, in particular, as the size of train data increases, and that 2) our sub-

word units can enhance models that harness dedicated word-level embeddings,

in particular, for resource-poor languages.

7.4.1 Benchmark

We use a large dataset covering four different languages, namely American En-

glish (EN), German (DE), French (FR) and Spanish (ES). The data is representa-

tive of user requests to voice-controlled devices, which were manually transcribed

and annotated with named entities. Overall, the data covers several domains,

comprising different intents and named entities. The dataset represents a slice

of the original data, which was sampled at random. Table 7.1 shows the size

of train, dev, and test set splits for each language. While a large number of

utterances is available for languages which were collected with deployed systems

(EN and DE), rather few are available for the other two languages. On average,

we have 36 types of named entities per language.

7.4.2 Performance Measures

We use the CoNLL script (Sang, 2002) to compute precision, recall and an F1

scores on a per-token basis i.e., we allow for partial matching. We report the

average F1 score.
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Lang Subwords Word-level

EN 332 74K

DE 225 46K

FR 148 18K

ES 120 3.7K

Table 7.2: Vocabulary size of models trained solely on subword units versus mod-

els used word embeddings.

Lang Char Phoneme Byte Char + Phoneme Char + Byte Phoneme + Byte All

EN 89.63 90.03 89.7 91.15 90.58 91.1 91.35

DE 84.94 84.21 84.95 86.81 86.32 86.76 87.37

FR 80.57 73.65 80.4 80.1 82.44 82.15 81.05

ES 67.64 62.4 67.07 69.06 70.33 68.94 71.07

Table 7.3: F1 scores of the subword-only models with different units being used.

The model with the three subword units combined achieved best per-

formance across languages, except for FR.

7.4.3 Training

We used a mini-batch Adam optimizer (Kingma and Ba, 2014) with a learning

rate of 0.0007 for all the models presented in this paper. We tried different opti-

mizers with different learning rates (e.g., stochastic gradient descent), however,

they performed worse than Adam. The batch size was set to 1024, 256, 4 and 4

utterances for EN, DE, FR and ES, respectively. The embedding dimension of

the subword units is set to 35, while its counterpart of the word-level network is

set to 64 (in case dedicated word-level representations are used). Both subword

and word-level networks have a single layer for the forward and the backward

LSTMs whose dimensions are set to 35 and 128, respectively. We tried several

different values, however, the performance was inferior to the one reported with

the above values. When a given number of epochs is reached (40), training is

terminated. The model with the best F1 score on the development set is used to

make predictions 1.

We used dropout training Hinton et al. (2012), applying a dropout mask in

two places: 1) to the final embedding layer just before the input to the word-

level bidirectional LSTM in Figure 7.1, with dropout rate set to 0.5, and 2)

to the input of each subword unit, with dropout rate set to 0.2. The latter is

1We extended the model at https://github.com/glample/tagger

https://github.com/glample/tagger
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Lang Subwords Word-level Combined

EN 91.35 93.92(+2.57) 94.02(+0.1)

DE 87.37 90.12(+2.75) 90.25(+0.13)

FR 82.44 86.87(+4.43) 87.45(+0.58)

ES 71.07 79.43(+8.36) 80.23(+0.8)

Table 7.4: Comparison of subword only models versus word-level models and

models combined word-level and subwrod units. Numbers correspond

to F1 values.

used whenever dedicated word-level embeddings are harnessed. Otherwise, no

dropout is applied to the input of the subword units.

A notable advantage of relying on subword units is the very small vocabulary

compared to models with dedicated word embeddings. Table 7.2 shows the vo-

cabulary size of different languages for models that rely on the three suboword

units combined versus models with dedicated word embeddings. In terms of

model complexity, subword-based models have less number of parameters. For

example, for EN, they have 74K ∗ 64 = 4.7M fewer parameters to fine-tune

during training.

7.4.4 Results and Discussion

Subwords only models. Table 7.3 shows the performance of our models

that solely rely on subword units. In particular, we trained models with different

combinations of subword units. Models with the three subword units combined

achieved the best results across languages, demonstrating that our subword units

work in concert. Combining the different subword units always yields superior

results to models with only one subword unit. Additionally, we trained models

for the different languages using only a single subword unit, however, with higher

embedding and LSTM hidden dimensions. The performance was inferior to that

reported in Table 7.3 (last column). This shows that gains result from the better

representations our models learn from the three units combined and not from the

higher dimensionality of the hidden embedding representation when we combine

multiple types of subword units.

Word-level models. We train models with dedicated word-level embed-

dings, however, with no subword units as well as models that combine both

subword units and word-level embeddings. Results are shows in Table 7.4. With

increasing training data size, performance for models trained solely on subword
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Lang Char Phoneme Byte Char + Phoneme Char + Byte Phoneme + Byte All

EN 93.96 93.99 93.99 94.02 93.89 93.97 93.88

DE 90.17 90.02 90.17 90.25 90 90.19 90.1

FR 86.37 86.38 86.49 87.45 85.98 85.86 86.38

ES 79 80.03 79.08 79.57 79.1 80.23 78.72

Table 7.5: F1 scores of models that combine both word-level embeddings and

different subword units.

units becomes closer to that of models with dedicated word-level embeddings

(91.35 vs 93.92 F1 for EN), however, with much smaller vocabulary size (332 vs

74K). The gap in performance increases as the size of train data decreases (71.07

vs 79.43 F1 for ES). In other words, with sufficient training data, subword units

achieve comparable results to models with dedicated word-level embeddings.

Combined models. Finally, models that combine both dedicated word-level

embeddings and subword units achieved best results as shown in Table 7.4 (last

column). As train data decreases (resource-poor languages), the positive effect

of subword units increases (+0.1 F1 point for EN and +0.8 F1 point for ES).

In Table 7.5 we show combined models with different combinations of subword

units. The combination of character- and phoneme-level units together with the

dedicated word embeddings achieved the best results for three out of the four

languages. This shows the that a phoneme-level unit is useful for NER.

Out-of-vocabulary words. 625 utterances of the ES test set contain at

least one out-of-vocabulary word, with 703 out-of-vocabulary words in total. F1

scores on the 625 utterances are 44.61, 50.15 and 51.01 for subwords only, word-

level and combined models, respectively. These results follow the trends observed

in Table 7.4.

We also computed F1 scores on the out-of-vocabulary words, where, interest-

ingly and for the first time, subwords only model outperformed the corresponding

word-level model (34.93 vs 34.81), while combined model achieved an F1 score of

37.11. Note that we have here a generally higher boost using combined models

(2.3 F1 points increase). This experiment shows that our subword units help in

the presence of out-of-vocabulary words.





8 Conclusion

8.1 Summary

In this dissertation, we presented four methods and a curated dataset in the

areas of question answering over knowledge bases and named entity recognition.

Our first contribution is QUINT, a KB-QA system that automatically learns

question-query templates with fine-grained alignments between phrases in ques-

tions and conditions in queries. In addition to answering simple questions,

QUINT answers compositional complex questions by utilizing language com-

pistionality, where a compositional question is decomposed into simpler sub-

questions that can be answered independently.

Our second contribution is NEQA, a never-ending learning framework for

template-based KB-QA. NEQA starts with a small seed of training examples

and acquires more after deployment by relying on a light-weight user feedback

on answers. NEQA supports true open-domain KB-QA by harnessing the in-

terplay between syntax and semantics. On the syntax side, NEQA relies on

role-aligned templates to answer user questions. When templates fail, NEQA

consults a semantic similarity function to retrieve a semantically-similar and

correctly-answered question from its history. NEQA then learns a new template

from the question the templates-based answering mechanism failed on. The

new template is used for answering subsequent questions with similar syntactic

structures. NEQA periodically retrains its underlying models on newly acquired

examples which allows it to improve its performance over time as well as adapt

itself to the terminology being used after deployment.

Our third contribution, TEQUILA, allows users to ask complex questions

with explicit and implicit temporal constraints. Moreover, TEQUILA handles

questions with ordinal conditions and questions seeking temporal information.

TEQUILA relies on a rule-based framework that decomposes temporal ques-

tions into sub-questions, with a form of rewriting, if needed. Sub-questions can

be answered using standard KB-QA systems e.g., QUINT and NEQA. Along

with TEQUILA, we introduced TempQuestions, a dataset of 1,271 temporal-

only questions with answers over Freebase. The questions are chosen such that

111
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many of them require a combination of evaluating sub-questions and reasoning

over sub-results (results of the sub-questions). This collection is derived by ju-

diciously selecting time-related questions from the Free917, WebQuestions and

ComplexQuestions sets.

Our fourth contribution is ComQA, a large-scale dataset of real user questions

with several types of complex questions such as the need for temporal reasoning,

comparison (e.g., comparatives, superlatives, ordinals), compositionality (mul-

tiple, possibly nested, subquestions with multiple entities), and questions with

empty answer sets. Through a large crowdsourcing effort, the 11,214 questions in

ComQA are grouped into 4,834 paraphrase clusters that express the same infor-

mation need. Each cluster is annotated with its answer(s). Building on the wide

adoption of Wikipedia, ComQA answers come in the form of Wikipedia entities

wherever possible. Wherever the answers are temporal or measurable quantities,

TIMEX3 and the International System of Units (SI) are used for standardization.

In this manner, the dataset is largely resource independent.

Our fifth and last contribution is a neural model based on subword units for

named entity recognition. Designing efficient, in terms of memory requirements

and training time, and yet high-accuracy solutions for NER for such assistants is

challenging. To this end, we rely on subword units, namely characters, phonemes

and bytes. For each word in an utterance, we learn representations from each

of the three subword units. The character-level unit looks at the characters of

each word, while the phoneme-level unit treats a word as a sequence of phonemes,

using lexica that map a given word into its corresponding phoneme sequence. The

byte-level unit reads a word as bytes, where we use the variable length UTF-8

encoding. A major advantage of subword-based models is the small vocabulary

size which can positively affect memory requirements and training time of models,

which is particularly relevant for large-scale applications. In addition, the use of

subword-units could improve modelling of out-of-vocabulary words and support

learning of morphological information.

8.2 Outlook

We conclude this dissertation by discussing future research directions that we

believe are crucial for advancing question answering systems with the ability to

interact with users in a more natural way.

Complex QA

Although both QUINT and TEQUILA address complex questions, the breadth
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of such questions is large. While QUINT focuses on questions that require decom-

position into simpler sub-questions, TEQUILA handles questions with temporal

conditions. Count, aggregation and comparative questions, among others are

interesting kinds of complex questions. Such questions require new innovative

methods as translating such questions into logical representations on the KB

side is challenging. Our dataset, ComQA, which contains complex questions of

several types would help the research community to pursue this goal.

Interactive QA

With the inherent ambiguity of natural language, which is exacerbated when

the user poses complex questions, and the wide availability of voice-controlled as-

sistants such the Amazon Echo, it becomes more natural to teach machines to ask

the user back clarification questions on phrases or segments in questions, which

could not be parsed. This requires fine-grained alignments between phrases in

questions and the constituents of queries, so as to enable the system to pin point

sources of failures and generate clarification questions on these. Additionally,

natural language generation would be a crucial component.
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López, V., Tommasi, P., Kotoulas, S., and Wu, J. (2016). Queriodali: Question

answering over dynamic and linked knowledge graphs. In The Semantic Web

- ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan,

October 17-21, 2016, Proceedings, Part II, pages 363–382.

Magnini, B., Vallin, A., Ayache, C., Erbach, G., Peñas, A., de Rijke, M., Rocha,

P., Simov, K. I., and Sutcliffe, R. F. E. (2004). Overview of the CLEF 2004

multilingual question answering track. In Multilingual Information Access for

Text, Speech and Images, 5th Workshop of the Cross-Language Evaluation Fo-

rum, CLEF 2004, Bath, UK, September 15-17, 2004, Revised Selected Papers,

pages 371–391.

Metzler, D., Jones, R., Peng, F., and Zhang, R. (2009). Improving search rel-

evance for implicitly temporal queries. In Proceedings of the 32nd Annual

International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, SIGIR 2009, Boston, MA, USA, July 19-23, 2009, pages

700–701.



Bibliography 131

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of

word representations in vector space. CoRR, abs/1301.3781.

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant supervision

for relation extraction without labeled data. In ACL 2009, Proceedings of

the 47th Annual Meeting of the Association for Computational Linguistics and

the 4th International Joint Conference on Natural Language Processing of the

AFNLP, 2-7 August 2009, Singapore, pages 1003–1011.

Mitchell, T. M., Cohen, W. W., Jr., E. R. H., Talukdar, P. P., Betteridge,

J., Carlson, A., Mishra, B. D., Gardner, M., Kisiel, B., Krishnamurthy, J.,

Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E. A., Ritter,

A., Samadi, M., Settles, B., Wang, R. C., Wijaya, D., Gupta, A., Chen, X.,

Saparov, A., Greaves, M., and Welling, J. (2015). Never-ending learning. In

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,

January 25-30, 2015, Austin, Texas, USA., pages 2302–2310.

Mohammed, S., Shi, P., and Lin, J. (2018). Strong baselines for simple ques-

tion answering over knowledge graphs with and without neural networks. In

Proceedings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short

Papers), pages 291–296.

Moschitti, A., Tymoshenko, K., Alexopoulos, P., Walker, A. D., Nicosia, M.,

Vetere, G., Faraotti, A., Monti, M., Pan, J. Z., Wu, H., and Zhao, Y. (2017).

Question answering and knowledge graphs. In Exploiting Linked Data and

Knowledge Graphs in Large Organisations, pages 181–212.

Pasca, M. and Harabagiu, S. M. (2001). High performance question/answering.

In SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, September

9-13, 2001, New Orleans, Louisiana, USA, pages 366–374.
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event information in natural language text. Language Resources and Evalua-

tion, 39(2-3):123–164.

Radford, W., Carreras, X., and Henderson, J. (2015). Named entity recognition

with document-specific KB tag gazetteers. In Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language Processing, EMNLP 2015,

Lisbon, Portugal, September 17-21, 2015, pages 512–517.

Radlinski, F. and Joachims, T. (2005). Query chains: learning to rank from

implicit feedback. In Proceedings of the Eleventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA,

August 21-24, 2005, pages 239–248.

Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unan-

swerable questions for squad. In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics, ACL 2018, Melbourne, Australia,

July 15-20, 2018, Volume 2: Short Papers, pages 784–789.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). Squad: 100, 000+

questions for machine comprehension of text. In Proceedings of the 2016 Con-

ference on Empirical Methods in Natural Language Processing, EMNLP 2016,

Austin, Texas, USA, November 1-4, 2016, pages 2383–2392.

Ratinov, L. and Roth, D. (2009). Design challenges and misconceptions in named

entity recognition. In Proceedings of the Thirteenth Conference on Computa-

tional Natural Language Learning, CoNLL 2009, Boulder, Colorado, USA,

June 4-5, 2009, pages 147–155.



Bibliography 133

Ravichandran, D. and Hovy, E. H. (2002). Learning surface text patterns for a

question answering system. In Proceedings of the 40th Annual Meeting of the

Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA,

USA., pages 41–47.

Reddy, S., Lapata, M., and Steedman, M. (2014). Large-scale semantic parsing

without question-answer pairs. Transactions of the Association for Computa-

tional Linguistics, 2:377–392.
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