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I. Zusammenfassung 

 

Das Hauptziel der vorliegenden Arbeit war die Entwicklung neuartiger,  analytischer Methoden 

zur molekularen Bildgebung niedermolekularer Verbindungen aus tierischen 

Gewebeabschnitten unter Verwendung der Matrix-unterstützten Laser-Desorption/Ionisation 

und der hochauflösenden Fourier-Transformations Ionenzyklotronresonanz 

Massenspektrometrie. Insgesamt wurden drei neue Ansätze entwickelt, bei denen die 

massenspektrometrische Bildgebung für die räumliche und molekulare Analyse von endogenen 

Metaboliten und Arzneimitteln aus Gewebeschnitten von Mäusen verwendet wurde. Zunächst 

wurde MALDI-FTICR-MSI erfolgreich für die molekulare Bildgebung von Gallensäuren mit 

hoher räumlicher Auflösung als der deprotonierten Spezies und Protonen-gebundenen Dimeren 

aus Mausleberabschnitten angewendet. Zweitens wurde die unpolare Matrix DCTB (2-[(2E)-

3-(4-tert-Butylphenyl)-2-methylprop-2-enyliden]malononitril) erstmals für die 

hochempfindliche, quantitative MALDI-Bildgebung von im Zentralnervensystem wirkenden 

Medikamenten bei Hirnschnitten der Maus angewendet. Weiterhin konnten Beweise für 

Hirngewebsregion abhängige, sowie für die MALDI Matrix abhängige Ionensuppression 

vorgelegt werden. Schließlich wurde eine hochauflösende MALDI-FTICR-Bildgebung 

angewendet, um molekulare und räumliche Veränderungen im Gehirnstoffwechsel von Mäusen 

als Reaktion auf eine immunmodulatorische Behandlung mit Teriflunomid zu untersuchen, und 

zeigten sie offensichtliche Veränderungen.
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II. Abstract 

 

The main goal of this work was to develop novel analytical methods for molecular imaging of 

low-molecular weight compounds from animal tissue sections using matrix-assisted laser 

desorption/ionization and high-resolution Fourier-transform ion cyclotron resonance mass 

spectrometry. In general, three novel approaches were proposed, in which mass spectrometry 

imaging was employed for spatial and molecular analysis of both endogenous metabolites and 

pharmaceutical drugs from mouse tissue sections. Firstly, MALDI-FTICR mass spectrometry 

was successfully employed for high-spatial resolution molecular imaging of bile acids observed 

as deprotonated molecules and proton-bound dimers from mouse liver sections. Secondly, the 

nonpolar matrix, DCTB (2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-

enylidene]malononitrile), was applied for the first time for highly sensitive, quantitative 

MALDI imaging of central nervous system drugs from mouse brain sections. In addition, the 

evidence for brain tissue regions- as well as MALDI matrix-dependent ion suppression was 

presented. Finally, high-resolution/high-accuracy MALDI-MS imaging was applied for 

studying molecular and spatial changes in mouse brain metabolism in response to 

immunomodulatory treatment with teriflunomide, revealing evident alterations observed in 

particular for the certain metabolite classes. 
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III. Abbreviations 

9-AA  9-aminoacridine 

BBB  blood-brain barrier 

CHCA  α-cyano-4-hydroxycinnamic acid 

CID  collision-induced dissociation 

CNS  central nervous system 

DCTB  2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile 

DESI  desorption electrospray ionization 

DHB  2,5-dihydroxybenzoic acid 

ESI  electrospray ionization 

FTICR Fourier-transform ion cyclotron resonance 

GC-MS gas chromatography-mass spectrometry 

IE  ionization energy 

IS  internal standard 

LAESI laser ablation electrospray ionization 

LESA  liquid extraction surface analysis 

MALDI matrix-assisted laser desorption/ionization 

MS  mass spectrometry 

MS/MS tandem mass spectrometry 

MSI  mass spectrometry imaging 

m/z  mass-to-charge ratio 

LC-MS liquid chromatography-mass spectrometry 

PA  proton affinity 

PBD  proton-bound dimer 

PET  positron-emission tomography 

qMSI  quantitative mass spectrometry imaging 

QWBA quantitative whole-body autoradiography 

SALDI surface-assisted laser desorption/ionization 

SIMS  secondary ionization mass spectrometry
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IV. Introduction 

Mass spectrometry imaging – introduction, workflow and applications 

Mass spectrometry imaging (MSI) enables label-free in-situ molecular imaging of chemical 

compounds directly from different two-dimensional surfaces [1]. Since its introduction in the 

‘90s [2], MSI has proved to be a valuable tool for imaging of spatial distributions of different 

compounds from a wide variety of samples such as plants [3–5], different (bio)material surfaces 

[6, 7], bacterial cultures [8, 9] or even single cells [10–12]. The most predominant application 

of MSI, however, is determining the spatial distributions of different biologically relevant 

compounds directly from the animal tissue sections [13–16]. One of the strongest advantages 

of this method is that, in contrast to other imaging techniques such as QWBA or PET, MSI does 

not require any work- and time-consuming chemical labeling of the compounds of interest [17–

19]. Furthermore, as MSI combines an unambiguous molecular identification of compounds 

with determination of their spatial distributions, it allows for simultaneous imaging of hundreds 

of both endogenous compounds and exogenous drugs from the same tissue section [20–22]. In 

turn, the method has a tremendous potential for different applications in biological, 

pharmaceutical or biomedical research [23–25].      

While the complete and detailed MSI experimental procedure will strongly depend on many 

factors (such as the type of sample, analytes of interest, ion source used, etc.), an overview can 

be presented as the simplified workflow as shown in Figure 1. 

 

Figure 1. Schematic overview of MSI workflow. Reproduced with permission from reference [25]. 
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The in-detail description of the particular steps of MSI experiment can be found in one of the 

numerous excellent review articles [16, 25–29]. In brief, MSI starts with sample preparation 

realized by tissue (or whole body) cryosectioning and mounting the 10-20-µm-thick sections 

onto the microscopic glass slides. Furthermore, different approaches to tissue pretreatment 

might be applied (depending on the compounds of interest to be analyzed), as well as MALDI 

matrix deposition in the case of MALDI imaging mass spectrometry [30, 31]. Finally, such 

prepared biological material is analyzed with mass spectrometry by sampling the tissue surface 

at each x,y coordinate in order to collect a single MSI pixel mass spectrum from each spot. Of 

note, the MSI pixel size is defined here as the distance between the centers of each sampled 

(ablated in the case of MALDI) spot. As a result, hundreds of single mass spectra are being 

collected and the following computerized data analysis lead to the visualization of spatial 

distributions either of a single compound detected at a certain m/z value (as a characteristic heat 

map) or of the several different compounds across the tissue section (as an RGB image) [32]. 

It is noteworthy that MSI can be performed by employing different ion sources. The only 

prerequisite is that the current technique has to enable systematic probing of the two-

dimensional tissue surface at distinct locations that will further correspond to the single MSI 

pixels. Figure 2 summarizes currently the most common ionization methods used in MSI. 

 

 

Figure 2. Different ionization methods used for MSI: desorption electrospray ionization, DESI (A), matrix-

assisted laser desorption/ionization, MALDI (B), secondary ion mass spectrometry, SIMS (C), nano-DESI (D), 

laser ablation electrospray ionization mass spectrometry, LEASI (E), liquid extraction surface analysis, LESA (F). 

Reproduced with permission from [33]. 
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Importantly, the most proper ion source for the certain MSI experimental setup is usually 

selected based on the ionization capabilities for a particular class of compounds of interest. It 

is crucial to remember, however, that this decision will also determine other experimental 

factors such as attainable spatial resolution (the minimum pixel size), signal response 

(sensitivity), speed of analysis, compound coverage and finally, sample pretreatment needed 

prior to MS analysis [15, 33, 34]. 

To date, MSI has proved to be a valuable tool for in-situ imaging of various classes of 

compounds directly from the surface of different organs or whole-body sections. These include 

endogenous metabolites [20, 35, 36], lipids [37–39], peptides [40–42], proteins [43–45] as well 

as different drugs [19, 24, 46, 47]. An interesting summary has been recently published by 

Palmer et al. [48], where the current status of mass spectrometry imaging field was presented 

as the results of survey addressed to the MSI practitioners. Three aspects are worth mentioning 

here. Firstly, as seen in Figure 3, the major MSI application area is the analysis of low-molecular 

weight compounds (metabolites, lipids, drugs), while few of the current MSI practitioners apply 

this technique to on-tissue detection of proteins and peptides. Furthermore, the results clearly 

show the dominant role of MALDI as the ionization method for most of the MSI users (95% of 

respondents). Finally, vast part of the small molecules MSI studies are performed using high-

resolving power instruments (FTICR and Orbitrap mass analyzers), which are, as will be further 

explained in-detail, essential to provide sufficient mass resolution and mass accuracy in the low 

m/z range. 

 

 

Figure 3. Summary findings of a survey conducted by Palmer et al., showing the current status of the MSI field. 

Reproduced with permission from [48]. 
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The central role of MALDI in MSI of low-molecular weight compounds 

Within a group of different ionization methods that can be used for tissue mass spectral imaging 

(Figure 2), matrix-assisted laser desorption/ionization (MALDI) is the most predominant one 

[34, 49]. To date, MALDI has established its position as a key MSI technology for biological 

[36, 50], pharmaceutical [19, 51, 52], and even clinical [53, 54] applications. There are excellent 

(review) articles that cover the fundamental principles of MALDI (i.e. different 

ionization/protonation models including gas-phase theory and “lucky survivor” model) [55–57] 

as well as different experimental facets affecting desorption and ionization processes [58–60]. 

While all of these aspects should be carefully considered in order to successfully apply MALDI 

to MSI studies, it is essential to point out the key role of MALDI matrix in the whole 

experimental process. Briefly, as illustrated in Figure 4, the matrix absorbs the UV light at the 

laser operating wavelength and enables transfer of the analyte molecules into the gas phase. 

Therefore, both selecting of an appropriate matrix compound and assuring reproducible matrix 

deposition are essential for an efficient analytes extraction from the thin tissue slices and 

ultimately, the desorption/ionization of co-crystallized analyte molecules. 

 

 

Figure 4. Function and importance of MALDI matrix in MALDI-MSI. Reproduced from reference [51] with 

permission of Future Science Group.  

 

Selection of both the matrix compound and the solvent system (e.g. water/organic composition, 

pH, etc.) are crucial for the successful and sensitive analysis of the certain classes of 

compounds. In the recent years, a tremendous improvement has been made in order to better 
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understand the role of matrix in MALDI process [57]. This further led to the rational designing 

of some new MALDI matrices, with deliberately modified structures in order to obtain 

favorable gas-phase thermodynamic characteristic and thus, delivering higher sensitivity in 

both MALDI-MS and MALDI-MSI [59, 61, 62]. Moreover, numerous different new matrices 

were proposed, in particular for MALDI imaging of small molecules, including nanoparticle-

based inorganic matrices (contributing to the whole concept of surface-assisted laser 

desorption/ionization (SALDI)) [63, 64] or more recently, conjugated polymers-based dual-

mode matrices [65]. Surprisingly and despite the above, still the vast portion of MALDI-MSI 

studies of small molecules (drugs, metabolites, lipids) report about the usage of the most 

common, conventional MALDI matrices – CHCA and DHB in positive ion mode [66–69] and 

9-AA in negative ion mode [70–72]. Therefore, an important part of this dissertation was the 

application of the nonpolar DCTB matrix for highly sensitive imaging of CNS drugs from 

mouse brain tissue sections. Of note, since DCTB was previously considered as an electron 

transfer matrix, the appropriate rationale (computational thermodynamic calculations of IE and 

PA) for an additional proton-transfer MALDI mechanism with this matrix was provided. The 

results of this study are included in the dissertation as the Publication 3. 

In addition to the matrix selection, another crucial step in MSI is the process of matrix 

deposition on the top of tissue section. In contrast to the non-imaging MALDI-MS (where in 

dried-droplet method, matrix is pre-mixed with analyte before spotting and co-crystallizing on 

the MALDI target [73]), in MALDI-MSI matrix must be uniformly applied onto the tissue 

surface [31]. Therefore, the tissue during this process should be wet enough to achieve sufficient 

extraction of the tissue-embedded analyte molecules, but at the same time not over wetted to 

avoid delocalization of extracted compounds. Furthermore, the deposition process should lead 

to the formation of homogeneous and small crystals (ideally <1µm), what is particularly 

important for MALDI imaging at high lateral resolutions. To date, different devices were used 

for on-tissue matrix deposition, including manual airbrush and piezoelectric sprayers as well as 

sublimation apparatus. The most widespread and versatile technique, however, employed either 

one of the commercially available (from HTX or SunChrom) or home-built robotic sprayers 

such as the one constructed by the current author and used in all MALDI-MSI sample 

preparation processes described in this dissertation.  

 

 



Introduction 

9 

Importance of high-resolving power in MSI of small molecules 

Due to the high molecular complexity of the analyzed tissue sections in MSI, the importance of 

high-resolving power mass analyzers is even more critical than in any other LC-MS or GC-MS 

analyses. Essentially, without any chromatographic separation, the whole analysis has to rely 

exclusively on the high-resolution and high-accuracy measurements in order to distinguish the 

analyte signal from different numerous interfering peaks. The latter ones are especially rich in 

the low m/z range and may origin from both endogenous compounds and the MALDI matrix-

related species (different clusters and fragment ions) [74, 75]. For example, the detrimental role 

of high resolution capabilities in MSI research has been excellently visualized by Castellino et 

al. [51], where two different metabolites of the same parent drug (lapatinib) could be resolved 

during MALDI imaging experiment in dog liver sections (Figure 6). These two compounds 

showed different spatial distributions, which might be potentially significant for their mode of 

action or toxicity and is of the greatest importance in the drug development process. Of note, 

currently the mass analyzer with the highest resolving powers as well as the highest mass 

accuracy possibilities (used in all research included in this dissertation) is Fourier-transform ion 

cyclotron resonance (FTICR), where the gas-phase ions are trapped, excited and detected within 

the electric trapping plates (ion trap) placed in a high magnetic field [76]. The currently 

available resolving powers exceeds the values of R >106 and mass accuracies <1 ppm [77, 78]. 

 

 

Figure 5. Example of the importance of high resolving power in MSI application to the pharmaceutical research 

(two different metabolites of lapatinib resolved by FTICR-MS showing different spatial distributions across the 

dog liver section). Reproduced from reference [51] with permission of Future Science Group. 
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While the (ultra-)high resolving power will always deliver the more detailed molecular 

information obtained from the MSI experiment (e.g. compared to much faster time-of-flight 

analyzers), one has to remember that the longer transient lengths during FTICR mass analysis 

will also result in much longer total experimental time. This might be even more critical when 

using high spatial resolution and thus, increasing the number of MSI pixels within the whole 

measurement. Furthermore, since MSI can be considered as a “sample volume limited” 

technique, the sensitivity will also deteriorate when employing the very small pixel sizes (=high 

spatial resolution). In all, the MSI methods need to compromise between the ‘4S-criteria’ 

(speed, specificity, spatial resolution and sensitivity), which has been recently summarized and 

presented in a review by Schulz et al. (Figure 6) [79]. 

 

Figure 6. (a) 4-S criteria for MSI; (b) compromise between high speed by TOF-MS versus high specificity by 

FTMS in MSI. Reproduced with permission from [79]. 

 

Quantification, ion suppression and sensitivity challenges in MALDI-MSI 

In MSI, similarly to other mass spectrometry-based analytical strategies, obtaining reliable 

information about the amount of compounds of interest is of great importance. Depending on 

the scientific question, either relative semi-quantitative differences between different 

compounds across the tissue or whole body section (relative quantification) or absolute 

concentrations of analyte in mole (or mass quantity) units per area (or mass) of tissue (absolute 

quantification) are required [80–83]. The relative quantitative mass spectrometry imaging 

(qMSI) approach is realized by applying different normalization routines (where each mass 

spectrum from every single MSI pixel is suspected to a correction with a certain factor), with 

the best results assured by normalization to the appropriately selected internal standard (IS), 

ideally isotope-labeled version of the target analyte [84–87]. On the other hand, obtaining the 

reliable absolute amounts of a compound of interest requires a special 

calibration/standardization strategy, with the matrix-matched calibration approach 
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guaranteeing the most precise and accurate results (Figure 7) [87–90]. Since this chapter 

provides only a brief introduction to the broad topic of quantification by MALDI imaging mass 

spectrometry, the further reading can be found in the tutorial review by the current author, 

included into this dissertation as the Publication 1. 

 

Figure 7. Comparison between various strategies in absolute qMSI. Reproduced with permission from [91]. 

 

Tissue-specific ion suppression is a form of matrix effect that cannot be entirely avoided in 

mass spectrometry imaging since no separation step can be implemented prior to the ionization 

process (in contrast to LC-MS or GC-MS approaches) [92–96]. The undesirable impact of ion 

suppression (as well as the other factors such as matrix crystallization and extraction 

inconsistencies) on the variability of signal intensities across the entire tissue section can be 

overcome by applying one of the above-mentioned normalization and calibration routines 

(ideally matrix-matched calibration combined with IS-normalization) [87]. The locally 

changing ion suppression, however, can also lead to the dramatic loss of signal response for the 

investigated analytes, resulting in some cases (e.g. in particular when employing small pixel 

sizes with highly limited effective amount of an analyte in the irradiated single spot area) in the 

entire analyte signal suppression. As a result, this phenomenon limits the broader application 

of qMSI to the certain sensitivity-challenging analytical fields such as the spatial analysis of 

some pharmaceuticals [52, 97–100]. While the different sophisticated strategies for overcoming 

ion suppression-caused poor sensitivity in MSI were reported to date [101–104], in MALDI 

imaging this can also be realized by simply utilizing different matrix compounds. Such an 

approach was employed in the current research by the application of the nonpolar DCTB matrix 

(which matches the polarity of the target analytes) for high sensitivity quantitative MALDI 

imaging of CNS drugs from mouse brain sections (results are included in the dissertation as the 

Publication 2). 
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Objectives 

The aim of this work was to develop the novel analytical methods for molecular imaging of 

both drugs and endogenous metabolites from mouse tissue sections using matrix-assisted laser 

desorption/ionization (MALDI) and high-resolution Fourier-transform ion cyclotron resonance 

mass spectrometry (FTICR-MS). Firstly, MALDI-FTICR-MS was employed for on-tissue 

molecular identification, as well as high-spatial resolution imaging of bile acids directly from 

the mouse liver biliary networks. In order to achieve this goal, the home-built robotic sprayer 

was constructed and utilized for deposition of highly homogenous and reproducible MALDI 

matrix layers. In addition to the imaging experiments, the discovered phenomenon of the 

proton-bound dimer formation was utilized in order to improve the signal intensities from the 

deprotonated bile acids (using simple methods for broadband collision-induced dissociation of 

the dimers). Furthermore, the nonpolar MALDI matrix, DCTB (2-[(2E)-3-(4-tert-butylphenyl)-

2-methylprop-2-enylidene]malononitrile) was applied for the first time for highly sensitive 

quantitative MALDI imaging of central nervous system (CNS) drugs from mouse brain 

sections. Moreover, the rationale (i.e. computational calculations of proton affinities (PA) and 

ionization energies (IE)) for proton-transfer MALDI mechanism with this matrix was provided; 

and the evidence for brain region- and MALDI matrix-dependent ion suppression of the CNS 

drugs was presented. Finally, high-resolution/high-accuracy MALDI-FTICR mass spectral 

imaging was applied for studying the molecular effects of the peripheral immunomodulatory 

agent teriflunomide on the mouse CNS compartment. Specifically, the potential penetration of 

the drug across the blood-brain barrier (BBB) was assessed, as well as the spatial and 

quantitative profiles of 24 endogenous metabolites after 4-day teriflunomide treatment were 

investigated. 
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V. Summary and Conclusions 

The main goal of this dissertation was to develop the novel methods for label-free molecular 

imaging of different low-molecular weight compounds (including endogenous metabolites and 

pharmaceutical drugs) using matrix-assisted laser desorption/ionization (MALDI) and high-

resolution Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). In 

general, several new approaches were successfully invented, developed and published in the 

international peer-reviewed journals (the list of publications as well as the articles are included 

in this thesis). 

In the first part of the dissertation, MALDI-FTICR method was utilized for MS imaging of bile 

acids at high spatial resolutions. In this work, these essential metabolites (serving the key roles 

in secretion of cholesterol and lipid digestion processes) were for the first time molecularly 

identified and spatially imaged directly from the thin mouse liver sections. Different taurine-

conjugated compounds were successfully identified. A comparison of the acquired MS ion 

images with histological staining showed a good correlation of the mass spectrometry data with 

the anatomical structures of the mouse liver biliary tree. Moreover, the imaging of the smaller 

sub-regions at the high-spatial resolution (MSI pixel size, 25 μm) allowed to distinguish 

between the tiny biliary ducts/capillaries and the large blood vessels and liver parenchyma. The 

developed method can be easily further applied for studying different pathological states that 

involve potential changes in the tissue bile acids content and spatial distribution (e.g. primary 

biliary cholangitis) [105]. 

Importantly, the new home-built robotic sprayer was constructed, based on the Probot micro 

fraction collector and nebulizing nozzle. The investigation of different configurations of 

spraying capillary diameter, nozzle height, distance between the lines and movement speed 

resulted in a excellent performance of the constructed device. The homogeneity of the matrix 

layers (observed for different MALDI matrices) as well as crystal sizes confirmed a superior 

performance of the constructed device in comparison to the commercially available 

piezoelectric sprayer (Bruker ImagePrep). Of note, this sprayer was later used in all research 

described in this dissertation. 

In addition to the MS imaging assays, an extensive formation of proton-bound dimers (PBD) 

of bile acids and taurine was discovered. By using high-resolution/high-accuracy MS the 

strategy for unambiguous identification of these species corresponding signals was presented 

(even though they could be easily misinterpreted as the further BA conjugates). Since the ratio 
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of dimers to deprotonated bile acids was significant particularly for the certain tissue sub-

regions, the new simple techniques for broadband dissociation of the proton-bound dimers were 

invented, which provided increased signal intensities from [M – H]- species. In summary, as 

PBD formation phenomenon is not limited to the taurinated bile acids (it was earlier observed 

also for amino acids [106] and peptides [107]), the newly developed technique (or even more 

the general concept of the non-selective broadband dissociation of different adducts and 

clusters) can be potentially applied for improving sensitivities during MALDI-MSI of different 

endogenous metabolites from both liver and other types of tissues. 

In the second part of the dissertation, some novel approaches were developed and presented. In 

a nutshell, exploring the fundamental aspects of both MALDI mechanism and ion suppression 

phenomenon were utilized here in order to achieve better sensitivities for MALDI-MSI of CNS 

drugs. Specifically, the nonpolar and aprotic MALDI matrix, DCTB (2-[(2E)-3-(4-tert-

butylphenyl)-2-methylprop-2-enylidene]malononitrile), previously well-known as an electron-

transfer (ET) secondary reaction matrix, was investigated for an additional proton-transfer (PT) 

mechanism. The provided mechanistic rationale (i.e. computationally calculated gas-phase 

proton affinity almost equal to PA of the polar and acidic CHCA matrix) as well as the 

experiments with the two representative drugs (ketamine and xylazine) proved unequivocally 

the mixed (ET and PT) mechanism of DCTB-assisted laser desorption/ionization, with PT being 

evidently the main pathway. 

Furthermore, the brain tissue-specific ion suppression phenomenon was thoroughly 

investigated for different MALDI matrices, DCTB versus CHCA and DHB. By using tissue-

extinction coefficient (TEC) approach [108, 109], the MALDI matrix-dependent ionization 

suppression of the five different low-molecular weight lipophilic CNS drugs was clearly 

demonstrated. This is the first report showing an evident quantitative and spatial dependence of 

the ion suppression on the applied matrix in MALDI imaging studies. Furthermore, since the 

above-mentioned examination showed a superior performance of the nonpolar DCTB in 

comparison to the conventional polar and acidic matrices (DHB and CHCA), the developed 

method was applied to quantitative MALDI imaging of the common anesthetic drug, xylazine, 

directly from the mouse brain sections. Moreover, the novel approach for the tissue-matched 

standardization was also proposed. The newly developed strategy of spiking the calibration 

standards on the top of the “unified brain” sections, being in fact the combination of the 

“mimetic tissue” and “on-tissue” models, allowed for obtaining the linear calibration curves 

over the wide concentration range, assuring at the same time very good precision and limit of 
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detection. In summary, the proposed DCTB matrix is a superior alternative to the most 

commonly used polar and acidic matrices, and can be potentially applied not only to the CNS 

drugs but also to other  pharmaceuticals studied by quantitative MALDI mass spectrometry 

imaging. 

The aim of the third part of the dissertation was the application of high-resolution/high-accuracy 

MALDI-FTICR-MSI approach to pharmacometabolomics study of teriflunomide. 

Teriflunomide is a disease-modifying drug, approved for treatment of multiple sclerosis, but its 

mode of action has not been fully elucidated. Whereas the main mechanism of action is linked 

to the peripheral immune system, some in vitro studies showed that teriflunomide could also 

potentially acts directly in the CNS [110–112]. In this work, MALDI-MSI technique was 

utilized in order to investigate the drug’s capacity to cross the blood-brain barrier (BBB), as 

well as to study the drug’s effect on the metabolic compartment of the mouse brain. Even 

though the optimized method was capable for on-tissue drug detection at the low concentration 

level (confirmed in on-tissue spiked experiments), the drug was not detected in the brain 

samples from the animals after 4-day treatment. Interestingly, the further in-depth investigation 

of the spatial and quantitative profiles of 24 endogenous metabolites (amino acids, 

carbohydrates and nucleotides) revealed the evident alterations observed particularly for 

adenine and uracil nucleotides, glutathione and two carbohydrate intermediates. The applied 

strategy, when interpreted in a larger biochemical and pharmacological context, provided an 

additional understanding of the molecular effects of teriflunomide. Finally, these results proved 

also the high potential of the developed MALDI-MSI method for further 

pharmacometabolomics studies of teriflunomide applied to other than healthy animals samples 

(e.g. EAE mouse brain, post-mortem human brain or cerebrospinal fluid (CSF) from multiple 

sclerosis patients). 

In all, the work included in this dissertation addressed several current limitations in MALDI-

MSI field. First and foremost, the two completely new approaches for improving sensitivities 

were proposed (proton-bound dimers dissociation for endogenous metabolites and novel 

application of DCTB matrix for CNS drugs). Furthermore, the newly developed 

standardization/calibration strategy (by using “unified brain” tissue sections) is an attractive 

alternative to the time-consuming mimetic model  Finally, the application of high-

resolution/high-accuracy MALDI-MSI for pharmacometabolomics study of teriflunomide shed 

a new light on the potential impact of the drug on the mouse brain metabolism. Of note, all 

studies (in particular high-spatial resolution imaging as well as quantification of drugs) were 
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achievable thanks to the home-built robotic sprayer that assured far better MALDI matrix 

deposition results in comparison to the commercially available piezoelectric device. In 

summary, all developments presented in this dissertation bring the significant progress to the 

MSI field, and what is more, show the new potential path to be continued and further applied 

to other than studied here classes of compounds and types of animal and human tissues. 
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Figure S1. (a) Home-built robotic sprayer based on the Probot micro fraction collector 

platform, syringe pump and micro spraying nozzle, providing a fine and highly reproducible 

spray. (b) Images of 9-AA matrix sprayed onto the surface of the control liver section: light 

microscope image at 5 magnification (top left) and SEM images at 50 magnification (top 

right), 5,000 (bottom left) and 20,000 (bottom right). Scale bars: 100 µm (top left and right) 

and 1 µm (bottom left and right). 
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Figure S2. Light microscope images of the ablated areas of 9-AA matrix deposited onto the 

mouse liver section and irradiated with different number of laser shots per pixel: 1000 (a), 500 

(b) and 200 (c). Other laser settings were: minimum laser beam focus setting (smallest option 

on commercial Bruker solariX 7T instrument); laser power, 10%; repetition rate, 1 kHz. Scale 

bar: 50 µm. 
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Figure S3. MS ion images representing spatial distributions of the identified TCA/TMCA-

containing proton-bound dimers at m/z 639.2976 ± 0.05, 661.2790 ± 0.05, 677.2556 ± 0.05, 

1035.5672 ± 0.05, 1051.5558 ± 0.05, 1067.5260 ± 0.05 in the whole section of mouse liver 

(pixel size, 70 µm). All ion images were normalized to the 9-AA matrix signal. 
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Figure S4. MALDI-FTICR mass spectra acquired after dried-droplet sample preparation using 

9-AA matrix and standard mixtures of TCA (a), TCA + taurine (b) and TCA + taurine + KCl 

(c). 
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Figure S5. CID experiments of m/z selected dimers obtained directly from mouse liver tissue 

sections (a-f) or from standard mixture of TCA, taurine and potassium chloride (g-j). (Note: 

m/z 123 is an artifact of the FTICR instrument used in the study.) 
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Figure S6. Average mass spectra from different selected regions of interest (ROIs): the whole 

liver tissue section (22,136 single mass spectra averaged) (a), the gall bladder (125 single mass 

spectra averaged) (b), the large bile duct of which MS image is shown in Figure 4c (29 single 

mass spectra (c) and the small bile duct of which MS image is shown in Figure 4e (4 single 

mass spectra averaged) (d). All mass spectra are obtained from the MS imaging experiment 

performed at 70 µm spatial resolution. 
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Table S1. Ratios of average signal intensities of different TCA/TMCA-containing proton-

bound dimers and the average signal intensity of deprotonated TCA/TMCA. The values were 

obtained from four different regions of interest (ROIs) – whole liver section, gall bladder, large 

bile duct and small bile duct – by averaging mass spectra from 22136, 125, 29 and 4 single 

points, respectively (pixel size, 70 µm). 
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Figure S7. Avarage mass spectra from model MALDI imaging experiments conducted on the 

glass slide (a-c) and liver tissue (d-f) regions sprayed homogenously with the equimolar 

mixture of TCA and taurine and imaged using three different instrumental settings: no collision 

voltage at hexapole (0 V) and laser energy set to the optimum conditions (20%) (a, d); 30 V at  

hexapole and laser power 20% (b, e); 0 V at hexapole and doubled laser power (40%) (c, f). All 

average mass spectra were obtained from at least 200 single points (pixel size, 70 µm). The 

PBD/BA values were calculated based on the average sum intensity of all heterodimers 

(TCA/taurine) and average intensity of deprotonated TCA. 
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Figure S-1. (A) Home-built robotic sprayer based on the Probot micro fraction collector 

platform, syringe pump and micro spraying nozzle, providing a fine and highly reproducible 

spray. (B) SEM images of different MALDI matrices: CHCA (left), DHB (middle) and DCTB 

(right) sprayed onto the surface of the control brain section. Magnification: 200; scale bars: 

100 µm. 
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Figure S-2. MS ion images (non-normalized) of five investigated CNS drugs (xylazine, 

ketamine, clonidine, imipramine and clozapine) acquired from MALDI-FTICR imaging TEC 

experiments of mouse brain coronal sections (optical images above) performed with two 

different MALDI matrices: CHCA (A) and DCTB (B). Pixel size: 150 µm; scale bars: 5 mm. 

(Note: different scales of the color schemes were used here in to expose the heterogeneity of 

tissue-specific ion suppression. For quantitative comparison of the averaged intensities obtained 

from CNS drugs with two different matrices, see the graphs presented in Figures 3 and 4 in the 

main text.) 
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Figure S-3. Mean mass spectra obtained from MALDI-FTICR imaging TEC experiments of 

mouse brain coronal sections performed with two different MALDI matrices: CHCA (A) and 

DCTB (B) within the range from m/z 700 to 1000. As can be seen, several prominent signals 

were detected exclusively with CHCA matrix in the region between m/z 900 and 1000 and they 

were tentatively assigned to the sodiated or potassiated phosphatidylinositols based on accurate 

mass measurement and matching to the METLIN database (http://metlin.scripps.edu). 
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Figure S-4. Collision-induced dissociation mass spectra of protonated xylazine obtained with 

MALDI-FTICR from drug standard after dried-droplet sample preparation (A) and from on-

tissue (mouse brain) MALDI-FTICR (B). The proposed fragmentation pattern is shown in the 

upper spectrum. Quadrupole isolation window: 10 u; hexapole collision energy: 20 V. 
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Figure S-5. (A) Workflow of “unified” mimetic brain/on-tissue mixed approach. (B) MS ion 

image of xylazine (m/z 221.11070 ± 0.001) calibration spots (0.2 or 0.4 µL), deposited manually 

on top of the “unified” brain tissue section. (C) On-tissue calibration curve (the error bars 

indicate the 95% confidence limits of the mean.) used to calculate average xylazine 

concentration across the brain tissue section illustrated in Figure 5-B. Coefficient of 

determination (R2 = 0.996) illustrates linear relationship between tissue drug concentration and 

signal response (xylazine/xylazine-d6(IS)). Limit of detection (LOD) was estimated here from 

multiple blank spot measurements, as the analyte concentration giving a signal equal to the 

blank signal plus 3 standard deviations of the blank. Limit of quantification (LOQ) was here 

considered being the lowest calibration standard (spot) fulfilling acceptance criteria of precision 

better than 20% of coefficient of variation (intra-calibration spot precision) and back-calculated 

bias within ±20% (80-120%). (D) Two additional example calibration curves (created from 

separate spiked “unified” brain section). 
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Fig. S1. (a) Home-built robotic MALDI matrix sprayer based on the Probot fraction collector 

platform, micro spraying nozzle and syringe pump (left panel). The constructed device provided 

a fine and highly reproducible spray (zoomed micro nozzle in the right panel). (b, c) SEM 

images of 9-AA matrix sprayed onto the surface of the control brain section using two different 

instruments: home-built sprayer (b) and commercially available ImagePrep (c). Magnification: 

200 (left panels); 5000x (right panels). Scale bars: 100 µm (left panels); 1 µm (right panels). 
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Fig. S2. Microscopic images of mouse brain coronal section sprayed with 9-AA matrix (a) with 

two smaller regions processed at the typical MALDI imaging settings at the raster width of 100 

µm. Laser focus: “small”, laser power: 20%, repetition rate: 1 kHz and two different settings of 

laser shots number/pixel: 500 (b) or 200 (c). The latter setting (200 laser shots/pixel at 70 µm 

pixel size) were selected to provide optimal conditions for all imaging experiments in the 

current study. Scale bars: 1000 µm (a); 100 µm (b, c). 
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Fig. S3. (a) Linear relationship (coefficient of determination, R2 = 0.999) between calculated 

tissue concentration of teriflunomide spiked on the top of control mouse brain section and 

normalized mean abundance. Error bars indicate 95% confidence intervals of the mean. (b) 

Corresponding MS ion image obtained from the control mouse brain section after manually 

spotted (0.5 µL) drug standard solutions of four different concentrations: 184 µM, 36.8 µM, 

7.40 µM and 1.48 µM. (Note: this is enlarged version of the 2D ion image showed in Fig. 1c). 
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