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Nomenclature

β0,1 Assumed step size

∆r Difference between real- and estimated distance

δr Uncertainty for propagation distance

ε1,2 Threshold parameter

ΓA0 Estimated dispersion coefficient A0 wave pulse

ΓS0 Estimated dispersion coefficient S0 wave pulse

µ Step size

ν Physical process variable

ω Angular frequency

ω0 Center frequency

ψ Chirping coefficient

ψA0 Estimated chirping coefficient A0 wave pulse

ψS0 Estimated chirping coefficient S0 wave pulse

ρµ Criteria for new step size

τ0 Wave pulse width

4tµC Maximum time delay microcontroller

4tAir Time delay air

4tinterface Maximum time delay

Ξ Sample Space

ξD Damage process variable



ξRE Random error variable

ξSE Systematic errors variable

a(s), b(s) polynomials

ak Unknown Parameters (Model-based)

A0 First antisymmetric Lamb wave mode

AA0inc
Estimated amplitude A0 wave pulse

am discrete Fourier coefficient

An Wave pulse amplitude

an Wave pulse parameter

AS0inc
Estimated amplitude S0 wave pulse

b0 Slope of straight line

cg Group velocity

cp Phase velocity

e Error

EA0inc Incident wave pulse A0

EA0ref Reflected wave pulse A0

En Individual wave pulse

ES0inc Incident wave pulse S0

ES0ref Reflected wave pulse S0

F (t) measured signal envelope

Fy, Fx Forces

Fest Estimated signal envelope



g Gravity, g = 9.080655 m
s2

HT Hilbert Transform

I Index parameter

J Jacobian

J(ak) Jacobian

k Wave number

k(ω) Wave number depending on the frequency ω

k′′0 Dispersion coefficient

k1 Wave number symmetrical mode

k2 Wave number symmetrical mode

kmax Maximum number of iteration steps

L Length of string

m Order of polynomial

mk Simpler model function

r Propagation distance

Rpe Internal resistor

S Squared error

sk Correction factor

S0 First symmetric Lamb wave mode

S1,2,3 Sensor positions

SD Damage process

sD Damage sequence



SP Physical process

SRE Random error process

sRE(t) Random error sequence

SSE Systematic error process

sSE(t) Systematic error sequence

T Tension

t Discrete time variable

TOAA0inc
Estimated time of arrival A0 wave pulse

TOAS0inc
Estimated time of arrival S0 wave pulse

v Wave velocity

v0 Initial wave velocity

x(t) Measured signal

x0 Initial guess

xbase(t) Measured data - pristine state

xdamage, ydamage Coordinates real damage position

xestimate, yestimate Coordinates estimated damage position

xE(t) Estimated signal

xk Solution for non-linear optimization problem

y(t) Output signal

y0 Distance from starting point
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Abstract / Zusammenfassung

Zusammenfassung

Das Thema automatische Strukturüberwachung ist seit mehr als zwei Jahrzehn-

ten ein wichtiges Thema im Bereich Wissenschaft und Forschung. Auch wenn

der Nutzen der Strukturüberwachung für die Industrie unumstritten ist, sind bis

heute nur wenige Anwendung aus der Praxis bekannt. Ein Grund dafür ist die

relativ hohe Anforderung an die Messsignalauswertung; eine Schädigung an der

Struktur hat nur einen relativen geringen Einfluss auf das gemessene Signal im

Vergleich zu anderen Einflüssen. Aus diesem Grund wird in dieser Disserta-

tion eine neue Möglichkeit für die Erkennung von Schädigungsmerkmalen inner-

halb von gemessenen Signalen vorgestellt. Vorteil der hier vorgestellten Methode

gegenüber derzeit bekannten Methoden ist die Möglichkeit auch schwer zu erken-

nende Schädigungsmerkmale (z.B. geringe Amplitude, überlappte oder stark ver-

rauchte Signale) innerhalb des gemessenen Signals zu identifizieren. Am Beginn

der Arbeit wird der aktuelle Stand der Wissenschaft im Bereich Signalverarbeitung

für Strukturüberwachungsaufgaben diskutiert. Der eigentliche wissenschaftliche

Schwerpunkt, eine neue Methode zur Erkennung von schädigungsrelevanten Kennze-

ichen innerhalb eines gemessenen Signals, wird im Hauptteil der Arbeit vorgestellt

und erklärt. Die Machbarkeit der vorgestellten Methode, wird anhand von syn-

thetischen Signalen und anhand einer realen Anwendung gezeigt. Am Ende der

Arbeit werden die Ergebnisse zusammengefasst und die Grenzen der Methode

aufgelistet.

Abstract

The topic of automatic structural health monitoring has been an important topic

in science and research for more than two decades. Although the benefits of

structural health monitoring for the industry are undisputed, only few practical

applications are known to this day. One reason for this is the relatively high

requirement on the measurement signal evaluation; a Damage to the structure has

only a relatively small effect on the measured signal compared to other influences.

For this reason, this dissertation presents a new possibility for the detection of



damage features within measured signals. The advantage of the present method

in compare to currently known methods is the ability to estimate even difficult to

identify damage characteristics (e.g., low amplitude, overlapped or noisy signals)

within the measured signal. At the beginning of this work the current state of

science in the field of damage feature extraction for structure health monitoring

applications will be discussed. The actual scientific focus, the invention of a new

method for damage feature extraction within a measured signal is presented and

explained in the main part of the thesis. The feasibility of the presented method

is demonstrated based on synthetic signals and also based on a real application.

At the end of the thesis, the results are summarized and the limits of the method

are listed.



1 Introduction

The detection of damages in structures at the earliest possible time is of great

interest for operators of infrastructure, whether it be for civil structures such as

for example bridges or offshore oil platforms, or transportation systems such as

for example aircrafts or trains, because it will enable to operate the infrastructure

safe and economical. Clearly, the safety aspect is obvious and in our days a very

high standard of safety is achieved by inventing maintenance and inspection pro-

cedures such as predefined maintenance intervals and/or non-destructive testing

(NDT) procedures during specific periods. Even economical aspects are also es-

sential when it comes to damage detection. As an example, an evaluation of an

unforeseen damage due to fatigue on an aircraft during its operation can lead to

extensive downtimes which would entail additional cost due to passengers claims

and additional operational costs. But not only unforeseen damage can lead to an

economical loss, also established maintenance procedures are sometimes very cost

intensive when it comes to inspection at hard to access locations because some-

times the time needed for providing the access to the inspection area exceeds the

actual inspection time. For example, to inspect the bold holes in an aircraft fuel

tank several days are needed for providing the access whereas the actual inspection

needs only 0.5 hours.

An other aspect for damage detection is the original designed life time of the

infrastructure because with increasing age the possibility for damages to the struc-

ture is more likely. If one further consider that many of the existing infrastructures

are currently nearing the end of their original design life time it can be expected

that the effort for damage detecting will increase in the future. But with the ac-

tual existing and established damage detection methods the increasing need for

inspection could not be covered. It is for that reason why new damage detection

strategies where established in the past. Damage detection is usually carried out

in the context of one or more closely related disciplines that include [1] :

• structural health monitoring (SHM),

• condition monitoring (CM),
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• non-destructive testing (NDT),

• health and usage monitoring (HUMS),

• statistical process control (SPC),

• damage prognosis (DP).

The term structural health monitoring (SHM) usually refers to the process of

integrating a damage detection strategy for aerospace, civil or mechanical engi-

neering structures in order to monitor the structure or mechanical system over

time. The different aspects of SHM will be discussed in more detail in the section

1.2 - Background on Structural-Health Monitoring. Condition monitoring (CM)

is analogous to SHM, but specifically addresses damage detection in rotating and

reciprocating machinery [2]. Non- destructive testing (NDT) is a common used

damage detection method for a wide field of applications. In compare to the above

mentioned detection methods, for NDT the structure has to be taken out of oper-

ation which can be also decelerated as off-line whereas SHM and CM are on-line

inspection methods where the structure can be monitored during their operation.

Health and usage monitoring (HUMS) are closely related to CM with a special

focus on damage detection for rotorcraft drive trains. Statistical process control

(SPC) is process-based rather than structure based and uses a variety of sensors

to monitor changes in the process [3]. Once damage has been detected, the term

damage prognosis (DP) describes the attempt to predict the remaining useful life

of a system [4].

Non-destructive testing (NDT), condition monitoring and SPC are methods

already established and recognized methods for damage detection and their ap-

plications are present in all different fields of infrastructure monitoring. However,

in the near future these methods will not sufficiency enough to handle with the

increasing use of infrastructure and the associated growing demand for damage

detection. It is therefore a widely belief that damage monitoring will change more

and more to structural health monitoring applications (SHM) because it enables

the monitoring of structures during its operation which in turn can reduce the

needed maintenance effort because only in case of a detected damage a repair or
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change of the component will be needed [1]. Therefore, this thesis will focus pri-

marily on SHM.

1.1 Background on Structural-Health Monitoring

In discussions with people not involved in the topic of structural-health monitoring,

the first question is always: ”What is structural-health monitoring?” The second

question is: ”Why is monitoring of a structure needed at all?” Although this thesis

deals mainly with one specific part of structural-health monitoring, i.e., damage

feature extraction, a very brief explanation of structural-health monitoring (SHM)

and the reasons for its existence will be given to begin with. For a more in-depth

discussion of the SHM topic, the interested reader is referred to the literature on

SHM, e.g. [5], [6] or [7] .

1.1.1 Damage tolerance

In 1951 a new type of aircraft design for high altitude service, the Comet I de-

veloped by the UK Havilland Aircraft Company, entered service. In 1954 tragic

accidents occurred with the planes, originated by fatigue crack propagation lead-

ing to the disintegration of the pressurized fuselage. Failure analysis revealed that

although designed and tested for the conditions found in service, the design was

defective as concerns crack arrest capability. As a lesson learned from the Comet

accidents the design philosophy for new aircraft changed from crack arrest capa-

bility towards the philosophy based upon damage tolerance.

The philosophy of damage tolerance assumes that damages in the aircraft struc-

ture are unavoidable and measures are taken for its control along the aircraft life

cycle. This leads to weight savings and therefore lightweight structures, but also

to increased maintenance costs, particularly those related with periodical inspec-

tions. In compare, the safe life design philosophy means that the structure is

designed such that it is able to withstand a defined fatigue life, normally termed

in flight hours, without any inspection being required. Once the fatigue life has
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been achieved and the load spectrum has not been exceeded, the component has

to be replaced. The damage tolerant design philosophy in turn allows for damage

to grow. This may be either achieved such that a crack grow at any time up to a

certain where it then be stopped by a crack stopper or the component will have

fractured and the loads transferred by that component will be transferred by some

other component. Damage tolerance can however also be based on assuming a

crack to be available at a badly inspect able location and to determine how much

the crack is allowed to grow until it finally reaches a critical stage [8].

With damage tolerant aircraft, inspection intervals are defined on the basis of

acceptable damage propagation. Starting from an initial defect size corresponding

to greater undetectable size using conventional inspection tools (e.g.., visual- or

NDT inspection), the number of flight cycles up to critical dimensions is estimated

[9]. That means, essential ingredients of these approaches are the knowledge of

crack propagation as related with applied loading, and periodical inspections with

a frequency that undetected damage in one inspection will not grow up to critical

size before next inspection.

Although lightweight structures have undeniable advantages and their develop-

ment offers great potential for saving costs, there is one decisive drawback: because

of their optimized design, lightweight structures are more prone to fatigue damage

such as cracks and fractures. If recognized at an early stage, the fatigue damage

is not a problem for the integrity of the structure, but this proviso leads to the

need for periodic inspections of the structure. To return to the example of aircraft,

there are established inspection intervals at which some problematic points on the

structure must be inspected. These inspections are time-consuming in themselves,

but in some cases an even greater effort may be required in order to obtain access

to the problematic points. Thus, for a 30-minute inspection, the time required for

gaining access for the inspection may be several hours, and in 80% to 90% of cases

no damage will be found.

The question is, how can such large numbers of unnecessary inspections be

avoided? One approach is based on the idea that the structure itself could rec-
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ognize damage and immediately notify the operator about the issue. This corre-

sponds with the idea of structural-health monitoring. In a nutshell, SHM implies

a system integrated into the structure which operates with autonomy and informs

the operator in the event of damage to the structure [7]. This results in a reduction

in the number of inspections required and, in the ideal case, access to a neuralgic

point of the structure is only needed in the event of identified damage. Therefore,

it should be possible to increase the efficiency of the lightweight concept.

As already mentioned in the introduction, potential applications for SHM can

be identified in the whole area of infrastructures. For example, Farrar and Wor-

den showed in their book some interesting applications to civil infrastructures [1],

whereas Staszewski et al. focused more on SHM application related to aerospace

[6].

In this thesis the focus is on application for the aerospace industry. This is

because most of the present work and experiments were carried out on airframe

structures, but nevertheless, the ideas present in this thesis are also applicable for

other areas of infrastructure.

In principle, SHM cannot be explained as an isolated idea, but rather as an

integrated system consisting of different sub systems or components, such as for

example:

• Method : for the detection of a possible damage (e.g. Ultrasonic Testing,

guided waves),

• Sensors : as a connecting link between the structure and the SHM system,

• Signal Acquisition: in order to read and convert the data from the sensors,

• Signal- or Data Processing, for extracting the desired information about

possible damage from the measured data,

• Damage Estimation: for calculating the damage location,

• Damage Assessment : which includes different assessment levels [10]:

– Level 1 = damage identified,
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– Level 2 = position of the damage,

– Level 3 = size of the damage,

– Level 4 = type of damage,

– Level 5 = possible implication for the structural integrity.

Each component of the SHM system is necessary for the functioning of the

whole system and every individual component has to be developed for the respec-

tive application. For example, in cases where propagating waves are used for the

detection of a damage to the structure, a different kind of sensor is needed com-

pared with cases where mechanical stresses are used for identifying damage to the

structure. For a better illustration all above listed components of the SHM system

are shown in Fig.(1).

Method	

Figure 1: Principal components within a typical structural-health monitoring sys-
tem.

The first two components, the method and sensors, of the above described SHM

system are depending on the respective application. For instance, when vibration

data is used for damage detection the method of mode analyses or resonance

frequencies may applied, whereas for detection of damages within the structure
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the method of guided waves can lead to lead a successful detection of a damage.

The choice of the respective sensors is strong linked with the applied method. Even

though both components have to selected and developed carefully their application

follows a straight forward approach and many handbooks about the respective

methods and sensors are available.

The situation is different for the remaining components; Their development

needs a in deep knowledge about data processing and because of the unpredictable

behaviour of a damage event very often the problem is associated with non-linear

performance. It is for that reason why the data processing forms the central intel-

ligence of the entire structure system - it reflects the functionality of the structure

and monitors its operational reliability. In other words, the data processing enables

the structure to ”feel”. When the term data processing is mentioned in connection

with SHM, following partial aspects may involved [1]:

• data acquisition,

• data preprocessing (e.g. filtering),

• damage feature extraction,

• damage estimation,

• damage classification,

• structure assessment.

Due to its significance for the structure system, the topic of data processing

is subject to scientific investigation using various approaches. Some of these ap-

proaches are rudimentary and their applications are limited to simple monitoring

functions, whereas other approaches employ more intelligent monitoring strategies

such as, for example, artificial neural networks or machine learning algorithms.

Even when such approaches are capable of realizing the basic physical behaviours

of structures, their application is limited to previously known physical effects.

However, the behaviour of a damage event to the structure is not in any way pre-

dictable.
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In this work, the main focus is on several aspects of the above mentioned data

processing topic, mainly:

• data acquisition and preprocessing,

• damage feature extraction,

• damage estimation.

The data processing approach introduced in this work is quite different: the

process displays the different physical effects within the entire structure system

based on mathematical models, and the mathematical models are capable of being

adapted to physical effects which are not known in advance. As a result, the process

identifies the parameters or features relevant to a damage even when they were

not previously known or were hidden by other structural effects. This represents

a clear improvement in the damage feature extraction and the entire structure

system compared to the currently available data processing strategies, and will

significantly accelerate achievement of the overall aim –a feeling structure for real

applications.

Although the present thesis concentrates mainly on the topic of data process-

ing, at least as important for the structure system are the other necessary parts

such as sensors, the sensor arrangement and the data acquisition system, and

without consideration of these components the introduction of a structure mon-

itoring system would not be complete. Consequently, in this thesis the various

components of a structural health monitoring system are introduced, and if they

were not commercially available, these components were newly developed for the

purposes of this work, with the aim of a real application for damage detection

on thin plate-like structures. The tests on the entire structure monitoring sys-

tem or structural-health monitoring system, including introduced and developed

components and the resulting outcomes, are described at the end of the thesis.

1.2 Some Notes for the Reader

As previously mentioned, the main focus in this work is on a novel data processing

method for the extraction of damage-related features within a measured signal.
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A more general discussion of the data processing issue for damage identification

in structures is given in chapter 3. Here, the physical process of signal measure-

ment and effect of damage inside a structure on the measured signal is discussed.

The current state of the art in the field of data processing for damage detection

in structures is illustrated based on a classification matrix for the different data

processing methods. All the illustrated methods are discussed in chapter 3.

In chapter 4, the concept of model-based damage feature extraction is intro-

duced. The chapter starts with a high-level view on the introduced concept in

order to give the reader a broader perspective on the data processing problem,

and the reader is cautioned regarding the applicability of the presented theory to

other signal processing problems. In the second part of chapter 4, the data pro-

cessing concept is explained using a real problem based on measured Lamb waves

in thin plate-like structures. The feasibility of the whole data processing concept

is proven at the end of chapter 4. For the proof of concept, a synthetic signal was

used in this work.

Although the main scientific part of this work deals with data processing for

measured signals from solid structures, in the last two chapters two different SHM

systems for damage detection are presented. In chapter 6, an SHM system for

monitoring the integrity of aircraft fuselage skin panels is presented. The whole

SHM system was developed within the framework of this thesis, and it consists of

the following parts:

1. Several piezoelectric transducers fix bonded to the structure,

2. Wireless measurement devices connected to each sensor,

3. Model-based damage feature extraction algorithm,

4. Nonlinear damage position estimation algorithm.

All the individual components are discussed together with the results in chapter

6. In the end of this thesis a short summary including the limitations of the herein

present methods will be discussed, followed by the outlook for the next steps.
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2 Damage Feature Extraction Procedure

The principal aim of structural-health monitoring is clear –to identify and, in the

best case scenario qualify, the damage to a structure. These two main items, iden-

tifying and qualifying the damage, constitute the purpose of the damage feature

extraction process and indicate the importance of the process in the structural-

health monitoring system. A damage-sensitive feature is some quantity extracted

from the measured system response data that indicates the presence (or not) of

damage in a structure [1]. Although this statement is accepted by the SHM com-

munity, there remains a need to clarify the question of why the process of damage

identification and qualification is seen as complicated. In order to answer this

question in the next section the underlying processes involved during a damage

event to a structure will be discussed.

This chapter is organized as follows: Firstly, the basic physical process involved

in the damage process in a structure and the resulting measured signal will be

explained. This leads the reader to the intrinsic problem of analysing a signal

for damage monitoring of structures. In the second part of this chapter, existing

signal processing or damage feature extraction procedures are discussed, and a

novel classification matrix is presented for the various methods with different levels

of functionality. The various methods listed in the matrix are discussed in the last

section of the chapter.

2.1 Underlying Processes

The processing of the data is performed with one goal in mind –to extract the

desired information and reject the extraneous data [11]. The first important issue

is that of identifying the desired information. Of course it is perfectly clear that if

we are looking for damage inside a structure, the desired information is about such

damage, but in many cases this damage is not visible from outside, e.g., a crack or

delamination inside the structure. In order to identify this kind of hidden damage,

appreciably different methods and processes can be applied, always depending on

the respective application (structure, expected damage). Strictly speaking, the
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process of damage estimation consists of several processes which are illustrated

in Fig.(2).The big gray box < underlying damage estimation process > on the

schematic drawing shows the principal physical process used for damage identifi-

cation inside the structure of interest, (e.g., wave propagation or stress and strain

measurements) and the ”damage process” which means the effect of the damage

on the principal physical process, such as, for example, a wave reflected from an

area of internal damage to the structure. Both processes will form the output of

the underlying damage estimation process, which in theory is an idealized output

without any noise or errors.

+	+	

MEASUREMENT	
PROCESS	

ESTIMATION	

Principal	Physical	
Process	(determinis?c):	
e.g.	wave	propaga?on	

Damage	Process	(stochas?c):	
e.g.	reflected	wave	

Systema?c	errors		
(predictable):	
e.g.	temperature	changes,	
sensor	posi?ons,…	

Random	Errors	
(unpredictable):	
e.g.	synchroniza?on	delay	
between	sensor	nodes,…		

UNDERLYING	DAMAGE	ESTIMATION	PROCESS:	

Figure 2: Process map of the damage estimation process with the different physical
processes involved.

In reality however, all measurements are an approximation to the real process

under investigation because measurements are always affected by uncertainties
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such as noise or errors. Errors can be caused by, e.g., temperature changes, which

may affect the physical behaviour of a structure or may have other effects on

the measurement process which are previously known and therefore reproducible.

Therefore, these types of errors are predictable.

Another type of error which is not predictable is called a random error. Random

errors can be affected by electronic noise or synchronization delays between wireless

nodes.

2.1.1 Mathematical Process Models

In the above subsection, the different physical processes involved in the dam-

age feature estimation procedure were explained, together with their temporal

behaviour. This general view of the procedure is not sufficient for the develop-

ment of the mathematical models needed for the model-based approach proposed

in this work. Therefore, in this subsection the more general process map from

Fig.(2) above will be translated into the mathematical model structure displayed

in Fig.(3). The mathematical description of the different processes involved follows

this illustration of the damage feature extraction procedure.

Principal Physical Process, SP (t, ν):

When it is assumed that there are no uncertainties, either systematic or random,

the structure response process in the pristine state (without damage) can be inter-

preted as a deterministic process, which means that the process is repeatable and

continued measurements from the process reproduce an identical sequence over

and over again. Mathematically, a deterministic process can be expressed as:

SP (t, ν) ν ∈ Ξ, t ∈ I (1)

where I is a set of index parameters and Ξ is the sample space. As already

mentioned, the principal physical process is a deterministic process, which means

that t1 and ν are deterministic. The corresponding output of the baseline process

1Since the text in this thesis is predominantly concerned with discrete time, the usual time
symbol t is used as a discrete-time index
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Damage	
process	SD(t,ξD)	
(stochas3c)	

Systema3c	
errors	SSE(t,ξSE)	
(predictable)	

Random	errors	
SRE(t,ξRE)	

(unpredictable)	

sD(t)	 sSE(t)	 sRE(t)	
sP(t)	 x(t)	

+	 +	 +	

Principal	phy.	
process	SP(t,ν)	
(deterministric)	

Figure 3: Characteristic flow chart of the measured signal x(t) composition. The
different processes involved are summed to form the resulting signal x(t) which,
in turn, is the signal containing the hidden information about possible damage to
the structure.

is a discrete deterministic sequence defined by:

sP (t) := SP (t, ν) (2)

where all parameters and time events are previously known.

Damage Process, SD(t, ξD):

The process of damage appearance is quite different from the principal physical

process and can be seen as a random process because neither the location nor the

size of the damage is known in advance, and furthermore, the time of occurrence

of the damage is not previously known. The output of the damage process is

a sequence with several unknown parameters, such as unknown time, location or

amplitude, and these unknown parameters are the features of interest –the damage

features. A stochastic process can be expressed mathematically as:

SD(t, ξD) ξD ∈ Ξ, t ∈ I (3)
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where I is a set of index parameters and Ξ is the sample space. For the case of

a damage process it is assumed that t and ξD both vary, and therefore the whole

process is considered as a random time function [11]. The corresponding output

discrete random sequence of the damage process SD is defined by:

sD(t) := SD(t, ξD) (4)

and this is a particular realization of a stochastic process in which each distinct

value of time can be interpreted as a random value. Thus we can consider the

outcome of a damage process as a sequence of ordered (in time) random variables.

Systematic Errors, SSE(t, ξSE):

The third process which has an influence on the measured signal x(t) is the pro-

cess of systematic errors. Systemic errors are predictable and typically constant

or proportional to the true value. Systematic errors can be caused by, e.g., inter-

ference with the measurement process from the environment, such as temperature

changes or environmental vibrations. The output of the systematic error process

is the sequence sSE(t) consisting of unknown but predictable parameters in time t

and sample space ξSE.

Random Errors, SRE(t, ξRE):

Random errors are always present in the measurement process and are unpre-

dictable. They are affected by the inherently unpredictable fluctuations in the

readings of the measurement apparatus. For example, for wireless networks, the

synchronization signal between the different nodes changes slightly between ev-

ery measurement, which has a direct effect on the measurement results. As an

outcome from the random error process SRE(t, ξRE) we obtain a sequence sRE(t)

consisting of unknown and unpredictable parameters in time t and sample space

ξRE.
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Resulting Signal, x(t):

All the separate sequences together form the resulting discrete measured response

signal x(t), as illustrated in Fig.(3) above. When we consider the measured signal

as a discrete random signal, its definition is as follows:

x(t) := sP (t) + sD(t) + sSE(t) + sRE(t) (5)

All the uncertainties within a measured signal, whether predictable or unpre-

dictable, make the identification of damage-related features difficult. This applies

not only to the analysis of measured signals from structures, but also in vari-

ous other engineering fields such as speech recognition or automatic heart-rhythm

recognition. Although the objective is to extract the features of interest from a

measured signal, the analysis methods differ, mainly because of the different un-

derlying physical or biological processes. It is for exactly that reason that separate

extraction strategies for the identification of damage-related features are needed.

2.2 Damage Feature Extraction Processes: State of the

Art and Some Theoretical Background

The process of damage feature extraction is not a new concept; it was needed

from the outset of the development of structural-health monitoring in order to

identify the interesting features within a measured response from the structure.

Concepts already in use include some well-known signal analysis methods, e.g.,

Fourier or wavelet transforms, and other methods related to the scientific field

of data prediction and parameter estimation. Different methods provide different

types of results. For example, results from analysis methods based on transforms

provide information about the spectral representation of the signal, whereas results

from prediction methods contain more physical information about the underlying

processes. Another useful source of diagnostic features is to build a physical or

data-based parametric model of the structure; the parameters of these models

or the predictive errors associated with these models than become the damage-

sensitive features.

15



To the best of the author’s knowledge, no classification of the different damage

feature extraction methods is currently available, and therefore this study starts

with the invention of a classification system as illustrated in Fig.(4). The idea

behind the classification system is to list the different analysis methods and group

them into six different levels, starting with the first level, which represents the

lowest level of mathematical complexity, and progressing through the levels to

methods with a more complex mathematical background. Simultaneously, the

level of complexity corresponds with the ability of the methods to handle measured

data with different levels of uncertainty. For example, the methods in the lowest

level are only able to process data which have almost no uncertainty, while in the

highest level the data may contain uncertainties, predictable or unpredictable.

The main advantage of the novel damage feature extraction method introduced

in this work is its ability to extract the features of interest even when these fea-

tures are overlapped by other features with a much higher amplitude within the

analysed signal. Therefore, the damage feature extraction procedure introduced in

this work corresponds with Level 6 on the damage feature extraction classification

diagram illustrated in Fig.(4).

2.2.1 Level 1: Measurement Comparison

The lowest level, Level 1, involves no explicit mathematical model; it is based on

measured data in the pristine condition of the structure, which can be interpreted

as a type of baseline model for comparison with all subsequent measurements. If

there are any changes in the measured data, the comparison process indicates the

difference between the pristine state and the actual measured data 5. Mathemat-

ically, the baseline method can be expressed as vector subtraction between the

actual measured data x(t) and the data measured in the pristine state xbase(t) of

the structure:

y(t) = xbase(t)− x(t) (6)

where y is the difference signal and t is the discrete time index. A major draw-

back of this method is the fact that different measurement conditions can also
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Figure 4: Comparison between different damage feature extraction methods: levels
of complexity and uncertainty. The first three levels are non-parametric analysis
methods. Starting from Level 4, the analysis methods are parametric, and the two
highest levels use a model-based approach.

affect the resulting measured data, and as a consequence, the correlation with the

baseline measurement indicates some differences which are not caused by damage.

Therefore, this method is limited to applications with consistent conditions, e.g.,

laboratory conditions.

Worden et al. [12] or Farrar et al. [1] , in their work on the fundamental

axioms of structural-health monitoring, made a clear statement that all damage

feature extraction methods are based on a comparison between different states or

conditions of the structure. In addition, the authors state the following. ”The

fact that damage detection algorithms require a comparison of system states is at

the root of one of the main problems in SHM. If the normal condition or base-
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Figure 5: Example of a damage feature extraction process in Level 1: baseline
subtraction.

line state changes as a result of environmental or operational variations, then the

application of a novel detection algorithm may yield a false-positive indication of

damage.” For example, Farrar et al. [13] found during their experiments that the

day-night temperature cycle affects the measured response data from the structure

more than a possible defect in the structure. In order to overcome the influence of

temperature differences on the measured response signal, Croxford et al. [14] im-

plemented a temperature compensation strategy. They used two different methods

for compensation of the temperature effect: optimal baseline selection and base-

line signal stretching. Satisfactory experimental results were obtained when both

methods were combined. The analysis of the proposed method leads to several

guidelines for practical implementation of temperature compensation. Liu et al.

[15] invented in their work a method for baseline correction by reconstructing the

baseline signal at the temperature of the current signal. They used the orthogonal

matching pursuit for compensating the amplitude of baseline signal. Several liter-

ature can be found for temperature compensation of baseline measurements when

guided waves are used for damage detection e.g. [16], [17] or [18].
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2.2.2 Level 2: Spectral Estimation

In the next level, the mathematical model incorporates little a priori information

and is used to analyse the information content (spectrum, time-frequency, etc...)

of the raw measurement data, in an attempt to draw some rough conclusions

about the nature of the signals under investigation (Fig. (6)). The gaol of the

spectral estimation is to estimate the spectral density of a random signal from

a sequence of time samples of the signal. The spectral density characterizes the

frequency content of the signal. The technique of spectral estimation is common

used for monitoring of rotating machineries such as for example gear- or bearing

applications and the application on rotating machinery has made the transition

from research topic to actual practice [1], [19].

x(t)	
Spectral	Es/mator	

Frequency	

Phase	angle	

ω	

θ	

ω0	

θ0	

Figure 6: Typical example of a spectral estimation process: analysis of two sine
waves.
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Fourier Transform

If a signal is discrete and periodic then it can be represented by a Fourier series

[20]. The discrete Fourier series representation of a signal is given by the pair

x(t) =
∑

ame
jωmt (7)

and

am =
1

M

∑
x(t)e−jωmt (8)

where am are the discrete Fourier coefficients and e−jx = cos(x)− jsin(x). These

relations imply that the discrete signal under investigation can be decomposed

into a unique set of harmonics. In other words, the representation of the signal

as a Fourier series enables us to extract spectral content from the signal, and the

corresponding coefficients can be considered as an equivalent representation of the

information in the signal under investigation. However, the information about the

harmonic base functions has global support. For example, in decomposing a signal

where a discontinuity in time is present, all the weights of the basis function will

be affected; the phenomenon of discontinuity is diluted. Therefore, FT is usually

used for stationary signals [21].

Short-Time Fourier Transform

The classical Fourier transform is a very strong signal analysis tool for stationary

signals. However, for non-stationary signals it fails to describe how the frequency

evolves with time. For these types of signals the short-time Fourier transform

(STFT) is used, as it is able to extract the frequency content of the signal and

its corresponding time value. The STFT breaks up the non-stationary signal into

small segments, so-called windows, and then the FT is applied to each segment to

ascertain the frequencies that exist in that segment. These spectra, taken together,

indicate how the spectrum varies in time [21, 5]. However, the STFT windowing

process results in a trade-off between the time and the frequency resolutions, and

therefore accuracy cannot be obtained simultaneously in both time and frequency

domains.

The method of STFT is very commonly used for analysing measured response
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signals from structures, since the STFT gives a very brief overview of the frequency

spectra of the signal. Here, only the most cited publications are named, e.g., Ihn

and Chang [22] or Giurgiutu and Cuc [23]. Droubi et al. [24] used in their work

for the processing of measured data from acoustic emission data the Fast-Fourier

Transform in order to extract the spectral information.

Wavelet Transform

The wavelet transform (WT) breaks up a signal into a series of wavelets that are

shifted and scaled. The functional basis consists of dilated and shifted versions

of a single basis function called a mother wavelet, which can be seen as a wave

packet. The WT has the advantage that it can adjust the window length according

to the needs of the real signal. Therefore, detailed information (high-frequency

components) can be obtained with a narrow window and general information (low-

frequency components) with a wide window. A good introduction to WT is given in

the book by Staszewski et al. [10], where the two main types of WT, the continuous

wavelet transform and the discrete wavelet transform, are described. However, the

WT has difficulty in picking up the correct wavelet for a specific target signal, and

therefore the application of WT requires considerable knowledge and experience.

A good overview about wavelet transform for SHM applications is given in

the compendium provided by Reda Taha et al. [25] although the work was done

in 2006. More actual, Shaopeng et al. [26] used the so called empirical wavelet

transform (EWT) for analysing multi-mode signals gained from acoustic emission

data. The idea of EWT is decompose a signal accordingly to its contained infor-

mation. Sarrafi et al. [27] combined the wavelet transform with a probabilistic

model in order to overcome the problems with uncertainties coming from opera-

tional/environmental variability. A novelty approach for the design of a mother

wavelet for the processing of measured signals from guided waves is presented in

the work from Chen et al. [28]. They used a emitted tone-burst signal as mother

wavelet for the detection of damage features caused by corrosion.
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Summary: Spectral Estimation

In summary, all damage feature extraction methods which are based on transforms

are powerful tools when the information about possible damage in the structure is

hidden in the frequency content of the signal. Examples of such applications are

primarily in the field of civil infrastructures, where the frequency behaviour of the

structure under investigation is analysed. Due to the outdated infrastructure in

many countries, SHM applications for civil structures have become very popular

in the last few decades, leading to many publications. For example, Amezequita et

al. [29] and Noel [30] used the WT for extracting information about vibration from

the measured signal. For other damage detection methods, e.g., guided ultrasonic

waves, the application of transfer methods is limited to signals where the damage-

related features are clearly separated from other features in the signal. Staszewski

et al. [10] used the WT for analysing measured signals obtained from guided

ultrasonic wave propagation. They filtered out the information about the different

wave modes within the measured signal.

2.2.3 Level 3: Black Box Models

At the next level are black box models, which are basically used as data prediction

mechanisms. They have a parametric form (polynomial, transfer function, etc.)

but there is little physical information that can be gleaned from their outputs.

The black box model means that we know only the input x(t) and the output y(t)

of the system, but the system itself is not known. The behaviour of the system is

derived using data prediction mechanics such as polynomials or transfer functions.

Examples for black box models are [1]:

• Look-up table models,

• Curve fitting,

• Transfer function,

• Neuronal networks.
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Figure 7: Black box model: example of curve fitting by polynomial interpolation.

Curve Fitting:

One commonly used data prediction method is fitting of various types of functions,

e.g., polynomials, exponential functions or sine and cosine functions, to the mea-

sured data. In many cases, a polynomial of a certain degree will be appropriate as

a rudimentary model, as illustrated in Fig.(7). A simple example of a curve-fitting

model is that of a straight line. Here the polynomial equation is given by

y = b0 + b1x (9)

where b1 is the slope of the straight line. For more complex data, such as a simple

curve, the degree of the polynomial equation must be expanded to a higher order

m as follows.

y = b0 + b1x+ ...+ bmxm (10)

Park et al. [31] measured the deformation of a steel beam using a strain gauge

fibre-optic sensor and extracted the information about the deformation from the

measured data using a 2nd order polynomial equation.
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Neural Networks

One damage feature extraction method which can be associated with a black box

model is the method of artificial neural networks (ANNs) or only neuronal net-

works. This method has been frequently used in the last few decades. ANNs are

biologically inspired artificial intelligence representations that mimic the function-

ality of the nervous system. Similar to biological neural networks, ANNs consist of

a set of transfer functions which can be discontinuous, (e.g., symmetrized Heavi-

side step function), continuous or linear. The goal of the ANN is to solve problems

in the same way as the human brain, and this means that the ANN must learn

from defined and known data in order to be able to interpret measured data. Even

though the ANN is biologically inspired, the underlying physical process, in the

best case, may be approximated by polynomials. One of the first know applica-

tions of Neuronal Networks for damage feature extraction was invented in 2001

by Sohn et al [32]. They present a Neuronal Network algorithm in their paper

with the general purpose of feature extraction and data reduction that contain the

maximum amount of information from the original data set. For the fundamentals

of ANNs, see, for example, Haykin [33].

Due to its popularity, the ANN method is increasingly finding its way into

SHM applications. For example, Su and Ye [34] extracted spectrographic features

from Lamb wave signals in the time-frequency domain to construct a damage pa-

rameters database (DPD). The DPD was then used off-line to train a multilayer

feed forward ANN under the supervision of an error back-propagation algorithm.

In his book, Giurgiutiu [5] gave a short introduction to ANNs and their possible

uses in SHM applications. Based on the example of measurement data from elec-

tromechanical impedance (EMI) experiments on thin circular aluminium plates

with different damage locations, the functionality of ANNs in applications with

EMI measurements was demonstrated. Lam et al. [35] used a combination of

the pattern recognition method and the Bayesian ANN design method to form a

practical SHM methodology. In their damage detection method, they proposed

Ritz vectors as pattern features to detect the damage location and severity; these

changes correspond to the differences between the measured Ritz vectors for the
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undamaged and the possibly damaged structures. The functionality of the method

was demonstrated using analytical models. Bao et al. [36] described in their work

an approach of reducing the noise within measured data by transforming signals

in images and training a deep neural network for anomaly classification. For ma-

chine health monitoring Zhao et al. [37] used different methods of deep-learning.

The compared and discussed the results in order to give a overview of possible

application. Cha et al. [38] invented in their work a visual inspection system

in combination with a deep-learning algorithm to avoid the human factor during

visual inspection.

Transfer Function

Another possibility for predicting the behaviour of the system without knowing

the physical principles of the system, is to derive a so-called transfer function from

the input and output data, (e.g., [39]). In principle, the dynamic behaviour of a

linear system can be described by differential equations in the time domain,

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ ...+ a1

dy

dt
+ a0y = bm

dmx

dtm
+ ...+ b1

dx

dt
+ b0x, n ≥ m, (11)

where x is the input and y is the output of the linear system. When the initial state

of the linear system is assumed to be without energy and furthermore the Laplace

transform [40] (y(s) = L{y(t)}, x(s) = L{x(t)}) is applied to the differential

equation the above differential equation changes to,

an · sn · y(s) + an−1 · sn−1 · y(s) + ...+ a1 · s · y(s) + a0 · y(s) =

bm · sm · x(s) + bm−1 · sm−1 · x(s) + ...+ b1 · s · x(s) + b0 · x(s). (12)

The quotient y(s)
x(s)

forms now the transfer function G(s),

G(s) =
y(s)

x(s)
=
bm · sm + bm−1 · sm−1 + ...+ b1 · s+ b0
an · sn + an−1 · sn−1 + ...+ a1 · s+ a0

=
Z(s)

N(s)
. (13)

The transfer function of a linear system is thus a rational function,
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G(s) =
b(s)

a(s)
(14)

where the polynomials a(s) and b(s) are given by equation (12) and the transfer

function is not any more depending on the input- and out signals.

Much literature can be found on the topic of transfer functions for damage

feature extraction. Here, only the papers that are the most relevant from the

point of view of the author are briefly mentioned.

Zang et al. [41] presented a possible method for correlating measured frequency

responses from multiple sensors and proposed to use these correlated responses as

an indicator for structural damage detection. They developed one transfer func-

tion for the pristine state of the structure and a second transfer function for all

subsequent responses of the structure, and correlated both transfer functions. Ex-

periments on real structures showed that the algorithm required further investi-

gation, leading to the combination of the transfer function method with neural

networks. Lanza di Scalea et al. [42] estimated in their work the dynamic trans-

fer function between two outputs of a linear system subjected to an uncontrolled

and generally unknown excitation and possible uncorrelated noise present at both

outputs. They demonstrated that by taking in account the normalizing factor for

the two outputs the linear system works stable also for unknown excitation.

Summary: Black Box Models

The examples illustrated above represent only a few data prediction methods, and

the list of suitable methods can be expanded to include others, such as least mean

square estimation or more sophisticated methods.

Black box models are very often used for applications on civil structures like

bridges and one of the reason is the problem of the identification of the physi-

cal properties of the structures because their development phase was many years

(decades) ago. Examples for black box models used for the monitoring of bridges

can be found in e.g. [43] or [44]. Park et al. [45] used displacement measurement

taken by different linear sensor for performing a inverse structural analysis of a

steel beam.
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Nevertheless, there is still little physical information that can be gleaned from

the output of black box models.

2.2.4 Level 4: White Box Models

Progressing to Level 4, white box models are evolved that can use the underlying

black box structures; however, now the parameters can be used to extract limited

physical information from the data as illustrated in Fig.(8). For instance, a black

box transfer function model fitted to the data yields polynomial coefficients that

can be factored to extract resonance frequencies and damping coefficients, char-

acterizing the overall system response being measured. In this chapter only the

below listed examples of White Box Models will be discussed,

• Matching Pursuit,

• Gaussian Mixture Model.

A more complete list of possible white Box Models for SHM application can

be found in the book about machine learning provided by Farrar et al. [1].

Matching Pursuit

In recent years another damage feature extraction method has become very pop-

ular; the matching pursuit (MP) method. The idea of MP is to find a solution

to the problem of approximate data by comparing the measured data with a set

of redundant data (library) functions. The library may include functions such as

wavelets or Fourier sets and the algorithm automatically chooses the function f(n)

within the library which is optimal for the representation of a given signal x(t). In

the first step, this is an approximation. A criterion for the optimality of a given

solution can be formulated as the minimization of the error. Finding the mini-

mum error requires checking all the possible combinations (subsets) of functions

from the library, leading to a combinatorial explosion. Therefore, the problem is

intractable even for moderate library sizes.

Mallat and Zhang [46], in 1993, first proposed the MP method for decomposing

any signal into a linear expansion of waveforms selected from a redundant library
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Figure 8: Basic structure of a white box model for damage feature extraction.

of functions. Their work showed that even where the MP is a very powerful tool for

analysing and coding signals, some effort has to be made to find ways of reducing

the high dimensionality of the library.

Raghavan and Cesnik [47] combined chirplet matching pursuit with a mode

correlation check for single-point sensors. In their work they demonstrated the

functionality of the proposed algorithm using numerical and experimental results.

The proposed algorithm was able to separate overlapping multimodal reflections

and estimate the radial locations of defects.

A different approach for solving the problem of identification of damage fea-

tures within measured response signals, uses guided ultrasonic waves (GUW). This

approach was taken by Xu et al. [48], using MP with Gaussian and chirplet li-

braries to decompose and approximate Lamb waves and extract the wave parame-
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ters. They stated that the Gaussian library-based MP is optimal for decomposing

symmetric signals, whereas the chirplet library-based MP is able to decompose

asymmetric signals, e.g., dispersed Lamb waves.

Marchi et al. [49] used a time-frequency procedure based on the warped fre-

quency transform (WFT) to process multimodal and dispersive Lamb waves for

structural-health monitoring (SHM) applications. The WFT was combined with

a basic pursuit algorithm to extract the distance travelled by the ultrasonic waves,

even in the case of the multimodal dispersive propagation associated with broad-

band excitation of the waveguide. They proved the concept of the algorithm based

on a real thin aluminium plate with artificial damage.

Probabilistic Methods –Gaussian Mixture Model

In signal processing, probabilistic methods for feature extraction are commonly

used for a wide range of applications. Examples include:

• Speech recognition,

• Image analysis,

• Biomedicine,

• Control applications,

• Seismology.

Thus, it is not surprising that probabilistic signal processing methods are also used

for SHM applications. The most relevant studies are highlighted below.

An overview of statistical signal processing for fault detection is given in two

papers by Worden et al. [12], [2] and in the work of Kulkarni and Achenbach [50].

Numerous publications are available discussing the processing of data obtained

from vibration-based monitoring methods, and therefore only the most well-known

studies are named here, e.g., [51], [52] and [53]. Flynn et al. [54] used a Rayleigh-

based statistical model of scattered wave measurements in combination with a

maximum likelihood algorithm for damage location in guided ultrasonic wave ap-

plications.
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A relatively new probabilistic approach for damage signal processing is the so-

called Gaussian mixture model. The basic idea of this method is to estimate, in

the first step, the damage index from the measured response signals and, in the

second step, to calculate the probability of a possible damage to the structure using

all involved Gaussian models. As a result of the mixture of Gaussian models the

damage-related feature is identified. A good overview of Gaussian mixture models

is given by Qiu [55]. This study demonstrated the feasibility of the Gaussian

mixture model for damage estimation using a practical example.

2.2.5 Level 5: Mathematical Model Class 1

Progressing up the levels, Level 5 introduces true model-based techniques that

explicitly incorporate the process physics using a lumped physical model struc-

ture, usually characterized by ordinary differential or difference equations (ODE).

The lumped physical model simplifies descriptions of the behaviours of physical

systems by approximating the behaviour of the distributed system under certain

assumptions. A typical ordinary differential equation contains one or more deriva-

tives of an unknown function y(t) which can be determined from the equation.

The equation may also contain y itself, as well as given functions and constants.

For example, in a general form an ODE can be written as

F (x, y, y
′
, ..., y(n−1)) = y(n) (15)

where x is a given function and y is a unknown function. This type of ODE can

be solved using numerical methods.

For example, if we drop a stone, then its acceleration can be calculated by

y
′′

=
d2y

dt2
(16)

which is equal to the acceleration due to gravity (g = 9.080665 m
s2

). Equation

(16) is only an approximation to reality because we ignore the air resistance. By

integration we obtain the velocity

y
′
=
dy

dt
= gt+ v0, (17)
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where v0 is the initial velocity at the beginning of the motion, (e.g., v0 = 0).

Integrating once more, we obtain the distance travelled

y =
1

2
gt2 + v0t+ y0, (18)

where y0 is the distance from the start point. This simple example of a stone

attracted by the earth’s gravity demonstrates the use of ODE for solving physical

problems. The problem was first described by the initial 2nd-order ODE y
′′
, and

by reducing the degree of the ODE we obtained the distance travelled by the stone

y.

For the case a set of differential equations have to solved the single equations

can be converted into a form of matrix. The matrix representation of the set of

differential equations is known as state-space representation.

More examples of ODE for describing physical phenomena can be found in engi-

neering books such as the famous book by Kreyszig [56], or the book by Giurgiutiu

[5] which is more focused on SHM applications.

Applications of lumped physical models for damage feature extraction are lim-

ited to simpler physical problems such as vibration-based monitoring methods. For

example, Overbey et al. [57] used a state-space model for extracting parameters

of interest from simulated vibration data. For validation, the state-space model

was subsequently tested in an experiment.

Todd et al. [58] presented a feature extractor for a non-linear time series ob-

tained from vibration-based monitoring methods. They first tuned the excitation

for maximum state-space sensitivity and then combined it with a state-space re-

construction approach to yield a feature that was very sensitive to subtle changes

in the system. The experiment was based on an eight-degrees-of-freedom system,

where damage was imparted as a local stiffness reduction.

Worden et al. [59], in their paper ”A review of non-linear dynamics applica-

tions to structural health monitoring” provide a good illustration of how to use

ODE for solving physical problems based on a cracked beam.

The list of relevant publications is almost endless, but it is obvious that the

majority of relevant publications are in the field of vibration monitoring for civil
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structures. This is due to the physical simplicity of such engineering systems.

2.2.6 Level 6: Mathematical Model Class 2

It is fair to say that only the simplest physical systems can be modelled by ODE,

whereas more complex problems such as wave propagation lead to partial dif-

ferential equations (PDEs) which are included in the last level, Level 6, of our

model-based damage feature extraction scheme. The top level captures distributed

physical model structures in the form of partial differential equations. PDEs arise

in connection with various physical and geometrical problems when the functions

involved depend on two or more independent variables, usually time t and one or

more spatial variables.

Figure 9: Force diagram for short segment a string in transverse vibration.

In order to give the reader a clearer picture of distributed physical models, an

example based on a freely vibrating stretched string is given. We consider a string

of length L with its ends held fixed at the points x = 0 and x = L. The string has

a uniform linear density µ and is stretched with tension T (Figure (9)). Now the
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string is deformed from its equilibrium configuration, in such a way that a short

segment of the string of length δx has a force F acting on it, given by [60]

Fy = T sin(θ + ∆θ)− T sin θ

Fx = T cos(θ + ∆θ)− T cos θ (19)

where θ and θ + ∆θ are the directions of tangents to the string at the ends of

the segment. With the assumption that the transverse displacement is small, we

obtain the simplified version of Eq.(19):

Fy ≈ T∆θ

Fx ≈ 0. (20)

The equation governing the transverse motion of the segment is therefore

T∆θ = (µ∆x)ay (21)

where θ embodies the variation of y with x at a given value of time t and ay

embodies the variation of y with time t at a given value of x. When we introduce

partial derivatives for the parameters x, y and t and assume the relationship

tan θ =
δy

δx
(22)

we obtain

∆θ =
δ2y

δx2
∆x

ay =
δ2y

δt2
. (23)

Thus Eq.(21) becomes

T
δ2y

δx2
∆x = µ∆x

δ2y

δt2
. (24)
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When we express Eq.(24) in a more physically meaningful way, we obtain

δ2y

δx2
=
µ

T

δ2y

δt2
. (25)

Both equations (Eq.(24) and Eq.(25)) are examples of PDEs for a progressive

traveling wave on a long string. When we look more closely at Eq.(25), we realize

that the factor µ
T

is merely the square of the speed. Therefore the speed of the

propagating wave v can be expressed as

v = (
T

µ
)2 (26)

and we can write Eq.(25) in a more compact form:

δ2y

δx2
=

1

v2
δ2y

δt2
. (27)

This is commonly known as a two-dimensional wave equation [56].

The equation derived here is only one example of a PDE. In order to solve

such PDEs more sophisticated mathematical methods must be applied in compar-

ison to the less complicated examples of ODEs. One possible way to solve the

problem is by using numerical methods such as the Euler method, the Runge-

Kutta method or the Crank-Nicolson method, to name only a few of the available

numerical methods [56]. Numerical approaches are very commonly used for the

virtual simulation of physical processes, for example, for finite element simulation

(FEM) or continuous dynamic simulation. All these numerical methods play an

important role in obtaining a thorough knowledge of the physical behaviours of

structures, whether in a pristine state or a damaged state. An enormous number

of literature articles can be found on this topic, which indicates the importance of

virtual simulation in the field of SHM, (e.g., [10, 5]).

It is the assumption of the author; for real time model-based feature extrac-

tion,a numerical solution of the PDE may not efficient enough because the time

spent on the calculation of the result would be too long. For this reason, an ana-

lytical approach is more suitable for solving the PDE. In most cases, and especially

for very complex physical processes, the analytical approach is an approximation
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to the real physical process, and therefore in this study we consider approximate

analytical or mathematical models.

2.3 Chapter Summary

The purpose of this chapter has been to introduce the main data processing meth-

ods for damage feature extraction used for SHM applications. In principle it can

be distinguished between two main methods [1] ,

• Non-physical parametric models,

• Physical Parametric models.

Non-physical parametric models does not proceed from a law-based physical

model and this method is also known as data-based approach [1] . That means,

one established training data from all possible healthy and damage states of in-

terest for the structure and then uses non-physical parametric models in order to

identify damage relevant features out of the measured data. In principle, for the

methods in this class parameters are within the models but in most of the cases

this parameters have no physical connection to the physical process of interested.

The advantages of non-physical parametric models are lower complexity of the

of the data processing methods. On the other hand their feasibility of handle

uncertainties with in measured data is limited.

The method based on physical parametric models for damage feature extrac-

tion are usually implemented by building a physics-based or law-based model of

the process of interest. This can be a numerical model such as for example a

finite element (FE) model or a analytical model whereby the latter are sometimes

complicated to develop and therefore the complexity may be reduced by an ap-

proximation on the real physical process. The mentioned complexity is clear a

disadvantage of the method based on physical parameters. But, in case the goal

is to extracted as much information as possible about the damage out of the mea-

sured signal the method based on physical parameters should be preferred.

35



3 Model-based Damage Feature Extraction Method

Introduced in this Work

When working on a scientific topic, there are important questions regarding the

novelty of the work and the benefit the work offers to the scientific community.

Both these questions are answered in this chapter.

3.1 Introduction to the Basic Concept

The underlying concept for the extraction of damage features within a measured

signal is as follows. In the first step, the measured signal is examined to identify

whether it contains a feature caused by damage. As soon as a damage-related

feature is identified within the signal, the underlying mathematical model of the

damage signal will be adapted to the identified damage signal.

Although this concept is already known from other engineering fields, e.g., for

the detection of heartbeats in an electrocardiogram or for speech recognition in

modern smart phones, the major challenge faced by the identification of damage

features (and the main difference from well-known applications) is the relatively

high ratio of regular features within the measured signal to the interesting damage-

related features. In other words, the damage-related features will be overlapped

and possibly hidden by the regular features within the measured signal.

The solution for this problem, and one of the main innovations in the present

work, is the combination of static mathematical models of the underlying physi-

cal processes with adaptive mathematical models of previously unknown physical

processes, such as a damage event. In order to ensure the detection of small and

hidden damage-related features, on the one hand the static mathematical models

must be relatively accurate reflections of the underlying physical processes and on

the other hand the adaptive models need the ability to adjust to a broad spectrum

of possible damage features.

As a further innovation, all unpredictable errors such as synchronization events

between sensor nodes or unpredictable environmental effects are considered as
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a further adaptive mathematical model which facilitates the application of the

present damage feature extraction process to real structures.

In the following sections, the functional principle of the proposed damage fea-

ture extraction (DFE) procedure is explained and the idea of model-based feature

extraction is introduced. This broader view of the introduced solution will be re-

fined based on an example of a real application where Lamb waves are used for

damage detection on thin plate-like structures. At the end of this chapter, the

functionality and stability of the proposed DFE procedure is proven based on syn-

thetic input signals. These synthetic signals are calculated in accordance with the

expected measured signal x(t) as described in section 2. In comparison to signals

measured on a real structure, the use of synthetic signals for the concept proof

allows certain parameters of the synthetic signal to be varied within a predefined

range. This enables testing of the DFE procedure on a broad spectrum of signal

possibilities.

Furthermore, the functionality of the DFE procedure was tested based on real

measured data in the framework of the entire structural-health monitoring system

introduced in this work. The results are described and discussed in chapter 5.

3.2 Functional Principle of the Proposed Damage Feature

Extraction Procedure

In this section, the functionality of the DFE is explained for the case of a general

application. The entire DFE procedure with its related processes is illustrated in

Fig.(10).

i In the first block < Static mathematical models > shown in Fig.(10) on the

left-hand side, the sequences for the principal physical process s′P (t) and the

systematic error s′SE(t) are calculated based on the respective mathematical

models of the underlying physical processes. All parameters for both calcu-

lations are previously known. The sequences are subsequently summed to

represent the input signal for the second block, < Adaptive processes > in

Fig.(10).
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Figure 10: Flow chart of the model-based feature extraction approach introduced
in this work. On the left-hand side the static mathematical models are displayed
and on the right-hand side the two adaptive processes (damage process and random
errors) are displayed together with the nonlinear least mean square.

The major challenge in this first block is the creation of a sufficiently ac-

curate approximation of the mathematical models to the previously known

real physical processes involved. The resulting sequence should preferably

be an exact reflection of the measured signal for the case where no damage

is present in the structure, with no random errors such as changing temper-

atures involved in the measurement process.

ii The second block < Adaptive processes > forms the core part of the in-

troduced DFE procedure. It consists of an adaptive mathematical model

of the damage process and a second adaptive mathematical model of the
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random errors. Both models are rough estimations of the expected physical

processes. It is important that the mathematical models involved in this

adaptive process express the expected physical processes but simultaneously

provide the possibility of adapting to the real processes as soon as their se-

quences occur in the measured signal. For example, a wave pulse reflected

from an area of damage to the structure can have its fundamental structure

previously approximated, but its incident pulse and its parameters such as

amplitude or pulse width are not known in advance, and therefore they can

be estimated only after the damage event has occurred and measurements

are taken. The output of an adaptive model is the estimated signal xE(t) .

iii The adaptation process of the approximate mathematical models is carried

out based on a nonlinear least mean square (NLMS) algorithm. The reason

why a NLMS is required is the nonlinear nature of the entire process involved

in the damage estimation. As a consequence, the measured signals are also

of a nonlinear nature. The task of the NLMS algorithm is to minimize the

error e between the measured signal x(t) and the estimated signal xE(t) by

adjusting the unknown parameters of < Adaptive processes >. After the

error e is reduced to a given minimum, the values of the adjusted parame-

ters coincide with the weighting parameters and contain the parameters or

features of the damage. The challenge here is to choose an NLMS algorithm

which enables estimation of the parameters across a broad spectrum of pos-

sible parameters on the one hand, and on the other hand is able to find a

minimum between the estimated signal xE(t) and the measured signal x(t)

when there is a likelihood of errors occurring.

iv As already mentioned above, the goal of the nonlinear least mean square

algorithm is to minimize the error between the measured signal x(t) and the

estimated signal xE(t). However, a straightforward concept for the reduction

of nonlinear problems does not exist, and therefore the nonlinear behaviour

has to be reduced to linear behaviour in a certain area. In this study the

approach is as follows. In the first step, the squared error S between the

measured signal x(t) and the estimated signal xE(t) is calculated by:
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S(ak) =
∥∥x− xE(ak)

∥∥2 (28)

where ak are the unknown parameters which will be adapted in order to

reduce the error between the measured and estimated signal. In the second

step, the gradient of S will be calculated by setting Eq.(29) to zero, in order

to minimize the error e.

∂S(ak)

∂a
= 0. (29)

Exact calculation of the gradient is the most comprehensive part of the non-

linear least square calculation. Several ways of solving the minimization

problem exist. Each method has its advantages and drawbacks, such as cal-

culation speed or stability over a wide range of initial starting points, and

the choice of method always depends on the application for which it is used.

3.2.1 A short Introduction to Non-linear Optimization

In principle, most of the non-linear optimization problems are solved iteratively,

that means they start at an initial guess x0 and tries to find a minimum (or

maximum) solution of xk for given function f(x). At each iteration k, the non-

linear function f(x) is replaced by a simpler model function mk that approximates

f(x) around xk. In order to estimate the minimum solution different calculation

methods can be applied, where each has advantages and disadvantages and their

use is strongly depending on the respective application. The most popular non-

linear optimization methods which are introduced in short here are [61]:

• Line search,

• Trust-reagion,

• Newton method,

• Gauss-Newton method,

• Levenberg-Marquardt.
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In the line search method, the algorithm chooses a search direction and the step

size in order to solve a one-dimensional minimization problem. The advantage

of the line search method is its possibility to convergent globally (converges to a

local minimiser from an starting point x0), but it needs a relatively long time for

convergence to a minimum and sometimes it do not convergence at all.

The trust-region optimization method works in a similar way as the line search

method with the difference that first it define a region around the current best

solution, in which a certain model (usually a quadratic model) can to some extent

approximate the original objective function. In a next step the trust-region method

takes a step forward according to the model depicts within the region. If a notable

decrease is gained after the step forward, then the model is believed to be a good

representation of the original objective function.

The Newton method uses first and second derivatives which enables to distin-

guish between global or local minimum. As for the above explained optimization

methods, first a initial stating point is given and a quadratic approximation to the

objective function is constructed that matches the first and second derivative val-

ues at that point. Then the approximate instead of the original objective function

is minimized. The minimizer of the approximate function is used as the starting

point in the next step and repeat the procedure iteratively. As a advantage the

Newton method has superior convergence properties when the starting point is

near the solution, but it may fails if initial starting point is far away from the

solution.

An improved Newton methods and commonly used methods is the Gauss-

Newton method, because it offers the possibility of starting the calculation of the

minimum at a distance from the true minimum value but still achieving results

within a reasonable time. In the example described in the following section, the

Levenberg-Marquardt algorithm is used. This is a modified version of the Gauss-

Newton method used for the estimation of the minimum. In comparison to the

Gauss-Newton method, the Levenberg-Marquardt algorithm enables the estima-

tion of the minimum even when the initial starting point is relatively far away from

the real minimum. The drawback is that it takes somewhat longer than the Gauss-

Newton method, which represents a significant disadvantage for the estimation of

damage.
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To reiterate, the actual minimizing function employed, (e.g., the Levenberg-

Marquardt algorithm) is not the innovation in this work. However, the combina-

tion of the Levenberg-Marquardt algorithm with the entire model-based concept

and its adaptation to the application is one of several innovations introduced.

This section has reviewed the basic ideas behind the damage feature extraction

procedure introduced in this work, and has simultaneously indicated a broader

range of potential applications. In the next section, the introduced concept is

adapted to a real problem, namely, the estimation of damage features within signals

measured for Lamb wave damage detection applications.
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3.3 Analysing Lamb Wave Signals: A Practical Applica-

tion

3.3.1 Short Introduction to Damage Detection with Lamb Waves

The physical principle used for the practical demonstration of the model-based

damage feature extraction procedure is based on propagating wave pulses in thin

solid structures, and their ability to interact with discontinuities in the structure,

also known as Lamb waves. The physical principle of Lamb wave damage detection

and the main parts of the process introduced in this work are illustrated in Fig.(11).

S0 A0 

Figure 11: Illustration of the physical principle of damage detection in solid struc-
tures using Lamb waves.

The principle is as follows: a wave pulse is excited in the structure by an ac-

tuator. This wave pulse propagates through the structure and is reflected and

scattered by discontinuities in the structure such as damage. The reflected wave

and scattered pulses are detected by sensors and converted back into electrical
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signals. These sensors are mounted on the structure surface. The measured signal

contains information about the propagation distances of the reflected and scattered

wave pulse. This information can be used for the localization of the damage. The

possibility of locating the damage in a two-dimensional area is an advantage of the

propagating wave method compared to conventional ultrasonic scanning methods.

Lamb waves results from mode conversion phenomena and superposition of re-

flected dilatational waves and vertically polarized shear waves. Both types of plane

waves exist only in certain modes and are described by the dispersion-relations,

which relate the phase velocity with the wave number, or frequency, depending

on the plate thickness and material properties. The Lamb waves were analytically

derived primarily by Horace Lamb [62] in 1917. Lamb waves are divided into

symmetric or longitudinal modes and antisymmetric or transversal modes. The

dispersion relation for the symmetric modes is given by [63]

tan(ξ2h)

tan(ξ1h)
= − 4k2ξ1ξ2

(k2 − ξ22)2
(30)

and for the antisymmetric modes by

tan(ξ2h)

tan(ξ1h)
= −(k2 − ξ22)2

4k2ξ1ξ2
(31)

where ξ21 = k21 − k2 and ξ22 = k22 − k2 and k1 is the wave number of the symmetric

mode and k2 is the wave number of the antisymmetrical mode . The numerical

solutions of Eq. 30 and Eq. 31 for an aluminum plate are given in Fig.(12) [64].
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Figure 12: Dispersion curve for symmetric (blue) and antisymmetric (red) Lamb
wave mode for an aluminium plate of thickness d [64]

.

One reason why this method is not yet widely used for damage detection is the

fact that the measured signals are difficult to analyse. The main problems are:

• A single excited wave pulse spreads out and splits into several wave pulses

during propagation,

• Each wave pulse propagates with the same frequency but different wave

speed,

• Different wave pulses may interfere during their propagation,

• The propagation behaviour of the wave pulses depends on the environmental

conditions.

This study is focused on the development of a prototype process for the lo-

calization of damages based on propagating wave pulses. The prototype process

consists of:

• An algorithm for extracting the damage-related features from the measured

returning signals
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3.3.2 Simplified Assumptions to Lamb wave propagation in this work

As already mentioned, the behaviour propagating Lamb waves is highly non-linear

and their analytical consideration is very complex and a consideration of all in-

volved physical effects would be beyond the framework of this thesis. Therefore

some assumptions and simplifications to the physical behaviour of Lamb waves

were made in this thesis:

• Only the first symmetrical (S0) and first anti-symmetrical (A0) are consid-

ered,

• All effects involved by the actuators and sensors such, as for example non-

linearity are not assumed,

• Only the reflected wave pulse form the damage is assumed to be present.

The scattered wave pulse is not considered in this work,

• Only isotropic structures are assumed (e.g. aluminium plate). For anisotropic

structures, such as for example composite structures, the present damage fea-

ture extraction algorithm must be expanded by an attentional mathematical

model of the structure.

3.3.3 State-of-the-Art Lamb Wave Signal Analysis

Methods for investigating measured signals can be split into two main groups. In

the first group, the properties of the sensor are adapted to the desired behaviour

of the propagating pulse. In the second group, signal processing techniques are

applied to the measured signal for analysis. The first group includes, for example,

the work presented by Giurgiutiu [5] where he adapted the shape of the actuator

to the desired mode of the propagating pulse. This makes it possible to selectively

excite only one mode. However, overlapping pulses with the same mode cannot be

separated by this method. Another approach belonging to the first group is based

on sensor arrays. Alleyne and Caweley [65] implemented a 2D Fourier transform

method numerically in conjunction with a sensor array. The presented method

allowed the identification of individual wave modes even in the most dispersive

regions. Giurgiuitiu and Boa [66] developed an embedded ultrasonic structural
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radar algorithm using a linear phased array of nine piezoelectric elements. They

were able to map artificially induced cracks in an aluminium plate specimen, even

when the crack was not in the direct field of view of the array. All methods in the

first group have in common that the sensor array is fix bonded onto the structure,

and thus it is not possible to adapt the sensor arrays to varying signals.

The second group, comprising the signal processing techniques, can offer more

flexibility for varying measured signals. Time-frequency analysis methods are com-

monly used for analysing measured signals from propagating wave pulses. Prasad

et al. [67] used the short-time Fourier transform to extract a suitable parameter

from a structural defect. Oseguda et al. [68] and Queck et al. [69] used the

Hilbert-Huang transform to process measured data from propagating wave pulses.

Another often-used time-frequency-based analysis method is the wavelet trans-

form. This decomposes a signal in terms of waveform packets. Staszewski et al.

[10] presented a summary of recent developments in wavelet-based data analysis.

In practice, inspections with Lamb waves are most satisfactorily performed

when only one, or occasionally two, guided wave modes are used [70]. Wilcox et

al. [71] and Liu et al. [72] introduced a technique for compensating for the effect of

dispersion for guided waves. A different approach is presented by Xu and Giurgiu-

tiu. They used a time reversal method to overcome the baseline measurement

problem [21]. Several authors have proposed and developed a spectral warping

method, i.e., a nonlinear rescaling of the frequency axis to remove dispersion from

a signal in the time-space domain using frequency transformation, (e.g., [73], [74]

and [75]). As a supplement to this discussion, the principal methods for damage

feature extraction are categorized at the beginning of this thesis in section 2.2.

All the above-mentioned analysis methods for interpreting signals from propa-

gating waves have one major disadvantage, namely, the fact that specially educated

technicians are needed for setting up the test equipment and for the interpretation

of the results. As for traditional NDT inspections, this may lead to misinterpre-

tation of the measured signals due to human factors. Furthermore, the inspection

process is very time-consuming. In contrast, the analysis method developed in this

work enables the identification of damage features within a measured signal to be
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completely autonomous, which helps to minimize errors due to misinterpretation

of the measured signal. As well as the advantage of autonomous signal feature

identification, the developed analysis process offers further advantages such as:

• It enables the identification of the wave packets in the measured signals and

their respective wave modes even when individual wave packets are overlap-

ping,

• The analysis method is able to automatically adjust to different measured

signals within a certain range, enabling flexible use,

• Environmental influences such as changing temperatures are automatically

compensated for.

In the following, the developed analysis method is presented starting with a

description of the underlying theory and followed by an explanation of the differ-

ent parts and their functions. The method is subsequently verified using synthetic

data. At the end of this chapter the limitations of the method are discussed.

3.3.4 Damage Feature Extraction for Lamb Waves Introduced in this

Work

The basic idea behind the present damage feature extraction (DFE) procedure

for Lamb waves is based on an approximate analytical calculation of the expected

wave pulses (in this work only reflected waves from the damage are assumed to be

damage relevant features) or wave packets within a measured signal and a nonlin-

ear least mean square (NLMS) curve-fitting algorithm. The whole DFE procedure

with its various parts is illustrated in the flow chart shown in Fig.(13).
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Figure 13: Flow chart of the damage feature extraction procedure for Lamb wave
analysis. The core parts of the introduced procedure are the static mathematical
models for the incident wave packets and the temperature effect, and the adaptive
processes with the two mathematical models of the reflected wave packets from
the damage and the synchronization error. In order to reduce the quantity of data
required for analysing the measured signal x(t) and the estimated signal xE(t),
their envelopes F (t) and Fest(t) are calculated using the Hilbert transform.

The core parts of the illustrated procedure are the static approximated mathe-

matical models for the different wave packets, (e.g., incident waves A0 and S0 and

reflected waves from the edges of the structure) expected in the measured signal2

x(t), including the static mathematical model of the temperature effect together

with the adaptive process which includes the approximate mathematical model of

the expected wave packets reflected from possible damage and the mathematical

2The content of the measured signal x(t) is explained in more detail in section (2.1.1).
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model of the synchronization error induced by the synchronization delay between

different sensor nodes. The working principle of the DFE procedure for Lamb wave

signal analysis is as follows.

From the measured signal x(t), the envelope F (t) is calculated using the Hilbert

transform. The reduction of the input signal to its envelope helps to reduce the

calculation power required for the following comparison between the calculated

envelope Fest(t) of the estimated signal xE(t) and the envelope F (t) from the

measured signal x(t). The estimated signal xE(t) is calculated based on the math-

ematical models consisting of:

• Static approximate mathematical model of the expected wave packets,

• Mathematical model of the temperature effect,

• Adaptive approximate mathematical model of the reflected wave packets

from the damage,

• Adaptive mathematical model of the synchronization error between the dif-

ferent sensor nodes.

The real intelligence and the important novelty arise from the adaptive process.

The previously discussed approximate mathematical model of the reflected wave

packet from the damage and the mathematical model of the synchronization error

are linked to the nonlinear least mean square (NLMS) algorithm via a feedback loop

to give information about the existing error e(t) between the envelope of the input

signal F (t) and the envelope of the estimated signal Fest(t). The task of the NLMS

algorithm is to adjust the damage-related parameters a = [a1, a2, ..., an] of the

adaptive mathematical models in such a way that the error e(t) is minimized. After

the minimum is reached, the calculated parameters correspond to the damage-

related features.

3.3.5 Basic Concepts

The drawbacks when using Lamb waves for damage detection and the problems

involved in the extraction of the damage-related features were described explicitly

above. In order to allow the reader to visualize the problems involved, the lower
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graph in Figure (14) shows a typical example of a measured signal from Lamb

waves.

Figure 14: In the lower graph a typical example of a measured signal from Lamb
waves at the piezoelectric transducers is displayed. Since the presented signal is
simulated, it is also possible to present the single wave pulses within the entire
signal (upper graph). Note: the upper graph shows the single wave pulses (not
composed) which are contained in the resulting signal (lower graph).

In principle, it is not possible to identify the different wave packets within the

illustrated signal in Fig.(14) with the naked eye. In the upper graph, the individual

wave pulses within the signal are displayed, and from this it can be imagined how

complex the identification of individual wave pulses can be. In the more detailed

description of the damage feature extraction procedure, the individual wave pulses

are termed En . For example, the A0 incident wave pulse will be termed EA0inc.
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Figure 15: To illustrate the dispersion effect, only one wave pulse is shown in this
graph. The initial wave pulse is shown on the left and the same pulse is shown
after propagating for a certain distance on the right.

The effect of dispersion on the propagating wave pulses is illustrated in Fig.(15).

The initial pulse without the dispersion effect is shown on the left side with its

carrier wave and the envelope. After propagating over a certain distance the pulse

shown on the right reflects the effect of dispersion on the wave pulse. It can be

seen that the shape of the envelope has changed, and further, because of the fact

that the high-frequency components of the carrier wave travel at higher speeds,

these components are shifted to the right (beginning of the pulse). This is also

known as the chirping effect. In this work, the dispersion effect will be termed k′′0

and the chirping effect termed ψ.

All the above influences on the wave pulses are considered in the introduction
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of the mathematical model of the single wave pulses involved in the damage esti-

mation process. The general approximate analytical equation for the single wave

pulses will be introduced in the next section and the derivation of the equation is

explained in more detail in the following section.

Derivation of the Approximate Mathematical Wave Pulse

Equation:

In this work, monochromatic waves are of little interest because in its progress, the

monochromatic wave acquires no information about a possible disturbance inside

a solid structure. The transfer of information from a disturbance requires the

variation of one or more of the wave parameters –amplitude or phase. These waves

are no longer monochromatic, since their amplitude or frequency is modulated

according to the signal transmitted.

In this work it is assumed that the wave pulses propagate as planar waves

through a dispersive medium. Fig.(15) shows an example of such a propagating

wave pulse in a dispersive medium. A single wave pulse consists of :

• Carrying wave: propagates with phase velocity cp, frequency = excitation

frequency

• Envelope: propagates with group velocity cg , frequency < excitation fre-

quency

For the derivation of the approximate mathematical equation used for the mathe-

matical models, we first assume a single wave pulse in the frequency-space domain

Ê(r, ω), whose spectrum is narrowly concentrated in the neighbourhood of fre-

quency ω0 , at a distance3 r. At the initial position r = 0, the equation for the

wave pulse changes to Ê(0, ω) with an effective frequency band | ω − ω0 |≤ ∆ω,

where ∆ω << ω0. The spectrum now consists of a low-frequency component, the

envelope F̂ (0, ω) and a high-frequency component, i.e., the carrier wave Ê(0, ω)

where the link between both frequency components of the wave pulse is given by

[76].

Ê(0, t) = F̂ (0, w − w0). (32)

3The wave pulse is assumed to travel on a 1D axis referred to as r
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By applying the modulation property of the Fourier transform to Eq.(32) the

corresponding time-domain signal is given by

E(0, t) = ejw0tF (0, t) (33)

which is a sinusoidal carrier modulated by a slowly varying envelope. The equation

for the envelope in the time domain is given by [76] as follows.

F (0, t) =
1

2π

∫ ∞
−∞

ej(ω−ω0)tF̂ (0, ω − ω0)dω (34)

If the wave pulse is now launched into a dispersive medium, the pulse propagated

to distance r will be given by

E(r, t) =
1

2π

∫ ∞
−∞

ej(ω0t−k0r)F̂ (0, ω − ω0)dω (35)

where k(ω) is the wave number, which depends on the frequency ω. The relation-

ship between wave number k(ω) and the distance of travel of the wave pulse is as

shown below.

k(ω) =
ωt

r
(36)

Because F̂ (0, ω − ω0) restricts the effective range of the integration to a narrow

band about ω0, k(ω) can be expanded to a Taylor series about ω0:

k(ω) = k0 + k′0(ω − ω0) +
1

2
k′′0(ω − ω0)

2 + ... (37)

where k0 = k(ω0), k
′
0
dk
dω

= 1
cg

is the inverse of the group velocity and k′′0 = d2k
dω2 . The

second derivative of the wave number k′′0 is referred to as the dispersion coefficient,

and is responsible for the spreading of the wave pulse. Inserting Eq.(37) in Eq.(35)

we obtain:

F (r, t) =
1

2π

∫ ∞
−∞

ej(ω−ω0)t−j(k−k′0)r−jk′′0 r
(ω0−ω)

2 F̂ (0, ω − ω0)dω (38)
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The solutions of this integral in the time and frequency domains are shown below.

F (r, t) =
1√

2πjk′′0z
exp

[
− t− k′0r

2jk′′0r

]
F̂ (0, ω − ω0) (39)

F̂ (r, ω) = ejk
′
0rωe−jk

′′
0 r

ω2

2 F̂ (0, ω). (40)

In this work, it is assumed that the wave pulses propagate as Gaussian wave pulses.

The envelope for a Gaussian wave pulse at initial position r = 0 is calculated as

[76]

F (0, t) = exp

[
− t2

2τ 20

]
(41)

and in the frequency domain as

F̂ (0, ω) =
√

2πτ 20 e
−τ20

ω2

2 . (42)

The envelope F̂ in the frequency-space domain for a launched wave pulse can be

calculated by inserting Eq.(42) in Eq.(40), leading to

F̂ (r, ω) =
√

2πτ 20 e
−τ20ω2/2ejk

′
0rω−jk′′0 rω2/2 (43)

Transferring Eq.(43) into the time domain gives

F (r, t) =

√
τ 20

τ 20 + jk′′0r
exp

[
− (t− k′0r)2

2(τ 20 + jk′′0r)

]
. (44)

Thus, we effectively have the replacement τ 20 → τ 20 + jk′′0r. Assuming that k′0 and

k′′0 are real, we find the magnitude of the propagating wave pulse as follows:

|F (r, t)| =
[

τ 40
τ 40 + (k′′0r)

2

]1/4
︸ ︷︷ ︸
Amplitude of wave pulse

exp

[
− (t− k′0r)2τ 20

2
√

(τ 20 + (k′′0r)
2)

]
︸ ︷︷ ︸

Envelope shape of wave pulse

(45)

where we used the property |τ 20 + jk′′0 | =
√
τ 40 + (k′′0z)2. It can be assumed that

the carrier wave E(r, t) will not be affected by the dispersion effect, and therefore
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the equation for the traveling wave pulse in a dispersive medium is given by

E(r, t) = F (z, t)ej(ω0t−k0r) (46)

Putting together the carrier wave and the envelope of the wave pulse leads to the

following equation.

E(r, t) =

[
τ 40

τ 40 + (k′′0r)
2

]1/4
exp

[
− (t− k′0r)2τ 20

2
√

(τ 20 + (k′′0r)
2)

]
︸ ︷︷ ︸

Amplitude and Envelope shape of wave pulse

ej(ω0t−k0r)︸ ︷︷ ︸
Carrying wave

(47)

Eq.(47) is valid for a propagating wave pulse in a dispersive medium. As well as

the center frequency, further frequency components exist within the carrier wave.

High-frequency components propagate at higher wave speeds in comparison to

low-frequency components. This separation of the frequency components leads to

chirping of the carrier wave. In this work, the chirping of the carrier wave is taken

into account using the additional term ψt2

2
, resulting in the following wave pulse

equation used in this work:

• Approximate Analytical Equations:

For the calculation of the individual previously known propagating wave

pulses ES0inc, EA0inc, ES0ref and EA0ref expected within the measured signal

x(t), the equation for a plane wave propagating in a dispersive medium is

used. The equation is as follows.

En(r, t) =
[ τ 40
τ 40 + (k′′0r)

2

]1/4
︸ ︷︷ ︸
Amplitude of wave pulse

exp
[
− (t− k′0r)2τ 20

2
√

(τ 20 + (k′′0r)
2)

]
︸ ︷︷ ︸

Envelope of wave pulse

ej(ω0t+
ψt2

2
−k0r)︸ ︷︷ ︸

Carrying wave

(48)

It is assumed in this work that the wave pulse propagates as a Gaussian wave

pulse with a pulse width τ0 through the structure. The other parameters in

Eq.(48) are: the propagation distance r, the time t, the wave number k,

the inverse of the group velocity k′0 = 1
cg

, the dispersion coefficient k′′0 , the

angular frequency ω0 and the coefficient for chirping ψ.

All single calculated wave pulses will be summed in the output sequence of
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<Static mathematical models> and supplied as input for < Adaptive math-

ematical models >, as illustrated in Fig.(13). The main difference between

the wave pulses assumed for the static mathematical models and the adap-

tive mathematical models is the possibility of varying certain parameters

of the approximated mathematical equation, and therefore Eq.(47) can be

modified as follows:

En(r, t) = a1nexp
[
− (t− k′0a2n)2τ 20

2
√

(τ 20 + a23na
2
2n)

]
ej(ω0t+

a4nt
2

2
−a2n) (49)

where the adaptive parameters are the amplitude of the wave pulse (first

part of Eq.(48)) which is the new adaptive parameter a1n, the propagation

distance r which is the new a2n, the wave number k′′0 which is the new a3n,

the dispersion coefficient k′′0 and the chirping coefficient ψ which is the new

a4n. All adaptive parameters a = [a1n, a2n, ..., a4n] and their corresponding

parameters used for the static mathematical model are listed in Table (1).

Table 1: Wave pulse parameters of the parameter vector ak.

Wave pulse parameter an Description

An a1n Wave pulse amplitude

r a2n Wave pulse propagation distance

k′′0 a3n Dispersion coefficient

ψ a4n Chirping coefficient

• Envelope calculation:

For the calculation of the envelope, the Hilbert transform is used in this

work. The two envelope signals F and Fest are calculated using the following

equations.

Fest = HT (
n∑
i=1

En) (50)

F = HT (x(t)) (51)
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Here, En are the different wave pulses estimated using the approximate ana-

lytical equation given by Eq.(49). The term HT indicates the Hilbert trans-

form for the calculation of the envelope signals.

• Non-linear least mean square parameter estimation (NLMS):

For fitting the parameters of the approximated signal xE to the parameters

of the input signal x(t) the Levenberg-Marquardt algorithm for nonlinear

least square calculation is used4.

3.3.6 Sequence of the Damage Feature Extraction Algorithm

The sequence of the DFE algorithm described in the flow chart in Fig.(13) is as

follows:

1. Start first iteration step k = 0 (k = 1, 2, ..., kmax)

• Initial parameter vector a0 = [a1n, a2n, ..., a4n]; n is the number of wave

pulses En within the estimated signal xE

• Set initial step size µ0

• Set β0 = 0.25 (assumed step size criteria)

• Set β1 = 0.75 (assumed step size criteria)

• Set threshold value for minimum allowed squared error
∥∥S∥∥: ε1

• Set threshold for minimum change of parameter vector ε2

• Set maximum number of iteration steps kmax

2. Calculate sum of squared error S(ak) between the estimated envelope Fest,

and the envelope of the input signal F and the derivative

S(ak) =
∥∥F − Fest(ak)∥∥2 (52)

∂S(ak)

∂ak
=
∂
∥∥F − Fest(ak)∥∥2

∂ak
= J(ak) (53)

where J(ak) is the Jacobian.

4The functional principle of the NLMS and an explanation of why the Levenberg-Marquardt
algorithm is used in this work can be found in section (3.2).
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3. Minimize the linear least square problem:∥∥∥∥∥
(
J(ak)

µI

)
sk +

(
S(ak)

0

)∥∥∥∥∥⇒ min

The result of the minimization sk is the correction factor.

4. Update:

• ak+1 = ak + sk

• S(ak+1) = S(ak + sk)

5. Calculate criteria for new step size:

ρµ =

∥∥S(ak)
∥∥2 − ∥∥S(ak − sk)

∥∥2∥∥S(ak)
∥∥2 − ∥∥S(ak) + J(ak)sk

∥∥2 (54)

• If ρµ ≤ β0: s
k is not accepted, µ is doubled and new correction factor

sk is calculated

• If β0 < ρµ: sk is accepted, µ is retained

• If ρµ ≥ β1: s
k is accepted; µ is halved

6. Repeat step 2 to step 4 until:

•
∥∥Sak∥∥ ≤ ε1 or

•
∥∥ak − ak−1∥∥ ≤ ε2(

∥∥ak−1∥∥+ ε2) or

• k ≥ kmax

7. When the iteration has stopped, the resulting parameter vector a = [a1n, a2n, ..., a4n]

of the estimated envelope Fest represents the best fit to the envelope of the

input signal.

For a better overview of the functionality of the damage feature extraction process,

the entire sequence is listed below.
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Input signal:

F envelope of measured input signal y(t)

Initial parameters:

a0 = [a1n, a2n, ..., a4n]; parameter vector

µ0; initial step size

β0 = 0.25, β1 = 0.75; criteria for step size (experience values)

ε1; threshold minimum squared error
∥∥s∥∥

ε2; threshold minimum change of ak

kmax; maximum number of iterations

k = 0 first iteration

Step 1:

Fest(a
k) = Hilbert(yest(a

k)) calculate envelope of model signal yest

S(ak) =
∥∥F − Fest(ak)∥∥2 calculate sum of squared error S(ak)

∂S(ak)

∂ak
=
∂
∥∥F − Fest(ak)∥∥2

∂ak
= J(ak) calculation of Jacobian J

Step 2:∥∥∥∥∥
(
J(ak)

µI

)
sk +

(
S(ak)

0

)∥∥∥∥∥ ⇒ min minimize linear least square problem

Step 3: (update)

ak+1 = ak + sk

S(ak+1) = S(ak + sk)

Step 4:

ρµ =

∥∥S(ak)
∥∥2 − ∥∥S(ak − sk)

∥∥2∥∥S(ak)
∥∥2 − ∥∥S(ak) + J(ak)sk

∥∥2 calculate criteria for new step size

if ρµ ≤ β0 sk is not accepted, µ is doubled and new

correction factor sk is calculated

if β0 < ρµ sk is accepted, µ is retained

if ρµ ≥ β1 sk is accepted, µ is halved

Step 5: repeat step 2 to step 4 until:∥∥Sak∥∥ ≤ ε1 or∥∥ak − ak−1∥∥ ≤ ε2(
∥∥ak−1∥∥+ ε2) or

k ≥ kmax

Result: ak = [a1n, a2n, ..., a4n] estimated parameter vector
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3.4 Validation of the Proposed Damage Feature Extrac-

tion Procedure

When using Lamb waves for damage detection two main questions must be con-

sidered, i.e., how the environmental conditions will influence the measured result

and whether it is possible to identify overlapping damage features. If it is possible

to identify overlapping features, the ratio of overlapping which can be dealt with

must be estimated.

In order to answer these questions, the following validation process was devel-

oped for the DFE procedure.

1. Investigation of how environmental effects such as temperature change or

synchronization effects will influence the DFE procedure,

2. Testing of the ability and stability of the DFE procedure for overlapping

wave packets with varying amplitudes and overlapping ratios.

3.4.1 Investigation of Environmental Effects

Environmental effects such as temperature changes will influence the propagation

of the Lamb wave inside a structure, leading to a shift in several wave parameters

such as the occurrence time or the amplitudes of the different wave packets. How-

ever, even a small difference in the occurrence time of the wave packets within the

measured signal x(t) and the estimated signal xE(t) makes direct comparison im-

possible. Therefore, in this work the difference produced by environmental effects

between the estimation and the measured signal will be compensated for by the

introduced adaptive process. In order to test the ability of the proposed adaptive

procedure, a synthetic input signal x(t) is used. The test parameters of the syn-

thetic signal are changed slightly in a stepwise manner during the proof, in order

to test the stability of the DFE procedure and to estimate the boundaries within

which the DFE procedure will provide suitable results. The calculation of the

synthetic signal and the parameters used are described and listed in APPENDIX

B.

In order to simulate a more realistic scenario, additional Gaussian white noise

with an SNR of 40 dB was added to the (synthetic) input signal x(t). The signal
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x(t) was applied to the DFE procedure described in section (3.3). The initial

parameters a0 = [a1, a2.., an] used for the calibration step are listed in Table (2).

3.4.2 Calculation of the Synthetic Signal

The calculation of the synthetic input signal x(t) is based on the equation (48)

described in section 3.4. The calculated input signal x(t) consists of:

• Incident wave pulses EA0inc
and ES0inc

• Reflected wave pulses from an area of damage EA0damage
and ES0damage

The parameters listed in Table (2) for the calculation are based on measurements

performed on a real aluminium plate. In principle, the synthetic signal can be

expanded by additional wave pulses such as reflected wave packets from the edges

of the structure.

Table 2: Values of the wave parameters for the calculation of the synthetic signal.

Description Parameter Values Dim.

Excitation Frequency f 100 [kHz]

Propagation distance, actuator-sensor rinc 200 [mm]

Propagation distance, actuator-damage-sensor rdam 200 - 400 [mm]

Group velocity cgA0
1120 [m/s]

cgS0 5,300 [m/s]

Amplitude incident wave pulse AA0inc
1 [V]

AS0inc
0.5 [V]

Amplitude reflected damage wave pulse AA0refdam
0.01 - 0.1 [V]

AS0refdam
0.005 - 0.05 [V]

Pulse width τA0 0.003 [ms]

τS0 0.001 [ms]

Dispersion coefficient k′′0A0
1e-4 [-]

k′′0S0 0 [-]

Chirping parameter ΨA0 1e-8 [-]

ΨS0 0 [-]
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3.4.3 Validation Without Damage-Related Features
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Figure 16: Calculated synthetic signal x(t) without damage-related features used
in this experiment. In the top graph, the synthetic signal used for the test is
displayed. In the graph below, the incident wave packets (A0 and S0) within the
calculated signal are displayed.

For the example presented here, only the first incident wave packets ES0inc and

EA0inc are present in the input signal x(t) (the pristine state of the structure is

assumed). The input signal x(t) used in this section is illustrated in the top graph

in Fig.(16). As explained above, the parameters of the synthetic signal x(t) were

changed stepwise with regard to the relationship between the parameters of x(t)

and the initial parameters a0 of the estimated signal xE(t). The test started with a
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relationship of 0.1, which means that the value of the synthetic signal parameters

were smaller than the initial parameters of the estimated signal, and ended with a

relationship of 4.0, which means that the values of the synthetic signal were much

higher than the initial parameters of the estimated signal. The parameters of the

synthetic signal x(t) which were changed during the proof test are listed in Table

(3) below. For this proof test it was assumed that only the A0 incident wave packet

is affected by dispersion and chirping.

Table 3: Wave pulse parameters of the synthetic signal x(t) changes during the
proof test.

Wave pulse parameter Description

AA0inc
Amplitude of incident A0 wave pulse

rA0inc
Propagation distance of incident A0 wave pulse

k′′0A0
Dispersion coefficient of incident A0 wave pulse

ψA0 Chirping coefficient of incident A0 wave pulse

AS0inc Amplitude of incident S0 wave pulse

rS0inc Propagation distance of incident S0 wave pulse

The various ratios between the parameters used for the calculation of the syn-

thetic signal x(t) are listed in Table (4).

Table 4: Parameter range for the calculation of the synthetic signal.

AA0inc/a01 rA0inc/a02 k′′0A0
/a03 ψA0/a04 AS0inc/a05 rS0inc/a06

0.1 - 4 0.1 - 4 0.1 - 4 0.1 - 4 0.1 - 4 0.1 - 4

3.4.4 Results for the Investigation of Environmental Effects

The results of this investigation are displayed in the individual plots in Fig.(17).

Plot (a) shows the results for the estimation of the envelope of the EA0inc inci-

dent wave pulse, plot (b) shows results for the envelope of the ES0inc incident
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wave packet and plot (c) shows results for the estimation of the whole simulated

signal. For all three plots. the root mean-squared error (RMSE) between the es-

timated and the calculated signal was plotted against the ratio of the estimated

and simulated amplitudes. The RMSE is calculated as:
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(a) RMSE - A0 incident wave pulse
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(b) RMSE - S0 incident wave pulse
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(c) RMSE - whole signal

Figure 17: Root mean-square error (RMSE) between the input and the estimated
signal.

RMSE =

√
1

n

∑
i

(Fest(n)− F (t))2 (55)

where Fest(n) represents the envelope of the estimated signal and F (t) represents

the envelope of the calculated signal.
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When considering the results of the investigation present in Fig.(17) it becomes

obvious that the damage feature extraction algorithm works stable in the range

of the ratio between 07 and 1.5. Here, the calculated RMSE is 0. Outside of this

region the RMSE changes abrupt to a very high level (>40) and drops back to

normal levels, which is illustrated as spikes in the Figures. The reason for the

extreme outliers is the phase shift between the two wave signals. For a phase shift

of approximately 180◦ the two wave packets are cancelling each other (destructive

interference) and an estimation outside of the stable region (ratio = 0.7 - 1.5) is

not possible any more. After the two wave packets are in constructive interference

it is again possible to estimate the wave pulse parameters but an increasing of the

ratio between the real wave parameters and the initial wave parameters used for

the damage feature extraction algorithm the RMSE increases. For a ratio above 2

the damage feature extraction algorithm is not any more able to estimate the real

wave parameters.

In summary, after the investigation of the DFE algorithm calibration process

it can be stated that:

• The proposed DFE algorithm is able to adjust the wave pulse parameters

of the expected wave pulses to the parameters of the wave pulses within the

input signal,

• This process works with both stable and noisy input signals,

• The results of the investigation where the algorithm was tested with different

input wave signal parameters showed a good correlation between the esti-

mated signal and the measured signal over a range of ratios real wave pulse parameters
initial wave pulse parameters

between 0.7 and 1.5. Below and above this range the algorithm is not able

to estimate the wave parameters with sufficient accuracy.
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3.4.5 Validation with Damage-Related Features
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Figure 18: Calculated synthetic signal x(t) with damage-related features used
in this experiment. In the top graph, the synthetic signal used for the test is
displayed. In the graph below, the incident wave packets (A0 and S0) and the
reflected wave packets (A0 and S0) from the damage within the calculated signal
x(t) are displayed.

After the first proof test step described in section 3.4.1, the DFE procedure was

tested with damage-related features hidden inside the synthetic signal x(t). There-

fore, the input signal x(t) for the DFE procedure was expanded by the addition of

two wave packets EA0damage
and ES0damage

reflected from the damage, as illustrated

in Fig.(18) in the lower graph. The parameters used for the calculation of the

synthetic signal xt are listed in Table (6). The calculated synthetic signal x(t), its
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envelope and the single wave packets integrated into the signal are illustrated in

Fig.(18). The upper graph in Fig.(18) shows the entire synthetic signal x(t) with

its envelope used for the proof test and the lower graph shows the single wave

pulses within the synthetic signal. The initial parameters for the estimated of the

signal xE(t) are listed in Table (5).

Table 5: Initial parameter values a0 for the DFE procedure.

a01 a02 a03 a05 a06 a06 a07 a08 a09 a10

AA0inc
rA0inc

k′′0A0
ψA0 AS0inc

rS0inc
AA0dam

rA0dam
AS0dam

rS0dam

1 0.2 1e-4 1e-8 0.5 0.2 0.001 0.01 0.001 0.01

Table 6: Parameters and their values for the calculation of the input signal x(t)
with damage.

AA0inc
rA0inc

k′′0A0
ψA0 AS0inc

rS0inc
AA0dam

rA0dam
AS0dam

rS0dam

1 0.2 1e-4 1e-8 0.5 0.2 0.02 0.2 0.01 0.2

For the nonlinear least mean square algorithm, the following settings are used:

• µ0 = 0.01;

• ε1 = 10e−3;

• ε2 = 10e−8;

• kmax = 100;

As explained for the first proof test in section (3.4.3), the parameters of the syn-

thetic signal were varied over a certain range. The DEF procedure demonstrated

its sufficiency over the same range of parameters as in the first proof test.
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3.4.6 Results for Investigation with Damage-Related Features

After the DEF procedure has estimated the minimum error between the input

signal x(t) and the estimated signal xE, the procedure stops, and the parameters

of interest are presented as the output. The parameters obtained from the above

experiment are displayed in Table (7), and it can be shown that the estimated

parameters correlate well with the given parameters for the synthetic signal. As

already mentioned, the proof test was carried out for a wider parameter range, and

the results were comparable to the results from the test described here in more

detail.

Table 7: Resulting values of the parameter vector ak.

AA0inc
rA0inc

AS0inc
rS0inc

AA0damage
rA0damage

AS0damage
rS0damage

a01 a02 a03 a04 a05 a06 a07 a08

1 0.2 0.5 0.2 0.001 0.2 0.001 0.2

The obtained output parameters are then used to calculate the graph of the

wave packets, as displayed in Fig.(19) below. In this figure, only the reflected wave

packets are considered.
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Figure 19: Comparison between the calculated envelope and the estimated enve-
lope of the reflected wave packets (A0 and S0) from the damage.

The two solid lines indicate the envelope of the reflected wave packets A0

(red line) and S0 (magenta line). The two dashed lines represent the estimated

envelopes for both wave packets, identified by the DFE procedure. The resulting

parameters for the example described here are listed in Table (7).

3.4.7 Investigation of Overlapping Wave Packets

In order to test the functionality of the DFE procedure for overlapping wave

pulses, a test was performed where two wave pulses were overlapped stepwise

(see Fig.(20)). The ratio of the overlapping between the two wave pulses was var-

ied between 0% (no overlapping) and 100% (total overlapping). Furthermore, the

amplitude ratio between the two pulses was varied between 0.01 (the amplitude

of the second pulse is 100 times smaller than the first pulse) and 0.1 (the am-

plitude of the second pulse is 10 times smaller than the first pulse). The goal of

the DFE procedure is to identify wave pulses which are around 10 times smaller

than the incident wave packets and which are 100% overlapped by another wave
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packet. These are reasonable values for detection of hidden damage features within

a measured signal.

Overlapping	
ra,o	

Amplitude	ra,o	

Reflected	wave	pulse	from	
damage	Incident	wave	

pulse	

t	
Am

pl
itu

de
	

Figure 20: Overlapping wave packets used for the proof test. The wave packet on
the left (blue) indicates the incident wave packet with a relatively high amplitude
in comparison to the second wave packet (right packet, red) which indicates the
reflected wave packet from an area of damage. The overlapping and amplitude
ratios between the two wave packets were changed stepwise during the test.

In Fig.(21), the results for a varying amplitude ratio between the incident

wave packet and the reflected wave packet from the damage are shown. The

interesting damage-related feature in this proof test is the propagation distance

r between the actuator, damage and sensor. The results of the proof test are

plotted in four graphs, with the difference between the real propagation distance

and the estimated distance δr on the y-axis and the overlapping ratio on the x-

axis. Graph (a) shows the results for an amplitude ratio of 0.01, graph (b) for a

amplitude ratio of 0.03, graph (c) for an amplitude ratio of 0.05 and graph (d)

for an amplitude ratio of 0.1. Amplitude ratios lower than 0.01 are meaningless

in this investigation because the amplitude of the reflected wave packet would be

lower than the amplitude of the signal noise.
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(a) δr for amplitude ratio 0.01
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(b) δr for amplitude ratio 0.03
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(c) δr for amplitude ratio 0.05
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(d) δr for amplitude ratio 0.1

Figure 21: Resulting error δr between the real (known) propagation distance of
a wave pulse and the estimated propagation distance. It can be seen that with
increasing amplitude ratio between the overlapping wave pulses, the accuracy of
the estimation result increases. The overlapping ratio between the wave pulses has
no direct effect on the estimation result (see also Fig.20)

3.4.8 Results for the Investigation of Overlapping Wave Packets

From the results of the above study, the following key findings and conclusions can

be drawn:

• As assumed in advance, for an amplitude ratio between the incident wave
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pulse and the reflected wave pulse of 0.01, the DFE algorithm shows the

worst performance (δr > 200mm), and with increasing amplitude ratio the

results of the DFE algorithm show better agreement between the estimated

propagation distance and the real propagation distance,

• For higher amplitude ratios, the DFE algorithm enables estimation of the

propagation distance of the reflected wave packet with a reasonable difference

between the real and the estimated propagation distance. The averaged

values of δ̄r for the different amplitude ratios were:

– δ̄r for 0.01 amplitude ratio > 200 mm,

– δ̄r for 0.03 amplitude ratio = 31 mm,

– δ̄r for 0.05 amplitude ratio = 12 mm,

– δ̄r for 0.1 amplitude ratio = 3.5 mm.

3.5 Chapter Summary and Discussion

The interpretation of signals caused by propagating Lamb waves in solid media

is complicated due to various circumstances. For example, the Lamb waves prop-

agate dispersively through the structure and may spread out into different wave

modes. Furthermore, different wave packets within a measured signal may overlap,

which makes the identification of individual wave packets and their arrival times

at the sensor complicated. However, in order to use Lamb waves for the identifi-

cation of damage inside a structure, a completely new signal analysis method has

been introduced in this chapter. The signal analysis method is based on static

and adaptive mathematical models, summarized as a model-based approach. The

advantages of the introduced model-based approach are:

• The possibility of identifying different Lamb wave modes and their arrival

times at the sensor even when the individual wave packets are overlapped,

• Independent adjustment of the process to different environmental conditions,

• Autonomous identification of the Lamb wave specific parameters, such as

dispersion coefficient and chirping parameter,
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• Identification of the arrival times of reflected wave packets from the dam-

age, including where the wave packets are overlapped by the incident wave

packets.

For the validation of the damage feature extraction (DFE) procedure, single

wave parameters of a calculated synthetic signal were varied within a certain range

in order to test the stability of the process for changing measurement signals. It

was found that the introduced DFE procedure can be applied over a range within

which the wave parameter may change. The validation was restricted to synthetic

signals only. From the results of the validation process, the following conclusions

may be drawn:

• The DFE procedure enables the estimation of reflected wave packets from

damage for the crack sizes specified in the requirement list for the entire

system,

• The procedure enables the automatic compensation of environmental effects

such as the time shift due to changing temperatures or differences in the

measured signal amplitude caused by the measurement system,

• The procedure also enables the estimation of overlapping wave packets and

their respective Lamb wave modes.

In principle it would be possible to identify multiple reflected wave packets

from different damage areas inside the structure. In this case, the arrival time de-

tection process must be expanded using further approximated analytical equations

for the calculation of the wave packets. The NLMS algorithm can then estimate

the number of reflected wave packets which are likely to exist in the measured

signal and their Lamb wave modes.
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4 Model-Based Damage Localization

In this section, the procedure for the localization of the damage on a 2D structure

will be introduced. At the beginning of the investigation consisting of practical

experiments with Lamb waves on aluminium plates, the trilateration procedure

was used for the estimation of the damage position. During these experiments it

was found that in certain areas the estimated position did not correlate with the

real location of the damage. In order to find the root cause of this deviation, a

numerical simulation was carried out. The results highlighted the main drawbacks

of the trilateration process and will be described at the beginning of this section.

For this reason, a new method for the localization of damage on 2D structures

has been invented in this work, based on a model-based approach in combination

with a nonlinear least squares algorithm. The introduction of the new localization

method followed by the proof of concept based on a numerical simulation is given

in the following subsections.

4.1 The Trilateration Procedure and its Drawbacks

The sensor arrangement directly influences the damage localization process. For

example, an unsuitable arrangement can cause lower precision in the estimation

of the damage position, or can even make it impossible to estimate the position of

the damage. In order to investigate the behaviour of different sensor arrangements

in the damage estimation process, a simulation of the process was developed, as

presented below.

As previously explained, the trilateration method with intersecting ellipses is

used for the estimation of the damage position. One problem with the trilateration

method is that, in certain cases, it is not possible to estimate an intersection

point between the individual ellipses, and hence it is not possible to identify the

position of a possible defect. The reasons may differ; one reason may be possible

uncertainties in the determination of the wave propagation distance r. The shape

and the size of the damage can also have an impact on the wave propagation

distance, as illustrated in Fig.(22). This figure shows how the rays of an impinging
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wave pulse are reflected from a circular area of damage.

Figure 22: Impinging and reflected wave rays at a circular area of damage.

The effect on the trilateration process of uncertainties in the propagation dis-

tance r is illustrated in Fig.(23). Here, the three calculated ellipses do not intersect

at a single point, resulting in an intersection area.

Figure 23: Intersection area due to propagation distance uncertainties.

The arrangement of the piezoelectric transducers as actuators and sensors may
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also have an impact on the trilateration process which has not previously been fully

understood. To gain a better understanding of the connections and the influences

on the trilateration process, a numerical simulation of the trilateration process

was carried out. At this point, the simulation was carried out for a symmetric

2D structure, as will be used for the validation of the developed SHM system.

For other symmetric structures, the simulation must be adapted to the respective

geometrical dimensions. The simulation procedure is illustrated in Fig.(24). First,

a two-dimensional structure is covered with a mesh grid where each nodal point

represents a possible position of the damage. The piezoelectric transducers are

located around the center of the two-dimensional structure, designated here as S1,

S2 and S3.

Figure 24: Schematic drawing of 2D structure used for the numerical simulation
of the trilateration process.

For the simulation, the position of the damage was varied stepwise, from the

initial position to the end position (Fig.(24)). The position of the piezoelectric

transducers S1 and S2 on the two-dimensional structure was the same throughout

the simulation. Only the position of the piezoelectric transducer S3 was varied,

starting from position S2 in 5-degree increments around the center of the two-
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dimensional structure. For each position of the damage and each sensor position,

the propagation distances between actuator, damage and sensors r are calculated.

This information is used to compute the corresponding ellipses and their intersec-

tion point. The propagation distance contains an element of error. The assumed

error may be affected, for example, by an uncertainty in the determination of the

arrival time of the reflected wave packets from the damage. In addition, the size

and shape of the damage was taken into account, as shown in Fig.(22). The re-

spective parameters for the simulation are listed in Table (8).

4.2 Simulation Results and Discussion

The numerical simulation showed that there are basically two different possible

arrangements of the sensors, each giving different results for the trilateration pro-

cess. The difference between the two possible sensor arrangements is the size of

the area over which damage can be detected and how precisely the damage can be

located. The two sensor arrangements are discussed below.

The first sensor arrangement is more suitable for estimating damage over a

relatively large area of the structure. Here, the piezoelectric transducers are ar-

ranged linearly. The results from the simulation are shown in Fig.(25) for ±1%

uncertainty, and in Fig.(26) for ±3% uncertainty in the estimation of the wave

packet propagation distance. The different areas on the structure are divided in

ratios, where the area inside Ratio = 1 means, Ratio = distance between sensors /

distance away from the middle sensor position. The size of the detectable damage

for each ratio area is given as number (e.g. 10 mm2 for the Ratio = 1 area in

Fig.(25)).
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Figure 25: Simulation result for the linear sensor arrangement and ±1% uncer-
tainty.

Figure 26: Simulation result for the linear sensor arrangement and ±3% uncer-
tainty.
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A linear sensor arrangement is more suited to monitoring a relatively large area

on the structure because of the position of the ellipses relative to each other. The

individual ellipses have the same shape and differ only in their size. Furthermore,

in our specific case, all the ellipses are axisymmetric about the x-axis. This means

that the center line for all ellipses is the line of the sensor arrangement. Depend-

ing on the location of the damage, the size of each ellipse changes. However, the

relative positions of the ellipses remain the same. The angle between the three

ellipses at the intersection point is equal for every damage position. Therefore,

the ellipses will intersect over a larger area on the structure compared to sensor

arrangements where the center lines of the individual ellipses are not the same.

The second sensor arrangement is more suitable for detecting the position of

the damage more precisely. The results from the simulation are shown in Fig.(27)

for ±1% uncertainty, and in Fig.(28) for ±3% uncertainty in the estimation of the

wave packet propagation distance.

Figure 27: Simulation result for the rectangular sensor arrangement and ±1%
uncertainty.
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Figure 28: Simulation result for the rectangular sensor arrangement and ±3%
uncertainty.

The size of the intersection area for ±1% uncertainty is 3 mm2, and for ±3%

uncertainty the size is 80 mm2. If one considers a damage area of size approxi-

mately 700 mm2, the intersection area of the ellipses for ±1% uncertainty will be

70 times smaller, and for ±3% uncertainty the area is around seven times smaller.

From the two graphs in Fig.(27) and Fig.(28), it can be seen that with increasing

angle of the damage away from the the y- axis, the intersection area increases. The

smallest intersection area occurs when the damage is approximately at an angle

of 45◦ to the sensor arrangement. Fig.(27) and Fig.(28) show how the size of the

intersection area increases when the ratio between sensor arrangement and dam-

age increases. Furthermore, the intersection area is larger when the uncertainty is

higher.

The results from the simulation show that different sensor arrangements are

suitable for different purposes. In summary:

• The arrangement of sensors on the structure has a direct influence on the

possible monitoring region and the accuracy of the estimated position,
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• The uncertainties in the distances between actuator, damage and sensor

influence the estimated damage position. A higher degree of uncertainty

leads to a less precise estimation of the damage position,

• The arrangement of the sensors in the form of a line is best suited to moni-

toring the largest possible area of the structure,

• The arrangement of the sensors in the form of a right triangle gives the best

accuracy if the damage is at an angle of 45◦ to the sensor arrangement.

In the specification for developing the SHM system, it was required to estimate

an 30 mm crack on a two-dimensional structure. The position of the crack should

be determined with an accuracy of 50 mm x 50 mm on a 1000 mm x 1000 mm

structure. This means that when using the trilateration method with intersecting

ellipse lines:

• For ±1% uncertainty, a linear arrangement can be used up to a ratio of 4.0

and approximately ±45◦ from the center point of the sensor arrangement,

• If a more precise determination of the damage position is needed, the rect-

angular sensor arrangement as shown in Fig.(27) should be used,

• For an uncertainty of ±3% the linear sensor arrangement is only useful in

the near field of the sensors,

• Here, the rectangular sensor arrangement enables the localization of the dam-

age up to a sensor/distance ratio of 3.0, which is equivalent to a distance of

300 mm from the center of the two-dimensional structure.

For relatively small uncertainties, the introduced localization method meets the

required specification of the SHM system. For higher uncertainties, the localization

method is able to determine the damage position with the specified accuracy only

in the near field of the sensor arrangement. This issue limits the applicability of

the presented localization method for the specified SHM system. In the section

below a second type of trilateration for localization is introduced which enables the

damage position to be estimated over a wider range in a two-dimensional structure.
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4.3 Improvement of the Damage Position Estimation Us-

ing the Model-Based Approach

The process described above for the estimation of the damage position or the area

where the damage is located on the structure shows good results in the near field

of the sensor arrangement. For the application specified in this work, the accuracy

of the damage location by this method might be sufficient. However, the damage

localization process has some further disadvantages:

• In order to monitor the specified area on a structure, two different sensor

arrangements are needed,

• The possible damage area increases with increasing distance of the damage

away from the sensor arrangement,

• In certain cases, the ellipses do not intersect at all because of uncertainties

and unfavourable arrangements of the elliptical lines.

In order to eliminate the disadvantages listed above, the trilateration method

was expanded using the nonlinear least mean square (NLSM) estimation. The main

differences from the conventional trilateration method with ellipse line intersection

are:

• Only one type of sensor arrangement is needed for the localization,

• Even with uncertainties in the estimation of the propagating distance it is

possible to determine the position of the damage in the specified area on the

structure.

In the following, the damage localization method with trilateration and NLMS

is introduced. First, the theoretical background is described, together with the

functional principle. Subsequently, the validation of the introduced method is

demonstrated based on simulated damage positions on a virtual two-dimensional

structure. The results of the simulation and the limitations of the presented dam-

age localization are discussed at the end of this section.

83



Equation	
system:	
f(x,y)	

Random	errors,	
δrn	

previously	know	
sensor	position	

Non-linear	least	
mean	square	

Propagation	
relevant	

parameters		

Adaptive	processes:	
Static	math.	models:	

Output:	
Damage	position	

propagation	distance	rnm	

Figure 29: Schematic drawing of the model-based damage localization process
introduced in this work. The estimated propagation distance of the reflected wave
packets from the damage are the input for the process. The random errors δrn are
the errors caused by the estimation process.

As explained in the section above, information about the propagation time

between the actuator, the damage and the sensor can be extracted from the mea-

surements. In this work, this is called the time-of-arrival (TOA). From this infor-

mation, the propagation distance r can be calculated using information about the

propagation group velocity cg of the wave packets. The propagation distance r

can be separated into a forward-propagation path from the actuator to the dam-

age and a back-propagation path from the damage to the sensor. For example,

in Fig.(29) the distance between position S1 and the damage is designated d1 and

the distance between the damage and the sensor S2 is designated d2. The entire

distance between S1, damage D and sensor S2 is calculated as follows.
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r12 = d1 + d2. (56)

In a 2 dimensional Cartesian coordinate system, this distance can be expressed as

r12 =
√

(x− x1)2 + (y − y1)2 +
√

(x− x2)2 + (y − y2)2 (57)

where the unknown damage position D is denoted by (x, y). The following system

of nonlinear equations can be derived for all possible propagation distances between

the three sensor positions and the damage position.

f(x, y) =



√
(x− x1)2 + (y − y1)2 +

√
(x− x2)2 + (y − y2)2 − r12√

(x− x1)2 + (y − y1)2 +
√

(x− x3)2 + (y − y3)2 − r13√
(x− x2)2 + (y − y2)2 +

√
(x− x3)2 + (y − y3)2 − r23√

(x− x2)2 + (y − y2)2 +
√

(x− x1)2 + (y − y1)2 − r21√
(x− x3)2 + (y − y3)2 +

√
(x− x1)2 + (y − y1)2 − r31√

(x− x3)2 + (y − y3)2 +
√

(x− x2)2 + (y − y2)2 − r32


(58)

Because of the possibility of using each piezoelectric transducer as a sensor or as

an actuator, six propagation distances r are possible. This leads to six nonlin-

ear equations and an overestimated equation system where (x,y) is the unknown

damage position. The nonlinear equation system in Eq.(58) can be solved using a

nonlinear least mean square approach.

One problem when using the nonlinear least mean square method for position

estimation is choosing the initial value for the NLMS algorithm. If the initial

value chosen is too far from the real position, the NLMS does not converge to a

minimum. Here, the Levenberg-Marquardt NLMS algorithm is able to converge

to a minimum even when the initial position is not in the near field of the position

estimate. The disadvantage of a longer calculation duration compared to other

NLMS algorithms is less important in this work.

For the validation of the improved damage position estimation process, a simu-

lation was developed similar to that for trilateration with ellipses. A mesh grid with
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a side length of 100 mm x 100 mm was placed over the simulated two-dimensional

structure. Each node of the grid is equivalent to a position for the damage. From

the known damage position, first the distances between actuator, damage and

sensors r12,...,r32 are calculated. Subsequently, the expected uncertainties in the

estimation of the propagation distance due to the determination of the TOA are

added to the propagation distances, leading to the following equation:

f(x, y) =



√
(x− x1)2 + (y − y1)2 +

√
(x− x2)2 + (y − y2)2 − r12 ± δr√

(x− x1)2 + (y − y1)2 +
√

(x− x3)2 + (y − y3)2 − r13 ± δr√
(x− x2)2 + (y − y2)2 +

√
(x− x3)2 + (y − y3)2 − r23 ± δr√

(x− x2)2 + (y − y2)2 +
√

(x− x1)2 + (y − y1)2 − r21 ± δr√
(x− x3)2 + (y − y3)2 +

√
(x− x1)2 + (y − y1)2 − r31 ± δr√

(x− x3)2 + (y − y3)2 +
√

(x− x2)2 + (y − y2)2 − r32 ± δr


(59)

where (x, y) is the unknown damage position, (xn, yn) is the position of the sensor

and δr is the uncertainty due to the propagation distance estimation process.

Eq.(59) was implemented in a MATLAB routine where the unknown position

(x, y) was calculated by the NLMS.

The entire simulation was repeated for two different sensor arrangements and

two different values of the uncertainty. The first sensor arrangement was located

around the center of the virtual structure, with each sensor 100 mm away from

the center point of the structure as shown in Fig. (30) and Fig. (31(a)). In the

second sensor arrangement, the positions of the sensors are at the two lower edges

and the upper middle of the structure, as shown in Fig. (30) and Fig. (33(b)).

This results in the maximum possible triangular area on the virtual structure. For

both sensor arrangements, the simulation was repeated with uncertainties of ±1%

and ±3%.
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Figure 30: Drawing of the test setup for the evaluation of the NLSM localization
process. Two different sensor configurations are tested during the proof test.
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Table 8: Parameters for the simulation process.

Description Parameter Values Dimension

Mesh size 100 x 100 [mm]

Mesh number 11x11

First sensor configuration S1 (-100, -100) [mm]

S2 (0, 100) [mm]

S3 (100, -100) [mm]

Second sensor configuration S ′1 (-500, -500) [mm]

S ′2 (0, 500) [mm]

S ′3 (500, -500) [mm]

Uncertainties ± 1%, ± 3%

NLMS Levenberg-Marquardt initial value x0 = 0, y0 = 0

The results of the simulations are shown in Fig.(31) for an uncertainty of ±1%

with the first sensor configuration and in Fig.(32) for an uncertainty of ±1% for

the second sensor configuration. Here, in the sub-figures (a) the virtual two-

dimensional structure is shown with the respective sensor positions marked as black

circles, the real damage position marked as a blue star and the estimated damage

position marked by a red circle. In the sub-figures (b) the respective estimation

errors are shown, calculated as follows. The same applies for the results with ±3%

uncertainties illustrated in Fig. (33) and (34).

Estimation error =
√

(xdamage − xestimate)2 + (ydamage − yestimate)2 (60)

Here, xdamage and ydamage give the real position of the damage and xestimate and

yestimate give the estimated position of the damage.
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(a) Sensor configuration 1
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(b) Estimated error, sensor configuration 1

Figure 31: Position estimation with sensor configuration 1 and ±1% uncertainty.
Notice: The colours in Figure (b) are used for a better contrast of the illustration
and do not correspond with the values in the graph.
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(a) Sensor configuration 2
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(b) Estimated error, sensor configuration 2

Figure 32: Position estimation with sensor configuration 1 and ±1% uncertainty.
Notice: The colours in Figure (b) are used for a better contrast of the illustration
and do not correspond with the values in the graph.
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The simulation result for the first sensor arrangement shows a relatively good

correlation between the simulated and the estimated damage positions in the near

field of the sensor arrangement. The average estimation error in this area is approx-

imately 0.3 mm. For damage positions further away from the sensor arrangement,

the value of the average estimation error increases to 1.8 mm and the maximum

estimation error is 4.6 mm. For the second sensor arrangement, the average es-

timation error over the entire surface of the virtual structure is 0.2 mm, with a

maximum value of 0.5 mm. At the beginning of this work, the allowable error for

the estimation of the damage position was specified as 10%-20% of the damage

size. Furthermore, the damage required to be estimated was defined as a crack

with a length 0.3% of the structures length. For the virtual structure used for the

simulation this implies a crack size of 30 mm, leading to an estimation error of 7.0

mm. Thus, the maximum estimation error for both investigated sensor arrange-

ments was below the specified maximum level.

For the simulation with ±3% uncertainty in the determination of the propa-

gation distance r between actuator, damage and sensor, the results for the first

sensor arrangement show acceptable correlation between the simulated and the

estimated damage position only in the near field of the sensor arrangement, which

corresponds to approximately 50% of the entire investigated area (Fig.(33(a)).

Here, the average value of the estimation error is 5.2 mm. Further away from

the sensor arrangement the average value of the estimation error increases to 8.5

mm with a maximum estimation error of 28 mm on the edges of the structure

(Fig.(33(b)). In this area of the structure the value of the estimation error is

higher than the specified value of 7.0 mm.

In the results for the second sensor arrangement, the average estimation error

over the entire investigation area is 1.3 mm, with a maximum estimation error

of 3.1 mm (Fig.(34). Thus, the arrangement of the sensors on the edges of the

structure, as illustrated in Fig.(34) is suitable for determining the position of the

damage within the entire investigated area with the specified accuracy.
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(a) Sensor configuration 1

−500

0

500

−500

0

500
0

10

20

30

40

50

x [mm]y [mm]

E
st

im
at

io
n

 e
rr

o
r

(b) Estimated error, sensor configuration 1

Figure 33: Position estimation with sensor configuration 1 and uncertainty of±3%.
Notice: The colours in Figure (b) are used for a better contrast of the illustration
and do not correspond with the values in the graph.
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(a) Sensor configuration 2
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(b) Estimated error, sensor configuration 2

Figure 34: Position estimation with sensor configuration 2 and uncertainty of±3%.
Notice: The colours in Figure (b) are used for a better contrast of the illustration
and do not correspond with the values in the graph.
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In summary, the following conclusions can be drawn from the investigation of

the improved trilateration process.

• The combination of trilateration with nonlinear least mean square determi-

nation has advantages over the trilateration method using the intersection

of ellipses, such as:

– Reduction of the sensor numbers

– Reduction of the damage position estimation error

• The damage position estimation error depends on how the sensors are ar-

ranged on the structure

• The sensor arrangement where the damage position is between the sensors

shows the lowest estimation error.

It should be mentioned here that the sensor arrangement where the damage is

situated between the sensors demonstrated the best performance with respect to

damage position estimation. However, it should be clarified whether this sensor

arrangement is applicable in practice. For example, it should be investigated

whether the sensor position close to the edges of the structure leads to undesirable

reflections of the incident wave packets.
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5 Structural-Health Monitoring System Imple-

mentation

5.1 Aircraft Fuselage Skin Panel

As discussed in the introduction, one possible application for the introduced SHM

system is the monitoring of an aircraft fuselage skin. Cracks starting from the

fastener hole edges represent one type of possible and critical damage to the air-

craft fuselage skin. Due to the fact that the aircraft cabin is pressurized, the skin

panel is exposed to mechanical stress during each flight cycle, which can lead to

crack propagation starting from the fastener hole. This situation in itself does not

represent a major risk because the structure was developed to withstand certain

cracks with a defined crack length. However, if the crack reaches a critical length

and a second crack propagates from an adjacent fastener hole, the situation be-

comes more serious. In Fig.(35), an example of a collapsed aircraft skin panel is

shown. The initial crack started from a single fastener hole, and after several years

of in-service operation of the aircraft the crack reached a critical length, connect-

ing several fastener holes, which can lead to the collapse of the structure within a

fraction of a second.

95



Figure 35: Example of a collapsed skin panel of an aircraft affected by the propa-
gation of a crack between several fastener holes (source: www.arhiva.dalje.com).

After the affected skin panel section was removed for further investigation

(Fig.(36)), it was estimated that the crack had propagated between several fastener

holes of the lap joint. The initial crack started from a single fastener hole. The

reason for the initial crack was incorrect assembly of the fasteners during the

production of the aircraft.
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Figure 36: The same skin panel as shown in Fig.(35) but with the skin panel
removed from the aircraft for further investigation. It can clearly be seen that the
skin panel was separated at lap joint S-4L and the loose section of the panel was
pushed outwards (source: www.alchetron.com).

Of course, the damage type illustrated above is a fault which very seldom occurs

and only a few cases of a similar magnitude are known. This is because of the

compulsory inspection of such areas on aircraft by applying non-destructive testing

methods such as eddy-current inspection. Unfortunately, this kind of inspection is

very time-consuming given that the structure must be scanned by a single hand-

operated eddy-current probe. A more efficient inspection method would be to

scan the area of interest (in the above example the lap joint area), from a single

point. The Lamb wave inspection technique is appropriate for inspecting large

areas on thin plate-like structures by applying sensors at only a few positions on
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the structure.

The theory of Lamb wave propagation and the method of extracting the damage

features from the measured signal is described in detail in the preceding chapters.

In this chapter, the application of a Lamb wave-based inspection technique in

combination with a complete SHM system is explained. The SHM system consists

of:

1. Piezoelectric transducers as sensors,

2. Wireless measurement system,

3. Damage feature extraction algorithm,

4. Damage localization algorithm.

Apart from the piezoelectric transducers, all parts of the SHM system were

developed in the framework of this thesis.

5.2 Specification of Structural-Health System Developed

in this Thesis

This chapter includes two main aspects. First, an SHM system was developed re-

lating as closely as possible to a specific application. For this reason, a discussion

was conducted with an airline and an aircraft maintenance facility. The discussion

results are listed in the requirement catalogue shown in Table (9). The second

aspect was to describe the development of the different components for the SHM

system accurately, demonstrate their limits and identify other possible applica-

tions.

The first questions to answer are related to the specific structure observed. In

this case, the aluminium alloy planking of the aircraft structure was selected for

the application of the SHM system because the planking forms a high proportion

of the aircraft structure and is important for the integrity of the whole aircraft.

However, because it represents a high percentage of the aircraft structure, it must

be relatively lightweight, and this is achieved by keeping the planking as thin as
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possible. One problem that occurs on the planking is that of small cracks starting

from rivet holes (see example of real damage in the preceding chapter). The holes

are needed for the connection between the supporting ribs and the planking. These

small cracks can occur as the age of the aircraft increases (Fig.(37)).

Figure 37: Example of damage. Multiple cracks beginning at the holes for the
rivets (source: FAA (U.S. Department of Transportation)).

When the cracks reach a certain length, that part of the structure must be

replaced. This ensures that there is no sudden collapse of the structure. The crack

length is monitored by non-destructive testing at the usual inspection intervals

(C check: every 2,000 flight hours). These fatigue cracks can be observed on

the horizontal tailplane planking. Based on the identified critical area, a list of

requirements was created for the SHM system, as shown in Table (9).
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Table 9: Requirements for the SHM system (in this work).

Level of SHM integrity: Level 2 (estimation of damage position)

Application requirements: Subsequent and permanent installation

Operability: - Application by NDE-trained personnel

- Independent recognition of damage areas

and their positions

- Real-time evaluation of measurement results

Monitoring area dimension: Approximately 1 m x 1 m

thickness 1 mm

Operation conditions System should work under workshop conditions

Structure specification: - Plate-like structure

- Assumed to be quasi-isotropic

Total mass of SHM system Approximately 2%-5% of monitored structure mass

(only integrated parts)

Damage to be detected: - Fatigue cracks

- Approximately 0.3 % of monitored structure size

- Accuracy of 10%-20% of defect size

Sensors - Permanently installed

- No influence on structure integrity

Data collection unit - Self-powered

- Flexible to install

- No influence on the aircraft avionics

In order to integrate the SHM system as part of an aircraft, an aviation certifi-

cation for the system must first be issued. An aviation authorization is not planned

as part of this work. The effort would be beyond both the financial resources and

the time frame, and could only reasonably be undertaken by the aircraft manufac-

turer.

In Fig.(38) the various components of the SHM system are illustrated together

with the specimen structure for the validation test. The components are: (1) the
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specimen structure, (2) the sensors/actuators and their arrangement, (3) three

wireless sensor nodes and (4) the central server with graphical user interface and

embedded signal processing.

Figure 38: Photograph of the experimental setup. The various components are:
(1) aluminium alloy plate, (2) piezoelectric transducers fix bonded onto the plate,
(3) wireless measurement devices and (4) central processing unit with wireless re-
ceiver, operation software, damage feature extraction algorithm and damage local-
ization algorithm. Note: The connection between wireless notes and piezoelectric
transducers are made by using wires.

In the following section, the various parts of the SHM system are explained,

and at the end of this chapter the evaluation test for the entire SHM system is

explained and discussed.

5.3 Wireless Measurement System

One aspect which is sometimes neglected in the development phase of a mon-

itoring system is the question of how the data from the sensors are processed

and transmitted on to the evaluation unit. For example, most of the commercially
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available data acquisition systems designed for permanent installation or for short-

term tests employ cables to transmit sensor data to a central server. However, the

use of cables has disadvantages, especially when a monitoring system is mainly

intended for applications in difficult-to-access areas. Examples of disadvantages

are the additional weight, or the possibility of short cuts or line interruptions[77].

Furthermore, the capacitances of the cables, especially if they are relatively long,

can influence the measured data.

One way to avoid the disadvantages of cables is the use of wireless systems,

where the measurement data are transmitted via radio to a processing unit out-

side the structure. In the last 10 years, a number of wireless SHM systems have

been developed for research purposes. Commercial wireless systems are becoming

available. Lynch and Kenneth [78] provided a detailed summary of wireless SHM

systems for the period 1998 to 2005. The majority of the wireless sensors described

in their paper were developed for applications on civil structures. Dürager et al.

[79] listed wireless systems which were developed especially for monitoring appli-

cations where piezoelectric transducers are used.

In the framework of this thesis, a wireless system was developed for appli-

cations where Lamb waves are used in combination with piezoelectric transduc-

ers. Compared with existing wireless systems for similar applications, this system

offers numerous advantages, such as relatively small dimensions, lightness, high

amplitude of excitation voltage, embedded anti-noise filtering and optimized time

synchronization between the central server and the wireless sensor units. Further-

more, a graphical user interface enables convenient use of the wireless system. The

development process, the main technical specifications and the validation process

of the wireless system are explained in [79] and summarized here. The main tech-

nical specifications for a single wireless node are listed in Table (10).

The wireless system described in [79] and used in this study consists of a central

server and a number of wireless signal processing units (SPUs). An illustration of

the whole wireless system and its components is given in Fig.(39). A commercially

available personal computer was used as the central server.
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Figure 39: Illustration of the wireless system used in this work for data acquisition,
consisting of: (1) piezoelectric transducers, (2) mechanical waves, (3) wireless
signal processing units and (4) central server with embedded damage detection
process.

The wireless SPU used in this study offers the possibility of exciting a piezo-

electric transducer and measuring its voltage signal. The dimensions of the single

wireless SPU were 85 mm x 40 mm x 10 mm including the plastic protective con-

tainer. The total weight of a single SPU including the embedded battery is 30 g.

The main electronic parts of the SPU are the microprocessor, the analog-to-digital

and digital-to-analog converters, the wireless interface for the connection to the

central server and the adaptive filters for smoothing of the measured signal and

the excitation. The various electronic components are connected via a peripheral

interface. The electric circuit diagram of a single SPU with the various electronic

parts is shown in Fig.(40). It has to be mentioned here that the connection be-

tween the single SPU and the piezoelectric transducer is made by sûsinf wires. In

order to keep the wire length short the SPU’s should be placed as near as possible

to the piezoelectric transducers.
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Figure 40: Electric circuit diagram of a wireless sensor node.

The excitation signal for the piezoelectric transducer is a sine sweep with 18

cycles, modulated with a Hamming window with an amplitude of 60V peak-to-

peak. The excitation frequency can be selected on the central server in a range

from 30 kHz to 300 kHz with a step size of 1 kHz. Zhao et al. [80] used a special

tone-burst pulser to obtain an output voltage of 70 V peak-to-peak. However,

their concept required wireless power transmission with a special rectangle array

design. In contrast to the work of Zhao et al., the wireless system presented here

employs a concept with two amplifiers, one as inverter, one non-inverting, and a

lower input voltage for the amplifiers is required. Therefore, the output voltage of

the integrated battery is sufficient for the direct supply of the amplifiers and no

additional voltage supply is needed.

In order to measure the voltage from the piezoelectric transducers, the voltage

drop over an internal resistor Rpe (Fig. 40) is measured. This leads to a relatively

high input impedance for the wireless SPU (in comparison with the internal re-

sistor); a problem which is solved by using a non-inverting amplifier at the input.

For a smooth signal, an anti-aliasing filter is integrated into the circuit just before

the analog-to-digital converter (ADC). The ADC has a 16-bit resolution with a
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sampling frequency of 1 MHz. This leads to a signal-to-noise ratio (SNR) of about

87 dB. By taking into account the Nyquist sampling theorem, (sampling frequency

> 2 x signal frequency) a sampling frequency of about 1 MHz is (more or less)

enough for a signal frequency up to 300 kHz [20].

One of the main challenges for a wireless sensor network for SHM applications

is the time synchronization between the different wireless SPUs in the network [81].

For applications using elastic wave propagation, the time synchronization between

the different components at different locations in the network is of prime impor-

tance [82]. For the wireless system used here, the time synchronization process

between the central server and each individual wireless sensor node in the network

works as follows. When the operator starts a measurement on the central server,

a time synchronization impulse is produced. This impulse propagates through the

air and will be received from every wireless sensor node at nearly the same time.

Here, the only time delay between the different wireless sensor nodes is due to

the different propagation distances for the signal through the air. For example,

for the maximum possible transmission distance of 100 m, the time delay can be

calculated as follows:

4tAir(4s = 100m) =
4s
c

=
100m

299, 729km/s
= 33ns (61)

where c is the speed of light through the air. The synchronization impulse is now

received by the wireless interface at each individual wireless sensor node. The

wireless interface transmits an interrupt impulse to the embedded microcontroller.

The time delay for receiving the synchronization signal is given by the hardware

of the wireless interface, with a maximum time delay (from the data sheet) of

about4tinterface = 500 ns. The wake-up process for the embedded microcontroller

requires a maximum time of 4tµC = 18 ns. The maximum time delay from the

start of the synchronization process to the actual function on the current wireless

sensor node is therefore as shown below. 4tAir + 4tinterface + 4tµC = 851 ns.

This estimated time delay was verified during the validation test.

When the measurement data stored on each individual wireless sensor node
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are transmitted wirelessly to the central server, the central server first sends a

request signal, and each wireless sensor node transmits the stored measurement

data wirelessly to the central server. The measurement data are organized into

data packets with a length of 32 bytes. As the whole payload length is used, it

is possible to achieve a transmission rate of 41.66 kBit/s. One drawback of wire-

less data communications in networks is the possibility of losing data during the

wireless transmission. For the data transmission in the wireless system developed

here, the so-called end-to-end recovery process is used [83].

In the framework of this project, the possibility of using the vibration energy

of the structure for recharging the embedded battery was also explored. The de-

velopment process and the validation of the energy-recovery system is described in

[84]. It has been shown that the piezoelectric transducers, in this case active fibre

composites, are not sufficient for completely recharging the batteries. However,

for simpler sensor nodes with a lower energy consumption, the presented process

could be quite useful.

Table 10: Technical specification of a single wireless sensor node.

Description Value

Maximum output voltage 60 Vpp

Maximum sampling rate 1 MHz

Maximum resolution 16 bit

Signal-to-noise ratio 85 dB

Maximum transmission range 100 m

(outdoor)

Power requirements 1,399 mW (active mode)

50 mW (inactive mode)

Dimensions 85 mm x 40 mm 10 mm

Weight 30 g

In summary, it can be shown that the wireless system used is very suitable for
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research purposes. The system provides a number of innovations that offer benefits

to the application in the field of damage detection, (e.g., flexibility of application,

intuitive use and use of relatively small and lightweight components). For use in

professional applications such as the monitoring of aircraft components, however,

the system must be optimized for the specific application. Then, both the size

and the energy consumption of the system could be reduced to a required level.

Furthermore, the developed wireless system could also be used for these types of

applications assuming it meets the conditions for approval for integration.

5.4 Example of Application and Practical Assessment of

the System

In this chapter, the validation experiments for the developed SHM system are pre-

sented. All experiments were carried out on a specimen structure with material

properties close to the structure of interest specified for the application on aircraft

structures (Table (9)). All experiments were performed under laboratory condi-

tions.

5.4.1 Experimental Setup

An aluminium alloy plate (5005-H14) with 1 mm thickness and a size of 1.5 m

x 1.5 m was used as a specimen structure. The properties listed in Table (11)

were used for comparing the material properties of the specimen and the specified

structure. Here, the material properties of both plates were roughly comparable.

For the experiments, the aluminium plate was supported at its lower surface by a

hard foam plate.
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Table 11: Material properties of aluminium alloy 5005-H14 and aluminium alloy
6013-T3.

5005-H14 6013-T3

Modulus, E: 50 GPa 31 GPa

Poisson’s ratio: -0.33 n.a.

Density, ρ: 2.700 g/m3 2.7100 g/m3

Yield stress, Y : 500 MPa 379 MPa

The SHM system was tested using two different types of damage. The first type

was more artificial, i.e., the damage was simulated using two circular permanent

magnets, one mounted on the upper surface and the other mounted opposite the

first on the bottom surface of the specimen structure (Fig.(41)).The advantage of

the use of permanent magnets is that they can be removed from the surface. The

diameters of the circular magnets were 30 mm. For the second type of damage, a

slot was milled through the aluminium plate. Unfortunately, this type of damage

is not reversible. Therefore, the experiment with the milled slot was the last ex-

periment carried out (Fig.(42)). The length of the slot was 30 mm.

Figure 41: Photograph of the two permanent magnets with the aluminium plate
between (left picture). The right picture shows the permanent magnet as a top
view.
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Figure 42: Photograph of the milled slot through the specimen structure.

In Fig.(38), the various components of the SHM system are illustrated together

with the specimen structure for the validation test. The various components are:

(1) the specimen structure, (2) the sensors/actuators and their arrangement, (3)

three wireless sensor nodes and (4) the central server with graphical user interface

and embedded signal processing.

For the experiments, three circular piezoelectric transducers (PTs) of type

PZT 26 from Ferroperm Piezoceramics (www.ferroperm-piezo.com) were arranged

on the structure. The PTs were placed firstly as a linear sensor arrangement

(Fig.(43), left drawing) and secondly as rectangular sensor arrangement (Fig.(43),

right drawing) on the structure. All PTs were permanently bonded onto the spec-

imen structure by gluing. For the bonding, a two-component conductive adhesive

was used, which was able to use the structure as common ground.
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Figure 43: Drawing of the specimen structure with the sensor arrangement and
the damage positions.

Table 12: Sensor arrangement selected for the present experiment.

Sensor arrangement (x, y)
PZT 1 [mm] (100, 0)
PZT 2 [mm] (0, 0)
PZT 3 [mm] (0, -100)

Excitation Signal

For exciting the Lamb waves into the structure a sine sweep signal with 18 cycles

modulated with a Hamming window was used in the experiments. The amplitude

of the excitation pulse was 60V peak-to-peak with a center frequency of 100 kHz.

The values of the excitation signal parameters are listed in Table (13).
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Table 13: Parameters for the excitation signal (present experiment).

Parameter 1 Value
Signal form Sine burst modulated with Hamming window
Excitation frequency 100 kHz
Number of cycles 18
Signal amplitude 60 Vpp

5.4.2 Validation Results

The results section is split into two parts. In the first part, the results from the

experiments with the reversible damage are described. In the second part the

results for the milled slot in the specimen structure will be presented.

Results for Imperfection Position 1

The first damage position was chosen so that the reflected wave packet from the

damage was overlapped by the incident wave packets. In Fig.(44), the signal

measured at sensor position 3 (PZT 3) excited by sensor 1 (PZT 1) without the

damage is shown as an example. The upper graph shows the signal resulting from

the wireless measurement. In the lower graph, the time duration of the signal

between the incident wave packet and the first reflected A0 wave packets from the

boundaries is limited.

111



0 2 4 6 8 10
−40

−20

0

20

40
A

m
p

lit
u

d
e 

[m
V

]

Time [ms]

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

A
m

p
lit

u
d

e 
[m

V
]

Time [ms]

Figure 44: Example of a measured signal without damage. Actuator = PZT 1,
sensor = PZT 3. Upper graph: measured signal during a 10 ms period. Lower
graph: signal reduced to a time period of 1 ms (time period between incident
signal and first reflection from the boundaries).

As a first step, the parameters of the incident wave packets within the measured

signal are estimated using the developed estimation procedure described in chapter

3.3. In the measured signal (Fig.(44), lower graph) additional wave packets are

present. These are caused by reflections from the edges of the structure. The

S0 reflected wave packets from the edges appear between 0.28 ms and 0.48 ms

and those for the A0 reflected wave packets between 0.81 ms and 1.5 ms. For

the estimation process, only the S0 reflected wave packets from the edges are

considered, because the reflected wave packets from the first type of damage are

expected to appear between the incident wave packets and the S0 reflected wave

packets from the edges. The results for the estimation process of the incident and

reflected wave packet parameters are listed in Table (14). Differences from the

simulation arise in the S0 incident wave packet values for the dispersion coefficient
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and the chirping parameter. This indicates weak dispersion of the real S0 wave

packet.

Table 14: Estimated values for the incident wave parameter.

AA0inc
TOAA0inc

ΓA0 ψA0 AS0inc
TOAS0inc

ΓS0 ψS0

0.98 mV 0.082 ms 0.1e-4 1e-8 0.42 mV 0.046 ms 1e-12 1e-6

Using the estimated wave parameters, the envelopes of the incident wave pack-

ets and the S0 reflected wave packets are illustrated in Fig.(45).
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Figure 45: Reduced time section (0 - 0.45 ms) of the measured signal shown in
Fig.(44). The first peak belongs to the S0inc wave packet followed by the A0inc

wave packet. The wave packet following the A0inc wave packet belongs to the
reflected S0 wave packets from the edges of the structure. (Black line: measured
signal, Green line. estimated signal)
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There is good agreement between the measured signal envelope (black line) and

the estimated signal envelope (green line). The small deviation may be caused by

additional environmental vibrations.

In the second step, the parameters of the reflected wave packet from the dam-

age are estimated using the TOA estimation process developed in this work. In

Fig.(46), the measured signals and their envelopes with damage (red curve) and

without damage (blue curve) are illustrated. As above, only the measured signal at

sensor position 3 (PZT 3) which is excited at sensor position 1 (PZT 1) is present.

From the figure, it can be seen that the signal from the reflected wave packet from

the damage is superimposed on the incident wave packet as well as on the reflected

S0 wave packets from the edges of the structure.
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Figure 46: Measured signal with damage (red curve) and without damage (enve-
lope of signal, blue curve).
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For a better illustration, the reflected wave packet from the damage was re-

calculated using the estimated wave parameters, as shown in Fig.(47). Here, the

estimated TOA of the reflected A0 wave packet from the damage is 0.272 ms. With

a wave velocity of the A0 wave packet of 1,120 m/s this results in a propagation

distance between actuator, damage and sensor of 290 mm.
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Figure 47: Envelope of measured signal without damage (blue line), envelope
of measured signal with damage (red line) and estimated envelope with damage
(black line). Calculated signal of A0 wave packet reflected at the damage (blue
curve).

The blue curve in Fig.(47) shows the envelope of the measured signal without

damage, the red curve shows the envelope of the measured signal with damage

and the black curve shows the estimated envelope of the damage signal. The esti-

mated envelope signal shows slight deviations from the measured signal. However,

despite these slight deviations, the parameters for the reflected wave packet from
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the damage can be determined with sufficient accuracy. For the reflected S0 wave

packet no values for the wave parameters were estimated. This can be attributed

to the fact that no S0 wave packet was reflected at the damage. The time of arrival

of the estimated damage signal A0 within Fig.(47) correspondents with the real

damage position.

The estimation process was applied to all signals measured at the sensor po-

sition and to the results for the estimated arrival time of the reflected A0 wave

packet at the damage site. The wave propagation distances thus calculated are

listed in Table (15).

Table 15: Estimated values for the TOA and the wave propagation distances.

Propagation line 5: S12 S13 S23 S21 S31 S32

TOA: 0.34 ms 0.26 ms 0.23 ms 0.35 ms 0.26 ms 0.20 ms

Estimated distance: 381 mm 290 mm 250 mm 388 mm 290 mm 220 mm

Real distance: 385 mm 285 mm 260 mm 385 mm 285 mm 260 mm

∆r: 4 mm 15 mm 10 mm 3 mm 5 mm 40 mm

Results for Damage Localization - Damage 1

All calculated propagation distances are afterwards applied to the damage position

estimation process described in the section above. The estimation of the damage

position was carried out twice: once with trilateration using the intersection of

ellipse lines and then using trilateration with the nonlinear least mean square

procedure. The results are illustrated in Fig.(48). There, the sensor positions are

marked as black filled circles, the real damage position is marked by a blue circle

and the ellipses are drawn as ellipse lines around the sensor and damage positions.

The intersection points of the ellipses are marked by blue circles. It can be seen

from Fig.(48) that the ellipse lines do not intersect at the damage position which

5The term propagation line means the actuator-damage-sensor propagation distance. For

example: S12 = PZT1-damage-PZT2 distance
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correlates to the simulation results of the sensor arrangement described in the

section above. This is in contrast to the calculation of the damage position using

nonlinear LMS. Here, the estimated damage position correlates well with the real

damage position.
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Figure 48: Results of the damage localization for damage 1. Blue circle = real
damage position, red dot = estimated damage position using the model-based
approach and points of ellipse intersection = estimated damage area using the
trilateration method.

Results for Damage Position 2

The second position of the defect was chosen so that the reflected wave packet

from the damage was not overlapped by the two incident wave packets. The re-

sults from the TOA estimation process and the calculated propagation distance of

the reflected wave packet from the damage are listed in Table (16).
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Table 16: Estimated values for the TOA and the wave propagation distances.

Propagation line 6: S12 S13 S23 S21 S31 S32

TOA: 0.40 ms 0.35 ms 0.40 ms 0.40 ms 0.34 ms 0.40 ms

Estimated distance: 451 mm 388 mm 453 mm 453 mm 385 mm 450 mm

Real distance: 458 mm 316 mm 458 mm 458 mm 316 mm 458 mm

∆r: 7 mm 72 mm 5 mm 5 mm 69 mm 8 mm

As before, the distances are applied to the damage estimation process carried

out for the trilateration with ellipse intersection and for the trilateration with

NLMS. The results are illustrated in Fig.(49).

6The term propagation line means the actuator-damage-sensor propagation distance. For

example: S12 = PZT1-damage-PZT2 distance
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Figure 49: Results of the damage localization for damage 2. Blue circle = real
damage position, red dot = estimated damage position using the model-based
approach, points of ellipse intersections = estimated damage area using the trilat-
eration method.

The results in Fig.(49) show good correlation between the estimated and the

real position of the damage for both damage localization processes. As shown in

the simulation for the ellipse intersection method, for this position of the damage

and with exactly the same arrangement of sensors as used for this experiment, the

position can be estimated sufficiently well. For a different damage position, the

arrangement of the sensors must be changed. However, in reality this is not possi-

ble. The second introduced localization method using trilateration in combination

with the nonlinear LMS, shows better results for a fixed sensor arrangement, which

makes it more suitable for the estimation of the damage position.
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Results for the Milled Slot in the Specimen Structure

After the experiments with removable defects on the structure, the structure was

subjected to permanent damage. A slot was milled into the specimen structure

in order to simulate a type of crack damage to the structure. The experiments

with this type of real damage were only performed for one damage location on

the structure. The results from the TOA estimation process and the calculated

propagation distances of the reflected wave packet from the damage are listed in

Table (17).

Table 17: Estimated values for the TOA and the wave propagation distances.

Propagation line 7: S12 S13 S23 S21 S31 S32

TOA: 0.39 ms 0.35 ms 0.37 ms 0.40 ms 0.32 ms 0.38 ms

Estimated distance: 436 mm 392 mm 414 mm 448 mm 358 mm 425 mm

Real distance: 440 mm 320 mm 440 mm 440 mm 320 mm 440 mm

∆r: 4 mm 72 mm 24 mm 8 mm 38 mm 15 mm

As in the experiment with the artificial damage, the TOA of the reflected wave

packets from the damage are used for the determination of the crack position.

The result for the ellipse intersection and for trilateration with NLMS are shown

in Fig.(50).

7The term propagation line means the actuator-damage-sensor propagation distance. For

example: S12 = PZT1-damage-PZT2 distance
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Figure 50: Result of the damage localization for the milled slot. Blue line = real
damage position, red dot = estimated damage position using the model-based
approach, points of ellipse intersections = estimated damage area using the trilat-
eration method.

Here, it is clearly shown that it is in principle possible to estimate the position

of the crack damage using either localization method. The intersection method,

however, results in a relatively large area between the intersection points of the

ellipses, which in turn means a large potential area for the location of the damage.

As demonstrated in the experiment above, the localization method with trilater-

ation in combination with NLMS shows better results for the estimated damage

position. For this reason, the trilateration localization method in combination

with NLMS is recommended in preference to the method of intersection of ellipse

lines.
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5.4.3 Discussion of Results

As has been discussed in the simulation for the different sensor arrangements, the

selection of the sensor arrangement has an impact on the results of the damage

position estimation. For a damage position nearly perpendicular to the sensor

arrangement (x-axis or y-axis) the rectangular sensor arrangement provides no

useful results. In these areas the individual ellipses do not overlap. By using the

linear sensor arrangement the estimation of the damage position is possible, but

less precise.

The experiments showed generally that with increasing distance of the dam-

age away from the sensor arrangement, the estimated damage area increases. The

results from the sensor arrangement simulation showed that when using the tri-

lateration method for damage detection it is not possible to estimate the damage

position when it is at a distance greater than five times the size of the sensor

arrangement. In these cases another location method may be more efficient.

The results for the estimation of the real damage show good agreement with

the real damage position. The measured results shown in Fig.(50) are for the ex-

periment with a crack length of 30 mm.

Compared to the measurements with the removable defect, the results of the simu-

lated crack in the aluminium plate show a higher amplitude. That may be expected

because the change of the structure behaviour due to the removable defect is less

pronounced. However, it must be clearly stated that neither of the defects oc-

curs in reality. The selected defects are only an approximation to reality and are

used to verify the functionality of the SHM system. In order to test the system

for the planned application, a structure specified in the requirement list must be

used. Furthermore, this structure must to be loaded in a fatigue test until a crack

occurs. These experiments are planned in collaboration with the two project part-

ners mentioned at the beginning. Only through these real load tests will it be

possible to tune the system for the desired application.
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6 Conclusion

6.1 Summary

As stated in the introduction, modern structures no longer represent stand-alone

solutions; the trend is towards structure systems. This means that structures will

become more ”intelligent” in the future. A key element of such structure systems

will be data processing. In this work, the data processing is a mathematical

reflection of the entire physical behaviour of the structure system.

Here, the scientific focus was on the introduction of a new data processing

concept for structure systems, with the goal of monitoring the integrity of a struc-

ture. The main difference, in comparison to existing data processing solutions for

the monitoring of structures (structural-health monitoring), is the ability of the

proposed solution to adapt to situations which are not previously known. This

is made possible through a combination of approximated analytical mathematical

models of the predictable physical processes and adaptive mathematical models

for previously unknown physical processes such as damage events or environmental

effects on the structure system.

At the beginning of this work, existing data processing solutions for structure

monitoring are discussed and compared with the new software approach. The

resulting comparison is illustrated in a diagram which could be used as a kind of

standard for assessing the requirements of a software for structural monitoring.

Most of this thesis consists of the introduction of a novel data processing ap-

proach for the extraction of damage-related features within a measured signal.

First, the theoretical background is discussed and the proposed concept is derived.

A practical example of the data processing approach is then given based on the

analysis of Lamb wave signals. The subsequent proof of concept is based on a

practical example where the signals for the test of the proposed damage feature

extraction process (data processing) are synthetically calculated signals, because

this allows the possibility of tuning the input signal for the procedure and testing

towards the boundaries.

Focusing only on the scientific part –the introduction of the novel data pro-

cessing concept for structural systems –would not be sufficient, because for an

123



in-depth consideration of the structural system the various components involved

in the concept must be considered. Therefore, an entire structural-health monitor-

ing system, consisting of sensor arrangement, wireless data acquisition and damage

localization algorithm, was developed in the framework of this thesis. The devel-

opment steps, including all the necessary simulations and the practical testing of

the entire system, are explained in the second part of the thesis.

It should be noted that the validation of the proposed data processing method

was limited to following assumptions:

• Only the first two Lamb wave modes are consider (first symmetrical- S0, and

first anti-symmetrical mode A0,

• The simulated signals and the practical test are based on a wave propagation

in an isotropic material,

• Effects caused by the piezoelectric actuators or sensors are not taken into

account,

• For the estimation of the damage features only the reflected wave packets

form the damage are consider. Scattered wave packets are not taken into

account,

• The geometrical complexity of the assumed structure for the simulation and

for the practical test are limited to a rectangular plate without curvature,

• No attentional structure elements such as rivets or stringers are taken into

account,

• A monitoring of possible detachments (partially or completely) of the piezo-

electric transducers are not taken into account,

• It is assumed that no ageing is effecting the piezoelectric transducers or the

structure.

Furthermore, the present wireless measurement system has following limitations:

• The transmission distance (100 m) was only tested for indoor applications,
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• The connection between sensor node and piezoelectric transducer is wire

based,

• Only the excitation frequency of the wave pulse can be varied. All other

parameters such as wave pulse amplitude, wave pulse shape or measuring

time (10 ms) are fix defined within the system and can not be changed,

• The wireless system is not validated against a common standard (e.g. CE

standard) and is not approved for the use in aerospace applications.

To summarise, the SHM system developed in this thesis is also not yet ready

for real-world applications, but nevertheless, preparatory work for reaching this

goal has been undertaken. With the considerations and methods developed here,

it should be possible to develop an SHM system based on guided waves for various

applications in plate-like structures. In principle, the application is not limited to

aircraft. Further applications could be found in various fields where lightweight

structures are used. Furthermore, the system is not restricted to aluminium struc-

tures. Various tests on CFRP plates undertaken during the experimental phase

of this work demonstrated the functionality of the SHM system for this type of

material also.

6.2 Further Work and Outlook

From the viewpoint of the author, the future for data processing and damage

feature extraction in the field of structural-health monitoring will involve the rep-

resentation of the involved physical processes by mathematical models of a type

corresponding with Level 6 (the highest level) as listed in Fig.(4). Although the

examples presented in this work demonstrated reasonable performance, the poten-

tial of the model-based approach is far from being fully exploited. For example,

in this work, only the measured signals gained from the piezoelectric transduc-

ers were taken into account, but in principle several other readings from other

sensors, such as temperature or vibration sensors, could also be taken into ac-

count. Of course, the consideration of further data results in the need for more

mathematical models, which increases the complexity of the entire damage feature

125



extraction procedure, but the reliability of the information obtained will increase,

even in cases where there are missing data. The author therefore recommends

implementing the presented solution with data from multiple sensors.

In summary, following further investigations on the proposed data processing

method for damage feature extraction are recommenced:

• Even though the proposed data processing method are able to handle the

case of multiple damages, this ability was not tested in the framework of this

thesis,

• The proposed method should be adapted to more realistic and therefore more

complicated structures. For instance, multiple reflections of the incident

wave pulse at a fastener row or at multiple stringers should be a topic of

investigation,

• As stated above, the feasibility of the proposed data processing method was

limited to isotropic wave propagation, and the case of anisotropic wave propa-

gation as for example in composite material was not considered in this thesis.

The expansion of the proposed data processing method to anisotropic wave

propagation would expand the proposed method to further applications, such

as for example monitoring applications of structures made of composite,

• In this thesis only the reflected wave pulses from a damage is considered as

possible damage feature. But, in order to increase the sensibility of the SHM

system also the scattered wave pulses from the damage should be considered

in the mathematical model,

There is no doubt that an integrated SHM system can reduce operating costs

for an aircraft. This makes the application of the SHM system very interesting for

airlines. However, most SHM systems are not ready for applications in commercial

aircraft. Many laboratory-based SHM systems are available, but none of these

systems has yet been integrated into a real application. There is a clear need to

bring the systems from the laboratory stage of development into real applications.

A further follow-up project is planned on a wind turbine in order to monitor its

rotor blades. The material of the rotor blades is CFRP. The aim of this project is
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to be able to detect impact damage to the rotor blades. The use of an autonomous

wireless monitoring system is a particular advantage for this type of application.

By combining the wireless system with an energy-harvesting system, the system

developed here can provide some advantages for such applications. Using the pro-

cedure described in this work and the developed simulation, it should be possible

to use an SHM system for this application.
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