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Zusammenfassung

Intrazellularer Transport ist ein komplexes Zusammenspiel zwischen Zytoskelett,
Motorproteinen und Cargo. Das Zytoskelett ist rdumlich stark inhomogen und aniso-
trop. Wéahrend Mikrotubuli ein radiales Netzwerk mit Zentrum im Zellinneren bilden,
sind Aktinfilament mit willkiirlicher Anordnung auf den Kortex beschréinkt. Verschiedene
Motorproteine binden an ein Cargoteilchen und transportieren es entlang des Zytoske-
letts. Dabei erfihrt das Teilchen stochastische Ubergénge zwischen Phasen gerichteten
Transports und Phasen des Stillstands. Wie dieses Zusammenspiel die Diffusion und
die Effizienz des Transports beeinflusst ist unklar. Random Walk Modelle bilden einen
theoretischen Zugang zu Transportprozessen in Zellen. Allerdings wurde der Einfluss
des Zytoskeletts, der Motorproteine und der Arrestzusténde in der Literatur bisher nur
separat behandelt. Im Rahmen dieser Arbeit werden Random Walk Modelle behandelt,
die das Zusammenspiel der drei Schliisselkomponenten intrazelluliren Transports
beriicksichtigen. Mittels dieser kann der Einfluss dieses Zusammenspiels auf anomale
Diffusion und First Passage Events systematisch untersucht werden. Analytische Be-
rechnungen und Monte Carlo Simulationen prognostizieren das Aufkommen transienter
anomaler Diffusion und zeigen, dass die Effizienz verschiedener Transportprozesse durch
die Inhomogenitit und die Anisotropie des Zytoskeletts erhoht wird.

Abstract

Intracellular transport is an intricate interplay between the cytoskeleton, the mo-
tor proteins, and the cargo. The cytoskeleton exhibits a complex spatial organization
which is generally inhomogeneous and anisotropic. Microtubules radiate from the cell
center, whereas actin filaments randomly populate the cortex. Several motors of diverse
species attach to a single cargo and carry it along the cytoskeleton. Thereby, cargoes
exhibit stochastic transitions between phases of directed motion and reorienting arrest
states at filament crossings. How this interplay effects anomalous diffusion and the
efficiency of targeted transport is elusive. Coarse grained random walk models provide
a powerful tool to approach transport processes inside cells. But so far, the impact
of the cytoskeleton architecture, the motor activity, and the transient arrest states of
the cargo are considered separately in the literature. Here, we present unified random
walk models which incorporate the three key components of intracellular transport and
enable us to elucidate how their interplay effects anomalous diffusion and first passage
events. With the aid of analytic considerations and extensive Monte Carlo simulations,
we show that transient crossovers in anomalous diffusion arise and that the efficiency of
various intracellular transport tasks is substantially increased by the inhomogeneity and
anisotropy of the cytoskeleton.
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Chapter 1.

Introduction and Motivation

“What is Life?”, Erwin Schrodinger, 1944 [1]

Since the beginning of time, people wonder about the complexity of life. It appears to
be obvious how to distinguish between living and non-living matter. Animals, plants,
and fungi are living; a cloud, a stone, a car is not. However, to define the properties
which are distinctive of life is challenging. Presumably the most striking difference is
that living systems are made up of cells [2]. Cells are often referred to as the “building
blocks of life” [3]. Even though a unequivocal definition of a cell is lacking, cells share the
same fundamental properties |2,/4,[5]: Cells are able to reproduce and transmit genetic
information. Cells consume energy to regulate their function and maintain a specific
internal organization. Cells are able to communicate with their environment and adapt
to external stimuli. And cells are able to arrange into complex multi-cellular organisms.
The astonishing complexity of life which emerges out of these basic properties of cells
is believed to arise due to the interplay between “chance and necessity” [6] and is
captured in biological concepts such as evolution, heredity, or fitness. Nonetheless, a
quantitative understanding of living systems necessitates an interactive collaboration
between diverse disciplines, such as physics, biology, chemistry, or computer science,
with their respective scientific background, experimental techniques, and theoretical
models, see for instance [7]. Even more than 70 years after Schrédinger’s famous arti-
cle [1], the physical principles behind “What is Life?” are far from being fully understood.

In this thesis, the focus is on one crucial aspect of life, namely active intracellular
transport. The biological background is provided in Chapter

The correct delivery of intracellular cargo is vital for the function of cells and organisms.
A myriad of cargo particles, such as cell organelles or macromolecules, have to be
transported from their source to specific target locations. Processes as diverse as
secretion, signal transduction, cell division and migration, or muscle contraction rely on
active intracellular transport [2]. A prominent example occurs during immune response.
Specialized T cells scan organisms for pathogen-infected or tumorigenic cells [2]. When
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getting into contact with a pathological cell, T cells form a close connection to it,
which is called immunological synapse. Toxic material is then actively transported and
exclusively released at the synapse to ensure the killing of the pathological cell [2,8-14].
A malfunction of active intracellular transport is related to diverse severe diseases,
such as Alzheimer’s or dementia, e.g. [15]. Active intracellular transport is a complex
non-equilibrium process which involves the cytoskeleton, molecular motors, and the
cargo. The cytoskeleton of metazoan cells is a highly complex filament network
composed of microtubules, actin filaments, and intermediate filaments [2]. In general,
the cytoskeleton exhibits a complex, space-dependent structure which is highly inhomo-
geneous and anisotropic. Actin filaments are randomly accumulated in the cell cortex,
whereas microtubules radiate from the center of the cell [2]. Specialized motor proteins
walk actively along the cytoskeleton filaments by continuously consuming energy [2].
Simultaneously, they attach to a cargo and drag it along the filaments. Kinesin and
dynein motors facilitate long-range transport along microtubules, while myosins manage
short-range transport on actin filaments [2,|16]. Typically, a single cargo is dragged
along the cytoskeleton with the aid of several motors of diverse species [17-31]. In order
to guarantee efficient cargo delivery, the activity of a motor species is regulated by the
cell [19-28,31,32]. When navigating through the cell, large cargo-motor complexes
frequently pause at filament crossings of the cytoskeleton until they either overcome the
barrier or switch to another filament [29,33-38]. Hence, intracellular cargo undergoes a
stochastic motion pattern with random alternations between directed transport along
the cytoskeleton and reorienting arrest states.

In essence, intracellular transport is a stochastic process which is shaped by the interplay
between three key players: the cytoskeleton with its spatial architecture, the molecular
motors with their respective activity, and the cargo with its random alternations between
active motion and reorienting arrest states. How a cell regulates intracellular transport
by taking advantage of this interplay is elusive.

Due to its complexity, modeling intracellular transport is a challenging theoretical task.
But, the stochastic motion pattern suggests a random walk approach. Coarse grained
models which consider the effective cargo motion but ignore the microscopic stepping of
individual motor proteins provide a powerful approach to active transport on a cellular
scale. The state of the art in modeling intracellular transport with the aid of random
walks is provided in Chapter A particular focus is on two aspects of intracellular
transport: anomalous diffusion, which is frequently observed inside cells, e.g. [39-55],
and first passage events, which quantify the crucial temporal efficiency of targeted
transport. Standard random walk models for asymptotic anomalous diffusion rely on a
breakdown of the central limit theorem and take advantage of broad distributions and
long-range correlations in the walker’s trajectory [56-61]. But, anomalous diffusion can
also occur on short and intermediate timescales without the need for broad distributions
or long-range correlations. Random walks in anisotropic, directed environments, such
as the cytoskeleton [62,/63], and random walks with stochastic trapping events [64],
similar to the pausing states experienced by intracellular cargo, show non-trivial
transient anomalous diffusion. Whether the observed anomalous diffusion in biological
experiments maintains in the long time limit or whether it is only a transient effect is




obscure [65-67]. First passage times specify the time it takes a cargo to reach a target
for the first time. In the context of various search problem, intermittent strategies with
stochastic transitions between a slow detective phase and a fast non-reactive phase are
shown to be advantageous, e.g. [68-75]. Such random walks are typically studied in
homogeneous, isotropic environments. But, this assumption is not valid for intracellular
transport processes which cover the whole cell range. Very recently, the effect of
the exact topology of the cytoskeleton on intracellular transport has gained scientific
interest [76-80].

However, up to now the impact of the cytoskeletal architecture, the motor activity,
and pauses of the cargo have been studied separately in the literature, as discussed in
Chapter In this thesis, we present unified random walk models which incorporate
the three key properties of intracellular transport and enable us to elucidate how the
interplay effects anomalous diffusion and first passage events. A specific focus is on the
role of the inhomogeneity and anisotropy of the cytoskeleton.

In Chapter [ we identify the influence of the local anisotropy of the cytoskeleton,
the motor behavior, and the waiting frequency of the cargo on intracellular diffu-
sion |[Hafner2016B]. At first, a random walk model is introduced to investigate the
unidirectional motion of cargo along a single, polarized filament which is frequently
interrupted by waiting states. Within an analytic framework, we derive an exact
expression of the probability density function of the tracer’s displacement. The resulting
mean square displacement reveals complex anomalous diffusion. Crossovers between
different anomalous regimes occur on short and intermediate timescales. By monitoring
the temporal evolution of the anomalous exponent over all timescales we show that
the observed anomaly is a highly transient effect based on aging processes out of a
predefined initial state. The impact of the initial state and the measurement procedure
is of crucial importance for the interpretation of experimental results. Anomalous
diffusion of intracellular cargo on two-dimensional anisotropic networks was studied
in [Hafner2014]. The model and main results are briefly recapitulated in Chapter
Our understanding of the observed anomaly is significantly deepened here by studying
the anomalous exponent over all timescales and by investigation of the long time limit.
We show that the crossover time to asymptotic diffusion and the long time diffusion
constant varies by several orders of magnitude in response to the arrest frequency of the
cargo.

Chapter is dedicated to the temporal efficiency of intracellular search strate-
gies [Hafner2016, Hafner2018]. We introduce a random walk model to study the
transport of intracellular cargo on a cytoskeleton which is very inhomogeneous on
a cellular scale. The tracer particle experiences radial transport in the cell interior,
whereas multi-directional transport is restricted to a cortex underneath the plasma
membrane. With the aid of extensive Monte Carlo simulations, we systematically
analyze how the interplay between the structural characteristics of the cytoskeleton,
the motor activity, and the pausing frequency of the cargo effects the efficiency of
targeted intracellular transport. We consider three paradigmatic tasks: the narrow
escape problem, which models transport to a specific area on the plasma membrane,
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the reaction problem, which evaluates the time until fusion of two reactants within the
cell, and the reaction-escape problem, which emerges when two particles first have to
react inside the cell before the product particle is transported to a narrow exit on the
plasma membrane. By taking into account different physiological conditions, we show
that a cell is able to regulate the efficiency of diverse transport tasks by control of
the cytoskeleton architecture, the motor activity, and the cargo’s waiting frequency. A
spatially inhomogeneous cytoskeleton with a thin actin cortex is generally advantageous
to its homogeneous counterpart.

The results of this thesis are discussed in Chapter [6]
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2.1. Basic components of cells

Life is inevitably connected to biological cells. All organisms ranging from unicellular
organisms, as for instance bacteria, to complex multi-cellular organisms, such as animals,
plants, and fungi, are composed of cells . Besides the astonishing diversity of life,
cells share the same fundamental protperties [4]. All cells emerge by division of existing
cells. All cells contain a hereditary genetic information which is mandatory for the
regulation of cell function. All cells are open systems which communicate with their
surrounding and obtain and consume energy. And all cells have a complex, but highly
organized internal structure.

Apart from their similarities, cells are very diverse in their appearance and function.
A main difference is the organization of the genetic material due to which cells are
classified into two types: prokaryotes (Greek: “before nucleus”) and eukaryotes (Greek:
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Figure 2.1.: Eukaryotic cell. The cell interior is framed by the plasma membrane. The most
prominent cell organelle is the nucleus which contains the genetic material. Apart
from the nucleus, the cytoplasm is filled with organelles, such as mitochondria,
endoplasmic reticulum, Golgi complex, and diverse functional vesicles. Reprint
of [2], Molecular Biology of the Cell by Alberts, reproduced with permission of
Taylor & Francis Group in the format Thesis/Dissertation via Copyright Clearance
Center.

“well nucleus”) [2,/5]. Prokaryotes are single-celled microorganisms, such as bacteria or
archaea. Typically, they posses a diameter of 1 um - 2 pym. Eukaryotes can be either
unicellular or multicellular organisms, as for instance protists, animals, plants, and
fungi. Eukaryotic cells have a diameter of 5 ym - 100 pm [2,5].

Prokaryotic and eukaryotic cells are bound by a plasma membrane which is interspersed
with several proteins and channels so that each cell is able to interact with its surrounding
[2]. The interior of a cell is called cytoplasm, although the nucleus is excluded in some
definitions [2]. The cytoplasm consists of an aquaeous substance called cytosol and, in
the case of eukaryotic cells, a large variety of biomolecules and functional structures
collectively known as cell organelles [2,4,5]. Figure displays the main components of
an eukaryotic cell. Typical organelles are listed below [2}4}5,65].

e The nucleus is a prominent membrane-bound organelle which contains the genetic
material in form of DNA (deoxyribonucleic acid) [2].

e Mitochondria are membrane-enclosed organelles responsible for the synthesis of
ATP (adenosine triphosphate) which is the main source of energy inside cells [2].
Mitochondria contain their own ribosomes and DNA. According to the endosymbi-
otic theory, mitochondria once lived freely as prokaryotes which were internalized
by ancestral eukaryotic cells for symbiotic reasons [4,5].
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e Ribosomes catalyze the synthesis of proteins by translation of mRNA (messenger
ribonucleic acid), which is a single-stranded, transcripted piece of DNA produced
in the nucleus [2].

o The endoplasmic reticulum is a membrane-bound organelle with a tubular struc-
ture. It is the site of protein and lipid synthesis. According to the number of
associated ribosomes the endoplasmic reticulum is categorized as rough (many ri-
bosomes) or smooth (less ribosomes) [2}/65].

e The Golgi compler is a membrane-bound organelle located close to the nucleus. It
modifies and sorts proteins and lipids which were transported from the endoplasmic
reticulum in vesicles for final target delivery [2,65].

e Vesicles are small, spherical organelles enclosed by a membrane which store diverse
material. They fulfill a variety of functions and are involved in transport processes
inside cells [2].

e Lysosomes are vesicles which are mainly responsible for degradation of
biomolecules. For that purpose they are filled with digestive enzymes [2}/65].

e Peroxisomes are vesicles which are in charge of the catabolism of fatty acids [2].

e Endosomes are vesicle which are formed via endocytosis [2]. During endocytosis
extracelluar material is transferred into the cell by invagination of the plasma mem-
brane. The opposite process where a vesicle fuses with the membrane in order to
release its material to the extracellular space is called ezocytosis [2].

In contrast to the complex organization of eukaryotic cells, prokaryotes have a relatively
simple internal organization. They lack a nucleus, compartmentalized organelles, and a
complex cytoskeleton [4,5]. In the following, the focus will be on the metazoan lineage
of eukaryotic cells.

2.2. Cytoskeleton

In order to maintain a cell’s mechanical stability , to adjust cell shape, to drive cell
motility and division, and to actively transport intracellular cargo , cells are equipped
with a highly complex, dynamic filament network, the so-called cytoskeleton [2,[81}82].
The cytoskeleton of eukaryotic cells is composed of three different filament species: mi-
crotubules, actin filaments and intermediate filaments, as sketched in Fig. [2]. The
filaments are assembled in a regular, periodic structure by distinct protein species and
undergo a frequent turnover of polymerization and depolymerization [2]. Specialized ac-
cessory proteins control the assembly of the filaments and cross-link them into networks.
These networks exhibit a characteristic structure and spatial distribution inside a cell,
as shown in Fig. [2]. Consequently the cytoskeleton is a dynamic network which is
able to adjust to specific tasks and environmental conditions.
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Figure 2.2.: Cytoskeletal filament species. The cytoskeleton is composed of three different fil-
ament types. Actin filaments, microtubules and intermediate filaments have a
specific composition and spatial distribution within a cell. Reprint of , Molecu-
lar Biology of the Cell by Alberts, reproduced with permission of Taylor & Francis
Group in the format Thesis/Dissertation via Copyright Clearance Center.

2.2.1. Microtubules

Microtubules are composed of heterodimeric tubulin subunits. A tubulin heterodimer
consist of - and S-tubulin and has a length of 8 nm [2,[83]. Tubulin assembles axially
into linear protofilaments. The assembly occurs in a regular way such that an a-tubulin
is always linked to a B-tubulin . On average 13 protofilaments are then laterally con-
nected to a hollow cylindrical microtubule with a diameter of 25 nm [2]. The asymmetry
of the tubulin subunits leads to an intrinsic polarity of the assembled filament, as shown
in Fig. . The end with an exposed 5 site is called plus end, whereas the one with
an exposed « site is referred to as the minus end of the microtubule . Due to their
structure microtubules are very stiff filaments with a persistence length (average length
scale at which no bending of the filament occurs) of a few millimeters [2]. Moreover, mi-
crotubules are dynamic filaments which undergo a dynamic instability, one end performs
stochastic transitions between polymerization and depolymerization [2]. In general the
minus end is known to be less dynamic than the plus end [84,[85]. Microtubules manage
long-range intracellular transport and are key players during cell division [2].

2.2.2. Actin filaments

Actin filaments are built of globular actin which assemble head-to-tail and thus result in
a polarized protofilament. An actin filament is formed out of two of these protofilaments
which intertwine in a helical fashion as shown in Fig. . They are the thinnest
of the cytoskeletal filaments and have a diameter of 5 nm - 9 nm [2]. Due to their
structure, actin filaments are much more flexible than microtubules which is manifested
by a persistence length of the order of 10 um . Just as microtubules, actin filaments
are very dynamic and mainly perform treadmilling, i.e. one end depolymerizes while
the other end polymerizes at the same time . Actin filaments are involved in muscle
contraction, manage active intracellular transport, maintain the mechanical stability of
cells, and drive cell motility [2].
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Figure 2.3.: Structure of microtubules and actin filaments. (a) Microtubules are built up of
tubulin subunits, whereas (b) actin filaments are composed of actin proteins. The
asymmetry of the subunits leads to the polar structure of the assembled filaments.
Reprint of , Molecular Biology of the Cell by Alberts, reproduced with permis-
sion of Taylor & Francis Group in the format Thesis/Dissertation via Copyright
Clearance Center.

2.2.3. Intermediate filaments

Intermediate filaments are assembled by a broad class of intermediate filament proteins
. The fibers have an average diameter of 10 nm, which is the name-giving quantity.
Intermediate filaments are easily deformable and have a persistence length of less than 1
pm . The main task of intermediate filaments is the support of the structural stability
of cells [2,[82]. For instance, one species of intermediate filaments, called lamins, backs
the nucleus, while others spread throughout the cytoplasm . In contrast to actin and
microtubules, intermediate filaments are neither polar nor involved in active intracellular
transport [2]. Therefore, intermediate filaments will be neglected in the following.

2.2.4. Accessory proteins and the cytoskeleton architecture

With the aid of a variety of accessory proteins, cytoskeletal filaments are structured
into specific networks. Accessory proteins regulate the dynamics and the location of
filaments, they interlink them to complex meshworks, and connect them to the plasma
membrane either by directly attaching to the filaments or to the free filament subunits
in the cytosol . A cell is thus able to control the structure of the cytoskeleton via
different accessory proteins [2].

In most animal cells microtubules are nucleated at the central centrosome which acts as
a microtubule organizing center (MTOC) . Nucleation takes place at the minus end
of the microtubule which is solidly fixed to the MTOC [8385]. Since polymerisation
occurs at the plus end, microtubules are growing towards the cell periphery [2]. Ap-
proximately 102—10% microtubules compose an astral structure within the cell7
as indicated in Fig. [2.4] a. Accessory proteins of microtubules are collectively called
microtubule-associated proteins (MAPs). MAPs influence the dynamics of individual
filaments and connect microtubules to networks [2,83]. For instance the distinct spacing
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Figure 2.4.: Structure of microtubule networks. (a) In cells with a centrosome microtubules
mainly nucleate at the central MTOC and project in a radial manner, thus forming
an astral network. (b) Microtubule bundles in neurons formed by MAP2 (left) and
tau (right) show different spacings between individual microtubules. Reprint of ,
Molecular Biology of the Cell by Alberts, reproduced with permission of Taylor &
Francis Group in the format Thesis/Dissertation via Copyright Clearance Center.

between individual microtubules in neurons is achieved by the action of MAPs such as
MAP?2 or tau, see Fig. b .

Actin filaments are mainly nucleated underneath the plasma membrane . In analogy
to microtubules, there are several accessory proteins specific to actin filaments which
influence their dynamics and link them to networks . Actin filaments are intercon-
nected by bundling and web-forming proteins [2]. They lead to distinct networks with
different architecture and mechanical properties, see for instance , as indicated
in Fig. Bundling proteins, such as fimbrin and a-actinin, form aligned, parallel or
anti-parallel bundles of actin filaments [2]. Such bundles can be found in cell protrusions
like filopodia, which sensor the surrounding, or in stress fibers, which indicate cell
adhesion to a substrate and exert forces [2]. Contrarily, web-forming proteins, such
as spectrin or filamin, cross-link actin filaments to complex networks [2]. Spectrin is
mainly found underneath the plasma membrane, whereas filamin is responsible for
membrane projections called lamellipodia which are necessary for cell migration .
The protein complex Arp2/3 induces actin branches which emanate at distinct angles of
70° from the parent filament [90,/91]. Spectrin and proteins of the ERM (ezrin, radixin,
moesin) family are able to tether actin filaments to the plasma membrane where they
form a dense meshwork, the so-called actin cortex [2,[92,/93]. The actin cortex forms
a well defined, thin shell underneath the plasma membrane with a width of 0.1 um
-1 pm . The cortex consists of relatively short filament segments of length
< 1 pm [96] which point in roughly isotropic directions [2,[93]. The exact distribution
of orientations is objective of ongoing research, but there is recent evidence that actin
filaments in cellular blebs are tangentially oriented to the membrane [97]. The mesh size
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Figure 2.5.: Structure of actin networks. Actin filaments are linked via two types of accessory
proteins: bundling and web-forming proteins. Bundling proteins form aligned,
parallel or anti-parallel bundles of actin filament which can be found in cell pro-
trusions, such as filopodia, or stress fibers. In contrast web-forming proteins lead
to a complex, random network of actin filaments in the cell cortex. The polarity of
individual actin filaments is indicated by the arrowhead which points to the actin
minus end. Reprint of , Molecular Biology of the Cell by Alberts, reproduced
with permission of Taylor & Francis Group in the format Thesis/Dissertation via
Copyright Clearance Center.

of the cortex, which reflects the average distance between neighboring filaments, varies
between 20 nm - 250 nm, but is typically given by 100 nm ,,.

Microtubule and actin networks are interconnected by specific accessory proteins, as
reviewed in [100]. Approximately 10% of all microtubules are stably linked to the actin
cortex , and some +TTPs thereby align microtubules and actin filaments .
In general, the cytoskeleton of metazoan cells which are rounded in suspension, mitosis,
and amoeboid-like motion is very inhomogeneous and anisotropic. An astral
network of microtubules invades the whole cell, whereas actin filaments form a random
cortex [2].

11
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Figure 2.6.: Structure of molecular motors. All three types of motor proteins consist of a head
domain which walks along cytoskeletal filaments and a tail domain which mediates
specific cargo binding. Reprint of |[109]. Reprinted by permission from Springer
Customer Service Centre GmbH: Springer Nature, Nature Reviews Molecular Cell
Biology, Walking on two heads: the many talents of kinesin, Woehlke, G. and
Schliwa, M., Copyright (2000), (http://dx.doi.org/10.1038/35036069); permis-
sion conveyed through Copyright Clearance Center, Inc.

2.3. Molecular motors

The cytoskeleton serves as track for molecular motors. Molecular motors are specialized
accessory proteins which actively walk along the cytoskeletal filaments powered by the
hydrolysis of ATP [2]. They thus facilitate active intracellular transport, but are also
involved in muscle contraction and ciliary beating, cell locomotion and cell division [2].
Topical reviews on molecular motors include [32},/109-112].

Three different classes of motor proteins exist in eukaryotic cells: kinesins, dyneins, and
myosins [2]. They vary according to the associated filament type, the walking direction,
and the bound cargo [2]. Myosins move along actin filaments, whereas kinesins and
dyneins walk along microtubules. Individual motor proteins exhibit predefined direction
which is determined by the polarity of the cytoskeletal filaments [2].

Each motor protein is composed of a motor domain, or head, and a tail domain which
are connected by a stalk, as shown in Fig. [109]. The tail domain has a specific
binding site to attach to intracellular cargo, such as cell organelles (e.g. vesicles, mi-
tochondria, Golgi stacks) and intracellular macromolecules (e.g. mRNA, centrosomes,
cytoskeletal filaments, viruses) [2,[32,109-112]. In contrast to the head, the tail domain
is highly specific which accounts for the diversity of cargo and function performed by mo-
tor proteins [109]. The head domain binds to the filament, hydrolyzes ATP, and drives
the motion of the motor proteins. Its structure is largely conserved among the three
motor species |[109] and may be monomeric, dimeric, trimeric or tetrameric [112]. Each
head of the motor domain contains a specific filament- and at least one ATP-binding
site [2,|109]. The occupancy of the ATP-site determines the binding of the head to the
filament. Hydrolysis of ATP (ATP = ADP + P;) drives a mechanochemical cycle which
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Rinesin

Figure 2.7.: Hand-over-hand movement of a single motor. Conventional kinesin coordinates
the mechanochemical cylcles of the head dimer to move processively along mi-
crotubules. Reprint of . From Vale, R. D. and Milligan, R. A., The way
things move: looking under the hood of molecular motor proteins, Science, 288:88-
95, 2000, (http://dx.doi.org/10.1126/science.288.5463.88). Reprinted with
permission from AAAS.

basically consists of filament attachment of the head, amplified conformational change
of the motor, filament detachment of the head, conformational relaxation, and filament
reattachment . Consequently, molecular motors convert the chemical en-
ergy provided by the hydrolysis of ATP into mechanical energy to propel themselves in
distinct steps of a few nanometers along the cytoskeletal filaments [2}/32[109H112].

2.3.1. Movement pattern of motor proteins

Some motor proteins are able to perform multiple steps before dissociation of the
filament, a characteristic referred to as processivity, whereas non-processive motors take
only one step before dissociation ,. Processivity is believed to originate from
a high duty ratio, i.e. the motor stays attached to the filament for a long time period
during one mechanochemical cycle ,, and the ability to coordinate the heads
of the motor [2,/110,|114]. Processive and non-processive motors are specialized for
different tasks [2}[112].

A typical example of a non-processive motor is myosin-II. Myosin-II is specialized for
fast interactions with actin filaments [112]. It is the main player in muscle contraction
for which a large array of non-intervening motors is crucial . Many myosin-II motors
perform one step along the filament and directly detach again to not impede the motion

of other motors [110,/112].

In contrast, most motor proteins which are involved in intracellular transport, such as
kinesin-1, cytoplasmic dynein-1, and myosin-V, are processive homodimers with finite run
length . By coordination of the two heads kinesin-1 and myosin-V move
in a so-called hand-over-hand motion pattern along the filament [32}[110,[114},/1201122].
Thereby, one head is propelled forward at a time in a concerted manner. The rear head
detaches, passes the leading head and reattaches to the filament in front of the former
leading head, as shown in Fig. . The heads of cytoplasmic dynein-1 are
less well coordinated and allow for multiple, consecutive steps of the same head [123-128].

Due to the finite run length, single motor proteins frequently perform cycles of directed
motion along the filaments and undirected motion in the crowded cytoplasm [2}[65,[129].
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Figure 2.8.: Impact of MAP tau on the motion of motor proteins. The MAP tau competes with
binding and facilitates unbinding events of kinesin and dynein motors on micro-
tubules. Reprint of |130], Trinczek, B. et al., Journal of Cell Science, 1999, 112, 14,
2355-2367 (http://jcs.biologists.org/content/112/14/2355.10ng), Journal
of Cell Science by Company of Biologists, reproduced with permission of COM-
PANY OF BIOLOGISTS LTD. in the format Republish in a thesis/dissertation
via Copyright Clearance Center.

Accessory proteins are able to regulate the detachment and reattachment frequency of
motor proteins. For instance the MAP tau competes with the binding and facilitates the
unbinding of kinesin and dynein motors, as sketechd in Fig. [130]. And the protein
complex dynactin, which is important for dynein cargo linkage, improves the processivity
of dynein motors [32,/111,|119].

2.3.2. Kinesin

The kinesin family is very large and can be classified into 14 subfamilies [131]. Ki-
nesins are involved in cell division and facilitate intracellular transport [2]. Most kinesins
move towards the plus end of microtubules, but there is also one group moving in minus
direction [2]. A paradigmatic member of the kinesin family which is responsible for intra-
cellular transport is conventional kinesin, or kinesin-1, which moves in the microtubule
plus direction [2,[32,/109]. Its motor domain is a homodimer and each head features a
single ATP-binding [32},/109/110]. Per ATP hydrolysis, it takes 8 nm-steps along a mi-
crotubule protofilament and thus propagates from one tubulin subunit to the next on a
timescale of about 10 ms [2,32,/109,/110,/132}|133]. Kinesin-1 is a processive motor which
in vitro can take several hundred steps before detaching from the filament, which leads
to total walking distances of about 1.1 pm [32,/110,/115,[116]. The speed of kinesins varies
largely within the family from 0.02 pm/s to 3 pm/s [2,[109}134].
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2.3.3. Dynein

Dynein motors are classified into axenomal and cytoplasmic dynein [32]. Axenomal
dyneins are mainly involved in flagella or cilia beating, see for instance |[135]. Whereas
cytoplasmic dynein-1 manages active transport along the microtubule minus direction [2].
Its function is closely connected to the protein complex dynactin which enhances its
processivity and links it to cargo [32,111,[119]. Dyneins move processively for distances
of up to 1.9 um [124[125] at speeds of up to 14 um/s [2,[136]. The step size of cytoplasmic
dynein-1 depends on its load; it takes 8 nm steps at high load and up to 32 nm at zero
load [32,136,(137].

2.3.4. Myosin

Myosins facilitate active transport and muscle contraction along actin filaments [2].
The myosin family is very diverse and can be divided into 18 subfamilies [112]. All
of them but myosin-VI walk towards the plus end of actin filaments [2]. Amongst
them, myosin-II drives muscle contraction, whereas unconventional myosin-V is mainly
responsible for active intracellular transport [2,32]. Myosin-II is a non-processive motor,
but myosin-V is highly processive [110/117,/138]. With its homodimeric motor domain
myosin-V takes distinct steps of 36 nm from one actin helix to the next [112,[117}/138].
The speed of myosin motors ranges from 0.2 pm/s - 60 pm/s [2].

In the following, kinesin, dynein, and myosin will generally refer to kinesin-1, cytoplasmic
dynein-1, and myosin-V.

2.4. Intracellular transport

Intracellular transport is of utmost importance for cells and transport failures are
connected to a variety of severe diseases, see for instance [15]. Cargo particles, such as
organelles (e.g. vesicles, mitochondria, Golgi stacks) and biomolecules (e.g. mRNA,
ribosomes, centrosomes, cytoskeletal filaments, viruses), usually arise in one area of the
cell, but are needed in some other region [2}32,/109,/111,/112,|139]. Consequently, cargo
has to be transferred within the cell.

Cargo particles can be passively transported within the cytosol by diffusion [2,|65].
Passive diffusion is driven by thermal fluctuations [65], but has some drawbacks [65].
Passive motion in the cytosol is often too slow to travel over long distances within the
cell [65]. This is especially critical in the case of axons of mammalian neurons which
might be several meters long [2]. Moreover, the cytoplasm constitutes a highly crowded
environment which merely allows for subdiffusive motion of intracellular cargo. The
degree of subdiffusion depends on the particle radius [39-41,50,51,/55]. Hence larger
cargoes, such as vesicles or mitochondria, are effectively stationary in the cytoplasm.
Furthermore, passive diffusion is an unbiased process [65]. Consequently there is no net
transport in a specific direction which is important for many intracellular transport tasks.
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Figure 2.9.: Regulation of motor proteins in melanophores. The dispersion (a) and aggre-
gation (b) of pigment granules in melanophores is tightly controlled by signal-
ing processes. Reprint of . Reprinted from Current Biology, 13, Rodi-
onov, V. et al., Switching between microtubule- and actin-based transport sys-
tems in melanophores is controlled by cAMP levels, 1837-1847, Copyright (2003),
(https://doi.org/10.1016/j.cub.2003.10.027), with permission from Elsevier;
permission conveyed through Copyright Clearance Center, Inc.

These disadvantages can be solved with the aid of active transport along cytoskletal fil-
aments empowered by molecular motors . By ATP consumption, molecular motors
manage fast, directed transport of diverse cargo particles over long distances within a
cell . However, active intracellular transport faces its own difficulties. The follow-
ing questions will be addressed below: How is a cargo-motor complex formed? How
does a cargo-motor complex move along the complex cytoskeleton? And how is active
intracellular transport regulated in order to allow for efficient cargo delivery?

2.4.1. Movement pattern of cargo-motor complexes

Active intracellular transport involves a complex interplay between the cytoskeleton, the
motors, and the cargo. Cargo delivery necessitates transport over the whole cell range.
Long-range transport by kinesins and dyneins along radial microtubules is supplanted
by short-range transport along multi-directional actin filaments in the cortex with the
aid of myosins [2}[16[112}[138,[140H142].

Nowadays there is overwhelming evidence that many motors of diverse species are
connected to a single cargo simultaneously, forming a cargo-motor complex [17431]. The
motion pattern of such a complex differs significantly from the one of a single motor. It
is not necessarily unidirectionally but rather “saltatory” [21,[22]/30,[143|[144]. This erratic
motion may be advantageous to manoeuvre around roadblocks on filaments or to facili-
tate cargo reactions . Furthermore, run lengths are increased and cargo can more
easily switch between the microtubule and the actin network [24}36],140-142}[145/[146]
even without an intermediate unbound, diffusive state .

But the linkage of opposing motors to a single cargo provides the need for a regulation
mechanism to ensure efficient cargo delivery despite the competition between diverse mo-
tors ,. The regulation of intracellular transport is not fully understood. But
the activity of specific motor species can be tuned with the aid of signaling processes. A
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o

Figure 2.10.: Cargo motion on complex cytoskeleton. Cargo-Motor complexes are frequently
faced with roadblocks (accessory proteins, other motors, cargo) and filament cross-
ings which hinder their motion. Reprint of . Reproduced from Lakadamyali,
M., Navigating the cell: how motors overcome roadblocks and traffic jams
to efficiently transport cargo, Physical Chemistry Chemical Physics, 16:5907,
2014 (http://dx.doi.org/10.1039/C3CP55271C) with permission of the PCCP
Owner Societies; permission conveyed through Copyright Clearance Center, Inc.

prominent example is the transport of pigment granules in melanophores, which involves
both the actin and the microtubule network [19,/146}[147]. The activity level of diverse
motor proteins is controlled by the intracellular concentration of cAMP (cyclic adenosine
monophosphate). High concentrations stimulate kinesin motors, intermediate values
myosin motors, and low levels of cAMP promote dynein motors [147]. Accordingly, a
dispersion of pigment granules throughout the cell or their accumulation at the center is
achieved which induces a change in melanophore coloration, as shown in Figure .
Furthermore, transport to the nucleus is enhanced in cells which are infected with
adenoviruses . In Drosophila, the absence or presence of the transacting factor Halo
triggers transport of lipid droplets to the cell center or periphery ,. And, accessory
proteins impact the activity of molecular motors. For instance, the MAP tau regulates
the number of active motor proteins attached to a cargo by hindering the attachment
of kinesin and dynein motors and facilitating their detachment . Moreover, the pro-
tein complex dynactin is crucial for the linkage between cargo and dynein, it regulates the

directionality of cargo transport, and improves dynein’s processivity [20,32[111] 150].

During intracellular transport, cargo-motor complexes face diverse road blocks along the
cytoskeleton, as sketched in Fig. . This results in a stochastic movement pattern
of a cargo-motor complex: periods of directed, active transport along the cytoskeleton
are frequently interrupted by effectively stationary states . Such pauses arise
out of several reasons.
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Figure 2.11.: Cargo motion on complex cytoskeleton - pausing events. (a) Lysosomes mov-
ing on a microtubule network either pause, pass, switch track, or reverse di-
rection at crossings. (b) Percentage of lysosome behavior at network cross-
ings (left), divided into anterograde and retrograde motion (middle), and un-
der the condition of prior pausing (right). (c) Percentage of pausing, passing
and switching events at microtubule crossings as a function of the axial separa-
tion of microtubules. Reprint of |29]. Reprinted from Bélint, S. et al., Correl-
ative live-cell and superresolution microscopy reveals cargo transport dynamics
at microtubule intersections, P. Natl. Acad. Sci. USA, 110:3375-3380, 2013,
(https://doi.org/10.1073/pnas.1219206110), with permission from PNAS.

Stochastic detachment events from the cytoskeleton may cause stationary states.
Motor proteins undergo detachment and reattachment processes either out of chemical
reasons or facilitated by accessory proteins [2]. When detached of the filament, the
motion of a cargo-motor complex in the surrounding cytoplasm is strongly subdiffusive
and closely confined to the detachment point due to the crowdedness of the cyto-
plasm [39H41},50,/51,/55]. Consequently, such excursions in the cytoplasm are effectively
stationary. But since several motors are attached to a single cargo [17-31], a full
dissociation of the cargo-motor complex is rather unlikely [31].

Mechanically constricting filament crossings of the cytoskeleton also cause pausing
events [29,33-38]. The movement of cargo-motor complexes through the cytoskeleton
has recently been investigated both in witro [33-36] and in vivo |29}38]. According to
these studies, the origin of stationary states are filament crossings of the cytoskeleton
- probably since the cytoskeletal mesh size, which is reminiscent of the mean distance
between network intersections, is typically smaller than the processive run lengths of
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Figure 2.12.: Anomalous diffusion during active transport. (a) The motion of peroxisomes
(green) is tracked during transport along microtubules (red) in Drosophila cells.
(b) The MSD of peroxisomes exhibits a crossover from sub- to superdiffusion
at intermediate timescales. (c) Short time and long time anomalous expo-
nents are distributed in sub- and superdiffusive regimes, respectively. Reprint
of [46]. Reprinted from Kulié¢, I. M. et al., The role of microtubule move-
ment in bidirectional cargo transport, P. Natl. Acad. Sci. USA, 105:10011-
10016, 2008, (https://doi.org/10.1073/pnas.0800031105), Copyright (2008)
National Academy of Sciences, with permission from PNAS.

individual motors and consequently cargo-motor complexes [25,[34]65,[151]. Cargo-
motor compounds actively propagate from intersection to intersection. Whenever the
complex reaches an intersection node it pauses there until it either overcomes the
constriction and passes it on the same track or until it changes direction by reversion
or track switching [29,33-35,138], as shown in Fig. a and b. The waiting time
at a network intersection is of the order of seconds [29,/146,/152] and depends on the
size of the cargo and the axial separation of the crossing filaments [29,38], see Fig. c.

In essence, the motion pattern of cargo-motor compounds reflects the complex, crowded
environment they are living in [65]. The interplay between motor activities and cy-
toskeleton architecture results in a stochastic motion pattern of the cargo with random
transitions between active directed transport and reorienting pauses. How this inter-
play effects intracellular transport properties, such as anomalous diffusion and temporal
efficiency, is elusive.

2.4.2. Anomalous diffusion during intracellular transport

In normal diffusion, the mean square displacement (MSD), which is a measure for
the amount of space a particle explores in a given time, is a linear function in time
(r?) = 2dDt (MSD: (r?), dimension: d, diffusion coefficient: D, time: t). Contrarily, the
dependence is given by a power-law (r?) = 2dDt* in case of anomalous diffusion [61./153].
Subdiffusion is characterized by o < 1 and thus a slower particle spreading than found
during normal diffusion. Whereas superdiffusion is determined by « > 1. Note that a
more elaborate introduction to diffusion will be given in Chapter[3] Remarkably, anoma-
lous diffusion is observed in various contexts of intracellular transport [55].
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Figure 2.13.: Subdiffusion in spiny dendrites. (a) Neuron with smooth (blue line) and spiny
(green line) dendrites. (b) Spines lead to a more pronounced subdiffusion than
observed in smooth dendrites. Reprint of . Reprinted from Neuron, 52,
Santamaria, F. et al., Anomalous diffusion in Purkinje cell dendrites caused by
spines, 635-648, Copyright (2006), (https://doi.org/10.1016/j.neuron.2006.
10.025), with permission from Elsevier; permission conveyed through Copyright
Clearance Center, Inc.

Anomalous subdiffusion is a hallmark of motion in the crowded cytoplasm. Ap-
proximately 10 — 50% of the cytoplasmic volume is occupied with small solutes,
macromolecules, cell organelles and cytoskeletal filaments . As a conse-
quence, subdiffusion is observed for various tracer particles , such as mRNA or
chromosomal loci moving in the cytoplasm of E. coli cells and lipid granules in
living yeast cells . The degree of the anomaly depends on both the size of the tracer

particle and the occupation of the cytoplasm [39-41}/50,/51].

Anomalous diffusion is also reported during active transport of tracer particles along
the cytoskeleton [42-47]. Remarkably, non-trivial crossovers from sub- to superdiffusion
and vice versa are found. For instance a population of rapide peroxisomes which are
moving in unison along the microtubule network of Drosophila cells shows subdiffusive
dynamics at short timescales and exhibit a crossover to superdiffusion at intermediate
timescales, as shown in Fig. . In contrast, crossovers from super- to subdiffusive
regimes are reported for the motion of engulfed microspheres and endosomes
along microtubule networks of eukaryotic cells.

Subdiffusion can also arise due to trapping events. For instance, anomalous subdiffusion
is observed during the motion of tracer particles in dendrites of neurons , as
shown in Fig. [2.13] The dendrites of neurons possess small membrane protrusions,
called spines, which effectively trap tracer particles and thus lead to subdiffu-

sion [48]/49,[155] [Hafner2014].

Consequently, cells can benefit from subdiffusion [156,/157]. Despite the lower space
exploration, a cell is able to regulate the spatio-temporal distribution and reactivity of

intracellular particles with the aid of subdiffusion [48 157].
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Figure 2.14.: Intracellular search processes. Paradigmatic search processes which occur during
active intracellular transport are (a) the narrow escape problem which emerges
during transport to a specific region on the plasma membrane, (b) the reaction
problem which considers the arrival of a searcher at a motile or immotile target,
and (c) the combined reaction-escape problem which occurs when cargo must
be delivered to a narrow area on the plasma membrane only after tethering to
another particle beforehand.

2.4.3. Search processes during intracellular transport

Intracellular transport aims to deliver cargo at specific target locations which defines
distinct search processes. Such intracellular search processes occur on a “trial and error”
basis [158]. In general, there is no direct connection between searcher and target and the
searcher does neither know the shortest path to the target nor its exact position. Hence,
intracellular search is a stochastic process and targets are only identified with the aid of
cognate pairs of proteins, such as coat proteins, tethers, Rabs and SNAREs [159,/160].
These proteins are found on both searcher and target and work in a key-lock principle
to ensure correct cargo delivery [159,|160]. Consequently, the stochastic nature of
intracellular transport with random alternations between active, directed motion and
reorienting waiting states enhances the exploration of intracellular space and thus the
probability of target detection [161].

A cell has to fulfill many different transport task and searcher and target may be very
diverse in terms of size, dynamics and location [2]. In general, the searcher is a cargo
which is actively transported along the cytoskeleton with the aid of motor proteins,
whereas the target can either be motile or immotile. Frequently encountered tasks of
active intracellular transport can be summarized by the narrow escape problem, the
reaction problem and the combined reaction-escape problem, as sketched in Fig. 2:14

The narrow escape problem

Some cargo particles have to be transported from a position within the cell, often from a
position close to the nucleus, to a narrow target region alongside the plasma membrane.
A prominent example occurs during directed secretion by cytotoxic T lymphocytes (CTL
or T cell). Specialized T cells scan organisms for virus-infected or tumorigenic cells [2].
When getting into contact with a pathogenic cell, T cells form a close connection to it,
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Figure 2.15.: Release of lytic granules at the immunological synapse of T cells. The temporal
evolution of the accumulation of lytic granules (red) and CD3-endosomes (green)
at the synapse is shown for T cells connected to a pathogenic target cell. The
docking and release of lytic granules requires the tethering with CD3-endosomes
beforehand. Note that the immunological synapse is the contact zone between
T cell and target cell. Reprint of |12], Qu et al., The Journal of Immunology,
186:6894-6904, 2011, (http://dx.doi.org/10.4049/jimmunol.1003471); with
permission of Copyright 2011, The American Association of Immunologists, Inc.

which is called immunological synapse [2,8-14]. Toxic material bound in lytic granules
is then actively transported and exclusively released at the synapse to ensure the killing
of the pathogenic cell [2,[8H14]. The immunological synapse typically has a diameter of
the order of 1 pm and thus constitutes a narrow opening in the plasma membrane of
T cells [2,8-14]. Other examples involve the closing of plasma membrane disruptions
by patch vesicles [162H164], the transport of lysosomes to parasitic invasion sites in the
plasma membrane [165], the transport of vesicles to neurite outgrowth site |[166], or the
accumulation of polarity regulating proteins, such as Cdc42 in budding yeast or Rac in
canine kidney cells, at a specific site on the plasma membrane [167,/168].

The stochastic search for a narrow region on the plasma membrane of a cell is reminiscent
of the so-called narrow escape problem coined by Holcman, Schuss, and Singer [169-175].
The narrow escape problem is traditionally studied in the context of passively diffusing
particles. Examples involve ions searching for open channels in the plasma membrane
[2,129], mRNA looking for nuclear pores to exit the nucleus [2,/176,[177], or calcium and
other signaling molecules confined in subcellular compartments [2,/178].
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2.5. Summary

The reaction problem

Besides the narrow escape problem, intracellular cargo also has to react with other motile
particles or has to reach immotile cell organelles, such as the nucleus, within the cell.
For instance late endosomes fuse with lysosomes for disposal [2,179], and mitochondria
are shipped to regions which demand for ATP [2|139]. In the secretory pathway, vesicles
derived from the endoplasmic reticulum are transported to the Golgi complex for dispatch
to their terminal [2]. When entering the cell by endocytosis, diverse viruses, such as
influenza virus or HIV, hijack molecular motors to get rapidly transported to the nucleus
in order to release their genome [2,/180,/181].

The reaction-escape problem

In specific cases, cargo must dock at a narrow area on the plasma membrane only af-
ter tethering with another particle beforehand. Such search processes are two-fold and
combine the reaction and the escape problem. For instance, lytic granules have to pair
with endosomes before they are released at the immunological synapse of T cells, as
shown in Fig. [12]. The docking and release of lytic granules at the synapse is
thereby promoted by the prior tethering with endosomes which are loaded with CD3
receptors [12].

2.5. Summary

Active intracellular transport is vital to maintain the correct function of cells and or-
ganisms. Cargo, such as cell organelles or macromolecules, has to be transferred from
its source to specific target locations. In order to facilitate cargo delivery, cells are
equipped with a highly complex cytoskeleton network, which is highly inhomogeneous
and anisotropic. Whereas microtubules emerge radially from the central MTOC, actin
filaments populate the cell cortex and exhibit diverse orientations. Molecular motors em-
power intracellular transport. They actively walk along the cyotskeletal filaments by ATP
consumption while being attached to cargo particles. The movement pattern of cargo-
motor complexes reflects the complex, crowded environment they are living in. They
exhibit a stochastic motion with random alternations between directed transport along
the cytoskeleton and reorienting pauses, most likely due to mechanically constricting
filament crossings. The motor activity levels and the cytoskeleton architecture dramat-
ically influence the erratic motion pattern of intracellular cargo. To investigate how a
cell regulates the diffusive properties and the search efficiency of intracellular cargo is
a challenging theoretical task. But, the stochastic motion pattern of intracellular cargo
suggests a random walk approach.
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3.1. Basic concepts of random walks

3.1.1. History of random walks

In 1828, the botanist Robert Brown studied the motion of pollen suspended in water,
which is nowadays referred to as Brownian motion [182[183]. Basic concepts of random
walks were already investigated in 1900 within the theory of finanical speculations by
Louis Bachelier . However, the term “random walk” was introduced by Karl
Pearson in 1905. When he was studying the motion of mosquitoes which spread malaria

[60,[153,[185], he was faced with “the problem of the random walk” [186/{188]:
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”A man starts from a point O and walks [ yards in a straight line; he then
turns through any angle whatever and walks another [ yards in a second
straight line. He repeats this process n times. I require the probability that
after these n stretches he is at a distance between r and r + dr from his
starting point, O0.” [186]

Related problems were addressed by Albert Einstein and Marian Smoluchowski near-
term in 1905 and 1906 [189/191].

Since then, many specialized random walk models have been introduced and the theory of
random walks has become a powerful approach to study stochastic processes in fields as
diverse as economics, psychology, computer science, physics, chemistry, and biology [153].
In the following, a brief introduction to the theory of random walks is given according
to [601/192).

3.1.2. Stochastic processes

A stochastic variable Z is a variable which takes random values. It is determined by a
(continuous or discrete) set of possible values z and a probability density function over
this set p(z) [192]. Probability density functions are non-negative and normalized [192]

p(z) =0, /p(z) dz = 1. (3.1)

Note that the probability density function of a random variable Z with discrete values
labeled by j can be written with the aid of the Dirac delta function as [60]

p) = Y o= ). (32

The cumulative distribution function determines the probability that the stochastic vari-
able Z takes a value smaller than or equal to z [192]

F(z) =Prob(Z < 2) = /Z p(2')dz’. (3.3)

—00

The average or expectation value of any function f(Z) is given by [192]

(#2) = [ e d: (3.4)
and the m-th moment of a stochastic variable Z is
o = (2™ = [ 272} (3.5)

In particular, p3=(Z) is the mean value, po=(Z?) the mean square value, and
0?=((Z — (Z))})=pa — pu? is the variance of the stochastic variable Z [192].
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The characteristic function of a stochastic variable Z is defined by [192]
G(k) = (") (3.6)

and generates its moments according to

=y M0, (3.7

Probability density functions which frequently occur in physics are the exponential dis-
tribution

Aexp(—Az), z=0
Z) = 38
p(2) { ) Z<0 (33
with mean 1/A > 0 and the gaussian distribution
1 (z=w)?
z) = e 202 | —00 < 2z < X 3.9
pe) = (3.9

with mean p and variance o?.

A stochastic process is a function Xz(t) = f(Z,t) of a random variable Z and time
t 1192]. Stochastic processes thus describe a quantity which evolves in time in a
non-deterministic manner. However, averaged quantities may give insight into the laws
underlying the stochastic process [192].

Many stochastic phenomena which are common in nature further exhibit the so-called
Markov property. In Markov processes the next state only depends on the current state,
but not on any other previous state of the stochastic process [192]. A paradigmatic
stochastic process with the Markovian property is Brownian motion.

The temporal evolution of the probability density function p(z,t) for the Markovian
process Xz(t) to take a value x at time ¢ is determined by the master equation [192]. In
case of a continuous range of X it reads

op(z,t)
ot

_ / (W (zl2)p(a’, £) — W (2 |2)p(, )] da, (3.10)
whereas for a discrete set of values labeled with j it is given by

W =D [Wigpyr(t) = Wi, (1)] (3.11)

J
Thereby, W (z|z") > 0 (Wj; > 0) is the transition rate from a state 2’ to a state = (from
j' to j). Consequently, the master equation is a gain-loss equation [192]. The first term
describes the gain of state x (j) by transitions from state 2’ to z (from j’ to j), whereas

the second term is associated to a loss of state = (j) by transitions from z to ' (from j
to j').
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Figure 3.1.: 1D random walk. On a one-dimensional lattice a walker moves one increment A

to the right with probability p and to the left with probability (1—p) per discrete
time step.

3.1.3. Simple random walk

A random walk is a stochastic process which describes the position of a walker who
changes its direction as a function of time t. The random walk in discrete time is
based on steps, while the one in continuous time is based on velocities [193]. From a
mathematical perspective, a random walk is a sum of (often independent and identically
distributed) random variables [60]. For illustration, consider a simple random walk in
discrete space and time. The walker starts at the origin of a one-dimensional lattice.
Note that it is generally beneficial to choose the initial condition X (¢ = 0) = 0. Per
discrete time step At, the walker moves one increment A to the right with probability p
or to the left with probability (1—p), as sketched in Fig. The displacement per time
step is an independent and identically distributed random variable Z,, € {+A, —A}. The
total displacement, or the position, of the random walker at time step n is a stochastic
process X, given by the sum of the individual displacements [60]

n

Xn =Y Z (3.12)
j=1

The temporal evolution of the probability p, ; to find the walker at position j at time
step n is determined by [60]

Pnj = PPn—1j-A + (1 —D)Pn—1,j+A. (3.13)

By assuming that the mean as well as the mean square displacements per step are finite,
it can be shown that the probability density function p(x,t) to find the walker at time ¢
at position z in the continuous time and space limit (A — 0, At — 0) is given by [60]

2

0 0
&p('xat) - _’U%p@?vt) +D

which is the diffusion equation with diffusion coefficient D in the presence of a constant
drift v [60]. The diffusion equation can be solved with the aid of Fourier transformation,
such that the probability density function of the random walker is [60]

1 (x — vt)?
D exp {_4Dt } . (3.15)

This reflects the central limit theorem, which states that the probability density function
of a sum of random variables which are independent and have identical probability
density functions with finite mean and mean square converges to a Gaussian density [153].

Wp(x,t), (3.14)

p(x,t) =
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3.1.4. Anomalous diffusion

In principle, the probability density function of a random walker’s displacement can be
derived by solving the corresponding master equation. The displacement probability
density function enables the quantification of macroscopic physical observables, such as
the diffusive properties of the walk.

At the beginning of the 20th century, Einstein and Smoluchowski found a fundamental
relation between the mean square displacement of Brownian particles and the diffusion
coefficient [61},/189]

D o (Az?)/t. (3.16)
Hence, studying the mean square displacement (MSD) (Az?), which is a measure for
the amount of space a walker explores in a given time interval, gives information about
the diffusive properties of a random walk [61},153].

In general, the average value is considered to be an ensemble average [153]
o
(AZ2(E))ons = / (2(t) — 2(0))p (2, 1) da. (3.17)
—0o0
i.e. an average over many independent realizations of the random walk which corresponds
to the probabilistic definition given in Eq. Usually, it is beneficial to fix z(0) = 0.

However, due to the lack of a sufficient amount of such realizations in experiments a
moving time average is often used [153]

T—t
(A2 ime = 7 t/ (t+7)— o ()2 dr, (3.18)
0

for which only a single trajectory of duration T > 1 is needed. Ensemble and moving
time average are equal for ergodic processes [153].

Without any drift, according to Eq. the MSD of a Brownian particle in 1D yields

o) 00 2
(Az?(t)) = / 2P (z,t)dx = \/ﬁ z? exp < 4:12)t>d$ = 2Dt . (3.19)

Accordingly, normal diffusion is determined by the MSD being linear in time which is a
consequence of the central limit theorem [61].

However, according to the specific properties of a random walk in d dimensions the
functional dependence between MSD and time generally is a power-law

(AZ%(t)) = 2d Kot (3.20)

with the anomalous exponent « [61,/194] and the generalized diffusion constant [K,] =
m?s~ [61,/194]. Anomalous diffusion is observed in various contexts and is classified
according to the anomalous exponent [61]. Normal Brownian diffusion is determined
by a=1, whereas subdiffusion is defined by 0<a<1. An anomalous exponent of a>1 is
characteristic for superdiffusion and ballistic motion corresponds to a=2 [61].
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3.1.5. First passage events

Search processes are very common in nature and occur on all lengthscales [72]. Animals
are searching for beneficial habitats, a bacterium is looking for nutrients, or intracellular
cargo is transported to a target site within the cell. When the searcher has low cognitive
abilities and no hint on the target position, the search process is random and can be
well described with the aid of random walks [72].

The efficiency of a random search process can be measured in terms of various first
passage quantities, as for instance the consumed energy upon target detection. However,
in most applications it is essential to minimize the time needed until the target is
found, which is the so-called first passage time [72]. The first passage time is a random
variable [192]. The investigation of the probability density function of first passage
times and the study of the mean first passage time (MFPT) are main objectives in the
theory of random walks [192/195].

In general, there are different approaches to the density f(x4,t|zo) of first passage times
t to a target at postion x4 when the walker started at position z¢ [192]. In some cases, it
is advantageous to solve the master equation with appropriate boundary conditions
which take the target position into account. This technique is known as the absorbing
boundary approach [192]. But the first passage time density f(z4,t|zo) can also be derived
from the displacement density p(z, t|z¢) of the random walk to be at position x at time ¢
when having started at xg. So in some cases it is sufficient to solve the unrestricted master
equation The functional relation between first passage time density f (x4, t|zo) and
displacement density p(x,t|zq) is given by the renewal equation [192}/195]

t
p(@a, tlzo) = / (st — ¢'|wa) f(wa, ¥]20)dE + 510820, 24 (3.21)
0

which is of convolution type and can be solved with the aid of Laplace transformation
[192]. If the first passage time density is exponential, the kinetics are fully determined
by the mean first passage time [72]

MFPT:/ tf(zq, t|zo) dt. (3.22)
0

3.1.6. Can intracellular transport be modeled by random walks?

The stochastic motion pattern of cargo suggests a random walk approach to modeling
intracellular transport. Active intracellular transport happens on diverse scales - ranging
from the stepping of individual motors at the molecular scale to the motion of cargo on
the cellular scale [129]. Eventhough theorists also studied the mechanochemical details
of molecular motors and their stepping behavior, e.g. [129,196-199], when investigating
intracellular transport on larger length- and timescales coarse grained random walk mod-
els are beneficial, e.g. [551|72}/129,|183,/198]. Such models typically consider the effective
motion of cargo inside the cell but ignore the microscopic stepping of and competition
among individual motors.
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3.2. Random walk models for anomalous diffusion

Living cells represent a highly heterogeneous, crowded environment. The cytoskeleton ex-
hibits a specific, generally inhomogeneous and anisotropic spatial organization [2]. Many
different motors of diverse species drag a single cargo along the network [17-31]. Accord-
ingly, the trajectories of intracellular cargoes are coined by stochastic transitions between
directed transport and reorienting pausing states [29,33-38]. Consequently, the theoret-
ical investigation of intracellular transport is a challenging task and provides the need
for specialized random walk models. In general, three features of intracellular transport
are needed to be incorporated into a unified model: the anisotropy and inhomogeneity
of the cytoskeleton, the motor activities, and the run-and-pause behavior of the cargo.
In the following, a survey on the state of the art of modeling intracellular transport with
the aid of random walks is provided. A specific focus is on anomalous diffusion and first
passage events.

3.2. Random walk models for anomalous diffusion

Anomalous diffusion is observed in various contexts of physics, chemistry, biology, en-
gineering, economy and so forth |185/194]. In order to study how anomalous diffusion
emerges, more elaborated models than the simple random walk, where stepping directions
are uncorrelated and isotropic, are necessary.

3.2.1. Standard models

Normal diffusion, i.e. the linear growth of the MSD in time, is a direct consequence of
the central limit theorem, as indicated above exemplarily on the simple random walk
model [129]. Hence, asymptotic anomalous diffusion is linked to a breakdown of the
central limit theorem and can be generated by two basic mechanisms: broad distributions
and long-range correlations [59|61]. Standard models of sub- and superdiffusion are
recapitulated in the following, as reviewed inter alia in [55,59}61,(72}/129./193].

Standard models for subdiffusion

The continuous time random walk (CTRW) is a standard model for subdiffusion due to
traps and was first introduced by Montroll and Weiss in 1965 [56]. In the model, the
walker performs steps in random directions with lengths ¢ characterized by a distribution
A(¢) with finite variance [61,[129]. At each step the particle waits for a time period
drawn from a distribution (7). If the waiting time distribution ¢(7) has a finite mean,
normal diffusion is recovered [59-61,[72,/153]. But for heavy-tailed distributions, which
asymptotically behave as power laws,

h(r) T%ﬁ, 0<p<1 (3.23)

the mean waiting time is infinite and the motion is subdiffusive with anomalous exponent
a = [ [b7,[59H61,/72,/153]. The CTRW models motion of a particle which undergoes
transient trapping events. These traps lead to a breakdown of the central limit theorem
due to broad waiting time distributions [64,72,/129].
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Figure 3.2.: Lévy walk. Sample trajectory of a simple random walk (left) and a Lévy
walk (right) with the same number of steps. Reprint of [61]. Reprinted from
Physics Reports, 339, Metzler, R. and Klafter, J., The random walk’s guide to
anomalous diffusion: a fractional dynamics approach, 1-77, Copyright (2000),
(https://dx.doi.org/10.1016/30370-1573(00)00070-3), with permission from
Elsevier; permission conveyed through Copyright Clearance Center, Inc.

Subdiffusion can also arise due to the crowdedness of the enviroment [129,200]. The
resulting obstructed diffusion can be modeled by random walks on fractals. The fractal
structure of the surrounding introduces long-range correlations in steps, which result
in subdiffusion according to the specific structure and concentration of obstacles in the
system [72,200,201].

The viscoelastic properties of the cytoplasm can further result in subdiffusion [129]. Elas-
tic elements may lead to strong correlations in a particle’s trajectory [129]. Such memory
effects can be modeled by fractional Brownian motion as introduced by Mandelbort and
van Ness in 1968 [202]. It is a Gaussian process where the particle position at time t,
depends on the one at t; < to via [72]

(z(ty)x(ty)) oc t3H 4 42H |t — 1o (3.24)

For H = 1/2 the motion is diffusive, whereas the model yields subdiffusion for 0 <
H < 1/2 and superdiffusion for 1/2 < H < 1 with anomalous exponent a = 2H due to
negatively, respectively positively correlated steps [72,202-204].

Standard models for superdiffusion

Lévy flights are a specific class of CTRWs coined by Mandelbrot in 1982 [561/58]. While
the mean of the waiting time distribution (7) is finite, the variance of the step length
distribution A(¢)

1

(3.25)

is diverging [58,[59}/61,|72/194]. Normal diffusion occurs for 5 > 2, whereas 0 < § < 2
leads to superdiffusion with an anomalous exponent o = 2/ [72].
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Lévy walks were introduced by Shlesinger et al. in 1987 as a coupled CTRW [205]. In
contrast to Lévy flights, the waiting times and step lengths are not independent anymore,
but related via [205]

U, )= AO)(T|0). (3.26)

In particular, the coupling ¥ (7|¢) = §(7 — £/v) corresponds to a constant speed v of the
particle [205]. Lévy walks lead to superdiffusion according to the MSD [205-208//208-212]

2, 0<pB<1,
t?/Int, B=1,
(Ar?) oc {38 1< p<2, (3.27)
tint, 8 =2,
t, 8> 2.

\

The trajectories of Lévy flights and walks exhibit a fractal dimension with large jumps
between clustering structures on all lengthscales, as indicated by Fig. [58,/194].

3.2.2. Models with pausing states

The standard models for sub- and superdiffusion provide asymptotic anomalous diffusion
due to broad distributions or long-range correlations. Otherwise anomalous diffusion
appears to be a transient intermediate regime which asymptotically leads to normal
diffusion [66,/67,/193]. To differ between transient anomalous regimes and asymptotical
anomalous behavior is a challenging task. Especially in biological experiments which
generally cover only a few orders of magnitude in time [664/67}/193].

Transient anomalous diffusion can result from random walks with two states of motility,
even without the need for a breakdown of the central limit theorem. Such random walk
models are widely used to investigate the run-and-tumble motion of bacteria. Random
walks with pausing states are of particular interest for modeling intracellular transport
where active motion along the cytoskeleton is frequently interrupted by stationary states
[29,33-38]. See for instance [64,66,213-220] and recent reviews on random walk models
for intracellular transport [55,72,(129,/183]/198|]. In the following, a selection of random
walks with two motility states and their diffusive properties is recapitulated.

“Intermittent random walks: transport regimes” [217]

Portillo et al. investigated how waiting periods affect the long time diffusive properties
of random flights [217]. In their model, a walker runs with random velocities for a time
period chosen according to

g

) = i B0 (3.28)

Flights are then interrupted by waiting times distributed according to

o(r) = ﬁ a>0. (3.29)
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Figure 3.3.: MSD in the model of Thiel et al. . The long time behavior of the MSD depends
critically on the parameters of the run and tumble time distributions. Reprint of
[218]. Reprinted figure with permission from Thiel, F. et al., Physical Review E, 86,
021117, 2012, (http://dx.doi.org/10.1103/PhysRevE.86.021117). Copyright
(2012) by the American Physical Society. Permission conveyed through SciPris.

Portillo et al. analytically showed, that the MSD in the long time limit ¢t — oo

(tz, 0<pf<aa>0
2Bt a<B<2,0<ax<
@)~ 8577, a<p<a>1 (3.30)
e, 6220<a<l1
t, B=22,a>1

\

exhibits all kinds of anomalous diffusive behavior [217].

“Anomalous diffusion in run-and-tumble motion” [218]

Within a similar model, Thiel et al. studied the run-and-tumble motion of bacteria in
d dimensions. Randomly oriented run phases are interrupted by tumbling phases .
Run phases are modeled by Lévy steps with speed ¢ and duration (7). Tumbling
phases correspond to Brownian diffusion with diffusion constant D and duration (1)
[218]. If the run and the tumbling times are exponentially distributed, both the short
time and the long time behavior of the MSD is diffusive

N 2dDTt + 027'742

T + Ty

(2%(t)) ~ dDt, t—0,(z>(t)) t, t— oo. (3.31)

However, if run and tumbling times are heavy-tailed distributed
() ot g (r) o 71 (3.32)

the behavior of the MSD in the limit ¢ — oo may also be superdiffusive, as shown in
Fig. . Subdiffusion cannot be obtained . Note that for «, 8 > 1 the second
moment of the distribution diverges, while for 0 < «a, 5 < 1 both the first and the second
moment are infinite.
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Figure 3.4.: The model of Saxton [64]. (a) A triangular lattice is occupied with obstacles
(e) at random positions. The walker experiences trapping events at sites ad-
jacent to obstacles with binding energies proportional to the number of occu-
pied nearest neighbour sites. (b) The MSD depends on the initial condition of
the random walk. Dashed lines correspond to random initial condition, while
solid lines are associated to an equilibrated initial condition. For comparison
the MSD in the case of pure obstruction by inert obstacles is shown. Reprint
of [64]. Reprinted from Biophysical Journal, 70, Saxton, M. J., Anomalous
diffusion due to binding: a Monte Carlo study, 1250-1262, Copyright (1996),
(http://dx.doi.org/10.1016/S0006-3495(96)79682-0), with permission from
Elsevier; permission conveyed through Copyright Clearance Center, Inc.

“Anomalous diffusion due to binding” [64]

Saxton studied the diffusion of random walks on a triangular lattice [64]. Each site of
the lattice is assigned a well depth. In the model of Saxton, a fraction of C' random
lattice sites is occupied by immobile obstacles. A site adjacent to n obstacles has a well
depth of —n|AE|, the occupied site has a level oo, and all other sites have a level 0, as
sketched in Fig. a. Since the particle is not allowed to step on lattice sites occupied
by obstacles, it is an obstructed random walk. In order to move the particle has to
reach £=0. Hence, when being at a lattice site with n neighboring obstacles, the walker
waits for a time determined by exp(+/£n|AFE]) until it moves to a random empty site [64].

With the aid of computer simulations, Saxton showed that the MSD depends critically
on the initial condition of the walker [64]. If the walker starts at a random position of
the lattice, the motion is subdiffusive at short times and normal diffusive in the long
time limit. If the particle is propagated until thermal equilibrium is reached prior to
the measurement, the MSD is purely diffusive over all timescales, as shown in Fig. b.

3.2.3. Models with anisotropy

The models presented above lead to anomalous diffusion due to broad distributions, long
time correlations or random alternations of run and pausing states. But so far only
isotropic random walks with uniformly distributed, independent velocity directions have
been considered. These models neglect the complex architecture of the cytoskeleton
which is neither isotropic nor homogeneous |[2].
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Figure 3.5.: The model of Tojo and Argyrakis [62]. A sample trajectory of the walk (a) is shown
FOR 6 = ©/2. The MSD (b) exhibits initial anomalous diffusion in response to
various values of 6. Reprint of [62]. Reprinted figure with permission from Tojo,
C. and Argyrakis, P., Physical Review E, 54, 58-63, 1996, (http://dx.doi.org/
10.1103/PhysRevE.54.58)). Copyright (1996) by the American Physical Society.
Permission conveyed through SciPris.

Anomalous diffusion can also result from anisotropic, persistent random walks without
the need for a breakdown of the central limit theorem, only by short-range correlations in
successive velocity directions. Early studies of persistent random walks include [2211222].
In the following, a selection of persistent random walk models is given and it is presented
how these models lead to anomalous diffusion.

“Correlated random walk in continuous space” [62]

In 1996, Tojo and Argyrakis numerically studied a persistent random walk in continuous,
two-dimensional space and discrete time with correlated stepping directions, such that
the walker has a memory of the previous direction [62].

Tojo and Argyrakis introduced a correlation in stepping directions as follows [62]: A
new direction ¢’ is always restricted to an interval [¢ — 0/2; ¢ + 0/2] with regard to the
previous direction ¢. Within that interval, the new direction is chosen uniformly. A
sample trajectory is sketched in Fig. [3.5] a.

With the aid of Monte Carlo simulations, the MSD was measured as a function of time
steps for various values of 6 € [0; 27] [62]. The case § = 0 corresponds to a fully correlated
random walk on a straight line. The thus introduced long time correlation leads to a
breakdown of the central limit theorem and asymptotic ballistic motion. Contrarily, the
case # = 27 is associated with a simple, isotropic random walk and consequently leads
to normal diffusion over all timescales [62]. Figure b, shows the behavior of the
MSD for arbitrary values of 6. Accordingly, intermediate values of 8, and thus finite
correlation in stepping directions, result in initial superdiffusive dynamics [62]. However,
the asymptotic behavior of the MSD is normal diffusive. The crossover time is a hallmark
of the correlation strength defined by 6 [62].

36


http://dx.doi.org/10.1103/PhysRevE.54.58
http://dx.doi.org/10.1103/PhysRevE.54.58

3.2. Random walk models for anomalous diffusion

step n+1
7 p (z,y)

filaments
sample path ——m—vo
switch —_—
CrOSSOVEl i

Figure 3.6.: The model of Shaebani et al. [63]. (a) The sample trajectory of a particle which
moves along a random, directed network shows crossovers and switchings at fil-
ament crossings. (b) The random walker may either continue to walk along the
same direction with probability p or it changes its direction according to a spe-
cific rotation angle ¢ = 6 — v with respect to its previous direction . Reprint
of [63]. Reprinted figure with permission from Shaebani, M. R. et al., Physical Re-
view E, 90, 030701, 2014, (http://dx.doi.org/10.1103/PhysRevE.90.030701).
Copyright (2014) by the American Physical Society. Permission conveyed through
SciPris.

“Anomalous diffusion of self-propelled particles in directed random
environments” [63]

Within a persistent random walk approach, Shaebani et al. studied the motion of
self-propelled particles, such as intracellular cargo, on random but directed networks,
such as the cytoskeleton [63]. With the aid of an analytic framework, they investigated
the impact of the interplay between cytoskeletal architecture and cargo processivity on
the diffusive transport properties [63,223].

Shaebani et al. implicitly modeled the motion of particles on randomly interlinked,
polarized networks as sketched in Fig. [3.6] a. The walker performs steps in discrete
time and continuous, two-dimensional space. As visualized in Fig. b, at each step
the walker either moves in the same direction as in the previous step with probability
p, associated with the processivity of the particle, or it changes its direction with
probability (1—p) [63]. The step length ¢ and the turning angle ¢ are drawn from
specific distributions which mimic the underlying cytoskeletal network [63].

The step length ¢ is distributed according to F(¢), as shown in Fig. a. The hetero-
geneity of the network
()

A== 3.33
corresponds to the width of the step length distribution F(¢) [63]. A constant step
length F(¢) = 6(¢ — L) leads to a heterogeneity A = 1, whereas larger values of A are
associated with broader distributions [63].
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Figure 3.7.: The model of Shaebani et al. - network properties |63]. Step length (a) and turn-
ing angle (b) distributions mimic the underlying cytoskeleton. Reprint of [63].
Reprinted figure with permission from Shaebani, M. R. et al., Physical Review E,
90, 030701, 2014, (http://dx.doi.org/10.1103/PhysRevE.90.030701). Copy-
right (2014) by the American Physical Society. Permission conveyed through
SciPris.

The turning angle ¢ is chosen according to a distribution R(¢), which is generally sym-
metric in biological contexts, as depicted in Fig. b [63]. Correlations in subsequent
stepping directions are introduced in a Markovian manner, such that the new direction
0 = v + ¢ is chosen with regard to the previous direction v [63]. The anisotropy of the

network
iy

Ry = /dqﬁ e R(o), with R =R4y1 =R € [-1;1] (3.34)
—T
is the Fourier transform of the rotation angle distribution R(¢) [63]. For instance,
R = 0 corresponds to an isotropic random walk, which models the movement of cargo
on random actin networks. In contrast, positive values R > 0 lead to a higher chance
of the particle to step in the forward direction with regard to the previous step. Such
persistent motion occurs for instance alongside microtubule bundles. Negative values
R < 0 corresponds to highly anti-persistent motion of the particle as found in the
crowded cytoplasm [63].

In essence, the random walk model proposed by Shaebani et al. is determined by three
model parameters, which are the processivity p of the cargo, the heterogeneity A, and
the anisotropy R of the cytoskeleton network.

In order to study the impact of the cargo processivity and the cytoskeleton structure on
the diffusive properties of the walk, Shaebani and Sadjadi et al. developed an analytical
framework based on the master equation of the process [63}223-225]

Poii(z,yl0) = p/dﬁ}“(ﬁ) P, (z — Lcos(0),y — ¢sin(6)]0)

+ s/dﬁ]—'(f) /d7 RO —~) P, (x —Lcos(0),y — sin(f)|y). (3.35)

—T
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Figure 3.8.: The model of Shaebani et al. - MSD [63]. The MSD exhibits diverse anomalous
regimes at short and intermediate timescales in response to the model parame-
ters p, A, and R. The long time limit is purely diffusive. The analytic results
(solid lines) and the simulation results (symbols) are in perfect agreement. Reprint
of [63]. Reprinted figure with permission from Shaebani, M. R. et al., Physical Re-
view E, 90, 030701, 2014, (http://dx.doi.org/10.1103/PhysRevE.90.030701).
Copyright (2014) by the American Physical Society. Permission conveyed through
SciPris.

It describes the temporal evolution of the probability density function P, (x,y|6) of the
particle to arrive in the n-th step at position r = (z,y) along the direction 6 [63}223].
The first term takes processive events into account, whereas the second term corresponds
to directional changes.

With the aid of Fourier and z-transformation, it is possible to calculate exact analytic
expressions of arbitrary moments of the particle displacement P, (z,y|f) [63,223]. For
the initial condition Py(z,y|0) = 5-6(x)d(y), the MSD yields [63,223]

2(p+ R —pR)
(I-p)(1-R)

2 2(p+ R —pR)

<7“2>n = n<€>2 A+ (1—p)2(1 —R)2

+ ()

[(p+R—pR)" —1].

Figure [3.8 shows the MSD as a function of time for various values of the model parame-
ters p, A, and R [63]. The analytic results and the results of Monte Carlo simulations are
in perfect agreement. Remarkably, the full range of anomalous diffusive behavior arises
on short and intermediate timescales [63]. The type of anomaly is defined by the model
parameters p, A, and R. Both the processivity p and the anisotropy R determine the
correlation in consecutive steps [63]. While p by definition only leads to positive corre-
lations, R € [—1;1] may lead to positively or negatively correlated steps. Consequently,
if p and R are positive, the motion is superdiffusive as both parameters contribute to
persistent motion of the particle [63]. However, if p=0 and R=0, the motion is uniformly
random which is manifested by normal diffusion over all timescales. In contrast, for
negative values of R and p=0, anti-persistent motion arises which leads to subdiffusion
or oscillatory back-and-forth motion of the walker [63].
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Figure 3.9.: The model of Shaebani et al. - asymptotic diffusion constant . (a) The asymp-
totic diffusion constant is shown as a function of p for various values of R and
A =1 (red lines) or A = 6 (blue lines). Symbols represent simulation results, lines
represent analytical data. (b) The asymptotic diffusion constant versus p and R for
A =1 (left) and A = 6 (right). (c) The crossover time n. 1 is plotted as a function
of p for various values of R and A = 1 (red lines) or A = 6 (blue lines). Reprint
of . Reprinted figure with permission from Shaebani, M. R. et al., Physical Re-
view E, 90, 030701, 2014, (http://dx.doi.org/10.1103/PhysRevE.90.030701).
Copyright (2014) by the American Physical Society. Permission conveyed through
SciPris.

The correlations are generally of short-range, except for p=1 or R=1, which leads to
ballistic motion over all timescales . In agreement to the central limit theorem, the
long time behavior is thus diffusive . The crossover time to asymptotic diffusion and
the corresponding diffusion constant

1 2p+R — pR)
P=1@ P a—pa—m

4
depend critically on the model parameters and may vary over several orders of magnitude,

as shown in Fig. .

(3.36)
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3.3. Random walk models for search problems

Search processes are very common in nature and occur on all lengthscales [72]. When
the searcher has low cognitive abilities or no hint on the target position, the search
process is random and can be well described with the aid of random walks [72]. On
the macroscopic scale animals search for food, mate, or shelter, as for instance studied
by [70-72,226-234]. On the microscopic scale, random search processes are a hallmark of
active intracellular transport, where cargo has to find reaction partners or specific regions
within the cell or alongside the plasma membrane, as discussed in Chapter Search
processes generally depend on a vast array of parameters, as for instance the velocity
distribution of the searcher or the properties of the environment. A specific set of these
parameters determines a search strategy [72]. The efficiency of a given search strategy
is usually quantified by the first passage time to target detection and minimization of
the MFPT is essential for establishing efficient search strategies [72]. In the following, a
recapitulation of random search strategies in the context of active intracellular transport
is given. Reviews on that topic include [72}[129).

3.3.1. Diffusive search strategies
Narrow escape problem on the circular disk [171]

The narrow escape problem specifies the search for a specific region on the boundary
of a domain. It is coined by studies in the context of passively diffusing particles of
Holcman, Schuss, and Singer, e.g. [169-175], eventhough earlier work on escapes through
bottlenecks exist, e.g. [235-237]. When considering search problems during active intra-
cellular transport, studies of the narrow escape problem in spherical domains are most
relevant. Singer et al. investigated the escape of particles, which are passively diffus-
ing with diffusion constant D, through a narrow opening in a circular disk {2 of radius
R [171]. The surface 9N is reflecting except for a small absorbing region 0f2, of arc
length |0€,| = 2¢R, as depicted in Fig. [171]. Singer et al. derived an asymptotic
expansion of the MFPT to the absorbing boundary in the limit of e < 1 [171]. If the
particle starts at the center of the cell, the MFPT is determined by

R? 1 1

When averaging over uniformly distributed initial conditions, it is

2

R 1 1
MFPT [0y = ) {log - +log2 + 3 + O(e)} . (3.38)

And the MFPT has a maximum value of

R? 1
max MFPT,g)cq = 5] [log - +2log2 + (’)(6)] , (3.39)

if the particle initially is located at the pole opposite to the escape region. As expected,
the MFPT diverges for e — 0 [171].
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Figure 3.10.: The model of Singer et al. - diffusive narrow escape problem [171]. When moving
in a circular disk of radius R a Brownian particle experiences reflecting walls (solid
line) except for a small absorbing area (dashed line). Reprint of [171]. Reprinted
by permission from Springer Customer Service Centre GmbH: Springer Nature,
Journal of Statistical Physics, Narrow escape, part II: the circular disk, Singer, A.
et al., Copyright (2006), (http://dx.doi.org/10.1007/s10955-005-8027-5);
permission conveyed through Copyright Clearance Center, Inc.

Reaction problem on the circular disk [238]

Condamin et al. considered a Brownian particle which is searching for an immobile target
within a confined domain [238]. This is reminiscent of the reaction problem. The particle
performs Brownian motion with diffusion constant D on a circular disk of radius R until
it reaches the target of radius a. Condamin et al. showed that the MFPT depends on
the initial distance between searcher and target d [238]

R? d

MFPT ~ — In —. 4
5D na (3.40)

3.3.2. Intermittent search strategies

However, purely diffusive models are insufficient in the context of active intracellular
transport which consists of alternating phases of active, directed motion along the
cytoskeleton and reorienting arrest states [29)33-38]. In order to take such movement
pattern into account, the group of Bénichou and Voituriez coined so-called intermittent
search strategie [68475]. Intermittent random walks consist of two states of motility: a
fast non-reactive phase and a slow detective phase [72]. In [73175] these two phases are
denoted as phase 1 and phase 2. In phase 1 the particle undergoes Brownian motion
with diffusion constant D or it exhibits a static arrest state. Phase 2 is characterized
by ballistic runs at constant speed v in uniformly random directions. The particle
experiences stochastic transitions between phase 1 and phase 2, which are exponentially
distributed with mean 71 (72) [73-75].The searcher starts in phase 1 at a random
position in a spherical domain of radius b with reflecting boundaries [73H75]. The target
is immobile and located at the center of the sphere. Target detection is only possible
in phase 1 as it is assumed that the particle is inactive when being in phase 2 [73H75|.
Reaction occurs if searcher and target are closer than a distance a. In the case of
intermittent diffusion, reaction is instantaneous, whereas it takes place with a finite rate
k in the case of intermittent arrest states [73H75].
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Figure 3.11.: The model of Loverdo et al. - intermittent random walk in 2D [73,[75]. (a)
The sketch of the intermittent random walk model visualizes transitions between
ballistic runs along the cytoskeleton and diffusive motion in the cytoplasm. (b)
The gain of reactivity Goq is shown as a function of 71 and 7o for v=1, D=1,
and a=20, b=2000 (brown), a=10, b=1000 (red), a=10, b=100 (green), a=2.5,
b=250 (blue). Analytical results are shown as solid lines and numerical sim-
ulations are represented by symbols. Part (a) is a reprint of [73]. Reprinted
by permission from Springer Customer Service Centre GmbH: Springer Nature,
Nature Physics, Enhanced reaction kinetics in biological cells, Loverdo, C. et
al., Copyright (2008), (http://dx.doi.org/10.1038/nphys830); permission con-
veyed through Copyright Clearance Center, Inc. Part (b) is a reprint of |75],
Loverdo et al., Reaction kinetics in active media, J. Stat. Mech., 9:P02045, 2009,
(http://dx.doi.org/10.1088/1742-5468/2009/02/P02045). (©)SISSA Medi-
alab Srl. Reproduced by permission of IOP Publishing. All rights reserved.

Within that framework, Loverdo et al. analytically investigated the search efficiency
in terms of a reaction constant K = 1/MFPT, which is the inverse of the MFPT to
the target [73-75]. In order to check whether intermittent strategies are favorable to
purely diffusive strategies, they identify maximum values of the reaction constant K as
a function of 71 and 7. Their results are recapitulated in order |73H75].

Intermittent diffusion

For intermittent diffusion, Loverdo et al. showed, that in the regime D/v < a <
b intermittent search strategies are favorable in a two-dimensional circular disk. The
reaction rate Kyg is then maximized for [73-75]

opt D ln2(b/a) otNa
T~ g amgpfa) 1 M e Vb —1/2 340

v

The gain Gog = Koq/ K>, 4 in reaction efficiency by intermittent strategies with regard to
then one Kg 4 of purely diffusive search strategies is shown in Fig. [73-75]. It has a

maximum value of [73H75]
max av
YD) VIn(b/a). (3.42)
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Figure 3.12.: The model of Loverdo et al. - intermittent random walk in 3D . (a) The
sketch of the intermittent random walk model visualizes transitions between ballis-
tic runs along the cytoskeleton and diffusive motion in the cytoplasm. (b) The gain
of reactivity G3g4 can be maximized as a function of 75 if @ 2 D/v. Parameters are
determined by =6, v=1, D=1, and a=1 (green), a=>5 (blue), a=7 (purple), a=10
(red), a=14 (brown), a=20 (orange). Analytical results are shown as solid lines
and numerical simulations are represented by symbols. Part (a) is a reprint of .
Reprinted by permission from Springer Customer Service Centre GmbH: Springer
Nature, Nature Physics, Enhanced reaction kinetics in biological cells, Loverdo, C.
et al., Copyright (2008), (http://dx.doi.org/10.1038/nphys830)); permission
conveyed through Copyright Clearance Center, Inc. Part (b) is a reprint of ,
Loverdo et al., Reaction kinetics in active media, J. Stat. Mech., 9:P02045, 2009,
(http://dx.doi.org/10.1088/1742-5468/2009/02/P02045). (©)SISSA Medi-
alab Srl. Reproduced by permission of IOP Publishing. All rights reserved.

For reaction problems in three-dimensional spheres, Loverdo et al. showed, that inter-
mittent strategies are beneficial in the regime 6D /v < a < b [73-75]. The reaction rate

K34 is maximized for |[73H75]

6D a K av
t t max __ ~-3d
Tﬁ%d N7 and T;,gd ~ 1-1;7 - Bd = K ~ 0.26 D’ (3.43)

as shown in Fig. Consequently, in the limit of low target densities a < b, inter-
mittent search strategies improve the reaction kinetics for large tracer particles with a
reaction radius a ~ D /v both in two- and three-dimensional spheres [73-75].

Intermittent arrests

In the case of a static mode in phase 2, intermittent strategies are naturally favourable
in three and two dimensions as they are needed to explore space . The reaction rate
K can universally be maximized for [74]

7 & ﬁ (In(b/a) — 1/2)Y* and 78 ~ Z\/In(b/a) — 1/2 (3.44)
' v ' v
in circular disks and in the case of spheres for
opt 3 1/4 a opt a
Tlgd ~ <10> % and TQEd ~ 11; (345)
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Figure 3.13.: The model of Bénichou et al. - surface-mediated diffusion [76]. (a) Sketch of
a particle which performs surface-mediated diffusion in a sphere S with random
alternations of bulk diffusion with diffusion constant Dy and surface diffusion with
diffusion constant D;. (b) The MFPT is minimized as a function of the desorption
rate A for D=1, D2=5, a=0.1, and R=1. Reprint of [76]. Reprinted figure with
permission from Bénichou, O. et al., Physical Review Letters, 105, 150606, 2010,
(http://dx.doi.org/10.1103/PhysRevLlett.105.150606). Copyright (2010) by
the American Physical Society. Permission conveyed through SciPris.

Remarkably, the optimal residence time spent in the ballistic phase 7‘; gtd does not depend
on the properties of the slow motion state [72-75]. It does neither depend on the mode
of phase 1, diffusive or static, nor on the diffusion constant D or the rate k.

3.3.3. Inhomogeneous search strategies

The findings of Loverdo et al. show that intermittent search strategies are very robust
strategies to optimize intracellular search problems |73H75]. However, they neglect the
specific internal organization of cells by studying random walks in a homogeneous and
isotropic environment. In the following, a model for surface-mediated diffusion and
models which take a specific cytoskeleton organization into account are listed.

“Optimal reaction time for surface-mediated diffusion” |76

Models of surface-mediated diffusion include a spatial inhomogeneity of the diffusion
constant [76,[239-245]. Bénichou et al. investigated the narrow escape problem in two-
and three-dimensional spheres S of radius R [76]. A particle performs alternating phases
of bulk diffusion with diffusion constant Dy and surface-mediated diffusion along 0.5
with diffusion constant D; |76]. When detaching from the surface after an exponentially
distributed timescale with rate A, the particle is radially delocated at a distance a < R
from the surface into the bulk, where it exhibits bulk diffusion until it reaches the
surface again and eventually the target of angular size 2¢ is detected, as visualized in

Fig. a [76].
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Bénichou et al. analytically showed, that the MFPT of a searcher, which is initially
uniformly distributed on 0.5, can be minimized as a function of the desorption rate A
in dependence of D;/Ds, as displayed in Fig. b, for the two-dimensional disk [76].
In a very similar approach Calandre et al. further showed that also the MFPT to a
target in the bulk, reminiscent of the reaction problem, can be minimized as a function
of the desorption rate A [243]. Consequently, the spatial inhomogeneity in the diffusion
constant can substantially increase the search efficiency.

“Particle invasion, survival, and non-ergodicity in 2D diffusion processes with
space-dependent diffusivity” [77]

Cherstvy et al. investigated the transport of particles from the center to the surface of
a circular disk [77]. The particle performs Brownian motion with a diffusion constant

A
A2

which is a function of the radial position r. The diffusion constant is thus the highest
close to the center and gradually decreases with increasing distance. For r > A, the
diffusion constant scales like a power-law D(r) ~ 1/r%, whereas for r < A diffusion is
almost Brownian. With the aid of computer simulations, Cherstvy et al. found that the
timescale 71 /9, at which the fastest half of the population arrives at the membrane, is
defined by two asymptotes [77]. Namely, the one with the slowest diffusivity D(r = R)

D(r)=D A>0 (3.46)

R? R
o~ o~ A4
and the one with average diffusivity (D) = faR D(r)dr/(2(R? — a?))
R? R*

2(D) ~ 2DgAlog[l + R2/A?]’

such that ¢/, scales like R* in the leading order [77].

“Cytoskeleton network morphology regulates intracellular transport dynamics” [78]

Ando et al. investigated the influence of the topology of the cytoskeleton on the
transport efficiency of particles which travel from the nucleus to an arbitrary position
alongside the membrane [78]. Their model system is a two dimensional circular disk of
radius R=10 pm, which possesses a nucleus of radius R,. Tracer particles are initially
positioned on the surface of the nucleus. In the cytoplasm they perform Brownian
diffusion with diffusion constant D=0.011 ym?/s [78].

The cytoskeleton is modeled as a shell of width w whose inner radius is positioned at
R, see Fig. a [78]. In order to account for active transport, the diffusion constant
is increased within the shell to D, = 100D. They found that the MFPT can be mini-
mized for shells positioned close to the nucleus if R,, 2 R/4, as shown in Fig. b [78].
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Figure 3.14.: The model of Ando et al. - accelerated diffusion in a shell |78]. (a) The parti-
cle experiences a higher diffusion constant in the network shell (green) than in
the bulk (blue). (b) The MFPT can be minimized as a function of the shell
position R,. The MFPT is plotted for diverse nucleus radii and a shell width
w=3 pm. (c) Sample realization of randomly oriented filaments in the cyto-
plasm. The green (red) circles indicate minus (plus) end of the filaments. Reprint
of [78]. Reprinted from Biophysical Journal, 109, Ando, D. et al., Cytoskeletal
network morphology regulates intracellular transport dynamics, 1574-1582, Copy-
right (2015), (http://dx.doi.org/10.1016/j.bpj.2015.08.034)), with permis-
sion from Elsevier; permission conveyed through Copyright Clearance Center, Inc.

Ando et al. further explicitly simulated filaments with fixed length which are randomly
distributed in the cytoplasm, as sketched in Fig. c [78]. Tracer particles experience
alternations of ballistic motion alongside the filaments and diffusion in the bulk. They
found that the transport efficiency from the nucleus to the membrane is increased if the
filament polarities collectively point towards the membrane [78].

“Optimality of spatially inhomogeneous search strategies” [79]

However, the cytoskeleton exhibits a very specifc architecture, where microtubules em-
anate radially from the center, while actin filaments are found in a cortex underneath the
membrane. In 2016, Schwarz et al. studied the impact of an inhomogeneous, anisotropic
organization of the cytoskeleton on the efficiency of various intermittent search pro-
cesses [79,[80]. The tracer particle undergoes phases of Brownian diffusion in the cy-
toplasm (with diffusion constant D and k-exponentially distributed duration) and bal-
listic motion alongside cytoskeleton (with k’-exponentially distributed duration) which
prohibits target detection [79]. The distribution of filament orientations 2 is space-
dependent

da. () + (1=p)daqi(—m, 0<|r| < R-—A,

1/4m, R—-A<|r| <R,

where () specifies the direction of position r [79]. Hence, a cell is modeled as a three-
dimensional sphere of radius R with radial microtubules in the interior and randomly
oriented actin filaments in a shell beneath the membrane of thickness A, as indicated
by the sample trajectory in Fig. a [79]. The search efficiency is measured in terms
of the MFPT to the target, but target detection is only allowed when the searcher is in
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Figure 3.15.: The model of Schwarz et al. - spatially inhomogeneous, intermittent search strate-
gies [79]. (a) The sample trajectory exhibits the intermittent diffusive phase and
the space-dependent directions of the ballistic phases. (b) The MFPT of the
narrow-escape problem can be minimized as a function of A in dependence of
the diffusivity D. Rates k(’)ptzo and kopt, which are optimal for a homogeneous,
uniformly random filament distribution A = R, are applied. Reprint of [79).
Reprinted figure with permission from Schwarz, K. et al., Physical Review Letters,
117, 068101, 2016, (http://dx.doi.org/10.1103/PhysRevlett.117.068101).
Copyright (2016) by the American Physical Society. Permission conveyed through
SciPris.

the slow, diffusive phase. With the aid of a Monte Carlo method, specific to reaction-
diffusion problems presented in [246], Schwarz et al. found that the MFPT can generally
be minimized as a function of A for diverse transport tasks, as exemplary shown for the
narrow escape problem in Fig. b [79.80].

3.4. Summary

Intracellular transport can be modeled with the aid of specific random walks.

Random walk models which display asymptotic anomalous diffusion rely on a breakdown
of the central limit theorem and take advantage of broad distributions and long-range
correlations in the walker’s trajectory [56-61]. However, anomalous diffusion can
also occur on short and intermediate timescales without the need for broad distri-
butions and long-range correlations. Random walks in anisotropic environments and
random walks with pausing states show non-trivial transient anomalous diffusion [62-64].

Intermittent random walks have been widely studied in the context of diverse search
problems. In general, intermittent search strategies have been shown to be favorable,
because the MFPT can be minimized as a function of the transition rates between
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3.4. Summary

the two motility states [68-75]. Typically, such search strategies are studied in ho-
mogeneous, isotropic environments. But this assumption is not valid for intracellular
transport processes which cover the whole cell range on which the cytoskeleton is neither
homogeneous nor isotropic. The crucial impact of the exact topology of the cellular
environment on the search efficiency of various transport tasks has very recently gained
scientific interest [76-80].

The impact of the key properties of intracellular transport, i.e. the cytoskeletal architec-
ture, the motor activity, and the pausing frequency of the cargo, on anomalous diffusion
and first passage events have been studied individually in the past. In Chapter [ and [5]
we present unified random walk models which enable us to elucidate how the interplay
between the key properties of intracellular transport effects anomalous diffusion and first
passage events. A specific focus is on the role of the inhomogeneity and anisotropy of
the cytoskeleton.
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4.1. Motivation

Anomalous diffusion of tracer particles is frequently observed in living cells [39-55].
However, the origin is often elusive and it is further not known whether the anomaly
is a transient effect or not [65-67]. Modeling intracellular transport is challenging:
The movement of cargoes is determined by the cellular environment. Transitions
between ballistic motion along the cytoskeleton and reorienting pauses [29,/33-38|] are
regulated by the concentration of accessory proteins or crossings of the filamentous
network [2,37,/130]. Moreover, the cytoskeleton exhibits a space-dependent anisotropy.
Microtubules often form aligned bundles, while actin filaments are typically random |[2].

While standard models of asymptotic anomalous diffusion necessitate broad distributions
and long-range correlations [56-61], waiting states and the anisotropy of the environment
are candidates to provide transient anomalous diffusion [62-64], as recapitulated in
Chapter How the interplay between the local anisotropy of the cytoskeleton, the
motor behavior, and the pausing states effects anomalous diffusion of intracellular tracer
particles is not fully understood. Here, we investigate how cells are able to regulate
anomalous diffusion by transient arrest states on anisotropic filaments and networks.
We present a coarse grained random walk perspective of intracellular transport by
monitoring the effective motion of cargo while disregarding the mechanochemical details
of the motor stepping. This approach enables us to identify the influence of the local
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anisotropy of the cytoskeleton, the cargo processivity, and the transition frequency
between the two states of motility on the diffusive properties of intracellular transport.
In the following, we investigate the motion of cargo which experience pauses on a single
filament and on cytoskeletal networks.

At first, a model for motion on a single anisotropic filament is introduced. An exact
analytic expression of the probability density function of the tracer’s displacement is
derived and the resulting MSD is studied. Within an analytic approach, we monitor
the anomalous exponent over all timescales and estimate the crossover time to the
asymptotic behavior as a function of the transition rates between the two motility
states [Hafner2016B].

In [Hafner2014], a model of intermittent motion on two-dimensional anisotropic networks,
based on the model of Shaebani et al. [63], was introduced. In Section the model
and main results of [Hafner2014] are briefly recapitulated. Then, we study the temporal
evolution of the anomalous exponent and the crossover time to asymptotic diffusion,
which provides further insight into the transient nature of the discovered anomalous dif-
fusion. Moreover, we focus on the diffusion constant in the long time limit [Hafner2016B].

The investigations which are presented in this chapter are published in [Hafner2016B].

4.2. Model

4.2.1. Description

Here, we investigate how transient arrest states influence the transport of cargoes
which move unidirectionally along a single cytoskeletal filament [Hafner2016B]. We
introduce a random walk model in discrete time and continuous, one-dimensional
space which incorporates stochastic transitions between two states of motility: (i)
ballistic transport along the filament is frequently interrupted by (ii) stationary pauses.
Such arrest states arise when cargoes are stopped by roadblocks, such as accessory
proteins which are attached to the filament, so that they have to maneouvre around
the obstruction [37},/130,/144,[247], or, although unlikely [31], when cargoes fully detach
of the filament and subdiffusve dynamics in the crowded cytoplasm are approximately
stationary [31,39H41,[50%|51,55]. The model is also relevant for the motion of highly
proccessive cargoes on cytoskeletal networks, where filament crossings cause cargoes to
pause until they overcome the barrier [29,33-38].

In the model, state transitions are assumed to occur in a Markovian manner with
constant probabilities k., and k,, per time step to switch from the motion to the
waiting state and vice versa [Hafner2016B]. This leads to an exponentially distributed
duration of each motility state; the smaller the probability k., (km), the longer the
mean duration in the motion (waiting) state. Since active lifetimes during intracellular
transport are reported to be exponentially distributed as well [248], this is in good
agreement to biological observations.
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Figure 4.1.: Run-and-pause random walk on a single filament - the model. The four possible
state transitions between two consecutive steps are sketched. Blue color indicates
a cargo in the arrest state, while red color corresponds to a cargo in the motion
state. In the style of a figure published in , Scientific Reports, 6,
37162, 2016, (http://dx.doi.org/10.1038/srep37162).

We assume that the cargo is transported by a single motor species. Consequently, it
performs unidirectional motion along the filament. At each time step of the walk, the
tracer particles either waits or moves a distance ¢ drawn from a distribution F(¢), as
sketched in Fig. [Hafner2016B]. Following [63], the step length distribution F () is
characterized by A = (¢2)/(¢)2, but in what follows, the step length is often assumed to
be constant, i.e. F({) =§(¢ — L) = A =1 [Hafner2016B].

4.2.2. Analytic approach

The temporal evolution of the probability density function PM(z), PV (x) to find the
particle at time step n at position x in the motion, waiting state, respectively, is given
by a set of coupled master equations

{Pn+1 ) = [AF () [km PV (x—0)+(1—ry) PM (z—0)] , 1)

P (2) = ko P (@) +(1—rm) By (@)
The master equation takes the four possible transitions of the cargo, presented in Fig.
4.1} into account . The first equation corresponds to position updates
from z—/ to = between steps n and n+1 if the particle either switches from the waiting
to the motion state with probability k,, or if it remains in the motion state with
probability 1—k,,. The second equation represents a stationary particle position which
occurs if the particle switches from the motion to the waiting state with probability k,,
or if it stays in the waiting state with probability 1—k;.

Within an analytic approach, which involves Fourier and z-transformation ,
it is possible to solve the coupled set of Eq. [.I] in terms of the probability density
functions PM(z) and PV (x) [Hafner2016B]. Note that this is specific to the here
presented one-dimensional model.
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The Fourier transform of Eq. reads

{Pfl\il(w) = [dz e’:wxPﬁl(a:) = [deF(0) eiwt [ﬁmPXV(W) +(1- /-iw)PéM(w)] ' (42)
Py‘gl(w) = [dz ewaﬁl(az) = kwPM (W) + (1 = £ PV (W),
and generates the moments of displacement according to
, ‘ kpJ
W= [aratpi) = oSO (4.3
w=0
The coupled set of Eq. can be solved with the aid of z-transformation
Ti(z) =) Tj="", (4.4)
n=0
which leads to
PM(z,w) =L [z = (1= kn)) PY(2,0) =2 Py (w)]
PV (z0) =L (= (= m)) PY(z0) = e PMow)]
with (‘)= [ d¢ F(¢)e™*. By applying the initial condition
PMy(x) = P 5(a), (16)
Plo(x) = (1= P3") 8(x),
Puo(z) = Pplo(x) + Palo(x) = 6(),

where Péw is the probability to start the walk in the motion state, and solving the
coupled set of Eq. we obtain the full solution of the master equation [£.1] in Fourier-
and z-space [Hafner2016B]

P(z,w) = PM(z,w) + PV (z,w) (4.9)

i [(ei“’£> (POM—l) (Km+krp—1) — P({W (Em+rw—1) — z]
(e (z—zky FEmt b —1) —2(z+En—1) (4.10)

Arbitrary moments of the particle displacement can thus be derived by z-transformation
of Eq. 3] For instance the temporal evolution of the MSD is determined by

, > , 2PI(z,w
) = 3o = i TR (a.11)
n=0 W=
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Consequently, the MSD of a particle which experiences transient arrest states while
moving unidirectionally along a single filament is given by [Hafner2016B]|

<x2>n = 1/(/{m+nw)4><
{ (42) (Hm+l-iw)2 [—/{m—i—PéV[mm%—ﬁgl—Pym%—l—f@?nn—l—Péwﬂw—l—/@mmw—2Pé\/[/£m/£w

+/<cmf£wn—Péwf£12U+(1—/<om—/<;w)(H”) (ﬁm—Pdwnm—PdVIf@w)
+(0)? [/@ffnn(l—2PéVI+n)
+2k3, (P(fw—1—n—i—P(fwn—nw+P§4mw—3PéWm<;w+n2/<cw
+(P(f\4—1)(1—fim—/<w)"(—1—|—(—1+n)mw)>
12PM (< 14k (mw—1+(1—nm—nw)” (1+(—1+n)/€w)>
K2, (2—2P(f\/[+4/<;w—l—4Pdwnﬁw—4&%0—1—6]3({\/[&%”—SnR%U—GPéVInn%U—{—n? K2
+2(1—mm—mw)"(Péw—1+(n—Péwn—2)/¢w+(3Péw—2)(n—l)/@%}))

+2Km b (—(Fdw—l) (=2+(1+PM(=34n)+n) k) (L—Fm—ka)" X

n (2+nw(3P§4—3+n—2pg‘4n+(3pg‘4—1)(n—1)ﬂw))>} }
(4.12)

The MSD is a complex function of the transition probabilities x,, and k,, the first and
second moment of the step length distribution (£2), and the initial condition Pi7.

4.2.3. Monte Carlo simulation

Due to the complexity of the calculations, we perform Monte Carlo simulations in order
to validate the analytic predictions [4.12] as described in the Appendix The MSD
is calculated as an ensemble average over of the order of 10° independent realizations of
the walk [Hafner2016B].

4.3. Results

4.3.1. Transient anomalous diffusion

In Fig. a, the analytic predictions for the MSD, given in Eq. are compared to
the results of Monte Carlo simulations. Analytic results and simulations are in perfect
agreement. Remarkably, the MSD exhibits several crossovers in anomalous diffusion as
a function of time [Hafner2016B]. In response to the transition probabilities k,, and iy,
crossovers from super- to subdiffusion and vice versa arise at short and intermediate
timescales. The initial superdiffusive regime is a direct consequence of the unidirectional
motion of cargoes along anisotropic filaments of the cytoskeleton.
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Figure 4.2.: Run-and-pause random walk on a single filament - transient anomalous diffusion.
(a) The normalized MSD (x2)(n)/(z?)(n=1) displays transient anomalous diffu-
sion as a function of time n in response to various combinations of the transition
probabilities ,, and k,, for the initial condition P=1 and A=1. Analytic pre-
dictions are displayed by lines, whereas the results of Monte Carlo simulations are
represented by symbols. (b) The transient behavior of the MSD is highlighted
by the temporal evolution of the anomalous exponent for the same parameters
as in a. (c) The crossover time to asymptotic ballistic motion varies over sev-
eral orders of magnitude depending on the transition probabilities x,, and &, for

PM=1 and A=1. Reprint of [Hafner2016B|, Scientific Reports, 6, 37162, 2016,
(http://dx.doi.org/10.1038/srep37162).

The transient behavior of anomalous diffusion can be quantified in terms of the temporal
evolution of the anomalous exponent a(n) [Hafner2016B]. It can be estimated via a
power-law fit (z2)~t® of the analytic expression of the MSD, given in Eq. as

follows )
)41 n+1
For instance the initial anomalous exponent a*=a(1) reads [Hafner2016B|

2(Ky—1) 1
*=In|2 - ——— — -1 In[2 4.14
« | b\ R +Hm< +/€m_Pé\4(_1+/€m+’€w)):| / n[ ]a ( )
which reduces to
o =1In [4 = 3Kw = Kim + 7 fom ] /1n[2]. (4.15)
— Ky
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for the initial condition P(f\/[ =1 and A=1. Hence, without any pauses, i.e. K, =0 and
Km=1, the initial exponent a*=2 is ballistic, as expected for unidirectional motion along
a single filament [Hafner2016B|.

In Fig. b, the temporal evolution of the anomalous exponent is shown for P(f\/[ =1.
Crossovers in anomaly are highlighted by intersections with the constant line a=1. In re-
sponse to the interplay between the key parameters of the walk, i.e. Ky, km, and Pé\/[ =1,
the anomalous exponent is a complex function of time |[Hafner2016B|, which is reminis-
cent of transient anomalous diffusion [67]. Consequently, the presented analytic approach
to monitor the temporal evolution of the anomalous exponent a(n) provides a powerful
tool to discriminate between transient anomalous diffusion with a time-dependent expo-
nent and stationary anomalous diffusion with a constant exponent [67]. Different regimes
in anomalous diffusion can be easily visualized and crossovers in anomaly correspond to
intersections of a(n) with a=1. Furthermore, knowing a(n) is advantageous for iden-
tifying the crossover time to the diffusive limit [Hafner2016B]. In the long time limit
n — oo, the MSD, given in Eq. is determined by [Hafner2016B|

ﬁ?n(nm+1)2

=" (0% n?. (4.16)

<$2>n—>oo ~
The asymptotic behavior is ballistic due to the unidirectional motion along the filament.
The crossover time to asymptotic ballistic motion can be estimated by [Hafner2016B]|

la(ne)—2] < € = 1072 (4.17)

where a=2 corresponds to ballistic motion. Note that Eq. needs to be valid for a
sufficient timescale to guarantee that the asymptotic limit is reached. We further checked
that the arbitrary choice of ¢ does not influence our conclusions. Figure 4.2 ¢, shows
that the crossover time is a complex function of the transition probabilities k,, and &k,
and varies by several orders of magnitude [Hafner2016B|. As expected, the crossover
time n. increases with decreasing k,,, since the particle remains longer in the waiting
state. Remarkably, the crossover can also be delayed by frequent state transitions due
to large values of K, and Ky,.

4.3.2. Impact of the initial condition

The transient nature of the observed anomalous diffusion is a direct consequence of aging
processes, see for instance [193]. A sequence of state transitions of the walk is described
by a Markov chain with two states, i.e. motion and waiting [Hafner2016B|, Hafner2014].
The transition probabilities x,, and k., define an equilibrium state with probabilities

M _ Km
> (Kmthw)’
K
pv—__ 4.18
% = o) (4.18)

to be in the motion or the waiting state, respectively [249,250] [Hafner2016B|Hafner2014].
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Figure 4.3.: Run-and-pause random walk on a single filament - impact of the initial condition.
(a,c) The MSD is shown as a function of time for diverse initial conditions P! and
transition probabilities k., and x,,; A=1 is applied. (b,d) The temporal evolution of
the anomalous exponent highlights the impact of the initial condition. Accordingly,
a superballistic regime may arise. Reprint of [Hafner2016B]|, Scientific Reports, 6,
37162, 2016, (http://dx.doi.org/10.1038/srep37162).

The MSD presented in Fig. is an ensemble average over trajectories with fixed initial
condition POM =1, i.e. all particles start in the motion state. In the course of time, the
Markov chain relaxes from the initial condition (P, PJV=1-P) to the equilibrium
state (PM, PW) [249,1250] [Hafner2016B| Hafner2014]. Hence, aging processes occur
due to the relaxation of the chain during the measurement of the MSD, which lead to
transient anomalous diffusion, as shown in Fig.

Figure shows the MSD and the anomalous exponent as a function of time for various
initial conditions POM and transition probabilities k,, and k,,. Accordingly, anomalous
diffusion critically depends on the choice of the initial condition |[Hafner2016B]. Re-
markably, the anomalous exponent can also exceed values of a=2, such that the MSD
grows faster than for ballistic motion due to an acceleration in the system, which can
be understood as follows [Hafner2016B|. Consider the case, that all particles start in
the waiting state with Pd\/[ =0 and switch to the motion state with probability x,, per
time step. Once in the motion state, no transitions back to the waiting state are allowed
via K, =0. Consequently, all particles are gradually injected into the motion state, as
shown by the squared displacement of single particle trajectories in Fig. (4] a. This
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4.3. Results

a 8 T T T b e
L ) B 2
) Ky =0, Kp=0.001 10° | ; i
10° | T
1 ]
. 0| 1
4 < il g
10° | N7 /] I 7
= >l i = 10*} 1
<= - 7 JHie O mean N =
~ 0111 e ‘ } \' | ol 3
~ 2L 11 1Ml single particles J B! t
10 il i | Wil & 10° F k|
I i o ] -
‘ [ | I
1F E 1 4
10% | F0.1 —— 1]
2| i Ka=0.1
10 Ki=0.01
1 12 - 14 n 10 L N L K,“=(2A001—
1 10 10 10 10 10° 1 10 10% 10° 10" 10°
n t

Figure 4.4.: Run-and-pause random walk on a single filament - impact of the initial condition
II. (a) Simulation results of single trajectories and the corresponding ensemble
averaged mean are shown for P =0, x,,=0, £,,=0.001, and A=1. (b) The MSD,
predicted by Eq. explains the observed initial exponent a* ~ 3 for PM =0,

Kw=0, A=1, and various values of x,,. Reprint of [Hafner2016B|, Scientific Reports,
6, 37162, 2016, (http://dx.doi.org/10.1038/srep37162).

particle injection accelerates the MSD as manifested by an anomalous exponent greater
than a=2 [Hafner2016B|. In a continuous time approach, the initial residence time in
the waiting state ¢y is exponentially distributed

Plto) = Hppe 10 (4.19)

Hence, the particles switch at times ¢ty to the motion state. When being in the motion
state, they undergo ballistic motion with speed v, such that the displacement of a particle

at time t is given by [Hafner2016B]|
0, t<t
r(t) = { 0 (4.20)

U|t—t0|, t}to

The MSD is determined by integration over the transition times

t 2
(r(t)) = / dto p(to)v? |t —to]* = ”T [2 = 26t + K2 % — 2e7 "] (4.21)
0 Km
and Taylor expansion of Eq.
v? 1
(r(t)) ~ — [3/@,?;1&3 +.. ] (4.22)
m

highlights the initial behavior (r?(t)) ~ t3, as displayed in Fig. b [Hafner2016B].

Note that our analytic findings are in qualitative agreement to the conclusions of Saxton
drawn from simulations in a similar context ,. Saxton showed in his model, as
recapitulated in Section of Chapter [3], that transient anomalous diffusion critically
depends on the initial position of the particle, which defines its initial state ,.
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Figure 4.5.: Run-and-pause random walk on anisotropic networks - the model. (a) A sketch of
the walk during two successive steps is shown. (b) Networks with anisotropy R
and sample trajectories (red lines) with processivity p lead to diverse generalized
anisotropies A of the walk. Reprint of , Scientific Reports, 6, 37162,
2016, (http://dx.doi.org/10.1038/srep37162).

4.4. Generalization to two-dimensional networks

In , a run-and-pause random walk on two-dimensional anisotropic networks,
based on the model of Shaebani et al. , was introduced. The model and main results
of are briefly recapitulated here. We then provide further insight into
the transient nature of the discovered anomalous diffusion by studying the temporal
evolution of the anomalous exponent over all timescales, the crossover time to asymptotic

diffusion, and the asymptotic diffusion constant [Hafner2016B].

Since intracellular cargoes frequently pause at filament crossings of cytoskeleton
, we consider a persistent random walk with transient arrest states
. Transitions between the motion and the waiting states occur in a Marko-
vian manner with probabilities x,, (from motion to waiting) and k,, (from waiting to
motion). At each time step, the tracer particle either waits or it performs a step of length
(. The step length £ is distributed according to F(¢) with A\ = (¢2)/(¢)2, but the focus is
on constant step lengths with F(¢) = §(¢— L) and A=1. In the motion state, the particle
either continues to move in the same direction as in the previous step with processivity
p or a new direction § = v + ¢ is chosen with respect to the old direction ~ according to
a specific rotation angle drawn from a distribution R(¢), which is in analogy to . A
sketch of the walk is presented in Fig. a.
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4.4. Generalization to two-dimensional networks

Within an analytic approach, based on [63,223-225], it is possible to derive exact analytic
expressions of arbitrary moments of the particle displacement, as shown in [Hafner2014,
Hafner2016B]. But in contrast to the one-dimensional model, the coupled set of master
equations [Hafner2014, Hafner2016B]|

Pﬁl(aj,m@) =p [dCF(C) [/ﬁmPXV (x’,y"@) +(1—ky)PM (m’,y’}@)]
+(1=p) [ACF () [T dy R(®) [km Py (x',4/|7) +(1=ru) Pa" (2,4 ]7)]
P (0, 910) = P (2,910) + (1—ri) P (2, 416),
(4.23)
cannot be solved in terms of the probability density function P, (x,y|f) to find the
particle at position (z,y) along direction 6 at time step n |[Hafner2014, Hafner2016B].

In |Hafner2014] we showed that the exact analytic expression for the ensemble averaged
MSD

{2A+2Apg” —2A2PM 4+ PMA—2APRY A+ A2PM A

N (A—1)(AA=2)—N)km B (A=1)PM(A(A-2)-]N) B (A=1)(A(A=2)=N)Em(1+n)
(KEm+hw)? Km+Kaw KEm+ K
(A=1)(AA=2)=A)(1=Fm—ku) T (PM —1) ki +PM k)
(Km+kw)?
27" A "
V (Fm—1+A(kp—1))2+4A (K +Eyp—1)

+

(1+A—ﬁm—Aﬂw+\/(Hm—1+A(mw—1))2+4A(mm+ﬁw—1))" X

(1—2Pg‘4—nm+2pg‘%m+ng4nw+\/(nm—1+A(mw—1))2+4A(Hm+nw—1)

—I—A(Qlim—l-liw—1—2P0]\4(Iim+liw—1))>

+ <1+A—/<cm—A/<cw—\/(ch—1+A(/@w—1))2—|—4A(/<cm+f<cw—l)> X

(QPéV[—1+nm—2PéV[f<;m—2P(fwnw+\/(nm—1+A(nw—1))2+4A(nm+nw—1)

+A(1—2f<:m—/<aw+2P(fV[(f<am+/<;w—1)))] } (4.24)

depends on the generalized anisotropy A=p + R — pR, where R which is the Fourier
transform of R(¢) characterizes the anisotropy of the network and p corresponds to the
processivity of the cargo. As depicted in Fig. b, A=0 corresponds to non-processive
motion on isotropic networks, whereas A > 0 takes into account persistent motion and
anisotropic environments |[Hafner2014}|Hafner2016B|.
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Figure 4.6.: Run-and-pause random walk on anisotropic networks - transient anomalous diffu-
sion. (a, d, g) The MSD exhibits diverse crossovers in anomaly as a consequence
of the interplay between generalized anisotropy A and transient arrest states de-
termined by k,, and k., for PM=1 and A=1. Lines correspond to analytic ex-
pressions, whereas symbols represent simulation results. (b, e, h) The temporal
evolution of the anomalous exponent highlights the transient nature for the same
parameters as in a, d, g, respectively. (c, f, i) The crossover time to asymptotic
diffusion varies over several orders of magnitude in response to x,, and k, for

PM=1 and A=1. Reprint of [Hafner2016B|, Scientific Reports, 6, 37162, 2016,
(http://dx.doi.org/10.1038/srep37162).

In [Hafner2014], the analytic results of the MSD were also verified with the aid of Monte
Carlo simulations. We showed that the MSD exhibits non-trivial crossovers between
different types of anomalous diffusion at short and intermediate timescales
Hafner2016B], see Fig. a, d, and g, in response to the interplay between generalized
anisotropy A and waiting frequency. Note that in the limit A=1, the 2D-simulation yields
the same results as the 1D-simulation described in the Appendix [A71] But, the analytic
expression of the MSD, given in Eq. exhibits a singularity for A=1. Consequently,
an analytic investigation of the walk is not possible for A=1, which highlights the need
for the above presented 1D-model of run-and-pause motion along a single filament.
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4.4. Generalization to two-dimensional networks

0.001 0.01 0.1 1
A

Figure 4.7.: Run-and-pause random walk on anisotropic networks - asymptotic diffusion con-
stant. (a) The long time diffusion constant Do, scaled by (v(¢)I"/4) is mapped in
the Ky-Km-plane. (b) The parameter I' is plotted as a function of the generalized

anisotropy A for several values of A. Reprint of [Hafner2016B|, Scientific Reports,
6, 37162, 2016, (http://dx.doi.org/10.1038/srep37162).

According to Eq. we can now track the anomalous exponent over all timescales
and thus easily identify crossover in anomaly. Figures [4.6] b, e, and h, show that
the anomalous exponent is a complex function of time in response to the interplay
between generalized anisotropy A and transient arrest states defined by the transition

probabilities k., and k,, [Hafner2016B|. Consequently, the observed anomaly is a highly
transient effect.

In the long time limit the MSD exhibits normal diffusion, since the correlations in con-

secutive velocity directions vanish in the course of time [Hafner2016B]

Em  AAN—=2)—= A

2n. 4.2
o re A1 (0)“n (4.25)

<r2>n—>oo ~

Analogous to the 1D-model, the crossover time to asymptotic diffusion can be estimated
by

la(ne) — 1] < e =102 (4.26)

Figures ¢, f, and i, show that the crossover time n, varies over several orders of mag-
nitude as a function of the transition probabilities x,, and k., [Hafner2016B|. According
to Eq. and (r?),, 00 = 4D (f) /v, the long time diffusion constant can be deduced

o(l)  km AN=2)—=X  w{f) r_ fim

Dy = =
o 4 Ky A+ K A—-1 4 7 Kyt Ry

(4.27)
with I‘:% and the average cargo velocity v . Figure a, shows
that the scaled diffusion constant D, /(v(¢)T"/4) is increased by decreasing k,, or increas-
ing K,,. The diffusion constant D, varies over several orders of magnitude in response to
the network topology, as shown by plotting I" as a function of the generalized anisotropy
A in Fig. b. The asymptotic diffusion constant does not depend on the initial

condition P} since aging effects vanish for n — oo [Hafner2016B].
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4.5. Summary

Within an analytic framework, we identified the impact of the interplay between
cytoskeleton architecture, motor behavior, and arrest states of the cargoes on anomalous
diffusion of intracellular cargoes. We investigated the MSD and its dependence on the
initial condition of the measurements, we monitored the anomalous exponent over all
timescales, and we studied diffusion in the long time limit [Hafner2016B|.

We found that the interplay between anisotropy of the motion and arrest states lead
to complex anomalous diffusion phenomena. Crossovers between different anomalous
regimes occur on short and intermediate timescales. By monitoring the temporal
evolution of the anomalous exponent we revealed that the observed anomaly is a highly
transient effect based on aging processes out of a predefined initial state. The crossover
time to the asymptotic limit and the long time diffusion constant varies by several orders
of magnitude in response to the pausing frequency.

In essence, a cell is able to control the diffusive properties of intracellular cargoes by
regulating the network morphology, the motor behavior, and the cargo’s arrest frequency.
However, the initial condition and the averaging procedure of measurements is of crucial
importance for the interpretation of the results.
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5.1. Motivation

The efficient delivery of intracellular cargo is vital for cells and organisms. Cargo
particles, such as organelles or macromolecules, have to be transported from their
source to specific target locations. Thereby, cargoes often cover long distances within
the cell, which is facilitated by active intracellular transport along the cytoskeleton [2].
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Intracellular transport is a stochastic process which is shaped by the interplay between
the cytoskeleton and its spatial architecture, the molecular motors and their activity,
and the cargo which undergoes random alternations between active, directed motion
along the cytoskeleton and reorienting arrest states. The cytoskeleton of metazoan cells
exhibits a space-dependent structure which is highly inhomogeneous and anisotropic.
Microtubules radiate from the cell center, whereas actin filaments randomly populate
the cortex [2]. Typically diverse molecular motors are attached to a single cargo
and drag it along the cytoskeleton [17H31]. Large cargo-motor complexes frequently
experience arrest states at filament crossings of the network. These barriers cause the
cargoes to pause until they either overcome the constriction or until they switch the
filament [29,33H38].

Due to its complexity, modeling intracellular transport is a challenging theoretical
task. The stochastic movement pattern of intracellular cargo suggests a random walk
approach. Intermittent search strategies with stochastic transitions between a slow
detective phase and a fast non-reactive phase are shown to be favorable in the context
of various search problems, e.g. [68-75]. Such random walks are typically studied
in homogeneous and isotropic environments. But, this assumption is not valid for
intracellular transport processes which cover the whole cell range. Very recently, the
effect of the exact topology of the cytoskeleton on intracellular transport has gained
scientific interest |76(80].

Nonetheless, up to now the influence of the specific cytoskeleton architecture, the motor
activity, and the arrest states a cargo experiences during its travel have been considered
separately in the literature, as recapitulated in Chapter It is still obscure how the
efficiency of targeted intracellular transport is influenced by this interaction. Here, we
introduce a unified random walk model for intracellular transport with stationary pauses
[Hafner2016, Hafner2018]. The cytoskeleton and the action of diverse motor proteins is
implicitly modeled by a specific, space-dependent distribution of random velocities of
the cargo. We thus present a coarse grained perspective of intracellular transport by
considering the effective motion of cargo along the cytoskeleton - from intersection node
to intersection node - while neglecting the mechanochemical details of the underlying
motor stepping. With the aid of extensive Monte Carlo simulations, we systematically
analyze how the interplay between cytoskeleton architecture, motor activity, and a cargo’s
pausing frequency effects the transport efficiency [Hafner2016,Hafner2018]. Efficiency is
measured in terms of the MFPT to target detection. We consider three paradigmatic
intracellular transport tasks, as biologically motivated in Chapter

e the narrow escape problem, which models transport to a specific area on the plasma
membrane

e the reaction problem, which evaluates the reaction time of two particles within the
cell, and

e the reaction-escape problem, which emerges when two particles first react inside
the cell before the product particle is stochastically transported to a narrow exit
on the plasma membrane.
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Figure 5.1.: Run-and-pause random walk on a spatially inhomogeneous and anisotropic cy-
toskeleton - the model. (a) Targeted intracellular transport is a stochastic process
based on the spatial organization of the cytoskeleton. (b) We idealize a cell as a
sphere of radius R,,. The inhomogeneity of the cytoskeleton is taken into account
by a cortex of width § which splits the sphere into interior and periphery. An exit
of angle it is located on the membrane and Ry denotes the detection radius for
reaction of two particles. (c) The reaction-escape problem combines the reaction of
searcher (yellow) and target (red) particle, which start at »5, 73, and the escape of
the product (green). Reprint of [Hafner2018], Biophysical Journal, 114, 1420-1432,
2018, (http://dx.doi.org/10.1016/j.bpj.2018.01.042).

Results which are presented in this chapter are published in [Hafner2016]
and |[Hafner2018|.

Note that Schwarz et al. focussed on intermittent diffusion [79,80], as recapitulated in
chapter In contrast, we systematically analyze the impact of transient arrest states
on spatially inhomogeneous and anisotropic search strategies in two and three dimen-
sions [Hafner2016, Hafner2018]. Our findings are in qualitative agreement for small dif-
fusion constants. The limit of a vanishing diffusion constant is biologically relevant for
intracellular cargo, such as vesicles, mitochondria, or macromolecules, which experience
size-dependent subdiffusion in the crowded cytoplasm and thus undergo effectively sta-
tionary states [39-41,50,51,/55]. But more importantly, since a single cargo is typically
attached to several motor proteins concurrently |[17H31], a full dissociation of the fila-
ment is rather unlikely [31]. Instead, arrest states at filament crossings are observed in
in vitro experiments as well as in live-cell microscopy [29}33-38]. In contrast to Schwarz
et al. |79,80], we further investigate non-intermittent search strategies and take several
steps towards more physiological conditions.

5.2. Model

5.2.1. Description

In order to study the impact of the cytoskeleton architecture, the motor activity, and
the arrest states on active intracellular transport, we formulate a unified random walk
model in continuous time and two-dimensional space [Hafner2016, Hafner2018].
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We idealize a cell by a sphere of radius Ry, as sketched in Fig. In order to
take the inhomogeneity of the cytoskeleton into account, we include a cortex of width
0 underneath the cell boundary, which divides the sphere into interior and periph-
ery [Hafner2016, Hafner2018]. The interior is characterized by a radial microtubule
aster, whereas the periphery is dominated by the cortical actin filaments.

The random walk is characterized by stochastic transitions between two states of motility
[Hafner2016, Hafner2018]:

e a ballistic motion state at velocity v(v, ¢,,) which corresponds to active transport
by molecular motors between successive intersections nodes of the cytoskeleton at
constant speed v, and

e a waiting state, which is associated to arrests of the cargo when stuck at filament
crossings.

State transitions are arranged in a Markovian manner by constant transition rates ky, .
(kw—m) to switch from motion to waiting (from waiting to motion). Therefore, the
residence times t,, and t,, in each state are exponentially distributed

p(tm) = kmﬁwe_km—“”tm, (5.1)

p(tw) = kw%me_k“’ﬁmtw, (5.2)

with means 1/k,,—, and 1/ky—yp,, which is in agreement to experiments [248]. In the
context of active intracellular transport, the rate k,_,, determines the mean waiting
time per arrest state, whereas the rate k,,_,, is associated to the mesh size ¢ of the
cytoskeleton, i.e. the mean distance between successive filament crossings, via ky,—,=v/¢
[Hafner2016,Hafner2018|. In general, both rates depend on the cytoskeleton architecture
and the size of the cargo [29,[38]. Due to the inhomogeneity of the cytoskeleton, the
transition rate

ki w, for 0 <7 < Ry—96,

5.3
kb —w, for Ryy—30 <r < Ry, (5.3)

Km—w (7") = {
generally depends on the current particle position 7(r,¢,) which takes into account
different mesh sizes in cell interior and periphery. For simplicity, the mean waiting time
per arrest state ky,_.,, is assumed to be space-independent.

Intracellular cargo is reported to move either processively along the same track or switch
to a crossing filament at intersection nodes [29}33-38]. Therefore, after each waiting
period, the model particle either continues to move along the previous direction with
probability w, reminiscent of the processivity of intracellular cargoes, or it changes its
direction with probability (1—w) according to a specific rotation angle ayq, [Hafner2016].
Note that this leads to a timescale ((1 — w)ky_m) ' to change direction subsequent to
a waiting state. With regard to the rotational symmetry of a cell, the new direction of
the velocity v(v, ¢,) is determined by a rotation angle a;o4 which is chosen with respect
to the radial direction of the current particle position 7(r,¢,), i.e. ¢, = ér + Qrot
[Hafner2016,Hafner2018|. The new position is then determined by r'=r + vt,, according
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Figure 5.2.: Run-and-pause random walk on a spatially inhomogeneous and anisotropic cy-
toskeleton - the rotation angle. The velocity vector v* (v, ¢}) is defined via the
rotation angle ;o in a rotated coordinate system. Transformation between coor-
dinate systems is conveyed by the rotation matrix M.

to the residence time of the particle in the motion state. Note that, as sketched in Fig.
the simple relation ¢, = ¢, + a;o¢ only holds in the two-dimensional case

o= Mo* — (cos ¢r —sin ¢T> v <cos ozrot) Y (cos(qbr—kozrot)) Y <cos ¢U> (5.4)

sin ¢,  Cos @y Sin arot sin(¢,+arot) sin ¢,

but is more complex for motion in three-dimensional spheres. The rotation angle ot
is drawn from a specific distribution which is shaped by the cytoskeleton architecture
and takes into account the activity levels of the three motor species kinesin, dynein, and
myosin [Hafner2016, Hafner2018|

antero TrO 1— antero rot ), f m_67
Flawor) = {P tero JK (Qrot) + (1=Pantero) fD (ot or0<r<R (55)

aK fx(arot) + gD fD(rot) + gM fr(auot),  for Ryy—3d <7 < Ry,

with gx+¢p+gm=1 and the current particle position 7(r, ¢,). The cytoskeleton polarity
and the walking direction of the motors are considered by

fK(arot) = 5(041“0‘5)7 fD(arot) = 5(arot - 77)7 fM(arot) = %a (56)

with oot € (—m;7w]. While microtubules are radial, actin filaments are assumed to be
isotropically oriented. Which filament type is currently used is determined by the activ-
ity pantero and ¢; with ¢ € {K,D, M} in interior and periphery [Hafner2016,/Hafner2018].
It describes in how much a given motor species contributes to the apparent motion of
the cargo. The motor activity depends on the activity potential of the motor itself and
the density of the corresponding filament type in its vicinity. Hence, activity levels are
generally space-dependent. In the interior of the cell, the activity levels of kinesins and
dyneins are represented by the probabilities pantero and (1—pantero), respectively. In the
periphery, the activity levels of kinesins, dyneins, and myosins are characterized by ¢;
with ¢ € {K,D,M}. For instance if gyy=1, motion in the cortex is solely managed by
myosins on actin filaments.
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Initially, the tracer particle is assumed to be in the motion state at position 7(t=0) = ry,
which is either at the center (r=0) or uniformly distributed throughout the whole
cell (f(ro)=1/Rm, f(ér,)=1/(2m)). The particle experiences confinement events
[Hafner2016, Hafner2018]

e at the MTOC (r=0):
After a waiting period defined by ((1—w) ky—m ), the particle chooses a uniformly

random direction ayor € (—7; 7] if Pantero 7 0, otherwise the particle is stuck at the
MTOC.

e at the inner border of the cortex (r=Rn—0):
If the particle is currently transported by kinesins or dyneins and g # 1, it
traverses the inner border on microtubules which extend into the periphery. Oth-
erwise, it waits for a time period defined by ((1—w) ky—m). After the pause, the
particle is radially-inward transported by dyneins with probability (1—pantero), and
with probability pantero the particle selects a random direction into the periphery
according to fr, —s<r<R., (Qrot) but restricted to ayor € (—7/2;7/2).

e at the membrane (r=~Rp,):
After a waiting period defined by ((1—w) ky—m ), the particle takes a random di-
rection back into the periphery drawn from fr,__s<r<g, (0wot) but restricted to
ot € (—m;—m/2) U (7/2; 7).

Pauses at confinement events consider that filaments typically end there.

The random walk is terminated upon target detection |[Hafner2016,|Hafner2018|. In
case of the narrow escape problem, the target is a small opening of angle eyt on the
plasma membrane, as illustrated in Fig. b. For the reaction problem, two different
detection modes are considered: reaction either occurs by encounter of searcher and
target particle \TS—TT]:Rd regardless of their current motility states, or it is only
possible if both particles are in the waiting state. Note that only the latter detection
mode constitutes an intermittent search strategy. In either way, reaction takes place
instantaneously at detection radius R4. In case of the reaction-escape problem, searcher
and target first have to pair, before the product particle is stochastically transported
to the escape zone on the membrane. Note that the exit on the membrane is only
absorbing for the product particle, whereas searcher and target particles experience
scattering boundaries. A schematic trajectory is sketched in Fig. [5.1] c.

A certain combination of transition rates ky, ., and ky_m, processivity w, and turning
angle distribution f(ayet), given in Eq. defines a specific search strategy which
is generally inhomogeneous and anisotropic [Hafner2016,[Hafner2018|. A homogeneous
search strategy is recovered for 0=R,,. Table summarizes the model parameters and
their biological interpretation. If not stated otherwise, in order to reduce parameter
space we use rescaled, dimensionless coordinates and parameters

r—1r/Ry, t—vt/Ry, kmowr— Runkmow/Vs  kwosm — Rmkw—m/v. (5.7)
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Table 5.1.: Run-and-pause random walk on a spatially inhomogeneous and anisotropic cy-
toskeleton - model parameters and biological interpretation.

Model parameter | biological interpretation
Ry radius of the cell
1) thickness of the actin cortex
Olexit opening angle of the exit zone on the membrane
Ry detection distance, i.e. sum of radii of searcher and target
kw—sm associated with the mesh size of the cytoskeleton
Kw—m, mean waiting time per filament crossing
v effective speed of the cargo on the cytoskeleton
w processivity of the cargo at filament crossings
flanot) cytoskeleton structure
Panteros i motor activity levels

5.2.2. Monte Carlo simulation

With the aid of Monte Carlo simulations, we measure the efficiency of a specific
search strategy in terms of the MFPT to target detection. We use an event-driven
algorithm, as sketched in the Appendix to generate the stochastic process and
derive the MFPT by ensemble averaging over at least 10 independent realizations of
the walk [Hafner2016, Hafner2018].

In the following, we analyze the dependence of the MFPT on the key parameters of the
model: the spatial cytoskeleton architecture, the motor activities, and the frequencies of
arrest states. We monitor the MFPT as a function of the model parameters to identify
optimal search strategies.

5.3. Narrow escape problem

In this section, we study the narrow escape problem. A tracer particle which is initially
either uniformly distributed throughout the cell, or located at the cell center is stochas-
tically propagated until it detects a small window on the boundary of the domain. A
prominent example is directed secretion by T cells where toxic granules are actively
transported and exclusively released at the synapse [2,|8H14]. With the aid of Monte
Carlo simulations we analyze how the interplay between cytoskeleton organization, mo-
tor activity, and frequent pausing of the cargo effects the efficiency of the narrow escape
problem [Hafner2016,[Hafner2018|. We first focus on homogeneous search strategies and
then point out the crucial impact of the cytoskeleton inhomogeneity.
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qm=l1

Figure 5.3.: The narrow escape problem on a homogeneous cytoskeleton - trajectories. Sample
trajectories (blue lines) of a tracer particle which is initially located at the cell
center and searches for a window of arclength aeyi;=0.1 on the membrane are
shown for a homogeneous cytoskeleton architecture with d=1. The trajectories
reflect the motor activity gu, gx=¢p=(1—qm)/2. Network intersections at which
the particle changes its direction (w=0) are represented by blue crosses and occur
on scales defined by (a) ky,—=0, and (b) k;,—,=1. The waiting rate k., =00
is not visualized. Reprint of |[Hafner2016|, Physical Biology, 13, 066003, 2016,
(http://dx.doi.org/10.1088/1478-3975/13/6/066003).

5.3.1. Homogeneous search strategies

Here, we fix =1 and assume that the cytoskeleton is homogeneously distributed within
the cell according to

1

f1—6<r<l(ar0t) = gK 5(arot) +gp 5(arot - 77) + qm % (58)

A tracer particle reaches filament crossings at rate k,, ... At each crossing it waits for
a time period defined by k., and unexceptionally changes its direction, since w=0.

Trajectories

Figure displays sample trajectories for different motor activities gy, gk, and gp, and
network mesh sizes ky,—,, |[Hafner2016]. For simplicity, we assume equal activities of
kinesins and dyneins, i.e. gxk=¢p=(1—qm)/2. Particles start at the cell center rp=0 and
search for a narrow escape of arclength aexit=0.1. The trajectories reflect the interplay
between cytoskeleton architecture and motor activity [Hafner2016]. While a high activity
of myosins by gu=1 leads to isotropic transport, the motion is determined by a radial
aster of microtubules for ¢y=0. Intermediate values correspond to motion on a mixture
of random actin filaments and radial microtubules.
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0 T 2n 0 ¢ 2n

Xexit Xexit

Figure 5.4.: The narrow escape problem on a homogeneous cytoskeleton - impact of the mo-
tor activity. The MFPT is measured as a function of the target size eyt for
particles which are initially located at the center of the cell and move along a
homogeneous cytoskeleton with different motor activities gu, gx=gp=(1—qm)/2.
Various values of the transition rates k., are applied for (a) ky,—,m=00 and
(b) ky—m=1. For kpy =0 and ky_,n,=00, the simulation results (lines) are
compared to analytic results (symbols), given in Eq. and respectively.
Figure a is a modification of |[Hafner2016], Physical Biology, 13, 066003, 2016,
(http://dx.doi.org/10.1088/1478-3975/13/6/066003).

Impact of the motor activity

Keeping the sample trajectories in mind, we study the influence of the motor activity
qu and the target size qexit on the MFPT of searchers which are initially located at the
center of the cell 7o=0 |[Hafner2016|. In Fig. the MFPT is plotted as a function of
Qexit for various values of the transition rates k;, .., and ky_,m,, and diverse probabilities
aM, qx=gp=(1—qm)/2 [Hafner2016|. As expected, the MFPT monotonically decreased
with increasing target size aeyit and diverges in the limit aeyjt — 0. Directional changes
in the bulk with k., # 0, as well as the introduction of arrest states by ky_m,m # 00
do not improve the search efficiency. The MFPT increases for increasing kp,—,, and
decreasing k... Remarkably, we find that transport on an isotropic cytoskeleton with
gu=1 is favorable to q; # 1. Consequently, we will focus on a high activity of myosin
motors with gyy=1 in the following.

The results can be analytically verified for k,,—,,=0 and k,_,,=00. In that case, the
particle only changes its direction at confinements events. By assumption that consec-
utive collision positions at the membrane are independent random numbers (Bernoulli
process), the escape window is detected with probability P = aexit/(27) per collision
and on average 1/P collisions are necessary for target detection. In the case of a radial
microtubule network, i.e. gy = 0, the time lapse between successive collisions with the
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Figure 5.5.: The narrow escape problem on a homogeneous cytoskeleton - impact of the initial
condition. (a) The MFPT is shown as a function of the target size aueyit for various
transition rates k,,_,, and k,_.,,=00 on an isotropic network with ¢gy=1. Two
different initial conditions are applied: the particle is either initially located at the
cell center (solid lines) or it is uniformly distributed throughout the cell (dashed
lines). (b) The MFPT is measured in dependence of the transition rate k.,
for diverse target sizes qiexit, rates ky—_m, and centered initial condition (lines) or
uniform initial condition (symbols). Reprint of [Hafner2018], Biophysical Journal,
114, 1420-1432, 2018, (http://dx.doi.org/10.1016/].bpj.2018.01.042).

membrane is (At) = 2Ry, /v, such that the MFPT yields

+—, (5.9)

21 2Rm | Rm
MFPT[qM:()F( —1> g

Qlexit

where it is taken into account that the last interval to target detection only takes (At)/2.
In the case of isotropic motion on a uniformly random actin network with ¢y = 1, the
time lapse between successive collisions can be calculated by the law of cosines R2 =
R2 412 — 2Rl cos v, such that

w/2
gy =1 / dy 2 2R, cos(y) =
v v _7r/2 ™

4Ry,

™V

(5.10)

where [ denotes the distance between consecutive collision positions. Thus, the MFPT
is given by

— 5.11
T (5.11)

2w 4R, Rn
MEPT (g —1] = ( - 1>

Olexit

because the first time to collision only takes Ry, /v due to the centered initial position
of the particle. The analytic results are in perfect agreement to simulation results, as
shown in Fig. a.
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Figure 5.6.: The narrow escape problem on a homogeneous cytoskeleton - optimal transition
rates. The MFPT is mapped as a function of the transition rates k,,_,,, and
kw—sm for aexit=0.1, centered initial condition, and isotropic cytoskeleton with

gu=1. Reprint of [Hafner2018|, Biophysical Journal, 114, 1420-1432, 2018, (http:
//dx.doi.org/10.1016/j.bpj.2018.01.042).

Impact of the initial condition

So far, we focused on particles which are initially located at the center of the cell r4=0.
In Fig. we study the impact of the initial condition on the homogeneous, isotropic
(gm=1) narrow escape problem |[Hafner2018|. We distinguish between two initial posi-
tions: (i) the particle starts at the center of the cell, i.e. 79=0, and (ii) the particle is
initially uniformly distributed within the cell, i.e. f(r9)=1/Rm, f(¢r,)=1/(27). Accord-
ing to Fig. [5.5] a, the uniform initial condition is slightly advantageous for large target
Sizes Quexit = 2T . The larger the target, the more likely is a detection at the
first collision with the membrane and accordingly the initial condition has a strong im-
pact on the MFPT. Uniformly distributed initial positions are beneficial as the particle is
on average closer to the membrane than for the centered initial condition. In contrast, for
small escapes zones awxit the initial condition becomes gradually irrelevant. The smaller
the target, the more collisions with the membrane are necessary for target detection and
consequently the impact of the initial condition vanishes . This is also valid
when pauses are involved, as shown by Fig. b.

Optimal transition rates

In order to identify the optimal search strategy to a narrow escape in the case of a
homogeneous cytoskeleton, we measure the MFPT as a function of the transition rates
km—sw and ky_ym for gqu=1, as shown in Fig. [Hafner2018|. The particle is initially
located at the center of the cell, but as discussed the impact of the initial condition is
negligible for target sizes as small as qeyt=0.1. Apparently, an uninterrupted motion
pattern with k%’ifw:0 and kﬁfﬁm:oo is optimal for the detection of narrow escapes
when the tracer particle is transported along a homogeneous cytoskeleton ,
as already indicated by Fig. and
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Figure 5.7.: The narrow escape problem on an inhomogeneous cytoskeleton - trajectories. Sam-
ple trajectories (blue lines) are shown for a tracer particle which is initially located
at the center of the cell and searches for an opening of arclength eyt=0.1 (red
zone). The cytoskeleton is inhomogeneous, as defined by 6=0.3. The motion on
the cortical network is characterized by various transition rates kZ,_,, , and motor
activities qum, gx=¢p=(1—qm)/2. The particle moves uninterruptedly in the inte-
rior by k! =0 and changes its direction at the MTOC. Otherwise ky—.,=00,

m—w

w=0, and paptero=1 are applied. Partial reprint of [Hafner2016], Physical Biology,
13, 066003, 2016, (http://dx.doi.org/10.1088/1478-3975/13/6/066003).

5.3.2. Inhomogeneous search strategies

In the previous section, we optimized the narrow escape problem for a homogeneous
cytoskeleton architecture with d=1 and found that qu=1, k2%, =0, and koP%,, =00 are
beneficial. But in general the cytoskeleton is spatially inhomogeneous, as defined in Eq.
Here, we address the impact of the spatial inhomogeneity of the cytoskeleton, i.e.

d € (0;1), on the search efficiency of the narrow escape problem.

Trajectories

Inhomogeneous search strategies are characterized by a well-defined width ¢ € (0;1) of
the actin cortex, as given in Eq. The interplay between inhomogeneous cytoskeleton,
motor activity, and motility transitions is manifested by the trajectories of intracellular

cargoes plotted in Fig. [Hafner2016]. The actin cortex is fixed to =0.3 and the
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Figure 5.8.: The narrow escape problem on an inhomogeneous cytoskeleton - impact of the
cortex width. The MFPT is plotted as a function of the cortex width ¢ for var-
ious target sizes aoit. As a reference case, the following parameters are applied:
km—w=0, ky_m=00, qM=1, Pantero=1, and w=0.

particle is initially located at the center of the cell. The motion along the cortical
network is characterized by various transition rates ki, .., and motor activities qu,
qk=qp=(1—qn1)/2. Directional changes occur instantaneously at each filament crossing,
i.e. w=0, ky_sm=00. For instance, in the case of k,_,,,=0 the particle is reoriented only
at confinement events, whereas it frequently changes its direction in the bulk of the
cortex for kp, ., # 0. In the interior, the tracer moves uninterruptedly by k¢ .. =0 and
changes its direction only at the MTOC. Since pantero=1, transitions from periphery
to interior are only possible via dyneins moving on microtubules which extend into
the periphery for gpf # 1. According to Fig. diverse motor activities ¢y in the
cortex drastically change the exploration of space |[Hafner2016]. For ¢y=1, motion is
isotropic and restricted to the cortex as soon as it is reached. In contrast, transport in
the periphery is also radially oriented for gyy=0 and intermediate values of g\ € (0;1)
lead to a mixture of microtubules and actin filaments.

Impact of the cortex width

At first, we investigate the MFPT as a function of the cortex width ¢ for the reference
case qm=1, pantero=1, w=0, kp_,=0 and k,_s,,=00. In Fig. the MFPT is plotted
in dependence of § for various target sizes exit- Remarkably, for small targets eyt the
MFPT exhibits a non-trivial minimum at ¢ € (0;1) which becomes more pronounced as
the target size decreases. Hence, an inhomogeneous cytoskeleton is beneficial in the case
of narrow escapes on the cell membrane and can improve the search by several orders
of magnitude. In contrast, a homogeneous strategy with =1 is most efficient for large
targets. In the following, we focus on small exit zones cexit=0.1 which constitute only
1.59% of the total cell circumference [Hafner2016,Hafner2018].
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Figure 5.9.: The narrow escape problem on an inhomogeneous cytoskeleton - impact of the
motor activity I. The MFPT is measured as a function of the cortex width ¢ for
various motor activities gv € {0;1/3;1}, gk=¢p=(1—qnm)/2, and pantero=1. (a-c)
Inhomogeneous transition rates k2, ., € {0;1;10} and k! =0 are considered for
detection of a target aeyi;=0.1. Waiting times and processivity are neglected, i.e.
ky—m=00, w=0. The dashed black line corresponds to a homogeneous search strat-
egy on radial microtubule network, i.e. §=0. Reprint of [Hafner2016|, Physical Biol-

ogy, 13, 066003, 2016, (http://dx.doi.org/10.1088/1478-3975/13/6/066003).

In order to analyze the influence of the cytoskeleton architecture, the motor activity,
and the cargo’s arrests states on the search efficiency to narrow escapes, we measure the
MFPT as a function of the cortex width 0 for various motor activities gyt and Panteros
processivities w, and transition rates Ky, (r) and ky—m, in what follows. In either way,
the particle starts at the center of the cell. But as discussed, our conclusions are largely
independent of the particle’s initial condition.

Impact of the motor activity

Here, we address the impact of various motor activities gu, gx=¢gp=(1—¢m)/2 in the
periphery and paptero in the interior of the cell on the efficiency of the narrow escape
problem [Hafner2016, Hafner2018|.

First, we consider the most general case of spatially inhomogeneous motor activities, i.e.
Pantero 0l interior and qu, g =¢p=(1—qn)/2 in periphery, and spatially inhomogeneous
mesh sizes, i.e. kY ., in interior and k}, ., in periphery [Hafner2016]. Since radial
microtubules manage rapid long-range transport [2,/16], we focus on ki ., =0. This
is the fastest relocation in the cell interior which leads to a change in radial direction
at the MTOC. We further neglect the processivity, i.e. w=0, as well as arrest states,
i.e. ky_m=00. Hence, the cargo changes its direction instantaneously at each filament
crossing. In order to separately study the effect of the peripheral motor activity qn, we
choose pantero=1 in Fig. |5.9 Hence, as soon as the particle reaches the cortex, excursions

back to the interior are only possible via dyneins for ¢y # 1, compare to the sample
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trajectories in Fig. Figure displays the MFPT as a function of the cortex width
§ for various transition rates kb, .., and motor activities g [Hafner2016]. Remarkably,
the optimization of the MFPT as a function of the cortex width 6 € (0; 1) is largely robust
against alterations in transitions rates and motor activity gy [Hafner2016, Hafner2018|.
An inhomogeneous search strategy improves the search efficiency by several orders of
magnitude in comparison to the two homogeneous limits =1 and §=0. The minimum of
the MFPT at a thin cortex 6 € (0; 1) vanishes for gy=0, but is most pronounced for gp=1,
i.e. when motion is restricted to a cortex which is dominated by the action of myosins
on random actin filaments [Hafner2016]. For ¢y=0 the MFPT is generally minimal for
0=0, because the motion is handled solely by kinesins and dyneins on radial microtubules
[Hafner2016]. In that case, the inhomogeneity defined by ¢ is entirely manifested by a
change in the mesh size between cortex and interior. However, the inhomogeneity in
mesh size vanishes for kb, —.,=k!,_,,,=0, such that the MFPT is constant in Fig.
a. In contrast, for kb, # k,_,,=0 the cargo performs a local back-and-forth motion
in the cortex on a lengthscale v/kh,—.,. Consequently, target detection is hindered with
increasing cortex width §, as shown in Fig. b and c. With increasing 4, it becomes
more and more unlikely that the particle either reaches the membrane or the MTOC to
change its radial direction which is necessary for target detection |[Hafner2016|. Figure
further indicates that a high activity of myosins gy=1 is favorable for the narrow
escape problem [Hafner2016]. Apparently, the search efficiency does not benefit from
any relocation along the internal microtubule network for gy # 1; even not for the here
studied fastest possible relocation determined by k¢, ,,=0. Instead, an optimal search
strategy is characterized by the restriction of transport to a thin actin cortex without
frequent interference by microtubules. Hence from now on, we neglect the inhomogeneity
of the mesh size as defined by Eq. and focus on transition rates

km—)w (T) = km—m)

which are constant throughout the cell. We further assume that the cortex is dominated
by actin filaments, such that Eq. is simplified to

(5.12)

f(a ) __ ) Dantero 5(arot) + (1_panter0) 5(arot - 77-)7 for 0 <r < Rm_67
YT 12, for Ryy—6 <7 < Ru.

Within that model, we study the impact of the kinesin motor activity pantero [Hafner2018|.
For instance pantero=1 denotes a high activity of kinesins, such that particles are trans-
ported from the cell interior to the periphery and stay in the cortex as soon as it is reached.
In contrast, pantero=0 takes into account a high activity of dyneins, such that cargoes are
likely to get stuck at the MTOC sooner or later. A frequent exchange between interior
and periphery is only possible for intermediate values of pantero, a8 manifested by the
sample trajectories in Fig. [5.10] Figure shows that small values of pantero, for which
the particle is mainly moving in the interior of the cell, are highly deficient [Hafner2018|.
They hinder the detection of a target which is located on the membrane. In contrast, the
MFPT exhibits a pronounced minimum at § € (0;1) for paptero=1. Furthermore, Fig.
[5.10] displays that the MFPT increases with increasing transition rate k.. Hence,
directional changes in the bulk are disadvantageous and the optimal transition rates are
given by k?,?Lw:o and kgfiw:oo [Hafner2018]. Waiting times increase the MFPT, as
discussed below.
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Figure 5.10.: The narrow escape problem on an inhomogeneous cytoskeleton - impact of the
motor activity II. The MFPT is shown versus the cortex width § for diverse
motor activities Pantero, and transition rates (a) km—w=0, (b) km—w=1, and (c)
km—w=10. Apart from that k. _,,=00, w=0, and aey;;=0.1 are applied. Sample
trajectories (blue lines) are given for §=0.3. The target is shown as the red zone
on the membrane. Blue crosses indicate directional changes at filament crossings.
The motor activity pantero determines the frequency of excursions in the interior of
the cell, which hinder the detection of narrow escapes on the membrane. Figures
a and b are reprints of [Hafner2018|, Biophysical Journal, 114, 1420-1432, 2018,
(http://dx.doi.org/10.1016/j.bpj.2018.01.042).

Optimal cortex width and motor activity

In order to determine the best search strategy for narrow escapes, we apply the optimal
transition rates kob's,, =0 and koP%,,=oco and map the MFPT in dependence of the cortex
width 0 and the motor activity pantero, as shown in Fig. [5.11] The MFPT displays a
global minimum at roughly §=0.1 and paptero=1 [Hafner2018]. In essence, the search effi-
ciency to narrow escapes on spherical domains is optimized by an uninterrupted motion
pattern (kn,—w=0, ky—sm=00) which is restricted to a thin cortex (6 € (0;1), pantero=1).
Inhomogeneous search strategies are generally more efficient than the homogeneous coun-
terparts. Confining the motion to a thin cortex is beneficial, because it downsizes the
search domain and prohibits excursions to the cell interior where the target is not lo-
cated |[Hafner2016| Hafner2018]. Consequently, reducing the cortex width provisionally
decreases the MFPT. However, the cortex must not bee too thin either. As evident from
Fig. and[5.10] the MFPT diverges in the limit of § — 0 [Hafner2016/Hafner2018].
Target detection is drastically slowed down for particles of the ensemble which initially
reach the cortex at a polar angle far from the exit window. Especially those which reach
the cortex at the pole opposite to the target will need very long to reach the escape
zone. A very narrow cortex increases the lateral distance to the target, while at the
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Figure 5.11.: The narrow escape problem on an inhomogeneous cytoskeleton - optimal cor-
tex width and motor activity. The MFPT is mapped in the d-pantero-plane for
kopt. =0, ko' =00, w=0, centered initial condition, and ceyi;=0.1. Reprint

of [Hafner2018|, Biophysical Journal, 114, 1420-1432, 2018, (http://dx.doi.org/
10.1016/3.bpj .2018.01.042).

same time decreases the lateral diffusion of the walker by frequent confinement events
with the two borders of the cortex. Such rare events are manifested by the probability
density function of first passage times (FPT) [Hafner2018]. Figure shows that the
density is far from being exponential and the statistics are thus not fully covered by
the MFPT. Instead a power-law is observed at intermediate timescales, as expected for
Brownian search processes on bounded domains . Decreasing the cortex width
¢ significantly broadens the intermediate power-law regime .
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Figure 5.12.: The narrow escape problem on an inhomogeneous cytoskeleton - FPT distribu-
tion. The probability density function pgppr of FPT to a narrow escape of size
Qexit=0.1 is plotted for various cortex widths ¢, k=10, ky_sm=00, Pantero=1,
and centered initial condition. Modification of , Biophysical Journal,
114, 1420-1432, 2018, (http://dx.doi.org/10.1016/5.bpj.2018.01.042).
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Figure 5.13.: The narrow escape problem on an inhomogeneous cytoskeleton - impact of arrest
states. (a) The MFPT is plotted as a function of the cortex width ¢ for k., =10
and various k.. Otherwise pantero=1, w=0, and qexj1=0.1 are applied. The
inset shows the MFPT normalized to MFPT 0, =MFPT/MFPT(6=1). (b) The
MMT versus § is shown for diverse transition rates k;, s, Pantero=1, w=0, and
Qexit=0.1. It is independent of k. (c) The MWT is given in dependence of &
for the same parameters as in (a). The inset displays the mean number of waiting
periods which only depends on the mesh size of the cytoskeleton k,,_..,. Reprint
of [Hafner2016], Physical Biology, 13, 066003, 2016, (http://dx.doi.org/10.
1088/1478-3975/13/6/066003)).

Impact of arrest states

Recapitulating, the search efficiency to narrow escapes can be significantly improved
by spatially inhomogeneous cytoskeletal structures, § € (0;1). The optimal choice of
parameters, k=0, Kky_m=00, Pantero=1, 0 € (0;1), indicates that a restriction of
cargo motion to a thin cortex is beneficial. But so far, we mainly neglected arrest states
and assumed that waiting states at filament crossings are instantaneously left with rate
kw—m=00. Here, we systematically investigate how the duration of arrest states effects
the search efficiency to narrow escapes on the plasma membrane. We ask to what extent
inhomogeneous search strategies are still favorable for non-optimal transition rates
kEm—w # 0, ky—m # oo [Hafner2016]. In order to separate the effect of the transition
rates on the search efficiency, we fix the other model parameters to pantero=1, w=0, and
Oéexit:(].l.

In Fig. a, the MFPT is plotted as a function of the cortex width § for ky,_,,=10
and various values of k., [Hafner2016]. As expected, a decrease of the transition rate
kw—m, i.€. alonger mean waiting time per arrest state, leads to an increase of the MFPT.
Remarkably, the optimal value of the cortex width §°P! is shifted, as displayed in the
inset of Fig. a, by normalization to MEPTy0,m=MFPT/MFPT(6=1) [Hafner2016].
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The origin of that shift can obviously be traced back to an enhanced impact of arrests
in the particle’s trajectory. The MFPT can be divided into the total mean motion time
(MMT) and the total mean waiting time (MW'T) a particle experiences on average until
target detection [Hafner2016|. Since each arrest state exhibits the same mean waiting
time 1/ky—sm, it is

MFPT = MMT + MWT = MMT + # waiting periods/kuy_m, (5.13)

where (# waiting periods) denotes the mean number of arrest states which occur until
target detection [Hafner2016]. Accordingly, the contribution of the MMT and the MWT
to the MFPT can be studied separately.

In the limit ky—ym=00 the MFPT is fully determined by the MMT [Hafner2016]. Figure
b, shows that the MMT exhibits a minimum as a function of the inhomogeneity
0 which is highly robust against changes of the transition rate k,,—,, and is of course
independent of ky,_,,, [Hafner2016].

Contrarily, in the limit of ky—, — 0 the MFPT is dominated by the MWT [Hafner2016].
The MWT depends on both transition rates kj,_.,, which defines the mean number
of filament crossings and thus the mean number of arrest states (# waiting periods),
and ky_m, which defines the mean waiting time per arrest state. Figure [5.13] c,
displays that the rate ky_n, does only contribute multiplicatively to the MWT, in
agreement to Eq. Furthermore, the (# waiting periods) does only depend on
the transition rate k.. Remarkably, the inset of Fig. [5.13] ¢, shows that the
(# waiting periods) can also be minimized as a function of the cortex width 6. The
occurrence of the minimum is largely robust against alterations of k,,_,,; the only
exception is k;,—,=0. In all other cases, the MFPT is optimized by an inhomogeneous
cytoskeleton even in the limit of very long pauses during the search process [Hafner2016].

With that we can understand the shift of the optimal width §°P* in Fig. a, as
follows |[Hafner2016]. Focus on the behavior of the MMT and the MWT for k,_,,=10.
While the MMT displays a minimum at about §=0.1, see Fig. b, the MWT
exhibits a minimum at approximately =0.2, see Fig. c. Accordingly, the MFPT
experiences a shift of the optimal cortex width from §°P*=0.1 to §°P*=0.2 with decreasing
rate ky_ym, i.€. increasing the mean waiting time per arrest state.

To conclude, the occurrence of a minimal MFPT as a function of the cortex width is
very robust against stochastic transitions between the two studied motility states. An
inhomogeneous cytoskeleton constitutes the most efficient search strategy also in the
limit of very long pauses during the search process. This is biologically relevant since the
mean waiting time per arrest state is reported to be of the order of seconds |29,146,152].
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Impact of the processivity

So far, we assumed that the particle changes its direction at each filament crossing.
But cargo is reported to also be able to overcome intersections [29,33-38|. Here,
we investigate the impact of the processivity w on the search efficiency to narrow
escapes |Hafner2016). For that purpose we fix the motor activity to the preferable value

Pantero= 1.

Sample trajectories of a processive (w > 0) and a non-processive tracer particle are
compared in Fig. [5.14] a. While a non-processive searcher changes its direction at
each filament crossing, a processive searcher overcomes the constriction with probability
w [Hafner2016].

Figure b, displays the MFPT as a function of the cortex width § for various pro-
cessivities w. When considering instantaneous quitting of the waiting state k=00,
the MFPT is systematically decreased by an increase of the processivity w and optimal
for w=1 [Hafner2016]. This reflects the optimal choice of kot ,=0. Figure c,
highlights the benefit by showing that the MFPT as a function of the processivity is
minimal for w=1 [Hafner2016].

But, when introducing prolonged arrest states by k;,—., < 00, an optimal processiv-
ity w < 1 is found which minimizes the MFPT [Hafner2016|, as shown in Fig. [5.14]
d-f. While the MMT, as given in Fig. b, as well as the mean number of arrest
states (# waiting periods), as shown in Fig. e, are optimal for w=1, the MWT
exhibits a minimum at w < 1, as demonstrated by Fig. e [Hafner2016|. Here, Eq.
does not hold since the mean waiting time per arrest state is not universal for all
arrest states. While pauses at filament crossings in the bulk are left with rate ky—m,
waiting periods at confinement events (r=0, r=1 — 0, r=1) are extended according to
((1—w)ky—m) [Hafner2016]. The timescales are assumed to be different since confine-
ment events disallow subsequent processive runs whereas waiting processes in the bulk
do not. Since the mean waiting time per confinement event consequently diverges for
w=1, an optimal processivity w < 1 is observed for the MFPT shown in Fig. [5.14
f [Hafner2016]. Consequently, an intermediate processivity is favorable due to inevitable
pauses at confinement events. Intermediate probabilities for processive runs subsequent
to a filament crossing are reported during active intracellular transport too [29,|33-35].
Note that from now on the cargo processivity is neglected for simplicity.
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5.3. Narrow escape problem
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Figure 5.14.: The narrow escape problem on an inhomogeneous cytoskeleton - impact of the pro-
cessivity. (a) Sample trajectories (blue lines) are shown for a cortex width §=0.5.

A non-processive particle with w=0 changes its direction at each filament crossing

(blue cross), while a highly processive searcher with w=0.99 often overcomes the

nodes. (b) The MFPT is plotted as a function of the cortex width § for diverse

processivities w and ky,—,=00. (¢) The MFPT versus the processivity w is shown

for various fixed cortical widths § and ky—m=00. (d) The MFPT is plotted as a

function of the cortex width § for diverse processivities w and ky ., =1. (e) The

MMT and the mean number of waiting periods are plotted versus the processiv-

ity w for various fixed cortical widths § and diverse transition rates ky_m. (f)

The MFPT is shown in dependence of the processivity w for various fixed cortical

widths § and diverse transition rates kq_.,. Otherwise ks, =10, Pantero=1, and

aexit=0.1 are applied for all graphs. Reprint of [Hafner2016|, Physical Biology,
13, 066003, 2016, (http://dx.doi.org/10.1088/1478-3975/13/6/066003).
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5.4. Reaction problem - motile target

In this section, we study the enhancement of reaction kinetics between two independently
motile reaction partners by active transport within the cell [Hafner2018]. First, the
focus is on particles which have the same motility properties, i.e. motor activity pantero
and transition rates ki, and ky ;. Then, we take into account particles with differ-
ent motility parameters, before we study the limit of immotile targets in the next section.

Searcher and target particle are initially uniformly distributed within the cell, i.e.
r(t=0) = 7o, f(ro)=1/Rm, f(¢r,)=1/(27). They are propagated until reaction which
is assumed to occur instantaneously if searcher and target particle are closer than the
reaction radius [rS—rT| < Ry, see Fig. for a sketch. In the theory of intermittent
search strategies, it is usually assumed that the fast motility state prohibits target de-
tection, such that reaction only occurs in the slow state, e.g. [72,[79,80]. Nontheless,
the literature on a relation between the mobility state of cargoes and the likelihood for
intracellular reactions is limited, see for instance [253|254]. It remains unclear whether
all intracellular cargoes are non-reactive when being actively transported along the cy-
toskeleton with the aid of molecular motors. Hence, we consider two different detection
modes which depend on the motility state of the tracer particles [Hafner2018|. Reaction
either occurs by encounter regardless of the motility states both reaction partners are
in, or it is only possible if both particles are in the waiting state [Hafner2018]. The
latter alternative constitutes an intermittent search strategy. Remarkably, we show that
the detection mode has no significant impact on the reaction kinetics under biologically
reasonable conditions.

5.4.1. Homogeneous search strategies

At first, we consider the reaction problem in a homogeneous, isotropic environment
with =1 and ask whether the MFPT to reaction can be optimized as a function of the
transition rates kp,_, and ky_.m,, which are assumed to be equal for searcher and target
particle [Hafner2018§].

If detection occurs by simple encounter regardless of the motility state of searcher and
target particle, Fig. a and b, show that the MFPT is universally optimal for
k2Pt ,=0 and kSP%,,=00, no matter how small the target is [Hafner2018]. In contrast,
when detection is exclusively possible if both particles are in the arrest state, the MFPT
is minimized for non-trivial transition rates k%ﬁw > 0 and kS}im < oo which strongly
depend on the detection radius Rg, see Fig. c and d [Hafner2018|. Interestingly,

the minimum is quite broad, as demonstrated by the contour lines.

Remarkably, Fig. e, shows that the MFPT becomes more and more independent of
the detection mode with increasing transition rate ky,—,,. In the limit of large transition
rates kp,—w, searcher and target particle change direction on very short timescales such
that they explore the domain very slowly. Due to the uniform distributed initial position
of both particles, the reaction problem is then determined by getting the particles close
to each other in the first place, regardless of the detection mode [Hafner201§].
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Figure 5.15.: The reaction problem on a homogeneous cytoskeleton to a motile target - optimal
transition rates. (a) The MFPT is mapped as a function of the transition rates
km—w and ki, for Rg=0.1. Reaction occurs upon encounter regardless of the
motility state. (b) The same as in (a) but for Rq=0.025. (c) The MFPT is
shown in dependence of ki, and ky,_.,, for Rq=0.1. But reaction is limited to
the waiting state. (d) The same as in (c) but for Rg=0.025. (e) The MFPT is
plotted as a function of the transition rate k,_.,, for diverse values of k,,_,,, and
both detection modes with Rq=0.1. Reprint of [Hafner2018], Biophysical Journal,
114, 1420-1432, 2018, (http://dx.doi.org/10.1016/j.bpj.2018.01.042).

5.4.2. Inhomogeneous search strategies

By applying the transition rates k9P, and k9PY,, which are optimal in the homogeneous
case 0=1, we study the impact of the motor activity pantero and the cytoskeleton
inhomogeneity d on the efficiency of intracellular reactions [Hafner2018|.

Figures [5.16, a and b, show that a universally optimal reaction strategy is determined
by a motor activity pantero=0, independently of the detection mode [Hafner2018|.
For pantero=0 the motion of the tracer particles in the cell interior is determined by
radial transport to the center with the aid of dynein motors. In that case, reaction
predominantly takes place close to the MTOC. The distribution of reaction locations
Treact 18 measured for both detection modes in Fig. [5.16] ¢ and d. The distribution
changes drastically in response to the motor activity pantero. Figure e, emphasizes
that reaction takes place in the cell interior close to the MTOC for pantero=0, whereas
it occurs in the cortex for pantero=1. Consequently, a cell is not only able to adjust
the efficiency of intracellular reactions, but also to regulate the spatial distributions of

reaction products by control of the motor activity levels [Hafner2018].
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Figure 5.16.: The reaction problem on an inhomogeneous cytoskeleton to a motile target - im-
pact of the motor activity. (a) The MFPT is plotted as a function of § and
Pantero Tor Rq=0.1. Detection occurs by encounter regardless of the motility state.
The transition rates ko' =0 and kSP%,, =oco which are optimal in the homoge-
neous case d=1 are applied. (b) The MFPT is shown versus § and pantero for
R4=0.1. Reaction is only possible in the waiting state. The rates kP*, =13
and kSPY, =34 which are optimal in the homogeneous case =1 are applied. (c)
The distribution of reaction locations 7,.act 1S shown for diverse motor activities
Pantero and a cortex width 6=0.5. The transition rates koY . koPY — are ap-
plied. Reaction occurs by encounter at Rq=0.1 regardless of the motility state
of both particles. (d) The same as in (c) but detection is restricted to the wait-
ing state. (e) The probability Pieact that the reaction takes place in the inte-
rior or the periphery of the cell is measured as a function of the motor activity
Pantero for =0.5, R4=0.1, and both detection modes. The rates koPt, = koPt

are applied. Reprint of [Hafner2018|, Biophysical Journal, 114, 1420-1432, 2018,
(http://dx.doi.org/10.1016/j.bpj.2018.01.042).

Note that the peaks of the distributions in Fig. [5.16] ¢ and d, arise either due to the
detection radius Rgq at rreact=Rq and 7react=1—Rq, or due to automatic transitions to

the waiting state at confinement events r € {0;1—9;1} which is especially beneficial
when both particles have to be in the waiting state in order to react [Hafner2018|.

The superiority of a low probability for radially outward transport pantero=0 is very
robust against changes in the transition rates k,,—,, and ky_,,, as shown in Fig.
a and b . In general, the optimal reaction strategy is determined by
Pantero=0, 0=0, kp,_w=0, and ky_,,=00. Initially uniformly distributed searcher and
target particles are transported on the shortest route to the MTOC in order to react.
The optimality of this strategy is independent of the detection mode, as particles switch
to the arrest state at the MTOC automatically.

However, as already indicated by Fig. [5.16] a, there may also arise a local minimum
of the MFPT for high probabilities of radially outward directed transport pantero-
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Figure 5.17.: The reaction problem on an inhomogeneous cytoskeleton to a motile target -
impact of the cortex width. (a) The MFPT is plotted as a function of the cortex
width 0 for pantero=0, km—_sw=0, diverse rates k., _m, and Rg=0.1. The results of
both detection modes are compared. (b) The same as in (a) but for k;;,,=10. (c)
The same as in (a) but for pantero=1. (d) The same as in (b) but for paptero=1.
Figures b-d are reprints of [Hafner2018|], Biophysical Journal, 114, 1420-1432,
2018, (http://dx.doi.org/10.1016/j.bpj.2018.01.042).

Accordingly and as indicated by Fig. ¢ and d, the reaction time can also be
minimized as a function of the cortex width § for pantero=1 |[Hafner2018|. Hence,
another efficient search strategy is given by the restriction of motion to a thin cortex
by Pantero=1 and §°P* € (0;1). However, the occurrence of the minimum is not very
robust [Hafner2018]. Whether such inhomogeneous search strategies with 6°P* € (0;1)
and pantero=1 are favorable to a homogeneous search strategy =1 depends critically on
the transition rates ky, s, and ky_sm, as displayed in Fig. Note that Fig. [5.18
again emphasizes that the detection mode significantly loses impact on the reaction
efficiency with increasing transition rate k.

As evident from for instance Fig. [5.17] and [5.18] the MFPT displays kinks as a function
of the cortex width 6 when detection is only possible in the waiting state [Hafner2018|.
These kinks are especially prominent for &, ,,,=0 and occur at 6=R4q and 6=1—Ry. For
km—w=0 the tracer particle never switches to the waiting state in the bulk and thus
reaction critically depends on automatic arrests at confinement events at the MTOC
r=0, the inner cortex border r=1-9, and the membrane r=1. If § < Ry, reaction may
occur for four different searcher-target configurations: both are at the MTOC, both are
on the inner cortex border, both are on the membrane, or one is on the inner cortex
border and one is on the membrane. There are also four configurations in the case of
0 > 1—Rqg: both are at the MTOC, both at the inner cortex border, both are at the
membrane, or one is at the MTOC and the other one is on the inner cortex border.
But, for Rq < 6 < 1—Rq there are only three searcher-target configurations which allow
reaction since the mixed configurations are far off [Hafner2018].
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Figure 5.18.: The reaction problem on an inhomogeneous cytoskeleton to a motile target -
impact of the transition rates. The MFPT is measured as a function of the cortex
width § for pantero=1 and various transition rates k,,_,, and k,,_.,,. Results of
the two considered detection modes are compared.
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Figure 5.19.: The reaction problem on an inhomogeneous cytoskeleton to a motile target -
impact of nonidentical motor activities. (a) The MFPT is shown as a func-
tion of the cortex width & for nonidentical motor activities pS ....=1 and diverse

P iero- The two detection modes are compared for Rq=0.1 and k5, ,, =kT . =0,

kS ,..=kT . =100. (b) The same as in (a) but for k5 ., =kl ., =10. Fig-

ure b is a reprint of |[Hafner201§|, Biophysical Journal, 114, 1420-1432, 2018,
(http://dx.doi.org/10.1016/j.bpj.2018.01.042).

Impact of nonidentical particle properties

So far, we only considered the reaction problem for identical searcher and target particles
with equal motility parameters pantero, Fm—w, and ky—m,. However, target and searcher
particle are rarely identical in intracellular reaction problems. They may differ according
to their size, which effects the transition rates kp,—sw, kw—sm [29,38], or according to their
attached motor proteins, which alters pantero [Hafner2018]. In the following we analyze

the impact of nonidentical properties of searcher, i.e. p5 oo, ko s and k5 . and

target particle, i.e. Diiteror Kmsws and kL, on their reaction efficiency [Hafner2018].
As expected and demonstrated by Fig. 5.19, nonidentical motor activities

DS tero 7 Paero are highly deficient for reaction as they drive searcher and target
particle apart |[Hafner2018|. Particles with pantero=0 stick to the MTOC, whereas
particles with pantero=1 are only moving in the cortex. As a result, a homogeneous
search strategy 0=1 is favorable, since the impact of pantero vanishes in this limit
and the particles are isotropically moving within the cell. Figure [5.19] shows that the
MFPT increases by several orders of magnitude with increasing difference in the motor
activity. This finding is robust against alterations of the transition rates k,sn o, and
kS ... [Hafner2018]. Note that &, ..,=0 is a specific exception if reaction is only possible
in the waiting state, because target detection then critically depends on automatic

transitions to arrest states at confinement events, as indicated by Fig. [5.19] a.
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Figure 5.20.: The reaction problem on an inhomogeneous cytoskeleton to a motile target -
impact of nonidentical transition rates. (a) The MFPT is shown versus the cortex
width ¢ for nonidentical transition rates k9,_,,=0 and various k- _, > k5 .
such that the target is more localized than the searcher due to shorter step lengths.
Apart from that, particles are identical, i.e. Icﬁj%m:k},jﬁmzloo and Pantero=1.
The two detection modes are considered for Rg=0.1. (b) The same as in (a) but
for k5, =10. (c) The MFPT is plotted as a function of the cortex width § for

m—w
nonidentical transition rates k5 =100 and diverse values of kT < kS

w—rm w—rm w—m?
such that the target is more localized than the searcher due to longer waiting

periods. Otherwise, particles are identical, i.e. k5 . =kT . =0 and patero=1.

The two detection modes are considered for R4=0.1. (d) The same as in (c) but
for ky,—,=10. Figures a and c are reprints of [Hafner2018|, Biophysical Journal,
114, 1420-1432, 2018, (http://dx.doi.org/10.1016/j.bpj.2018.01.042).

Contrarily, Fig. [5.20] shows that the impact of nonidentical transition rates on the reac-
tion efficiency depends on the detection mode [Hafner2018]. A less motile target, either
by kS ., < k., as studied in Fig. aand b, or by k5 _,, >kl . as shown in
Fig. [6.20] ¢ and d, is universally deficient if detection occurs by pure encounter regard-
less of the motility state. However, the case is more peculiar when reaction is exclusively
allowed in the waiting state. The overall trend shows that a less motile target is largely
beneficial for the reaction efficiency, but the effect vanishes for increasing rate k.t as

m—w?
indicated by Fig. [5.20] ¢ and d.

5.5. Reaction problem - immotile target

Hooked by the study of nonidentical particle properties, we investigate the reaction effi-
ciency to immotile targets which are uniformly distributed within the cell in the following
section [Hafner2018].

5.5.1. Homogeneous search strategies

First, we consider the detection of an immotile target by a searcher which is moving on a
homogeneous cytoskeleton with =1 and transition rates ki, and ky—, [Hafner2018].
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Figure 5.21.: The reaction problem on a homogeneous cytoskeleton to an immotile target -
optimal transition rates. (a) The MFPT to a uniformly distributed, immotile
target is shown versus the transition rates k,, .., and ky,_,,, of the searching tracer
particle for a reaction radius Rq=0.1. Detection occurs by encounter, regardless
of the motility state of the searcher. (b) The same as in (a) but the searcher
may detect the target only in the waiting state. (¢) The MFPT is measured as a
function of the transition rate k,,_.,, for the universally optimal rate k=00
and reaction radii Rq € {0.025;0.1}. The two detection modes are compared.
Reprint of [Hafner2018§|, Biophysical Journal, 114, 1420-1432, 2018, (http://dx.
doi.org/10.1016/j.bpj.2018.01.042).

Figure [5.21 a and b, show that the MFPT to an immotile target, which is initially
uniformly distributed within the cell is globally minimal for k,_.,=00, as a tribute
to the considered instantaneous reactions [Hafner2018|. In the case of detection by
encounter regardless of the searcher’s motility state, the reaction efficiency is optimized
by an uninterrupted motion pattern without directional changes in the bulk, i.e.
Em—w=0 and ky—m=00 [Hafner2018|. This is independent of the reaction radius R4 as
shown in Fig. [5.21] c. In contrast, Fig. ¢, underlines that the MFPT is minimized
by a non-zero transition rate k,,—, > 0 which strongly depends on the reaction radius
Ry if reaction is only possible in the waiting state [Hafner2018|. Hence, it is necessary
for the particle to stop more frequently in the bulk and scan for the target the smaller
the reaction radius Ry is.

Supplementary to the previous paragraph on nonidentical reaction partners, note by
comparison of Fig. [5.21] a and b, and Fig. [5.15] a and c, respectively, that an immotile
target is disadvantageous with regard to the reaction efficiency when detection occurs
by encounter, whereas the situation is more complex and depends sensitively on the
transition rates when reaction is only possible in the waiting state.
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Figure 5.22.: The reaction problem on an inhomogeneous cytoskeleton to an immotile target -
optimal cortex width and motor activity. (a) The MFPT is measured as a function
of the cortex width 6 and the motor activity pantero for an immotile target with
reaction radius Rq=0.1. The rates ko' =0 and k%P', =oo which are optimal in
the homogeneous case 6=1 are applied. Detection occurs by encounter, regardless
of searcher’s the motility state. (b) The same as in (a), but detection is only
possible in the waiting state. The rates kSPY, =7, kOPY =00 are applied. (c)
The MFPT is plotted in dependence of the inhomogeneity § for diverse motor
activities Panteros km—sw=1, kw_m=00, and R3q=0.1. Both detection modes are
considered. (d) The same as in (c¢) but for k,—,=10. (e) The mean number
of waiting periods, which defines the MFPT in the limit of k,_,, > 1 is shown
as a function of the cortex width ¢ for diverse motor activities panteros Km-—sw=10
and Rq=0.1. Both detection modes are applied. Figures a and b are reprints
of [Hafner2018]|, Biophysical Journal, 114, 1420-1432, 2018, (http://dx.doi.org/

10.1016/j.bpj.2018.01.042).

5.5.2. Inhomogeneous search strategies

In order to analyze how the interplay between spatial inhomogeneity of the cytoskeleton
and motor activity effects the reaction efficiency with immotile targets, we plot the MFPT
as a function of § and pantero and fix the transition rates k9%, koP%,,=occ to the values
which are optimal for the homogeneous counterpart [Hafner2018|. Figures a and b,
elucidate that for both detection modes a homogeneous cytoskeleton with =1 is optimal
as it explores the space isotropically and thus enhances the detection of a uniformly
distributed target. Nonetheless, for all inhomogeneities §, a motor activity pantero=0.5 is
advantageous [Hafner2018|. In that case radially outward and inward directed transport
are balanced in the interior, such that the searcher explores the whole cell homogeneously.
The MFPT diverges for pantero — 0 and pantero — 1, because the searcher is then stuck
to the MTOC or the cortex and targets which are distributed somewhere else in the
cell are never found. The superiority of a search strategy which involves a homogeneous
cytoskeleton d=1 or at least a motor activity pantero=0.5 is very robust against changes
of the transition rates ky, ., and k. .., as emphasized by Fig. c-e |Hafner2018].
Figure [5.22] e, shows that prolonged arrest states systematically increase the MFPT to
immotile targets analogously to Eq. of the narrow escape problem where the target
is immobile as well.
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Figure 5.23.: The reaction-escape problem on a homogeneous cytoskeleton - optimal transition
rates. (a) The MFPT is plotted versus the transition rates K, ., and ky_, for
a reaction radius Rq=0.1 and an exit size aexit=0.1. Reaction occurs regardless
of the motility state. (b) The same as in (a) but reaction is only possible in the
waiting state. Reprint of [Hafner2018|, Biophysical Journal, 114, 1420-1432, 2018,
(http://dx.doi.org/10.1016/j.bpj.2018.01.042).

5.6. Reaction-escape problem

In this section, we investigate how the interplay between cytoskeleton organization, motor
activity, and arrest frequency of the cargo effects the efficiency of the combined reaction-
escape problem [Hafner2018]. A searching particle first has to pair with another motile
target particle before the product is stochastically transported to the exit zone on the
cell membrane. We assume that searcher and target particle are initially uniformly
distributed within the cell and possess the same motor activity pantero and transition
rates ki, and ky . Reaction of searcher and target particle occurs for |rS—rT| < Ry
and is either possible regardless of the motility state, or only possible if both particles
are in the waiting state. Subsequent to reaction, the characteristics of the searcher,
i.e. rs, Pantero, Km—sw, and ky_sm, are transmitted to the product particle for escaping
the cell via a narrow window in the plasma membrane of arc length aeyit. Consequently,
the MFPT of the reaction-escape problem is the sum MFPT=MFPT,¢ct +MFPTegcape of
the reaction-MFPT and the escape-MFPT . Note that the initial position of
the product particle for the narrow escape problem is typically not uniformly distributed
within the cell but defined by the reaction location, as studied in Fig. [5.16] c-e.

5.6.1. Homogeneous search strategies

First, we analyze the efficiency of the reaction-escape problem on a homogeneous cy-
toskeleton defined by é=1. Figure displays the MEFPT of the reaction-escape prob-
lem as a function of the transition rates k., and ky_m for Rg=0.1 and aey;=0.1. The
optimal transition rates which minimize the MFPT depend critically on the reaction
mode [Hafner2018]. If reaction occurs by encounter regardless of the motility state, the
MFPT is universally minimal for k%}iw:O and kfulﬂm:oo, as shown in Fig. a. This
comes as no surprise as both the homogeneous escape and the homogeneous reaction
problem are optimized by these rates, see Fig. and [5.15| a [Hafner201§|]. However, if
reaction is only possible in the waiting state, Fig. b, shows that the MFPT displays
two minima as a function of the transition rates k;,—w and ky,—.m,. The reason is that the
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Figure 5.24.: The reaction-escape problem on an inhomogeneous cytoskeleton - optimal cortex
width and motor activity. (a) The MFPT is shown as a function of the cor-
tex width ¢ and the motor activity Pantero for kPt =0, k%Pt =00, Rq=0.1 and

m—w m—w

Qexit=0.1. Reaction occurs by encounter regardless of the motility state. (b) The
same as in (a) but for kP, =5 and kSP%, =22. Reaction is restricted to the
waiting state. (c) The same as in (b) but for k,,—,=0 and k,—,,=1. Note that
the minimum of the MFPT is larger than the one in (b) even though the transi-
tion rates are more optimal for the homogeneous counterpart. (d) The MFPT of
the reaction, the subsequent escape, and the reaction-escape problem is shown in
dependence of the inhomogeneity d for k,,_.,=0, various ky—m, and Pantero=1,
R3=0.1, qexit=0.1. Reaction occurs by encounter regardless of the motility state.
(e) The same as in (d) but reaction is restricted to the waiting state. (f) The same
as in (d) but for ky,—,=10. (g) The same as in (e) but for k,,_,,=10. Figures
a, b, d-g are reprints of [Hafner2018], Biophysical Journal, 114, 1420-1432, 2018,
(http://dx.doi.org/10.1016/j.bpj.2018.01.042).

homogeneous escape problem is optimized by ky,—.=0, ky—_m=00, whereas the homo-
geneous reaction problem is minimal for k,,_,,=13, ky_m=34, if reaction is restricted
to the waiting state, see Fig. and c. Whereas the global minimum at k, ., =0,
kw—m=1 is highly deficient, the local minimum at k%’iw:k’), kﬁ}im:m is robust and
leads to only 5% loss in efficiency in comparison to the global minimum [Hafner2018]|.

5.6.2. Inhomogeneous search strategies

In order to analyze the impact of the interplay between spatial organization of the cy-
toskeleton and motor activity on the efficiency of the reaction-escape problem, we apply
for both reaction modes the transition rates k‘gflw and kﬁfim which are optimal in the
homogeneous case and evaluate the MFPT as a function of § and pantero in Fig. [5.24
a-c. Remarkably, for both reaction modes the MFPT is minimized for about pantero=1
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and 6°P' € (0;1) |[Hafner2018|. Although the reaction problem is universally minimized
for pantero=0, such a high probability of radially inward directed transport is disadvan-
tageous for the narrow escape problem, which actually diverges for pantero=0 as particles
are stuck at the MTOC. In consequence, an efficient search strategy for the reaction-
escape problem relies on the restriction of cargo motion to a thin actin cortex. Figures
d-g, show that inhomogeneous search strategies which are more efficient than the
homogeneous counterpart exist also for transition rates which are not optimal in the
homogeneous case [Hafner2018|. But the occurrence of a minimal MFPT for inhomo-
geneous cytoskeleton organizations § € (0;1) is not as robust as for the narrow escape
problem alone, see Fig. because the reaction problem is sensitive to alterations in
transition rates, see Fig. However, a cell is able to regulate the search efficiency
by controlling the cytoskeleton organization and the motor activity, which potentially
reduces the MFPT by several orders of magnitude.

5.7. Steps towards more realistic cells

So far, we investigated two-dimensional, spherical cell which exhibit a constant density of
microtubules and uniformly random oriented actin filaments. Here we take several steps
towards more physiological conditions |[Hafner2016,[Hafner2018]. First, we generalize
our approach to three-dimensional, spherical cells. We take into account biologically
reasonable parameters and compare the predictions of our model to experimental
measurements. For that reason, we mainly use non-scaled parameters, in contrast to Eq.
in this section. Furthermore, we investigate how the cell shape, the space-dependent
microtubule density, and non-uniformly distributed actin orientations effect the search
efficiency of targeted intracellular transport.

5.7.1. Generalization to three-dimensional spherical cells

A generalization of our approach to three dimensions is straightforward. The main
difference constitutes the update procedure of the particle velocity [Hafner2018|. The
new velocity v*(v, 85, ¢%) is defined in a rotated coordinate system with z*-axis pointing
in the direction of the current particle position r(r,0,, ¢,), similar to Fig. in two
dimensions [Hafner201§|. In order to take the distribution of cytoskeletal filaments into
account the azimuthal angle ¢ is uniformly distributed in (—m; 7| and the polar angle
05 =anot € [0;7] is chosen according to a specific rotation angle distribution

fBD(arot) _ {pantero 5(arot) + (l_pantero) 6(arot_7r)u for 0 <r < Rm_57 (5.14)

1/x, for Ryy—0 < r < Ry,

which is the three-dimensional generalization of Eq. [Hafner2018]. The velocity
vector v(v, 0y, ¢,) in the primal coordinate system is given by rotation according to

cos 6, cos ¢, —sing, sinb,. cos @, sin 67 cos ¢}, sin 6, cos ¢,
v=|cosO sing, cos¢, sinb.sing, | v | sind;sing; | =v | sinb,sin ¢,
—sin 0, 0 cos 0, cos 6} cos 0,

(5.15)
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Figure 5.25.: Transport efficiency in 3D cells - comparison to biological measurements. The
MFPT of the reaction, the subsequent escape, and the combined reaction-
escape problem are shown as a function of the cortex width ¢ for spherical
cells of radius R,,=b5um. Biologically reasonable transition rates k, ,,,=10/s,
kw—sm € {1071/8;10°/5;101 /s} and target sizes Rq=0.1 pm, ey;;=0.2 are ap-
plied for pantero=1 and v=1 pm/s. (a) Reaction occurs by encounter regard-
less of the motility state. (b) Reaction is limited to the waiting state. Reprint
of [Hafner2018|, Biophysical Journal, 114, 1420-1432, 2018, (http://dx.doi.org/
10.1016/3.bpj.2018.01.042).

In order to compare our model predictions to experimental measurements of the actin
cortex, we take into account biologically reasonable parameters [Hafner2016Hafner2018].
T cells typically posses a radius Ry,=5 pm. By fixing qexit=0.2, we consider exits of
arc length 0.2 x 5 yum =1 pm, which is consistent with the size of an immunological
synapse [10,/12-14]. Lytic vesicles posses a radius Rq=0.1 pm [12] and are roughly
transported by an effective motor speed v=1 um/s |2|. Biologically reasonable mesh sizes
¢=100 nm [93,96,98],99] are taken into account by a transition rate ky,_,,=v/¢=10/s. The
mean waiting time per arrest state is reported to be of the order of seconds [29,/146,152],
which is captured in our model by ks € {1071/5;10°/s;101 /s}. We further assume
a high motor activity of kinesins pantero=1, which is optimal for the reaction-escape
problem, as shown in Fig.

Under these conditions, Fig. shows that the efficiency of the three studied transport
tasks can substantially be increased by the establishment of a thin cortex [Hafner2016,
Hafner2018]. The model predicts an optimal width of the actin cortex of approximately
§°Pt=0.3 pum, which is in good agreement to experimental results [93,95]. We emphasize
that the reaction mode has no significant effect on the search efficiency under biological
conditions, as demonstrated by comparison of Fig. [5.25] a and b. By considering the
rescaled parameter kp,—y — Rmkm—w/v=>50, this was already indicated earlier by Fig.

and [Hafner2018].
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Figure 5.26.: Transport efficiency in 3D cells - impact of the cell shape. (a) A sketch of an
ellipsoidal cell with symmetry axis z and semi-axes ¢ > a is shown. (b) The MFPT
of the reaction, the subsequent escape, and the combined reaction-escape problem
are shown as a function of §/c for spheroidal cells of volume V=47 (5 um)3/3 and
diverse eccentricities €. Biologically reasonable transition rates k,,—,,=10/s and
kw—m=1/s are applied. The exit zone is fixed to an arc length of 1 um and the
reaction radius Rq=0.1 pum takes typical vesicles sizes into account. Otherwise,
Pantero=1 and v=1 pm/s are applied. Reaction occurs by encounter regardless of
the motility state. (c) The same as in (b) but reaction is limited to the waiting
state. Figures b and c¢ are reprints of [Hafner2018|, Biophysical Journal, 114,
1420-1432, 2018, (http://dx.doi.org/10.1016/j.bpj.2018.01.042).

5.7.2. Impact of the cell shape

Up to now, we investigated spherical cells. However, many cells are polarized [2]. Here
we evaluate the impact of cell polarization on the efficiency of intracellular transport by
considering ellipsoidal cells. The cell membrane is modeled as a prolate spheriod with
symmetry axis z and semi-axes ¢ > a [Hafner2018]. Consequently, the cortex is not
spherical as well, as sketched in Fig. [5.26] a. For the narrow escape problem, we assume
that the exit zone is located at the north pole of the spheroid. Since we would like to
isolate the impact of the cell shape on the search efficiency, we exclude any volume or
target size effects [Hafner2018|. Therefore, we fix the volume V=drca?/3=4x (5 um)3/3
and vary the eccentricity e=1/1 — a?/c? € [0;1) of the spheroid. The greater the eccen-
tricity €, the more does the cell shape differ from the spherical case e=0. Furthermore,
we adjust aexit to assure a target size of arc length 1 pum, as given in Table

Table 5.2.: Transport efficiency in 3D cells - impact of the cell shape.

eccentricity € | semi-axis ¢ | semi-axis @ | Quexit
0 5 pm 5 pm 0.2

0.5 5.503 pm 4.766 um 0.182
0.75 6.586 pum 4.356 um 0.152
0.9 8.697 pum 3.791 pm 0.115
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Figure 5.27.: Transport efficiency in 3D cells - impact of the microtubule density. (a)
A sketch of the microtubule distribution within the cell visualizes the space-
dependent filament concentration. Whereas the inner red circle is densely oc-
cupied by microtubules, the outer red circle is only sparsely intersected by mi-
crotubules. (b) The MFPT of the reaction, the subsequent escape, and the com-
bined reaction-escape problem are shown as a function of the cortex width ¢
for spherical cells of radius Ry, =5um. The varying microtubule density is con-
sidered by space-dependent transition rates l;:wﬁm(r) and a total mean number
Nyt € {10%10%} of microtubules in the cell. The results are compared to con-
stant waiting times. Biologically reasonable transition rates ky,—.,=v/¢=10/s,
kw—m=1/s and target sizes Rq=0.1 pum, qexit=0.2 are applied for pantero=1 and
v=1 pm/s. Reaction occurs by encounter regardless of the motility state. (c)
The same as in (b) but reaction is limited to the waiting state. Figures b
and c¢ are reprints of [Hafner2018|, Biophysical Journal, 114, 1420-1432, 2018,
(http://dx.doi.org/10.1016/j.bpj.2018.01.042).

Remarkably, Fig. b and ¢, show that for biologically reasonable parameters the
MFPT is again minimized by a thin actin cortex [Hafner2018|. While the eccentricity of
the spheroid has little effect on the reaction problem, increasing the eccentricity leads to
a more pronounced minimum of the MFPT in the case of the escape and the combined
reaction-escape problem. In the following, we focus on spherical cells again.

5.7.3. Impact of the microtubule density

Here, we investigate how the space-dependent density of microtubules in the interior of
the cell effects the efficiency of targeted intracellular transport [Hafner2018]. In general,
the concentration of microtubules is not constant throughout the cell. It is greatest close
to the MTOC and gradually dilutes, as depicted in Fig. a. Hence, the concentration
of microtubules p(r) decreases with increasing distance 7 from the cell center and can be
approximated by [Hafner2018§]

Nur dyt

pap(r) = T onr (5.16)
Nur 7 (dur/2)?  Nurd}

p3p(r) = o = 6T2MT, (5.17)
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in two and three dimensions, respectively. The mean number of microtubules within
the cell is roughly Nyr=102—10° [86,187] and dyr=25nm corresponds to the diameter
of a single microtubule [2]. Such a decreasing concentration of microtubules can be
incorporated into our probabilistic model by introduction of a space-dependent transition
rate l%w_m(r) in the cell interior, according to [Hafner2018|

Ew—sm(7)=p(T) - kw—sm.- (5.18)

Hence, the mean waiting time per arrest state increases gradually with the distance r
from the cell center as the concentration of microtubules decreases likewise [Hafner2018|.

Figure [5.27] b and ¢, displays the MFPT of the reaction, the subsequent escape, and
the combined reaction-escape problem for biologically reasonable parameters and space-
dependent transition rates l;:w_m(r) in comparison to the results for a constant transi-
tion rate ky_m, |[Hafner2018]. Remarkably, a space-dependent internal transition rate
l%w_m(r) has a strong impact on the reaction problem for small cortex widths § < 1
even though pantero=1 restricts the motion of the tracer particles to the cortex once it is
reached. For Nyr=100 a homogeneous cytoskeleton with é=1 is most efficient for the
reaction problem. As expected, the narrow escape problem which subsequently follows
the reaction problem is not affected by the the space-dependent microtubule density at
all. The reason is the high probability for radially outward transport pantero=1, such that
reactions mainly occur in the cell periphery, see Fig. [5.16] c-e, and the motion of the
product particle is restricted to the cortex as well. Inhomogeneous search strategies are
still favorable for the reaction escape problem. Overall, a space-dependent transition rate
has only a strong impact for small cortex widths §, which lead to long waiting periods
in the interior. For 6 — 1 the impact of the space-dependent microtubule concentration
vanishes as there is no interior with microtubules at all.

5.7.4. Impact of the actin orientation

So far, we studied isotropic actin orientations in the cortex, as indicated by Eq.
(.12 and [5.14 Although actin filaments typically are thought to be isotropically
oriented [2,|93], elucidating the exact distribution of cortical filaments in living cells
is objective of ongoing research. Actually, it is reported that actin filaments align to
microtubules [105] and actin filaments in cellular blebs are tangentially oriented to the
membrane [97].

Here, we analyze the influence of non-isotropic actin filaments on the search efficiency
of various intracellular transport tasks [Hafner2016| Hafner2018|. First, we focus on
three-dimensional, spherical cells with biologically relevant parameters, i.e. Rp,=bum,
Rq=0.1 pm, exit=0.2, v=1 pm/s, kp—w=10/8, ky—m=1/s, and pantero=1 and investi-
gate non-uniform, cut-off-gaussian rotation angle distributions in the cell cortex according
to [Hafner2018|
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Figure 5.28.: Transport efficiency in 3D cells - impact of the actin orientation. The MFPT
of the reaction, the subsequent escape, and the combined reaction-escape prob-
lem are shown as a function of the cortex width § for spherical cells of radius
Ry=5pm. Actin filaments in the cortex are either uniformly distributed, ac-
cording to Eq. or gaussian distributed with diverse mean values pu €
{0;7/2;7} and standard deviation o=1, according to Eq. Biologically
reasonable transition rates k,, ., =10/s, ky—m=1/s and target sizes Rqg=0.1 pm,
Qexit=0.2 are applied for paptero=1 and v=1 pm/s. (a) Reaction occurs by en-
counter regardless of the motility state. (b) Reaction is limited to the wait-
ing state. Reprint of |[Hafner2018|, Biophysical Journal, 114, 1420-1432, 2018,
(http://dx.doi.org/10.1016/j.bpj.2018.01.042).

Pantero 5(arot) + (1_pantero) 5(04rot_7r)7 for 0 <r < Rm_57

~ = o 5.19
fap(uot) {\/QJ:T/?eXp (7%) , for Ry—6 <r < Rp, ( )

with mean m > pu > 0, variance o2, and normalization N such that oo € [0;7]. In

consequence, a mean u € [0;7/2) (u € (7/2;7]) corresponds to actin filaments which
predominantly point outwards (inwards), whereas p=m/2 takes into account tangentially
oriented filaments in the cortex. In Fig. [5.28] we study the impact of gaussian distributed
actin filaments in comparison to isotropic filaments in the cortex. In order to isolate the
effect of the mean value p € {0;7/2; 7}, we first fix the variance to c=1. Remarkably, we
find that the MFPT as a function of the cortex width ¢ drastically changes in response
to the mean p [Hafner2018|. For laterally oriented actin filaments characterized by
u=m/2, there is no significant deviation from the uniform case, because of the equal
likelihood of radially outward- and inward-directed transport [Hafner2018]. Generally,
an inhomogeneous search strategy is most efficient for the three studied transport tasks.
However, for =0, the minimum of the MFPT at a thin cortex § € (0;1) vanishes and a
homogeneous search strategy with =1 is advantageous for the reaction, the subsequent
escape, as well as the combined reaction-escape problem [Hafner2018|. In contrast, for
u=m, the establishment of a thin actin cortex is crucially important for an efficient escape,
and reaction-escape problem, whereas the reaction problem is improved by several orders
of magnitude for a homogeneous search strategy with 6=1 [Hafner2018|. This emphasizes
the strong impact of the actin polarity on the search efficiency of various transport tasks.
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Figure 5.29.: The narrow escape problem on a homogeneous cytoskeleton - impact of the actin
orientation. (a) The distribution of actin filaments in the cortex is plotted accord-
ing to Eq. for diverse values of (i, ). (b) The MFPT is shown in dependence
of the exit size qeyxit for km—w € {0;10;100} and ky—m=00. The results for a
homogeneous isotropic cytoskeletal network are compared to the ones of a gaus-
sian network with mean p=0 and standard deviation o=1. (c) The MFPT to a
Narrow escape Qexit=0.1 is measured as a function of the mean p and the standard
deviation o of the actin filament distribution for kyy—w=0 and ky_m=00.
Figures a and b are modifications of , Physical Biology, 13, 066003,
2016, (http://dx.doi.org/10.1088/1478-3975/13/6/066003).

In order to shed a light on the impact of the actin polarity, we consider the narrow escape
problem for two-dimensional cells, because particle trajectories are easier to visualize.
We use the two-dimensional complement of the rotation angle distribution, given in Eq.

|5. 19| Hafner2016

P Pantero 5(arot) + (1_pantero) 5(arot_77)a for 0 <r < Rm_(sv
fQD(aI‘Ot) = 1 + 1 p—
ST+ 5f, for Ryy—0 <7 < Ry,

(5.20)

with

2
f:t _ N exp [ — (arot + /'L)
V22 202

and mean 0 < p < , variance o2, and normalization N such that ayo; € (—m;7]. The

distribution is plotted in Fig. a, for diverse mean values i and variances o2.

> , for ayet, € [0; 7], arot € [—m; 0], respectively (5.21)

We first focus on a homogeneous cytoskeleton with §=1, such that the whole cell
body is filled with actin filaments [Hafmer2016]. Figure b, displays the MFPT
as a function of the exit size exit for kg € {0;10;100} and ky—ypm=00. The
MFPT on a radially outward-pointing cytoskeleton, defined by Eq. with pu=0
and o=1, is compared to the one of an isotropic network, according to Eq. [5.12]
As already expected by the study of Ando et al. [78], a radially outward-oriented
network is highly advantageous to the isotropic one in the limit of large exit zones
Qexit — 2m. But, remarkably, it also significantly improves the search efficiency
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Figure 5.30.: The narrow escape problem on a homogeneous cytoskeleton - impact of the actin
orientation on sample trajectories. Sample trajectories are shown for the nar-
row escape problem with cexit=0.1 (red zone) on a homogeneous cytoskeleton
organization. State transitions occur at k., ..,=10 and ky_,,,=00. Different
orientations of filaments are applied as follows. (a) Trajectory on a radial mi-
crotubule network, i.e. §=0. (b) Trajectory on an isotropic actin network, i.e.
according to Eq. with §=1. (c¢) Trajectories on a gaussian distributed actin
network with various mean values p and standard deviations o, i.e. according to
Eq. with 0=1. Reprint of [Hafner2016|, Physical Biology, 13, 066003, 2016,
(http://dx.doi.org/10.1088/1478-3975/13/6/066003).

for small exits eyt — 0 [Hafner2016]. Figure ¢, emphasizes that the search
for narrow escapes on a homogeneous cytoskeleton benefits from outward-directed
networks (u < 7/2), whereas inward-directed networks (@ > 7/2) impede target
detection on the membrane. As expected, the larger o, the less the impact of the mean
i, since the distribution gradually broadens and aligns to the isotropic case [Hafner2016].

The sample trajectories shown in Fig. for o0=1 clearly demonstrate that the
tracer particle exhibits different residence areas within the cell in response to the
mean p [Hafner2016]. For outward-directed filaments with p < 7/2, the cargoes are
mainly moving alongside the plasma membrane of the cell, whereas for inward-directed
filaments with p > 7/2, particles are driven towards the cell center. Increasing the
standard deviation ¢ randomizes the trajectories as the distribution broadens.
Outward-directed filaments with p < m/2 provide a topologically induced technique
to efficiently examine the membrane for the target [Hafner2016]. Targets are detected
faster than for isotropic filaments, since the particle is predominantly moving alongside
the plasma membrane - even without a confining cortex. In contrast, the search effi-
ciency is significantly decreased by inward-directed networks, which drive the particle to
the cell center and thus hinder the detection of targets on the cell membrane [Hafner2016].
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Figure 5.31.: The narrow escape problem on an inhomogeneous cytoskeleton - impact of the
actin orientation. (a) The MFPT is measured as a function of the cortex width
6 for gaussian distributions of the cortical filaments with mean g and standard
deviation o. The results are compared to the case of uniformly distributed cortical
filaments. Otherwise kp,—w € {0;1; 10}, ky—m=00, Pantero=1, and qei;=0.1 are
applied. (b) Sample trajectories of the narrow escape problem with k,,_,,=10,
K —sm=00, Pantero=L1, and aeyit=0.1 are plotted for §=0.3 and diverse values of the
mean 4 and the standard deviation o. Figure b is a modification of [Hafner2016],
Physical Biology, 13, 066003, 2016, (http://dx.doi.org/10.1088/1478-3975/
13/6/066003).

Figure [5.31] shows the MFPT of the narrow escape problem as a function of the cortex
width § for various gaussian distributions of cortical filaments in comparison to the
uniformly distributed case [Hafner2016]. The results are in complete analogy to the
three-dimensional case shown in Fig. [5.28 First, we focus on peaked distributions with
o=1. Outward-directed cortical networks with p < 7/2 drive the particle towards the
membrane such that it is mainly moving alongside the boundary on a ring of width A
which is sketched in Fig. b, and depends on the mean u, the standard deviation
o, and the transition rate kj,—.. Consequently changing the cortex width § does not
effect the MFPT of either intracellular search problem as long as J is not within the
range of A |[Hafner2016|, as shown in Fig. and Under biological conditions,
a homogeneous search strategy with d=1 is most efficient, whereas a minimum of the
MFPT still occurs for small transition rates ky, ., as shown in Fig. [5.31] a. Tangentially-
oriented cortical networks with p=m/2 do not introduce a higher chance for outward- or
inward-directed transport. Thus, search problems on lateral networks are very similar
to the ones on isotropic cortical networks [Hafner2016], as manifested by the results
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shown in Fig. and An inhomogeneous cytoskeleton is generally advantageous.
Inward-directed cortical networks with u > 7/2 move the particles in radially inward
direction. Since the reaction problem is generally optimal for a high probability of motion
directed to the cell center, see Fig. and inward-directed homogeneous networks
significantly improve the reaction efficiency [Hafner2018|, as shown in Fig. In
contrast, the escape problem is substantially hindered as the particle rarely touches the
membrane. Thus, the establishment of a thin cortex is crucial, as illustrated by the
sample trajectories in Fig. b. A thin actin cortex forces the particles closer to the
membrane and thus decreases the MFPT by several orders of magnitude |[Hafner2016],
as shown in Fig. [5.28 and [5.31], a. Increasing the standard deviation o randomizes
the cortical network as the distribution gradually broadens. Consequently, the MFPT
converges to the uniform case, as shown in Fig. m a, exemplary for u=0 [Hafner2016]|.
Again, an inhomogeneous cytoskeleton constitutes the most efficient search strategy.

5.8. Summary

The efficiency of intracellular transport is strongly influenced by the interplay between
cytoskeleton organization, motor activity, and pausing states of the cargo. Despite
the many insightful biological and theoretical investigations, as recapitulated in Chap-
ters [2| and it is still obscure how this interplay effects the efficiency of targeted
intracellular transport. Due to its complexity, modeling intracellular transport is a
challenging theoretical task. We presented a coarse grained run-and-pause random walk
model in inhomogeneous and anisotropic environments to study three paradigmatic
transport tasks: the narrow escape, the reaction, and the combined reaction-escape
problem [Hafner2016,[Hafner2018]. The particle exhibits two states of motility: ballistic
motion at random velocities and waiting periods at filament crossings. State transitions
are arranged in a Markovian manner by constant transition rates from one state to
another. The spatial inhomogeneity of the cytoskeleton is taken into account by a
distinct cortex underneath the plasma membrane which divides the cell into interior
and periphery. While in the interior only radial transport is possible, the periphery is
dominated by isotropic motion on actin filaments. The different motor activity levels
are incorporated into the model by certain probabilities for anterograde, or retrograde
transport along microtubules, or isotropic transport along actin filaments. In essence,
we introduced a probabilistic approach by considering a complex distribution of the
random walker’s velocity instead of explicitly modeling the underlying cytoskeletal
structure. With the aid of Monte Carlo simulations we systematically analyze how the
search efficiency in terms of the MFPT to specific targets is influenced by the spatial
organization of the cytoskeleton, the motor activity levels, and the frequency of arrest
states of the cargo |Hafner2016| Hafner2018].

We showed that the narrow escape problem, which models transport to a small exit
zone on the plasma membrane of a cell, is universally optimized by restricting cargo
motion to a thin cortex [Hafner2016|,Hafner2018]. Within that cortex an uninterrupted
motion pattern is beneficial, but the superiority of inhomogeneous search strategies is
very robust against changes in the transition rates. Remarkably, we showed that even
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in the limit of very long pauses in a cargo’s trajectory, an inhomogeneous cytoskeleton
is generally advantageous to its homogeneous counterpart.

In the case of the reaction problem, where a searcher has to fuse with another motile
particle within the cell, we investigated the reaction efficiency for two different detection
modes [Hafner2018]: reaction may occur regardless of the motility state of both particles
solely by encounter, or reaction may only be possible if both particles are in the waiting
state. The reaction problem is universally optimized by a high activity of dynein
motors, such that intracellular cargoes are quickly transported to the center where they
react. Nonetheless, inhomogeneous search strategies which are more efficient than the
homogeneous counterpart exist also for high probabilities of anterograde transport. But
the efficiency of these inhomogeneous search strategies is fragile and depends critically
on the pausing behavior of the cargo. Remarkably, we found that the reaction mode has
no significant impact on the efficiency under physiological conditions.

We further showed that nonidentical motor activities of searcher and target particle
are highly disadvantageous for the reaction efficiency [Hafner2018]. And we saw that
less motile target particle are disadvantageous if detection occurs regardless of the
motility state, whereas they are beneficial when reaction is restricted to the arrest
state [Hafner2018].

In the limit of uniformly distributed immotile targets, homogeneous search strategies or
at least an equal motor activity of kinesins and dyneins are most efficient, because they
allow the particle to explore the search domain homogeneously [Hafner201§].

In essence, the optimal search strategy for the reaction problem strongly depends on
the properties of searcher and target particle. In the case of identically motile particles,
the restriction of motility space either to the MTOC or to the cortex is essential. In
contrast, for uniformly distributed immotile targets a search strategy which guarantees
a homogeneous exploration of space is necessary [Hafner2018|.

The reaction-escape problem combines the prior findings on reaction of two identically
motile particles and the subsequent escape of the reaction product. A high probability of
retrograde transport is optimal for the reaction problem, but is highly disadvantageous
for the escape problem, since it prevents particles from reaching the membrane and
detecting the escape window. Remarkably, in the case that motility properties are
transmitted from searcher to product, the reaction-escape problem is also optimized
by a high probability of anterograde transport and the establishment of a thin actin
cortex [Hafner2018].

The best search strategies for the various studied transport tasks are summarized in
Table 5.3

Remarkably, by considering biologically reasonable model parameters we found that
the optimal width of the actin cortex predicted by our model is in good agreement
to experimental measurements. We further took several steps towards a more real-
istic cell [Hafner2016, Hafner2018]: We showed that inhomogeneous search strategies
are also beneficial in the case of polarized, spheroidal cells, we concluded that the
space-dependent density of microtubules within the cell may change the efficiency of
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the reaction, but not of the subsequent narrow escape problem, and we investigated
the impact of non-isotropic distributions of cortical filaments on the efficiency of
various intracellular transport tasks. Remarkably, laterally oriented filaments do not
significantly alter the search efficiency, but inward- and outward-directed networks do
have very opposite effects. Cortical networks which display mainly inward-directed
polarities enhance the gain in search efficiency by a thin cortex for the escape and
the reaction-escape problem, such that an inhomogeneous search strategy is crucial for
efficient search strategies. But, inward-directed homogeneous networks are favorable for
the reaction problem as they drive the particles towards the cell center. In contrast,
cortical networks which exhibit mainly outward-directed polarities significantly improve
the search efficiency in comparison to isotropic cortical networks. The network topology
provides a mechanisms to propagate the particles alongside the plasma membrane for
efficient target detection even without a confining cortex.

To conclude, we showed that a cell is able to regulate the efficiency of diverse intracellular
transport tasks, as well as the spatial distribution of intracellular reaction products by
controlling the cytoskeleton architecture, the motor activities, and the pausing frequency
of cargo particles. A spatially inhomogeneous cytoskeleton architecture with a thin actin
cortex can substantially increase the efficiency of various transport tasks in comparison
to its homogeneous complement [Hafner2016, Hafner2018|.

Table 5.3.: Run-and-pause random walk on a spatially inhomogeneous and anisotropic cy-
toskeleton - recap of optimal search strategies. Optimal search strategies for narrow
escapes Qexit=0.1 and reaction radii Rq=0.1 are recapitulated. The transition rates
kopt. and kSPt  of a homogeneous cytoskeleton structure are applied for the inho-
mogeneous case [Hafner2018].

homogeneous inhomogeneous
kgf?i)w ~ k2}p—t>m ~ pgg:ero ~ 50pt ~
narrow escape 0 00 1 € ]0;1]
reaction: motile target
- detection: encounter 0 o0 0 0
- detection: waiting 13 34 0 0
reaction: immotile target
- detection: encounter 0 o0 0.5 1
- detection: waiting 7 %) 0.5 1
reaction-escape
- detection: encounter 0 00 1 €]0;1]
- detection: waiting 5 22 1 € ]0;1]
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Chapter 6.
Conclusion and discussion

Intracellular transport is shaped by the interplay between the cytoskeleton architecture,
the motor activity, and the waiting frequency of cargo particles. Typically, the cy-
toskeleton is highly inhomogeneous and anisotropic. Actin filaments randomly populate
the cell cortex, whereas microtubules radiate from the central MTOC [2]. A single cargo
is dragged along the cytoskeleton with the aid of several motor species [17-31], whose
activity is controlled by the cell to ensure correct delivery [19-28|[31,32]. Thereby,
the large cargo-motor complexes frequently pause at filament crossings until they
either overcome the barrier or switch to another track [29,[33-38]. Hence, intracellular
cargoes undergo a stochastic motion pattern with random alternations between directed
transport along the cytoskeleton and reorienting arrest states.

How the interplay between the cytoskeleton architecture, the motor activity, and the
cargo pausing, affects anomalous diffusion and the efficiency of targeted intracellular
transport is elusive.

Due to its complexity, the theoretical modeling intracellular transport is a challenging
task. But, the stochastic motion pattern suggests a random walk approach. It is known,
that anomalous diffusion can arise either due to the anisotropy of the cytoskeleton [62,63]
or due to transient trapping events [64]. Moreover, intermittent search strategies with
two states of motility, i.e. a slow reactive state and a fast relocation state, are shown
to have a positive impact on the temporal efficiency of intracellular transport [68-75].
But, such search strategies are usually studied in homogeneous environments. The
inhomogeneity of the cytoskeleton is typically neglected. Very recently, the impact of the
exact topology of the cytoskeleton on intracellular transport tasks has gained scientific
interest, see for instance [76H80], which highlights the topicality of our research.

However, up to now the impact of the cytoskeleton architecture, the motor activity, and
the arrest states of the cargo have been investigated only separately in the literature, as
discussed in chapter In this thesis, we presented a unified random walk perspective
on intracellular transport. We addressed how such physiological conditions effect
anomalous diffusion and efficiency of cargo delivers.

In chapter [4 we focused on anomalous diffusion of intracellular tracer particles. A
random walk model was introduced to investigate the unidirectional motion of cargo on
a single, polarized filament which is frequently interrupted by pauses [Hafner2016B].

Within an analytic framework, we derived an exact expression for the probability density
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function of the tracer’s displacement, which is only possible in the one-dimensional
case |Hafner2016B|. Due to non-trivial correlations in the particle’s velocity, the
two-dimensional model requires a more elaborate analytic technique which allows the
calculation of arbitrary moments of the particle’s displacement probability density
function |[Hafner2014}|Hafner2016B|.

The resulting MSD revealed complex anomalous diffusion. Crossovers between different
anomalous regimes appear on short and intermediate timescales. Fitting the analytic
expression of the MSD to a power law enables us to monitor the temporal evolution of
the anomalous exponent over all timescales [Hafner2016B|. Remarkably, the anomalous
exponent is a complex function of time, which emphasizes that the observed anomaly is
a highly transient effect based on aging processes out of a predefined initial state.

The impact of the initial state is of crucial importance for the interpretation of
experimental results. Even though it is experimentally difficult to identify diverse
internal motility states of intracellular cargoes and correlations therein (which is
objective of ongoing research, see for instance [255]), it is important to acknowledge
that the initial state of the measurements as well as the chosen averaging procedure
have a strong impact on the results. We explored the MSD as an ensemble averaged
quantity, which fully captures the equilibration of the underlying Markov chain of
states and consequently leads to transient subdiffusive regimes [Hafner2016B]. These
subdiffusive regimes would not appear in a time averaged MSD for the very same
process, since the impact of the initial condition would vanish due to the averaging
technique [64,/66] [Hafner2014]. Consequently, the same biological process can lead to
apparently different results depending on the measurement procedure.

We further showed that the crossover time to the asymptotic limit as well as the long
time diffusion constant cover several orders of magnitude in response to the pausing
frequency of the cargo and the anisotropy of the cytoskeleton [Hafner2016B]. It is
questionable whether these regimes can ever be reached in practice. By assuming the
smallest possible cargo step length of 8 nm and a typical motor velocity of 1 pm/s [2],
the crossover occurs on a lengthscale 0.1 ym - 1000 ym and a timescale 0.01 s - 1000
s, depending on the frequency of state transitions [Hafner2016B|. Even in that case,
the confinement of cargo within the cell and the time range which is accessible in
experiments should play a crucial role.

In chapter we studied the temporal efficiency of targeted intracellular transport.
We introduced a random walk model [Hafner2016, Hafner2018] with stochastic transi-
tions between two states of motility: ballistic motion at random velocities along the
cytoskeleton and reorienting stationary states at filament crossings. State transitions
are arranged in a Markovian manner by generally asymmetric rates. In general, the
transition rates may depend on each other. For instance the effective mesh size of the
cytoskeleton, which defines the transition rate to the waiting state, and the mean waiting
time at filament crossings depend on the size of the transported cargo [29,38]. In order
to cover the full parameter space, we investigated the most general case of independent
transition rates. The cytoskeleton architecture is implicitly taken into account by a
space-dependent distribution of the particle velocity. The particle experiences radial
transport in the cell interior, whereas multi-directional transport is restricted to a cortex
underneath the plasma membrane. The different motor activity levels are incorporated
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into the model by certain probabilities for anterograde/retrograde transport along
microtubules, respectively, or transport along actin filaments. In essence, we presented
a powerful probabilistic approach to intracellular transport by considering a complex
distribution of the random walker’s velocity instead of explicitly modeling the underlying
cytoskeletal structure together with the dynamic instability of the filaments. With
the aid of extensive Monte Carlo simulations, we systematically analyzed how the
interplay between the structural characteristics of the cytoskeleton, the motor activity,
and the waiting states of the cargo effects the efficiency of targeted intracellular
transport [Hafner2016,(Hafner2018|. The transport efficiency was measured in terms of
the MFPT to a specific target. We considered three paradigmatic tasks: the narrow
escape problem, which models transport to a specific area on the plasma membrane, the
reaction problem, which evaluates the time until fusion of two reactants within the cell,
and the reaction-escape problem, which emerges when two particles first have to react
inside the cell before the product particle is transported to a narrow exit on the plasma
membrane [Hafner2016, Hafner2018|.

Note that in the limit of small diffusion constants our findings are in qualitative
agreement to search strategies with intermittent diffusion which were recently studied
by Schwarz et al. [79,80]. The limit of a vanishing diffusion constant is biologically
relevant for large intracellular cargo, such as vesicles, mitochondria, or macromolecules,
which experience size-dependent subdiffusion in the crowded cytoplasm and thus exhibit
effectively stationary states [39-41L[50L51}/55]. But more importantly, since a single cargo
is typically attached to several motor proteins concurrently [17-31], a full detachment
off the filament is rather unlikely [31]. Instead, arrest states at filament crossings
are observed in in wvitro experiments as well as in live-cell microscopy [29,33-38]. In
contrast to Schwarz et al. |79,80], we systematically analyzed the impact of transient
pauses on intracellular transport and performed several steps towards more physiological
conditions [Hafner2016, Hafner2018|.

We showed that the narrow escape problem is universally optimized by the confinement
of cargo motion to a thin cortex with the aid of a high activity level of anterograde
motors [Hafner2016|, Hafner2018]. However, in the limit of an infinitesimal thin cortex,
excursions in the cell interior, which are mediated by dyneins, are advantageous, compare
to “surface-mediated diffusion” [76,239(-245]. Within the cortex an uninterrupted motion
pattern is beneficial, but the advantage of spatially inhomogeneous search strategies is
very robust against changes in the transition rates. Remarkably, we showed that even
in the limit of very long pauses in a cargo’s trajectory, an inhomogeneous cytoskeleton
is generally favorable to its homogeneous counterpart [Hafner2016,Hafner2018|.

The efficiency of intracellular reactions was studied for two different detection
modes [Hafner2018]: On the one hand, reaction occurs solely by encounter regardless of
the motility state of both particles. On the other hand, reaction partners are assumed
to be inactive when walking along the cytoskeleton, such that reaction is only possible
if both particles are in the waiting state, which is reminiscent of intermittent search
strategies, e.g. [68-75]. Basically, other detection modes are possible as well: Reaction
could exclusively depend on the searcher’s or the target’s motility state, or reaction could
only be possible in the motion state. For symmetric particles, the first two alternatives
would yield the same results. But, as long as biological evidence for the actual reaction
mode is lacking, the two modes under investigation appear to be the most reasonable
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ones. Remarkably, we find that for physiological conditions the reaction mode has no
significant impact on the reaction efficiency [Hafner2018|.In the case of two identically
motile particles within the cell, efficient reaction depends on the restriction of motility
space either to the MTOC or to a thin cortex. The reaction problem is universally
optimized by a high activity of dynein motors. Cargoes are transported on the shortest
route to the center where they react [Hafner2018|. In the case of a high probability of
anterograde transport, inhomogeneous search strategies exist which are more efficient
than the homogeneous counterpart. But the efficiency of these inhomogeneous search
strategies is fragile and depends critically on the pausing frequency of the cargo parti-
cles [Hafner2018|.We further showed that nonidentical motor activities of searcher and
target particle are highly disadvantageous for the reaction efficiency [Hafner2018]. And
we saw that less motile target particles are disadvantageous if detection occurs regardless
of the motility state, whereas they are beneficial when reaction is restricted to the arrest
state [Hafner2018|. In the limit of uniformly distributed immotile targets, homogeneous
search strategies or at least an equal motor activity of kinesins and dyneins are essential,
since they allow a homogeneous exploration of space [Hafner2018|. Note that the optimal
motor activity depends critically on the exact spatial distribution of immotile targets
within the cell. If targets were located at the center a high probability of retrograde
transport would be favorable, whereas a high probability of anterograde transport is
advantageous for targets which are distributed close to the membrane [79,80].

The reaction-escape problem combines the prior findings on reactions of two identically
motile particles and the subsequent escape of the reaction product [Hafner2018|. We
showed that a high probability of radially inward directed transport is optimal for the
reaction problem, but is highly disadvantageous for the escape problem, since it prevents
the particles from reaching the membrane and detecting the escape window. Conse-
quently, in the case that motility properties are inherited from searcher to product, the
reaction-escape problem is also optimized by a high probability of anterograde transport
and the establishment of a thin actin cortex [Hafner2018|. However, the reaction-escape
problem would be solved most efficiently if the reaction and the subsequent escape
problem would decouple: First the reaction problem is solved by a high activity of
dynein motors. Then, motor activities are changed and a high activity of anterograde
transport solves the narrow escape problem.

In order to investigate the transport efficiency under physiological conditions, we took
several steps towards a more realistic picture of a cell [Hafner2016, Hafner2018]: We
showed that inhomogeneous search strategies are also beneficial in the case of polarized,
spheroidal cells. We concluded that the space-dependent density of microtubules within
the cell may change the efficiency of the reaction, but not of the subsequent narrow
escape problem. And we investigated the impact of non-isotropic distributions of
cortical filaments on the efficiency of various intracellular transport tasks. Remarkably,
laterally oriented filaments do not significantly alter the search efficiency, but inward-
or outward-directed networks do have very opposite effects. For cortical networks which
display mainly inward-directed actin polarities, an inhomogeneous search strategy with a
thin cortex is crucial for the escape and the reaction-escape problem, but a homogeneous
strategy is sufficient for the reaction problem as the actin polarities automatically drive
the particles towards the cell center. In contrast, cortical networks which exhibit mainly
outward-directed polarities generally improve the efficiency of all transport tasks in
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comparison to isotropic cortical networks for a high probability of anterograde transport.
The network topology provides a mechanisms to propagate the particles alongside the
plasma membrane for efficient target detection even without a confining cortex.

In principle, our probabilistic approach to intracellular transport enables us to implicitly
take into account several other aspects of transport in living cells. For instance, the
cytoplasm is highly crowded with cell organelles or macromolecules |2[50]. Hard-sphere-
interactions with such obstacles can be studied implicitly within our model by a higher
frequency of arrest states. For the narrow escape problem we showed that the superiority
of inhomogeneous search strategies is highly robust against changes in the transition
rates |Hafner2016, Hafner2018]. However, our results suggest that efficient search
strategies for the reaction problem will be critically affected by obstacles [Hafner2018|.
Based on our results, it would be informative to address in future studies how the speed
of diverse motor proteins affects the transport efficiency instead of assuming a constant
effective motor speed. Furthermore, we assumed instantaneous reactions, but how a
certain reaction rate influences the reaction kinetics is elusive for motile targets. When
considering cells which are not rotationally symmetric, such as polarized spheroidal
cells, it is obscure how the position of the exit zone on the plasma membrane affects the
narrow escape problem. And concerning T cell killing, although collecting lytic granules
at an MTOC which is located close to the synapse improves specific killing, the impact
of the massive reorganization of the cytoskeleton on the transport efficiency is not clear
per se [8-10,/13,/14,256-260]. Furthermore, we started to investigate the full distribution
of first passage times and found a broadening with decreasing cortex width [Hafner2018].
It is worth studying how far the MFPT is significant for the efficiency of intracellular
transport [251,252]. And, in particular, studying multiple searcher and target particles
within a cell is promising and opens a new range of questions. Instead of focusing on
the MFPT, the study of extreme statistics (i.e. when does the first x particles arrive
at a given target) has recently gained scientific interest in the context of biological
systems [261] and is certainly relevant for e.g. T cell killing as well.

To conclude, within a random walk approach we showed that a cell is able to regulate
anomalous diffusion and the efficiency of targeted intracellular transport by control of
the interplay between cytoskeleton architecture, motor activity, and pausing frequency
of the cargoes [Hafner2016B| Hafner2016, Hafner2018]. Transient anomalous diffusion
defines the spatiotemporal spreading of intracellular cargo on short and intermediate
timescales [Hafner2016B] and the efficiency of targeted intracellular transport is sub-
stantially increased by a spatially inhomogeneous cytoskeleton which involves a thin
actin cortex [Hafner2016, Hafner2018]. In this way, we have contributed to a deeper
understanding of intracellular transport phenomena.
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Appendix A.

Pseudo codes

Contents
[A.1. MSD of random walks studied in Chapter|4] . . .. ... .. 115
[A.2. MFPT of random walks studied in Chapter|5 . . . . .. .. 117

Here, we present pseudo codes of the Monte Carlo simulations to evaluate the MSD
and the MFPT of run-and-pause random walks in inhomogeneous and anisotropic envi-
ronments, as studied in Chapters [4| and [5l For a general introduction to Monte Carlo
simulations, see for instance textbooks such as [262,263].

A.1. MSD of random walks studied in Chapter [4]

Here, we sketch the Monte Carlo simulation to study the MSD of the random walks
studied in Chapter The MSD (22) of a particle at time step n is evaluated by averaging
over an ensemble of NV independent realizations of the walk {x%}jzlw_, ~ according to

N
(x2) = /ZCQ P,(z)dx = lim %Zxﬂg, (A.1)

where the random variable 2, is distributed according to P, (x).

The basic procedure to generate the random variable 27, is sketched in the following
pseudo code. At each step of the walk, the particle’s position is updated according to its
current motility state: motion (M) or waiting (W). Furthermore, the MSD is updated
and averaged over an ensemble of at least N=10° independent random walks.
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input : The motion of a tracer particle is defined by:
time stept € 1,...,n,
position x;,
state s; € {M; W},
step length distribution F(¢),
transition probabilities k., Ky, and
initial condition Péw .
output: MSD;, i € 1,...,n
// ensemble loop:
for (i=0; i < (n+1); i++) do MSD;=0;
for (j=0; j < N; j++) do
// initialization:
x[):O;
so € {M, W} according to PM;
// step loop:
for (i=0; i < n; i++) do
random number r € [0; 1];
if (s;,=M) then
if (r < ky) then
Si+1:W;
Li+1=Tq;
end
else
Siy1=M;
¢ according to F(¢);
Tip1=x;i+/;
end
nd
Ise
if (r < Ky) then
siy1=M;
¢ according to F({);
Tip1=x;+L;
nd
Ise
siv1=W;
Tip1=Ti+;
end

[e¢)

o O

end
MSDi+1+:zZ2+1/N;
end

end

In the case of motion on a two-dimensional network, correlations in the random walker’s
velocity have to be taken into account [Hafner2014, Hafner2016B].
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A.2. MFPT of random walks studied in Chapter 5|

Here, we sketch the basic Monte Carlo simulation to study the MFPT of the random
walks studied in Chapter We present the general pseudo code exemplarily for the
narrow escape problem of a single particle. A generalization to the reaction problem
of two particles and the combined reaction-escape problem is straightforward but
extensive. For all search problems, we measure the MFPT to target detection by use of
an event-driven algorithm which is based on Gillespie’s method [264-266] and calculates
the MFPT as an ensemble average over at least N=10° independent realizations of the
walk.

In the following, Atgijespie denotes the time to the next transition between the two
motility states, i.e. motion and waiting. Whereas Atconfinement Characterizes the time
to the next confinement event, i.e. when the particle hits the MTOC (r=0), the inner
border (r=Ry,—0¢), or the membrane (r=Ry,).

input : The motion of a tracer particle is defined by:
time ¢,
position (7, ¢y ),
state € {motion; waiting},
location € {MTOC, interior, inner border, periphery, membrane},
velocity v(v, ¢y),
radius of the sphere Ry,
width of the actin cortex §,
escape opening angle Quexit,
transition rates szn —ws kb s, Kw—sms
speed v,
processivity w, and
rotation angle distribution f(ayet)
with motor activities pantero and ¢; with ¢ € {K, D, M}.
For simplicity, assume w=0 and gq\=1.
output: MFPT

// ensemble loop:

MFPT=0;

for (j=0; j < N; j++) do

// initialization:

t=0;

r="0;

state = motion;

location = according to r;

¢, = according to f(ayet) and 7;
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// step loop:
repeat
if (state=motion & location=interior) then
Atgillespie = according to Ko s
Atconfinement = time to r=0 or r=R,—0;
if (Atgillespie < Atconﬁ'nememﬁ) then
4+ = Atgillespie§
r= update according to Atgiliespie;
state = waiting;
location = interior;
end
else
t+ = Atconfinement;
r= update according to Atconfinement;
state = waiting;
location = MTOC or inner border;
end

end
else if (state=motion & location=periphery) then
Atgillespie = according to kb —suw;
Atconfinement = time to r=Ry,—0 or r=Ry;
if (Atgillespie < Atconﬁnement) then
I+ = Atgillespie;
r= update according to Atgjespie;
state = waiting;
location = periphery;
end
Ise
t+ = Atconfinement;
r= update according to Atconfinement;
state = waiting;
location = inner border or membrane;
end
nd
Ise if (state=waiting & location=MTOC) then
Atgillespie = according to ky_ym;
t+ = Atgilles.pie;
state = motion;
location = interior;
¢, = uniformly distributed in oyor € (—m;7;
end

o)

o O
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else if (state=waiting & location=interior) then
Atgiflespie = according to ky—m;
t+ = Atgillespie;
state = motion;
location = interior;
¢, = according to f0<r<Rm—6(ar0t)§
end
else if (state=waiting & location=inner border) then
Atgillespie = according to Ky _ym;
t+ = Atgillespie;
state = motion;
location = interior;
¢, = with probability pantero according to fr,. —s<r<R., (Crot)
but restricted to ayey € (—7/2;7/2)
and with probability (1—pantero) according to fp(cuot);

end
else if (state=waiting & location=periphery) then
Atgillespie = according to ky_ym;
I+ = Atgillespie?
state = motion;
location = periphery;
¢y = according to fRr,, —§<r<Rm (arot)§
end
else if (state=waiting & location=membrane) then
Atgillespie = according to ky—ym;
t+ = Atgillespie;
state = motion;
location = periphery;
¢» = according to me—6<T<Rm(arot)
but restricted to ayor € (—m; —7/2) U (7/2;7);

end

until (exit is detected);
MFPT+=t/N;

end
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