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Abstract 

This thesis is composed of three different projects, and aims to predict substrates which transported 

by transmembrane proteins, understand the effects caused by copy number alterations (CNAs) on 

target proteins of antineoplastic (AN) agents, and on the genes in antineoplastic resistance pathways 

in cancer patients. In the first project, we propose a computational method to classify membrane 

transporters from three organisms (Escherichia coli, Saccharomyces cerevisiae and Homo sapiens) 

according to their transported substrates. Our method focuses on neighboring genes that show high 

co-expression with query gene. Then, we identified frequent gene ontology (GO) terms among these 

co-expressed neighbors and used a support vector machine classifier to annotate the substrate 

specificity of the query gene. The second project analyses CNAs and clinical data of 31 tumor types 

from The Cancer Genome Atlas (TCGA). We found that the genome sequences of tumor patients 

generally contain more recurrently deleted CNAs than recurrently amplified CNAs. We observed 

certain signs of apparently compensating effects of CNAs. The third project continues the idea of 

chemoresistance as suggested in the second one. This project utilized TCGA CNAs data from both 

normal and tumor tissues. We found that the genome sequences of tumor tissues contain more 

recurrently amplified CNAs of genes in cancer antineoplastic resistance pathways than normal 

tissues.  
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Zusammenfassung 

Diese Arbeit besteht aus drei verschiedenen Projekten, die darauf abzielen Substrate die von 

Transmembranproteinen transportiert werden vorherzusagen, die Auswirkungen sog. 

Kopienzahlvariationen (CNAs) sowohl auf Zielproteine von Antineoplastischen Medikamenten als 

auch auf die zugehörigen Gene in den entsprechenden Resistenzwegen von Krebspatienten zu 

verstehen. Im ersten Projekt wird eine computergestützte Methode zur Klassifizierung von 

Transmembrantransportern dreier Organismen (Escherichia coli, Saccharomyces cerevisiae und 

Homo sapiens) anhand der von ihnen transportierten Substrate vorgestellt. Im zweiten Projekt 

wurden CNAs und klinische Daten von 31 Tumorarten die aus dem Cancer Genome Atlas (TCGA) 

stammen analysiert. Dabei stellte sich heraus, daß die genomischen Sequenzen von Tumorpatienten 

im allgemeinen mehr wiederkehrend deletierte CNAs aufweisen als wiederkehrend amplifizierte 

CNAs. Ebenfalls beobachtet wurden bestimmte Anzeichen für offensichtlich kompensatorische 

Effekte durch CNAs. Wie im vorgehenden Projekt wurde auch im dritten Teil der Arbeit die Idee 

der Chemoresistenz weiterverfolgt. Hierbei wurden CNA-Daten von normalem Gewebe, als auch 

von Tumorgewebe aus dem TCGA verwendet. Dabei wurde festgestellt, daß die genomischen 

Sequenzen von Tumorgewebe mehr wiederkehrend amplifizierte CNAs von Genen aufweisen, 

welche sich in Resistenzwegen von Antineoplastica befinden, als dies in normalem Gewebe der 

Fall ist.  
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Chapter 1 Introduction 
 

1.1 Introduction 

Since the discovery of deoxyribonucleic acid (DNA) in 1869 [1], our knowledge about this genetic 

material has been increasing rapidly. The 1950s can be considered as the start of a digital revolution 

of genomic data with the appearance of the digital computer [2], and the correct molecule structure 

of DNA proposed by James D. Watson and Francis Crick [3]. In the 1970s, the sequencing method 

by Sanger and personal computer accelerated the generation of sequencing data [4], [5]. This 

required new methods and tools for storing and processing data. Another need for sharing of 

sequencing data also arose in the 1990s when the Internet became more popular [6]. From this point, 

more and more database and computational tools have been online available. The next generation 

sequencing, a rapid large-scale DNA sequencing technology with relatively low cost [7], has made 

the need of new powerful computational tools become more urgent in the mid of the 2000s. The 

increasing amount of genomic data, the decreasing cost of data generation, and the success of 

computational techniques such as machine learning give us an opportunity to understand better 

genomic diseases and to find out new effective treatments. This thesis serves to improve our 

understanding of the genes encode transmembrane proteins, and the genomic copy number 

alterations in cancer patients. 

1.2 Motivation 

Proteins play a vital role in biological processes (e.g. catalyze reactions, transport molecules such 

as oxygen) [8]. A large portion of proteins are membrane proteins. According to Krogh et al. [9], 

about 21% of the Escherichia coli genes encode transmembrane proteins. The corresponding 

numbers are 21% in Saccharomyces cerevisiae, 30% in Caenorhabditis elegans and 20% in 

Arabidopsis thaliana. In Homo sapiens, membrane transporters comprise the second largest protein 

family next to G-protein coupled receptors. However, it is experimentally hard to identify their 

substrate specificities [10]. To address this problem, many computational methods were developed. 

Previously, substrate specificities of membrane transporters have been predicted, for example, 

based on sequence homology [11] and amino acid composition [12]–[14]. Meta-methods that 

combine different features for functional annotation often gave improved performance compared 

to single-feature methods. For example, Yayun Hu et al. used four sequence features including 

amino acid composition, composition, transition and distribution properties, position-specific 

scoring matrices, and biochemical properties to annotate the substrate specificity of ATP-binding 
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cassette (ABC) transporters [15]. They reported an accuracy of 88% to distinguish between four 

classes of ABC transporters. Still, it is worthwhile to characterize the benefits of individual features 

before combining them with others. 

Transmembrane proteins play important roles, especially in mediating the interaction 

between cells and their surroundings. Thus, membrane proteins are important targets for drugs 

(about 60% of all modern medical drugs [16]). These proteins also participate in drug resistance, 

e.g. MDR1 and MDR2 play important role in increasing drug efflux from cancer cell [17]. The drug 

targets, in general, can also resist to the drug by being mutated. Because of this relationship between 

drug targets and drug resistance, we would like to explore the characters of target genes of 

antineoplastic agents and the genes belong to antineoplastic resistance pathways. We retrieved 

cancer data from The Genome Cancer Atlas (TCGA), drugs targets from Drugbank, and four 

antineoplastic resistance pathways from Kyoto Encyclopedia of Genes and Genomes (KEGG). 

TCGA includes data for more than 30 cancer types. For each cancer type, data was organized into 

seven categories (Raw Sequencing Data, Transcriptome Profiling, Simple Nucleotide Variation, 

Copy Number Variation, Deoxyribonucleic acid (DNA) Methylation, Clinical, Biospecimen). In 

our work, we only used copy number variation and clinical data. 

1.3 Contributions 

Chapter 3 and 4 of this thesis are based on manuscripts that were already published. Chapter 5 has 

been prepared as a manuscript for submission. 

 Chapter 3: Tran, V.H., Barghash, A., Helms, V., (2018) Journal of Proteomics & 

Bioinformatics, V. 11, p. 868-874, doi: 10.4172/jpb.1000468. Annotating the function of 

protein-coding genes based on Gene Ontology terms of neighboring co-expressed genes. 

 Chapter 4: Tran, V.H., Kiemer, A., Helms, V., (2018) Cancer Genomics & Proteomics, V. 

15, p. 365-378,doi: 10.21873/cgp.20095 . Copy number alterations in tumor genomes 

deleting antineoplastic drug targets partially compensated by complementary amplifications 

 Chapter 5: Tran, V.H., Helms, V., Tumor genomes frequently contain amplified resistance 

genes prior to treatment (manuscript under preparation) 

1.4 Thesis organization 

The structure of the thesis as follows: 
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 Chapter 2 provides a general introduction to biological background (e.g. genome, gene 

expression, operon, protein) and computational methods (e.g. SVM classification, some 

statistical tests) used in this thesis. 

 Chapter 3 introduces a novel method for annotating the function of transmembrane proteins 

based on Gene Ontology terms and gene expression data. 

 Chapter 4 analyzes the effect of CNAs of target proteins of antineoplastic agents. 

 Chapter 5 compares the effects of CNAs in normal tissues and in tumor tissues on genes in 

four antineoplastic resistant pathways. 

 Chapter 6 summarizes the results of three projects and provides conclusions with regard to 

the aims of the studies and contribution made. 
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Chapter 2 Biological background and computational methods 

 

2.1 Genes and Genomes 

2.1.1 Genome organization 

Deoxyribonucleic acid (DNA), the genetic material of a cell, was first isolated by Friedrich 

Miescher, a Swiss physician, in 1869. He named it as “nuclein” because DNA resided inside the 

nuclei of eukaryotic cells [1]. More than eighty years after the existence of DNA was discovered, 

in 1953, James Watson and Francis Crick proposed the first correct structural model of DNA [3]. 

A macromolecule DNA consists of a long chain of connected nucleotides. Each nucleotide contains 

a nitrogen-containing nucleobase, a sugar (deoxyribose), and a phosphate group. There are four 

types of nucleotides discriminated by their nitrogen bases: cytosine (C), guanine (G), adenine (A) 

or thymine (T). Nucleobases are classified into two types: the purines (A and G), and the 

pyrimidines (C and T) [3]. As shown in Figure 2.1, a molecule is composed of two chains (made 

up of nucleotides) which coil around each other to form a double helix. The nucleotides are linked 

to each other to form a chain by covalent bonds between the sugar of one nucleotide and the 

phosphate of the next. The double-strand DNA are then formed by binding of 2 chains using 

hydrogen bonds between nitrogenous bases (A with T and C with G) [18]. 

 

Figure 2.1 DNA structure. Image was taken from [18] 
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DNA does not only resides inside the nucleus. DNA is also located in mitochondria and is 

then named mitochondrial DNA. In human, the 16,569 base pairs of mitochondrial DNA encode 

for only 37 genes [19]. In prokaryotes, the species that have no nuclei, in Escherichia coli for 

example, DNA forms a single circular chromosome packaged within the cell nucleoid [20], [21]. 

In eukaryotes, 145-147 base pairs of double-stranded DNA may wrap around a histone 

octamer and form a complex called nucleosome [22], [23]. Nucleosomes are then connected via 10-

80 base pairs of linker DNA. Linked nucleosomes are the primary structure of chromatin. Next, this 

primary structure is coiled into 30-nanometer fibers [24]. Figure 2.2 shows that the higher-order 

structures of chromatin are formed until finally a chromosome is created. This DNA packing 

process helps a human cell to store about 2 meters of DNA into its nucleus [24]. A nucleosome is 

a basic repeating structural unit of chromatin [25] in eukaryotes. Most prokaryotes (except species 

in the domain Archaea), however, do not have histone proteins. Thus, prokaryotes (e.g. Escherichia 

coli) use supercoiling as a method to compress their DNA into smaller space (see Figure 2.3) [26].  

 

Figure 2.2 Chromosome structure. This image was taken from [24] 
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Figure 2.3 Supercoiled chromosome of Escherichia coli. This image was taken from [26] 

2.1.2 Copy number variations 

In eukaryotes, the genomes of species are replicated (duplicated) through mitosis. The replication 

can be blocked if the DNA is damaged [27]. The damages may incur due to effects of both 

endogenously arising compounds (e.g. reactive oxygen species) and by exogenous agents (e.g. 

mutagenic chemicals, radiation)  [28]. One of the most cytotoxic forms of damage is double-strand 

breaks (DSBs). The good news is that DSBs can be repaired by different mechanisms, including 

homologous recombination (HR) and nonhomologous end-joining [29]. HR repairs damaged DNA 

sequence by using another identical sequence from homologous chromosome. However, the 

replacement sequence may have segment duplications, HR may lead to changes of the chromosome 

structure [30]. In contrast, nonhomologous recombination mechanisms use only microhomology of 
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a few complementary base pairs or no homology, and has the possibility of changing the structure 

of chromosomes [30]. 

Copy number changes are a type of structural variant involving alterations in the number of 

copies of specific large regions of DNA (thousands of nucleotides [>1 kb]), which can either be 

deleted or duplicated [31]. When these changes occur in germline cells, they are referred to as DNA 

copy number variations (CNV). When they occur in somatic cells, they are termed copy number 

alterations (CNA) [32]. Copy number changes may affect a large proportion of the human genome. 

In a study of 270 individuals, Redon et al. reported 1447 copy number variable regions covering 

360 megabases (12% of the genome) [33]. As discussed by Hastings et al., copy number changes 

are at least as important in determining the differences between individual humans as single 

nucleotide polymorphisms (SNPs), and appear to be a major driving force in evolution within the 

human and great ape lineage [30]. Copy number changes also have severe disadvantages. They are 

involved in many human diseases such as the Down syndrome caused by trisomy of human 

chromosome 21. Copy number changes caused by submicroscopic genomic deletions were found 

to be involved in human diseases such as thalassaemia and red-green color blindness [34]. Changes 

in copy number are also involved in cancer formation and progression [35]. 

The CNA data that we used in this thesis is TCGA level 3 data files. The process by which 

these files were generated contains three main steps. First, Affymetrix SNP 6.0 platform generates 

TCGA level 1 files, which contain original array intensity values. These files are then processed by 

Birdsuite [36]. Birdsuite first normalizes array intensity values. Then it estimates raw copy number 

and performs tangent normalization. In the third step, DNAcopy R-package [37] analyses the result 

files from Birdsuite (TCGA level 2 files) using circular binary segmentation algorithm and 

generates copy number segment files (TCGA level 3).  

2.1.3 Gene expression detected by microarrays  

DNA is the basic molecular unit of heredity; it carries the raw genetic information that can be turned 

into functional products, usually proteins [38]. Proteins are the main actors inside cells [39], they 

control the functions of the cell. Humans, for example, have over 200 different types of cells [40]. 

Cell identity is established by transcriptional regulation so that different sets of proteins are 

synthesized [41]. The expression of genes contains two main steps: transcription, where double–

stranded DNA is transcribed into single–stranded messenger RNA (mRNA) [42], and translation, 

when the mRNA molecule is translated into a protein [43]. Transcription proceeds in the following 

three phases [42]: 
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 Initiation: the enzyme RNA polymerase binds to a DNA molecule at the location of the 

promoter sequence (Figure 2.4-a). 

 Elongation: the double-strand DNA unwinds. RNA polymerase moves along template DNA 

strand and adds nucleotides to the three-prime (3’) end of RNA molecule (Figure 2.4-b). 

 Termination: transcription is completed when RNA polymerase meets the termination 

sequence on the DNA template strand. At this point, the mRNA transcript and RNA 

polymerase are released from the complex (Figure 2.4-c). 

 

Figure 2.4 Steps in transcription process. This image was taken from [42] 

During translation, the ribosome decodes the mRNA in blocks of three non-overlapping 

nucleotides, or codons, that each specifies an amino acid [44]. Table 2.1 lists all the possible codons 

and their corresponding amino acids. Translation proceeds in three phases [43]:  
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 Initiation: The two ribosome subunits bind to mRNA molecule. Normally, the first 

methionine-carrying tRNA is attached at the start codon (AUG). See Figure 2.5-A. 

 Elongation: The tRNA corresponding to the next codon transfer an amino acid to the 

ribosome. After a peptide bond is formed between amino acids, the ribosome moves to the 

next mRNA codon to continue the process. See Figure 2.5-B. 

 Termination: When the ribosome reaches a stop codon (UAA/UAG/UGA), it releases the 

polypeptide, and the translation is completed. 

 

 

Figure 2.5 Translation from mRNA to protein. This image was taken from [43] 
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Table 2.1 Genetic code. The genetic code is a three–letter code that defines the translation from three sequential nucleotides into 

an amino acid [45] 

  2nd base   

1st 

base 
U C A G 

3rd 

base 

U 

UUU 
Phenylalanine (Phe/F) 

UCU 

Serine (Ser/S) 

UAU 
Tyrosine (Tyr/Y)  

UGU 
Cysteine (Cys/C)  

U 

UUC UCC UAC UGC C 

UUA 

Leucine (Leu/L) 

UCA UAA Stop (Ochre) UGA Stop (Opal) A 

UUG UCG UAG Stop (Amber) UGG Tryptophan (Trp/W) G 

C 

CUU CCU 

Proline (Pro/P)  

CAU 
Histidine (His/H)  

CGU 

Arginine (Arg/R)  

U 

CUC CCC CAC CGC C 

CUA CCA CAA 
Glutamine (Gln/Q)  

CGA A 

CUG CCG CAG CGG G 

A 

AUU 

Isoleucine (Ile/I)  

ACU 

Threonine (Thr/T) 

AAU 
Asparagine (Asn/N)  

AGU 
Serine (Ser/S)  

U 

AUC ACC AAC AGC C 

AUA ACA AAA 
Lysine (Lys/K)  

AGA 
Arginine (Arg/R)  

A 

AUG Methionine(Met/M) ACG AAG AGG G 

G 

GUU 

Valine (Val/V) 

GCU 

Alanine (Ala/A)  

GAU 
Aspartic acid (Asp/D)  

GGU 

Glycine (Gly/G)  

U 

GUC GCC GAC GGC C 

GUA GCA GAA 
Glutamic acid (Glu/E)  

GGA A 

GUG GCG GAG GGG G 
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Proteins are the most functional macromolecules in living organisms, they play an important 

role in essentially all biological processes [46]. For this reason, measuring the expression of all 

genes in a cell is warranted. Nowadays, this is possible by various laboratory tests that identify all 

the genes in a cell or tissue that are making messenger RNA 

(https://www.cancer.gov/publications/dictionaries/cancer-terms/def/gene-expression-profile. 

Access date: September 10, 2018). One established technology for gene expression profiling are 

DNA microarrays. Microarrays consists of a large number of microscopic reaction volumes. Each 

volume contains a short segment of (mostly) linear DNA to which target cDNA labeled with a 

fluorescent tag can hybridize. The amount of fluorescence output is then of quantitative (gene 

expression) or qualitative (diagnostic) nature [47]. There are several microarray platforms including 

printed microarrays, in situ-synthesized oligonucleotide microarrays, high-density bead arrays, 

electronic microarrays, suspension bead arrays [47]. Besides being used to detect gene expression 

profiles, microarrays have been used in determining the binding sites of a transcription factor or as 

genotyping platforms to detect single nucleotide polymorphisms (SNP) [48]. Despite the fact that 

microarrays have been widely used, they still have limitations, e.g. a DNA array can only detect 

sequences that it was designed to detect. In case several genes have significant sequence homology, 

microarrays may detect all of them but they cannot distinguish these genes [48]. Recently, the 

microarray technique is being superseded by RNA-seq sequencing technologies [49]. 

2.1.4 Operon concept in prokaryotes 

As first mentioned by Monod and co-workers in 1960, an operon is a group of genes for which the 

expression is coordinated by a single promoter [50]. That paper characterized the lac operon in 

Escherichia coli [50], see Figure 2.6. The first element of this operon is a promoter, a nucleotide 

sequence that enables a gene to be transcribed. Transcription is initiated when this sequence is 

bound by RNA polymerase. The second element in the operon is termed operator. This is the place 

where the repressor (lacI regulator protein) can bind. The binding of the repressor to the operator 

stops transcription and makes the expression of genes fail. The third main element of the lac operon 

is a group of genes (lacZ, lacY, lacA). Because these genes are controlled by a single promoter [50], 

they are either expressed together or not at all. Osbourn and Field reported that genes in the same 

operon are usually related in function [51]. 

 

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/gene-expression-profile
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Figure 2.6 Lac operon in E.coli. This image was taken from [52] 

 

2.1.5 Functional Annotation of Genes (Gene Ontology) 

The Gene Ontology (GO) was established by the Gene Ontology Consortium [53] by joining three 

databases: the Saccharomyces Genome Database [54], FlyBase [55], and Mouse Genome 

Informatics [56], [57]. This project was motivated by the observation that there exists large-scale 

functional conservation of genes in eukaryotic cells. In different eukaryotic genomes, many genes 

code for proteins having a role in “core biological processes” that are common to all eukaryotic 

cells, such as transcription, translation, DNA replication, and metabolism [53]. This conservation 

motivates the idea of automated transfer of biological annotations from well-studied organisms to 

other organisms [53]. To this end, GO provides a controlled vocabulary [53], [58] for the description 

of: 

 Cellular components – which refer to the place in the cell where a gene product is active.  

 Molecular functions – which are defined as the job or the “ability” of a gene product. 

 Biological processes – which refer to a specific objective that the gene or gene product aim 

to achieve. 

In principle, this vocabulary can be used to all eukaryotes regardless the accumulating and the 

changing of our knowledge about genes and roles of proteins in cells [53]. However, there are 
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certainly caveats since only a small fraction of these annotations is based on real, direct biological 

assays, whereas most annotations are “inferred based on electronic annotation” which is termed 

IEA in GO terminology [59]. 

Figure 2.7 shows an example of a GO term (data was retrieved from 

http://www.geneontology.org/ontology/obo_format_1_2/gene_ontology.1_2.obo. Access date: 

September 12, 2018) 

 

Figure 2.7 An example GO term 

The Gene Ontology consortium provides annotations through associations between GO terms and 

entries for genes or gene products. Annotation data files are available at 

http://www.geneontology.org/page/download-go-annotations. Another way to search and browse 

the GO database is provided by AmiGO 2 (http://amigo.geneontology.org/amigo/landing) [60]. 

2.1.6 Hallmarks of cancer 

In the year 2000, Hanahan et al. published a very influential review article on the “hallmarks of 

cancer” [61] where they organized the complexities of cancer biology into six major hallmarks: 

self-sufficiency in growth signals, insensitivity to anti-growth signals, evading apoptosis, limitless 

replicative potential, sustained angiogenesis, and tissue invasion and metastasis. A decade later, an 

updating review [62] adjusted the six original hallmarks to sustaining proliferative signaling, 

evading growth suppressors, resisting cell death, enabling replicative immortality, inducing 

angiogenesis, activating invasion and metastasis. The authors also added four new hallmarks: 

reprogramming energy metabolism, evading immune response, genome instability and mutation, 

and tumor-promoting inflammation. In 2014, Suzuki et al. assigned 2050 genes to the 10 cancer 

hallmarks [63] based on Gene Ontology annotations (Table 2.2).  

http://www.geneontology.org/ontology/obo_format_1_2/gene_ontology.1_2.obo
http://www.geneontology.org/page/download-go-annotations
http://amigo.geneontology.org/amigo/landing
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Table 2.2 GO terms assigned to the hallmarks of cancer. This table was adapted from [63] 

Hallmark GO term id 

Activating Invasion and Metastasis GO:0045216, GO:0034329, GO:0045217, GO:0034334, 

GO:0016477, GO:0010718, GO:0007155 

Resisting Cell Death GO:0060548 ,GO:0012501, GO:0010941 

Evading Growth Suppressors GO:0007049, GO:0008283 

Avoiding Immune Destruction GO:0002507, GO:0001910, GO:0019882, GO:0002767 

Inducing Angiogenesis GO:0001525 

Deregulating Cellular Energetics GO:0006091 

Genome Instability and Mutation GO:0006281, GO:0051383, GO:0007062, GO:0000819, 

GO:0051988, GO:0030997, GO:0046605, GO:0060236, 

GO:0090169, GO:0043146, GO:0031577 

Tumor Promoting Inflammation GO:0006954, GO:0045321 

Enabling Replicative Immortality GO:0032202, GO:0000723, GO:0090398, GO:0090399 

Sustaining Proliferative Signaling GO:0007166, GO:0070848 

 

2.2 Proteins  

As mentioned in the previous section, proteins are products of gene expression. In the translation 

phase of a gene, multiple amino acids are linked together by peptide bonds to form a long chain 

called polypeptide [64]. A polypeptide can be folded into repeating structures called the alpha (α) 

helix, the beta (β) pleated sheet [65],the beta (β) turn [66], and omega (Ω) loop [67], [68]. The next 

level of complexity in polypeptide folding is the formation of tertiary structure. This is the complete 

three-dimensional structure of a protein [69]. Proteins have various functions. For example, they 

are the main component of antibodies like immunoglobulins [70], proteins termed enzymes can 

accelerate chemical reaction [71], proteins can be messengers (a hormone for example) when used 

to communicate between organs and tissues [72]. Proteins also provide support to protect and 

maintain cell shape [73]. In the following, we will introduce a specific class of proteins that work 

as membrane transporters. 

2.2.1 Transmembrane proteins 

Membrane proteins are associated with the membranes of a cell. In prokaryotes, these proteins play 

important roles in mediating the interaction between cell and surroundings [74]. Moreover, in 

eukaryotes, these proteins also catalyze transport processes into and out of intracellular 

compartments such as mitochondria or the endoplasmic reticulum [75], [76]. Figure 2.8 shows three 

ways how proteins can attach to the membrane. The Transporter Classification Database (TCDB) 

organizes transporter proteins into the following classes: channels/pores, electrochemical potential-

driven transporters, primary active transporters, group translocators, transmembrane electron 
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carriers, accessory factors involved in transport, and incompletely characterized transport systems 

[77]. 

 

Figure 2.8 Fluid mosaic model introduced by Singer–Nicholson. Image was taken form [78] 

 

2.2.2 Target proteins of antineoplastic drugs 

Cancer is a disease in which cells divide uncontrollably. Division of cells, in turn, depends on DNA 

replication, transcription, and translation. This makes DNA a major target for drug development 

against cancer [79]. Other important targets for anticancer drug development include RNA, 

enzymes, and other proteins [80]. Kumar et al. reviewed some anticancer drug mechanisms which 

are listed in Table 2.3 [79]. 

  



16 
 

 

Table 2.3 Anticancer drug mechanisms and their targets 

Antineoplastic mechanism Targets of antineoplastic agents 

Angiogenesis inhibitors Angiogenin, growth factor such as transforming 

growth factor-β (TGF-β), vascular endothelial 

growth factor (VEGF), and fibroblast growth factor 

(FGF). 

DNA Intercalators and Groove Binding Agents Proteins associated with recognition and function of 

DNA (e.g. transcription factors, polymerases, DNA 

repair systems, and topoisomerases). 

DNA Synthesis Inhibitors Folic acid plays an important role in de novo 

synthesis of purines, thymidylate, and polyamines. 

This in turn affects de novo synthesis of DNA in 

mammalian cells. 

Transcription Regulators Transcription factors. 

Enzyme Inhibitors Metabolic enzymes (e.g. pyruvate kinase M2, 

glucose transporters, hexokinase, fatty acid 

synthase, lactate dehydrogenase A, and pyruvate 

dehydrogenase kinase) when inhibited may induce 

apoptotic death in cancer cells. 

Gene Regulation Histone deacetylases are responsible for the 

deacetylation of histones in cells. This is important 

for transcriptional regulation.  

Microtubule Inhibitors Microtubules, components of the cytoskeleton, are 

involved in many biological processes such as cell 

intracellular transport, cytokinesis, signaling, 

maintenance of cell shape, and polarity. 

 

2.3 Pathways 

The KEGG pathway map is a network diagram of molecular interaction/reaction. This map is 

represented in terms of the KEGG Orthology (KO) groups. This allows the experimental evidence 

in specific organisms can be transferred to other organisms [81]. Each map contains graphics 

objects that are linked to KEGG objects. Basic graphics objects in the reference KEGG pathway 

maps are: 
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 boxes - ortholog (KO) groups identified by K numbers (KO identifiers). In metabolic maps, 

boxes represent reactions that are identified by R numbers.  

 circles - other molecules identified by C numbers. They are usually chemical compounds. 

 lines - reactions identified by R numbers in metabolic maps. In global metabolism maps, 

lines represent ortholog (KO) groups. 

While reference KEGG pathway maps are drawn manually, organism specific pathway maps are 

computationally generated. In the latter ones, boxes contain genes or gene products. Each pathway 

map has an identifier made up by the combination of a 2-4 letter code and a 5-digit number (e.g. 

hsa01521). The prefix letter code can be one of the following: 

 ko - Reference pathway (KO)  

 map - Reference pathway 

 rn - Reference pathway (Reaction) 

 ec - Reference pathway (EC)  

 org - Organism-specific pathway map (this prefix for Homo sapiens is hsa, for Escherichia 

coli K-12 MG1655 is eco …the full list of organisms is available at 

https://www.genome.jp/kegg/catalog/org_list.html) 

A collection of pathway maps are stored in the KEGG PATHWAY database and represent 

knowledge on the molecular interactions, reactions and relation networks for metabolism, cellular 

processes, environmental information processing, genetic information processing, human diseases, 

organismal systems, and drug development [82]. 

2.3.1 Antineoplastic resistance pathways 

KEGG PATHWAY contains four pathway maps showing mechanisms of resistance for four 

categories of anticancer drugs including epidermal growth factor receptor (EGFR) tyrosine kinase 

inhibitor, platinum, antifolate, and endocrine.  

EGFR tyrosine kinase inhibitor resistance (hsa01521) - Most outstanding resistant 

mechanisms to EGFR tyrosine kinase inhibitor treatment are “the secondary EGFR mutation 

(T790M), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), activation of 

alternative pathways (c-Met, HGF, AXL), histologic transformation, and impairment of the EGFR-

TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism)” [83].  

Endocrine resistance (hsa01522) - Cells may develop resistance to an endocrine drug by 

“loss of ER-alpha expression, ligand-independent growth factor signaling cascades that activate 

https://www.genome.jp/kegg/catalog/org_list.html
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kinases and ER-phosphorylation, altered expression of coactivators or coregulators that play a 

critical role in ER-mediated gene transcription, deregulation of the cell cycle and apoptotic 

machinery, and altered availability of active tamoxifen metabolites regulated by drug-metabolizing 

enzymes, such as CYP2D6” [84]. 

Antifolate resistance (hsa01523) - Mechanisms of antifolate resistance include “augmented 

drug export, virtue of impaired drug transport into cells, impaired activation of antifolates through 

polyglutamylation, increased expression and mutation of target enzymes, augmented hydrolysis of 

antifolate polyglutamates, and the augmentation of cellular tetrahydrofolate-cofactor pools in cells” 

[85]. 

Platinum drug resistance (hsa01524) - Platinum-based drugs cause cellular apoptosis  by 

binding to purine DNA bases. Therefore, platinum can be resisted by “decreased binding of the 

drug to target (e.g., due to high intracellular pH), decreased mismatch repair, increased DNA repair, 

defective apoptosis, and altered oncogene expression”. Other mechanisms are “increased drug 

efflux, decreased drug influx, intracellular detoxification by glutathione, etc.” [86] 

2.4 Machine learning 

In the year 1959, the term machine learning was introduced by Arthur Samuel in an article published 

in the IBM Journal of Research and Development [87]. Machine learning refers to the ability of 

computer systems to solve problems without being explicitly programmed [88]. In the field of 

machine learning, researchers aim to study and construct algorithms for building a model. After 

learning from input data, the result model that can be used to make predictions on new coming data 

[89]. Broadly speaking, there are two main approaches for machine learning algorithms: supervised 

and unsupervised learning. The former starts with the goal of predicting a known output or target 

[90]. In contrast, in unsupervised learning, there are no outputs to predict. Instead, learning 

algorithms try to find naturally occurring patterns or groupings within the data [90]. Examples of 

supervised learning algorithms include linear regression, naive Bayes classifier, and support vector 

machines. In contrast, unsupervised learning algorithms include diverse clustering methods such as 

hierarchical clustering and k-means clustering. 

2.4.1 Support Vector Machines 

A support vector machine (SVM) [91] is a supervised learning model which is used for data 

classification and regression analysis. Like the other methods, we need to train our model first based 

on a suitable training set of “positive” and “negative” data points. SVM training constructs a 

hyperplane in order to separate training data belonging to these two classes (Figure 2.9).  
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Figure 2.9 An example SVM in 2 dimensional space. Image was adapted from [91] 

 

Let n points in training data be 

(𝑥1⃗⃗  ⃗, 𝑦1), … , (𝑥𝑛⃗⃗⃗⃗ , 𝑦𝑛) 

where  𝑦𝑖 indicate the class to which the point 𝑥𝑖⃗⃗  ⃗ belongs. Values of 𝑦𝑖 are either -1 or 1. Each 𝑥𝑖⃗⃗  ⃗ is 

a p-dimensional vector. Our goal here is to find the "optimal hyperplane" that divides the group of 

points 𝑥𝑖⃗⃗  ⃗  for which 𝑦𝑖=1 from the group of points for which 𝑦𝑖=-1, so that the distance between the 

hyperplane and the nearest point 𝑥𝑖⃗⃗  ⃗  from either group is maximized (optimal margin). 

If the training data is linearly separable, the classification function f is a linear function: 

𝑓(𝑥 ) = 𝑤𝑇𝑥 + 𝑏 

where w and b are the parameters of the classifier. The class of 𝑥  is the sign of the function 𝑓(𝑥 ). 

The hyperplane can be written as the set of point 𝑥  satisfying 

𝑓(𝑥 ) = 𝑤𝑇𝑥 + 𝑏 = 0 

and the two margins as follow: 

𝑤𝑇𝑥 + 𝑏 = 1     

𝑤𝑇𝑥 + 𝑏 = −1 
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For every data point, we have 𝑦𝑖(𝜔
𝑇𝑥𝑖⃗⃗  ⃗ + 𝑏) ≥ 1. 

If the data is not linearly separable, we may allow misclassification. By adding a cost ε𝑖 > 0, the 

optimization constraints become 

𝑦𝑖(𝜔
𝑇𝑥𝑖⃗⃗  ⃗ + 𝑏) ≥ 1 − 𝜀𝑖 

If 0 < ε𝑖 < 1, the point 𝑥𝑖⃗⃗  ⃗  is correctly classified but within the margin. If ε𝑖 > 1, the point is in the 

hyperplane or on the wrong side of it. We want to maximize the margin and minimize the cost. 

Another approach is using non-linear classifiers by transforming data into higher-dimensional 

space. This transformation is achieved using kernel functions. Examples of kernel functions include 

polynomial, hyperbolic tangent, and Gaussian radial basis functions. 

So far, our SVM model only works with two classes (binary classifier). An approach for classifying 

with more than two classes is reducing the single multiclass problem into multiple binary 

classification problems [92]. Common methods for such reduction include: one-against-all [93], 

one-against-one [94], and directed acyclic graph SVM [95]. 

2.4.2 Model validation and evaluation 

It is often useful to measure the performance of the model so that we can choose an appropriate 

method for a specific problem or tune the parameters of the model to improve the results. There are 

many metrics that can be used to measure the performance of a classifier. Performance measures 

are usually based on:  

 Success: the class label of data point is predicted correctly 

 Error: : the class label of data point is predicted incorrectly 

Examples of performance metrics include: 

 Error rate: proportion of incorrectly classified instances over the whole set of instances 

 Accuracy: proportion of correctly classified instances over the whole set of instances 

In the field of machine learning, to visualize the performance of an algorithm, people usually uses 

a specific table called confusion matrix (Table 2.4). 
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Table 2.4 Confusion matrix 

 Predicted condition positive Predicted condition negative 

True condition positive True positive (TP) False negative (FN) 

True condition negative False positive (FP) True negative (TN) 

 

The following metrics can be derived from Table 2.4 : 

 Accuracy (ACC) = 
TP+TN

TP+TN+FP+FN
 

 Prevalence = 
TP+FN

TP+TN+FP+FN
 

 Positive predictive value (PPV), Precision = 
TP

TP+FP
 

 False discovery rate (FDR) =  
FP

TP+FP
 

 False omission rate (FOR) = 
FN

TN+FN
 

 Negative predictive value (NPV) = 
TN

TN+FN
 

 True positive rate (TPR), Recall, Sensitivity, probability of detection = 
TP

TP+FN
 

 False positive rate (FPR), Fall-out, probability of false alarm = 
FP

FP+TN
 

 Specificity (SPC), Selectivity, True negative rate (TNR) = 
TN

FP+TN
 

 False negative rate (FNR), Miss rate = 
FN

TP+FN
 

 Positive likelihood ratio (LR+) = 
TPR

FPR
 

 Negative likelihood ratio (LR−) = 
FNR

TNR
 

 Diagnostic odds ratio (DOR) = 
LR+

LR−
 

 F1 score = 
2TP

2TP+FP+FN
 

In the following, three methods to estimate classifier problems will be explained. The first 

one is the holdout method. This method separates data into two sets, one for training (training set) 

and the other for testing (test set). One disadvantage of this method is that fewer labeled examples 

are available for training (because the test set holds some examples). Consequently, the result model 

may not be as good as when all the labeled examples are used for training [96]. The second method 

is cross-validation. In this method, data is segmented into k equally-sized partitions. Each iteration 
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uses one of the partitions for testing and the other remaining partitions for training. To use each 

partition for testing exactly once, this procedure is repeated k times. A special case of cross 

validation occurs when k is equal to the size of the data set so that each test set only contains one 

record. This case is called leave-one-out cross validation. The third method is bootstrap. Not like 

holdout or cross-validation, in which training records are sampled without replacement, in the 

bootstrap, a record already chosen for training is put back into the original pool of records. 

2.5 Statistical hypothesis tests 

“A statistical hypothesis is an assertion or conjecture concerning one or more populations” [97]. 

Here are some examples of statistical hypotheses: 

 The mean age of cats is 10 years. 

 The variable Hm, representing the height of male students, is approximately normally 

distributed. 

 The new drug is better than penicillin. 

Unless we examine the whole population, the falsity or truth of a statistical hypothesis is 

never known with absolute certainty. Because examining the entire population would be impossible 

in most real-life situations, we take a random sample from the population and use it to provide 

evidence that either supports or does not support the hypothesis. The hypothesis will be rejected if 

it is not consistent with the evidence from the selected sample. The process that leads to the decision 

of accepting or rejecting a statistical hypothesis is called statistical hypothesis testing. 

In hypothesis testing, the term null hypothesis (denoted by H0) refers to any hypothesis we 

want to test. We need an alternative hypothesis (H1) in case H0 is rejected. The alternative 

hypothesis is often the logical complement to null hypothesis. The three examples above now 

become: 

 {
𝐻0: The mean age of cats is 10 years                         
𝐻1: The mean age of cats is greater than 10 years

 

 {
𝐻0: The variable 𝐻𝑚, representing heights of male students, is approximately normally distributed                     
𝐻1: The variable 𝐻𝑚, representing heights of male students, is not normally distributed                                         

 

 {
𝐻0: The new drug is the same as penicillin
𝐻1: The new drug is better than penicillin 

 

2.5.1 Shapiro–Wilk test of normality 

The Shapiro–Wilk test, published in 1965 by Samuel Sanford Shapiro and Martin Wilk [98], is a 

way to tell if a random sample comes from a normal distribution. The statistic is 
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𝑊 =
(∑ 𝑎𝑖𝑥(𝑖)

𝑛

𝑖=1
)
2

∑ (𝑥𝑖−𝑥̅)2
𝑛

𝑖̇=1

, 

where  

 𝑥(𝑖) is the ith-smallest number in the sample; 

 𝑥̅ =
𝑥1+⋯+𝑥𝑛

𝑛
 is the sample mean; 

 the constants ai are given by 

o (𝑎1, … , 𝑎𝑛) =
𝑚𝑇𝑉−1

(𝑚𝑇𝑉−1𝑉−1𝑚)
1

2⁄
 

o where 𝑚 = (𝑚1, … ,𝑚2)
𝑇 

o and 𝑚1, … ,𝑚2 are the expected values of the standard normal order statistic. 

o V is the covariance matrix of standard normal order statistics. 

The percentage point of W test is then computed or looked up in the table published by 

Shapiro and Wilk [98]. If the value is greater than the chosen alpha level, we do not have evidence 

to reject the null hypothesis, which means the data came from a normally distributed population. 

On the other hand, if this value is less than the chosen alpha level, then we have evidence that the 

data tested are not normally distributed, and the null hypothesis is rejected.  

2.5.2 T-test  

In the year 1908, William Sealy Gosset introduced the t-test in the journal Biometrika under his pen 

name Student [99]. The are two common types of t-tests, one-sample t-test and two-sample t-test, 

with one of the most important assumption that the underlying distribution which samples were 

taken from are normally distributed [100]. 

The aim of a one-sample t-test is to compare the population’s mean with a specified value 

μ0. The t statistic can be calculated as follow 

𝑡 =
𝑥̅ − 𝜇0

𝑠

√𝑛

 

Where n is the sample size, 𝑥̅ is sample mean, and s is the standard deviation of the sample. The 

degree of freedom used in this test is n-1. 

The aim of a two-sample t-test is to compare the means of two populations. If the two 

samples have the same variance, the t statistic can be calculated as  
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𝑡 =
𝑋̅1 − 𝑋̅2

𝑠𝑝 . √
1
𝑛1

+
1
𝑛2

 

where 𝑋̅𝑖 is the sample mean from a sample X1, X2, and 𝑠𝑝 = √
(𝑛1−1)𝑠𝑋1

2 +(𝑛2−1)𝑠𝑋2
2

𝑛1+𝑛2−2
 

In two-sample t-test, the degrees of freedom for each group is ni – 1,  and the total number 

of degrees of freedom is n1 + n2 − 2. 

If the two samples have unequal variances, Welch's t-test (an adaptation of Student's t-test) 

is applied [101]. The t statistic can be calculated as  

𝑡 =
𝑋̅1 − 𝑋̅2

𝑠𝛥̅
 

where 𝑋̅𝑖 is the sample mean from a sample X1, X2, and 𝑠𝛥̅ = √
𝑠1
2

𝑛1
+

𝑠2
2

𝑛
 

Here si
2 is the unbiased estimator of the variance of sample i, ni is the size of sample i (1 or 

2). The degrees of freedom are calculated using 

𝑑. 𝑓. =
(
𝑠1
2

𝑛1
+

𝑠2
2

𝑛2
)
2

(
𝑠1
2

𝑛1
⁄ )

2

𝑛1 − 1 +
(
𝑠2
2

𝑛2
⁄ )

2

𝑛2 − 1

 

After having evaluated the t statistic, we can compute p-value as explained in [100]. The 

null hypothesis will be rejected if the p-value is less than a given small alpha value. 

2.5.3 Wilcoxon rank-sum test 

In statistics, the Wilcoxon rank-sum test (also called Mann–Whitney U test) [102], [103] is a 

nonparametric test that allows two populations to be compared without making the assumption that 

the values are normally distributed. For this reason, the Wilcoxon rank-sum test is an alternative to 

the t-test. The test requires the calculation of a U statistic as follows 

1. Merge two samples into one set, and sort this set in ascending order. 

2. For each and every observation, assign a numeric rank starting with 1. We assign the same 

rank, which is the midpoint of unadjusted rankings, for the observations that have equal 



25 
 

values. E.g., the ranks of (2, 4, 4, 4, 9) are (1, 3, 3, 3, 5) (the unadjusted rank would be (1, 

2, 3, 4, 5)). The sum of all the ranks is N(N+1)/2 where N is the total number of observations. 

3. Sum up the ranks of the observations which belong to sample 1. U is then given by [104] 

𝑈 = 𝑛1𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

where n1 and n2 are the number of observation in sample 1 and 2, respectively, and R1 is the 

sum of the ranks in sample 1. The U statistic can also be calculated as 

𝑈′ = 𝑛2𝑛1 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

where R2 is the sum of the ranks of the observations in sample 2.  

The calculated 𝑈 or 𝑈′ – whichever is larger – is compared with the two-tailed value of 𝑈𝛼(2),𝑛1,𝑛2
of 

the Wilcoxon rank–sum distribution. If one of the calculated U values is greater than or equal 

to 𝑈𝛼(2),𝑛1,𝑛2
 then the null hypothesis is rejected, which means that the two populations’ 

distributions are not the same. 

2.5.4 Fisher's exact test 

Fisher's exact test is a statistical test used to analyze the associations between two categorical 

(classification) variables [105]. The null hypothesis for the test is that there is no association 

between two categorical variables. Ronald Fisher said the test was motivated by Muriel Bristol, 

when she claimed her ability of detecting whether the milk or the tea was added first to her cup 

[106]. Table 2.5 shows an example result of the “lady testing tea” experiment. 

Table 2.5 Result of “lady testing tea” experiment 

 Actual number of cups 

where milk was added first 

Actual number of cups 

where tea was added first 

Row total 

Predicted number of cups 

where milk was added first 

a b R1 = a + b 

Predicted number of cups 

where tea was added first 

c d R2 = c + d 

Column total C1 = a + c C2 =b + d a + b + c + d 

(=n) 
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According to Fisher, the probability of obtaining any such set of values follows the 

hypergeometric distribution and can be computed as 

𝑝 =
(
𝑎 + 𝑏

𝑎
) (

𝑐 + 𝑑
𝑐

)

(
𝑛

𝑎 + 𝑐
)

=
(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑑 + 𝑏)!

𝑎! 𝑏! 𝑐! 𝑑! 𝑛!
 

where (
𝑛
𝑘
) is the binomial coefficient and the symbol “!” indicates the factorial operator. 

Next, we find all possible matrices that have nonnegative integers consistent with the row 

and column sums Ri and Cj. Then we calculate the associated conditional probability for each 

matrix. To compute the p-value of the test, probabilities of the tables (matrices) that represent equal 

or greater deviation than the observed table are added together [107].  

2.5.5 False discovery rate 

When conducting statistical hypothesis tests, for example a t-test with null hypothesis that two 

populations have the same means, we calculate the p-value. If we had a p-value less than a chosen 

significant level alpha, for example p-value = 0.0234 and alpha = 0.05, we reject the null hypothesis 

and say that the means are significantly different. If the null hypothesis is actually true and we reject 

it, then we make a mistake. This mistake is called type I error, or a false positive. We usually like 

to keep this probability of a type I error small (under 5% for example).  

When conducting multiple comparisons, the probability that at least one of the tests is 

rejected when it is actually true is computed as follow: 

𝑝 = 1 − (1 − 𝛼)𝑚 

where m is the number of comparisons, and 𝛼 is significant level. If m = 10 and 𝛼 = 0.05, the 

probability that at least one of the tests get the type I error is about 40%. If m = 1000 and 𝛼 = 0.05, 

there are (on average) 50 tests that were falsely rejected based on the null hypothesis. Table 2.6 

defines the possible outcomes when testing multiple null hypotheses. The number of hypotheses m 

is known, R is observable variable, while U, V, S, and T are unobservable variables. 
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Table 2.6 Number of errors committed when testing m null hypotheses. Table is adapted from 

[108] 

  

Null hypothesis is 

true (H0) 

Alternative hypothesis 

is true (HA) 
Total 

Test is declared significant (H0 

is rejected) 
V S R 

Test is declared non-significant 

(H0 is not rejected) 
U T m-R 

Total m0 m-m0 m 

 

When we falsely reject null hypotheses, the proportion of errors can be computed by the 

random variable Q = V/(V + S). Q is defined to be zero when R = V + S = 0. Because V and S are 

unobservable variable, Q is also an unobservable variable. False discovery rate (FDR) is defined to 

be the expectation of Q [108], 

FDR = E(Q) = E{V/(V+S)} = E(V/R) 

FDR-controlling procedures are designed in respond the need that we want to identify as many 

significant (reject null hypothesis) tests as possible while keeping a relatively low proportion of 

false positives (falsely rejecting null hypotheses). In the following, the Benjamini–Hochberg 

procedure [108] and the Benjamini–Hochberg–Yekutieli [109] procedure will be explained. 

Benjamini–Hochberg procedure: 

 Sort all p-values in ascending order.  

 Assign ranks to the p-values, starting from 1.  

 Calculate Benjamini-Hochberg critical value for each individual p-value , using the formula 

𝑃𝐵−𝐻 =
𝑖

𝑚
𝑄,  

where i is the rank of individual p-value, m is the total number of tests, and Q is the false 

discovery rate (a percentage, chosen by user).  

 Compare original p-value to the corresponding critical PB-H; tests have original p-value 

smaller than the critical value are significant.  

Benjamini–Hochberg–Yekutieli procedure controls the FDR under positive dependence 

assumptions [109]. This procedure is similar the one just described except that the critical value is 

computed as 
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 𝑃𝐵−𝐻−𝑌 =
𝑖

𝑚.𝑐(𝑚)
𝑄,  

 If the tests are positively correlated or independent then c(m)=1. 

 Under arbitrary dependence 𝑐(𝑚) = ∑
1

𝑖

𝑚

𝑖=1
 

 If the tests are negative correlated, we can approximately compute c(m) by using the Euler–

Mascheroni constant 𝛾 [110] as follow: 

𝑐(𝑚) = ∑
1

𝑖

𝑚

𝑖=1
≈ 𝑙𝑛(𝑚) + 𝛾 +

1

2𝑚
  

2.6 External tools used 

2.6.1 GISTIC 2.0: Identifying genes recurrently affected by CNAs 

Genomic Identification of Significant Targets in Cancer (GISTIC) is a method designed for 

analyzing somatic copy-number alterations (SCNA) in cancers [111]. GISTIC identifies those 

regions of the genome that are aberrant more often than would be expected by chance. These regions 

contain “driver” genes that affect the initiation or progress of tumors. In the year 2011, four years 

after GISTIC was introduced, Beroukhim et al. released GISTIC2.0 [112]. The new version can 

model complex cancer genomes that contain a mixture of SCNA types occurring at distinct 

background rates. GISTIC2.0 also provides a priori statistical confidence in interpreting copy-

number analyses. Figure 2.10 shows the main steps of both versions of GISTIC. 
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Figure 2.10 Schematic overview of GISTIC1.0 and GISTIC2.0. Image was taken from [112] 
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Chapter 3 Annotating the function of protein-coding genes based on 

Gene Ontology terms of neighboring co-expressed genes 

 

This chapter is based on the following publication: 

 Tran, V.H., Barghash, A., Helms, V. Annotating the function of protein-coding genes based on 

Gene Ontology terms of neighboring co-expressed genes. (2018) Journal of Proteomics & 

Bioinformatics, V. 11, p. 868-874, doi: 10.4172/jpb.1000468.  

My contribution was to design the research project and analyze the results together with the co-

authors Ahmad Barghash and Volkhard Helms. I and Volkhard Helms prepared the manuscript. I 

collected data, implemented the machine-learning classifier and performed the calculations. 

3.1 Introduction  

In times of high-throughput sequencing and transcriptomics, the amount of sequencing data is 

quickly piling up. Yet, may proteins have still not been annotated with their cellular functions due 

to experimental difficulties (time-consuming and costly) involved with functional assays [113]. To 

address this problem, many computational methods were developed to predict the functions of 

proteins. The earliest methods were based on the sequence homology between proteins or on 

sequence motifs of proteins (e.g. PRINT-S [114], BLOCK [115], PROSITE [116], InterPro [117], 

transportDB [118]). As proteins exist and work as three-dimensional structures, protein structures 

are also a valuable indicator of similar functions between proteins [119]. Other prediction methods 

consider the genomic context [120]–[122] or their neighborhood in protein-protein interaction 

networks [123]–[125]. Recently, also some tools using natural language processing have been 

presented (e.g. GOstruct [126], Text-KNN [127] and PPFBM [128]).  

  An important yet neglected field is that of membrane proteins. According to Krogh et al. 

[9], about 21% of the Escherichia coli genes encode transmembrane proteins. The corresponding 

numbers are 21% in Saccharomyces cerevisiae, 30% in Caenorhabditis elegans and 20% in 

Arabidopsis thaliana. Transmembrane proteins play important roles, especially in mediating the 

interaction between cells and their surroundings. Thus, membrane proteins are important targets for 

drugs (about 60% of all modern medical drugs [16]). Of particular interest for the prediction of 

protein function is the subgroup of membrane transporters because they comprise the second largest 

protein family in Homo sapiens, next to G-protein coupled receptors. However, it is experimentally 

hard to identify their substrate specificities [10].  
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Previously, substrate specificities of membrane transporters have been predicted, for 

example, based on sequence homology [11] and amino acid composition [12]–[14]. Meta-methods 

that combine different features for functional annotation often gave improved performance 

compared to single-feature methods. For example, Yayun Hu et al. used four sequence features 

including amino acid composition, composition, transition and distribution properties, position-

specific scoring matrices, and biochemical properties to annotate the substrate specificity of ABC 

transporters [15]. They reported an accuracy of 88% to distinguish between four classes of ABC 

transporters. Still, it is worthwhile to characterize the benefits of individual features before 

combining them with others. 

In this study, we combined genomic context-based methods with Gene Ontology (GO 

annotations) [53] and gene expression data. One motivation behind considering the co-location and 

co-expression of neighboring genes is the principle of operons in bacterial genomes. Genes in an 

operon are controlled as a single unit by a single promoter [129] and thus are either expressed 

together or not at all. They are usually related in function too [51]. Also genes in eukaryotic 

genomes have been reported to have a tendency to cluster when showing similar expression, and 

the genes in these clusters tend to have related functions [130]–[135]. Wang and colleagues, as well 

as Barkai and colleagues showed that if two eukaryotic genes have the same expression levels in 

different conditions, they are likely to be members of the same protein complex or to participate in 

the same biological pathways [136], [137]. Also, Lee and Sonnhammer reported that genes involved 

in the same biochemical pathways tend to gather in various eukaryotic genomes [132]. These 

relationships between gene co-expression, neighborhood and functions have been frequently 

exploited in functional genomics studies, e.g. to predict protein interaction partners [138], [139], to 

identify and analyze gene position clusters [140] and by the STRING database [141]. A quasi-

standard for functional annotation is the controlled vocabulary compiled by the Gene Ontology 

Consortium [53]. The Gene Ontology (GO) annotations  can be used in functional profiling, 

functional categorizing and to predict gene function [142]. Here we combined these techniques and 

tested how well this method works in prokaryotes and eukaryotes. 

To predict the functions of a protein, we first retrieve the neighboring genes of the respective 

protein-coding gene and then compute the co-expression correlation between this central gene and 

its neighbors. The GO term lists of the central gene and of the neighboring genes that exhibit the 

highest correlation to the central gene are used to create input data for a support vector machine 

(SVM) classifier. SVM models are then used for classifying the function of so far uncharacterized 

genes. 
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3.2 Material and methods 

3.2.1 Dataset 

For training and testing of the classifiers, we selected the well-studied model organisms Escherichia 

coli and Saccharomyces cerevisiae for which high confidence datasets are available. Later we used 

a Homo sapiens dataset to test the method. For each organism, transporter proteins and metabolic 

enzymes were selected. These proteins are called central proteins (and the genes encoding these are 

called central genes thereafter) to distinguish them from their neighboring genes. 

3.2.1.1 Transporter proteins 

From the Transporter Classification Database (TCDB) [143] we retrieved two sets of membrane 

transporters that facilitate the transport of either amino acids or sugar molecules across the 

membrane. Table 3.1 lists the number of proteins for the three organisms. 

Table 3.1 Number of transporters belonging to different groups and organisms according to 

TCDB 

  Organism 

  
Escherichia coli 

Saccharomyces 

cerevisiae 
Homo sapiens 

G
ro

u
p
 Amino Acid Transporters 47 24 37 

Sugar Transporters 39 17 13 

 

3.2.1.2 Enzymes in metabolic pathways 

Beside transporter proteins, we also used enzymes of metabolic pathways in Escherichia coli to test 

our method. Four groups of metabolic pathways involved in carbohydrate, lipid, amino acid, and 

nucleotide metabolisms were collected. The lists of enzymes for each group were downloaded from 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps, under the tag 

“metabolism” and the four respective sub-tags, e.g. carbohydrate metabolism, lipid metabolism, 

nucleotide metabolism, and amino acid metabolism [144]. The gene identifiers of the four groups 

are listed in Supplement table 1. The groups contain 187 genes (amino acid metabolism), 253 

(carbohydrate metabolism), 45 (lipid metabolism), and 99 genes (nucleotide metabolism), 

respectively. 
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3.2.1.3 Data used for functional annotation 

Neighboring genes: From the BioCyc database, we downloaded information about all genes 

of Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens [145], [146]. We then rearranged 

the list of genes according to increasing genomic positions. Sorting these files helps in finding 

neighboring genes more easily. We use the term neighboring genes for genes on the same 

chromosome that have close genomic positions. 

GO terms: We retrieved tab-delimited files with gene symbols and GO terms from the Gene 

Ontology Consortium [53].  

Microarrays data: We used Pearson correlation to measure the co-expression of genes. For 

Escherichia coli we used preprocessed and normalized microarray expression data from Dataset 

Record GSE1121 [147] whereas for Saccharomyces cerevisiae we used respective data from 

Dataset Record GDS91 [148]. For Homo sapiens, we used data for colon adenocarcinoma patients 

from TCGA, but only selected data files from normal samples. After finding neighboring genes, the 

co-expression correlation between a gene and its neighbors was computed as:   

𝜌 =
∑ (𝑥𝑖 − 𝑥̅)𝑛

𝑖=1 (𝑦𝑖 − 𝑦̅)

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 

where: 

xi is expression value of gene x in ith sample 

yi is expression value of gene y in ith sample 

n is the number of samples 

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 ; and analogously for 𝑦̅ 

3.2.2 Methods 

Figure 3.1 shows the basic steps in this project. To retrieve the neighboring genes, we look for them 

both upstream and downstream of the current gene. The number of neighbors upstream, is denoted 

as n, is equal to the number of neighbors downstream. The number of selected neighbors that 

possess highest co-expression correlation with current gene is denotes as N. A pair of number of 

neighbors and number of selected neighbors are written as (n, N) which we refer to as window size. 

In the result section, we show the results for three different window sizes (5, 3), (10, 3), and (20, 

5). 
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Figure 3.1 The workflow of basic steps in this project 

 

3.2.2.1 Training and testing data for SVM 

The dataset of each organism was split into two subsets, the training set and the test set. In this 

project, we used one record for testing and all other records for training. Then for each protein group 

in the training set, we created two lists. One list contains the selected genes and the other list 

contains all the neighbors of the selected (central) genes. After that, we retrieved the GO terms for 

every gene in these lists. From then on, we only worked with these lists of GO terms. For example, 

if we have two groups of transporter proteins (amino acid transporters and sugar transporters), then 

we have four lists of GO terms (the first list contains all GO terms of all amino acid transporters in 

the training set, the second list contains all GO terms of all neighboring genes of these amino acid 
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transporters, the third list contains all GO terms of all sugar transporters in the training set, and the 

fourth list contains all GO terms of all neighboring genes of sugar transporters). 

For each central gene in the training set, we selected maximum N neighbors that have the 

highest co-expression correlation with the central gene. Then we identified the GO terms for each 

selected neighbor. After that, we computed the percentage of GO terms that are contained in each 

GO list. If this percentage was greater than or equal to a pre-selected threshold (r) then we assigned 

the value 1, otherwise we assigned the value 0. As a test, we also used real-valued functional 

similarities obtained from GOSemSim [149]. Yet, this strategy gave results of lower quality than 

the binary-valued approach. Using binary-value has a disadvantage, because a higher threshold (r) 

yields more 0 values. For some cases we did not obtain a value of 1 at all, and a vector with all 0 

values is not usable for SVM. Supplement table 2, Supplement table 3 and Supplement table 4 

summarize the number of genes that we found suitable to use to build the models. For gene ArtQ  

of Escherichia coli (see Figure 3.2) in the training set, for example, we selected the neighbors that 

had the highest co-expression levels (ArtM, ArtI and ArtP). If neighbor ArtI is selected, we compute 

what percentage of its GO terms are contained in each of the four lists of GO terms. If this 

percentage is greater than or equal to a pre-selected threshold (r) then we assigned the value 1, 

otherwise we assigned the value 0. Since we have four GO term lists, this gives four values. If we 

select three neighbors that have the highest co-expression correlation then we have 3x4=12 values 

of 0 or 1. We used these twelve features together with the group’s names, that were converted to 

positive integer values, as class label to train the classifier. These steps were repeated for all genes 

in the testing set. 

3.2.2.2 Support vector machine for classification 

Support Vector Machine classification [91] of substrate specificity or of participation in metabolic 

pathways was done with the software LIBSVM [150]. LIBSVM can efficiently classify samples 

into multiple classes, it automatically selects a model, which can generate contours of the cross 

validation accuracy, and it makes cross-validation for model selection and treats unbalanced data 

by using a weighted SVM. In this project, we used leave-one-out cross validation. LIBSVM also 

provides various kernel functions and different SVM formulations. We tested our method with three 

kernel functions (linear, radial basis function (RBF), and sigmoid). In most cases with different 

threshold r, number of neighboring genes or organisms, RBF gave the best results. Then we 

proceeded using RBF and tested for different values of the cost parameter (0.1, 0.5, 1. 1.5, 5 and 

10). The default cost parameter of 1 gave the best results. A lower value of 0.1 gave the worst 

accuracies. The reliability increases substantially when cost changes from 0.1 to 0.5. The accuracies 
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of Saccharomyces cerevisiae changed by 15%, accuracies of Escherichia coli by 5.6 % and of 

Homo sapiens by 11.6% at most, respectively. With cost parameter greater than or equal to one, the 

accuracies did not show remarkable changes. We also tested four different values of the gamma 

parameter (1.0, 0.8, 0.5, 0.3 and default value of gamma). The default value of gamma gave better 

accuracies than other values in most of the cases. For this reason, we kept the default values of all 

the parameters. 

3.2.2.3 Model validation and evaluation 

We used leave-one-out cross validation to evaluate the prediction ability of our model. In the leave-

one-out cross validation, one record was used for testing, all others were used for training. The 

process of training and testing was repeated until all records had been used for testing once. 

Accuracy (ACC) was evaluated in the usual way as: 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

where TP, FP, TN and FN are true positive, false positive, true negative, and false negative, 

respectively. 

3.3 Results 

3.3.1 Transporter proteins 

For illustration, Figure 3.2 shows that the Escherichia coli gene ArtQ has large co-expression levels 

with several neighbors (ArtM, ArtI and ArtP) for the selected microarray dataset. As suggested by 

the very similar gene names, all these genes transport amino acids. Thus we predict that ArtQ also 

transports amino acid. 
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Figure 3.2 Co-expression levels of central gene ArtQ and its neighboring genes 

First, we set the number of upstream and downstream neighbors to 10 each and selected the 

3 neighbors with highest co-expression correlation. Figure 3.3 shows the results for three different 

thresholds r. 

 

Figure 3.3 Effects of the similarity threshold r of GO terms on the accuracy of transporter 

substrate classification 

When the threshold r was increased from 0.2 to 0.5, all accuracies increased likewise 

(Escherichia coli: from 87% to 90%, Saccharomyces cerevisiae: from 76% to 78%, Homo sapiens: 

from 77% to 82%). When the threshold was increased further from 0.5 to 0.8, the accuracies of 
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Escherichia coli and of Saccharomyces cerevisiae increased further whereas that of Homo sapiens 

decreased slightly. For Homo sapiens, more sugar transporters were incorrectly classified than 

amino acid transporters, although the number of amino acid transporters is much larger than the 

number of sugar transporters (Table 3.2). 

 

Table 3.2 Number of genes that were correctly and in-correctly classified 

Organism 
Transporter 

substrate 

r = 0.2 r = 0.5 r = 0.8 

Correctly 

classified  

Not 

correctly 

classified 

Correctly 

classified  

Not 

correctly 

classified 

Correctly 

classified  

Not 

correctly 

classified 

Escherichia 

coli 

Sugar 18 3 15 3 14 2 

Amino acid 22 3 22 1 17 1 

Saccharomyces 

cerevisiae 

Sugar 5 2 5 2 5 1 

Amino acid 11 3 10 2 7 2 

Homo sapiens Sugar 3 7 3 6 4 3 

Amino acid 30 3 28 1 15 2 

 

Next, we varied the number of neighbors while keeping the threshold r at 0.5. Figure 3.4 

shows the results for three cases where the windows sizes were (5, 3), (10, 3) and (20, 5), 

respectively. (10, 3) gave the best result for all three organisms.  

For comparison, we compared our tool against two webservers that predict substrate 

specificities of membrane transporters from the protein sequence: (1) TrSSP 

(http://bioinfo.noble.org/TrSSP/) ([151]) using the options “AAindex + PSSM based (Swissprot)” 

and (2) TransportTP (http://bioinfo3.noble.org/transporter/) ([152]) using an E-value threshold = 

0.1. The results obtained with these methods are listed in Table 3.3. Our method gave superior 

results (90% accuracy and higher) than TrSSP (64% in the best case) and TransportTP (54% in the 

best case) for Escherichia coli sequences. TransportTP did not provide useful results for 

Saccharomyces cerevisiae and human sequences. The results of TrSPP for human sequences were 

of comparable accuracy to those of our tool. For Saccharomyces cerevisiae sequences, TrSPP 

provided better results than our tool. In addition, it should be noted that our method was not able to 

make predictions for for transporters that have non-zero features (see methods; paragraph “Training 

and testing data for SVM”). 
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Table 3.3 Comparison against alternative methods for predicting substrate specificities 

Organism Group 
Number of 

sequences 

TrSSP TransportTP 

Correct Accuracy Correct Accuracy 

Escherichia coli aa 47 23 48.94% 10 21.28% 

sugar 39 25 64.10% 21 53.85% 

Saccharomyces 

cerevisiae  

aa 24 20 83,33% 0 0.00% 

sugar 17 16 94,12% 0 0.00% 

Homo sapiens aa 37 31 83,78% 0 0.00% 

sugar 13 10 76,92%   

 

 

Figure 3.4 Prediction accuracy for different window sizes 

3.3.2 Metabolic pathway enzymes 

Next we tested the same approach for the genes coding for enzymes belonging to different groups 

of metabolic pathways of Escherichia coli. Supplement table 3 shows that, when the number of 

neighbors was extended, the number of genes that can be used by SVM decreased. In consequence, 

the accuracies decreased when we considered more neighbors (Figure 3.5). This characteristic was 

not found for the transporter proteins.  
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Figure 3.5 Accuracies of different thresholds r and number of neighbors when testing with 

enzymes of the sugar and amino acid metabolism 

After testing with two groups, we tested the method with the four groups of genes involved 

in sugar, amino acid, lipid, and nucleotide pathways, respectively. Figure 3.6 shows that the 

accuracies relative to the random prediction (25%) are increased compared to the previous test. 

Secondly, the threshold r had only a small effect when we extended the number of neighbors to (20, 

5). 

 

Figure 3.6 Accuracies of 4-class prediction for different thresholds and number of neighbors when testing 

with enzymes belonging to the sugar, amino acid, lipid and nucleotide metabolic pathways 
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3.4 Discussion 

The main findings of our study are: 

a) The function of membrane transporters and of metabolic enzymes is best associated with 

that of its co-expressed neighbor genes for Escherichia coli, followed by Saccharomyces 

cerevisiae, and by Homo sapiens. 

b) The substrate-specificities of membrane transporters can be classified better than the 

membership of enzymes to four major metabolic pathway classes. 

The first finding had to be expected. Operons exist in bacteria and rarely in eukaryotes 

(Saccharomyces cerevisiae and Homo sapiens). Junier and Rivoire recently reported that the 2034 

genes of Escherichia coli are arranged in 740 synteny segments [153]. They found that co-

expression occurs at high levels within synteny segments and low levels outside. However, it was 

also suggested that functionally related genes are grouped together in bacteria outside of operons in 

the form of so-called “uber-operons” [154].  

In yeast, the most highly co-expressed pairs of neighbor genes tend to be similar in function 

[133], [155] . Adjacent genes are frequently (more than 25%) transcribed in the same phase(s) of 

the cell cycle[130]. 

For Homo sapiens, Wang and colleagues recently compared the expression profiles of bulk 

tissue of glioblastoma patients to expression profiles at single-cell level [136]. Interestingly, they 

found that co-expression in bulk samples was stronger associated with similar gene function than 

that in single cell samples. In the latter case, co-expressed genes showed a stronger tendency to 

physically interact with each other. Nevertheless, our results show that the biological functions of 

co-expressed neighbor genes are in all three investigated species associated with the function of the 

central gene. 

When compared to results obtained the alternative method TrSSP, our method gave superior 

results for Escherichia coli transporters, results of comparable quality for human transporters, and 

results of slightly lower accuracy for Saccharomyces cerevisiae transporters. Since both methods 

take quasi-orthogonal approaches, it appears worthwhile to combine both methodologies in the 

future. 

Now we turn to the question why function prediction gave better results for the membrane 

transporters than for metabolic enzymes. To us, this came as a surprise. In Arabidopsis thaliana 

(which was not studied here), Ren and colleagues reported that co-functionality was in most cases 

a poor predictor of co-expression, also for neighboring genes [156]. When turned around, this 
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suggests that co-expressed and gene neighborhood cannot be taken as guarantee for co-

functionality, at least not in eukaryotic genome. 

Cui and colleagues recently analyzed correlations of the expression levels of neighboring 

genes in Homo sapiens [157]. Interestingly, they distinguished between four types of genes: 

housekeeping genes, specific and selective genes that are either preferentially or exclusively 

expressed in response to physiological stimuli, and repressed genes. Importantly, they found that 

the direction of transcription of gene pairs (parallel or antiparallel) has at most a weak effect on the 

level of co-expression. This supports the approach taken in our study where we have ignored 

directionality of genes. Compared to randomly selected gene pairs, preferentially expressed and 

repressed genes showed a substantially higher co-functionality. Interestingly, this was not the case 

for neighboring housekeeping genes and exclusively expressed gene pairs that showed an even 

lower co-functionality than randomly selected gene pairs. 

These results show that functional associations may be quite case-specific.  

3.5 Conclusion 

In this work, we focused on the classification of integral membrane transporters from three 

organisms (Escherichia coli, Saccharomyces cerevisiae and Homo sapiens) according to their 

transported substrates. The idea was to identify among the close neighbors of a query gene with 

unknown function those genes that show high co-expression with this gene. Then, we identified 

frequent GO terms among these co-expressed neighbors and used a support vector machine 

classifier to annotate the substrate specificity of the query gene. Training of the method was 

performed on groups of known amino acid and sugar transporters. For transporter proteins, the 

average accuracies of Escherichia coli, Saccharomyces cerevisiae and Homo sapiens were 89%, 

78%, and 79%, respectively. When tested on the genes belonging to different metabolic pathways 

of Escherichia coli, the average accuracy was 75% (two classes) and 67% (four classes). In future 

works, this approach may be used in combination with other features such as sequence motifs, 

sequence similarity, and further characteristics of the protein sequence such as its amino acid 

composition. 
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Chapter 4 Copy number alterations in tumor genomes deleting 

antineoplastic drug targets partially compensated by complementary 

amplifications 

 

This chapter is based on the following publication: 

Tran, V.H., Kiemer, A., Helms, V. Copy number alterations in tumor genomes deleting 

antineoplastic drug targets partially compensated by complementary amplifications. (2018) Cancer 

Genomics & Proteomics, V. 15, p. 365-378,doi: 10.21873/cgp.20095.  

My contribution was to design the research project and analyze the results together with the co-

author Volkhard Helms. I, Alexandra K. Kiemer, and Volkhard Helms prepared the manuscript. I 

collected data and performed the calculations. 

 

4.1 Introduction  

Tumor cells differ phenotypically from normal cells, for example, by showing increased levels of 

proliferation and evading apoptosis [62]. At the genomic level, one common variation of tumor 

cells are DNA copy number changes that include both gene amplifications and deletions [158]. 

When these changes occur in germline cells, they are referred to as DNA copy number variations 

(CNV). When they occur in somatic cells, they are termed copy number alterations (CNA) [32]. It 

is believed that CNAs in genome sequences of cancer patients [159] may play important roles in 

oncogenesis and cancer therapy [160].  

An important reference data set on CNAs in patients suffering from more than 30 different 

tumors was compiled by The Cancer Genome Atlas (TCGA) project. A pan-cancer study of these 

data analyzed the effect of CNAs on known oncogenic drivers and tumor suppressor genes (TSG) 

and identified potential new cancer drivers, TSGs and biomarkers [161]. This study also analyzed 

the length and the distribution of somatic CNAs along the chromosomes, identified regions that 

recurred significantly often and compared the number of genes in amplified and deleted regions 

[161]. Subsequent studies [162], [163] of CNA data from TCGA focused either on specific genes 

(e.g. PD-L1, CD247, IRS4, IGF2) or on the relationship between copy number events and gene 

expression [162], [164]. From the 33 tumor types available at TCGA today, we processed the data 

from 31 tumors in this study (glioblastoma multiforme, renal clear cell carcinoma, brain lower grade 
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glioma, lung squamous cell carcinoma, liver hepatocellular carcinoma, renal papillary cell 

carcinoma, kidney chromophobe carcinoma, breast invasive carcinoma, ovarian serous 

cystadenocarcinoma, uterine carcinosarcoma, head and neck squamous cell carcinoma, thyroid 

carcinoma, prostate adenocarcinoma, colon adenocarcinoma, stomach adenocarcinoma, bladder 

urothelial carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma, 

sarcoma, acute myeloid leukemia, esophageal carcinoma, pheochromocytoma and paraganglioma, 

rectum adenocarcinoma, adrenocortical carcinoma, cholangiocarcinoma, lymphoid neoplasm 

diffuse large B-cell lymphoma, uveal melanoma, mesothelioma, thymoma, testicular germ cell 

tumors, uterine corpus endometrial carcinoma, pancreatic adenocarcinoma). The original 

publications on the datasets collected for these thirty-one tumors focused on the rate of copy number 

alterations, identification of recurrently amplified/deleted CNAs, the distribution of CNAs along 

the chromosomes, identification of oncogenes and TSGs, and clustered the tumors into subtypes. 

Several follow-up studies have analyzed CNA data from TGCA and analyzed copy number changes 

[165]–[167], recurrent copy number variations/alterations [168], [169]–[171], the effect of CNAs 

on specific genes [172]–[176], identified putative new druggable cancer driver genes [177], tried to 

predict cancer relapse [178], and studied how cancer patients may be grouped into subtypes [167], 

[173]. 

Tumor therapy often involves chemotherapy [179]. The current release of Drugbank 

(version 5.0.11, downloaded on January 12, 2018) lists 477 drugs as antineoplastic (AN) agents that 

are annotated to bind to 220 different protein targets. Mapping the targets of AN agents to the 

KEGG database of cellular pathways using the tool KEGG mapper [180] shows that 53 target 

proteins from this list belong to the PI3K-Akt signaling pathway, 39 to metabolic pathways, 32 to 

the Rap1 signaling pathway, 30 to Th17 cell differentiation, 32 to the Ras signaling pathway, and 

38 to the MAPK signaling pathway. The complete list of these pathways is included as Supplement 

table 5.  

The aim of this project was to analyze how protein targets of AN agents are affected by 

CNAs. To our best knowledge, no prior study addressed a related question so far. The only related 

work we are aware of is a study by Graham et al. who recently reported that recurrent patterns of 

DNA copy number alterations in tumors reflect metabolic selection pressures such as coordinated 

alteration of genes involved in glycolytic metabolism [181]. For 31 tumor types from the TCGA 

dataset (see list above), we compared how recurrent CNAs affected the set of protein targets of 

chemotherapeutic drugs in comparison with a set of housekeeping genes and a set of cancer 

hallmark genes 
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4.2 Materials and methods 

Figure 4.1 summarizes the main steps of our analysis. 

GDC portal

CNA data

GISTIC2.0

Recurrently 
amplified/deleted 

genes

Drugbank

Antineoplastic 
agents

Targets of AN 
agents

Housekeeping 
genes

Hallmark of the 
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genes

Which genes 
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Is Amp fewer than Del? 

Clinical data

Drugs for specific 
disease

Specific targets

 

Figure 4.1 Main steps of analysis workflow 

4.2.1 Data on copy number alterations 

As mentioned, we analyzed genomic data from the TCGA project on CNAs observed in patients 

suffering from 31 different forms of tumors (listed in the introduction section). Missing from this 

list are the data for lung adenocarcinoma and skin cutaneous melanoma as these could not be 

processed with the GISTIC2.0 tool (see below). The CNA data of these patients (start and end 

position, chromosome, and segment mean of CNA) were downloaded from the Genomic Data 

Commons Portal (GDC portal) on September 29, 2017 [182]. 

4.2.2 Clinical data 

From the clinical data provided at GDC, we extracted information on which drug treatment was 

given to specific patients. Thereby, the presence of CNAs in individual patient genomes was 

associated with the drug treatment applied to these patients. In our work, only data from patients 

that had both CNA and clinical data available were used. 

4.2.3 Antineoplastic agents and their targets 

A list of 477 ANs together with their target proteins was extracted from Drugbank [183] (version 

5.0.11, downloaded on January 12, 2018). We considered only those protein targets for which 
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pharmacological action of the respective drug molecule is reported as “yes” in Drugbank. These 

477 AN agents are reported to bind to 220 different protein targets (labeled here by their Uniprot 

accessions numbers). After converting Uniprot accession numbers to gene symbols, we were left 

with 218 genes. As “tumor-specific” drugs, we considered those drugs that were applied to the 

patients of a particular tumor entity according to the TCGA data files. As shown in Supplement 

table 6 and Supplement table 7 for drugs against lung cancer or breast cancer, these sets comprise 

a representative subset of the FDA-approved drug treatments for these tumors types (8 out of 16 

and 23 out of 31), see https://www.cancer.gov/about-cancer/treatment/drugs/cancer-type. The sets 

for lung squamous cell carcinoma and breast cancer also included eight further drugs each that are 

not FDA-approved, but applied to TCGA patients possibly during ongoing clinical trials. Here, such 

drugs are labeled as “experimental drugs”. 

4.2.4 Gene sets 

Beside the set of protein targets of AN agents, we also considered a set of 3804 housekeeping genes 

[184] (i.e. at least one variant of these genes is expressed in all tissues uniformly; downloaded from 

https://www.tau.ac.il/~elieis/HKG/ on January 13, 2018) and a set of 2338 “hallmark genes” of 

cancer. The latter set contains all human genes that are annotated in the Gene Ontology [53] to at 

least one of 37 Gene Ontology terms that were described as hallmarks of cancer [63] (downloaded 

from http://geneontology.org/page/download-annotations on January 13, 2018). After converting 

Uniprot accession numbers to symbols, this gave 2321 gene symbols in the hallmarks of cancer 

gene set. Figure 4.2 shows the overlap of the three gene sets. 
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Figure 4.2 Overlap between the three gene sets 

4.2.5 Genes affected by copy number alterations 

Genes that are recurrently affected by CNAs were identified with the GISTIC2.0 tool version 2.0.22 

[112] using segmentation files and marker files created from the CNA data of the tumor samples. 

Following Laddha et al. [185], we used 0.2 and -0.2 as thresholds for GISTIC2.0 to identify 

recurrent amplification and deletion peaks and the genes contained in those peaks. Uniprot 

accession numbers used by Drugbank were converted to gene symbols used by GISTIC2.0 by 

making use of data from the HUGO Gene Nomenclature Committee (HGNC database) [186] that 

were downloaded in January 2017. Information on genes (chromosome, start position, and end 

position) was based on data from Ensembl (data downloaded from http://rest.ensembl.org on 

January 16, 2018). 

4.3 Results  

4.3.1 General statistics 

The aims of this work were (1) to test the hypothesis that genomic CNAs observed in tumors affect 

the protein targets of AN agents significantly more often than expected by chance, (2) to test 

whether either amplifications or deletions are more common, and (3) to study the potential 

relevance for chemoresistance. In principle, one can expect that eventually all genes except for the 

essential genes will be affected by CNAs in some patients. Hence, to get more meaningful results, 

our analysis was focused on the set of recurrently occurring CNAs that appear statistically more 

often in each individual tumor entity than expected by chance. This strategy is similar to that used 

by Graham et al. [181]. 

Table 4.1 lists the number of recurrently amplified and deleted genes obtained by processing 

the raw CNA data for the 31 considered tumors with the GISTIC2.0 program. Specified is also how 

many of these amplifications/deletions affect hallmark genes, housekeeping genes, and protein 

targets of AN drugs. Note that, in this initial analysis, protein targets of all 477 considered AN drugs 

were considered irrespective of whether these drugs are actually being used to treat the particular 

subtype of cancer. In acute myeloid leukemia, 38 of 105 cases (26.57%) received treatment prior to 

the time when the CNA data ware taken. For glioblastoma (22 of 590 cases) and renal clear cell 

carcinoma (18 of 530 cases), the number of such cases was around 4%. In all other tumors, the 

fraction of pre-treated patients was below 3 %. Hence, in all tumors except for acute myeloid 

leukemia, the detected amplifications and deletions are unlikely to reflect resistance phenomena 

occurring in response to treatment (Supplement table 8). As shown in Table 4.1, in twenty-nine out 

http://rest.ensembl.org/
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of thirty-one studied tumors (the exceptions are thyroid carcinoma and kidney chromophobe), the 

number of recurrently deleted genes exceeded the number of recurrently amplified genes. However, 

this difference between the lower number of amplifications and the higher number of deletions was 

equally significant for the sets of all genes, antineoplastic targets, hallmark genes, and housekeeping 

genes (p-values 8.501e-09, 1.721e-08, 9.196e-09 and 8.367e-09, Wilcoxon test) and, hence, does 

not reflect a peculiar property of AN target genes. Supplement table 9 shows that a similar behavior 

is observed for genes annotated to specific cancer hallmarks. 

Table 4.1 Number of genes affected by CNAs in TCGA data for the 31 considered types of tumors 

Disease 

Number 

of cases 

considere

d 

Number of 

cases 

without 

pre-

treatment 

Recurrently 

amplified 

genes 

Recurrentl

y deleted 

genes 

Amplified 

AN 

targets 

Deleted 

AN 

targets 

Amplified 

Hallmark 

genes 

Deleted 

Hallmark 

genes 

Amplified 

Housekee

ping 

genes 

Deleted 

Houseke

eping 

genes 

Breast Invasive 

Carcinoma 

1094 1079 841 4084 5 34 123 605 76 304 

Glioblastoma 

Multiforme 

590 568 231 2176 4 12 20 286 20 190 

Ovarian Serous 

Cystadenocarcinoma 

570 569 470 3144 3 30 102 463 34 246 

Uterine Corpus 

Endometrial 

Carcinoma 

540 538 456 8377 3 68 84 1266 33 774 

Renal Clear Cell 

Carcinoma 

530 512 3072 5053 33 37 471 771 267 451 

Head and Neck 

Squamous Cell 

Carcinoma 

517 508 715 3166 8 31 121 455 82 238 

Brain Lower Grade 

Glioma 

514 511 628 5092 9 45 118 801 61 451 

Thyroid Carcinoma 505 500 10 4 0 0 1 1 0 1 

Lung Squamous Cell 

Carcinoma 

503 496 1154 3866 14 43 155 577 120 305 

Prostate 

Adenocarcinoma 

497 495 497 2600 2 26 70 429 30 232 

Colon 

Adenocarcinoma 

450 447 403 2364 4 23 84 317 35 193 

Stomach 

Adenocarcinoma 

442 442 1081 4124 9 41 169 641 90 407 

Bladder Urothelial 

Carcinoma 

412 402 1248 3049 12 31 232 458 134 266 

Liver Hepatocellular 

Carcinoma 

375 374 644 2818 4 28 101 388 58 223 

Cervical Squamous 

Cell Carcinoma and 

Endocervical 

Adenocarcinoma 

295 295 1506 3829 13 34 231 540 114 350 

Renal Papillary Cell 

Carcinoma 

290 290 299 6132 5 59 52 922 17 501 

Sarcoma 260 259 2602 8101 28 82 407 1201 232 759 

Acute Myeloid 

Leukemia 

143 105 3 3714 0 29 1 593 0 344 

Esophageal 

Carcinoma 

184 184 801 6773 6 61 130 1010 77 576 

Pancreatic 

Adenocarcinoma 

184 183 597 7190 6 59 87 1072 56 595 

Pheochromocytoma 

and Paraganglioma 

178 177 56 5840 1 52 9 911 5 513 

Rectum 

Adenocarcinoma 

164 163 1116 5663 9 40 190 853 92 508 

Testicular Germ Cell 

Tumors 

134 134 2142 2811 21 31 312 443 222 260 

Thymoma 124 122 0 2038 0 20 0 352 0 174 
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Kidney 

Chromophobe 

66 66 38 1 1 0 8 1 6 0 

Adrenocortical 

Carcinoma 

90 89 693 5243 4 50 93 778 66 448 

Mesothelioma 87 86 0 4357 0 43 0 681 0 464 

Uveal Melanoma 80 80 564 3050 5 33 90 465 56 342 

Lymphoid Neoplasm 

Diffuse Large B-cell 

Lymphoma 

48 47 110 6580 0 68 15 1041 10 663 

Uterine 

Carcinosarcoma 
56 56 917 4615 14 42 159 689 95 439 

Cholangiocarcinoma 36 35 19 2801 2 21 3 456 0 274 

            

Max 1094 1079 3072 8377 33 82 471 1266 267 774 

Min 36 35 0 1 0 0 0 1 0 0 

Average 321.23 316.52 739.13 4150.16 7.26 37.84 117.35 627.94 67.35 370.68 

 

4.3.2 Disease specific statistics 

For each disease, we then extracted from the GDC clinical data files the names of the drugs that 

were prescribed to the respective patients. The analysis was repeated with the same numbers of 

cases considered as in Table 4.1, but focused on the combined set of cancer-specific targets of these 

drugs, see Table 4.2. This set of target proteins was termed “specific drug targets” meaning that 

these are targets of the drugs that are given to patients with this specific tumor entity. By way of 

construction, the resulting numbers of affected genes were now far smaller. In 18 tumors, no CNA-

amplifications affected the specific drug targets. In contrast, sarcoma behaved as an outlier to the 

other extreme with eight amplified targets. In the 12 remaining tumors, only one or two cases were 

observed. In contrast, in 23 tumors, CNA-deletions affected the specific drug targets of these tumor 

types. Among the three tumors (brain lower grade glioma, sarcoma, and mesothelioma) showing 

the largest number of CNA-deleted targets (10, 14, 11) only mesothelioma showed significantly 

more deletions than amplifications (adjusted p-value of 0.001, Fisher’s exact test). When taking all 

tumor data together, the difference between specific amplified/deleted targets for the 31 tumors was 

significant (p-values of 0.00016, Wilcoxon rank-sum test). 

Table 4.2 Specific drugs and drug targets of the specified disease and the number of observed 

CNA-amplifications or CNA-deletions affecting the specific drug targets 

Disease 
Number 

of Drugs 

Number of 

targets 

proteins 

CNA-

amplified 

targets 

CNA-

deleted 

targets 

Breast Invasive Carcinoma 38 32 2 4 

Glioblastoma Multiforme 37 52 2 2 

Ovarian Serous Cystadenocarcinoma 31 19 1 3 

Uterine Corpus Endometrial Carcinoma 16 15 0 5 
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Renal Clear Cell Carcinoma 17 29 2 6 

Head and Neck Squamous Cell Carcinoma 18 20 1 3 

Brain Lower Grade Glioma 24 37 2 10 

Thyroid Carcinoma 1 1 0 0 

Lung Squamous Cell Carcinoma 16 16 2 2 

Prostate Adenocarcinoma 11 10 0 3 

Colon Adenocarcinoma 15 27 1 4 

Stomach Adenocarcinoma 22 16 0 2 

Bladder Urothelial Carcinoma 20 24 2 3 

Liver Hepatocellular Carcinoma 12 26 0 5 

Cervical Squamous Cell Carcinoma and 

Endocervical Adenocarcinoma 

12 12 0 4 

Renal Papillary Cell Carcinoma 14 24 1 7 

Sarcoma 23 34 8 14 

Acute Myeloid Leukemia 0 0 0 0 

Esophageal Carcinoma 11 9 0 3 

Pancreatic Adenocarcinoma 15 14 1 1 

Pheochromocytoma and Paraganglioma 6 3 0 2 

Rectum Adenocarcinoma 12 9 2 0 

Testicular Germ Cell Tumors 5 1 0 0 

Thymoma 8 11 0 0 

Kidney Chromophobe 5 18 0 0 

Adrenocortical Carcinoma 10 16 0 2 

Mesothelioma 16 30 0 11 

Uveal Melanoma 1 0 0 0 

Lymphoid Neoplasm Diffuse Large B-cell 

Lymphoma 

23 15 0 4 

Uterine Carcinosarcoma 10 8 0 4 

Cholangiocarcinoma 3 2 0 0 

 

Following up on Table 4.2, Supplement table 10 lists the number of patient genomes where 

tumor-specific AN targets were affected by CNA mutations. This data shows that, although the 

absolute number of CNA-affected AN target proteins is quite small (Supplement table 10), the 

proportion of patients harboring these CNAs is in fact rather high. Respective target amplifications 

and deletions occur recurrently in a sizeable fraction (0 to 90%) of all patients. 

To get more insight into the molecular mechanisms at place, Table 4.3 and Table 4.4 list the 

gene symbols of the tumor-specific AN targets that were affected by CNA amplifications and 

deletions (Table 4.2) and the respective drugs that were applied to patients of these tumors. 

Experimental drugs were marked by label EXP, e.g. docetaxelEXP. For acute myeloid leukemia that 

contains a sizeable fraction of pre-treated patients (26.57 %) no information about the applied drugs 
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is provided in the TCGA clinical data files so that we could not identify recurrent CNA 

amplifications or deletions of cancer-specific drug targets in this case.  

Table 4.3 Gene names and corresponding drugs of specific AN targets that were recurrently 

amplified by CNAs. The drugs that bind to the respective AN target proteins are given in 

brackets. Tumors having no amplified AN targets and that are not listed in Table 4.5 are not 

shown. 

Disease Target gene (Drug name) 

Breast Invasive Carcinoma TOP2A (MitoxantroneEXP, Doxorubicin), EGFR 

(Lapatinib) 

Glioblastoma Multiforme KDR (CabozantinibEXP, SorafenibEXP), EGFR 

(ErlotinibEXP, GefitinibEXP) 

Ovarian Serous Cystadenocarcinoma VEGFA (Bevacizumab) 

Uterine Corpus Endometrial Carcinoma - 

Renal Clear Cell Carcinoma FLT4 (Sunitinib, Sorafenib, Axitinib, Pazopanib), BRAF 

(Sorafenib) 

Head and Neck Squamous Cell 

Carcinoma 

TYMS (CapecitabineEXP, PemetrexedEXP, FluorouracilEXP) 

Brain Lower Grade Glioma KIT (ImatinibEXP, SorafenibEXP), EGFR (ErlotinibEXP, 

AfatinibEXP) 

Thyroid Carcinoma - 

Lung Squamous Cell Carcinoma TYMS (Pemetrexed), EGFR (Erlotinib, Gefitinib) 

Prostate Adenocarcinoma - 

Colon Adenocarcinoma VEGFA (Aflibercept, Bevacizumab) 

Stomach Adenocarcinoma - 

Bladder Urothelial Carcinoma EGFR (ErlotinibEXP), VEGFA (BevacizumabEXP) 

Liver Hepatocellular Carcinoma - 

Cervical Squamous Cell Carcinoma and 

Endocervical Adenocarcinoma 

- 

Renal Papillary Cell Carcinoma FLT4 (Sunitinib, Sorafenib, Pazopanib) 

Sarcoma PDGFRA (Pazopanib), HDAC2 (VorinostatEXP), FLT4 

(SorafenibEXP, Pazopanib), TUBB1 (DocetaxelEXP), KIT 

(Imatinib, SorafenibEXP, Pazopanib), KDR (SorafenibEXP, 

Pazopanib), PTGS2 (SulindacEXP), FGFR1 (SorafenibEXP) 

Pancreatic Adenocarcinoma TYMS (CapecitabineEXP, Fluorouracil) 

Rectum Adenocarcinoma TOP2A (Etoposide), VEGFA (Aflibercept, Bevacizumab) 
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Table 4.4 Names of genes that were recurrently deleted by CNAs. The drugs that bind to the 

respective AN target proteins are given in brackets. Tumors having no amplified AN targets 

and that are not listed in Table 4.3 are not shown. 

Disease Target gene (Drug name) 
Breast Invasive Carcinoma TUBA1A (Vinblastine), TUBB3 (Ixabepilone), PGR 

(Megestrol acetate), ESR2 (Tamoxifen) 

Glioblastoma Multiforme FLT1 (SorafenibEXP), FLT3 (SorafenibEXP) 

Ovarian Serous Cystadenocarcinoma RRM1 (Gemcitabine), PSMB1 (BortezomibEXP), ESR2 

(TamoxifenEXP) 

Uterine Corpus Endometrial Carcinoma RRM1 (GemcitabineEXP), PGR (Megestrol acetate), 

ESR1 (TamoxifenEXP, FulvestrantEXP), ESR2 

(TamoxifenEXP), VEGFA (BevacizumabEXP) 

Renal Clear Cell Carcinoma FLT1 (Sunitinib, Sorafenib, Axitinib, Pazopanib), 

CRBN (ThalidomideEXP), FLT3 (Sunitinib, Sorafenib), 

NR1I2 (ErlotinibEXP), RAF1 (Sorafenib), FGFR2 

(ThalidomideEXP) 

Head and Neck Squamous Cell 

Carcinoma 

RRM1 (GemcitabineEXP), BCL2 (PaclitaxelEXP), MTOR 

(EverolimusEXP) 

Brain Lower Grade Glioma TUBA1A (VinblastineEXP), TOP1MT (IrinotecanEXP), 

FLT4 (SorafenibEXP), NR1I2 (ErlotinibEXP), GSR 

(Carmustine), PDCD1 (PembrolizumabEXP), TYMS 

(CapecitabineEXP), FGFR2 (ThalidomideEXP), ESR2 

(TamoxifenEXP), FGFR1 (SorafenibEXP) 

Lung Squamous Cell Carcinoma TUBB (VincristineEXP, Vinorelbine), NR1I2 (Erlotinib) 

Prostate Adenocarcinoma LHCGR (Goserelin), MAPT (Docetaxel), CYP17A1 

(Abiraterone) 

Colon Adenocarcinoma MAPK11 (Regorafenib), TYMS (RaltitrexedEXP, 

Capecitabine, Fluorouracil, FloxuridineEXP), PGF 

(Aflibercept), FGFR2 (Regorafenib) 

Stomach Adenocarcinoma MAP2 (Docetaxel, PaclitaxelEXP), NR3C1 

(DexamethasoneEXP, MethylprednisoloneEXP) 

Bladder Urothelial Carcinoma HDAC2 (VorinostatEXP), BCL2 (PaclitaxelEXP), TUBE1 

(VinblastineEXP) 

Liver Hepatocellular Carcinoma TOP2A (DoxorubicinEXP), MAPK11 (Regorafenib), 

BRAF (Regorafenib, Sorafenib), FGFR2 (Regorafenib), 

FRK (Regorafenib) 

Cervical Squamous Cell Carcinoma and 

Endocervical Adenocarcinoma 

MAP2(PaclitaxelEXP), TUBB1(PaclitaxelEXP), 

TOP1(Topotecan), ALPPL2(AmifostineEXP) 

Renal Papillary Cell Carcinoma IFNAR2 (Interferon Alfa-2b, RecombinantEXP), RRM1 

(GemcitabineEXP), FLT1 (Sunitinib, Sorafenib, 

Pazopanib), FLT3 (Sunitinib, Sorafenib), MS4A1 

(RituximabEXP), GART (PemetrexedEXP), IFNAR1 

(Interferon Alfa-2b, RecombinantEXP)  

Sarcoma RET (SorafenibEXP), PDGFRB (SorafenibEXP, 

Pazopanib), FLT1 (SorafenibEXP, Pazopanib), HDAC3 

(VorinostatEXP), FLT4 (SorafenibEXP, Pazopanib), BRAF 

(SorafenibEXP), TYMS (PemetrexedEXP), PTGS2 

(SulindacEXP), CYP19A1 (LetrozoleEXP), ATIC 

(PemetrexedEXP), MAP2 (DocetaxelEXP), PGR 

(Megestrol acetateEXP), MAP4 (DocetaxelEXP), FGFR1 

(SorafenibEXP) 

Acute Myeloid Leukemia   
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Esophageal Carcinoma RRM1 (GemcitabineEXP), TUBB1 (Docetaxel, 

PaclitaxelEXP), BCL2 (PaclitaxelEXP) 

Pancreatic Adenocarcinoma RRM1 (Gemcitabine) 

Pheochromocytoma and Paraganglioma RRM1 (GemcitabineEXP), TUBB (VincristineEXP) 

Adrenocortical Carcinoma RET (SorafenibEXP), BRAF (SorafenibEXP) 

Mesothelioma PDGFRB (SunitinibEXP), CSF1R (SunitinibEXP), HDAC2 

(VorinostatEXP), FLT1 (SunitinibEXP), ATIC 

(Pemetrexed), HDAC3 (VorinostatEXP), FLT3 

(SunitinibEXP), FLT4 (SunitinibEXP), TUBB 

(VinorelbineEXP), MTOR (TemsirolimusEXP, 

EverolimusEXP), VEGFA (BevacizumabEXP)  

Lymphoid Neoplasm Diffuse Large B-

cell Lymphoma 

DHFR (Methotrexate), TUBA1A (Vinblastine), 

TNFSF11 (Lenalidomide), NR3C1 (Dexamethasone, 

Prednisone, PrednisoloneEXP) 

Uterine Carcinosarcoma TUBB1 (Docetaxel, Paclitaxel), BCL2 (Paclitaxel), 

MAP4 (Docetaxel, Paclitaxel), MAPT (Docetaxel, 

Paclitaxel) 

 

Comparison of Table 4.3 and Table 4.4 reveals that for some tumors, there exist targets of 

the same drugs that were both recurrently deleted and amplified in patients of the same tumor type. 

Table 4.5 lists all such pairs. 

 

Table 4.5 Drugs that bind to amplified and deleted AN targets in a single tumor type. Names 

of target genes are given in brackets 

Disease 
Drug name (Amplified target 

genes) 

Drug name (Deleted target 

genes) 

Glioblastoma Multiforme SorafenibEXP (KDR) SorafenibEXP (FLT1, FLT3) 

Renal Clear Cell Carcinoma Sunitinib (FLT4), Sorafenib 

(FLT4, BRAF), Axitinib (FLT4), 

Pazopanib (FLT4), 

Sunitinib (FLT1, FLT3), 

Sorafenib (FLT1, FLT3, 

RAF1), Axitinib (FLT1), 

Pazopanib (FLT1) 

Brain Lower Grade Glioma ErlotinibEXP (EGFR), 

SorafenibEXP (KIT) 

ErlotinibEXP (NR1I2), 

SorafenibEXP (FLT4, 

FGFR1) 

Lung Squamous Cell 

Carcinoma 

Erlotinib (EGFR) Erlotinib (NR1I2) 

Colon Adenocarcinoma Aflibercept (VEGFA) Aflibercept (PGF) 

Renal Papillary Cell Carcinoma Sunitinib (FLT4), Sorafenib 

(FLT4), Pazopanib (FLT4) 

Sunitinib (FLT1, FLT3) 

Sorafenib (FLT1, FLT3), 

Pazopanib (FLT1) 

Sarcoma SorafenibEXP (FLT4, KIT, KDR, 

FGFR1), SulindacEXP (PTGS2), 

VorinostatEXP (HDAC2), 

DocetaxelEXP (TUBB1), 

Pazopanib (PDGFRA, FLT4, 

KIT, KDR) 

SorafenibEXP (RET, 

PDGFRB, FLT1, FLT4, 

BRAF, FGFR1), SulindacEXP 

(PTGS2), VorinostatEXP 

(HDAC3), DocetaxelEXP 

(MAP2, MAP4), Pazopanib 

(PDGFRB, FLT1, FLT4) 
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4.4 Discussion 

In this project, CNA and clinical data for 31 types of tumors from the TCGA project were combined 

with information on AN drugs from Drugbank. As shown in Table 4.1, in 29 studied tumors, the 

number of recurrently deleted genes exceeded the number of recurrently amplified genes. This 

finding is generally concordant with the results of the TCGA consortium who reported in their pan-

cancer study that the 70 peak amplification regions contained a median of 3 genes each, whereas 

70 peak regions of CNA deletions contained a median of 4 genes [161]. Earlier studies [161], [164] 

reported that CNAs promote carcinogenesis and/or tumor progression by deleting tumor suppressor 

genes (TSGs). In agreement with this, in the dataset studied here the patient genomes of 29 tumors 

contained at least one of 71 known TSGs [168] in their list of genes recurrently deleted by CNAs. 

In the case of uterine corpus endometrial carcinoma and lymphoid neoplasm diffuse large B-cell 

lymphoma, even 22 of the 71 known TSGs were recurrently affected by CNA deletions (Table 4.6). 

Table 4.6 Number of tumor suppressor genes affected by CNAs in different tumors. 

Disease 
Amplified TSG 

genes 

Deleted TSG 

genes 

Breast Invasive Carcinoma 0 12 

Glioblastoma Multiforme 1 6 

Ovarian Serous Cystadenocarcinoma 2 13 

Uterine Corpus Endometrial Carcinoma 2 22 

Renal Clear Cell Carcinoma 5 16 

Head and Neck Squamous Cell Carcinoma 0 9 

Brain Lower Grade Glioma 1 12 

Thyroid Carcinoma 0 0 

Lung Squamous Cell Carcinoma 2 9 

Prostate Adenocarcinoma 0 9 

Colon Adenocarcinoma 0 12 

Stomach Adenocarcinoma 2 13 

Bladder Urothelial Carcinoma 5 15 

Liver Hepatocellular Carcinoma 1 9 

Cervical Squamous Cell Carcinoma and Endocervical 

Adenocarcinoma 

0 10 

Renal Papillary Cell Carcinoma 1 13 

Sarcoma 6 20 

Acute Myeloid Leukemia 0 13 

Esophageal Carcinoma 0 18 

Pancreatic Adenocarcinoma 1 19 

Pheochromocytoma and Paraganglioma 0 15 

Rectum Adenocarcinoma 3 18 

Testicular Germ Cell Tumors 3 5 

Thymoma 0 4 
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Kidney Chromophobe 0 0 

Adrenocortical Carcinoma 0 13 

Mesothelioma 0 14 

Uveal Melanoma 0 10 

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 0 22 

Uterine Carcinosarcoma 1 14 

Cholangiocarcinoma 0 10 

 

 The recurrently amplified/deleted genes of the 31 tumor types had no protein-coding gene 

in common. This is not unexpected as will be argued in the following. As shown in Table 4.1, 

recurrent CNA deletions affected on average 4150 genes, which is roughly 20% of all genes. If we 

assume that the 31 considered tumors are unrelated, we would expect that - by chance – an overlap 

of (0.2)31 × 20.000 genes = 4 × 10-28 genes would be affected in all tumor groups. This number is 

even smaller for amplified genes. This led to the expected result that all three gene sets (AN targets, 

housekeeping genes, and hallmark of the cancer genes) had no gene in common that is affected by 

CNAs in all type of tumors. 

Then, we compared how CNAs affect gene subsets comprising antineoplastic (AN) target 

genes, housekeeping genes, hallmark of cancer genes, or tumor-specific AN target genes. 

Importantly, in all these gene sets, significantly more genes were affected by deletions than by 

amplifications. Hence, this observation is not specific to AN target genes nor to tumor-specific AN 

target genes.  

The tumor-specific AN target genes recurrently affected by CNA amplifications are 

epidermal growth factor receptor (EGFR), FLT4, TYMS, TOP2A, KDR, VEGFA, BRAF, KIT, 

PDGFRA, HDAC2, TUBB1, PTGS2 and FGFR1. These genes belong to 13 types of tumors (Table 

4.1 and Table 4.3). In the 18 remaining tumor types, no tumor-specific AN target gene was 

amplified. As an example, amplifications of EGFR gene copy numbers and overexpression of 

EGFR are known to be one of the most common alterations in non-small-cell lung carcinoma 

(NSCLC) cells [187]–[190] and are associated with a poor prognosis and chemoresistance. Among 

the histological subtypes of NSCLC, EGFR is most frequently expressed in squamous cells [191].  

On the other hand, in 23 tumors, CNA-deletions affected specific drug targets of these tumor 

types. As shown in Table 4.4, CNA deletions of AN targets affected (1) the two enzymes 

bifunctional purine biosynthesis protein PURH (gene name ATIC) [192] and a subunit of 

ribonucleotide reductase (RRM1) that are both important for cell replication [193]; (2) the nuclear 

receptor NR1I2 that regulates the metabolism and efflux of xenobiotics via CYP3A4 and MDR1 
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[194]; (3) the mitochondrial and nuclear DNA topoisomerases TOP1MT and TOP2A; (4) the 

members of the vascular endothelial growth factor receptor family VEGFA, FLT1, FLT3, and (5) 

fibroblast grown factor FGFR2; (6) estrogen receptor ESR2; (7) the signaling MAP kinase 

MAPK11 and (8) the B-Raf Proto-Oncogen BRAF that regulates the MAP kinase/ERK signaling 

pathway [195]; (9) the inhibitory cell surface receptor PDCD1 that is involved in the regulation of 

T-cell function [196]; and finally (10) beta tubulin TUBB and the microtubule-associated protein 

MAP1A that is almost exclusively expressed in the brain [197], [198] (and was CNA-deleted in 

glioblastoma). As all of these proteins have important roles in promoting carcinogenesis, they have 

likely been selected as targets of antineoplastic agents. As argued above, the CNA mutations pre-

existed before the onset of the therapy.  

These findings of rare CNA amplifications, but frequent CNA deletions of tumor-specific 

drug targets have clear consequences on drug development. In future, considering CNA frequencies 

should certainly become a standard element of drug design efforts. These data also suggests that 

genomes of tumor patients may contain “compensating” mutations where one target protein of a 

drug is deleted and another target protein of the same drug is amplified. Unfortunately, due to space 

reasons we are restricted to discussing only a few of these cases in more detail. 

In renal clear cell carcinoma patients that were subsequently treated with the drug molecules 

pazopanib, sunitinib, sorafenib, and axitinib, the target protein, FLT1, of these drugs was 

recurrently deleted (in 55 samples), whereas another target protein FLT4 of the same drugs was 

recurrently amplified (in 337 samples). Overall, 36 samples had both deleted FLT1 and amplified 

FLT4. FLT4 encodes a tyrosine kinase receptor of the same protein family as vascular endothelial 

growth factors C and D. In agreement with what is expected from the observed CNA amplification, 

FLT4 was previously reported to be overexpressed in renal clear cell carcinoma [199]. Besides 

being a recurrent target of CNA deletions here, FLT1 was also reported to be frequently silenced 

through promoter hypermethylation in renal clear cell carcinoma [200]. 

In lung squamous cell carcinoma patients subsequently treated with the drug erlotinib, one 

of its targets, NR1I2, was recurrently deleted (in 20 samples) and another target, epidermal growth 

factor receptor (EGFR), was recurrently amplified (in 186 samples). Nine samples had NR1I2 

deleted and EGFR amplified at the same time. In brain lower grade glioma, NR1I2 and EGFR were 

also deleted and amplified, respectively. Beside these two genes, the target KIT of sorafenib was 

amplified while FLT4 and FGFR1 were deleted. 
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There exist also cases where the same target protein can be either amplified or deleted. For 

example, Table 4.6 shows that, FLT4 (target of sorafenib and pazopanib), and PTGS2 (target of 

sulindac) were observed to be either amplified or deleted in different sarcoma samples. FLT4 was 

amplified in 57 samples, and was deleted in 36 samples. PTGS2 was amplified in 63 samples, and 

was deleted in 32 samples. 

 

4.5  Conclusion 

The aim of this work was to test the hypothesis that the protein targets of AN agents in tumors are 

affected by genomic copy number alternations (CNAs) more strongly than expected by chance. 

Based on CNAs and clinical data from the TCGA repository, we found that the genome sequences 

of tumor patients generally contain more recurrently deleted CNAs than recurrently amplified 

CNAs. This is also the case for CNAs affecting target genes of the specific AN for these tumors. 

Interestingly, we observed certain signs of apparently compensating effects of CNAs. The data 

available for this study enabled us to identify CNA alterations that existed prior to therapy and that 

may render certain chemotherapies more or less effective. In future, it would be desirable to also 

collect time-series CNA data of tumor patients at time of diagnosis and at later time points. This 

would point to CNA alterations caused by application of certain chemotherapies and thus reflect 

chemoresistance. 
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Chapter 5 Tumor genomes frequently contain amplified resistance genes 

prior to treatment 
 

My contribution was to design the research project, analyze the results, and prepare the manuscript 

together with the co-author Volkhard Helms. I collected data and performed the calculations. 

 

5.1 Introduction  

Chemotherapy is an important and frequently applied treatment option for tumors, besides surgery 

and radiation therapy. Unfortunately, the effectiveness of chemotherapy often decreases over time 

due to the onset of drug resistance [201]. Mansoori et al. reported that 90% of failures in the 

chemotherapy are due to the invasion and metastasis of cancers related to drug resistance [202]. 

Another review on breast cancer shows that 20% to 30% of HR+ breast cancer cases resist to 

endocrine therapy. In case of HER-2+ breast cancer, de novo resistance occurred in approximately 

65% of patients, and about 70% of patients with disease that initially respond will ultimately 

develop acquired resistance [203]. The known mechanisms of drug resistance include mutations in 

the drug target, drug inactivation, epigenetic modifications, enhanced drug efflux, DNA damage 

repair, inhibition of cell death, epithelial-mesenchymal transition, aberrated activation of bypass 

pathways and abnormal downstream pathways [202], [204], [205].  

It is well established that resistance may develop subsequent to the application of 

antineoplastic agents to the patient. Here, we wondered whether the genomes of untreated tumor 

patients are “primed” in some way to develop such forms of resistance. Such data is conveniently 

available at the TCGA portal where data was primarily collected prior to treatment. As a reference 

set of resistance genes, we considered genes belonging to four antineoplastic resistance pathways 

in the KEGG database [144], [206], [207]: EGFR tyrosine kinase inhibitor resistance, endocrine 

resistance, antifolate resistance, and platinum drug resistance. The epidermal growth factor receptor 

(EGFR) is a transmembrane receptor that belongs to the family of receptor tyrosine kinases [208]. 

The activation of EGFR may lead to cancer-cell proliferation and inhibition of apoptosis [209]. 

Some FDA-approved drugs belong to tyrosine kinase inhibitor category include neratinib, 

osimertinib and neratinib. The main mechanisms of EGFR tyrosine kinase inhibitor resistance are 

EGFR mutation (drug target alteration), aberrated activation of bypass pathways, abnormal 

downstream pathways, impairment of apoptotic pathway, and epithelial-mesenchymal transition 

[205].  
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The platinum-based drugs target DNA and induce cellular apoptosis [210]. Cisplatin, the 

first platinum drug, has a strong effect initially. However, the emergence of resistance is the major 

limitation of cisplatin-base chemotherapies. Another platinum drug, carboplatin, has a similar mode 

of action and leads to similar resistance patterns as cisplatin. Carboplatin was developed in order to 

reduce the dose-limiting toxicity of cisplatin [211]. Galluzzi et al. summarized four mechanisms of 

cisplatin resistance: pre-target resistance (e.g. increase of efflux), on-target resistance (cisplatin-

resistant cells become able to tolerate unrepaired DNA lesions, or can repair adducts at an increased 

pace), post-target resistance (e.g. tumor cells can overcome apoptosis by defects in the signal 

transduction pathways), and off-target resistance [212]. To overcome resistance against cisplatin 

and carboplatin, oxaliplatin was developed. However, oxaliplatin resistance was reported to be 

accompanied by cellular influx/efflux (solute carrier superfamily of membrane transporters, copper 

transporter, and ABC transporters). The other resistance mechanisms (DNA adducts repair, 

inhibition of apoptosis) also affect the sensitivity of oxaliplatin [213]. 

Folate plays an important role in nucleotide biosynthesis and biological methylation [214]. 

Antifolates in cancer treatment interrupt the intracellular folate metabolism resulting in ineffective 

DNA synthesis [215], [216]. Reported mechanisms of antifolate resistance include: increased 

expression and mutation of target enzymes, impaired antifolate uptake, increased antifolate efflux, 

defective antifolate polyglutamylation, and the augmentation of cellular tetrahydrofolate-cofactor 

pools in cells [217], [218]. 

Estrogens are vital for regulating the growth and differentiation of normal, premalignant 

and malignant cell types through interaction with two nuclear estrogen receptors (ERalpha and 

ERbeta) [219], Consequently, these receptors became targets of endocrine therapies (e.g. 

tamoxifen) [220]. Tamoxifen is the most successful to date [221]. However, both de novo resistance 

and acquired resistance were observed in breast cancer patients [222]. Mechanisms of endocrine 

resistance include loss or modification of ER expression, epigenetics mechanisms regulating ER 

expression, regulation of signal transduction pathways, altered expression of coactivators or co-

regulators that play a critical role in ER-mediated gene transcription, altered expression of specific 

microRNAs [222].   

In the genomes of tumor patients, considerably more genes are affected by copy number 

deletions than by amplifications. This is true for the group of tumor suppressor genes, but also for 

general classes of genes such as housekeeping genes. In chapter 4, we analyzed how CNAs detected 

in the patient genomes of 31 different tumor types affect the protein targets of antineoplastic agents 
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[223]. We found that CNA deletions more frequently affected the targets of antineoplastic agents 

than CNA amplifications. In seven cancer types, we observed signs of compensatory CNAs. For 

example, in glioblastoma multiforme, two target genes (FLT1, FLT3) of the experimental drug 

sorafenib were recurrently deleted whereas another target (KDR) of sorafenib was recurrently 

amplified. In renal clear cell carcinoma, the target FLT1 of pazopanib, sunitinib, sorafenib, and 

axitinib was recurrently deleted, whereas FLT4 bound by the same drugs was recurrently amplified.  

Here, we analyzed the same data set to identify CNAs in known resistance pathways. We 

found that the number of genes in all four-resistance pathways affected by CNA amplification in 

tumor tissues is greater than in normal tissues. In contrast, there was no significant difference 

between normal and tumor tissues with respect to CNA deletions.  

5.2 Material and methods 

5.2.1 Data on copy number alterations 

As mentioned, we analyzed genomic data from the TCGA project on CNAs observed in patients 

suffering from 31 different forms of tumor. Missing from this list are the data for lung 

adenocarcinoma and skin cutaneous melanoma as these could not be processed with the GISTIC2.0 

tool (see below). The CNA data of these patients (start and end position, chromosome, and segment 

mean of CNA) were downloaded from the Genomic Data Commons Portal (GDC portal) on 

September 29, 2017 [182]. 

5.2.2 KEGG pathways for antineoplastic resistance 

From KEGG pathway (https://www.genome.jp/kegg/pathway.html), we retrieved the gene names 

of four antineoplastic drug resistance pathways. Table 5.1 shows the pathway ID, the name of the 

pathways and the number of involved genes. 

Table 5.1  Antineoplastic drug resistance pathways taken from the KEGG database 

Pathway ID Pathway name Number of Genes 

hsa01521 EGFR tyrosine kinase inhibitor resistance 79 

hsa01522 Endocrine resistance 96 

hsa01523 Antifolate resistance 31 

has01524 Platinum drug resistance 73 

https://www.genome.jp/kegg/pathway.html
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For comparison, we also retrieved the genes names of 28 unrelated KEGG pathways having a 

similar number of genes as the four resistance pathways. These pathways are listed in Supplement 

table 11. 

5.2.3 Clinical data 

From the clinical data provided at GDC, we extracted information on which drug treatment was 

given to specific patients. These lists were then intersected with information form 

https://www.cancer.gov/about-cancer/treatment/drugs/cancer-type to exclude those drugs that are 

not approved for specific cancer types.  

5.2.4 Antineoplastic agents and their targets 

A list of 477 antineoplastic (AN) agents together with their target proteins was extracted from 

Drugbank [183] (version 5.0.11, downloaded on January 12, 2018). We considered only those 

protein targets for which pharmacological action of the respective drug molecules is reported as 

“yes” in Drugbank. These 477 AN agents are reported to bind to 220 different protein targets 

(labeled here by their Uniprot accessions numbers). After converting Uniprot accession numbers to 

gene symbols, we were left with 218 genes. As shown in the previous section, we only considered 

FDA-approved drugs, and therefore we only focus on the target of these drugs. 

5.2.5 Genes affected by copy number alterations 

Genes that are recurrently affected by CNAs were identified with the GISTIC2.0 tool version 2.0.22 

[112] using segmentation files and marker files created from the CNA data of the tumor samples. 

Following Laddha et al. [185], we used 0.2 and -0.2 as thresholds for GISTIC2.0 to identify 

recurrent amplification and deletion peaks and the genes contained in those peaks. Uniprot 

accession numbers used by Drugbank were converted to gene symbols used by GISTIC2.0 by 

making use of data from the HUGO Gene Nomenclature Committee (HGNC database) [186] that 

were downloaded in January 2018.  

5.3 Results 

5.3.1 Copy number alterations affect antineoplastic drug resistance pathways 

Figure 5.1 summarizes the main steps of our analysis. 

https://www.cancer.gov/about-cancer/treatment/drugs/cancer-type
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Figure 5.1 Workflow for analyzing effects of CNAs on genes in resistance pathways 

 

Table 5.2 - Table 5.5 summarize the number of genes in each resistance pathway that are 

recurrently affected by CNAs in normal tissues and tumor tissues. 

Table 5.2 Number of recurrently amplified resistance genes in normal tissues 

Disease hsa01521 hsa01522 hsa01523 hsa01524 

Uterine Corpus Endometrial Carcinoma 1 0 0 0 

Thyroid Carcinoma 4 3 2 3 

Prostate Adenocarcinoma 6 3 1 1 

Renal Papillary Cell Carcinoma 4 4 1 2 

Cholangiocarcinoma 1 1 0 2 

 

Table 5.3 Number of recurrently amplified resistance genes in tumor tissues 

Disease hsa01521 hsa01522 hsa01523 hsa01524 

Breast Invasive Carcinoma 3 4 1 3 

Glioblastoma Multiforme 6 3 0 1 

Ovarian Serous Cystadenocarcinoma 4 3 0 3 

Uterine Corpus Endometrial Carcinoma 5 3 0 3 

Renal Clear Cell Carcinoma 14 13 0 8 
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Head and Neck Squamous Cell Carcinoma 5 5 1 4 

Brain Lower Grade Glioma 5 6 1 2 

Lung Squamous Cell Carcinoma 6 7 2 13 

Prostate Adenocarcinoma 3 2 0 3 

Colon Adenocarcinoma 1 1 2 1 

Stomach Adenocarcinoma 7 5 1 2 

Bladder Urothelial Carcinoma 10 5 2 3 

Liver Hepatocellular Carcinoma 5 2 0 2 

Cervical Squamous Cell Carcinoma and Endocervical 

Adenocarcinoma 

8 8 1 7 

Renal Papillary Cell Carcinoma 2 2 0 1 

Sarcoma 12 10 3 11 

Esophageal Carcinoma 8 7 1 8 

Pancreatic Adenocarcinoma 4 3 1 2 

Rectum Adenocarcinoma 5 6 2 2 

Testicular Germ Cell Tumors 8 8 2 12 

Adrenocortical Carcinoma 2 4 0 2 

Uveal Melanoma 1 2 1 6 

Uterine Carcinosarcoma 3 4 1 3 

Cholangiocarcinoma 0 1 0 0 

 

Table 5.4 Number of recurrently deleted resistance genes in normal tissues 

Disease 
hsa01521 hsa01522 hsa01523 hsa01524 

Breast Invasive Carcinoma 43 43 13 34 

Glioblastoma Multiforme 18 22 6 26 

Ovarian Serous Cystadenocarcinoma 8 11 1 11 

Uterine Corpus Endometrial Carcinoma 5 4 4 6 

Renal Clear Cell Carcinoma 32 34 15 30 

Head and Neck Squamous Cell Carcinoma 42 52 13 46 

Brain Lower Grade Glioma 35 42 11 33 

Thyroid Carcinoma 14 5 6 7 

Lung Squamous Cell Carcinoma 34 30 11 17 

Prostate Adenocarcinoma 37 31 15 27 

Colon Adenocarcinoma 29 34 12 33 

Stomach Adenocarcinoma 32 25 15 30 

Liver Hepatocellular Carcinoma 6 11 2 12 

Cervical Squamous Cell Carcinoma and Endocervical 

Adenocarcinoma 

4 4 4 6 

Esophageal Carcinoma 6 5 6 10 

Pancreatic Adenocarcinoma 6 6 4 5 

Pheochromocytoma and Paraganglioma 10 8 3 12 

Thymoma 14 4 3 3 

Adrenocortical Carcinoma 26 19 14 20 

Mesothelioma 15 17 5 15 

Cholangiocarcinoma 2 0 0 0 
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Table 5.5 Number of recurrently deleted resistance genes in tumor tissues 

Disease hsa01521 hsa01522 hsa01523 hsa01524 

Breast Invasive Carcinoma 8 18 6 15 

Glioblastoma Multiforme 5 7 1 7 

Ovarian Serous Cystadenocarcinoma 9 10 4 9 

Uterine Corpus Endometrial Carcinoma 21 35 11 34 

Renal Clear Cell Carcinoma 19 24 5 18 

Head and Neck Squamous Cell Carcinoma 8 15 4 9 

Brain Lower Grade Glioma 14 23 5 7 

Lung Squamous Cell Carcinoma 12 19 3 15 

Prostate Adenocarcinoma 7 6 3 10 

Colon Adenocarcinoma 11 8 2 13 

Stomach Adenocarcinoma 11 20 7 9 

Bladder Urothelial Carcinoma 8 12 2 14 

Liver Hepatocellular Carcinoma 13 17 5 15 

Cervical Squamous Cell Carcinoma and Endocervical 

Adenocarcinoma 

13 21 3 11 

Renal Papillary Cell Carcinoma 18 24 7 24 

Sarcoma 23 33 8 21 

Acute Myeloid Leukemia 10 15 6 11 

Esophageal Carcinoma 25 34 9 25 

Pancreatic Adenocarcinoma 23 34 4 24 

Pheochromocytoma and Paraganglioma 16 25 6 22 

Rectum Adenocarcinoma 19 26 7 20 

Testicular Germ Cell Tumors 8 11 1 11 

Thymoma 7 13 1 5 

Adrenocortical Carcinoma 17 17 5 19 

Mesothelioma 16 19 8 24 

Uveal Melanoma 10 10 5 15 

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 23 30 7 23 

Uterine Carcinosarcoma 17 26 5 12 

Cholangiocarcinoma 6 11 3 14 

 

In the diseases that are not listed in Table 5.2 - Table 5.5, none of the genes in the four 

considered resistance pathways was affected by CNAs. 

Then, we applied the Wilcoxon test to check whether the genes belonging to the four 

resistance pathways are comparably often affected by CNAs in normal tissues and in tumor tissues 

or not, see Table 5.6. In fact, for all resistance pathways, significantly more resistance genes were 

subject to CNA amplifications in tumor genomes than in normal genomes. On the other hand, CNA 
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deletions had similar effects on resistance genes in both tissues. As previously noticed [223], the 

number of CNA deletions generally exceeds the number of CNA amplifications.  

For comparison, we repeat the same analysis for 28 unrelated KEGG pathways of similar 

size. Apparently, very similar finding apply to these pathways as for resistance pathways: 

significantly more amplifications in tumor tissues than in normal tissues, essentially no difference 

for CNA deletions (Supplement table 12). 

Table 5.6 Adjusted P-values of Wilcoxon test 

CNA type hsa01251 hsa01522 hsa01523 hsa01524 

Amplification 1,20 x10-5 01,56 x10-6 3,74 x10-3 3,83 x10-6 

Deletion 1.000 0.105 1.000 0.499 

 

5.3.2 Copy number alterations affect antineoplastic targets 

Next, we investigated the effect of CNA amplifications on the protein targets of the four drug 

categories. The workflow for this analysis is shown in Figure 5.2. 

 

Figure 5.2 Workflow for analyzing effects of CNAs on targets of antineoplastic 
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Table 5.7 lists the number of drugs that were given to patients in each cancer type, the number 

of FDA approved drugs, and the subset of approved drugs belonging to the four resistance categories. 

The relatively small size of these subsets reflects the broad spectrum of drug targets. Table 5.8 shows 

the number of protein targets of each drug-resistance category. Table 5.9 and Table 5.10 show the 

number of targets of FDA-approved drugs affected by CNA amplifications in specific cancer types. 

Table 5.7 Number of drugs for each cancer type 

Disease All Drugs 
Approved 

Drugs 
Endocrine 

Folic 

Acid 
Platinum 

Tyrosine 

Kinase 

Inhibitor 

Breast Invasive Carcinoma 38 23 7 1 0 1 

Glioblastoma Multiforme 37 4 0 0 0 0 

Ovarian Serous Cystadenocarcinoma 31 9 0 0 2 0 

Lung Adenocarcinoma 16 9 0 1 1 2 

Uterine Corpus Endometrial Carcinoma 16 1 0 0 0 0 

Renal Clear Cell Carcinoma 17 8 0 0 0 4 

Head and Neck Squamous Cell Carcinoma 18 2 0 1 0 0 

Brain Lower Grade Glioma 24 4 0 0 0 0 

Thyroid Carcinoma 1 1 0 0 0 0 

Lung Squamous Cell Carcinoma 16 8 0 1 1 2 

Prostate Adenocarcinoma 11 8 6 0 0 0 

Skin Cutaneous Melanoma 32 9 0 0 0 0 

Colon Adenocarcinoma 15 9 0 0 1 1 

Stomach Adenocarcinoma 22 4 0 0 0 0 

Bladder Urothelial Carcinoma 20 4 0 0 1 0 

Liver Hepatocellular Carcinoma 12 2 0 0 0 2 

Cervical Squamous Cell Carcinoma and 

Endocervical Adenocarcinoma 

12 3 0 0 0 0 

Renal Papillary Cell Carcinoma 14 6 0 0 0 3 

Sarcoma 23 4 0 0 0 1 

Acute Myeloid Leukemia 0 0 0 0 0 0 

Esophageal Carcinoma 11 1 0 0 0 0 

Pancreatic Adenocarcinoma 15 5 0 0 0 1 

Pheochromocytoma and Paraganglioma 6 0 0 0 0 0 

Rectum Adenocarcinoma 12 7 0 0 1 0 

Testicular Germ Cell Tumors 5 4 0 0 1 0 

Thymoma 8 0 0 0 0 0 

Kidney Chromophobe 5 4 0 0 0 2 

Adrenocortical Carcinoma 10 0 0 0 0 0 

Mesothelioma 16 1 0 1 0 0 

Uveal Melanoma 1 0 0 0 0 0 

Lymphoid Neoplasm Diffuse Large B-cell 

Lymphoma 

23 13 0 1 0 0 

Uterine Carcinosarcoma 10 0 0 0 0 0 

Cholangiocarcinoma 3 0 0 0 0 0 
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Table 5.8 Number of target genes in each group of approved drugs 

Disease 
Targets of 

Endocrine 

Targets of 

Folic Acid 

Targets of 

Platinum 

Targets of 

Tyrosine 

Kinase 

Inhibitor 

Breast Invasive Carcinoma 5 1 0 2 

Lung Adenocarcinoma 0 4 0 2 

Renal Clear Cell Carcinoma 0 0 0 12 

Head and Neck Squamous Cell 

Carcinoma 

0 1 0 0 

Lung Squamous Cell Carcinoma 0 4 0 2 

Prostate Adenocarcinoma 4 0 0 0 

Colon Adenocarcinoma 0 0 0 18 

Liver Hepatocellular Carcinoma 0 0 0 19 

Renal Papillary Cell Carcinoma 0 0 0 12 

Sarcoma 0 0 0 6 

Pancreatic Adenocarcinoma 0 0 0 2 

Kidney Chromophobe 0 0 0 12 

Mesothelioma 0 4 0 0 

Lymphoid Neoplasm Diffuse Large B-

cell Lymphoma 

0 1 0 0 

 

 

Table 5.9 Number of AN targets amplified by CNAs in normal tissues 

Disease 
Targets of 

Endocrine 

Targets of 

FolicAcid 

Targets of 

Platinum 

Targets of 

Tyrosine 

Kinase 

Renal Papillary Cell Carcinoma 0 0 0 3 

 

 

Table 5.10 Number of AN targets amplified by CNAs in tumor tissues 

Disease 
Targets of 

Endocrine 

Targets of 

Folic Acid 

Targets of 

Platinum 

Targets of 

Tyrosine 

Kinase 

Inhibitor 

Breast Invasive Carcinoma 0 0 0 1 

Renal Clear Cell Carcinoma 0 0 0 2 

Lung Squamous Cell Carcinoma 0 1 0 1 

Renal Papillary Cell Carcinoma 0 0 0 1 

Sarcoma 0 0 0 4 

 

The diseases that are not listed in Table 5.8 - Table 5.10 have no AN targets affected by CNAs. 
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5.4 Discussion 

In this project, CNA and clinical data for 31 types of tumors from the TCGA project were combined 

with information on AN drugs from Drugbank. As shown in Table 5.6 the difference between 

normal and tumor tissues is significant for CNA amplification but not for CNA deletions. With the 

target genes of four drug categories, only three target genes of EGFR tyrosine kinase inhibitors 

were affected by CNA amplifications in normal tissues of renal papillary cell carcinoma (Table 

5.9). In case of tumor tissues, the target genes of five diseases were affected by CNA amplifications 

(Table 5.10). 

The relation between gene amplification and drug resistance was mentioned decades ago. 

In 1984, Robert T. Schimke reported the relation of MTX resulting from the amplification of DHFR 

gene [224]. In 1991, P. Borst and R. Brown published their reviews on drug resistance and gene 

amplification. In both reviews, the authors pointed out the role of amplification of multi-drug 

resistance genes in cancer [225], [226].  Many studies since then focusing on drug resistance 

verified that gene amplifications influence drug resistance [202], [227]–[232]. Our study again 

confirms that the amplification of genes belonging to known resistance pathways in tumor tissues 

support the ability of drug resistance.  

In acute myeloid leukemia, 38 of 105 cases (26.57%) received treatment prior to the time 

when the CNA data were taken. For glioblastoma (22 of 590 cases) and renal clear cell carcinoma 

(18 of 530 cases), the number of such cases was around 4%. In all other tumors, the fraction of pre-

treated patients was below 3 %. Hence, in all tumors except for acute myeloid leukemia, the detected 

amplifications and deletions are unlikely to reflect resistance phenomena occurring in response to 

treatment (Supplement table 13). However, our result showed that, there are more amplified genes 

in resistance pathways in tumor tissues than in normal tissues, this suggest that when tumor cells 

developed, they also gained the ability of drug resistance. This type of resistance is not intrinsic 

resistance (pre-existent) neither acquired resistance (induced by drugs) (these concepts used by 

Theodor H Lippert and colleges [233]). 

Supplement table 14 - Supplement table 17 show number of cancer types that affect each 

genes in four considered resistance pathways. The first two columns of these tables show that: at 

most, only one cancer type in which CNA amplifications of normal tissues affect each genes. While 

the number of cancer types in which CNA amplifications of tumor tissues affect genes is 

significantly higher (columns 5 and 6). Some genes commonly affected by CNA amplifications in 

tumor tissues includes:  IGF1R (hsa01521, hsa01522) affected in eleven cancer types; EGFR 



69 
 

(hsa01521, hsa01522) affected in nine cancer types; PIK3CA (hsa01521, hsa01522, hsa01524) 

affected in seven cancer types; KRAS (hsa01521, hsa01522) affected in seven cancer types; GAS6 

(hsa01521), VEGFA (hsa01521) affected in seven cancer types; IKBKB (hsa01523) affected in six 

cancer types; FASLG (hsa01524), AKT3 (hsa01524), and POLH (hsa01524) affected in five cancer 

types; TYMS (hsa01523), GGH (hsa01523)  affected in three cancer types. Insulin like growth 

factor 1 receptor (IGF1R) belongs to the family of transmembrane tyrosine kinase receptors [234]. 

IGF1R play an important role in tyrosine kinase inhibitor resistance by aberrated activation of 

bypass pathway [235], [236]. Another frequently affected gene is epidermal growth factor receptor 

(EGFR). Like IGF1R, this gene also belongs to the family of receptor tyrosine kinases [208]. 

Amplifications of EGFR gene copy numbers and overexpression of EGFR are known to be one of 

the most common alterations in non-small-cell lung carcinoma (NSCLC) cells [187]–[190] and are 

associated with a poor prognosis and chemoresistance. Belong to three of four pathways (except 

hsa10523), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and 

PI3K-Akt signaling pathways can control key cellular processes involved in apoptosis, protein 

synthesis, metabolism, and cell cycle [237]–[240].The activation of this pathway also play a key 

role in drug resistance [241]–[244]. 

It is known that CNA is an mechanism for acquired resistance of chemotherapy [228], [229], 

however with the available data from TCGA we cannot argue about acquired resistance (CNA 

profile in respond to chemotherapy treatment). Integrated analysis of gene expression and 

CNVs/CNAs give promising results [245]–[247]. In future, we may apply this approach for better 

understand the mechanisms of drug resistance in cancer treatment. 

5.5 Conclusion 

To better understand cancer drug resistance, a big challenge in cancer treatment, in this work we 

provided a landscape of copy number alternations effects on four antineoplastic resistance pathways 

across 31 cancers. Based on CNAs data from the TCGA repository, we found that the genome 

sequences of tumor tissues contain more recurrently amplified CNAs of genes in antineoplastic 

resistance pathways than normal tissues. Not only the genes in the four resistance pathways, the 

targets of FDA-approved drugs also affected by tumor tissues more than normal tissues (Table 5.9 

and Table 5.10). This supports an important mechanism of drug resistance: amplification of drug 

targets. We found out that some genes (e.g. PIK3CA, EGFR, and IGF1R that play important role 

in drug resistance) affected by circa 22% to 35% cancer types (Supplement table 14 - Supplement 

table 17). In ongoing work, we are extending our analysis by combining gene expression and CNAs 

data. Because the genes only function when their corresponding proteins exist, by analyzing 
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expression data, we may have more evidence about the effect of CNAs amplification on drug 

resistance. 
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Chapter 6 Conclusions and outlook 

Presented in this thesis are three projects where we analyzed different sorts of genomic data that 

are related to transmembrane proteins, and genomic copy number alterations. We aimed to predict 

substrates which are transported by transmembrane proteins. We also investigated the effects 

caused by copy number alterations on the target protein of antineoplastic agents, and on the genes 

in antineoplastic resistance pathways in cancer patients. 

In the first project, we proposed a computational method to classify membrane transporters 

from three organisms (Escherichia coli, Saccharomyces cerevisiae and Homo sapiens) according 

to their transported substrates. Promoted by the idea of operon, our method focuses of neighboring 

genes that show high co-expression with the query gene. Then, we identified frequent GO terms 

among these co-expressed neighbors and used a support vector machine classifier to annotate the 

substrate specificity of the query gene. For transporter proteins from Escherichia coli, 

Saccharomyces cerevisiae and Homo sapiens, the average accuracies were 89%, 78%, and 79%, 

respectively. When tested on the genes belonging to different metabolic pathways of Escherichia 

coli, the average accuracy was 75% (two classes) and 67% (four classes). This suggests that transfer 

of functional associations between co-expressed neighboring genes may be case-specific. In future 

works, this approach may be used in combination with other features such as sequence motifs, 

sequence similarity, and further characteristics of the protein sequence such as its amino acid 

composition. 

The second project aimed at testing the hypothesis that the protein targets of AN agents in 

tumors are affected by genomic copy number alternations (CNAs) more strongly than expected by 

chance. By analyzing CNAs and clinical data of 31 tumor types from TCGA, we found that the 

genome sequences of tumor patients generally contain more recurrently deleted CNAs than 

recurrently amplified CNAs. This is also the case for CNAs affecting target genes of the specific 

AN for these tumors. We observed certain signs of apparently compensating effects of CNAs. For 

example, in glioblastoma multiforme, two target genes (FLT1, FLT3) of the experimental drug 

sorafenib were recurrently deleted whereas another target (KDR) of sorafenib was recurrently 

amplified. In renal clear cell carcinoma, the target FLT1 of pazopanib, sunitinib, sorafenib, and 

axitinib was recurrently deleted, whereas FLT4 bound by the same drugs was recurrently amplified. 

The data available for this study enabled us to identify CNA alterations that existed prior to therapy 

and that may render certain chemotherapies more or less effective. In future, it would be desirable 

to also collect time-series CNA data of tumor patients at time of diagnosis and at later time points. 
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This would point to CNA alterations caused by the application of certain chemotherapies and thus 

reflect chemoresistance. 

The third project continues the idea of chemoresistance as suggested in the second one. We 

still used CNAs data from the TCGA repository, but not only data from tumor tissues like in the 

second project. In the third project, we utilized CNAs data from both normal and tumor tissues. We 

found that the genome sequences of tumor tissues contain more recurrently amplified CNAs of 

genes in antineoplastic resistance pathways than normal tissues. AN targets of FDA-approved drugs 

were amplified in normal tissues of only one cancer type (Table 5.9) while they were amplified in 

tumor tissues of five cancer types (Table 5.10). This is in support for an important mechanism of 

drug resistance: amplification of drug targets. We also found out that some genes (e.g. PIK3CA, 

EGFR, and IGF1R) play important roles in drug resistance and were affected by circa 22% to 35% 

cancer types. In future work, this analysis may be extended by combining gene expression data and 

CNA data. The genes only function when they are expressed. Hence, by analyzing expression data, 

we may have more evidence about the effect of CNAs amplification on drug resistance. 
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Supplementary material 
 

Supplement table 1: Gene symbols of four metabolic pathway groups 

Amino Acid Sugar Lipid Nucleotide 

gstA, ygfK, hcaB, 

hcaC, ygfM, hcaE, 

luxS, katG, sdaA, 

sdaB, mmuM, astC, 

astB, astE, astD, 

malY, patD, pheA, 

gdhA, lysA, ynfE, 

ynfF, lysC, hcaF, 

asd, adiA, argC, 

argB, tdcG, argE, 

argD, mhpE, argA, 

gor, tdcB, argG, 

mhpD, argF, mhpC, 

argI, mhpB, argH, 

mhpA, pepN, pepA, 

pepB, sufS, pepD, 

ilvD, hisB, ilvC, 

hisC, hisD, ilvE, 

hisF, hisG, hisH, 

hisI, ynjE, ilvA, 

hisA, trpD, trpE, 

trpB, trpC, sseA, 

tynA, xdhD, gshA, 

gshB, trpA, cysK, 

puuD, proA, proB, 

proC, dsdA, puuA, 

cysE, puuB, gss, 

puuC, selA, cadA, 

cysM, selD, dapA, 

dapB, putA, feaB, 

ansB, ansA, dapE, 

dapF, dapD, alaA, 

mnaT, nadB, tyrA, 

tyrB, asnA, asnB, 

avtA, panC, panD, 

ydiB, paaD, aroK, 

paaE, paaG, aroL, 

dcyD, aroG, paaA, 

aroF, paaB, paaC, 

aroH, murE, aroC, 

yjhH, aroB, murD, 

ldcC, aroE, murC, 

aroD, murI, paaI, 

paaJ, aroA, murF, 

bcsA, fruA, fruB, 

manY, manX, aceF, 

aceE, ugd, sucC, 

manA, sucD, cmtB, 

scpB, rhmD, frdA, 

cmtA, frdB, ppsA, 

gapA, frdC, frdD, 

rhmA, glf, glk, xylA, 

xylB, malZ, aceB, 

malX, chiA, aceA, 

fdhF, ebgC, yeaD, 

ebgA, amyA, acuI, 

gmd, yedP, tpiA, 

garL, glgX, garR, 

glxR, glgB, glgC, 

garD, rbsK, glgP, 

ppc, ldhA, bcsZ, 

uxuB, appA, glgA, 

fruK, manZ, bglA, 

bglB, uxuA, ghrB, 

rhaB, rhaA, agaI, 

agaD, tdcE, agaC, 

tdcD, agaB, suhB, 

rhaD, gatY, acs, 

agaV, gatA, gatB, 

gatD, gph, nanK, 

fumA, fumB, talA, 

fumC, talB, nanA, 

nanE, fdoI, sdhD, 

fdoH, pck, sdhC, 

fdoG, purU, dld, 

sdhB, sdhA, otsB, 

ulaA, eno, otsA, 

yccX, ttdB, ulaF, 

ulaG, ttdA, ulaD, 

ulaE, ulaB, ulaC, 

gatZ, gcd, agp, ptsG, 

mtlD, mtlA, gcl, 

lyxK, glmM, acnA, 

acnB, glmU, yiaK, 

maeB, maeA, hchA, 

eutG, eutE, eutD, 

tktA, tktB, fbp, pfo, 

poxB, sgbE, treF, 

fabI, fabH, fabG, 

plsC, fabZ, plsB, 

dhaL, dhaK, cdh, 

aslA, fabF, glpK, 

fabD, fabB, fabA, 

glpQ, yciA, pgpA, 

pgpB, pgpC, psd, 

ugpQ, glpA, glpB, 

glpC, glpD, ynbB, 

eutC, eutB, pgsA, 

aas, eutA, dgkA, 

tesB, cdsA, gpsA, 

tesA, pldA, pldB, 

fadE, fadD, plsX, 

plsY, clsB, clsA 

dut, hiuH, cysC, 

dnaX, nrdB, nrdA, 

tmk, nrdF, nrdE, 

nrdD, dnaE, cdd, 

apt, pnp, upp, dnaQ, 

dnaN, guaC, cmk, 

guaD, xapA, gmk, 

rpoB, rpoA, rpoC, 

paoB, dgt, paoC, 

paoA, rdgB, umpG, 

nudF, nudE, apaH, 

guaA, guaB, rihB, 

thyA, hpt, ndk, ppx, 

psuG, psuK, holE, 

mazG, polA, add, 

ade, cpdB, gpp, adk, 

gpt, holA, holB, 

holC, holD, rpoZ, 

udk, udp, ushA, 

amn, dcd, purT, 

purM, purN, yjjG, 

spoT, deoD, cyaA, 

deoA, rutF, rutE, 

purC, purD, rutB, 

rutA, rutD, rutC, 

pyrE, allE, pyrF, 

purK, pyrG, purL, 

pyrH, purE, allB, 

allA, allD, pyrC, 

purH, allC, pyrD, 

tdk, xdhA, relA, gsk, 

xdhB, xdhC 
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paaK, yafJ, ggt, 

dadX, phnJ, phnL, 

phnM, phnG, mtn, 

phnH, alr, phnI, 

aspC, speE, speD, 

speG, tauD, speF, 

speA, aspA, speC, 

phnP, speB, thrB, 

thrC, dadA, thrA, 

ltaE, gltB, metL, 

gltD, patA, tnaA, 

dcm, astA, serA, 

metC, metB, serC, 

metA, serB, metG, 

metE, metK, metH, 

glsA, glsB, kbl, 

ddlB, tdh, ddlA, 

betA, yagE, paaZ, 

betB 

mqo, treC, treA, 

treB, gntK, sgbH, 

cpsG, dgoK, ydjG, 

pgi, pgl, pgk, yadI, 

mak, dgoD, dgoA, 

prpB, prpC, prpD, 

prpE, fucI, chbF, 

fucK, gloA, gloB, 

fucO, ydiF, cpsB, 

hyi, mgsA, fucA, 

rpiB, kbaZ, nagE, 

rpiA, galE, nagK, 

murA, galK, galM, 

murB, ycjU, alsK, 

fbaB, fbaA, ybhJ, 

ycjM, pfkA, pfkB, 

oxc, ybhC, kbaY, 

nagB, nagA, sgcC, 

eda, edd, sgcB, 

sgcA, arnB, arnA, 

arnD, arnC, phnN, 

alsE, dmlA, sgbU, 

wecC, kduD, wecB, 

glpX, kduI, srlB, 

srlA, yihQ, gltA, 

srlD, yihU, uidA, 

malS, idnK, malQ, 

malP, yqhD, srlE, 

uxaB, lldD, uxaC, 

glcB, uxaA, glcD, 

glcE, ascF, glcF, 

araD, deoC, ascB, 

araA, araB, crr, 

aldB, wcaG, aldA, 

rpe, rspB, rspA, 

wcaN, kdgK, ybiW, 

yagH, galT, galU, 

murQ, nagZ, murP, 

pflB, pflD, gudD 
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Supplement table 2 Usable membrane proteins when retrieving 10 neighbors upstream, 10 

neighbors downstream and selecting 3 neighbors that have highest co-expression correlations 

Threshold r 
Organism Gene group Total 

No 

neighbors 

No 

expression 

Not usable 

for SVM 

Usable 

for SVM 

0.2 Escherichia coli Sugar 39 0 10 8 21 

Amino acid 47 0 14 8 25 

Saccharomyces 

cerevisiae 

Sugar 17 0 10 0 7 

Amino acid 24 0 10 0 14 

Homo sapiens Sugar 13 1 0 2 10 

Amino acid 37 3 1 0 33 

0.5 Escherichia coli Sugar 39 0 10 11 18 

Amino acid 47 0 14 10 23 

Saccharomyces 

cerevisiae 

Sugar 17 0 10 0 7 

Amino acid 24 0 10 2 12 

Homo sapiens Sugar 13 1 0 3 9 

Amino acid 37 3 1 4 29 

0.8 Escherichia coli Sugar 39 0 10 13 16 

Amino acid 47 0 14 15 18 

Saccharomyces 

cerevisiae 

Sugar 17 0 10 1 6 

Amino acid 24 0 10 5 9 

Homo sapiens Sugar 13 1 0 5 7 

Amino acid 37 3 1 16 17 
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Supplement table 3 Two groups of metabolic pathway enzymes with different thresholds and 

number of neighbors 

Threshold 

r 
Windows size Gene group Total 

No 

neighbors 

No 

expression 

Not usable 

for SVM 

Usable for 

SVM 

0.2 (5, 3) Sugar 253 6 52 50 145 

Amino acid 187 2 40 44 101 

(10, 3) Sugar 253 6 52 88 107 

Amino acid 187 2 40 72 73 

(20, 5) Sugar 253 6 52 118 77 

Amino acid 187 2 40 104 41 

0.5 (5, 3) Sugar 253 6 52 51 144 

Amino acid 187 2 40 49 96 

(10, 3) Sugar 253 6 52 89 106 

Amino acid 187 2 40 75 70 

(20, 5) Sugar 253 6 52 118 77 

Amino acid 187 2 40 105 40 

0.8 (5, 3) Sugar 253 6 52 59 136 

Amino acid 187 2 40 52 93 

(10, 3) Sugar 253 6 52 92 103 

Amino acid 187 2 40 77 68 

(20, 5) Sugar 253 6 52 120 75 

Amino acid 187 2 40 105 40 
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Supplement table 4 Four groups of metabolic pathway enzymes with different thresholds and 

number of neighbors 

Threshold 

r Windows size Gene group Total 
No 

neighbors 

No 

expression 

Not 

usable 

for SVM 

Usable for 

SVM 

0.2 (5, 3) Sugar 253 6 52 65 130 

Amino acid 187 2 40 51 94 

Lipid 45 1 8 14 22 

Nucleotide 99 2 26 21 50 

(10, 3) Sugar 253 6 52 132 63 

Amino acid 187 2 40 101 44 

Lipid 45 1 8 26 10 

Nucleotide 99 2 26 37 34 

(20, 5) Sugar 253 6 52 157 38 

Amino acid 187 2 40 127 18 

Lipid 45 1 8 32 4 

Nucleotide 99 2 26 49 22 

0.5 (5, 3) Sugar 253 6 52 67 128 

Amino acid 187 2 40 52 93 

Lipid 45 1 8 15 21 

Nucleotide 99 2 26 21 50 

(10, 3) Sugar 253 6 52 132 63 

Amino acid 187 2 40 101 44 

Lipid 45 1 8 26 10 

Nucleotide 99 2 26 38 33 

(20, 5) Sugar 253 6 52 157 38 

Amino acid 187 2 40 127 18 

Lipid 46 1 8 33 4 

Nucleotide 99 2 26 49 22 

0.8 (5, 3) Sugar 253 6 52 67 128 

Amino acid 187 2 40 52 93 

Lipid 45 1 8 16 20 

Nucleotide 99 2 26 25 46 

(10, 3) Sugar 253 6 52 132 63 

Amino acid 187 2 40 101 44 

Lipid 45 1 8 26 10 

Nucleotide 99 2 26 39 32 

(20, 5) Sugar 253 6 52 157 38 

Amino acid 187 2 40 127 18 

Lipid 45 1 8 32 4 

Nucleotide 99 2 26 49 22 
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Supplement table 5 KEGG pathways that contain target proteins of antineoplastic drugs 

Pathway ID Pathway name Number of AN targets 

hsa05200 Pathways in cancer 70 

hsa04151 PI3K-Akt signaling pathway 53 

hsa01100 Metabolic pathways 39 

hsa04010 MAPK signaling pathway 38 

hsa05165 Human papillomavirus infection 36 

hsa04060 Cytokine-cytokine receptor interaction 35 

hsa04014 Ras signaling pathway 32 

hsa04015 Rap1 signaling pathway 32 

hsa04659 Th17 cell differentiation 30 

hsa05166 HTLV-I infection 27 

hsa05205 Proteoglycans in cancer 26 

hsa04510 Focal adhesion 26 

hsa04630 Jak-STAT signaling pathway 25 

hsa05206 MicroRNAs in cancer 24 

hsa05167 Kaposi's sarcoma-associated herpesvirus infection 24 

hsa04640 Hematopoietic cell lineage 24 

hsa01521 EGFR tyrosine kinase inhibitor resistance 24 

hsa05203 Viral carcinogenesis 22 

hsa05224 Breast cancer 21 

hsa04658 Th1 and Th2 cell differentiation 21 

hsa04660 T cell receptor signaling pathway 21 

hsa04810 Regulation of actin cytoskeleton 21 

hsa05164 Influenza A 20 

hsa04380 Osteoclast differentiation 20 

hsa00230 Purine metabolism 20 

hsa05162 Measles 20 

hsa05215 Prostate cancer 19 

hsa05034 Alcoholism 19 

hsa05226 Gastric cancer 18 

hsa05230 Central carbon metabolism in cancer 18 

hsa05223 Non-small cell lung cancer 18 

hsa05161 Hepatitis B 18 

hsa04210 Apoptosis 18 

hsa04919 Thyroid hormone signaling pathway 18 

hsa04620 Toll-like receptor signaling pathway 17 

hsa04024 cAMP signaling pathway 17 

hsa01522 Endocrine resistance 17 

hsa04540 Gap junction 17 

hsa05152 Tuberculosis 16 

hsa05202 Transcriptional misregulation in cancer 16 

hsa05323 Rheumatoid arthritis 16 

hsa04917 Prolactin signaling pathway 15 

hsa04933 AGE-RAGE signaling pathway in diabetic complications 15 
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hsa05218 Melanoma 15 

hsa05220 Chronic myeloid leukemia 15 

hsa04066 HIF-1 signaling pathway 15 

hsa05212 Pancreatic cancer 15 

hsa04012 ErbB signaling pathway 14 

hsa04550 Signaling pathways regulating pluripotency of stem cells 14 

hsa04650 Natural killer cell mediated cytotoxicity 14 

hsa05142 Chagas disease (American trypanosomiasis) 14 

hsa05214 Glioma 14 

hsa05225 Hepatocellular carcinoma 14 

hsa05221 Acute myeloid leukemia 14 

hsa05418 Fluid shear stress and atherosclerosis 13 

hsa05160 Hepatitis C 13 

hsa04370 VEGF signaling pathway 13 

hsa05219 Bladder cancer 13 

hsa05169 Epstein-Barr virus infection 13 

hsa05140 Leishmaniasis 13 

hsa05222 Small cell lung cancer 13 

hsa04921 Oxytocin signaling pathway 13 

hsa04218 Cellular senescence 13 

hsa04621 NOD-like receptor signaling pathway 13 

hsa04926 Relaxin signaling pathway 13 

hsa04722 Neurotrophin signaling pathway 13 

hsa05168 Herpes simplex infection 12 

hsa04072 Phospholipase D signaling pathway 12 

hsa05133 Pertussis 12 

hsa00240 Pyrimidine metabolism 12 

hsa04064 NF-kappa B signaling pathway 12 

hsa04662 B cell receptor signaling pathway 12 

hsa04514 Cell adhesion molecules (CAMs) 12 

hsa04217 Necroptosis 12 

hsa05145 Toxoplasmosis 12 

hsa04360 Axon guidance 12 

hsa04912 GnRH signaling pathway 12 

hsa04657 IL-17 signaling pathway 12 

hsa05231 Choline metabolism in cancer 12 

hsa04664 Fc epsilon RI signaling pathway 12 

hsa04668 TNF signaling pathway 11 

hsa05216 Thyroid cancer 11 

hsa04726 Serotonergic synapse 11 

hsa04071 Sphingolipid signaling pathway 11 

hsa04062 Chemokine signaling pathway 11 

hsa04150 mTOR signaling pathway 11 

hsa04068 FoxO signaling pathway 11 

hsa04145 Phagosome 11 

hsa04913 Ovarian steroidogenesis 10 
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hsa04915 Estrogen signaling pathway 10 

hsa05321 Inflammatory bowel disease (IBD) 10 

hsa04144 Endocytosis 10 

hsa04080 Neuroactive ligand-receptor interaction 10 

hsa05130 Pathogenic Escherichia coli infection 9 

hsa05340 Primary immunodeficiency 9 

hsa04750 Inflammatory mediator regulation of TRP channels 9 

hsa05213 Endometrial cancer 9 

hsa04371 Apelin signaling pathway 9 

hsa05211 Renal cell carcinoma 9 

hsa04270 Vascular smooth muscle contraction 9 

hsa01523 Antifolate resistance 9 

hsa04520 Adherens junction 8 

hsa04920 Adipocytokine signaling pathway 8 

hsa04020 Calcium signaling pathway 8 

hsa04910 Insulin signaling pathway 8 

hsa04720 Long-term potentiation 8 

hsa04672 Intestinal immune network for IgA production 8 

hsa05120 Epithelial cell signaling in Helicobacter pylori infection 8 

hsa05131 Shigellosis 8 

hsa03410 Base excision repair 8 

hsa04916 Melanogenesis 8 

hsa00140 Steroid hormone biosynthesis 8 

hsa05210 Colorectal cancer 8 

hsa04530 Tight junction 8 

hsa04611 Platelet activation 8 

hsa04666 Fc gamma R-mediated phagocytosis 8 

hsa04932 Non-alcoholic fatty liver disease (NAFLD) 8 

hsa04730 Long-term depression 8 

hsa04914 Progesterone-mediated oocyte maturation 7 

hsa05146 Amoebiasis 7 

hsa05410 Hypertrophic cardiomyopathy (HCM) 7 

hsa04140 Autophagy - animal 7 

hsa05132 Salmonella infection 7 

hsa04022 cGMP-PKG signaling pathway 7 

hsa05020 Prion diseases 7 

hsa05414 Dilated cardiomyopathy (DCM) 6 

hsa04725 Cholinergic synapse 6 

hsa04670 Leukocyte transendothelial migration 6 

hsa04114 Oocyte meiosis 6 

hsa04110 Cell cycle 6 

hsa05010 Alzheimer's disease 6 

hsa05031 Amphetamine addiction 6 

hsa03050 Proteasome 6 

hsa01524 Platinum drug resistance 6 

hsa05030 Cocaine addiction 5 
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hsa04931 Insulin resistance 5 

hsa04622 RIG-I-like receptor signaling pathway 5 

hsa03030 DNA replication 5 

hsa05032 Morphine addiction 5 

hsa04940 Type I diabetes mellitus 5 

hsa05332 Graft-versus-host disease 5 

hsa05330 Allograft rejection 5 

hsa05143 African trypanosomiasis 5 

hsa00480 Glutathione metabolism 5 

hsa04728 Dopaminergic synapse 5 

hsa05416 Viral myocarditis 5 

hsa05134 Legionellosis 5 

hsa04930 Type II diabetes mellitus 5 

hsa04723 Retrograde endocannabinoid signaling 5 

hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 5 

hsa04724 Glutamatergic synapse 5 

hsa04261 Adrenergic signaling in cardiomyocytes 5 

hsa04115 p53 signaling pathway 5 

hsa04512 ECM-receptor interaction 5 

hsa05144 Malaria 5 

hsa04310 Wnt signaling pathway 4 

hsa05320 Autoimmune thyroid disease 4 

hsa04623 Cytosolic DNA-sensing pathway 4 

hsa05014 Amyotrophic lateral sclerosis (ALS) 4 

hsa00590 Arachidonic acid metabolism 4 

hsa04925 Aldosterone synthesis and secretion 4 

hsa05322 Systemic lupus erythematosus 4 

hsa03420 Nucleotide excision repair 4 

hsa00670 One carbon pool by folate 4 

hsa04713 Circadian entrainment 3 

hsa04960 Aldosterone-regulated sodium reabsorption 3 

hsa00330 Arginine and proline metabolism 3 

hsa04213 Longevity regulating pathway - multiple species 3 

hsa00983 Drug metabolism - other enzymes 3 

hsa05100 Bacterial invasion of epithelial cells 3 

hsa03320 PPAR signaling pathway 3 

hsa04350 TGF-beta signaling pathway 3 

hsa05150 Staphylococcus aureus infection 3 

hsa04727 GABAergic synapse 3 

hsa04340 Hedgehog signaling pathway 3 

hsa00350 Tyrosine metabolism 3 

hsa04612 Antigen processing and presentation 2 

hsa04137 Mitophagy - animal 2 

hsa00260 Glycine, serine and threonine metabolism 2 

hsa05310 Asthma 2 

hsa00340 Histidine metabolism 2 



103 
 

hsa04924 Renin secretion 2 

hsa05016 Huntington's disease 2 

hsa00790 Folate biosynthesis 2 

hsa05110 Vibrio cholerae infection 2 

hsa00565 Ether lipid metabolism 2 

hsa00982 Drug metabolism - cytochrome P450 2 

hsa00380 Tryptophan metabolism 2 

hsa04971 Gastric acid secretion 2 

hsa04330 Notch signaling pathway 2 

hsa04961 Endocrine and other factor-regulated calcium reabsorption 2 

hsa04152 AMPK signaling pathway 2 

hsa00360 Phenylalanine metabolism 2 

hsa04211 Longevity regulating pathway 2 

hsa00592 alpha-Linolenic acid metabolism 2 

hsa00591 Linoleic acid metabolism 2 

hsa00564 Glycerophospholipid metabolism 2 

hsa04918 Thyroid hormone synthesis 2 

hsa04966 Collecting duct acid secretion 1 

hsa00190 Oxidative phosphorylation 1 

hsa04390 Hippo signaling pathway 1 

hsa05012 Parkinson's disease 1 

hsa05204 Chemical carcinogenesis 1 

hsa00860 Porphyrin and chlorophyll metabolism 1 

hsa04972 Pancreatic secretion 1 

hsa04911 Insulin secretion 1 

hsa03010 Ribosome 1 

hsa00760 Nicotinate and nicotinamide metabolism 1 

hsa00730 Thiamine metabolism 1 

hsa00450 Selenocompound metabolism 1 

hsa04922 Glucagon signaling pathway 1 

hsa05217 Basal cell carcinoma 1 

hsa00270 Cysteine and methionine metabolism 1 

hsa00120 Primary bile acid biosynthesis 1 

hsa04215 Apoptosis - multiple species 1 

hsa04976 Bile secretion 1 

hsa04141 Protein processing in endoplasmic reticulum 1 

hsa04070 Phosphatidylinositol signaling system 1 

hsa04923 Regulation of lipolysis in adipocytes 1 

hsa04136 Autophagy - other 1 

hsa00900 Terpenoid backbone biosynthesis 1 

hsa04970 Salivary secretion 1 

hsa04610 Complement and coagulation cascades 1 

hsa04721 Synaptic vesicle cycle 1 
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Supplement table 6 Drugs applied against Lung Carcinoma. The first column contains FDA-approved 

drugs against Non-Small Cell Lung Cancer (58 drugs). The second column contains a subset of the drugs 

from the first column after removing duplicated ones (25 drugs). The third column contains drugs that 

were applied to Lung Squamous Cell Carcinoma patients in TCGA (16 drugs). The drugs marked in red 

are found in both column (2 and 3). Eight of sixteen drugs applied to Lung Squamous Cell Carcinoma 

patients in the TCGA panel were FDA-approved. 

Approved drugs from Cancer.org Compact list of approved drugs 

Drugs applied 

for patients in 

TCGA 

Methotrexate Methotrexate 

  

  

  

  

  

  

Erlotinib 

Methotrexate LPF (Methotrexate) Paclitaxel 

Mexate (Methotrexate) Vincristine 

Mexate-AQ (Methotrexate) Pemetrexed 

Abitrexate (Methotrexate) Topotecan 

Folex (Methotrexate) Doxorubicin 

Folex PFS (Methotrexate) Gemcitabine 

Paclitaxel Paclitaxel 

  

  

  

Oxaliplatin 

Paclitaxel Albumin-stabilized Nanoparticle 

Formulation 
Docetaxel 

Abraxane (Paclitaxel Albumin-stabilized 

Nanoparticle Formulation) 
Gefitinib 

Taxol (Paclitaxel) Vinorelbine 

Afatinib Dimaleate Afatinib Dimaleate 

  
Carboplatin 

Gilotrif (Afatinib Dimaleate) Irinotecan 

Everolimus Everolimus 

  

Cisplatin 

Afinitor (Everolimus) Temozolomide 

Alectinib Alectinib 

  

Etoposide 

Alecensa (Alectinib)   

Pemetrexed Disodium Pemetrexed Disodium 

  

  

Alimta (Pemetrexed Disodium)   

Brigatinib Brigatinib 

  

  

Alunbrig (Brigatinib)   

Atezolizumab Atezolizumab 

  

  

Tecentriq (Atezolizumab)   

Bevacizumab Bevacizumab 

  

  

Avastin (Bevacizumab)   

Carboplatin Carboplatin 

  

  

  

Paraplat (Carboplatin)   

Paraplatin (Carboplatin)   

Ceritinib Ceritinib 

  

  

Zykadia (Ceritinib)   

Crizotinib Crizotinib 

  

  

Xalkori (Crizotinib)   

Ramucirumab Ramucirumab 

  

  

Cyramza (Ramucirumab)   

Dabrafenib Dabrafenib 

  

  

Tafinlar (Dabrafenib)   
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Docetaxel Docetaxel 

  

  

Taxotere (Docetaxel)   

Erlotinib Hydrochloride Erlotinib Hydrochloride 

  

  

Tarceva (Erlotinib Hydrochloride)   

Gemcitabine Hydrochloride Gemcitabine Hydrochloride 

  

  

Gemzar (Gemcitabine Hydrochloride)   

Gefitinib Gefitinib 

  

  

Iressa (Gefitinib)   

Pembrolizumab Pembrolizumab 

  

  

Keytruda (Pembrolizumab)   

Mechlorethamine Hydrochloride Mechlorethamine Hydrochloride 

  

  

Mustargen (Mechlorethamine Hydrochloride)   

Trametinib Trametinib 

  

  

Mekinist (Trametinib)   

Vinorelbine Tartrate Vinorelbine Tartrate 

  

  

Navelbine (Vinorelbine Tartrate)   

Necitumumab Necitumumab 

  

  

Portrazza (Necitumumab)   

Nivolumab Nivolumab 

  

  

Opdivo (Nivolumab)   

Osimertinib Osimertinib 

  

  

Tagrisso (Osimertinib)   

 

According to https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-

lung-cancer.html, Lung Squamous Cell Carcinoma is a sub-type of Non-Small Cell Lung Cancer. 

 

  

https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html
https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html
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Supplement table 7 Drugs against breast cancer. The first column contains FDA-approved drugs against 

breast cancer (71), the second column contains the compact list after removing duplicates (31 drugs), 

and the third column contains drugs that were applied to patients in the TCGA panel (38). The drugs 

marked in red are found in both column (2 and 3). 23 out of 38 drugs applied to TCGA-patients were 

FDA-approved drugs. 

Approved drugs from Cancer.org 
Compact list of approved 

drugs 

Drugs applied for 

patients in TCGA 

Abemaciclib Abemaciclib Tamoxifen 

Verzenio (Abemaciclib) Anastrozole 

Methotrexate Methotrexate Paclitaxel 

Abitrexate (Methotrexate) Toremifene 

Folex (Methotrexate) Vincristine 

Folex PFS (Methotrexate) Fluorouracil 

Methotrexate LPF (Methotrexate) Capecitabine 

Mexate (Methotrexate) Doxorubicin 

Mexate-AQ (Methotrexate) Letrozole 

Paclitaxel Paclitaxel Pegfilgrastim 

Paclitaxel Albumin-stabilized Nanoparticle 

Formulation 
Vinblastine 

Taxol (Paclitaxel) Trastuzumab 

Abraxane (Paclitaxel Albumin-stabilized 

Nanoparticle Formulation) 
Cyclophosphamide 

Everolimus Everolimus Prednisone 

Afinitor (Everolimus) Gemcitabine 

Anastrozole Anastrozole Carboplatin 

Arimidex (Anastrozole) Megestrol acetate 

Exemestane Exemestane Rituximab 

Aromasin (Exemestane) Ixabepilone 

Capecitabine Capecitabine Cisplatin 

Xeloda (Capecitabine) Bevacizumab 

Cyclophosphamide Cyclophosphamide Ifosfamide 

Clafen (Cyclophosphamide) Triptorelin 

Cytoxan (Cyclophosphamide) Epirubicin 

Neosar (Cyclophosphamide) Exemestane 

Docetaxel Docetaxel Pemetrexed 

Taxotere (Docetaxel) Pamidronate 

Doxorubicin Hydrochloride Doxorubicin 

Hydrochloride 

Goserelin 

Epirubicin Hydrochloride Epirubicin 

Hydrochloride 

Lapatinib 

Ellence (Epirubicin Hydrochloride) Methotrexate 

Eribulin Mesylate Eribulin Mesylate Everolimus 

Halaven (Eribulin Mesylate) Mitomycin 

Pamidronate Disodium Pamidronate Disodium Docetaxel 

Aredia (Pamidronate Disodium) Leuprolide 

Toremifene Toremifene Trabectedin 

Fareston (Toremifene) Vinorelbine 

Fulvestrant Fulvestrant Fulvestrant 
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Faslodex (Fulvestrant) Mitoxantrone 

Letrozole Letrozole   

Femara (Letrozole)   

Fluorouracil Injection Fluorouracil Injection   

5-FU (Fluorouracil Injection)   

Gemcitabine Hydrochloride Gemcitabine 

Hydrochloride 

  

Gemzar (Gemcitabine Hydrochloride)   

Goserelin Acetate Goserelin Acetate   

Zoladex (Goserelin Acetate)   

Palbociclib Palbociclib   

Ibrance (Palbociclib)   

Ixabepilone Ixabepilone   

Ixempra (Ixabepilone)   

Ribociclib Ribociclib   

Kisqali (Ribociclib)   

Lapatinib Ditosylate Lapatinib Ditosylate   

Tykerb (Lapatinib Ditosylate)   

Olaparib Olaparib   

Lynparza (Olaparib)   

Megestrol Acetate Megestrol Acetate   

Neratinib Maleate Neratinib Maleate   

Nerlynx (Neratinib Maleate)   

Tamoxifen Citrate Tamoxifen Citrate   

Nolvadex (Tamoxifen Citrate)   

Pertuzumab Pertuzumab   

Perjeta (Pertuzumab)   

Thiotepa Thiotepa   

Trastuzumab Trastuzumab   

Kadcyla (Ado-Trastuzumab Emtansine)   

Herceptin (Trastuzumab)   

Ado-Trastuzumab Emtansine   

Vinblastine Sulfate Vinblastine Sulfate   

Velban (Vinblastine Sulfate)   

Velsar (Vinblastine Sulfate)   
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Supplement table 8 Treatment history of TCGA patients 

Disease 

Nr. Of patient 

with treatment 

history 

Nr. Of patient 

without treatment 

history 

Nr. Of patient with 

treatment history 

information is not 

available 

Breast Invasive Carcinoma 13 1079 2 

Glioblastoma Multiforme 21 568 1 

Ovarian Serous Cystadenocarcinoma 1 569 0 

Uterine Corpus Endometrial Carcinoma 2 538 0 

Renal Clear Cell Carcinoma 18 512 0 

Head and Neck Squamous Cell Carcinoma 9 508 0 

Brain Lower Grade Glioma 3 511 0 

Thyroid Carcinoma 5 500 0 

Lung Squamous Cell Carcinoma 7 496 0 

Prostate Adenocarcinoma 2 495 0 

Colon Adenocarcinoma 3 447 0 

Stomach Adenocarcinoma 0 442 0 

Bladder Urothelial Carcinoma 10 402 0 

Liver Hepatocellular Carcinoma 1 374 0 

Cervical Squamous Cell Carcinoma and 

Endocervical Adenocarcinoma 

0 295 0 

Renal Papillary Cell Carcinoma 0 290 0 

Sarcoma 0 259 1 

Acute Myeloid Leukemia 38 105 0 

Esophageal Carcinoma 0 184 0 

Pancreatic Adenocarcinoma 1 183 0 

Pheochromocytoma and Paraganglioma 1 177 0 

Rectum Adenocarcinoma 1 163 0 

Testicular Germ Cell Tumors 0 134 0 

Thymoma 2 122 0 

Kidney Chromophobe 0 66 0 

Adrenocortical Carcinoma 1 89 0 

Mesothelioma 1 86 0 

Uveal Melanoma 0 80 0 

Lymphoid Neoplasm Diffuse Large B-cell 

Lymphoma 

1 47 0 

Uterine Carcinosarcoma 0 56 0 

Cholangiocarcinoma 1 35 0 
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Supplement table 9 Amplifications and deletions of genes annotated with various cancer 

hallmarks. For this, we annotated human genes following Suzuki et al [63] according to ten 

hallmarks of cancer: Activating Invasion and Metastasis, Resisting Cell Death, Evading 

Growth Suppressors, Avoiding Immune Destruction, Inducing Angiogenesis, Deregulating 

Cellular Energetics, Genome Instability and Mutation, Tumor Promoting Inflammation, 

Enabling Replicative Immortality, Sustaining Proliferative Signaling. For each hallmark, we 

retrieved the genes that were annotated by GO terms of the hallmark. We then checked the 

number of genes that were affected by amplifications and deletions. 

Hallmark p-value (Wilcoxon) p-value (T-test) 

Activating Invasion and Metastasis 2.41E-08 3.52E-09 

Resisting Cell Death 1.09E-08 1.50E-09 

Evading Growth Suppressors 5.37E-09 2.91E-10 

Avoiding Immune Destruction 0.00029905 0.000314 

Inducing Angiogenesis 1.72E-08 3.06E-09 

Deregulating Cellular Energetics 1.73E-07 6.77E-08 

Genome Instability and Mutation 2.36E-09 7.68E-11 

Tumor Promoting Inflammation 6.88E-09 1.27E-10 

Enabling Replicative Immortality 5.66E-08 4.99E-08 

Sustaining Proliferative Signaling 4.16E-08 9.16E-09 
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Supplement table 10 Number of cases when the specific AN targets were affected by CNAs. 

Disease 

Number 

of all 

cases 

Number 

of 

amplified 

cases 

Percentage 

of 

amplified  

cases 

Number 

of 

deleted 

cases 

Percentage 

of deleted 

cases 

Breast Invasive Carcinoma 1094 596 54.5% 662 60.5% 

Glioblastoma Multiforme 590 528 89.5% 170 28.8% 

Ovarian Serous Cystadenocarcinoma 570 316 55.4% 526 92.3% 

Uterine Corpus Endometrial 

Carcinoma 

540 0 0.00% 206 38.2% 

Renal Clear Cell Carcinoma 530 358 67.6% 468 88.3% 

Head and Neck Squamous Cell 

Carcinoma 

517 155 30.0% 321 62.1% 

Brain Lower Grade Glioma 514 147 28.6% 295 57.4% 

Thyroid Carcinoma 505 0 0.0% 0 0% 

Lung Squamous Cell Carcinoma 503 291 57.9% 349 69.4% 

Prostate Adenocarcinoma 497 0 0.0% 109 21.9% 

Colon Adenocarcinoma 450 81 18.0% 268 59.6% 

Stomach Adenocarcinoma 442 0 0.0% 128 29.0% 

Bladder Urothelial Carcinoma 412 196 47.6% 227 55.1% 

Liver Hepatocellular Carcinoma 375 0 0.0% 273 72.8% 

Cervical Squamous Cell Carcinoma 

and Endocervical Adenocarcinoma 

295 0 0.0% 182 61.7% 

Renal Papillary Cell Carcinoma 290 41 14.1% 91 31.4% 

Sarcoma 260 196 75.4% 225 86.5% 

Acute Myeloid Leukemia 143 0 0.0% 0 0% 

Esophageal Carcinoma 184 0 0.0% 146 79.4% 

Pancreatic Adenocarcinoma 184 40 21.7% 19 10.3% 

Pheochromocytoma and 

Paraganglioma 

178 0 0.0% 80 44.9% 

Rectum Adenocarcinoma 164 69 42.1% 0 0% 

Testicular Germ Cell Tumors 134 0 0% 0 0% 

Thymoma 124 0 0% 0 0% 

Kidney Chromophobe 66 0 0% 0 0% 

Adrenocortical Carcinoma 90 0 0% 60 66.7% 

Mesothelioma 87 0 0% 68 78.2% 

Uveal Melanoma 80 0 0% 0 0% 

Lymphoid Neoplasm Diffuse Large 

B-cell Lymphoma 

48 0 0% 17 35.4% 

Uterine Carcinosarcoma 56 0 0% 52 92.9% 

Cholangiocarcinoma 36 0 0% 0 0% 
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Supplement table 11 Pathways that have similar size with four AN resistance pathways 

Pathway ID Pathway name 

Number 

of 

genes 

path:hsa04260 Cardiac muscle contraction - Homo sapiens (human) 78 

path:hsa05220 Chronic myeloid leukemia - Homo sapiens (human) 78 

path:hsa00983 Drug metabolism - other enzymes - Homo sapiens (human) 79 

path:hsa01521 EGFR tyrosine kinase inhibitor resistance - Homo sapiens (human) 79 

path:hsa03018 RNA degradation - Homo sapiens (human) 79 

path:hsa04610 Complement and coagulation cascades - Homo sapiens (human) 79 

path:hsa01522 Endocrine resistance - Homo sapiens (human) 96 

path:hsa04713 Circadian entrainment - Homo sapiens (human) 96 

path:hsa04925 Aldosterone synthesis and secretion - Homo sapiens (human) 96 

path:hsa04972 Pancreatic secretion - Homo sapiens (human) 96 

path:hsa05146 Amoebiasis - Homo sapiens (human) 96 

path:hsa00052 Galactose metabolism - Homo sapiens (human) 31 

path:hsa00410 beta-Alanine metabolism - Homo sapiens (human) 31 

path:hsa00512 Mucin type O-glycan biosynthesis - Homo sapiens (human) 31 

path:hsa01523 Antifolate resistance - Homo sapiens (human) 31 

path:hsa04710 Circadian rhythm - Homo sapiens (human) 31 

path:hsa05310 Asthma - Homo sapiens (human) 31 

path:hsa03320 PPAR signaling pathway - Homo sapiens (human) 72 

path:hsa04520 Adherens junction - Homo sapiens (human) 72 

path:hsa05210 Colorectal cancer - Homo sapiens (human) 72 

path:hsa05218 Melanoma - Homo sapiens (human) 72 

path:hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) - Homo 

sapiens (human) 

72 

path:hsa00562 Inositol phosphate metabolism - Homo sapiens (human) 73 

path:hsa01524 Platinum drug resistance - Homo sapiens (human) 73 

path:hsa00980 Metabolism of xenobiotics by cytochrome P450 - Homo sapiens (human) 74 

path:hsa01230 Biosynthesis of amino acids - Homo sapiens (human) 74 

path:hsa04918 Thyroid hormone synthesis - Homo sapiens (human) 74 

path:hsa05140 Leishmaniasis - Homo sapiens (human) 74 
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Supplement table 12 adjusted p-values of Wilcoxon tests 

Pathway Amplification Deletion 

hsa04260 0.00003 1 

hsa05220 0.00001 1 

hsa00983 0.00073 1 

hsa01521 0.00009 1 

hsa03018 0.00014 1 

hsa04610 0.00199 1 

hsa01522 0.00001 0.76282 

hsa04713 0.01121 1 

hsa04925 0.00004 1 

hsa04972 0.00003 1 

hsa05146 0.00062 1 

hsa00052 1.00000 1 

hsa00410 0.00055 1 

hsa00512 0.14636 1 

hsa01523 0.02712 1 

hsa04710 0.03739 1 

hsa05310 0.06720 1 

hsa03320 0.00114 1 

hsa04520 0.00069 1 

hsa05210 0.00018 1 

hsa05218 0.00003 1 

hsa05412 0.00565 1 

hsa00562 0.00233 1 

hsa01524 0.00003 1 

hsa00980 0.00130 1 

hsa01230 0.00428 1 

hsa04918 0.00086 1 

hsa05140 0.00779 1 
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Supplement table 13: Treatment history of patients 

Disease 

Nr. of patients 

with treatment 

history 

Nr. of patients 

without treatment 

history 

Nr. of patients where 

treatment history 

information is not 

available 

Breast Invasive Carcinoma 13 1079 2 

Glioblastoma Multiforme 21 568 1 

Ovarian Serous Cystadenocarcinoma 1 569 0 

Uterine Corpus Endometrial Carcinoma 2 538 0 

Renal Clear Cell Carcinoma 18 512 0 

Head and Neck Squamous Cell Carcinoma 9 508 0 

Brain Lower Grade Glioma 3 511 0 

Thyroid Carcinoma 5 500 0 

Lung Squamous Cell Carcinoma 7 496 0 

Prostate Adenocarcinoma 2 495 0 

Colon Adenocarcinoma 3 447 0 

Stomach Adenocarcinoma 0 442 0 

Bladder Urothelial Carcinoma 10 402 0 

Liver Hepatocellular Carcinoma 1 374 0 

Cervical Squamous Cell Carcinoma and 

Endocervical Adenocarcinoma 

0 295 0 

Renal Papillary Cell Carcinoma 0 290 0 

Sarcoma 0 259 1 

Acute Myeloid Leukemia 38 105 0 

Esophageal Carcinoma 0 184 0 

Pancreatic Adenocarcinoma 1 183 0 

Pheochromocytoma and Paraganglioma 1 177 0 

Rectum Adenocarcinoma 1 163 0 

Testicular Germ Cell Tumors 0 134 0 

Thymoma 2 122 0 

Kidney Chromophobe 0 66 0 

Adrenocortical Carcinoma 1 89 0 

Mesothelioma 1 86 0 

Uveal Melanoma 0 80 0 

Lymphoid Neoplasm Diffuse Large B-cell 

Lymphoma 

1 47 0 

Uterine Carcinosarcoma 0 56 0 

Cholangiocarcinoma 1 35 0 
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Supplement table 14 number of cancer types affect each gene in hsa10521 

Normal tissues Tumor tissues 

Amplification Deletion Amplification Deletion 

Genes 
Number of 

diseases 
Genes 

Number of 

diseases 
Genes 

Number of 

diseases 
Genes 

Number of 

diseases 

PDGFRB 1 BAD 12 IGF1R 11 NRAS 19 

HGF 1 PDGFD 11 EGFR 9 FGFR2 14 

NRG2 1 RPS6KB2 11 PIK3CA 7 PDGFD 12 

EIF4E1B 1 KDR 10 GAS6 7 FOXO3 11 

SOS1 1 HRAS 10 VEGFA 7 PIK3CD 10 

EIF4E2 1 PDGFRA 10 KRAS 7 AKT1 10 

MET 1 FGF2 9 FGFR3 6 EIF4E1B 10 

PDGFA 1 JAK1 9 AKT3 5 HRAS 9 

TGFA 1 GAB1 9 PDGFA 5 JAK1 9 

PIK3R1 1 EIF4E1B 9 AKT1 4 NRG1 9 

EGFR 1 SOS1 9 JAK2 4 PIK3R1 9 

BCL2L11 1 EIF4E2 9 PRKCG 4 MTOR 9 

PLCG2 1 TGFA 9 PDGFRA 4 PTEN 8 

MAPK1 1 BCL2L11 9 PRKCA 4 AKT3 8 

BRAF 1 PDGFC 9 GRB2 4 EIF4E2 8 

IL6 1 EIF4E 9 EIF4E1B 3 ERBB3 8 

GSK3B 0 EGF 9 MET 3 BAD 8 

ARAF 0 FGFR3 9 KDR 2 BRAF 8 

PTEN 0 PDGFRB 8 IL6R 2 BCL2 8 

PIK3CD 0 NRG2 8 GAB1 2 FGF2 7 

PIK3CB 0 IL6R 7 SHC1 2 SHC4 7 

FGF2 0 SHC1 7 PDGFC 2 EIF4E 7 

IGF1R 0 PIK3R3 7 STAT3 2 KRAS 7 

AKT2 0 PIK3R1 7 NF1 2 PDGFRB 6 

AKT3 0 NRAS 7 PIK3CD 1 MAP2K2 6 

KDR 0 NF1 7 PIK3CB 1 GAS6 6 

AKT1 0 PIK3CD 6 FGF2 1 PIK3R3 6 

JAK2 0 AKT3 6 MAP2K1 1 PDGFC 6 

HRAS 0 ERBB2 6 HGF 1 EIF4EBP1 6 

IL6R 0 STAT3 6 SHC2 1 PLCG2 6 

JAK1 0 MTOR 6 SHC3 1 VEGFA 6 

PRKCG 0 GSK3B 5 PIK3R2 1 RPS6KB2 6 

PDGFRA 0 PTEN 5 FOXO3 1 IL6R 5 

MAP2K1 0 PIK3CB 5 NRAS 1 PRKCG 5 

MAP2K2 0 JAK2 5 BCL2L11 1 NRG2 5 

PRKCB 0 NRG1 5 ERBB2 1 RAF1 5 

RPS6 0 PRKCA 5 EIF4EBP1 1 SOS2 5 

GAB1 0 FOXO3 5 MAPK1 1 SHC2 5 

NRG1 0 ERBB3 5 BRAF 1 SHC1 5 
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PRKCA 0 EIF4EBP1 5 MTOR 1 EGF 5 

PIK3CA 0 IGF1 5 RPS6KB2 1 GSK3B 4 

GAS6 0 RPS6KB1 5 BAX 1 PIK3CB 4 

RAF1 0 BCL2 5 FGFR2 1 JAK2 4 

SOS2 0 GRB2 5 GSK3B 0 PIK3CA 4 

SHC4 0 FGFR2 5 ARAF 0 SHC3 4 

SHC2 0 HGF 4 PTEN 0 PDGFA 4 

SHC3 0 PIK3CA 4 AKT2 0 PIK3R2 4 

SHC1 0 RAF1 4 HRAS 0 STAT3 4 

SRC 0 MET 4 JAK1 0 IGF1 4 

PDGFB 0 PDGFA 4 PDGFRB 0 BAX 4 

PIK3R3 0 EGFR 4 MAP2K2 0 AKT2 3 

PIK3R2 0 BRAF 4 PRKCB 0 GAB1 3 

FOXO3 0 VEGFA 4 RPS6 0 SOS1 3 

NRAS 0 IL6 4 NRG1 0 MET 3 

ERBB3 0 KRAS 4 NRG2 0 SRC 3 

PDGFD 0 RPS6 3 RAF1 0 ERBB2 3 

ERBB2 0 SHC3 3 SOS1 0 PLCG1 3 

PDGFC 0 PDGFB 3 EIF4E2 0 AXL 3 

EIF4EBP1 0 MAPK1 3 SOS2 0 GRB2 3 

PLCG1 0 BCL2L1 3 SHC4 0 BCL2L1 3 

EIF4E 0 IGF1R 2 SRC 0 IGF1R 2 

MAPK3 0 AKT2 2 PDGFB 0 KDR 2 

EGF 0 AKT1 2 TGFA 0 PDGFRA 2 

BAD 0 PRKCG 2 PIK3R3 0 PRKCB 2 

STAT3 0 MAP2K1 2 PIK3R1 0 RPS6 2 

IGF1 0 MAP2K2 2 ERBB3 0 PDGFB 2 

MTOR 0 GAS6 2 PDGFD 0 MAPK3 2 

VEGFA 0 SOS2 2 PLCG2 0 MAP2K1 1 

RPS6KB1 0 SHC4 2 PLCG1 0 TGFA 1 

AXL 0 SHC2 2 EIF4E 0 RPS6KB1 1 

RPS6KB2 0 SRC 2 MAPK3 0 NF1 1 

NF1 0 PIK3R2 2 EGF 0 ARAF 0 

BCL2 0 PLCG1 2 BAD 0 HGF 0 

BAX 0 AXL 2 IGF1 0 PRKCA 0 

GRB2 0 BAX 2 IL6 0 EGFR 0 

KRAS 0 PRKCB 1 RPS6KB1 0 BCL2L11 0 

FGFR3 0 PLCG2 1 AXL 0 MAPK1 0 

FGFR2 0 MAPK3 1 BCL2 0 IL6 0 

BCL2L1 0 ARAF 0 BCL2L1 0 FGFR3 0 
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Supplement table 15 number of cancer types affect each gene in hsa10522 

Normal tissues Tumor tissues 

Amplification Deletion Amplification Deletion 

Genes 
Number of 

diseases 
Genes 

Number of 

diseases 
Genes 

Number of 

diseases 
Genes 

Number of 

diseases 

SOS1 1 BAD 12 IGF1R 11 CDKN2A 21 

HBEGF 1 CCND1 11 EGFR 9 NRAS 19 

ADCY3 1 RPS6KB2 11 MDM2 9 PRKACB 16 

ADCY2 1 HRAS 10 PIK3CA 7 MAPK12 15 

ADCY1 1 SOS1 9 KRAS 7 MAPK11 15 

PIK3R1 1 ADCY3 9 AKT3 5 DLL4 14 

ABCB11 1 ABCB11 9 AKT1 4 RB1 13 

EGFR 1 MAPK10 9 MMP9 4 CDKN1B 12 

MAPK9 1 PRKACB 8 NOTCH3 4 NOTCH2 12 

MAPK1 1 HBEGF 8 PTK2 4 PIK3CD 10 

BRAF 1 JUN 8 GRB2 4 AKT1 10 

RB1 0 NOTCH2 7 NOTCH2 3 FOS 10 

CDKN1A 0 SHC1 7 ADCY8 3 DLL1 10 

CDKN1B 0 PIK3R3 7 MAPK9 3 MAPK8 10 

ARAF 0 ADCY2 7 GNAS 3 E2F2 10 

PIK3CD 0 PIK3R1 7 SHC1 2 JAG2 10 

PIK3CB 0 MAPK9 7 ADCY4 2 ESR2 10 

IGF1R 0 NRAS 7 JAG2 2 HRAS 9 

CCND1 0 CDKN2C 7 CDKN1A 1 ADCY4 9 

CYP2D6 0 PIK3CD 6 PIK3CD 1 PIK3R1 9 

AKT2 0 AKT3 6 PIK3CB 1 ADCY6 9 

GPER1 0 MED1 6 CCND1 1 MAPK9 9 

PRKACG 0 NCOR1 6 PRKACG 1 MTOR 9 

AKT3 0 ERBB2 6 PRKACB 1 AKT3 8 

AKT1 0 E2F2 6 MED1 1 BAD 8 

PRKACA 0 MTOR 6 MAP2K1 1 BRAF 8 

HRAS 0 PIK3CB 5 FOS 1 SP1 8 

PRKACB 0 TP53 5 SHC2 1 BCL2 8 

MED1 0 ADCY8 5 NOTCH1 1 SHC4 7 

MAP2K1 0 ADCY6 5 SHC3 1 JUN 7 

MAP2K2 0 ADCY5 5 PIK3R2 1 CDKN2C 7 

MMP2 0 MAPK8 5 ADCY1 1 CDK4 7 

NCOA3 0 IGF1 5 ABCB11 1 MDM2 7 

FOS 0 RPS6KB1 5 DLL1 1 KRAS 7 

MMP9 0 CDK4 5 NRAS 1 CCND1 6 

ADCY9 0 SP1 5 ERBB2 1 PRKACG 6 

NCOR1 0 MDM2 5 E2F1 1 MAP2K2 6 

null * 0 BCL2 5 MAPK1 1 PIK3R3 6 

PIK3CA 0 GRB2 5 E2F3 1 E2F3 6 
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RAF1 0 CDKN1A 4 JUN 1 ESR1 6 

SOS2 0 CDKN1B 4 JAG1 1 RPS6KB2 6 

TP53 0 PIK3CA 4 BRAF 1 CDKN1A 5 

SHC4 0 RAF1 4 MAPK14 1 RAF1 5 

NOTCH2 0 ADCY1 4 MTOR 1 SOS2 5 

NOTCH3 0 EGFR 4 RPS6KB2 1 HBEGF 5 

SHC2 0 BRAF 4 BAX 1 SHC2 5 

NOTCH1 0 MAPK14 4 RB1 0 SHC1 5 

SHC3 0 PTK2 4 CDKN1B 0 NOTCH4 5 

SHC1 0 MAPK13 4 ARAF 0 ADCY3 5 

SRC 0 KRAS 4 CYP2D6 0 ADCY7 5 

NOTCH4 0 CYP2D6 3 AKT2 0 BIK 5 

ADCY4 0 PRKACG 3 GPER1 0 MAPK14 5 

PIK3R3 0 NOTCH1 3 PRKACA 0 MAPK13 5 

PIK3R2 0 SHC3 3 HRAS 0 MAPK10 5 

ADCY8 0 NOTCH4 3 MAP2K2 0 PIK3CB 4 

ADCY7 0 DLL1 3 MMP2 0 CYP2D6 4 

DLL1 0 MAPK1 3 NCOA3 0 PIK3CA 4 

ADCY6 0 E2F3 3 ADCY9 0 SHC3 4 

DLL3 0 CDKN2A 3 NCOR1 0 PIK3R2 4 

ADCY5 0 BIK 3 null 0 ADCY5 4 

DLL4 0 ESR1 3 RAF1 0 IGF1 4 

NRAS 0 ESR2 3 SOS1 0 PTK2 4 

MAPK8 0 MAPK12 3 SOS2 0 BAX 4 

ERBB2 0 MAPK11 3 TP53 0 AKT2 3 

E2F1 0 RB1 2 HBEGF 0 PRKACA 3 

E2F2 0 IGF1R 2 SHC4 0 MED1 3 

E2F3 0 AKT2 2 SRC 0 MMP2 3 

MAPK3 0 AKT1 2 NOTCH4 0 NCOA3 3 

JAG2 0 PRKACA 2 ADCY3 0 MMP9 3 

JUN 0 MAP2K1 2 PIK3R3 0 SOS1 3 

CDKN2C 0 MAP2K2 2 ADCY2 0 NOTCH3 3 

JAG1 0 NCOA3 2 PIK3R1 0 SRC 3 

CDKN2A 0 FOS 2 ADCY7 0 ADCY8 3 

BAD 0 MMP9 2 ADCY6 0 ABCB11 3 

BIK 0 SOS2 2 DLL3 0 DLL3 3 

IGF1 0 SHC4 2 ADCY5 0 ERBB2 3 

MAPK14 0 NOTCH3 2 DLL4 0 E2F1 3 

ESR1 0 SHC2 2 MAPK8 0 JAG1 3 

ESR2 0 SRC 2 E2F2 0 CARM1 3 

MTOR 0 ADCY4 2 MAPK3 0 GNAS 3 

PTK2 0 PIK3R2 2 CDKN2C 0 GRB2 3 

MAPK12 0 DLL3 2 CDKN2A 0 IGF1R 2 

MAPK13 0 DLL4 2 BAD 0 TP53 2 

MAPK10 0 E2F1 2 BIK 0 NOTCH1 2 

MAPK11 0 JAG2 2 IGF1 0 MAPK3 2 
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RPS6KB1 0 JAG1 2 ESR1 0 MAP2K1 1 

CDK4 0 CARM1 2 ESR2 0 ADCY9 1 

SP1 0 GNAS 2 MAPK12 0 NCOR1 1 

CARM1 0 BAX 2 MAPK13 0 ADCY2 1 

RPS6KB2 0 MMP2 1 MAPK10 0 RPS6KB1 1 

GNAS 0 ADCY9 1 MAPK11 0 ARAF 0 

MDM2 0 ADCY7 1 RPS6KB1 0 GPER1 0 

BCL2 0 MAPK3 1 CDK4 0 null 0 

BAX 0 ARAF 0 SP1 0 ADCY1 0 

GRB2 0 GPER1 0 CARM1 0 EGFR 0 

KRAS 0 null 0 BCL2 0 MAPK1 0 

  

* null indicates that the gene in KEGG pathway has no corresponding gene symbol  
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Supplement table 16 number of cancer types affect each gene in hsa10523 

Normal tissues Tumor tissues 

Amplification Deletion Amplification Deletion 

Genes 
Number of 

diseases 
Genes 

Number of 

diseases 
Genes 

Number of 

diseases 
Genes 

Number of 

diseases 

ATIC 1 RELA 11 IKBKB 6 ABCC2 13 

DHFR 1 FOLR3 11 ABCC5 4 CHUK 13 

IL6 1 FOLR2 11 TYMS 3 MTHFR 9 

IL1B 1 FOLR1 11 GGH 3 SLC46A1 7 

SLC46A1 0 ATIC 9 ABCC4 2 SHMT2 7 

DHFR2 0 NFKB1 9 SLC46A1 1 RELA 7 

SHMT2 0 IL1B 9 SHMT1 1 ABCC4 7 

SHMT1 0 ABCG2 9 MTHFR 1 NFKB1 7 

ALOX12 0 SLC46A1 7 IL1B 1 DHFR 7 

TYMS 0 DHFR 7 DHFR2 0 FOLR3 7 

TNF 0 SHMT1 6 SHMT2 0 FOLR2 7 

RELA 0 MTHFR 6 ALOX12 0 FOLR1 7 

IKBKB 0 SHMT2 5 TNF 0 IKBKB 6 

FPGS 0 ALOX12 5 RELA 0 SLC19A1 6 

IKBKG 0 TYMS 5 ATIC 0 TNF 5 

SLC19A1 0 IKBKB 5 FPGS 0 ATIC 5 

ABCC3 0 ABCC3 5 IKBKG 0 GGH 5 

ABCC4 0 ABCC2 5 SLC19A1 0 ABCG2 5 

ABCC1 0 CHUK 5 ABCC3 0 TYMS 3 

ABCC2 0 GGH 5 ABCC1 0 ABCC5 3 

CHUK 0 ABCC5 4 ABCC2 0 ALOX12 2 

ABCC5 0 IL6 4 CHUK 0 FPGS 2 

MTHFR 0 TNF 3 IZUMO1R 0 ABCC3 1 

GGH 0 FPGS 3 NFKB1 0 ABCC1 1 

IZUMO1R 0 ABCC4 2 DHFR 0 GART 1 

NFKB1 0 ABCC1 1 IL6 0 DHFR2 0 

FOLR3 0 DHFR2 0 FOLR3 0 SHMT1 0 

FOLR2 0 IKBKG 0 FOLR2 0 IKBKG 0 

FOLR1 0 SLC19A1 0 FOLR1 0 IZUMO1R 0 

GART 0 IZUMO1R 0 GART 0 IL6 0 

ABCG2 0 GART 0 ABCG2 0 IL1B 0 
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Supplement table 17 number of cancer types affect each gene in hsa10524 

Normal tissues Tumor tissues 

Amplification Deletion Amplification Deletion 

Genes 
Number of 

diseases 
Genes 

Number of 

diseases 
Genes 

Number of 

diseases 
Genes 

Number of 

diseases 

CASP8 1 BAD 12 MDM2 9 CDKN2A 21 

MSH6 1 BIRC2 11 PIK3CA 7 GSTO2 16 

MSH2 1 BIRC3 11 FASLG 5 GSTO1 16 

MSH3 1 GSTP1 11 AKT3 5 ATM 16 

PIK3R1 1 FADD 11 POLH 5 GSTM4 15 

MAPK1 1 ATM 11 AKT1 4 GSTM3 15 

BID 1 CASP8 9 BIRC5 4 GSTM2 15 

CYCS 1 CASP3 9 MGST3 4 GSTM1 15 

TOP2A 0 MSH6 9 BID 4 GSTM5 15 

TOP2B 0 MSH2 9 BIRC2 3 ABCC2 13 

CDKN1A 0 MGST2 9 BIRC3 3 PIK3CD 10 

PIK3CD 0 GSTM4 8 GSTP1 3 REV3L 10 

FASLG 0 GSTM3 8 GSTA5 3 AKT1 10 

PIK3CB 0 GSTM2 8 GSTA4 3 CASP3 9 

BRCA1 0 GSTM1 8 GSTA3 3 MGST1 9 

BBC3 0 GSTM5 8 GSTA2 3 PIK3R1 9 

CASP9 0 FASLG 7 GSTA1 3 CASP9 8 

ATP7B 0 MSH3 7 TOP2A 2 ATP7B 8 

AKT2 0 MGST3 7 CASP3 2 AKT3 8 

CASP3 0 PIK3R3 7 MGST2 2 BIRC2 8 

AKT3 0 PIK3R1 7 FADD 2 BIRC3 8 

REV3L 0 TOP2A 6 CDKN1A 1 BAD 8 

AKT1 0 PIK3CD 6 PIK3CD 1 BCL2 8 

ATP7A 0 BRCA1 6 PIK3CB 1 MAP3K5 7 

POLH 0 CASP9 6 CASP8 1 MSH3 7 

MAP3K5 0 AKT3 6 REV3L 1 GSTA5 7 

ABCC2 0 GSTO2 6 MAP3K5 1 GSTA4 7 

GSTO2 0 GSTO1 6 MSH6 1 GSTA3 7 

APAF1 0 ERBB2 6 MSH2 1 GSTA2 7 

PDPK1 0 PIK3CB 5 MGST1 1 GSTA1 7 

GSTO1 0 REV3L 5 XPA 1 MDM2 7 

PIK3CA 0 ABCC2 5 GSTT2 1 FAS 7 

BIRC5 0 APAF1 5 GSTT1 1 BBC3 6 

TP53 0 BIRC5 5 PIK3R2 1 POLH 6 

BIRC2 0 TP53 5 ERBB2 1 APAF1 6 

BIRC3 0 PMAIP1 5 MAPK1 1 GSTP1 6 

GSTP1 0 MDM2 5 GSTT2B 1 MGST3 6 

MGST3 0 BCL2 5 GSTM4 1 PIK3R3 6 

MGST1 0 FAS 5 GSTM3 1 FADD 6 
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XPA 0 TOP2B 4 GSTM2 1 CDKN1A 5 

GSTT2 0 CDKN1A 4 GSTM1 1 FASLG 5 

XIAP 0 POLH 4 ERCC1 1 PMAIP1 5 

MGST2 0 PIK3CA 4 BAX 1 BAK1 5 

PIK3R3 0 MGST1 4 GSTM5 1 PIK3CB 4 

GSTT1 0 MLH1 4 TOP2B 0 BRCA1 4 

PIK3R2 0 GSTA5 4 BRCA1 0 PIK3CA 4 

ERBB2 0 GSTA4 4 BBC3 0 PIK3R2 4 

PMAIP1 0 GSTA3 4 CASP9 0 BAX 4 

BAK1 0 GSTA2 4 ATP7B 0 TOP2A 3 

FADD 0 GSTA1 4 AKT2 0 TOP2B 3 

GSTT2B 0 CYCS 4 ATP7A 0 AKT2 3 

MAPK3 0 MAP3K5 3 ABCC2 0 MSH6 3 

GSTM4 0 XPA 3 GSTO2 0 MSH2 3 

GSTM3 0 GSTT2 3 APAF1 0 MGST2 3 

GSTM2 0 GSTT1 3 PDPK1 0 ERBB2 3 

GSTM1 0 MAPK1 3 GSTO1 0 ERCC1 3 

CDKN2A 0 BAK1 3 MSH3 0 BCL2L1 3 

SLC31A1 0 BID 3 TP53 0 CASP8 2 

BAD 0 GSTT2B 3 XIAP 0 BIRC5 2 

MLH1 0 CDKN2A 3 PIK3R3 0 TP53 2 

GSTA5 0 SLC31A1 3 PIK3R1 0 XPA 2 

GSTA4 0 BCL2L1 3 PMAIP1 0 MAPK3 2 

GSTA3 0 BBC3 2 BAK1 0 MLH1 2 

ERCC1 0 ATP7B 2 MAPK3 0 PDPK1 1 

GSTA2 0 AKT2 2 CDKN2A 0 BID 1 

GSTA1 0 AKT1 2 SLC31A1 0 ATP7A 0 

MDM2 0 PDPK1 2 BAD 0 GSTT2 0 

BCL2 0 PIK3R2 2 MLH1 0 XIAP 0 

FAS 0 ERCC1 2 BCL2 0 GSTT1 0 

BAX 0 BAX 2 FAS 0 MAPK1 0 

ATM 0 MAPK3 1 CYCS 0 GSTT2B 0 

GSTM5 0 ATP7A 0 ATM 0 SLC31A1 0 

BCL2L1 0 XIAP 0 BCL2L1 0 CYCS 0 

 


