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Abstract 

The motivation of this contribution is the study of the Microgrid (MG) power systems, 

specifically Solar-Battery-Diesel systems, which are used to support unreliable grids and 

provide a continuous electricity supply to the areas which have limited or even no access to 

the grid. The main research focus in the scientific community lies on the development of 

general energy management strategies (EMSs) for optimal power routing on the one hand, 

and providing an optimized layout-design of the MGs on the other hand. However, none of 

these two issues can be adequately handled in isolation from one another because they have 

a direct impact on each other. This work aims at tackling Model-Based Development and Design 

of Microgrid Power Systems by addressing the challenges of the EMSs and the layout-design 

based on the system model and operational requirements. For this purpose, several EMSs 

for scheduling generation side in the MG are developed in accordance with the operational 

constraints. Besides, a forecast-driven power planning approach is developed for MGs that 

incorporate smart shiftable loads. Furthermore, this work proposes an integrated layout-

design method for optimizing the size of the microgrid considering the applied EMS. 

Finally, to highlight the usefulness of the developed EMSs and design approach, different 

examples inspired from a real case-study are presented.  

Diese Arbeit befasst sich mit dem Thema Microgrid (MG)-Energieversorgungssysteme, 

hauptsächlich Solar-Batterie-Diesel-Systeme, die vor allem zur Unterstützung der 

unzuverlässige Netze eingesetzt werden oder als eine zuverlässige Stromversorgung für 

Gebiete, die nur begrenzten oder sogar keinen Zugang zu elektrischem Strom haben. Der 

aktuelle Forschungsschwerpunkt in der Wissenschaft liegt einerseits in der Entwicklung 

allgemeiner Energiemanagementstrategien (EMS) für eine optimale Energieführung und 

andererseits in einem optimierten Design der MGs. Keines dieser beiden Probleme kann 

jedoch isoliert betrachtet werden, da sie sich direkt aufeinander auswirken. Diese Arbeit 

zielt darauf ab, die Modellbasierte Entwicklung und Auslegung von Microgrid-

Energieversorgungssystemen anzugehen, indem die Herausforderungen der EMS und des 

Layout-Designs basierend auf dem Systemmodell und den betrieblichen Anforderungen 

adressiert werden. Zu diesem Zweck werden mehrere EMS zur Planung der 

Erzeugungsseite in dem MG in Übereinstimmung mit den Betriebsbeschränkungen 

entwickelt. Außerdem wird für die Microgrids, die intelligent verschiebbare Lasten 

enthalten, eine prognosebasierte Betriebsstrategie entwickelt. Diese Arbeit schlägt auch eine 

integrierte Layout-Design-Methode vor, um die Auslegung des Microgrids unter 

Berücksichtigung des angewandten EMS zu optimieren. Um die Wirksamkeit der 

entwickelten EMS und des Entwurfsansatzes hervorzuheben, werden schließlich 

verschiedene Beispiele vorgestellt, die von einer realen Fallstudie inspiriert sind. 
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1 Introduction 

1.1 Problem Definition 

The continuous depletion of fossil fuels and the increasing awareness toward harmful 

emissions lead to a reconsideration of energy politics and consumers behavior, particularly 

with regard to the sustainable usage of electricity. Today, a lot of projects and investments 

are dedicated for electrification challenges, especially for developing efficient and affordable 

solutions for a successful energy transition on the one hand, and enabling socio-economic 

development in terms of energy policies on the other hand. In the developing countries, the 

governments and the electric utilities are still paying too much consideration to power 

outage problems, especially to the long-lasting blackouts that occur due to insufficient local 

resources or power supplies. Generally, stockholders arrange local backup systems to cover 

at least their basic needs of energy during the outages. Such systems commonly include on-

site diesel generators which are expensive and environmentally hazardous. A small 

residential building for instance can consume up to 10 K liters of diesel per year just to cover 

a daily power outage of ten hours. Besides, these generators release approximately 2.6 Kg of 

carbon dioxide into the atmosphere per liter of diesel fuel [FvL2018]. 

Recently, as demand for clean and affordable energy increases, hybrid energy systems –

instead of diesel alone– entered into force. In Germany for instance, the German Federal 

Government has recognized the importance of utilizing clean energy sources and therefore 

has set down an annual target of 2.5 GW new installations of PVs to support the 

“Energiewende” (energy transition) [EEG2017]. On the other side, in the less-developed 

countries, the value of utilizing renewable energy sources (RES) has been significantly 

realized. According to the National Energy Efficiency Action Plan (NEEAP) for Palestine, 

the Palestinian Energy Authority (PEA) has set down a group of indicative targets to 

sustainably develop the Palestinian economy while mitigating greenhouse emission and 

reducing considerably the dependence on imported energy. The plan has also initiated 

different measures for renewable energy utilization in all energy consuming sectors for that 

purpose [NEEAP], [NjM2016].  

Although it is recommended to deploy RES to lessen the dependency on the conventional 

sources and help in reducing gas emissions, there is still a need for developing and realizing 

efficient energy management solutions (EMSs) in order to optimally achieve the system 

requirements, especially maximizing the net benefit from RES while minimizing the lost 

energy and the operational costs of the whole system. Consequently, affordable cost of 

energy can be attained using efficient EMSs because the effective price of the system will be 

reduced accordingly. With the progressive drop in prices of RESs and batteries, and as a 

preliminary step towards energy transition, societies in the near future are expected to draw 

power from these new elements such as PVs and batteries in addition to the existing legacy 

infrastructure, e.g., grid and diesel.  
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This will introduce a complex energy management scenario, which motivates the need to 

explore innovative strategies that can optimally dispatch and distribute energy from these 

elements based on their availability and associated costs. To this end, different supply and 

demand side management strategies should be explored. On the supply side, diesel 

generators –the commonly used backup power supplies– may be partially assisted or totally 

replaced with renewables, e.g. PV Solar Generation, and energy storage, e.g. battery. On the 

demand side, a further step can be made to achieve this goal, namely: load control. This will 

increase the degree of flexibility and give a chance to influence the consumption behavior 

through shedding some unnecessary loads or/and shifting their time of operation to another 

acceptable time span, where the energy price is much lower. Once explored, this will allow a 

seamless shift of a part of the consumption from the high energy price regimes (or outages) 

to other regimes. However, realistic scenarios and operation conditions must be used to 

investigate the feasibility and effectiveness of the proposed solutions. 

1.2 Motivation and Goals 

It is observed that significant and substantial developments are currently made on the 

existing power systems as a natural reaction to the revolution in Renewable Energy. In spite 

of all encouraging advantages of RES, there are still some important barriers that need to be 

overcome for a seamless integration into the current power systems. Yet, innovative and 

holistic approaches are still needed to make maximum use of them in the most optimum 

way. To this end, the concept of Microgrids has emerged with the beginning of the 21st 

century to handle these issues. As an emerging conception of the future power systems, 

microgrids can overcome the expected barriers of the associated challenges of Energy 

Transition. Microgrids are miniature models of power systems incorporating different 

controllable power sources and loads [Lr2002], [DoE2011]. Meanwhile, they are forming a 

key milestone in the future paradigm of the power systems.  

The main motive for this contribution is, therefore, the study of the Microgrids. The majority 

of the preceding research works conducted in this context fall under two categories:  

1. The problem of Layout-Design (components’ sizing) of the Microgrids.

2. Development of Energy Management Systems for special purposes.

However, none of these two issues can be adequately handled in isolation from one another 

because each of these issues has a direct impact on the other.  

To the knowledge of the author, there is a lack of comprehensive studies that addressed the 

aforementioned issues in a well-structured way starting from the elementary requirements 

of the handled systems and passing through the applied energy management system and 

ending with the optimized operation of the whole system in order to make the best possible 

use of the installed RES.  
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For this purpose, this work aims at tackling Model-Based Development and Design of 

Microgrid Power Systems by addressing the challenges of the Layout-Design and Energy 

Management System based on the system model and operational requirements.   

In addition to the above-mentioned objective, this study seeks to conceptualize a general 

perception of the main components of the Microgrids’ and develop an adequate but simple 

and straightforward EMS that can be efficiently used and applied to achieve the maximum 

degree of sustainable and reliability.  

Unlike other case-oriented works, this work aspires to give a general understanding of the 

most important challenges related with the Microgrid Operation by elaborating realistic 

case studies with the corresponding operation scenarios and thus, a part of this contribution 

is dedicated not only to handle such emerging power problems correspond to modern 

societies, but also to some of the most demanding electrification problems in the developing 

countries. In spite of that, an intensive explanation of a relevant case study, e.g. Gaza-city, is 

introduced in Chapter 2 where such emerging problems are worth to be explored.  

1.3 The Scope of the Work 

This work is mainly concerned with the system level modeling which is very important for 

efficient and adequate development of EMSs. Thus, the scope of this work does not pay 

consideration for the voltage stability, power quality, or even the transient response in a 

very short time span. In contrast, it tackles the uppermost control level, which has the 

longest discrete time steps, e.g. ranging from intra-hours to intra-days. For this reason, the 

modeling method used here does not care about very detailed modeling that will ultimately 

lead to huge computation time, complex scheduling, and of course inapplicable operating 

scenarios. Consequently, the concept of model-based development used here deals with the 

generic models of the system’s components which can be mathematically formulated to 

abstractly describe the dynamic behavior of an individual component of the microgrid.  

Furthermore, and not only for comparison purposes, a part of this work tracks a former and 

well-known EMS as a preliminary management method, e.g., rule-based method, which has 

been given several names in the literature. The author has recognized enhancement 

potential and therefore, this method will be addressed firstly, as in Chapter 3, in order to 

highlight some weaknesses that can be treated to increase the efficiency of the system.  

As introduced in the section of problem definition, this work tackles not only the problem of 

assets management, e.g. supply side, but also the demand side. This will be addressed in the 

course of Chapter 4, where a set of controllable loads are going to be used to allow for more 

flexibility of the system. In another meaning, the pattern of this work starts with modeling 

each element of the system and moves to discuss the energy management from the supply 

side and afterwards tackles the problem of scheduling the controllable loads in the demand 

side. Yet, this will form the first part of the study.  
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The second part will take care about the design of a microgrid considering the involved 

energy management criteria, where the general framework will be discussed firstly in 

Chapter 5 presenting the impact of the applied EMS on the resulting values of the 

components. In the course of this work, it is expected to use an optimization technique that 

can accelerate the searching process. For that reason, the Genetic Algorithm (GA), as a 

stochastic optimization technique, is adopted to track the solution in the shortest possible 

time. 

1.4 Thesis Organization 

There are six main chapters forming this thesis starting from the state of the art of 

microgrids and moving towards the full development to fulfill the objectives of this work. 

Microgrids are the core of the thesis and so Chapter 2 starts with the basics of MGs. 

Therefore, MGs are described in general, followed by the major topologies. Further, this 

chapter describes the major MGs’ structures are going to be used in this work referring to 

the most common operational constraints or/and hypothesis. Besides, an intensive 

description of the case study and the corresponding operation conditions is introduced in 

this Chapter too.  

The development of the EMS is going to be addressed in details in Chapter 3. This chapter 

starts with reviewing the classical rule-based EMS in order to highlight the enhancement 

potential and the need to optimize the operation of the MG under consideration. It moves 

afterwards to describe the framework of the improved version of this method. Subsequently, 

a forecast-driven solution of the EMS is presented in this Chapter. The later approach is 

mathematically formulated using the classical dynamic programming (DP) technique. 

Nevertheless, this approach is developed after that to be solved in s shorter time by applying 

a stochastic optimization technique, e.g. GA. Lastly, the faster approach is used to facilitate 

an uncertainty-tolerance EMS using the concept of Model-Predictive Control. 

Another opportunity of managing the controllable assets is demonstrated in Chapter 4. This 

chapter tackles the problem of load scheduling in a smart building as an important function 

of the tertiary level in controlling future microgrids. To this end, this chapter offers a 

proactive scheduling plan for a set of some smart loads which announce their desired 

operation pattern or the associated consumption profiles in advance.  

The ‘best case’ scenario solution is presented firstly considering a perfect prediction of these 

loads as well as the power generation profiles. Afterwards, it overcome the problem of 

uncertainty by adapting the fast responsive assets, e.g. generation side, accordingly.  

Chapter 5 presents the developed design framework. It aims at selecting the most 

appropriate components of the MG correspond to the some performance factors, e.g. the 

self-consumption and utilization level. The kindness of this method is that the applied EMS 

is integrated when optimizing the capacity or the size of each component.  
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Chapter 6 concludes the dissertation by summarizing the main research challenges and 

highlighting the main achieved results. It illuminates also the potential work that can be 

conducted in the future. 

A graphical description of the thesis organization starting from the second chapter is shown 

in Figure 1.1 
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Evolution of Microgrids

System Modeling

Description of the Case-Study

Power Paths

Ch. 2 – State of the Art

Ch. 3 – Energy Management Strategies

Rule-Based EMS

Adaptation with real measurements

Prediction-Based EMS Methods

Ch. 4 – Demand Side Management

Direct Optimization

Joint-Scheduling Strategy

Ch. 5 – Components’ Sizing

Classical Design

EMS-Integrated Method

Ch. 6 – Conclusion

Conclusion and Outlook

Figure 1.1: Thesis organization diagram.
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2 State of the Art 

The increasing need of energy and the rising cost of the conventional generation along with 

the climate changes are the major drivers of the transition process of energy systems. These 

challenges necessitate continuous development of the electrical sector. Microgrid concept 

emerged to cope with the requirements of the new paradigm of energy systems. “A microgrid 

is a group of interconnected loads and distributed energy resources within clearly defined 

electrical boundaries that acts as a single controllable entity with respect to the grid. A 

microgrid can connect and disconnect from the grid to enable it to operate in both grid-

connected or island-mode”[DoE2011]. In this chapter, a brief background about Microgrid 

systems is introduced followed by the mathematical modeling of the most common 

operational hypothesis that are going to be applied in this thesis. Finally, a detailed 

description of the concerned case study is presented. 

2.1 Evolution of Microgrids 

Given the fact that most of the existing electrical grids were built in the past decade and are 

mostly powered by fossil fuel, the next generation of power system are expected to depend 

merely or at least partially on regenerative resources other than the depleting fossil fuel. 

Essentially, the legacy power systems are thermal in nature and can mostly convert one-

third of fuel energy into electricity. Moreover, nearly 8% of the generated electricity is lost 

along the transmission system, while 20% of their generation capacity exists to meet peak 

demand only (i.e., it is in use only 5% of the time). In addition to that, due to the hierarchical 

topology of its assets, the existing electricity grid suffers from the cascade failure effect 

[Farh2010].  

On the other side, the broad vision of the future grid, known as the “smart grid” is expected 

to address and tackle the major shortcomings of the existing grid. Figure 2.1 depicts the 

salient features of the smart grid in comparison with the existing grid.  

Figure 2.1: The smart grid compared with the existing grid [Farh2010]. 
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In light of this, the governments and stakeholders have been starting with the deployment 

and installation of on-site generation as an alternative solution to lessen the burden on the 

main grid and to overcome the problem of energy loss in transmission system. Such an 

auxiliary system is basically formed by a group of small generation units referred to as 

distributed energy resources (DER) [VirT2007]. Obviously, DER systems are expected to 

have a higher degree of flexibility than the conventional energy systems where they 

comprise hybrid generation components that cannot fail together. Such systems typically 

use RES such as solar and wind power in addition to the storage system.  

“The significant potential of smaller DER to meet customers’ and utilities’ needs can be best 

captured by organizing these resources into Microgrids” [CERTS2003] 

A Microgrid system is commonly used as a secondary or a provisional power supply 

integrating different micro power resources and storage unit [Farh2010]. Therefore, it should 

have also the ability of interaction with the main distribution grid to supply the load in case 

of grid outages according to a designated power management criteria. 

2.2 Power paths 

Unlike the traditional paradigm of the electricity grids, microgrids are small-scale grids that 

can operate cooperatively with the main (macro)grid as in the grid-connected mode or 

function autonomously as in the islanded or isolated mode. Figure 2.2 gives an overview of 

the possible energy conversion paths among a microgrid system incorporating PV field, 

Battery,  Generator, and a unidirectional grid, i.e. cannot accommodate the surplus PV 

production. 

𝜂 

       𝜂 

 𝜂 𝜂

Figure 2.2: Possible energy conversion paths in Microgrid. 

𝜂 
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2.3 System Modeling 

The considered microgrid system here is composed of a PV-array, a battery storage, and a 

diesel generator set (GenSET), all together representing the proposed backup supply for the 

essential loads, which all are connected to main grid through the point of common coupling 

(PCC) as depicted in Figure 2.3 

PV

Array

Battery

Storage

Diesel 

GenSet

Main Grid

PCC

Critical 

Loads

AC

 DC

EMS

Legacy systemG(Grid/Diesel) New systemG(PV/Battery)

PD PB PPVPL

here: 

unidirectional 

power flow

Figure 2.3: General model of a PV-Battery-Diesel Microgrid system 

Following is an abstract model of each system’s component and/or its main operational 

constraints: 

2.3.1 Load Demand 

The load demand or profile represents the instantaneous power consumption of the load 

and can be modeled by discrete values 𝑃𝐿(𝜏) over a fixed time horizon (e.g., a day), 

where 𝜏 ∈  [𝑡0, 𝑡0 + 𝑇]. Obviously, the most important part of proposing an efficient 

management strategy later on is to identify the consumption patterns and maintain power 

supply even in blackouts, rather than to save energy. To this end, a method is required to 

mockup a load profile for a relatively long period from available basic data. For the purpose 

of testing control strategies, the load forecasting model should avoid complicated 

configuration processes [PeBo2011]. Essentially, such a method is advantageous when a 

comprehensive monitoring action is not possible either. Considering a load profile 𝑃𝐿(𝜏) is 

available over a specific period which represents the basic data window. The consumption 

pattern could be constant or assumed to have some slight changes over the original one (e.g., 

over the specified period), in which the load of the next window can be described as a term 

of the main window but including a scaling factor and time delay, then the load profile for 

the next day can be mathematically formulated as in Equ. (2.1): 

𝑃𝐿
′(𝜏) = 𝛼𝑖𝑃𝐿(𝜏 + 𝛽𝑖) (2.1) 
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Where: 

αi is the weighting factor indicating the uncertainties of the power demand of the next 

window (day) referred to the basic data window, i.e. if its value is equal to 1.15 this 

means that the whole load profile of the day I is 1.15 times the basic load profile.   

Βi is the shifting factor representing the global shift over the next day referred to the 

basic day. 

These two factors are generated using uniformly distributed random variables within a 

proper range of uncertainty. Figure 2.4 presents a sample load profile with the 

corresponding generated profile over 14 days for the purpose of simulation in later chapters. 

(a) 

(b) 

Figure 2.4: Sample load profile: (a) Basic load profile (b) Generated load profile over two weeks
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2.3.2 Main Grid 

The main grid can have two states: ON (available) and OFF (unavailable) and can supply the 

load adequately whenever it is in ON state. However, a frequent power outage can occur 

because of insufficient energy resources or/and restriction on the logistics, which requires 

another standby supply. Such a timely grid behavior is depicted in Figure 2.5. These outages 

can be scheduled in advance or take place unexpectedly due to unpredictable faults. At the 

PCC with the main grid, only a unidirectional power flow from the main grid to the 

microgrid can be occurred (cf. Figure 2.2). That is, the residual PV power will not be fed to 

the main grid. Consequently, power quality compliancy with the main grid is no issue in 

this context.  

Figure 2.5: Binary grid states (ON and OFF) 

One scenario is that the grid outages can be scheduled in advance according to the energy 

deficit and the public are informed about the time zones in which the outage will take place. 

In other circumstances, outages may occur unexpectedly without prior notice, due to uneven 

measures or unpredictable faults. In such cases, the outages may obey a uniform probability 

distribution Tn ∈ {T1, T2, T3 , … , TN}. Therefore, the probability of occurrence of each duration 

in Tn equals (1/N).  

Without loss of generality, other synthetic distributions can be used to model outages of a 

certain utility according to the given records and measures. The grid is classic and supports 

only one-way flow of electricity, means that it cannot handle the surplus RES. In case of 

isolated MG, the grid will simply be considered OFF all the time.  

2.3.3 PV array 

The output power of the photovoltaic array (PPV) is the total sum of the generated power of 

each panel at standard test conditions (STC) considering the actual irradiance in the field 

and ambient temperature as well. The applied model adopts equation (2.2) as follows: 

𝑃𝑃𝑉 = 𝑁𝑃𝑉𝑃𝑆𝑇𝐶

𝐺𝑠

𝐺𝑆𝑇𝐶

[1 + 𝜗(𝑇𝑠 − 𝑇𝑆𝑇𝐶)] (2.2) 

Grid State 

Time 

ON ON 

OFF 
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where PPV, 𝑁𝑃𝑉, 𝑃𝑆𝑇𝐶, 𝐺𝑠, 𝐺𝑆𝑇𝐶, 𝜗, 𝑇𝑠, and 𝑇𝑆𝑇𝐶 are the output power from a the PV array at the 

maximum power point (MPP), the total number of PV-modules that composed the solar 

plant, the rated PV power at the MPP and STC, the irradiance level at the operating point 

and at the STC, the power temperature coefficient at MPP, the panel temperature, and the 

temperature at the STC, respectively.  

The measure conditions at the STC are: GSTC = 1000 W/m2, TSTC = 25℃, and relative 

atmospheric optical quality is AM1.5. Note that the output from the PV array are connected 

directly to a dc-dc power converter which has inside a maximum power point tracking unit 

(MPPT) to maximize power extraction under the different operational conditions.  

The panel temperature 𝑇𝑠 is of course related to the ambient temperature 𝑇𝑎𝑚𝑏 and the 

nominal operating cell temperature NOCT. It can be derived using equation (2.3) as follows:  

𝑇𝑠 = 𝑇𝑎𝑚𝑏 +
𝐺𝑠

800
× (𝑁𝑂𝐶𝑇 − 20) (2.3) 

Further details regarding the applied model can be found in [DjBw2013]. 

2.3.4 Battery Bank 

The battery bank, is the most essential part of most microgrids. It is, therefore, necessary to 

have a well-sized battery bank in order to ensure that the power supplied by RESs during 

high generation periods will be available when the load requires it [MaY2014]. The strategy 

of managing batteries can significantly impact the performance of the overall system. The 

following condition is imposed to limit the power in/out flows of the battery: 

|𝑃𝐵| ≤ 𝑃𝐵
𝑚𝑎𝑥 (2.4) 

where PB is the power thrown from or injected into the battery. It is positive at discharging 

and negative at charging. It should not exceed a predefined limit in, 𝑃𝐵
𝑚𝑎𝑥 all modes of

operation in order to slow down the degradation process [Jen2008]. Besides, another 

variable that should be kept within a certain range is the state of charge (SoC). It can be 

expressed as: 

𝑆𝑜𝐶(𝜏) =
𝐸𝐵𝑎𝑡(𝜏)

𝐶𝐵𝑎𝑡

(2.5) 

𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 (2.6) 

where EBat, CBat, 𝑆𝑜𝐶𝑚𝑖𝑛 and 𝑆𝑜𝐶max are the actual energy stored in the battery at time τ, the 

total energy capacity of the battery, and the minimum and maximum allowed state of 

charge of lead-acid batteries, respectively.  

The SoC value at time (𝜏 + ∆) is determined by the SoC value at time τ and the battery power 

during the time period. It can be expressed by the following equations: 
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𝐸𝐵𝑎𝑡(𝜏 + ∆) = 𝐸𝐵𝑎𝑡(𝜏) − 𝑃𝐵𝑎𝑡(𝜏) × ∆ (2.7) 

𝑆𝑜𝐶(𝜏 + ∆) = 𝑆𝑜𝐶(𝜏) −
𝑃𝐵𝑎𝑡(𝜏)

𝐶𝐵𝑎𝑡
× ∆ (2.8) 

The charging efficiency and discharging efficiency are both assumed to be 𝜂𝑏 = 95 %. 

[PwrSnc].  

Another important factor is the cumulative damage of the battery (CD), which can be 

estimated by calculating the total cycles pass through the battery.  

In particular, the number of cycles to failure (CFL) which defines the total lifetime of the 

battery is the core factor to estimate CD. It depends mainly on how many cycles are passed 

through the battery and how deep these cycles are, namely, the depth of discharge (DoD).  

Basically, if a single cycle consumes (1/ CFL) of the whole life, then CD will become equal to 

unity after CFL similar cycles and the battery will need to be replaced [VreP2011]. For 

example, if the battery bank goes annually through K cycles, then the cumulative annual 

damage is equal to:  

C𝐷 = 𝐾(1/𝐶𝐹𝐿) (2.9) 

 

This factor is also essential from an economical point of view to know the number of storage 

unit replacement over the project period. Figure 2.6 shows the cycling behavior of a 

commercial battery used for solar application under ideal operating conditions.  

 

Figure 2.6: Cycle lifetime of a commercial OPzS battery as a function of DoC (at 20 ºC) 
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2.3.5 Diesel Generator 

The diesel generator is the elementary component of the legacy system and acts as a backup 

power supply in case of power outage or a complete disconnection from the utility grid. On 

the other hand, it will assist the rest of microgrid’s components in case of insufficient power 

production or weak charge in the storage system. The point of interest here is the driver or 

the power provider which is the fuel. The relation between power production and fuel 

consumption can be described using the fuel consumption chart of the diesel Generator 

[MoP2014].  

Mathematically, it can be modeled as a linear or quadratic function in accordance with the 

given fuel consumption chart by the manufacturers [Dss2018]. The total fuel cost results 

from the integration of the fuel consumption over the time. Equation (2.10), (2.11) and (2.12) 

represent the generation limits, the total fuel consumption (Fc) in Liters and the fuel cost. 

𝑃𝐺𝑒𝑛
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑒𝑛 ≤ 𝑃𝐺𝑒𝑛

𝑚𝑎𝑥 (2.10) 

𝐹𝑐(𝑃) =  ∑(𝑎𝑃2 + 𝑏𝑃 + 𝑐) × ∆ (2.11) 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡 =  𝐷𝑐𝐹𝑐(𝑃) (2.12) 

Observably, the power generation efficiency of the diesel generator is affected by its loading 

factor (i.e., generated power w.r.t nominal capacity).  

Figure 2.7 shows the chart of energy efficiency in (kWh/L) of a typical diesel generator of 250 

kW as a function of its loading factor. It can be noted that when the DG operates near 20% of 

its rated power, the efficient generated energy is about 2.3 kWh per one liter of fuel. 

Theoretically, according to the given model, the maximum reachable fuel efficiency is about 

3.4 kWh/L and corresponds to about 80% of its rated power. Obviously, this results in a 

great fuel saving; thus a good efficiency may be obtained if the DG operates close to a higher 

load factors. This result is largely consistent with the conclusion of [Asha1999] saying that 

DGs have typically a maximum fuel efficiency of about 0.33 L/kWh when run above 80% of 

its rated power. 

Observable, the diesel price per energy unit is getting cheaper at higher generation levels as 

the generation efficiency is increasing. However, it is recommended to leave a safety margin 

before the highest possible generation limit 𝑃𝐺𝑒𝑛
𝑚𝑎𝑥 as a compromise of lifetime and 

instantaneous efficiency from one side and in order not to put too much stress on the 

generator in case of extensive operation time, here it’s chosen at 85% loading factor and 

denoted by 𝑃𝐺𝑒𝑛
𝑏𝑒𝑠𝑡. 
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Figure 2.7: Diesel generator efficiency characteristics 

 

2.3.6 Power Inverter: 

A bi-directional power inverter is assumed to perform the needed power conversion 

between AC and DC buses. The following equation describes an abstract model of the used 

inverter: 

𝑃𝑜𝑢𝑡 = 𝜂𝑐𝑃𝑖𝑛 (2.12) 
 

where ηc is the efficiency of the power conversion. 

Other approaches, such as in [RifB2011], provided a more detailed model formulating the 

efficiency of the power inverter as a function of the input normalized power, where losses 

are assumed to be a quadratic function. Figure 2.8 shows the efficiency curve measured and 

modeled from identification. The average error is 0.17%. 

 

Figure 2.8: Measures and identified converter efficiency curves [RifB2011].  
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2.4 Description of the Case Study 

As introduced in the first chapter, this work is not oriented for a specific case only but can be 

transformed to other environments according to the given requirements. Nevertheless, it is 

not that simple to give a clear perception of the subject without elaborating by a real 

example. For this reason, the presented case here will serve this purpose by incorporating 

the aforementioned components in a one complete microgrid system and the discussion 

later on will be on how to manage the operation of these components optimally without 

violating the predefined operation constraints.  

The considered case has been discussed in [MuKg2011], where a hybrid wind-diesel power 

supply was proposed to cover a load profile of a hospital building in a more sustainable 

way. The region is suffering from an energy crisis which adversely affects the power supply 

of the hospital. A brief overview of the energy sector in that region will be presented firstly, 

followed by a detailed description of the case under consideration and finally the current 

applied energy management scheme of the existing backup power system there is going to 

be presented. 

2.4.1 Energy Sector in Gaza-Strip 

Gaza-Strip is located in the South-West of Palestine. Its total area is estimated at 360 km2. 

Gaza city is the major province in Gaza-Strip. It has one of the highest population densities 

and overall growth rates in the world with its small total area of 45 square kilometers 

[CiAwb]. According to the United Nation Office for the Coordination of Humanitarian 

Affairs (OCHA) [OCHA2017]. Gaza-strip is supplied by electricity mainly through three 

parties, namely: Gaza Power Plant (GPP), Egyptian lines (EL), and Israeli Electricity 

Company (IEC). A detailed illustration of the power supply showing the distribution of the 

these lines and the power demand and deficit is shown in Figure 2.9, according to the 

situation in August 2014. 

As depicted, Gaza-strip is suffering from an insufficient and irregular power supply. 

According to the latest information by the Gaza Electricity Distribution Company (GEDCO), 

the official body in charge of electricity supply in the Gaza Strip, power supply and deficit in 

Gaza-Strip can be summarized by the diagram in Figure 2.10.  

The impact of power outage in Gaza-Strip makes it difficult for GEDCO to schedule the 

supply and distribute it in a proper way. Therefore, the authority in corporation with 

GEDCO use to schedule or recirculate the supply between the different zones according to 

the availability of power feeding lines. Depending on the status of GPP, the daily average 

time of power-outage in all zones in Gaza-Strip may exceed twenty hours; including 

hospitals and clinics. Further information about the energy sector in Gaza-Strip and the 

origin of the problem up to August 2014 is covered in [WeS2009].  
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Figure 2.9: Gaza-strip map with electricity supply in details [OCHA] 
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(a) 

(b) (c) 

Figure 2.10: Gaza-strip electricity supply, [OCHA] 

(a) Availability of electricity per month (average hours per day),

(b) Electricity supply per month (average megawatts), (c) Supply vs. demand (average megawatts)

2.4.2 Al-Shifa’ Hospital in Gaza-city 

Al-Shifa' Hospital is the largest healthcare complex in Gaza-Strip. It has more than 600 beds 

and serves more than 40 % of the population of Gaza-Strip [MuKg2011]. It consists of more 

than 20 buildings and provides diagnostic, surgical care, emergency medical care, intensive 

care, hospitality and labs. In addition to that it provides also general services such as 

laundry, food preparation with delivery and personal cafeteria.  
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The hospital complex is supplied by medium voltage level (22 kV) from GEDCo through 

two different feeding lines which are located in the northern and southern side of the 

hospital. Each feeding line supplies two parallel MV-LV (22 kV/400 V – 0.85 MVA) three 

phase transformers equipped into the two sub-stations as depicted in Figure 2.11  

Figure 2.11: Al-Shifa’ Hospital’s power supplies [SkMoH] 

Every sub-station is responsible of a group of buildings representing half of the hospital’s 

total electric demand. Additionally, each sub-station is equipped with a group of different 

capacities’ diesel generators (Standby Station N/S) that serve as an emergency power supply 

system to cover the essential loads when the grid is unavailable.  

Indeed, no other options are available to increase the capacity of any of the feeding lines in 

order to meet all hospital’s demand every time sufficiently; where the grid cannot maintain 

an acceptable voltage level at such high peak demand; otherwise, a huge modification need 

to be done on the grid which means great investment cost and longtime of operations with 

scarce income to both authority and distribution company.  

The inevitable consequence of frequent and prolonged power outage, the administration of 

the hospital with the consultant of engineering office stores diesel in special tanks inside the 

hospital complex to operate the backup diesel generators when the grid is unavailable. 

These tanks are prepared to store enough fuel to operate generators for one week of regular 

power cut-off 12 hours/day in order to operate the essential loads normally. The authority in 
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Gaza-Strip gives the first priority to hospitals and healthcare facilities to supply them by 

enough fuel to face the daily exacerbated challenge, but in the time of conflicts it becomes 

impossible for authority to buy fuel directly.  

Therefore, civil society organizations used to help as much as they can. 10 years ago, the 

total rated power of each backup generator set at the two sub-stations was not more than 

650 kVA, but the electricity crisis started sharply after 2006, when the local power plant was 

partially destroyed [WiAlshifa]. Accordingly, the general administration of engineering and 

maintenance there started to increase the capacity of generators to cover the increasing load 

and to be on the safe side from the frequent power failure. In addition, during a prolonged 

power outage, some normally non-essential services become essential, such as laundry, 

catering or steam supply; these facilities cannot be stopped more than 16 hours in a daily 

routine. Further clarification about how the engineering team there tries to beat the absence 

of grid electricity every day is presented in the following subsection. 

2.4.3 Existing Energy Management Experience 

While load shedding of the hospitals in Gaza becomes a daily routine, all electric loads in the 

hospital complex are subdivided into three categories according to the level of importance as 

follows: 

1. Essential loads (EL): These loads are essential to the life safety, critical patient care,

and the effective operation of the healthcare facility, and these loads are supplied by

the complete backup generators when the utility turns off to maintain the continuity

of the basic services in the hospital and keep the patient comfort at an acceptable

degree.

2. Very Important loads (VIL): This group of loads has a more sensitivity degree than

the previous group and cannot wait for longer time till the supply is back. The

included loads are automatically supplied by alternate power sources to supply any

of them at any interruption even if short period; usually those types of loads are

equipped with uninterruptable power supply (UPS) which can maintain good

supply during a certain period of time (maximum 10 minutes).

3. Non-essential loads (NEL): They express the remaining loads after subtracting EL

from all loads. They are not deemed essential to life safety, or the necessary

operation for the healthcare facility, such as offices’ air conditioning, incinerator,

general lighting, general lab equipment, service elevators, and patient care areas

which are not required to be backed up with an alternate source of power. However,

they must run sometimes in a weekly manner to keep the patient care at a good

situation.

In light of this information, the power system availability in Gaza’s hospitals can be divided 

into three levels according to the available: 
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 The green level: when grid is available and the backup diesel generators are ready to

operate without considerable concern about diesel transportation and logistics.

 The yellow level: when the grid is unavailable but the backup diesel generators can

supply the essential load without fuel-logistic problems.

 The red level: when the grid is unavailable and there is a scarcity in fuel supply due

to blocking in boarders or ports as occurred in conflicts.

The critical equipment such as in laboratories or clinics that are serious for a power outage 

even of a short period of time (10 minutes maximum) are supplied by special (UPS) systems. 

A set of UPS’s are distributed on some critical buildings such as: Dialysis, Neonatal Care, 

Intensive Care Units, operatory rooms and some special diagnostic rooms. 

The existing load management program in Al-Shifa’ hospital can be described as the 

flowchart in Figure 2.12, where the first priority to supply all loads in hospital is given for 

the grid, then if there is no “emergency” and the grid is unavailable; the essential loads are 

supplied in the daytime by a larger generator set (GenSet 1) while they are supplied by 

smaller generator set (GenSet 2) in the nighttime [SkMoH].  

The presented flowchart represents the developed scheme by the site engineering team of 

how they are managing the available power sources to supply different groups of loads in 

the hospital during the daytime considering the availability of the grid or the status of fuel 

supply. The term “emergency” is defined to deem an expected scarcity in fuel supply during 

blockades or conflicts. This means that the backup generators are available but the fuel 

supply is not; that is why they used to operate the least group of essential loads. Therefore, 

the VIL group should be maintained all the time. 

START

Grid GEDCo

Zone Buildings 
(ALL)

Essential 
Loads (EL)

Daytime

GenSet 1 Genset 2 

YesNo

YesNo

Loading Decision

Emergency

Very Important 
Loads (VIL)

NoYes

Figure 2.12: Loading decision at different circumstances. 
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This is done according to the experience of the operation engineers to save fuel and increase 

the life time of the two generator sets; where they prefer to maintain the loading factor to a 

certain generator round 85% and not less than 60 % of its rated capacity. In addition, it is 

well known that the majority of loads will be online at the daytime, which means that 

greater capacity is needed.  

This is done according to the recommendation of several diesel generators’ manufacturers, 

that the power generation limits of diesel generators correspond to the efficient fuel 

consumption [Asha1999]. 

Unfortunately, the existing infrastructure does not support an efficient energy management 

program as no monitoring-recording system has been installed yet; neither for the total 

consumption of the buildings inside hospital nor for a certain group of critical facilities.  

Moreover, it lacks break-down details of electrical energy consumption for different loads. 

The availability of such a monitoring system can provide detailed load shapes of all different 

facilities, which are of great interest for the following reasons: 

 Evaluating the consumption percentage of each load category according to the

corresponding criticality rank.

 Auditing the total numbers of power failure or blackouts within a certain period of time,

(yearly/monthly/weekly or even daily based).

 Following up the responding of backup system to the frequent power failures.

 Forecasting the load of different categories according to their historical behavior.

 Facilitating the prediction of the possible impact of the applied energy management

strategies.
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3 Energy Management Strategies 

Energy Management Strategies (EMSs) for Microgrids provide the key to ensure not only a 

cost-effective but also an adaptable operation to the actual measurements. This chapter 

highlights the major EMSs applied in this regard. It explores two approaches for power 

routing in microgrids incorporating solar generation as an example of RES, battery energy 

storage system (BESS), and a diesel generator, in addition to a unidirectional grid in case of 

grid-connected system. The first approach is conventionally known as a rule-based EMS, and 

the second one is a prediction-based which also known as an optimization-based EMS. 

Furthermore, this chapter presents also a hybrid method for the purpose of adaptation with 

the new measurements, which make use of both previous approaches to tackle the prediction 

uncertainty efficiently. Finally, a brief demonstration of an advanced EMS is presented, 

which is more resilient to the forecasting error and has the ability to realize the new 

configuration in a shorter time.  

3.1 Introduction 

The continuous depletion of the fossil fuel and the global concerns about emission control 

along with the needs for affordable power supply, all together bring out the hybrid 

microgrids as promising alternative of the existing conventional power generation [Lr2002]. 

Such hybrid systems integrate a cluster of micro-sources, storage systems and loads, which 

can operate as a single entity [MicaG2015]. However, to supply the load demand efficiently 

in the most clean and economical way, the different incorporated energy resources must be 

managed in an optimal manner [Lr2002].  

Optimal EMS of a microgrid appears as a challenging problem because of the associated 

challenges with the prediction. Namely, the fluctuating nature of the renewable energy 

resources (RES) and the unpredictable part of the load demand. Therefore, a certain degree 

of prediction is obviously needed to facilitate an optimal power coordination. In spite of 

that, finding the optimal solution for this problem is actually challenging and is still an 

active field of research because of the involved difficulties in solving such an optimization 

problem. The major challenge is that, the associated continuous and discrete variables are to 

be fixed. Fundamentally, defining the optimal switching time of each individual energy 

source to supply the load and finding the associated power transactions among them. 

Furthermore, a proper solution to this problem should also take care of maximizing the net 

utilization of the installed RES and meanwhile minimizing the operational costs of other 

conventional generation sources. 

In the light of all these challenges, one can realize that a perfect EMS of a microgrid, such as 

the considered one in this thesis, should first and foremost coordinate the generated power 

of the conventional generation, the charging and discharging power of BESS, and the 

generated power RES, in order to match the load demand according to certain optimization 

criteria. 

https://www.linguee.de/englisch-deutsch/uebersetzung/in+the+light+of+all+the+relevant+circumstances.html
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3.1.1 Related works 

The literature is rich with the applied approaches for the purpose of power coordination in 

microgrids. Because  of its simplicity, the so-called rule-based EMS is mostly applied. 

However, it cannot afford different objectives simultaneously. It is only oriented to cover the 

requested load based on some logical assumptions made to compare and decide on the least 

instantaneous price of available power from each generation element in the microgrid.  

On the other hand, optimization-based approaches are mostly applied when a highly 

accurate feeding of prediction is available of both generation and load [ref]. In this sense, the 

most common technique used to solve this optimization problem is the linear programming 

(LP) [HpWB2009]. However, it can only handle linearly formulated systems, which is not 

always applied to such systems incorporate diesel generators of a quadratic function or 

contain other elements with nonlinear functions. Other approaches used mixed-integer LP 

(MILP) [PaGl2001], which are efficient to tackle the incorporated binary variables. Yet, the 

main limitations towards applying such a general method to solve this problem is the need 

for deploying the General Algebraic Modeling System (GAMS), or/and CPLEX which are 

commercial solvers mostly used for such problems [ZaES2012]. Obviously, these methods 

need further assistance to be able to reconfigure the microgrid and adapt the solution 

continuously according to actual measurement [RiBP2011].  

For this reason, a simple but effective method should be developed in order to tackle the 

different operational constraints of the system and achieve the optimization requirements 

more efficiently. 

Modern control approaches such as Rolling or Receding Horizon (RH) make use of 

optimization-based techniques and allow to tackle multiple objectives simultaneously 

[OlMe2014], [BjTS2010]. These approaches are essentially identical to Model Predictive 

Control (MPC) control where a rolling window is used for an optimization routine at each 

iteration of the controller. The optimization portion can be formulated as a Mixed Integer 

Linear Program (MILP) [HtLJ2011] or take on a nonlinear form [MfKh2007]. A comparison 

of a similar heuristic algorithm and an MPC based EMS has been performed in [PaRG2014], 

where the authors compare the total costs of an experimental microgrid in Athens, Greece. 

These approaches can efficiently deal with economics, battery aging, controllable loads, and 

many other important objectives concurrently. The reader is referred to [RaMS2013] for a 

review of energy management techniques for microgrids. 

In this chapter, these two approaches are going to be presented and discussed for active 

power coordination for cost-efficient operation of a microgrid system consisting of PV, BESS, 

diesel generator in addition to a unidirectional and frequently interrupting grid that cannot 

buy or accept the surplus RES generation. 
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3.2 Rule-Based EMS 

Rule-Based EMS is the simplest way to coordinate the power in microgrid. It represents in 

fact a natural evolution of the binary decision process, where one has to choose between two 

alternatives in order to take the present advantage of one of them, for instance might be 

because of its affordable price or cleanness and eco-friendliness or even some other case-

specific conditions.  

Suppose that a critical load is only supplied by a single power source, which can be called 

the Main. As this is the only available power source, the cost of energy will be obviously 

dominated by the power price of the Main. Besides, the natural response in case of Main’s 

failure is to find another source to supply that load, which can be called Auxiliary. For 

instance, if the price Auxiliary is lower than Main, then it will be of course more preferred to 

supply the load. However, the tradeoff does not only exist between the price of both sources, but 

also between the availability of each of them. Thus, an according to the rule of alternative cost, 

the cost of NOT using the Auxiliary means the absence of the needed energy source. 

Likewise, if we have multiple Auxiliaries with different availabilities and running costs, 

then we have to rethink about some judging criteria, which can be specified by a group of 

logical rules to assign the coming power requests in accordance with these predefined 

preferences. 

Simply, this approach is developed by assigning a priority to each power source according 

to specific criterions. Usually, these criterions are purely economic but they might also 

consider the fuel availability, or environmental issues. Fundamentally, the approach should 

assign the power source that can supply the load sufficiently to take the responsibility over 

other sources to supply the load at the moment.  The remaining operational constraints, such 

as generation limits of the generator or the grid capacity or the battery charge, must be of 

course kept unviolated.  

Principally, such a method dispatches energy based on the current measurements of the 

available power and the state of charge of the battery and does not pay so much attention to 

what will happen to the system afterwards. For instance, this method has been adopted in 

[ZbcW2013] to coordinate the power in an off-grid system supplying a seawater desalination 

project in the Dongfushan Island in China. It has been also explored in [RifB2009] to manage 

a grid-connected system composed of PV generators, batteries storage, loads demand and a 

bi-directional distribution grid.  

Concerning the microgrid considered in this thesis, the developed Rule-Based EMS consists 

of two concurrent checks, namely:  

(1) the GRID-availability.

(2) the State-of-Charge check.
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In all operation modes, the first priority is given to the PV supply and the rest of power 

sources come to cover the deficit. The comprehensive explanation of these two checks and 

their resulting decisions are given below: 

1- Firstly, the utility grid is considered the Main here because of its availability and the

associated power price is commonly lower than the price of using other generators.

Thus, it is given the first priority after the solar generation to supply the load in case

of insufficient PV generation. However, as mentioned earlier, it cannot accommodate

the surplus by means of buying or feed-in tariff as other developed grid

infrastructures. Nevertheless, the grid in this operation mode is supposed to charge

the battery up to a certain limit SoCmax as long as its capacity allows.

2- Concurrently, the battery SoC is going to be checked whether it can supply the deficit

or not. In case of grid failure or power outage and insufficient PV too, the battery is

expected to have enough charge to supply the deficit. Subsequently, if the battery

SoC is lower than a predefined threshold, i.e. SoCmin, the request can then be directed

to the diesel generator as a last resort to cover the deficit.

Apparently, the Auxiliary elements are : (1) the utility grid, (2) the BESS, (3) the diesel 

generator. And the priority is assigned to them respectively. However, once the BESS is 

depleted to its lowest threshold, it cannot be discharged again without being recharged from 

another power source. Hence, it acts occasionally as a load during the recharging process. 

Therefore, in order to keep the battery SoC, it is allowed to charge the battery from the diesel 

generator once requested to supply the deficit demand. Thus, the loading factor of the diesel 

generator can be further increased and its associated fuel consumption efficiency will be 

increased accordingly, cf. Ch. 2, diesel generator model. 

Overall, the control strategy gives the priority of power supply to RES even if it is modest 

comparable with diesel GenSet. Basically, the diesel GenSet operates in case of grid outage 

and low SoC of the battery to supply the load demand and charge batteries (with excess 

power) up to a certain point SoCmax according to the constraint in Equ. (2.6).  

Note that two maximum threshold are chosen to stop the charging process: SoCstp1 is chosen 

to stop the charging process from RES and SoCstp2 is chosen to stop the charging process 

either from grid or from the diesel GenSet while it is running. Here, SoCstp2 is chosen lower 

than SoCstp1 to maximize the usage of RES rather than depend too much on the grid or the 

diesel GenSet. 

In addition, the control strategy aims to operate the diesel GenSet in its most efficient range 

by keeping the loading factor as high as possible instead of fluctuation according to load, 

where the excess power is used to charge the battery as long as it does not violate the 

charging constraints or the maximum permissible loading factor of the GenSet.  
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In order to avoid too fast (dis)charging of the batteries, another constraint is imposed to keep 

the BESS healthy and prolong its lifetime, as in Equ. (2.4). Besides, high frequent changes in 

the state of the diesel GenSet is prevented by allowing the generator to charge the battery 

once operated up to the aforementioned threshold SoCstp2. The design parameters such as 

battery (dis)charging limit 𝑃𝐵
𝑚𝑎𝑥 and capacity of diesel GenSet 𝑃𝐷

𝑚𝑎𝑥 should be carefully 

chosen according to the system behavior and characteristics. This issue is going to be 

addressed in Chapter 5, Layout-Design.  

A pseudocode of the developed rule-based EMS is presented in Figure 3.1 
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01: Declare state variables: 𝑃𝐿
𝑖, 𝑃𝑃𝑉

𝑖 , 𝑃𝐵
𝑖 , 𝑆𝑜𝐶𝑖, 𝐺𝑖, 𝑃𝐺

𝑖 , 𝑃𝐷
𝑖 , 𝐹𝐷

𝑖

02: Declare GenSet coefficients: a, b, c 

03: Declare parameters of operational constraints: 𝑆𝑜𝐶𝑠𝑡𝑝1, 𝑆𝑜𝐶𝑠𝑡𝑝2, 𝑆𝑜𝐶𝑚𝑖𝑛, 𝑃𝐵
𝑚𝑎𝑥, 𝑃𝐷

𝑚𝑎𝑥

04: Declare time-slot, Gen. Flag, and efficiency: ∆T, 𝜂, 𝐷𝐺𝐹 

05: Net deficit 𝑃𝐷𝑒𝑓
𝑖 ∶=  𝑃𝐿

𝑖 − 𝜂 × 𝑃𝑃𝑉
𝑖

06: IF (𝑃𝐷𝑒𝑓
𝑖 ≤ 𝑃𝐿

𝑖) % surplus PV generation 

07: 𝑃𝐷
𝑖 ∶= 0 

08: 𝑃𝐵
𝑖 ∶= −𝑚𝑖𝑛{|𝑃𝐷𝑒𝑓

𝑖 |, 𝑃𝐵
𝑚𝑎𝑥, (𝑆𝑜𝐶𝑠𝑡𝑝1 −  𝑆𝑜𝐶𝑖)}

09: 𝑃𝐺
𝑖 ∶= 0 

10: ELSE 

11: IF(𝐺𝑖  ==  1) % Grid is ON 

12: 𝑃𝐷
𝑖 ∶= 0 

13: 𝑃𝐵
𝑖 ∶= −𝑚𝑖𝑛{𝑃𝐵

𝑚𝑎𝑥, (𝑆𝑜𝐶𝑠𝑡𝑝2 −  𝑆𝑜𝐶𝑖)   }

14: 𝑃𝐺
𝑖 ∶= 𝑃𝐷𝑒𝑓

𝑖 − (
𝑃𝐵

𝑖

𝜂
)

15: ELSE    % Grid is OFF 

16: 𝑃𝐺
𝑖 ∶= 0 

17: IF ((𝑆𝑜𝐶𝑖 > (𝑆𝑜𝐶𝑚𝑖𝑛 + 𝑃𝐷𝑒𝑓
𝑖 )) AND (𝐷𝐺𝐹  ==  0))

18: 𝑃𝐵
𝑖 ∶=

𝑃𝐷𝑒𝑓
𝑖

𝜂
% BESS supplies the deficit load 

19: 𝑃𝐷
𝑖 ∶= 0 

20: ELSE 

21: 𝑃𝐵
𝑖 ∶= −𝑚𝑖𝑛 {(𝜂 × (𝑃𝐷

𝑚𝑎𝑥 − 𝑃𝐷𝑒𝑓
𝑖 )) , 𝑃𝐵

𝑚𝑎𝑥, (𝑆𝑜𝐶𝑠𝑡𝑝2 −  𝑆𝑜𝐶𝑖) }

22: 𝑃𝐷
𝑖 ∶= 𝑃𝐷𝑒𝑓

𝑖 − (
𝑃𝐵

𝑖

𝜂
) % Diesel supplies the deficit load and charge BESS 

23: 𝐷𝐺𝐹 ∶= 1 

24: IF (𝑆𝑜𝐶𝑖 ≥ 𝑆𝑜𝐶𝑠𝑡𝑝2)

25: 𝐷𝐺𝐹 ∶= 0 % Diesel is shut-down 

26: END IF 

27: END IF 

28: END IF 

29: END IF 

30: SoCi+1 ∶=  SoCi − (
PB

i

∆T
) % SoC update 

31: 𝐹𝐷
𝑖 ∶=  (𝑎𝑃𝐷

𝑖 2
+ 𝑏𝑃𝐷

𝑖 + 𝑐) × (
1

∆T
) % Incremental fuel consumption 

Figure 3.1: A pseudocode of the developed rule-based EMS 
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3.3 Prediction-Based EMS 

Unlike the former rule-based method, modern EMSs apply optimization techniques to 

discover the operation schedule of the microgrid’s components while keeping several 

predefined objectives together. However, the performance of such advanced solutions 

depends strongly on the accuracy of the prediction. The goal is to determine how to route 

the power from the different energy sources to supply the load in an efficient manner. In this 

contribution, a holistic EMS is developed integrating three main stages:  

1- Receiving the generation and load forecast based on up-to-date historical data.  

2- Initiate the optimal scheduling strategy based on the fed inputs over a certain time 

horizon, which is the matter of this section, prediction-based EMS.  

3- Apply the resulted scheduling strategy to the microgrid and adapt it with the real 

measurements, which will be discussed in the coming section of this chapter.  

An overview of the developed EMS for the purpose of the addressed microgrid system is 

presented in Figure 3.2 

UD, PD, PBMain
Optimizer

Predicted 
PPV, PL

Actual 
PPV, PL

Command 
to Microgrid

 

Figure 3.2: Proposed EMS overview. 

In the first stage, the next day weather data and load profile are generated using a 

forecasting technique, based on the latest up-to-date historical data, which are going to be 

fed later on into the main optimizer. In this context, reliable forecasting techniques have 

been developed recently that can provide a highly accurate prediction [MeKs2008]. The 

second stage is dedicated to find out the optimal operation of the microgrid, in which, the 

switching time of the diesel GenSET, UD, with its output power, PD, and the 

charging/discharging power of the battery, PB, that will result in optimum operation will be 

determined. In this stage, the schedule will be determined according to the fed data from the 

previous stage. Besides, demand response actions can be taken to further improve the 

system economics or/and stabilize its operation in case of any inevitable fault in the power 

resources. However, at present, this section focuses essentially on finding the optimal 

scheduling using the main optimizer in the second stage.  
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3.3.1 Optimization Framework 

The addressed problem can be mathematically formulated as a multi-attribute optimization 

problem that seeks to provide a minimum operating costs (𝑂𝐶) and maximum utilization 

factor (𝑈𝐹) of a microgrid system, as well as guarantee that the operational constraints of the 

battery, i.e., Equ. (2.4) to (2.8), and of the diesel generator, Equ. (2.10), are not violated. 

Naturally, the power balance between generation and consumption must be achieved as in 

equation (3.1). 

0 LossLBDDPV PPP̂P̂ÛP (3.1) 

Where PD is the generated power by diesel generator, PL is the instantaneous load demand, 

and PLOSS is the total lost power, which are lost either in power conversion processes or not 

utilized because of load satisfaction and battery charge saturation. UD denotes the status of 

the diesel generator. The hat refers to the controllable variables, for example the power that 

can be drawn from the diesel generator P̂D is controllable, however the solar generation PPV 

is not directly controlled. 

The value of OC is resulted mainly from the fuel consumption of the diesel GenSET and the 

purchased energy from the grid in case of a grid-connected system. Further hidden costs can 

be considered such as the aging of the battery and the total switching times of the diesel 

GenSET which will complicate the problem. For this reason, the operational limits of the 

battery and the generator are carefully chosen in accordance with the recommendation of 

the manufacturers in order to prolong their lifespan as much as possible, e.g. Equ. (2.4), (2.8) 

and (2.10).  

By these definitions, the objective function can be then formulated as in equation (3.2) as 

follows: 

𝐽 =  ∑ (𝑤1 ((𝑈𝐷(𝜏)) × 𝐹𝐶(𝑃𝐷(𝜏))) + 𝑤2(𝑈𝑃𝑉(𝜅𝜏)))

𝑇

𝜏=1

 (3.2) 

The value of 𝑈𝑃𝑉 is directly proportional with 𝑃𝐿𝑂𝑆𝑆, and represents the net unutilized RES 

energy. It can be evaluated after applying the designated management strategy. Assuming 

that a nonempty set 𝛫 ≠ ∅ of finite integer elements 𝑇 ∈ ∅ representing the total possible 

operation strategies, where 𝐾 = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑇}, and each individual operation strategy 

will obviously produce a different value of 𝑈𝑃𝑉, where: 

𝑈𝑃𝑉(𝜅𝜏) , 1 ≤ 𝜏 ≤ 𝑇

- 𝐹𝐶 is the fuel cost of the diesel generator corresponding to its generated power 𝑃𝐷

- 𝑈𝐷 is a binary value represents the state of operation of the diesel generator at time 𝜏

- 𝑤1works as a weighting factor, whereas 𝑤2works as a scaling and conversion factor

that converts the unutilized RES energy into a cost, e.g. ($).
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Both factors are selected upon the design preferences and can be adapted according the 

different operation scenarios to penalize the unutilized RES power and the usage of the 

diesel generator.  

Obviously, the value of the objective function, (Equ. 3.2) is controlled mainly by the output 

power from the diesel GenSET, which is depending on the availability of the RES and 

battery charge, that will delay the request time of the diesel GenSET.  

Therefore, the problem involves finding the operation strategy κτ which can bring the 

system to the optimal operation according to the aforementioned definitions. An operation 

strategy κτ can be defined via three main control variables, which are: 𝑃̂𝐷 

1- The diesel GenSET status of operation 𝑈̂𝐷

2- The diesel GenSET output power trajectory𝑃̂𝐷 corresponds to the periods of ON

status.

3- Charging and discharging power trajectory𝑃̂𝐵

The developed offline optimization solution for this problem will be addressed in the 

following subsection.  

3.3.2 Offline Optimization 

The optimal schedule of the microgrid supply system will be explored in this work by 

applying the dynamic programming (DP) to minimize the overall cost over the whole 

prediction horizon (see Equ. 3.2). The idea of DP is to solve the multistage decision problem 

by dividing it into sub-problems or several steps in order to examine all possible solutions at 

each step and then combine these solutions in a way which leads to the best solution for the 

given problem. It looks for the global optimal path rather than picking locally optimal 

choices at each step which may result in a bad global solution. The advantage of the DP is 

that it can handle constraints from all the natures (linear or not, differential or not, convex or 

concave, etc.) and in meanwhile it does not need a specific mathematical solver to be 

implemented [RiBP2011]. Obviously, in our case, the state of the system at each time-slot 

depends on the previous state and the control variables, which can be replaced here, in the 

context of DP, by the transitions.  

In the discrete-time format, the system model can be expressed as: 

𝑥(𝜏 + 1) = 𝑓(𝑥(𝜏), 𝑢(𝜏)) (3.3) 

𝑥(𝜏) is the state vector of the system, and basically it includes the value of SoC which 

controls the request of the diesel GenSET, and other variables which represent the rest 

system dynamics such as: 𝑃𝑃𝑉, 𝑃𝐿.  
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𝑢(𝜏) is the control vector and should contain the abovementioned variables that are all 

together controlling the selected operation strategy 𝜅𝜏. Both variables are defined explicitly 

as follows: 

𝑥(𝜏) = [𝑆𝑜𝐶   𝑃𝑃𝑉    𝑃𝐿] (3.4) 

𝑢(𝜏) = [𝑈̂𝐷     𝑃̂𝐷     𝑃̂𝐵] (3.5) 

 

Conventionally, rule-based EMSs are applied to manage microgrid systems –as explained in 

the previous section–, where the diesel generator is requested to supply the load when the 

value of SoC goes beyond a certain limit SoCmin and turned off when there is sufficient RES 

supply or the value of SoC goes over a higher threshold SoCmax, the proposed method here is 

supposed to lead the system to the optimal trajectory by the assistance of prediction. These 

former strategies are priority-based and do not benefit from the prediction. Therefore, these 

so-called RB-based solutions, as developed also in [Hi++2016] and [RifB2009], may lead to a 

higher cost in the future.  

In contrast, the developed approach here using DP is a prediction-based and can explore the 

optimal solution based on the fed forecast or planned load, so it can pick the optimal 

strategy 𝜅𝜏 which will result in minimum objective value. Similarly, DP-based approaches 

have been used in the literature for the same purpose considering different objectives 

[RiBP2011], [BaLu2012] and [SobWu2012]. The main key for their implementation is to 

quantize the value of the BESS storage and consider the possible SoC states’ transitions as 

the determinant of the solution. However, the main limitation of these methods is the high 

memory needs when the prediction horizon is long and discretized with a small time step 

[RiBP2011].  

To overcome this issue, the former DP approach is enhanced here by using the status of the 

diesel GenSET 𝑈̂𝐷 as the main coordinator to find the optimal strategy instead of using the 

value of SoC. By this relaxation, the operation time of the diesel GenSET will be determined 

firstly and then, the associated charging/discharging power trajectory of the battery can be 

found based on the power balance constraint, (Equ. 3.1). This approach is clearly presented 

by the graphical illustration of Figure 3.3.  

To elaborate on the mechanism of the proposed approach, it is divided into two main stages, 

the first stage is to choose one of the candidate strategy κτ that will be fed later on, in the 

second stage, in order to explore its associated SoC trajectory. A candidate strategy κτ is a 

binary-elements set representing the sequence of operation of the diesel GenSET, (as in the 

upper part of the figure). It has the same length of the prediction horizon, (e.g, 𝑇 = 24 time-

slots).  



35 

Considering T is the total time-slots of the prediction horizon and there is two possible states 

of the diesel generator which define the charging status of the battery, the resulting search 

space is obviously 2T. 

Compared with the previously applied method in [RiBP2011], where the DP is used to select 

between N different levels of SoC at every time slot, the resulting number of iterations would 

be NT. Therefore, the decomposition of the DP is proposed here as it enables the exploration 

of a wide range of strategies in a much shorter time.  

In our case, less than 1024 iterations were examined until they converged to a solution, 

compared with 1024 if the SoC is quantized into ten levels. Notably, examining all strategies 

will result in increasing burden of computational complexity. Therefore, the infeasible 

solutions are firstly excluded, for instance, by eliminating the solutions which involve a 

prolonged discharging time of the battery because this will ultimately lead to an excessive 

discharging and of course passing the lower threshold SoCmin.  

Figure 3.3: Relaxed DP searched-based EMS 

3.3.3 Adaptation with the real measurements 

Obviously, the resulting operation strategy from the previous stage, i.e. offline optimization, is 

highly dependent on the fed forecast. On the other side, the microgrid is operated with 

significant power fluctuating of the solar generation and the load profile as well. Thus, some 

reconfigurability is apparently needed to tackle the real measurements which are, of course, 

deviated somehow from the expected forecast, and this can be handled in the current stage.  
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In this stage, the scheduling operator 𝜅𝜏 has the option to choose between the economic 

operation mode which considers a perfect prediction, and stable operation which can 

provide the sufficient supply to the actual net demand. Stable operation mode implies that, 

the derived strategy can be varied in accordance with the actual measurements of the 

generated PV power and load demand. 

The selected strategy from the previous offline solution can be directly executed without 

adaptation either in case of economical operation mode, where the operator has to keep the 

derived schedule without changes, or whenever the prediction is totally perfect. However, 

these two conditions are rarely achieved. For this reason, we propose an autonomous 

adaptive operation strategy relying on the derived strategy in order to handle the expected 

deficit caused by lack of PV generation or/and increased demand. A pseudocode of this 

stage is illustrated in Figure 3.4  

01: Declare state variables: 𝑃𝐿
𝑖, 𝑃𝑃𝑉

𝑖 , 𝑆𝑜𝐶𝑖

02: Declare system parameters: 𝑆𝑜𝐶𝑚𝑖𝑛, 𝑆𝑜𝐶𝑚𝑎𝑥, 𝑃𝐷
𝑚𝑖𝑛, 𝜂, ∆𝑇

03: Read a schedule 𝑘𝜏 = [𝑈𝐷    𝑃𝐷    𝑃𝐵] 

04: Net deficit 𝑃𝐷𝑒𝑓
𝑖 ∶=  𝑃𝐿

𝑖 − (𝜂𝑃𝑃𝑉
𝑖 ) − (𝑈𝐷 × 𝑃𝐷) − 𝑑𝑖𝑠(𝑃𝐵)

05: Loop 

06: Update 𝑃𝐷𝑒𝑓
𝑖

07: IF ((𝑆𝑜𝐶𝑖 −
𝑃𝐷𝑒𝑓

𝑖

𝜂
) ≥ 𝑆𝑜𝐶𝑚𝑖𝑛) 

08: 𝑃𝐷 keeps NO Change 

09: BESS supplies 

10: 𝑃𝐵 =
𝑃𝐷𝑒𝑓

𝑖

𝜂

11: ELSE 

12: 𝑃𝐷 = 𝑚𝑎𝑥(𝑃𝐷
𝑚𝑖𝑛, 𝑃𝐷𝑒𝑓

𝑖 )

13: 𝑃𝐵 = 𝜂 × (𝑃𝐷 − 𝑃𝐷𝑒𝑓
𝑖 )

14: END IF 

15: Update SoC := 𝑆𝑜𝐶𝑖+1 ∶=  𝑆𝑜𝐶𝑖 − (
𝑃𝐵

𝑖

∆𝑇
) 

16: END Loop 

Figure 3.4: A pseudocode of the adaptation stage, 3rd Block of EMS. 

Firstly, the system parameters are identified in order not to violate the operation constrains 

and to keep the generator operated at a reasonable loading factor. The deterministic 

operation strategy is gathered from the previous stage of EMS and then the current 

measurements are fed. Consequently, a supplementary decision is taken to supply the 

deficit load either from BESS or diesel generator. The key determinant here is the reserve 

SoC and the deficit value. Obviously, the battery is preferred to cover the deficit if it has 

enough charge in order to operate the generator for short time.  
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However, if the diesel generator is the remaining choice because of insufficient SoC, it 

should not be operated at a lower loading factor than 𝑃𝐷
𝑚𝑖𝑛.

3.4 Stochastic Optimization EMS 

The optimization algorithm employs a Genetic Algorithm (GA), which is one of the 

metaheuristic stochastic optimization techniques that can provide a solution to an 

optimization problem with less computational effort than iterative ones [HiFr2018a]. 

Examining all strategies will result in increasing burden of computational complexity. The 

search space of the problem is obviously very large. Considering two possible status of the 

diesel generator at each time slot, the number of resulting iterations would reach (2𝑁) of 

iterations, each requiring k time-units to consider constraints, Equ. (2.4) to (2.8), (2.10), and 

evaluate Equ. (3.1), and (3.2). If all possible combinations will be checked; the resulting time-

units will be (𝑇 × 2N) and it is, of course, exponentially increased w.r.t chosen time horizon. 

Therefore, the GA is chosen as it enables the exploration of a wide range of allotted elements 

in a much shorter time. In our case, less than 60 generations were examined until they 

converged to the final solution (here: just a few seconds of computation time instead of 

minutes using the deterministic approach).  

To improve the time performance of the algorithm, the infeasible solutions are firstly 

excluded by eliminating the solutions which include a prolonged discharging time of the 

battery because this will ultimately lead to an excessive discharging of the BESS and of 

course passing the lower threshold SoCmin. The maximum durable discharging time, in 

hours, is calculated to exclude any operation strategy that will eventually lead to a wider 

discharging period. It is assumed that the battery bank is fully charged up the nominal 

capacity, e.g. 𝐸𝐵
𝑚𝑎𝑥(kWh), and the load is the average net deficit that should be met either by

the battery or the generator. This is presented by the equation 3.6 

𝛭 = ⌊
𝐸𝐵

𝑚𝑎𝑥

𝑎𝑣𝑔(𝑃𝐷𝑒𝑓)
⌋ (3.6) 

Where M is the maximum nonstop discharging time, 𝐸𝐵
𝑚𝑎𝑥 is the nominal capacity of the

battery bank in (kWh), and 𝑎𝑣𝑔(𝑃𝐷𝑒𝑓) is the average net deficit, in (kW).  

The default settings of MATLAB-based GAs are applied to conduct the simulation. A 

population of chromosomes is randomly initialized (i.e., 200) in accordance to the possible 

number of solutions. The algorithm is supposed to be terminated when the stipulated 

number of generations (i.e., 500) is reached or when the magnitude in the change in fitness 

value does not vary more than a tolerance limit (i.e., 10-10) for several subsequent generations 

(i.e., 50). A pseudo-code of the developed GA framework is depicted in Figure 3.5. Each 

selected candidate 𝜅𝜏 will be examined at each generation to find out the best fitness 

function (Equ. 3.2).  
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01: INPUTS: Set of all candidates Ƙ 

02: Calculate 𝛭 % maximum nonstop discharging time 

03: Define 𝑅 = 𝐾 − 𝛭 % Set of appropriate candidates 

04: Select a random subset of operation strategies from R 

05: Select the best strategy among this generation by applying Equ. 3.2 (Fitness Function) 

06: Crossover and Mutation: Survival is for the fittest. 

07: Terminate and Output: After exceeding the predefined time budget or achieving no 

improvements over the last best value for several generations. 

Figure 3.5: A pseudocode of the stochastic EMS framework. 

3.5 Advanced Rolling Horizon EMS 

In terms of adaptability with the new conditions and measurements of the system, the online 

solution is expected to be more fault-tolerant and have the ability to achieve better results 

than the  offline one. To elaborate on this aspect, assume that the resulting offline operation 

strategy is going to be performed based on a prediction window of the day ahead over T 

time-slots, e.g., 24-points. In this case, the optimization process will be executed just once per 

day in order to provide the (optimal) control inputs for the next day, i.e., T time-slots 

[k, k + 1, k + 2, … , k + T − 1]. Accordingly, the next optimization will be performed over the 

next prediction window, which is [k + T, k + T + 1, k + T + 2, … , k + 2T − 1] to provide the 

control inputs for the day after the current horizon. In the online scheme, however, the 

optimization process will be repeated at every ℳ points, shorter than the full prediction 

horizon, i.e., 1 ≤ ℳ ≤ T, and therefore, the cost function will be consecutively minimized at 

every ℳ points over this dynamic horizon. This means that the resulting optimal variables 

will become effective just for a few time slots from the long horizon [1,2, … , ℳ], and the rest 

variables in the range [ℳ + 1, ℳ + 2, … , T] will be eventually neglected to start a new 

optimization process based on the new updates.  

In conclusion, the online optimization scheme beats the time-ahead offline optimization one 

in terms of compensating the deviation resulting from forecasting error, where it can attain 

the feature of a closed-loop control system by successively updating the resulting control 

inputs based on the new situation.  

Apparently, the deviation between the forecasted and actual measurements increases with 

time. Therefore, such an approach is promising to handle systems with inacuurate 

prediction. Figure 3.6 presents a 12-hour wind profile and the assciated sample forecast. 
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Figure 3.6: Sample forecast generated for a 12-Hr wind profile [SuGD2012] 

3.6 Simulation Results 

PV-BSS microgrid system used to supply the critical loads in an outpatient clinic in Gaza city 

is chosen to check the aforementioned approaches except the last one, i.e. Rolling Horizon. 

The system has been under developing over the past years to lessen the consequences of the 

severe power outages that Gaza-strip undergoes. The hourly-average prediction and the 

associated actual values of both solar generation and load demand of a single day are shown 

below in Figure 3.7. The simulation is firstly performed using the priority-based EMS, 

followed by the offline-optimization solution and finally the uncertainty is applied to check 

compare with the adaptation strategy as well.  

The former approach, i.e., priority-based EMS, is taken as a baseline to compare the rest 

approaches with it and highlight the cost savings. Additionally, the net share of PV in is 

another important key performance factor indicates the real benefit of deploying the RES in 

the system and gives a better realization of the presented outcomes. It can be described by 

two values, the penetration level (PL) and the utilization factor (UF) which both are defined 

in equations (3.7) and (3.8) as follows: 

%
production RESTotal

RESby suppliedenergyNet
UF 100 (3.7) 

%
demandenergyTotal

RESby suppliedenergyNet
PL 100 (3.8) 
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Figure 3.7: Load demand and solar generation of one sample day. 

The load has a mean power consumption 41 kW with a standard deviation about 8.5 kW. 

The solar generation exceeds the demand between 13:00 and 16:00 o’clock. The simulation 

was performed on MATLAB using a PC with Intel Core i7 processor (2.1 GHz) and 12 GB 

RAM. All parameters used in simulation with the corresponding nomenclature and values 

are listed below in Table 3-1. 

Table 3-1: Simulation Parameters 

Parameter Nomenclature Value (s) 

nom. PPV Nominal maximum solar power 100 kW 

CB Battery Storage System Capacity 319 kWh 

SoCint Initial state of charge 60 % 

SoCmin Minimum allowable state of charge 40 % 

SoCstp Stop charging threshold from GenSet 90 % 

SoCmax Stop charging threshold from PV 100 % 

𝜂 Inverter and Battery efficiencies 95 % 

𝑃𝐵
𝑚𝑎𝑥 Battery (dis)charging power limit ±CB/(4h) 

𝑃𝐺𝑒𝑛
𝑚𝑎𝑥 Diesel generator rated power 100 kW 

Cf Diesel fuel cost per liter 1.85 $/L 

∆ Time slot 1 h 



(a) (b) 

Figure 3.8: Priority-Based EMS: (a) Perfect prediction scenario, (b) Real measurements scenario 

Detailed power throughputs during a single day: The battery power (top), the unutilized PV power,  

the power output of the diesel generator w.r.t time and finally the state of charge of the battery bank (bottom) 
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(a) (b) 

Figure 3.9: Offline-Optimization EMS: (a) Perfect prediction scenario, (b) Real measurements scenario 

Detailed power throughputs during a single day: The battery power (top), the unutilized PV power,  

the power output of the diesel generator w.r.t time and finally the state of charge of the battery bank (bottom) 
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(a) (b) 

Figure 3.10: Stochastic-Optimization EMS: (a) Perfect prediction scenario, (b) Real measurements scenario 

Detailed power throughputs during a single day: The battery power (top), the unutilized PV power,  

the power output of the diesel generator w.r.t time and finally the state of charge of the battery bank (bottom) 



Figure 3.8 presents the results of the former priority-based EMS considering the predicted 

profiles as well as the real measurements. It is noted that the results in both scenarios are 

similar to a large extent. However, due to the energy difference between the predicted and 

the real measurements, the unutilized PV energy considering the real scenario is slightly 

less, namely 43.12 kWh instead of 47.42. In spite of that, this amount of energy was lost 

during the middle of the day, at 14:00 and 15:00. Observably, at that time, the BESS was fully 

charged and could not accommodate the surplus PV generation. So, the battery SoC at that 

time went beyond the SoCstp2 threshold and therefore, one can recognize that the oscillation 

range of the associated SoC takes the interval from SoCmin to SoCstp1. Too, in spite of the high 

demand at midday, it is observed that the battery was exposed to a less stress at noon than 

at the two ends of the day. Visibly, this can be interpreted by the higher PV production. One 

additional difference is the operation time of the diesel generator, where it was operated for 

another hour in the case of real measurements.  

Figure 3.9 and 3.10 present the simulation results of the offline-optimization and stochastic-

optimization EMS respectively. The simulation considered both scenarios too, the predicted 

and the real measurements as well. These methods are based on optimization and therefore 

once can recognize that the unutilized PV energy are zero, which means that only the power 

conversion losses exist in that case rather than the conventional method which did not 

benefit from much more energy in addition to the power conversion loss and thus, the 

battery in the prediction-based EMS is expected to have enough vacancy to absorb the 

emergence of surplus renewable power during the noon, i.e., between 12:00 to 17:00. 

However, in both cases, the operation time of the diesel generator considering the real 

measurements scenario is longer than the counterpart perfect prediction scenario. For 

instance, the operation time was eight hours considering the perfect prediction by using the 

offline-optimization method, where this method represent the best case scenario, as shown 

in Figure 3.9(a). On the other side, the generator was subject to operate at least 10 hours 

using the stochastic optimization solution, as shown in Figure 3.10(a). However, the 

increment in case of real measurements was two hours in case of the offline-optimization, 

and only one-hour in case of the stochastic solution.  

Compared to the priority-based EMS method, as in Figure 3.8, it is observed that the 

oscillation range of the battery SoC was less by using the prediction-based EMS, as in Figure 

3.9 and 3.10. Besides, the battery reached the upper threshold SoCstp2 but did not go beyond 

it at the evening time, when the generator was in operation.  

From these figures, one can notice how the operation of both diesel generator and BESS are 

affected. However, the operation in the adaptive-mode was more stable because it could 

handle the inaccurate prediction. Therefore, there will be no need for load shedding when 

considering the adaptation algorithm because of the ability of handling the prediction errors. 

44 
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The fuel consumption using the prediction-based approaches is still less than the 

consumption using the conventional priority-based method. However, in the adaptive 

mode, the fuel consumption is a bit greater than its counterpart in the perfect prediction 

case, and this is expected because the deficit difference between the two cases is about 59 

kWh, where the total actual PV generation is 9 kWh lower than the predicted generation and 

the consumption is about 50 kWh greater than the predicted load. It is expected therefore, 

that this gap will be covered using the conventional generation. Obviously, the SoC of the 

BESS in both cases is softly ranging between SoCmin and SoCmax. In addition to that, a 

sufficient margin is kept up to the fully charged level, 100% SoC, in order to be able to 

accommodate any unexpected raise in solar generation. 
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Table 3-2: Simulation results of EMS using the prediction-data 

Parameter RB-EMS 
Deterministic 

Prediction-Based 

Stochastic 

Prediction-Based 

Total demand (kWh) 980.54 

Total gross PV energy (kWh) 386.04 

Net utilized PV energy (kWh) 304.76 347.43 347.43 

Unutilized PV (kWh) 47.41 0 0 

Power conversion loss (kWh) 33.87 38.61 38.61 

Total PV energy loss (kWh) 81.28 38.61 38.61 

Utilization Factor (UF) 78.95 % 89.99 % 89.99 % 

Penetration Level (PL) 31.08 % 35.43 % 35.43 % 

Total fuel consumption (Liter) 235.26 173.92 191.25 

Total fuel costs ($) 435.23 321.75 353.81 

Operation Hours (Hr) 10 7 9 

Table 3-3: Simulation results of EMS using the real-data 

Parameter RB-EMS 
Deterministic 

Prediction-Based 

Stochastic 

Prediction-Based 

Total demand (kWh) 1040.94 

Total gross PV energy (kWh) 377.02 

Net utilized PV energy (kWh) 300.51 339.32 339.32 

Unutilized PV (kWh) 43.11 0 0 

Power conversion loss (kWh) 33.40 37.70 37.70 

Total PV energy loss (kWh) 76.51 37.70 37.70 

Utilization Factor (UF) 79.70 % 89.99 % 89.99 % 

Penetration Level (PL) 28.86 % 32.59 % 32.59 % 

Total fuel consumption (Liter) 252.76 209.4 215.36 

Total fuel costs ($) 467.61 387.4 398.42 

Operation Hours (Hr) 11 9 10 
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4 Demand Side Management 

One important key feature of the modern power system paradigm is to have some 

controllability over the load demand rather than following the ever growing consumption by 

increasing the generation. Demand Side Management as a concept can be simply defined as 

any actions taken to influence the consumption side in order to be operated in an energy-

efficient way. This does not necessarily imply that the consumption must be minimized, but 

optimized. One drastic solution could be getting completely rid of the unnecessary load. 

Another intermediate scheme is to adjust the consumption time to take place during the low-

price generation time rather than supply-once-plugged scheme. However, these solutions 

could lead to uncomfortable operation conditions if the users’ preferences are not carefully 

considered. Therefore, a balance should be achieved between the low-price generation time 

and the operational constraints of these loads in order to achieve the goal of optimization. 

This chapter presents a Forecast-Driven Power Planning Approach for Microgrids 

Incorporating Smart Loads. 

4.1 Introduction 

Until recently, various approaches have been proposed and applied to coordinate the 

generation sources in order to meet the varying demand while keeping the electricity cost at 

optimal levels [Zhu2009]. However, due to ever increasing demand and motivated by the 

affordable prices of the renewable-energy based systems, a growing desire exists to control 

or optimize the demand growth in order to facilitate the integration of RES into domestic 

and industrial sectors. Yet, the fluctuating nature and intermittency of the RES are the still 

forming a barrier against entirely relying on them as a main power provider or even 

increasing their penetration level in generation side. In spite of that, this obstacle can be 

overcome by using a proper energy storage to stabilize the operation and compensate the 

shortage. This solution is not always affordable, especially in standalone and remote 

systems, or in buildings subject to severe power outages, where the fluctuating supply 

cannot be matched by a greater energy storage on all occasions. Otherwise, this will simply 

add cost and complexity to the system.  

A potential alternative solution will be influencing the load demand, totally or partially, in 

order to lower the need for a larger energy reserve [PaD2011]. A good scheduling of some 

shiftable loads can improve the reliability of power delivery for customers during 

(macro)grid blackouts or emergency islanded operation. Once the system is integrated with 

some smart loads, that can be scheduled in advance, an efficient algorithm could be 

developed to reallocate these loads in another time, in which, the total energy cost can be 

minimized and the utilization of RES can be maximized as well.  

The need for some controllability over load is not only to assist in accommodating more RES 

into different power systems around the world, but also there is an important and persistent 

need to develop and apply such a solution in countries which have weak power systems or 

suffer from continuously interruption of the utility grid.  
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Especially in developing countries, a large number of buildings including healthcare 

facilities, schools and small businesses are suffering from a serious lack of a continuous and 

stable power supply. This issue has forced the decision makers and the stakeholders to look 

for some temporary solutions that can alleviate the drawbacks of such a problem.  

Conventionally, diesel generators are used to cover the ever increasing demand during the 

outage time, which are costly and environmentally unfriendly too. The reason behind not 

using such a forecast-driven approach previously, is the need for efficient forecasting tools 

that can predict the upcoming load and production accurately. 

4.1.1 Related works 

A huge work has been done in the context of load scheduling. A heuristic algorithm to 

schedule a group of smart appliances in a smart building subject to a real-time pricing has 

been proposed in [LeBa2013]. Another work has been conducted on a smart building 

environment but using a set of household appliances that allow for a limited interruption 

time [CaDF2015]. A heuristic-based load shifting optimization approach has been proposed 

in [LoSh2012], where three adjacent power networks have been chosen to carry out the 

study. Another load scheduling algorithm based on game theory has been proposed in 

[MoW2010]. The main objective was to optimize the energy costs by reducing the aggregate 

peak-to-average ratio of the total energy demand, while respecting the privacy of the 

customers.  

Considering the previously listed literature review and the other ongoing work in this 

domain; e.g. [HabK2016], [MaR2016], [OBr2016], and [HiFr2018d], it has been realized that 

the number of studies that have discussed the problem of scheduling dynamic non-

preemptive loads from the perspective of standalone microgrids are not much.  

Two reasons maybe behind that, which are: the complexity of solving such a load scheduling 

problem, which is similar to NP-hard problems [BaGo2004], and the difficulties involved in 

modelling such continuously-operating loads with a non-fixed power consumption. 

4.1.2 Scope of work 

As introduced, this chapter takes care of the load scheduling in smart building as an 

important function of the tertiary level in controlling microgrids. Thus, the scope of the 

work does not include the voltage stability or power quality at the point of common 

coupling (PCC). However, it tackles the uppermost control level, which has the longest 

discrete time steps; e.g. ranging from intra-hours to intra-days. To this end, this work offers 

a proactive scheduling plan for the smart loads which announce their desired operation 

pattern or the associated consumption profiles in advance; e.g. a day ahead. In other words, 

the proposed algorithm will attempt to reallocate the aggregated loads to closely follow the 

low-price available power; e.g. from utility grid or local RES generation.  
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The load profiles are known in advanced, but they should be reallocated in better time span 

in order to minimize the total energy cost. Furthermore, the proposed approach will be 

conducted on a deterministic system, where all load profiles and RES generation as well as 

the off-peak hours of the utility grid are known in advance. This assumption provides the 

‘best case’ scenario for a stochastic system where the generation/demand profiles are not 

precisely known ahead of time. 

4.2 System Model 

4.2.1 Smart Building 

A smart building is assumed to conduct this work, where the microgrid model presenting 

the communication and power network connections is presented in Figure 4.1.  

Figure 4.1: Abstract model of the proposed smart building. 

In this work, six smart loads are used to model the shiftable electricity consumption. The 

generation side incorporates PV array and standby generator in addition to the utility grid. 

Additionally, a battery bank is used to stabilize the operation and facilitate a soft switching 

between the microgrid’s components. The consumption profiles of the smart loads are 

synthetically created by using a probabilistic model presented in [HiFr2018d], which focuses 

on non-preemptive loads that have dynamic consumption with multiple modes of 

operation. 

PV solar production profiles are obtained from measurements done in a hospital in Gaza-

city, Palestine. A central manager (CM) facilitates the tertiary communication between the 

optimizer and the production side. Detailed modeling of other components can be revised in 

Chapter 3.  
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4.2.2 Smart Load 

A smart load can be a single appliance or a cluster of devices operate in a particular way to 

perform a certain function in one of the facilities inside the whole system. Ideally, a shiftable 

smart load ℓ is modelled by a quadruple: (𝑒ℓ, 𝑑ℓ, 𝐿ℓ, 𝐴ℓ), where 𝑒ℓ, 𝑑ℓ, 𝐿ℓ, and 𝐴ℓ are the 

earliest possible starting time, the deadline, the duration of the active mode, and the load 

level during the active mode respectively. In this work, however, an advanced version of 

this model is introduced, in which, the load can have multiple modes of operation that 

feature the individual functionalities associated with each smart load. Thus, the resulting 

model will be modelled as a quintuple.  

Specifically, the added element 𝐴ℓ represents another mode of operation, e.g., sleeping 

mode, in which, the load consumes a much less power than usual to be ready for the normal 

operation upon request. Furthermore, the stochastic nature of the each individual load is 

modelled using some statistical properties added to each mode of operation, e.g., means and 

standard deviations.  

Nevertheless, the activation time must be commanded by the system operator (active mode), 

as depicted in Figure 4.2. 
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Figure 4.2: Illustrative load profile of a smart shiftable load. 

4.2.3 Scheduling Operator 

Formerly, different penalization functions can be used to measure how far are the scheduled 

loads from the forecasted available power and thus, find the optimal scheduling plan 

associated with each smart load in the system [OBr2016]. In our work [HiFr2018d], we chose 

to penalize the absolute-value norm of the error between the forecasted power signal and 

the aggregate scheduled load profiles as formulated in Equation (4.1): 
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𝐺(𝑡) = ‖Υ(𝑡) − (∑ 𝑃ℓ[𝑡 − ℓ]

𝑁

ℓ=1

)‖ (4.1) 

Where Υ(t) is the low-price power signal and Pℓ[t − ℓ] is the shifted version of the smart 

load ℓ corresponding to the scheduling operator , e.g. a typical operator  may bring the 

selected load   time-slots forward or backward, as defined in Equation (4.2): 

𝑃ℓ



→ 𝑃̃ℓ = (𝑃ℓ) = 𝑃ℓ[𝑡 − ℓ] (4.2) 

Providing an adequate forecasting tool, an offline solution for this problem can be achieved 

using the aforementioned formulation. The general overview of the proposed offline load 

scheduling scheme is shown in Figure 4.3 

Figure 4.3: Offline Optimization solution for load scheduling problem. 

Some key features of the offline optimization approach: 

• It targets to reallocate the shiftable loads by minimizing the cost function, i.e. the net

difference between the announced low-price power profile and the aggregate

scheduled loads, to make use of the maximum possible energy using the available

low-price power.

• It does not consider the applied method of routing the power between the microgrid

components or in other words, it tracks a given generation profile to minimize the

deficit which has to be covered by another source of energy.

• This method might be viable to some anonymous systems that are supplied from a

single low-price power source, e.g. solar PV field, which has one cost function at

most.
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However, in order to realize an optimal power operation for more complex systems such as 

microgrids adopting hybrid power sources or/and a low-price utility grid, one might need a 

further detailed scheme that can explain the power transactions among the components of 

the microgrid. For this reason, the used scheduling operator here is going to be determined 

based on the involved EMS. 

4.2.4 Microgrid Model 

As presented in Figure 4.1, a grid-connected microgrid is assumed to conduct the work in 

this chapter. It incorporates PV array, generic battery bank and a diesel generator set 

(GenSet), all are connected to a unidirectional main grid. The model of each individual 

component of the system with the corresponding operational constraints was presented 

earlier in Chapter 3. Here, the focus will be given to the grid model and the electricity price, 

however.  

Due to a frequent power outages, the main grid can have two states: ON (available) and OFF 

(unavailable). Yet, it can supply the load adequately whenever it is in ON state. The grid 

outages can be planned in advance or take place unexpectedly due to unpredictable faults. 

Such a grid can be modeled by means of Time-of-Use tariff (ToU) using a two-level power 

price, in which, Off-Peak times follow a lower fixed price cl than the peak times which 

follow a much higher price ch as given in Equation (4.3): 

𝑈𝑔(𝑡) = {
𝑐𝑙 ,  𝑡 ∈ [𝑡1, 𝑡2]
𝑐ℎ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.3) 

The total lower-price power signal Υ(t) is typically resulting from the combination of the 

grid power during the ON-times, t ∈ [t1, t2], which adopts the value cl, and the generated 

PV-power which has almost negligible cost of generation.  

The higher price level ch is the price is assumed to be associated with the power withdrawn 

from the diesel generator. It is assumed that the generation at that period is closer to the 

maximum loading factor, see Chapter 3 for elaboration. 

4.3 Scheduling algorithm 

Obviously, the key concept behind scheduling a set of smart loads to track a known power 

profile is similar to a certain extent to the problem of deciding if objects can fit into a bin, 

which is classically known as a bin-packing problem [Vaz2003]. The idea is to get the 

autocorrelation between the aggregate load and the total available power maximized. 

Nevertheless, the problem of maximizing the profit of minimizing the operational cost of 

supplying a group of loads is similar to the problem of selecting the most valuable items to 

carry in a sack, which is known as a knapsack problem [Mm1996].  
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Although the addressed scheduling problem may seem similar to other classical constraint-

based scheduling problems [Wam1996], where the tasks, i.e. the loads, are constant and 

require a certain share of the resource, it is still harder to solve because of the dynamic 

nature of the loads which makes it necessary to find a suitable relaxation technique in order 

to minimize the effect of the fluctuating demand. The existing scheduling problem is a 

complicated optimization problem, which is NP-hard [BaGo2004]. Therefore, finding an 

optimal schedule for a large set of schedulable loads is very complicated problem and thus, 

the exact solution might be hard to find without enumerating all possible schedules and 

then evaluating them.  

To elaborate on this issue, suppose that we have a set of Ν loads with at least Μ possible 

positions for each load to start the active operation, the complexity of the searching space 

will be ΜΝ. Obviously, the complexity of the problem is exponentially increasing with the 

number of loads and/or the possible schedules of each load. In order to cut down the 

computation time, the developed optimization approach applies a stochastic optimization 

technique to solve this problem [Mm1996].  

4.3.1 Stochastic Optimization 

Recently, the genetic algorithm has become of a great interest to a wide variety of 

operational research problems, especially, planning and scheduling. However, in order to 

apply GA to solve a scheduling problem, the problem must be well modeled to be suitable 

for this kind of approaches. A specific operation periods defining the permissible lower and 

upper limits (genes) represent the set of chromosomes in the population. To make sure that 

the candidate schedule is a feasible solution, it must follow the operational constraints.  

The candidate solutions are mapped to chromosomes containing genes which are 

represented using an array of bits. The length of the chromosome is directly related to the 

number of time steps.  

In this Chapter, a preliminary simulation example is used to prove this concept. The default 

settings of MATLAB-based GAs are applied to conduct the simulation. A population of 

chromosomes is randomly initialized (i.e., 200) in accordance to the possible number of 

solutions. The algorithm is then terminated when the stipulated number of generations (i.e., 

500) is reached or when the magnitude in the change in fitness value does not vary more

than a tolerance limit (i.e., 10-10) for several subsequent generations (i.e., 50). 

Due to the complexity of the system, where multiple power sources are sharing the 

responsibility of supplying the electricity to the aggregate smart loads, the used fitness 

function here is modeled by embedding the applied EMS, which will result in a specific 

LCoE. Other assessment factors, e.g. such as the self-consumption (SC) ratio or/and 

penetration level (PL), can be imposed to further improve the quality of the resulted 
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schedule. A conceptual model of the proposed EMS-based optimization algorithm is 

illustrated in Figure 4.4. 

Figure 4.4: The proposed EMS-based optimization for microgrid scheduling. 

Suppose that we have a nonempty set Ƙ ≠ ∅ of finite elements ks  ℕ representing all 

possible schedules, where Ƙ = {k1, k2 … , ks}. Thus, each individual operation strategy 𝑘𝑠 will 

obviously result in a different value of LCoE, where:  

𝐿𝐶𝑜𝐸 (Υ(𝑡), (∑ 𝑃ℓ[𝑡 − ℓ]

𝑁

ℓ=1

) |𝑘𝑠) (4.3) 

LCoE is a function of the low-price power signal and the aggregate shiftable loads expressing 

the applied EMS with respect to the scheduling map ks. In other words, it uses the 

forecasted Υ(t) and the announced shiftable loads to provide the LCoE based on the selected 

scheduling plan. Formerly, such a function is solved based on predefined rules, which is 

called rule-based method [RifB2009]. However, an optimization-based solution may provide 

more profitable results, as discussed in our previous work [HiFr2018c]. 

A simple EMS state-flow diagram for routing the power between the production side and 

aggregate load is also provided in another work of the authors [HiFr2018b] and 

[HiFF2017b]. Obviously, the searching space is too huge and resulted from the space of load 

side, e.g. MN, and the space of the generation side. 

4.4 Simulation Example 

A hospital building incorporates a group of six shiftable loads is chosen to conduct this 

simulation example. Some examples of real loads in the hospitals that can be shifted without 

affecting the healthcare service are laundry machines, sterilization units, waste incinerator, 

air conditioning system in some parts of the hospital, and other actions related to the 

planned maintenance system.  

Scheduling Plans 

Ƙ 

Assessment Factors 

LCoE, SC, PL 



56 

The low-price power signal is generated from the aggregation of the off-peak period from 

the utility grid in Gaza-city and the onsite solar generation. Other essential loads are 

assigned to be supplied using the conventional generation as they need a continuous and 

stable supply without any interruption.  

The building is mainly supplied from the utility grid, which has a feeder capacity of 40 kW. 

However, the grid is interrupting on a daily basis, which makes relying solely on it 

impossible. Thus, the building was backed recently with a 20 kWp solar array to relieve the 

stress on the existing standby generator. The used diesel generator has an operative capacity 

of 20 kW and its associated fuel cost is modelled by fitting the manufacturer data [Dss2018]. 

The grid price is considered 𝑐𝑙 = 0.16 $/kWh during off-peak hours and the price associated 

with diesel operation under the rated load is 𝑐ℎ =  0.56 $/kWh. Half of the grid capacity is 

reserved for essential loads and the second half is assigned for the shiftable loads.  

The grid-ON times, forecasted PV solar generation, and the notified base and shiftable loads 

over a three-days period are shown below in Figure 4.5. 

Figure 4.5: An illustrative 3-days window: Generation data (top), Disaggregation load (bottom). 

The system is modeled using MATLAB and the optimization algorithm is conducted using 

the provided optimization toolbox. The optimization window is considered here as a single 

day and then the optimization process should be repeated in accordance with the new 

timing constraints for the day after.  
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The convergence of the optimization process for one sample day is depicted in Figure 4.6, 

where the searching process is converged after about 100 generation, and then the 

improvement rate is almost negligible. 

Figure 4.6: Convergence of the proposed GA-Scheduling. 

Some performance indices and end results are calculated and concluded in Table 4.1, 

presenting the net utilization factor of the solar power and LCoE as well 

Table 4.1: Performance Indices. 

Index/Quantity (Unit) 
Before 

Scheduling 

After 

Scheduling 

Base Load (kWh) 264.14 

Total Shiftable Loads (kWh) 219.4 

Total Loads (kWh) 555.62 

Total PV production (kWh) 232.73 

Low-Price Available Time (Hr) 24,75 

Purchased Energy from Grid (kWh) 83.1 111.31 

Output Energy from Diesel (kWh) 289.29 211.9 

Utilized PV Energy (kWh) 183.25 232.41 

Utilization Factor (Self Cons. %) 78.74 99.86 

Total Cost of Energy ($) 175.3 136.5 

LCoE ($/kW) 0.316 0.246 
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Figure 4.7 shows the final numerical results over a three-days simulation window. It 

presents the aggregated low-price power (green), i.e. which has to be tracked as well as the 

total loads before performing the scheduling (red) and finally, the total loads after 

performing the scheduling (blue). 

Figure 4.7: Scheduling results of six sample loads:  

Before scheduling (top), After Scheduling (bottom). 

4.5 Discussion and Final Remarks 

Unlike other works, such as in [HabK2016], where preemptive loads have been used to 

reshape the aggregate load, e.g. they can be supplied with interruptions, the proposed 

contribution in this chapter aims at reallocating each shiftable load to another time interval 

instead of reshaping them so that the resulting consumed energy after scheduling is similar 

to their unscheduled counterpart. The reason behind that is to avoid the so-called “rebound 

effect”, because simply switching the loads ON and OFF will not lead to the same desired 

performance if they work continuously as usual. In such cases, energy is naturally not saved 

and expectedly another peak will be generated [PaD2011]. The presented model expressed 

the fluctuating nature of the load that can have multiple operation modes with some 

variability on the power consumption.  

Another addressed aspect is the scheduling window, which is selected here as a single day 

and then the algorithm is repeated for the next day using the new data. In this regards, one 

load cannot be requested more than once within the same window.  
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Otherwise, two or more identical loads with different activation constraints should be used 

in order not to allow any overlapping of the operation of same load in that facility.  

Formerly, the developed scheduling algorithms were adopting some scheduling policies 

used in real-time processing such as Earliest Deadline First (EDF) and Least Laxity First 

(LLF) which assign the tasks, e.g. loads, according to their deadlines or the slack times 

[SuGD2012]. However, in renewable energy systems with versatile loads,  such algorithms 

still need an accurate forecasting tools and systems to handle the fluctuating nature of the 

RES and the dynamic price of the grid. Therefore, the matter of prioritizing loads should 

consider both: timings of the loads and their consumption level at each time slot. Obviously, 

the dominants loads will be those with higher consumption and less timing flexibility than 

others, which will diminish the effect of other shiftable loads but with lower consumption. 

An easy-to-implement load scheduling approach based on the notified nature of the system 

was proposed. Besides, a straightforward model for smart shiftable loads was introduced in 

this chapter. The proposed approach has adopted the GAs to cut-down the searching space 

and find the optimal schedule within a reasonable time budget. Obviously, the net 

utilization of the installed PV-field is improved by more than 10% and the cost of energy is 

reduced up to 78% of the original value. As presented in Table 4.1, the reduction in 

purchased energy from the grid and the output power from diesel generator is substituted 

after scheduling by increasing the net utilization of the solar energy and the purchased 

energy from the grid as well. 

Yet, there are three important topics that have not been explored and can be the subject of 

future research:  

(a) Reduction the capacity of the diesel generator. The economic basis for this issue

should be clearly justified through synthetic examples and much more

comprehensive simulations using real data.

(b) The incorporated energy management scheme, which will highlight the power

routing between all system components, including the static and the essential loads

which cannot be shifted in time.

(c) Online adaptation of the schedules using shorter time window instead of performing

the algorithm once per day. Thus, the improvement rate can be further increased

according to the recent measurements of the RES generation and the loads as well.
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5 Layout Design 

Water is known as a lifeblood. Nowadays, electricity is the life however. No one can deny 

how electricity become essential in our daily life. The matter of power provisioning of a 

system encompasses several challenges starting from selecting the appropriate energy 

sources and not ending with determining the percentage share of each source to supply the 

desired load demand. Yet, it would involve a complicated optimization problem, especially 

when it comes to several components must be managed in a way to cover the instantaneous 

demand with the least possible price. Furthermore, the capital cost of system should be 

considered in order to achieve a reasonable Levelized Cost of Energy (LCoE). In this 

chapter, the traditional min-max designing method will be overviewed firstly with an 

introductory design example to highlight the most important technical aspects of providing a 

provisioning power supply system for a specific load profile. Consequently, an optimization-

based components’ sizing method will be presented and compared with the former method to 

compare the performance factors and highlight the cost savings. 

5.1 Introduction 

As introduced earlier, the concept of hybrid generation is promising from different 

perspectives, especially to the regions around the world which have an inadequate grid 

infrastructure or/and an intermittent power from the local grid and mainly depend on 

backup diesel generators to supply their essential demand. Such examples are widely spread 

in the Middle East, in Africa and in India with various degrees of power lack [Hi++2016]. 

Nevertheless, the situation becomes even more complicated when considering the expected 

extra cost of fuel transportation or a breakdown of the supply chain, which may seriously 

affect people’s life [Hi++2015]. Traditionally, the backup power generation systems are 

mostly relying on diesel generators which are considered not only huge fuel consumers and 

environmentally unfriendly, but also economically costly. Recently, with the development in 

the renewable energy industry, the deployment of renewable energy resources (RES) is 

expected to be a good alternative of energy at the long term. Moreover, the cooperation 

between RES and diesel generators can lead to significant synergies compared with legacy 

systems which are, in fact, depending only on diesel generation in case of power outages. 

The most appropriate system for such situations is PV-Battery-Diesel, especially where the 

grid cannot meet the load demand at every time. 

5.1.1 Related works 

Different search-based method have been applied to solve this problem—considering 

different constraints—starting from iterative-based or exhaustive searching methods and 

ending with stochastic searching methods. Regarding the topology of the designed 

microgrids, the major part of the literature is dedicated to islanded or off-grid applications, 

such as in [An++2015], [MuKg2011], [CsGW2012], and [Dss2018]. However, a few works 

presented grid-connected applications, such as [DrBj2005], [AmBa2013], [DjBw2013] and 

[Mm1996].  
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Specifically, in [DrBj2005] the authors discuss the sizing of a battery energy storage system 

(BESS) for a microgrid to maximize the profit of energy trading among the microgrid and 

the existing power markets. The same objective was searched for in [AmBa2013] and 

[DjBw2013], but in order to size PV-Battery system considering different energy tariffs and 

market policies. Other works proposed some flexibility on the demand side, where the 

systems have been designed based on the worst-case condition of the net demand, such as in 

[Dss2018] where the system considered was off-grid, and in [Mm1996] where the system 

was connected to the grid.  

5.1.2 Main Contribution 

It is observed that the most of the previously proposed approaches have not included both 

the operational constraints of all components and the unutilized RES. However, this work 

attempts to maximize the net returns of renewable energy resources (RES) by increasing the 

percentage of their utilization and penetration as well. In addition, it compromises between 

the expected running costs -resulted by fuel consumption and energy purchased from the 

grid- and the investment of adding new components. Besides, it makes use of an enhanced 

version of the developed rule-based energy management strategy, cf. Ch 3 and integrate it 

with the design approach to serve as a kernel during the optimization process.  

The presented method in this chapter represents an easy-to-implement layout-design 

method for medium-scale, scalable, and self-sufficient microgrids which are ready to be 

interconnected with the regional grid (once existed) aiming at healing the weakened grid as 

far as possible.  

The main contribution is the fact that the key factors for selecting the optimum size of the 

MG components cannot be reduced to just the load profile and the available renewable 

generation, but also how the instantaneous power is routed in the MG. Furthermore, this 

method tackles also the issue, that the decision parameters do not only concern the sizing of 

the components—PV generation and battery bank (beside the existing diesel generator)—but 

also the imperial switching criterion among battery, diesel generator and the main grid in 

case of insufficient PV generation: that is, the lower and the upper limit of the state of charge 

(SoC) at which the battery and diesel generator (or the main grid too) are switched on/off. 

Lastly, the real utilization factor of RES after performing the control strategy is investigated 

upon different scenarios. 

5.2 Enhanced Rule-Based (RB) Operation Policy 

The energy management system (EMS) is the core controller which routes the power from 

different resources to supply the load in an efficient manner. Therefore, an instantaneous 

power balance must be achieved as depicted in equation (5.1): 

LossLGDBBPVPV PPPPPNPN  (5.1) 
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where NPV and NB are the total number of photovoltaic panels and storage units, 

respectively, PD is the generated power by the diesel generator, PG is the power drawn from 

the grid utility, PL is the instantaneous load demand and PLoss is the total unused power, i.e., 

the lost power due to power conversion, plus the unutilized solar power.  

The rule-based operation policy does not require a prediction. However, it only makes use 

of the real-time measurements and grid status to determine the power route or switching 

mode of the controllable components of the microgrid, basically the battery storage bank 

and the generator. The operation policy is general and can be applied on all similar cases. 

The power set-points for microgrid components are calculated at each time step according to 

the logic rules or priorities using only the knowledge of current SoC, load, RES generation 

and grid status. 

A flow chart diagram of the developed operation policy in this work is shown in Figure 5.1. 

 

 

Figure 5.1: Enhanced Rule-based operation policy for the proposed microgrid. 
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Some key features of this algorithm are: 

• RES, i.e. Solar production is utilized in priority order: load >> storage >> dump

(unutilized).

• Load is supplied with priority order: PV >> grid >> storage >> generator.

• Battery bank is either charged by the grid during ON-grid hours or by the generator

once the load is lower than the best operation point Best
GenP . 

• The battery bank and the generator cannot supply the load in the same time, means

that the battery cannot operate in the discharging mode during the operation of the

generator.

Basically, this operation policy adopts a master/slave operation based on these pre-defined 

rules, i.e., the highest priority is given to the renewable energy, then to the grid utility, next 

to the battery storage system and, finally, to the diesel generator. Besides, discharging 

process of the battery cannot occur with the operation of diesel generator concurrently. On 

the other hand, the charging process of the battery can occur at times while the diesel 

generator is ON.  

As illustrated in Figure 5.1, PPV takes the highest priority to supply the load. Thus, once it is 

insufficient, the grid takes the responsibility to supply the residual load if it is ON. In case of 

insufficient renewable supply and power outage, the battery is imposed to supply the 

residual load as long as its SoC is above a certain threshold SoCmin. Finally, the generator is 

operated to supply the unmet load in case that SoC is less than SoCmin. To keep a higher fuel 

efficiency of the diesel generator, its residual power charges the battery up to a certain limit 

SoCstp if its loading factor is less than Best
GenP . 

Such a criterion can be met by solving equation (5.2): 

      











 τSoCSoCτnetD,PminτP stp
Best

GenD


1
(5.2) 

where  τnetD  is the instantaneous unmet load by PV generation, i.e., NPVPPV . Hence, the 

output power of the diesel generator is kept at its best rate as long as the remaining charge 

of the battery (to reach its maximum allowable SoCstp) is more than the residual of diesel 

generator. This equation applies the concept of a single-slot predictive control, where the 

output power of the generator is determined based on the current measurement of the SoC 

and the targeted upper limit of it, if it is going to be charged by the generator.  

An example of the interactions among the microgrid components according to the enhanced 

RB  operation policy is explicitly illustrated in Figure 5.2. 

The top figure shows the load profile (blue), available PV generation (green), and the 

maximum available power from grid (yallow), where these signals represent the main inputs 
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of the EMS to direct the power to the load in an efficient way. The next figure shows the 

power extracted/injected to the battery (green) and the residual amount of PV generation 

which could not be utilized neither to supply the load nor to charge the battery (red). The 

third figure shows the time-slots in which diesel generator is called to supply the load and 

how much power it supplies (in total) to cover the unmet demand and charge the battery as 

well.  

 

Figure 5.2: Illustration of a one-day operation of the microgrid. 

Noticeably, generator operates almost always on its best rate (𝑃𝐺𝑒𝑛
𝐵𝑒𝑠𝑡) except in the last period 

of operation where the total charge needed to reach SoCstp is less than the residual of its 

generation capacity up to 𝑃𝐺𝑒𝑛
𝐵𝑒𝑠𝑡. The third  figure presents also the power supplied from the 

grid at times when it is available. Lastly, the bottom figure illustrates the SoC and how it 

varies according to the interactions among the load and the power resources.  

The simulation of this day uses SoCstp = 90% and SoCmin = 40%, and it can be seen that these 

limits are not violated while the grid and the diesel asset are ON. However, the small 

margin up SoC  = 100% is reserved to be covered in the time of plenty PV generation, hence, 

SoC can reach its maximum limit (100%) and the unutilized power can be minimized. 
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5.3 EMS-Integrated Design Method  

Basically, it is crucial to find a cheaper and cleaner supply than diesel in order to cover the 

needed demand of a facility at a cheaper price of energy over a long term. Besides, a 

compromise should be found between the running cost and the investment capital.  

The optimization algorithm employs a Genetic Algorithm (GA), which is one of the 

metaheuristic stochastic optimization techniques that can provide a solution to an 

optimization problem with less computational effort than iterative ones [Mm1996]. 

The objective function to be optimized is the total sum of the investment and running cost 

over the annual cost of the system, where the running cost results mainly from the 

purchased energy from the grid (in case of a grid-connected case), and the fuel consumption 

by the diesel generator, and the investment cost depends mainly on the instalment plan or 

the installation cost of the components (PV panels, Battery bank, Diesel Generator and the 

inverter), plus the maintenance and replacement cost of some components such as batteries.  

Equation (5.3) represents the mathematical formulation of the whole cost function, equations 

(5.4) and (5.5) correspond to the detailed mathematical formulation of the investment and 

running costs ( invC , runC ), respectively. 

runinvtot CCC   (5.3) 

DG
Best

DGBatBPVPVinv CPCNCNC   (5.4) 

ggcfrun ECFCC   (5.5) 

 

PVN and BN are the total number of PV panels and storage units, 𝑃𝐺𝑒𝑛
𝐵𝑒𝑠𝑡 is the maximum 

capacity of diesel generator, 𝐶𝑃𝑉, 𝐶𝐵𝑎𝑡, 𝐶𝐷𝐺 are the prices of a single PV panel, a single 

storage unit and the corresponding diesel generator, respectively.  

The parameters Cg, Eg and Cf are the energy price per kWh from the grid, the total energy 

purchased from grid and fuel price per liter including the costs of transportation and 

logistics.  

In case of isolated MGs, the total purchase from grid Eg will be zero and hence, the run cost 

will merely be resulted from the diesel generator.  

A pseudo-code of the applied GA, including a specific decision on the appropriateness of 

each candidate 5-tuple C of decision variables (Step 4), is depicted in Figure 5.3. Each 

appropriate candidate is evaluated over a one-year load and weather profile to find out the 

best fitness function (Equation 5.6). 
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Figure 5.3: Pseudo-code of the optimization algorithm using GA. 

Traditionally, a multi-objective optimization problem is reformulated into a single-objective 

optimization problem using weighted factors and aggregation [KpCk2015]. Here, a 

weighted sum of the lost or unutilized power is combined with the cost function in order to 

be minimized.  

This adds a new constraint on the problem besides the operational constraints of each 

component. The final multi-objective penalty function   can be formulated as in equation 

(5.6).  














 

year 1

LossPw
T

C: (5.6) 

w is a weighting factor that represents the significance of this additional constraint. The 

applied searching method is heuristic, however, time-efficient and fully exhaustive as the so-

called brute-force.  

1. Inputs: Weather data, load profile and grid powering states.

2. Candidate of decision variables:

C := (𝑁𝑃𝑉 , 𝑁𝐷𝐺  , 𝑁𝐵, 𝑆𝑜𝐶𝑚𝑖𝑛 , 𝑆𝑜𝐶𝑠𝑡𝑝)

3. Initialization: randomly seeded possible solutions.

4. Apply the defined operation policy: Is candidate C appropriate for energy

management scheme? If yes, evaluate the penalty function. Otherwise,

exclude C.

5. Selection: Select the best candidate solution among the present generation

before step in the next generation.

6. Crossover and mutation: The new possible candidate solution is generated

from the parents which survived.

7. Apply the main control strategy again (STEP 4)

8. Termination: after exceeding the time budget or generation limit or

satisfying the minimum criteria.

9. Output: the values correspond to the best/final solution.
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5.3.1 Searching Space 

The search space of the problem is obviously very large. Considering NPV solar panels, NDG 

set of the diesel generators, and NB battery storage units with NSoC different levels of SoCmin 

and SoCstp (which we declared in advance) to choose from, the number of iterations would 

reach (NPV×NDG×NB×NSoC×NSoC) of iterations, each requiring k evaluations of Equ. (5.1) to 

(5.6) if an iterative method, e.g. brute-force, is chosen to check all possible combinations (as 

done, e.g., in [An++2015]); k is the number of total time slots among the year (here k := 

6×8760 = 52560). Yet, the checking process includes also the implicit or the integrated 

operation policy which has been applied to figure out the real efficiency of the system. For 

that reason, the GA is chosen as it enables the exploration of a wide range of allotted 

elements in a much shorter time.  

In our case, less than 80 generations were examined until they converged to a solution (here: 

just a few minutes of computation time). 

5.4 Design Example 

The essential load of a building of an outpatient in Gaza city is taken as a case study where 

daily grid outages are common routine since years [Hi++2015]. A fraction of the load profile 

is chosen to conduct the simulation where the maximum peak during one year is 71.2 kW 

and minimum load is 25.3 kW with a mean consumption of 42.8 kW and 10.4 kW of 

standard deviation [MuKg2011].  

A powerful tool to describe the chosen load profile is the load duration curve (LDC), by 

which, the aforementioned statistical information can be described clearly, where the values 

of the power profile are sorted in a descending order, as depicted in Figure 5.4. 

Figure 5.4: Load duration curve (LDC) of the load over one year. 
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Considering 70% energy deficit in Gaza Strip [OCHA], which can cause daily outages at 

least 12 hours according to the plan of the distribution company, in which the grid can be 

ON for 6 hours, at most, and OFF for 12 hours. Generally, the public are notified in advance 

by such a schedule according to the available resources. More information about the energy 

deficit in Gaza strip can be found in [HiFF2016b].   

A deep cycle lead-acid battery is used as storage unit.  Besides, the yearly PV production of a 

single 250Wp PV panel is calculated using the weather data from the metrological database 

METEONORM [Meteo]. Extensive simulation for the whole-year data indicates that solar 

power gained at the site can beat 1750 kWh/kWp annually.  

Figure 5.5 illustrates the average daily power production of a single 250 Wp panel. 

Figure 5.5: Average daily power production of a 250 Wp solar panel. 

Further technical data, specifications and associated costs of components are provided in 

Appendix I. 

Four diesel generator candidates to choose from are assumed  in this work by fitting their 

corresponding fuel consumption data [Dss2018].  

5.4.1 Predesign Example 

In order to give a clear realization of the goodness of the proposed design algorithm and 

provide an indication of the required system components, a simplified dimensioning 

approach based on time series analysis is presented here, which is commonly used for the 

same study purpose. Conventionally, MG systems are designed assuming two prime 

impractical hypotheses: namely, a full utilization of the generated power from renewable 

resources, and no losses due to power conversion among DC/AC buses; both hypotheses can 

lead to specifically optimistic and encouraging results from an economic point of view.  
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In addition, many approaches do not include the energy management scheme during 

optimization. By contrast, the proposed design herein is optimized taking into account the 

applied operation policy and realistic power conversion efficiencies, which together play the 

key role in determining the realistic percentage of utilized renewable energy.  

Obviously, using the integration of equ. (5.1), energy balance of the system must be 

achieved. By which, capacities of each of diesel generator and the bi-directional inverter can 

be roughly estimated, as shown in Equ. (5.7): 

LossLGDBPV EEEEEE   (5.7) 

Simply, the resulting net power demand, after subtracting available PV power from the load 

profile should be supplied by either by grid or diesel generator in addition to the assistance 

of battery storage. Subsequently, by defining the desired penetration level (  in equ. 5.8) of 

the renewables, i.e. PV, the lower bounds of solar panels can be determined, that is, 

considering zero losses due to power conversion or/and applied operation policy. After that, 

other resources can supply the residual load, which has not been supplied by the PVs.  

 





00

dt)(Pdt)(P LPV   (5.8) 

Besides, maximum power ratings of the battery, diesel generator and power inverter must 

be able to handle the peak load. Generally, different manufacturers have their different 

recommendations and preferences of the charging/discharging characteristics. Mostly, in 

order to assure healthy operating conditions for the battery, maximum throughput rate must 

not exceed a certain value C/(5 h); C is the battery capacity in Ampere hours (Ah).  

Other considerations such as supply of reactive power or fault tolerance considerations, 

would of course lead to further increased capacities and power ratings.   

Findings of the components after a predesign phase are listed below in Table 5-1: 

Table 5-1: Predesign Microgrid Components 

Parameter Nomenclature Value (s) 

𝑁𝐵 Number of storage units 65    Storage units 

𝑁𝑃𝑉 Number of PV panels 857  Panels  

𝑃𝐷𝐺
𝑚𝑎𝑥 Diesel generator capacity  100  kW 

𝑃𝑖𝑛𝑣 Ratings of the power inverter 100  kVA 

 

It is worth to mention here, that predesign phase assumes a full penetration of solar energy 

which can hardly be achieved in such circumstances. In order to verify the actual 

penetration level of such selected components, the operation policy must be applied. These 

findings will be presented in details in the next subsection.  
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5.4.2 Optimized Design Example 

Simulation results in this section are conducted based on the power outage scenario 

corresponding to 70% energy deficit in Gaza, with the consideration of some unexpected 

interruption (as declared in Section II.A). All parameters used in simulation with the 

corresponding nomenclature and values are listed below in Table 5-2.  

Table 5-2: Simulation parameters used in optimized design 

Parameter Nomenclature Value (s) 

𝑁𝐵
∗ Number of storage units [0, 600] 

𝑁𝑃𝑉
∗  Number of PV panels [0, 1000] 

𝑆𝑜𝐶𝑚𝑖𝑛
∗  Minimum allowable state of charge [40, 60] % 

𝑆𝑜𝐶𝑠𝑡𝑝
∗  Stop charging threshold from GenSet [70, 90] % 

CB Single storage unit capacity 5.55 kWh 

SoCint Initial state of charge 75 % 

SoCmax Stop charging threshold from PV 100 % 

ηb (Dis)charging efficiencies 95 % 

ηc Inverter efficiency 95 % 

𝑃𝐵
𝑚𝑎𝑥  Battery (dis)charging power limit ±CB/(5h)  

𝑃𝐺𝑒𝑛
𝑚𝑎𝑥 Diesel generator rated power 100 kW 

Cf Diesel fuel cost per liter 1.85 $/L 

Cg Utility grid energy price per kWh 0.18 $/kWh 

DG* Set of available diesel generators 75,100,175,250  kW 

∆ Time slot (1/6) h 

𝑃𝐷𝐺
𝑚𝑎𝑥 Diesel generator capacity  100  kW 

𝑃𝑖𝑛𝑣 Ratings of the power inverter 100  kVA 

    (*) parameter to be optimized. 

The simulation is carried out using MATLAB optimization toolbox and converged under 

these circumstances to 0.22 $/kWh as a minimum cost of energy, which is 52% lower than 

the energy price of diesel-only case, (0.46 $/kWh by 100 kW generator), at average 

penetration level  = 70%. These findings are consistent with [Vi2009], that is, the end 

energy price of the diesel-only systems is very high, though still realistic solution for small 

island systems, which is similar to a large extent to the case of severe power outages.  

The final penalty value is found around 0.22 in case of the declared outage scheme, as 

depicted Figure 5.6. This value expresses mainly the value of LCoE per kWh and the 

inherent increasing due to the non-utilized PV energy as declared previously in equation 

(5.6). 
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Figure 5.6: Convergence of penalty function over GA generations. 

Further advantage of the algorithm that is identifying the optimum operating points of the 

battery storage where the switching to the generator should be done and vice versa. These 

findings of the optimized component of the MG under the aforementioned conditions, that 

minimizes the LCoE over the 20-years evaluation period, are listed in below in Table 5-3. 

Table 5-3: Optimized Microgrid Configuration 

Parameter Nomenclature Value (s) 

𝑁𝐵 Number of storage units 140  Storage units 

𝑁𝑃𝑉 Number of PV panels 922  Panels 

𝑃𝐷𝐺
𝑚𝑎𝑥 Diesel generator capacity 100  kW 

𝑃𝑖𝑛𝑣 Ratings of the power inverter 100  kVA 

𝑆𝑜𝐶𝑚𝑖𝑛
∗ Minimum allowable state of charge 40 % 

𝑆𝑜𝐶𝑠𝑡𝑝
∗ Stop charging threshold from GenSet 89 % 

The annual purchased energy and fuel savings in case of the proposed system is listed below 

in Table 5-4. The results are then compared with the old baseline configuration, which 

depends merely on diesel generator as a backup resource in addition to the interrupting 

grid.  

Table 5-4: Annual Purchased Energy and Fuel Savings 

Parameter Legacy System Microgrid Design 

Purchased energy from grid (MWh) 124,98 116,12 

Gross purchasing from grid ($×103) 22,45 20,90 

Total fuel consumption (L×103) 80,98 3,31 

Operation Hours (Hr) 5840 153 

Total fuel costs ($×103) 149,8 6,12 

Purchased energy from grid (MWh) 124,98 116,12 
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The supplied energy from each individual resource in both configurations is investigated 

and listed in Table 5-5. Besides, the annual and utilized energy from all resources in both 

configurations is presented as well. 

Table 5-5: Annual Produced and Utilized Energy 

Annual Energy (MWh) Legacy System Microgrid Design 

Gross purchased energy from grid 124,98 116,12 

Net load supplied from grid 124,98 96,87 

Gross produced energy from diesel 249,9 11,50 

Net load supplied from diesel 249,9 10,225 

Total produced energy from PV – 404,16 

Net load supplied from PV – 267,78 

Total energy of the load 374,88 

5.5 Discussion and Economic Assessment 

Obviously, the gross and net supply either from grid or diesel in the old configuration are 

the same. By contrast, with the microgrid, the net supply from any of the resources is less 

than the gross produced or purchased energy in the system. The main reason of that is the 

lost energy due to power conversion among the system’s components. In addition to that, 

some non-utilized energy is lost in case of the microgrid because the battery is fully charged 

and the load is satisfied at the same time.  

In addition to the previous indices, the net share of PV is another important index which 

accurately indicates the real benefit of deploying the RES in the system and gives a better 

realization of the presented outcomes. It can be described by two values, the RES utilization 

factor () and penetration level (  ) which both are defined in equations (5.9) and (5.10) as 

follows: 

%
production RESTotal

RESby suppliedenergyNet
100 (15) 

%
demandenergyTotal

RESby suppliedenergyNet
P 100 (16) 

The values  and   can be calculated by dividing the value of the sixth row by the values in 

the fifth and last row respectively.  

 = (267.78 / 404.16)×100% ≈ 66.25%

 = (267.78 / 374.88)×100% ≈ 71.43% 
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As depicted below in Figure 5.7, a pie chart illustrates the net share of each resource in both 

situations (Grid-Diesel and Grid-Microgrid). Meanwhile, the penetration level (  ) of PV 

array in the new configuration is marked with a green color.  

(a) (b) 

(a) Baseline (b) Grid-connected MG

Figure 5.7: The net energy share of each power source. 

It is also remarkable that installing less RES, e.g. PVs leads to benefit from a plentiful 

generated energy, meaning that, less rejected or unutilized energy. This is obvious because 

RES, in that case, lies mostly under the load demand, which allows to be directly taken by 

the load.  

In contrast, seeking a high penetration level leads to a relatively high rejected RES and thus, 

low utilization factor, because the residual RES will be either redirected to the battery or 

even rejected. This phenomena can be illustrated using 3-days power profiles of 600 PV 

panels, grid line and load demand, as shown in Figure 5.8. 

Figure 5.8: Power profiles of 600 PVs, interrupted grid and load. 
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It is evident that most of the generated PV power can be directly absorbed by the load once 

it is less than demand. However, in case of residual generation, it will be redirected to 

charge battery for example.  

Of course, this will result in more losses due to power conversion. Thus, oversized PV units 

may lead to higher penetration levels, but not necessarily to more economic designs.  

Aside from the technical indices, the net present value (NPV) is chosen to analyze the 

profitability of the proposed project. It indicates the algebraic sum of the net cash flows over 

a project period. It can be formulated as in equation (5.11). 
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Where: n  {1, 2, 3,…, N} points to the year; N = 20 years. C0 is the first installment of the 

project (here it is the investment cost of PV panels and storage units). Cn is the total cash 

flow over year n, 𝑟 is the discount rate. The yearly net cash flow is resulted from the 

revenues minus the running costs and capital investment. Obviously, revenues come from 

the considered price for supplying the load by RES. Contrariwise, the running costs are 

dominated by the costs of supplied energy from grid and diesel generator in addition to the 

replacement costs of the batteries. In addition, extra revenue is added as an incentive to 

reduce the dependency on the grid and diesel fuel. Considering the resulted components 

(see Table 5-3) with the corresponding declared prices and two times replacements of the 

batteries, the NPV is described in Figure 5.9. 

Figure 5.9: Net Present Value of the proposed microgrid. 

The graph shows that the net return will beat the payments after the eighth year, which 

makes the proposed system profitable for the considered case. 
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5.6 Conclusion and Final Remarks 

This chapter presents a straight-forward method to provide an optimal layout design of a 

microgrid including PV array, ESS and Diesel asset. The presented method is general and 

can be applied for deigning a grid-connected or an isolated microgrid, considering a 

complete power outage. The method is appropriate for societies and communities subject to 

frequent grid outages where, in times of grid outage, the load is supplied merely by diesel 

generators, which consume a huge amount of fuel. A case study of a hospital building 

subject to severe power outages has been presented.  

However, with the microgrid, the annual payments of installation and replacement count 

75×103 US-$, but the long-term annual savings will be 145×103 US-$, which means that the 

net annual saving will be about 70×103 US-$, that is half the fuel cost in the old 

configuration. In addition, a very reasonable utilization of RES can be achieved with 

microgrid (UF = 66.25%). Besides, a high RES penetration level can be achieved ( Pℓ = 

71.43%). 

Furthermore, it is noticed that the optimal selection of components depends primarily on 

the adopted operation policy in addition to the gross energy produced by RES rather than 

on the initial prices of the components only. Installing such RES in microgrids can be done 

gradually, and expectedly, the savings will increase progressively. 
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6 Conclusion and Outlook 

This work addressed in the first place the PV-Battery-Diesel Microgrid system as a 

resolution for one of the most emerging electrification problems, especially in the 

developing countries where the operational costs of conventional alternatives are 

unimaginable.  

Mainly, two important topics were comprehensively covered in the course of this work. The 

first one was on the developing of an efficient EMS based on the basic modeling of each 

system component. For this topic, three different EMSs were presented and discussed with a 

real-case scenario. A former rule-based was discussed firstly and the enhancement potential 

to increase the efficiency of the system was successfully highlighted. Afterwards, two 

optimization-based EMS using the prediction of were presented. The offline solution is 

firstly conducted assuming a perfect prediction and then the adaptation was carried out by 

imposing some errors on the predicted data. The optimization goal aims at not only 

minimizing the running costs but also maximizing the net utilization of the clean solar 

energy. The proposed solution adopted the former Dynamic Programming method for 

tracking the least cost operation strategy. However, a relaxation technique was proposed to 

speed up the optimization process and reduce the search space. Besides, another form of 

energy management was presented in this work concerning the demand side in the smart 

grid environment, where the loads can be predicted or notified in advance. An optimization-

based load scheduling approach was presented assuming the predictability of a group of 

shiftable load. The scheduling approach considers the involved EMS of the generation side 

and seeks to minimize the LCoE in accordance with the permissible operation time of the 

considered loads.  

The second topic of this thesis discussed the issue of selecting the capacity of each 

component of the MG that will lead to the least cost of energy. The need for a hybrid system 

was elaborated using a practical power outage scenario. This approach differs from other 

predecessor methods in particular with the consideration of the applied EMS, by which the 

effective utilization of solar energy can be varied and thus, the resulted capacity might be 

oversized. It was observed that the components’ sizing depends primarily on the adopted 

EMS in addition to the gross energy produced by PV rather than on the initial prices of the 

components only.  

The percentage of fuel reduction using the optimization-based EMS exceeded 25% in case of 

accurate prediction and was about 18% in case of uncertain prediction. Depending on the 

accuracy of the prediction, the proposed optimization-based approaches could maximize the 

net utilized PV energy up to about 90% and thus, it can be concluded that such methods can 

result in not only economic benefits but also in a more efficient operation in terms of solar 

energy utilization.  
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Additionally, simulation results could clearly indicate the advantage of performing such 

analyses before developing such EMS for microgrid systems or deploying new components 

for the purpose of solving electrification problems to assist the legacy backup power 

systems, e.g. in this case PV and Battery assist diesel Generator). 

As a future prospect, it can be said that some further studies for the systems could be carried 

out. First of all, it would be interesting to apply the results of the research on a specific 

battery models and PV modules. Moreover, as with the aging mechanism of the considered 

battery units, further investigation might be helpful for complicated strategies with dynamic 

load behavior. Additionally, further operational scenario of the future microgrid systems 

including Electric Vehicles and responsive loads could be an interesting research area, 

especially when considering the matter of scheduling different energy sources jointly with 

this kind of demand. 
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Appendix 

A.1 Diesel Generator Fuel Consumption Characteristics

Figure A.1: Fuel Consumption Curves of 250 kW Diesel Generator 

Consumption chart (uppermost), Generation efficiency (middle), Generation Price (bottom) 
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A.2 Components’ Initial Costs and Specifications

The deployed battery storage unit is a Trojan battery model IND17-6V adopted from 

[Yu++2014]. It has a 5.55 kWh capacity at 20-h discharging rate and a relatively long lifetime 

under a low SoC, i.e. 2200 cycles at 40% SoC with a nominal price of 1400 $. Its maximum 

(dis)charging is considered 1/5 of the capacity within 1 h to keep healthy operating 

conditions. Considering one cycle per day, its annual capital cost is:  

1430 ($) × [365 (cycles/yr) / 2200 (cycles)] = 237 ($/yr). 

The used solar generator is a 250Wp PV panel which is the kernel of the PV array and has a 

price of 1.9$/Wp including the installation, corresponding power electronics, and converters 

for voltage regulation and adaption among power bus bars. Assuming a 20-years warranty 

over the project lifetime, the annual price of each panel is:  

[1.9 ($/Wp) × 250 (Wp)] / 20 (yr) = 24 ($/yr). 
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A.3 Elaboration on the battery-only backup systems

The illustration below is used to show how fast the depletion of the battery charge can be 

just during an eight hours of power outages occurring in different times during a single day. 

A generic battery model is used with a nominal capacity 500 kWh and (dis)charging 

efficiency 0.9. Other operational constraints are imposed in order not to discharge it below 

40% of its nominal capacity, i.e. 200 kWh. Obviously, the depletion time due to the first 

outage, i.e. occurring during the peak time as in the middle figure, is much faster than its 

counterpart second outage which occurs during the off-peak time, as in the bottom figure. 

One can recognize that the recovery time needed to recharge the battery is highly dependent 

with the grid capacity and the battery capability of fast charging, i.e. in less than 5 hours to 

be completely recharged. Thus, such a model, using battery-only backup systems is not a 

feasible solution for communities under prolonged power outages. Consequently, once can 

observe how numerous the battery size at least can be due to the variation of the demand 

and the interval of power outage.  

Figure A.3: Trajectories of battery SoC in battery-only backup system during power outages 

Load profile (uppermost), trajectories correspond to outage period 1 and 2: (middle) and (bottom) 
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