
.

Ubiquitous Head-Mounted Gaze
Tracking

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Fakultät für Informatik und Mathematik

der Universität des Saarlandes

vorgelegt von
Christian Karl Lander, M.Sc.

Saarbrücken 2018



Dean:
Prof. Dr. Sebastian Hack

Head of Committee:
Prof. Dr. Jürgen Steimle

Reviewers:
Prof. Dr. Antonio Krüger
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Abstract

Recently, gaze-based interfaces in stationary settings became a valid option, as re-

mote eye trackers are easily available at a low price. However, making gaze-based

interfaces ubiquitous remains an open challenge that cannot be resolved using remote

approaches. The miniaturization in camera technology allows for gaze estimation with

head-mounted devices, which are similar to a pair of glasses. A crucial step towards

gaze estimation using such devices is calibration. Although the development is mainly

technology driven, a hypothetical fully calibrated system in which all parameters are

known and valid is affected by calibration drift. In addition, attributes like mini-

mal intrusiveness and obstruction, easy and flexible setup and high accuracy are not

present in the latest commercial devices. Hence their applicability to spontaneous

interaction or long-lasting research experiments is questionable.

In this thesis we enable spontaneous, calibration-free and accurate mobile gaze estima-

tion. We contribute by investigating the following three areas: Efficient Long-Term

Usage of a head-mounted eye tracker; Location, Orientation & Target Independent

head mounted eye tracking; and Mobile & Accurate Calibration-Free gaze estimation.

Through the elaboration of the theoretical principles, we investigate novel concepts

for each aspect; these are implemented and evaluated, converging into a final device,

to show how to overcome current limitations.





Zusammenfassung

Heutzutage sind blick-basierte Schnittstellen zur Interaktion eine Alternative, da re-

mote Eye Tracking Systeme leicht zugänglich geworden sind. Allerdings ist die Heraus-

forderung diese Schnittstellen überall verfügbar zu machen nicht mit remote Ansätzen

zu lösen. Die Miniaturisierung in der Kamera-Technologie erlaubt die Blickbestim-

mung durch am Kopf getragene Systeme, die ähnlich zu einer Brille sind. Ein entschei-

dender Schritt zur Blickbestimmung mit diesen Geräten ist eine Kalibrierung. Ob-

wohl die technische Entwicklung weit voran geschritten ist, wird die Präzision eines

voll kalibrierten Systems in dem alle Parameter bekannt und validiert sind durch den

sogenannten calibration drift beeinträchtigt. Eigenschaften wie ein einfaches und flex-

ibles Setup und hohe Präzision werden von aktuellen Geräten oft nicht erfüllt. Daher

ist die praktische Anwendbarkeit von diesen Systemen in interaktiven Szenarien und

Experimenten fraglich.

In dieser Arbeit ermöglichen wir spontane, kalibrierungsfreie und mobile Blickbes-

timmung mit hoher Präzision. Folgende drei Bereiche werden dazu untersucht: Be-

nutzung von Eye Trackern über einen längeren Zeitraum; Eye Tracking unabhängig

von Ort, Orientierung oder Fokuspunkt ; Mobile und präzise kalibrierungsfreie Blickbes-

timmung. Durch das Erarbeiten von theoretischen Prinzipien werden neue Konzepte

entwickelt, implementiert und evaluiert, die in ein finales System münden, um spon-

tane Blickbestimmung zu jeder Zeit an jedem Ort zu ermöglichen.
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Chapter 1

Introduction

In the first chapter, we motivate the work and present an introduction into the topic

of this dissertation. First we will provide a brief historical recap of the evolution of

eye tracking. The emerged challenges and problems will be discussed and serve as a

basis to develop the research question, we address with this work. In the last part of

this first chapter, we will give an overview on the structure of this thesis.

1.1 Motivation

Simply put, eye tracking or oculography is the process of recording and analyzing

human eye activity. This includes all different types of eye movements as well as the

direction and point of gaze. When talking about this topic, it is important to develop

our understanding of the purpose of tracking a person’s eye. The human eye is the

organ of vision and one of the basic senses that we use to perceive our environment,

as already defined by the Greek philosopher Aristotle back in 350 B.C. (original text

translated to English [2]). In practical terms, we move our eyes to change the direc-

tion of gaze and see a specific point in the environment at high resolution. Usually

this is coupled with drawing our attention to that object or region. Consequently, the

opportunity to track a person’s eye and thus the point of gaze may give us information

about what is attracting him or her and might be of interest [196]. Nowadays, we can

see that science (e.g., neuroscience, psychology and computer science), industry (e.g.,

aviation and driving) and marketing research (e.g., advertising, the web) make use of

eye tracking [37].

The machines to record a person’s eye movement and perform gaze estimation are

divided into three main categories. The electro-oculography (EOG) based method

1



2 1.1 Motivation

places electrodes around the eye to measure the skin potentials, as proposed by Kauf-

man et al. [79]. The scleral search coil method uses a small coil that is embedded into

a contact lens. It measures the voltage caused by an external electro-magnetic field

[161]. Camera-based (video-based) techniques use the images of the eye to detect its

characteristics in combination with images of the field of view to realize gaze estima-

tion. This method is mainly applied nowadays by using either a head-mounted/mobile

(cameras are mounted on the head) or a remote (cameras are placed in the environ-

ment) system.

In this thesis we consider eye tracking from the perspective of human computer inter-

action, in particular the usage of eye tracking as a Ubiquitous Computing device. This

term dates back to 1988, and was originally introduced by Mark Weiser [200]. This

paradigm (often also Pervasive Computing), also known as the third wave in comput-

ing, will make computers invisible for us (calm computing). That is to say, one person

is using many computers, as they are totally integrated in our everyday objects. The

shift to post-desktop devices has already been reached, as the three device classes

Tab, Pad and Board – described by Weiser – are already well established through

mobile phones, tablets and large-size touch screens. Interestingly, Mark Weiser al-

ready had the vision of eyeglasses as a ubiquitous computing device in 1997 [201],

as they are a seamless extension of the human. A person looks through them and

they just work, while the fact of wearing the glasses will be forgotten quickly. Be-

sides Weiser, Robert J. K. Jacob also describes the vision of using eye trackers as an

input device through gaze-based interfaces or as an analytics tool [71] in the early 90s.

According to the visions by Weiser and Jacob from above, we define a Ubiquitous

Computing for Eye Tracking Continuum. Figure 1.1 depicts our three-dimensional

continuum, which shows the rising complexity of the number of devices, locations and

users from a 1 : 1 : 1 to a (K x L) : M : N relation (K = number of digital objects,

L = number of physical objects, M = number of locations, N = number of users):

The simplest scenario (1 : 1 : 1) is constituted by a desktop setting, in which a single

user interacts with one digital device (e.g., a single display) at one location. The com-

plexity can be increased in three different directions: (1) A single user can interact

with several digital devices (e.g., display and mobile phone) and physical objects at

the same location ((K x L) : 1 : 1). (2) One person can interact with one display at

different locations (e.g., information screens at different urban places, 1 : M : 1). (3)

Multiple users can interact with the same display at the same location (1 : 1 : N).
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Figure 1.1: Ubiquitous Computing for Eye Tracking Continuum: 3-dimensional space
highlighting the complexity of the scenario ((Displays x Objects) : Locations : Users),
which increases from a simple desktop setting with one display at one location for a
single user (1 : 1 : 1) to a pervasive/ubiquitous setting with multiple digital and
physical objects distributed at many locations for multiple users (K x L : M : N).

The combination of all three dimensions results in the most complex variant, hav-

ing multiple persons who interact with physical and digital objects distributed across

multiple locations ((K x L) : M : N). With rising complexity through the space of this

continuum, the challenges of eye tracking (and thus gaze-based interaction) are also

increasing.

Stationary or remote eye trackers are devices that carry out the task from a cer-

tain distance. Their purpose is to measure the point of gaze on the object they are

mounted on, most often a display. Recently gaze-based interfaces in desktop settings

(the easiest setting in the continuum in Figure 1.1) have become a valid option, as

remote eye trackers are easily available at a low price point. The latest devices for use

with desktop computers are available for under $200 (Tobii 4C 1). However, making

gaze-based interfaces ubiquitous remains an open challenge. In a straight forward

approach, the environment (the most complex setting in Figure 1.1) would have to

be fully covered by sensors (e.g., cameras) to track people’s eyes. Such an approach

1https://tobiigaming.com/products/peripherals/
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is not feasible, neither from a technical nor an ethical point of view. In theory, head-

mounted eye trackers can record a person’s eye movements and measure the gaze

everywhere and all the time. While a person is mobile and just wearing glasses, a

large amount of applications will be enabled (an overview is presented in 1.3). As

already mentioned by Weiser, people will forget that they are wearing eyeglasses. Be-

sides ubiquitous computing, virtual reality constitutes an opposite paradigm, in which

people dive into a completely computer-generated world. However, both directions

can profit from eye tracking technology. In particular, the integration of gaze support

in next-generation AR and VR devices seems inevitable, as the latest industrial evo-

lutions suggest2.

In general, there exist practical challenges that need to be resolved first, to pave the

way towards the vision of pervasive gaze-based interfaces [19] by enabling ubiquitous

eye tracking (as defined above).

1.2 History of Eye Tracking

Eye tracking has a long history, in which mainly the necessary technology has evolved.

First studies go back to 1729, when mere visual observations were used to get insights

into human eye movements. Back then, William Charles Wells investigated the per-

ceived visual direction [199]. In 1878, Louis Emile Javal developed a machine to

investigate human reading behavior. For his studies, he built an apparatus equipped

with mirrors to observe eye movements. He introduced the term saccade, which he

used to describe a jerky movement of the eye during reading [70].

By the end of the 19th century, the first complex constructions were developed to

record eye movements. Delabarre (1898) mounted a plaster eye-cup to the eye that

was connected to a small lever. The eye was stunned with cocaine during the proce-

dure. With that apparatus he was able to record horizontal eye movements, which

were drawn by the lever on a kymograph.

Right in the beginning of the 19th century, Dodge and Cline (1901) developed the

first version of today’s eye tracking technique [33]. They invented the principle of

photographing the light reflected on the cornea. This method is much less invasive

as it does not require any material directly connected to the human eyeball. They

used a falling photographic plate to record only horizontal eye position. The plate

2https://pupil-labs.com/vr-ar/



5

Figure 1.2: Apparatus from Dodge and Cline to record horizontal eye movements [33].

thus showed horizontal eye motion on the X-axis and time on the Y-axis. Figure 1.2

shows the developed machine. Four years later, in 1905, Charles Judd introduced eye

movement recording in two dimensions with motion picture photography. Once more,

they built a more invasive method: they put a white speckle onto the participant’s

eye. The first two-dimensional eye movement recording was possible, by combining

head position plus the horizontal movement of one and vertical movement of the other

eye, in 1920.

Two major improvements of the technology were achieved in 1939 and 1948. First,

Jung created the first (theoretical) possibility to process eye tracking data in real time

by attaching electrodes to the skin around the eyes. This method became known as

electro-oculography (EOG). Later, Hartridge and Tompson invented the first head-

mounted eye tracker [54]. This was a big step towards allowing free head movements

during eye tracking.

In 1947, Paul Fitts (known for Fitts law) and his colleagues were the first to apply

the method of eye tracking to usability testing. They used motion picture cameras

to record a pilot’s eye movements when landing an airplane. They were interested in

how the pilots were using the cockpit’s instruments and controls [24].

The 1970s were a productive period in eye tracking activities. A lot of research

was conducted in collecting data to solve shortcomings in the technology and analy-

sis. Primarily, the eye tracking devices became less intrusive and achieved a higher

accuracy. Cornsweet and Crane developed an approach to separate eye from head

movement by using multiple Purkinje images (i.e. reflections of objects from different

surfaces of the human eye) [28].
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In the 1980s, the computer industry was revolutionized, as the first personal com-

puter was released by IBM. Also, the larger machines improved in terms of more

computational power. This was the cornerstone to enable real-time eye tracking by

using video-based eye tracking devices. In 1981, Bolt published his vision of using eye

tracking for human computer interaction [15].

Since the 1990s, the eye tracking community has experienced a continual develop-

ment in technology (improved specifications). The use of the devices to track people’s

eye movement and point of gaze with high accuracy and precision has expanded into

several application fields up to today.

1.3 Diversity of Applications

In this section, we will give an overview about the different application areas of eye

tracking. Andrew Duchowski provides a deep review of all use cases in his book Eye

Tracking Methodology [37]. He reviewed two classes of applications, namely diagnos-

tic and interactive ones (part 4 in [37]). We made a similar differentiation, into two

typical application areas which use the information about eye position and movement

as well as a person’s gaze for real-time or post-hoc processing. Figure 1.3 depicts a

two-dimensional classification scheme, in which we distinguish between the two afore-

mentioned classes, as well as between the commercial and research application sector

as a further dimension. Obviously, there is a certain overlap between commercial and

research applications.

Marketing and Advertising. Probably the most prominent application use case of

eye tracking and gaze estimation is the field of marketing research. For example, large

companies, such as Tobii promote this as a primary use case for their head-mounted

eye tracking device3. As the name suggests, it is about measuring the effectiveness of

marketing campaigns to draw or increase people’s attention toward a certain product,

for example in a retail store. The shopper’s visual behavior is analyzed to answer

questions like: How is the shopper walking through the store? What products, dis-

plays and advertisements has he/she recognized? What objects did he/she miss?

Such analysis is done afterwards, i.e. a person makes his/her purchase as usual while

wearing an eye tracker. For example, Tobii provides such analyses as a service for

retail stores4. This information can then be used to reposition products on a shelf, or

3https://www.tobiipro.com/fields-of-use/marketing-consumer-research/
4https://www.tobiipro.com/services/shopper-retail/
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Figure 1.3: Application dimensions of eye tracking, adapted from Duchowski [37]:
real-time vs. post-hoc processing and commercial vs. research applications.

advertisements, to improve the visibility. In a similar manner, such analytics can be

also done for online stores, usually with remote eye trackers in a desktop scenario.

Usability & User Experience. Another field of use is usability testing and user

experience (UX) research. For this application, there is an overlap in objectives of

research and commercial services (e.g., SR Research5). Using eye tracking data to

evaluate the quality attribute that assesses how easy user interfaces are to use (as de-

fined by Jakob Nielsen [133]) actually goes back to 1947. As already mentioned in the

history section 1.2, experiments by Paul Fitts were done to evaluate the layout of con-

trols in an airplane cockpit. Goldberg and Kotval [47] developed a framework in which

they defined various eye tracking metrics (e.g., number and length of fixations, rela-

tion between fixations and saccades) as well as the correlations to usability problems.

A comprehensive overview is given by Jacob and Karn [72]. Schall and Bergstrom [11]

discuss the usage of eye tracking in UX design (e.g., how users interact with mobile

devices vs. large screens, or where people expect specific UI elements on a website).

With the rise of the World Wide Web, usability testing of web pages based on eye

tracking data became a major topic [41]. Usually the specific eye movement data has

first recorded, then analyzed post-hoc. The insights gained were used by developers

and user interface designers to adapt the UIs to improve user experience. As of now,

there are first projects that process the data in real time to detect usability problems

and create feedback mechanisms to support the user directly6.

5http://www.eyelinkinfo.com/solutions use.html
6Research project FEUAA funded by the German Federal Ministry of Education and Research

under grant number 01IS12050
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Psychology & User Behavior. Eye trackers are an indispensable data record-

ing tool for research on visual behavior, perception, cognition and psychology. A

prominent example of studying people’s perception via eye tracking data is reading

experiments [157]. Due to the advances in head-mounted eye tracking, the devices

gained considerable attention for analyses of our daily activities [178], people’s visual

behavior [90] and cognitive processes such as visual memory recall [189] and selected

personality traits [60].

Interaction. A field of usage addressed by both the research community and the

commercial sector is gaze interaction for end-users that covers a broad area of ap-

plications [121]. Nowadays, a well-known use case is in the automotive industry7,

where eye tracking data is used for car control optimization and control handover in

autonomous driving. Using gaze information in games has also become a valid op-

tion to integrate eye trackers into high-end computers8. Especially with the progress

made in VR and AR devices, there is an increasing interest in the technology9,10.

From the research perspective, eye tracking was investigated as an input modality in

human computer interaction, including target selection via looking [180], eye typing

on a virtual keyboard [111], multi-modal input by combining gaze with touch [148]

and controlling mobile devices [40].

1.4 Problem Statement

Today, the development of head-mounted eye trackers is mainly driven from the tech-

nological side. With the advanced miniaturization of image sensory technology, the

integration of tiny cameras into a head-mounted device has become possible. Such eye

trackers consist of a glasses frame that is equipped with at least two cameras: first, an

eye camera capturing a close-up image of the user’s eye, and second, a world camera

partially recording the user’s current field of view. The purpose of the eye camera

is to detect and track the pupil as well as its movements. A widely used approach

to achieve this is through active illumination of the eye with infrared light and the

so-called Pupil Centre Corneal Reflection (PCCR) method. Gaze estimation is the

process of mapping the pupil positions from the eye camera’s into the world camera’s

coordinate system. We will present the different approaches for tracking a person’s

eye and computing the gaze in Chapter 2.

7http://smarteye.se/applied-solutions/
8https://tobiigaming.com/
9https://techcrunch.com/2016/10/24/google-buys-eyefluence-eye-tracking-startup/

10https://techcrunch.com/2017/06/26/apple-acquires-smi-eye-tracking-company/
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Calibration. A crucial step towards gaze estimation is calibration, which is used to

create a function that maps eye to gaze positions. It usually requires the user to fixate

a sequence of visual stimuli in the environment. Current state-of-the-art eye trackers,

such as Tobii Pro Glasses 2 11, are built on model-based (geometric) gaze estimation.

This method enables calibration-less gaze estimation. That means they adapt the

model and compute personal parameters like the angle kappa (compare [122]) using

at least one calibration point. However, to increase the gaze estimation accuracy and

reduce the error, more calibration points are needed [197]. Further, these methods

need complex hardware setups with more than two cameras and are extremely expen-

sive, costing more than tens of thousands in USD (during the time of writing). On the

other hand, eye trackers that rely on regression-based (interpolation) gaze estimation

need a more extensive calibration step, but are usually cheaper (e.g., Pupil Labs12).

All gaze estimation methods share the same set of parameters, which are acquired

through the calibration. According to Hansen and Ji [52], these are:

• Camera calibration to determine the intrinsic camera parameters

• Geometric calibration to determine relative locations and orientations in the

setup, like camera and light sources

• Personal calibration to estimate the cornea curvature, the angle kappa (offset

between visual and pupillary axes)

• Gaze mapping calibration to determine the parameters of the eye to gaze

mapping function

Drift. Even if it is possible to set up a fully calibrated eye tracker, i.e. a system in

which the camera parameters and the geometry are known, we still face the problem

of deterioration of gaze estimation accuracy. This effect is known as calibration drift,

which describes the increasing difference between the actual and measured gaze di-

rection [111]. In practice, eye tracking systems are never 100% accurate, and due to

calibration drift their accuracy further suffers over time. This effect may be caused by

changes in the eye physiology (e.g., wetness of the eye), changes in the environment

(e.g., lighting of the room), head movements, or the motion of the cameras. Basically,

there are three possibilities to handle such calibration drift:

• Post-hoc drift reduction is done by analyzing already recorded data [176, 61].

The drawback of this approach is obvious, as it cannot be applied for systems

that have to react in real time.
11https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
12https://pupil-labs.com/store/
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• Dynamic re-centering [177] is an approach to observe the drift during runtime

and use the information to immediately counteract it. This method, however,

requires the user to actively select targets (usually on a screen) to update the

calibration globally.

• The last option to address calibration drift is to periodically invoke the standard

calibration procedure to re-establish the initial accuracy. The main drawback

of this approach is the interruption of the user during the current task.

So far the different approaches above are mainly applicable in settings where a person’s

gaze is measured on a display. Practically, in cases like in-the-wild experiments and

gaze estimation across multiple objects, a dedicated screen is needed to re-calibrate

the device.

Invariance. Given the fact that we want to measure a person’s gaze on a spe-

cific object (e.g., a display), we are confronted with another problem. Typically the

calibration is performed for a fixed position and orientation of the user to a single

object. While this is less of an issue for stationary settings, mobile settings and mul-

tiple – potentially large – objects evoke two types of motion: (1) user movements in

front of an object to inspect other parts of it or get in a more comfortable position;

and (2) head movements to reach targets outside the ocular motor range [49]. In ad-

dition, there might be multiple objects of interest, causing further movements. Both

types of motion considerably reduce gaze estimation accuracy [23]. In order to achieve

highly accurate gaze estimation, it is crucial to track a user’s (and eye tracker’s, re-

spectively) position and orientation relative to the object of interest. So far this has

been achieved by augmenting the environment with visual markers [17, 208] as well

as using external tracking systems (e.g., OptiTrack13). These approaches can achieve

high tracking and gaze estimation accuracy, but require a complex deployment (e.g.,

attaching visual markers to every object a user wants to interact with). Consequently,

a truly pervasive and spontaneous gaze-based interaction is severely limited.

Parallax Error. In Figure 1.4 the main principle of the parallax error is depicted.

Simply put, the computed gaze point is misaligned with the true gaze, depending on

the distance to the object the user is looking at. If the viewed object is at the same

distance as the plane used for calibration, the parallax error is zero. This problem is

caused by the fact that the scene camera and the user’s eye look at the same scene but

from different viewing angles. The rays from eye and camera intersect at the distance

13https://optitrack.com/
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Figure 1.4: A head-mounted eye tracker is calibrated at a fixed position resulting in
a fixed calibration plane. Looking at objects at a different distance, the actual and
computed gaze point are different.

of the calibration plane and are misaligned from every other distance. To reduce the

parallax error, a prominent approach is to use binocular head-mounted eye trackers.

Supervision. To circumvent all aforementioned issues and set up an eye tracker

in a correct way, typically a second person is needed. Currently there exist dif-

ferent approaches to setting up the device and sampling the calibration data [142].

With an operator approach, a second person is doing all the work, whereas in a

participant-controlled approach, the users themselves monitor the data sampling. A

system-controlled approach does an automatic collection of calibration data, as the

decision as to whether or not the user is currently fixating the calibration target is

an automated process. It is known that a participant-controlled approach yields the

best results [142]. Automatic decision by the system still achieves better accuracy

and precision than an operator-controlled calibration. It is noteworthy that at least

for remote eye tracking devices, the large manufacturers use an automatic calibration

(e.g., Tobii 4C14). However, modern high-end head-mounted eye trackers still require

the support of an additional person acting as operator, such as the Tobii Pro Glasses

215. In fact, a person who is not familiar with the nature of head-mounted eye trackers

will not be able to use the device from scratch.

To summarize, the need to calibrate a head-mounted eye tracking system constitutes

a serious problem that prevents the application of current head-mounted eye trackers

at fully pervasive settings [121], as defined our Ubiquitous Computing for Eye Track-

ing continuum (cf. Figure 1.1). Issues like drift and invariance can be counteracted

by using huge, complex hardware setups including more sensors. Existing research

addresses the aforementioned issues partially while introducing restrictions elsewhere.

14https://help.tobii.com/hc/en-us/articles/213414285-Speci cations-for-4C
15https://www.tobiipro.com/siteassets/tobii-pro/user-manuals/tobii-pro-glasses-2-user-

manual.pdf/?v=1.20.2
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So far, there exists no work that resolves all of them. Desirable attributes of an eye

tracker include minimal intrusiveness and obstruction, allowing for free movement

while maintaining high accuracy, easy and flexible setup, and low cost. A detailed

description of eye tracker preferences is given by Scott and Findlay [168]. Although

the latest commercial eye trackers try to include all these attributes, they remain

regrettably expensive. Moreover, most of these devices rely on a direct connection to

a powerful computer for real-time data processing. As a result, current head-mounted

eye trackers are neither applicable for spontaneous nor suitable for long-lasting usage.

1.5 Scenario

In this section we are going to demonstrate the challenges of using head-mounted eye

tracking devices that are directly related to efficient long-term, location, orientation

& target independent usage and mobile & accurate calibration-free eye tracking, as

previously defined in Section 1.4. This is done through a pictorial representation us-

ing the Collaborative Newspaper application, published in [100] and demonstrated in

[101, 92].

To summarize, the Collaborative Newspaper application enables multiple users to

read full news articles presented on a public display. As space is usually limited for

several reasons, such as screen dimensions, layout and font size for better readability,

the text has to be scrolled to be completely readable. Therefore the application in-

tegrates an adaptive scrolling algorithm that automatically moves the text according

to the individual reading speed of a person. This is realized by analyzing people’s

gaze captured through a head-mounted eye tracking device. Finally, the system al-

lows multiple persons to interact and read even the same text simultaneously within

their individual reading speed. Figure 1.5 depicts the concept of the system. In our

Ubiquitous Computing for Eye Tracking Continuum, the system can be categorized

as an 1 : 1 : N relation.

Let us assume the system is deployed in an uncontrolled environment (e.g., in an

urban setting). In the following we will show the different problem areas regarding

the interaction with the Collaborative Newspaper application. In Figure 1.6 the initial

state of the system is shown: The public display is presenting the latest news articles

and a person is interested in reading a certain text. To estimate which text has to

be scrolled, as well as the velocity of moving the text, the system relies on the infor-

mation about the user’s point of gaze on the screen. To accomplish the task of gaze
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Figure 1.5: Concept of the Collaborative Newspaper: Multiple persons are reading
several texts on a public display.

estimation, the user is wearing a head-mounted eye tracker. In contrast to remote

systems, these devices can be used across multiple displays and allow for multi-user

scenarios.

For smooth and correct operation, the Collaborative Newspaper application requires

continuously highly accurate gaze data. A crucial step towards highly accurate gaze

estimation is calibration, which is used to create a function that maps eye to gaze

positions. The current appropriate calibration procedures usually require the user to

fixate a sequence of visual stimuli. In this specific application, a calibration routine

flashes the whole screen and moves a visual marker along the screen border (depicted

in Figure 1.6). A poor calibration results in a bad pupil-to-gaze mapping. More-

over, an expert usually checks the correct positioning of the cameras, the validity of

data sampling and finally the accuracy of the recorded calibration. Although we can

take care of all these issues under laboratory conditions, this is not possible in the field.

However, even assuming we have set up a fully calibrated eye tracker, so-called cali-

bration drift will affect the gaze estimation accuracy [111]. This means that, due to

changes in the eye physiology (e.g., wetness of the eye), changes in the environment

(e.g., sunlight), or the motion of the cameras, the accuracy of the gaze estimation
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Figure 1.6: A person is interested in reading a text on the public display. After
approaching the screen, she first has to calibrate the head-mounted eye tracking device
in order to use the Collaborative Newspaper.

will drop, causing an incorrect state of the system. This can result in scrolling at a

wrong velocity, moving the wrong text or even no functionality at all. The only option

is to re-calibrate the eye tracking device. In a straightforward approach, one would

simply trigger the standard calibration procedure again. For this, the screen would

be flashed again, showing the calibration routine, which would interrupt the user(s)

currently reading. As can be seen, starting to use the application is hard without the

help of an experienced person. It might be impossible to use it without any support

in an urban setting (e.g., a subway station).

In Figure 1.7 a person is currently using the Collaborative Newspaper application

and reading a text shown on the public display. While interacting with the public

screen, the person is changing her position and/or location in front of the display.

This might happen on a frequent basis, especially as the Collaborative Newspaper is

developed for large displays. In particular, two types of motion can occur: (1) user

movements in front of the display to change the user’s distance/orientation, making

the text easier to read; and (2) head movements to view news articles outside the

ocular motor range. Usually both movement types will reduce the gaze estimation

accuracy that is required for the Collaborative Newspaper to work properly. The

reason for this lies in the fact that the calibration is typically recorded for a fixed

distance and orientation to the display. There are two valid options to counteract

this issue. First, the eye tracking device could be re-calibrated for the new position

and orientation of the user to the screen. As previously mentioned, this is not a valid

option, as the display will show the calibration procedure (as shown in Figure 1.7),
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Figure 1.7: The user is moving in front of the display, which requires a re-calibration
in general.

which will be distracting during reading.

The second possibility is to track the user’s position and orientation in space relative

to the display. This is done with the help of visual on-screen markers. This approach

is more lightweight than other approaches, such as external tracking systems, but its

drawback is that all displays have to be equipped with the markers, and they need

to be pre-registered. This can be done by attaching printed ones to a display’s frame

[209, 17], or directly showing digital ones on the display. Printed markers quickly clut-

ter the environment, in particular in multi-display scenarios. Digital markers could

be shown only on demand, but they occupy display space and reduce the content that

can be shown.

Taking a look at the example in Figure 1.8, the Collaborative Newspaper is shown on

a display with a resolution of 1920 x 1080 pixels. To reliably track and identify the

display from arbitrary positions – even if it is not fully visible in the scene camera –

we show 14 markers along the screen border. Each one has a resolution of 100 x 100

pixels. In total, there is an available screen space of 2,073,600 pixels. All markers

together reserve a space of 14 x 100 x 100 = 140,000 pixels, resulting in 6.75% of the

whole display space. To allow better recognition by the software, we are not showing

any content between the markers. In fact, we reserve 2 x 1920 x 100 = 384,000 pixels

(upper and lower area) plus 2 x 1080 x 100 = 216,000 pixels (left and right area),

summing up to 29.93% (one third!) of the available display space. In Chapter 5, we
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Figure 1.8: User interface of the Collaborative Newspaper, displaying up to 7 articles.
For display tracking, visual AR markers are placed around the content.

will present an alternative technology that does the tracking of the spatial relationship

without any markers and is able to achieve even higher gaze estimation accuracy.

Figure 1.9 shows the transition from a single-user to a multi-user setting of the Col-

laborative Newspaper application. One person (user 1) is already reading a text while

standing in front of the screen. The application integrates the functionality that mul-

tiple persons are able to read the displayed texts in parallel while being supported

by an adaptive scrolling algorithm (explained in [101]). In this case, a second person

(user 2) is moving up to the display and wants to read another text or the same text

as user 1 (remember that this is possible). Basically the second user is in the same

situation as user 1 in Figure 1.6. He or she has to calibrate the head-mounted eye

tracking device prior to usage.

Consequently the display will show the calibration routine, which overlays the ac-

tual content. Hence, user 1, who is currently reading a news article, is interrupted for

about 45-50 seconds. Note that this issue occurs every time another person wants to

join the interaction. This is a serious problem that prevents spontaneous usage of the

Collaborative Newspaper.

The highlighted problems that arise with a gaze-enabled application were also sum-

marized in [91]. The above example scenario can be expanded to match other com-

plexities of the Ubiquitous Computing for Eye Tracking Continuum. Then, again, the

challenges to realize eye tracking are becoming increasingly difficult. To lay the foun-

dation for exploiting the full capabilities of head-mounted eye tracking devices and
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Figure 1.9: A second person is joining the interaction and wants to read a text pre-
sented on the public display. For this, a calibration has to be done beforehand.

make them mobile, this thesis addresses the challenges, highlighted above, as follows

in the next section.

1.6 Research Questions

In this thesis we address the following fundamental research question:

How can we complete the transition of head-mounted eye tracking

from a limited, static interaction tool into a ubiquitous computing

device?

We will investigate and finally answer this question by specifically addressing the main

challenge of calibration and the arising issues of drift, invariance, parallax error and

supervision, from the perspective of human computer interaction. In particular, to

find convincing answers to this question, we can break it down into smaller and more

straightforward pieces, which this work sets out to answer:

1. What is the long-term accuracy of current head-mounted eye trackers?

2. How can we efficiently re-calibrate head-mounted eye trackers and recover the

initial gaze estimation accuracy?

3. How can we overcome the problem that the calibration is orientation, location

and target dependent?
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4. How can we achieve highly accurate and seamless gaze estimation across multiple

surfaces?

5. How can we realize accurate gaze estimation without a user-dependent calibra-

tion?

6. What is the benefit of a mobile and wearable eye tracker?

7. How can we design a mobile eye tracking system with a constant high gaze

estimation accuracy, usable at pervasive scale?

The goal of this thesis is to contribute methods that help to answer the above ques-

tions, and lead to a system which paves the way towards pervasive gaze-based settings

and can be used at any level of complexity of the Ubiquitous Computing for Eye Track-

ing Continuum (cf. Figure 1.1).

1.7 Thesis Outline

The work presented in this thesis aims at contributing in two core aspects: Firstly,

we will gain insights into the specific issues which are entailed by the need for the

calibration process when using a head-mounted eye tracker. Based on that, we will

elaborate the theoretical principles for solving the different problems step by step.

Results of these parts, for instance, are novel concepts and notions/ideas.

Secondly, this thesis contributes with a practical part, describing the technical im-

plementation of the corresponding theoretical approach. The results of these parts

are, for instance, novel prototypes or applications. Their feasibility, performance and

functionality in practice, and their validity as a conceptual solution, are underpinned

by an empirical evaluation through laboratory user studies.

To summarize, the two fields of contribution – theory and practice – are covered

by the whole thesis, and specifically focused on, in three successive and interrelated

chapters, to address the following areas and thus the formulated research questions

stated above:

• Efficient Long-Term Usage of a head-mounted eye tracker (E)

(Chapter 4)

• Location, Orientation & Target Independent head-mounted eye tracking (L)

(Chapter 5)
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• Mobile & Accurate Calibration-Free gaze estimation (M)

(Chapter 6)

In each chapter, we start with an initial section contributing to the theoretical aspects

of the discussed problems. The latter part of each chapter concerns the technical de-

velopment and implementation of the presented idea, transferring the corresponding

theories. Figure 1.10 depicts a schematic representation of the structure of this the-

sis. It shows the relation between the core chapters and their dual contribution. This

work follows a step-by-step structure. This reflects the gradual convergence towards

a calibration-free and mobile eye tracking system via the above research questions.

Following on the first chapter, the second chapter describes the fundamentals, which

are the theoretic and technical basics this thesis is built upon. Chapter 3 frames the

work of this document by broadly presenting the related work of this research field.

The derived practical problems of Chapter 1 Section 1.4 and will be addressed by all

subsequent chapters. The scenario application (cf. Section 1.5) is used to highlight

the related progress made in Chapters 4, 5 and 6. Lastly, Chapter 7 closes this thesis

by summarizing the contributions of this work, discussing possible ideas for future

work and drawing a final conclusion.

Figure 1.10: Thesis structure: Four main chapters addressing the stated problems
and providing answers to the research question.
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This thesis was done at the Saarland Informatics Campus of Saarland University

and the German Research Center for Artificial Intelligence (DFKI GmbH) and relates

to the field of Human Computer Interaction (HCI). Almost all parts of the work that

is presented within this thesis was done in conjunction with researchers and students

from other institutions.



Chapter 2

Foundations & Background

This chapter provides the foundations and background for this thesis. We start with

an introduction into the human visual system by describing the eye, with its anatomy

and functionalities. The second part of this chapter presents the existing methods

and techniques to acquire people’s eye and gaze positions.

2.1 The Human Eye

We start with an overview about the human eye, i.e. the part of the human body

we want to equip with technology. To digitize information about someone’s eyes and

vision, it is essential to understand the structure, interaction and roles of the different

parts of the eye.

2.1.1 The Physiological Eye Model

The human eye is the organ of vision. Both eyes are located in the front of the head

in such a way, that we have the ability to see three dimensionally and judge distances.

Figure 2.1 shows the visible parts of the human eye and illustrates a detailed cross

section of the eye ball. Several protective mechanisms are built in to protect the sen-

sitive structure of the eyeball against external influences. To shelter the larger part

of each eyeball, the posterior segment, the bones of the skull form an orbital cavity.

The frontal part of the eyeball, the anterior segment, is covered by the conjunctiva,

which line the upper and lower eyelids. Tears constantly keep the eye wet and clean

it up to remove foreign objects. The lids and eyelashes protect the front of the eye

against immediate danger.

The eye is complex in its structure. In the following we will explain the main parts

21
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Figure 2.1: Frontal photos of the eye together with a cross section (adapted from
[118]). All important parts are labeled.

of it (adapted from [32]), which are all presented in Figure 2.1. Whenever necessary,

a more detailed figure will be used for a better explanation of the specific part.

Cornea. The convex, transparent anterior part of the eye allows light to pass through

to the lens and provides up to 75% of the eye’s focusing power. The cornea is a fibrous

structure made up of five layers (corneal epithelium, Bowman’s layer, corneal stroma,

Descemet’s membrane and corneal endothelium) and covers the iris and the pupil.

Its primary characteristics are that it is uniform in thickness and nonvascular. The

degree of curvature of the structure is different between people and also varies in the

same person at different ages. The cornea is continuous with the sclera. The border

or edge between the cornea and sclera is called the limbus.

Sclera. The tough, white, opaque and fibrous outer shell of the eyeball covers most

of the eye’s surface. The front part is visible as the ‘ white’ of the eye. The sclera is

made up of three layers (the episclera, the scleral stroma and the suprachoroid) and

constantly decreases in thickness from the back to the front of the eye. The external

muscles of the eye are directly connected to the sclera.
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Figure 2.2: Detailed cross section of the eye’s retina, showing its structure (adapted
from [118]).

Choroid. The vascular layer of the eye is located between the sclera and the retina.

The structure consists of four layers (Haller’s layer, Sattler’s layer, Choriocapillaris,

Bruch’s membrane). The choroid contains a massive amount of brown pigments that

are necessary to reduce the reflection and diffusion of light when it falls on the retina.

Retina. The innermost part of the three coats surrounds the vitreous body and

merges into the optic nerve, as shown in Figure 2.2. Since the human eye has to func-

tion under several different circumstances, the retina is composed of light sensitive

nerve cells, which are arranged in three different layers (the retina is composed of ten

layers in total): The two neuron layers (Ganglion and Bipolar) transmit the impulses

to the optic nerve. The most prominent nerve cells are the cones and the rods, which

are different in shape to cover the full range of adaptation to light. The cones are

sensitive to bright light and responsible for color vision, and the rods work in dim

light. There are three types of cones, sensitive to the red, green, and violet parts of

the visible spectrum. White light stimulates all three types of color cells; any other

color arouses one or two. The optic nerve transmits the impulses from the retina to

the visual center of the human brain. The part where it leaves the retina is called the

optic disk or blind spot, and does not contain any light-sensitive cells. The fovea is
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Figure 2.3: a) Frontal illustrations fo the pupil and the states of dilation and reduction
issued by the pupillary muscles1. b) Structure of the eye muscles necessary for all types
of motion2.

the area of clearest vision in the center of the macula lutea and constitutes about 5◦ of

vision. There the layers of the retina are shifted away; hence the light can directly

fall on the cones. The cornea, sclera, the choroid and the retina constitute the three

coats of the eyeball.

Pupil. The circular window of the eye to the world is located in the center of the

iris. Light enters the eye and falls onto the retina through the pupil. The pupils of

both eyes are usually equal. They become smaller (constrict) when exposed to bright

light or if the focus is on a near object. The pupil is dilated in the dark or if the

focus lies on a distant object. The two types of adjustments are named the pupillary

light reflex and the accommodation reflex. Figure 2.3a illustrates the pupil and the

muscles needed for dilation and constriction.

Extraocular Muscles. To keep the focus on a specific object, it is necessary that

we are able to reposition our eyes. The human eye is equipped with six muscles (as

shown in Figure 2.3b), so that it can be moved within six degrees of freedom (three

translations and three rotations):

• superior rectus and inferior rectus – up and down movement

1https://img.tfd.com/medical/Davis/Tabers/p49.jpg
2http://teachmeanatomy.info/head/organs/eye/extraocular-muscles/
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• lateral rectus and medial rectus – horizontal movements

• superior oblique and inferior oblique – rotation/twist

• levator palpebrae superioris – an extra muscle to control the eyelid

Iris. The circular, colored membrane is located between the cornea and the lens of

the eye and encloses the pupil. It divides the space between the lens and the cornea

into anterior and posterior chambers (see Figure 2.1). The iris is made up of muscle

fibers that are needed to regulate the amount of light passing through the pupil.

Lens. The transparent, biconvex body separates the anterior and posterior segment

(illustrated in Figure 2.1) and refracts the incoming light, so that it can be focused on

the retina. The main functionality of the lens (often also called the crystalline lens) is

accommodation. That is, it has to adjust its curvature (i.e., the refraction) in order

to sharpen near and far objects.

Figure 2.4: Cross section of the human eyeball including the three main axes [98].

Visual Axes. Most important to understand human vision is the definition of the

axes of the eye. In a simplified model, there are two main axes, as depicted in Figure

2.4. The optical axis is defined by the line connecting the center of the curvatures of

the eye, i.e. the center of the eyeball, the pupil and the lens. It is often referred to

as the line of gaze (LoG) and draws sharpest focus when we look at an object. The

visual axis is defined as the line passing through the fovea and the center of the pupil.

It is often referred to as the line of sight (LoS). The pupillary axis is the normal line to

the corneal surface passing through the center of the pupil, which is slightly different
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from the optical axis. The angle formed between the line of sight and the pupillary

axis is the so-called angle kappa. A definition of all axes and their respective angles

can be found in [122].

2.1.2 Eye Movements

We move our eyes to reposition them in order to keep our view focused on a specific

object. As already described in Section 2.1.1, each eye is connected to six muscles,

of which three pairs are responsible for a specific direction (yaw, pitch and roll) to

enable the 3-dimensional rotation of the eye inside the head. The movements that

our eyes perform can be categorized into voluntary, involuntary and reflexive ones. In

the following we will describe the five basic types [37] (Chapter 4), of which four are

depicted in Figure 2.5.

Fixations. The most prominent event is not in fact a movement. Fixation de-

scribes the state of resting the gaze at a specific object within the central vision for a

certain amount of time, typically around 200-300 milliseconds (ms) (depicted in Fig-

ure 2.5a). However, the term is somewhat misleading, as the eye is not standing still

but rather doing micro-movements: tremor (frequency around 90 Hz; unclear role),

drift (200-1000 ms, moves the eye away from the fixation) and microsaccades (10-30

ms, brings the eye back to the fixation center). Such eye movements are helpful to

understand the human neurology [59].

Saccades. Between two consecutive fixations, the eye makes fast, jump-like move-

ments in order to re-focus it. Saccades can be made voluntarily or reflexively and are

the fastest movement the body can produce, ranging from 10-100 ms. It is known

that we are blind during their execution. They are ballistic movements and do not

necessarily follow the shortest path between the start and end point.

Smooth Pursuits. Visually tracking an object that moves with a constant speed

(e.g., looking at a passing car as shown in Figure 2.5b) involves pursuit eye move-

ments. Up to a certain threshold, the eyes are able to match the velocity of the

followed object, typically 10.30 degrees/second.

Vergence. To bring objects at different depths into focus, the eyes also have to

move in relation to each other. Vergence eye movements describe, when the eyes

are converging or diverging to prevent double vision (i.e., diplopia), as illustrated in
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Figure 2.5: Illustration of all major types of eye movements: a) fixation to focus on a
object, b) smooth pursuit to constantly follow a moving object, c) vergence to perceive
different depths and d) vestibulo-ocular reflex to reposition the eyes when the head is
moved.

Figure 2.5c. Many people have a dominant and a non-dominant eye. That is, the

direction of both eyes may be slightly different.

Vestibulo-ocular reflex (VOR). When we move our head while we are focusing

on a specific object, the position of our eyes is compensated for and readjusted (see

Figure 2.5d) to keep looking at that object. Hence, a clear image is preserved, which

would be noisy while we are moving.

The above-described eye movements are enabled by using the six main eye muscles.

But, as described in the previous section, there is another important muscle, required

to control the eyelids. The temporary closure of (usually both) eyelids – blinks –

can also be counted as a specific case of eye movement. Blinks can be voluntary or

involuntary (e.g., corneal reflex). They are necessary to spread the tears over the eye

in order to keep it damp.
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2.2 Acquiring Eye & Gaze Position

Nowadays, three main techniques exist to track a person’s eye and do gaze estimation.

The electro-oculography (EOG) based method places electrodes around the eye to

measure the skin potentials, as proposed by Kaufman et al. [79]. The scleral search

coil method uses a small coil that is embedded into a contact lens. It measures

the voltage caused by an external electro-magnetic field [161]. Camera-based (video-

based) techniques use the images of the eye to detect its characteristics in combination

with images of the field of view to realize gaze estimation. This method is mainly

applied nowadays by either using a head-mounted (cameras are mounted on the head)

or a remote (cameras are placed in the environment) system. In the following we will

restrict ourselves to video based eye/gaze tracking, as it is the main focus of this

thesis. Figure 2.6 depicts example devices for each category.

(a) (b) (c)

Figure 2.6: Examples of different types of head-mounted eye tracking approaches: (a)
scleral search coil method [66], (b) electro-oculography3, (c) head-mounted Dikablis
eye tracker4.

We have to distinguish between tracking the eyes’ movement and position and esti-

mating where a person is actually looking. In the following we will provide an overview

about the common eye tracking and gaze estimation techniques.

2.2.1 Eye Tracking

Detecting and tracking the eye is an essential step towards gaze estimation. Eye de-

tection and tracking is still a challenging task, as there are many unforeseen issues

that have to be taken into account, like occlusion of the eye by the eyelids, degree

of openness of the eye, variability in size, reflectivity or head pose, etc. The eye can

be characterized through different features including the intensity distribution of the

pupil, iris, and cornea, as well as by their shapes. Ethnicity, viewing angle, head pose,

color, texture, light conditions, the position of the iris within the eye socket, and the

3http://www.sciencedaily.com/releases/2008/04/080428083418.htm
4http://www.ergoneers.com/en/eye-tracking-head-mounted-1-en/
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Figure 2.7: a) Face with areas of interest; b) shapes around the the eye; c) prominent
features; d) ellipse with its definition

state of the eye (i.e., open/closed) are issues that heavily influence the appearance of

the eye. According to Hansen and Ji [52], there exists aa extensive taxonomy of eye

detection techniques. We will provide a summary of them in the following.

Shape-Based. The visible parts of the human eye, such as the iris, pupil and eye

contours, can be described well by their shape (shown in Figure 2.7b). The shape-

based approaches are based on a pre-defined geometric model of the eye’s shape that

is used to match against. There are many existing methods differing in the proper-

ties of the underlying model. That is, each geometric model is defined by a set of

parameters that are used to control the level of deformation and transformation. An

important aspect of these models is the invariance with regard to scale, rotation and

shape. Basically, shape-based approaches can be grouped into two classes. Simple

elliptical shape models use the fact that structures like the iris or pupil look like an

ellipse depending on the viewing angle. Such models use at least five parameters to

describe the ellipse. Existing methods use image thresholding in combination with

edge detection [147], the Hough transform [206], image gradients [89] and RANSAC

for ellipse fitting of the extracted shape. In Figure 2.7d the parametric form of an

ellipse is shown. It is based on the conic equation with which a circle, parabola, hy-

perbola or ellipse can be represented. An ellipse has five degrees of freedom, i.e. the

x and y coordinates of each focus point (F) and the sum of the distance from each

focus point to a point on the ellipse. Alternatively, an ellipse can be defined by x and

y coordinates of the center (M), the length of each radius and the rotation of the axes
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around the center. Complex shape models constitute the second class of shape-based

detection techniques. These approaches offer more options for a better approximation

of the eye’s shape. Usually they take into account the overall eye structure, including

eyelids and corners. For example, Yullie et al. [210] propose a model with eleven

parameters with which the iris and the eyelids are modeled. In short, existing models

differ in the number of parameters and thus are able to handle many or few eye shapes.

The number of parameters also has an influence on the computational complexity of

the models.

Feature-Based. A human eye can be described by a specific amount of striking

features. This set is usually characterized through local features, such as the limbus

(border between iris and sclera), pupil and eye corners, as shown in Figure 2.7c. The

region around the eye also reveals properties, for example the eyelids and brows, and

the nose, used to describe a region of interest, depicted in Figure 2.7. Different com-

puter vision methods [58] or specifically trained neural networks [159] can be used to

detect and track boundaries within the eye, such as edges and lines. Together with

an appropriate model, the eye is located. To enhance the visibility of local features,

particular filters can be applied, such as linear and nonlinear filtering [173] or con-

volution [35]. When the eye regions are successfully extracted or the eye is captured

closely enough, the pupil and/or iris are used to detect and track the eye’s move-

ments. Thereby we distinguish between pupil tracking in visible light images and

infrared light images. Depending on the image type, different techniques are used.

We will provide more details on pupil tracking using IR images in the last part of this

subsection. All in all, depending on the type of features, these methods are robust

against illumination changes. However, approaches based on edges or lines may not

work when different light settings are present.

Appearance-Based. Also called the holistic approach, this is a method that de-

tects the eyes directly based on their photometric appearance, such as color and filter

response. Appearance-based methods are comparable with image template matching.

For this an image patch model is created and eye detection is done using a similarity

measure [213]. Holistic methods are based on the statistical analysis of the intensity

distribution across the entire image. Usually a large set of training images is needed

to create a classifier or model that is able to detect different eye presentations. Ap-

proaches are differentiated, based on whether they are implemented in the spatial or

in a transformed domain. When doing eye detection in the transformed domain (e.g.,
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frequency domain), one can tolerate slight illumination changes (e.g., removing bands

sensitive to illumination).

Hybrid Models. Each of the approaches above has specific advantages and dis-

advantages. Hybrid methods simply combine the approaches from different categories

to exploit their respective benefits.

Eye Detection on IR images

The most prominent eye detection method nowadays is to use active infrared (IR)

illumination [52]. This is primarily done to enhance the contrast between pupil and

iris. It is a special technique that cannot be mapped exclusively to one of the groups

from above. We distinguish between methods relying on visible light, called passive

(as they use the existing light of the environment), and invisible light, called active

approaches (as they use additional light sources). Most active methods use near IR

light sources (780-880 nm), invisible for the human eye, thus not disturbing the user’s

field of view. Depending on the location of the light source with respect to the cam-

era, the pupil appears to be bright (close to the optical axis of the camera) [131] or

dark (away from the camera’s optical axis). Figure 2.8a and b shows the respective

examples. The most popular algorithm is Starburst [104], introduced in 2015. It is a

video-based eye detection method, using the pupil contours as feature points, which

are mapped onto an ellipse shape using RANSAC model fitting. Recently Fuhl et

al. [45] compared the latest pupil detection algorithms ElSe [44], ExCuSe [43], Pupil

Labs [78], SET [74], Swirski [185] and Starburst using different datasets of active

Figure 2.8: a) dark pupil; b) bright pupil; c) Else output based on edge detection and
curvature computation.
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illuminated dark-pupil images. All these methods combine aspects from different cat-

egories, such as eye feature together with ellipse models, while they only work on IR

eye images. They found that all algorithms give reasonable results. However, when it

comes to real-world images exhibiting problems like changing illumination, occlusions,

or reflections [167], the ElSe algorithm (example shown in Figure 2.8c) outperforms

existing approaches with respect to detection rate.

In summary, each eye detection/tracking technique is dependent on specific informa-

tion (e.g., pupil or iris model), requires certain light conditions (e.g., IR or natural)

and image properties (e.g, high contrast and/or resolution) and may be robust to

special changes (e.g., head pose, occlusion). However, the recent development of more

robust and accurate pupil detection algorithms is a major step towards the vision of

ubiquitous eye tracking.

2.2.2 Gaze Estimation

Gaze estimation is the primary task of gaze trackers, which are often just referred to

as eye trackers. Gaze can be defined as either the gaze direction or the point of regard

(PoR). A person’s gaze is usually determined by the head pose (position and orienta-

tion) together with the eyeball rotation. The gaze changes if at least one of the two

values varies. It is common that a person first brings their head into a comfortable

position before orientating the eyes. To achieve very accurate gaze estimation, head

movements have to be considered as an additional source. This is done by tracking

them via extra hardware (e.g., depth sensors, as done with remote trackers, or inertial

measurement units on head-mounted devices), or integrating them directly into the

method used.

Different methods exist to realize gaze estimation, which is always about finding a

suitable mapping from pupil to gaze positions. Depending on the hardware approach,

pupil positions are mapped into the scene video of a head-mounted device, or directly

on a surface (e.g., screen) if using a remote approach. The gaze estimation method by

itself is independent of the hardware approach. Feature-based methods are preferred,

as they deliver the most accurate results [52]. These methods are divided into two

subclasses.

Geometric-/Model-Based. The human eye can be modeled as a sphere, so that

it is possible to calculate the gaze as a 3D direction vector. The center of the cornea
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is estimated, and thus the optical and visual axes can be computed. Intersecting one

of the lines with the object being viewed gives the gaze point. Usually the line of

sight (LoS, the visual axis, see Figure 2.4) is defined as the true gaze direction. Such

methods rely on prior knowledge of personal eye parameters, such as size and radii

of the eyeball and the cornea, also known as fixed parameters. The 3D eye position,

center of the eyeball and pupil as well as the axes, which are specific to different

people, are known as extrinsic parameters. Recently, Swirski et al. [186] proposed a

new ellipse fitting model that automatically constructs the 3D eye model. They were

able to achieve an average gaze error of 1.68◦. However, they used perfect simulated

noiseless data to provide ground-truth results. In general, model-based approaches

may require specific hardware and 3D knowledge about the scene that is not always

available, especially in mobile settings.

Regression-/Interpolation-Based. These methods typically compute a mapping

from pupil to gaze positions (2D or 3D). Thereby the basic theory is that the map-

ping can be described in a specific parametric manner. Various approaches exist to

assess the mapping by polynomial functions [22], neural networks [75] or homography

transformations [209]. Regardless of the mapping, the approaches in this category use

infrared eye images, using two pertinent features, the pupil and the corneal reflection.

The latter is the reflection of the infrared light source on the cornea of the human eye

(depicted in Figure 2.9). Due to the layered structure of the eye, as we described it in

Section 2.1, there are four different reflections, also known as the four Purkinje images

[80], P1 to P4, as shown in Figure 2.9. There are two main properties thathave made

Purkinje images to the indispensable basis for gaze estimation [37]:

1. The Purkinje image, i.e. the position of the corneal reflection of the IR light, is

almost constant compared to the pupil position when moving/rotating the eye.

2. The difference between the corneal reflection (also known as glint) and the pupil

center is constant when moving the head, but changes when moving/rotating

the eye.

According to these characteristics, a mapping from the pupil to first Purkinje image,

the so-called glint vector, to a planar surface is estimated. For this a user-dependent

calibration process is necessary to evaluate the parameters needed for the mapping, as

described in Section 1.4. It requires the user to look at a number of predefined visual

stimuli on a surface (e.g., a screen). During this process the relation between the glint

vector and gaze position, i.e. the position of the stimulus, is sampled. This data is
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Figure 2.9: Infrared light reflected on the human eye results in Purkinje reflections:
P1 on the corner, P2 from the back of the cornea, P3 from the lens, P4 from the back
of the lens.

used to compute the parametric mapping. Further, the calibration inherently includes

information about the relationship between the cameras as well as personal parame-

ters like the angle kappa. Regression-based gaze estimation is able to achieve highly

accurate results (up to 0.5◦, as reported in [121]). The described method is also known

as Pupil Center Corneal Reflection (PCCR). Both of the described feature-based gaze

estimation approaches are the most commonly used ones nowadays in commercially

available systems, since they deliver the most accurate and stable results.

Appearance-based systems are an alternative method based on appearance-based eye

tracking, as described above. These approaches typically rely on large amounts of

user-specific training data. For instance, a neural network can be used to locate the

gaze in a normalized space. However, a person’s gaze can be only roughly estimated

(within around 6.1◦, as reported in [213]).

2.3 Summary

In this chapter we presented an overview about the human eye, including its anatomic

structure, properties and constraints. We highlighted the different movements that

our eyes are able to perform, used by different research areas to assess a person’s visual

behavior. Using various kinds of technologies, we are able to digitize eye movements
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and thus our gaze. Depending on the approach, there are more or fewer requirements

and constraints that have to be fulfilled and considered. Eye tracking data can support

the creation of different applications in the field of human computer interaction. To

be fully applicable in pervasive settings (see Ubiquitous Computing for Eye Tracking

Continuum in Section 1.1), there are several challenges that are discussed in the next

Chapter.
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Chapter 3

Related Work

This chapter provides a comprehension of the existing research and state of the art

this thesis is built upon. In Section 1.6 we formulated the research question addressed

by this work. According to the separation into more streamlined sub-questions, the

goal of this thesis is to investigate approaches and technologies to make head-mounted

eye tracking usable in a spontaneous manner and in ubiquitous scenarios (anywhere

and anytime). Therefore related work in the following categories has to be considered:

First we will provide an overview of eye tracking (Section 3.1) covering the existing

well-established devices (Section 3.1.1) and applications (Section 3.1.2). Related stud-

ies and systems are presented as they apply to the main problems of head-mounted

eye tracking, as stated in Section 1.4: calibration and drift, invariance, supervision

and the parallax error (Section 3.2). Finally, existing research that opens the way for

a different eye tracking and gaze estimation approach is presented in Section 3.3.

3.1 Application of Eye Tracking

In this section, we elucidate eye tracking in general. For this we start with a presenta-

tion of current existing devices, including their abilities and limitations (3.1.1). After

that, we outline systems from the area of human computer interaction making use of

eye tracking data (3.1.2).

3.1.1 State of the Art Devices

When we talk about eye tracking we distinguish between two fundamental classes of

approaches that differ in the way they comply with computing paradigms: static or

remote eye trackers do not require any attachments to the users body and are located

in the environment (e.g., an eye tracker installed on a computer monitor) to track the

37
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(a) (b)

Figure 3.1: The two categories of eye tracking approaches: (a) remote eye tracker
attached onto a computer monitor1, (b) Head-mounted eye tracking glasses2.

user’s eye(s) from a distant location and estimate the gaze on a pre-defined surface.

Remote eye trackers are generally integrated with computer screens or laptops and

monitor the user’s eyes from a certain distance. Mobile or head-mounted Eye Trackers

present the second category of eye trackers. Their components are fixed on a frame

worn on the users head (e.g., mounted on a glasses frame). They are able to always

track a person’s eye, regardless of the head movement. The recent classification into

remote and head-mounted has become commonly agreed upon in the field of eye track-

ing, and those terms gradually replaced older categorizations such as table-mounted

or head-mounted systems. In Figure 3.1, examples of devices from these two categories

are shown. The hardware is independent from the gaze estimation method, i.e. de-

vices from each class may integrate any of the methods presented in Chapter 2, Section

2.2.1. In the following we will briefly present state-of-the-art devices from both classes.

Three main techniques exist to track a person’s eye and do gaze estimation. The

electro-oculography (EOG) based method places electrodes around the eye to measure

the skin potentials, as proposed by Kaufman et al. [79]. The scleral search coil method

uses a small coil that is embedded into a contact lens. It measures the voltage caused

by an external electro-magnetic field [161]. Camera-based (video-based) techniques

use the images of the eye to detect its characteristics in combination with images of

the user’s field of view to realize gaze estimation. This method is mainly applied

nowadays by using either a head-mounted or a remote system. For a detailed review

of eye gaze tracking methods, we refer the reader to Young and Sheena [207]. In the

following sections we will focus on video-based eye trackers (introduced in Chapter

2.2).

1https://tobiigaming.com/eye-tracker-4c
2https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
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Remote Eye Trackers

Just 30 years ago, eye trackers were primarily used in research. Since off-the-shelf

devices were not available, people had to build their own prototypes to do gaze es-

timation [59]. Several previous works used head orientation as an approximation of

where people look. For example, Sippl et al. used a remote camera to detect facial

features, such as the eyes and nose tip, and estimate head pose on four areas on the

display [172]. Nakanishi et al. relied on a stereo face tracking system and the 3D

head pose as an approximation of gaze direction [126]. Typically, remote eye trackers

are built using one or multiple cameras to extract eye movements. Depending on

the applied eye tracking method, additional light sources have to be integrated (cf.

Section 2.2.1).

Accurate gaze estimation has remained a significant challenge when remote eye track-

ers are used. Such trackers only allow a single user to interact with one display at any

point in time. The interaction is restricted to the tracking range of typically 50-80 cm

in the central area in front of the display, thereby severely limiting the users’ mobility

[163, 180]. Previous work focused on extending the tracking range of remote track-

ers [56, 120], or on calibration-free (spontaneous) interaction, but was either limited

to interaction along a horizontal axis, i.e., without full 2D gaze estimation [214] or

required special interfaces [117]. Stellmach et al. addressed the mobility (interacting

from different positions/orientations) of users [181] by using an additional external

tracking system.

Remote eye tracking has developed into a relevant interaction modality, as it has

become available and affordable for a large user base. In contrast to head-mounted

types, remote video-based eye trackers are lower in cost and are available for un-

der $200 (e.g., Tobiigaming)3). Characteristic attributes are unobtrusiveness and the

ability to be mounted on a display or built into devices4. Consequently the interest in

using eye tracking data, i.e. information about eye movements and gaze, for purposes

other than research is increasing. Some studies were conducted to verify the tracking

quality of current state-of-the-art devices. They found a large difference in the num-

bers reported by manufacturers for tracking accuracy (the offset between computed

and true gaze point) and precision (the spatial distribution of the gaze points) across

various tracking conditions and persons [13, 59, 142, 143]. In particular for remote

3https://tobiigaming.com/products/peripherals/
4https://us.msi.com/Laptop/support/GT72S-G-Tobii-6th-Gen-GTX-980M
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eye trackers, the difference between the estimated and the true gaze point is often

found to be larger than 1◦, even in controlled environments [13, 142].

In general, remote eye tracking systems still share two common problems: (1) They

cannot enable calibration-free and highly accurate gaze estimation and (2) gaze point

computation is restricted to a certain set of objects limited by the hardware used.

In particular, only a small part of a person’s field of view is covered, as the remote

camera, requiring the user’s eyes to be visible, is stuck on a surface. Ensuring high

accuracy is an important aspect in the development of new remote eye tracking sys-

tems. There are already investigations and approaches to improve the process of gaze

estimation of calibration-less systems to achieve more accurate results [29, 48]. Be-

sides that, Nguyen et al. [130] reported that the creation of systems that tolerate head

movements is one of the hardest problems. In recent years, various approaches were

published that address these problems [29]. Consequently, current state-of-the-art

devices include the possibility to track the user’s head movements (e.g., Tobii 4C5).

But still, remote eye trackers are not usable in fully ubiquitous scenarios. In theory,

one would have to equip an unlimited number of objects with such devices to enable

spontaneous gaze estimation across various objects, which is impractical.

Head-Mounted Eye Trackers

The latest head-mounted eye trackers are more flexible than remote eye trackers in

terms of mobility, as they allow the user to freely move around. In contrast, the first

prototypes used desktop-like settings and stationary eye trackers in which a user’s

head was fixed regarding position and orientation, as depicted in Figure 3.2. The

composition of these eye trackers has remained unchanged since then. This class of

eye tracking devices consists of a glasses frame that is equipped with at least two

cameras: first, one or two eye cameras capture a close-up image of the user’s eye(s),

and second, a world camera records parts of the user’s current field of view. The

purpose of the eye camera(s) is to detect and track the pupil as well as its movements.

A widely used approach to achieve this is active illumination of the eye with infrared

LEDs, as already explained in Section 2.2.1. For this purpose the infrared illumina-

tors are also mounted on the glasses frame, usually next to the eye camera. Although

the head-worn device maximizes the mobility of the user, the approach is more inva-

sive (i.e., the user has to wear a device on the head) than a remote system and may

be disturbing (e.g., limiting the field of view). In head-mounted eye tracking, gaze

5https://tobiigaming.com/product/tobii-eye-tracker-4c/
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Figure 3.2: Example of an early head-mounted eye tracking device (Ergoneers Dikablis
26) using a chin rest to stabilize the user’s head.

estimation is the process of mapping the pupil positions from the eye camera’s into

the world camera’s coordinate system. A crucial step towards gaze estimation is the

calibration to a specific user on a dedicated plane (e.g., a display), necessary to create

a function that maps eye to gaze positions. This calibration is typically performed for

a fixed position and orientation of the user to the plane.

Current state-of-the-art eye trackers, such as Tobii Pro Glasses 27, are built on model-

based (geometric) gaze estimation and track both eyes of the user (binocular). This

setup enables calibration-less gaze estimation (cf. Chapter 2, Section 2.2.2). That is,

the actual model is predefined based on heuristic data. Using a one-point calibration

[122], the model is adapted according to personal parameters like the angle kappa (cf.

Section 2.1). It was shown that even more calibration points are needed [197] to in-

crease the gaze estimation accuracy. However, these methods need complex hardware

setups with more than two cameras and are extremely expensive (costing more than

tens of thousands of USD, at the time of writing). On the other hand, eye trackers

6http://www.ergoneers.com/en/eye-tracking-head-mounted-1-en/
7https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
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that rely on regression-based (interpolation) gaze estimation need a more extensive

calibration step, but are usually cheaper (e.g., Pupil Labs8). We will dive deeper into

the topic of calibration in Section 3.2.

Some devices offer a choice between monocular and binocular setup. That means

that the device is equipped with two eye cameras, one for each eye, to track the move-

ments of both eyes. However, there is no real consensus about which is better. A

large portion of eye tracking research is done monocularly. According to Holmqvist

et al. [59], there are two main reasons for that. First, there is the assumption that

both eyes are making the same movements more or less simultaneously while looking

at approximately the same point in space. Thus, tracking both eyes will produce

more data that will need to to be synchronized and analyzed. The second reason is

that monocular eye trackers are cheaper. However, due to the low price of cameras

nowadays, this should not be a valid argument anymore.

One advantage of a binocular eye tracking setup is the possibility to calculate the

3D gaze point when tracking both eyes. As mentioned, both eyes are looking at the

same point in space, when fixating a target. To enable 3D gaze estimation, a common

approach is to perform calibrations for a finite set of distances to the calibration plane

(e.g., a screen). Hence the computation of the 3D gaze point can be done using stereo

geometry calculations [37] (Chapter 7.3). However, in a recent work by Mansouryar

et al. [112] an approach was shown to calculate the 3D gaze point based on 2D infor-

mation using a monocular head-mounted eye tracker.

When we talk about head-mounted eye tracking systems, we have to pay attention

to the parallax error, as explained in Section 1.4. To eliminate the parallax error, a

straightforward approach is to use binocular head-mounted eye trackers. Mardanbegi

and Hansen investigated the problem with monocular head-mounted eye trackers. In

their studies, they were able to conclude that the parallax error can be compensated

for using an error function for different camera setups, i.e. various translations and

rotations of the scene and eye cameras [114]. Bartz et al. used a predictive error

model, in which the user interface itself is aware of the gaze estimation error [7].

They showed that the parallax error increases about 11.17% (i.e., from 1.68◦ to 1.9◦),

after changing the distance to the screen (and thus the calibration plane) by ±50 cm.

8https://pupil-labs.com/store/
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The problem remains a significant challenge when using monocular head-mounted eye

tracking devices for real-time applications.

Summary of Head-Mounted vs. Remote Eye Tracking

In the previous sections we familiarized the two different classes of eye tracking devices.

To summarize, we provide a direct comparison in Table 3.1 between head-mounted

and remote eye trackers concerning the primary characteristics. Remote eye tracking

systems still restrict the gaze estimation to a certain surface (usually a screen). With

an increasing number of objects that gaze should be estimated on, the complexity

of the hardware installation will also increase. Head-mounted eye tracking devices

can be used to measure gaze on any kind of object. In principle, the head-mounted

approach may allow gaze estimation in pervasive and ubiquitous scenarios (remember

the Ubiquitous Computing for Eye Tracking Continuum, Section 1.1, Figure 1.1).

The required mobility is limited with remote eye trackers. In a straightforward ap-

proach, one would have to instrument the environment by equipping a lot of objects

with cameras to enable seamless gaze estimation. It is more convenient to provide

the user with a wearable solution. This fact also opens new possibilities for diverse

applications of eye tracking. Nevertheless, remote systems also yield benefits over

head-mounted eye trackers. Due to the contactless usage, i.e. not being attached

to the user in any form, these systems facilitate unobtrusive eye and gaze tracking.

However, we believe that with the miniaturization of cameras9 and the familiarity

with spectacles, head-mounted systems will become more convenient. The only issue

left is with the camera itself, which concerns both of these aspects. People are usually

reluctant about potentially offensive camera shooting.

The second advantage of remote systems is the ease of data analysis. The cameras

are fixed to a certain object or surface, which creates the reference frame to measure

gaze on. If a head tracking algorithm is integrated, a person’s gaze can be directly

mapped onto the surface (e.g., a display) as long as the cameras are able to capture the

eyes. This allows for distance changes in front of the cameras and thus the calibration

plane. The procedure is different with head-mounted systems. There we have two

cameras that have to be calibrated to map the eye movements to gaze. For example,

if the gaze on a display should be computed, an additional mapping is needed. There

are many more issues to be resolved – calibration drift, invariance, parallax error and

9http://image-sensors-world.blogspot.de/2013/11/samsung-on-image-sensor-progress.html
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supervision – to make these devices ready for ad-hoc everyday usage, as discussed

in the problem statement in Chapter 1.4. Investigating respective methods to solve

these issues is the task of this thesis.

Remote Eye Trackers Head-Mounted Eye Trackers

Setup
Placed at a fixed location in front
of the user (e.g., below a moni-
tor or windshield in a car, to es-
timate gaze on them).

Worn on the user’s head (e.g.,
as a pair of glasses, or frame at-
tached to a hat or a headband).

Application
Used in situations during which
the users can sit or stand in one
place and gaze at objects pre-
sented on a stationary surface
(e.g., interact with a screen).

Used in scenarios that require
users to move around and inter-
act with physical objects or peo-
ple (e.g., marketing research, way
finding).

Obtrusive-
ness

Less obtrusive than head-
mounted systems – users can
easily forget about the eye
tracker during usage.

More obtrusive since the system
has to be worn on the head and
may be partially visible to the
user.

Freedom
of Move-
ment

User must be positioned in front
of the eye tracker and only lim-
ited head movements are toler-
ated. In addition, the space be-
tween the eye tracker and the
user’s eyes must not be occluded
by additional objects, i.e. the
user cannot hold something in
their hands.

The user can move freely around
and manipulate objects. How-
ever, head-mounted eye track-
ers usually work best for objects
placed at the same distance as
the calibration plane (due to par-
allax error).

Ease of
Analysis

As only the eyes of the user
are recorded, there is no infor-
mation about the scene. Typi-
cally eye movements are directly
mapped to the area surround-
ing the cameras (e.g., a screen
the eye tracker is mounted at).
Hence, data analysis is usually
easier and faster as aggregation
can be automated. But gaze es-
timation is restricted to a certain
area.

Gaze estimation can be real-
ized on nearly the whole field of
view of the user, as the recorded
scene changes due to head move-
ments by the user. However, the
gaze location in the scene cam-
era frame is usually separated
from the scene content. Hence,
data analysis is more complex, as
the association of the user’s gaze
with an object (e.g., gaze esti-
mation on a screen) may require
manual labor.

Table 3.1: Comparison between remote and head-mounted eye tracking concerning
five major attributes.
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3.1.2 Gaze-based Human Computer Interaction

We already discussed in Chapter 1.3 the variety of application areas making use of eye

tracking. In this section we will give a more detailed overview of eye and gaze based

interaction. Here, we do not distinguish between systems that are based on remote

or head-mounted eye tracking devices.

With gaze, we naturally indicate what we visually attend to and what we are in-

terested in [196]. In addition, it often precedes any action we are planning to do.

Consequently, gaze is a powerful modality in human-computer interfaces for both, as

an input method and as a data source for analytics. Gaze-based or gaze-enabled user

interfaces are systems that react to a user’s eye movements, as described by Richard

Bolt [15].

Majaranta and Bulling [110] derived a continuum that divides gaze-based systems

into four categories. Figure 3.3 shows the different types, starting from applications

where direct gaze input from the user is required. It ends with systems which moni-

tor the eye and gaze behavior, thus using indirect input for analysis. Between these

two clearly separate application areas, we have attentive and adaptive systems that

react to or learn the user’s eye behavior, respectively. In the following we will give an

overview of the four categories.

Figure 3.3: Eye tracking application continuum, adapted from Majaranta [110].

Direct Input

Explicit or active eye input is used in gaze-based interfaces that enable a hands-free

command or control of a system. People use voluntary eye movements and consciously

control their gaze direction to interact with a computer. For example, due to devel-

opments in technology, gaze-based input and control is a valid alternative for people

with serious physical disabilities to interact with the real world [8, 34]. The most

common approach to realize gaze-based input and control is to transfer the ability of

the eyes to point at a desired target. The human gaze is faster than other existing
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pointing devices, such as a manual mouse [171], although it might not be as accurate.

Using gaze as the only input modality in human computer interaction still is subject

to two major challenges:

• The Midas Touch problem [71] – named after the mythical king who turned

everything he touched into gold. In gaze-based interfaces, it stands for the

problem that looking at a specific target does not necessarily correspond to

the intention to select that target. Simply put, the gaze is misclassified as an

interaction input.

• The region of uncertainty [107] covers the area around the estimated gaze

position in which the true gaze point is located. The size of this region depends

on three properties that affect the accuracy of gaze estimation [165]: (1) The

precision of the eye tracking device and (2) the goodness of the calibration both

might be improved by introducing better hardware and software. In addition (3)

the variance of the human fixation itself influences the threshold of the tolerance

level.

There are several ways to cope with the region of uncertainty problem. Obviously,

one can increase the size of the targets to a certain extent (e.g., larger buttons), so

that the user is able to trigger them more easily. Spakov et al. published a tech-

nique that dynamically increases the size of menu items, dependent on the calibration

[198]. However, increasing the target size will limit the space for other content and

user interface elements on the screen. Hence, all control elements would have to be

organized in hierarchical structures such as drop-downs and sub-menus to prevent a

cluttered screen content. For example, Huckauf et al. proposed a radial menu struc-

ture matching the usual circular region of uncertainty [63]. Alternatively, there are

approaches that are based on the Magic Lens metaphor, invented by Bier et al. [12].

Already in the year 2000, Chris Lankford developed an approach to use the user’s

gaze as a magnifier to ease interaction [103]. Stellmach et al. use fisheye lenses to

explore large data sets like image galleries [182]. For clarification we provide examples

of the aforementioned approaches in Figure 3.4.
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(a) (b)

(c) (d)

Figure 3.4: Examples to address the region of uncertainty problem: a) dynamic menu
[198], b) radial menu layout [63], c) magnifying lens [103] and d) fisheye lens to browse
an image gallery [182]

As stated above, it is problematic in gaze-enabled interfaces to distinguish between

intentional gaze gestures (e.g., fixations), used as an input modality, vs. the purpose

of visual perception. Preventing the Midas Touch problem, where all viewed items

or objects are directly selected, is a demanding challenge in gaze interaction. This

problem and its possible solutions have been studied for years. Velichkovsky et al.

[195] investigated diverse fixation times as an indicator for different levels of cognitive

processing. In systems that are based solely on gaze and use static buttons, the most

common method to indicate an intended action is dwell time. For this, the user has

to gaze for a certain amount of time at the target element (e.g., fixating a button).

This concept is easy to learn and ergonomic. Several studies were conducted by re-

searchers to examine the optimal dwell time to reduce false positives. Majaranta et

al. [109] proposed an approach that allows adjustment of the dwell time. According

to their findings, the optimal value highly depends on the individual users and their

familiarity with the input method, resulting in dwell times between 180 ms and 300

ms. Other studies recommend values ranging from 150 ms to 1000 ms [108].

Since there is no general consensus about the right dwell time, another more promis-

ing approach is to use gaze gestures to prevent Midas Touch. That means the users

perform specific eye movement patterns [69]. For instance, a sequence of eye strokes,

as shown in Figure 3.5, is performed by the user to draw a geometric form or even

a letter with their eyes. Such gestures are named semaphoric or symbolic, as they
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(a)
(b)

(c)

Figure 3.5: Examples of gaze gestures to prevent Midas Touch: a) eye strokes to ‘draw’
a command with the eyes [36], b) simple eye strokes [64] and c) complex gestures in
a VR application [31]

define a certain set of vocabulary that maps gestures to commands. Drewes et al.

[36] investigated the ability of users to perform different eye gestures as an interaction

technique. They found gestures to be invariant against low gaze estimation accuracy

and calibration shift. That is, the concept of detecting a specific eye movement is not

dependent on the actual gaze of the user, since only the variations in the position need

to be detected. Hyrskykari et al. [64] compared gaze gestures (consisting of 2 or 3

eye strokes, as shown in Figure 3.5b) against dwell time based selection while playing

a game. They found gaze gestures to be more robust and accurate. Delamare et al.

[31] proposed a gaze gesture guiding system, which is usable with a head-mounted

display (e.g., a VR headset), as depicted in Figure 3.5c. With that system they aim

to ease the exploration of available gaze gesture command patterns for novice users.

An easy, and in recent years more convenient, way to counteract the issue of uninten-

tional selections is to combine gaze with additional modalities. Qvarfordt provides a

deep review of using the human gaze in multimodal interaction [153] (Chapter 9). She

proposes a two-dimensional design space to differentiate between active/passive input

and mobile/stationary systems. Various possibilities exist to combine our gaze with a

second input mode. Already in 1999, Zhai et al. [211] proposed a method combining

mouse and gaze input for selection. The so-called MAGIC pointing method includes

the advantage of gaze versus hand input concerning spatial movement of a on-screen

cursor. The actual selection is realized by a mouse click, to prevent inaccurate gaze
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(a) (b)

(c) (d)

Figure 3.6: Examples of multi modal gaze input: a) gaze based pointing and selection
via mobile phone [180], c) using gaze together with feed control [85], b) gaze plus
hand gestures [25] and d) gaze plus touch and pen input [148]

pointing. The work done by Zhai et al. is fundamental, since many works proposed

similar techniques, but replaced the mouse by a different modality. Typically MAGIC

pointing serves a baseline in terms of accuracy and performance for selection tasks.

In Figure 3.6 we provide an overview of different gaze plus ‘x’ input combinations,

where ‘x’ stands for the additional modality. Stellmach and Dachselt [180] developed

a system that enables users to select objects on large distant displays. For this, they

replaced the mouse by a mobile phone. Utilizing the touch screen of the hand-held

device, users are able to manually correct the position of the gaze cursor and finally

trigger a selection, as shown in Figure 3.6a. In this way, they counteracted the prob-

lem of inaccurate gaze estimation as well as the Midas Touch. Klamka et al. [85] built

a custom controller to use a person’s feet as an additional input method (see Figure

3.6b). They use it as a modality for precise object selection on the one hand, but

also to enable more complex interaction techniques, such as pan and zoom in a map

application. In their evaluation, they were able to show that gaze plus foot input can

beat traditional mouse-only input and is preferred in specific tasks, such as map nav-

igation. Another different approach was developed by Chatterjee et al. [25]. In their

system, Gaze+Gesture, they use a person’s gaze for target acquisition, as usual. To

perform selection and other additional commands, they implemented hand gestures



50 3.1 Application of Eye Tracking

using a hand tracker (i.e. a Leap Motion), as shown in Figure 3.6c. They compared

the system against other input modalities by conducting the standardized Fitts’ study

[212]. They were able to achieve results comparable to mouse-only input and outper-

formed the straightforward dwell time approach. Pfeuffer et al. [148] combined gaze

and touch as a novel input modality on the same surface (as depicted in Figure 3.6d).

Basically, this approach is taking advantage of the strength of Gaze+Gesture, as the

user can focus on a specific element on a touch display, while the content is manipu-

lated through different touch inputs. For example, they showed the potential of their

approach in map navigation. In [149] they extended the approach by adding a digital

pen as another input device, leading to more novel application designs.

In contrast to these approaches, one can also use a non-physical additional input.

Miniotas et al. [119] propose a speech-augmented gaze pointing technique. In their

evaluation, they were able to conclude that gaze plus speech is as good as manual

pointing (MAGIC) regarding accuracy. Beelders and Blignaut [10] used gaze and

speech input for text entry on a virtual versus a physical keyboard. They found the

physical keyboard to be faster and more accurate, although this could be explained

by users’ familiarity with this input modality.

The majority of all the above examples are based on stationary scenarios (i.e. us-

ing a remote eye tracker). This may be because of traditional limitations to eye

tracking technology, highlighted by Qvarfordt [153]. She also notes that with the

progress made in mobile computing (e.g., prevalence of smartphones, watches and

head-mounted displays), gaze-based interaction may be required to work in mobile

and ubiquitous settings (cf. Figure 1.1). Besides this, all the above systems are re-

stricted to a single surface, i.e. a single screen. Both aspects are relevant to the goal of

this thesis (cf. Section 1.6). Even if the interaction concepts are transferable to head-

mounted settings, there are other issues that have to be addressed first (cf. Section

1.4), to make head-mounted eye tracking usable outside of a controlled environment,

in real-world settings.

Regardless of the method used for gaze input, it is important to provide corresponding

feedback to the user. According to Majaranta and Bulling [110], it is essential to notify

the user of the effects caused by focusing and selection. Feedback is mainly needed for

dwell time based, eye gesture and gaze-plus-gesture approaches. In contrast, multi-

modal systems that combine gaze with a physical device (e.g., mouse, touch enabled
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surface, pedal) usually give direct feedback via use of the specific device. Oftentimes,

the computed gaze point is visualized on the screen; dwelling is simply animated by

a progress bar. Besides this visual feedback, more recent approaches include haptics.

For example, Kangas et al. [77] used vibrotactile feedback of a mobile phone while

interacting with it using gaze gestures. They found that the use of haptic feedback

increased the performance and user experience. Rantala et al. [155] extended that

approach by integrating the actuators needed for the feedback mechanism directly

into the eye tracking glasses.

Attentive User Interfaces

Attentive user interfaces (AUIs) are an instance of so-called non-command interfaces,

as defined by Jakob Nielsen in 1993 [132]. The user does not actively trigger a specific

command (e.g., selection) by changing his or her gaze. Instead, the information about

a person’s eye movements and gaze positions is analyzed and used in the background.

Attentive user interfaces may include additional sensor data by monitoring the user’s

physical proximity and body orientation. An attentive system may be gaze-aware

or eye-aware, i.e. for some applications it is sufficient to detect eye contact without

information as to where someone is looking. In Figure 3.7, different use case scenarios

of the eyeCONTACT sensor [169] are shown. The device simply detects a person’s

eyes and estimates whether the user is looking at the sensor. It can be attached to an

arbitrary physical object, to make it aware of the surrounding persons. For example,

placing the device above a TV screen makes it possible to detect if someone is looking

at the display. This information can be used to switch off the TV or pause the TV

program, if no user is currently gazing at it.

Figure 3.7: Example application of eyeCONTACT sensor to sense a person’s attention
[169].
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Attentive user interfaces have become much more powerful than the above example.

According to Bulling [18] the management of on-screen notifications (e.g., messaging)

to reduce interruptions is an important research challenge in human computer interac-

tion, which can be addressed via attentive user interfaces. Basically, one can distribute

the information shown on a display at different distances from the user’s actual gaze

point, i.e. the current point of attention on the display. Such displays are called gaze

contingent displays (GCDs) [38]. Klauck et al. [86] explored different appearance

properties of notifications on GCDs, with a focus on size, opacity, blinking frequency

and movement speed. In a user study they examined the effect of these properties on

noticeability of notifications and distraction of users. The results showed that changes

of static properties is not very distracting, but have a high noticeability. Changing dy-

namic properties results in maximal noticeability, but also in high levels of distraction.

Some other work investigates how the user’s attention, and thus his or her gaze, can

be actively changed. Bartram et al. [6] present two subtle gaze direction methods:

The first method uses color changes to direct the user’s gaze, while the second method

is based on blinking. The authors propose that through flickering and changing the

color in the near periphery, the user is directed without noticing it. They performed

two experiments on how these two gaze direction methods compare in distraction and

noticeability. The results showed that motion is most effective in gaining user atten-

tion without being distracted and irritating. Color changes are far less effective at

gaining the user’s attention; blinking is by far the most effective at gaining attention,

but it is also the most distracting and irritating gaze direction method. A continu-

ation of this idea, is the system iDict by Hyrskykari et al. [65]. It requires the user

to know that their eyes are being tracked. By observing the eye movements during

reading, the system supports the user in a proactive fashion. In this case, a text in a

foreign language is automatically translated if comprehension problems are detected

via eye movement patterns. The reader is also able to actively trigger the translation

by staring at the difficult word. There are also approaches that try to predict the

user’s intentions and next activities based on the previous gaze behavior [76]. Since

we do not want to go too deep into detail on this topic, we refer the reader to reviews

that provide more information about attentive applications [154, 68].

User Modeling

Analyzing a person’s eye movements is a well-known method in experimental psy-

chology to provide insights in visual behavior. Mainly head-mounted eye tracking
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systems are used as a tool to conduct studies and record data about a person’s gaze

in arbitrary environments. This has helped researchers to increase the understanding

of visual behavior. The movements that our eyes perform throughout the day are

directly linked to our activities. Bulling et al. [20] investigated the detection of five

types of office work, solely based on eye movement data. They utilized a head-mounted

eye tracking device based on electro-oculography (cf. Section 2.2) to record data from

people while they performed different tasks (e.g., reading a text, browsing the web,

etc.). By analyzing the data with a SVM classification, they were able to identify the

different tasks. Steil and Bulling [179] go one step further by recording eye tracking

data, including the main types of eye movements (i.e. blinks, saccades and fixations)

plus gaze information, during daily life. They used a video-based head-mounted eye

tracker and were able to extract several daily activities, such as ‘computer work’,

‘eating’ and ‘social interaction’.

Besides human activities, visual behavior is closely linked to various cognitive pro-

cesses of visual perception. Bulling et al. [21] showed the possibility to automatically

recognize the visual memory recall of people based on eye movement data alone. In

another study, Tessendorf et al. [190] were able to conclude that a person’s cogni-

tive load during focused work can be successfully detected by analyzing her visual

behavior. Even selected personality traits that are difficult if not impossible to as-

sess using other sensing modalities are linked to our eye movements. For example,

Hoppe et al. [60] propose a method to automatically detect different levels of curiosity.

In human computer interaction, all these findings can be used to gain further insights

in how to design and evaluate gaze-based interfaces that are using head-mounted eye

tracking devices. However, setting up the experiments and the required hardware

still entails extensive work, as head-mounted eye trackers are not ready to use in a

spontaneous way.

Indirect Input

Passive eye input is not used to control an interface, in contrast to active eye input. It

is a source of data for diagnostic applications. According to Duchowski [37] these cover

visual behavior analysis for psychological purposes. Also in marketing and advertis-

ing, eye movement data is usually first recorded and analyzed afterwards, since there

is no need to react in real time to a person’s interaction. For example, Bulling et al.

proposed a system called EyeContext with which it is possible to infer cues from eye
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movement data. They built a device bundle, which consists of an EOG based head-

mounted eye tracker connected to a laptop and a mobile phone, used to annotate the

data. They were able to automatically classify the cues into five cases, namely being

socially or physically active, being inside our outside a building or doing focused work.

A different application case of passive eye and gaze input is usability and user ex-

perience analysis. This is typically done by using a remote eye tracking system, while

people are interacting with a desktop computer. Goldberg and Kotval [47] defined

different eye tracking metrics and developed a correlation between eye movement data

and usability problems. They mainly focused on the detection of visual search, for

which they used metrics such as number of fixations, fixation time and the ratio be-

tween the two types of motion. Jacob and Karn [72] published a survey about various

existing metrics that can be used to identify usability flaws based on eye and gaze

data. They also noted the limitations of the technology itself: A good saccade de-

tection algorithm requires a sampling rate higher than 100 Hz. For more information

about passive and indirect eye monitoring and their applications, we refer the reader

to the survey by Riad Hammoud [51].

3.2 Eye Tracker Calibration

In this section, we will address the problem of calibration, the fundamental issue for

which this thesis is going to develop solutions. We already gave an introduction to

the problems, caused by calibration in Section 1.4. In the following the standard

calibration procedure of head-mounted video-based eye trackers is explained in detail.

Subsequently, we present existing approaches that investigate strategies to efficiently

re-calibrate an eye tracker in Section 3.2.2. In Section 3.2.3, we present approaches to

reduce the need for a calibration procedure, aiming for calibration-less or calibration-

free gaze estimation.

3.2.1 Notes on Calibration

According to Holmqvist et al. [59], accuracy is one of the major characteristics of

data quality in eye tracking. It is defined as the distance between the estimated gaze

position of the device and the actual gaze location in the environment (where the

person is really looking). Inaccuracy is directly influenced by the eye tracker itself;

it can be a result of bad pupil detection and tracking, a poor mapping from pupil to

gaze positions, or both. As we presented in Section 2.2, much research has been done
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recently on improving the pupil detection, including robust tracking in realistic con-

ditions [44]. Thus the source of error is more related to a bad pupil-to-gaze mapping,

which is a direct result of poor calibration.

(a) Sampling pupil positions and the assumed gaze position on the marker
on the screen.

(b) Calibration result showing the estiamted gaze point.

Figure 3.8: Calibration of a head-mounted eye tracking device the Pupil Labs soft-
ware10.

Figure 3.8 illustrates the calibration process in the case of an interpolation-based gaze

estimation approach using the Pupil Center Corneal Reflection (PCCR) method. This

procedure can be used with a monocular or binocular eye tracking setup. Given an

infrared illuminated eye image, the pupil center as well as the position of the glint

10https://docs.pupil-labs.com/#calibration
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(i.e. reflection of IR light source) can be computed. Some approaches (mostly remote

systems) use the vector between both points for gaze estimation and others assume

a direct correlation between pupil center and a person’s gaze direction (cf. Figure

3.8). Kassner et al. [78] argue that the cameras of a head-mounted device are fixed

to the user’s head, so that the relative position between them and the user’s eye will

not change when he or she is turning his or her head. Obviously, this assumption is

not valid in stationary setups, in which the cameras are mounted at the screen for

example, and the user’s head is not fixed. However, in both cases a calibration has to

be performed to translate eye to gaze positions. We will consider only the calibration

of a head-mounted device in the following: In general, a mapping function has to be

established to successfully translate the pupil-glint vector or the pupil center (denoted

as eyex and eyey) from the eye camera’s into gaze positions (denoted as worldx and

worldy) in the world camera’s coordinate system (see Figure 3.8). The mapping func-

tion is of the following form:

worldx = a0 + a1eyex + a2eyey + a3eyexeyey + a4eye
2
x + a5eye

2
y

worldy = b0 + b1eyex + b2eyey + b3eyexeyey + b4eye
2
x + b5eye

2
y

It comprises two second-order polynomial functions whose coefficients a0, ..., a5 and

b0, ..., b5 need to be estimated through the calibration procedure. This is performed

by looking at a number of pre-defined visual stimuli. While the user is fixating the

calibration target, data is sampled that consists of pupil positions in the eye image,

the physical orientation of the eye and the location of the target (stimulus) on the

calibration plane (i.e. the screen for remote trackers, the scene camera images for

head-mounted devices) [51].

In the example in Figure 3.8a, a total of nine calibration points is used; these are

distributed along the screen border. Note that the number of calibration points re-

lates to the area gaze is estimated on. This can range from 2 to 16 using monocular

setups [59], and can be reduced to one point for binocular systems (cf. Chapter 3.1.1),

although this lowers the accuracy. When head-mounted eye tracking systems are used,

it is necessary to extract the positions of the presented stimulus in the world camera

images. It is assumed, and fundamental, that the user is looking at the location of

the stimulus. Each calibration point results in two equations for worldx and worldy,

which are part of a linear equation system of, in total, 18 equations with 12 unknown

coefficients. This can be solved by using linear least squares [202]. The resulting map-

ping function is used to translate the eye into gaze positions, as depicted in Figure
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3.8b. For 3D gaze estimation, the calibration is done by fitting a third-order polyno-

mial, as calibrations at multiple depths are recorded [114].

Coming back to gaze estimation accuracy, the reported values range from 0.3◦ to

around 2◦ [73, 88]. Remember that the size of the human fovea spans 1.5-2◦ of the vi-

sual field (cf. Section 2.1). Accuracy differs between the gaze estimation methods (cf.

Section 2.2). Regression-based gaze estimation, as presented above still achieves the

best results (cf. Section 2.2). Its accuracy depends on the quality of the computed

mapping function and the correctness of the coefficients. However, the calibration

procedure itself leads to many problems.

First of all, the calibration is an individual process that has to be conducted for each

user separately prior to usage [37, 59]. The reason is that the calibration includes

human-specific parameters (e.g., cornea curvature and angle kappa) and geometric

information (e.g., relative location and orientation between cameras) (cf. Section 2.1

and [52]).

Nyström et al. [142] investigated calibration with respect to practical issues. Typi-

cally a second person is needed to set up and calibrate the eye tracking device. They

compared different approaches for setting up the device and sampling the calibration

data. With an operator approach, a second person is doing all the work, whereas in a

participant-controlled approach, the users themselves monitor the data sampling. A

system-controlled approach does an automatic collection of calibration data, as the

decision whether or not the user is currently fixating the calibration target is an auto-

mated process. They concluded that a participant-controlled approach yields the best

results. Automatic decision by the system still achieves better accuracy and precision

than an operator-controlled calibration. It is noteworthy that at least for remote eye

tracking devices, the major manufacturers use an automatic calibration (e.g., Tobii

4C 11). However, modern high-end head-mounted eye trackers such as the Tobii Pro

Glasses 2 12 still require the support of an additional person acting as operator. Also,

the developer-friendly Pupil Labs eye tracker applies a combination of the approaches

depending on the use case (Pupil Labs Manual13). Although this might not be a huge

problem per se, the occurrence of the so-called calibration drift requires a regular

re-calibration to maintain accurate gaze estimation over time.

11https://help.tobii.com/hc/en-us/articles/213414285-Specifications-for-4C
12https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
13https://docs.pupil-labs.com/#calibration-methods
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This effect describes the deterioration of gaze estimation accuracy due to various

reasons. These include changes in eye physiology (e.g., wetness of the eye), the en-

vironment (e.g., lighting conditions), the position of the device and/or the camera

in relation to the eye, and changes of the user’s location and orientation. The latter

refers to the problem that the calibration is typically performed for a fixed position

and orientation of the user to a single display. While this is less of an issue for sta-

tionary settings and TV-sized displays, mobile settings and multiple, potentially large,

displays evoke two types of motion: (1) user movements in front of a single display to

inspect other parts of the display’s content; and (2) head movements to reach targets

outside the ocular motor range [49]. In addition, there might be multiple displays

present, causing further movements. Both types of motion considerably reduce gaze

estimation accuracy [23].

In order to achieve high gaze estimation accuracy, it is crucial to track a user’s (and

eye tracker’s, respectively) position and orientation relative to a display. Solutions

that realize this include the augmentation of the environment with visual markers

[17, 208] as well as using vision-based motion capturing systems (e.g., OptiTrack).

With advances in computer vision, visual markers can be substituted by detecting

the display directly in the scene camera’s field of view. Mardanbegi et al. detect

screens based on quadrilaterals found in the scene [113]. Turner et al. extended this

to multiple displays (based on the displays’ aspect ratios) by adding a second cam-

era and a method for transparently switching between two calibrations [194]. While

such approaches can achieve high tracking and gaze estimation accuracy, the need to

deploy them for every display the user might want to interact with currently severely

limits uptake and truly pervasive and spontaneous gaze-based interaction.

In the end, a re-calibration is necessary to maintain a constant high accuracy. How-

ever, executing the full procedure to replace outdated calibration data is time-consum-

ing and distracts from the actual task. In Section 1.4, we highlighted the problems

concerning the calibration procedure, which constitute the foundation of this thesis.

3.2.2 Re-Calibration Strategies

In this section we present some existing work, that counteract the calibration drift by

performing an appropriate re-calibration. There are different approaches that aim to

reduce the time for re-calibrating an eye tracker while recovering the initial accuracy.

The first approach we will present was developed by Stampe [176], already in 1993.
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In his approach, re-centering with one point, a calibration target out of the set of all

calibration points is shown to the user on a recurring basis. Based on the assumption

that the user is focusing on the calibration point, the offset between the current eye

position and the corresponding one recorded during calibration is computed. The

estimated offset value is used as a correction for the next eye positions before trans-

lating them into gaze points. Hence, the computed offset serves as a global correction

for all recorded eye positions. The point used for the re-centering procedure is freely

selectable. It only has to be one of the initial calibration points.

Figure 3.9: Resulting view on the calibration plane (i.e., the screen) after the user has
changed their distance or orientation.

An obvious problem with this approach is that it will not resolve a non-uniform drift.

It could be the case that the offset between eye positions varies across different cal-

ibration points: for example, if the user changes position in front of the screen, i.e.

the distance and/or orientation to the screen. In Figure 3.9 we show the different

situations, and the resulting changes in the position of the calibration points, from

the user’s perspective.

When changing the distance to the screen, at least the central calibration point will

remain at the initial position. However, if another calibration point is used for the

re-centering approach, the computed offset might further increase the already estab-

lished calibration drift. Even worse, if the user changes orientation to the screen (and

thus the calibration plane), the positions of all points will be different. In this case,

Stampe’s approach will not deliver any usable results.

Stampe and Reingold [177] improved the above approach with their method called

dynamic re-centering via target selection. In contrast to the initial method, the user

is required to actively select targets on the screen that are used for the re-calibration

procedure. Target selection is realized by dwelling and triggers the offset computa-

tion. In this way, they counteract the aforementioned issues of the previous approach.
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However, the correction requires a multi-step procedure, actively involving the user,

as depicted in Figure 3.10. Initially the system assumes no error, i.e. the very first

target selection serves for data acquisition only. The actual correction is started with

the second target selection. Finally, the algorithm adds a fraction of the estimated

error to the drift value. Hence, the calibration drift will be constantly reduced in the

optimal case.

Figure 3.10: Step-wise reduction of the calibration drift.

However, as in the previous approach, the dynamic re-centering applies the offset

globally. If the calibration drift is too big (e.g., after re-adjustment of the cameras),

a wrong target may be selected, which results in wrong corrections.

The work of Hornof and Halverson [61] is based on so-called required fixation lo-

cations (RFL). This approach also measures the gaze estimation errors during target

selections performed via mouse input. For this, they introduce implicit (e.g., a button

the user clicks on) and explicit (calibration points the user has to look at) RFLs,

which have to be fixated by the user at any time. The correction in their approach is

not applied globally. Instead, every estimated gaze point is shifted individually.

In Figure 3.11, the idea of their correction algorithms is depicted. In this example the

gaze point is corrected according to the following steps: At the estimated gaze point,

the screen space is divided into four areas. In each region, the nearest stored error

vector is used to compute the average error. Finally, the error offset is weighted by the

inverse distance between the selected error vectors and the actual fixation position.

In this way, the approach can account for a varying calibration drift across the screen.

However, their proposed method does not work in live settings as they use post-hoc
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Figure 3.11: Selection of required fixation locations used to correct the calibration
drift.

correction. Moreover, it is dependent on active input of the user via a mouse, i.e., it

cannot be used for gaze-only systems.

Finally, we summarize the characteristics of these approaches in Table 3.2. Each

of the presented techniques has at least one issue that makes it inappropriate for use

in real time with head-mounted eye tracking devices. We will propose a different

approach in Chapter 4, that accounts for each of the mentioned problems.

Re-Centering
with 1 point

Dynamic
Re-Centering

Required
Fixation
Location

real-time
capability

• • ◦

corrects
drift error

• • •

eye tracking data
only

• • ◦

manages abrupt
drifts

• ◦ •

adaptive to varying
error

◦ ◦ •

Table 3.2: Comparing different aspects of the presented re-calibration approaches.
None of the existing methods provides a general solution, (• fulfilled, ◦ not fulfilled).

3.2.3 Calibration-Less Approaches

In this section we present techniques that aim to ease the usage of eye tracking systems,

by introducing alternative calibration approaches. We can group these approaches
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into two categories. One group investigates methods that make the calibration more

comfortable for the user. In the other, researchers propose techniques without the

need for a user-dependent calibration procedure.

A prominent approach is to make use of smooth pursuit movements of the eye (cf.

Section 2.1). Pfeuffer et al. [150] calibrate a remote eye tracker while following mov-

ing objects on a screen in an unobtrusive way. The presentation of a moving target

is used to record calibration data which can be utilized to establish an accurate map-

ping between the recorded eye position data and the surface where gaze should be

tracked. The movements of the eye are correlated with known trajectories of the

moving objects (up to 0.6◦ of gaze estimation accuracy). A big advantage of pursuit

calibration is that it makes it possible to determine whether the user is currently fo-

cusing on the calibration target or not. Consequently, the system can decide if data

should be sampled or not. In this way the whole calibration procedure becomes more

flexible because it is robust to interruptions. Moreover, it is more natural for the

user to follow a moving target instead of gazing at points for a certain amount of

time, making the whole calibration less tedious. TextPursuits is a similar approach

developed by Khamis et al. [82]. Instead of abstract objects, they show moving text

on a display. In this way they can present content on the screen, while using it to cal-

ibrate an eye tracking system, and achieve results similar to those of other approaches.

Flatla et al. [42] investigate a different approach with the goal to make the calibra-

tion procedure itself less exhausting and more enjoyable for the user. They developed

so-called calibration games, in which they transformed the standard calibration rou-

tines into mini games. The basic principle is to use gaze as input, while they can

assume that a person is looking at or following a specific object, in order to play the

game. Their evaluation shows that the quality of the recorded data does not change.

Users found the new way of calibrating an eye tracker more enjoyable and less tedious.

Huang et al. [62] presented PACE, a personalized, auto-calibrating eye tracking sys-

tem. The idea is to sample calibration data in an unobtrusive way, i.e. invisibly for

the user. They use the events occurring when interacting with a desktop computer

in combination with an off-the-shelf webcam for face and eye tracking. For instance,

they assume the user is looking at a specific user interface element when clicking on

it. Similarly dragging items or typing on the keyboard are handled as separate in-

teraction events, which are used as calibration samples. Compared to state-of-the-art
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remote eye trackers, they achieved an error of 2.56◦. Although existing approaches

help to improve the calibration procedure, mainly remote eye tracking systems are

used. The principle of pursuit calibration may be transferred to head-mounted eye

tracking devices. But the problem that the device is only calibrated onto a specific

display still remains unresolved.

A different approach for head-mounted devices is to make use of visual saliency maps

to auto-calibrate the eye gaze tracker [26, 184]. In images, the term saliency refers to

the occurrence of unique and distinct features in a specific region. Koch and Ullman

proposed the initial concept of visual saliency [87]. The basic idea is to predict the

gaze point of a person when the saliency map, for example of an image, is known.

Combining video and EOG-based devices with saliency maps computed on the scene

videos enables one to (re)-calibrate a head-mounted eye tracker [183] (6◦ of error in the

best case). Although these works reduce the calibration drift through an automatic

calibration, they create other issues elsewhere, such as cumbersome setups (cameras

plus EOG) and inaccuracy. Recently Santini et al. [164] developed an approach for

unsupervised calibration of a head-mounted eye tracker. They turn the user’s mobile

phone into a calibration target that is moved around while fixating it, to recalibrate

the system. With this method highly accurate results can be achieved (0.59◦ of gaze

estimation error). But the approach is limited, as the recalibration has to be triggered

manually. Hence the user has to know that the accuracy is getting worse and be aware

of the calibration drift effect.

Moreover, there are completely calibration-free approaches. Pursuits, developed by

Vidal et al. [117], is a framework that allows spontaneous interaction with displays

without the need for user-specific calibration. Elements used as a trigger for target

selections move on unique trajectories across a graphical user interface. Correlating

the eye movements with the known trajectories, input can be detected. It is an alter-

native way to interact with a gaze-enabled system instead of the previously mentioned

dwell-time approach. Another technique was developed by Zhang et al. [214], called

SideWays. A webcam mounted on top of a display is used to extract eye movements

based on face tracking and eye corner detection. In this way, a calibration-free gaze-

based interface can be created that enables users to do high level-input.

However, the existing approaches are either limited to interaction along a horizontal

axis (Figure 3.12b), or require dynamic interfaces with moving targets that follow
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(a) (b)

Figure 3.12: Two examples for calibration-free gaze interaction: a) Pursuits, utilizing
the pursuit movements of the eye [117], and b) SideWays, realizing gaze input via
horizontal eye movements [214]

different trajectories (Figure 3.12a). Non-interpolation-based approaches that are

also user-calibration-free are only able to achieve coarse gaze approximation [213], as

discussed in Section 2.2.

3.3 Corneal Imaging

In this section we will introduce a different approach for eye and gaze tracking, so-

called corneal imaging. This method utilizes the fact that the human cornea has

mirror-like characteristics. The visible parts of the human eye are the white sclera,

the iris, and the black pupil, the latter two of which are surrounded by the cornea (cf.

Section 2.1). The corneal surface is covered by the tear fluid, which turns the cornea

into a highly reflective surface with mirror-like characteristics (shown in Figure 3.13).

Different research areas took advantage of the specular reflections on the eye. Backes

et al. [3] revealed that display reflections could be used to access sensitive data (e.g.,

passwords) using a telescope. Nishino and Nayar [136, 137] pioneered corneal reflec-

tion analysis, giving an overview of what information the reflected image of an eye

reveals. They developed the corneal catadioptric imaging system using a geometric

model of the cornea. The derived system can be used for several applications like

facial reconstruction and relighting [135], face recognition [134] and the calibration of

display-camera setups [139]. Besides applications in the field of computer vision [140],

several approaches utilize the reflection of the eye to enable gaze estimation [141].

Schnieders et al. [166] used a remote camera to detect a display in the reflected eye

image using its geometric properties (e.g., curved edges in the reflection). Nakazawa

et al. [127] used infrared light to create patterns in the surroundings, visible in the
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Figure 3.13: Example image of a corneal reflection of a computer monitor.

reflection image, to map the user’s gaze into the environment. Nitschke et al. [138]

further improved the method by omitting the active illumination. However, these ap-

proaches limited the user’s mobility by using a remote camera. They achieved highly

accurate gaze estimation (< 1◦ error), but in a highly constrained setting while sitting

in front of a large screen. Moreover, additional components, like active illumination

or a 3D geometric eye model, were required.

Nakazawa et al. [128] used a head-mounted device to capture corneal reflections

and achieved an average gaze estimation accuracy between 2.51◦ and 4.65◦ in a highly

constrained static desktop setting, not competitive with current commercial remote

desktop eye tracking systems. Takemura et al. [187, 188] developed a mobile pro-

totype to estimate the object a user is focusing on. They utilized natural feature

tracking to detect objects visible in the corneal images. Both systems are based on

3D eye pose estimation and geometric modeling of the eye, making them computation-

ally expensive. Their current implementations achieve only 7.3 and 1 fps, respectively.

In addition, these works lack a detailed evaluation of the gaze estimation accuracy in

realistic settings. Their two-camera prototype uses a corneal and a scene camera, and

thus relies on a user-specific calibration. Consequently, they cannot be used for gaze

based interaction in pervasive settings.

El Hafi et al. [50] developed a mobile corneal imaging system based on high-resolution

cameras (4k) capturing both eyes. They show the possibility of reliably detecting ob-

jects in the corneal reflections. In their experiment they evaluated the gaze estimation
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remote approaches head-mounted approaches

[136, 137] [166] [127] [138] [128] [187] [188] [50]

avg accuracy N/A
15.14 mm

to 25.13 mm
<1◦ 2.51◦ N/A 9.5◦ 2.5◦

3D pose estimation • • • • • • • •

calibration • ◦ • ◦ ◦ • ◦ •

illumination none
active
display

multiple
IR LEDs

none 2 LEDs none none
4 IR
LEDs

cameras one
one
binocular

two
scene + eye

one one
two

monocular
one

two
binocular

Table 3.3: An overview of existing gaze estimation approaches based on corneal imag-
ing. This shows the main differences between remote and head-mounted techniques,
(• fulfilled, ◦ not fulfilled).

in a desktop setting. Participants were 500 mm away from a small screen (350 x 300

mm) while looking at targets shown at three different positions around the screen cen-

ter. With their approach, they only achieved an average error of 2.5◦. Moreover, their

installed 4K cameras can only deliver images at 11 fps, slowing down the processing

speed. Table 3.3 highlights the primary differences of the aforementioned approaches

with respect to five important properties: gaze estimation accuracy, required 3D eye

model, calibration, illumination and number of cameras. For the sake of completeness,

we also included the remote techniques.

Here it becomes clear that only two approaches are able to achieve highly accurate

results for gaze estimation (i.e. < 1◦). Both are implemented for a remote system,

for which one needs a user-dependent calibration. The illumination as well as the

number of cameras is mainly dependent on the approach itself, i.e. the algorithm

used to extract the pupil or the cornea, respectively. It is noteworthy that all pro-

posed techniques rely on a 3D pose estimation of the eye. The reason for this is the

following: Basically we can classify all procedures as geometric-based gaze estimation

methods. In corneal imaging, the eye images are usually captured via an RGB camera

(i.e., natural images), in contrast to the well-known PCCR method that is based on

infrared images (cf. Section 2.2). The captured images reveal close-up images of the
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eye, making appearance-based methods difficult – if not impossible – to apply. Al-

though the eye does not need to be extracted from the face image, the tracking of the

pupil and its movements is challenging. For this, most of the presented approaches

rely on limbus tracking (i.e. the iris boundary). The position of the limbus is mapped

onto an appropriate 3D model of the eye to compute the pupil position. With that

information, it is possible to compute the different axes of the eye used for gaze esti-

mation (cf. Section 2.1).

Up to now, researchers have only investigated how to improve the existing eye models

and the limbus extraction to increase the gaze estimation. So far, little attention has

been given to alternative methods based on other hardware setups without 3D pose

estimation.

3.4 Summary

In this chapter we presented the existing research as well as the current state of eye

tracking. We showed how the works serve as a starting point for this thesis, and that

there is a need for further investigations provided through our work.

First, we started with an overview about the usage of eye tracking systems in gen-

eral. We presented state-of-the-art remote and head-mounted technologies. Although

remote eye tracking devices are technologically advanced and can also be used by

non-experts, these devices are restricted for mostly desktop applications (cf. 1.1,

complexity 1 : 1 : 1). We aim for the ubiquitous usage of eye tracking to enable

pervasive gaze-based interaction. The group of head-mounted eye tracking glasses

comprise the preferred class of devices, as discussed at the end of Section 3.1.1.

In Sections 3.2 and 3.3, we presented works related to the three areas of efficient

long-term, location, orientation & target independent usage, and mobile & accurate

calibration-free eye tracking. The link between related work and these four areas is

as follows:

• Efficient Long-Term Usage of a head-mounted eye tracker: In this chapter we

presented a detailed discussion about the calibration of head-mounted eye track-

ers as well as existing approaches to re-calibrate the system in Section 3.2. We

learned that all existing strategies can re-establish the initial accuracy, but have

several limitations. We investigate two novel methods, extending existing liter-
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ature, in Chapter 4 (contribution of paper [95]). There we demonstrate how to

efficiently re-calibrate a head-mounted eye tracker, i.e. reducing the calibration

time by up to 90%, while recovering 95% of the initial gaze estimation accuracy

again. We discuss how this approach can be applied to the reference system to

enhance the usability and the user experience.

• Location, Orientation & Target Independent head-mounted eye tracking: We

also presented related work on gaze estimation on displays using head-mounted

eye tracking. Basically in mobile settings with multiple displays (which can

be also seen as any kind of surface) the requirement to calibrate to a fixed

calibration plane is a serious issue. In Chapter 5 we extend existing literature by

presenting a possible solution for this problem. In the evaluation of our system

we show that we are able to achieve better results than existing approaches

while reducing the need for specific hardware setups (contributed in [93]). In

addition, we demonstrate how this concept can be applied it in an in-the-wild

study to automatically map a person’s gaze into the environment (contribution

of [102]).

• Mobile & Accurate Calibration-Free eye tracking: A major section of this chapter

was dedicated to corneal imaging. We discussed its potential as an alternative

method for calibration-free gaze estimation. We extend existing literature by two

approaches that we designed and implemented in an iterative process (Chapter

6). With the first technique, we present a new method for extracting the corneal

images without the need for 3D pose estimation. We used this information for

gaze approximation on displays (contribution of paper [94]), object detection

(contribution of [97]) and attention measuring (contribution of [96]). We further

improved the method to realize accurate gaze estimation and designed a mobile

framework for spontaneous usage in ubiquitous scenarios (contribution of [98]).

In related work Section 3.1.1 on state-of-the-art head-mounted devices we discussed

the working method of remote and head-mounted eye tracking devices. We discussed

the differences between both approaches, and conclude that the head-mounted ap-

proach is most promising ubiquitous settings (cf. Figure 3.14, complexity (K x L) x

M x N):

In Section 3.1.2, we presented the whole spectrum of using eye and gaze trackers for

various human computer interaction tasks. The developed concepts can be applied for

remote and head-mounted devices as well. We learned that gaze is often used in com-
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Figure 3.14: Ubiquitous Computing for Eye Tracking Continuum: Classification of
related work into a 2-dimensional area with varying locations and displays/objects.

bination with other input modalities to counteract precision and accuracy problems.

Whereas all the presented works use the information about a person’s eye movements

to create gaze-enabled interfaces, they miss one important aspect: a discussion on the

feasibility of the actual method in a real-world scenario on the basis of the above three

areas. All presented methods can be classified used our Ubiquitous Computing for Eye

Tracking Continuum. Figure 3.14 depicts the classification to an 2-dimensional area

with varying number of locations and display/objects. Basically, the existing systems

can implement eye tracking on multiple displays/objects at different locations in single

user scenarios to a certain extent. However, there exist no approaches that matches

the more complex cases of the continuum.

What is required to establish gaze-enabled interfaces at pervasive scale and outside of

a controlled environment is an eye tracking device that reduces the omnipresent issues

of calibration, with all its negative side-effects, as presented in Chapter 1.4. Khamis

et al. [81] discussed three challenges – calibration, user positioning and multi-user

interaction – in the case of gaze-enabled public displays. They concluded that there is

no approach that addresses all existing issues. With the rest of this thesis, we will con-

tribute by providing approaches to make head-mounted eye tracking usable anywhere

and anytime. The developed principles of the gaze-enabled interfaces, presented in

Section 3.1.1, are then applicable to create pervasive gaze-based interfaces according

to the vision by Bulling et al. [19].
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In the following four chapters we present the work, based on the foundations of

Chapter 2, that extends existing work presented in this chapter. With our work we

contribute to the goal to make head-mounted eye tracking ubiquitous and go beyond

the common knowledge from the literature, as we have outlined.



Chapter 4

Investigating the Re-Calibration

of Head-Mounted Eye Trackers

In this chapter we will elaborate upon the issues of the so-called calibration drift that

occurs with head-mounted eye trackers. We introduced the problem in Chapter 1 (in

Section 1.4). We will present a comprehensive evaluation, conducted to investigate

the long-term gaze estimation accuracy of a head-mounted eye tracking device while

simulating different sources of calibration drift. According to this, we propose four

re-calibration strategies to counteract these problems while reducing the required time

to re-establish the initial gaze estimation accuracy. Finally we will show how these

findings can be applied to the scenario presented in Section 1.5 and enable for eye and

gaze tracking settings with multiple users (see Ubiquitous Computing for Eye Tracking

Continuum, Figure 4.1).

Figure 4.1: Ubiquitous Computing for Eye Tracking Continuum: 3-dimensional space
highlighting the complexity (1 : 1 : N) that is addressed by this chapter.
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The results of this chapter led to one publication [95] and contributed to [91]. Related

work that belongs to this chapter can be found in Sections 3.2 on calibration of head-

mounted eye tracking systems and in particular in 3.2.2 on re-calibration strategies.

4.1 Introduction

Gaze-based interfaces have been studied for the last two decades. Head-mounted as

well as remote eye tracking systems are used to determine people’s gaze on a surface,

for example a display (outlined in Section 3.1.1). However, most state-of-the-art sys-

tems need a calibration procedure before they can be used (discussed in Sections 3.2

and 1.5). When using a head-mounted eye tracking device, many factors can influence

the stability of the calibration. These include changes in the eye physiology, in the

environment (e.g., light conditions) and in the positions of the cameras attached to

the glasses frame. Some of these changes are not controllable, but all lead to less

accuracy over time and are denoted correctly as calibration drift. The straightfor-

ward approach to counteract these effects is to re-calibrate the eye tracking system at

certain time intervals, which is cumbersome and time consuming. Many works exist

that investigate different methods for how to re-calibrate the eye tracker (discussed

in Section 3.2.2). Each of these approaches has at least one issue that makes it in-

appropriate to be used in settings, in which real-time eye tracking is required (e.g.,

interactive scenarios). We will provide methods that resolve the existing drawbacks

of these approaches, in particular for head-mounted eye tracking devices.

The chapter is structured as follows. First, in Section 4.2.2, we present our novel

time-efficient re-calibration approach. In particular, we address the calibration drift

for video- and interpolation-based, head-mounted eye tracking systems. In these sys-

tems, the calibration procedure requires the user to look at several visual stimuli,

presented, most likely, on a display. During this phase, a mapping function is esti-

mated, that is needed to translate eye into gaze positions. Basically, we are using a

subset of the initial calibration points to re-calibrate the system after the occurrence

of a calibration drift to estimate an updated mapping function. To achieve this we

will present four different adaptation methods. Each one can be used to compute the

changes of the stored calibration needed to adapt the gaze estimation accordingly.

Second, in Section 4.3.1, we will present the experiment, we conducted to investigate

the effectiveness of the different re-calibration strategies. In a controlled laboratory

experiment with 16 participants we compared the different adaptation methods with

respect to gaze estimation accuracy on a desktop screen. In order to assess the effec-
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tiveness, we simulated two kinds of calibration drift: changing the distance between

the user and the display, and taking off and putting on the eye tracking device. We

were able to show, that we can save up to 90% of the time compared to the required

time for a full calibration and are able to reduce the gaze estimation error to 0.5◦ com-

pared to the initial accuracy. After that, we discuss the findings of the evaluation in

Section 4.4. We will derive rules that allow a proper selection of re-calibration-points

and give an indication regarding which adaptation method to use. Finally, in Section

4.5, we will discuss how the approach contributes to the the overall research question

of this thesis.

The contributions of this chapter are the following: We discuss a new approach for a

fast re-calibration of a head-mounted eye tracking system, which improves the gaze

estimation accuracy after the occurrence of a calibration drift. Based on this novel

approach, we give an overview on the optimal re-calibration point combinations and

adaptation methods leading to the best possible improvement of gaze estimation in a

display scenario. According to the results of an in-depth evaluation of the developed

approach, we define two guidelines to derive the optimal arrangement of calibration-

points. Related work can be found in Sections 3.1.1 and 3.2.

4.2 Studying the Long-Term Usage of Head-Mounted

Eye Trackers

The most prominent head-mounted eye tracking devices are based on the Pupil Cen-

tre Corneal Reflection (PCCR) technique and are usually equipped with two types

of cameras (e.g., Pupil Labs1, Tobii Glasses22). One or more cameras are typically

used to capture a close-up view of a person’s eye to track its pupil and movements

(eye cameras). An additional camera records a person’s view (scene camera). Al-

ready in Section 3.2 we learned that a user-dependent calibration is needed to create

a mapping between the pupil positions in the eye and the gaze positions in the scene

camera’s coordinate systems. This procedure requires a person to fixate on visual

stimuli, for instance AR markers that are shown on a display. In Section 3.2.3 we

discussed various investigations to enhance the calibration procedure by using an al-

ternative way of data sampling and making it more convenient (especially [150] and

[26]). Due to the occurrence of calibration drift, head-mounted eye trackers have to

be repeatedly re-calibrated over time. Reasons for calibration drift include changes

1https://pupil-labs.com/pupil/
2https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
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in the eye physiology (e.g., wetness of the eye), in the environment (e.g., lighting

of the room or sunlight) and change of orientation and/or distance to the object

on which gaze should be estimated (parallax error). In particular the latter might

occur frequently for gaze-enabled interactive multi-user applications (cf. Ubiquitous

Computing for Eye Tracking Continuum, Figure 1.1, complexity 1 : 1 : N), as il-

lustrated by the Collaborative Newspaper system [100] in Chapter 1.5. There we

also discussed that if no further instrumentation or augmentation of the display is

done, re-calibration is the only way to correct for lowered gaze estimation accuracy.

As a consequence, using state-of-the-art head-mounted eye tracking systems is cum-

bersome in such interaction scenarios, in particular in long-term setups. Necessary

re-calibrations in the sense of executing full calibrations to replace outdated calibra-

tion data is thereby time-consuming and distracts from the actual task (e.g., reading).

We present a new approach to address calibration drift. With our method, we peri-

odically invoke a partial re-calibration procedure to counteract the calibration drift

that has been established since the last full calibration routine. The re-calibration

algorithm of our approach takes far less time than the standard 9-point calibration

routine while achieving competitive gaze estimation results. We use a subset of the

full calibration points for re-calibrating the system. The information gathered during

this re-calibration is then used to establish an updated mapping function with new

coefficients that will improve the gaze estimation accuracy after a calibration drift.

We used the head-mounted eye tracking framework developed by Pupil Labs [78] as

it can easily be extended through its open-source approach.

Existing methods use only one point on a display for re-calibration [176] or require

additional input methods and assumptions [61]. Our approach does the error correc-

tion in real-time and does not need any further input devices. Moreover, the method

is able to handle sudden increases of calibration drift and a varying error across the

screen.

In the following, we will describe the calibration procedure (in Section 4.2.1) we are

working with and our new time-efficient approach (in Section 4.2.2). Everything is

based on the open-source head-mounted eye tracking framework Pupil Labs and the

corresponding device.
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4.2.1 Eye Tracker Calibration

Head-mounted eye trackers are calibrated, prior to usage, to map 2D pupil positions

from the eye to 2D gaze positions in the scene camera’s coordinate system (cf. Chapter

3.2.2). To recap, performing a 9-point calibration, data is sampled as follows: Facing

the target display covered by the scene camera’s field of view, the user fixates a

visual marker shown at nine different subsequent on-screen locations c ∈ C, each for

a defined time interval. During this time span, the system records calibration point

tuples cp, containing the 2D positions of the pupil (x1cal , y1cal) and the corresponding

visual marker (x2cal , y2cal) in their respective camera coordinate systems (depicted in

Figure 6.7).

Figure 4.2: Illustration of eye and world view with sampled data of the eye position
and the on-screen marker position.

The set of calibration points Cal is used to calculate the coefficients for the map-

ping function MCal between the two camera coordinate systems. The coefficients are

obtained by solving a linear equation system – one equation per calibration point –

aggregating the points in Cal accordingly. Once calculated, MCal can be changed by

modifying the coefficients, leading to different gaze estimations. For more informa-

tion concerning the calibration procedure, we refer the reader to the first paragraph

in Section 3.2.

4.2.2 Time-Efficient Recalibration

Our approach uses a subset of the initial calibration points (C) to reduce the time

spent for re-calibration. This minimizes interruption and distraction for the user while

preserving the system’s accuracy, even for longer-lasting eye tracking sessions. The
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set of re-calibration points R,R ⊂ C delivers new re-calibration tuples rp consisting

of pupil and on-screen marker positions for every location r ∈ R:

rpRecal = (x1recal , y1recal , x2recal , y2recal).

With the set of re-calibration points Recal, we compute the offset between the values

Calcp, cp ∈ Cal recorded during the full calibration and current re-calibration values

Recalrp for every re-calibration point rp ∈ Recal:

offsetrp = Calcp −Recalrp
= (x1cal , y1cal , x2cal , y2cal)− (x1recal , y1recal , x2recal , y2recal).

The computed offset values offsetrp are used to estimate the changes for the values

Calcp of those calibration locations c that were not part of the re-calibration, c ∈
(C \ R). The estimated changes lead to updated values Cal′cp, ∀cp ∈ (Cal \ Recal)
that can be used to create an updated mapping function MRecal in combination with

the values Recalrp,∀rp ∈ Recal. In the case that p ∈ R, the values of all calibration

point recordings are replaced by the ones obtained during re-calibration; otherwise

they are updated based on the shift that was recognized. Hence, the updated mapping

function MRecal yields more accurate results than the original mapping function MCal.

We used different methods to estimate the changes in pupil and calibration-marker

positions of those calibration points that were not part of the re-calibration:

• Overall Offset (OO) computes a tuple ocp out of the re-calibration points’ offset

values offsetrp:

ocp =
∑

r∈R offsetrpk
|R| , with k ∈ x1, y1, x2, y2.

This tuple ocp is added to all tuples Calcp where c ∈ (C \ R), to obtain the

updated calibration values Cal′cp = Calcp + ocp.

• Averaged Offset of Nearest Neighbors (NN ) computes a distinct offset for every

point c ∈ (C \R) based on the averaged offsets of the point’s nearest neighbors

that were part of the re-calibration. The sets of nearest neighbors,

NNcp = {p ∈ R | d(cp, p) is minimal},

are calculated using the Euclidean distance w.r.t. the ratio of the calibration area

(NNR) or normalized values (NNN) distance function. Finally, the averaged

offset ocp,
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ocp =

∑
p∈NNcp

offsetrpk
|NNcp| , with k ∈ {x1, y1, x2, y2},

is computed for every point c ∈ (C\R), to update the calibration values Cal′cp =

Calcp + ocp.

• Inverse Distance Weighting (IDW ) computes a distinct offset for every calibra-

tion location c ∈ (C \ R) based on the inverse distance weighting [170]. The

overall offset tuple ocp is computed by multiplying a weighting w(rp, cp, exp)

(∀r ∈ R and c ∈ (C \R), exp = 2) with individual offset values offsetrp:

ocp =
∑

r∈R w(rp, cp, exp)× offsetrpk , with k ∈ {x1, y1, x2, y2}.

The computation for the updated values Cal′cp remains the same as in the pre-

vious approaches.

Implementation

Our system consists of two components: (1) a monocular head-mounted Pupil eye

tracker connected to a laptop; and (2) a 23-inch display. The eye tracking re-

calibration algorithms are written in Python and integrated as a plugin in Pupil’s

open-source framework running in real time. Thus, the re-calibration methods can be

accessed via a graphical user interface. To update and compute the mapping func-

tion, the scientific computing package NumPy3 is used. For gaze estimation on the

display, Pupil’s integrated marker tracking plugin4 is used to define and track the

display. Therefore, a set of four visual markers on the display corners for tracking the

orientation between the eye tracker and the display is used.

4.3 User Evaluation

We conducted a controlled laboratory experiment in order to investigate the effec-

tiveness of our approach as well as to determine the optimal adaption method and

selection of re-calibration points in relation to the required time. We thereby focused

on two common situations that are known to rapidly increase calibration drift: on the

one hand, changes in the distance between user and display and on the other hand,

taking off and putting back on the eye tracker. Both circumstances are likely to occur

when an eye tracking device is used for a long time.

3www.numpy.org
4www.pupil-labs.com/blog/2013/12/036-release.html
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Participants

We recruited 16 participants (4 female), aged 19 to 58 years (M = 28.5 years, SD

= 10.44 years) with a body height between 160 cm and 186 cm (M =174.44 cm, SD

= 8.13 cm). Half of the participants reported that they have had prior experience

with eye tracking, mainly through participation in other user studies. All of the

participants had normal or corrected-to-normal eyesight. To ensure a good tracking

result for the pupil, they were asked to participate without using makeup in the area

of the tracked eye.

Apparatus

We decided to use the Pupil Labs Pro device5, a monocular, head-worn eye tracker, as

its open source software made it possible to integrate our approach for the evaluation.

It furthermore integrates a marker-tracking plugin to define and identify arbitrary

surfaces in the environment on which AR markers are attached. We used it to map

the participant’s estimated gaze onto the display by using visual on-screen markers.

The 23 inch monitor used was operated with its native resolution of 1920 x 1080 pixels

and equipped with four markers at its corners for the aforementioned tracking plugin.

A schematic of our study setup is depicted in Figure 4.3.

Figure 4.3: Experiment Setup: A 23-inch computer monitor placed on a table at a
height of 120 cm. The participant was standing at a distance of 50 or 100 cm in front
of the display, wearing a head-mounted eye tracking device.

5https://pupil-labs.com/blog/2014-01/new-pupil-pro-headset-capture-software-0-3-7/
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Procedure

As outlined before, we focused on two conditions, namely a distance change (50 cm

vs. 100 cm, measured from the display) and putting down the eye tracker between

measurements (take-off vs. keep-on). In order to test all combinations of the two in-

dependent variables, we conducted several experiment blocks, each consisting of two

test runs (see Table 4.1). For example, the first test run of the first experiment block

was conducted with the short distance, the second one with the long distance, while

the eye tracker was taken off between the two runs.

Each test run was divided into two parts: First, the standard 9-point calibration

provided by the Pupil software was executed. This enabled us later to evaluate all

our proposed re-calibration methods with all possible point combinations in an of-

fline manner. Afterwards, a data recording session for the analysis was conducted.

For this, the screen was divided into 24 parts (a grid consisting of 6 columns and 4

rows). In random order, a red dot was displayed in the middle of each of these 24

areas for three seconds and the participants were requested to fixate the points one

after another. To increase user comfort during this part of the evaluation, the screen

brightness was reduced by using a mid-gray background color.

Experiment block Distance Device taken-off

Test run 1 Test run 2

1 50 cm 100 cm •

2 50 cm 100 cm ◦

3 100 cm 50 cm •

4 100 cm 50 cm ◦

5 50 cm 50 cm •

6 50 cm 50 cm ◦

7 100 cm 100 cm •

8 100 cm 100 cm ◦

Table 4.1: Design of the experiment blocks and test runs (• device was took off, ◦
device was not took off).
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In total, 16 test runs (8 blocks with two runs each) were conducted per participant.

To reduce fatigue effects, we introduced a break of about 90 seconds between two

subsequent test runs. Furthermore, we split the procedure in two sessions with an

average duration of 45 minutes each. In order to reduce carry-over effects between

different experiment blocks, we counterbalanced the execution order by using a bal-

anced Latin square. The eye tracking data was recorded at 30 Hz, resulting in 90

recorded samples for every presented target in our data recording session. The first

45 samples as well as the last 10 were not considered, in order to account for the time

the participants needed to find the target and their tendency to look in advance for

the next one towards the end. Based on the remaining 35 frames, the average fixation

position was computed.

The collected data consisted of the following: For each block, we got an initial map-

ping MFirst for the first full calibration and another one MSecond for the subsequent

full calibration. Corresponding to each of the mappings, we also obtained a set of

24 test recordings evenly distributed across the screen. Based on a subset R of the

calibration points used in MSecond and the initial mapping MFirst, we were able to

compute corresponding functions MRecalR following the approaches presented above.

These newly created mapping functions based on a subset of calibration points are

those to be evaluated against the ground-truth function, namely MSecond. For the

evaluation itself, we examined the test data that was recorded after the second full

calibration and evaluated it with respect to the average gaze estimation error in de-

grees of visual angle – first with the mapping function MSecond as baseline and then

with the newly created mapping functions MRecalR .

4.3.1 Results

To be able to properly interpret the achieved accuracy values, we first examined

the overall gaze estimation accuracy of the test data set based on the corresponding

recorded full calibrations as they provide the baseline we want to compete against

with our new approach. The gaze estimation accuracy across all participants and

study blocks for the initial full calibrations MFirst was 1.18◦(SD = 0.69◦). For the

subsequent full calibrations MSecond, an average accuracy of 1.41◦ was achieved. A

paired-samples t-test showed a significant difference between the initial calibration

(M = 1.18◦, SD = 0.69◦) and the subsequent calibration (M = 1.41◦, SD = 1.07◦),

t(127) = 3.08, p < 0.05. Cohen’s effect size value (d = 0.26) suggested a low to

moderate practical significance. When evaluating the second test data set using
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the initial mapping function MFirst, the accuracy drops to 4.91◦ as expected. A

paired-samples t-test showed a significant difference between the initial calibration

(M = 4.91◦, SD = 4.4◦) and the subsequent calibration (M = 1.41◦, SD = 1.07◦),

t(127) = 9.28; p < 0.05. Cohen’s effect size value (d = 1.09) suggested a high practical

significance.

Figure 4.4: Difference in gaze estimation error w.r.t. the full calibration mapping
MSecond. The results are based on the data recorded during the second test run.

As the presented time-efficient re-calibration approaches can be used with any num-

ber of re-calibration points (1 to 9, where 9 equals a full calibration), it is important

to check which number of points deliver a good trade-off between time consumption

for the re-calibration and resulting accuracy. We therefore examined the relation be-

tween number of points used and the difference in gaze estimation error between the

resulting re-calibration and the corresponding full calibration as the baseline (shown

in Figure 4.4).

We decided to examine only re-calibrations with five points or less. Using more

points is not efficient with respect to the trade-off between achieved accuracy and

time needed for the re-calibration procedure, as the average improvement in gaze

estimation error drops below 0.1◦ in visual angle. Further analysis of the four differ-

ent re-calibration methods revealed slight differences (below 0.1◦ on average) among

them. However, for two calibration points, a one-way ANOVA with Greenhouse-

Geisser correction applied showed a significant difference between the four methods
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Exp. block 1 2 3 4 5 6 7 8

Mapping 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Mean 7.58 1.35 2.73 1 7.92 2.15 3.01 1.25 6.66 1.69 2.41 1.39 7.14 1.3 1.86 1.15

SD 4.98 1.08 2.32 0.78 6.05 2.83 2.2 0.84 3.92 1.56 2.23 1.24 5.75 1.04 1.49 0.8

Table 4.2: Accuracy of mapping functions MFirst and MSecond per experiment block
in degrees. Evaluated for the second test data set.

(F (1.234, 156.708) = 7.989, p < 0.05). A post-hoc analysis based on pair-wise com-

parisons with Bonferroni correction in effect revealed significant differences (p < 0.5◦)

between all combinations of re-calibration methods, but NNN and OO as well as IDW

and OO.

As we previously examined aggregated results across all eight conditions, we now

further analyzed the individual experiment blocks. Table 4.2 lists the results for the

accuracy of the mapping functions MFirst and MSecond when applied to evaluate the

test data of the second test run. The results reveal that the highest error occurs when

both the distance was changed and the eye tracker was put down between the test

runs. In these cases (blocks 1 and 3), the average error increases to more than 7◦.

The second highest error occurred when taking down the eye tracker during the break

but not changing the distance (blocks 5 and 7, increased by 5.4◦ on average). Only

changing the distance (blocks 2 and 4) introduced an additional error of 1.8◦whereas

Figure 4.5: Difference in the gaze estimation error w.r.t. MSecond. The results are
presented per experiment block and number of re-calibration points based on the
data recorded during the second test run.
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the normal drift over time, without any changes in distance or putting down the de-

vice in between test runs results in an additional error of 0.9◦ (blocks 6 and 8).

Consequently, we investigated how our time-efficient re-calibration algorithm behaves

in these situations. Figure 4.5 shows the differences in the gaze estimation errors be-

tween re-calibration combinations with the respective amount of re-calibration points

| R |, resulting in mapping functions MRecalR , and the mapping function MSecond of

the full calibration. To illustrate the improvement compared to the outdated mapping

MFirst, we also illustrated the difference in the gaze estimation error between MFirst

and MSecond.

We further analyzed the distribution of points that should be chosen for a re-calibration,

i.e. if using | R |= 4 points, which four points should be selected out of the available

nine that are used for a standard full calibration (see Figure 4.6). We started by exam-

ining the selection for | R |= 1. In this case, our four proposed adaption methods NNN,

NNR, IDW and OO do not establish different mapping functions, resulting in only

nine different re-calibration settings. A one-way ANOVA with Greenhouse-Geisser

correction applied showed a significant difference in the accuracy with respect to the

nine single point re-calibrations and the standard full calibration MSecond we consider

as the baseline (F (2.664, 39.958) = 42.173, p < 0.05). A post-hoc analysis based on

pair-wise comparisons between MSecond and the nine single-point re-calibrations re-

vealed significant differences in eight cases (p < 0.05); only the re-calibration based

on point 6 did not show a significant difference.

Figure 4.6: The nine points used for recalibration, labeled with their identifiers (0 to
8).
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We continued the analysis with the time-efficient re-calibrations with two to five

points. We separately looked into the four proposed adaption methods NNN, NNR,

IDW and OO. For each of them, four different analyses w.r.t. the number of re-

calibration points used were performed. Based on these analyses, we created two sets

Sp and NSp that contain those point selections with p points that result in signifi-

cantly (Sp) or not significantly (NSp) different accuracy w.r.t. the baseline MSecond.

For the point selections in the sets NSp, the null hypothesis that there is no difference

between the means of gaze estimation error cannot be rejected. This means that we

were able to create a successful mapping function with the respective re-calibration

combination in this special case. However, we cannot make general assumptions about

the goodness of this created mapping function.

We continued our examination by checking whether the selection of points for the

re-calibration is important. For this, we defined two rating functions to express the

calibration area coverage achieved by the selected points. For the case of | R |= 2,

i.e. re-calibrations with only two calibration points, we consider the covered axes

intercepts based on the following formula:

axisIntercept((x1, y1), (x2, y2)) =| x1 − x2 | + | y1 − y2 |

with (x1, y1) and (x2, y2) indicating the coordinates of two re-calibration points in a

normalized coordinate system with an edge length of 1, respectively. Based on this

formula, the highest value of 2 can be achieved by selecting two corner points on

the diagonal, whereas two adjacent points parallel to one of the axes yield the lowest

value of 0.5. A Welch’s unequal variances t-test showed a significant difference in

the axis intercept values between the groups NS2(M = 1.33, SD = 0.49)andS2(M =

0.95, SD = 0.42); t(20.74) = 3.17, p < 0.05.

For more than two points (| R |> 2), we consider the area that is covered by the

polygon drawn by the selected calibration points. The area of an arbitrary polygon

that is not self-crossing can be computed with the following formula:

area((x1, y1), ..., (xn, yn)) = 0.5 ∗ (x1y2 − x2y1 + x2y3

−x3y2 + ...+ xn−1yn − xnyn−1 + xny1 − x1yn),

with normalized re-calibration coordinates (x1, y1), ..., (xn, yn). For all amounts of re-

calibration points used (3–5), a Welch’s unequal variances t-test showed a significant

difference in the covered area (shown in Table 4.3).
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| R | M(NS) SD(NS) M(S) SD(S) t-test (p < 0.05)

3 0.28 0.15 0.19 0.12 t(97.06) = 4.49

4 0.48 0.18 0.37 0.13 t(273.61) = 7.31

5 0.62 0.18 0.50 0.13 t(436.62) = 8.60

Table 4.3: Results of Welch’s unequal variances t-test of the covered polygon area
between NS|R| and S|R|.

To get a better understanding of point distributions that work well vs. poorly, we

illustrated the gaze estimation errors w.r.t. to the 24 screen areas used in the data

recording sessions. For space reasons, we show only one example case here. For

each target, 128 estimated gaze positions (16 participants × 8 experiment blocks) are

depicted by a red circle and connected to the actual target position by a line. Figure

4.7(1) shows the gaze estimations based on the corresponding standard full calibration

MSecond, 4.7(2) illustrates the results when using the outdated calibration MFirst, and

Figure 4.7: Gaze estimations based on different mapping functions of the re-calibration
combinations for the data of the second test run. Numbers in subscript indicate the
calibration points that were used in this re-calibration.
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4.7(3) and 4.7(4) present the results when using the best- and worst-performing time-

efficient re-calibration with three points, respectively. The results show that even the

worst-performing time-efficient three-point re-calibration yields better results than

the out dated first calibration with nine points. However, it can also be seen that

carefully choosing the points used in the re-calibration can substantially improve the

results. Furthermore, the gaze estimation error in the worst case varies heavily across

the screen. As the used calibration points 3, 6 and 7 are all located in the lower left

corner, the accuracy in this area is acceptable, whereas it is relatively poor across the

rest of the screen.

4.4 Discussion

Considering the accuracy of the full calibrations MFirst and MSecond, we have seen a

significant difference between them. As the whole study was conducted within the

same environmental conditions and we counterbalanced the experiment conditions, it

is highly probable that the major part of the differences originated from participants’

fatigue effects. Although we split the experiment into two sessions and introduced

breaks after each test run, still 8 x 24 = 192 targets and 8 x 9 = 72 calibration points

had to be fixated per experiment session. Consequently, the presence of fatigue de-

spite our countermeasures is not surprising and further emphasizes the necessity to

reduce the amount of fixations needed for (re-)calibrations, which is achieved through

our proposed time-efficient re-calibration approaches.

The key questions for our approach are (1) how many and (2) which points should be

used for a time-efficient re-calibration that again yields an eye-tracking system with

high accuracy. As presented above, adding more points to the re-calibration obviously

improves the result; however, there is no linear or nearly linear relation, but rather

a log-like one (cf. Figure 4.5). Still, the time needed for re-calibration follows a lin-

ear trend. As the improvement in the accuracy drops below 0.1◦ in visual angle per

added point when using more than five points, we focused on re-calibrations with five

or fewer points, resulting in a possible time savings between 40% and 90% compared

to a full calibration.

In our experiment, we focused on two conditions that are known to rapidly increase

calibration drift, namely taking the device off and putting it back on, as well as

changing the distance between user and tracked screen. We could show that our

re-calibration approach is highly effective in counteracting calibration drift that orig-
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inated mainly from putting down the eye tracker (experiment blocks 5 and 7). On

average, even re-calibrations with only one or two points yield valuable results. They

decrease the additional gaze estimation error below 0.5◦. However, in cases in which

the distance between the user and the tracked display is changed (experiment blocks

1–4), more calibration points may be required to achieve high accuracy values. The

outdated full calibration MFirst adds an additional gaze estimation error of 1◦ to 1.5◦,

which might be too much, depending on the use case. Our results suggest to use three

or more points for the re-calibration if larger distance changes between the user and

the tracked screen are expected.

The previously discussed results already indicate that the time-efficient re-calibration

approach with fewer calibration points works in general. However, we have not yet

considered the choice of the calibration points. A proper selection is important for

the resulting accuracy and might also reduce the necessary number of points further,

i.e. a re-calibration with three well-chosen points might yield better results than one

with four poorly chosen calibration points. We therefore further examine the point

selection process.

Stampe [176] proposed to use the center point, i.e. point 4 according to our nam-

ing convention, for re-calibrations with only one point. In contrast to this finding, the

re-calibration based on point 6 yielded the best results in our evaluation. However,

this could be related to our specific experiment setup, i.e. tracking only the user’s

right eye, resulting in point 6 having the largest distance to the user’s tracked eye.

Further investigation is needed to examine whether a correlation between this distance

and the resulting accuracy exists. For example, it could be checked whether a similar

effect occurs when tracking the left eye, in this case w.r.t. point 8. Also, an inves-

tigation of a binocular setup might be of interest for re-calibrations based on one point.

Regarding re-calibrations with two to five points, 372 different calibration point com-

binations have to be considered. As illustrated above, we can calculate a value that

indicates the coverage of the chosen points w.r.t. the screen area. In the case of two

points, we consider the axis intercept values; for three or more points, the area of the

spanned polygon is considered. Furthermore, we can divide the point selections into

two groups: one that leads to mapping functions with significantly different accuracy

compared to our baseline MSecond, and the other without a significantly different ac-

curacy. The comparison of these two groups w.r.t. axis intercept value or spanned
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polygon area revealed that it is better to choose re-calibration combinations with point

distributions that maximize the respective value. When considering all re-calibration

combinations individually, we see that those resulting in the lowest added gaze esti-

mation error at the same time maximize the axis intercept value or spanned polygon

area, which further supports this finding. In contrast, the re-calibration combinations

with the highest gaze estimation errors only achieved low values concerning cover-

age. Furthermore, properly chosen point distributions yield accurate results across

the whole screen area, whereas otherwise, parts of the screen show large added errors

(cf. Figure 4.7d).

Based on the results from above, we recommend two rules for selecting the appro-

priate point distribution:

1. Axis intercept values/polygon area should be maximized.

2. Calibration points in the corners should be preferred.

According to these rules, the following sets of points should be chosen for re-calibration

in our setting using a nine-point calibration:

# Combinations Mean SD Gain Time

2 [0,8], [2,6] 1.62◦ 1.57◦ 94.0% 9

3 [0,2,6], [0,2,8], [0,6,8], [2,6,8] 1.52◦ 1.57◦ 96.8% 12

4 [0,2,6,8] 1.51◦ 1.50◦ 97.1% 15

5 [0,1,2,6,8], [0,2,3,6,8], [0,2,4,6,8], [0,2,5,6,8], [0,2,6,7,8] 1.49◦ 1.44◦ 97.7% 18

Table 4.4: Point combinations yielding the best results (mean and standard deviation
of the gaze estimation error in degree), chosen based on the two rules defined above.
In addition, the gain in accuracy and the time in seconds needed for re-calibration
are shown.

The resulting gaze estimation error, averaged across all experiment blocks and par-

ticipants, was always at most 0.4◦ worse than the mapping function MSecond (M =

1.41◦, SD = 1.46◦) which is based on a 9-point full calibration. Table 4.4 states

the mean gaze estimation error for the optimal re-calibration point structures. With

that, we can take a deeper look into the gain in accuracy when performing a certain

re-calibration. Remember that the average gaze estimation accuracy using MFirst is

4.91◦(SD = 4.68◦). Hence a 100% gain in accuracy is achieved by using MSecond,

which increases the gaze estimation accuracy by 3.50◦on average. For all point com-

binations, we were able to achieve an increase of more than 90% in gaze estimation
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accuracy. In addition the required time for the re-calibration is shown, which results

in a savings of 40% to 70% (30 seconds are needed for a full re-calibration).

Apart from the chosen point distribution, the selected adaption method might also be

of relevance. For our evaluation, we considered four adaption methods, namely the

overall offset approach (OO), the nearest neighbors approach (based on normalized

values (NNN) or w.r.t. the calibration area ratio (NNR)) and the one based on inverse

distance weighting (IDW). Averaged across all re-calibration point combinations with

the same number of calibration points, the comparison of these methods showed that

they only deliver significantly different results in the case of two calibration points.

In general, our results suggest that OO and IDW are more robust w.r.t. the re-

calibration point distribution. This is not surprising when considering the strategy

behind the approaches. In the case of OO, all available re-calibration points are taken

into consideration to compute the values for the missing points, thereby providing the

most global approach. IDW already considers a slightly more local method, as near

points are considered to have more impact. Still, all available, new and thereby possi-

bly more accurate information is taken into account. In contrast to that, the nearest

neighbor approaches only consider a subset of the available points for computing a

missing value. Hence, using an approach that works more globally such as IDW or

OO, yields better results, as more information is considered for the computation of

each missing point.

Adaptation Method NNN NNR IDW OO

Gaze Estimation Error (◦) 1.59 1.61 1.57 1.60

Table 4.5: Mean gaze estimation error in degrees for each adaptation method when
performed with the twelve superior point distributions.

The results of Table 4.5 show that the difference in the gaze estimation error between

the four adaption methods drops below 0.05◦if properly distributed re-calibration

points are used. The inverse distance approach (IDW) performs slightly better than

the remaining methods. This result clearly shows that choosing a meaningful point

distribution is much more important than the selection of the adaption method.
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4.5 Application to research questions

In this section we will elaborate upon the contribution of the time-efficient re-calibration

approach to the problems defined in Chapter 1.4 and the research questions defined in

Section 1.6. In particular, we will highlight the hypothetical integration of the method

into the Collaborative Newspaper application, presented in Chapter 1, to address its

practical problems (outlined in Section 1.5).

In our problem statement in the beginning of this thesis, we derived five interre-

lated issues that prevent the transition of head-mounted eye tracking devices into a

ubiquitous computing device. We found the calibration procedure, required prior to

the usage of head-mounted eye tracking glasses, to be the main problem, which in fact

leads to many other issues. In this chapter we pursued the particular sub-problem

of calibration drift. Recall that this effect causes head-mounted eye trackers to need

to be repeatedly re-calibrated. In Section 4.2.2 of this chapter, we proposed a new

approach to tackle this problem. The developed method reduces the time needed for

updating the existing calibration. Note that we do not actively counteract the dif-

ferent types of calibration drift. Changes in the eye physiology, the environment and

moving users will still cause negative impacts on gaze estimation accuracy over time.

Applying the time-efficient re-calibration approach is a faster way to re-establish the

initial gaze estimation accuracy.

However, the work presented in this chapter is an important component of the answer

to our formulated research question (see in Section 1.6). After the detailed presenta-

tion of our four approaches in Section 4.2.2, as well as the extensive investigation in

Sections 4.3.1 and 4.4, we can formulate the answers to the following sub-questions.

2. What is the long-term accuracy of current head-mounted eye trackers?

3. How can we efficiently re-calibrate head-mounted eye trackers and recover the

initial gaze estimation accuracy?

In order to effectively study the developed approaches for re-calibration, we let sev-

eral participants perform a simple gaze pointing task in a single display scenario. We

focused on two conditions that increase calibration drift, i.e. removing and replacing

the head-mounted device as well as changing the distance between the participant

and the target display. On average, the complete experiment took about 90 minutes,

split up into two equal sessions. We discovered that the gaze estimation accuracy dif-

fered significantly between different test runs (cf. Section 4.3.1 for details about the
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study). As we conducted the experiment in the same laboratory and counterbalanced

the study conditions we can conclude that the different gaze estimation accuracy orig-

inated mainly from the users’ fatigue effects. If we consider that the participants had

to fixate 240 targets and 90 calibration points per session, the occurrence of fatigue

cannot completely be ruled out.

We can now argue definitely more about the long-term accuracy of head-mounted

eye trackers. Besides the usual occurrence of different sources of calibration drift, fa-

tigue effects of the individual user have a major impact on gaze estimation accuracy.

This may be dependent on the actual task of the user. In our case, people had to

perform many fixations on a display. However, by incorporating pauses within the

experiment as well, this effect was significant. The fact that the complete study lasted

for about 90 minutes per participant indicates that the gaze estimation accuracy will

get even worse during longer use of head-mounted eye tracking systems. Finally, we

cannot argue about the actual long-term accuracy as a discrete value, but rather we

showed that it deteriorates due to the aforementioned reasons. The logical conse-

quence is to reduce the number of fixations required for (re-)calibrations, which leads

us to the next question.

We proposed four different methods for re-calibrating a head-mounted eye tracker

that is based on the PCCR method for eye tracking and implements interpolation-

based gaze estimation. Regardless of the approach – Overall Offset, Averaged Offset

of Nearest Neighbors (two versions) and Inverse Distance Weighting – it is possible

to achieve a time savings of 40-90% compared to a full calibration with nine points.

There is obviously a trade-off between saved time and the updated gaze estimation

accuracy, i.e. the better the re-calibration should be in terms of accuracy, the more

points have to be used. In fact, a maximum of five points (for a nine-point calibration)

recovers the eye tracker’s accuracy while still being efficient concerning the required

time. However, we learned that the number as well as the distribution of re-calibration

points is more important than the actual method.

After answering the research questions, we also want to illustrate the advantages

of our developed approaches in an interactive scenario. For this, we want to draw the

reader’s attention back to the Collaborative Newspaper application that we presented

in Section 1.5. A main requirement for the system to work is a steadily high-accuracy

gaze estimation. This application use case constitutes a prime example for a long-
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term setting that would suffer from disruptive re-calibrations. If a user is reading

multiple texts, many situations may occur that cause a calibration drift. For exam-

ple, for ergonomic reasons, the user may change the position of the head-mounted

device. Besides that, the lighting conditions may change, or the task of reading text

on a display may cause fatigue effects. Although all these possibilities are hypotheti-

cal, the proposed time-efficient re-calibration strategies will definitely counteract the

interruption caused by re-calibration. Consequently, the people currently using the

system can continue with reading more quickly.

4.6 Summary

Motivated by the increasing use of video- and interpolation-based eye tracking sys-

tems and their problems with calibration drift, we developed a new time-efficient

re-calibration algorithm to counteract the occurrence of calibration drift. Instead

of using the time-consuming standard calibration procedures, which are tedious and

cumbersome for the user, we use a re-calibration method that relies on a subset of the

calibration points. In contrast to existing approaches, our time-efficient re-calibration

method works in live settings, improves accuracy compared to the original calibration,

and does not need any additional input devices. Furthermore, it can handle sudden

increases of calibration drift, and considers the varying error across the screen.

We conducted an experiment in which we compared the achieved gaze estimation

accuracy when re-calibrating with our method against a full calibration and the origi-

nal calibration after the occurrence of two different drift events. Our results show that

our approach compares well to the other possibilities. We were able to achieve accu-

rate results concerning gaze estimation accuracy while considerably reducing the time

needed for re-calibration. With this approach, the usage of head-worn eye tracking

devices can be improved, especially in long-term settings that do not permit time-

consuming and thereby disruptive re-calibrations.

With this chapter we answered two sub-questions of the formulated research ques-

tion in Section 1.6, investigating the problem of calibration drift and the necessary

re-calibration (cf. Sections 1.4 and 1.5). We are now able to address the calibration

drift in terms of reducing the time required for recovering the initial gaze estima-

tion accuracy of a head-mounted eye tracking system. The presented approach for

re-calibration may thus improve eye tracking in multi-user scenarios, as defined in our

continuum (cf. Figure 4.1, complexity 1 : 1 : N). However, we still have to calibrate
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on the surface we want to estimate gaze on and have no ability to counteract the

calibration drift itself. In the next Chapter, we will propose a system that further

investigates the aforementioned problems and present answers to more questions that

are the subject of this thesis.
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Chapter 5

Spontaneous Gaze Estimation

In this chapter we will elaborate on the problem, that the calibration should remain

invariant despite location and orientation changes, as defined in Section 1.4. Head-

mounted eye trackers are usually calibrated from a fixed position and orientation

between the user and the object that gaze should be estimated on (i.e. the target

object). Oftentimes a display is used to show the calibration procedure. If changing

the distance and/or orientation to the target object, or if gaze should be estimated on a

different surface, a re-calibration is needed. We will present an approach for accurate

and seamless gaze estimation across multiple displays. Note that displays can be

seen as a placeholder for various other objects. We will outline, how the approach

contributes in making head-mounted eye tracking devices more ubiquitous. Finally, we

will present a way of accurate gaze estimation on arbitrary objects in the environment

enabled by the proposed technology. Thus it enables complex eye tracking settings

with multiple displays and multiple locations (cf. Ubiquitous Computing for Eye

Tracking Continuum, Figure 5.1).

Figure 5.1: Ubiquitous Computing for Eye Tracking Continuum: 3-dimensional space
highlighting the complexity ((K x L) : M : 1) that is addressed by this chapter.
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The results of this Chapter have been presented in one main publication [93] and

contributed to two further publications [91, 102]. Work related to this chapter can be

found in Section 3.1.1 on gaze-based human computer interaction and Section 4.2.1

on eye tracker calibration.

5.1 Introduction

Gaze is a powerful modality for interacting with the rapidly increasing number of pub-

lic displays around us. Consequently, gaze-based interaction has received considerable

attention with a large range of applications (e.g., desktop control [71, 211], eye typing

[111], selection [180]). First prototypes used desktop-like settings and stationary eye

trackers in which a user’s head was fixed (regarding position and orientation). To

enable pervasive gaze-based interaction with situated displays in everyday settings

[19], eye tracking still faces the following key challenge: how can spontaneous and

transparent gaze-based interaction be facilitated on arbitrary objects and displays?

This chapter is structured as follows. First, in Section 5.2, we describe a novel way of

realizing accurate gaze estimation across multiple displays. Specifically, we propose

the concept of GazeProjector, a system that allows for accurate gaze estimation on ar-

bitrary displays independently of the user’s position and orientation. It only requires

a one-time calibration of the head-mounted eye tracker per user. The procedure can

be performed on any display and not necessarily on the one the user wants to interact

with. Afterwards, the system automatically transforms this calibration (i.e., the cal-

ibration plane) to other displays in real time. The basic idea is that the eye tracker

continuously tracks itself relative to different displays using natural feature tracking.

Second, in Section 5.3, we will present the evaluation in which we compared our

approach to a state-of-the-art OptiTrack1 motion capturing system as well as an AR

marker-based approach. In a controlled laboratory experiment with 12 participants,

we investigated the gaze estimation accuracy in two different scenarios. In the first

task, participants looked at on-screen targets from various positions and orientations

in front of a large projected screen. In a second task, we compared GazeProjector to

the AR marker-based approach on multiple displays. In both tasks, we found that

our approach compensated well for head movements (i.e., change of orientation) and

user relocation (i.e., change of location). After that, we will discuss the main findings,

benefits and limitations of the approach in Section 5.4.

1http://optitrack.com/
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We also outline some application use cases. In Section 5.6 we are going to elabo-

rate on the contribution of the system to the overall research question of this thesis.

Finally, in Section 5.6, we implement a system to allow for gaze estimation in real

environments enabled by GazeProjector. With this, researchers are able to conduct

in-the-wild studies and gain novel insights on pervasive gaze tracking that can be

used to analyze people’s visual behavior. The contribution of this chapter is a novel

method that enables:

• Location- and orientation-independent gaze estimation on a display (of

varying size/resolution) without requiring any instrumentation in the environ-

ment.

• Accurate gaze estimation on arbitrary displays in the environment with-

out requiring recalibrating the system for each display independently.

• Maintaining high gaze estimation accuracy without requiring recalibrating

the system for varying positions, orientations and displays.

We implemented the concepts of this method to create a new system, called GazePro-

jector, to enable both application developers (who wish to employ gaze as an additional

input modality) as well as researchers (who wish to study a user’s gaze) to apply eye

tracking in fully pervasive settings, as defined in Section 1.1 by the Ubiquitous Com-

puting for Eye Tracking Continuum (cf. Figure 1.1), without the need for augmenting

the environment. Summing up, we provide more answers to the overarching question

of how to use head-mounted eye trackers by addressing the problem of calibration and

its invariance.

5.2 GazeProjector – Accurate Gaze Estimation and Seam-

less Gaze Interaction Across Multiple Displays

Mobile gaze-based interaction with multiple displays may occur from arbitrary po-

sitions and orientations. However, maintaining high gaze estimation accuracy still

represents a significant challenge. We already learned in Chapter 3 (Section 3.1.1),

that the latest head-mounted eye tracking devices are commonly equipped with two

cameras: (1) a scene camera partly capturing a user’s field of view, and (2) an eye

camera recording a close-up video of the user’s pupil position. Such eye trackers have

to be calibrated to a specific user for a specific display before first use to establish a

mapping between the pupil’s 2D positions in each of the cameras’ coordinate systems.
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Across Multiple Displays

The calibration is typically performed for a fixed position and orientation of the user

to a single display the user intends to interact with. While this is less of an issue for

stationary settings and TV-sized displays, mobile settings and multiple – potentially

large – displays evoke two types of motion: (1) user movements in front of a single

display to inspect other parts of the display’s content, and (2) head movements to

reach targets outside the ocular motor range [49]. In addition, there might be multi-

ple displays present, causing further movements. Both types of motion considerably

reduce gaze estimation accuracy [23].

The straightforward solution is a re-calibration of the eye tracker. But this is not fea-

sible in scenarios with frequent movements and/or interactive scenarios, as discussed

in Chapter 4. In order to achieve high gaze estimation accuracy a more practical

option is to track the user’s (and eye tracker’s, respectively) position and orientation

relative to a display. Solutions that realize this include the augmentation of the envi-

ronment with visual markers as well as using vision-based motion capturing systems.

Although these approaches provide high tracking accuracy, they are impractical for

spontaneous gaze interaction, particularly when interacting with multiple displays in

mobile everyday-life scenarios. Similarly, trackers not relying on visual markers, such

as a depth camera system, work well for tracking the rough user position, but are not

accurate enough to track head orientation, and fail when people occlude each other.

In the Collaborative Newspaper system [101] (cf. Section 1.5) visual on-screen mark-

Figure 5.2: GazeProjector enables seamless gaze-based interaction with multiple dis-
plays from arbitrary locations and orientations, such as wall-sized displays (1), hori-
zontal screens (2), and handheld devices (3) without active recalibration.
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ers were used and required up to one third of the available screen space to enable a

reliable tracking and identification of the display.

In order to allow accurate gaze estimation on arbitrary displays placed across different

locations, we present a new method to make the initial eye tracker calibration invariant

with respect to the user’s position and orientation to the displays in the environment.

The concepts were implemented in a system called GazeProjector (see Figure 5.2).

The head-mounted eye tracker continuously tracks its position and orientation rela-

tive to different displays using natural feature tracking on the scene camera’s video

stream. To do so, displays continuously stream their (potentially dynamic) content to

a server, which performs the feature matching. Thus, GazeProjector neither requires

a motion capturing system nor visual markers pre-installed in the environment. After

a one-time calibration with an arbitrary display, GazeProjector is able to transform

pupil positions onto any connected display in the environment, as long as a part of

that display is visible to the eye tracker’s scene camera. As the calibration is inde-

pendent of a potential target display, our system allows for accurate gaze estimation

and seamless interaction across multiple displays, and thus empowers users to freely

move around within the environment.

The developed system builds on methods for gaze approximation and estimation on

displays (presented in Section 3.1.2, in particular [172, 174, 181]), (2) gaze interaction

using head-mounted eye trackers (discussed in Section 3.2, specifically [209, 113, 194]),

as well as (3) tracking the spatial relationship between users and displays. The latter

of the three will be briefly discussed in the following extra related work section, 5.2.1.

Right after that paragraph, we will elaborate upon the concept of GazeProjector

(Section 5.2.2), outline its technical realization and conclude with briefly explained

application cases (Section 5.2.3).

5.2.1 Tracking Spatial Relationships of Users and Displays

The basic idea of GazeProjector is to use the initial calibration on any display for gaze

estimation. In order to apply the calibration on different target displays, it is neces-

sary to track the spatial relationship between all displays in the environment and the

users (and the users’ devices, respectively). There exist two possibilities to do this:

First, external tracking equipment can be used to determine a device’s exact position

in 3D space (and thus its spatial relationship to a display in the environment). The

Proximity Toolkit (shown in Figure 5.3) makes use of such high-precision tracking
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Across Multiple Displays

(a)

(b)

Figure 5.3: Examples of tracking a person’s spatial relationship to a display: (a) Prox-
imity Toolkit [115] based on a instrumentation of the environment, (b) TouchProjector
[4] using a mobile phone’s camera to accomplish this task.

equipment and provides an interface to acquire spatial relationships [115]. While such

a setup results in extremely high accuracy, it is often impractical for outdoor use.

Alternatively, the device’s camera can be used to identify its spatial relationship to a

display. Many approaches exist, such as temporarily showing on-screen visual mark-

ers [4] or using dynamic markers following a camera’s position [146]. More recently,

natural feature tracking was used to determine spatial relationships. Herbert et al.

used Scale-Invariant Feature Transform (SIFT) to determine the camera’s spatial re-

lationship to a display [57]. Their system tried to identify a screenshot of the display

in the device’s camera stream. Virtual Projection extended this approach to dynam-

ically updated displays [9]. Touch Projector, shown in Figure 5.3, further allowed for

tracking multiple displays provided that the display contents differ sufficiently [16].

GazeProjector uses these underlying concepts, but advances them with respect to

tracking efficiency: we use FAST/FREAK (with their significantly improved match-

ing accuracy [144]). The combination of these two algorithms further increases the

processing, allowing for more interactive frame rates at higher precision than previous

systems of that kind.

5.2.2 Enabling Gaze Interaction On Large Display

As mentioned before, estimating a user’s gaze on a large display and in multi-display

environments using a head-mounted eye tracker faces two key challenges: the eye

tracker has to be calibrated, and used, from fixed positions and orientations for all

displays. During calibration, the entire display has to be visible in the eye tracker’s

scene camera. Ideally, the eye tracker only has to be calibrated once. To achieve this,

we propose the following concept: (1) Calibrate pupil positions to the scene camera
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coordinate system; (2) Track the spatial relationship between the eye tracker and a

specific display; and (3) Map 2D gaze positions in scene camera coordinate space

to the correct display in the environment. In this way, we enable the user to move

around while eye tracking is performed on multiple displays in the environment. This

empowers the creation of complex gaze-based interactive settings. The concept is

depicted in Figure 5.4 and described in the following.

Figure 5.4: Concept of GazeProjector : (1) Eye tracker calibration and tracking the
user’s current field of view and (2) the spatial relationship between eye tracker and
display in order to (3) map the user’s gaze accordingly

Eye Tracker Calibration

GazeProjector uses a 9-point calibration to map pupil positions to the scene camera’s

coordinate system (as explained in Section 3.2). There is no need to perform the

calibration on each display one intends to interact with. Instead, the system can be

calibrated once on any display in the environment (e.g., a laptop). This independence

of the calibration to the target display has two advantages: The usage of the eye

tracker is not restricted to the same distance and/or orientation to a display while

calibrating as this is handled by the self-localization directly; and the calibration

does not depend on a single display, thus allowing for seamless gaze estimation across

several displays in multi-display environments.
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Across Multiple Displays

Tracking the Spatial Relationship to Displays

To determine the spatial relationship between the eye tracker and a specific display,

we use the approach described by Baur et al. [9]. Basically, the idea is to stream the

scene camera’s video feed to a server that is aware of all screens (and their displayed

content) in the environment. All displays repeatedly stream screen-shots to the server

to reflect their current content (i.e., in the case of quickly updated content, such as

videos). The server is thus only aware of the physical dimensions of each display (i.e.,

size and resolution) as well as their current content, but not their physical location in

space. This is especially important for mobile devices, which frequently change their

position and orientation over time.

In simple words, the server uses the current screenshots of the displays’ content as

template images, and tries to find them in the observed images (i.e., the eye tracker’s

scene camera video). If a template matches an observed image, a transformation ma-

trix is calculated.

Mathematically, we compute a projective transformation of planar points from image

plane P (i.e., the scene camera coordinate system) to P’ (i.e., the display coordinate

system). A special kind of such a projective transformation is a so-called homography.

In general, a homography is a non-singular, line preserving, projective mapping:

(5.1) h : Pn → Pn

where 5.1 is represented by a square (n + 1)-dimensional matrix with (n + 1)2 - 1

degrees of freedom (DOF).

Back to our scenario, we consider the 2D case, which means a mapping between

two planes. Figure 5.5 depicts the concept of 2D homographies. The 2D homography

is an invertible mapping h : P 2 → P 2 described by an 3 x 3 matrix H with 8 degrees

of freedom (i.e., 2 scale, 2 rotation, 2 translation, 2 line at infinity), so that equation

5.2 is true:
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(5.2)


x′1

x′2

x′3

 =


h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3




x1

x2

x3

 or x′ = Hx

To compute this projective transformation, a set of coordinate pairs that match from

image plane P to P’ have to be known. For this, we use the concept of image feature to

extract visual features (e.g., corners, edges, textures) in both image planes (i.e., scene

camera and display screenshot), as highlighted in Figure 5.6. The two sets of image

features are compared to find similar ones, which result in a set of image feature pairs

(cf. Figure5.6c). Based on these pairs, the homography matrix can be computed.

With this, we are able to estimate and keep track of the spatial relationship between

the head-mounted eye tracker (and thus the user) and the display visible in the eye

tracker’s scene camera video. If multiple displays are present, a transformation matrix

is calculated for each display to transform the gaze accordingly.

Figure 5.5: 2D homography maps a point x from image plane P to point x’ in plane
P’ (adapted from [27]).

Gaze Estimation

The complete process of gaze estimation is highlighted in Figure 5.6. The initial

9-point calibration of the head-mounted eye tracker is used to map (Figure 5.6c)

the user’s pupil position from the eye camera’s image plane (Figure 5.6a) to the

corresponding gaze position in the scene camera’s image plane (Figure 5.6b). As

described above, to estimate the spatial relationship between eye tracker and display,

we extract image feature pairs (Figure 5.6e) between the display’s content (Figure
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Figure 5.6: Gaze estimation on a display using the eye tracker’s (a) eye and (b) scene
camera and the display’s content (d): the approach combines the eye tracker calibra-
tion (c) with the determined projective transformation between the scene camera’s
image plane and the display (f), based on image feature tracking and matching (e),
to obtain the location on the display (g).

5.6d) and the scene camera image (Figure 5.6b). The resulting homography matrix

H allows for bidirectional mapping (5.6e) between points in the scene camera’s and

target display’s coordinate system, as explained above. Combining the initial eye

tracker calibration with the homography matrix, the final gaze point of the display is

obtained (cf. Figure 5.6f).

5.2.3 Implementation and Applications

In the following we will highlight the implementation of the presented concept from

above, which resulted in the final system called GazeProjector. Figure 5.7 shows an

overview of the system’s architecture. It consists of three main components, imple-

mented in a client server structure:

Tracker – one or more monocular head-mounted Pupil Labs eye trackers [78], of

which each is connected via USB to a laptop computer. Each laptop is running an

instance of Pupil Capture (version 3.72) provided by the open source mobile eye track-

ing platform Pupil Labs. The platform is developed using the programming languages

Python and C++. Pupil Capture provides the full set of basic features needed for

gaze estimation. This includes a graphical user interface to control eye and scene

cameras (e.g., parameters such as focus and brightness), adjust the parameters of the

eye detection algorithm, perform a 9-point calibration and visualize the gaze point in

the scene camera’s video feed. In addition, the software already provides a tool for

2https://pupil-labs.com/blog/2014-01/new-pupil-pro-headset-capture-software-0-3-7/
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Figure 5.7: Architecture of GazeProjector with three components: Tracker, Engine
and Trackable

augmented reality (AR) marker tracking, based on the ArUco library3. This mecha-

nism can be used to track and map gaze on surfaces (e.g., a display) by equipping it

with pre-registered AR markers. We used this functionality later in our evaluation of

our approach. Further, the software integrates a network interface to stream all data

related to gaze and pupil information. We extended this interface by the ability to

integrate the eye tracker’s scene camera’s images into the data stream, as shown in

Listing 5.1. All information is sent to the central server using the ZMQ library4.

Code Listing 5.1: Camera Server

1 class Camera_Server(Plugin):

2 def __init__(self , g_pool , atb_pos=(500 ,400)):

3 Plugin.__init__(self)

4

5 self.context = zmq.Context ()

6 self.pusher = self.context.socket(zmq.PUSH)

7 self.address = create_string_buffer("tcp ://*: 5562",512)

8 self.set_server(self.address)

9

10 self.messageTracker = None

11

12 def update(self ,frame ,recent_pupil_positions ,events):

13 if frame.compressed_img != None and

3https://www.uco.es/investiga/grupos/ava/node/26
4http://zeromq.org/
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14 (self.messageTracker == None or (self.messageTracker != None and

self.messageTracker.done)):

15 self.messageTracker = self.pusher.send(base64.b64encode(

16 frame.compressed_img.tostring ()), 0, False , True)

This framework provides many communication patterns usable in most programming

languages. We chose the pipeline pattern that uses push and pull sockets. Since the

eye tracker has to send information, it acts as a pusher using the TCP protocol (cf.

Listing 5.1 lines 5–8).

The data is broadcasted so as to be independent of the server’s IP address. Conse-

quently, the server can consume the data by implementing a pull socket. The update

method of the class is called each time a camera frame is processed in the internal

program loop of the Pupil Capture software. It sends the scene camera frame as a

compressed image (50% JPEG compression) as a base64 encoded string (cf. Listing

5.1 lines 12–16). To enable reliable data transfer and prevent blocking behavior of the

socket, we use the option of the method send(params) to track the message’s state,

stored in messageTracker (cf. Listing 5.1 lines 15–16). Laptops and the central server

are connected via WiFi.

Trackable – one or more planar displays of arbitrary size on which the users’ gaze

should be estimated. All displays are directly connected to the central server. The

physical dimensions (in mm), the resolution (in pixels) and the content are prerequi-

sites for the system to reliably compute a user’s gaze on the display.

Engine – a central server that drives all displays in the environment and performs all

computations necessary for the gaze estimation. As shown in Figure 5.7, the server is

connected to all eye trackers via a WIFI network. The receiving part of the commu-

nication is implemented as a pull socket provided by the ZMQ library. All software

is written in C#, since Windows 10 is the server’s operating system. In the follow-

ing we will provide listings to show the most important parts of the implementation.

Note that we show only simplified versions of different classes in a pseudo-code style.

All three components of the architecture are represented as objects within the system.

The object Tracker is used to store all necessary information, such as the received

image data as well as its size (see Listing 5.2, lines 1–10). Because we might use

devices other than an eye tracker (e.g., a mobile phone [9]) as an input device, a

designated class EyeTracker, inheriting from Tracker, is implemented (cf. Listing 5.2,
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lines 13–31). It is responsible to stream all eye tracking-related data (i.e., the gaze

information) as well as the image data and store these in a list.

Code Listing 5.2: Tracker

1 class Tracker

2

3 List dataQueue;

4 Rectangle imageBounds;

5 float scale;

6

7 Tracker(Rectangle frameBounds , double scale)

8 this.imageBounds = frameBounds;

9 this.scale = scale;

10 this.dataQueue = new List();

11

12

13 class EyeTracker: Tracker

14

15 int frame_width;

16 int frame_height;

17 List gazeQueue;

18

19 public EyeTracker(int w, int h)

20 super(new Rectangle(0, 0, w, h), 1.0);

21 this.frame_width = w;

22 this.frame_height = h;

23 this.gazeQueue = new List();

24

25 public void OnCameraFrameReceived(object sender , Event e)

26 double timestamp = System.CurrentTimeInMillis;

27 dataQueue.Enqueue(e.decodeImage(frame_width , frame_height),

timestamp);

28

29 public void OnGazePointReceived(object sender , Event e)

30 double timestamp = System.CurrentTimeInMillis;

31 gazeQueue.Enqueue(e.gazePoint , timestamp)

Each display in the environment is represented by a Trackable object (Listing 5.3, lines

1–13) and implemented via the class Display (Listing 5.3, lines 16–30). We chose this

hierarchical implementation to represent any kind of display (e.g., computer monitor,

mobile phone). A Trackable stores general information, such as resolution and physical

dimensions. These properties are necessary to correctly transform the points from the

eye tracker’s scene image plane to the display’s image plane. The actual Display class
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represents screens that are directly connected to the server. Hence, their content can

be streamed by continuously storing screen-shots (see Listing 5.3, lines 23–30). In

theory other types of displays can also be supported, whose content may be recorded

in a different manner (e.g., network).

Code Listing 5.3: Trackable

1 class Trackable

2

3 List dataQueue;

4 Rectangle imageBounds;

5 float scale;

6 Size physicalSize;

7

8 Trackable(Size physicalSize ,

9 Rectangle surfaceBounds , double scale = 1.0)

10 this.imageBounds = surfaceBounds;

11 this.physicalSize = physicalSize;

12 this.scale = scale;

13 this.dataQueue = new List();

14

15

16 class Display: Trackable

17

18 public Display(Size physicalSize ,

19 Rectangle surfaceBounds , double scale = 1.0)

20 super(physicalSize , surfaceBounds , 1.0);

21

22

23 private void ScreenCapture ()

24 Bitmap screenshot = GetRawScreenImage ();

25 double timestamp = System.CurrentTimeInMillis;

26

27 Bitmap scaledScreenshot = new Bitmap(screenshot ,

28 screenshot.Width * scale , screenshot.Height * scale));

29

30 dataQueue.Enqueue(screenshot , timestamp);

The main system logic is implemented in the class Engine. It has knowledge about

all connected trackers and trackables, stored in a list. The function trackingAlgorithm

(Listing 5.4, lines 22–50) performs the main loop as follows: Each Trackable object

is continuously recording its screen content together with the respective timestamps

for synchronization. For each such image, the key points and features are extracted

using using FAST feature detectors [105] and FREAK feature descriptors [144]. The
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correct construction of the necessary objects is shown in Listing 5.4 (lines 1–10). As

previously mentioned, the implementation is done in C# (.NET Framework 4.5). For

feature detection, description and matching, we use EmguCV5 (version 2.4.2), a C#

wrapper for the computer vision library OpenCV6. For detailed information on the

chosen parameters, we refer the reader to the documentation of OpenCV.

All Trackers are constantly storing the eye tracker’s data. Exactly as for the dis-

play screenshots, the key points and features of the scene images are extracted. If

more than four features were found in the scene camera’s image (Listing 5.4, observed-

Features), the homography matrix can be computed. This is implemented by using

the Features2DTracker, provided by EmguCV. The match function of this class uses a

brute force matcher that takes a targetFeature, matches it to all observedFeatures and

returns the match with the closest distance. Before computing the actual homography

matrix, the computed matches are filtered (Listing 5.4, lines 42–43) to extract unique

matches, whose scale and rotation are in line with the majority’s scale and rotation.

Code Listing 5.4: Engine

1 # class implemented using EmguCV , http ://www.emgu.com/wiki/

2 class FeatureDetector

3

4 KeyPointDetector keyPointDetector;

5 DescriptorExtractor descriptorExtractor;

6

7 #used Fast and Freak as implemented in EmguCV based on OpenCV

8 public FeatureDetector(threshold = 35, nonmaxSuppression = true ,

orientationNormalized = true ,

scaleNormalized = true ,

patternScale = 22.0, nOctaves = 4)

9 this.keyPointDetector = new FastDetector(threshold ,

nonmaxSuppression);

10 this._descriptorExtractor = new Freak(orientationNormalized ,

scaleNormalized , patternScale ,

nOctaves);

11

12 class Engine

13

14 List trackers;

15 List trackables;

16

17 public Engine(List trackers , List trackables)

5http://www.emgu.com/wiki/files/2.4.0/
6http://opencv.org/
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18 this.trackers = trackers;

19 this.trackables = trackables

20

21

22 public void trackingAlgorithm ()

23 for all trackables do_in_parallel:

24 ScreenCapture ();

25 for all screenshots in dataQueue do_in_parallel:

26 featureDetector = new FeatureDetector ();

27 targetKeyPoints = featureDetector.detectKeyPoints(screenshot);

28 targetFeatures = descriptorExtractor.computeDescriptors(

targetKeyPoints);

29

30 for all trackers do_in_parallel:

31 #Receive all data via ZMQ and store it

32 OnCameraFrameReceived(ZMQ sender , DataReceivedEvent e);

33 for all scene_images in dataQueue do_in_parallel:

34 featureDetector = new FeatureDetector ();

35 observedKeyPoints = featureDetector.detectKeyPoints(scene_image

);

36 observedFeatures = descriptorExtractor.computeDescriptors(

observedKeyPoints);

37

38 if (observedFeatures != null && observedFeatures.Length >= 4)

39

40 Features2DTracker tracker = new Features2DTracker<byte>(

target_feature);

41 Features2DTracker.MatchedImageFeature[] matchedFeatures =

tracker.MatchFeature(

observedFeatures , 4);

42 matchedFeatures = Features2DTracker.VoteForUniqueness(

matchedFeatures ,

uniquenessThreshold = 1.15);

43 matchedFeatures = Features2DTracker.VoteForSizeAndOrientation

(matchedFeatures , scaleIncrement =

2.0, rotationBins = 8);

44

45 HomographyMatrix matrix = Features2DTracker.

GetHomographyMatrixFromMatched

46 Features(matchedFeatures);

47

48 if (matrix != null)

49 #project correct gaze point , synchronized via timestamp

50 gazeOnDisplay = matrix.Transform(gazeQueue.poll());
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Finally, the homography matrix can be computed, and with that the gaze point can

be projected onto the display. For faster processing, we downscale display screenshots

to 384x240 pixels and camera frames to 320x240 pixels. Both loops of the trackingAl-

gorithm function are parallelized and implemented in different threads.

It is important to note that the display does not have to be fully visible in the eye

tracker’s scene images. Instead, a unique subregion (a region that does not occur any-

where else on that display) is sufficient, given there are enough features within it to

allow for robust tracking. Likewise, unique sub-regions and their features on multiple

displays present in the scene camera allow for detecting each of the displays within

one frame. With our implementation, we achieve up to 30 fps on one display (20 fps

with three displays). The number of eye trackers is limited only by the local network

bandwidth, as each one needs to stream the camera images to the server. However,

a possible improvement to address this issue is to outsource the feature extraction

routine into the eye tracking software. Hence the information that has to be sent is

minimized.

In its current implementation, the system allows for distances ranging from 0.5 up to

six times the display’s diagonal. When bthe distance is greater, the accuracy decreases

as the display observed in the camera’s field of view decreases in size (thus removing

several features). We believe that a multi-scale approach of screenshots will increase

the operational range, yet we decided not to include it in this proof-of-concept im-

plementation. In addition, the tracking compensates for an angular offset of ±60◦.

While this is sufficient for most interactions, fast eye/head movements will have a

slight impact on accuracy. However, we believe that the increasing processing capa-

bilities of future devices will allow for both faster image processing on larger images

(i.e., less or no scaling required) and for higher accuracy.

Example Application

We built two example applications to demonstrate the use of GazeProjector in a

multi-display setting. It showcases how people can seamlessly interact with multiple

displays while freely moving around in the environment.

We envision an office building where public information screens are distributed show-

ing a calendar application (see Figure 5.8a). We use GazeProjector to interact with

these displays in a ‘walk-up-and-use’ fashion. The only requirement is to calibrate
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Figure 5.8: First example application: after a user selects an event from a public
calendar (a), that information is shown on the personal mobile device, where gaze
estimation also works (b).

the eye tracker (e.g., at the beginning of a work day using a tablet). The calibra-

tion procedure uses a round marker displayed at nine different positions around the

screen, at which the user has to gaze on. In our interaction scenario users are able to

transfer information between public and private displays (e.g., a handheld). Looking

at a specific event (e.g., a scheduled talk) for a certain dwell time (say: 2 seconds)

selects that event, which is then copied to the user’s handheld device. GazeProjector

also works on that device based on the same calibration (cf. Figure 5.8b).

Figure 5.9: Second example application: when users select from a time table of de-
parting flights (1), the corresponding information is shown on their mobile device
(2).

In the second example, we consider a timetable on one of the many large screens at

an airport, showing flights departing in the next hours (see Figure 5.9(1)). Users

can look at a specific flight and its flight number or destination respectively. Once

the system recognizes the point users are looking at, additional information, such as

a map of the destination or detailed flight data, is transferred to the user’s mobile

device (e.g., a tablet PC). GazeProjector further allows for tracking gaze on the tablet

as well, allowing for content adaptation. If the user now gazes at the map, the tablet

will show more specific information, such as the weather at the destination (cf. Figure

5.9(2)).
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5.3 Evaluation

In this section we describe the two conducted experiments to assess GazeProjector’s

gaze estimation accuracy in various settings. In each of the experiment sections, we

also include the corresponding results. We will discuss the findings as a whole in

Section 5.4.

5.3.1 Experiment I: Gaze Estimation Accuracy

We first conducted a controlled laboratory study to assess GazeProjector’s gaze esti-

mation accuracy in comparison to existing but more heavyweight tracking approaches

in a single display scenario.

Independent Variables

We had two independent variables in this experiment: Mode (i.e., the gaze estima-

tion method used), and Location (i.e., where participants stood in front of the display).

Mode: We chose three different modes for gaze estimation: GazeProjector (GP) im-

plemented as described before; Marker Tracking (MT), which uses a set of on-screen

markers for tracking the orientation between the eye tracker and the display provided

by the Pupil Labs framework; and a simple Head Orientation (HO) approach, which

tracks the participant’s head using an external OptiTrack system. For each of these

modes, we calibrated the eye tracker from two different locations to investigate the

effect of distance during calibration. Both were placed centrally in front of the dis-

play, with one location being close to the display and one being further away. We

further calibrated the eye tracker for each participant separately instead of using one

calibration (see the limitations section for further details).

Location: We chose six different locations in front of the display to simulate a more

realistic setting. Three of these locations were close to the display and three were fur-

ther away (cf. Figure 5.10). The eye tracker was only calibrated for the near central

and far central locations. This is more realistic, as users would not calibrate for every

position in a walk-in-and-use scenario. Note that we calibrated the eye tracker for

each participant separately instead of using one calibration (see the limitations section

for further details). Since no visual feedback was given to them, and to keep the ex-

periment a reasonable length, participants had to perform the set of tasks only once.

We then computed the gaze estimation accuracy post-hoc for each of the calibrations.
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Figure 5.10: Experimental setup showing all locations (L1-L6) and orientations rel-
ative to the display, the nine different positions (T1-T9) of on-screen visual targets,
and the background image used for feature tracking and marker tracking respectively.

Apparatus

Figure 5.10 shows our experimental setup: we used a large front-projected wall with

a size of 2.75x2.07 meters (diagonal: 3.44 meters). The six locations were distributed

within a nine-square-meter area in front of the display as follows: three locations at

a distance of 1.65 m (near), and three locations at a distance of 3.05 m (far). The

left and right locations for the near distance were exactly 2.33 meters away from

the display’s center line (i.e., an angular offset of ±45◦); those for the far distance

were located 3.52 m away from the display’s center line (i.e., an angular offset of

±30◦). Naturally, the two center locations for near and far had an angular offset

of 0◦. Locations located far away allow participants to observe the entire screen at

once (the display covers 48.52◦), while for locations located nearby, the display covers

79.60◦ thus exceeding the full-scale ocular motor range of ±55◦ [49]). The maximum

visual angles were 3.4◦ (near) and 1.84◦ (far), and the minimal ones were 1.5◦ (near)

and 1.3◦ (far). The figure also includes the background image that we used for MT

and HO. We chose this image as it compromises many distinct features distributed



5.3.1 Experiment I: Gaze Estimation Accuracy 115

across its area. We used the same background with 16 AR markers around the image,

each 100x100 px.

Task & Procedure

We implemented a gaze pointing task in which participants had to fixate nine different

target locations represented as red circles (50 pixels or 98 mm) on the display with

equal distances between them (see Figure 5.10). A pilot study showed that partici-

pants were affected by visualizing their gaze point on the display. Especially if the

gaze position was incorrect, people tended to move the gaze point to compensate for

the error. We therefore opted not to provide any visual feedback to the participants.

Participants were instructed to look at each target as quickly and accurately as pos-

sible. Each target location was shown for five seconds.

For each Mode, participants first calibrated from the near-center location and per-

formed the tasks for all other locations. Afterwards, the calibration for the far-center

location was recorded and gaze positions as well as errors were evaluated post-hoc.

Following best practices in gaze estimation experiments, we validated all calibrations

by asking participants to fixate once on each point on a 9-point pattern. Finally, we

asked for demographic information.

We collected gaze data from the eye tracker and transformation matrices calculated

by GP as well as MT. Furthermore, we recorded data about the head position and ori-

entation with OptiTrack. Data was sampled at 30 Hz (i.e., 150 samples per on-screen

target) leading to a total of 1,350 samples for each Mode and Location combination.

We discarded samples for which the participants’ pupil was not detected (7.5%). We

dropped the first two seconds of the five seconds per target (60 samples, 40%) for

each target, which was the maximum time required to find the target. Altogether

we dropped 276,985 out of 583,200 samples (3 modes x 6 locations x 2 calibrations x

12 participants x 1,350 samples), leaving 306,215 samples recorded: 140,532 for GP,

165,683 for MT (the sample set used for HO).

Experimental Design

We used a within-subjects design with the independent variables Mode (GP-near,

GP-far, MT-near, MT-far, HO-near, HO-far) and Location (front-left, front-center,

front-right, back-left, back-center, back-right).
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We counterbalanced the order of Location across participants using a Latin square.

Although it is possible to record all position information in parallel, we opted to have

GP and MT separate, to prevent positive effects of the AR markers on the feature

tracking algorithm of GazeProjector (cf. background for MT in Figure 5.10). The

HO mode was recorded while participants were using the MT mode. Half of our

participants started with the MT, and the other half with GP. Thus, each participant

performed the task twice per location. For each mode and location, the nine targets

(equally distributed in a 3 x 3 grid on-screen) were presented in random order.

Participants

Twelve participants (three female) between 22 and 32 years (mean = 27.45 years,

SD = 3.1 years) were recruited from a local university campus. All participants had

normal or corrected-to-normal vision; none reported any form of visual impairments

(e.g., color blindness).

5.3.2 Experiment I – Results

We corrected all reported gaze estimation accuracies by subtracting the mean calibra-

tion error (2.04◦with SD = 0.69◦). To verify this, we performed a one-way ANOVA

with a Bonferroni-corrected post-hoc analysis on calibration accuracies across all

Modes, and found no significant differences. In subsequent post hoc analyses, we used

Bonferroni-corrected confidence intervals to retain comparisons against α = 0.05. Fur-

thermore, we used Greenhouse-Geisser correction in cases where sphericity had been

violated.

Gaze Estimation Error

To assess the gaze estimation error, we calculated the average gaze estimation er-

ror in degrees of visual angle (cf. Section 2.6.2 in [59]): that is, the difference

of the visual angle between the predicted on-screen gaze point and the actual fix-

ation targets for all Modes and Locations. We then performed a 6 x 6 (Mode x

Location) within-subjects ANOVA on gaze estimation errors and found a main ef-

fect for Mode (F (1.989, 21.879) = 8.526, p < .002), and a main effect for Location

(F (5, 55) = 7.363, p < .001), but we did not find an interaction between the two.

We performed post-hoc tests to further understand the main effect of Mode. Most im-

portantly, we found significant differences within MT and HO for the two calibrations,

near and far (all p < .033). In both cases, the near calibration led to lower estimation
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errors. GP, on the other hand, did not show such an effect, suggesting that the point of

calibration does not affect its gaze estimation error significantly, and the difference in

means was also lower than for the other two (GP : 0.281◦;MT : 0.931◦;HO : 0.948◦);

yet, also for GP, the mean estimation errors were slightly lower for the near calibra-

tion than for the far one.

This is further reflected when comparing across Modes: GP-near differed significantly

from both MT-far and HO-far (all p < .01). However, there was no significant differ-

ence between the Modes for the near calibration. Furthermore, GP-far did not differ

significantly from any other Mode despite having relatively large differences in error.

GP-near showed the lowest error (M = 1.80◦, SD = 0.20◦), followed by GP-far

(M = 2.08◦, SD = 0.27◦), and HO-near (M = 2.09◦, SD = 0.23◦). MT-near

(M = 2.23◦, SD = 0.31◦) also has an estimated gaze error of less than 3 degrees.

The other Modes performed slightly worse: MT-far (M = 3.16◦, SD = 0.32◦) and

HO-far (M = 3.04◦, SD = 0.31◦). Figure 5.11 summarizes these results.

Post-hoc tests on Location revealed that the significant main effect stems from par-

ticipants’ distance to the display: front-left differed significantly from back-center

Figure 5.11: Mean gaze estimation error for every location for MT-near, MT-far,
HO-near, HO-far, GP-near and GP-far. Error bars indicate ± standard error of the
mean.
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and back-right (all p < .019). Front-right also differed significantly from back-

center (p < .011). Overall, back-center led to the lowest estimation errors (M =

1.9◦, SD = 0.23◦), followed by back-right (M = 2.01◦, SD = 0.17◦), and back-

left (M = 2.22◦, SD = 0.30◦). The front locations performed worse, with front-

center having the lowest errors (M = 2.45◦, SD = 0.28◦), followed by front-left

(M = 2.86◦, SD = 0.29◦) and front-right (M = 2.86◦, SD = 0.30◦). On average,

the back locations had a lower estimation error of 2.08◦(SD = 0.23◦) compared to the

front locations with 2.72◦(SD = 0.29◦).

Differences for On-screen Target Positions

We did not expect high gaze estimation errors for each of the Modes. However, we

wanted to analyze whether the on-screen targets resulted in different estimation errors

and thus analyzed the results separately for each on-screen target. For MT, we found

no significant main effects on gaze estimation error for Target. We found the same for

HO. Only for GP, we found significant differences for gaze estimation for Target. Our

analysis revealed that predominantly the bottom-left target T7 differed significantly

from a few others (T2, T3, T6 and T8) and led to higher estimation errors. We assume

that this is due to the scene camera seeing too few features, which in turn increased

the error of the transformation matrix. Figure 5.12 shows gaze estimation errors for

the different modes averaged over all targets.

Figure 5.12: Visualization of the mean gaze error (ellipses) for the three modes MT,
HO and GP and all calibrations averaged over all targets. Black circles visualize the
mean gaze points.

Eye and Head Movements

We were further interested in whether participants mainly moved their head or their

eyes to point at an on-screen target location. As expected, we found that the average
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Location Mean(x,y) SD(x,y) Var(x,y)

front-left 0.43,0.45 0.19,0.24 0.038,0.060

front-center 0.45,0.47 0.20,0.25 0.040,0.062

front-right 0.46,0.46 0.22,0.27 0.052,0.076

back-left 0.46,0.48 0.23,0.25 0.054,0.065

back-center 0.45,0.48 0.20,0.24 0.044,0.058

back-right 0.43,0.48 0.20,0.23 0.043,0.057

Table 5.1: Mean, standard deviation and variance for x,y-coordinates of normalized
gaze positions in the participants’ field of view.

normalized gaze position in the field camera’s video was x = 0.44 and y = 0.47

(SDx = 0.21;SDy = 0.25). Thus, gaze positions remained near the center of the

participants’ field of view. We subsequently analyzed the gaze position for every

Location in front of the display and found no significant differences between them.

The largest average difference was 0.03. Table 5.1 lists these results for each Location.

The OptiTrack data provided detailed information on participants’ head orientation

(HO). We found that the largest head turns covered the entire width of the display

(far: 51.2◦, near: 83.66◦). On average, head motions covered an angle of 31.61◦ (SD =

2.04◦). This further confirms our results in that HO might be a suitable approximation

for gaze estimation with an average error of 2.09◦ (SD = 0.23◦) for HO-near and

3.04◦ (SD = 0.31◦) for HO-far.

5.3.3 Experiment II: Multiple Displays

We conducted a second controlled laboratory study to assess GazeProjector’s gaze

estimation accuracy across multiple displays of varying form factors with only a single

calibration performed on one of the displays.

Independent Variables

We had two independent variables: Mode (i.e., the gaze estimation method used), and

Screen (i.e., on which display the target was shown). There were no fixed positions,
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Figure 5.13: Our setup showing the three screens (including their background images
for feature tracking) used during the experiment, as well as the placement of the nine
targets per screen. Note that all participants were free to choose a location within
the blue area throughout the experiment.

to mimic a more realistic scenario where participants were free to move in the envi-

ronment.

Mode: In this experiment we chose to use only GazeProjector (GP) and Marker

Tracking (MT), not head orientation, as we believe it will perform similarly across

displays. We calibrated for two locations (as in the first experiment), but additionally

recorded calibrations on a 40-inch tabletop display (Surface), and on a 9.7-inch iPad

Air (iPad). We chose to do so to investigate the effects on gaze estimation accuracy

of calibrating (1) on surfaces not orthogonal to the participant, and (2) on personal

devices with a considerably smaller display. The latter resembles a more realistic

scenario where users calibrate the eye tracker once on a personal device. Again, cali-

brations were analyzed post hoc.

Screen: In addition to the large display used in the first experiment (Wall), we chose

to add the other two displays used for calibration as well (here Surface and iPad).

Apparatus

We used the same front-projected Wall as in the first experiment. In addition, we had

a 40-inch Microsoft Surface 2 (Surface), and a 9.7-inch iPad Air tablet (iPad). Figure
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5.13 shows our setup. The tabletop display was placed in front of the projection wall

in an area where the participant would occlude the projection. Participants held the

tablet in their hands during the experiment. They could freely choose their location

within a nine-square-meter area. In addition, the backgrounds used for each display

for mode GP are shown. An AR marker overlay is displayed on top of each background

image for MT.

Task & Procedure

The task used in this experiment was the same as in the first one: participants had

to fixate on-screen targets. However, since we had three displays, participants now

had to acquire nine targets per display (27 in total) as shown in Figure 5.13. As

mentioned before, participants could freely choose and change their position between

the displays. We again opted not to provide any feedback to participants for the same

reasons as before. All participants were instructed to look at each target as quickly

and accurately as possible. Each target location was shown for ten seconds to give

the participants enough time to find the target on the correct display. There was only

one target on one display shown at a time.

The procedure was nearly the same as for the first experiment, but with an additional

calibration for Surface and iPad after all tasks were completed. On the additional

displays we used the same 9-point calibration pattern. At the end of the study we

asked for demographic information.

We used the same data collection method as in the first experiment. Data was sam-

pled at 30 Hz (i.e., 300 samples for each target, 8100 samples for each Mode), and

samples were discarded if the participants’ pupil was not detected. As we expected an

increase in search time for the target, we dropped the first five seconds (150 samples)

for each target, leaving 259,745 samples (GP : 124,421; MT : 135,324).

Experimental Design

We used a within-subjects 8 Mode (GP-near, GP-far, GP-Surface, GP-iPad, MT-

near, MT-far, MT-Surface, MTiPad) x 3 Screens (Wall, Surface, iPad) design. Half

of our participants started with GP, the other half with MT (as in Experiment I).

The targets were randomized: thus, the next target could appear on any of the three

Screens. The 27 targets were again placed in 3 x 3 grids (i.e., nine per display, 50
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pixels in radius, or 10 mm on iPad, 23 mm on Surface) on each display. In total,

participants acquired 54 targets.

5.3.4 Experiment II – Results

We again corrected gaze estimation accuracy by subtracting the mean calibration er-

ror. The mean calibration error was 2.18◦ (SD = 0.69◦). We again verified that we

could do so by performing an ANOVA with a Bonferroni-corrected post-hoc analysis

on calibration accuracies across all Modes, and found no significant differences. As in

Experiment I, we used Bonferroni-corrected confidence intervals in all post-hoc anal-

yses and Greenhouse-Geisser correction in cases where sphericity had been violated.

Gaze Estimation Error

We calculated the average gaze estimation error as in Experiment I and subsequently

performed an 8 x 3 (Mode x Screen) within-subjects ANOVA on them. We found main

effects for Mode ((F7, 77) = 21.733, p < .001), and for Screen (F (2, 22) = 82.705, p <

.001) as well as an interaction effect between the two (F (14, 154) = 9.100, p < .001).

Post-hoc pairwise multiple means comparisons revealed that GP-near and GP-far

differed significantly from MT-far, MT-Surface and MT-iPad (all p < .001). Further-

more, GP-Surface differed significantly from MT-Surface and MT-iPad (all p < .007).

And finally, GP-iPad also differed significantly from MT-far, MT-Surface, and MT-

iPad (all p < .039). It is noteworthy, however, that both GP and MT did not show

any significant differences between their different calibrations, suggesting that the de-

vice on which they were calibrated did not impact accuracy.

Overall, GP-near had the lowest estimation error (M = 2.77◦, SD = 0.20◦), fol-

lowed by GP-far (M = 3.01◦, SD = 0.16◦), GP-iPad (M = 3.24◦, SD = 0.17◦) and

GP-Surface (M = 3.31◦, SD = 0.16◦) across all Screens. For all MT variations, the

estimated gaze errors were larger than 4 degrees. Figure 5.14 summarizes these results.

As for the main effect for Screen, post-hoc multiple means comparisons revealed that

Wall was significantly different from the other two Screens (all p < .001). However,

there was no significant difference between Surface and iPad. Overall, targets on the

Wall had the least estimation error (M = 2.07◦, SD = 0.07◦), followed by Surface

(M = 4.52◦, SD = 0.22◦) and iPad (M = 5.12◦, SD = 0.23◦).
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Figure 5.14: Mean gaze estimation error of each mode for each display. Error bars
indicate ± standard error of the mean.

As shown in Figure 5.14, the source of the Mode x Screen interaction is the in-

creased difference between MT and GP (all calibration modes) between the Wall

and Surface/iPad, with the Wall resulting in much lower estimation errors than the

other two. It is noteworthy that MT-near performs similarly to all GP modes on the

Surface, but its estimation error increases drastically on the iPad, although all GP

modes remain at their level. We subsequently ran separate ANOVAs on Modes for

each Screen, and found several significant effects. On the Wall, only MT-iPad and

GP-near differed significantly (p < .008), indicating that nearly all modes performed

similarly.

On the Surface, the differences become more prominent, with GP-near and GP-far

outperforming all MT modes except MT-near (all p < .016). Furthermore, GP-

Surface and GP-iPad differed significantly from MT-iPad (all p < .012). We found

the most differences on the iPad, where all GP modes are significantly less error-prone

than all MT modes (all p < 0.03). Here we again did not find any differences within

GP and MT for different calibration modes. Figure 5.15 visualizes the mean gaze

estimation errors for each of the screens and targets for both MT and GP.
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Figure 5.15: Visualization of the mean gaze error (ellipses) for all different modes, MT
and GP, and all calibrations averaged over all targets over all screens. Additionally,
black circles visualize the mean gaze estimations.

5.4 Discussion

Our results show that – on a single display – GazeProjector achieves an average gaze

estimation accuracy of 1.78◦ compared to 2.64◦ for MT, and 2.65◦ for HO. We used

the same calibration grid recorded for both the near and far location, resulting in

different visual angles in view space: the size of the calibrated visual field decreases

when distance increases. Thus, the near calibration achieves better results than the far

one. When used on multiple displays (and only being calibrated on a single screen),

GazeProjector achieves an average gaze estimation accuracy of 2.47◦, compared to

3.60◦ for MT over all modes and target screens. Although this accuracy is slightly

lower than the 0.5◦–1◦ reported for the Pupil Labs eye tracking glasses under ideal

conditions (i.e., in a stationary desktop setting with a 27-inch screen and optimal

lighting conditions ([78]), we achieve this accuracy in a fully unconstrained, pervasive

interaction setting.

The poor results of MT can be explained as follows. When using the AR marker

tracking approach, the complete display is always tracked, which can lead to inaccu-

racies while gaze mapping. In contrast to that, GazeProjector computes the projective

transformation based on a partial area of the display (with a high density of image

features). Thus, the computed mapping and the gaze estimation is much more accu-

rate. With Head Tracking we also have the same issue, as we are just transforming the

coordinates in the scene camera’s frame. In the multi-display setup, the large error

of MT comes from the fact that the software does not know which screen the user is

currently focusing on, if one is located behind another (i.e., they overlap in the camera

image). For example, the participant might be holding the iPad in front of their face,

but the software also recognized the AR markers of the wall or the surface behind
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it. GazeProjector prevents this issue, as the feature tracking and matching algorithm

will always compute the projection for the screen the user is currently focusing on

(i.e., the most prominent screen in the eye tracker’s scene camera image).

Pervasive Settings

The first advantage of GazeProjector is its suitability for eye tracking in complex envi-

ronments with multiple screens and locations of the user, as defined in the Ubiquitous

Computing for Eye Tracking Continuum (Section 1.1, Figure 1.1, (K x L) : M : 1

complexity). Current approaches that allow for gaze interaction on multiple displays

using monocular mobile eye trackers require heavyweight external motion capturing

systems or visual markers. While motion capture systems allow for high-precision

tracking, they (1) are costly and (2) cannot easily be installed in public environments.

Markers mitigate this, but have another drawback: all displays have to be augmented

with them either with printed ones attached to a display’s frame [209, 17], or digital

ones shown on the display. However, printed markers quickly clutter the environment,

in particular in settings with a large number of displays. While digital markers could

be shown only on demand, they still take away display space and “compete” with the

main content.

While binocular systems can automatically compensate for vergence error (cf. Sec-

tion 3.1.1), estimating gaze in display coordinates still requires tracking changes in

the user’s position and orientation relative to these displays. This severely limits the

use of these devices to instrumented environments. GazeProjector, however, allows

users to interact from arbitrary locations and orientations relative to multiple displays

without requirement need and, as our experimental results show, GazeProjector does

so without lowering the accuracy. Thus, our approach allows for unconstrained and

seamless gaze interaction with multiple displays while users are on the move. Since

our approach theoretically allows for multi-user settings (see architecture in Section

5.7), it can be used to create pervasive gaze-based interfaces (see Figure 1.1, (K x

L) : M : N complexity). Practically, the current implementation might hinder such

scenarios, as it requires many computers to communicate with each other.

Display Visibility & Multi-Display Interactions

Display tracking using visual markers requires the whole target display to be visible in

the eye tracker scene camera’s field of view during calibration and interaction. In con-

trast, GazeProjector relies on natural feature tracking and provides competitive gaze
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estimation accuracy even if only a fraction of the target display is visible. Naturally,

the larger the visible portion of the display, the lower the tracking error. However, we

found that a quarter of the display is usually sufficient, provided that enough features

(e.g., high frequencies) are found in that portion. This allows GazeProjector to work

on much larger displays as well as with more extreme head movements than current

eye trackers.

Our results show that GazeProjector provides robust gaze estimation accuracy for

different displays of different sizes without a need for recalibrating the eye tracker to

each of the displays. Instead, the eye tracker only needs to be calibrated once (on any

display) and gaze estimates are then automatically mapped to the other displays dur-

ing runtime. Applying our calibration method in the presented experiments, we were

still able to achieve an accuracy of 3.24◦ when the eye tracker had been calibrated

on a 9.7-inch iPad Air screen. This is a significant advancement over state-of-the-art

gaze estimation approaches.

Head Movement and Orientation

We further found that head movements are more prevalent in gaze interaction with

large displays compared to smaller displays (e.g., mobile devices). This finding is

in line with controlled laboratory studies on human vision: humans employ head

movements for gaze shifts with ocular orbital eccentricity exceeding 20◦ [175]. While

head movements pose a significant challenge to current head-mounted eye trackers,

GazeProjector proved to be robust to head movements, which is an essential feature

for using head-mounted eye tracking systems for large screens.

Limitations

Despite its numerous advantages over state-of-the-art eye-tracking systems, GazePro-

jector also comes with some limitations: first, our current implementation requires

continuous snapshots of the target displays to be transferred to a central server. Con-

sequently, all displays need to be registered with such a server a priori. Furthermore,

increasing the number of displays also increases the network load for transferring

real-time updates of a display’s content. However, we believe that future network

technologies may overcome this limitation.

Second, GazeProjector’s gaze estimation accuracy depends on the quality of image

data from the scene camera: these cameras usually come with wide-angle lenses to
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cover a larger field of view, resulting in smaller representations of a target display.

This may increase errors in the transformation matrix due to insufficient image fea-

tures. This technical limitation can be overcome by using different lenses for scene

cameras. Furthermore, as with all optical tracking systems, environmental conditions

such as changes in lighting will affect our system, as this influences the video qual-

ity of the scene camera. And finally, GazeProjector’s accuracy is dependent on the

number of features of a display’s content [57], thus requiring feature-rich content on

displays. For multiple displays, we found that wallpapers in Windows are sufficiently

different. Here, the server can detect potential similarities across displays through

feature matching of their respective content.

Nevertheless, we believe that GazeProjector is a promising system that realizes con-

tinuous gaze-based interaction in pervasive settings, in particular for multi-display

environments.

5.5 Application to research question

In this section we will work out the details of how the concept of GazeProjector con-

tributes to the problems defined in Section 1.4 and the derived research questions (cf.

Section 1.6). In particular, we will first formulate answers to further sub-questions of

this thesis. After that, we will highlight a possible integration into the Collaborative

Newspaper application (cf. Section 1.5).

Back of the beginning of this thesis, we formulated five coherent problems within

the current area of head-mounted eye tracking that prevent the application of a head-

mounted eye tracker as a ubiquitous computing device. As discussed in Chapter 1

(Section 1.4), the source of error in using head-mounted eye tracking devices that

makes the creation of gaze-based interfaces difficult is mainly a result of a poor cali-

bration. Calibration is performed by looking at a number of pre-defined visual stimuli.

While the user is fixating the calibration target, data is sampled that consists of pupil

positions in the eye image, the physical orientation of the eye and the location of the

target on the calibration plane (i.e. the scene camera images). The process itself leads

to many issues. The problem of calibration drift was already discussed in Section 4.

In the current chapter, we consider a possible solution for the problem of invari-

ance. The calibration is typically performed for a fixed position and orientation of the

user to a specific object that gaze should be estimated on. Moreover, in a multi-user
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scenario, the process of calibration has to be done for each user separately (discussed

in Chapter 3.2).

In Section 5.2 of this chapter, we presented the concept of GazeProjector, a system

to enable accurate gaze estimation on various surfaces (e.g., displays) independently

of the user’s position and orientation. With GazeProjector we require the user to

calibrate the head-mounted eye tracker only once per user. The procedure of looking

at the visual stimuli to obtain the pupil-to-gaze mapping can be performed on any

display, independent of the one the user’s gaze is estimated on. As we highlighted

in Section 5.2, the underlying idea of our approach is to continuously estimate the

position (including orientation) between the eye tracker’s scene camera and the sur-

faces (in our example, displays) in the environment using natural feature tracking.

Although the calibration is now independent of a potential target display, it is note-

worthy that each person still has to accomplish the task of calibration prior to usage.

However, the work presented in this chapter is a key achievement to formulate an

answer to the research question raised in Section 1.6. Remember that we reduced the

overarching question into eight smaller sub-questions that are more specific. After

the detailed elaboration of the concept and implementation of GazeProjector in Sec-

tion 5.2 as well as the thorough evaluation in two separate experiments described in

Section 5.3, we can formulate the answers to the following questions:

4. How can we overcome the problem that the calibration is orientation, location

and target dependent?

5. How can we achieve highly accurate and seamless gaze estimation across multiple

surfaces?

In order to resolve the issue of the calibration being invariant when changing the user’s

location and orientation in front of the target object (e.g., the display on which gaze

should be estimated), we have to follow these three steps:

1. Initially we have to calibrate the eye tracker, i.e. map the pupil positions from

the eye to the scene camera’s coordinate system. Remember that we are able

to calibrate on an arbitrary display.

2. We track the spatial relationship between the eye tracker and a specific display

from the device’s perspective. Hence, we do not require any external tracking

system.
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3. Finally, we map the 2D gaze positions from the scene camera’s to the display’s

coordinate space using this information.

With GazeProjector, we proposed a method (cf. Section 5.2.2) consisting of the above

three steps. According to our proof-of-concept implementation (described in Section

5.2.3), we can definitely answer the questions from above. With GazeProjector we

are able to finally overcome the aforementioned calibration issues of the and achieve

highly accurate gaze estimation across multiple displays. The results of the two exper-

iments presented in Section 5.3 additionally underline the advantages of our approach

over existing methods in terms of gaze estimation accuracy and scalability.

Having successfully answered sub-questions numbers 4 and 5, we want to illustrate

the benefits of GazeProjector in an interactive scenario. For this purpose, we want

to return to the Collaborative Newspaper application [101], presented in Section 1.5,

and the resultant problems for multi-user eye tracking scenarios. We discussed the

use of visual AR markers that were shown on the screen to realize the tracking of

the display in the scene camera images. This feature is required to correctly map the

users’ gaze onto the screen and the right text position. It is a key requirement for

the system to properly scroll the text being read. In the example, we estimated the

portion of the screen space that is wasted to display the AR markers. It turned out

that up to one third of the screen must be used for the marker tracking to work.

GazeProjector provides an opportunity to replace the well-established marker tracking

technique. The only requirement for the system to work is that the screen’s content

contains many visual features. The default layout of the Collaborative Newspaper ap-

plication consists of several news articles, showing a static image and text accordingly

(cf. Figure 1.8). There are at least three news articles displayed, sufficient for the

feature tracking algorithm to work properly. Consequently, integrating GazeProjector

into the application will definitely solve the problem of wasting display space, and

instead use it to show more content. Moreover, the gaze estimation is proven to be

more accurate than with marker tracking, while people are still able to move freely

in front of the public screen. Finally, GazeProjector can calibrate the head-mounted

eye tracker on any screen in the environment while achieving high gaze estimation

accuracy, also on other displays. Thus, the interaction, i.e. the reading, will not be

disturbed by any calibration procedure, enabling spontaneous use. One could simply

use a second display to calibrate the head-mounted device.
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5.6 Application of GazeProjector in a Real-World Set-

ting

In this section we will show the applicability of GazeProjector in a real-world scenario

for gaze estimation on any object in the environment. In the following we will present

our work to realize a novel way of using head-mounted eye tracking devices for in-

the-wild data analysis utilizing the concept described in Section 5.2. In particular, we

discuss how to use head-mounted eye tracking together with Google Street View data

for pedestrian navigation. We start with an introduction on the topic of navigation

and landmark generation and briefly review the existing work in this research area.

After that, we will present our approach utilizing GazeProjector to efficiently analyze

head-mounted eye tracking data. Finally, we will highlight the results of a small pilot

study to demonstrate that the concept works well.

5.6.1 Eye Tracking & Navigation

Navigating in partially familiar or completely unfamiliar environments is a complex

task that requires spatial reasoning, memorization, and close examination of the sur-

roundings. Incorporating landmarks – geographic objects that help structuring human

mental representations of space [160] – in the route description has been proven to

enhance understanding and performance of way-finding [192, 39]. May et al. [116]

found that landmarks, namely bars, specific shops, restaurants, supermarkets, gas

stations, traffic lights and parks should be the primary means of providing directions

to pedestrians.

Even though these advantages are well known, very few commercial systems exist

that include landmarks in the description process. The primary reason for that is the

lack of available landmark data, as stated by Giannopoulos et al. [46]. Many existing

approaches require active user input [204, 55, 14]. But selection of landmarks might be

biased when using a specific source (e.g., social network), or restricted by the available

data for certain characteristics of objects. A possible way to overcome these issues

is to use eye tracking. In the area of geographic exploration, eye-tracking has been

employed successfully before. For example, Kiefer et al. [83] identified factors that

influence the duration of the visual exploration of a city panorama. Eye tracking has

also been used to understand the process of self-localization on a physical paper-based

map [84]. Giannopoulos et al. [46] developed a navigation system that incorporates

the user’s gaze at decision points to communicate the route. This prior work makes
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eye tracking a promising approach to automatically identify landmarks as well. Since

landmarks are normally characterized by a high visual saliency, they should attract

the visual attention of the user [203].

The overall problem of the existing approaches is the mapping of people’s gaze on the

correct object (e.g., building) in the environment to automatically extract landmarks.

We present our approach towards a system to automatically infer suitable landmarks

for pedestrian navigation instructions from head-mounted eye-tracking data. Utilizing

GazeProjectior, we match the video feed of the eye tracker’s scene camera to Google

Street View imagery. Thus, our system is able to cluster the visual attention of the

users on specific elements of the environment. From this aggregation, we can infer

the saliency of the environmental elements and the potential for use as landmarks for

navigational instructions. In the following, we focus on extracting visual landmarks

using eye-tracking data to show the applicability of GazeProjector in a large complex

environment.

5.6.2 Automatic Gaze Estimation In The wild

The computation of people’s viewing and gazing behavior in an in-the-wild setting

(i.e., on buildings and other surroundings), where the environment is dynamically

Figure 5.16: Concept of the system using GazeProjector for gaze estimation on objects
in the environment: The head-mounted eye tracker (a,b) enables gaze estiamtion
in the user’s field of view obtained through the scene camera (c). With the GPS
location, possible candidates for the environment the user is facing are estimated
(d). The orientation sensor (compass) reduces the environment images to the correct
one according to the user’s head orientation (e). GazeProjector matches the user’s
gazepoint from the scene camera image to the selected environment (f).
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changing, is a key requirement for an automatic extraction of visual landmarks. Fig-

ure 5.16 depicts the concept of applying GazeProjector in such a setting. The goal to

estimate a user’s gaze on an object (i.e., a building) in the environment is realized as

follows: As before, we are using a head-mounted eye tracker to obtain a person’s gaze

information based on a one-time 9-point calibration (e.g., done on a laptop display).

By applying the method of GazeProjector, the gaze points can be mapped from the

eye tracker’s scene camera to corresponding gaze points on a display in the environ-

ment the user is currently looking at (cf. Section 5.2). coming back to our scenario,

the environment serves as a display, in simple terms. However, as this setting is quite

a bit more complex, we need more data for an accurate gaze estimation.

To get information about the user’s current surroundings, we record the location

through a mobile phone. With this, potential candidates from the environment are

obtained via Google Street View imagery (details on the implementation are pre-

sented in the next section). These ‘screenshots’ of the environment (comparable with

multiple displays placed in the environment) represent a 360◦ view around the user’s

location. To reduce the number of candidates, we additionally include the orientation

of the user.

A 9-degree-of-freedom (accelerometer, magnetometer, gyroscope) sensor, attached to

the head-mounted eye tracker, records the exact orientation of the user’s head in 3D.

Together with the location information, one single candidate can be extracted. Ap-

plying GazeProjector is comparable to the gaze estimation in a single display scenario.

The eye tracker’s scene camera image is used as a template that is searched for in

the corresponding Google Street View image. If the template matches, we can calcu-

late the projective transformation (i.e., the homography matrix H) from the recorded

scene camera image into the Street View image, as described in Section 5.2.2. The

transformed gaze point on the Street View image/screenshot represents the user’s

true gaze in the environment. After clustering the gaze points to estimate the user’s

attention, the set of visually most attractive landmarks could be extracted.

In sum, we continuously record a person’s location, head orientation and gaze data.

All data streams have to be synchronized for an accurate estimation of the user’s gaze

in the environment, and thus of their visual attention. Mapping the user’s gaze onto

the environment in an automated fashion, used to be problematic in the past due to
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the lack of holistic imagery of the environment. In the following we will present the

implementation of the above concept.

5.6.3 Implementation

Figure 5.17 shows the adapted architecture of the system, according to the one pre-

sented in Section 5.2.3. It consists of the same three main components – Tracker,

Engine and Trackable. For reasons of mobility, we moved all software parts to one

computer. In the following we will provide more details on the implementation of

each component.

Figure 5.17: Architecture of the system using GazeProjector for gaze estimation on
objects in the environment.

Tracker – a hardware prototype that bundles different devices into a wearable so-

lution to record all required data at once. Figure 5.18 depicts the hardware imple-

mentation of the device, which consists of the following components: (1) a monocular

head-mounted Pupil Labs eye tracker [78] that is connected via USB to a laptop com-

puter; (2) a 9-DOF inertial measurement unit (IMU)7, attached on the eye tracker’s

frame, that is powered by a battery; and (3) an iPhone SE to record GPS locations.

7Sparkfun 9-DOF sensor stick with ADXL345 Accelerometer, HMC5883L 3-axis magnetometer,
and ITG-3200 gyroscope
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Figure 5.18: Head-mounted device consisting of Pupil Labs eye tracker and a wireless
inertial measurement unit to detect the user’s head orientation; iPhone SE used for
GPS location.

The mounted IMU is able to measure the user’s absolute head orientation as yaw,

pitch, and roll independently of the eye-tracking device. We used an RFDuino4 to

connect the IMU via Bluetooth LE to the Laptop. The way we mounted the sen-

sor breakout shield ensured that the x-axis was pointing forward, the y-axis to the

right and z-axis down with respect to the viewing direction. The three sensors were

mounted on the left earpiece of the headset, where clearance to other cables and the

cameras was sufficient in terms of magnetometer deviation. We took special care

with the compass calibration to compensate for hard and soft iron errors. We expe-

rienced deviations from magnetic north due to electromagnetic induction when the

eye-tracking system was running.

The GPS locations were stored as a GPX track in the cloud, using komoot8, a

web-based routing framework. We used the Pupil Capture software, as it provides

a recording functionality to record the user’s field of view, by storing the scene view

images, and the gaze information in a dedicated folder9. The data of the IMU (mag-

netometer, accelerometer and gyroscope with timestamp) was streamed via a UDP

socket and stored as CSV data. All software is developed in Python.

Trackable – the environment on which the users’ gaze should be estimated. It is

represented by multiple screenshots provided through Google Street View imagery,

queried by the laptop computer. Listing 5.5 shows the implementation of the track-

8https://www.komoot.de/
9https://docs.pupil-labs.com/#recording
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able to get screenshots of the environment. We make use of the Google RESTful APIs

for Maps Static10 and Street View11. To obtain a map showing the route walked by

a user, a one-time query is necessary (Listing 5.5, lines 9–17). The screenshots of the

environment are based on the GPS location (as latitude and longitude) and potential

information about the head orientation (Listing 5.5, lines 20–48). In the case that no

orientation information is available, a 360◦ image (i.e. a panorama view) is created

by concatenating four Street View images with a field of view of about 90◦ (Listing

5.5, lines 34–44). All necessary data can be queried by passing the location, heading,

pitch and size of the target image for the Street View image, and the zoom level for

the Static Map image.

Code Listing 5.5: Using Google Street View to get a screenshot of the environment

1 class GoogleMaps ():

2 #doc: https :// developers.google.com/maps/documentation/streetview/

intro#url_parameter

3 def __init__(self):

4

5 self.street_base = "https :// maps.googleapis.com/maps/api/streetview

?size=640x360&location="

6 self.maps_base = "https :// maps.googleapis.com/maps/api/staticmap?

zoom=17&size=380x640&maptype=

roadmap&markers=color:blue%7Clabel:

P%7C"

7

8 # returns an image of the map displaying the path

9 def get_static_map(self , lat , lng , path):

10 parameters = str(lat) + "," + str(lng) + "&path=" + path + "&key="

+ GOOGLE_MAPS_API_KEY

11 url = self.maps_base + parameters

12

13 resp = urllib.urlopen(url)

14 image = np.asarray(bytearray(resp.read()), dtype="uint8")

15 image = cv2.imdecode(image , cv2.IMREAD_COLOR)

16

17 return image

18

19 # get street view image

20 def get_street_view(self , lat , lng , heading=None , pitch=None):

21 parameters = str(lat) + "," + str(lng) + "&key=" +

GOOGLE_MAPS_API_KEY

22 image = None

10https://developers.google.com/maps/documentation/maps-static/intro
11https://developers.google.com/maps/documentation/streetview
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23 url = ""

24 if heading:

25 parameters = str(lat) + "," + str(lng) + "&heading=" + str(

heading) + "&pitch=" + str(pitch) +

"&fov=90" + "&key=" +

GOOGLE_MAPS_API_KEY

26

27 url = self.street_base + parameters

28

29 resp = urllib.urlopen(url)

30 image = np.asarray(bytearray(resp.read()), dtype="uint8")

31 image = cv2.imdecode(image , cv2.IMREAD_COLOR)

32 else:

33 #stitch them together

34 pano = np.zeros ((360 , 2560 ,3), np.uint8)

35 idx = 0

36 for h in [0,90 ,180 ,270]:

37 parameters = str(lat) + "," + str(lng) + "&heading=" + str(h) +

"&pitch=" + str(p) + "&fov=90" + "

&key=" + GOOGLE_MAPS_API_KEY

38

39 url = self.street_base + parameters

40 resp = urllib.urlopen(url)

41 image = np.asarray(bytearray(resp.read()), dtype="uint8")

42 image = cv2.imdecode(image , cv2.IMREAD_COLOR)

43 pano[:360 , idx * 640:640+idx*640] = image

44 idx += 1

45

46 images = pano

47

48 return image , url

Engine – the software running on the laptop that uses all provided data streams to

performs all computations, necessary for the gaze estimation in the environment. As

we use the Pupil Capture software to record all eye tracking data, we also use the

Pupil Player12 software to play back and analyze the recorded data. This complete

Pupil Labs framework is developed in Python and easily extensible through plugins.

We implemented the following features: (1) automatic correlation and playback of all

recorded data, i.e. a folder containing files recorded via the Pupil Capture folder, a

GPX track provided by komoot and the user’s head orientations stored in a CSV file.

The synchronization is done based on timestamps. (2) The recorded gaze information

is processed using GazeProjector. Listing 5.6 shows parts of the implementation of

12https://docs.pupil-labs.com/#pupil-player
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the class Engine. The actual transformation of the gaze point is implemented in the

update method (Listing 5.6, lines 10–30). We re-implemented the feature tracking and

matching algorithm of GazeProjector using the OpenCV 3.1 bindings for Python. We

use the same parameters and algorithms as presented in Section 5.2.2. For faster

processing, we downscale the Street View images to 640 x 480 and the scene camera

images to 360 x 180 pixels. We achieve up to 30 fps, i.e. the processing can be done in

real time, and thus also during the data recording. (3) The user interface of the Pupil

Player was extended to highlight the current location of the user on Google Maps and

the extracted user’s view and gaze point.

Code Listing 5.6: Using Google Street View to get a screenshot of the environment

1 class Engine(plugin):

2 def __init__(self ,g_pool ,street_view=True ,street_view_window=False ,

street_view_alpha=0.8,street_scale=

0.8,maps_view=True ,maps_view_window

=False ,maps_view_alpha=0.8,

maps_scale=0.8,move_around=1,pos=[(

150 ,10),(800 ,10)],gps_data=True ,

orientation_data=False ,gaze_data=

True , broadcast=False):

3

4 self.algorithm = GazeProjector("freak")

5 self.gmaps = GoogleMaps ()

6

7 #more initialization concerning GUI

8

9 # method called every frame

10 def update(self ,frame ,events):

11 positions = events.get(’gps_positions ’, [])

12 imu = events.get(’imu_positions ’, [])

13

14 if imu:

15 self.heading = imu[0][’heading ’]#+180

16 self.pitch = imu[0][’pitch ’]

17

18 if positions:

19 self.positions = positions

20

21 self.street_view_image , self.url = self.gmaps.get_street_view(

self.positions[0][’lat’], self.

positions[0][’lng’], self.heading ,

self.pitch)

22
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23 # computes homography H and matches

24 H, matches , good = self.gp.find_homography(small_frame_g , cv2.

cvtColor(img , cv2.COLOR_BGR2GRAY),

idx)

25

26 if H != None and len(matches) > num_matches:

27 homography = H

28

29 for pt in events.get(’gaze_positions ’,[]):

30 mapped_gaze = H.dot(pt)

Figure 5.19 illustrates the extended Pupil Player. In the leftmost image, the software

is displaying the current field of view, captured by the scene camera. The center

image depicts the plugin used to visualize the aforementioned data. Specifically, it

overlays the scene camera image with the current Google Street View image, and a

(a) (b)

(c)

Figure 5.19: Playback and analysis of the recorded data: (a) The standard Pupil
Player is able to play back the data recorded by the eye tracker. (b) The developed
custom plugin is able to correlate GPS location, head orientation and eye tracking
data. For manual analysis, the path on a Google Map is shown (1), as well as the
Street View image (2). The user is able to set some parameters for the visualization
(3). (c) Using feature tracking, the plugin determines the transformation between the
scene camera’s image and the Google Street View image.
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map indicating the current location of the user. The rightmost image highlights the

result of the feature tracking and matching algorithm, used to map the scene camera

image to a Google Street View image.

5.6.4 Evaluation

We conducted a user experiment to verify our proof-of-concept implementation. In

particular, we want to investigate the performance of GazeProjector’s concept in

real-world environments by evaluating its algorithm when used with Google Street

View images. To do this, we equipped six participants between 22 and 58 years old

(M = 39.6, SD = 14.8 years), 4 male and 2 female, with our device bundle. All par-

ticipants were recruited from a local university campus and had corrected or normal

vision; none reported any visual impairments (e.g., color blindness).

The task of the participants was to walk a pre-defined route through the nearby

French town of Saareguemines. All participants rated their familiarity with this city

as “rather unfamiliar” or “unfamiliar”. The generated route went through the inner

part of the city and was constructed as a 1.5 km circular course, depicted in Figure

5.20. The participants were guided using the off-the-shelf audio navigation part of the

Komoot Mobile App. As Wenczel et al. showed that the amount of visual attention

on more salient landmarks is not affected by whether the user learned the route be-

forehand, or is incidentally learning it, we decided not to explain the route beforehand

[203].

Each participant was first asked to calibrate the head-mounted eye tracker while

standing. We used the built-in nine-point 2D calibration procedure of the Pupil Labs

framework on a 15-inch laptop screen. Remember that GazeProjector allows calibra-

tion on any screen while maintaining a highly accurate gaze estimation accuracy on

other displays. In our case the displays are the environment. After the calibration,

we synchronized the software manually with the mobile phone used for location track-

ing. This was done by capturing a start-button press on the iPhones screen with the

scene camera of the eye tracker. The participants were instructed to follow the audio

instructions to finish the route.

During the task, all data was sampled in the following way: Right after the eye

tracker calibration, each participant was asked to look straight ahead. We sampled

data from the eye tracker for six seconds. This was necessary to have a set of samples
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Figure 5.20: The route that was walked by the participants. Each person started
through the park, beginning and ending in front of the railway station at the red
marker.

to create a mapping between the gaze direction and head orientation relative to each

other. On the way through the city, the scene camera video stream and gaze data

were recorded through the Pupil eye tracking device at 30 Hz; IMU data and location

data were recorded at 40Hz and 2Hz respectively.

Results

To do a first evaluation of our proof-of-concept prototype, we aggregated all recorded

data of each participant, using the Pupil framework together with the developed plu-

gins. We then computed the number of scene camera images which we were able

to match to Google Street View images across all participants and recordings. In a

frame-by-frame evaluation, we found that it is possible to successfully match 31.99%

of the scene camera images to Street View image data (SD = 5.6%) averaged over

all participants. That means we are also able to compute the homography matrix

(i.e., GazeProjector’s basic algorithm needed for gaze estimation) along a third of the

walked route.

We further wanted to investigate the variability in eye and head movements: Figure

5.21 plots the mean eye movements we recorded during the experiment. We noticed

a horizontal eye movement of 7.22◦ on average (SD = 3.26◦), compared to 5.42◦ in

the vertical direction (SD = 1.41◦). It also shows the same plot for the observed

head movements. Here we saw 144.23◦ for horizontal head movements (yaw angle) on
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Figure 5.21: Left: Mean eye movement in degrees, horizontal vs. vertical direction.
Right: Mean head movements in degrees, horizontal vs. vertical direction.

average (SD = 86.51◦). In the vertical direction (pitch angle), we observed 12.06◦ on

average (SD = 12.07◦).

5.6.5 Discussion

The conducted experiment gives first insights into the applicability of GazeProjector

in an in-the-wild scenario. We found that the feature tracking and matching algorithm

is able to compute a homography matrix for almost a third of all image data, and

thereby project the user’s gaze into the environment. For this subset, the attention

of the user can be extracted by computing the fixations based on the gaze behavior.

The object at the location of the user’s fixation in the environment (i.e., the Google

Street View image) is defined as a potential landmark. To obtain further information

about the attended object, further investigation is required. For example, Google

Places13 can be integrated to retrieve information about a building (e.g., whether it

is a restaurant).

GazeProjector’s poor performance can be explained as follows. We processed the

raw data that was sampled. That means we did not take into account the fact that

Google Street View images are usually taken from the center of the road. To increase

the accuracy of the results, one would have to incorporate the offset between the user’s

13https://developers.google.com/places/web-service/intro?hl=de
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position and the position of the Google Street View imagery and adapt the orientation

accordingly. Further, it is very likely that Google Street View images differ from the

current scene images, as they could contain other objects like cars, or might have been

recorded in a different season (e.g., winter versus spring).

We noticed a very small variability in the eye movement data, compared to the head

movement. The observed 7.22◦ for horizontal movements is within the macular region

of the peripheral system (see Chapter 2). The large values for head movements indi-

cate that people tend to move their head instead of their eyes. On the one hand this

could be caused by the fact that people were walking through an unfamiliar city and

tried to see as much as possible. On the other hand it might be sufficient to use only

the head orientation and location information, which would be a subject for further

research.

5.7 Summary

In this chapter, we presented GazeProjector, an approach for accurate gaze estima-

tion and seamless interaction with multiple large displays using head-mounted eye

trackers, in Section 5.2. In contrast to existing systems, GazeProjector only requires

a single calibration performed with an arbitrary display, and is robust to the user’s

location and orientation to the displays as well as head movements. Furthermore,

GazeProjector works without external tracking equipment, such as motion capturing

systems or markers attached to displays.

We conducted two experiments in which we compared GazeProjector to existing,

well-established techniques (which require additional equipment), and found that our

approach compares well to these techniques (see Section 5.3). When used on multiple

displays, the results are even more promising. Overall, they underline the significant

potential to finally bring gaze-based interaction into settings that involve gaze estima-

tion on multiple displays and even with multiple locations (see Figure 5.1, complexity

(K x L) : M : 1).

So far, we have tested GazeProjector in a laboratory environment, to gain insights

into its performance compared to existing techniques, and in a real-world scenario

(cf. Section 5.6). There, the automatic combination of head-mounted eye tracking

data with Google Street View imagery was demonstrated. Accordingly, we enabled

the mapping of gaze data into the environment, which can be used for automatic



143

extraction of visual landmarks for navigational tasks. We saw that especially in this

real-world scenario, the gaze estimation on arbitrary objects in the environment is a

complex task that cannot be fully solved using GazeProjector’s concept, as it involves

much more data than just the pure eye tracking data.

However, we believe that the method can be improved by including novel machine

learning algorithms, in particular for object and scene detection, to take our approach

one step further. In addition, we want to evaluate GazeProjector’s performance with

multiple users simultaneously. This will further contribute to the eye tracking com-

munity, as it has been virtually impossible to test eye-tracking systems on such large

scales with multiple persons.

With the developed system presented in this chapter, we answered two more sub-

questions of the research question this thesis is based upon (see Section 1.6). In

particular, GazeProjector makes the calibration of a head-mounted eye tracking sys-

tem invariant against changes in distance and orientation to the surface gaze should

be estimated on. That is, the calibration plane, which is usually the screen used for

the calibration procedure, is projected onto any surface in the environment that a

user wants to interact with. Moreover, the gaze estimation accuracy remains constant

across multiple displays (discussed in Sections 5.4 and 5.5). Moreover the application

presented in Section 5.6 highlights the contribution of GazeProjector in a different

domain of research.

However, it is still necessary to calibrate the head-mounted eye tracker prior to use.

In the next chapter we will elaborate on the design process resulting in two systems

that enable calibration-free gaze estimation. Finally, we show a system for real mobile

eye tracking without the need for carrying a powerful laptop required to drive the eye

tracking system.
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Chapter 6

Mobile and Calibration Free

Gaze Estimation Approach

In this chapter we will elucidate the development process of a mobile and calibration-

free approach for gaze estimation that results in two connected systems. Both address

the problem of calibration and the remaining issues of supervision and parallax er-

ror (cf. Section 1.4), which were not addressed so far. There we discussed that

each gaze estimation method relies on a specific set of input parameters which have

to be acquired through a calibration procedure, which in turn might differ depend-

ing on the method. To make a head-mounted eye tracker ready for usage, different

approaches exist to carry out the calibration. Although there is the possibility to

automatically make the device ready to use (as done with remote devices through an

automatic calibration; see Section 3.2), the state-of-the-art head mounted eye track-

ers still implement a supervised calibration procedure (e.g., Tobii Pro Glasses 21 and

Pupil Labs2).

In this chapter, we will present alternative gaze estimation approaches, which are

based on corneal imaging (see Section 3.3) and which overcome the user depen-

dent calibration procedure, including also the problems of invariance and calibration

drift. With the developed approaches we are able to answer the remaining open

sub-questions of the formulated research question of Chapter 1.6. Thus, they enable

ubiquitous and pervasive eye tracking scenarios, i.e. gaze estimation for multiple per-

sons on multiple objects and locations (cf. Ubiquitous Computing for Eye Tracking

Continuum, Figure 6.1).

1https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
2https://docs.pupil-labs.com/\#calibration
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Figure 6.1: Ubiquitous Computing for Eye Tracking Continuum: 3-dimensional space
highlighting the complexity ((K x L) : M : N) that is addressed by this chapter.

The results of this Chapter have been presented in two main publications [94, 98] and

applied in three more works [97, 96, 99]. Work related to this Chapter can be found

in Section 3.2 on eye tracker calibration and calibration-less approaches as well as in

Section 3.3 on corneal imaging.

6.1 Introduction

The calibration procedure, required to make head-mounted eye tracking devices ready

for use, involves various problems, as discussed in Section 1.4. Although much re-

search exists to enhance the calibration process and counteract its issues (cf. Section

3.2), it remains the main problem that hinders gaze-enabled pervasive interfaces, as

highlighted in Section 3.4. Desirable attributes of an eye tracker include minimal

intrusiveness and obstruction, allowing for free movements while maintaining high ac-

curacy, easy and flexible setup, and low cost [168]. Although the latest commercial eye

trackers try to support all these attributes, they rely on a user-dependent calibration.

Moreover, most of these devices need a direct connection to a powerful computer for

real-time data processing. As a result, current head-mounted eye trackers are neither

applicable for spontaneous interaction nor suitable to conduct long-lasting in-the-wild

experiments.

So far we have presented several approaches to tackle most of the issues along with

the calibration procedure of head-mounted eye tracking systems. But to complete

the answer of the research question formulated in this thesis, we have to investigate

the two remaining sub questions. This chapter presents two calibration-free gaze es-

timation approaches, which are based on corneal imaging (cf. Section 3.3). Figure 6.2
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Figure 6.2: Basic idea of using the corneal images (i.e. the environment reflected on
the human eye) for gaze estimation in the current scene.

depicts the underlying idea of using the environment, reflected on the human eye, for

gaze estimation. Simply put, the usual scene images of a head-mounted eye tracker

are replaced by corneal images, making the scene camera obsolete. Following this, a

calibration procedure is no longer required. While exploring this approach, we aim

to conclude the work that paves the way for head-mounted eye tracking devices that

are applicable in ubiquitous scenarios (cf. Ubiquitous Computing for Eye Tracking

Continuum Section 1.1).

The chapter is structured as follows: First, in Section 6.2, we will present the con-

cept of EyeMirror, a head-mounted device that is able to approximate a person’s

gaze on surfaces (e.g., displays). In particular, we developed a device, consisting of a

head-mounted camera, connected to a wearable minicomputer, capturing the corneal

images. We propose two simple ways of gaze approximation, both based on natural

feature tracking on the corneal images and the surfaces in the environment. Necessary

eye features, such as the cornea (also known as the limbus) and the eye center are

approximated. In two lab studies we compared variations of EyeMirror against estab-

lished methods for gaze estimation in a display scenario, and investigated the effect

of display content (i.e. number of features). We finally achieved an average accuracy

of 4.03◦.

Second, in Section 6.3, we will demonstrate the approach, called hEYEbrid, achieving

an average gaze estimation accuracy of 2.19◦. It is based on a hybrid concept that

combines infrared eye images with corneal imaging in order to realize highly accurate
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pupil tracking. For this, two eye cameras are mounted side-by-side on a glasses frame.

In this way, the pupil can be tracked with high precision. This information is trans-

lated into the corneal image, which is used to create a connection to the environment,

acting like a scene camera. In a user study with 20 participants, we evaluated our ap-

proach against an extended version of the system, and a state-of-the-art head-mounted

Pupil Labs eye tracker. Finally we present a prototype, connecting the head-mounted

device to a mobile phone, enabling gaze estimation in real time by using the dedicated

hEYEbrid mobile application.

After presenting both developed systems, we will discuss their contribution to the

fundamental research question of this thesis. To make the new generation of head-

mounted eye tracking systems, presented in this Chapter, usable in eye tracking ex-

periments, the application of classical methods to extract and analyze eye movement

data has to be explored. Therefore, we will finally highlight a working approach to

adapt standard eye tracking metrics such as fixation extraction on corneal imaging

based gaze data in Section 6.5. With this method we can cluster and compress the

eye tracking data and make it ready for further analysis (e.g. attention measurement

and object detection).

Summing up, we provide the final answer to our research question: how to turn head-

mounted eye trackers into ubiquitous computing devices? In addition, we underline

the benefits of our systems with applications to demonstrate their applicability.

6.2 EyeMirror – Mobile Calibration-Free Gaze Approx-

imation

In this Section we present EyeMirror, a mobile and wearable system for corneal imag-

ing. It allows for calibration-free, moderately accurate gaze approximation on surfaces

(e.g., displays) in the environment, while tolerating changes in distance and orientation

to them. Our eyes literally serve as a mirror of our everyday doings and whereabouts.

The parts that we can see externally are the white sclera, the iris, and the black pupil,

the latter two of which are covered by the cornea. The corneal surface is covered by

the tear fluid, which turns it into a highly reflective surface (see Section 2.1). The

basic idea is to place a lightweight camera in front of the eye to capture close-up

images of the human eye. They contain a distorted partial reflection of the user’s

current field of view (see Figure 6.3). These corneal images are compared with the
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Figure 6.3: Corneal images, showing (1) a computer monitor, (2) faces, (3) a poster
and (4) an iPhone6 display.

content of surfaces in the environment (e.g., displays, posters or books) using natural

feature tracking.

We developed two approaches to approximate a person’s gaze: The first version ap-

proximates the user’s gaze point on the surface by clustering all key feature pairs,

extracted between the corneal image and surface content (e.g., display). The second

version approximates the pupil center and maps it to the surface, applying a trans-

formation matrix based on the extracted key feature pairs (similar to the concept of

GazeProjector ; cf. Section 5.2). Both versions require knowledge about the surface’s

content. In the case of displays, the screen content can be streamed; for books and

posters, the content has to be available. The underlying concept is solely based on

natural feature tracking and a single head-mounted camera, which makes a calibration

procedure unnecessary. As the device is connected to a wearable computer, users are

able to freely walk around, which enables pervasive scenarios.

We conducted two consecutive laboratory experiments to evaluate our approach. In

the first experiment with 10 participants we compared four versions of EyeMirror –

the two already described approaches, and each approach using distortion-corrected

corneal images – against a state-of-the-art Pupil Labs eye tracker [78], and using head

orientation as gaze direction based on a Microsoft Kinect v2 sensor.In the first ex-
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periment we were primarily interested in gaze estimation accuracy in a single-display

scenario. The task was to look at different on-screen targets from multiple distances

and orientations in front of a projected display. EyeMirror achieves moderate gaze

estimation accuracy of about 5◦ in each version. The second experiment explored

the effect of the number of features on gaze estimation accuracy. This is of great

importance, as the system is based on natural feature tracking. In a single-desktop

setting, we repeated the same task as in the first experiment, but changed between

six different content types. We found no significant change in gaze estimation accu-

racy among five of them. One content type did not work, since it contained too few

features. Hence, our work provides the following contributions:

• Fully implemented wearable corneal reflection system enabling calibra-

tion-free gaze mapping on ambient surfaces in real time.

• Investigation of two algorithms based on established concepts (natural fea-

ture tracking) executable on-board for use in the wild.

• Guidelines for the quality of surfaces (i.e., content); the device can be used

in accordance with the results of the evaluations.

In the following parts of this section we will present EyeMirror ’s concept and its

implementation in detail. After that, we will present the two experiments to as-

sess EyeMirror ’s gaze estimation accuracy and the effect of the display content in a

single-display scenario. Finally we will discuss our results, pointing out the current

limitations and giving an outlook for future work.

Difference from Related Work

We already presented the necessary related work on which our approach is based

in Chapter 3, in Sections 3.2 and 3.3. With EyeMirror we built a wearable mobile

corneal imaging system using a single off-the-shelf webcam without any additional

components, such as active infrared light [174] or optical parts [187, 188]. Iris contour

detection, as well as tracking the eye center point, is based only on processing the

close-up eye images using computer vision methods, and works without any highly

complex computations based on a 3D model of the eye [50]. In our approach we solely

investigate the method of natural feature tracking for calibration-free gaze approxima-

tion in real time. We use lightweight algorithms of a low computational complexity,

executable on a single-board computer. Thus EyeMirror is a system made for the
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exploration of gaze estimation in the wild. We evaluated our approach against es-

tablished methods for gaze estimation, as well as the effect of the number of features

used to align EyeMirror.

6.2.1 The EyeMirror System

The EyeMirror system is designed to detect known aspects visible in a person’s field

of view to estimate gaze on ambient surfaces (e.g., it is usable to measure attention

on displays). The only hardware required for a working system is a single off-the-

shelf RGB webcam. It is positioned underneath the eye to capture a close-up video,

revealing objects in the near environment, reflected on the eye’s pupil and iris. The

camera is slightly rotatable and movable to center the eye in the image, as needed for

an optimal reflection image. The camera frames are analyzed with image processing

and computer vision methods.

Figure 6.4: Limbus detection is done via ellipse fitting (5, marked by the green rect-
angle and the orange ellipse) after a polar transformation (2) and radial derivation
(3). The eye center is extracted using image gradients (4). The final region of interest
(6) contains the limbus and the eye center location (yellow circle).

Figure 6.4 illustrates the processing pipeline for extracting the limbus (iris contour)

as well as the eye center, used to approximate the gaze location. The output is a

cropped version of the raw input image, containing the region within the iris contour,

used for further operations. In the following we explain the limbus extraction, the eye

center localization, and gaze approximation on displays.

Limbus Detection

Figure 6.4(1–3) visualizes the pipeline used for limbus extraction. The algorithm con-

tinuously receives close-up images, shown in Figure 6.4(1). These raw video frames

contain much information that is not needed for later processing: The sclera can oc-

cupy up to one-third of the image, depending on the eye pose and camera position,

and does not reveal any relevant information. The eyelashes may corrupt the result



152 6.2 EyeMirror – Mobile Calibration-Free Gaze Approximation

of later processing steps (e.g., feature tracking). Hence, these areas are removed from

the raw image through a pre-defined region of interest.

The limbus of the eye has two main image characteristics: (1) it has an elliptical

shape, and (2) it can be distinguished well from the surrounding structures (sclera

and eyelids). A well-known approach is to look for the radial edges and classify them

as the limbus boundary using ellipse fitting. EyeMirror ’s algorithm is based on the

approach by Wood et al. [205]. As suggested by them, the derivative of the polar

transformation of the raw image is used, as shown in Figure 6.4(2–3). The maximum

of each row is marked as a potential limbus point and fitted using a least-squares

method for ellipse fitting. This approach is highly robust across different users and

under varying lighting conditions, as it is not based on pre-defined thresholds for edge

detection.

Eye Center Localization

To realize gaze estimation, it is necessary to have a reference point in the environment

of what the user is currently looking at. The second version of EyeMirror declares

the reflection at the eye center as the gaze reference point. We assume that this point

correlates with the actual eye center. For eye center localization, the method of image

gradients, proposed by Timm et al. [191], is used. Figure 6.4(3) shows the input

image processed with the function they developed, which extracts the location where

the most gradient vectors intersect. Like limbus detection, this method is robust

under changing lighting conditions and various eye movements.

Gaze Estimation on Displays

The corneal images contain the actual part of the environment a person is currently

looking at. In the case of interacting with a surface, e.g. a display, its content is par-

tially reflected on the eye’s iris and pupil, as shown in Figure 6.4(1). In EyeMirror, we

developed two techniques for realizing gaze estimation on surfaces, such as public dis-

plays, using the corneal images (shown in Figure 6.5): The first approach is based on

the concept of GazeProjector, developed in Section 5.2. The main idea is to compute

the spatial relationship between the user’s eye (and respectively the camera) and the

surface the user is currently looking at. But, instead of utilizing the world camera of a

mobile eye tracker (as in GazeProjector), we use the area within the limbus, reflecting

the user’s current field of view. The content of the surface (e.g., a display screenshot)

a person is currently looking at is used as a template image that is searched for in the
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Figure 6.5: EyeMirror ’s two approaches for gaze estimation on surfaces, here displays:
(1) Gaze is approximated by transforming the extracted eye center onto the display
using a homography matrix. (2) Gaze is approximated by clustering the image feature
pairs of the display’s content and the corneal image.

pre-processed corneal image. Both images are compared using natural image features.

Whenever we find a match, the homography matrix, describing a transformation of

points from the surface’s image plane to the corneal image plane, is computed. As

the homography is a bi-directional mapping, we use the inverse to transform the eye

center point to the corresponding location on the surface. Figure 6.5(1) illustrates the

procedure for gaze approximation on a display applying the described approach.

The second approach works in a similar manner in terms of calculating the rela-

tion between the eye reflection and the displays. In contrast to the previous version,
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we are computing a k-means cluster for the found key feature pairs (with k = 1) to

extract the gaze point instead of detecting the eye center. The result is immediately

chosen as the current gaze point, as we assume it is usually located near to the pupil’s

center. The result is shown by the cyan point in Figure 6.5(2).

Note that most of the features are found and matched within the area of the pupil.

The reasons are that (a) the distortion of the reflection in that part is relatively small

for most eye poses, and (b) the corneal reflection is less noisy at the pupil than on the

iris. This is caused by the fact that the reflection on the iris is mixed with its color,

making it blurrier. Also, other distraction factors (e.g., contact lenses) can corrupt

the reflection there. Both described methods are applicable to any surface providing

feature-rich content (e.g., posters or books).

Implementation

The EyeMirror system consists of three components: (1) the head-mounted prototype

built from a 3D-printed glasses frame [78] and a 3D-printed camera mount to place

the webcam underneath a person’s eye; (2) a single-board computer, running the Eye-

Mirror software component, and (3) the surfaces in the environment. The software is

designed to be easily extendable through plugins (e.g., further image processing algo-

rithms). In the following, we will outline the implementation to use EyeMirror with

displays.

Each mobile device and the displays are connected over WiFi. To keep the prototype

device as lightweight as possible, we use a Logitech c270 camera (Figure 6.6(1)), cap-

turing frames with a maximal resolution of 1280 x 960 px at 30 fps. The camera covers

a 60◦ field of view and has a fixed focus of 4 mm. To enable the camera to capture

with macro resolution, the camera has been stripped of its original housing and the

glue around the lens was removed to adjust the focus manually (Figure 6.6(2)). The

camera board is mounted on a 3D-printed glasses frame using a custom enclosure

(Figure 6.6(3-4)). In this way, the camera is movable and rotatable; thus we do not

need any further optical parts like prisms [187]. As the joint between the frame and

a custom camera hold is lockable with a screw, the camera will not move without

further effort. Consequently, the relationship between eye, camera and scene is fixed

and re-adjustments are not done more often than for other head-mounted eye track-

ing devices. Figure 6.6 illustrates the building steps and the final hardware prototype.
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Figure 6.6: Building steps: (1) Extraction of camera board; (2) removing glue around
the lens to adjust focus; (3) camera is built into a custom rotatable and movable
enclosure and (4) mounted on a glasses frame, connected to a (5) RaspberryPi. On
the right, the final wearable and fully functional prototype is shown.

All software components are developed in Python. For image processing methods,

the OpenCV 3.03 library is used. It provides methods for FAST and FLANN to ex-

tract and match key features. For simple image operations (e.g., rotation and maxima

search) we are using numpy4, as it provides a fast way to process arrays. Eye images

are captured with a resolution of 1280 x 960 px, resulting in an image with varying

resolution after limbus extraction. Depending on the eye pose (i.e., the location of

the limbus) the resolution ranges from 410 x 400 pixels to 400 x 360 pixels. Hence,

these images are not further down-scaled, to preserve a high number of features.

The described pre-processing steps, i.e., limbus detection and eye center localiza-

tion, are implemented as a separate sub-process. Listing 6.1 depicts the method to

processes the raw camera frame. To speed up the computation, the input image is

down-scaled using a Gaussian pyramid. As mentioned above, we extract the limbus

3http://opencv.org
4http://numpy.org
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boundaries by looking for the maximum derivative (using the Sobel operator) of the

image in the polar space (see Listing 6.1, lines 10–29). The method to find the eye

center was taken from an open-source project5. Finally, both eye characteristics are

scaled to match the initial size of the input image.

Code Listing 6.1: Limbus Detection & Eye Center Localization

1 def extract_eye_information_raw(frame):

2 # image pyramids to speed up computation

3 frame_pyr = make_gauss_pyr(frame)

4

5 # do polar transformation and the same procedure

6 # as proposed by Wood et al.

7 # find limbus with polar transformation and 2nd order derivative

8 new_frame = frame_pyr[2].copy()

9 gray = cv2.cvtColor(new_frame , cv2.COLOR_BGR2GRAY)

10 polar = cv2.logPolar(gray , (gray.shape[1]/2, gray.shape[0]/2), 45 ,

cv2.WARP_FILL_OUTLIERS)

11

12 # first order dervative twice and add them

13 gxx = cv2.Sobel(polar , cv2.CV_8U , 1, 0, ksize=3)

14 derivative = np.add(gxx , gxx)

15

16 # find maxima and select them in the polar image

17 maxima = np.argmax(derivative , axis=1)

18 polar = cv2.cvtColor(polar , cv2.COLOR_GRAY2BGR)

19 for idx in range(0,len(maxima)):

20 polar[idx][maxima[idx]] = (0,0,255)

21

22 gray = cv2.logPolar(polar , (polar.shape[1]/2, polar.shape[0]/2), 45

, cv2.WARP_INVERSE_MAP + cv2.

WARP_FILL_OUTLIERS)

23

24 # store the maxima values

25 a,b = np.where ((gray == [0,0,255]).all(axis = 2))

26 data_limbus = np.transpose ((b,a))

27

28 # ellipse fitting of the extracted limbus border points

29 limbus_bounding_rectangle = cv2.boundingRect(data_limbus)

30

31 #find eye center with gradients with method

32 # from https :// github.com/errollw/EyeTab

33 pupil_x1 , pupil_y1 = eye_center_locator_combined.find_pupil(

new_frame ,

5https://github.com/errollw/EyeTab
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34 fast_width_grads=25.0,

35 fast_width_iso=80.0,

36 weight_grads=0.9,

37 weight_iso=0.1,

38 debug_index=0)

39

40 # remap the information to the initial image size

41 eye_center = (pupil_x1 * 2.0, pupil_y1 * 2.0)

42 limbus = (int(limbus_bounding_rectangle[0]*2), int(

limbus_bounding_rectangle[1]*2),

int(2*limbus_bounding_rectangle[2])

, int(2*limbus_bounding_rectangle[3

]))

43

44 return (eye_center , limbus)

The implementation of both versions for gaze estimation is shown in Listing 6.2. Both

methods rely on natural image feature tracking, as explained above. For image key

feature detection and extraction we use FREAK [144]. To compute the correspond-

ing matches, a FLANN based matcher [124] is used (see lines 3–9 and lines 13–21).

The first version of gaze estimation computes the cluster of all key feature matches,

applying k-means with k=1 (see Listing 6.2, lines 23–31). In the second version, the

homography matrix is computed if more than four matches are found. Since we use

the display content as a template that is searched for in the corneal image, we have to

use the inverse of the homography to project the eye center to the screen (see Listing

6.2, lines 33–38).

Code Listing 6.2: Gaze Estimation

1 class FeatureTracker:

2 def __init__(self):

3 self.freak = cv2.xfeatures2d.FREAK_create ()

4 self.detector = cv2.FastFeatureDetector_create ()

5 self.detector.setThreshold(35)

6 norm = cv2.NORM_HAMMING

7

8 flann_params= dict(algorithm = 6, table_number = 6, key_size = 12,

multi_probe_level = 1)

9 self.matcher = cv2.FlannBasedMatcher(flann_params)

10

11 def gazeEstimation(self , template , corneal_image , pupil):

12 # find the keypoints

13 kp1 = self.fast.detect(template ,None)

14 kp2 = self.fast.detect(corneal_image ,None)
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15

16 # find the keypoints and descriptors with FREAK

17 kp1 , desc1 = self.freak.compute(template ,kp1)

18 kp2 , desc2 = self.freak.compute(corneal_image ,kp2)

19

20 raw_matches = self.matcher.knnMatch(desc1 , trainDescriptors = desc2 ,

k = 2)

21 p1, p2, kp_pairs = filter_matches(kp1 , kp2 , raw_matches)

22

23 # clustering approach

24 # Define criteria = ( type , max_iter = 10 , epsilon = 1.0 )

25 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER , 10, 1

.0)

26 # Set flags (Just to avoid line break in the code)

27 flags = cv2.KMEANS_RANDOM_CENTERS

28 # Apply KMeans

29 compactness ,labels ,center = cv2.kmeans(p1 ,1,None ,criteria ,10,flags)

30

31 gaze_cluster = (int(center[0][0] * scale1), int(center[0][1] * scale1

))

32

33 # gaze estimation with homography

34 if len(p1) >= 4:

35 H, status = cv2.findHomography(p1, p2, cv2.RANSAC , 5.0)

36 # get the inverse

37 homography = np.linalg.inv(H_freak)

38 projected_gaze = cv2.perspectiveTransform(pupil , homography)

39

40 return (gaze_cluster , projected_gaze)

The software component runs on a Raspberry 3 single-board computer, based on

Raspbian OS, with up to 25fps. It is mountable to a belt, enabling the whole system

to be portable, while it is powered by a power bank. Camera frames are captured

by using pyuvc6, a python wrapper for libuvc7, offered by Pupil Labs. It is a cross-

platform library for USB video devices to access UVC devices. We use this library,

as it is more robust and faster than the built-in OpenCV camera plugin. When using

EyeMirror with displays, their content has to be streamed to the software component.

We developed a python script that broadcasts screenshots with a resolution of 240 x

180 px to the RaspberryPi 3. In the case of other ambient surfaces (e.g., books), the

images have to be known beforehand.

6https://github.com/pupil-labs/pyuvc
7https://github.com/ktossell/libuvc
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6.2.2 Experiment I – Gaze Estimation on a Display

We conducted a controlled laboratory study to evaluate EyeMirror ’s accuracy in es-

timating gaze on a projected display. We compared our two approaches with corre-

sponding versions using distortion-corrected corneal images, a head-mounted Pupil

Labs eye tracker that uses marker tracking to estimate its relative position to the

display8, and an approach with a Kinect v2 sensor that uses only the head position

and orientation.

Independent Variables

We had two independent variables in the experiment, Mode (i.e., method used for

gaze estimation) and Location (i.e., where participants were standing in front of the

display), as follows:

Mode: We had 6 different modes for gaze estimation on the projected display: EyeMir-

ror-Pupil (EM-P), transforming the pupil center using a homography, and EyeMirror-

Cluster (EM-C) taking the cluster of the key feature pairs as the gaze point, both de-

scribed above; EyeMirror-Pupil-Undistorted (EM-P-U) and EyeMirror-Cluster-Undis-

torted (EM-C-U), both using a corrected corneal image to investigate the effect of the

spherical distortion of the corneal reflection (as in [151]); Marker Tracking (MT), us-

ing a set of visual markers shown on the screen to track the orientation between the

display and the eye tracker provided by the Pupil framework9; and a simple Head

Orientation (HO) approach, tracking the participant’s head with a Kinect v2 sensor,

placed underneath the projected display.

For MT we calibrated the eye tracker for each participant separately from the cen-

tered location in front of the display. For all EM modes we adjusted the camera

(position and focus) to capture images with a centered eye location. For EM-P-U

and EM-C-U we sampled data while the people were looking at a chessboard pattern

for 5 seconds to dewarp the images. The pattern filled out the whole projected dis-

play. To compute the distortion map, we used OpenCV’s camera calibration10, using

20 samples for each calibration. Figure 6.7 highlights the calibration procedure and

feature matching as well as homography computation of the undistorted corneal image.

8https://pupil-labs.com/blog/2013-12/pupil-v0-3-6-marker-tracking/
9http://www.pupil-labs.com/blog/2013/12/036-release.html

10https://docs.opencv.org/3.0.0/d4/d94/tutorial_camera_calibration.html
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Figure 6.7: Calibration with chessboard pattern (1) to undistort the corneal image
(2). Computation of a homography may be more exact (3).

Locations: We chose five different locations (2 near, 3 far) to investigate the effect of

varying positions and orientations in front of the display. In doing so, we obtained

images containing many different reflections of the display (i.e., different size and dis-

tortion), while simulating a more realistic setting. The eye tracker was calibrated only

for the central location, as it is not likely that users re-calibrate for every position in

a dynamic setting. We did not give any visual feedback to the participants, to pre-

vent false positives. In addition, this allowed us to keep the length of the experiment

reasonable, as all the data was sampled in two runs. We had to record the HO data

separately, as the head tracking was error-prone while the mobile devices (eye tracker

and prototype) were being worn. We computed the gaze estimation accuracy as well

as the correction post-hoc for every mode.

Apparatus

Figure 6.8 illustrates the experimental setup: we used a large front-projected display

with a size of 2.80 x 1.56 meters (diagonal: 3.20 meters) using a short-throw projector.

The five locations (L1-L5) were distributed as follows: the near locations at a distance

of 1.2 m, and the far locations at a distance of 2.20 m from the display center. The

near-left and near-right locations were 1.35 meters away, and the far-left and far-right

locations were 2.50 meters away from the display’s center with an angular offset of

±26.5◦ and ±28.6◦, respectively. The far-center location had an angular offset of 0◦.
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(a)
(b)

Figure 6.8: Study setup: (a) A large projected screen and the Kinect sensor v2.
In addition, all locations (near-left, near-right, far-left, far-center and far-right) and
targets (T1-T9) are shown. (b) The prototype combining the Pupil Labs eye tracker
with EyeMirror.

Standing at the far locations, the display covers 64.8◦, while at the near locations the

display covers 98.8◦.

Choosing the locations this way forces participants to move their heads, as the re-

gion covered by the display exceeds the ocular motor range of ±55◦ [49]. To record

the EM and MT in parallel, we mounted EyeMirror ’s camera underneath the eye

camera of the monocular Pupil Labs eye tracker, capturing the right eye ((see Figure

6.8)). The Pupil Labs system was running on a Thinkpad X201, transmitting the data

via WiFi to a MacBook Pro driving the display and capturing the EyeMirror camera

frames. For feature tracking we used the background image (containing 9262 features,

shown in Figure 6.8) without markers as a template to prevent any effect on EM’s

performance.

Task & Procedure

We implemented a simple gaze-pointing task in which participants had to focus on

targets shown at nine different positions (T1–T9). These were represented as red

circles (40 pixels, or approx. 58 mm) on the projection with equal distances between

them (see Figure 6.8). A pilot study showed that artificial lighting conditions could

affect the quality of the reflected eye image. We therefore created a realistic scenario

by illuminating the room with natural light. Every participant was first asked to cal-

ibrate the head-mounted eye tracker while standing at the center location in front of

the projected screen. Each Mode, except HO, was recorded in parallel, as it is possible
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to wear both mobile devices at once. The participants were instructed to look at each

target as quickly and accurately as possible, while being free to move their heads.

The targets were shown for six seconds each. At the end, participants were asked for

demographic information including the color of their eyes.

The task was done while standing in front of the projected display at five locations

(see Figure 6.8). Looking straight ahead, they looked approximately at the vertical

center of the projection. We collected gaze data from the eye tracker for MT as well

as the location of the on-screen targets and their time-stamps needed for post-hoc

analysis. Furthermore, we recorded raw video material for all EM modes including

calibration frames, as described above. Data was sampled at 30 Hz for all six modes

(i.e., 180 samples per on-screen target = 6sec x 30 Hz), leading to 1620 samples for

each Mode and Location combination. In total we recorded 30 (Hz) x 6 (sec) x 9 (tar-

gets) x 6 (Modes) x 5 (Locations) x 10 (participants) = 486000 samples. We dropped

the first 2 out of 6 seconds per target, leading to 30 x 2 x 9 x 6 x 5 x 10 = 162000

(30% of all samples), resulting in 324000 samples in total (i.e. 54000 for each Mode).

We discarded all data points of the first two seconds for each target, as this was the

maximal required timespan to find the current target.

Experimental Design

We used a within-subject design for our experiment with the two defined independent

variables from above, Mode and Location. We counterbalanced the order of Location

between all participants using a Latin square. All modes except HO were recorded in

parallel. Thus each participant performed the task twice. For each location, the nine

targets were displayed in a random sequential order, different between participants,

but identical within them (i.e., for both runs).

Participants

Ten participants (3 female) between 23 and 37 years old (M = 27.5 years, SD = 4.55

years) and having three different iris colors (5 brown, 4 blue, 1 green) were recruited

from a local university campus. All participants had corrected or normal vision; none

reported any visual impairments (e.g., color blindness).

Results

To evaluate the EyeMirror concept, we calculated the average gaze estimation error

in degrees of visual angle (as defined in [59], Section 2.6.2). This value states the
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MT EM-C EM-P EM-C-U EM-P-U HO

x y 2D x y 2D x y 2D x y 2D x y 2D x y 2D

near M 2.27◦ 1.39◦ 2.92◦ 3.89◦ 2.35◦ 4.90◦ 4.45◦ 3.50◦ 6.17◦ 4.23◦ 2.50◦ 5.28◦ 4.36◦ 3.12◦ 5.91◦ 3.93◦ 2.71◦ 5.32◦

left SD 1.46◦ 0.94◦ 1.27◦ 3.16◦ 1.75◦ 3.12◦ 3.35◦ 2.15◦ 3.14◦ 3.43◦ 1.81◦ 3.38◦ 3.79◦ 2.13◦ 3.57◦ 2.69◦ 2.95◦ 3.23◦

near M 2.44◦ 1.41◦ 3.12◦ 3.97◦ 2.38◦ 4.96◦ 4.08◦ 3.33◦ 5.79◦ 4.23◦ 2.57◦ 5.31◦ 4.53◦ 3.21◦ 6.08◦ 3.92◦ 3.01◦ 5.55◦

right SD 1.74◦ 1.02◦ 1.51◦ 2.92◦ 1.78◦ 2.93◦ 3.34◦ 2.22◦ 3.23◦ 3.19◦ 1.89◦ 3.17◦ 3.68◦ 2.21◦ 3.51◦ 2.58◦ 3.14◦ 3.20◦

far M 1.67◦ 0.96◦ 2.10◦ 2.80◦ 1.62◦ 3.48◦ 3.61◦ 2.27◦ 4.60◦ 2.92◦ 1.66◦ 3.61◦ 3.01◦ 2.29◦ 4.16◦ 2.43◦ 2.47◦ 3.97◦

left SD 1.07◦ 0.68◦ 0.96◦ 1.93◦ 1.12◦ 1.83◦ 2.63◦ 1.52◦ 2.50◦ 2.11◦ 1.18◦ 2.03◦ 2.49◦ 1.54◦ 2.35◦ 1.94◦ 4.59◦ 4.60◦

far M 1.50◦ 0.97◦ 1.99◦ 2.70◦ 1.71◦ 3.44◦ 3.27◦ 2.37◦ 4.39◦ 2.84◦ 1.80◦ 3.62◦ 2.79◦ 2.28◦ 3.99◦ 2.71◦ 2.37◦ 4.03◦

center SD 0.98◦ 0.68◦ 0.80◦ 1.96◦ 1.11◦ 1.86◦ 2.40◦ 1.59◦ 2.31◦ 2.12◦ 1.18◦ 2.03◦ 2.37◦ 1.53◦ 2.25◦ 1.70◦ 3.86◦ 3.82◦

far M 1.70◦ .89◦ 2.10◦ 2.79◦ 1.55◦ 3.41◦ 3.24◦ 2.32◦ 4.33◦ 2.84◦ 1.61◦ 3.50◦ 3.08◦ 2.29◦ 4.23◦ 2.65◦ 2.74◦ 4.35◦

right SD 1.20◦ 1.01◦ 1.32◦ 1.76◦ 1.05◦ 1.66◦ 2.37◦ 1.53◦ 2.26◦ 1.90◦ 1.09◦ 1.80◦ 2.52◦ 1.57◦ 2.40◦ 1.74◦ 4.92◦ 4.78◦

Table 6.1: Means and standard deviations of the overall, horizontal and vertical gaze
estimation for all modes and locations.

difference between the position of the estimated gaze point and the actual on-screen

target of the six Modes (EM-P, EM-C, EM-P-U, EM-C-U, MT and HO) and the five

Locations (near-left, near-right, far-center, far-left, far-right). We performed a 6×5

(Mode×Location) within-subjects ANOVA on gaze estimation errors and found a main

effect for Mode (F5,25 = 34.52, p < .001), and for Location (F4,20 = 30.73, p < .001),

but not for an interaction between them.

In a subsequent post-hoc analysis in gaze estimation accuracy across all Modes, we

found that MT differed significantly from all EM modes (all p < .001) as well as HO

(p < 0.05). We found no significant difference in gaze estimation accuracy between

HO and all EM modes. Comparing the gaze estimation accuracy concerning different

targets between EM modes and HO also revealed no significant difference. All EM

modes performed better than HO, as shown in Table 6.1. EM-C differed significantly

from EM-P (p < .01), EM-C-U and EM-P-U (both p < .05). Finally, we found a

significant difference between EM-P and EM-C-U (p < .01).

Overall, EM-C achieved the highest accuracy for all EM modes (M = 4.03◦, SD

= .04◦), followed by EM-C-U (M = 4.22◦, SD = .03◦). EM-P (M = 4.99◦, SD =

.07◦) and EM-P-U (M = 4.87◦, SD = .13◦) showed the worst results overall. HO (M

= 4.66◦, SD = .36◦) yields better results than EM-P and EM-P-U, but worse than
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EM-C and EM-C-U. Finally, MT achieved the best results overall, i.e., the lowest

gaze estimation error (M = 2.41◦, SD = .06◦). All values were averaged over all

locations and are summarized in Table 6.1. Transformed to absolute rounded pixels,

these values correspond to 64px (SD = 31px) for MT, 106px (SD = 59px) for EM-C,

133px(SD = 72px) for EM-P, 111px (SD = 64px) for EM-C-U, 128px (SD = 73px)

for EM-P-U and 122px (SD = 116px) for HO.

Figure 6.9: Mean gaze estimation error for every location and mode. Error bars
indicate ± standard error of the mean.

Figure 6.9 depicts the average gaze estimation error for every Mode and Location.

MT-far-center performed best (M = 1.99◦, SD = 0.22◦), followed by MT-far-right

(M = 2.08◦, SD = 0.35◦), MT-far-left (M = 2.09◦, SD = 0.25◦), MT-near-left (M

= 2.95◦, SD = 0.47◦) and MT-near-right (M = 3.10◦, SD = 0.44◦). All EM modes

performed worse than MT, but within EM-C showed the lowest error for EM-far-

right (M = 3.42◦, SD = 0.18◦), followed by EM-far-center (M = 3.44◦, SD = 0.40◦),

EM-far-left (M = 3.48◦, SD = 0.19◦), EM-near-left (M = 4.86◦, SD = 0.43◦) and

EM-near-right (M = 4.95◦, SD = 0.36◦). The other Modes performed slightly worse.

Post-hoc tests on Location revealed that the significant main effect stems from the

participants’ distance from the display: near-left differed significantly from far-left,

far-center and far-right (allp < .01). Near-right also differed significantly from far-left

(p < .01), far-center and far-right (all p < .05). Overall, far-center showed the high-

est gaze estimation accuracy, i.e., the lowest error (M = 3.62◦, SD = 0.1◦), followed

by far-left M = 3.64◦, SD = 0.11◦), and far-right (M = 3.75◦, SD = 0.17◦). The



6.2.3 Experiment II – Influence of display content 165

near locations led to worse results: near-right had the highest error in gaze estimation

accuracy (M = 4.97◦, SD = 0.15◦), followed by near-left (M = 4.96◦, SD = 0.09◦).

To further investigate the gaze estimation of all EM modes, we split the error mea-

sured in degrees of visual angle into two values, showing horizontal (x-direction) and

vertical (y-direction) errors separately. We found that for all Locations, the vertical

gaze estimation error is lower than the horizontal across all Modes. Table 6.1 sum-

marizes the results. On average MT showed the lowest difference between horizontal

and vertical gaze estimation error, followed by EM-C.

To complete the analysis we further wanted to find out whether the screen targets and

thus screen regions resulted in different levels of gaze estimation accuracy. In doing

so we analyzed the results separately for each on-screen target. We found significant

differences between most of the targets across all Modes. For MT we found significant

differences between all targets except (T1, T6), (T3,T4), (T3,T7), (T3,T9), (T4,T7),

(T4,T9) and (T7,T9). EM-C showed no significant difference for gaze estimation ac-

curacy between targets (T1,T3) and (T7,T9). For HO the target pairs that showed

no significant difference are (T2,T4), (T2,T9), (T2,T6), (T4,T6) and (T5,T7). Every

Mode performed best for T5, whereas EM-C achieved the lowest gaze estimation error

overall (M = 1.43◦, SD = 1.71◦), followed by EM-C-U (M = 1.54◦, SD = 1.95◦), MT

(M = 1.67◦, SD = 0.92◦), HO (M = 3.85◦, SD = 5.36◦), EM-P-U (M = 4.08◦, SD =

2.07◦) and EM-P (M = 4.70◦, SD = 2.08◦).

Finally, we found no significant difference in gaze estimation error based on iris

color for all EM modes. EM-C performed best, with 3.84◦ (SD= 2.31◦); brown

eyes achieved the lowest gaze estimation error on average, followed by blue eyes with

4.12◦ (SD = 2.56◦). Green eyes had the highest gaze estimation error with 4.20◦ (SD

= 2.41◦) on average for EM-C. We found the same order for all other EM modes.

6.2.3 Experiment II – Influence of display content

In a second laboratory experiment we wanted to investigate the connection between

EyeMirror ’s gaze estimation approach and the content of the display. For this, we

compared the gaze estimation accuracy of EM-C across various display content, where

the content used differed in the number of natural features.
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Figure 6.10: The different display contents used in the experiment: C1 with 9262, C2
with 6988, C3 with 3314, C4 with 9476, C5 with 4239 and C6 with 934 features. The
right picture shows the setup for the second experiment.

Independent Variables

We used a within-subjects design in this experiment with one independent variable,

Content : we used six different display content images (C1–C6), while computing the

gaze estimation accuracy for the display. The different images are depicted in Figure

6.10 together with their number of features. We used three different wallpapers (C1–

C3) as well as realistic desktop scenes where different kinds of applications were opened

(C4–C6).

Apparatus

Figure 6.10 illustrates the experimental setup: we used a multi-touch enabled monitor

with a size of 0.59 x 0.33 meters (diagonal: 0.68 meters). The participant was sitting

centered in front of the display at a distance of 0.6 meters, as she would be sitting

when interacting with the touch-enabled display. At this position the display covers

31.6◦ of the field of view. The EyeMirror camera frames were recorded by plugging

it into a MacBook Pro that also was driving the display.

Task & Procedure

We reused the same gaze-pointing task as in the first experiment to be able to compare

the findings to our initial results. Looking at red circles, shown consecutively at nine

different positions on a desktop monitor, was done while sitting in front of the display

(shown in Figure 6.10). Raw video material for EyeMirror ’s clustering approach (EM-

C) was recorded at 30hz. Again, we discarded the first 2 seconds for each target. We

counterbalanced the order of Content between all participants using a Latin square.

As we had six different images, each participant did the task six times. For each

content image, the targets (T1–T9) were shown in a random sequential order.
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Figure 6.11: Mean gaze estimation error for the desktop content images C1–C5, com-
bined with the number of features.

Participants

A group of six participants (2 female) between 23 and 37 years old (M = 27.5 years,

SD = 4.55 years) were recruited from a local university campus. All participants had

normal vision; none reported any visual impairments (e.g., color blindness). Power

analysis showed that the number of participants is adequate, as we achieve a power

> 0.65 for this experiment with an effect size f = 0.63.

Results

To evaluate EyeMirror ’s accuracy, we calculated the average gaze estimation error in

degrees of visual angle. This value states the difference between the position of the

estimated gaze point and the actual on-screen target for all different Content images

using the cluster approach of EM-C. While computing the gaze estimation for all

different Content images, we discovered that our approach did not work for C6. The

blank page in the middle of the screen revealed too few features, so that EyeMirror

returned arbitrary values.

Hence we performed a 5 × 1 (Content (C1–C5) x EM-C) within-subjects ANOVA

on gaze estimation errors and found no effect for Content. In Figure 6.11 the gaze
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estimation error across all targets and participants is plotted against the number of

features. We achieved the highest accuracy, i.e., the lowest gaze estimation error, for

C2 (wallpaper with 6988 features) (M = 4.30◦, SD = 0.04◦), followed by C5 (Mac

desktop: opened browser and IDE, 4239 features) (M = 4.27◦, SD = 0.02◦), C1 (wall-

paper used in first experiment with 9262 features), C3 (wallpaper, 3314 features) (M

= 4.34◦, SD = 0.06◦) and C4 (Mac desktop, opened pdf, 9476 features) (M = 4.36◦,

SD = 0.06◦).

6.2.4 Discussion

Our results show that – using corneal reflections (i.e., the area covering the iris and

pupil) – EyeMirror is capable of achieving a gaze estimation accuracy of 4.03◦ using

the clustering approach (EM-C ) compared to 2.41◦ for MT and 4.66◦ for HO.

Experiment I – Gaze Estimation

We used different approaches within EyeMirror to compute the gaze point of the

participants. Our results reveal that it is sufficient to extract the cluster of all key

feature pairs to achieve still-reasonable results. Taking the eye center into account and

transforming it onto the display by using homography matrices performs 0.77◦ worse

(EM-P). While it seems counterintuitive, it can be explained when we have a closer

look at the difference between the two approaches. Each method uses as an input

image the extracted limbus area (i.e., the pupil and the iris). The reflection within

the area of the pupil is less noisy and brighter than within the iris. Whereas features

are found on both areas, most of the matches are detected within the pupil, leading

to key feature pairs. The main drawback of EM-P and EM-P-U is the use of the eye

center as a gaze reference point. The method used for eye center localization finds

only an approximation of the actual pupil center. Consequently, it does not always

correspond to a person’s real gaze, and only transforms rough estimations.

In addition, we investigated the use of a camera calibration to correct the input

images for our approaches. As the eyeball has a spherical structure, the corneal im-

ages are distorted. As expected, we found a small, but not significant, effect when

using the homography matrix for transformation, such that EM-P-U is 0.12◦ more

accurate than EM-P. Having a look at Figures 6.7(3) and 6.5, the approach is shown

based on the raw and the corrected image. The shape of the reflected display is more

rectangular if using the undistorted version. This supports the concept of computing

a homography matrix, as the template (i.e., the screen’s content) is also of a rectan-
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gular shape. Otherwise, we found the opposite for the cluster approach. Using the

undistorted version of the corneal image (EM-C-U ) significantly decreases the gaze

estimation accuracy by 0.19◦. Correcting the images changes the distribution of the

key feature pairs. As most of the matches are found at the pupil, they are arranged

in an elliptical shape supporting the structure of the pupil. After a correction this is

no longer the case, leading to worse results.

As we used different locations in front of the screen, we were able to investigate

the effect of different orientations to and distances from the screen. We calibrated

once for MT from the far-center position for each participant to simulate a realistic

scenario. Hence, we achieved the optimal results for a one-calibration scenario, as the

calibration plane was orthogonal to the participants. Using different locations results

in various distorted reflections on the human eye. EyeMirror is able to partly deal

with these changes, since its accuracy remains constant among different orientations

for the same distance. In the case of EM-C and EM-C-U, this is primarily caused by

the sharp angle between participant and display for both near locations. There, the

highest gaze estimation error was found for targets at the opposite side of the location

(i.e., for Location near-left the targets T3, T6 and T9). With increasing distance, the

angle between participant and display also increases. For EM-P and EM-P-U there

is also another reason: the larger the distance to the display, the larger the reflected

area. This means that the template of the surface – here the display – is detected

more accurately, and thus the computation of the homography matrix is more robust.

The results for MT are in line with existing findings [93]. Calibrating from the far

location leads to a smaller calibration plane than for near locations. Hence the eye

tracker extrapolates for gaze positions lying outside that region, causing worse gaze

estimation.

Although we found no significant difference between HO and all EM modes, EM

achieved a consistently better gaze estimation accuracy than HO. The good results of

HO stem from the experiment design, i.e., the location layout that forced participants

to move their heads quite a lot, mostly for near locations. This fits with the very

high standard deviation (see Table 6.1) in gaze estimation for far locations. This

is mainly caused by the large variability in head movement propensity [123]. If we

also take a look at the gaze estimation between targets with minimal distance (e.g.,

far-left EM-C T4: 3.39◦, T5: 1.14◦ compared to HO T4: 7.52◦, T5: 2.08◦), we can

see that HO performs much worse than EM. This fact indicates that the gaze of users
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who do a lot of eye movements might be better approximated with EM than HO. In

general, EM gives a direct connection to the objects in the environment, as they can

be extracted from the corneal images. HO only provides the position and orientation

of the head in 3D space, which has to be combined with knowledge about the position

of surrounding objects.

Thus, HO is not preferable for gaze approximation, especially in settings where gaze

is computed across a variety of surfaces (e.g., multiple different displays). The first

experiment investigated the gaze estimation accuracy of EyeMirror in a lab setting.

In real-world scenarios, HO is still not usable. If the head tracking is done remotely,

it requires the trackers to be attached on every surface in the environment. Doing

head tracking via an IMU sensor will require a scene camera to create a connection

to the environment. However, EyeMirror has a major advantage, as we get a realistic

representation of the human vision, combined with a value for gaze approximation.

Experiment II – Surface Content

We evaluated EM-C’s accuracy across six display content images, all different in terms

of the kind of information shown and the numbers of provided features. Overall we

found no significant difference in gaze estimation error, using content with a number of

features between 3314 and 9476. Obviously, our approach does not work with surfaces

providing too few features (e.g., C6 with 934 features). Interestingly, we achieved the

best results for C5 (4239 features). This may be caused by the distribution of the

features being rather uniform. Hence, our results show that EyeMirror enables gaze

approximation in a normal desktop setting.

Example Applications

To summarize, EyeMirror is sufficient for settings in which spontaneous gaze approx-

imation is sufficient. The system can be used to detect if someone is looking at a

screen in a multi-display setting, and at which region, useful for gaze-contingent dis-

plays. EyeMirror is built as a mobile wearable system, so it could be used as a tool

for exploring the human gaze (e.g., attention measuring) in more unconstrained and

mobile settings [97, 96].

For example, information like detected faces (shown in Figure 6.3(2)) can be used

to estimate social interaction. Tracking other objects can be used to measure atten-

tion on many different things. EyeMirror might be easily integrated into AR and VR
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devices. A virtual reality headset provides the best conditions, since nothing other

than the screen content (i.e., the VR environment) is reflected on the cornea of the

eye. Approximating someone’s gaze in VR can be used for foveated rendering [152].

With EyeMirror we developed a system that provides a base for further investigations

in a pervasive setting. The system will be made open-source. As EyeMirror is easily

extendable, new algorithms and methods for different purposes can be plugged in and

explored.

Limitations

Apart from its advantages and applicability to pervasive application scenarios, Eye-

Mirror also comes with some limitations: First, our concept of gaze estimation on

surfaces is based on natural feature tracking that requires an information stream

about the content (e.g., display content). However, with the rise of IoT, we believe

that information like display content will be accessible. For example, information

about the environment outside is available through Google Street View. Moreover,

we think that objects can be detected via a trained image classifier and specific neural

networks [158].

Second, EyeMirror ’s performance is influenced by the quality of the corneal images.

The camera is placed close below the eye to capture most of the eye movements. To

handle large eye movements, the use of more cameras should be explored. In our

current prototype, we have to adjust the focus manually by rotating the lens in the

thread in order to retrieve sharp corneal images. Whereas limbus and pupil center

extraction are tolerant of various lighting conditions, they might have an effect on

the overall approach. Obviously our proposed method does not work in dark environ-

ments, as no information will be reflected on the cornea.

Besides lighting, the eye-object distance is another source of blurred corneal images.

If the user focuses on an object at a far distance, its representation on the corneal

image is rather unsharp, caused by the mirror properties. To adapt the system to

this new setting, the focus of the camera has to be adjusted. Using cameras with

adjustable parameters, like ISO sensitivity, aperture size and auto-focus, might help

to counteract the above limitations.

So far we have not explored the long-term usage of EyeMirror. We can only ar-

gue about the duration of the experiment, which lasted for at least 27 minutes (6
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(sec) x 9 (targets) x 6 (Modes) x 5 (Locations)). The presented results are represen-

tative for a usage time within half an hour.

Nevertheless, we believe that EyeMirror is a promising case toward a new genera-

tion of less-invasive head-mounted eye trackers and a good baseline for using corneal

reflections in pervasive settings (cf. Ubiquitous Computing for Eye Tracking Contin-

uum in Figure 6.1), where a gaze approximation is sufficient.

6.2.5 Application Example

In this section, we present two approaches utilizing corneal imaging. In particular,

we demonstrate the potential of EyeMirror in a life logging scenario to analyze peo-

ple’s visual behavior in the wild. We conducted a life logging experiment where we

collected data in un-instrumented environments. Based on the explorative analysis of

the recordings, we demonstrate what kind of information can be extracted out of the

corneal image reflections and derive suitable applications use cases.

Data Collection

We carried out an experiment in the wild, applying our system to a daily routine.

We are going to explain the opportunities arising when using the information of the

environment reflected on a person’s eye. In doing so, we will differentiate between (1)

scenarios where object detection delivers valuable insights and (2) cases in which gaze

estimation is achievable.

We equipped a 28-year-old male person, who is working in a research lab, with the

EyeMirror system. The test person was wearing the device on two consecutive days,

for approximately 11 hours. The device recorded the camera stream at 30 fps. To

prevent data loss, the captured camera streams were analyzed post-hoc. For this, we

manually examined the recorded video material and selected different types of scenes.

As the material contained many settings involving sitting in front of a computer mon-

itor, we reduced the amount of data by removing most of them. The analysis was

done on the pre-processed camera frames, containing the region within the pupil. For

object detection we used a small set of template images (found with Google image

search) as well as self-taken images of items possibly visible in each scene. In the fol-

lowing we will briefly present the main findings by showing the processed recordings

and possible future applications of the system:
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• Human to Human Interaction – It is possible we are able to detect the re-

flection of a person’s face on the human eye. Applying the OpenFace framework

[5] for face tracking, we can extract the face and its orientation in the reflection.

Figure 6.12: Face detection and its 3D orientation (2) using the pre processed
camera frame (1).

Figure 6.12 depicts the case that another person is looking towards the test

person. That kind of corneal image information can be used to detect human-

to-human interaction.

• Display Interaction – Displays are pervasive in our environment and exist in

various forms and sizes, used to transport information. Display blindness [125]

is a common problem of public screens. We found that it is possible to detect

and track displays in the environment that are currently visible in a person’s

field of view. We implemented a modified version of the OpenCV sample square

detector to handle the distorted display representations in the reflected images.

The algorithm combines Canny edge detection together with a contour detection.

In Figure 6.13 the processed images are illustrated. Such information could be

used to detect if a person is recognizing a display they are currently passing.

Figure 6.13: Display Detection and Tracking (1)–(3) in images reflected on a
person’s eye; detected displays are marked with a green rectangle.

• Object Interaction – In our everyday environment there are many objects

other than displays that we use and interact with. We integrated a function

for template matching. In fact, the algorithm utilizes the correlation coefficient

method using a 2D convolution. In Figure 6.14 recordings from several situations
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are depicted. We were able to estimate where the participant was looking within

a poster (see Figure 6.14), a book-shelf, and even when he looked at smaller

objects, such as tools.

Figure 6.14: Gaze estimation on posters (1,2) using the feature tracking algo-
rithm. Gaze estimation on a bookshelf (6) and a book (7); on other real-world
objects (3,4,5).

• Driving – In situations where our attention is not restricted to interaction with

a single object, even more information from the environment is important. The

corneal images can be used to extract information about the location of the

reflected objects, i.e. if they are within the foveal and the peripheral vision.

Figure 6.15: Gaze estimation on car hifi system (1), and detection of retailer
logos (2) and road sign (3).
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Figure 6.15 summarizes several scenarios while driving a car. You can determine

whether the driver is looking at the controls, and also which information is out

of the current focus (grocery logo and road sign).

With this data set and its explorative analysis, we investigated the potential of corneal

imaging. It serves as a pilot data analysis. Further investigation is needed in terms

of automatic object detection. Such a system could be used to create visual diaries

enriched with information about gaze and attention.

6.2.6 Summary of Findings

In this Section, we presented EyeMirror, a mobile system using a novel approach for

calibration-free gaze approximation. We built a low-budget prototype, which in con-

trast to existing head-mounted eye-trackers, only requires a single camera. Capturing

the environment through corneal images, it enables gaze approximation on various

surfaces (e.g., displays), solely based on natural feature tracking. For this, a repre-

sentation of the object’s content has to be known and provide enough visual features.

In a laboratory experiment we compared different modifications of our approach

against a Pupil Labs eye tracker and using the head orientation as gaze. We found

better results for EyeMirror compared to HO in gaze estimation accuracy, although

they were not significant. The head-mounted eye tracker gives the best results, but

needs to be calibrated.

Since we are following the iterative development model, we aim to further improve

the system in the next cycle. In particular, the major part of the progress has to be

made in the method itself to realize better gaze estimation.

6.3 hEYEbrid – A Hybrid Approach for Mobile

Calibration-Free Gaze Estimation

In this Section we present hEYEbrid, a concept that enables calibration-free and ac-

curate gaze estimation using a head-mounted device. It is the result of the iterative

development cycle performed to resolve the main issue of EyeMirror’s inaccuracy. We

developed a hybrid approach to estimate a person’s gaze, utilizing two eye cameras:

(1) an infrared eye camera that is tracking the pupil’s positions and its movements,

and (2) a natural light eye camera that captures closeup RGB images of the eye. The

latter captures the environment reflected on the corneal surface, i.e. the iris and the

pupil of the human eye, and is referred to as the corneal camera in the rest of the
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Figure 6.16: The developed hEYEbrid concept used to build a mobile and wearable
device for spontaneous competitive gaze estimation at any place and any time. The
head-mounted device is connected to a Nexus 6P that processes both camera streams
in real time.

paper. The underlying assumption is that the pupil center in the corneal camera’s

images corresponds to the actual gaze point in the real environment. This assumption

is similar to the one that most current eye-trackers make. Pupil position and center

are extracted in the infrared image and mapped onto the corneal image. Hence we

are able to extract the reflection within the pupil area, which roughly represents the

user’s current field of view. Both cameras are placed next to each other in a fixed

position, focusing on the same eye. With hEYEbrid, we do eliminate the need for a

cumbersome calibration as well as regular re-calibration procedures. To compute the

relationship between the infrared and corneal camera image plane, a mapping needs

to be computed at one time during the construction process of the head-mounted

device. Thus hEYEbrid is an enabling technology for any kind of gaze estimation in

pervasive settings, such as spontaneous gaze estimation or user studies in the wild.

In a controlled user study with 20 participants we evaluated the gaze estimation ac-

curacy of three approaches, each differing in the number and location of cameras:

(1) hEYEbrid using two eye cameras; (2) 3Camera hEYEbrid (hEYEbridplus), which
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combines the two eye cameras of hEYEbrid with an additional scene camera; and (3)

a state-of-the-art monocular Pupil Labs eye tracking system11. In three validation

sessions, each participant had to focus on 15 different objects. Between sessions, we

either re-calibrated the Pupil Labs eye tracker or asked the participant to take off

and put on the device to simulate a calibration drift. With hEYEbrid, we achieved

the highest gaze estimation accuracy compared to the other approaches, namely 2.19◦.

The simulated calibration drift had no significant impact on hEYEbrid ’s performance,

as it still achieved 2.36◦ accuracy in a fully unconstrained setting.

Finally, we designed and implemented a mobile and wearable system by connect-

ing a head-mounted device based on hEYEbrid to an Android phone, as illustrated

in Figure 6.16. It includes the functionalities for ad-hoc gaze estimation on a public

screen and focused object detection. Moreover, the mobile application is able to drive

a head-mounted Pupil Labs eye tracker as well as the hEYEbrid-3C device. In sum,

our work provides the following contributions:

• Novel hybrid approach connecting IR eye and corneal images.

• Accurate and constant long-term gaze estimation without (re-)calibration.

• Wearable and mobile system to employ gaze as an input modality in fully

pervasive settings.

The remainder of this section is structured as follows: We first introduce the hEYE-

brid concept as well as its extension, hEYEbrid-3C, and outline the implementation.

We then describe the conducted study and present its results. In the last part, we

illustrate the design and implementation of the mobile prototype.

The required related work was already presented in Chapter 3. hEYEbrid advances

the existing head-mounted approaches, outlined in Sections 3.2 and 3.3, as it (1)

introduces a new concept, without 3D pose estimation and limbus tracking; (2) is

evaluated in a mobile setting and (3) achieves better gaze estimation accuracy than

existing approaches (especially for on-screen gaze estimation, at an average of 1.64◦).

Further, the necessary background knowledge was introduced in Chapter 2.

6.3.1 hEYEbrid System

As stated already in Section 1.4, gaze estimation using a head-mounted eye tracker

faces several challenges that come along with the main problem of calibration. Ideally,

11https://pupil-labs.com/
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the user should be able to put on a device that is immediately ready to use and

provides robust and accurate gaze estimation. In keeping with this idea, we introduce

the concept of hEYEbrid in the following.

Concept

The basic idea of the approach is that the pupil center in the corneal image, i.e. in the

reflected scene, coincides with the actual gaze in the real environment, as explained

in Section 6.1 (see Figure 6.2). Remember that the area within the corneal limbus

(often referred to as just the limbus), that is the pupil and the iris, reflects the scene

a person is currently facing. As the eye is a spherical object, it acts like a fish-eye

view into the world from the person’s perspective. Hence the reflection is a distorted

representation that is blended with the structure of the iris and is clearest within the

area of the pupil. As explained in Chapter 2, there are two main visual axes of the

eye when it comes to gaze estimation, the pupillary axis and the visual axis (also de-

picted in Figure 6.2). Standard head-mounted eye tracking systems model the angle

kappa, i.e. the difference between visual and pupillary axes, using the vector of the

first Purkinje and the pupil center (cf. Section 2.2). Note that both axes are going

through the pupil center; thus, we are using the pupil center on the corneal image as

a reference to the gaze in the scene.

The concept is different from the approach of EyeMirror, where we used the eye

center as an approximation for the gaze point. The eye center does not necessarily

coincide with the pupil center. In addition, we do not require limbus tracking in the

hEYEbrid approach and consider only the reflection within the pupil.

Existing works that use corneal reflections for gaze estimation are based on limbus

tracking [138, 128, 187]. To accomplish an exact and robust extraction from the

corneal images, these approaches rely on a combination of feature- and model-based

methods. Although the limbus can be distinguished well from the surrounding white

sclera, other image features, such as eyelashes and eyelids, make the separation harder.

In addition, the underlying models require high computational power [188, 187, 141]

or are inaccurate, worsening the results of the gaze estimation, as we learned in Sec-

tion 6.2. That is why we decided to use a different approach in hEYEbrid.

Figure 6.17 illustrates the processing pipeline which we propose. Our concept is based

on pupil detection and tracking. The advantages are that the pupil naturally reflects
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Figure 6.17: Basic processing pipeline of hEYEbrid, which combines infrared eye
and corneal images. The pupil is tracked in the IR image and mapped onto the
corneal image to finally crop the reflection within the pupil. The mapped pupil center
coincides with the gaze point.

our current field of view and the reflection within this area is explicit (unlike the iris’

reflectance). hEYEbrid is based on a two-camera approach, as it is hardly possible

to extract the pupil in the corneal image itself, due to the reflective characteristic of

the pupil and iris. This is different for infrared illuminated eye images. Therefore we

combine two different types of eye images – an infrared eye and a corneal image – and

process them simultaneously. In this way we can profit from the mature algorithms

enabling a fast and robust pupil detection/tracking based on IR images. In each IR

frame we obtain an ellipse describing the pupil’s structure and center. This is mapped

onto the corneal image, to finally crop the reflection around the pupil, as depicted in

Figure 6.17.

To project information from the infrared to the corneal image, it is necessary to

obtain a mapping between the two image planes. Both cameras, the infrared as well

as the corneal imaging camera, are placed in front of the same eye in a fixed position

relative to each other. The necessary mapping has to be computed only once after

the construction process of the head-mounted device. This mapping is a 3D trans-

formation problem. Figure 6.18 visualizes the geometric solution of how to find the

pupil, which we extracted in the IR plane, in the corneal plane. In our system, we have

placed the camera lenses beside each other, so that their fields of view converge on the

person’s eye. According to the Epipolar Constraint [53] , the following equation holds:

mT
2 Fm1 = 0 with a suitable 3× 3 matrix F, called a fundamental matrix
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Figure 6.18: Estimating a mapping between the two eye camera image planes based
on epipolar geometry. In hEYEbrid, the problem is reduced from 3D to 2D and solved
via a planar homography mapping matrix.

It says that a pixel m2 of the corneal image plane, which corresponds to a pixel m1

in the infrared image plane, cannot lie anywhere. The fundamental matrix has rank

2, thus is not invertible, and has seven degrees of freedom (DOF), i.e. nine minus two

for rank and scale. If the fundamental matrix is known, we know for each pixel m1 in

the IR frame the corresponding epipolar line l2 in the corneal frame and vice versa:

mT
2 l2 = 0 with l2 = Fm1

mT
1 l1 = 0 with l1 = Fm2

where the vector li = (a, b, c)T describes the epipolar line ax+ by+ c = 0. The funda-

mental matrix F can be computed from correspondences of image points. Given m1,

the search for m2 is reduced to searching along the epipolar line.

In hEYEbrid, we simplify the camera transformation from a 3D to a 2D problem.

For this, we assume the eye to be flat, so that the usual rotations of the pupil in 3D

space are represented by a moving ellipse on a plane. That is the camera image plane,

as it just records a 2D image. The original 3D information is encoded in changes of the

elliptical parameters, such as minor and major axes, which result in different shapes of

the pupil. In that case, the mapping reduces to searching for a transformation matrix
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between two planes. A planar homography matrix H satisfies the following constraint:

m2 = Hm1 for a 3× 3 matrix H with rank 3

There is a one-to-one point correspondence in this particular case, which can be com-

puted using image features for instance. The homography matrix H is actually a

projective transformation and has 8 degrees of freedom: 2 for scale, 2 for rotation, 2

for translation and 2 for line of infinity. It is important to note that it is not robust

against changes in distance to the planes one wants to find the correspondence be-

tween. Consequently, we have to ensure that the distance from both cameras to the

eye remains rather stable.

Finally, the combination of two eye cameras in a hybrid method is such that (1)

we exactly compute the position of the pupil and its center without relying on 3D eye

pose estimation using pre-defined parameters [138, 128] and (2) we do not require a

user calibration [188]. The concept can be seen as just moving the scene camera of

a video-based head-mounted eye tracker below the eye to capture the world through

the eye of the user. In doing so, we eliminate the need for a calibration procedure.

Extension: 3C-hEYEbrid

We modified hEYEbrid by adding scene images to the concept, similar to the scene

registration approach by Nakazawa et al. [129]. They use a two-camera approach

combining corneal images with scene images. Using an aspherical eye model, they

developed an iterative registration algorithm to match both image types in order to

compute the user’s gaze in the scene camera’s image. In Figure 6.19 the additional

concept of hEYEbrid-3C is illustrated.

It projects the result of hEYEbrid ’s pipeline, the cropped corneal image with the pupil

center, to the current scene image. The mapping is done as in the method from above

based on a planar projection. As we cannot guarantee that the spatial relationship

between the corneal and scene camera is fixed, the correspondence is computed for

each pair of corneal and scene frames. In particular, the cropped corneal image is used

as a template image that we try to find in the observed image of the scene camera

stream. We use a natural image feature approach that computes the homography

matrix H if enough matches are found. The matrix describes a bidirectional mapping

between the corneal and the scene camera’s image plane. The pupil position that

was already mapped on the corneal image is further transformed to a gaze position
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Figure 6.19: The extension hEYEbrid-3C connects the result of hEYEbrid ’s processing
pipeline with the scene image to project the pupil center into the scene image plane.

in the scene image by applying the transformation matrix. This concept is similar to

the standard approach of head-mounted eye trackers. But in contrast to performing

a user calibration, hEYEbrid-3C is continuously doing a frame-based calibration to

update the relationship between the cameras, without actively requiring a specific

user interaction. hEYEbrid-3C does not account for any image corrections (e.g.,

distortion) and does not rely on 3D eye pose estimation, as in [129]. Hence, it is more

lightweight and faster, though we accept potential inaccuracies during the matching

process between corneal and scene images.

Implementation

Both approaches are implemented using a monocular Pupil Labs Pro mobile eye track-

ing headset (2014 version12) in which the eye camera was extended by a corneal

camera. Figure 6.20 illustrates the building steps to integrate hEYEbrid into the

head-mounted device. We used a Logitech C270 webcam to capture corneal images

with a maximal resolution of 1280 x 960 pixels at 30Hz. The original housing and

the glue around the lens were removed to manually adjust the focus, so as to enable

macro shots. This camera covers a 60◦ field of view and has a fixed focus of 4 mm.

The cropped corneal images have a varying resolution after slicing the pupil region.

Depending on the eye pose (i.e., the location of the pupil) the resolution ranges from

200 x 200 pixels to 300 x 300 pixels.

12https://pupil-labs.com/blog/2014-01/new-pupil-pro-headset-capture-software-0-3-7/
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Figure 6.20: Building steps to integrate hEYEbrid into the Pupil Labs head-mounted
device. The corneal camera is affixed to a custom mount together with the device’s
IR camera. The mount is movable and rotatable.

We reused the default infrared camera of the Pupil Labs eye tracker, but removed the

housing. This camera can record images with a maximal resolution of 640 x 480 pixels

at 30 Hz. We designed a new mount to position both cameras in front of the user’s

eye. It preserves the basic possibility to rotate the eye cameras and adds the option

to be moved in front of the eye to position the cameras, so that the pupil is best

covered. Both cameras are fixed with screws and placed at an angle of 150◦ to each

other. Hence, it is guaranteed that the cameras do not move and can be placed close

to the eye (around 25 mm away), while still capturing the pupil and its movements.

The joint between the frame and the custom mount is lockable with a screw, so the

mount and the cameras will not move without further effort. Consequently, the rela-

tionship between eye, cameras and scene is rather fixed and re-adjustments are done

no more frequently than for other head-mounted eye tracking devices. The custom

mount was designed with Autodesk Fusion 36013 and printed by a Formlabs Form2

3D printer14 using transparent synthetic resin (GPCL02). All parts together (IR +

corneal camera + custom mount) have a weight of 14 grams (compared to the 4 grams

of the original Pupil Labs eye camera), and are therefore still comfortable to wear.

The total weight is comparable to the default monocular device, as we removed the

scene camera for hEYEbrid. The total size is 58× 28.25× 14.40mm (width x height x

depth) compared to the 46.20×10.60×7mm of the original eye camera. Hence it does

not disturb the user’s field of view any more than the usual device. For hEYEbrid-3C,

13http://www.autodesk.com/products/fusion-360/overview
14http://formlabs.com/3d-printers/form-2/
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Figure 6.21: Integration of hEYEbrid and hEYEbrid-3C into the Pupil Labs frame-
work. The Capture software is able to record data, whereas the Player is used for
analysis and gaze computation in the different approaches.

we attached the device’s default scene camera, a Logitech c920, capturing frames of

1920 x 1080 pixels at 30Hz. It has a 90◦ field of view with an auto-focus lens (shown

in Figure 6.20) and a weight of about 80 grams.

We integrated hEYEbrid and hEYEbrid-3C into the Pupil Labs open source eye track-

ing platform, version 0.8.715. The modified devices are thus usable with laptops and

desktop computers. We followed the best practices to extend the software16 and im-

plemented two new plugins for the Pupil Labs Capture and Player software, as shown

in Figure 6.21. The first extension we made is needed to integrate the new type of

images from the corneal camera. It is similar to the existing plugin for IR images,

in that it allows you to choose the camera source and to change its parameters (e.g.,

resolution, brightness, exposure time). The main purpose is to give direct feedback,

i.e. the corneal image is overlaid with the pupil information, that is the ellipse and its

center. We integrated the information about the corneal images into the software’s

interprocess communication. Hence it is possible to record the data of hEYEbrid, such

as image data and coordinates of the mapped pupil, in conformity with Pupil Labs’s

logging and message format.

The second extension is made to play back recorded data while using hEYEbrid or

hEYEbrid-3C. We integrated additional functionalities to visualize the corneal im-

ages as well as their cropped version. All computed gaze points are highlighted in a

different color depending on the approach. The built-in mechanism for AR marker

tracking is also enabled for corneal images. For instance, it is possible to label and

15http://github.com/pupil-labs/pupil/releases/tag/v0.8.7
16https://docs.pupil-labs.com/#plugin-guide
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Figure 6.22: Setting up the eye cameras by computing the transformation between
the infrared and corneal image planes. Image features are extracted and matched to
compute a homography matrix, used to map a point from one image into the other.

track objects. Finally, the user is able to export recorded data as CSV files for further

processing and analysis.

We actively made use of all extensions for the analysis of the user study. All de-

scribed software components are developed in Python v2.7.6. By default, the Pupil

Labs software is able to manage camera streaming via pyuvc17 (based on libuvc) and

provides a toolkit for a graphical user interface through pyglui18 (based on OpenGL).

For image processing (e.g., feature tracking and matching, homography computation),

methods of the OpenCV 3.2 library19 are used. For simple image manipulations (e.g.,

flipping and slicing), we use numpy20, as it provides fast array processing.

For pupil tracking, we used the software’s built-in pupil detector[78] (implemented

in detect 2d.hpp). It implements dark pupil tracking and is based on edge detection,

contour tracking and ellipse fitting. To map the pupil position onto the corneal im-

ages, the relation between both cameras was computed beforehand. This was done by

estimating a homography matrix, needed for a bi-directional projective transformation

between the IR and corneal image planes, as described before. Figure 6.22 depicts the

one-time mapping computation. We captured images of the IR and corneal camera

focusing on a printed image (size: 22×15mm), revealing lots of features. Both images

are scaled to a resolution of 640× 480 pixels.

17https://github.com/pupil-labs/pyuvc
18https://github.com/pupil-labs/pyglui
19http://opencv.org/
20http://www.numpy.org/
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The homography matrix H is computed by first doing a feature detection using the

scale-invariant SIFT algorithm[106]. In a second step, the image and the extracted

features are matched with a 2-nn brute-force matcher. This simple matcher computes

the distance between two features of two images, using the Hamming distance, and

returns the two best matches. The resulting matches are used to find the homography

matrix, by computing the perspective transformation, using the functions provided by

OpenCV (cv2.findHomography()). Note that this procedure is only done once, dur-

ing the construction process of the head-mounted device. As long as the cameras are

fixed to each other, the procedure does not have to be repeated. Instead of applying

a feature-based approach, one could also use fiducial markers for the one-time camera

calibration.

For hEYEbrid-3C, the Pupil Labs eye tracker’s scene camera is used to retrieve the

scene images. The homography matrix between the cropped corneal and scene image

planes is computed as described above. We also use the methods for SIFT and a

2-nn brute-force matcher provided by OpenCV. All extensions needed to integrate

hEYEbrid and hEYEbrid-3C with the Pupil Labs framework together with the 3D

models to build the hardware prototype are available on our GitHub repository21.

6.3.2 Evaluation

We conducted a controlled user study to assess the validity of hEYEbrid ’s approach

and its gaze estimation accuracy in comparison to an existing state-of-the-art eye

tracking approach and hEYEbrid-3C. We collected data using the head-mounted de-

vice that was described above. With this it is possible to record data from a Pupil

Labs eye tracker, hEYEbrid, and hEYEbrid-3C simultaneously and compare the gaze

estimation accuracy.

Experimental Design

We used a within-subject 3 x 1 design with the independent variable Mode, i.e. the

method used for gaze estimation. We chose the following three different modes for

gaze computation: hEYEbrid and hEYEbrid-3C implemented as described above. In

addition we used a state-of-the-art monocular Pupil Labs head-mounted eye tracking

device. We calibrated the Pupil Labs eye tracker for each participant separately. For

this a 9-point marker calibration, standing in front of a 15-inch laptop screen, was

performed using the built-in procedure of the Pupil Labs software. It is important

21https://github.com/landerc/hEYEbrid
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Figure 6.23: The study protocol showing the procedure of the experiment as well as
the gaze targets used for the gaze pointing task.

to note that we did not perform any calibration for hEYEbrid and hEYEbrid-3C, as

both methods are calibration-free.

Task & Procedure

We implemented a gaze pointing task, in which each participant had to focus on

15 targets in total (10 physical and 5 on-screen), as shown in Figure 6.23. The

instructor named an object (e.g., book), that the participant then had to look for.

When the object was found, the participant had to focus on the center of a visual

marker (indicated by a red dot) that was attached to the object. For on-screen targets,

the participant had to look at a red circle every time the instructor named the target

projection. Looking at the target was verbally acknowledged by the participant. Only

then, the sampling was started, which lasted eight seconds for each target. During

the task, the participant was able to freely move around. However, while fixating a

target, participants tend to keep standing at the same location. Figure 6.23 shows

the schedule of the procedure. In the beginning of the experiment, we calibrated the

Pupil Labs eye tracker. After this, each participant had to perform the task three

times. Between the tasks half of the participants first took off and put back on the

head-mounted device (used to record each mode) and finally re-calibrated the Pupil

Labs eye tracker. The other half of the participants did this the other way around, to

eliminate the order effect.

We collected all the data, i.e. the raw video data from the infrared, corneal and

scene camera, as well as information about the pupil tracking, its mapping and the

computed gaze values for each approach in parallel at 30Hz. This was possible since
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Figure 6.24: The study setup showing the distribution of the tangible objects (at-
tached with AR markers) in the room and a participant gazing at the book. In
addition, the projection including all targets is shown.

we already bundled the necessary three cameras (IR eye, corneal and scene camera)

for hEYEbrid-3C in one device. Note, that all other modes required only a subset of

these three cameras. We captured 240 samples per object (8 seconds x 30 Hz), leading

to a total of 3,600 samples per task (240 x 15 targets). As we only recorded after

the acknowledgment of the user – when she started to fixate at the target center –

we did not have to discard samples to account for the time that was needed to search

for the object. Thus, we recorded 10,800 samples per participant (3,600 x 3 sessions),

leading to a total number of 216,000 samples for each mode (Pupil, hEYEbrid and

hEYEbrid-3C ).

Apparatus

Figure 6.8 shows the study setup in a 360◦ picture. We set up a 4m2 (200 x 200

cm) square area, in which the participants were able to freely walk around. We did

so to simulate a more realistic setting, in which people are moving around. Eight

large tables (each 100 x 200 cm), forming four blocks of 200 x 200 cm, were arranged

around this area. We used ten tangible objects, each different in size and form, of

which seven were placed on the tables. The order of the objects’ positions remained

the same during the entire experiment. To track the objects and mark the gaze tar-

get, each object was equipped with an AR marker with a red dot at its center (see

close-up image in Figure 6.24). Therefore, we printed ten AR markers – five of size 5

x 5cm and five 10 x 10 cm – and attached them onto the objects. The small markers

(5 x 5cm) indicated that the object had to be picked up by the user before focusing

on it. In addition we used a projected screen with a size of 210 x 160 cm (diagonal:

264 cm), which had a resolution of 1280 x 1024 pixels. Five additional targets were
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shown on the projected screen represented as red circles (diagonal: 40 px = 6.4 cm).

The distribution of the on-screen targets is shown in Figure 6.24. Note that only one

on-screen marker was shown at a time.

To validate the approach of hEYEbrid, we computed the gaze estimation accuracy and

compared it against the values for hEYEbrid-3C and the Pupil Labs eye tracker. This

eye tracker provides a gaze estimation accuracy of 0.6◦ with a precision of 0.08◦ [78].

Other prominent state-of-the-art devices, such as the SMI Eye Tracking Glasses 2,

achieve a slightly better accuracy of 0.5◦ 22. Note that the values reported by the

manufacturers were measured under optimal laboratory conditions. Since Pupil Labs

provides an open source development framework, it perfectly fits the purpose of our

research. Following best practice in eye tracking, we computed the gaze estimation

error in degrees of visual angle to compare the results obtained by each approach (as

defined in [59], Section 2.6.2). This error describes the difference between the gaze

target (indicated by the red dot of an AR marker or by a red on-screen circle) and the

computed gaze point according to the mode. The smaller the error, the more accurate

the mode.

In the case of the Pupil Labs eye tracker and hEYEbrid-3C, we used the scene cam-

era image as a basis to compute the distance between the gaze point and the center

location of the gaze target (AR marker or on-screen target). For hEYEbrid, we used

the AR marker or on-screen target reflected on the corneal image and computed its

distance from the pupil center. For marker detection and tracking, we used Pupil

Labs’s built-in marker tracking plugin that is based on ArUco23. For the analysis,

i.e. the marker tracking and the computation of gaze accuracy, we used the player

software including the custom plugins, as described above. We were able to detect

the markers without problems in the scene and the corneal images. To convert the

raw pixel distances to the degree of visual angle, the pixels per degree have to be

estimated. For Pupil and hEYEbrid-3C, we used the field of view of the scene camera

(90◦). For hEYEbrid, we used 30◦ for the field of view of the pupil, as reported in

[128, 129].

Participants

In total 20 participants (5 female) between 23 and 38 years old (M=28.8 years,

SD=3.31) participated in the data collection. All participants were recruited from a

22https://www.smivision.com/wp-content/uploads/2017/05/smi prod ETG 120Hz asgm.pdf
23http://www.pupil-labs.com/blog/2013/12/036-release.html
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local university campus and had normal or corrected-to-normal vision; none reported

any form of visual impairments (e.g., color blindness).

Results

We first computed the overall gaze estimation error for all three modes across all tasks

and all objects. Using hEYEbrid gave the lowest error (M=2.19◦, SD=0.92◦), followed

by Pupil (M=3.09◦, SD=2.26◦), and hEYEbrid-3C (M=4.05◦, SD=1.04◦). We per-

formed a one-way ANOVA on the gaze estimation accuracy across all three modes and

found a significant difference (F(2,17) = 7422.22, p<0.001). To further assess this

finding, we computed three paired independent-samples t-tests on gaze estimation er-

ror. We found a significant difference in gaze estimation error between hEYEbrid and

Pupil (t(48)=-4.11, p<0.001). No significant difference was found between hEYEbrid-

3C and Pupil (t(48)=-0.45, p=0.65) and hEYEbrid and hEYEbrid-3C (t(48)=-0.87,

p=0.38).

hEYEbrid hEYEbrid-3C Pupil

M SD M SD M SD

physical 2.22◦ 0.91◦ 4.26◦ 1.12◦ 3.27◦ 2.22◦

on-screen 1.64◦ 0.28◦ 2.17◦ 1.21◦ 2.84◦ 1.38◦

Table 6.2: Means and standard deviations for the computed gaze estimation errors
for all modes on the two target groups.

We subsequently analyzed the gaze estimation error for the different target groups

– on-screen and tangible objects. The lowest error was achieved for the on-screen

targets using the hEYEbrid mode. Table 6.2 lists these results for each mode.

Independent-samples t-tests were conducted and we found the same results for the

tangible target group as for the overall results. hEYEbrid and Pupil differed signif-

icantly according to gaze estimation error (t(48)=-3.06, p<0.05), as well as hEYE-

brid and hEYEbrid-3C (t(48)=-1.3, p<0.05). No significant difference was found

between hEYEbrid-3C and Pupil. For the on-screen markers, we were able to mea-

sure a significant difference in gaze estimation error between hEYEbrid and Pupil

(t(48)=-2.93, p<0.05). We found no significant difference between hEYEbrid-3C and

Pupil or hEYEbrid and hEYEbrid-3C.

We were further interested in the impact of the calibration of the Pupil eye tracker.

We compared the gaze estimation accuracy of all three modes for each task sepa-
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Figure 6.25: Mean gaze estimation error for each mode for each of the three gaze
pointing tasks. Each column shows the mean gaze estimation for each mode after the
procedure done before the gaze pointing task, i.e. after the initial Pupil calibration,
the Pupil re-calibration and taking off the device and putting it back on.

rately. The tasks differ in the procedure that was done before doing the gaze pointing

task (shown in Figure 6.23). Figure 6.25 summarizes the results. It shows the mean

gaze estimation error for all three modes after the initial calibration of the Pupil eye

tracker (shown in the first bar group). In the second group the mean gaze error after

a re-calibration of the Pupil eye tracker is shown. In the third group the mean gaze

estimation error of the different modes after a simulated calibration drift, i.e after

taking the device off and putting it on again, is shown. Note that we conducted no

re-calibration of the Pupil eye tracker in the gaze pointing task after this procedure.

We noticed the lowest error for hEYEbrid after the initial Pupil calibration (M=2.16◦,

SD=0.72◦), the re-calibration of the Pupil eye tracker (M=2.09◦, SD=0.79◦) and the

simulated calibration drift (M=2.36◦, SD=0.80◦). Remember that hEYEbrid was not

calibrated.

We conducted independent-samples t-tests for all pause combinations within each

mode. We noticed a significant difference in gaze estimation error between re-calibra-

tion (M=2.61◦, SD=2.03◦) and taking off/putting back the device (M=3.95◦, SD=1.85◦)

for Pupil (t(48)=-3.27, p<0.05). We did not find further significant differences for

the other modes.
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We further conducted independent-samples t-tests for all pause combinations between

modes. There we found a significant difference in gaze estimation error between hEYE-

brid and Pupil after the initial calibration of the Pupil eye tracker (p<0.05) and after

taking off/putting back the device (p<0.001). In addition we found a significant differ-

ence in gaze estimation accuracy between hEYEbrid and hEYEbrid-3C for all pauses

(all p <0.05), as well as between Pupil and hEYEbrid-3C after initial calibration and

re-calibration of the Pupil Labs eye tracker.

6.3.3 Discussion

Our results show that combining the corneal reflection within the pupil together with

the pupil center in a hybrid approach achieves an average gaze estimation accuracy

of 2.19◦, compared to 3.09◦ for Pupil and 4.05◦ for hEYEbrid-3C. This supports our

initial assumption that the pupil center, mapped from the infrared eye image on the

reflected environment (i.e the corneal image), converges with the actual gaze point in

the real scene.

With hEYEbrid, we are able to achieve a higher gaze estimation accuracy than existing

approaches using corneal reflections in a mobile system. Takemura et al. [188] built a

wearable device using a mobile phone. Their approach is based on corneal images and

a model-based tracking approach for gaze estimation. They evaluated their system

in a static single display scenario (24-inch screen), in which the participant’s head

was fixed at a distance of 70 cm from the screen. There, they were able to achieve

9.5◦ gaze estimation error on average.

Nitschke et al. [128] also built a head-mounted device using a corneal imaging cam-

era. To realize gaze estimation they rely on 3D eye pose estimation. Similar to [188],

they evaluated their approach in a single-display scenario (23-inch screen), in which

participants were sitting 60 cm away from the monitor. They were able to achieve a

gaze estimation error of 2.51◦.

With hEYEbrid, we developed a method that enables accurate gaze estimation in

a mobile and pervasive interaction setting. In our evaluation, we set up a realis-

tic environment using a screen as well as tangible objects as gaze targets. Thus we

simulated a more dynamic yet realistic setting. We intentionally chose this kind of

accuracy evaluation, instead of doing a simple 9-point accuracy test on a screen. Nev-

ertheless, we implemented a similar accuracy test by including the screen as one of
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the gaze targets in the task. Note that we performed even better than Pupil using

marker tracking for gaze estimation on a screen, since we achieved an average gaze es-

timation error of 1.64◦ compared to 2.84◦. We noticed an even larger error of 3.27◦for

Pupil on the tangible gaze targets. This error stems from the 9-point calibration

itself, which is a mixture of operator and system-controlled procedure. It was done

on the laptop screen only once. We did not validate the calibration to account for

correction. We did so to create a realistic baseline for comparison, in contrast to the

reported values by the manufacturer. In doing so, we underline the drawback of this

type of calibration, as already shown in [142], and highlight the advantage of hEYE-

brid. How error-prone and uncontrollable the calibration process is can be also seen

on the results during the task after initial calibration and after the re-calibration of

the Pupil Labs eye tracker. We noticed a better gaze estimation accuracy for the lat-

ter of the two, although the participants did the same gaze pointing task in both cases.

Furthermore, the developed method can be considered as an advance in compar-

ison to existing approaches that realize high gaze estimation accuracy [93]. Such

approaches rely on an active user calibration that has to be renewed at regular time

intervals. hEYEbrid is not influenced by a calibration drift caused by taking off the

head-mounted device.

We did not find a significant effect on gaze estimation for hEYEbrid when taking

off the device and putting it back on. However, we noticed a slightly worse result

in this case. This may be caused by minimal changes in the image quality of the

corneal images or less accurate pupil tracking. This also has a negative effect on the

results for hEYEbrid-3C, as it builds on the output of hEYEbrid. As expected, the

Pupil Labs eye tracker achieves much worse results caused by the simulated calibra-

tion drift, which invalidates the mapping function (as shown in [95]).

hEYEbrid-3C uses the two eye cameras plus an additional scene camera and is able

to compute the gaze in the scene by matching the corneal image onto the scene

image. Note that the detection of objects via AR markers and the display track-

ing via natural features is performed in the scene images. It achieves less accurate

results than the other methods, except for the on-screen targets. In this case an av-

erage gaze estimation error of 2.17◦ was achieved, compared to 2.83◦ for Pupil and

1.64◦ for hEYEbrid. A possible explanation is that hEYEbrid-3C relies on natural

feature tracking to update its frame-based calibration. To match the pupil center in
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the scene image, it needs to compute the homography matrix between the corneal

and scene camera images. Hence the method does two transformations (from IR to

corneal and from corneal to scene images) that might introduce errors. Note that

we also did not account for any corrections of the images; for instance, we did no

undistortion of corneal images. The study was conducted in a minimally furnished

room. Therefore the image features were very limited, except when looking at the

projected screen, as it showed feature-rich content. Thus our setup shows the limita-

tions of hEYEbrid-3C by design. However, when enough features are available, this

method also performs well, as indicated by the good results for the on-screen targets

(2.84◦ on average). Nevertheless, this approach relies on three cameras, of which the

scene camera especially is an issue, as it can cause discomfort for other people.

In our experiment we showed the applicability of our approach in a mobile indoor

lab setting. Although we did not enforce constraints such as remaining seated and

keeping the head still, we controlled the correct initial setup of the device (i.e. correct

camera-eye distance). Consequently the results show the potential of using hEYE-

brid in indoor settings, such as retail stores, shopping centers or airports. We also

believe that the concept is usable in outdoor settings to a certain extent. The current

implementation calls for at least stable lighting conditions (e.g. sunlit or partially

cloudy).

6.3.4 Making hEYEbrid Mobile

The results of the conducted user study showed that connecting an infrared eye and a

corneal camera in a hybrid approach is suitable for user-calibration-free gaze estima-

tion. Thus, we designed and implemented a mobile and wearable eye gaze tracking

system that can be used to conduct eye-tracking experiments in the wild and to build

interactive systems. For this, we connected the head-mounted device, equipped with

the two eye cameras, to a mobile phone. We developed a hEYEbrid mobile application

that is able to drive the two eye cameras. Moreover, it takes care of the pupil tracking

as well as the mapping of the pupil from IR to corneal images, as described earlier.

Basically, one can spontaneously start to use the system in everyday life settings. The

application is able to record the camera streams as well as the information about the

pupil positions, which can be imported into the Pupil Labs player software for later

analysis and processing.

Figure 6.16 illustrates the application’s interface, which we designed to be easy to
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use. It guides the user through the setup of the system, showing the required hard-

ware parts (the mobile phone and the head-mounted device). The main screen of

the application is divided into three expandable views, integrated in a list view. The

control view is used to inform the user about the connection and tracking state. Here,

several plugins can be activated, like gaze estimation on screens. Two more views –

the IR and Corneal views – show the camera streams and give direct feedback about

the processing, i.e. the pupil tracking and mapping. This is of great importance, as

it provides the user the ability to adjust the eye-camera distance to get sharp corneal

images, which at the same time results in the optimal mapping. In this way we over-

come one of the aforementioned limitations. The application can be easily extended

by several functionalities which make use of the computed gaze point and the corneal

reflection.

Besides the hEYEbrid mode, we also implemented mobile versions for hEYEbrid-

3C and Pupil Labs monocular eye trackers. With a fully equipped head-mounted

device, i.e. three cameras (infrared, corneal and scene) one can decide which mode

to use. However, keep in mind that only hEYEbrid and hEYEbrid-3C are calibration

free in that they only need to establish a camera mapping once, unlike the Pupil Labs

eye tracker.

Applications

Mobile calibration-free gaze estimation opens up the space for a variety of application

cases. We distinguish between the usage of hEYEbrid as an analysis tool and an input

device.

Coming back to the introduction, there is increasing interest in the integration of

gaze tracking in AR and VR devices. Both the reflection of an AR glasses screen

(e.g. HoloLens) as well as that of a VR headset display are visible on the corneal

images. The availability of information about where a person is looking in tasks such

as industrial maintenance will be of great benefit to guide a worker, for example. A

virtual reality headset offers the ideal conditions to integrate hEYEbrid, since nothing

other than the screen content (i.e. the VR environment) is reflected on the human

cornea. Moreover, the distance between the VR headset’s display and the eye is fixed;

thus, we do not have to deal with blurry corneal images due to defocus. However, the

current camera clip would have to be scaled down to fit into a headset. Possible use

cases range from foveated rendering [152] to hands-free interaction.
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hEYEbrid also enables the creation of interactive applications at pervasive scale. A

person’s gaze, which is available all times, can be shared with connected devices in

the environment. Gaze estimation on public displays can be used to enable the de-

velopment of interactive screens. A person’s gaze can be used as a direct or indirect

input modality to control the screen by pointing, or support the user in reading text

on a public display, as in [101].

Besides utilizing hEYEbrid for creating gaze-based interfaces, corneal images can be

analyzed to gain insights in human cognitive processes. That is, hEYEbrid enables

gaze estimation for real-life in-the-wild scenarios. The mobile system can be used to

conduct user studies in a lightweight manner. Multiple persons can be equipped with

the system, to collect a large amount of data in parallel. This data can be analyzed

post-hoc for different application use cases, such as landmark extraction [102] or ac-

tivity analysis [178, 67]. Since our daily behavior is reflected on our eyes, corneal

images can serve as a basis for camera-based lifelogging [97]. If a person is fixating an

object, this behavior is reflected in the corneal image. For example, such information

can be used for attention measurements.

Figure 6.26: Example applications: 1. Gaze estimation on a display, based on natural
feature tracking. 2. Object detection in the corneal image using a CNN.
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To demonstrate the potential of hEYEbrid, we integrated two example plugins: gaze

estimation on public displays, and automatic object detection, reflected on the user’s

eye within the area of the pupil. Both example applications are shown in Figure

6.26. The implementation of the example applications as well as the dedicated mobile

hEYEbrid application is outlined in the following.

Implementation

The architecture of the final mobile prototype is shown in Figure 6.27. It consists of

two main components on the hardware side: (1) the head-mounted device and (2) a

Nexus 6P phone, running Android 7.1, to drive the device. All cameras are attached

to a USB 2.0 hub that is directly connected to the phone via USB-C. There is no need

for an extra power source to power two cameras. However, to run hEYEbrid-3C or

a Pupil Labs eye tracker, an additional power source has to be used. Running the

application on the phone, its battery lasts for approximately five hours. Note that

during this measurement, Bluetooth, WIFI and GPS were also enabled. We will ex-

plain the software architecture only for hEYEbrid in the following. The other modes

are developed in the same manner.

The software architecture of the Android application consists of three main parts: (1)

the backend to process all images, (2) the frontend for live visualization and to control

the app, and (3) the plugins to add advanced functionalities. The hEYEbrid applica-

tion mode is developed as a native Android application, based on the Android SDK

25. The backend parts are developed in C++ and included via Android’s native de-

velopment kit (NDK), version 7. To stream both camera streams at once over USB,

we use libuvc, a cross-platform library for USB video devices. In particular we include

an existing library, wrapping libuvc24, for usage with Android. This library allows us

to set the available camera settings (e.g., frame rate, resolution, brightness) and to

control the bandwidth factor. The IR camera frames are streamed with a resolution

of 640 x 480 pixels, corneal images with a resolution of 1280 x 960 px, both at 30Hz.

For image processing we use the Java native interface to realize the pupil tracking.

We included PUPIL’s built-in pupil detector (defined in detect 2d.hpp) and all its

dependencies. For this, we had to include specific versions of Eigen25 and TBB26 for

Android. The method returns an ellipse describing the pupil structure. This is trans-

formed onto the corneal image applying the homography matrix that was computed

24https://github.com/saki4510t/UVCCamera
25http://eigen.tuxfamily.org
26https://www.threadingbuildingblocks.org/tbb-mobile
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Figure 6.27: Architecture of the mobile system usable with hEYEbrid, hEYEbrid-
3C and a Pupil Labs eye tracker. The hardware is made up of a head-mounted device
containing two or three cameras, depending on the mode. The software side contains
three main parts.

beforehand during construction. For the projection we make use of the OpenCV 3.2

library for C++. Finally, the backend offers a callback delivering the pupil center and

the cut-out corneal image.

The frontend implements three views in different panels. We chose a list-like vi-

sualization of the views and included the ExpandableLayout library27 to smoothly

expand and collapse the views. We used Android’s Material design for all UI compo-

nents.

To integrate advanced functionalities, the application provides interfaces to the back-

end and frontend usable by plugins. We implemented two example plugins: For gaze

estimation on displays, we use a similar approach to GazeProjector [93]. The idea is to

compute the spatial relationship between the head-mounted device and the surround-

ing displays. In contrast to existing approaches [193], we use the cropped corneal

image as a template to look for on the display’s content. In both images key features

27https://github.com/cachapa/ExpandableLayout
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are extracted using AKAZE [145] and matched using a 2-nn brute-force matcher. To

estimate the spatial relationship, the found key feature pairs are used to compute a

homography matrix. For the algorithm, the screen’s content is streamed via screen-

shots from the display to the mobile application. For this a script has to be executed

on the computer connected to the display. It resizes the screenshots to 480 x 360

pixels and pushes them onto the mobile phone. The mobile application sends back

the estimated gaze position to use this for further processing.

For object extraction, we use the YOLO28 framework for real-time object detection

[158] based on neural networks. We use the pre-trained weight file (yolo.weights) that

is already available within the framework and the standard configuration (yolo.cfg).

To speed up the processing, the cropped corneal images are sent as batches to a server

that does the processing. After a successful object detection, the result with the high-

est detection probability, closest to the pupil center, is sent back to the mobile phone.

The main software part (i.e., the backend) runs at 25–30 fps on the Android phone

(Nexus 6P). The gaze estimation plugin has to do some more complex computations

(e.g., feature matching) and thus runs at 25 fps. The object detection plugin is only

limited by the transfer rate of the images to the processing server, as YOLO is able

to process the stream at up to 90 fps. Hence the plugin runs at at 25–30 fps like

the main program. The source of the mobile application is also publicly available on

Github29.

6.3.5 Overall Limitations

Apart from its numerous advantages over state-of-the-art eye tracking systems, hEYE-

brid also comes with some limitations. Our concept of gaze estimation requires two

cameras, bundled into one enclosure that is mounted in front of the user’s eye. The

construction may interfere with the field of view. However, using a dedicated hard-

ware prototype with both cameras on one board, and smaller cameras, could reduce its

total size. This would make the head-mounted device even smaller, lighter in weight

and more comfortable.

Further, we used AR markers for object detection in our experiment, to robustly

track the objects. Nevertheless, we believe that with a higher resolution eye camera,

objects are able to be detected via feature tracking or a trained classifier.

28https://pjreddie.com/darknet/yolo/
29https://github.com/landerc/hEYEbrid
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Currently, computing the mapping between the infrared and corneal camera image

plane is the biggest limitation. As described above, we rely on a homography matrix

that computes a planar mapping in 2D. If the distance between the camera and the

user’s eye changes to a great extent, the mapping will become more incorrect. How-

ever, we handle this limitation in the following way. To compute the homography

matrix we record images from both cameras at a fixed distance with sharp focus.

Consequently, we obtain an optimal mapping in this setting. When putting on the

device, the camera is placed in such a way that the focus is also sharp. Hence, the

distance between cameras and eye is nearly the same as during the mapping step.

The good results of our experiment after taking off and putting back on the device

support this assumption. In a totally uncontrolled environment the user has to make

sure to place the camera at a focused distance from the eye. It would be possible to

support that procedure by computing the current focus value of the corneal image

(e.g. by using depth sensors). In this way it might be possible to guide the user in

placing the camera at the right distance from the eye.

Besides camera-eye distance, eye-object distance is the second source of blurry corneal

images. That is, if the user is focusing on an object at a far distance, its representation

on the corneal image is rather unsharp, caused by the mirror properties. Consequently

our current implementation has a certain working distance. Using cameras with auto-

focus may help to circumvent this limitation. Another possibility is to use neural

networks that are specifically trained on such blurry images to handle these cases.

We have little knowledge about the long-term accuracy of hEYEbrid. The experi-

ment took thirty minutes at maximum per participant, caused by longer pauses be-

tween the tasks. Consequently the presented results are representative for a usage

time within half an hour. It is noteworthy that the homography matrix between both

cameras was not updated during the entire experiment, which lasted over several days.

Also, hEYEbrid has difficulties working in dark environments, as nearly no informa-

tion will be reflected on the cornea. Installing cameras with a higher ISO sensitivity

could help to make information visible on the corneal images, even in darker settings.

Also, changes in lighting might affect the video quality of corneal images and thus

the processing. Since the human pupil is sensitive to light, a bright environment will

have a miotic effect (i.e. shrinking of the pupil). This directly influences the size and
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resolution of the corneal image extracted by hEYEbrid. However, the approach might

still work, as we rely only on the pupil center that gives us the gaze point in the

reflected environment. The extracted field of view will be smaller, but sufficient to

map the gaze on smaller objects (e.g. a mobile phone), whereas it will be insufficient

for large objects (e.g. cars or buildings).

In summary it makes sense to explore cameras with different properties and con-

figurations, especially to make this approach robust for outdoor usage. Note that

when integrating a camera that offers capabilities like auto-focus, auto-iris and high

ISO sensitivity, the complete device will get more expensive. Nevertheless, we believe

that hEYEbrid is a promising concept for user-calibration-free gaze estimation in per-

vasive settings to enable spontaneous gaze-based interaction as well as eye-tracking

experiments in the wild.

6.3.6 Summary of Findings

In this section, we presented hEYEbrid, an approach for calibration-free and accu-

rate gaze estimation in pervasive settings (cf. Ubiquitous Computing for Eye Tracking

Continuum in Figure 6.1, complexity (K x L) : M : N). In contrast to existing systems,

hEYEbrid combines the images from an infrared eye and a corneal camera in a hybrid

approach and works without any prior user calibration. Hence, its accuracy is not in-

fluenced by calibration drifts. The concept is integrated into Pupil Labs’ open-source

eye-tracking framework, by adding a corneal camera to the head-mounted device and

developing plugins for the capture and player software.

We conducted a user study in which we used a mobile setup to evaluate hEYE-

brid ’s gaze estimation accuracy against a state-of-the-art Pupil Labs eye tracker and

hEYEbrid-3C, an extended version using the scene camera as additional image in-

formation. We found that our approach performs better than the well-established

Pupil Labs eye tracker. In addition, it compares well to existing approaches based on

corneal imaging. The results are very promising and underline the potential to realize

mobile gaze-based interaction in everyday life settings.

We finally transferred the approach into a mobile and wearable system which is able

to react in real time. It consists of a head-mounted device (with the two eye cameras)

and an Android-based mobile phone, making it usable out of the box. Finally, we

developed a novel approach for real mobile gaze estimation achieving reasonable ac-
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curacy. In the following we will discuss how this approach contributes to the research

question of this thesis.

6.4 Application to research question

In this section we will demonstrate the contribution of the presented system to the

problems defined in Section 1.4 and the remaining parts of the research question for-

mulated in Section 1.6. We will discuss the involvement of EyeMirror and hEYEbrid,

as both constitute major achievements investigating calibration-free gaze estimation.

In the following we will derive the answers to the two remaining sub-questions while

highlighting the comparison between the above presented systems.

At the outset of this thesis, we emphasized the key challenge of current state-of-

the-art head-mounted eye tracking devices and the problems that come along with

it. In Section 1.4, we discussed that these systems are not ready for use outside a

controlled environment (like a laboratory) in a mobile setting (e.g. for spontaneous

interaction or long-lasting in-the-wild experiments). The main reason for that is the

need to perform a calibration procedure in order to estimate different parameters to

translate pupil into gaze positions. The issues interrelated with the calibration are

user-dependency, drift, lack of invariance under location and orientation change, the

need for supervision and the parallax error (cf. Section 1.4). So far, the presented ap-

proaches in the previous chapters dealt with most of these sub-problems. For the first

time, we addressed the calibration problem itself in this chapter. To create solutions

for the main problem, we propose two consecutive concepts enabling calibration-free

gaze estimation, both using the concept of corneal imaging (cf. Section 3.3). We con-

tinuously refined the developed prototypes concerning performance in terms of gaze

estimation accuracy and mobility. Figure 6.28 highlights the progress from a low- to

a high-fidelity prototype, i.e. EyeMirror connected to a laptop or a mini-computer,

to hEYEbrid, usable with a mobile phone.

In Section 6.2 of this chapter, we presented EyeMirror, a wearable system that requires

only one camera placed in front of the user’s eye. By capturing the environment re-

flected on the human cornea (i.e., the area covering the eye’s iris and pupil), we realize

gaze approximation on surfaces (e.g., a display). Its underlying concept is to match

the corneal image into the environment using natural feature tracking. Therefore it

is necessary to have visual information about the surroundings present. Our proof-of-

concept realization demonstrates the gaze approximation of EyeMirror on displays,
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Figure 6.28: Progress made within the development of a device for mobile calibration-
free gaze estimation.

similar to the concept of GazeProjector (cf. Chapter 5). Obviously one can substitute

displays by any other surface, as long as the system is aware about the appearance,

as we did it with Section 5.6. Although the developed method gets along without any

user calibration, it is only possible to approximate the user’s gaze with an average

angular error of 4.03◦. This is about four times worse than with GazeProjector (avg.

gaze estimation error 1.78◦).

However, the EyeMirror system is a first step towards calibration-free gaze estima-

tion while also addressing the parallax error. Hence we can start to think about the

answer to the fundamental research question, formulated in Section 1.6. For this, we

will take a look at the sub-questions that have so far remained unanswered:

6. How can we realize accurate gaze estimation without a user-dependent calibra-

tion?

7. What is the benefit of a mobile and wearable eye tracker?

8. How can we design a mobile eye tracking framework without creating new re-

strictions?

With the EyeMirror approach, we can at least deliver a partial answer to question

number six. For this purpose we reiterate the idea behind EyeMirror : The corneal
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image (on the left) contains information about what a person is currently looking at,

in this case a screen’s content. As we already showed with GazeProjector, it is possi-

ble to compute the spatial relation between the display content and its representation

in the scene camera image. The corneal images are comparable to the scene camera

images of a head-mounted eye tracker, as they reveal a distorted version of the user’s

field of view.

In the evaluation of EyeMirror, we showed that it is sufficient to cluster the extracted

key feature pairs and define its center as gaze point. This approach can moderately

compute the current gaze of a person on a display. This might be sufficient to indicate

the region or area of interest useful for attention measurements. However, EyeMirror

is not the right answer to the questions from above, as it is too imprecise and not

as easy to use as one might have imagined. Note that it requires a specific mini-

computer plus an external battery pack. We consider it as a promising step towards a

new generation of less-invasive head-mounted eye trackers and a good baseline for fur-

ther investigations on corneal imaging in human computer interaction. We identified

the inaccurate limbus extraction together with using the eye center as gaze reference

as the key problems that cause the inaccurate gaze estimation. The limbus tracking

results in low-quality corneal images and gives no exact reference to the actual gaze.

Consequently we pursued another cycle of the iterative development model to resolve

these issues, which led to the hEYEbrid system.

In Section 6.3 of this chapter, we proposed the concept of a revised prototype based on

corneal imaging for gaze estimation. With hEYEbrid we implemented a system that

enables head-mounted eye and gaze tracking at any time and any place in a suitable

fashion. In order to accurately extract the pupil position and its movements, we em-

ploy the well-established method of active IR illumination eye tracking (cf. Chapter

2). We combined two cameras in front of the eye to acquire both IR images for pupil

tracking and corneal images simultaneously. Simply put, we moved the scene cam-

era of a head-mounted eye tracker below the eye and turned it into a corneal imaging

camera. As explained in Section 6.3, we transform the pupil positions into the corneal

images to accurately extract the reflection of the environment within the area of the

pupil. In the same way, we obtain a reference point for the user’s gaze given by the

pupil center. Figure 6.28 depicts the final-high fidelity hardware prototype and the

software running on a mobile phone, enabling gaze estimation in a plug & play manner.
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With hEYEbrid we gave the answers to the remaining two of the three open ques-

tions from above. With hEYEbrid, we finally created a method that is competitive

in terms of accuracy with our previous approaches (such as GazeProjector in Chap-

ter 5). The fact that this approach is calibration-free underlines its benefit towards

state-of-the-art head-mounted and remote eye tracking systems.

6.5 Attention Maps in Corneal Imaging using hEYEbrid

In Sections 6.2 and 6.3 we presented an alternative generation of head-mounted eye

tracking approaches. We showed the potentials of these methods, as they resolve the

problem of a user-dependent calibration. In order to further enhance the benefit, we

want to focus on methods for analyzing corneal image based eye tracking data. As

when conducting eye tracking experiments, researchers face fundamental questions

like:

How many fixations took place? What is the mean duration of all fixations? and

What are the areas of interest?

Currently, such analytics can be done by either using the eye tracking vendor’s soft-

ware tools (e.g., Tobii Pro Lab30 or Pupil Labs Player31), or independent software

[30]. However, these tools are not applicable to corneal imaging-based eye tracking

and gaze estimation. This is because of the difference in the approach itself, i.e. world

plus eye camera versus eye camera only.

In this section, we propose a first approach to include analytics in corneal imaging-

based eye tracking data. In particular, we developed an extension for hEYEbrid (see

Section 6.3) to realize fixation extraction to answer the aforementioned questions.

Fixation Extraction Approach

To make corneal imaging based eye tracking applicable in research studies and usable

as an input modality, we have to investigate how to transfer the existing analysis

metrics. The human eye is able to perform five different kinds of movements, namely

fixation, saccades, smooth pursuits, vergence and the vestibulo-ocular reflex, as out-

lined in Chapter 2. With our approach, we focus on the extraction of fixations, as

30https://www.tobiipro.com/product-listing/tobii-pro-lab/
31https://docs.pupil-labs.com/#analysis-plugins



206 6.5 Attention Maps in Corneal Imaging using hEYEbrid

they are the most prominent events in eye tracking data. Fixations describe the state

of resting the gaze on a specific object within the central vision for a certain amount

of time, typically around 200–400 msec [162]. The term is somewhat misleading, as

the eye is not staying still but rather doing micro-movements. Usually, fixations are

extracted to measure the attention of the user on specific objects in the field of view.

In head-mounted eye tracking, fixations are computed using the estimated gaze point

in the world camera. This is done by estimating the spatial variation of the gaze

point within a certain time interval. Simply put, if the gaze point is rather constant,

a fixation is detected.

It is important to note that head-mounted corneal imaging systems usually do not

have a world camera. Thus, we adapted the general computation of fixations as fol-

lows. We use the corneal images together with the absolute pupil positions as input.

Basically, the spatial and temporal variances of the pupil movements are used to define

a fixation event. We set a time window according to [162] in which pupil movements

within a certain threshold are allowed. If a fixation is found, the corneal images con-

nected with the pupil positions are stitched together. Finally, a fixation is associated

with one corneal image.

To implement the described method for fixation extraction, we extended the mobile

hEYEbrid application to enable data recording and implemented a Pupil Player plu-

gin32 for the actual fixation extraction afterwards. A complete record of one data

frame is depicted in Figure 6.29. It contains information about the pupil positions

(timestamp and ellipse describing the pupil) and the matched corneal positions (times-

tamp and transformed pupil position). The scheme is similar to the standard Pupil

Labs33 data format to ease compatibility.

Figure 6.29 shows the workflow of the algorithm on data recorded with the head-

mounted device. The pupil positions are analyzed using an alternative version of the

fixation detector plugin of the Pupil Labs player. The dispersion of the pupil positions

is thereby computed sequentially. If this value is within one degree, and data for at

least 200 msec was analyzed, a fixation event is created. If the dispersion threshold

is exceeded, the algorithm restarts. If a fixation event was found, the corresponding

corneal images are clustered to one image to match the fixation. For implementation,

32https://docs.pupil-labs.com/#pupil-player
33https://docs.pupil-labs.com/#data-format
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(a) An example of a recorded data sample
containing the information on pupil and
corneal positions. The absolute position of
the tracked pupil center, together with the
timestamp, is used for fixation extraction.

(b) Stitching ten corneal images that cor-
respond to a fixation with a duration of
300 msec. The resulting image contains
the gaze point and all scene information
after the stitching process.

Figure 6.29: (a) The data format used to extract fixation data; (b) the stitching
approach used to cluster image data

we are using OpenCV’s image stitcher34 with mode scans. The resulting image also

includes the averaged gaze point (equal to the pupil center as shown in Section 6.3) of

all gaze points of each data frame of the current fixation. In this way, no information

is lost and the overall image data is compressed. In the example presented in Figure

6.29b, ten images (126 KB) are reduced to one image (11 KB), containing all neces-

sary information. While this is not a huge improvement in this case, data recorded

over several hours and days can be dramatically reduced to a minimum.

After extracting the fixations, we can go one step further and cluster several fixations

within a certain time interval. Simply put, we do another round of image stitching

of the clustered corneal images and their associated fixations. Figure 6.30 shows the

idea behind this additional step. It results in a corneal panorama image showing the

spatial distribution of the chosen fixations. This can be used to indicate the points of

interest and create areas of interest for a large set of data.

34https://docs.opencv.org/trunk/d8/d19/tutorial stitcher.html
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Figure 6.30: Panorama stitching to cluster multiple fixations. The resulting image
contains all three fixations mapped onto the stitched image.

The resulting information could be used to create attention maps which can be inte-

grated over time and space: that is, a cluster of fixations on a panorama of corneal

images. A side-effect of the whole process is the compression of a sequence of corneal

images and eye tracking data.

The work presented in this section lays the foundation for further improvement in

the future. First of all, the extensions we developed enable only post-hoc fixation

computation. The next step is to realize a real-time version of the presented ap-

proach. Hence, it will be possible to directly record compressed data, i.e., only the

extracted fixations. In this way an automatic information extraction can be realized,

as sketched in Section 6.2, because the size of the data set is smaller while containing

the same amount of information.

6.6 Summary

In this chapter, we began to address the matter of the calibration issue itself. For

the first time, we tackled the actual problem at its source. As discussed, gaze estima-

tion in general requires a specific set of input parameters which have to be acquired

through a calibration procedure, which in turn causes various side-effects that have a

bad influence on gaze estimation accuracy (see Chapter 1).

With EyeMirror we first demonstrated the possibility to build a head-mounted eye

tracking device utilizing corneal imaging. Capturing the environment reflected on

the human eye, it enables gaze approximation on various surfaces (e.g., displays),

solely based on natural feature tracking. In the corresponding laboratory experiment,

we found EyeMirror (M = 4.03◦) to be less accurate than a state-of-the-art head-

mounted Pupil Labs eye tracker (M = 2.41◦), but more accurate than using head



209

orientation only (M = 4.66◦). With hEYEbrid we presented the second approach for

a calibration-free gaze estimation method. It was a significant improvement over Eye-

Mirror in terms of accuracy (M = 2.22◦), as shown by the user study. In summary,

we gave answers to the remaining open questions, resulting in the following findings:

• Both presented approaches do not require a user-dependent calibration proce-

dure. Based on corneal imaging, they utilize an alternative method for eye and

gaze tracking. EyeMirror is able to do rough gaze estimation and does not rely

on any calibration at all; however, hEYEbrid enables a more accurate gaze es-

timation (competitive with a monocular Pupil Labs device), while requiring a

one-time camera calibration.

• Utilizing corneal imaging, we implemented wearable solutions to accomplish the

task of gaze estimation in a spontaneous and unobtrusive fashion. Both systems

demonstrate the benefit of head-mounted devices, as they can be used on any

object at any time and any place, in contrast to remote technologies. We remind

the reader that this is only possible due to the fact that our systems are user-

calibration-free.

• Finally, we transferred hEYEbrid into a mobile and wearable system which is

able to react in real time. People can simply use the system with their mobile

phone. The additional integration into an existing eye tracking platform makes

the approach ready to be used by others for research and to create gaze-based

interfaces.

Furthermore, we have discussed possible applications of the two developed systems.

We demonstrated the usage of corneal imaging-based head-mounted eye tracking in a

live logging scenario. We concluded that information about the environment can be

extracted from corneal images applying established computer vision methods for face

tracking and object detection. Besides that, we finally demonstrated the integration

of well-known existing metrics for eye tracking data analysis. In order to address the

lack of options, we proposed a way to compute fixations on data recorded with our

specific corneal image-based head-mounted device. Moreover, our fixation extraction

algorithm efficiently compresses the recorded eye tracking data, to ease its analysis.

Consequently, hEYEbrid is ready for use in research studies and interactive scenarios

in ubiquitous settings (cf. Ubiquitous Computing for Eye Tracking Continuum in

Figure 6.1 complexity (K x L) : M : N).
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Chapter 7

Conclusion

In this last chapter we are going to summarize the key contributions of this thesis.

We will also discuss possible directions for future work that result from our work but

go beyond the scope of this thesis. In the end, we will close this thesis with final

remarks.

7.1 Major Contributions

The work presented in this thesis has focused on the consideration of eye tracking

from the perspective of human-computer interaction, in particular the usage of eye

trackers in ubiquitous scenarios. Making eye tracking devices wearable and mobile as

well as ready for usage in a spontaneous and simplified fashion is challenging due to

the practical issues caused by the necessary calibration.

In the first chapter (cf. Section 1.1), we defined and introduced our Ubiquitous Com-

puting for Eye Tracking Continuum (see Figure 1.1), inspired by the vision of Mark

Weiser [201] and Robert J. K. Jacob [71]. Along this three-dimensional continuum,

we highlighted the challenges of eye and gaze tracking along the rising complexity of

the number of devices, locations and users from a 1 : 1 : 1 to a (K x L) : M : N

relation (K = number of digital objects, L = number of physical objects, M = number

of locations, N = number of users): The simplest scenario (1 : 1 : 1) is constituted

by a desktop setting, in which a single user interacts with one digital device (e.g., a

single display) at one location. Usually in such settings, remote eye trackers can be

used to enable gaze-based interaction and interfaces (cf. Section 3.1.1). Remember

that the complexity can be increased in three different directions: (1) A single user

can interact with several digital devices (e.g., display and mobile phone) and physical

211
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objects at the same location ((K x L) : 1 : 1). (2) One person can interact with one

display at different locations (e.g., information screens at different urban places, 1 :

M : 1). (3) Multiple users can interact with the same display at the same location (1 :

1 : N). The combination of all three dimensions results in the most complex variant,

having multiple persons who interact with physical and digital objects distributed

across multiple locations ((K x L) : M : N).

Throughout this thesis, we developed and implemented various approaches that can

be applied to realize gaze estimation for the scenarios, as highlighted in Figure 7.1.

Figure 7.1: Ubiquitous Computing for Eye Tracking Continuum: 3-dimensional space
((Displays x Objects) : Locations : Users) highlighting the complexity of scenarios
from a simple desktop setting with one display at one location for a single user (1
: 1 : 1) to a pervasive/ubiquitous setting with multiple digital and physical objects
distributed at many locations for multiple users (K x L : M : N). The developed
approaches are classified within the continuum which increases along the three axes.

We demonstrated the practical problems of head-mounted eye tracking systems via

an interactive multi-user application in Section 1.5. The Collaborative Newspaper

supports people in reading text on a public display by an adaptive scrolling that is

based on their individual read speed and belongs to the complexity level (1 : M : N),

i.e. one screen, with multiple locations and users. We use the Collaborative Newspa-

per system to draw attention to the practical issues of (supervised) user-dependent
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calibration, the resultant calibration drift, position and orientation invariance and the

parallax error. All these problems (together or separately) make head-mounted eye

trackers impractical for ubiquitous and pervasive scenarios.

Starting in Chapter 4, we presented the first approach to tackle the derived prob-

lems. The comprehensive study investigated the long-term gaze estimation accuracy

of using head-mounted eye trackers in a single display scenario, while simulating dif-

ferent sources of calibration drift. Base on these findings, we developed and tested

different strategies to counteract the problem of calibration drift while reducing the

time spent for the re-calibration procedure to recover the initial accuracy. Using the

developed method for efficient recalibration, eye tracking scenarios of the complexity

level 1 : 1 : N (multi-user scenarios in front of one display) are possible (see Figure 7.1).

In Chapter 5, we investigated the problem of invariance, i.e. the need to calibrate

a head-mounted eye tracker when the user changed their orientation and / or loca-

tion with respect to the calibration plane (e.g., the display the device was calibrated

on). With GazeProjector, we developed a system for accurate gaze estimation across

multiple displays, independent of which display the eye tracker was calibrated on. In

addition, we showed the general applicability of the method in an in-the-wild setting.

The system can be applied at several points within the Ubiquitous Computing for Eye

Tracking Continuum, as shown in Figure 7.1.

In Chapter 6, we presented EyeMirror and hEYEbrid, two alternative approaches

that enable calibration-free gaze estimation based on corneal imaging. In particular,

hEYEbrid enables eye tracking and gaze estimation in ubiquitous scenarios (see Fig-

ure 7.1). With hEYEbrid, we presented a ready-to-use wearable and mobile system

that is usable with any newer Android-based mobile phone and integrated into the

existing open-source eye tracking platform Pupil Labs1.

The contributions of this work were made by the development and implementation

of novel approaches. In particular, we investigated the theoretical methods, and

implemented a prototype accordingly, to solve the shortcomings of current state-of-

the-art head-mounted eye tracking systems. Further, each prototype was evaluated

by conducting a user study, in which it was compared to existing well-established

technologies. The work presented in this thesis has made contributions to the areas

1https://pupil-labs.com/
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of Efficient Long-Term Usage of head-mounted eye trackers (E), as well as Location,

Orientation & Target Independent (L) and Mobile & Accurate Calibration-Free eye

tracking (M):

(E) Three time-efficient re-calibration strategies counteracting the calibration drift

(E) A large study showing that the order of the calibration points is more important

than the used strategy

(E) A guide for the optimal re-calibration strategy

(L) A system for accurate and seamless gaze estimation across multiple displays

(L) A study to demonstrate the advantages against state-of-the-art approaches on

a single display

(L) A second study in a multi-display environment to further support the benefits

of the approach

(L) A system to effectively match gaze to the environment in an in-the-wild setting

(M) A system for calibration-free gaze approximation

(M) A study on the performance of the approach

(M) A system for calibration-free competitive gaze estimation

(M) A study in a semi-mobile scenario to support the potential of the approach

(M) A fully wearable and mobile system integrating the well-established eye tracking

metrics

In addition to these contributions, which individually can be used to tackle aspects of

the calibration issues and improve the design of future gaze-based interactive systems,

we also contribute the latest versions of the calibration-free eye tracking system as

open source2. Resources of other systems can be accessed upon request. This contri-

bution will allow others to use our methods for further investigations and continue the

development in the open-source community. By answering all our research questions

and thus the fundamental research question, we have shown the possibility of and the

approach for making eye trackers a ubiquitous computing device.

2https://github.com/landerc
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7.2 Future Work

The work presented in this thesis, provides new opportunities and leave open chal-

lenges that can be addressed in future work. We identified the extension of the

conducted studies, improve the developed and implemented systems and build an

adaptive solution (in the terms of one-fits-all) as possible directions that can be fol-

lowed.

Conducting further Evaluations

In the future, we want to take our approach one step further and do an evaluation of

our re-calibration approach in a real-world scenario (e.g., in final industrial assembly).

We tested hEYEbrid in a laboratory environment, in which we simulated a mobile

setting where users could freely move around, to gain insights into its performance

compared to existing techniques. However, we want to take our approach one step fur-

ther. One obvious step is to take it to the real world, and evaluate its performance with

multiple users simultaneously in scenarios where real-time gaze estimation is required.

The next step is to evaluate the system in an in-the-wild study. We plan to equip

multiple persons with the device and ask them to use it during the day while doing

several activities indoors and outdoors. We thereby want to investigate the long-term

usage as well as the influence of environmental factors (e.g., lighting). In addition, we

would like to test prototypes with cameras having different properties to resolve the

issue of defocused and unsharp images. Finally, having a system that can be used in

fully unconstrained settings for long-term data recording will bring further insights

into people’s gaze behavior, and create novel interactions that could benefit from such

a device.

To further investigate hEYEbrid it may be beneficial to include a 3D eye model for

3D pose estimation of the eye. Then we could exactly compare our approach against

the existing methods of corneal imaging-based gaze estimation. As we already high-

lighted, the existing approaches have only been evaluated in a constrained desktop

scenario. To make our results more comparable, the latest approaches should also be

evaluated in a mobile scenario against hEYEbrid.
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Enhancement of Systems

The methods for re-calibration presented in Chapter 4 merit further investigation.

We think of subsequently optimize the presented methods. The re-calibration algo-

rithm could be tested using other study setups, such as a multi-display setup or a

more mobile setting. Further, the integration of the findings in the calibration-free

approaches to further increase their accuracy could be explored. We imagine that the

mapping from the infrared to the corneal image plane could benefit from this approach.

The work presented in Chapter 6, Section 6.5 lays the foundation for further im-

provements for future use of the hEYEbrid system. First of all, the extensions we

developed enable only post-hoc fixation computation. The next step is to realize a

real-time version of the presented approach. This would make it possible to directly

record compressed data, i.e., only the extracted fixations. In addition, our proposed

method will have to be evaluated with a large data set. For this, we envision a com-

parison of the proposed fixation computation against a state-of-the-art eye tracker.

The number and duration of fixations can be verified in this way.

To further improve the gaze estimation of hEYEbrid, another possible direction is

to look into smooth pursuits. Remember that this concept was used as an alternative

possibility to calibrate remote systems (cf. Section 3.2). Investigating the occurrence

of smooth pursuit movements in real environments (e.g., following a driving car or

a flying bird) is needed to assess the method’s applicability. In theory, these events

could be used to update the relation between both eye cameras of the device while

actually hiding the process of calibration to the user.

Another option is to reduce the system’s complexity by using a one-camera approach.

The idea is to utilize the already-recorded data of the evaluations done with hEYE-

brid. This would include labeled information about the position of the pupil in the

corneal images, which could be used to train a neural network in order to extract the

pupil and its center without requiring the infrared images.

Finally, the developed approaches may also be used to investigate novel systems based

on remote setups. In particular, remote approaches are not applicable for ubiquitous

scenarios, as discussed in Chapters 1 and 3, they could profit from our developed ap-

proaches. For example, using multiple steerable cameras in combination with corneal
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imaging would enable calibration-free gaze estimation in (1 : M : N) scenarios (one

display, multiple locations users).

Ubiquitous Eye Tracking

As a first step towards this vision, we built a mobile and wearable system which is able

to react in real time. This system, which consists of a head-mounted device (with the

two eye cameras) and an Android phone, is usable in different application settings.

Researchers can profit from this device, as they can use it for eye-tracking experiments

in unconstrained environments. Besides, the device can be used to build gaze-based

interfaces in pervasive settings. We developed two example applications to show-

case the potential of hEYEbrid. But, as discussed in the section as limitations above,

there is lot of room for future work to resolve current issues and improve the approach.

To use our final prototype hEYEbrid for concrete eye tracking experiments, it is

necessary to include further metrics for data analysis. Besides fixations, saccades are

one of the most important events in eye tracking data (cf. Chapter 2). Consequently,

the integration of other eye tracking data events into corneal imaging data analysis

has to be further investigated and implemented. If we can reach a state in which this

kind of eye tracking data can be analyzed with the same metrics as state-of-the-art

head-mounted eye trackers, corneal imaging will be applicable in research studies.

Through the integration of hEYEbrid into the Pupil Labs universe and the open-

source release, we expect our approach to be used in the future to create an open-

source solution that fits the needs of any use-case.

7.3 Closing Remarks

This thesis has investigated the problems of the current generation of eye trackers in

the context of ubiquitous computing. In the case of personal computers, the shift to

this paradigm has already been reached (from a single computer to multiple devices),

whereas the development of ubiquitous eye glasses (as envisioned by Mark Weiser in

[201]) is yet unfinished (cf. Ubiquitous Computing for Eye Tracking Continuum, Fig-

ure 1.1). In the course of this thesis we concentrated on head-mounted state-of-the-art

devices, their problems, and the question of how to solve these problems (see Chapter

1). We cannot foresee the development of these computing devices and the applica-

tion of eye tracking for interaction in the future. Latest industrial developments (e.g.,
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Apple bought SMI, Google bought Eyefluence) indicate an increase in the importance

of eye tracking (especially with the rise of VR devices and applications). With the

novel methods we developed and implemented, and the lessons learned to counteract

existing issues, we are doing our part in order to pursue the development of a ubiqui-

tous eye tracking device. To further substantiate our work, we published the relevant

part of this work as open source. With this we want to inspire other researchers and

technically affine persons to take up our results and enhance the use of eye and gaze

tracking for everyone.
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ments. In INTERACT, volume 3, pages 129–136. IOS press Amsterdam, 2003.



xx BIBLIOGRAPHY

[66] T. Imai, K. Sekine, K. Hattori, N. Takeda, I. Koizuka, K. Nakamae, K. Miura,
H. Fujioka, and T. Kubo. Comparing the accuracy of video-oculography and
the scleral search coil system in human eye movement analysis. Auris Nasus
Larynx, 32(1):3 – 9, 2005.

[67] Y. Ishiguro, A. Mujibiya, T. Miyaki, and J. Rekimoto. Aided eyes: Eye activity
sensing for daily life. In Proceedings of the 1st Augmented Human International
Conference, AH ’10, pages 25:1–25:7. ACM, 2010.

[68] H. Istance and A. Hyrskykari. Gaze-aware systems and attentive applications.
Gaze Interaction and Applications of Eye Tracking, 58:175–195, 2011.

[69] H. Istance, A. Hyrskykari, L. Immonen, S. Mansikkamaa, and S. Vickers. De-
signing gaze gestures for gaming: An investigation of performance. In Proceed-
ings of the Symposium on Eye-Tracking Research and Applications, ETRA ’10,
pages 323–330. ACM, 2010.

[70] N. J Wade. Pioneers of eye movement research. i-Perception, 1:33–68, 11 2010.

[71] R. J. K. Jacob. What you look at is what you get: Eye movement-based in-
teraction techniques. In Proceedings of the Conference on Human Factors in
Computing Systems, CHI ’90, pages 11–18. ACM, 1990.

[72] R. J. K. Jacob and K. S. Karn. Eye Tracking in Human-Computer Interac-
tion and Usability Research: Ready to Deliver the Promises. The Mind’s eye:
Cognitive The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement
Research, pages 573–603, 2003.

[73] H. Jarodzka, T. Balslev, K. Holmqvist, K. Scheiter, M. Nystrm, and B. Eika.
Learning perceptual skills for medical diagnosis via eye movement modeling
examples on patient video cases. The 5th Scandinavian Workshop on Applied
Eye-Tracking, SWAET 2010, pages 11–11. Lund University, 2010.

[74] A.-H. Javadi, Z. Hakimi, M. Barati, V. Walsh, and L. Tcheang. Set: A pupil
detection method using snusoidal approximation. Frontiers in Neuroengineering,
8:4, 2015.

[75] Q. Ji and X. Yang. Real-time eye, gaze, and face pose tracking for monitoring
driver vigilance. Real-Time Imaging, 8(5):357–377, 2002.

[76] M. Kandemir and S. Kaski. Learning relevance from natural eye movements
in pervasive interfaces. In Proceedings of the 14th International Conference on
Multimodal Interaction, ICMI ’12, pages 85–92. ACM, 2012.

[77] J. Kangas, D. Akkil, J. Rantala, P. Isokoski, P. Majaranta, and R. Raisamo.
Gaze gestures and haptic feedback in mobile devices. In Proceedings of the
Conference on Human Factors in Computing Systems, CHI ’14, pages 435–438.
ACM, 2014.

[78] M. Kassner, W. Patera, and A. Bulling. Pupil: An open source platform for
pervasive eye tracking and mobile gaze-based interaction. In Adjunct Proceedings
of UbiComp 2014, UbiComp ’14 Adjunct, pages 1151–1160. ACM, 2014.



BIBLIOGRAPHY xxi

[79] A. E. Kaufman, A. Bandopadhay, and B. D. Shavi. An eye tracking computer
user interface. 1993.

[80] D. H. Kelly. Visual Science and Engineering: Models and Applications. Optical
Science and Engineering. Taylor & Francis, 1994.

[81] M. Khamis, F. Alt, and A. Bulling. Challenges and design space of gaze-enabled
public displays. In Proceedings of the International Joint Conference on Per-
vasive and Ubiquitous Computing: Adjunct, UbiComp ’16, pages 1736–1745.
ACM, 2016.

[82] M. Khamis, O. Saltuk, A. Hang, K. Stolz, A. Bulling, and F. Alt. Textpursuits:
Using text for pursuits-based interaction and calibration on public displays. In
Proceedings of the International Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’16, pages 274–285. ACM, 2016.

[83] P. Kiefer, I. Giannopoulos, D. Kremer, C. Schlieder, and M. Raubal. Starting to
get bored: An outdoor eye tracking study of tourists exploring a city panorama.
In Proceedings of the Symposium on Eye Tracking Research and Applications,
ETRA ’14, pages 315–318. ACM, 2014.

[84] P. Kiefer, I. Giannopoulos, and M. Raubal. Where am i? investigating map
matching during self-localization with mobile eye tracking in an urban environ-
ment. Trans. GIS, 18:660–686, 2014.

[85] K. Klamka, A. Siegel, S. Vogt, F. Göbel, S. Stellmach, and R. Dachselt. Look
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algorithm for improved long-term accuracy of head-worn eye trackers. In Pro-
ceedings of the Symposium on Eye Tracking Research and Applications, ETRA
’16, pages 213–216. ACM, 2016.

[96] C. Lander, F. Kosmalla, F. Wiehr, and S. Gehring. Using corneal imaging
for measuring a human’s visual attention. In Proceedings of the International
Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of
the International Symposium on Wearable Computers, UbiComp ’17, pages 947–
952. ACM, 2017.
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