Auswirkungen von chronischer Hypoxie auf den Chromosomensatz und die ATP- und GTP-Konzentrationen primärer menschlicher Bronchialepithelzellen

Dissertation zur Erlangung des Grades eines Doktors der Medizin
der Medizinischen Fakultät
der Universität des Saarlandes
2018

vorgelegt von Dorothea Sophie Kerner
Geb. am 23.08.1990 in Berlin
I. Inhaltsverzeichnis

I. Inhaltsverzeichnis .. - 1 -

II. Abkürzungsverzeichnis .. - 3 -

1 Zusammenfassung .. - 6 -

 Summary.. - 7 -

2 Einleitung ... - 8 -

 2.1 Die Bedeutung und Biologie von Sauerstoff ... - 8 -

 2.1.1 Sauerstoffgehalt in verschiedenen Geweben und deren Anpassungsfähigkeit - 8 -

 2.2 Hypoxie und ihre Auswirkungen ... - 10 -

 2.2.1 Physiologisches und pathophysiologisches Vorkommen von Hypoxie im menschlichen Körper ... - 14 -

 2.2.2 Hypoxie und Aneuploidie .. - 16 -

 2.3 Zielsetzung der Arbeit ... - 20 -

3 Material und Methoden .. - 21 -

 3.1 Material .. - 21 -

 3.1.1 Chemikalien und Puffer ... - 21 -

 3.1.2 Reaktions-Kits .. - 22 -

 3.1.3 Zubehör .. - 22 -

 3.1.4 Geräte .. - 22 -

 3.1.5 Software .. - 23 -

 3.1.6 Zellkulturmedien .. - 23 -

 3.1.7 Zellen .. - 24 -

 3.2 Methoden .. - 25 -

 3.2.1 Sauerstoffbestimmung ... - 25 -

 3.2.2 Zellkultur ... - 26 -
II. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abb.</th>
<th>Abbildung</th>
</tr>
</thead>
<tbody>
<tr>
<td>abm</td>
<td>Applied Biological Materials Inc.</td>
</tr>
<tr>
<td>AMPK</td>
<td>Adenosinmonophosphat-aktivierte Protein Kinase</td>
</tr>
<tr>
<td>APC</td>
<td>Adenomatöse-Polyposis-Coli</td>
</tr>
<tr>
<td>ATM</td>
<td>ataxia teleangiectasia mutated</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BCL-2</td>
<td>B-Zell-Lymphoma-2</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CIN</td>
<td>chromosome instability (chromosomale Instabilität)</td>
</tr>
<tr>
<td>CML</td>
<td>Chronisch myeloische Leukämie</td>
</tr>
<tr>
<td>dest.</td>
<td>destilliert</td>
</tr>
<tr>
<td>DFX</td>
<td>Desferroxamine</td>
</tr>
<tr>
<td>d. h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DMOG</td>
<td>Dimethylxalylglycine</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid (Desoxyribonukleinsäure)</td>
</tr>
<tr>
<td>DSB</td>
<td>DNA-Doppelstrangbrüche</td>
</tr>
<tr>
<td>EPO</td>
<td>Erythropoetin</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum (fetales Kälberserum)</td>
</tr>
<tr>
<td>FIH-1</td>
<td>Fakor-Inhibitor-HIF-1</td>
</tr>
<tr>
<td>ges.</td>
<td>gesamt</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosintriphosphat</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>HIF</td>
<td>Hypoxie-induzierter Faktor</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography (Hochleistungsflüssigkeitschromatographie)</td>
</tr>
<tr>
<td>HRE</td>
<td>hypoxia responsive element</td>
</tr>
<tr>
<td>Hrsg.</td>
<td>Herausgeber</td>
</tr>
<tr>
<td>K.-Nr.</td>
<td>Katalognummer</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactatdehydrogenase</td>
</tr>
<tr>
<td>Lsg.</td>
<td>Lösung</td>
</tr>
<tr>
<td>min.</td>
<td>Minute</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>Nr.</td>
<td>Nummer</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PHD 2</td>
<td>Prolin-Hydroxylase-Domain-Protein 2</td>
</tr>
<tr>
<td>PLOD 2</td>
<td>Procollagen-Lysin-2-Oxiglutarat-5-Dioxygenase 2</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species (reaktive Sauerstoffspezies)</td>
</tr>
<tr>
<td>rpm</td>
<td>round per minute (Umdrehungen pro Minute)</td>
</tr>
<tr>
<td>SAC</td>
<td>spindle-assembly Checkpoint (Spindelapparat Checkpoint)</td>
</tr>
<tr>
<td>sec.</td>
<td>Sekunde</td>
</tr>
<tr>
<td>S.-Nr.</td>
<td>Seriennummer</td>
</tr>
<tr>
<td>TCA</td>
<td>2, 4, 6 – Trichloracetic acid (Trichloressigsäure)</td>
</tr>
<tr>
<td>TIC</td>
<td>Transkriptions-Initations-Komples</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor (vaskulärer Endothel-Wachstumsfaktor)</td>
</tr>
</tbody>
</table>
VHL von-Hippel-Lindau Ligase
z. B. zum Beispiel
1 Zusammenfassung

Hypoxie verändert viele verschiedene Eigenschaften von Zellen, von denen einige die Sauerstoffversorgung wieder verbessern sollen, was jedoch nicht immer gelingt. Hypoxie ist aber auch mit vielen Krankheiten wie Krebs assoziiert: Hypoxie in Tumoren ist mit einer schlechteren Prognose verbunden. Ebenso verschlechtern früh in Tumoren auftretende Aneuploidien die Prognose des Patienten.

Summary

Hypoxia changes many different characteristics of cells, some of which are supposed to improve the oxygen supply, but this is not always possible. Thus, hypoxia is associated with many diseases such as cancer. Hypoxia in tumors is associated with poor prognosis. Aneuploidia also occurs very early in tumors and worsen the patient's prognosis.

In this study, the relationship between hypoxia and aneuploidy has been investigated. Two different primary human bronchial cell from two different companies (Lifeline and abm) were cultured under hypoxic conditions and compared with cells under normoxic conditions. The energy balance of the cells in form of adenosine triphosphate and guanosine triphosphate as well as the changes in the chromosomes were analyzed over a period of four weeks. In addition, the cells were analyzed by transformation assay.

The cells of abm were aneuploid at delivery - although they were acquired as a primary bronchial cell. These cells grew as spheroids in the transformation assay after hypoxic cultivation. Further analyzes were therefore carried out only with cells of Lifeline. These cells showed an irreversible energy drop to almost half of the initial concentration of both adenosine triphosphate and guanosine triphosphate after hypoxic culture. After one week under hypoxic conditions, 60% of the cells showed aneuploidy, after four weeks 85% of the cells were aneuploid. The aneuploid cells were near-diploid after one week, hypodiploid after two weeks, and hyperdiploid after three and four weeks. The transformation assay was negative. Untreated cells were cultured as control and analyzed at the same time as the treated cells. These cells showed no such changes, as expected.

In this paper, it was demonstrated for the first time that chronic hypoxia causes aneuploidy in human bronchial epithelial cells. In addition, the course of the aneuploidy development was analyzed for the first time over a period of four weeks. Aneuploidy is characteristic of cancer. Hypoxia leads to aneuploidy, as is shown by the results in the present paper, but also by the results of Kondoh et al. (2013) and Ueyma et al. (2011). These results show that hypoxia has a relevant importance in carcinogenesis.
2 Einleitung

2.1 Die Bedeutung und Biologie von Sauerstoff

2.1.1 Sauerstoffgehalt in verschiedenen Geweben und deren Anpassungsfähigkeit

<table>
<thead>
<tr>
<th>Gewebe- oder Organnamen</th>
<th>Sauerstoffkonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lungenparenchym</td>
<td>4 % - 14 %</td>
</tr>
<tr>
<td>Kreislaufsystem</td>
<td>4 % - 14 %</td>
</tr>
<tr>
<td>Leber</td>
<td>4 % - 14 %</td>
</tr>
<tr>
<td>Nieren</td>
<td>4 % - 14 %</td>
</tr>
<tr>
<td>Herz</td>
<td>4 % - 14 %</td>
</tr>
<tr>
<td>Gehirn</td>
<td>0,5 % - 8 %</td>
</tr>
<tr>
<td>Augen</td>
<td>1 % - 5 %</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>1 % - 6 %</td>
</tr>
<tr>
<td>Fettgewebe</td>
<td>2 % - 8 %</td>
</tr>
</tbody>
</table>

Tabelle 2-1 Sauerstoffkonzentrationen verschiedener Organe und Gewebe (Haque, Rahman, Kasim & Alabsi, 2013)
variety the oxygen concentration between 0.5 % and 14 % O₂. Table 2-1 shows an overview of the respective oxygen concentrations in the different tissues and organs (Haque, Rahman, Kasim & Alabsi, 2013). Each organ has a different adaptation ability to oxygen concentrations, so the heart and liver cells can reduce their oxygen demand up to 50 % if oxygen deficiency is present. Brain cells, however, have a much lower adaptability, muscle cells have a greater adaptability (Gilany & Vafakhah, 2010; Boutilier, 2001).
2.2 Hypoxie und ihre Auswirkungen

Als akute Antwort auf Hypoxie kommt es zu Elektrolytveränderungen. Unter Normoxie wird bis zu 60 % des ATPs für die ATP-abhängigen Ionenkanäle, wie Ca²⁺-ATPase oder Na⁺/K⁺-ATPase, verwendet. Während der Hypoxie kommt es zu intrazellulärem ATP-Mangel und dadurch zu vermehrtem Kalium-Ausstrom und Natrium- und Calcium-Einstrom. Es folgt die Membrandepolarisation mit Ausschüttung von Calcium aus den intrazellulären Depots. In der Folge steigt die intrazelluläre Calciumkonzentration deutlich an, was zur Aktivierung von Lipasen und Proteasen führt, die ihrerseits zu Membanschäden und zur Freisetzung von freien Fettsäuren und Proteinen führen. Zusätzlich führt dies zu Veränderungen im

Abbildung 2-1: Wesentliche Auswirkungen von Hypoxie auf die Zellen (Gilany & Vafakhah, 2010)
Mitochondrienstoffwechsel, zur Aktivierung von Endonukleasen und zur Bildung von ROS (Gilany & Vafakhah, 2010).

Als chronische Antwort auf Hypoxie verändert sich die Transkription von Genen durch Stabilisierung und Aktivierung von Hypoxie-induzierte Faktoren (HIF). Zur HIF-Familie gehören drei Gruppen: HIF-1, HIF-2 und HIF-3. Dabei ist die Funktion von HIF-3 bisher nur wenig verstanden, HIF-2 wird nur in Nieren, Herz, Lunge und Dünndarm gebildet. Am besten verstanden ist momentan HIF-1, der in jeder Zelle gebildet wird. HIF-1 ist ein Heterodimer und besteht aus der O₂-regulierten HIF-1α-Untereinheit und der HIF-1β-Untereinheit, die immer in der Zelle vorhanden sind (Simon & Keith, 2008). Während Normoxie wird HIF-1α posttranslational modifiziert. Dazu wird HIF-1α hydroxyliert: Zum einen kann HIF-1α am Prolin-Ende durch das sauerstoff sensible Prolin-Hydroxylase-Domain-Protein 2 (PHD2) hydroxiliert werden. Dies führt über die E3-Ubiquitin-Protein-Ligase von Hippel-Lindau (VHL) zu einem proteasomalen Abbau von HIF-1α. Zum andern kann die Hydroxylierung von HIF-1α am Asparagin-Ende mittels eines sauerstoff sensiblen Faktor-Inhibitor-HIF-1 (FIH-1) erfolgen. Dadurch wird die Interaktion mit dem Koaktivator CBP/p300 und somit die Transaktivierung von HIF-1α gehemmt (siehe Abb. 2-2). Durch diese Mechanismen hat HIF-1α bei Normoxie nur eine Halbwertszeit von unter fünf Minuten. Bei Hypoxie wird HIF-1α nicht hydroxyliert, es wird angereichert und bildet einen Dimer mit HIF-1β. Mit dem

Abbildung 2-2: HIF-1α wird unter normoxischen Bedingungen direkt durch Hydroxylierung (rote Pfeile) abgebaut. Unter hypoxischen Bedingungen (blaue Pfeile) wird die Hydroxylierung inhibiert und HIF-1α stabilisiert. Es kann dann mit HIF-1β ein Dimer bilden und bindet dann an p300 und aktiviert den Transkriptions-Initiations-Komplex. Es folgt die Transkription der ausgewählten DNA Sequenz in mRNA. Desferoxamine (DFX) und Dimethyloxalylglycine (DMOG) hemmen PHD2, dadurch kann sich ebenfalls HIF-1α in der Zelle anreichern, dahingegen hemmt Digoxin das Anhäufen von HIF-1α und Acriflavin hemmt die Dimerbildung von HIF-1α und HIF-1β (Semenza G. L., 2014).
Koaktivator CBP/p300 bindet das HIF-1-Dimer an den Transkriptions-Initiations-Komplex (TIC), welches dann zur Transkription an einer ausgewählten DNA-Sequenz 5′RCGTG-3′ (R = A oder G), dem so genannten Hypoxia Responsive Element (HRE), führt (Kumar & Choi, 2014). Es sind mehr als 200 Gene bekannt, die über diesen HIF-Komplex transkriptiert werden, diese sind z. B. an Erythropoese, Angiogenese, Zell-Proliferation, Energiestoffwechsel oder Apoptose beteiligt (siehe Abb. 2-1) (Gilany & Vafakhah, 2010; Simon & Keith, 2008; Gaber, Dziurla, Tripmacher, Burmester & Buttgereit, 2005).

Daneben kann HIF-1 die Durchblutung im Gewebe verbessern, wie durch die Produktion von CO durch die Eisenoxxygenase-1, von NO durch die NO-Synthase oder durch die Aktivierung des α1B-Adrenorezeptors, welche alle zu Vasodilatation führen. Zusätzlich führt chronische Hypoxie zur Differenzierung verschiedener Zelltypen. Wie genau dies ausgelöst wird ist noch nicht vollends verstanden. Daneben wird aber auch die Proliferation gesteigert durch Expression von Wachstumsfaktoren. Dies geschieht zur Regeneration von Schäden durch Hypoxie. Durch HIF-1 wird hier z. B. der Insulin-like Wachstumsfaktor 2 (IGF-2) transkriptiert, dies führt zum einen zur Expression von HIF-1α selbst und zum anderen zur Zellproliferation (Gilany & Vafakhah, 2010; Semenza, 2014).

2.2.1 Physiologisches und pathophysiologisches Vorkommen von Hypoxie im menschlichen Körper

Der hypoxische Tumorphänotyp

Abbildung 2-3: Der hypoxische Tumorphänotyp. Je weiter die Tumorzellen vom Gefäß entfernt sind, desto niedriger ist die Sauerstoffkonzentration und desto höher ist HIF-1α. Dies führt zur Azidose und anaeroben Glykolyse. Dazu entwickeln hypoxische Tumore eine Resistenz gegen Chemo- und Radiotherapie (Brahimi-Horn, Chiche & Pouyssegur, 2007).

Die durch Hypoxie ausgelösten und über HIF-1 gesteuerten Effekte auf die Zellen sind für Tumorzellen effektive Mechanismen um ihr Überleben zu sichern. Dies wurde von Brahimi-Horn, Chiche und Pouysségur als hypoxischer Tumorphänotyp bezeichnet (siehe Abb. 2-3) (Brahimi-Horn, Chiche & Pouysségur, 2007).

2.2.2 Hypoxie und Aneuploidie

Vorkommen von Aneuploidie

Angeborenes Vorkommen

Mikrodeletions-Syndrom 22q11, das Prader-Willi-Syndrom und das Angelman-Syndrom (Therman & Susman, 1993; S. 254-272; S. 238; Angulo, Butler & Cataletto, 2015; Duca et al., 2013; Hacihamdioglu, Hacihamdioglu & Delil, 2015; Theile, Draf & Heldt, 1978; Burn, 1986; Corcuera-Flores et al., 2015)

Erworbene Aneuploidien

Vorkommen in Neoplasien
Weaver und Cleveland geben an, dass 90 % der soliden Tumore und 75 % des Blutkrebses aneuploid sind (Weaver & Cleveland, 2006). Laut Negrini, Gorgouslis & Halazonetis und Ricke, van Ree & van Deursen ist in jedem Tumor chromosomale Instabilität zu finden (Negrini, Gorgouslis & Halazonetis, 2010; Ricke, van Ree & van Deursen, 2008). Chromosomale Instabilität (CIN) entsteht, wenn durch einen aneuploiden Chromosomensatz die Expression von Genen, die die Chromosomenteilung korrekt durchführen, verändert wurde. Dadurch nimmt die chromosomale Instabilität mit jeder Teilung weiter zu. Der Begriff der chromosomalen Instabilität wird vor allem im Zusammenhang mit Tumoren benutzt (Ricke, van Ree & van Deursen, 2008; Thompson, Bakhom & Compton, 2010). Abb. 2-4 zeigt verschiedene Tumorerkrankung mit den darin gefundenen Aneuploidien (Sandritter, 1965; Hansemann, 1890; Weaver, Silk, Montagna, Verdier-Pinard & Cleveland, 2007; Siegel & Amon, 2012).

Folgen von Aneuploidie

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>Betroffene Chromosomen</th>
<th>Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolorektales Karzinom</td>
<td>komplexe Karyotypen + 7;17, 18</td>
<td>bis 75%</td>
</tr>
<tr>
<td>Lungenkrebs</td>
<td>komplexe Karyotypen Y;22</td>
<td>bis 100%</td>
</tr>
<tr>
<td>Bresinkekrebs</td>
<td>+ 7, 8, 20; -13, X</td>
<td>häufig</td>
</tr>
<tr>
<td>Ösophaguskarzinom</td>
<td>+ 1, 2, 3, 6, 7, 9, 12, 20</td>
<td>häufig</td>
</tr>
<tr>
<td>Prostatakrebs</td>
<td>- 4, 8, 11, 13, 14, 15, 17, 22</td>
<td>häufig</td>
</tr>
<tr>
<td>AML</td>
<td>komplexe Karyotypen + 8;7</td>
<td>bis 20%</td>
</tr>
<tr>
<td>ALL</td>
<td>+ 4, 6, 10, 14, 18, 21</td>
<td>Kinder bis 30% Erwachsene bis 5%</td>
</tr>
<tr>
<td>CML</td>
<td>+ 8, 17, 19, 21; - 7, 17, Y</td>
<td>besonders Blasenkrebestagteiler</td>
</tr>
<tr>
<td>CLL</td>
<td>komplexe Karyotypen + 12</td>
<td>bis 10%</td>
</tr>
<tr>
<td>Non-Hodgkin-Lymphome</td>
<td>+ 3, 5, 7, 8, 11, 12, 18, -13, 14, 15</td>
<td>10–20%</td>
</tr>
<tr>
<td>Multiples</td>
<td>komplexe Karyotypen + 3, 5, 7, 9, 11, 15, 19, 21</td>
<td>bis 66%</td>
</tr>
<tr>
<td>Myelom</td>
<td>+ 3, 5, 7, 9, 11, 15, 19, 21</td>
<td>bis 90%</td>
</tr>
<tr>
<td>AML = Akute myeloische Leukämie, ALL = Akute lymphatische Leukämie, CLL = Chronisch myeloische Leukämie,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL = Chronisch lymphatische Leukämie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 2-4: Aneuploidien bei ausgewählten Tumorerkrankungen mit Angabe der Häufigkeiten (Schnerch, Hasskarl, Engelhardt & Wäsch, 2006, Tab. 1)

Aneuploidie kann aber auch der Zelle Vorteile bringen, so bilden diese Zellen häufiger Resistenzen gegen Medikamente aus und können sich besser unter selektivem Druck entwickeln, dies wird besonders an aneuploiden Tumorzellen deutlich (Siegel & Amon, 2012).
2.3 Zielsetzung der Arbeit

Aus diesem Grund wurden erstmals die Auswirkungen von chronischer Hypoxie auf den Energiehaushalt sowie chromosomale Veränderungen primärer menschlicher Bronchialepithelzellen erforscht.

3 Material und Methoden

3.1 Material

3.1.1 Chemikalien und Puffer

Es wurden ausschließlich Chemikalien in der Qualität „zur Analyse“ verwendet.

- Destilliertes Wasser: Hergestellt durch Milli-Q Integral 15 Pure
- Natriumchlorid-Lösung (0,9 % NaCl in Aqua dest.) von AnalaR NormaPur: K.-Nr. 27810.295
- Kaliumchlorid (0,075 M KCl in Aqua dest.) von Grüssing GmbH Analytica: K.-Nr. 12009
- Sørensen-Puffer aus 233 ml einer Na$_2$HPO$_4$-Lösung mit 267 ml einer KH$_2$PO$_4$-Lösung
- Na$_2$HPO$_4$-Lösung (5,935 g Na$_2$HPO$_4$ in 500 ml Aqua dest.) von Carl Roth GmbH & Co.KG: K.-Nr. 4984.1
- KH$_2$PO$_4$-Lösung (4,536 g KH$_2$PO$_4$ in 500 ml Aqua dest.) von Grüssing GmbH Analytica: K.-Nr. 12032
- Trypsin-Lösung (1 ml (25 mg/ml) Trypsin in 80 ml 0,9 % NaCl-Lösung) von Becton, Dickinson and Company: K.-Nr. 215240, S.-Nr. 4028468
- Giemsa’s Azur-Eosin-Methylenblaulösung (5 ml Giemsa in 95 ml Sørensen-Puffer) von Merck KGaA: K.-Nr. 1.09204.0500
- Fixativ für die Chromosomenpräparation (Methanol/Eisessig im Verhältnis 3:1): Methanol von Carl Roth GmbH & Co.KG: K.-Nr. 4627.2, Eisessig von Merck KGaA: K.-Nr. 1.00063.2500
- KaryoMax® Colcemid® Lösung (10 µg/ml) von gibco® by life technologies™: K.-Nr. 15210-040
- Ethanol (absolut) von Merck KGaA: K.-Nr. 1.00983.2500
- Thymidine (≥99.0 % HPLC) von Sigma life Sience: K.-Nr.89270-1G, S.-Nr.BCBG3520V
- Nuklease Free Water von Ambion: K.-Nr. AM9937
- Roti®-Histokit von Carl Roth GmbH & Co.KG: K.-Nr. 6638.2
- Dulbecco’s PBS (mit 2 % Kälberserum) von Stemcell Technologies: K.-Nr. 07905
- PBS (endotoxin free) von Promo Cell: K.-Nr. C-40240
- Glucoese-Stammlösung (45 % Lösung) von Sigma life Sience: K.-Nr. G8769, S.-Nr. RNBC7363
- Fixogum von Marabu GmbH & Co. KG: K.-Nr. 2901 10 000
• Immersionsöl von Merck KGaA: K.-Nr. 1.04699.0100
• Trypan blue stain (0,4 %) von Biosystems: K.-Nr. T13001
• K₂CO₃-Lösung (5 M, 69g K₂CO₃ in 100 ml Aqua dest.) von Sigma Aldrich: Katalognr. P 5833 – 500G, S.-Nr. BCB28334V
• 6 % 2,4-6-Trichloressig Säure (TCA)-Lösung von Sigma Aldrich: K.-Nr. T9159 – 100G, S.-Nr. BCBN0487V

3.1.2 Reaktions-Kits
• DetachKit 2 von PromoCell: K.-Nr. 41222
• CytoSelect™ 96-Well Cell Transformation Assay (Cell Recovery Compatible, Colorimetric) von Cell Biolabs, INC.: K.-Nr. CBA-135
• Cryo-SFM von PromoCell: K.-Nr. C-29910

3.1.3 Zubehör
• Serologische Rotilabo®-Pipetten, blau, steril, Schaft kurz, L 22cm, 5ml von Carl Roth GmbH & Co.KG: K.-Nr. ET26.1
• Gestopfte Glaspipetten von Carl Roth GmbH & Co.KG: K.-Nr. E326.1
• Sterile Filter von Minisart: K.-Nr. 16534, S.-Nr. 30320103
• Abgeschliffene Metallspitze von Edelstahlkanülen mit Luer-lock Verschluss mit abgeschliffener Spitze
• Deckgläser (24x60mm) von Carl Roth GmbH & Co.KG: K.-Nr. H878.2
• Objektträger (76x26mm) von Gerhard Menzel GmbH: K.-Nr. AA00000102E
• Zellkulturschale von Becton Dickinson Falcon: K.-Nr. 353003, S.-Nr. 2307820
• Pipettenspitzen von Sorenson: 200µl (K.-Nr. 35240), 1000µl (K.-Nr. 35260) und von PEQLAB: 20µl (K.-Nr. 81-1020)
• Sterile Zellkulturflasche (25cm² und 75cm²) von Greiner bio-one: K.-Nr. 690960 und 658175
• Luna™ Cell Counting Slides von Logos Biosystems, Inc.; bestellt bei Biozym, K.-Nr. 101303027

3.1.4 Geräte
• Mikroskop von Carl Zeiss Microscopy GmbH: Primo Vert: K.-Nr. 415510-1101-000, S.-Nr. 3842002814
• mit Kamera von AxioCamERc5s
• Laborgasbrenner von Fuego SCS: Nummer 8200000
• Mikrobiologische Sicherheitswerkbank von Biohazard BN-EN 2000 S/D, hergestellt von Faster, geliefert von Sarossy Labortechnik; S.-Nr. 983
• Luna fl Automated Cell Counter von Biozym: K.-Nr. 872040
• Zentrifuge von Thermo Scientific Heraeus Megafuge 16 Centrifuge: K.-Nr. 75004230, S.-Nr. 41613929
• Wasserbad von GFL Typ 1003 Nummer: 111968011
• Sauerstoffsonde: VisiFerm™ DO Arc Sensors 120 von Hamilton Bonaduz AG: K.-Nr. 242163
• Vortex von Janke & Kunkel IKA®-Labortechnik und VF2: K.-Nr. 452778
• Gekühlte Zentrifuge von eppendorf Mini Spin Plus: K.-Nr. 5453 09985

3.1.5 Software

• Microsoft Office 2015
• Ikarus der 1. Generation
• Hamilton Device Manager 1.0
• Cyto Vision Leica Biosystems Image Analysis and Capture System 23MAN1220.A

3.1.6 Zellkulturmedien

• BronchiaLife Basal Medium von Lifeline Cell Technology: K.-Nr. LM-007 mit BronchiaLife™ B/T Life Factors Kit
• BronchiaLife™ B/T Life Factors Kit von Lifeline Cell Technology: K.-Nr. LS-1047
• PiGrow II mit L-Glutamine und NaHCO₃ von abm: K.-Nr. HC7852 mit 10 % FBS
• DMEM von Gibco® by life technologies™: K.-Nr. 41966-029, S.-Nr. 1322533 mit 10 % FBS
• FBS Performance Plus von Gibco® by life technologies™: K.-Nr. 16000-036, S.-Nr. 1314735
3.1.7 Zellen

Zellen von der Firma abm:

Zellen von der Firma LifeLine:

Die Zellen stammten von einem 21-jährigen Mann, der Kaukasiern war und an einem Schädel-Hirn-Trauma nach einem Verkehrsunfall verstorben war. Der Spender war Nichtraucher.
3.2 Methoden

3.2.1 Sauerstoffbestimmung

Die Messung der Sauerstoffkonzentration im Nährmedium in der Zellkulturflasche wurde bei 5 % und 3 % Sauerstoff im Brutschrank durchgeführt. Dabei wurde die Zeit gemessen, die benötigt wurde, bis die Sauerstoffkonzentration des Nährmediums sich der Sauerstoffkonzentration im Brutschrank angepasst hat.

Vorbereitung

In eine Zellkulturflasche (25 cm² von Greiner bio-one) wurde vom Leibniz Institut für Neue Materialien (INM) in Saarbrücken eine Öffnung in die Decke gebohrt. Diese Öffnung hatte die Größe von der Messelektrode (Abb. 3-1). In die Flasche wurden 4 ml DME-Medium gefüllt. Durch die Öffnung wurde die Sauerstoffmesssonde in das Medium eingebracht. Die Sauerstoffmesssonde wurde über eine Halterung so fixiert, dass die Spitze der Messsonde im Medium lag. Damit der Sauerstoffaustausch zwischen dem Inhalt der Zellkulturflasche und dem Brutschrank nur über den Filter im Deckel der Flasche stattfindet, wurde die Öffnung in der Decke der Zellkulturflasche mit Fixogum luftdicht verschlossen. Der Versuchsaufbau ist in Abb. 3-2 dargestellt.

Durchführung

Der Versuchsaufbau wurde zuerst in den Brutschrank mit Normoxie gestellt, bis das Medium auf 37 °C aufgewärmt war. Dies war wichtig, da die Sauerstoffmesssonde die Sauerstoffkonzentration temperaturabhängig

Auswertung

Die gemessenen Daten wurden in eine Excel-Tabelle überführt. Daraus wurde ein Liniendiagramm erstellt, bei dem die Sauerstoffkonzentration in Prozent zur Hypoxie-Zeit aufgetragen wurde.

3.2.2 Zellkultur

Zellen von der Firma abm

Vorbereitung

Auftauen der Zellen

Das Medium (PiGrow II mit 10 % FBS) wurde in einem Wasserbad auf 37 °C aufgewärmt. Die Zellen von abm wurden aus dem flüssigen Stickstoff entnommen und kurz (60 sec.) ins Wasserbad gestellt. Dabei war darauf zu achten, dass die Zellen nicht zu schnell aufgetaut wurden, da das Konservierungsmittel DMSO zytotoxisch wirkt. Die aufgetauten Zellen wurden im Konservierungsmittel resuspendiert und dann in ein steriles Reagenzglas überführt, das schon 5 ml aufgewärmtes Medium enthielt. Das Gemisch wurde – nach dem Protokoll zum Auftauen der Zellen – für drei Minuten bei 1500 rpm zentrifugiert. Überschüssiges Medium
wurde entfernt und das Zellpellet in frischem Medium resuspendiert. Dies wurde in eine sterile Kultursflasche (25 cm²) überführt und bei 37 °C, 5 % CO₂ und 95 % Umgebungsluft inkubiert.

Mediumwechsel und Passagieren

Zellen von der Firma LifeLine

Vorbereitung

Dem BronchialLife Basal Medium mussten zuerst der BronchiaLife™ B/T Life Factors Kit hinzugefügt werden. Wie bei den Zellen von abm wurde auch hier kein Antibiotikum zugesetzt.

Auftauen der Zellen

Die Zellen von LifeLine wurden wie die Zellen von abm aufgetaut.

Mediumwechsel und Passagieren

Laut mitgeliefertem Protokoll mussten bei den Zellen von LifeLine alle zwei Tage das Medium gewechselt werden. Passagiert wurden diese Zellen, wenn eine Konfluenz von über 70% vorlag nach dem gleichen Protokoll wie die Zellen von abm.

3.2.3 Behandlung der Zellen

Hypoxie

Um die Zellen in einem hypoxischen Milieu zu kultivieren, wurde der Hypoxiebrutschrank auf die entsprechende Sauerstoffkonzentration eingestellt. Ein Hypoxiemileu im Brutschrank erfolgte durch Zumischen von Stickstoff.
Zellen von der Firma abm

Herstellung von Anoxie

Nur die Zellen von abm wurden in Anoxie (0 % Sauerstoff) kultiviert. Die Zellen proliferierten zunächst gut, jedoch sind nach ersten Mediumwechsel mit normoxischen Medium alle Zellen abgestorben. Da es nicht möglich war ein anoxisches Medium herzustellen, wurden keine weiteren Zellen unter Anoxie kultiviert.
Aus diesem Grund wurden die Zellen der Firma abm zusätzlich noch bei 2% und 1% Sauerstoff kultiviert, aber auch dort starben die Zellen nach dem Mediumwechsel bzw. Passagieren ab. Deshalb sind die weiteren Versuche an den Zellen von der Firma abm im Brutschrank mit 5 % Sauerstoff durchgeführt worden.

Bei diesen Zellen wurde in den Vorversuchen die Chromosomenpräparation (siehe Kapitel 3.2.4.) etabliert.

Zellen von der Firma LifeLine

Die Zellen wurden aufgetaut, eine Woche später auf vier Zellkulturschalen (25 cm²) aufgeteilt. Weitere zwei Tage später wurden zwei Zellkulturschalen (25 cm²) in den Brutschrank mit 3 % Hypoxie gestellt, die anderen zwei Zellkulturschalen (25 cm²) wurden als Kontrolle im Brutschrank mit Normoxie angezüchtet. Die Zellen wurden alle gleich behandelt.

Glukose

Statistisch gesehen erkranken Patienten mit Diabetes mellitus häufiger an einer Krebserkrankung als Patienten ohne Diabetes mellitus (Giovannucci et al., 2010). Aus diesem Grund wurde bei den Zellen von abm zu einigen Zellkulturschalen, die im Brutschrank in Hypoxie bzw. in Normoxie kultiviert wurden, 5 µl Glukose einer 45 % Stammlösung pro ml Medium hinzugegeben, was einer zusätzlichen Glukose-Menge von etwa 225 mg pro dl entspricht. Diese Glukosekonzentration würde bei einem Patienten zur Diagnose Diabetes mellitus führen.

Aufgrund der Ergebnisse der abm Zellen im Transformations-Assay (siehe 4.2.3), wurde keine zusätzliche Glukose dem Medium für die Zellen von LifeLine zugesetzt.
3.2.4 Chromosomenanalyse

Zum Nachweis einer Aneuploidie wurde eine Chromosomenanalyse mit Erstellung eines Karyogrammes durchgeführt.

Chromosomenpräparation

Vorbereitung

Durchführung

Nach dem Zentrifugieren wurde der Überstand nur so weit entfernt und verworfen, dass noch ein wenig Flüssigkeit zum Resuspendieren übrig war. Im restlichen Überstand wurden die Zellen resuspendiert. Diese wurden dann mit 8 ml warmer KCl-Lösung überschichtet. Dabei musste auf die Luftfeuchtigkeit geachtet werden, da davon die Einwirkzeiten abhängen (siehe Tabelle 3-1).
Temperatur	Luftfeuchtigkeit	Hypotonie (min)	Präparation
------------	----------------]	----------------	------------
23 °C	30 %	2 min 10 sec	nass
23 °C	35 %	1 min 55 sec	nass
23 °C	40 %	1 min 20 sec	trocken
23 °C	45 %	1 min 15 sec	trocken
23 °C	50 %	1 min 10 sec	trocken

Tabelle 3-1: Hypotonie-Zeit abhängig von der Temperatur und Luftfeuchtigkeit

ist die Hypotonie-Zeit erreicht, musste die Zentrifugation bei 1000 rpm direkt gestartet werden und für 8 min ohne Bremse durchlaufen.

Tropfen auf den Objektträger:

Die Objektträger wurden aus dem Ethanol genommen und zum Antrocknen schräg gestellt. Dann wurde aus ca. 20 cm Entfernung die Zellsuspension auf den Objektträger getropft der schräg gestellt wurde, bis er getrocknet war. Danach wurde der Objektträger am Mikroskop optisch kontrolliert.

Verfeinerung der Methode

Nach 1 min. 55 sec. bei einer Luftfeuchtigkeit von 35 % waren wenig Mitosen auf dem Objektträger sichtbar. Die Chromosomen waren jedoch kaum aufgespreitet, sodass eine Auswertung nicht möglich war.
Da die Luftfeuchtigkeit im Labor nicht optimal einstellbar war, wurde die Chromosomenanalyse in einer Kammer (Abb. 3-5) wiederholt, die das Leibnitz Institut für Neue Materialien (INM) in Saarbrücken gebaut hatte. Darin war es möglich eine konstante Luftfeuchtigkeit von 42 % einzustellen.

In der Kammer wurde die Chromosomenanalyse wiederholt. Die Zellen wurden 1 min 20 sec. in KCl-Lösung inkubiert. Durch Verändern des Versuchsablaufs gelang es, einige Mitosen auf dem Objektträger zu finden, die für die weitere Präparation nicht optimal waren. Aus diesem Grund wurde die KCl-Zeit auf 1min 10sec. reduziert, dies lieferte optisch bessere Mitosen.

Bebändern

Vorbereitung
Zum Bebändern mussten verschiedene Lösungen angesetzt werden: 0,9 % NaCl-Lösung und Sörensen-Puffer. Für die Giemsa-Lösung wurde 5 ml Giemsa in 95 ml Sörensen-Puffer gelöst und filtriert. Für die Trypsin-Lösung wurde 1 ml Trypsin (25 mg/ml) in 80 ml 0,9 % NaCl-Lösung gelöst.

Bevor die Chromosomen auf dem Objekträger bebändert werden konnten, mussten diese bei 80 °C für 1 Stunde gebacken werden.

Durchführung

Auswertung

Zellen von der Firma abm
Zellen von der Firma LifeLine

Modifikationen der Methode

Bei Recherchen wurden zwei weitere Protokolle zur Verbesserung der Chromosomenpräparation gefunden:

Deckgläser-Präparation (Reiter, 2007)

Thymidin-Block

Durch das vermehrte Angebot von Thymidin können die Zellen in die S-Phase übergehen. Jedoch kann die DNA-Synthese nicht starten, solange die anderen Trinukleotide (Adenosin, Cytidin und Guanosin) nicht vermehrt vorliegen. Durch gesteigerte Thymidinkonzentration ist es also möglich, die Zellen im Anfangsstadium der S-Phase zu blockieren. Wird dann das Thymidin entfernt, durchlaufen die Zellen synchronisiert die Mitose. Damit alle Zellen zeitgleich in die Mitose übergehen, würde man den doppelten Thymidinblock benötigen: Dabei wird nach einer Erholung der Zellen nochmals Thymidin dazugegeben um auch wirklich sicher zu gehen, dass alle Zellen blockiert sind. Da aber keine komplettete Synchronisation der Mitose benötigt wurde, wurde nur der einfache Thymidinblock durchgeführt.

Diese Vorgehensweise lieferte die besten Mitosen (Abb. 3-7). In der Abb. 3-7 ist die Kernmembran um die Chromosomen noch deutlich sichtbar. Dadurch kann ausgeschlossen werden, dass durch die Präparation es zum Zugewinn bzw. Verlust von Chromosomen gekommen ist.

Vergleich der Methoden

Um Artefakte mit der angewendeten Methode ausschließen zu können, wurden die verschiedenen Methoden zur Chromosomenpräparation miteinander verglichen. Dabei wurden die Zellen, die vier Wochen unter hypoxischen Bedingungen kultiviert wurden, zum einen nach der herkömmlichen Tropf-Methode analysiert (wie in 3.2.4 Chromosomenpräparation beschrieben) und zum anderen nach der Methode mit den Deckglässchen (wie in 3.2.4 Modifikation der Methode beschrieben) präpariert. Die Anzahl der Mitosen der Zellen von der Firma LifeLine war unter Normoxie nicht ausreichend für die Tropf-Methode. Die Zellen welche vier Wochen unter Hypoxie kultiviert wurden, wiesen jedoch eine erhöhte Mitose-Rate auf, sodass die Tropf-Methode zwar wenige, aber auswertbare Mitosen lieferte. Es wurden jeweils 20 Mitosen bei beiden Versuchsdurchführungen analysiert und miteinander verglichen.
3.2.5 CytoSelect™ 96-Well Cell Transformations-Assay

Der Assay weist nach, ob die Zellen verankerungsunabhängig wachsen, also ob die Zellen kein Kontakt zu Proteinen der extrazellulären Matrix mehr benötigen. Dies ist eine Eigenschaft von Tumorzellen, die die Metastasierung erst ermöglicht (Ke et al., 2004). Wachsen die Zellen als Sphären im Agar, so ist dies ein Zeichen für Transformation. Abb. 3-9 zeigt ein positives Ergebnis. Die Sphären sollen dabei einen größeren Durchmesser als 80 µm haben, um als positiv zu gelten (Yamamoto et al., 2012). Ob die Zellen noch lebten, konnte ebenfalls mit einer Lebendzellsfärbung überprüft werden. Das Prinzip des Assays ist in Abb. 3-8 dargestellt.

Vorbereitung

Die Agar-Matrix-Lösung musste für 30 min bei 93 °C im Wasserbad aufgewärmt und danach für weitere 30 min bei 37 °C gestellt werden. Währenddessen wurde die 2X DMEM/20 % FBS Lösung hergestellt. Nach der Bedarfsberechnung wurden die benötigten Reagenzien steril zusammen pipettiert (siehe Tabelle 3-2). Die Lösung wurde gut gemischt und bei 37 °C ins Wasserbad gestellt.

Für jeden Versuchsdurchgang, bei dem die Anzahl der gegossenen Wells variiert wurde, mussten die Volumina der Reagenzien neu berechnet werden. Alle Versuche wurden mit einer 12-Well-Platte durchgeführt. Zur Berechnung wurden die Tabelle 3-2 bis Tabelle 3-5 genutzt.

Tabelle 3-2: Berechnung des benötigten 2X DMEM/20 % FBS Medium Volumens.

<table>
<thead>
<tr>
<th>Volumen</th>
<th>Berechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5X DMEM</td>
<td>ges. Volumen berechnet aus den Volumina aus Tabelle 3-4 und Tabelle 3-5</td>
</tr>
<tr>
<td>Steriles Wasser</td>
<td>40 % des ges. Volumens</td>
</tr>
<tr>
<td>FBS Medium</td>
<td>20 % des ges. Volumens</td>
</tr>
</tbody>
</table>

Tabelle 3-3: Berechnung des benötigten 1X Matrix Solubilization Volumens.

<table>
<thead>
<tr>
<th>Volumen</th>
<th>Berechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X Matrix Solubilization Lösung</td>
<td>ges. Volumen berechnet aus den Volumina aus Tabelle 3-4 und Tabelle 3-5</td>
</tr>
<tr>
<td>Steriles Wasser</td>
<td>10 % des ges. Volumens</td>
</tr>
<tr>
<td>Volumen der 1X Matrix Solubilization Lösung</td>
<td>90 % des ges. Volumens</td>
</tr>
</tbody>
</table>

Tabelle 3-4: Berechnung des benötigten Agar Matrix Bodens.

<table>
<thead>
<tr>
<th>Volumen</th>
<th>Berechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X DMEM/20% FBS Medium</td>
<td>ges. Volumen berechnet aus den Volumina aus Tabelle 3-4 und Tabelle 3-5</td>
</tr>
<tr>
<td>Steriles Wasser</td>
<td>50 % des ges. Volumens</td>
</tr>
<tr>
<td>10X CytoSelect™ Agar Matrix Lsg.</td>
<td>40 % des ges. Volumens</td>
</tr>
<tr>
<td>Volumen des Basis Agar Matrix</td>
<td>10 % des ges. Volumens</td>
</tr>
</tbody>
</table>

Tabelle 3-5: Berechnung der benötigten Zellsuspensionslösung.

<table>
<thead>
<tr>
<th>Volumen</th>
<th>Berechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X DMEM/20% FBS Medium</td>
<td>ges. Volumen berechnet aus den Volumina aus Tabelle 3-4 und Tabelle 3-5</td>
</tr>
<tr>
<td>CytoSelect™ Matrix Verdünnung</td>
<td>46,67 % des ges. Volumens</td>
</tr>
<tr>
<td>10X CytoSelect™ Agar Matrix Lösung</td>
<td>36,67 % des ges. Volumens</td>
</tr>
<tr>
<td>Zellsuspension</td>
<td>10 % des ges. Volumens</td>
</tr>
<tr>
<td>Volumen der Zellsuspensionslösung</td>
<td>6,67 % des ges. Volumens</td>
</tr>
</tbody>
</table>

- 37 -

Durchführung

Gießen des Bodens

Die ausgerechneten Volumina wurden steril zusammen pipettiert. Dabei war auf sorgfältiges Pipettieren zu achten, da die Lösungen sehr viskös waren. Die Lösung wurde gut gemischt und 0,6 ml gleichmäßig auf jedes Well verteilt. Laut des mitgelieferten Protokolls sollten nur 0,5 ml auf jedes Well verteilt werden. Dies war jedoch so wenig, dass sich die Agarlösung nicht vollständig auf dem Boden im Well verteilen konnte, daher wurde das Volumen auf 0,6 ml erhöht. Danach wurde die 12-well-Platte für 30 min bei 4 °C in den Kühlschrank gestellt und anschließend für 30 min bei Raumtemperatur wieder erwärmt.
Währenddessen wurde die Agar Matrix Lösung wie bereits beschrieben nochmals erhitzt und anschließend bei 37 °C belassen. Zusätzlich wurde auch die Matrix-Verdünnung auf 37 °C temperiert.

Hinzufügen der Zellsuspension

Für das Hinzufügen der Zellsuspension wurden die Zellen abgeerntet und im Kulturmedium in einer Konzentration von 0,1-1x10^6 Zellen/ml resuspendiert. Die Zellzahl wurde mit dem Luna fl Automated Cell Counter überprüft.

Das gewünschte Volumen der Reagenzien für die Agar-Matrix wurde steril pipettiert. Pro Probe wurde 50 µl Zellsuspension (10^5 – 10^6 Zellen/ml) hinzugegeben, die dann für 5 min stehen gelassen wurde. Anschließend wurde pro Well 0,75 ml der Suspension hinzugefügt. Die 12er-Well-Platte wurde für 20 min bei 4 °C in den Kühlschrank gestellt und dann 30 min bei Raumtemperatur wieder aufgewärmt. Anschließend wurden 0,5 ml DME-Medium zu jedem Well hinzugefügt. Die 12er-Well-Platte wurde für sechs bis acht Tage bei 37 °C und 5 % CO₂ in den Normoxie-Brutschrank kultiviert. In der Folge wurden die Sphäroide unter dem Lichtmikroskop beurteilt.

Herauslösen der Zellen

Die Zellen konnten mit der 10X Solubilization Lösung aus dem Agar gelöst werden. Im Originalprotokoll wurden die Zellen mit MTT gefärbt, da der Luna fl Automated Cell Counter nur Trypan-Blau-Färbungen auswerten konnte, wurden die Zellen jedoch mit Trypan-Blau angefärbt. Dazu wurde 10 µl Zelllösung mit 10 µl Trypan gemischt und auf einen Cell Counting Slid gegeben.

Auswertung

Für die Auswertung wurden die Sphäroide im Lichtmikroskop untersucht. Ein positives Ergebnis unter dem Lichtmikroskop ist in Abb. 3-9 dargestellt.

Abbildung 3-9: HeLa Sphäroide Formation: HeLa Zellen werden, gemäß des Assay Protokolls für 10 Tage kultiviert (aus dem Product Manual K.-Nr. CBA-135).
Zellen von der Firma abm

Zellen von der Firma LifeLine

3.2.6 ATP und GTP Bestimmung mittels HPLC

Die Hochleistungsflüssigkeitschromatographie (HPLC) ist eine Möglichkeit, die verschiedenen Bestandteile in einem Zelllysat zu trennen. Dabei wird das Lysat mit einer mobilen Phase, unter hohem Druck durch eine Trennsäule gepresst, in der die stationäre Phase enthalten ist. Da in unserem Fall die verschiedenen Nukleotide unterschiedlich viel Zeit zum Durchlaufen der Trennsäule benötigen, könnten diese so unterschieden und ihre Menge in einem anschließenden Detektor mittels UV-Absorption bestimmt werden.

Die ATP- und GTP-Bestimmung wurde nur bei den Zellen von LifeLine durchgeführt. Dabei wurde die Konzentration von ATP und GTP nach 8 h, 12 h, 24 h, 48 h, 72 h und nach 7 Tagen bei den Zellen bestimmt, die unter hypoxischen Bedingungen (3 % Sauerstoff) kultiviert wurden. Diese Zellen wurden danach nochmals 7 Tage unter normoxischen Bedingungen kultiviert, um zu überprüfen, ob sich die Konzentration von ATP und GTP wieder normalisiert. Als Kontrolle wurden die ATP- und GTP-Konzentrationen bei Zellen bestimmt, die nur unter normoxischen Bedingungen kultiviert wurden. Aufgrund der Ergebnisse in der Sauerstoffbestimmung (siehe Kapitel 4.1) wurde die erste Messzeit auf acht Stunden festgelegt.

Vorbereitung

Für die ATP- und GTP-Bestimmung wurden die jeweiligen Zellen 48 Stunden vor dem Experiment in 75 cm² Kulturflaschen eingesetzt. Dabei wurden zwei Flaschen pro Analyse benötigt. Bei mehreren parallel durchgeführten Nachweisen wurden die Ausgangszellen
gepoolt und gleichmäßig verteilt. Die Zellmenge sollte bei Beginn der Isolation bei mehr als 90 % Monolayer liegen, bei den Bronchialepithelzellen entspricht dies etwa 5 x 10⁶ Zellen pro 75 cm² Flasche. Alle weiteren Schritte wurden auf Eis und im Kühlraum durchgeführt. Zu Beginn der Isolation wurden die Zellen zweimal mit eiskaltem PBS-Puffer (mindestens 3 ml) auf Eis gewaschen. Anschließend wurde 1 ml PBS zugegeben, die Zellen abgeschabt, jeweils in ein 1-2 ml Tube transferiert, gegebenenfalls mit einem weiteren Milliliter gespült und in ein weiteres Tube transferiert. Die Tubes wurden 5 min bei 14.000 rpm zentrifugiert, der Überstand wurde vorsichtig abpipettiert. Zu dem Pellet wurden bei 5 x 10⁶ Zellen pro 75 cm² Flasche 400 µl eiskaltes TCA 3 % zugegeben und mit der Pipette gut gemischt. Dieses Gemisch wurde mindestens 20 sec. in einem Vortex gemixt und anschließend 10 min auf Eis inkubiert. Die Probe wurde dann wieder für mindestens 20 sec. mit dem Vortex gemixt und danach bei 14.000 rpm für 10 min bei 4 °C zentrifugiert. Die Überstände einer Phase wurden abpipettiert und in einem Tube mit Schraubverschluss gepoolt. Dieses wurde 60 sec. im Vortex gemischt und danach kurz zentrifugiert. Die Proben wurden bei -80 °C gelagert.

Für die Messung musste die Probe zunächst mit 5 M K₂CO₃ (HPLC geeignet) neutralisiert werden. Zur Neutralisation von 5 ml TCA wurden 300 µl K₂CO₃ benötigt. Bei 400 µl TCA Isolat waren dies 24 µl K₂CO₃.

Durchführung

Die Stoffmenge des ATP und GTP wurde von Mitarbeitern des Leibniz Institut für neue Materialien, Campus D2 2 in 66123 Saarbrücken mit der Hochleistungsflüssigkeitschromatographie (HPLC) durchgeführt.

Alle Experimente wurden mit der HPLC Agilent Technologies 1200 Series (Karlsruhe, Germany), ausgerüstet mit einem Autosampler G1329A (Karlsruhe, Germany), durchgeführt. Die Säule C18, Partikel Seite 5 µm, Länge 46 x 150 mm (agilent Eclipse XDB, USA), wurde mit einer Vorsäule (3,9 x 20mm) verbunden, es wurde dasselbe Füllmaterial bei allen Experimente benutzt. Die Trennsäule wurde bei 27 °C gelagert. Zwischen den Messungen wurde die Säule mit 2 % Trifluoressigsäure gereinigt. Die mobile Phase A bestand aus 0,25 % MeOH, 10 mM NaH₂PO₄ und 10 mM Tetrabutylammoniumhydroxid, Phase B aus 30 5MeOH, 50 mM NaH₂PO₄ und 5,6 mM Tetrabutylammoniumhydroxid. Die Phasen liefen mit einer Geschwindigkeit von 0,8 mL/min mit einem Gradienten von 0-30 min 60/40 (A/B) oder 30-60 min 40/60 (A/B) durch die Säule. Die Säulen-Analyse-Zeit betrug 65 Minuten. Der pH-Wert wurde auf 7,0 mit 10N NaOH (Lösung A) und 10N HCl (Lösung B) titriert. Die Detektion der
Nukleotide wurde mit Hilfe der UV-Absorption bei einer Wellenlänge von 254 ± 6 nm durchgeführt (DAD detector 1260, Karlsruhe, Germany). Die chem. Station-32-Software wurde benutzt um die Daten zu verarbeiten (Areal Integration, Kalkulation und Zeichnen der Chromatogramme), die Methode zu validieren und um die Proben zu analysieren. Es wurden jeweils 50 µl Nukleotid-Standards und Zell-Extrakte in die Trennsäule gefüllt.

Auswertung

Die Ergebnisse der Messungen wurden in einem Chromatogramm ausgegeben und anschließend in einem Balkendiagramm für ATP und einem für GTP eingetragen. Dabei entsprach jeder Balken einer Messzeit und die Höhe des Balkens der gemessenen Konzentration an ATP bzw. GTP.

Für jeden Zeitpunkt wurden 3 Messungen durchgeführt, das heißt, es wurden 3 Zellproben pro Zeitpunkt hergestellt und untersucht. Die Resultate wurden gemittelt.
4 Ergebnisse

4.1 Sauerstoffbestimmung

Aus den Werten der Sauerstoffbestimmung im Zellkulturremedium wurde ein Liniendiagramm erstellt (Abb. 4-1). Dabei wurden die Werte bei 5 % und 3 % Sauerstoffkonzentration im Brutschrank in getrennten Graphen dargestellt. Ihr Verlauf ist jeweils eine Hyperbel.

![Diagramm der Sauerstoffkonzentration in Hypoxie](image)

Abbildung 4-1: Absinken der Sauerstoffkonzentration in Hypoxie, abhängig von der jeweiligen Umgebungskonzentration: Bei beiden Sauerstoffkonzentrationen ist die Zeit bis zum Erreichen der Endkonzentration ungefähr gleich.

Die Konzentrationen fielen zunächst schnell ab und näherten sich dann langsam dem Endwert an. Hier wurde deutlich, dass die Konzentrationen nach ca. acht Stunden schon stark abgesunken waren. Danach näherte sich die Sauerstoffkonzentration im Medium immer mehr der Konzentration im Brutschrank an. Nach 20 Stunden waren die Konzentrationen im Medium noch gering höher als im Brutschrank, jedoch waren die Sauerstoffkonzentrationen im Medium über mehrere Stunden konstant bei 5,26 % im Brutschrank mit 5 % Sauerstoff und bei 3,02 % im Brutschrank bei 3 % Sauerstoff. Die Zeitspanne bis sich die Sauerstoffkonzentration im Medium, den Sauerstoffkonzentrationen im Brutschrank angepasst hat, war sowohl für 3 % Sauerstoffkonzentration als auch für 5 % Sauerstoffkonzentration annähernd gleich.
4.2 Primäre Bronchialepithelzellen von der Firma abm

4.2.1 Morphologie

Abb. 4-2 zeigt Bronchialepithelzellen in Passage 6, bevor sie in den Brutschrank mit 5 % Sauerstoff gestellt wurden. Es gab hier Zellen mit mehreren Zellkernen und breitem Zytoplasma (Abb. 4-3), die Nukleoli waren rundlich und homogen schwarz. Abb. 4-3 zeigt alle typischen Zellformen, die diese Bronchialepithelzellen von abm in Normoxie hatten. Zum einen mehrere Zellkerne in Zellen mit breitem Zytoplasma, aber auch Zellen mit wenig Zytoplasma und nur einem Kern, dazu war ihre Zellform eher länglich.

Eine Kultur in Normoxie und Hypoxie wurde nicht passagiert, als diese zugewachsen war, sondern nur das Medium gewechselt. So sollte überprüft werden, ob die Zellen nun auch übereinander wachsen können. Dies war aber nicht der Fall. Abb. 4-6 zeigt ein Bild der Zellen in Hypoxie. Die Zellen zeigten immer noch vermehrte Mitosen, wuchsen aber weiterhin als Monolayer.

Zellen, die zusätzlich Glukose im Medium erhalten hatten, zeigten keine morphologischen Unterschiede zu Zellen ohne zusätzliche Glukose, hatten jedoch eine höhere Teilungsrate.
Abbildung 4-2: Bronchialepithelzellen von abm in Passage 6 bei 4-facher Vergrößerung: Die Zellen sind eher länglich und lagern sich in Gruppen zusammen. Es sind viele Mitosen zu sehen.

4.2.2 Chromosomenanalyse

Bei der Analyse der Chromosomen von Zellen, die eine Woche unter hypoxischen Bedingungen kultiviert wurden zeigten sich aneuploide Chromosomensätze, wie das Karyogramm in Abb. 4-7 zeigt.

![Karyogramm von Zellen von abm, nach einer Woche Hypoxie: Die Chromosomen zeigen deutliche numerische und strukturelle Veränderungen. Rechts ein Karyogramm einer unbehandelten Zelle von abm in Passage 3: Auch die frisch aufgetauten Zellen zeigten chromosomale Veränderungen.](image)

Die Chromosomenanalyse wurde dreimal wiederholt mit ähnlichen Ergebnissen, sowohl bei den Zellen, die mit zusätzlicher Glukose behandelt worden waren als auch bei denen, die keine zusätzliche Glukose erhalten hatten. Jedoch zeigten auch die Zellen, die unter normoxischen Bedingungen kultiviert wurden solche Veränderungen. Um sicher zu gehen, dass dies nicht aufgrund falschen Umgangs mit den Zellen entstanden war, wurde von frisch aufgetauten Zellen in Passage 3 ebenfalls eine Chromosomenanalyse durchgeführt. Die Zellen von abm hatten von Anfang an einen aneuploiden Chromosomensatz. Es wurden jeweils 20 Mitosen der frisch aufgetauten Zellen in Passage 3 sowie der Zellen, die eine und zwei Wochen unter
hypoxischen Bedingungen kultiviert wurden analysiert, alle Zellen zeigten einen aneuploiden Chromosomensatz.

Da die Zellen von abm bereits unter normoxischen Bedingungen einen veränderten Chromosomensatz hatten waren sie nicht für die Fragestellung geeignet, ob Hypoxie Chromosomenaberrationen verursachen kann.

4.2.3 Transformation Assay

Im Transformation Assay sind die Zellen, die sieben Tage unter hypoxischen Bedingungen kultiviert wurden, als Sphäroide gewachsen (Abb. 4-8). Bei den Zellen, die nur in Normoxie kultiviert wurden bzw. den Zellen, die zusätzlich zum Medium noch Glukose zugesetzt bekommen haben und sowohl unter normoxischen als auch unter hypoxischen Bedingungen kultiviert wurden, sind keine Sphäroide im Assay gewachsen (Abb. 4-9). Die Sphäroide der Hypoxiezellen hatten zum größten Teil einen Durchmesser von mehr als 85 µm, von denen einige in Abb. 4-8 zu sehen sind. Auch nach zwei Wochen in Hypoxie zeigten Kontrollen und Zellen aus der Hypoxie mit zusätzlicher Glukose keine Sphäroide, jedoch waren die Sphäroide bei Zellen in Hypoxie ohne zusätzliche Glukose mit 133 µm Durchmesser umso größer (Abb. 4-10).

4.3 Primäre Bronchialepithelzellen von der Firma LifeLine

4.3.1 Morphologie

Zellen in Normoxie

Die Zellen von LifeLine hatten eine vorwiegend rundliche Form und lagen einzeln verteilt vor (Abb. 4-11). Bei höherer Vergrößerung (Abb. 4-12) sah man einzelne rundliche Zellen mit zentralem Zellkern und zum Teil mehreren Nukleoli, aber auch Zellen mit zwei Zellkernen sowie Zellen, die eher oval und langgestreckt waren und einen breiten Zytoplasma besaßen. Es waren ebenfalls einige Mitosen sichtbar. Im weiteren Verlauf der Experimente (Abb. 4-13), hatte sich die Morphologie der Zellen nicht wesentlich verändert. Jedoch stieg die Verdopplungszeit bei höherer Passage an.

Zellen in Hypoxie

Morphologische Veränderung

Auch bei den Zellen von LifeLine wurden Zellkulturflaschen in Normoxie und Hypoxie nicht passagiert, als diese zugewachsen waren, sondern nur das Medium gewechselt, um zu überprüfen, ob die Zellen nun auch übereinander wachsen konnten. Dies war bei Zellen möglich, die zwei bzw. drei Wochen in Hypoxie kultiviert wurden (Abb. 4-16). Dagegen wuchsen Zellen, die nur in Normoxie kultiviert wurden weiterhin als Monolayer (Abb. 4-17). In der Zellkultur gilt es als Transformationszeichen, wenn Epithelzellen ohne Kontakt zum Boden der Zellkulturflasche übereinander wachsen können (Hirohashi & Kanai, 2003; Jiang et al., 2010).

4.3.2 Chromosomenanalyse

Die Analyse der Chromosomen bei Zellen in niedriger Passage zeigte normale Chromosomensätze (Abb. 4-18). Somit eigneten sich diese Zellen für weitere Untersuchungen.

Abbildung 4-18: Karyogramm von Bronchialepithelzellen von LifeLine in Passage 4, die nur in Normoxie waren: Es handelt sich um einen normalen Chromosomensatz mit 46 Chromosomen.

Abbildung 4-19:

Abbildung 4-20:
Numerische Auswertung der Mitosen von Bronchialepithelzellen von LifeLine, die sich zwei Wochen in Hypoxie befanden: Es sind nun noch mehr hypodiploide Zellen vorhanden, die weniger als 40 Chromosomen besaßen. Die hyperdiploiden Zellen haben abgenommen.

Abbildung 4-21:
Numerische Auswertung der Mitosen von Bronchialepithelzellen von LifeLine, die sich drei Wochen in Hypoxie befanden: Der Chromosomensatz verschiebt sich hin zu den hyperdiploiden Zellen. Es sind immer noch hypodiploide Zellen vorhanden. Insgesamt nehmen die fast-diploiden Zellen ab.
Nach zwei Wochen wurden erneut insgesamt 60 Mitosen ausgezählt (Abb. 4-20). Dort waren 87 % der Zellen aneuploid, nur noch 8 Zellen hatten einen diploiden Chromosomensatz. Es wurde eine Verschiebung zu hypodiploiden Zellen hin deutlich, 44 Zellen hatten weniger als 46 Chromosomen und waren damit hypodiploid, dies entspricht über 70 % aller Zellen. Dabei hatten viele hypodiploiden Zellen – nämlich 14 – einen Chromosomensatz mit weniger als 40 Chromosomen, das waren ca. 23 % der Zellen. Dabei hatte die Zelle mit dem kleinsten Chromosomensatz 37 Chromosomen. 8 Zellen hatten mehr als 46 Chromosomen, diese waren fast-diploid bzw. fast-tetraploid.

Abbildung 4-23: Chromosomensatz der Bronchialepithelzellen von LifeLine die sich drei Wochen in Hypoxie befanden mit über 150 Chromosomen.

Vergleich der Methoden

Abbildung 4-29: Anzahl der Mitosen nach der 4. Woche Hypoxie im Vergleich

4.3.3 Transformation Assay

Der Transformationsnachweis der Zellen, die eine Woche unter hypoxischen Bedingungen kultiviert wurden, waren im Transformations-Assay nach einer Woche negativ. Es wuchsen weder Sphärobe in der Kontrollkultur, noch bei den Zellen, die unter hypoxischen Bedingungen kultiviert wurden (Abb. 4-30).

Auch nach zwei und drei Wochen Hypoxie blieb der Assay negativ. Bei Anfärbung der herausgelösten Zellen fanden sich keine lebenden Zellen.

4.3.4 ATP und GTP Bestimmung

Abb. 4-31 zeigt die HPLC einer Referenzprobe (schwarze Linie) mit den sechs Molekülen GMP, AMP, GDP, ADP, GTP und ATP. Die blaue Linie stellt eine Probe von Zellen dar, die unter normoxischen Bedingungen kultiviert wurden. Diese Referenzprobe ermöglicht es, die einzelnen Werte der Probe den einzelnen Molekülen zuzuordnen. Die Zellen beinhalten viel ATP, wenig GTP und fast kein ADP, GDP, AMP und GMP.

Abbildung 4-31: Chromatogramm der Probe in Normoxie (blau), diese wird mit den 6 Nukleotiden aus dem Gemisch (schwarz) verglichen.

Auch die Konzentration von GTP sank unter Hypoxie ab, nämlich auf 60 % nach 8 Stunden (Abb. 4-34 und Tabelle 4-2). Nach 12 Stunden sank die GTP-Konzentration auf 6,74 pmol ab, dies entsprach 49 % des Ausgangswertes unter Normoxie. Jedoch war bei 12 Stunden eine geringere Streuung der Werte als bei 8 Stunden zu finden. Nach 24 Stunden Hypoxie stieg die GTP-Konzentration wieder leicht auf 8,5 pmol an, dies entsprach 62 %, die einzelnen Werte streuten kaum noch.
Abbildung 4-33: ATP Messung im zeitlichen Verlauf: Die ATP Menge nimmt mit Hypoxie ab und ist nach einer Woche Hypoxie konstant, sie steigt auch bei Normoxie nicht mehr an. Die Balken geben den Mittelwert der ATP-Mengen an, die schwarzen Linien zeigen die Standardabweichung (*Reoxygenierung (=21% Sauerstoff)). Die Rohdaten zeigt Tabelle 4-1.

Tabelle 4-1: Rohdaten zur Abbildung 4-33: ATP-Konzentrationen im zeitlichen Verlauf.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normoxie</td>
<td>34,7</td>
<td>26,1</td>
<td>26,6</td>
<td>35,78</td>
<td>30,80</td>
<td>4,46</td>
</tr>
<tr>
<td>8 h Hypoxie</td>
<td>26,17</td>
<td>16,38</td>
<td>15,91</td>
<td>16,31</td>
<td>18,69</td>
<td>4,32</td>
</tr>
<tr>
<td>12 h Hypoxie</td>
<td>18,39</td>
<td>15,93</td>
<td>16,13</td>
<td>15,21</td>
<td>16,42</td>
<td>1,19</td>
</tr>
<tr>
<td>24 h Hypoxie</td>
<td>15,84</td>
<td>17,39</td>
<td>16,98</td>
<td></td>
<td>16,74</td>
<td>0,66</td>
</tr>
<tr>
<td>48 h Hypoxie</td>
<td>16,08</td>
<td>16,18</td>
<td>16,07</td>
<td></td>
<td>16,11</td>
<td>0,05</td>
</tr>
<tr>
<td>72 h Hypoxie</td>
<td>16,49</td>
<td>15,96</td>
<td>15,61</td>
<td></td>
<td>16,02</td>
<td>0,36</td>
</tr>
<tr>
<td>7 d Hypoxie</td>
<td>15,04</td>
<td>19,1</td>
<td>16,71</td>
<td></td>
<td>16,95</td>
<td>1,67</td>
</tr>
<tr>
<td>7 d Hypoxie + 7 d Normoxie</td>
<td>16,84</td>
<td>16,48</td>
<td>16,04</td>
<td>16,45</td>
<td>0,30</td>
<td></td>
</tr>
</tbody>
</table>

- 61 -
Abbildung 4-34: GTP Messung im zeitlichen Verlauf: Die GTP-Menge nimmt mit Hypoxie ab und ist nach einer Woche Hypoxie konstant, sie steigt auch bei Normoxie nicht mehr an. Die Balken geben den Mittelwert der GTP-Mengen an, die schwarzen Striche zeigen die Standardabweichung (*Reoxygenierung (= 21 % Sauerstoff)). Die Rohdaten zeigt Tabelle 4-2.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normoxie</td>
<td>14,50</td>
<td>11,60</td>
<td>12,80</td>
<td>16,14</td>
<td>13,76</td>
<td>1,72</td>
</tr>
<tr>
<td>8 h Hypoxie</td>
<td>15,40</td>
<td>6,03</td>
<td>6,23</td>
<td>5,85</td>
<td>8,38</td>
<td>4,06</td>
</tr>
<tr>
<td>12 h Hypoxie</td>
<td>9,23</td>
<td>6,23</td>
<td>5,78</td>
<td>5,72</td>
<td>6,74</td>
<td>1,45</td>
</tr>
<tr>
<td>24 h Hypoxie</td>
<td>8,83</td>
<td>8,62</td>
<td>8,05</td>
<td></td>
<td>8,50</td>
<td>0,33</td>
</tr>
<tr>
<td>48 h Hypoxie</td>
<td>8,06</td>
<td>8,31</td>
<td>7,94</td>
<td></td>
<td>8,10</td>
<td>0,15</td>
</tr>
<tr>
<td>72 h Hypoxie</td>
<td>7,20</td>
<td>7,52</td>
<td>6,37</td>
<td></td>
<td>7,03</td>
<td>0,48</td>
</tr>
<tr>
<td>7 d Hypoxie</td>
<td>7,05</td>
<td>6,01</td>
<td>8,31</td>
<td></td>
<td>7,12</td>
<td>0,94</td>
</tr>
<tr>
<td>7 d Hypoxie + 7 d Normoxie</td>
<td>7,59</td>
<td>6,31</td>
<td>5,98</td>
<td></td>
<td>6,63</td>
<td>0,69</td>
</tr>
</tbody>
</table>

Tabelle 4-2: Rohdaten zur Abbildung 4-34: GTP-Konzentrationen im zeitlichen Verlauf.

Ab dann sank die GTP-Konzentration wieder ab, nach 48 Stunden Hypoxie betrug sie nur noch 8,1 pmol (59 %) und nach 72 Stunden Hypoxie nur noch 7,03 pmol (51 %). Nach 7 Tagen Hypoxie stieg die GTP-Konzentration wieder leicht auf 7,12 pmol (52 %) an. Hier wird deutlich, dass sich die GTP-Konzentration durch den niedrigen Sauerstoffgehalt etwa halbiert hat. Nachdem die Zellen nach sieben Tagen Hypoxie wieder unter normoxischen Bedingungen kultiviert wurden, stieg auch dort die GTP-Konzentration nicht mehr an, sie betrug 6,63 pmol (48 %). Das zeigte, dass Sauerstoffmangel neben einem Mangel an ATP auch zu einem Mangel
an GTP führt und dass dieser Wert auch unter der anschließenden Normoxie nicht wieder anstieg.

Diese Ergebnisse zeigen, dass die Zellen ihren Stoffwechsel schon nach wenigen Stunden Hypoxie umgestellt hatten. Nach spätestens einer Woche Hypoxie war diese irreversibel. Nicht nur die ATP-Konzentration sank ab, sondern auch die GTP-Konzentration. Trotz des niedrigen Energieangebotes konnten die Zellen weiter wachsen, denn selbst nach vier Wochen Hypoxie war es noch möglich, ihre Chromosomen zu analysieren, was auf eine erhaltene Proliferationsfähigkeit schließen lässt.
5 Diskussion

5.1 Ergebnisse

5.1.1 Primäre Bronchialepithelzellen von der Firma abm

5.1.2 Primäre Bronchialepithelzellen von der Firma LifeLine

Die primären Bronchialepithelzellen von LifeLine hatten zu Beginn einen physiologischen diploiden Chromosomensatz, sodass an diesen der Zusammenhang zwischen Hypoxie und Aneuploidie untersucht werden konnte. Dabei zeigten sich nach einer Woche Kultivierung unter Hypoxie schon 70 % der Zellen aneuploid, dabei waren ca. 48 % hypodiploid und ca. 22 % hyperdiploid. Insgesamt waren die Zellen aber noch fast-diploid, nur 15 % der Zellen hatten mehr als 50 bzw. weniger als 40 Chromosomen. Nach zwei Wochen hypoxischer Kultivierung waren 87 % der Zellen aneuploid, 70 % aller Zellen waren hypodiploid, 23 % aller Zellen hatten weniger als 40 Chromosomen. Nur ca. 13 % der Zellen waren hyperdiploid. Nach drei Wochen Kultivierung in Hypoxie waren ebenfalls 87 % der Zellen aneuploid, ca. 47 % der Zellen waren hypodiploid, davon hatten ca. 46 % weniger als 40 Chromosomen. 40 % aller Zellen waren hyperdiploid, davon hatten ca. 71 % mehr als 50 Chromosomen. Nach vier Wochen hypoxischer Kultivierung stieg die Anzahl an hyperdiploiden Zellen weiter an: 60 % aller Zellen waren hyperdiploid und fast 1/3 aller Zellen besaß über 50 Chromosomen. Bei den meisten hyperdiploiden Zellen lag die Anzahl der Chromosomen zwischen 46 (diploid) und 92 (tetraploid). Es waren nur noch 25 % aller Zellen hypodiploid und diese waren fast-diploid (siehe Abb. 5-1 und Ergebnisse Chromosomenanalyse Kapitel 4.3.2).
Hier wurde deutlich, dass sich die Chromosomenanzahl von Zellen unter chronischer Hypoxie über die Zeit von fast-diploid über hypodiploid zu hyperdiploid verändert. Dennoch reichten die Veränderungen der Zellen nicht für eine Transformation aus.

Ueyama et al untersuchten Aneuploidien bei mesenchymalen Stammzellen unter hypoxischer Kultivierung. Eine Besonderheit mesenchymaler Stammzellen ist ihre Pluripotenz, ihre Proliferation ex vivo wird – wie auch bei nicht-Stammzellen – durch die Seneszenz limitiert. Sie fanden heraus, dass diese Zellen bei einer Sauerstoffkonzentration von 5% in einer signifikant früheren Passage Aneuploiden entwickeln als die gleichen Zellen bei 20% Sauerstoff. Zusätzlich zeigten die Stammzellen eine höhere Rate an veränderten Chromosomensätzen, wenn die Spender älter als 60 Jahre waren (Ueyama et al., 2011).

In beiden Arbeitsgruppen wurden die Zellen nur über kürzere Zeit in Hypoxie kultiviert, jedoch wurde keine zeitliche Abfolge der Chromosomenveränderungen untersucht. Außerdem wurde...
5.2 Aneuploidie

Die vorliegende Arbeit zeigt, dass durch Hypoxie aneuploide Zellen entstehen. Um zu verstehen, wie Hypoxie dazu führt, werden zunächst die allgemeinen Entstehungsmechanismen aneuploider Zellen erläutert.

5.2.1 Entstehungsmechanismen von Aneuploidie

Aneuploide Zellen können aus diploiden und tetraploiden Zellen entstehen. Dabei ist das Risiko für Chromosomenfehlverteilungen in tetraploiden Zellen bis zu 166-fach höher als in diploiden Zellen (Shi & King, 2005). Tetraploide Zellen können durch verschiedene Mechanismen wie Mitoseverzögerung, Cytokinese-Fehler oder Zellfusion durch Viren entstehen (Lv et al., 2012; Vitale et al., 2011). Es gibt keine permanente Proliferationsinhibition für tetraploide Zellen, sodass aus diesen bei abnormalen Zellteilungen bevorzugt aneuploide Zellen entstehen können (Ganem, Storchova & Pellman, 2007).

Abbildung 5-2: Schematische Darstellung von Mitose-Spindeldefekten, welche zu numerischen Aneuploidien führen (Storchova, 2012):
A: normale amphi telische Befestigung
B: Mikrotubuli oder Kinetochor-Defekt, der zu einer falschen Befestigung führt
C: Inkorrekte Befestigung aufgrund eines Defekts des Schwester-Chromatid-Cohesins
D: Multipolare Centrosome führen zu einer multipolaren Spindel, welches die normale Chromosomenverteilung behindert.
E: merotelische Befestigung, welche nicht vom Spindelapparat-Checkpoint erkannt wurde, dadurch entstehen lagging Chromosomen und Aneuploidie
F: syntelische Befestigung führt zu fehlerhaften Chromosomenteilung
G: Spindelapparat-Checkpoint-Defekte

5.2.2 Aneuploidie - Entstehung und deren zeitliche Veränderung durch Hypoxie

Die Dephosphorylierung von GTP wird in der Zelle als Energiequelle für die Bewegung der Mikrotubuli benötigt. Sinkt nun die GTP-Konzentration ab, kann es zu Störungen der Mikrotubuli kommen und folglich kann der Spindelapparat während der Mitose nicht richtig funktionieren, es können aneuploide Zellen entstehen (Alberts et al., 2011).

In Hypoxie kann vermehrt ROS gebildet werden, die zu DNA-Einzelstrang- und Doppelstrang-Schäden (DSB) führen können, Hypoxie wirkt also mutagen (Bristow & Hill, 2008; Dewhirst, Cao & Moeller, 2008). Hypoxie inhibiert zusätzlich die DSB-Reparatur (Kumareswaran et al., 2011; Luoto, Kumareswaran & Bristow, 2013). An der DSB-Reparatur sind viele Proteine beteiligt, wie z. B. RAD51, BRCA1/2 und der MRN-Komplex (MRE11, RAD50, NSBS1). Hypoxie kann über verschiedene Mechanismen die DSB-Reparatur hemmen, im Folgenden werden ein paar Beispiele genannt: Durch HIF-1 kommt es zur verminderten Transkription von BRCA1 und somit zur Ausschaltung eines Tumorsuppressorgens. Eine weitere Möglichkeit ist die selektive Hemmung der mRNA-Translation von BRCA2 und RAD51. Es wurde auch eine Überexpression des Proteins EZH2 durch HIF-1 gefunden, welches die Transkription von RAD51 hemmt (Luoto, Kumareswaran & Bristow, 2013). Daneben führt Hypoxie zu einer Herabregulierung der Translation und Transkription von weiteren DNA-Reparatursystemen wie den DNA-Misssmatch-Reparaturproteinen (z. B. MLH1 und MSH2) und dem Nukleotid-Exzisionsreparatur-System (Scanlon & Glazer, 2015; Bristow & Hill, 2008). Über diese Mechanismen entstehen DNA-Schäden, die sich in der Zelle über die Zeit ansammeln können,

5.2.3 Aneuploidie im Tumor

2. Aneuploidie ist schon früh in genomisch instabilen Zellen zu finden.

3. Der Phänotyp genetisch instabiler Zellen verändert sich viel schneller, als der von diploiden Zellen. So können Tumorzellen mit Mutationsraten von bis zu 10^{-3} zufällige Mutationen pro Mitose Medikamentenresistenzen erwerben, wenn zufällig das dafür wichtige Gen mutiert wird. Dahingegen haben haploide Zellen nur Mutationsraten von 10^{-6} bis 10^{-7} und diploide Zellen nur von 10^{-12} bis 10^{-14}, dies tritt also deutlich seltener auf, als Mutationen in Tumorzellen.

4. Immortalisierung, eine wichtige Eigenschaften von Krebszellen, wurden bisher nicht bei natürlich vorkommenden diploiden Zellen gefunden.

5. Phänotyp und chromosomale Instabilität sind proportional zum Grad der Aneuploidie, da diese durch die Aneuploidie selbst bedingt sind.

7. Genmutationen sind häufig, jedoch weder klonal noch einheitlich in Tumorzellen, dies spricht gegen die Mutationstheorie.

8. Wenn die Aneuploidie in Tumorzellen fast diploid ist, so weist sie wenig genetische Instabilität auf. Mit dem 1,5-fachen Chromosomensatz zeigen die Zellen einen hohen Grad an Instabilität und mit dem 3-fachen Chromosomensatz einen sehr hohen Grad an Instabilität.

10. Das Alter der Mutter beeinflusst kongenitale Aneuploidie-Syndrome wie das Down-Syndrom. So wurde bei älteren Frauen ein altersbedingter Defekt des Spindelapparats der Oozyten gefunden. Diese kongenitalen Aneuploidie-Syndrome haben gehäuft ein erhöhtes Risiko für Tumorerkrankungen, was für Aneuploidie als Auslöser für Tumorerkrankungen spricht (Ganmore, Smooha & Izraeli, 2009; Hasle, Mellemgaard, Nielsen & Hansen, 1995;
Hasle et al., 1996; Hasle, Clemmensen & Mikkelsen, 2000; Schoemaker et al., 2008; Geraedts, Mol, Briet, Hartgrink-Groeneveld & Ottolander, 1980).

5.3 Schlussbemerkung

6 Literaturverzeichnis

http://www.paralog.com/wiki/?ChromosomeSpread

Bellone, M., Calcinotto, A., Filipazzi, P., De Milito, A., Fais, S. & Rivoltini, L. (Januar 2013). The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. *OncoImmunology* 2:1, S. e22058-1 bis -3.

Hassold, T., Hall, H. & Hunt, P. (2007). The origin of human aneuploidy: where we have been, where we are going. Human Molecular Genetics 16, S. 203-208.

7 Publikationen/Dank

7.1 Publikationen

7.2 Dank

Als erstes möchte ich meinem Doktorvater Prof. Dr. med. Cornelius Welter vom Institut für Humangenetik und meinem Betreuer Dr. med. Rainer Hanselmann danken. Sie standen mir jederzeit mit Rat und Tat zur Seite und brachten mir das wissenschaftliche Arbeiten mit viel Engagement näher. Zusätzlich waren die gemeinsamen Diskussionen über eine Vielzahl von Themen eine große Bereicherung.

Ich möchte ebenfalls Dr. Michael Jelden, Lisa Bohlen, Dr. Michael Klotz und Anna Kerner für die hilfreichen Anregungen, Kommentare und Korrekturen danken.

Zuletzt möchte ich meinem Freund Mirco vom ganzen Herzen für die moralische Unterstützung während den Experimenten, aber vor allem während dem Schreiben danken.