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Zusammenfassung

Der Erfolg der Energiewende hin zu erneuerbaren Energiequellen hangt stark von der
Verfligbarkeit von elektrochemischen Energiespeichern ab, welche die derzeitige Lithium-
lonen Batterietechnologie in Leistung und Stabilitdt Ubertreffen. Diese Doktorarbeit
untersucht die Materialhybridisierung von Kohlenstoffen mit Metalloxiden und die
Konstruktion von Hybridzellen, die aus einer kapazitiven und einer Faradayschen Elektrode
bestehen. Materialhybridisierung mittels Atomlagenabscheidung erzeugt nanoskopische
Lagen von Metalloxiden auf Kohlenstoffsubstraten. Dadurch kann die hohe Kapazitat
Faradayscher Reaktionen dank der hohen Elektrode-Elektrolyt-Grenzflaiche bei erhodhter
Leistung abgerufen werden. Die Porositdt des Kohlenstoffsubstrats spielt dabei eine
entscheidende Rolle; ideale Kohlenstoffe weisen interne Mesoporen (2-50 nm) auf.
Hybridzellen kénnen durch den Einsatz dieser Hybridmaterialien als Faradaysche Elektrode
verbessert werden. Die Kinetik und das Uberpotenzial der Faradayschen Reaktion sind fiir eine
schnelle und effiziente Zellperformanz von entscheidender Bedeutung. Die spezifische Energie
von Hybridzellen kann dariber hinaus durch den Einsatz lithium- bzw. natrium-haltiger
ionischer Flissigkeit deutlich erh6ht werden. Dieses neuartige Zellkonzept erhéht die maximal

zugangliche Zellspannung, das Einsatztemperaturfenster und die Sicherheit der Hybridzelle.



Abstract

A successful transition from fossil to renewable energy sources requires electrochemical
energy storage devices that surpass current lithium-ion battery technology in specific power
and performance stability. In this PhD thesis, hybrid materials containing carbon and metal
oxide components are synthesized, and hybrid cell architectures employing both a Faradaic
and a capacitive electrode are explored. For material hybridization, atomic layer deposition is
used to deposit nanoscopic layers of metal oxide on carbon substrates. This strategy allows to
combine the high capacity of Faradaic reactions with the high power enabled by the large
electrode-electrolyte interface. The porosity of the carbon substrate plays a major role in the
resulting electrochemical performance; ideal carbon substrates show internal mesopores
(2-50 nm). Hybrid supercapacitor devices are optimized by using these hybrid materials as the
cell's Faradaic electrode. It is demonstrated that the kinetics and overpotentials of the
Faradaic reactions are the determining factors to enable fast and efficient cell performance.
Finally, the specific energy of hybrid supercapacitor cells is drastically increased by using
lithium- or sodium-containing ionic liquid electrolyte. This novel concept increases the
accessible cell voltage, operation temperature window, and safety of the hybrid

supercapacitor cell.
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1 Motivation 1

1 Motivation

In the Paris Agreement of 2015, members of the United Nations Framework Convention on
Climate Change committed to containing the mean global temperature rise below 2 °C, with
respect to pre-industrial levels, to prevent "dangerous anthropogenic interference with the
climate system".! Global warming is, inter alia, leading to rising sea levels, more extreme
weather events like strong storms and precipitations, heat waves and droughts, and changes
in animal and plant life cycles.?

To limit global warming, each participating country is putting forward nationally determined
contributions that will be strengthened every five years, with developed countries being
expected to take the most ambitious measures. The main objective is a drastic reduction of
greenhouse gas (GHG) emissions, most importantly, of carbon dioxide. The Intergovernmental
Panel on Climate Change concluded that the average global temperature is directly linked to
the concentration of GHGs in the atmosphere, which had led to a rise of 0.85 °C in average
global temperature between 1880 and 2012, when about 1.5 10'? t of anthropogenic CO3
emission was registered.> ® Moderate rises in average global temperature are projected to
create even more severe regional changes in peak temperatures, particularly over land. A 2 °C
rise in global mean temperature is projected to cause, for example, a rise of 3 °C in extreme
temperature in the Mediterranean region;’ generally, drylands are experiencing more
warming than humid lands.® Consequently, even a moderate global temperature rise is
projected to lead to more extreme weather events in many regions.®

The main source of anthropogenic GHG emissions is the burning of fossil fuels (coal, natural
gas, oil) that are primarily used for power generation, mobility, and heating. Hence, a key
component for combatting global warming is the transition from fossil fuels to renewable
energy sources, like wind and solar power that are abundantly available. The intermittent
character of wind and solar, however, leads to severe fluctuations in power output, posing
enormous challenges for maintaining grid stability.'® While power from fossil fuels can be
produced on demand, wind and solar power need to be harvested when available, creating a
mismatch between the real-time power supply and demand. This creates the need for the
construction of a "smart grid", which is relying on the implementation of electrochemical
energy storage (EES) devices to buffer resulting fluctuations in a broad range from seconds to

hours.' 12 A decarbonization of the transportation sector requires EES technologies that fulfill



1 Motivation 2

the requirements of high energy density (long range) and high power density (fast charging).
All these future applications require EES offering a combined high specific energy, power, and
cycling stability. Current state-of-the-art lithium-ion battery and supercapacitor technologies,
however, cannot satisfy all of these demands, offering either high energy or high power and
stability, respectively. Within the context of this PhD thesis, | will explore hybridization aiming
to synergistically combine the merits of both technologies. Novel hybrid material design
strategies will be explored, and hybrid cell architectures will be developed. Such next-
generation hybrid EES technologies can be regarded as particularly significant for maintaining

a sustainable planet Earth in the future.
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2 Theoretical basis and state-of-the-art
2.1 Overview of electrochemical energy storage

There is a plethora of technologies to store and recover electrical energy, such as pumped
hydroelectric energy storage, flywheels, batteries, or capacitors, which greatly differ in their
working mechanisms, dimensions, and operational parameters.'> Among them, EES devices
present today the most promising solution for mobile applications, grid stabilization, and
miniaturized electronics.'* The core component of an EES cell consists of two electrodes
immersed in an electrolyte that contains mobile charge carrier species. Depending on the
charge storage mechanism (Faradaic or non-Faradaic) and the electrochemical signature
(linear charge-voltage profile or clear redox-plateaus) of the cells, two archetypes of EES can
be identified. Supercapacitors are characterized by a linear, capacitor-like signature between
accumulated charge and voltage. When they solely store charge by non-Faradaic processes,
they are classified as electrical double-layer capacitors (EDLCs), whereas pseudocapacitive
charge storage also involves Faradaic reactions, while maintaining a clearly capacitor-like
voltage profile. Charge storage in supercapacitors is usually dominated by surface or near-
surface processes close to the interface of electrodes and electrolyte, reducing the kinetic
limitations posed by solid-state diffusion and offering high specific power with

charging/discharging times of seconds to minutes (Fig. 1A).
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Figure 1: Ragone chart illustrating typical specific energy and power of supercapacitors, batteries,
and hybrids thereof (A). lllustration of hybrid material (B), and a hybrid supercapacitor device (C).

Reproduced from Ref. * with permission from John Wiley and Sons.
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Batteries store and recover charge by Faradaic reactions within the bulk volume of their
electrodes and show non-linear voltage profiles with clear plateaus, where the chemical redox
reactions occur. They typically provide high specific energy, but charge transfer kinetics are
relatively slow due to sluggish solid-state diffusion processes, yielding limited specific power
(Fig. 1A).

An optimized EES device combines high specific energy with high specific power ratings. A
pathway to this goal is the synergistic combination of elements from both supercapacitor and
battery technologies by hybridization.'® In the following chapters, each supercapacitor and
battery technologies are introduced, and design strategies for hybridization both on the

materials level (Fig. 1B) and on the device level (Fig. 1C) are discussed.

2.2 Electrical double-layer capacitors
2.2.1 Setup and mechanism

An EDLC is an EES device that consists of one (or several) pairs of high surface area electrodes
immersed in an electrolyte, contacted with a current collector at each electrode, and a porous
separator like glass fiber in between the electrodes to prevent short-circuiting (Fig. 2A). It
stores energy by electrostatic ion adsorption at the polarized interface of the electrode
surface and the electrolyte.'® The electrical double-layer (EDL) is formed by separation of
charges, as first described by Helmholtz in 1853, resulting in the capacitance C:

A A
C (F) =% (75) = Sofra (Eg. 2.1)

with the accumulated charge Q, applied potential U, (ion accessible) electrode surface area A,
interfacial charge separation distance d, and vacuum and electrolyte dielectric constants &,

and &, respectively.

The accumulated charge in the EDL is directly proportional to the applied potential;
consequently, the capacitance remains constant as the slope of the Q-U-diagram (Fig. 2B). The

energy E stored in the EDL can be derived from the capacitance and the potential by:
E=1/,cuz=1/, qu (Eq. 2.2)

It is important to differentiate between the capacitance of one EDL and the capacitance of an
EDLC device. Since the EDL is formed at each electrode-electrolyte interface, an EDLC cell

consists of two EDLs connected in series, resulting in a cell capacitance Ccey oOf:



2 Theoretical basis and state-of-the-art 5
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Figure 2: Schematic representation of a charged EDLC cell (A; inspired by Ref.1?), the characteristic

linear relationship between accumulated charge and potential of an EDL.

Assuming equal capacitances at the positive and negative electrodes (symmetrical setup), the
cell capacitance is half the capacitance at each electrode in total values. When further

normalizing to the total mass of both electrodes, the specific cell capacitance becomes'?:
F\_1
Ccell,specific <§) = /4. Celectrode,specific (Eq- 2-4)
2.2.2 Electrode materials

The formation of the EDL occurs in the absence of electron transfers between the ions of the
electrolyte and the electrode, requiring chemically inert behavior of the electrode surface
toward the ions in the applied potential range. The capacitance is, in first approximation,
directly proportional to the surface area of the electrode, which is why porous materials with
high specific surface areas are commonly used as electrodes in EDLCs. These requirements are
met best by a variety of carbon materials. Most commonly, EDLC electrodes are based on
activated carbon with a high intraparticle porosity and specific surface areas up to around

3000 m?/g.'® 1° These carbons are produced by carbonization and physicochemical activation
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of naturally abundant, carbonaceous precursors, such as biomass.?% 2! Using activated carbon
powder, electrodes are formed by mixing carbon particles with a binder like
polytetrafluoroethylene or polyvinylidene fluoride to form either free-standing electrodes or
to coat powder slurries directly onto a current collector. Typically, 2.5-20 mass% of conductive
additives like carbon black are further added to increase the electron transport properties of
the electrodes.?? The most important feature of activated carbons, which typically consist of
particles that are several micrometers large, is their internal porosity while the outer surface
area can be neglected. Inside the particles, pores in a broad range of sizes are formed by the
activation process. These pores include macropores (>50 nm), mesopores (2-50 nm), and
micropores (<2 nm).2> The biggest contributors to the high specific surface area and pore
volume are micropores, often below 1 nm in size, offering very large electrode-electrolyte
interfaces. The capacitance of an EDL formed at a typical activated carbon electrode is in the

range of 100-200 F/g, depending on the used electrode materials and electrolytes.?*

Increased surface areas of porous carbons linearly increase the capacitance only up to a
certain point. The maximum capacitance of the EDL is not increased by pores with sizes below
the ion size, which are no longer accessible for ion electrosorption.?> The ability to
accommodate charges inside the carbon pore walls is limited when carbons exceed a specific
surface area of about 1200 m?/g.26 This is due to the finite number of free electrons in non-
metallic carbon, leading to a plateau of capacitance for higher surface areas.?® An increase in
capacitance was observed by Chmiola et al.?” when the pore size of the carbon is tailored to
fit the size of the desolvated electrolyte ion. In this case, a (partial) stripping of the solvation
shell was observed that led to increased capacitance.?’- 28 In contrast, a study of Centeno et
al. did not observe this increase for carbon pore sizes between 0.7 nm and 15 nm.?° Part of
this controversy may relate to the use of dissimilar models to calculate the specific surface
area and pore size distribution and by neglecting the influence of binder materials that may

obstruct access to some pores.3% 3!

Activated carbons show predominantly internal pores within the particle volume.3?3* The
main advantage of these carbons is their large surface area, yielding high capacitances;
however, other factors like structural ordering and accessibility for electrolyte ions play an
important role for the power handling of the electrode material. On the other hand, many
carbon materials show exclusively outer surface area.3?3* Among them, carbon nanomaterials

37-39

like graphene,3> 3¢ carbon onions, or carbon nanotubes®® 4! have attracted significant
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interest for their higher electrical conductivity and easier access to the surface compared to
activated carbons. This enables an increased power handling ability compared to activated
carbons, but the specific surface area of carbons with outer surface area is mostly well below
1000 m?/g and limits the maximum capacitance. Carbon onions were demonstrated to offer
a power handling ability close to conventional electrolytic capacitors (three orders of
magnitude above activated carbon-based EDLCs) when employed in microelectronics,3® but
the capacitance at their EDL is only around 25-50 F/g, depending on the type of carbon

onion.3% 42

2.2.3 Electrolytes

Besides the electrode materials, the choice of the electrolyte strongly influences the EDLC
performance. First, the electrolyte determines the maximum voltage window of an EDLC that
is limited by the electrochemical stability window of the electrolyte.'? Considering the relation
between the square of the voltage and the resulting energy (Eg. 2.2), a higher maximum cell
voltage drastically increases the specific energy of an EDLC. Second, the ionic conductivity of
an electrolyte has a great effect on the power handling of the EDLC.*?

Table 1: Summary of selected electrolyte type properties.!? 444

Electrochemical lonic  cond. | Comments
stability window (at 25 °C)

Aqueous [ ca. 1V (dependent | ca.1S/cm High power, environmentally friendly,
on pH) cheap, non-flammable

Organic | ca.2.7V 15-60 mS/cm | Best compromise of stability and

conductivity, flammable, toxic, requires

water-free assembly

lonic ca.3.5-36V 5-15 mS/cm | Highest energy, non-flammable, thermal
liquid stability, expensive, requires water-free
assembly

An electrolyte usually consists of an organic or inorganic salt dissolved in a solvent, but there
are also solvent-free electrolytes. Fundamentally, we can differentiate three groups of
electrolytes based on the type and presence of a solvent: (1) agueous electrolytes, (2) organic

electrolytes, and (3) ionic liquids. Each type of electrolyte has its advantages and
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disadvantages, making the appropriate choice of electrolyte dependent on the desired

application. Table 1 summarizes selected properties of each type of electrolyte.

pH-Neutral aqueous electrolytes with dissolved salts like Na2SO4 or Li>SO4,* and acidic or
basic solutions like H.SO4 or KOH, respectively, are the most attractive choice for high power
applications because of their high ionic conductivity. Their relatively cost-attractive,
environmentally friendly, and non-flammable character also makes them suitable for large-
scale applications. From an industrial point of view, the possibility of cell assembly without
the need for component drying and water-free, inert atmospheres is of further economic
advantage. The biggest drawback is the narrow electrochemical stability window that is
thermodynamically limited to 1.23 V by the dissociation reaction with hydrogen and oxygen
evolution reactions at the negative and positive electrodes, respectively. The electrode
potential at which the reactions occur depends on the pH value, as illustrated in a Pourbaix
diagram. Strategies like manipulating carbon surface functionalities, capitalizing on strong
solvation of electrolyte ions, reversible hydrogen sorption at the negative electrode, or
adjustment of electrolyte pH have enabled higher cell voltages in aqueous electrolytes up to
about 2.2 V.%¢*8 EES using aqueous electrolytes may play an important role for large-scale,
stationary energy storage facilities in the future, where economic factors and non-

flammability play a more important role than space or weight restrictions.

The most popular organic electrolytes for EDLC applications are propylene carbonate (PC) and
acetonitrile (ACN) with dissolved organic salts like tetraethylammonium tetrafluoroborate,
which enable comparably high ionic conductivity and cell voltages up to 2.7-2.8 V.2
Depending on the used salt and solvent, the ionic conductivity shows a maximum at a certain
ion concentration, usually 1-2 M.'>%° Though ACN enables higher powers than PC owing to its
lower viscosity (0.369 Pa-s compared to 2.513 Pa-s), its low boiling point of 81.6 °C poses

severe limitations to high-temperature usage.>®

Room temperature ionic liquids like N-butyl-N-methyl pyrrolidinium
bis(trifluoromethanesulfonyl)imide  (PYRis  TFSI)  or  1-ethyl-3-methylimidazolium
tetrafluoroborate (EMIM BF4) are salts that are liquid at room temperature and can be used
as electrolytes without the addition of a solvent.>> >2 They exhibit a large electrochemical
stability window up to about 3.6 V, thermal stability with stable operation temperatures of

some ionic liquids between -50 °C and more than 100 °C, and a very low volatility.>3>> Tuning
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of the ionic structure/size or changes in ionic liquid composition offer a wide range of
possibilities to adjust the electrochemical properties. The size proportion of ionic liquid
cations and anions, for example, was shown to influence the mechanism of EDL formation,
having impact on the resulting electrode strain.”® Especially formulated mixtures of ionic
liquids are intensively studied for the possibility of further expansion of the voltage window,>’
or widening of the temperature range, for example, by eutectic mixtures.”® Research related
to ionic liquids in energy applications is still a relatively unexplored field and offers countless
opportunities for further improvement of performance and safety aspects. Currently, the high
prices of ionic liquids with high purity impede their widespread use in commercial

applications.

2.3 Batteries
2.3.1 Overview

A battery generally consists of one or several pairs of electrodes, immersed in an ion-
conducting electrolyte and kept apart by a separating membrane. Unlike a symmetric EDLC
with two activated carbon electrodes, a battery cell contains two dissimilar electrodes with
different chemical potentials. When connected with a consumer, the electrode with the more
negative potential (anode) is oxidized, and electrons flow through the external circuit to the
electrode with a more positive potential (cathode) that is reduced.>® Simultaneously, ions flow
in the reverse direction through the electrolyte. In the case of primary batteries, this reaction
is irreversible (within the stable operation window provided by the system), while secondary
batteries can be recharged by applying an external voltage that reverses the redox reaction.>®
The term “anode” is historically defined as the electrode where oxidation occurs, while a
reduction reaction takes place at the cathode. In a primary battery, where the redox reaction
only occurs in one direction, the nomenclature is appropriate. In secondary batteries, the
negative (positive) electrode oxidizes (reduces) during discharging and reduces (oxidizes)
during recharging. According to the definition of anode and cathode, the assignment would
be dependent on whether the battery is charging or discharging. In the battery community
though, the nomenclature is defined for the discharge reaction; hence, the negative electrode

of a battery cell is always defined as the anode and the positive electrode as the cathode.

Modern battery research has a more than two centuries old history, starting in 1780 with Luigi

Galvani's discovery of contracting frog leg muscles after contacting with iron and copper
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plates. The reason was an electron flow through the muscle from the metal with the more
negative potential (iron) to the more positive one (copper). Based on this discovery, the first
battery, the Voltaic pile, was constructed by Alessandro Volta in 1800 and consisted of
alternating piles of copper and zinc, separated by salt water soaked spacers.®° Since then,
various cell types relying on the same principle of redox reactions between two electrode
materials with a chemical potential gradient have been developed, most notably, lead-acid,
nickel-cadmium, and nickel-metal hydride secondary batteries. Dominating the market for
high-end applications today is the lithium-ion battery, which is based on the insertion of
lithium ions into host electrodes. The underlying concept was first presented by M. Stanley
Whittingham, demonstrating intercalation of lithium ions into a titanium disulfide host.* The
first cell containing two intercalation electrodes was presented by the Goodenough group
with a lithium cobalt oxide/titanium disulfide electrode couple.®? Commercialization of the

lithium-ion battery was first realized in 1991 by the Sony Corporation.

2.3.2 Lithium-ion batteries

In a lithium battery, lithium ions are reversibly inserted or extracted from the host lattice of
an electrode (lithium insertion compound LixMyX;) that undergoes reduction or oxidation,
respectively, resulting in electron flow through the external circuit.®® In this process, the
insertion compound is used as the positive electrode (cathode), while the anode is metallic
lithium (= lithium battery). A crucial step towards practical application was the replacement
of the lithium metal anode with a second insertion compound electrode, to avoid detrimental
effects of metallic lithium like dendrite formation, passivation layers on lithium and local
overheating.®® In the resulting lithium-ion battery (LIB), lithium ions are exchanged between
two insertion compounds via the so-called rocking-chair principle.?® Today's most common
type of LIB consists of a graphite anode and a layered lithium metal oxide cathode (LiMO3),
such as LiCoO; or LiNiOz, immersed in an organic, lithium salt-containing, mixed carbonate
electrolyte (such as 1 M LiPFs in ethylene carbonate/dimethyl carbonate, "LP30").%* These
cells exhibit a high cell voltage of ca. 3.8V and a specific energy around 150 Wh/kg. A

schematic representation of a LIB is given in Fig. 3.
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Figure 3: Schematic representation of an LIB with a graphite anode and a layered metal oxide

cathode in the charged state.

The chemical reactions occurring at the anode (Eq. 2.5) and cathode (Eq. 2.6) during

discharging are given as:

Li,Cs < 6C + xLi* + xe~ (Eqg. 2.5)

Li;_ MO, + xe™ + xLi* & LIiMO, (Eq. 2.6)

During the first charging cycle, the graphite anode is negatively polarized, and lithium ions
intercalate between the two-dimensional graphene layers. This multi-step lithiation reaction
of graphite yields a theoretic specific capacity of 372 mAh/g and typically occurs at an anode
potential below ca. 0.2 V vs. Li*/Li,®® resulting in a volume expansion of up to 10 %.%¢ This
potential is below the negative stability limit of the carbonate electrolyte, causing an
electrolyte reduction and the formation of the so-called solid electrolyte interphase (SEl).%”
The SEI needs to be penetrable for lithium ions during further cycling but ideally passivates
the anode to block any further electron transport to the electrolyte, preventing further
decomposition.®® Depending on the used electrolyte and electrode, SEI formation onsets at
an anode potential of about 1.0-0.8 V vs. Li*/Li.®® Though the presence of a stable SEl enables
long cyclability of the LIB, it presents several unwanted side effects: (1) During SEI formation,
lithium ions from the cathode are irreversibly consumed, resulting in loss of active material.%®
(2) The insulating SEI layer adds an additional impedance, decreasing the lithium ion transfer
kinetics.®” (3) The SEl increases the risk of metallic lithium dendrite formation on its surface,
especially during fast charging.”® The latter issue poses serious challenges for the development

of batteries for electric vehicles, where fast-charging possibilities are desired. Consequently,
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alternative anode materials are in high demand that show an intercalation potential within

the electrochemical stability window of the electrolyte.

Among alternative anode materials, spinel lithium titanate (LTO, LisTisO12) has been
researched extensively. LTO shows a stable lithiation potential of 1.55 V vs. Li*/Li, which is
within the stability window of most organic electrolytes (Fig. 4). It is a so-called zero-strain
material where intercalation occurs without notable volume expansion (only 0.2 %), enabling
high cycling stability.”> 72 Due to the absence of SEI formation, LTO electrodes show an
improved safety, especially for fast charging/discharging at low temperature.®* The lithiation
reaction of LTO is given by:

Li,TisOy, + 3¢~ + 3Li* & Li;Tis0y, (Eq. 2.7)

The reaction involves the transfer of three electrons and vyields a specific capacity of
175 mAh/g. Because of its lower specific capacity and higher insertion potential compared to
the graphite anode, LIBs with LTO anodes show lower specific energy. The improved power
handling, stability, and safety aspects make the material of high interest for a number of
applications, mostly in the mobility sector,®* for which, among others, the Toshiba Corporation

distributes an LIB using LTO under the brand name Super Charge lon Battery (SCiB™).
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Figure 4: Crystal structure of spinel LTO (A) and characteristic intercalation plateau of

galvanostatically cycled LTO electrode vs. Li-metal (B).

On the cathode side, an often-used material is lithium cobalt oxide (LiCoO:), which yields a
theoretic capacity of 274 mAh/g upon full delithiation (Li1xCoO>, with x=1 for full delithiation).
It has a high delithiation potential above 4 V vs. Li*/Li, low self-discharge and good cycling
stability.” Fully delithiated, the material shows strong lattice distortion leading to unstable

cycling behavior, which is why delithiation is usually limited to x=0.5 at a cut-off voltage of
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4.2V vs. Li*/Li.”» 7* Consequently, the available capacity is only half, around 137 mAh/g.
Furthermore, the material is unstable at temperatures above ca. 200 °C, releasing oxygen that
can react with organic electrolytes and cause thermal runaway.”®> Doping strategies or
replacement of Co with other metals like nickel, manganese, or aluminum can improve the
electrode properties; for example, LiNip.gCoo.15Al0.0s02 (NCA) yields a larger stable delithiation
window up to about 200 mAh/g.”® Cathode materials with higher delithiation potentials like
spinel LiNiosMn150a4 (ca. 4.75 V vs. Li*/Li) that would lead to higher cell voltages and energies,
pose the problem of electrolyte decomposition above potentials of about 4.3 V vs. Li*/Li at the

cathode.%*

Besides LIBs employing the rocking-chair principle of reversible lithium intercalation and
deintercalation in both electrodes, electrode materials utilizing conversion or alloying
reactions have also been explored. The fundamental difference is that the lithiation and
delithiation reactions change the entire structure of the electrode materials by breaking their
chemical bonds.”® The key advantage of such materials is the very high theoretical capacity,
owing to an increase in electron transfers per formula unit. Such battery chemistries involve
fluorine or chlorine compounds,’3 silicon,’® the lithium-sulfur battery’® or the lithium-air (O)
battery with oxygen as a gaseous cathode,’”” which could potentially increase the specific
energy of conventional rocking-chair cells by up to an order of magnitude.”® These conversion
reactions often show a large overpotential, that is, a potential shift between oxidation and
reduction reaction, leading to the decreased energy efficiency of the devices.” A further
obstacle towards their practical use is the high volume change of conversion electrodes upon

cycling.”3

2.4 Pseudocapacitance
2.4.1 Classification of pseudocapacitive materials

The process of charge storage in an electrode can be labeled “pseudocapacitive” when it
exhibits a potential development that is similar to a capacitor, that is, a (quasi-)linear
relationship between potential and stored charge while utilizing Faradaic charge transfer
across the electrode-electrolyte interface (Fig. 5).8° The Pseudocapacitive behavior is clearly
distinguished from battery-like processes, where Faradaic charge transfer occurs mainly at a
fixed potential or within a small potential window, showing clear plateaus in the voltage

profile. Pseudocapacitance has first been described for Ru0,2% 8 and Mn02%3#> in acidic and
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neutral aqueous electrolytes, respectively, and for conducting polymers like polyaniline in
aqueous H,S04.8° Pseudocapacitive charge storage of these materials is often associated with
surface redox reactions between the electrode and the ions in the electrolyte. These reactions
are typically limited to the materials surfaces, as demonstrated for MnO; electrodes in an
aqueous NaSO. electrolyte by observations of manganese binding energy via X-ray
photoelectron spectroscopy.®* Manganese reduces its oxidation state from Mn(+IV) to
Mn(+l11) in MnO; thin films via surface reactions with Na* and H*, whereas the oxidation state
of Mn(+IV) in MnO3 bulk electrodes remains constant.®* The presence of structural water in
RuO; (Ru03-0.5H,0) can further increase this pseudocapacitive effect by making bulk reaction
sites available for Faradaic reactions by enabling proton conduction.®? Pseudocapacitive
behavior does not have to be limited to surface redox reactions, but can also involve
intercalation reactions in the bulk electrode material. A well-explored material exhibiting this
so-called intercalation pseudocapacitance is orthorhombic niobium pentoxide (T-Nb2Os) in
lithium-containing organic electrolyte.?”- 88 Even though the electrochemical signature during
intercalation reactions is not perfectly capacitor-like, the intercalation process is widely
classified as pseudocapacitive (Fig.5).%° Guidelines for the identification of intercalation
pseudocapacitance are (i) low dependency of the capacity from rate, (ii) small voltage
hysteresis between lithiation and delithiation, and (iii) absence of phase transitions during

lithiation that occurs across two-dimensional transport ways in the crystalline network.8%-°1
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Figure 5: Typical cyclic voltammograms and galvanostatic cycles of surface redox pseudocapacitive

(MnO,) and intercalation pseudocapacitive (T-Nb,Os) materials.
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More recently, two-dimensional materials like titanium carbide (transition metal carbide
known as MXene; e.g., TizCz) and molybdenum disulfide (transition metal dichalcogenide; e.g.,
MoS;) were described to exhibit pseudocapacitive behavior in aqueous NaCl solutions owing
to both anion (CI") and cation (Na*) intercalation in their 2D electrode structure, depending on
polarization.?> 23 Other than the intercalation pseudocapacitance observed in T-Nb2Os, these
materials show a distinctly capacitor-like voltage profile. Recent studies on the reversible mass
change of TizC,-MXene electrodes via electrochemical quartz crystal microbalance suggest a
high dependence of its pseudocapacitive charge storage mechanism on the presence of
nanoconfined water molecules between the electrode's 2D-sheets.* All these materials show
pseudocapacitive properties because of their intrinsic properties and are often referred to as

intrinsic pseudocapacitive materials.”!

The term “pseudocapacitance” is often misused to describe materials that show clear redox
plateaus, leading to misrepresentations of their capacity (for example, by reporting their
performance in terms of capacitance).®” It can also lead to confusion when describing device
performances that show an “intermediate” battery/capacitor-like voltage profile since the
voltage profile of a device does not provide adequate information about the nature of the
processes at each individual electrode.’® Brousse et al. argue that the discussion of
pseudocapacitive behavior should be limited to describe processes at individual
materials/electrodes (in half-cells), rather than to describe the performance of a full-cell or
device.’® Nonetheless, recent studies like from Jiang et al. use the term to describe “all
pseudocapacitive MXene-RuO; asymmetric supercapacitor” devices.?” In such a case, when
both individual electrodes were shown to exhibit pseudocapacitive charge storage in half-

cells, it may be preferred to label the device as a “pseudocapacitor”.

2.4.2 Developing pseudocapacitance in materials

Materials that exhibit battery-like electrochemical properties can show pseudocapacitive
properties when they are appropriately nanostructured. This way, most of the crystal sites
where intercalation reactions occur are at or near the electrode-electrolyte interface. In that
case, the pseudocapacitive properties are not intrinsic to the material, but a result of its
structure; the materials are referred to as extrinsic pseudocapacitive.’" °> This effect was
demonstrated using the battery material LiCoO; having crystallite sizes from large bulk crystals

down to domains of just 6 nm. It was discovered that the potential profile is battery-like up to
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about 15 nm and changes gradually to capacitor-like at 6 nm crystallite size.’® The reason for
the pseudocapacitive signal is a disordered structure in the near-surface region of the
nanoparticle, which is responsible for a large dispersion of intercalation site energies,®®

resulting in (de-)intercalation reactions distributed over a wide potential window.

Another material that can exhibit pseudocapacitance is vanadium pentoxide (V20s) in its
amorphous and nanocrystalline orthorhombic form when it presents a high surface area with
a large part of its volume exposed to the electrolyte. This high surface area is obtained by the
synthesis of aerogels or deposition on a carbon substrate to further enhance the conductivity
of the otherwise insulating metal oxide material.?? In a study by Boukhalfa et al., atomic layer
deposition was used to deposit V,0s onto carbon nanotubes, effectively creating a large
electrode-electrolyte interface and still providing sufficient electrical conductivity.”® The
resulting V20s/carbon nanotube hybrid materials exhibited pseudocapacitive lithium
intercalation behavior with high rate performance due to its nanostructure.®® This approach
of hybrid material synthesis is a promising strategy to develop extrinsic pseudocapacitance

and will be discussed in chapter 2.5.

Intercalation pseudocapacitance has been reported for orthorhombic molybdenum trioxide
(a-Mo0s) obtained via reducing to MoOs by Kim et al.1% The latter work demonstrated that
the introduction of oxygen vacancies into the a-MoOs lattice expanded the interlayer spacing,
effectively reducing lithium diffusion limitations. That way, the phase transformation
occurring during the first lithiation cycle in a-MoQO3 was suppressed, and lithiation in MoOsz.
was possible without any phase transformations, which significantly enhanced the rate
handling.’% The study is of particular interest, as it showcases a further possible avenue

besides nanostructuring to introduce extrinsic pseudocapacitance to a material.

2.4.3 Kinetic analysis of pseudocapacitive materials

Pseudocapacitive charge storage offers significantly enhanced power compared to battery-
like processes due to reduced kinetic limitations otherwise encountered for solid-state
diffusion. Using cycling voltammetry experiments at varying potential sweep rates, the kinetic
limitations of the charge storage process can be analyzed (Fig. 6A).8"1%1 The measured current

| at a certain potential is a function of the sweep rate v according to:

I = aqvP (2.8)
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with a and b being variables (Fig. 6B).
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Fig. 6: Iso-potential kinetic analysis (U = -0.75 V vs. carbon) of an intercalation pseudocapacitive

material (data adapted from Ref. 1%%),

There are two defined conditions for the parameter b: (1) In the case of b=1, the current is
directly proportional to the sweep rate, which is associated with a perfectly capacitive
response. (2) If b=0.5, the current response is diffusion controlled and proportional to the

square root of v, in accordance with the Randles-Sevcik equation:

1
/2
I = 0.4463((nF)*2Ac (RD—T) v'/2 (2.9)

with n as the number of electrons transferred, Faraday constant F, surface area A,
concentration of diffusing species ¢, its diffusion coefficient D, universal gas constant R and
temperature T.193 Distinguishing quantitatively between diffusion-controlled and capacitive
currents at a fixed potential is possible by splitting the components of equation (2.8) via

equation (2.10):104 10>
1(U) = kyv + kpv /2 210

By determining the parameters k; and k> at each potential, the individual contributions of
diffusion-controlled and capacitive processes to the overall stored charge can be

quantitatively separated by this so-called iso-potential method.10>

When applying this kinetic analysis tool, the absence of thermodynamic equilibrium during
cyclic voltammetry must be considered. For that reason, the range of probed sweeping rates
vi must be chosen within an appropriate window for the tested system to avoid detrimental

side effects influencing the calculations. As pointed out by Anjos et al., even pure EDLCs will
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exhibit b-values close to 0.5 if the sweep rate is chosen too high, since effects like ion depletion
and Faradaic side reactions pose kinetic limitations (unrelated to solid-state diffusion) to the
system.103 Another problem with the method is the potential-dependency of many redox
reactions from the sweep rate. Opitz et al. recently demonstrated that an unphysical negative
pseudocapacitive contribution is obtained (b<0.5), when applying the iso-potential analysis to
Nb-TiO2 and LTO nanoparticles.1° When calculating with the peak current / at a fixed potential
U over various sweeping rates v;, a shift in peak position or peak width will lead to errors in
current contribution assignment.'% Consequently, the use of iso-potential analysis can be a

powerful tool, but correct application within an appropriate range of sweeping rates is critical.

The importance of sweeping rate adjustment is shown by Augustyn et al. for the analysis of T-
Nb,Os lithium intercalation pseudocapacitance. Thin film electrodes were investigated using
sweep rates between 0.1-20 mV/s.8° For faster operation up to 500 mV/s, when Ohmic
polarization would significantly affect the results, they applied a cavity microelectrode with a
conductive additive to avoid Ohmic losses that would have distorted the analysis.?® That way
it was possible to demonstrate the absence of kinetic solid-state diffusion limitations in the T-

Nb,Os system over a wide range of sweeping rates.

An example for the problematic use of this tool is the choice of unrealistically slow sweeping
rates. In the case of very slow sweeping, the system is given enough time to approach
thermodynamic equilibrium at each potential, even though solid-state diffusion is taking
place. Then, the process can seem capacitor-like (b close to 1), when in fact it is battery-like.
Thus, the investigation of a “high-power” pseudocapacitive material should use a range of
sweeping rates that fits this description of high power, for example, by charging/discharging

within minutes.?®

2.5 Hybrid electrochemical energy storage

As illustrated in Fig.1, EDLC and battery technologies show distinct electrochemical
properties. Combining them by a hybridization approach holds the potential of creating novel
materials or cells with high specific energy, power and stability.'%” Synergistic interplay
between the individual components can only be obtained if the characteristics detrimental to
each technology can be suppressed.’ In this chapter, the merits of hybrid materials will be

introduced (a thorough discussion takes place in the review-type paper in chapter 4.4) and
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the working mechanisms of hybrid devices including potential pitfalls will be analyzed

according to the state-of-the-art.

2.5.1 Hybrid materials for EES

Faradaic materials are often electrically insulating and require the addition of a conductive
additive like carbon black when used as an electrode in an EES cell. In battery research as well
as in commercialized products, this is conventionally achieved by a physical mixing process
under the addition of a polymer binder material. The individual components of the electrode
are connected via particle-particle contacts and held together by the binder. Such an electrode
can be defined as a composite electrode, as its macroscopic properties are determined by the
sum of their components properties (Fig. 7).1> 1% This approach can cause detrimental effects
such as clustering of the individual components that disrupt electrical percolation, increase
impedance and can lead to local stresses and degradation.'> 1% This effect was described by
Kerlau et al., who studied the degradation of NCA/carbon black composite cathode materials
by impedance spectroscopy, Raman spectroscopy, and atomic force microscopy.'®® They
found that upon cycling, increased local contact resistances change the electron pathways
within the composite electrode and lead to non-uniform charge distribution, loss of contact

of NCA with the conductive backbone, and electrode degradation.'%®
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Figure 7: Schematic illustration of electrode synthesis strategies: Hybrid electrode material with
chemical bonding between components on a molecular scale (left), physically mixed components

yield composite electrode (right). Reproduced from Ref.'> with permission from John Wiley and Sons.

Consequently, the homogenous distribution of the electrode components is important to

ensure stable cycling behavior. This can be accomplished by material hybridization, that is,
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blending of the Faradaic material and conductive carbon on a molecular scale by creating of
chemical bonding between the two phases (Fig. 7). That way, a much more stable and intimate
interface between the components is created, and charge transfer properties are enhanced.®®
One can use a high surface area carbon component (typical for EDLCs) as a substrate for
deposition of Faradaic material which also leads to an additional nanostructuring of the
Faradaic material. The latter reduces the intercalation distances to the reactive sites and may
introduce pseudocapacitive properties.1°% 110 Other pathways for hybrid material synthesis
include the co-synthesis of both the Faradaic and the conductive phase via conversion or sol-

gel reactions (Fig. 8).1> More discussion of this topic is provided in chapter 4.4.
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2.5.2 Hybrid supercapacitor devices

The merging of EDLC and battery technology on a device level can be achieved by combining
two electrodes with different charge storage mechanisms: One electrode facilitating EDL

formation and one electrode being capable of Faradaic reactions. These hybrid
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supercapacitors (HSCs) or asymmetric supercapacitors can achieve a specific energy greater
than EDLCs and higher specific power and cycling stability compared to LIBs.!? The most
common type of HSC uses a capacitive activated carbon positive electrode (cathode) and a
lithium intercalation host as negative electrode (anode), with LIB materials like graphite and
LTO being a common choice.'** 112 This kind of hybrid supercapacitor has also become known
as a lithium-ion capacitor (LIC).1*3 LICs use an organic electrolyte with a dissolved lithium salt
that provides lithium ions for intercalation at the anode and anions like PFs or ClO4” for EDL
formation at the cathode. Apart from these LIC cells, a vast number of different HSC materials
and combinations can be found in the literature, such as aqgueous manganese oxide/activated

114 or aqueous nickel hydroxide/porous graphene cells.'* This thesis will focus on

carbon cells
the above described LIC type using ion intercalation at the anode, as it appears to be the most
promising HSC toward application and has already been commercialized by the company JM

Energy.

In an LIC cell, the anode operates at a relatively constant intercalation potential, whereas the
cathode exhibits a linear potential development. Consequently, the maximum cell voltage that
can be achieved is given by the difference between intercalation potential and stability limit
of the electrolyte at the activated carbon cathode.”*> To maximize the voltage and
corresponding energy of the LIC, an anode with a low intercalation potential is beneficial and
graphite anodes (intercalation below ca. +0.2 V vs. Li*/Li) are a common choice.? Considering
an average potential limit around +4.0V to +4.2 V vs. Li*/Li for organic electrolytes at the
cathode, LIC cell voltages up to 4 V are feasible for the graphite/AC electrode pair. Like in a
LIB, the SEl is formed at the graphite anode during the first cycle consuming lithium ions. In
absence of a lithium-containing compound cathode as the lithium source, lithium ions are
consumed from the electrolyte, effectively reducing its lithium concentration and decreasing
its lithium ion conductivity. To avoid this detrimental effect in an LIC, the graphite anode has
to be prelithiated, for example, by using a sacrificial lithium metal electrode in the cell.1> 116
This step significantly complicates cell design and research is directed towards facilitating the
prelithiation process. Jezowski et al. recently reported on the use of a sacrificial organic lithium
salt (3,4-dihydroxybenzonitrile dilithium) that can deliver an appropriate amount of lithium
ions in operando during the first charging step, without negatively impacting on the LIC

performance.!’
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Besides the issue of prelithiation, the presence of the SEl at the graphite anode brings the
same issues as for LIBs, namely, a reduced power handling ability because of low lithium
mobility through the SEI and safety concerns at high rates and low temperatures.’® Using LTO
is a viable alternative to increase LIC power and safety but its use comes at the cost of reduced
cell voltages to around 2.5V to 3V in organic electrolytes. A typical voltage profile of an LIC
cell using LTO and activated carbon is shown in Fig. 9, including the different characteristic

potential developments of each electrode upon charging and discharging.
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Fig. 9: Voltage profile of LIC using LTO and activated carbon (electrolyte: 1 M LiClO4 in acetonitrile).
The potential development of each individual electrode is monitored via a spectator reference

electrode. Data adapted from Ref. 4.

To determine the maximum possible cell voltage, the electrochemical stability limit of the
used electrolyte at the activated carbon cathode must be evaluated. A suitable method is the
so-called R-value or S-value test (R stands for reversibility, S for stability), as proposed by Xu
et al. and Weingarth et al., which is a mathematical tool to determine irreversible currents
from parasitic Faradaic contributions during cyclic voltammetry experiments that indicate
electrolyte decomposition.!'® 1° For that purpose, the charge Q; from the positive and
negative currents during sweeping to a certain vertex potential are calculated. To evaluate the

positive and negative potential stability limits, the values Spos and Speq are calculated as:
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According to Xu's criterion, the stability limit is reached at the vertex potential, where this S
value is greater than 10%, which indicates Faradaic contributions above 10 %.'*® Weingarth
modified the accuracy of the method by calculating the second derivative of S with the change
in vertex potential d?S/dU?.**° By this way, constant background currents that occur at all
potentials and leakage currents that linearly increase with the potential are removed from the
analysis and the onset of Faradaic decomposition of the electrolyte is detected more

precisely.!'® The proposed stability criterion is when the S-value surpasses 5%.1%°

The optimized design of an LIC cell must consider the individual properties of each electrode
to synergistically combine them into one device. When current is applied to the cell, the
charge is equally distributed among both electrodes; yet, only when both electrodes have the
same total capacity, they can both reach a state-of-charge of 100 % at the maximum cell
voltage. Unequal distribution of electrode capacities leads to reduced maximum cell voltages
at which the electrochemical stability limit at either anode or cathode is reached or exceeded.
The capacity of the anode (Faradaic) is usually higher than of the cathode (capacitive).
Therefore, balancing is achieved by adjusting the masses of both electrodes, usually by
"oversizing" the AC cathode mass.'** The optimum mass ratio between cathode mass m. and

anode mass m. is:

m C_
—-= (2.12)
m_ C,

with C. and C. being the maximum specific capacity of the anode and cathode, respectively.'

Adjusting the electrode mass ratio according to the maximum specific capacities of each
electrode neglects kinetic disparities between the electrodes: The capacitive electrode is
characterized by high power capability, whereas the intercalation electrode often shows
kinetic limitations at high charge/discharge rates. At increased LIC cycling rates, the capacity
retention of the cathode will be higher than of the anode, effectively decreasing the potential
window in which the cathode operates and possibly leading the anode to shift outside of its
stable potential window if the maximum cell voltage is not properly adjusted. This effect is
caused by the different kinetic properties of both charge storage mechanisms and cannot be

fully avoided. The effect is showcased for an LIC with activated carbon and LTO electrodes that
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is cycled at a slow rate (Fig. 10A) and a high rate (Fig. 10B). The working potential windows of

anode and cathode drastically change as a function of the cycling rate.
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Figure 10: Voltage profile of an LIC with LTO anode and activated carbon cathode (electrolyte: 1 M Li-
TFSI in propylpyrrolidinium bis(trifluoromethylsulfonyl)imide) cycled at 25 mA/g (A) and at 500 mA/g
(B). The operating potential window of the LTO anode drastically increases at a higher rate because

of the kinetic imbalance between the electrodes. Data adapted from Ref.*3,

For fundamental research on LICs, the use of a third electrode as a reference is recommended,
so that the potential development at anode and cathode can be monitored individually.*?° In
principle, maximization of the usable capacity of the LIC electrodes can only be achieved for
one certain cycling current, at which the mass adjustment calculation was conducted. For this
reason, large disparities in rate handling ability of anode and cathode should be avoided in
LICs; and anode materials with high power capability are in particular demand.'?! Materials
exhibiting pseudocapacitive intercalation characteristics with high rate handling behavior are
attractive candidates for LIC anodes. As such, hybrid materials have moved in the focus for
use as LIC anodes, with niobium pentoxide/porous carbon fiber, molybdenum dioxide/carbon
nanotubes, and LTO/porous carbon showing particularly attractive electrochemical

performances.’? 88 122

2.6 Atomic layer deposition
2.6.1 Working principle

Atomic layer deposition (ALD) is a vapor phase coating technology that enables thin film
deposition of various materials, including metal oxides,*?3 124 metal nitrides,'2> 1% transition

or noble metals,*?” 128 and most recently metal sulfides.2>131 |t became first known as atomic
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layer epitaxy (ALE) and was introduced by Tuomo Suntola in 1974.132 ALD is characterized by
precise control over film thickness on an Angstrém level and high film conformity, owing to its
binary, self-limiting reaction cycles.'33 134 Every ALD reaction cycle (=ALD-cycle) is divided into
two half-cycles. During the first half-cycle, a precursor is pulsed into the evacuated reactor
and given a certain time to fully adsorb onto the sample surface, forming a self-limiting
monolayer, before the reactor is purged with inert gas.'3* The most common ALD precursors
are metal-organic compounds (desired metal with organic ligands) or metal tetrachlorides.
The pulse time required for full adsorption and monolayer formation mainly depends on the
surface area of the sample. It can range from below one second for flat surfaces to about 20 s
on highly porous samples, as is later demonstrated in this thesis. In the second half-cycle, a
counter-reactant is introduced to the chamber, reacting with the precursor and forming a
monolayer of the desired material (Fig. 11A).13* One of the most frequently studied ALD
systems is the deposition of alumina (Al>Os), which is considered a model system sharing close
similarity to the reaction mechanisms of ALD for other metal oxides.'?> 133 The surface
reactions using metal-organic trimethylaluminum (AI(CHs)s) and water take place according
to the following mechanism, with the asterisks indicating a surface species:'33
(1) ALOH* + AL(CH3)3; — AlOAI(CH3)3 + CH,

(2.13)
(2) AICH: + H,0 — AlOH* + CH,

Adjusting the number of ALD-cycles will precisely control the film thickness. To ensure the
formation of a uniform monolayer on the substrate, the availability of anchoring sites on the
substrate surface is critical. Precursor molecules usually adsorb on functional groups or
defects, whereas, for example, the inert surface of a graphene layer or carbon nanotube
surface is inaccessible for adsorption.'3> 136 |n this case, a pre-functionalization of the

substrate must be carried out,'3’ for example, by treatment in acidic media.*®

In many cases, thin films deposited by ALD exhibit an amorphous structure. When depositing
vanadium oxide on carbon nanotubes, Boukhalfa et al. found vanadium present in several
oxidation states.”® When a certain crystal phase is desired, a post-deposition annealing step
may be necessary. For metal oxides, higher oxidation states can be achieved by annealing in
oxygen or carbon dioxide atmospheres, whereas argon and hydrogen annealing can lead to a

reduction in oxidation state.?2 Mixed ALD systems containing several metal oxides can form
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solid solutions after post-deposition annealing.23® A detrimental effect of the annealing step

is crystal growth that may cause drastic changes to the film morphology.'??

Condensation of Decomposition
@ precursor of precursor
(&)
>
O .
— ALD Window
(]
o layer-by-layer
e
- growth
= . .
e Incomplete reaction Desorption
(O | of precursor of precursor
carbon carbon
Tem perature

Figure 11: Reaction mechanism of one ALD-cycle for vanadium oxide deposition from vanadium(V)-
oxytriisopropoxide precursor and water counter-reactant on carbon substrate (A). ALD window with

ideal layer-by-layer growth, non-ideal growth conditions (B, inspired by Ref. 133 139),

An ideal ALD behavior shows a linear relation between film thickness and number of ALD-
cycles. It is only achieved in a certain deposition temperature window, which is mostly found
between 50-350 °C, depending on the used precursors (=ALD window). This ALD window must
be determined for each pair of precursor and counter-reactant. For that purpose, ALD
experiments with in situ quartz crystal microbalance measurements are employed,
monitoring the growth per ALD-cycle (GPC, in A/cycle) in real time.140 141 At temperatures
outside the ALD window, unwanted effects like poor reaction kinetics, precursor
condensation, precursor desorption, or precursor decomposition impede film growth or lead

to non-conformal gas phase deposition (Fig. 11B).*3*

ALD processes can be classified depending on the used counter-reactant as thermal ALD or
plasma-enhanced ALD (PEALD). Thermal ALD reactions are closely related to chemical vapor
deposition (CVD) chemistries but instead of gas phase reactions of the two reactants in CVD,
ALD uses the sequential application of the reactants.'*3 Thereby, the reaction becomes self-
limited. For deposition of metal oxides, oxygen sources like H,0, O3, O,, or H,0; are often used
as counter-reactants. For metal nitride deposition, NH3 is most commonly found, and for
metal sulfide deposition, H,S or dimethyl disulfide (CH3S,CHs) have been used.?® 130, 133,134
PEALD is mostly used to produce pure metal coatings. In this case, hydrogen plasma is

employed to fully reduce the precursors.’33 Oxygen and nitrogen plasma can also be used to
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synthesize metal oxides and nitrides, respectively. In most cases, thermal ALD methods are

preferred because of less harsh effects on the sample surfaces.3*

Other thin film coating techniques related to ALD are CVD and physical vapor deposition
(PVD). ALD and CVD share many similarities: both are non-line-of-sight deposition techniques
that allow for deposition on high aspect ratio and/or porous samples. The main difference
between them lies in the sequential character and lower deposition temperature of ALD,
offering higher conformality, enhanced access to high aspect ratio structures, and milder
sample conditions.’3* Contrarily, PVD is a line-of-sight deposition technique that vaporizes
precursors from a solid or liquid source (=target) by evaporation or sputtering and transports
142

the atoms or molecules on a direct pathway to the substrate via vacuum or plasma streams.

Some characteristics of the different deposition techniques are summarized in Table 2.

Table 2: Summary of typical synthesis parameters of ALD, CVD, and PVD.110: 142-144

ALD CVvD PVD
Deposition type non-line-of-sight non-line-of-sight line-of-sight
Deposition 50-350 °C <1200 °C 150-500 °C
temperature
Deposition rate 0.1-1 nm/min 1-100 nm/min 50-500 nm/min
Coating of porous yes limited no
substrates

2.6.2 Applications

ALD is employed in a variety of fields today, both in research and in industrial applications.
Owing to its unique features, ALD can increase both the fundamental understanding of many
technologies and further push their performance.'3 With increasing miniaturization in
electronics, the demand for high precision coating techniques is steadily growing. Materials
synthesized via ALD are attractive for applications in the fields of energy conversion*> and
energy storage.'** In photovoltaics, ALD is employed for synthesizing a wide range of cell
elements, including absorber materials, buffer layers, or passivating films. Recently, Bush et
al. demonstrated a 23.6%-efficient monolithic perovskite/silicon tandem solar cell owing to a
tin oxide buffer layer synthesized by ALD. A similar approach was also used by Baena et al.1#®

and Albrecht et al.'’, who benefited from the low deposition temperature of ALD to produce
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a planar electron selective layer of tin oxide. For fuel cells, ALD is particularly interesting to
deposit the electrolyte in solid oxide fuel cells (SOFCs). Shim et al. demonstrate the synthesis
of yttria stabilized zirconia (YSZ) by deposition of zirconia and yttria, where adjusting the pulse
ratio of Y and Zr precursors allowed to precisely tune the final stoichiometry of the solid
electrolyte layer.'*® Especially thin solid electrolyte layers with controlled composition are
important to reduce the resistance and therefore allow lower operation temperatures of the
SOFC.13%In the area of electrochemical energy storage, ALD has been shown to be an effective
protective coating for active materials. Jung et al. showed that the deposition of protective
alumina coatings on graphite anodes in LIBs significantly improved the performance stability,
especially at an elevated temperature of 50 °C.}*° Kozen et al. used ALD to stabilize lithium
metal anodes in LIBs by applying a 14 nm protective coating that prevented surface corrosion
of lithium.**° Lithium-sulfur battery technology suffers from low stability and efficiency arising
from polysulfide formation at the cathode and their shuttling to the anode during cycling.*>!
Yu et al. demonstrated that thin protective layers ZnO or MgO on the active sulfur material
deposited via ALD can significantly enhance the stability and efficiency by isolating

polysulfides within the cathode region.>!

ALD is also an attractive tool for the synthesis of hybrid materials, where thin layers of Faradaic
material are deposited on a high surface area conductive carbon substrate. That way, a large
interface between electrode and electrolyte can be realized, leading to enhanced kinetics. The
main challenge is the high aspect ratio of the substrate in form of the carbon porosity, which
can lead to the blocking of pores at an increased number of ALD-cycles. Therefore, most
literature focusses on ALD coating of carbons with an open porosity and external surfaces,
such as carbon nanotubes.®® Carbons with internal porosity, like activated carbon or
mesoporous carbon, however, offer higher specific surface areas, potentially leading to even

larger electrode-electrolyte interfaces.

Within this thesis, the suitability of different forms of carbon with drastically different pore
structures will be analyzed. Moreover, ALD of different Faradaic materials (vanadium oxide,
titanium oxide, and molybdenum oxide), as well as mixed oxide systems (vanadium-titanium

oxide), and different post-deposition thermal treatments will be explored.
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The current state-of-the-art in electrochemical energy storage is very advanced concerning
electrical double-layer capacitors and rocking-chair lithium-ion batteries. Yet, a combination
between both technologies, combining the desired properties of high specific energy, high
specific power, and long cyclability remains to be fully realized.

Materials hybridization to combine a high surface area, conductive carbon with a Faradaic
material enabling redox reactions, is being heavily explored. Atomic layer deposition is a very
promising approach to introduce thin films of metal oxides onto high surface area carbons.
That way, large electrode-electrolyte interfaces can be combined with electric conductivity.
The state-of-the-art research on ALD hybrid materials focusses on substrates with outer
surfaces, such as carbon nanotubes. Carbon nanotubes only offer a comparatively small
specific surface area and cannot prevent sintering of the Faradaic material during post-
deposition thermal annealing. In the first study (Chapter 4.1), carbon substrates with a high
internal surface area will be explored by using representatives of carbons with large internal
porosity (activated carbon) and carbons with only outer surface (carbon onions) to deposit
varying amounts of vanadium oxide via ALD. Based on the gathered knowledge, in a second
study (Chapter 4.2), a mesoporous carbon substrate will be tailored that combines a large
internal surface area with sufficiently large pores for deposition, showing optimized
properties when being coated via ALD. Benchmarking of all hybrid materials as LIB electrodes
will investigate the impact of carbon substrate porosity on the resulting electrochemical
performance (Fig. 12A)

In a third study (Chapter 4.3), hybrid electrodes of carbon and metal oxides are compared to
composite electrodes of the same materials that have been mechanically mixed. Our data
provide direct comparison between hybrid materials and comparable, conventionally
synthesized electrodes. The influence of hybridization on electrochemical kinetics, voltage
profiles, and expansion behavior of the electrodes during electrochemical cycling will be
investigated (Fig. 12B).

After thoroughly analyzing the impact of carbon porosity on the resulting hybrid material
properties, the carbon / metal oxide hybridization approach is conceptualized and set into
broader context of literature (Chapter 4.4). This study discusses the advances in the field of
carbon/metal oxide hybrid materials for electrochemical energy storage applications and is

focused on the role of the carbon phase. Different synthesis strategies for the combination of
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the components on a nanoscopic scale are presented and the importance of a carefully
designed carbon phase is highlighted. The advantages and disadvantages of the synthesis
paths are evaluated and possibilities to overcome the latter are proposed (Fig. 12C).

In the field of solid oxide fuel cells, it has been shown that ALD is a powerful tool to create
mixed metal oxides with a defined composition. However, this approach has never been
transferred to the field of electrochemical energy storage. In a further study (Chapter 4.5), we
will employ this approach to create different mixtures of vanadium oxide and titanium oxide
that were stacked in a layer-by-layer manner. By post-deposition annealing, titanium will be
built into the vanadium oxide structure, manipulating the lattice spacing and offering changes
in lithium intercalation capacity (Fig. 12D).

In the next part of the thesis (Chapter 4.6), the compilation of hybrid supercapacitor cells will
be thoroughly investigated. Molybdenum oxide will be explored as an anode material for
lithium-ion capacitors for the first time. Using ALD, carbon nanotube/molybdenum oxide
hybrid materials will be synthesized, and different crystal structures of molybdenum oxide will
be obtained by post-deposition thermal annealing in different gas atmospheres. Employing
different hybrid materials as anodes in LICs will provide insights into the required properties
to obtain high device-level performance, which we will be linked conclusively to crystal
structure and electrochemical half-cell properties (Fig. 12E).

After having thoroughly optimized the electrode materials, an especially formulated
electrolyte will be employed to further enhance the performance of hybrid supercapacitor
cells (Chapter 4.7). We will use ionic liquid electrolytes with dissolved lithium and sodium salts
in a hybrid cell with an LTO anode and activated carbon cathode for the first time. Our
approach holds promise, as it is aimed to enable a widened stable electrochemical potential
window for the cathode, effectively increasing the cell voltage and thereby the energy of the
device. Also, the operation temperature window of the hybrid supercapacitor cell can be

increased (Fig. 12F).



3 Outline

31

A Influence of carbon porosity on electrochemical
performance of hybrid materials

Study 1

o Hybrid materials synthesis via ALD of vanadium oxide on
different carbon substrates

o Comparison of carbons with internal surface area
(activated carbon) and carbon with exclusively external
surface area (carbon onions)

Study 2

o Tailoring an optimized carbon substrate with internal
mesopores in the range of 5-20 nm to avoid pore blocking

o Electrochemical benchmarking
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B Scale-up via hydrothermal synthesis and comparison
hybrid vs. composite electrode

o Hydrothermal synthesis of carbon onion/vanadium oxide
hybrid materials as an easy to scale-up method

o Comparison to composite electrodes of hydrothermally
synthesized vanadium oxide with mechanically added
carbon onions

o What is the influence of hybridization on electrochemical
performance?

Hybrid material

Carbon onion

Conventional electrode

o+ »

Vanadium oxide

C Design strategies for carbon/metal oxide hybrid
materials

o Reviewing different synthesis techniques for
carbon/metal oxide hybrid materials

o Improving the understanding for the role of carbon in
hybrid materials for electrochemical energy storage

o Assessment of advantages/disadvantages of various
synthesis approaches, proposing strategies to overcome
the latter

D Mixed metal oxide synthesis by ALD to manipulate
lattice parameters

o Deposition of alternating layers of vanadium oxide and
titanium oxide on carbon onions

o Post-deposition annealing to obtain mixed metal oxides

o Analysis of lattice parameters by XRD

o Electrochemical benchmarking to reveal changes in
lithium intercalation capacity

o High performance as anodes in hybrid supercapacitor full-
cells
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E Carbon nanotube/molybdenum oxide hybrids with

different crystal structures

o Synthesis of carbon nanotube/molybdenum oxide hybrid
materials

o Adjusting molybdenum oxide crystal structure by
annealing in different atmospheres

o Analyzing the impact of crystal structure on
electrochemical performance in half-cells and as anodes
in lithium-ion capacitor full-cells
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F Developing high voltage hybrid supercapacitor by use
of ionic liquid electrolyte

o Formulating novel ionic liquid electrolyte for lithium- and
sodium-ion capacitors

o Dissolving lithium- or sodium-salt to provide ion source in
the device

o Expansion of accessible cell voltage window, operation
temperature window, and cell safety
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Fig. 12: Chapter overview.
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4 Results and Discussion

4.1 Enhanced electrochemical energy storage by nanoscopic
decoration of endohedral and exohedral carbon with vanadium oxide
via atomic layer deposition

4.2 Tailored mesoporous carbon/vanadium pentoxide hybrid
electrodes for high power pseudocapacitive lithium and sodium
intercalation

4.3 Tuning pseudocapacitive and battery-like lithium intercalation in
vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor
anodes

4.4 Design of carbon/metal oxide hybrids for electrochemical energy
storage

4.5 Vanadia—titania multilayer nanodecoration of carbon onions via
atomic layer deposition for high performance electrochemical energy
storage

4.6 Atomic layer deposited molybdenum oxide/carbon nanotube
hybrid electrodes: Influence of crystal structure on lithium-ion
capacitor performance

4.7 High voltage asymmetric hybrid supercapacitors using lithium- and
sodium-containing ionic liquids
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ABSTRACT: Atomic layer deposition (ALD) is a facile
process to decorate carbon surfaces with redox-active nano- .sg"

layers. This is a particularly attractive route to obtain hybrid °
electrode materials for high performance electrochemical
energy storage applications. Using activated carbon and carbon
onions as representatives of substrate materials with large
internal or external surface area, respectively, we have studied
the enhanced energy storage capacity of vanadium oxide
coatings. While the internal porosity of activated carbon readily
becomes blocked by obstructing nanopores, carbon onions
enable the continued deposition of vanadia within their large
interparticle voids. Electrochemical benchmarking in lithium
perchlorate in acetonitrile (1 M LiClO,) showed a maximum
capacity of 122 mAh/g when using vanadia coated activated
carbon and 129 mAh/g for vanadia coated carbon onions. There is an optimum amount of vanadia between 50 and 65 wt % for
both substrates that results in an ideal balance between redox-activity and electrical conductivity of the hybrid electrode.
Assembling asymmetric (charge balanced) full-cells, a maximum specific energy of 38 Wh/kg and 29 Wh/kg was found for
carbon onions and activated carbon, respectively. The stability of both systems is promising, with a capacity retention of ~85—
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91% after 7000 cycles for full-cell measurements.

1. INTRODUCTION

Supercapacitors are devices for rapid and efficient electro-
chemical energy storage,’ distinguished by high specific power,
fast charge and discharge, and long lifetimes. However,
supercapacitors suffer from an energy density significantly
below state-of-the-art lithium-ion batteries, commonly by an
order of magnitude.” The most common variety of super-
capacitors, so-called electrical double-layer capacitors (EDLCs),
store energy via reversible ion electrosorption at electrically
charged fluid/solid interfaces of high surface area carbon
electrodes.> So far, various carbons and carbon nanomaterials
have been extensively studied including activated carbons
(ACs),"”® carbon onions (or onion-like carbon, OLC),%’
¢ graphene,lo'11 carbon nanofibers,'*"?
and carbon aerogels.'* The most common group of electrode
materials is ACs because of their low cost and high specific
surface area (SSA), which can reach up to about 3000 m?/
g% enabling specific double-layer capacitances of typically
100—200 F/g (equal to 33—66 mAh/g) in aqueous electro-

lytes.”

8
carbon nanotubes,”

-4 ACS Publications  © 2016 American Chemical Society
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With a common diameter in the micrometer range, the high
intraparticle porosity (inner porosity) of AC particles may
reduce the high power performance of AC-based super-
capacitors due to ion transport limitations.'” Thus, materials
with a large interparticle porosity (outer porosity originating
from a nanoscopic primary particle size) are highly attractive,
for example, carbon nanotubes, graphene, or carbon
onions.””"® In particular, carbon onions have been found as
promising candidates for high power supercapacitor electrodes.
Structurally, carbon onions are small carbon quasi-nanospheres
composed of concentrically stacked graphitic shells,"” usually
without inner porosity and surface area values in the range of
200—600 m*/g* A facile and scalable synthesis route for
carbon onions is the thermal annealing of nanodiamond
powders in inert atmosphere or vacuum.”' During the
annealing process, sp>-hybridized nanodiamond is progressively
converted to quasi-spherical sp*-carbon onions, yielding

Received: February 20, 2016
Revised: ~ March 27, 2016
Published: March 28, 2016

DOI: 10.1021/acs.chemmater.6b00738
Chem. Mater. 2016, 28, 2802—2813


pubs.acs.org/cm
http://dx.doi.org/10.1021/acs.chemmater.6b00738

Chemistry of Materials

particles of about $—10 nm in diameter.'” Given the moderate
surface area (typically four-times smaller than activated
carbon), carbon onions themselves only provide a specific
capacitance of about 20—40 F/g (= 7—14 mAh/g) in aqueous
electrolytes.” Yet, their electrical conductivity is about one
order of magnitude higher than for AC,** which makes them
attractive as electrode materials for high-rate supercapaci-
tors,">*> conductive additive,”> or substrate for hybrid electro-
des employing redox-active materials such as metal oxides,”*
electroactive polymers,” or surface functional groups.”®

With the limitation of double-layer capacitance to around 0.1
F/m” (normalized to electrode surface area), the energy storage
capacity can be severely enhanced by use of redox-active
materials.””” The resulting devices benefit from fast and
reversible redox reactions or intercalation processes between
the ions and the surface of the electrode.”® Depending on the
charge-vs-voltage profile, redox-active media can be separated
in capacitor-like systems (also known as pseudocapacitors; e.g.,
MnO,, RuO,, or MXene)*” ™! and battery-like systems (with
clearly visible redox peaks; e.g, Co(OH),, polyaniline, or
quinones).””> Materials enabling Li* intercalation commonly
belong to the latter group, for example, vanadium pentoxide
(V,05).77*° The distinction between capacitor- or battery-like
behavior determines the choice of the most suitable perform-
ance metrics; while capacitors and intrinsic pseudocapacitive
materials can be characterized by their specific capacitance
(unit: F/g), the performance of battery-like devices should be
described by means of specific capacity (unit: mAh/g) because
of the nonconstant charge-vs-potential relation. For comparison
between the two, the use of specific energy (Wh/kg) is
preferred.***”

The implementation of redox-active media to carbon
electrodes faces many challenges. The direct use of most
redox-active materials is not favorable given their poor electrical
conductivity and low charge propagation.””® Mixtures of
conductive materials and redox-active materials, such as metal
oxides, are often complicated by the need for small particle
sizes and highly homogeneous phase distribution for optimized
performance. The final goal is a hybrid electrode of highly
conductive substrates decorated with thin layers or small
particles of redox-active materials.”*” By this way, the high
specific energy of battery-like devices may be matched with a
rate handling performance known from capacitor-like systems.
For that purpose, carbon nanotubes,**™** carbon onions,>**
and metal nanowires™* have been investigated, among others,
as substrate materials. The outer surface of these materials can
be effectively decorated with redox-active materials by vapor
deposition techniques like chemical vapor deposition and
atomic layer deposition (ALD),*"***’ hydrothermal syn-
thesis,””** or drop-casting methods."’

ALD is a very versatile method to deposit nanoscale films of
metal oxides on substrate surfaces. The process exhibits
enhanced control over thickness and conformity of the
fabricated coating due to its cyclic and self-limiting character."’
Therefore, ALD has emerged as a promising tool to improve
the performance of electrochemical devices, especially by
decorating carbons with redox-active material, where a so-
called nonline-of-sight deposition technique is required.’’ For
example, Boukhalfa et al. coated carbon nanotubes with
vanadium oxide via ALD and showed a linear increase in the
tube diameter with increasing number of ALD cycles, thereby
demonstrating the high conformity of the layer and high
controllability of the thickness.*’ The amount of deposited
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vanadia strongly influenced the electrochemical performance of
the hybrid electrode: for 100 ALD cycles, which corresponded
to a layer thickness of about 10 nm, a specific capacitance of
530 F/g (177 mAh/g) in aqueous LiCl electrolyte was
measured at a scan rate of S mV/s. Yet, for 500 ALD cycles,
this value dropped by nearly 90% to about 60 F/g (20 mAh/g).
The authors explained this behavior with the limited access of
the electrolyte ions to the bulk of the coating and the drop in
electrical conductivity with increasing metal oxide content.

Our work has been sparked by the pioneering work, among
others, from the Yushin group*' regarding the highly promising
enhancement of electrochemical energy storage capacity by
ALD decoration on carbon nanotubes as well as by the most
recent work of Daubert et al,,"” employing ALD on nanoporous
carbons. Here, we present for the first time a comprehensive
study on the impact of endohedral (AC) and exohedral (OLC)
surface morphology on the ALD growth mechanism and the
resulting electrochemical performance. Especially decorating
directly free-standing polymer-bound electrodes is highly
attractive because of beneficial electrical contacting between
the carbon particles and the enhanced creation of an electrically
conductive network. For contrast: metal oxide coated particles
may increase the electrode resistance because of the high
resistance of many redox active materials. Furthermore, vanadia
nanocoatings are not fully stable in solvents used for electrode
production, which is of no concern when already assembled
electrodes are subject to the ALD process. The main issue with
employing materials like activated carbon is related to clogging
nanopores  in micrometer-sized particles, which may drasti-
cally reduce the energy storage capacity and even more severely
limit the power performance. Also, it has not yet been
established what the actual performance difference will be when
comparing materials with high intraparticle porosity versus
materials with just external surface area to survey competing
effects of number of active sites versus ion transport.

2. EXPERIMENTAL SECTION

2.1. Preparation of Carbon Substrate Electrodes. OLCs were
synthesized by thermal annealing of detonation nanodiamond with a
diameter of 4—6 nm (NaBond Technologies), as described else-
where.”® The annealing process of the nanodiamond powder was
carried out in a graphite crucible using a water cooled high
temperature furnace with tungsten heater (Thermal Technology
Inc.) in argon atmosphere at 1700 °C for 1 h (heating/cooling rate: 20
°C/min). Commercial YP-80F (Kuraray Chemicals Co.) was chosen
as activated carbon (AC).

To fabricate free-standing carbon electrodes, carbon powder was
mixed with S wt % (AC) or 10 wt % (carbon onions) of
polytetrafluoroethylene binder (PTFE, 60 wt % solution in water,
Sigma-Aldrich) and ethanol. The obtained slurry was then rolled to a
50—60 pm thick electrode. Electrodes were dried in a vacuum oven (2
X 10° Pa) for about 6 h at 120 °C prior to further use. Further
information on the electrode fabrication procedure is found in ref S1.

2.2. ALD of Redox-Active Material on Carbon Substrate
Electrodes. The coating process was performed with an open-load
ALD system (OpAL; Oxford Instruments). The reactor is surrounded
by a custom-made inert gas glovebox (M. Braun Inertgas-Systeme) to
ensure dry loading of the samples. Vanadium oxide layers were
synthesized from vanadium(V)-oxytriisopropoxide (VOTIP; SAFC
Hitech) as metalorganic precursor and deionized water vapor (Milli-Q,
Merck) as reactant gas. The VOTIP pot was heated to 45 °C, and the
gases entered the ALD reactor during successive 20 s dosage steps.
After each dosage step, argon was used to purge the reactor for 10 s. At
the end of each cycle, the reactor was evacuated for 8 s. The table
temperature inside the reactor was kept at 180 °C. The PTFE-bound
carbon electrodes were mounted vertically on the heated table so that
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Figure 1. Scanning and transmission electron micrographs of carbon onion hybrid electrodes coated with (A, B, C) 50 ALD cycles and (E, F, G) 200
ALD-cycles as well as (D, H) schematic illustrations of the respective coating structures.

the precursor and reactant gas were able to penetrate the electrodes
from both sides. Before the deposition process, the electrodes were
treated with oxygen plasma for S min to enrich their surfaces in
functional groups. By that way, the homogeneity of VOTIP adsorption
on the carbon substrate in the first ALD cycle was enhanced. The
resulting vanadium oxide coated electrodes are further referred to as
carbon/vanadia hybrids. The nomenclature of samples (e.g, OLC
+100) means the carbon substrate coated with 100 ALD cycles of
vanadia.

In preliminary tests, instead of coating PTFE-bound electrodes, we
also surveyed to coat carbon particles instead. However, the metal
oxide coatings were not stable when exposed to the ethanol-based
electrode preparation. Use of PTFE-bound electrodes was also more
beneficial since carbon—carbon contacts were not negatively affected
by the coating process and improved scalability was ensured.

2.3. Structural Characterization. Scanning electron microscopy
(SEM) was carried out employing a JSM-7500F (JEOL) operating at 3
kV. Electrodes were cut with a razor blade and attached to a steel
sample holder by carbon tape to take cross-sectional images. Energy
dispersive X-ray (EDX) spectra were recorded at 1S kV with an X-
Max-150 (Oxford Instruments) attached to the SEM. Transmission
electron microscopy (TEM) was performed with a 2100F system
(JEOL) at 200 kV. The samples were prepared by dispersing and
sonicating the electrodes in isopropanol and placed on a copper grid
with a lacey carbon film (Gatan Inc.).

For X-ray diffraction (XRD) experiments, a D8 Advance XRD
(Bruker AXS) diffractometer with a copper X-ray source (Cuy,, 40 kV,
40 mA) and a nickel filter was used. All measurements were performed
in a range from 10—60° 26 with a step width of 0.02° 26.

Raman spectra were recorded by a Renishaw inVia Raman
Microscope employing an Nd:YAG laser with an excitation wavelength
of 532 nm. A grating with 2400 lines/mm and a 50X objective were
used to reach a spectral resolution of about 1.2 cm™. The laser spot on
the sample was about 1 um in diameter at a power of 2.5 mW. The
acquisition time of each spectrum was 30 s, and 10 accumulations were
applied.

Nitrogen gas sorption analysis (GSA) was performed with an
Autosorb iQ_System (Quantachrome). The PTFE-bound electrodes
and the carbon/vanadia hybrid electrodes were degassed at 150 °C for
10 h under vacuum (100 Pa) to remove adsorbed water and gas
molecules. For the GSA, the variation of relative pressure of liquid
nitrogen (—196 °C) from § X 1077 to 1.0 occurred in 68 steps. The
SSA was calculated with the Brunauer—Emmett—Teller (BET)
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equation®” in the linear range of the relative pressure between 0.01
and 0.20 using the ASQwin-software. The pore size distribution
(PSD), as well as the total pore volume, was calculated by quenched-
solid density functional theory (QSDFT).>> A model for slit-shaped
pores between 0.56 and 37.5 nm was employed.

Energy filtered imaging (EFTEM) was conducted on Libra 120
transmission electron microscope (Carl Zeiss AG) operated at 120
keV. The specimen was prepared by dispersing vanadium oxide coated
carbon onion powder in tetrahydrofuran (THF) followed by placing a
drop on a lacey carbon film TEM grid. The TEM grid was dried at 50
°C to remove traces of THEF before inserting into the TEM
instrument.

2.4. Electrochemical Characterization. The electrochemical
performance was characterized using a three-electrode setup (half-cell)
outlined in more detail in ref 54. The carbon/vanadia hybrids with
different vanadia-loadings were employed as working electrodes. The
mass of the working electrodes was between 1 and 2 mg. The
oversized counter electrode was PTFE-bound AC (YP-80F, Kuraray)
with a mass of about 15 mg. As reference electrode, PTFE-bound
activated carbon (YP-50F, Kuraray) was chosen.>> The current
collectors consisted of carbon-coated, 12 mm diameter aluminum
foil (Zflo 2653, Exopack Technologies) and 13 mm glass fiber mat as
separator (GF/D, Whatman). After assembly, the cells were dried at
120 °C in a vacuum oven overnight to remove any moisture. The cells
were then electrolyte filled in an inert gas glovebox (MBraun
Labmaster 130, O, and H,O < 1 ppm) with 1 M LiClO, (battery
grade, Sigma-Aldrich) in acetonitrile (battery grade, BASF). A two-
electrode setup (full-cell) was employed to further characterize hybrid
electrodes with 100 ALD cycles. Therefore, both a charge balanced,
asymmetric setup with carbon/vanadia and activated carbon (YP-80F,
Kuraray) and a symmetric setup with two carbon/vanadia electrodes
of the same mass were utilized. In the charge balanced setup, the mass
of the activated carbon electrode was chosen as three-fold the mass of
carbon/vanadia electrodes. All other assembly steps were chosen
equivalently to the three-electrode setup described above.

The electrochemical measurements were carried out with a
potentiostat/galvanostat (VSP300, Bio-Logic) and included cyclic
voltammetry (CV) and galvanostatic charge/discharge with potential
limitation (GCPL). Cyclic voltammograms were recorded in a
potential window from —1.2 V to +1.2 V versus YP-SOF reference
for half-cells and 0 V to +2.5 V for full-cells, respectively, with scanning
rates of 1 mV/s and 10 mV/s. For half-cells, galvanostatic charge/
discharge cycling was carried out by between 0 and —1.2 V, for full-
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Figure 2. Scanning and transmission electron micrographs of activated carbon hybrid electrodes coated with (A, B, C) 50 ALD cycles and (E, F, G)
200 ALD-cycles as well as (D, H) schematic illustrations of the respective coating structures.

cells between 0 and +2.5 V. The applied specific currents ranged from
0.05—10 A/g, with respect to the active mass of the working electrode
in half-cells, or to the active mass of both electrodes in full-cells,
respectively (excluding the mass of the PTFE-binder, which differs for
AC and carbon onion electrodes). The specific (gravimetric) capacity
C,, was calculated from the GCPL data by integration of the discharge
current over the discharge time according to eq 1:

t
=ft01dt

m

C.

sp

(1)

where I is the current,  the discharge time, and m the total mass of the
working electrode (half-cells) or the total mass of both electrodes (full-
cells), respectively.

The specific energy Eg, of full-cells was calculated by integration of
the voltage over the discharge time by employing eq 2:

t(Unyin)
_ I ) U(t) dt
® @)
where U(t) is the time-dependent voltage and m the total mass of both
electrodes. Long-term stability tests were performed in half-cells by

charge/discharge from —1.2 to 0 V with a specific current of 1.0 A/g.

m

3. RESULTS AND DISCUSSION

3.1. Structural Characterization. Carbon onions were
derived from detonation nanodiamond (ND) powder by
thermal annealing at 1700 °C (see Supporting Information,
Figure S1), which caused transformation of the diamond core
and amorphous layers of ND to graphitic carbon shells,
resulting in carbon onion particles. These particles form
agglomerates of up to 2 pum, which are built up by primary
aggregates ranging from 10—100 nm in size (see Supportin§
Information, Figure S2), as has been demonstrated before.”
The agglomeration of carbon onions during the synthesis is
resulting from agglomeration of the precursor, high temper-
ature treatment induced 5particle—particle sintering, and carbon
redistribution processes.”® Carbon onion electrodes have been
coated with different mass loadings of vanadium oxide, and
their surface morphology has been studied via SEM and TEM
and is shown in Figure 1. From a macroscopic point of view, no
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major structural changes were detected after the ALD process
using SEM (Figure 1A,E). As seen from the TEM images in
Figure 1, panels B and C and as schematically exemplified in
Figure 1, panel D, a partial coverage of carbon onion surfaces
with vanadia layers was obtained at a low mass loading after 50
ALD cycles. Sample OLC + 200 (Figure 1F—H) shows a dense
particle coating, which exhibits a mixture of crystalline and
amorphous vanadia structures. The interparticle space is fully
covered by the vanadia coating; hence, there is no observable
pore space inside the carbon onion agglomerates. The TEM
micrographs show that the growth of vanadia layers on carbon
onion particles does not occur in a completely continuous
manner on a nanoscopic level. After SO ALD cycles, the carbon
onion particles were only partially coated. This can be explained
by the lack of initial adsorption sites for the VOTIP precursor
molecules.”” As a consequence, small domains of vanadia
nucleate distributed over the carbon onion surfaces and start
growing. After 200 ALD cycles, these vanadia domains merged,
and the surface is more continuously coated. Crystalline
vanadia is preferentially found on the outside of agglomerates,
while interparticle space inside the agglomerates mostly
consists of amorphous vanadia in absence of required space
for crystal growth. The distribution of vanadia within the
primary particles was evaluated using EFTEM and was found to
be relatively homogeneous (Supporting Information, Figure
S3). It is demonstrated that vanadia growth occurred mostly
inside the agglomerates, filling interparticle space, rather than
forming thick layers on the outer surface of carbon onion
primary particles.

AC consists of porous and incompletely graphitic carbon
particles (Figure 2) with a size distribution between 1 and S
um, which is in accordance with data from sedimentation
analysis (Supporting Information, Figure S2). The shape of the
particles is not uniform and more polygonal compared to the
highly spherical and isometric carbon onions. Large macropores
of different sizes are readily seen on the surfaces of the particles
with electron microscopy (Figure 2AE). AC exhibits few
interparticle contacts, and connections are mainly formed by
PTFE-fibers in the electrode. Inside the AC particles that were
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coated with S0 ALD cycles, several vanadia domains with a
diameter of about 1 nm were detected by TEM (Figure 2B,C),
while no vanadia is present outside of these spots. Also, on the
outer surface of AC particles, only little coating is visible,
indicating a preferential initial adsorption of VOTIP precursor
inside the nanopores. These domains inside the AC particles
grow with an increasing number of ALD cycles. At higher mass
loadings, a rather homogeneous distribution of vanadia in the
intraparticle space (Figure 2F,G) is observed. The dense filling
is a result of the merging of growing domains.

To examine the coating arrangement fabricated via ALD in
the cross-section of the about S0 pm thick, free-standing
electrodes, energy dispersive X-ray spectroscopy (EDX) was
carried out. As indicated by the homogeneous intensity of
oxygen and vanadium element mappings (Supporting In-
formation, Figure S4), a highly uniform distribution of vanadia
through the entire electrode thickness was achieved by
choosing suitable ALD parameters.

The vanadia loading in the hybrid electrodes was determined
by weighing the electrodes prior to and after the ALD process.
The relation between the number of ALD cycles and the
relative mass gain is illustrated in Figure 3. It is demonstrated
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Figure 3. Relative mass gain of OLC and AC hybrid electrodes after
the ALD process, with respect to the initial mass.

that the vanadia loading increases linearly with the number of
ALD cycles for carbon onion electrodes, with an average mass
gain of about 1.4% per cycle, with respect to the initial mass.
This linearity demonstrates the highly conformal ALD
deposition enabled by choosing a suitable dosage time of 20
s for sufficient diffusion of VOTIP precursor and reaction gas
molecules to all available adsorption sites in the OLC electrode
and for complete reaction during each ALD cycle. The mass
gain for AC converges to a saturation for higher numbers of
ALD cycles. The nonlinear mass gain behavior is a consequence
of the high inner porosity of AC. With increasing vanadia
loading, blocking of subnanometer pores in the micrometer-
sized particles reduces the accessible surface area for VOTIP
molecules on which to adsorb. Consequently, the mass increase
for one ALD cycle decreases from a 1.3% after 50 cycles to
0.7% after 200 cycles.

X-ray diffractograms of the hybrid electrodes (Supporting
Information, Figure SS) exhibited very low peak intensities for
vanadia, which make the data insufficient for a detailed
description of the crystal structure. It can rather be regarded

2806

as an indication for a predominately amorphous/nanocrystal-
line vanadia of vanadia. To provide a more detailed structural
characterization of the coating material, Raman spectroscopy
was carried out.

The Raman spectrum of carbon onion hybrid electrodes
contains several characteristic vanadia peaks (Figure 4A). The
peak corresponding to the relative motions of two V,05 unit
cells is located at 142 cm™**~® and can be found for sample
OLC+50, but for the other three mass loadings of vanadia, the
corresponding peak is shifted to 158 cm™. Similarly, the peak
attributed to the V=0 stretching mode, found in V,0;, V,0;,
and VO,, is reported at 992 cm™" in literature,”®~°° which is in
accordance to the peak observed for OLC+50. For the other
three samples, the peak is shifted to a value of 1024 cm™". The
two peaks at 267 and 406 cm™’, also characteristic for the V=
O bond,** " are found in all recorded spectra, with the latter
only exhibiting a sharp shape for the OLC+50 sample. The
peak occurring at 516 cm™' represents a triply coordinated
oxygen bond (present in V,05), and the peak at 704 cm™ a
doubly coordinated oxygen bond (present in VO, and
V,0,).%7% The results suggest the presence of vanadia in
three oxidation states (III—V), with the fully oxidized and V,0O;
being the predominant phase, indicated by the peaks with most
intensity at 142, 158, and 516 cm™. The spectrum of OLC +
50 is in best accordance with the literature values. For higher
vanadia loadings, the peak shifting suggests distortions of the
V=0 bond, as have been described in literature for V,05.°°"

The Raman spectrum of AC hybrid electrodes only exhibits a
very low intensity of the characteristic V,0;5 peak at 142 or 158
cm™" (Figure 4B) as a consequence of the growth of mostly
amorphous vanadia in the intraparticle space. The exclusively
external surface area of carbon onions provides favorable
conditions for crystalline growth of vanadia layers, contrary to
the microporous internal surface area of AC particles.
Consequently, OLC/vanadia electrodes contain proportionally
more crystalline vanadia, therefore showing higher Raman
signal intensities.

An analysis of the D- and G-peaks is conducted with
baseline-subtracted and D-peak normalized spectra, given in
Figure 4, panels C and D. For both carbon materials after
coating, a shift of D- and G-peak position to higher vibration
frequencies is clearly visible compared to the uncoated carbon
materials. Furthermore, the full width at half-maximum
(FWHM) of the D-peaks increases by about 20% for all coated
electrodes, while the FWHM of G-peaks remains roughly
constant (Figure 4E). A decreasing areal intensity ratio of the
D- and G-peak (Ip/I;) is detected for coated carbon onion
electrodes, while Ip/I; increases with higher ALD cycle
numbers for coated activated carbon (Figure 4F). The changes
in peak position, FWHM, and areal intensity ratio appear to be
irrespective of the vanadia loading, as the spectra of all coated
electrodes are virtually identical. Thus, we can see that some
initial change of the carbon structure of AC and OLC takes
place after a few ALD cycles without significant further changes.
The reason for this behavior is the formation of the vanadia/
carbon interface during the beginning of the coating process.
With a higher number of ALD cycles, the layer growth is mostly
realized by vanadia/vanadia reactions, which have no impact on
the carbon structure. The peak shifting has been described for
the G-peak of disordered graphite in literature.”>*> While the
effect is not observable for pure graphite, the introduction of
disorder is linked with a proportionally growing G-peak
shifting.”> We suspect the observed carbon disordering of
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Figure 4. Raman spectra (overview) of (A) carbon onion and (B) activated carbon hybrid electrodes, characteristic vanadia peaks are labeled
accordingly. Detailed spectra of D- and G-peaks for (C) carbon onion and (D) activated carbon hybrid electrodes as well as (E) the full width at half-
maximum (FWHM) and (F) the areal intensity ratio as a function of coating thickness highlight the changes in carbon structure introduced by

vanadia coatings.

coated electrodes to be the consequence of surface stresses
induced by a nonepitaxial growth of vanadia layers. Thereby, we
introduce external stresses to the hexagonal arrays of sp*-carbon
that cause a change in vibrational modes of in-plane bond-
stretching motions.”> This analysis is in conclusion with the
increasing FWHM of the D-peak for both carbons, which is
indicative for a reduction in long-range ordering of graphitic
carbon.”

An increasing Ip/I; ratio is generally associated with
structural disorder and the introduction of defects in carbon.**
The increasing I, /I ratio for coated activated carbons supports
the former observations, whereas the decreasing Ij,/I ratio for
carbon onions can be explained by the model of Ferrari and
Robertson.”® For crystalline domain sizes below a diameter of
about 2 nm, I, is considered to be proportional to the
probability of finding sp>-hybridized carbon rings,”> and
consequently, a decreasing I/Ig ratio suggests a higher degree
of disorder. In the case of carbon onions, the domain size of
hexagonal sp*-carbon rings is further reduced under the
influence of external stresses. Thus, a drop to or below 2 nm
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of the remaining crystalline clusters can be assumed, and
therefore, the drop in Ip/Ij; is in agreement with the findings
for peak shifting and FWHM.

The impact of the ALD coating on porosity and pore size
distribution of the carbon electrodes is evaluated by nitrogen
gas sorption analysis. The isotherms of carbon onion hybrid
electrodes, as shown in Figure S, panel A, exhibit a typical type
II shape with H3 hysteresis of the most recent 2015 IUPAC
classification,”® which is evident for a nonporous nanoparticle
structure. With increasing vanadia loading, the specific volume
of adsorbed nitrogen decreases due to the density increase of
the hybrid electrode and partial filling of interparticle space.
The isotherm shape of AC-based hybrid electrodes up to 100
ALD cycles correspond to type I(b), as seen from Figure S,
panel B. These electrodes exhibit a steep increase in adsorbed
nitrogen at low pressures, which is associated with the filling of
micropores. The hysteresis loops are smaller than for carbon
onion electrodes and match with type H4, which is correlated
with a micro- and mesoporous carbon structure. Only a very
small amount of nitrogen was adsorbed on samples AC+150
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(B, D) activated carbon hybrid electrodes.
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(STP) and specific cumulative pore volume of (A, C) carbon onion and

and AC+200. Their isotherm shape is best described as type-
III-like, corresponding to nonporous or MACIOpOIous materials
with weak adsorbent—adsorbate interactions.”> The reason for
this is the extensive micro- and mesopore blocking for higher
amounts of vanadia coating. These observations are corrobo-
rated by the calculated SSAs (BET), which are listed in Table 1.

Table 1. Comparison of SSAggr, SSAper, and Pore Volume
of Carbon Onion and Activated Carbon Hybrid Electrodes

material SSAggr (m*/g)  SSAppr (m*/g) pore volume (cm®/g)

carbon onions 352 311 0.93
+ 50 98 98 0.31
+ 100 50 44 0.12
+ 150 69 53 0.15
+ 200 42 33 0.09
activated carbon 1759 1289 0.86
+ 50 800 643 0.48
+ 100 458 323 0.38
+ 150 237 77 0.13
+ 200 28 13 0.02

With increasing vanadia loading, SSAzpr and pore volume
decreased for both types of hybrid electrodes. This decrease is
mainly caused by two factors. First, the skeletal and geometric
density of the hybrid electrode increases with a growing
amount of comparably high density vanadia (V,Os, 3.36 g/cm’;
VO,, 434 g/cm?) that is primarily occupying internal pore
volume and interparticle voids. The second factor is attributed
to pore blocking by the vanadia coating, which makes surface
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area inside micropores inaccessible, as it is mainly observed for
AC hybrid electrodes.

The pore size distribution (PSD) of carbon onion electrodes
is characterized by micropores around 1 nm, formed by direct
particle contacts, and a high amount of mesopores, formed by
intercluster voids between the nanoscopic primary particles
(Figure 5C).*° Uncoated OLCs are dominated by mesopores
starting at about 2 nm, while pores of coated samples are
mostly above 6 nm in size. The general shape of all OLC pore
size distribution curves is similar, only shifted toward larger
pore widths and smaller total volume with increasing number of
ALD cycles. Therefore, it can be assumed that mostly small
mesopores between the primary particles in the range of about
2—6 nm were filled by vanadia during the ALD process. The
pore structure of AC electrodes (Figure SD) for samples
AC+50 and AC+100 shares many similarities with uncoated
AC. The amount of micropores up to 0.8 nm is roughly equal
(ca. 0.1 cm?/g), and a decrease in pore volume is found for
pores starting at a width of about 1 nm up to 100 ALD cycles.
These findings show that vanadia growth preferentially occurs
in pores above 1 nm since there is insufficient space for initial
VOTIP adsorption inside subnanometer micropores, as
confirmed in a previous study.”” Complete blocking of these
micropores is observed in advanced growth stages of vanadia,
for samples AC+150 and AC+200, which is caused by layers
covering the micropore necks.

3.2. Electrochemical Characterization. CV for carbon
onion electrodes was carried out in half-cells (ie. three
electrode setup) to first characterize the performance of hybrid
electrodes with respect to the coating thickness. The CVs of
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Figure 6. Cyclic voltammograms measured at 1 mV/s and specific capacity values derived from integrating galvanostatic discharge curves for (A, C)

carbon onion and (B, D) activated carbon hybrid electrodes.

uncoated carbon onion electrodes exhibit a rectangular shape
(Figure 6A), which is indicative of a nearly ideal capacitive
behavior.***® The symmetric, slight current increase observed
at higher voltages is not related to noncapacitive reactions but is
rather caused by an increase in the density of states of charge
carries for highly graphitized carbon electrodes at high
potentials (“butterfly-effect”) and has been discussed elsewhere
in more detail.>*®” The specific current of OLC/vanadia hybrid
electrodes at 1 mV/s significantly increased compared to
uncoated carbon onions, particularly for negative potentials
(Figure 6A). The current increase can be distinguished as either
an amplification of the rectangular signal, which is typical for
pseudocapacitors, or as formation of two peaks, characteristic
for battery-like devices.”® These findings are similar to other
carbon/vanadia systems that have been investigated before such
as CNT/vanadia*' or nanoporous carbon/vanadia.*’” It can be
assumed that Faradaic reactions at the electrode/electrolyte
interface and intercalation reactions of lithium-ions in the
coating both contribute to the current increase. For sample
OLC+50, two redox peaks are clearly visible at —0.4 V versus
carbon for charging and —0.5 V versus carbon for discharging,
indicating a potential-dependent reaction, which is in alignment
with peak positions for lithium intercalation.®** With an
increasing number of ALD cycles, the peaks are less
pronounced and the current increase associated with the
potential dependent reaction is stretched over a larger potential
range.”® The change of the CV shape for different coating
thicknesses gives information about the kinetics of the
reactions. The pronounced peaks for OLC+50 are the result
of a high reaction rate of lithium intercalation in V,0s, whereas
the peak stretching for higher numbers of ALD cycles is caused
by slower reaction kinetics. The main reason is the growing
coating thickness that results in a decrease in electrical
conductivity due to the less conductive vanadia*>”® and longer
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diffusion paths for lithium ions to the reaction sites,”" both
inhibiting high reaction rates. Also, as discussed in the Raman
data section, OLC+S50 exhibited the highest degree of structural
V,0; ordering, which contributes to enhanced intercalation
kinetics.

The CVs of AC/vanadia hybrid electrodes (Figure 6B) reveal
a higher charge storage capacity compared to uncoated AC.
The shape of the CV curves reveals similarities with OLC/
vanadia, except for the sample AC+50. Here, in contrast to
OLC+50, no typical battery-like redox peaks can be observed,
and a mostly (pseudo)capacitive behavior is exhibited. Vanadia
growth on AC surfaces is initiated by the formation of few
nanodomains, mostly inside the porous AC particles, which are
about 1 nm in size after 50 ALD cycles (Figure 2B,C). From
the Raman data, it was concluded that these domains do not
exhibit a crystalline structure (Figure 4B), and therefore, no
high intercalation capacity for lithium ions is expected. Thus,
the increase in specific capacity for AC+50 is mainly attributed
to Faradaic (surface) reactions. The emergence of highly broad
and ill-contoured redox peaks at a higher number of ALD
cycles is resulting from the converging vanadia nuclei, which
begin to form crystalline structures that mostly consist of V,O4
and promote lithium intercalation.”*

Galvanostatic charge/discharge measurements were carried
out by applying a negative potential to the working electrode
versus carbon in anticipation of redox reactions of Li* with the
vanadia layers of the hybrid electrodes (Figure 6C,D). It can be
seen that the discharge capacity of the OLC/vanadia electrodes
was about one order of magnitude above uncoated carbon
onion electrodes at low specific currents (Figure 6C). With
increasing specific current, the specific capacity of the hybrid
electrodes decreased, while carbon onion electrodes performed
on a relatively constant level. It can be observed that higher
coating thickness results in less capacity retention at high
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Figure 7. (A) Cyclic voltammograms measured at 1 mV/s, (B) galvanostatic charge—discharge profiles measured at 0.05 A/g, and (C) Ragone plot
for charge balanced (against activated carbon, YP-80F) and symmetrical full-cells of OLC+100 and AC+100 hybrid electrodes. (D) Cycling stability
test of AC+100 and OLC+100 in half cells, and AC+100/AC and OLC+100/AC in charge balanced full-cells at a specific current of 1 A/g.

specific currents. The performance decline for thicker coatings
is a result of longer diffusion paths and the insulating effect of
vanadia, which leads to charge limitations particularly at high
sweeping rates. At a low specific current of 0.05 A/g, OLC+150
exhibited with 129 mAh/g the highest capacity of all studied
hybrid electrodes (to provide a better comparability: when
(incorrectly) expressed as capacitance, this value would
correspond to 387 F/g). The value dropped with an increasing
specific current, and a capacity retention of about 27% was
observed at S A/g. In comparison, OLC+100 showed a
comparably high capacity of 120 mAh/g at 0.05 A/g while still
retaining 53% of its initial capacity at 5 A/g. The rate handling
performance of OLC+50 and OLC+100 is similar and
comparable to uncoated carbon onions below a current density
of 1 A/g. The capacity of the electrode with 150 ALD cycles is
only marginally superior to 100 ALD cycles at a very low
specific current. This suggests that most reactions take place at
the coating surface, while only little lithium intercalation into
the “bulk” of the coating takes place as supported by the lower
initial capacity of OLC+200. This electrochemically inactive
vanadia can be considered as dead mass, decreasing the specific
performance values of the electrode. A reason for this behavior
is that the vanadia coatings exhibit only partial crystallinity,
while substantial amounts of the coating show a distorted or
amorphous structure, which is not favorable for lithium
intercalation.”® Overall, the hybrid electrode with 100 ALD
cycles showed the most attractive electrochemical properties,
with a good compromise between high initial capacity and good
rate handling performance.

The discharge capacity of AC/vanadia hybrid electrodes at a
low current density was about 2—3-times higher than that of
uncoated AC. With higher current densities, the capacity values
dropped increasingly with a higher coating thickness, exhibiting
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retentions between 24% (for SO ALD-cycles) and 8% (for 200
ALD-cycles) at S A/g. At a low current density of 0.05 A/g, AC
+100 showed the highest capacity of all AC/vanadia electrodes
with 122 mAh/g, which is comparable to OLC+100. Yet, with
increasing current densities, the observed drop in capacity was
more severe as for carbon onion electrodes. Above specific
currents of 1 A/g, all AC/vanadia electrodes showed less
capacity than uncoated AC. Besides the aforementioned
insulating effect of vanadia, the inferior electrical conductivity
of AC, which is about one order of magnitude lower than for
carbon onions,” is another reason for the more severe decline
in performance at higher scanning rates. Furthermore, this
behavior can be related to the microporous structure of AC.
The vanadia coating is responsible for micropore blocking
inside the AC 7particles and causing a large reduction in
accessible SSA," as observed by GSA (Figure 5B). Also,
diffusion paths in the porous network of AC become narrower,
thus increasing the diffusion resistance for ions. Obviously, a
high electrical conductivity of the carbon substrate material is a
requirement for good rate handling characteristics of hybrid
electrodes. Vanadia coatings introduced to AC electrodes are
only desirable for low rate applications, and a coating thickness,
equivalent to 100 ALD cycles in this work, should not be
exceeded to avoid extensive pore blocking and insulating
phenomena.

It was demonstrated that both hybrid electrodes exhibited
the best performance when loaded with 100 ALD cycles of
vanadia. Therefore, the electrochemical performance of these
hybrid electrodes is further investigated both in charge balanced
full-cells against activated carbon and in symmetrical full-cells.
The CV (Figure 7A) of charge balanced OLC+100/AC exhibits
a slightly higher specific current than AC+100/AC as a result of
small redox peaks at cell voltages of around +1.0 V and +1.3 V
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cell voltage. At a cell voltage of +1.0 V, the applied potential at
the OLC+100 electrode in the charge balanced system is at
about —0.5 V, which is in alignment with the redox peaks
observed in half-cells. In comparison, the specific current of
symmetrical full-cells is extensively reduced, especially at higher
cell voltages. This behavior is explained by charge limitations
caused at the positive electrode, which are a consequence of the
inferior performance of the hybrid electrodes in the positive
potential area, as has been demonstrated by the CVs of half-
cells (Figure 6A,B).

Galvanostatic charge—discharge profiles (Figure 7B) were
used to calculate the specific energy and specific power as used
for a Ragone plot (Figure 7C). The performance of charge
balanced full-cells is superior compared to symmetrical full-cells
in both specific energy and specific power. OLC+100/AC
exhibits specific energies of 38 Wh/kg and 3.3 Wh/kg at
specific powers of 57 W/kg and 5.9 kW/kg, respectively. In
comparison, AC+100/AC shows a performance of 29 Wh/kg
(1.1 Wh/kg) at 53 W/kg (4.3 kW/kg). The low performance of
symmetrical cells is effected by the rapid voltage drop in the
discharge cycle (Figure 7B). This low cycle efficiency is
explained by the disparate electrochemical behavior of the
carbon/vanadia hybrid electrodes in the positive and negative
potential window. Therefore, the two electrodes are dispropor-
tionally charged, and the resulting potential at the positive
electrode exceeds the stability window of the electrolyte.
Superior performance can only be found for asymmetrical cells,
where the carbon/vanadia hybrid material is used as a negative
electrode.

Stability testing was carried out in both a half-cell setup with
AC+100 and OLC+100 hybrid electrodes, and in charge
balanced full-cells (AC+100/AC and OLC+100/AC) via
galvanostatic charge—discharge at 1 A/g (Figure 7D). Both
half-cells retained about 95% of their initial discharge capacity
up to 3000 cycles. Afterward, OLC+100 exhibited a steady
capacity fading of about 1% every 100 cycles, while the capacity
of AC+100 increased to about 115% of the initial value after
8000 cycles. Long-term cycling leads to electrochemical
degradation of vanadia, which causes a reduced redox activity
and therefore a decrease in performance of the OLC+100
hybrid electrodes. For the AC+100 hybrid electrodes, though,
the electrochemical degradation of vanadia gave rise to a partial
clearance of blocked channels inside the microporous AC
particles, which benefited the ion mobility and thereby
decreased the electrodes resistivity, as seen from the reduction
of the IR drop (Supporting Information, Figure S6). The result
is a slight increase in capacity after 3000 cycles. The charge
balanced full-cells exhibited a minor drop in discharge capacity
after a few hundred cycles but then remained highly stable at
91% (AC+100/AC) and 85% (OLC+100/AC) of their initial
value, respectively, up to 8000 cycles.

4. CONCLUSIONS

It was demonstrated that ALD allows the deposition of vanadia
on free-standing, porous carbon electrodes. Exohedral carbon
onions were uniformly coated, while for endohedral AC,
micropores were blocked, and the accessible surface area
declined extensively at high vanadia loadings. The growth
mechanism of vanadia on carbon substrates was characterized
by an initial island growth, which began to form a more
continuous layer after a sufficient number of ALD cycles. The
pore structure proved to have a severe impact on the
crystallinity of the resulting vanadia layers. The external surface
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area of carbon onions provided favorable conditions for
crystalline growth, contrarily to the microporous internal
surface area of activated carbon, where mostly amorphous
vanadia was formed.

The electrochemical performance of the hybrid electrodes
was enhanced by the vanadia coating on carbon onions and AC
at low specific currents. Yet, only carbon onions as substrate
material provided a sufficient electrical conductivity for superior
capacity at high rates, while the performance of AC/vanadia
electrodes dropped at high charging and discharging rates.
Consequently, highly conductive carbons with exohedral
surfaces are found to be the superior substrate material for
hybrid electrodes. It was found that there is an optimum
amount of vanadia that results in an ideal balance between
redox-activity and electrical conductivity of the hybrid
electrode. In this work, the optimum amount of vanadia was
around 50 wt % for activated carbon and 65 wt % for carbon
onions. Furthermore, the performance of activated carbon
hybrid electrodes dropped drastically due to blocking of
internal surface area when exceeding 65 wt % of vanadia. In
full-cells, the fabricated carbon/vanadia hybrid electrodes
exhibit superior performance only when employed as negative
electrodes in an asymmetrical cell.
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Fig. S1: Transmission electron micrographs of nanodiamond precursor (ND) (A) and the resulting
carbon onions (B) after thermal annealing in argon atmosphere at 1700 °C for 1 h. The top
and bottom rows show different magnifications.
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Fig. S2: Cumulative volume distribution of carbon onions and activated carbon particles plotted

against the particle size. Measured by centrifugal sedimentation analysis in ethanol, adapted
from Ref. 3,



Fig. $S3: Transmission electron micrograph of carbon onion particles coated with 100 ALD cycles (A),
and the corresponding EFTEM maps of carbon (B), oxygen (C), and vanadium (D).
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Fig. S4:

Cross sectional EDX mappings of carbon onion (A) and activated carbon (B) hybrid electrodes.
The element distribution of carbon (C map), oxygen (O map), and vanadium (V map) is
illustrated across the whole electrode cross section, including the original SEM image in the
top row. For the analysis, the Ckqo-, Oko-, and Vio-lines were employed.
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Fig. S5: X-ray diffractograms of carbon onion (A) and activated carbon (B) hybrid electrodes. The ideal
peak positions from the powder diffraction files for orthorhombic V,0s (PDF 41-1426),
tetragonal VO, (PDF 42-0876), monoclinic VO, (PDF 44-0353), and graphite (PDF 41-1487) are
given in (C) and, with transparency, visible in the background of (A) and (B). The small sharp
peaks for carbon onions and activated carbons at 18° 20 is associated with PTFE (which is the
polymer binder used for electrode manufacturing).
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ABSTRACT: In this study, atomic layer deposition (ALD) is employed to synthesize
hybrid electrode materials of especially tailored mesoporous carbon and vanadium
oxide. The highly conformal and precise character of ALD allowed for depositing up to
65 mass % of vanadium oxide inside the 5—20 nm mesopores of the carbon particles,
without substantially obstructing internal surface area. The deposited phase was
identified as orthorhombic V,Os, and an increasing crystalline order was detected for
higher mass loadings. Employing the hybrid material as lithium and sodium
intercalation hosts at a rate of 0.5C yielded specific capacities of 310 and 250 mAh/
g per V, 0y, respectively, while showing predominantly pseudocapacitive behavior, that
is, capacitor-like voltage profiles. C-rate benchmarking revealed a retention of about
50% of the maximum capacity for both lithium and sodium at a high rate of 100C.
When testing for longevity in lithium-containing electrolyte, a steadily increasing
capacity was observed to 116% of the initial value after 2000 cycles. In sodium

Tailored mesoporous carbon /
vanadia hybrid electrodes for
lithium and sodium intercalation
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electrolyte, the capacity faded to 75% after 2000 cycles, which represents one of the most stable performances for sodium
intercalation in the literature. Homogeneously distributed vanadium oxide that is locally confined in the tailored carbon
mesopores was identified as the reason for enhanced cyclability and rate behavior of the hybrid material.

1. INTRODUCTION

Fast-responding electrochemical energy storage (EES) is a key
enabling technology for the transition from fossil to renewable
energy sources.' Electrical double-layer capacitors (EDLCs)
rapidly store energy via electrical double-layer formation at the
charged interface of high surface area carbon electrodes and the
electrolyte.” They provide high specific power, charge
efficiency, and stable cycling behavior over many thousands
of cycles owing to their purely physical charge storage
mechanism of electrosorption.” However, the specific capaci-
tance of EDLCs is intrinsically limited to about 0.1 F/m?”
because of a minimum pore size accessible to the electrolyte
ions.”> Among the best known electrode materials for EDLCs
are activated carbons (ACs) and carbide-derived carbons
(CDCs), which offer a high specific surface area (SSA) of
over 2000 m?/g, related to their intraparticle microporosity.”’
Carbon nanomaterials such as carbon nanotubes (CNTs)® or
carbon onions”'” can offer even higher specific power, as their
exclusively external surface area provides easier access for the
electrolyte ions.''

A promising route to enhance the specific energy of EDLCs
is the hybridization of carbon electrodes with Faradaic
materials.'>"® Most prominently, layered metal oxides such as
V,04,"* 77 V. Ti;_,0,,'"*"” Nb,04,*”*" or MnO,”>** have been

-4 ACS Publications  © 2017 American Chemical Society
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employed, but also sulfur”*** and transition metal dichalcoge-

nides”® recently found application in hybrid electrodes. Layered
electrode materials typically store energy via ion intercalation
reactions in the interlayer space. In recent years, sodium
intercalation hosts for batteries and hybrid supercapacitor
devices are explored as an alternative to lithium, because of the
lower cost and natural abundance of sodium.””** The
substitution with sodium is a crucial requisite on the path
toward more sustainable energy storage systems, as the
availability of lithium is geographically limited to few local
monopolies.”” Vanadium pentoxide has been widely studied as
an intercalation host for lithium ions;**** however, only few
studies were conducted on the intercalation behavior of sodium
#3735 Moretti et al. employed V,O5 aerogel as cathode®
and anode’” material in sodium batteries, yielding perform-
ances of about 150 and 200 mAh/g, respectively, at low rates of
C/10 and stable cycling over 200 cycles. Hybridizing carbon
with vanadium oxide brings synergistic effects concerning rate
handling and longevity of the material,>*® but so far, to the best
of our knowledge, only one study exists on V,0;/carbon

ions.
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hybrids as sodium intercalation hosts. Chen et al. studied layer-
structured V,05/CNT hybrids mixed with conductive additive
and demonstrated pseudocapacitive charge storage behavior in
sodium-containing electrolyte.”” However, neither the influence
of vanadium oxide loading nor half-cell stability was
investigated, creating the need for more thorough studies on
high power sodium intercalation electrodes.

By implementing nanoscopic layers or clusters of ion
intercalation materials into the conductive carbon network, a
high power handling can be maintained owing to rapid electron
transport and short diffusion paths for the ions to the reactive
sites.”” A major challenge for the synthesis of hybrid electrodes
is achieving a homogeneous distribution of the Faradaic
material throughout the carbon matrix.*' Therefore, appro-
priate synthesis techniques for metal oxide decoration have to
be employed, which include atomic layer deposition
(ALD),"®*** wet-chemical approaches,"** or vacuum infiltra-
tion.** ALD is a vapor phase deposition technique with
enhanced thickness control and layer conformity due to its
cyclic and self-limiting characteristics.”” It has emerged as an
advanced method to decorate nanomaterials with metal oxides
at molecular precision.*® To ensure complete accessibility for
the metal oxide coating, carbons with exclusively external
surface area such as CNTs, graphene, or carbon onions are
preferred as substrates,”>*’ even though their SSA is inferior to
activated carbons with internal porosity. In theory, high SSA
porous carbons as substrates would allow for creating larger
interfaces between the redox active coating and the electrolyte.
However, several studies hybridized microporous carbon with
metal oxides, but the attempts were unsuccessful due to pore
blocking,”* or showed only little effect because micropores were
inaccessible to the metal oxide precursors.>’

In a recent study, we compared the suitability of carbons with
external (carbon onions) and internal surface area (AC) as
substrates for atomic layer deposited vanadium oxide.'* Our
data showed that AC can accommodate small mass loadings of
vanadium oxide, but loadings that exceed about 50 mass % lead
to an obstruction of micropores below 1 nm, leading to
inaccessibility of internal surface area to the electrolyte.'* Our
present study explores for the first time a tailored mesoporous
carbon (TMC) as an advanced nanoporous carbon substrate
that combines high internal surface area with pore volume
accessible for ALD.”" The spherical pores are interconnected,
uniform in size, and allow for a homogeneous precursor
adsorption during the ALD process and a high accessibility
during electrochemical cycling. TMC is synthesized via hard-
templating using SiO, nanoparticles, which are removed by
hydrofluoric acid, leaving spherical mesopores in the size of the
former nanoparticles. Herein, we employ TMC for hybrid-
ization with a metal oxide, namely, vanadium oxide, via atomic
layer deposition. The resulting hybrid electrode will be
structurally analyzed and comparatively benchmarked for rate
behavior and longevity as lithium and sodium intercalation
hosts by electrochemical half-cell experiments.

2. EXPERIMENTAL SECTION

2.1. Preparation of Carbon Substrate Electrodes. First, 10 nm
SiO, nanoparticles have been synthesized by a modified Stober
method of Watanabe et al.** Therefore, 0.4 g of L-arginine (Roth) has
been dissolved in 400 g of deionized water. After adding 23.94 g of
tetraethylorthosilicate (TEOS, Sigma-Aldrich), the mixture was stirred
at 1000 rpm for 24 h at 70 °C. After cooling down and solvent
removal, the nanoparticles were calcinated in air at 550 °C for 3 h.
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Then, to obtain the mesoporous carbon, 3.0 g of the SiO,
nanoparticles were dispersed in a solution of 1.5 g of sucrose
(Roth) in 10 mL of water and 0.3 g of H,SO, (95 mass % aqueous
solution, Fischer Scientific) was added as a catalyst for the
polymerization of the carbon precursor. The dispersion was kept at
100 °C for 3 h and at 160 °C for another 3 h. The obtained polymer-
SiO, composite was carbonized under an argon atmosphere (flow rate
150 mL/min) at 900 °C for 2 h with a heating rate of 150 °C/min. In
the last step, the SiO, nanoparticles have been removed by a treatment
with hydrofluoric acid (38—40 mass %, Merck) in ethanol and water
(volume ratio: 1:1:1) for 24 h. After washing three times with water,
the mesoporous carbon was received.

Free-standing TMC electrodes were prepared by dispersion of the
carbon powder in ethanol and admixing of 10 mass % polytetrafluoro-
ethylene (PTFE, 60 mass % aqueous solution, Sigma-Aldrich) in a
mortar. After thorough mixing, a dough-like mass was obtained and
rolled to ca. 50 ym thick electrodes, which were dried in a vacuum
oven (2 X 10° Pa) at 120 °C overnight prior to further use. A more
detailed description of the electrode preparation procedure can be
found in ref S3.

2.2. Plasma-Enhanced Atomic Layer Deposition of Vana-
dium Oxide. Plasma-enhanced atomic layer deposition (PEALD) was
performed directly onto the free-standing TMC electrodes with an
open-load atomic layer deposition system (OpAL; Oxford Instru-
ments). Vanadium oxide was synthesized from vanadium(V)-oxy-
triisopropoxide (VOTIP; SAFC Hitech) as metalorganic precursor and
oxygen plasma as reactant gas. The VOTIP pot was preheated to 45
°C and bubbled by argon carrier gas to deliver the precursor to the
reaction chamber. In a typical PEALD cycle, VOTIP was dosed for 20
s and the chamber pressure was set to 66.7 kPa, before argon was used
to purge the reactor for 10 s. Then, oxygen was introduced to the
chamber and the pressure was set to 21.3 kPa, before remote plasma
with a power of 300 W was ignited and applied for 60 s. At the end of
each cycle, the reactor was evacuated for 8 s. Prior to the coating
process, oxygen plasma was applied for 10 min to the electrodes to
create suitable surface functionalities, yielding a more homogeneous
precursor adsorption during the first PEALD cycle. The table
temperature inside the reactor was kept at 180 °C. The free-standing
electrodes were arranged on a sample holder that allows precursor
penetration from both sides. This way, a homogeneous precursor
penetration along the entire thickness of the electrodes is ensured. The
nomenclature of the samples indicates the number of PEALD cycles
applied; for example, sample TMC+100VOx was coated with 100
PEALD cycles of vanadium oxide.

2.3. Structural Characterization. Scanning electron microscopy
(SEM) was conducted using a JSM-7500F (JEOL) with an operating
voltage of 3 kV. Energy dispersive X-ray spectroscopy (EDX) was used
to determine the elemental composition with an X-Max-150 (Oxford
Instruments) attached to the SEM chamber. The spectra were
recorded at 10 kV.

Transmission electron microscopy (TEM) was carried out using a
2100F system (JEOL) at an operating voltage of 200 kV. For sample
preparation, electrodes were dispersed in isopropanol by tip sonication
and placed on a copper grid with lacey carbon film (Gatan Inc.).

For thermogravimetric analysis (TGA), a TG 209 F1 Libra system
(Netzsch) was used. Samples with masses of around 10 mg were
heated in alumina crucibles in a synthetic air atmosphere (flow rate: 20
sccm) to 650 °C with a heating rate of S °C/min. The mass retention
was used to derive the metal oxide content of the samples. The relative
mass gain was calculated by dividing the metal oxide mass by the mass
of the electrode prior to PEALD.

For X-ray diffraction (XRD) measurements, a D8 Advance XRD
(Bruker AXS) diffractometer, calibrated with a corundum standard,
was used. It employed a copper X-ray source (Cu Ka, 40 kV, 40 mA),
a Gobel mirror, a 0.5 mm point focus, and a two-dimensional detector
(VANTEC-500). The detector covered a 26 range of about 20° and
was positioned at 20°, 40°, and 60° 20 for 17 min measurement steps.
The diffractograms were derived by integration of the areal intensities
with a step width of 0.02° 26.

DOI: 10.1021/acs.chemmater.7b02533
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Raman measurements were performed with a Renishaw inVia
Raman Microscope employing a Nd:YAG laser with an excitation
wavelength of 532 nm. A grating with 2400 lines/mm and a 50X
objective (numeric aperture: 0.9) were used to reach a spectral
resolution of about 1.2 cm™. The laser spot on the sample was about 1
pum in diameter at a power of 0.05 mW. Spectra were recorded with 10
accumulations and 30 s acquisition time.

An Autosorb iQ_System from Quantachrome was used for nitrogen
gas sorption analysis (GSA) on free-standing electrode samples with
masses of ca. 20 mg. Electrodes were degassed at 150 °C for 10 h at
100 Pa, before being measured with liquid nitrogen (—196 °C) in a
relative pressure range from 5 X 1077 to 1.0 in 68 steps. The SSA was
calculated via the Brunauer—Emmett—Teller (BET) equation®* in the
linear pressure range using ASQwin software. Quenched-solid density
functional theory (QSDFT)** with a slit-cylindrical-spherical pore
model was employed to derive the pore size distribution (PSD) and
the total pore volume.

2.4. Electrochemical Characterization. The electrochemical
characterization was performed in a custom-built three-electrode setup
(half-cell), as it has been described in ref 56. In short, TMC/vanadium
oxide hybrids with a mass of 1.5—2 mg were employed as working
electrodes and an oversized PTFE-bound AC electrode (type YP-80F,
Kuraray, 5 mass % PTFE, total mass ca. 15 mg) was used as counter
electrode, separated by a 13 mm glass fiber disc (GF/A, Whatman). As
current collectors, 12 mm diameter carbon-coated aluminum foil (Zflo
2653, Exopack Technologies) was employed. Instead of the conven-
tionally used lithium reference in carbonate-based electrolytes, AC
(type YP-50F, Kuraray) was employed as a quasi-reference electrode”’
because of the instability of acetonitrile in the presence of metallic
lithium.>® The cells were dried in a vacuum oven (2 X 10° Pa) prior to
electrolyte filling at 120 °C overnight, before being transferred to an
argon filled glovebox (MBraun Labmaster 130, O, and H,O < 1 ppm)
and being vacuum-backfilled with 1 M LiClO, and 1 M NaClO, in
acetonitrile (Sigma-Aldrich) as electrolytes. Acetonitrile was chosen as
a solvent because of its increased ionic conductivity as compared to
carbonate-based electrolytes, making it more attractive for high-power
applications.”®

For electrochemical measurements, cyclic voltammetry (CV) and
galvanostatic cycling with potential limitation (GCPL) were carried
out with a potentiostat/galvanostat (VSP300, Bio-Logic). CVs were
recorded in a potential range from —1.2 to +1.0 V vs. carbon at a scan
rate of 1 mV/s. Galvanostatic cycling was performed in the same
potential range with specific currents between 0.05 and 20 A/g and C-
rates between 0.5C and SOC (for LiClO, electrolyte: 1C = 0.167 A/g,
for NaClO, electrolyte: 1C = 0.107 A/g), respectively, all normalized
to the mass of the working electrodes including carbon and vanadium
oxide, but excluding PTFE binder. The specific (gravimetric) capacity
C,, was calculated from the GCPL data by integration of the cathodic
current over the time by eq 1

t
=/%1dt

m

C

® (1)
where I is the cathodic current, t the step time, and m the mass of the
working electrode including carbon and vanadium oxide, but excluding
PTFE binder.

3. RESULTS AND DISCUSSION

3.1. Structural Characterization. The synthesis process of
the TMC/vanadia hybrids is illustrated in Figure 1A. In a first
step, the sucrose matrix surrounding the spherical SiO, particles
is carbonized, before the silica particles are removed from the
carbon matrix via hydrofluoric acid treatment. Porous carbon is
formed with primary particle sizes between 0.5 and 2.0 pm
(Figure 1B). The carbon particles show a high inner porosity
with a uniform distribution of mesopores in the size range of
the former silica particles that are engulfed by microporous
carbon shells, as can be seen by TEM in Figure 1C. When
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Figure 1. Schematic illustration of the TMC/vanadium oxide synthesis
process (A). Scanning and transmission electron micrographs of
uncoated TMC electrodes (B, C) and TMC/vanadium oxide hybrid
electrodes coated with 150 ALD cycles (D, E).

applying PEALD coating to TMC, no direct changes to the
primary particles are visible by SEM (Figure 1D), but vanadium
oxide mainly forms in the mesopore volume inside the TMC
particles, as can be observed in the TEM image in Figure 1E
(exemplified for TMC+150VOx, images of the remaining
hybrid samples are found in Figure SIA—C). This confirms the
original assumption that mesopores of this size are well
accessible to the PEALD process.

To determine the vanadium oxide mass in the hybrid
electrodes, thermogravimetric analysis is conducted, and the
results are shown in Figure 2A. By heating in synthetic air up to
650 °C, all non-vanadia species, that is, carbon and PTFE
binder, are burned off. The observed mass loss up to a
temperature of about 120 °C is caused by evaporation of
adsorbed surface water” and has to be considered when
calculating the composition of the electrode. The mass
retentions are determined to 23, 48, 52, and 64 mass %,
leading to dry electrode vanadium oxide contents of 24, 51, 56,
and 65 mass % for samples coated with 50, 100, 150, and 200
PEALD cycles, respectively. The electrode composition has to
be calculated in the dry state that is representative of the
electrodes’ electrochemical testing conditions. The mass
increase due to vanadium oxide coating increases linearly per
PEALD cycle number, as can be seen in Figure 2B. This
behavior corresponds with an ideal PEALD process and is
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vanadium oxide hybrid electrodes (B). STP: standard temperature and pressure.

typical for coating exohedral carbon substrates,” that is,
carbons with exclusively external surface area.’” In contrast,
when coating carbons with high inner particle porosity (such as
activated carbon),’” we would expect to observe a saturation in
mass gain with increased number of PEALD cycles."* This
saturation is related to blocking of internal surface area by
growing layers of the coating, making less surface area
accessible for further ALD precursor adsorption.'* The fact
that no saturation in mass gain is observed clearly shows that
the pore volume remains highly accessible to the reagents and
substantial blocking of the internal surface area is avoided when
coating TMC via PEALD.

A quantitative examination of the porosity and pore size
distribution of TMC and TMC/vanadium oxide hybrids is
carried out via nitrogen gas sorption analysis (GSA). The
adsorption/desorption isotherms of all samples are shown in
Figure 3A. As-synthesized TMC shows an isotherm shape of
type IV(a), with an additional steep increase of adsorbed
volume in the low pressure range resembling a ty;)e I(b) shape,
according to the 2015 IUPAC classification.’’ The steep
increase at low relative pressure is associated with micropores
and small mesopores below 2.5 nm, which are found in the
microporous carbon shells surrounding the mesopores. The
remaining isotherm shows a distinct hysteresis loop that is
associated with well-defined mesoporosity. The TMC/vana-
dium oxide hybrid samples show the same isotherm shape,
except for the steep increase at low pressure, which indicates
the occupation of small micropores by the coating. This,
though, does not obstruct the accessibility of mesopores, as
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evidenced by hysteresis loops observed for all coated samples.
The hysteresis shape can best be described by type HI,
characteristic for ordered mesoporous materials. Additional
contribution of H2 is present, typical for cavitation-like
mesopores in the structure®' related to spherical pores with
narrow pore necks. Even though the shape of the isotherms is
similar for all samples, the magnitude of specific adsorbed
volume decreases for higher coating thicknesses. The reasons
for this behavior are (1) the growing electrode density with
higher mass loadings of vanadium oxide that is heavier than
carbon and (2) the decreasing total pore volume associated
with gradual vanadium oxide filling.

These qualitative observations are confirmed by quantitative
SSA values derived from both BET and QSDFT models, as well
as the specific pore volume calculated by QSDFT (Table 1).
The SSAggr of TMC electrodes is around 1000 m?*/g and
decreases to 421, 290, 164, and 186 m?/g for 50, 100, 150, and

Table 1. Comparison of SSAggy, SSAper, and Total Pore
Volume of TMC and TMC/Vanadium Oxide Hybrid
Electrodes

SSAger SSAper pore volume
material (m*/g) (m*/g) (cm®/g)
T™C 999 856 1.30
TMC+50VOx 421 367 0.74
TMC+100VOx 290 247 0.54
TMC+150VOx 164 133 0.30
TMC+200VOx 186 162 0.21
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200 ALD cycles of vanadium oxide coating, respectively. The
decrease of SSA is, on the one hand, related to the additional
mass of vanadium oxide that does not bring any additional
surface area and, on the other hand, to the blocking of
micropores that can already be observed after 50 ALD cycles.
The cumulative pore volume as a function of the pore width
derived by QSDFT (Figure 3B) shows a micropore volume of
about 0.13 cm®/g for uncoated TMC (that is about 10% of the
total pore volume) and significantly smaller values for all coated
TMC/vanadium oxide hybrid samples. The largest fraction of
pore volume is formed by mesopores in the range of about 6—
2S5 nm for uncoated TMC up to a pore volume of about 1.3
cm?/g. The specific pore volume of hybrid samples decreases to
0.74, 0.54, 0.3, and 0.21 Cm3/g for 50, 100, 150, and 200 ALD
cycles, respectively, because of additional mass and gradual
filling of the pore volume with vanadium oxide.
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Raman spectra of TMC and TMC/vanadium oxide samples
are recorded and given in Figure 4A. All spectra exhibit the
characteristic D- and G-peaks of carbon; however, a clear shift
to higher vibration frequencies is observed for the D-peak
(1336—1360 cm™) and to a smaller extent for the G-peak
(1605—1610 cm™') when comparing uncoated to coated
samples (dashed line in Figure 4A). This blue shift has been
described by Ferrari et al. for disordered graphite®” and was
recently traced back to surface stresses introduced by
nonepitaxially grown ALD layers on the carbon substrate.'*
Furthermore, TMC/vanadium oxide hybrid electrodes exhibit
several peaks characteristic for vanadium oxide. Depending on
the coating thickness, the observed peaks vary in position and
shape. Samples TMC+150VOx and TMC+200VOx show
typical sharp signals of V,0:" which broaden and shift
significantly for TMC+50VOx and TMC+100VOx. Peak
broadening as well as wavenumber shifting is an indication
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for smaller domain sizes of vanadium oxide in these samples, in
agreement with the literature for nanometer-sized metal oxide
structures because of phonon confinement.**

X-ray diffraction was carried out for a complementary
confirmation of the vanadium oxide oxidation state (Figure
4B). All diffractograms exhibit a peak at 18.5° 26 associated
with the PTFE binder according to PDF 54-1595 and a broad
shoulder around 25.5° 20 from amorphous carbon. The relative
intensity of this shoulder decreases for higher coating
thicknesses because of the decreasing carbon content of the
samples. The vanadium oxide phase of TMC+150VOx and
TMC+200VOx is clearly found to be orthorhombic V,0¢ in
Pmmn space group, according to PDF 41-1426. Like the
observations made in the Raman section, these peaks broaden
and decrease in intensity for TMC+50VOx and TMC+100VOx
because of nanoscopic domain sizes in the confined mesopore
space.

3.2. Electrochemical Characterization. Electrochemical
measurements of TMC/vanadium oxide hybrid electrodes were
carried out in both lithium- and sodium-containing electrolytes,
namely, 1 M LiCIO, and 1 M NaClO, both dissolved in ACN.
Cyclic voltammetry (CV) in lithium electrolyte was performed
using TMC and TMC/vanadium oxide electrodes as working
electrodes in a half-cell setup (Figure SA). Uncoated TMC
electrodes exhibit a rectangular CV signal characteristic for the
purely capacitive charge storage mechanism of porous carbon
materials.”

TMC coated with vanadium oxide shows significantly
enhanced charge storage capacity, specifically in the negative
potential range, where several mechanisms are contributing to
the overall charge storage. The enhanced current signal can be
divided into two contributions: (1) An enlarged rectangular
signal and (2) two small pairs of redox peaks that become more
stretched out and show larger potential gaps between cathodic
and anodic scan with increasing coating thickness. The
rectangular signal originates, for the most part (besides a
small capacitive contribution from the carbon substrate), from
pseudocapacitive lithium intercalation reactions that have been
described for nanocrystalline V,04 in the literature.*’
Pseudocapacitance describes Faradaic charge storage exhibiting
a capacitor-like electrical response in the form of a rectangular
CV signal and a sloping voltage profile.”® Pseudocapacitive
intercalation causes no phase transformation to the host lattice
and can occur in parts of the nanometer-sized V,0Oj coatings
where intercalation kinetics are no longer limited by solid-state
diffusion.*® Diffusion-limited, battery-like lithium intercalation,
that is, Faradaic charge storage exhibiting a plateau in the
voltage profile,*® is observed to a smaller extent and occurs with
a redox peak at around —0.6 V vs carbon in the cathodic scan
for samples TMC+50VOx and TMC+100VOx. This peak
becomes broader and is shifted toward lower potentials for
samples TMC+150VOx and TMC+200VOx as a result of
decreased electrical conductivity and longer diffusion paths for
lithium ions caused by higher coating thicknesses. The reaction
mechanism of lithium intercalation in vanadium pentoxide is
typically described by eq 2%

V,04 + xLit + xe” © Li, V, 04 ()

with x representing the mole fraction of intercalated lithium
ions.

A quantitative assessment of the specific capacity and rate
handling was conducted by galvanostatic cycling at various
currents (Figure SB). It should be noted that all capacity values
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are given with respect to the combined mass of carbon and
vanadium oxide. While uncoated TMC exhibits a maximum
specific capacity of 60 mAh/g, ALD coating with S50 cycles
already increased the maximum capacity to 100 mAh/g. For
higher mass loadings of vanadium oxide, the capacity increased
up to a maximum value of about 210 mAh/g for TMC
+200VOx. When analyzing the rate behavior, it is evident that
higher vanadium oxide loadings lead to quicker capacity fading
at higher rates. The reason for this behavior is the decreasing
electrode conductivity as well as longer diffusion paths for
lithium ions to the reactive sites. The specific capacity of TMC
+150VOx drops to 25 mAh/g at 10 A/g, whereas TMC
+200VOx drops to 14 mAh/g already when cycling at 5 A/g.
Sample TMC+100VOx offers a good compromise of capacity
and rate handling by showing a maximum of about 170 mAh/g
with a retention of almost 60 mAh/g at a high rate of 20 A/g
(corresponding to a rate of 118C). Consequently, depending
on the application, the desired properties in terms of maximum
capacity or high rate behavior can be tailored by adjusting the
number of ALD cycles. The Coulombic efliciency of all samples
is above 97% at low rates and 100% at high rates (Figure SC).

Cyclic voltammetry of TMC/vanadium oxide electrodes was
further carried out in sodium-containing electrolyte (Figure
SD). All CVs are found to exhibit a rather rectangular signal
with a slightly increasing current in the negative potential range
during the cathodic scan. No major differences in shape or
magnitude are visible between all coated samples, except for a
more pronounced resistive knee during polarization change for
higher vanadium oxide loadings, which is a consequence of
higher electrode resistivity. The absence of any distinct redox
peak indicates exclusively pseudocapacitive sodium intercala-
tion in TMC/vanadium oxide hybrid electrodes, which aligns
with previous reports on bilayered V,05.°** This study
demonstrates stable pseudocapacitive sodium intercalation
behavior for the first time in an orthorhombic V,0; host
lattice. The intercalation of sodium in the vanadium oxide
structure is described by eq 3:%

V,0; + xNa™ + xe” < Na,V,0; 3)

The specific capacity of TMC/vanadium oxide electrodes is
analyzed by galvanostatic cycling (Figure SE); the associated
Coulombic efficiencies are well above 90% and given in Figure
SF. The maximum capacity for all hybrid electrodes,
independent of the vanadium oxide loading, is almost identical
with values between 102 and 107 mAh/g. This is in clear
contrast to the behavior in lithium-containing electrolyte, where
the maximum capacity scales with the vanadium oxide content
of the hybrid electrode. The observation can be attributed to
two reasons: (1) To a small extent, there is a higher double-
layer contribution to the overall capacity of hybrid electrodes
with smaller vanadium oxide loadings, since they exhibit slightly
higher specific surface areas. However, considering the rapid
decrease of micropore volume already seen for TMC+50VOx,
this contribution is relatively low. (2) To a larger extent, not
the entire volume of the vanadium oxide coating contributes
toward charge storage: sodium appears not to reach all possible
reactive sites but only intercalates to a certain extent into
thicker orthorhombic V,0j structures. This can be understood
by considering the larger ionic radius of sodium with 1.02 A
compared to 0.76 A for lithium.”* When cycling at higher rates,
the capacity decreases most rapidly for TMC+200VOx; the
highest retention is observed for TMC+50VOx with 51 mAh/g
at 20 A/g (corresponds to 187C). Qualitatively, this is the same
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Table 2. Literature Overview of V,0;-Based Lithium and Sodium Intercalation Electrodes”

electrode material
OLC/V,0;
AC/V,0,
V,04 nanosheets (+ 20 mass % CB)
porous C/V,0; (+ 20 mass % CB)
graphene/V,0; (+ 15 mass % CB)
TMC/V,0,
CNT/V,05 (+ 10 mass % CB)
V,05 aerogel (+ 20 mass % CB)
V,05 nanobelts (+ 20 mass % CB)
amorphous V,05
TMC/V,0;

max. capacity

electrolyte (mAh/g) capacity (mAh/g) at maximum rate
1 M LiClO, in ACN 129 68 @S A/g
1 M LiClO, in ACN 122 21@ 5 Alg
1 M LiPF; in EC/DMC 141 80 @ 8C or 12 A/g
1 M LiPF; in EC/DMC 140 118 @ 64C or 9.4 A/g
1 M LiPF4 in EC/DMC 280 210 @ 4C or 1.6 A/g
1 M LiClO, in ACN 170 60 @ 118C or 20 A/g
1 M NaPF in PC 110 67 @ 72C
1 M NaPFq in PC 150 S0 @ 4C or 224 Afg
1 M NaPF, in EC/DMC 231 134 @ 0.64 A/g
1 M NaPFy in PC 170 80 @ SC or 1.17 A/g
1M NaC104 in ACN 107 S1 @ 187C or 20 A/g

cycling stability
4000

8000

50

800

100

2000

no half-cell data
100

100

100

2000

reference

14
14
72
31
32
this work
39
36
33
35
this work

“The specific capacity values are normalized to the “active material”, that means, neglecting the addition of CB as indicated with parentheses.
Abbreviations: onion-like carbon (OLC), activated carbon (AC), carbon black (CB), acetonitrile (ACN), ethylene carbonate (EC), dimethyl
carbonate (DMC), carbon nanotubes (CNT), propylene carbonate (PC).

o 200 L ees ees e ametyaee auee tEse mess asss sman 100 o~ 200 aun- LT,

3 sumnatitt, . et L 3 B S TTTTTT TR PR e PR B 1o o)

8 g - .

; S i 9
2;’160— osc 80 & g;>160- lgo &
r< "1 W28C o r o

LY = 1C
< . g_ < g_
% 120 e e 60 & E 120 v 0 =
[ ® .-:c Lo5c o
'E “ense s0C %& E .'.f.c.._.‘ﬂf_ G e g
S 80- " 40 8 80 . s 40 &
© anss g © 100C i
o o Q nannn 3
o < o <
= 40 +20 - = 404 F20 =3
S . . s S . z
2 LiClO, in ACN 2 NaClO, in ACN
»w . . . ’ . 0 9 , . . . , 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60

s 450 Cycle number Cycle number
3
! E —a

o° 125 .

g

< | M . .

g 100 LiClO, in ACN

- 4

"? 75 _| W‘

o _

1] * —e

2 50+

o . NaClO, in ACN

[*]

= 25 —

[T 4

@

a o T S S — S I — e T S

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Cycle number

Figure 6. C-rate tests from 0.5C to 100C of sample TMC+100VOx in LiClO, in ACN (A), NaClO, in ACN (B), and cycling stability in both
electrolytes at a rate of 10C (C). The rate of 1C was equivalent to 167 mA/g for Li-containing electrolyte and to 107 mA/g for Na-containing

electrolyte.

trend as in lithium electrolyte and a consequence of increasing
electrode resistivity with higher vanadium oxide loading. It
should be noted that the specific capacities in sodium
electrolyte at high rates are on the same level as in lithium
electrolyte, despite the larger ionic radius of Na*. The reason is
the exclusively pseudocapacitive intercalation mechanism of
sodium, which is not limited by solid-state diffusion.

To quantitatively separate pseudocapacitive and battery-like
intercalation for both electrolyte systems, a kinetic analysis as
proposed by Dunn et al. is carried out.”® Therefore, CVs of
TMC+100VOx samples are recorded in both lithium- and
sodium-containing electrolytes at scanning rates between 10
and 500 mV/s (Supporting Information, Figure S2A,B) and the

8659

cathodic current at a fixed potential of —0.75 V vs carbon is
traced at every scan rate. By logarithmic plotting of the current
over the logarithmic scan rate, a linear relation is observed
(Supporting Information, Figure S2C). A slope of 0.5 is
typically associated with ideal battery-like, solid-state diffusion
limited charge transfer, whereas a slope of 1.0 corresponds to
an ideal capacitive behavior that is not diffusion limited.”””® In
lithium electrolyte, a slope of 0.62 is calculated, being in line
with a mixed battery-like and pseudocapacitive behavior.
Contrarily, in sodium electrolyte, a slope of 0.92 corresponds
to an almost ideal (pseudo-)capacitive behavior, thereby
underlining the reasoning for the good rate behavior of larger
Na'.
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Finally, TMC+100VOx hybrid electrodes will be subjected to
C-rate and stability benchmarking to provide a better
comparability to state-of-the-art literature (Table 2). When
considering the performance with a lithium electrolyte, a
maximum capacity of about 150 mAh/g at a rate of 0.5C is
observed (310 mAh/g when normalizing to the vanadium oxide
content of the electrode) (Figure 6A). This value is in the range
of other state-of-the-art V,0O; cathode materials. When
increasing the cycling rate up to 100C, TMC+100VOx shows
a capacity retention of 46% compared to the initial value. In the
sodium electrolyte, a maximum specific capacity of 120 mAh/g
is measured at 0.5C (250 mAh/g normalized to V,0O5 content)
(Figure 6B), which is already among the highest reported for
V,0Os-based cathodes in the literature. In addition, an attractive
51% capacity retention of the maximum value is observed when
cycling at 100C. The good rate behavior in both electrolytes is
caused by the homogeneously distributed, nanoscopic V,Os
clusters and the consequential large interface to the electrolyte,
owing to the TMC substrate that additionally provides a
superior electric conductivity.

The longevity of the electrodes is monitored by cycling TMC
+100VOx electrodes in lithium- and sodium-containing
electrolytes at a rate of 10C (Figure 6C). In lithium electrolyte,
no capacity fading is observed after 2000 charge/discharge
cycles. Contrarily, the capacity even increased slightly to 116%
of the initial value. A similar behavior was observed in a
previous study on vanadium oxide/activated carbon hybrid
electrodes, where a rising capacity after several thousand cycles
was linked to a partial clearance of previously blocked
micropores,'* and the present study confirms this trend for
hybrid materials employing endohedral, porous carbon. For
sodium-containing electrolyte, very small, constant capacity
fading is observed over 2000 cycles to a retention of about 75%
of the initial value, related to the higher lattice expansions upon
intercalation of larger Na* compared to Li*. This is, to the best
of our knowledge, the most stable sodium intercalation
behavior reported so far for V,0s-based electrodes. Interest-
ingly, orthorhombic V,05 was previously reported unsuitable
for sodium intercalation because of rapid capacity fading.”" The
reason for the enhanced stability of the TMC/vanadium oxide
electrodes appears to result from (1) the nanoscopic vanadium
oxide layer size and (2) the confinement of vanadium oxide in
spherical mesopores. The nanometer-sized dimensions of the
ALD coating are enabled by the homogeneous distribution of
TMC pores and contribute toward a significantly reduced strain
formation in the vanadium oxide structure upon intercalation of
large sodium ions. Further, by locally confining vanadium oxide
in the mesopore space, disintegration and the consequential
loss of contact with the conductive carbon matrix can be
effectively prevented.

4. CONCLUSIONS

We demonstrated the synthesis of tailored mesoporous carbon/
vanadium oxide hybrid electrodes via atomic layer deposition
with varying metal oxide loadings between 24 and 65 mass %,
without observing substantial pore blocking of the carbon
substrate. The coating was identified as orthorhombic V,O,
and an increasing crystalline ordering was detected for higher
vanadium oxide loadings. When employing the hybrid
electrodes as lithium and sodium hosts, intercalation was
found to be predominantly pseudocapacitive and maximum
capacities of 200 mAh/g for lithium and 110 mAh/g for sodium

were measured (per electrode mass). Kinetic analysis revealed
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that sodium intercalation was less limited by solid-state
diffusion than lithium, which resulted in an impressive rate
behavior for Na*, with 51% retention of the maximum capacity
at an ultrahigh rate of 100C. Stability testing showed superior
longevity over more than 2000 charge/discharge cycles, which
was attributed to reduced strain formation in the nanometer-
sized ALD coating in the tailored mesopores and an effective
prevention of vanadium oxide disintegration in the confined
pore space.
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Figure S1: Transmission electron micrographs of samples TMC+50VOx (A), TMC+100VOx (B), and
TMC+200VOx (C). ldentification of vanadia in A and B is not easily possible because of the
predominantly amorphous structure and/or small domain sizes. For sample TMC+200VOx, a larger
vanadia domain size as compared to TMC+150VOx is clearly visible.
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Figure S2: Cyclic voltammograms of TMC+100VOx in (A) LiClO4 in ACN and (B) NaClO4 in ACN at varying

scan rates between 10-500 mV/s. (C) Logarithmic plots of cathodic current at -0.75 V vs. carbon against

logarithmic scan rate, as well as a linear regression.
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The study presents the synthesis of vanadium oxide/carbon onion hybrid materials. Flower-like vanadium
oxide nanostructures nucleate on carbon onion nanoparticles under hydrothermal conditions, forming
a highly intertwined network. By varying the amount of added carbon onions during the synthesis, the
number of possible nucleation sites can be adjusted, resulting in the preferential growth of vanadium
dioxide in either P2;/c or C2/m space group. When employed as a lithium intercalation electrode, P2;/c
VO, exhibits capacitor-like (pseudocapacitive) lithium intercalation, whereas C2/m VO, shows battery-
like intercalation peaks with a maximum capacity of 127 mA h g%, By selecting an optimum ratio and
thereby combining both intercalation mechanisms, enhanced kinetics with discharge capacities of 45
mA h gt and 29 mA h g at high rates of 50 A g% and 100 A g~! (equal to 394C and 788C) are
obtained. This behavior can be translated to a device level by using the material as anodes in asymmetric
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1. Introduction

Fast and reversible energy storage devices are in high demand,
with applications ranging from electric vehicles to temporary
storage of intermittent renewable energy sources, such as solar
or wind power." Electrical double-layer capacitors (EDLCs) have
emerged as a promising technology for high power electro-
chemical energy storage.>* This kind of supercapacitor stores
energy via the formation of an electrical double-layer at the
fluid/solid interface, that is, electrosorption of electrolyte ions
at the charged electrode of opposite polarity.* Their purely
physical charge storage mechanism enables high charge and
discharge rates, yet the specific energy is much smaller
compared to state-of-the-art lithium ion batteries.> Typical
EDLC electrodes consist of high specific surface area (SSA)
carbons that can be distinguished into two groups:*’ carbons
with a high inner porosity, such as activated carbon® or carbide-
derived carbon (CDC),>** and carbons that exhibit exclusively
external surfaces, such as carbon onions'** or carbon nano-
tubes (CNTs)."* The double-layer capacitance of EDLCs is
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a high power of 58 kW kg™, while longevity over 5000 charge/discharge cycles is demonstrated.

limited to about 0.1 F m ™2, related to a minimum in accessible
pore size that is in the range of the ion size."*'

One promising strategy for increasing the energy storage
capacity is the implementation of redox-active materials, such
as metal oxides,'**® surface functional groups,'*° or redox-
active electrolytes,”** to extend the purely capacitive carbon
system by faradaic charge storage (redox reactions). Depending
on the electrochemical response of the material, redox-active
systems are either described as pseudocapacitive (linear
charge-voltage profile, such as MnO, (ref. 24 and 25) or
MXene***), or as battery-like (well-defined plateaus in the
charge-voltage profile, such as VO,,*® V,05,>° or V,Ti;_ ,0,,*
among others).***> The synthesis of hybrid electrodes often
employs wet-chemical approaches,**>* atomic layer deposi-
tion,***” electrochemical deposition,*® or drop-casting.’**** Apart
from tuning the intrinsic properties of the electrodes, optimi-
zation of the cell setup by using different electrodes as anodes
and cathodes is fundamental for further improvements. For
that purpose, hybrid or asymmetric supercapacitors typically
employ a metal oxide anode that utilizes a battery-like energy
storage mechanism, versus an EDLC cathode.*™* In order to
achieve an optimized potential profile at the anode and
cathode, the different specific capacities of the two materials
have to be taken into account and be charge balanced by
adjusting the electrode masses, since they determine the
distribution of the applied cell voltage.*

The main obstacle of an asymmetric supercapacitor setup is
to overcome the sluggish kinetics of the metal oxide anode,®
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creating a demand for novel hybrid materials that enable
significantly faster rates.** Therefore, recent studies have
focused on (i) the use of tailored mesoporous carbons that allow
for the efficient incorporation of Li,TisO4, (e.g, ref. 45, up to
105 mA h g~ " at 350C) or (ii) the synthesis of core-shell particles
consisting of crystalline/amorphous LiFePO, mixtures encap-
sulated by carbon (e.g., ref. 46, up to 36 mA h g~ ' at 300C). The
most commonly employed strategy is admixing conductive
additives with the metal oxide, such as carbon black or carbon
onions.*”*® Particularly, the latter exhibit superior properties
when used as conductive additives in supercapacitor elec-
trodes.” Carbon onions are spherical carbon nanoparticles
consisting of several concentric sp>-hybridized carbon shells in
the size range between 5 and 10 nm, depending on the synthesis
method." By annealing of detonation nanodiamonds in an
inert gas atmosphere,® such as argon,” a gradual trans-
formation of diamond-like carbon to graphitic carbon is
observed between 700 and 1700 °C. Complete sp-to-sp’
conversion at around 1700 °C yields a high electrical conduc-
tivity of ca. 4 S em™'.%2 Besides the use as conductive additives,
carbon onions have also served as substrates in hybrid elec-
trodes.”*>** Particular attractions of carbon onions as
substrates are the high interparticle pore volume and specific
surface area of up to 1.2 cm® g~ and 600 m> g~ ', respectively,
providing a large space for the deposition of redox-active
materials within the conductive network.***°

Vanadium oxides have been widely researched as redox-
active materials for lithium and sodium battery cathodes.***
They typically exhibit two-dimensional sheet structures formed
by corner/edge/face-sharing octahedra® that accommodate ion
intercalation reactions. Phases of V,05 and VO, are typically
studied as a negative electrode in a half-cell setup against
lithium foil, exhibiting several steps of lithiation, depending on
the applied potential vs. Li/Li" and on the crystal structure.?®36-%
Yet, only a few studies exist on vanadium oxide hybrid elec-
trodes at a device level,*** that is, in a full-cell setup.

In a recent study, we investigated the properties of carbon
onions coated with partially amorphous vanadium pentoxide
via atomic layer deposition.*®* When measured in an asymmetric
supercapacitor setup against an activated carbon cathode, we
observed a maximum specific energy and power of 38 W h kg ™"
and 2 kW kg, respectively. Core-shell particles consisting of
carbide-derived carbon shells and vanadium pentoxide cores
showed even higher values of up to 84 W h kg™ " and 6 kW kg ™"
with CDC as the cathode.® The high performance of the core-
shell particles was a consequence of the continuous carbon
network that successfully enhanced the sluggish kinetics of
vanadium pentoxide, demonstrating the high impact of the
carbon substrate on the electrochemical performance of anodes
in a full-cell. Consequently, when designing advanced anodes
for asymmetric supercapacitors, it is crucial to carefully tune
their structural properties to achieve a synergistic interaction
between the metal oxide (for lithium intercalation) and carbon
(providing electrical conductivity).?

In this study, we investigate the unique ability to influence
the crystal structure of vanadium dioxide by using carbon
onions as the substrate or as the admixed conductive additive
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for hydrothermally synthesized vanadia nanostructures, to
obtain vanadia/carbon hybrids or composites. Carbon onions
added directly to the solution during hydrothermal growth
serve as nucleation sites for vanadium dioxide and are closely
built into the nanohybrid, providing improved performance
stability and rate behavior. Controlling the number of possible
nucleation sites allowed us to adjust the crystal structure of
vanadium dioxide. Our results reveal an optimum ratio of C2/m
and P24/c for an enhanced capacity at ultrahigh discharge rates,
owing to a combination of battery-like and capacitor-like
(pseudocapacitive) Li* intercalation, both in half-cell experi-
ments and as asymmetric supercapacitor anodes versus an
activated carbon cathode.

2. Experimental section
2.1 Materials

Vanadia nanoflowers were obtained by a hydrothermal
synthesis route, as established in ref. 61 and 62. First, 1 g of
vanadium pentoxide powder (Sigma Aldrich) was dissolved in
a mixture of 20 mL of deionized water (Milli-Q, Merck) and 10
mL of diethanolamine (Sigma Aldrich) on a magnetic stirrer for
4 h. The pH of the solution was determined to be 9.8, using
a SevenGo pH meter (Mettler Toledo). The solution was then put
into a polytetrafluoroethylene-lined (PTFE) steel autoclave and
kept at 180 °C for 48 h, before it was naturally cooled down. The
product was then washed and centrifuged in a mixture of pure
ethanol (Sigma Aldrich) and deionized water three times for
three minutes at 1000 rpm. The resulting grey-black slurry was
dried in an oven at 80 °C overnight. To obtain a high degree of
crystallinity, the vanadium oxide nanoflowers were thermally
annealed in a quartz tube furnace in argon (flow rate 100 sccm)
at 500 °C for 60 min at a heating and cooling rate of 10 °C min~"
and 40 °C min~ ", respectively.

Carbon onions (OLCs) were synthesized from detonation
nanodiamond precursor (diameter 4-6 nm, NaBond Technolo-
gies) via thermal annealing in a water-cooled high temperature
furnace (Thermal Technology Inc.) in argon atmosphere at
1700 °C for 1 h, with a heating/cooling rate of 20 °C min~'.**
Different amounts of OLCs were employed as a conductive
additive for vanadium oxide nanoflowers by simple mixing with
a pestle and mortar (mass ratios of vanadium oxide to OLC were
7:2,6:3, and 5 :4) to obtain VO,~OLC-composite samples.
For the hydrothermal synthesis of vanadia nanoflowers and
OLCs (VO,-OLC-hybrid samples), different amounts of OLC
powder were dispersed with vanadium oxide powder on
a magnetic stirrer for 4 h (the same mass ratios as above; 7 : 2,
6:3, and 5 : 4), and the pH value was measured to be 9.8 (the
same as without OLCs). The same hydrothermal synthesis
process with subsequent thermal annealing as described above
was carried out.

For electrode preparation, the powder materials were
admixed with ethanol and PTFE (aqueous solution, 60%, Sigma
Aldrich) in a mortar resulting in mass ratiosof 7:2:1,6:3: 1,
and 5 : 4 : 1 for vanadia nanoflowers to OLCs to PTFE. The ob-
tained slurry was then rolled in a hot-rolling machine to about

This journal is © The Royal Society of Chemistry 2017


http://dx.doi.org/10.1039/c7ta02564e

Published on 20 May 2017. Downloaded by Universitat des Saarlandes on 8/14/2018 12:03:08 PM.

Paper

100 um thick electrodes and dried in a vacuum oven at 20 mbar
and 120 °C overnight.

2.2 Materials characterization

Transmission electron microscopy (TEM) was performed with
a JEOL 2100F system operating at 200 kV. Samples were
prepared by dispersing and sonicating the powder samples in
isopropanol and deposition on a copper grid with a lacey carbon
film (Gatan Inc.). Elemental mappings were recorded using an
energy dispersive X-ray spectrometer (EDX) with a Thermo
Fisher Scientific EDX detector (UltraDry).

The electrode conductivity ¢ was analyzed by 4-point probe
measurements (custom built, tip diameter: 1.5 mm, tip
distance: 1.75 mm). Areal resistance measurements were con-
ducted 6 times per electrode and the conductivity was normal-
ized to the electrode thickness and calculated via eqn (1):

~In(2) 1
= U (1)

where I is the current, U the voltage, and d the electrode
thickness (100 um).

Thermogravimetric analysis (TGA) was performed on the
electrode samples using a TG 209 F1 Libra system (Netzsch).
The samples were heated in alumina crucibles from room
temperature to 550 °C at a heating rate of 5 °C min~" under
a synthetic air atmosphere (80% N, and 20% O,). Higher
temperatures are to be avoided to stay below the melting point
of vanadium pentoxide. The burn-off mass was used to calculate
the metal oxide and carbon content of the sample.

Nitrogen gas sorption measurements were carried out with
an Autosorb iQ system (Quantachrome) at the temperature of
liquid nitrogen (—196 °C) after degassing at 10* Pa and 150 °C
for 10 h. For the measurements, the relative pressure (p/p,) was
varied from 5 x 10~ to 1.0 in 58 steps. The specific surface area
(SSA) was calculated with the ASiQwin-software using the Bru-
nauer-Emmett-Teller (BET) equation in the linear relative
pressure range of 0.1-0.25. Values for the total pore volume
correspond to p/p, = 0.95.

Raman spectroscopy was carried out with a Renishaw inVia
Raman Microscope that is equipped with an Nd:YAG laser with
an excitation wavelength of 532 nm and a power of about 0.05
mW (measured on the sample). Using a low laser power pro-
hibited an oxidation of VO, to V,05 during measurements. A
50% objective and a grating with 2400 lines per mm were used to
reach a spectral resolution of about 1.2 em™". Each spectrum
was acquired with a measurement time of 30 s and 10 accu-
mulations. Peak deconvolution of D- and G-bands was con-
ducted using a baseline correction and assuming four Voigt
profiles.

X-ray diffraction (XRD) experiments were conducted
employing a D8 Advance diffractometer (Bruker AXS) with
a copper X-ray source (CukK,, 40 kV, 40 mA), a Gobel mirror, a 0.5
mm point focus, and a two-dimensional VANTEC500 detector
that covers about 25° 26. All samples were placed on a sapphire
single crystal and measured in 3 steps at 20°, 40°, and 60° 26
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with a step duration of 33 min. Rietveld refinement was carried
out using TOPAS Version 5 software (Bruker AXS).

2.3 Electrochemical characterization

The synthesized materials were characterized as working elec-
trodes in a half-cell setup.®® Typical working electrodes exhibi-
ted a thickness of about 100 um and a mass of 1.5-2.0 mg. A
five-times oversized, PTFE-bound activated carbon (type YP-80F,
Kuraray) was used as counter electrode, and activated carbon
(type YP-50F, Kuraray) served as quasi-reference electrode.® As
current collectors, 12 mm diameter carbon-coated aluminum
foils (Zflo 2653, Exopack Technologies) were employed and
glass fiber mats (GF/A, Whatman) were used as separators. After
assembly, the cells were first dried in a vacuum oven at 120 °C
and 20 mbar overnight, before being transferred to an argon
filled glovebox (MBraun Labmaster 130, O, and H,0 < 1 ppm),
where they were vacuum-backfilled with 1 M LiClO, in aceto-
nitrile (ACN) electrolyte (battery grade, BASF). Then, full-cells
were assembled with the synthesized materials as anodes, and
5 mass% PTFE-bound activated carbon (type YP-80F, Kuraray,
electrode thickness ca. 100 um) served as cathodes. Charge-
balancing was achieved by adjusting the anode-cathode mass
ratioto 1: 2.

Electrochemical characterization was carried out using
a potentiostat/galvanostat (VSP300, Bio-Logic). In a half-cell
setup, cyclic voltammetry (CV) was performed in a potential
window from +1.0 V to —1.0 V vs. carbon at a scan rate of 1 mV
s~'. Galvanostatic charge/discharge with potential limitation
(GCPL) was carried out by cycling between +1.0 Vand —1.0 V vs.
carbon with specific currents ranging from 0.05-100 A g *
(equivalent to C-rates of 0.4-787C; 1C = 0.127 A g~ '), normal-
ized to the total electrode mass, excluding the mass of the PTFE-
binder. The specific capacity Cy, was calculated by integration
of the reduction current I over the reduction time ¢ accounting
for the lithiation step from +1.0 V to —1.0 V vs. carbon, and
normalizing to the total mass, m, of the working electrode,
excluding the PTFE binder (eqn (2)):

[ra .

Cyp =
P m

For investigation of full-cells, CVs were recorded up to a cell
voltage of 2.3 V at a scan rate of 10 mV s~ '. GCPL measurements
were carried out with specific currents ranging from 0.05 A g~ '
to 50 A g~' in a potential range between 0 V and 2.3 V cell
voltage, with the specific currents being normalized to the mass
of both electrodes, excluding the mass of the PTFE binder. The
potential evolution at both the anode and cathode was
measured by applying a spectator electrode, consisting of PTFE-
bound activated carbon (type YP-50F, Kuraray). The specific
energy Eg, was calculated by integration of the voltage profile

(eqn (3)):

Ep=—t— (3)
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where I is the applied current, U(t) the time-dependent cell
voltage and m the total mass of anode and cathode without
binder. The specific power Py, was calculated by dividing Eg;, by
the charge/discharge time. The energy efficiency was derived
from the ratio of specific discharge and charge energy. The
stability of full-cells was tested via GCPL between 0 V and 2.3 V
cell voltage at a specific current of 1 A g™,

In situ dilatometry was carried out with an ECD-2-nano
dilatometer (EL-CELL).** The measurements were performed
in a climate chamber (25.0 + 0.5 °C) in a two-electrode setup
with the VO,-OLC30-hybrid/VO,-OLC30-composite as the
working electrode and an oversized PTFE-bound activated
carbon as the counter and quasi-reference electrode (type YP-
80F, Kuraray); the separator and electrolyte were equivalent to
the procedure in half- and full-cells. Prior to the experiments,
the cell was dried for 24 h at 120 °C under vacuum (20 mbar).
The working electrode was compressed between a movable
titanium plunger with a constant load of 1 N. The strain was
tracked with a DP1S displacement transducer (Solartron
Metrology, accuracy £ 15 nm). Cyclic voltammograms were
recorded at 1 mV s~ ' after a resting period of 48 h after elec-
trolyte filling until equilibrium conditions were reached.

3. Results and discussion
3.1 Structural characterization

The structure and morphology of the synthesized electrode
materials were characterized by electron microscopy. As seen
from SEM images in Fig. 1, hydrothermally synthesized vana-
dium oxide forms in different structures depending on the
synthesis route. When carbon onions (OLC = onion-like
carbon) are present in the autoclave during synthesis,
a hybrid material is formed consisting of vanadia and carbon,

! VO,-0LC20-hybrid
oy
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with nanoscopic flower-like vanadia structures growing deeply
interconnected within the OLC agglomerates that serve as
nucleation sites (Fig. 1A-C). These samples are further labelled
VO,-OLC-hybrid. The term hybrid is chosen to emphasize the
chemical connection of the two components, vanadia and
carbon, on a nanoscopic scale. The vanadia-to-carbon ratio in
the hybrid electrode is controlled by stoichiometric addition of
carbon onions to the synthesis container; for example, the VO,—
OLC30-hybrid was produced by a precursor mass ratio of 6 : 3
vanadia to carbon onions. The remaining 10% of the final
sample consists of PTFE-binder used during electrode produc-
tion. In contrast, the hydrothermal process without OLCs yields
arrays of nanoscopic, flower-like vanadia structures. They
consist of several quasi-spherical nanoflowers that form con-
nected structures of several micrometers in size (Fig. 1D). When
admixing OLCs after the hydrothermal process to form
a composite, vanadia and OLC agglomerates are spatially
separated, with carbon being present around the vanadia
structures, rather than interpenetrating them like seen for the
hybrid material. These samples will further be described as
VO,-OLC-composites, emphasizing the post synthesis addition
of OLCs, with the number indicating the stoichiometric amount
of added OLCs to the composite material; for example, in the
VO,-OLC30-composite, vanadia nanoflowers were mixed with
OLCs in a mass ratio of 6 : 3. In such composites, carbon onions
are merely the mechanically admixed conductive additive,
whereas the hybrid material shows highly intergrown carbon
onion/vanadia domains with a nanotextured oxide/carbon
interface formed by chemical bonds.®

Both VO,-OLC-hybrid and VO,-OLC-composite samples were
further analyzed by TEM (Fig. S11) and chemically mapped via
EDX (Fig. 2). A clear visualization with a smooth interface between
OLCs and VO, is visible for the hybrid sample (Fig. S1At), whereas

4y V0,-0LC40-hybrid

Fig. 1 Scanning electron micrographs of (A—C) VO,—-OLC-hybrid samples, and (D) the VO,—OLC30-composite sample.
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VO,-OLC30-composite
¢ 2

Fig. 2 Transmission electron micrographs of VO,—OLC30-hybrid (A)
and VO,-OLC30-composite (D) samples, including EDX elemental
mappings of vanadium (B and E) and carbon (C and F). The more
homogenous distribution of vanadium resulting from the hydro-
thermal synthesis route is demonstrated.

VO, particles in the composite sample are separated from the
OLCs, preventing a clear depiction of the interface of the two
components. While the distribution of vanadium and carbon was
found to be homogenous throughout the whole particle in the
hybrid sample by EDX mapping (Fig. 2A), highly concentrated
regions of vanadium were found in a rather homogenous matrix of
carbon in the composite sample (Fig. 2B), being representative of
the vanadia nanoflower clusters, separated by OLCs in the
composite material. This further underlines the drastically
changed morphological character of the samples resulting from
the introduction of carbon at different stages of the synthesis. The
influence of carbon-vanadia distribution on the macroscopic
electrical conductivity of the electrodes was analyzed by 4-point
probe measurements (Table S1t). By comparing VO,-OLC30-
hybrid and VO,-OLC30-composite samples, it is obvious that the
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homogenous distribution of elements from the hybridization
leads to higher conductivity in the resulting electrode material
because of more continuous electron pathways.

The elemental composition of the electrode materials was
quantified by TGA and validated by semi-quantitative EDX
(Table 1 and ESI, Fig. S2t). The sample inhomogeneity of the
VO,-OLC-composite yielded a high standard deviation of the
EDX results. When deriving the vanadia content from TGA, it
must be considered that during thermogravimetric measure-
ments in synthetic air, VO, is oxidized to V,0Os, causing an
increase in mass per vanadium atom from 83 ¢ mol * to 91 g
mol™'. Moreover, the initial mass loss to 94% of the VO,-
OLC30-hybrid sample is caused by evaporation of adsorbed
surface water.” While the general trend of an increasing carbon
content for samples with larger amounts of added OLCs is
confirmed, the vanadia/carbon ratio as chosen by precursor
masses is not reached. Instead, the VO, contents of VO,—
OLC20-hybrid, VO,-OLC30-hybrid, and VO,-OLC40-hybrid
samples were determined as 57 mass%, 47 mass%, and 32
mass%, respectively, while VO,-OLC-composite samples con-
tained 60 mass%, 48 mass%, and 45 mass% vanadia. The
reasons for this behavior are (i) the partial dissolution of
vanadia from the samples during wet electrode preparation in
ethanol, as witnessed by yellow coloring of the solvent, and (ii)
an incomplete reaction yield of vanadia during the synthesis of
the hybrid materials. The TGA signal of pristine VO, nano-
flowers shows a mass loss of about 3.5% which can be associ-
ated with adsorbed water on the surfaces.®”” The subsequent
mass gain between 350 and 400 °C is a result of oxidation to
V,0s in the oxidizing air atmosphere.

The surface area and pore structure of the hybrid electrodes
were assessed by nitrogen gas sorption analysis (GSA). The
values of the specific surface area (BET-SSA) and pore volume
are listed in ESI Table S2,T and nitrogen sorption isotherms are
given in Fig. S3.f The type III isotherms describe the meso-/
macro-porous interparticle/intercluster voids, whereas the H3
hysteresis describes the amount of incompletely filled macro-
pores.®® The SSA of the hybrid samples varies between about 80
m”g ' and 160 m® g~ ', which increases with increasing amount
of added carbon onions, while the as-synthesized vanadium
oxide nanoflower structures exhibit around 38 m* g " in the
absence of carbon onions. The increased SSA for higher
amounts of OLC is related to the low density of carbon in
comparison to vanadia and the mesoporous interparticle voids

Table 1 Chemical composition of the hybrid and composite electrodes by EDX, and vanadium oxide content based on EDX and TGA

Elemental composition (EDX)

Vanadium oxide

Material C (mass%) V (mass%) O (mass%) F (mass%) EDX (mass%) TGA (mass%)
VOZ—OLCZO—hybI‘id 30£5 46 £ 6 17 +1 7+2 63 +7 57
VOZ—OLCSO—hybrid 40 + 3 36 4 18+ 1 6+ 2 54 +5 47
VO,-OLC40-hybrid 55 +4 27 £ 3 11+1 7+1 38+4 32
VO,-OLC20-composite 36 + 29 42 + 27 13 £9 9+ 7 55 4+ 36 60
VO,-OLC30-composite 50 £+ 26 30 £ 24 9+8 11+5 39 + 32 48
VO,-OLC40-composite 53 £17 26 + 15 10+ 5 11 +3 36 + 20 45
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between the spherical carbon onions (352 m® g~ ' for pristine
OLCs).

Raman spectroscopy was carried out to characterize the
crystalline structure of vanadia and carbon in the hybrid elec-
trode materials (Fig. 3A and B). The signals below 1000 cm ™" are
associated with vanadia, while the signals at 1345 cm ™' and
1595 cm ™! correspond to the D- and G-modes of carbon.®” The
Raman peaks at 191, 221, 594, and 612 cm™ " seen for VO,-OLC-
hybrid samples evidence the presence of the VO, phase.>*”* The
intensity of these peaks decreases with an increased amount of
OLCs in the hybrid materials relative to the carbon signal. The
same behavior is observed for the VO,-OLC-composite
(Fig. 3B); yet, the relative intensity of the VO, signals is much
lower compared to the VO,-OLC-hybrid samples, and barely
visible for the VO,~OLC40-composite. This can be explained by
the randomly distributed vanadia clusters in these electrodes,
which are surrounded by carbon onion agglomerates. Because
of the relatively small probed volume and the surface sensitivity
of the Raman measurements,” the detected signals originate
predominantly from the carbon species in the composite elec-
trode materials. The Raman signal of pristine nanoflowers
clearly aligns with VO,.*

An analysis of the D- and G-peaks of VO,—OLC30-hybrid
(Fig. 3C) and VO,-OLC30-composite samples (Fig. 3D) allows
for a detailed examination of the carbon structure. Even though
the same carbon onion materials were used for hybrid and
composite electrodes, quantitative peak deconvolution reveals
a difference in the carbon structure for the hydrothermally
synthesized hybrid sample (ESI, Table S31). While the areal
intensity ratio of the D- and G-mode of carbon (Ip/Ig) is 2.3 for

VO,-OLC40-hybrid
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the VO,-OLC30-composite, this value increases to 2.7 for the
VO,-OLC30-hybrid sample. An increasing Ir/I; ratio relates to
increasing disorder of the graphitic structure, caused by the
introduction of defects.”®”*7* This aligns with an increase of the
FWHM of D- and G-peaks for the VO,-OLC30-hybrid (ESI, Table
S31).** These observations can be explained by a change in the
carbon structure during hydrothermal synthesis and confirm
the strong interconnections of carbon and vanadia on the
nanoscale. When vanadia flowers nucleate from the solution on
the outer shells of the carbon onion nanoparticles, an ordering
reduction of the graphitic sp*hybridized rings is expected due
to surface stresses induced by non-epitaxially bound vanadia.
This observation is in line with findings for the growth of
vanadia layers deposited by atomic layer deposition on carbon
onions.*®

The crystalline structure of vanadia in the hybrid electrodes
was further analyzed by XRD (Fig. 4). For VO,-OLC-hybrid
samples, vanadia was found in the monoclinic VO, structure,
with both C2/m and P2,/c space groups verified per JCPDS 65-
7960 and JCPDS 65-2358, respectively (Fig. 4A). In general, both
structures are characterized by corner-sharing octahedra (ESI,
Fig. S31), with the distance between the shared oxygen atoms at
the corners of the octahedra showing a fixed distance of 3.3 A in
the C2/m structure (ESI Fig. S4At) and varying distances
between 2.9 A and 6.4 A in the P2,/c structure (ESI, Fig. S4B¥).
The peak at ca. 18° 26 is attributed to the polymer binder in the
electrode (PTFE; JCPDS 54-1595). The diffractograms of VO,-
OLC-composite samples, as well as of pristine VO, nanoflowers,
exhibit the signals of the VO, P2,/c space group, PTFE at 18° 24,
and a broad shoulder around 26° 26 that is indicative of

VO,-OLC40-composite

VO,-0LC30-composite JML_’
VO,-0LC20-composite

400 800 1200 1600 2000
Raman shift (cm™)

VO,-OLC30-composite
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Fig. 3 Raman spectra of (A) VO,-OLC-hybrid and (B) VO,-OLC-composite and pristine VO, nanoflower samples, including markers for the
ideal peak positions of VO,. Peak deconvolution of D- and G-peaks of VO,-OLC30-hybrid (C) and VO,-OLC30-composite (D) samples.
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Fig. 4 X-ray diffractograms of (A) VO,-OLC-hybrid and (B) VO,-
OLC-composite and pristine VO, nanoflower samples, including
markers for the ideal peak positions of C2/m VO, (JCPDS 65-7960),
P2,/c VO, (JCPDS 65-2358), and polymer binder PTFE (JCPDS 54-
1595).

nanocrystalline carbon. The absence of the C2/m space group
signal for VO,-OLC-composite samples indicates a preferential
growth of P2,/c vanadia during hydrothermal synthesis, when
no OLCs are present in the solution. Since OLCs caused no
change in the pH value of the solution, the change in crystal-
lization behavior can be explained by an increasing amount of
available nucleation sites with the addition of OLCs during the
synthesis. By adding carbon particles to the solution, the rate of
heterogenous nucleation, that is, energetically favored nucle-
ation on an existing surface, is increased. The significantly
reduced nucleation energy of vanadia on OLC surfaces leads to
a homogenous morphology of the VO,-OLC-hybrid samples.
The intensity of the C2/m space group in VO,-OLC-hybrid
samples grows relative to the P2,/c intensity for an increasing
amount of OLCs in the hybrid material, as further quantified by
Rietveld refinement. The amount of C2/m VO, space group is
calculated to be 3% (VO,-OLC20-hybrid), 35% (VO,-OLC30-
hybrid), and 77% (VO,-OLC40-hybrid; difference to 100% =
P24/c VO,). The larger number of nucleation sites provided by
carbon onions seemingly leads to favored growth kinetics for
C2/m VO, over P2,/c VO,.
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3.2 Electrochemical characterization

The electrochemical performances of the hybrid and composite
electrodes were characterized in half-cells using cyclic voltamme-
try (CV) at a scan rate of 1 mV s~ " (Fig. 5A and B). The CVs of VO,~
OLC-hybrid samples (Fig. 5A) exhibited two features that can be
attributed to (1) the double-layer capacitance originating from the
carbon onions in the hybrid material®”* and (2) the faradaic
charge storage mechanism of vanadium dioxide. Electrical
double-layer capacitance is characterized by a rectangular CV
pattern, as observed between ca. 0 V and +1.0 V vs. carbon."
However, considering the specific surface area of VO,~OLC-hybrid
samples between 81 m® g~ ' and 160 m”> g~ ', the contribution of
the double-layer capacitance of OLCs to the overall charge storage
is very small, as compared to the faradaic charge storage contri-
bution of VO,. The prominent redox peak pair observed at ca.
—0.55 Vvs. carbon in the cathodic scan and at —0.4 V vs. carbon in
the anodic scan is caused by battery-like lithiation and delithiation
of the VO, structure, respectively.*® Differences in the size of the
redox peaks can be noticed, especially for the VO,-OLC40-hybrid,
and less pronounced for the VO,~OLC30-hybrid, when compared
to the VO,-OLC20-hybrid sample that contains most vanadia and
would be expected to exhibit the largest peak. The reason is that
battery-like Li" intercalation at this voltage is only expected for C2/
m VO,.>**® The reaction mechanism of lithium intercalation in the
VO, structure is described by:**

VO, + xLi" + xe~ < Li, VO, (4)

where x describes the molar fraction of intercalated lithium
ions.

In contrast, VO,-OLC-hybrid samples containing more P2,/c
VO, exhibit a rather pseudocapacitive feature up to around
—1.0 Vvs. carbon. That is, an increased specific current without
showing distinctive lithiation and delithiation peaks.* This Li"
intercalation pseudocapacitance has been described in litera-
ture for nanostructured T-Nb,Os and nanocrystalline V,Os
electrode materials,’®’®”” but presents, to the best of our
knowledge, a new feature for P2,/c VO,. It is defined as lithium
intercalation causing faradaic charge transfer without causing
crystallographic phase changes to the host material.”®

The CVs of VO,-OLC-composite samples most noticeably do
not exhibit redox peaks (Fig. 5B). Instead, in the potential
region, where lithiation peaks emerged for VO,-OLC-hybrid
samples, pseudocapacitive behavior is observed with a steadily
rising specific current from around —0.15 V up to —1.0 V vs.
carbon in the cathodic scan. Considering that VO,-OLC-
composite samples only contain P2,/c VO,, this behavior is in
line with the observations made for VO,-OLC-hybrid samples,
where redox peaks were associated with C2/m VO,.

We carried out a kinetic analysis to separate battery-like from
pseudocapacitive (capacitor-like) contribution to the overall
charge transfer.””® Cyclic voltammograms were recorded at
varying scanning rates v between 10 and 1000 mV s~ ' (ESI,
Fig. S5A-Ct) and the reduction peak current i at a potential of
—0.7 V vs. carbon is tracked." Logarithmic plotting of i as
a function of v in accordance with eqn (5):*
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Fig. 5 Cyclic voltammograms of (A) VO,—OLC—hybrid and (B) VO,—OLC-composite samples recorded at 1 mV s™%. Specific capacities of (C)
VO,-OLC-hybrid and (D) VO,-OLC—-composite samples derived from the galvanostatic reduction step at varying rates between 0.05A g * and
100 A g* (corresponding to C-rates of 0.4-787C), normalized to the combined mass of carbon and vanadia. Insets in (C) and (D) show the
coulombic efficiency (ratio reduction/oxidation capacity) at varying rates.

i=a’ (5)

where a and b are variables, yields directly a slope of b (ESI,
Fig. S5Dt). Battery-like charge transfer, being diffusion limited,
exhibits a current i proportional to /v (i.e., b = 0.5), whereas
ideal pseudocapacitive charge transfer is not limited by solid-
state diffusion and behaves capacitor-like, that is, proportional
to v (i.e.,, b = 1).2** For VO,~OLC40-hybrid and VO,-OLC30-
hybrid samples, b-values of 0.54 and 0.68 were calculated,
confirming a mainly battery-like and a combined pseudocapa-
citive and battery-like charge transfer, respectively.’ The VO,—
OLC30-composite sample, for comparison, exhibits a b-value of
0.77, confirming a predominantly pseudocapacitive charge
transfer behavior for P2,/c VO,.

A quantitative investigation of the performance metrics of
the hybrid electrodes regarding specific capacity and rate
handling was carried out by galvanostatic charge/discharge with
potential limitation (GCPL) at different rates between 0.05 Ag ™"
and 100 A g~ (Fig. 5C and D). All values were normalized to the
mass of the electrode, including carbon and vanadia (but
without the mass of the polymer binder). The specific capacity
of VO,-OLC-hybrid samples at low rates was above 105 mA h
g~', with the highest capacity exhibited by the VO,~OLC30-
hybrid with 127 mA h g~ " (270 mA h per g per mass of VO,). This

13046 | J. Mater. Chem. A, 2017, 5, 13039-13051

sample also showed the highest capacity retention with 45 mA h
g ' (96 mA h per g per VO,) and 29 mA h g~ ' (62 mA h per g per
VO,) at ultrahigh rates of 50 A g~ " and 100 A g~ * (i.e., C-rates of
394C and 788C), respectively. This behavior can be explained as
follows: it is indicated that (1) the composition of the VO,-
OLC30-hybrid sample yields the most favorable balance
between carbon and vanadia as the conductive matrix and high
energy density material, respectively. Furthermore, (2) the
amount of carbon onions in the VO,-OLC30-hybrid sample
gave rise to an optimum vanadia composition regarding the
ratio of P2,/c and C2/m configurations that is a result of the
number of available nucleation sites. We propose that this
combination of battery-like and pseudocapacitive Li* interca-
lation synergistically benefits high capacity retention at ultra-
high rates.

The specific capacity of VO,-OLC-composite samples varies
between 71 mA h g " and 92 mA h g™ " at low rates and steadily
decreases for increased cycling rates. The highest initial
capacity is observed for VO,-OLC20-composite, whereas VO,—
OLC40-composite exhibits the highest retention at an ultrahigh
rate of 100 A g~ ', owing to the larger amount of carbon onions
as the conductive additive.

The performance of the hybrid electrode was further inves-
tigated as a full-cell by employing this material as the anode in

This journal is © The Royal Society of Chemistry 2017
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an asymmetric supercapacitor setup against an activated
carbon cathode. By selecting the mass ratio of anode to cathode
as 1: 2, charge balancing was achieved to ensure a symmetric
potential development between the two electrodes. CVs were
recorded at a scan rate of 10 mV s~ up to a cell voltage of 2.3 V
(Fig. 6A and B). For the cells containing VO,-OLC-hybrid
anodes, a broad lithium intercalation peak is observed between
about 0.7 V and 1.7 V cell voltage (Fig. 6A). As already seen for
the half-cell measurements, this peak is larger for samples
containing higher amounts of carbon onions, that is, a higher
amount of C2/m VO,. The cell employing VO,-OLC30-hybrid as
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the anode exhibits the highest capacity, showing a large inter-
calation peak in combination with a constant, high specific
current above 1.5 V cell voltage, being characteristic of pseu-
docapacitive charge storage. On the other hand, the cells con-
taining VO,-OLC-composite anodes only show
pseudocapacitive charge storage, and no intercalation peaks
emerge during cycling (Fig. 6B), in agreement with the half-cell
data.

The specific energy and power of the cells were derived from
GCPL at different rates, and plotted in a Ragone chart (Fig. 6C
and D); a typical galvanostatic cycle of cells containing VO,-
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Fig. 6 Cyclic voltammograms of asymmetric supercapacitor full-cells at 10 mV s~%, employing anodes of (A) VO,—OLC—hybrid and (B) VO,—
OLC-composite samples and activated carbon cathodes. Ragone-plots of samples employing anodes of (C) VO,-OLC-hybrid and (D) VO,—
OLC-composite samples, derived from galvanostatic cycling at different rates, with the straight lines corresponding to the charging cycle and
the dashed lines to the discharging cycle. (E) Voltage-profile of a galvanostatic cycle of full-cells employing VO,-OLC30-hybrid (top) and VO,—
OLC30-composite (bottom) anodes, including the potential development at the cathode and anode, monitored against a carbon reference
electrode. (F) Electrochemical cycling stability over 5000 cycles, measured at a specific current of 1 A g~ for full-cells employing VO,-OLC30-

hybrid and VO,-OLC30-composite anodes.
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Table 2 Literature comparison of asymmetric supercapacitor devices that employ the vanadia/carbon hybrid material as the anode and carbon

as the cathode. Abbreviations: OLC: onion-like carbon, AC: activated
carbonate/dimethyl carbonate, PIn: polyindole, rGO: reduced graphene
electrospun carbon fiber

carbon, ACN: acetonitrile, PVA: polyvinyl alcohol, EC/DMC: ethylene
oxide, CDC: carbide-derived carbon, PC: propylene carbonate and ECF:

Specific energy Specific power

Anode Cathode Electrolyte (Whkg™) (kw kg™ Reference
VO,/OLC AC 1 M LiClO,4 in ACN 45 58 This work
V,05/PIn/AC rGO/AC LiNO,/PVA gel 38.7 18 86
V,Ti; _,0,/OLC AC 1 M LiClO,4 in EC/DMC 110 6 30
VO,/OLC AC 1 M LiClO, in ACN 38 5.9 36
VO,/AC AC 1 M LiClO,4 in ACN 29 4.3 36
V,05/CDC CDC 1 M LiClO, in ACN 84 6.7 60
V,05/CNT AC 1 M LiClO, in PC 40 6.3 33
V,05/ECF ECF LiCI-PVA gel 22.3 1.5 87

OLC30-hybrid and VO,-OLC30-composite anodes at a rate of
0.05 A g ' is given in Fig. 6E. At a low rate, VO,~OLC-hybrid
cells exhibit specific energies between 39 W h kg™ ' and 45 W h
kg~ " during charging, with the highest energy observed for the
VO,-OLC30-hybrid (Fig. 6C). When increasing the rate, the cell
containing the VO,-OLC20-hybrid anode quickly drops in
energy, retaining 6 W h kg™" at a high power of 51 kW kg™ ". In
contrast, asymmetric cells containing VO,-OLC30-hybrid
anodes are distinguished by an outstanding rate performance,
with an increased energy retention of 11.3 W h kg™ ' at a high
power of 58 kW kg~ '. This behavior demonstrates that the
beneficial combination of battery-like and pseudocapacitive Li"
intercalation mechanisms observed in half-cells can be trans-
lated to a device level application, yielding asymmetric super-
capacitor cells with enhanced specific energy and ultrafast
cycling ability. A comparison of these values with the current
literature on asymmetric supercapacitors employing vanadia/
carbon hybrid anodes is given in Table 2. While the
maximum specific energy of the VO,-OLC30-hybrid cells is in
alignment with most other reports, the maximum specific
power of 58 kW kg™ ' is unprecedentedly high for hybrid
supercapacitors.

124
n V0,-OLC30-hybrid| 1 5
1.0
= F1.0
g’ 0.8
= F0.5 ¢n
*g' 0.6 - 2
£ 04/ | 0.0 g-
3 —
J
o 024 L0585
E
g 0.0+ 10
o
0 02 s
0.4 -
2.0

-1|.0 -d.s 0!0 0!5 1.0
Potential vs. carbon (V)

Cells with VO,-OLC-composite anodes exhibit specific
energies between 28 W h kg™ ' and 35 W h kg ™' in the charging
step, with the VO,-OLC20-composite showing the highest
energy at low rates, while the VO,-~OLC40-composite showed
the highest energy retention with 5.4 W h kg™ " at a high rate,
yielding a maximum specific power of 55.5 kW kg~ ' (Fig. 6D).
The cell potential in the galvanostatic cycle, including the
separate potential evolution at the anode and cathode, moni-
tored against a carbon reference electrode, is illustrated in
Fig. 6E. The formation of a plateau-like region during charging
of the VO,-OLC30-hybrid anode is observed at around —0.6 V
vs. carbon, corresponding to the intercalation peak in the half-
cell. At more negative potentials, an almost linear potential
increase evidences pseudocapacitive Li* intercalation. In
contrast, the VO,-OLC30-composite anode only exhibits
a pseudocapacitive region with linearly increasing potential
above —0.5 V vs. carbon, resulting in a decreased specific
energy.

The electrochemical cycling stability of the hybrid electrode
materials was assessed by galvanostatic cycling of asymmetric
supercapacitor full-cells at a rate of 1 A g~ . After 200 cycles,
both VO,-OLC30-hybrid and VO,-OLC30-composite cells
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Fig. 7 Half-cell cyclic voltammograms recorded at 1 mV s~ with potential window opening (black curves) and combined in situ electrical
dilatometry (red curves) to track the electrode strain during intercalation reactions in (A) VO,-OLC30-hybrid and (B) VO,-OLC30-composite

electrodes.
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faded in capacity to about 90%. Further cycling revealed
a highly stable capacity development of both cells over more
than 5000 charge/discharge cycles, with retentions of 85% and
80% compared to the starting value for VO,~OLC30-hybrid and
VO,-OLC30-composite, respectively. Capacity fading is a result
of vanadia degradation that is caused by repetitive volumetric
changes during long-term electrochemical cycling.®**

The electrode strain of both hybrid and composite materials
during cycling was further quantified by electrochemical in situ
dilatometry (Fig. 7).** It is revealed that VO,-OLC30-hybrid
electrodes undergo a strain of about 1.5% when fully lithiated at
—1.0 V vs. carbon (Fig. 7A), whereas VO,-OLC30-composite
electrodes exhibit no significant strain build-up during cycling
(Fig. 7B). Consequently, the battery-like lithium intercalation
evidenced by a pair of redox peaks in the CV of VO,-OLC30-
hybrid yields significant macroscopic volume changes of the
electrode during negative polarization. However, the longevity
of the electrode was not affected by strain formation, which can
be explained by the nanoscopic size of vanadia particles in the
hybrid material that significantly lowers intraparticle stresses,
as compared to micrometer-sized particles. Additionally, in the
highly intertwined network with carbon onions, the
surrounding carbon particles prevent vanadia from dis-
integrating, as it was described in the literature, for example, in
silicon/graphene anode materials.*® In contrast, pseudocapaci-
tive lithium intercalation in VO,-OLC30-composite electrodes
occurs almost without causing a strain to the electrode material,
leading to highly stable cycling behavior.

4. Conclusions

Flower-like vanadium dioxide nanostructures were prepared by
a facile and scalable hydrothermal synthesis. Employing
a hydrothermal synthesis route and adding a defined amount of
carbon onions during synthesis yield a highly interconnected
hybrid material with a tunable ratio of the VO, crystal structure.
A larger amount of added carbon onions provides a higher
number of available nucleation sites for vanadium oxide,
inducing a kinetically favored VO, growth as C2/m over P2/c.
When employed as electrodes for lithium intercalation, the
former configuration shows a battery-like mechanism with
intercalation peaks, while the latter exhibits pseudocapacitive
Li" intercalation with a linear charge-voltage profile. By tuning
the ratio of both crystal structures, an optimum composition is
found, where a combination of both intercalation mechanisms
synergistically benefits the performance, showing high capacity
retentions of 45 mA h g~' (96 mA h per g per VO,) and 29 mA h
g ' (62 mA h per g per VO,) at ultrahigh rates of 50 A g~ " and
100 A g * (i.e., 394C and 788C), respectively. This behavior is
transferred to a device level by using the hybrid material as the
anode in an asymmetric supercapacitor setup. While exhibiting
a maximum specific energy of 45 W h kg™', an outstanding
energy retention of 11.3 W h kg~ at an ultrahigh power of 58
kW kg~ was achieved and longevity over 5000 charge/discharge
cycles was demonstrated. This novel approach of combining
intercalation mechanisms is easily scalable and might be
transferred to other electrode materials or ion systems beyond

This journal is © The Royal Society of Chemistry 2017
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lithium, providing new opportunities in the design of asym-
metric supercapacitor systems.
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Figure S1: Transmission electron micrographs of (A) VO,-OLC30-hybrid and (B) VO,-OLC30-composite
samples.
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Table S1: Electrode conductivity of VO,-OLC30-hybrid and VO,-OLC30-composite electrodes by 4-point

probe as an average of six measurements.

Material Electrode corlductlwty
(S:cm™)

VO,-OLC30-hybrid 0.30+0.03

VO,-0OLC30-composite 0.16 £0.05

Table S2: Specific surface area (BET) and pore volume (at P/Po=0.95) of VO,-OLC samples and as
synthesized vanadium oxide nanoflowers and carbon onions.

. SSA (BET) Pore volume
Material (m?g") (cmP-g?)
VO,-0OLC20-hybrid 81 0.15
VO,-0OLC30-hybrid 89 0.21
VO,-0OLC40-hybrid 160 0.41
VO0,-OLC30-composite 118 0.31
VO, as synthesized 38 0.04
OLCs as synthesized 352 0.93

Table S3: Analysis of D- and G-bands of the samples VO,-OLC30-hybrid and VO,-OLC30-composite,

calculated by peak deconvolution.

Material FWHMD FWHMG Io/ls Pos. D-band Pos. G-band
(em?) (cm?) (em?)

VO,-0OLC30-hybrid 69 48 2.7 1347

VO,-OLC30-composite 58 40 2.3 1347
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Abstract: Next generation electrochemical energy storage
materials that enable a combination of high specific
energy, specific power, and cycling stability can be ob-
tained by a hybridization approach. This involves elec-
trode materials that contain carbon and metal oxide
phases linked on a nanoscopic level and combine charac-
teristics of supercapacitors and batteries. The combination
of the components requires careful design to create syner-
gistic effects for an increased electrochemical per-
formance. Improved understanding of the role of carbon
as a substrate has advanced the power handling and cy-
cling stability of hybrid materials significantly in recent
years. This Concept outlines different design strategies for
the design of hybrid electrode materials: (1) the deposi-
tion of metal oxides on readily existing carbon substrates
and (2) co-synthesizing both carbon and metal oxide
phase during the synthesis procedure. The implications of
carbon properties on the hybrid material’s structure and
performance will be assessed and the impact of the
hybrid electrode architecture will be analyzed. The advan-
tages and disadvantages of all approaches are highlighted
\and strategies to overcome the latter will be proposed.

Introduction

Electrochemical energy storage

In the face of global warming, scarcity of fossil fuels, and a
steadily growing energy demand, the transition to renewable
energy sources has been identified as one of the most urgent
tasks to the scientific community during the next decades.
The large-scale implementation of renewable energy, however,
leads to a shifting paradigm for power generation, that is,
from production on demand to production when available.
The resulting fluctuations make the use of fast-responding
electrochemical energy storage (EES) devices indispensable.”
Generally, EES devices can typically be divided into two
groups, (1) supercapacitors, or electrical double-layer capaci-
tors (EDLCs) that store energy by physical electrosorption of
ions at the surface of their electrodes, and (2) batteries that
employ Faradaic reactions in the bulk volume of their electro-
des.

EDLCs are a prominent technology for rapid and highly re-
versible energy storage that utilize the separation of electrical
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charges at the interface of electrodes and electrolyte.”! When
an EDLC is charged, electrolyte ions diffuse to and electrosorb
on the surface of the oppositely charged electrode, forming
the electrical double-layer. Suitable electrode materials offer a
high surface area for ion adsorption, as well as good electrical
conductivity. These properties are well met by microporous
carbons, such as activated carbons™ or carbide-derived car-
bons® and nanocarbons like graphene,” carbon onions,” or
carbon nanotubes.® The electrosorption process is distinguish-
ed by very fast charge/discharge kinetics, leading to a quick
energy uptake/release of supercapacitors (over 10 kWkg™). In
contrast, the specific energy remains about an order of magni-
tude below that of batteries.*® Despite efforts to further in-
crease the specific energy of EDLCs by extending the surface
area of microporous carbons or matching their pore sizes with
the electrolyte ion sizes,” the capacitance (and therefore the
energy) of an EDLC is intrinsically limited to about 0.1 Fm™2
because even smaller pores can no longer accommodate ions
and thinner pore walls can no longer screen electrical charg-
es.10

In contrast, a battery stores energy by Faradaic processes
such as intercalation, conversion, or alloying reactions between
its electrolyte ions and its electrodes. The most prominent
system is the lithium-ion intercalation battery, but because of
the high cost and geographically limited availability of lithi-
um,™ alternative ionic systems like sodium™ or potassium
are being explored. Unlike an EDLC, lithium-ion batteries
employ two different materials as anode and cathode. When
charged, lithium ions are extracted from the cathode and in-
serted into the anode material, resulting in Faradaic charge
transfer. The different electrochemical potentials of the anode
and the lithium and cathode determine the cell voltage of the
battery." The electrode materials need to enable the insertion
(intercalation) of lithium and should show a low (anode) or a
high standard reduction potential (cathode). Typical candidates
for intercalation-type electrodes are graphite™ or metal
oxides"® that exhibit a layered structure, in between which the
lithium ions can be stored or released. During intercalation,
lithium ions must diffuse through the electrode material to
reach the reaction sites, which is a kinetically limited process
and leads to a relatively low power output of batteries
(<1kWkg™"). Furthermore, intercalation and deintercalation
processes are associated with expansion and shrinking of the
electrodes, which exercises substantial mechanical stresses on
the host material,”"” limiting the cycling life of a battery to typ-
ically below 1000 cycles.

Hybrid electrochemical energy storage materials

It is obvious that EDLCs and batteries offer both certain dis-
tinct advantages. Therefore, hybridization of EDLC and batter-
ies is highly attractive. Nowadays, hybridization is becoming in-
creasingly popular in the field of electrochemical energy stor-
age for the creation of novel electrode materials that offer
both a high specific energy and power. Yet, improved per-
formance can only be reached when following certain design

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1. (A) Ragone chart displaying typical ranges of specific energy and specific power for supercapacitors, batteries, and hybrids. (B) Scheme of a hybrid
material consisting of a porous carbon substrate coated with Faradaic material. (C) Scheme of a hybrid supercapacitor device using a capacitive positive elec-

trode and a Faradaic negative electrode.

guidelines to avoid the detrimental effects intrinsic to both in-
dividual technologies.

Supercapacitors and batteries are often compared in a
Ragone chart (Figure 1A), comparing energy and power per-
formances. A synergistic combination of the two technologies
can yield superior properties regarding specific energy and
power handling of the resulting material or device.'® Yet, such
hybridization can be realized in different ways. On an electrode
material level, the introduction of thin layers or nanoparticles
of Faradaic materials to a high surface area carbon yields a
hybrid material (Figure 1B). By this way, high conductivity, high
specific surface area, and redox-active surfaces are combined
in one material. Common synthesis techniques to assure a ho-
mogenous mixing of both components include wet-chemical
approaches®'¥ and non-line-of-sight vapor deposition like
atomic layer deposition® or chemical vapor deposition.?" Yet,
hybridization can also be realized from a device engineering
point of view. Hybrid supercapacitors (also referred to as asym-
metric supercapacitors or lithium-ion capacitors)®? combine
two electrodes that each use a different charge storage mech-
anism; for example, a nanoporous carbon employing double-
layer capacitance as the positive electrode and a material ena-
bling intercalation reactions as the negative electrode (Fig-
ure 1C). The resulting devices may yield attractive performance
metrics that constitute an intriguing alternative to pure super-
capacitor or battery systems, if the used Faradaic electrode
offers sufficient reaction kinetics.” This makes hybrid materials
excellent candidates for the use as the Faradaic electrode in
hybrid supercapacitors. This Concept article will focus exclu-
sively on hybridization of electrode materials. These materials
will find use in advanced hybrid supercapacitor devices and
enable batteries with improved power handling.

Although the surface of carbons used for EDLC electrodes is
ideally chemically inert towards the ions of the electrolyte, Far-
adaic materials undergo redox reactions with the ions. Nano-

Chem. Eur. J. 2018, 24, 1-12 www.chemeurj.org
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scale decoration of carbons with a battery material introduces
Faradaic charge transfer to the system, thereby significantly
enhancing the specific capacity. The nanoscopic size of the Far-
adaic materials incorporated in the carbon electrodes leads to
a confinement of the redox reactions close to the electrode/
electrolyte interface. Therefore, pathways for ions to the reac-
tion sites are short and high rates, comparable to EDLCs, are
enabled as the system is significantly less limited by solid-state
diffusion in the electrode bulk.** Further, maintaining a contin-
uous carbon network throughout the hybrid electrode ensures
electrical percolation and enables facile electron transport to
the often electrically insulating domains of Faradaic material.
This combination of Faradaic materials and carbon, which are
chemically linked on a molecular scale, yields a hybrid elec-
trode material (Figure 2). That way, synergistic effects between
both phases can be created. An alternative to hybridization is
the mechanical mixing of Faradaic materials with conductive
additives to form composite electrodes (Figure 2). Here, usually
no chemical bonding between the separate phases is created
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Figure 2. Schematic representation of different synthetic approaches for the combination of carbon with Faradaic material and proposed terminology. Hybrid-
ization yields a chemical connection of the two components on a nanoscale and creates synergistic interactions (left). Composite materials are obtained by a
physical mixing of the two components, usually without chemical bonding between separate phases, using individual properties of both phases (right).

and the individual properties of the components (e.g., redox
activity and electrical conductivity) are used.” Hybridization
enables a much more intimate interface between the two
components, as clustering of two separate phases with often
dissimilar surface chemistries is avoided, leading to enhanced
charge transfer in hybrid materials.?>?' The proposed terminol-
ogy in Figure 2 is inspired by Eder and co-workers® and ena-
bles us to differentiate between these two types of electrode
materials in a clear and consistent manner throughout the
paper.

A variety of Faradaic materials has been employed in hybrid
electrodes, most prominently metal oxides for intercalation-
type hybrids (e.g., V,05"%" MnO,,*” Nb,0,, Ti0,,** Mo0,),”
but recently, also carbon/sulfur hybrids®" and carbon/transi-
tion-metal dichalcogenide hybrids®? have been introduced.
The design of hybrid electrode materials requires a firm under-
standing for the role of both components (carbon and Farada-
ic material) and how a synergy between both can be created.
Most studies solely focus on the optimization of the Faradaic
component, for example, by modifying the crystal structure by
doping with foreign atoms® or the introduction of oxygen va-
cancies.¥ It is often neglected that also the properties of the
carbon substrate have a major impact on the electrochemical
properties of the hybrid material. The choice of the type of
carbon must be adjusted to the used Faradaic material, the
synthesis technique, and the desired application. There is a
plethora of carbon materials with vast differences in morpholo-
gy, graphitization, surface area, and porosity, with the latter
being considerably the most important property for many ap-
plications.

When comparing carbon materials, it is helpful to differenti-
ate two types of pore architectures (according to ref. [35]):

(1) Endohedral carbons exhibit a negative surface curvature
and show intraparticle porosity, meaning pores are located
inside the particles or fibers. Common carbons of this
group are activated carbons, carbide-derived carbons, or
templated carbons (Figure 3A). Typically, such carbons
show high specific surface areas (> 1500 m>g~'; inner sur-
face) and are mainly microporous (pore sizes <2 nm).
They are usually synthesized by physicochemical activation
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Figure 3. Classification of carbon materials according to their porosity and
specific surface area. (A) Endohedral carbons that show internal porosity and
typically high specific surface area. (B) Exohedral carbons without internal
porosity, often nanocarbons with moderate specific surface area.

or etching processes. Such internal pores create structural
disruptions, yielding a reduced graphitic order with incom-
pletely crystalline/amorphous carbon.

(2) Exohedral carbons with positive surface curvatures show
mostly external surface area outside the bulk particle
(outer surface; Figure 3B). These materials include nano-
carbons such as carbon nanotubes or carbon onions with
specific surface areas below 1000 m?g~". They form pre-
dominantly meso- and macropores in between the parti-
cles or aggregates, in the interparticle volume. Exohedral
carbons exhibit far less defective graphitic structures, yield-
ing electrical conductivity that is superior to that of endo-
hedral carbons.

In a hybrid electrode, requirements of the carbon compo-
nent include a high specific surface area to maximize the elec-
trode/electrolyte interface, a pore structure that provides easy
access for electrolyte ions and allows for the incorporation of
large amounts of Faradaic material, and a graphitic structure
that maximizes electrical conductivity. Conventional carbons
do not meet all of these properties; for example, increasing
the specific surface area often comes at the cost of narrower,
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Figure 4. lllustration of discussed synthesis strategies for hybrid materials. (1) Deposition of metal oxide onto an existing carbon substrate. (2) Co-synthesizing
metal oxide engulfed by a carbon phase by either (2.1) conversion of a single precursor or (2.2) controlled sol-gel synthesis.

less accessible pores. Strategies to address these issues for
carbon/metal oxide hybrid materials will be discussed in the
following sections. Figure 4 provides an outline of the dis-
cussed synthesis routes with distinction between two general
concepts: (1) the deposition of a metal oxide onto an already
existing carbon substrate, and (2) co-synthesizing both carbon
and metal oxide components during the synthesis procedure.

Strategy 1: Thin Metal Oxide Coating on a
Carbon Substrate

A common route to obtain hybrid electrode materials is the
deposition of metal oxide on a carbon substrate. In that case,
a metal oxide will be incorporated into the interparticle and/or
intraparticle volume of the carbon. Consequently, the porosity
of the substrate strongly influences the structure of the final
hybrid material. For example, atomic layer deposition (ALD)
can be employed to deposit metal oxide directly on free-stand-
ing or casted thin-film carbon electrodes. ALD allows non-line-
of-sight decoration of a substrate by use of self-limiting vapor
deposition through binary cycles.”™ During each reaction
cycle, ideally one atomic layer of the desired material is depos-
ited (Figure 5A), giving precise control over the coating thick-
ness by adjusting the number of deposition cycles.

In a recent study by our group, representatives of endohe-
dral carbon (activated carbon) and exohedral carbon (carbon
onions) were employed as substrates for atomic layer deposit-
ed vanadium oxide (Figure 5B) to give insights into the influ-
ence of porosity on the resulting hybrid electrode structure
and electrochemical performance.®® First indications for the
structural changes are given by the mass change of the elec-
trodes during the ALD process. The mass of carbon onion-
based electrodes increases linearly with the number of deposi-
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tion cycles (Figure 5C), which indicates highly conformal ALD
in which a constant number of adsorption sites for the precur-
sor molecules is maintained throughout the process. Contrarily,
the mass gain of activated carbon-based electrodes reaches a
saturation after 100 ALD cycles (Figure 5C). This reveals that in-
ternal surface area of activated carbon becomes blocked by
growing vanadium oxide layers, drastically reducing the
number of available growth sites for further vanadium oxide
deposition. Pore blocking, which was further verified in the
study by gas sorption analysis, is unwanted for hybrid elec-
trodes because it seals the activated carbon particles and pre-
vents access to the inner surface area for electrolyte ions.
Therefore, the high surface area advantage of activated carbon
over carbon onions is negated.

Other studies came to similar conclusions. Daubert et al. de-
scribed difficulties in the coating process when carbon sub-
strate pore sizes were in the range of the ALD precursor mole-
cule size, effectively inhibiting precursor diffusion.®” The latter
work also determined a critical pore diameter for successful va-
nadium oxide deposition by modeling carbon pores as a series
of connected, narrowing tubes. It was shown that pores below
a diameter of 1.3 nm become completely sealed during the
ALD process because of size limitations posed by the precursor
dimensions.®® Thereby, we can formulate the following guide-
line for coating porous materials by ALD: Pores smaller than
2 nm are inaccessible to the precursors and become blocked
by growing layers at higher mass loadings; mesopores larger
than 2-3 nm, however, are well-suited for metal oxide deposi-
tion by ALD.B®

In a further study by our group, the benefits of mesopores
were exemplified for a carbon substrate with a well-tailored
pore size distribution. Hard-templating using silica nanoparti-
cles yielded an well-defined mesoporous carbon with a con-
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Figure 5. (A) Representation of a single atomic layer deposition (ALD) reaction cycle depositing vanadium oxide. (B) Transmission electron micrographs of
carbon onions before and after deposition of 200 ALD cycles of vanadium oxide. (C) Measured mass gain of carbon onion, activated carbon, and tailored mes-
oporous carbon electrodes when coating with 50, 100, 150, and 200 ALD cycles of vanadium oxide. (D) Rate handling behavior of the respective hybrid mate-
rials coated with 100 ALD cycles in 1 m LiClO, in acetonitrile as electrolyte. Data replotted from ref. [36,39].

trollable pore structure in the size range of the used silica par-
ticles.® This endohedral carbon consisted of micrometer-sized
particles with internal porosity and a specific surface area of
1000 m?g~" which was mostly created by mesopores in range
the of 5-20 nm. During the vanadium oxide growth by ALD, a
linear mass gain relation similar to carbon onions was ob-
served for mesoporous carbon (Figure 5C), indicating the ab-
sence of pore blocking. Hence, mesoporous carbons combine
a large specific surface area, leading to a large electrode/elec-
trolyte interface, with a pore structure that is suitable for metal
oxide deposition.

The electrochemical performance of carbon onions, activat-
ed carbon, and mesoporous carbon coated with 100 ALD
cycles of vanadium oxide was compared in 1 wm LiClO, in aceto-
nitrile organic electrolyte (Figure 5D). When cycling the elec-
trodes at a very low current, carbon onion- and activated
carbon-based hybrids show similar specific capacity of about
120 mAhg™' because the system is given enough time for
solid-state diffusion. Therefore, Li ions can reach the intercala-
tion sites in both the open, exohedral carbon onion-hybrid
structure, as well as in the partially blocked, endohedral acti-
vated carbon particles. Higher charging currents, however,
reveal the advantage of carbon onions as a substrate that
offers better access for Li ions and a superior electrical conduc-
tivity. Mesoporous carbon as a substrate exhibited a higher ini-
tial capacity of around 170 mAhg™' and the best rate handling.
The reason for the higher specific capacity is that more of the
vanadium oxide coating is connected to the conductive net-
work and able to partake in Faradaic reactions with Li ions.
This is related to the well-defined, spherical mesopore struc-
ture that leads to more homogenously distributed vanadium
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oxide domains. The high specific surface area of the endohe-
dral structure further leads to thinner coatings that are respon-
sible for the improved rate handling, with mesoporous carbon
hybrids showing the same capacity of around 65 mAhg™' at a
4-fold higher discharging current (20 Ag™") when compared to
the carbon onion hybrid (5 Ag™).

Volumetric expansion of Faradaic material during intercala-
tion may lead to disintegration and loss of contact from the
conducting network of the electrode."” Here lies a distinct ad-
vantage of substrates with endohedral porosity: The internal
porosity can effectively prevent this disintegration by confining
the metal oxide coating inside the limited pore space. Cycling
stability measurements of mesoporous carbon-based hybrid
electrodes showed a slightly increasing specific capacity after
more than 2000 charge/discharge cycles in 1 m LiClIO, in aceto-
nitrile electrolyte, and only small capacity decay using 1m
NaClO, electrolyte, which represented the most stable per-
formance of vanadium oxide-based materials for sodium inter-
calation.?

The findings gained from hybrid materials obtained by ALD
can also be transferred to other synthesis techniques. A cheap
and large-scale production of hybrid material can be achieved
through wet-chemical methods. Comparing the suitability of
activated carbon and carbon onions as substrates for hydro-
thermally grown manganese oxide showed similar findings like
the studies using ALD. Carbon onions provided good condi-
tions for homogenous deposition of birnessite-type manga-
nese oxide,*” whereas blocking of internal surface area was
observed for activated carbon. However, considering that the
hydrothermal approach is less precise compared to ALD, the
minimum accessible pore size was bigger, and a sealing of the
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activated carbon particles was already observed at lower mass
loadings."®® The study further concluded that the degree of
carbon onion graphitization had a substantial impact on the
electrochemical properties of the hybrid materials. Carbon
onions synthesized at 1700 °C yielded higher electrical conduc-
tivity than at 1300°C, resulting in an improved rate handling
of the carbon onion/manganese oxide hybrid electrodes in 1 m
Na,SO, aqueous electrolyte.¢?!

A study by Zhang et al. investigated the suitability of layered
carbide-derived carbon (CDC) as a substrate for hydrothermally
deposited niobia."" It was found that even by the use of a
guiding agent during deposition, about 80% of the surface
area became blocked by introducing niobia, resulting in a lim-
ited maximum capacity of about 44 mAhg™' at 20C. The
follow-up study of Lai etal. found an intriguing concept to
avoid blocking of internal surface area:*? By first depositing
niobia on a reduced graphene oxide substrate before introduc-
ing to the CDC scaffold, niobia/graphene oxide material prefer-
entially anchored at the edges of CDC layers due to controlled
surface charges, thus avoiding blocking of internal CDC surface
area. The resulting niobia/reduced graphene oxide/CDC hybrid
material showed improved capacity and rate handling with
about 100 mAhg™" at 1 C and 60 mAhg™' at 40 C, owing to an
additional double-layer component to the overall charge stor-
age and better accessibility for the electrolyte.?

Achieving high loadings of Faradaic materials in hybrid elec-
trodes is of particular interest for the transfer to industrial ap-
plications, because the mass proportion of electrode to other
inactive device components is increased.®® High areal mass
loadings can be reached by increasing the thickness of the
hybrid electrode, which often significantly decreases the gravi-
metric performance compared to thin electrodes.**' Addressing
this issue, Sun et al. used holey graphene as a substrate for
niobium oxide with varying areal loadings of 1-11 mgcm 244
The influence of graphene porosity was investigated by intro-
ducing in-plane pores by H,0, activation, in which an increas-
ing activation time led to larger average pore sizes (up to
2.7 nm) and higher specific surface area. Electrochemical impe-
dance spectroscopy indicated a decreased ionic resistance for
larger graphene pores, which led to a more than 2-fold in-
crease in rate handling for lithiation reactions compared to
non-activated graphene/niobia hybrids. When increasing the
areal mass loading from 1 mgcm™ to 11 mgcm™2, holey gra-
phene/niobia hybrids with high mass loading demonstrated a
capacity retention of about 110 mAhg™" at 20 C, whereas non-
activated graphene/niobia exhibited a significant capacity drop
at higher rates, with a retention of only about 20 mAhg™' at
20 C (Figure 6A). The porosity of the holey graphene sub-
strates provided ion transport shortcuts, reducing diffusion lim-
itations even in thick electrodes (Figure 6B,0).*" Thus, the
study underlines a feasible method to exploit carbon porosity
to enable the use of high areal mass loadings that are attrac-
tive for practical application.

As a further approach to grow of Faradaic material on
carbon substrates, Naoi et al. introduced ultracentrifugation to
create hybrid materials. By inducing high mechanical force of
65000 N through centrifugation at 75000 G, various metal
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Figure 6. (A) Rate handling of holey graphene/niobia hybrids (open symbols)
and graphene/niobia hybrid materials (closed symbols) at different areal
loadings. (B) Schematic illustration and (C) scanning electron micrograph of
holey graphene/niobia hybrid material offering ion transport shortcuts even
at high thicknesses. Adapted from ref. [44]. Reprinted with permission from
AAAS.

oxides are grown from in situ sol-gel reactions directly on dif-
ferent carbon substrates.* In a study on carbon fiber/lithium
titanate hybrid materials, the carbon fibers became well-dis-
tributed in the lithium titanate precursor solution by mechani-
cal agitation, before nucleation occurred by sol-gel reaction on
the carbon surface. That way, homogeneously distributed lithi-
um titanate nanoparticles were obtained within the carbon
fiber network, leading to high surface area and conductivity of
the hybrid material.***¥ This synthesis approach is particularly
effective because carbon synergistically interacts during reac-
tion towards an optimized hybrid material. By acting as an
anchor for lithium titanate precursors, metal oxide coarsening
was prevented during the crystallization reaction because lithi-
um titanate grew following the carbon fiber shape. The influ-
ence of the carbon substrate was further underlined by replac-
ing the carbon fibers with especially designed single-walled
carbon nanotubes. Thus, the number of anchoring sites is in-
creased, leading to even better dispersion of the lithium tita-
nate. The resulting hybrid electrodes showed remarkable rate
handling performance, with a retention of up to 60% of the
maximum capacity (130 mAhg™") at an ultrahigh C-rate of
1200.15¢

Carbon/lithium titanate hybrid material was synthesized by
a vacuum-impregnation method by Zhao et al.*® Using three
different kinds of porous carbons with different mesopore vol-
umes, they impregnated the particles dropwise with a liquid
precursor solution and applied vacuum in several intervals for
homogenous distribution. After calcination at 800°C, nano-
sized lithium titanate particles (<4 nm) formed inside the pore
volume and made up about 52 mass% of the hybrid material.
It was found that the carbon particles that offered the largest
mesopore volume showed the best electrochemical per-
formance in 1m LiPF4 in acetonitrile electrolyte, exhibiting a
high capacity retention of 105 mAhg™' at a rate of 350 C (in
addition to the hybrid material, the electrode contained 15
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mass6% conductive additive for comparability with previous
studies). The carbon mesopores were necessary to synthesize
this sample because they trapped the titanate particles to
avoid coarsening during calcination at a high temperature.

In summary, we conclude that the choice of an optimized
carbon substrate and a suitable synthesis protocol can signifi-
cantly enhance all performance metrics of hybrid electrode
materials, including specific capacity, rate behavior, and lon-
gevity. When designing an idealized carbon substrate, proper-
ties should be prioritized in this order:

(1) Pores must be in an accessible size range for the used syn-
thesis method to avoid pore blocking effects and diffusion
limitations at high mass loadings.

The specific surface area must be maximized to obtain
thinner coatings at constant mass loading.

Internal porosity offers confinement of Faradaic material to
enhance the longevity by preventing disintegration and to
avoid particle coarsening during heat treatment.

A higher degree of carbon ordering of the substrate leads
to enhanced electrical conductivity of the hybrid elec-
trode.

)

3)

4

Strategy 2: Co-Synthesizing Faradaic Materials
Engulfed by Carbon

Conversion of one precursor material to carbon/metal oxide
hybrid

Creating hybrid electrode materials by deposition of Faradaic
material onto a carbon substrate is a highly attractive ap-
proach to maximize the specific surface area of the hybrid and
obtain nanoscale mixing of the two components. However,
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issues may arise from possible pore blocking and several syn-
thesis steps are necessary to obtain the final product. An alter-
native path towards hybrid electrode fabrication is to inverse
the electrode architecture and tailor the carbon phase around
the Faradaic component. Recently, we presented a promising
concept of a vanadium pentoxide/carbide-derived carbon
(V,05/CDC) hybrid material with core-shell architecture.*” The
goal was to employ an endohedral carbon with a large specific
surface area to maximize the capacitive charge storage compo-
nent of the hybrid electrode. The intriguing aspect of arrang-
ing the carbon phase around the Faradaic core is that difficul-
ties arising from pore blocking can be completely avoided. The
hybrid material is synthesized using only one precursor (e.g.,
vanadium carbide) that serves as carbon and vanadium source
(Figure 7 A). In a first step, vanadium was etched from the out-
side towards the inside of the vanadium carbide particles by
chlorine gas treatment, until only a small vanadium carbide
(VC) core remained. By selectively etching vanadium from the
lattice, a high surface area (1500 m*g~") microporous carbide-
derived carbon shell is obtained (Figure 7B). In a second step,
the remaining VC is calcinated under oxidizing atmosphere to
form a V,0; core (Figure 7 C). The hybrid electrode composition
(i.e., the V,0,/CDC ratio) can be precisely tuned by adjusting
the degree of chlorination. The necessary high control over the
chlorination step was achieved by using in situ formation of
chlorine gas in which nickel chloride was homogenously mixed
with VC and served as chlorine source. Upon heating, Cl, was
locally released from decomposing NiCl,, ensuring a homoge-
nous chlorination of the entire synthesized batch. By variation
of the NiCl, amount, the degree of chlorination and the
amount of CDC is determined. This allows to finely tune the
capacitive and Faradaic contributions to the overall charge
storage of the hybrid electrode. However, the oxidation step
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Figure 7. Transmission electron micrographs of (A) precursor vanadium carbide particles, (B) after partial chlorination to form the CDC shell, and (C) final
hybrid material after oxidation to form the V,05 core, including chemical mapping from electron energy loss spectroscopy. (D) Electrochemical characteriza-
tion of V,0,-CDC core-shell hybrid material (orange) and V,0,-CDC composite by galvanostatic cycling in 1m LiCIO, in ACN electrolyte. Adapted from ref. [47]

and reproduced with permission of the Royal Society of Chemistry.
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must be precisely adjusted to avoid burning of the carbon
phase. The method is therefore limited to Faradaic materials
that crystallize at lower temperature and pressure than carbon
oxidation.

To analyze the impact of the core-shell architecture on the
electrochemical performance of the hybrid material, a compo-
site material was synthesized from mechanically mixing fully
chlorinated CDC particles with fully oxidized V,0s particles,
both derived from VC, for comparison. Electrochemical charac-
terization in 1m LiClIO, in acetonitrile electrolyte revealed a
higher maximum specific capacity of 310 mAhg™' for the
hybrid material, compared to the composite electrode with
240 mAhg™' (Figure 7D). Also, the rate handling of the hybrid
was improved, with a retention of 70% of the maximum ca-
pacity at 1 Ag~', compared to a retention of 42% for the com-
posite material at the same rate.

We believe this core-shell architecture provides several key
advantages. (1) The surrounding carbon shell can be highly
porous because no pore blocking is expected, yielding a high
surface area and a large capacitive contribution to the overall
charge storage. (2) By encapsulating V,05 with a carbon shell,
large contact resistances between the insulating particles are
avoided and a highly conductive electrode is obtained. (3) The
domain sizes of V,05 are kept very small, reducing the limita-
tions posed by solid-state diffusion. (4) Disintegration of V,0Os
particles is reduced by the surrounding carbon phase improv-
ing longevity of the hybrid material. Yet, the disadvantage
compared to carbon substrates coated with Faradaic material
lies in the accessibility for ions to the reaction sites. In core-
shell materials, the carbon shell enclosing the metal oxide
needs to be highly penetrable for the intercalating ions.
Though sealing of internal carbon surface area is avoided by
the core-shell architecture, sealing effects of metal oxide parti-
cles by dense carbon layers must be considered.

Controlled sol-gel approaches

Carbon-coated, porous metal oxide particles have also been
synthesized by other approaches. For example, Lim et al. inves-
tigated a block-copolymer assisted self-assembly synthesis for
mesoporous Nb,0s-C hybrid material.*® The carbon phase was
obtained by the thermal decomposition of the hydrophobic
part in the block-copolymer phase during calcination and it
surrounded the Nb,O; phase. In a different approach, the
group synthesized Li;VO,-C hybrids by water-in-oil microemul-
sion, in which the carbon was obtained by carbonization of
the emulsifier” In both studies, the advantage of the hybridi-
zation approach over pristine metal oxide particles was clearly
demonstrated by comparison of their electrochemical proper-
ties. The Nb,O;-C hybrid and the corresponding composite
showed a similar maximum capacity of around 180 mAhg™" at
a rate of 0.01 Ag™', however, the hybrid retained about 60%
of the maximum capacity at 5 Ag~', whereas the capacity of
the composite faded almost completely.”® The presence of the
carbonized phase drastically improved the conductivity of the
electrode materials and improved the rate handling. The good
rate handling enabled a successful use of both hybrid materials
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when employed as anodes in lithium-ion capacitor cells, with
maximum specific energies of 74 Whkg™' for the Nb,0s-C
hybrid device™ and up to 190 Whkg~" for the Li,VO,-C hybrid
device.*” However, the as-formed carbon did not exhibit nota-
ble porosity and, therefore, may be less penetrable for the
electrolyte ions and it does not contribute a capacitive charge
storage component to the hybrid electrode. Possibly, a subse-
quent activation step inducing microporosity to the carbon
phase could further elevate the electrochemical performance
of these intriguing systems by allowing easier ion access and
adding double-layer capacitance.

Compared to these particle-based hybrid materials, fiber-
shaped materials offer several advantages. Fibers can form
free-standing electrodes without the need for additional
binder material. They present continuous conductive networks
with improved electrical conductivity without conductive addi-
tives, and nanofibers offer short diffusion distances for interca-
lating ions (Figure 8 A). In particle-based systems with conduc-
tive additives, the surface chemistry of the metal oxide parti-
cles (hydrophilic) and the carbon particles (often hydrophobic)

Figure 8. Comparison of fiber-based hybrid electrode material (A) and parti-
cle-based composite electrode material (B). Although in the electrospun
fibers, metal oxide domains (blue) are engulfed by a continuous conductive
carbon network (black), particles can experience disruptions in the conduc-
tive network due to agglomerations of metal oxide and carbon domains.

may lead to agglomeration and inhomogeneous material dis-
tribution (Figure 8B). Electrospinning has been demonstrated
as a suitable synthesis method to obtain free-standing micro-
porous carbon electrodes for supercapacitor applications.*” By
adjusting the synthesis protocol, our group demonstrated that
it is possible to obtain niobium oxide or mixed niobium-titani-
um oxide/carbon hybrid fiber materials in a one-pot synthe-
sis.?®3" During electrospinning, metal alkoxide fibers with
thicknesses below 100 nm can be obtained, which are trans-
formed to metal carbide/carbon fibers by annealing in argon
atmosphere. By subsequently introducing an oxidizing atmos-
phere, a transformation to metal oxide/carbon fibers can be
achieved. The oxidation process must be precisely controlled
to achieve full metal carbide to metal oxide transformation,
while preventing burn-off of the carbon phase and maintain-
ing of the fiber-shape. It was demonstrated that the use of
CO, as oxidizing atmosphere at elevated temperatures above
850°C with reduced partial pressures is a suitable method.’?®°"
In the hybrid material, nanoscopic metal oxide domains are en-
gulfed by a highly porous, conducting carbon network. Niobi-
um pentoxide/carbon hybrid fiber materials showed excellent
electrochemical properties, with a maximum capacity of
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160 mAhg™' and a retention of 70% at high rate of 5Ag~", al-
lowing for a successful transfer as anodes in lithium-ion capaci-
tor cells with a maximum specific energy of up to
86 Whkg ' Advantages of the electrospinning approach in-
clude the few synthesis steps necessary to obtain the final
hybrid material that works free of conductive additives and
polymer binders. The microporous carbon encapsulating metal
oxide domains brings additional double-layer capacitance,
electrical conductivity and structural integrity to the continu-
ous fiber network. However, the main disadvantage of fiber
systems is the relatively low packing density, which significant-
ly decreases the volumetric capacity of such materials. Howev-
er, we believe that adjustments to the electrospinning protocol
can in part resolve this issue. By use of a rotating disc current
collector, alignment of the electrospun fibers can be achieved
that exhibits much higher packing densities compared to ran-
domly oriented fibers obtained on a static collector.””

Summary and Outlook

This article introduces hybrid materials consisting of carbon
and metal oxides for electrochemical energy storage, with an
emphasis on the role of the carbon component towards the
structure and performance of the hybrid electrode. Two gener-
al types of electrode architectures are discussed: (1) the use of
an existing carbon as a substrate for the nanoscopic decora-
tion with redox active metal oxides and (2) co-synthesis of
metal oxide and an engulfing carbon component in a simulta-
neous manner.

When using carbon as a substrate, the porosity plays a criti-
cal role as metal oxide is mainly deposited in the carbon inter-
particle or intraparticle pore volume. Carbons with internal po-
rosity yield higher specific surface area and can prevent disin-
tegration of the metal oxide phase upon volumetric expan-
sions during operation. Microporous carbons can only accom-
modate small metal oxide loadings because micropores may
become sealed by metal oxide coatings, drastically reducing
the hybrid electrode performance. By determining the mini-
mum accessible pore size for the chosen coating method, ideal
carbon substrates can be tailored that exhibit high internal sur-
face area without pore blocking issues. Further research on
tailored mesoporous carbon substrates towards the utilization
with sodium or potassium that cause larger volumetric
changes during intercalation could address issues with the lon-
gevity of these systems. Considering the recent emergence of
studies on transition metal dichalcogenide electrodes storing
charge by conversion reactions, the use of appropriate meso-
porous carbon substrates can greatly benefit their often poor
kinetical and stability properties.

Alternative architectures of using metal oxides surrounded
by the carbon phase can prevent the issues arising from un-
wanted pore blocking effects. The striking advantage of this
approach is that even microporous carbons with very high
specific surface areas can be used in hybrid electrodes, increas-
ing the capacitive component of the electrodes’ charge stor-
age behavior and minimizing contact resistances in the hybrid
electrodes. Achieving this architecture requires advanced syn-
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thesis protocols because the activation of the carbon phase
must be carried out with the metal oxide phase present, which
can lead to a change in crystal structure. Also, effective access
of the electrolyte to the Faradaic metal oxide core must be en-
sured. With further research addressing these obstacles, this in-
triguing hybrid electrode architecture holds the potential to
further elevate the power handling of electrochemical energy
storage devices.
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a nanoscopic scale requires careful

Hybridization of carbon with metal oxides is an intriguing approach in the field of
electrochemical energy storage to create electrode materials that provide a high
specific energy and power. The carbon phase offers a high specific surface area and
electrical conductivity, whereas the metal oxide introduces Faradaic charge transfer to
the system. To achieve synergistic effects between the components that are
chemically linked on a molecular scale, their interface must be carefully designed. In
this Concept, several hybridization strategies are discussed as well as the impact of
the carbon phase on the resulting hybrid material properties.
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Atomic layer deposition has proven to be a particularly attractive approach for decorating mesoporous
carbon substrates with redox active metal oxides for electrochemical energy storage. This study, for the
first time, capitalizes on the cyclic character of atomic layer deposition to obtain highly conformal and
atomically controlled decoration of carbon onions with alternating stacks of vanadia and titania. The
addition of 25 mass% TiO, leads to expansion of the VO, unit cell, thus greatly enhancing lithium
intercalation capacity and kinetics. Electrochemical characterization revealed an ultrahigh discharge
capacity of up to 382 mA h g~! of the composite electrode (554 mA h g~! per metal oxide) with an
impressive capacity retention of 82 mA h g~ (120 mA h g~! per metal oxide) at a high discharge rate of

20 A g7! or 52C. Stability benchmarking showed stability over 3000 cycles when discharging to
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Accepted 21st December 2016 a reduced potential of —1.8 V vs. carbon. These capacity values are among the highest reported for any

metal oxide system, while in addition, supercapacitor-like power performance and longevity are
DOI: 10.1039/c6ta09890h achieved. At a device level, high specific energy and power of up to 110 W h kg and 6 kW kg%,

www.rsc.org/MaterialsA respectively, were achieved when employing the hybrid material as anode versus activated carbon cathode.
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1. Introduction

Electrochemical energy storage devices are typically divided into
two categories: (1) supercapacitors, including electrical double-
layer capacitors (EDLCs), which store energy by fast and
reversible electrosorption of ions at the charged interface of
high surface area electrodes and the electrolyte* and (2)
batteries that utilize redox reactions in the bulk of the elec-
trodes for energy storage. The non-faradaic charge storage
mechanism of EDLCs is characterized by a rapid response and
high achievable power ratings, yet they suffer from a relatively
low energy density, compared to state-of-the-art lithium ion
batteries.®* Typical electrode materials for EDLCs are carbons
with a high specific surface area (SSA), such as activated
carbon,*® carbide-derived carbon,*” carbon onions (onion-like
carbon, OLC),*° carbon nanotubes (CNTs),'>"* or carbon nano-
fibers.”** The double-layer capacitance of these materials is
limited to about 0.1 F m™~2,'** which is why the implementation

“Department of Materials Science and Engineering, Saarland University, 66123
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of faradaic charge transfer into the supercapacitor system is
explored as a way to further increase their energy capacity.'® For
the latter, a common strategy is the creation of hybrid elec-
trodes by nanoscopically decorating carbon with redox-active
materials, such as metal oxides,” or surface functional
groups.'®*® Various processing methods have been employed to
coat carbon surfaces with metal oxides, such as chemical vapor
deposition,* atomic layer deposition (ALD),>"** or wet-chemical
approaches.” Especially ALD has been found to be a very
promising technique to fabricate nanoscopic films on various
carbon surfaces because of the highly controllable film thick-
ness at a sub-nanometer level, the conformity of the layers, and
the possibility of coating small nanopores that exhibit sizes
above 1-2 nm.**** By utilizing nanoscopic layers of redox-active
materials, faradaic reactions are localized near the electrode
surface, avoiding long diffusion paths of ions to reach reactive
sites, which results in a high power handling.>*>*

In a hybrid electrode, the carbon substrate is required to
provide a sufficiently high SSA, good electrical conductivity, and
accessible pore volume.” In a previous study, we have investi-
gated the influence of the carbon porosity on the resulting elec-
trochemical performance of carbon/vanadia hybrid electrodes,
concluding that carbon materials which exhibit exclusively
external surface area, such as OLCs, yield beneficial properties
compared to nanoporous carbons.*> OLCs are spherical carbon
nanoparticles that consist of several concentric shells of sp®

This journal is © The Royal Society of Chemistry 2017
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carbon and that are typically smaller than 10 nm, depending on
the synthesis method and precursor. They possess a SSA of up to
600 m” g~ ,* a high electrical conductivity of up to 4 S cm™*,*” and
form mainly interparticle and intercluster pores.”® Our study
clearly demonstrated that the interparticle pore space of OLCs
provides favorable conditions for a conformal and nanocrystal-
line vanadia film growth via ALD.>?

Depending on the observed charge-voltage-profile, redox
systems are categorized either as pseudocapacitors (“capacitor-
like”, exhibition of constant charge-vs.-voltage profiles, e.g,
MnO,,*' Ru0,,** MXene*), or as battery-like devices (showing
well-defined redox peaks; e.g., V,05,*** polyaniline*).*” In partic-
ular, vanadia has gained considerable attention as both a cathode
material in lithium batteries®® and a redox-active component in
hybrid electrodes.? It features the ability to intercalate Li" ions,
which manifests in a battery-like response for crystalline V,05 and
VO,,* and exhibits pseudocapacitive behavior in amorphous and
nanocrystalline states.” When discharging to 3.2 V vs. Li, crys-
talline V,Os5 can reversibly facilitate 0.5 Li for each V by forming
3-LiV,0s5, which yields a theoretical capacity of 147 mA h g~ "%
Higher degrees of lithiation are achieved by discharging up to 2.3
Vvs. Li, yielding an irreversible phase transformation to y-Li,V,0s
with theoretical capacities as high as 300 mA h g~ *.** Monoclinic
VO,(M) (rutile type) exhibits a performance of around 120 mA
h g~ *,* while higher capacities have been reported for metastable
VO,(B) phases due to the presence of V,0,-type double layers,
which share corners to form tunnel-like structures, enabling rapid
Li transport.**** Cycling of VO,(B) between 4 V and 1 V vs. Li leads
to the formation of LiVO,, corresponding to a theoretical capacity
of 320 mA h g~ For nanostructured VO,(B) aerogels, initial
discharge capacities as high as 500 mA h ¢~ have been reported,
yet a stable performance of 175 mA h g~ over 20 cycles was only
achieved when operating within a smaller voltage window
between 4 V and 2.4 V vs. Li.®®

Instead of using a single metal oxide, the addition of
a second phase may further enhance the electrochemical
properties of redox systems. In a study by Takahashi et al., the
addition of anatase TiO, to the V,05 structure led to a signifi-
cant rise in capacity from 120 mA h g”* to 180 mA h g7,
compared to pure V,05 nanorods.** The authors ascribed the
effect to possible modifications in the V,O;5 lattice structure,
yielding a more open space for Li intercalation, yet analytical
evidence was not provided by the authors.** Jampani et al. re-
ported a similar capacity increase resulting from Ti-doping of
the vanadia structure, which was correlated with an increase in
electrical conductivity, caused by incorporation of titanium at
vanadium lattice sites.”® Park et al. investigated the effect of
lattice strain on the electrochemical performance of rutile-type
VO,:Sb:Sn0O, which was chosen as a substrate for VO, deposi-
tion because of its appropriate lattice mismatch towards rutile
VO,. As a result, an in-plane expansion of the rutile type struc-
ture was achieved at the interface of the two materials, yielding
an enhanced capacity of 350 mA h g~ per mass of VO,.**

In this study, we introduce a novel approach for creating
hybrid electrodes combining both high specific energy and high
power. Owing to the cyclic process characteristics of ALD that
allow for ultra-precise deposition of sub-nanometer layers,

This journal is © The Royal Society of Chemistry 2017
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highly conformal and atomically controlled decoration of
carbon onions with alternating stacks of vanadia and titania
was obtained. Due to excellent control over multilayer growth
and composition, first conclusive analytical evidence of the
origin of improved energy storage performance for the mixed
vanadia/titania system was obtained. The addition of about 25
mass% TiO, leads to an expansion of the VO, unit cell, greatly
enhancing lithium intercalation capacity and kinetics, as we
demonstrate in both half-cell and asymmetrical full-cell setups.

2. Materials and methods
2.1 Materials

To obtain OLCs, a detonation nanodiamond precursor (diam-
eter 4-6 nm, NaBond Technologies) was thermally annealed in
a water-cooled high temperature furnace (Thermal Technology
Inc.). The synthesis was carried out in an argon atmosphere at
1700 °C for 1 h, with a heating/cooling rate of 20 K min™". From
the resulting OLC powder, 50 pm thick electrodes were prepared
by admixing 10 mass% of polytetrafluoroethylene (aqueous
solution of 60 mass% of PTFE, Sigma Aldrich), a detailed
description is given elsewhere.*®

Carbon onion electrodes were coated with an open-load
atomic layer deposition system (Oxford Instruments) that was
placed inside an argon filled glovebox (M. Braun Intertgas-Sys-
teme) in order to ensure dry loading of the samples. Vanadium(v)-
oxytriisopropoxide (VOTIP, SAFC Hitech) and tetrakis(dimethy-
lamido)titanium(wv) (TDMAT, SAFC Hitech) were employed as
metalorganic precursors for the deposition of vanadium oxide
and titanium oxide, respectively, and deionized water vapor
(Milli-Q, Merck) was chosen as reactant gas. The precursors were
delivered by an argon carrier gas, with dosage over a period of 20 s
during each reaction cycle, followed by purging of the reactor
with pure argon over a period of 10 s after each precursor dosage
step. After each ALD cycle, the reactor was evacuated for 8 s.
During the ALD process, the reactor temperature was kept at
180 °C. In general, for each coating, 100 ALD cycles were applied.
For synthesis of multilayer coatings, alternating sequences of
vanadia and titania were deposited as indicated by the sample
nomenclature; for example, OLC/VTiO®? was fabricated by
repetitively alternating sequences of 6 and 2 ALD cycles of vana-
dia and titania, respectively, until 100 cycles were reached.

Thermal annealing of the coated samples was carried out in
a quartz tube furnace under an argon atmosphere at a flow rate of
100 sccm. During the annealing procedure, all samples were
heated at 5 °C min ™" to 500 °C, held for 0.5 h at that temperature,
and cooled down to room temperature at 40 °C min ™. Thereby,
the PTFE fully decomposes to volatile species, leaving a con-
nected, binder-free network of OLC/metal oxide hybrid electrodes.

2.2 Materials characterization

Transmission electron microscopy (TEM) was carried out using
a JEOL 2100F system operating at 200 kV. Sample preparation
was performed by dispersion and sonication of the powder
samples in isopropanol and deposition on a copper grid with
a lacey carbon film (Gatan Inc.).

J. Mater. Chem. A, 2017, 5, 2792-2801 | 2793
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X-ray diffraction (XRD) experiments were conducted
employing a D8 Advance diffractometer (Bruker AXS) with
a copper X-ray source (Cug,, 40 kV, 40 mA), a nickel filter and
a LYNXEYE detector. All samples were placed on a sapphire
single crystal and measured in a range from 10 to 80° 2§ with
a step width of 0.01° 26 and a step duration of 10 s. Calculation
of the lattice parameters was carried out using the EVA Diffrac
Suite software.

Raman spectroscopy was performed with a Renishaw inVia
Raman Microscope using an Nd:YAG laser with an excitation
wavelength of 532 nm and a power of about 0.25 mW. A
50% objective and a grating with 2400 lines per mm were used to
reach a spectral resolution of about 1.2 cm™'. The acquisition
time for each spectrum was 30 s with 10 accumulations.

The vanadium and titanium binding energies in different
coating compositions were determined by X-ray photo-electron
spectroscopy (XPS). The measurements were carried out on an
AXIS Ultra DLD electron spectrometer (Kratos Analytical). For
the excitation of the photoelectron spectra, monochromatic Al
Ko was used. The spectra were acquired by setting the instru-
ment to medium magnification (field of view 2) lens mode and
by selecting the slot mode. Charge neutralization was imple-
mented by low energy electrons injected into the magnetic field
of the lens from a filament located directly above the sample.
Three sets of measurements were performed. Survey scans and
individual photo-electron lines were acquired using the X-ray
source operating at 150 W power and 80 eV analyzer pass
energy. Additionally, high resolution measurements of the C 1s,
Ti 2p, and V 2p lines with the pass energy of 10 eV at the power
of 225 W were performed. Three spots at different positions on
each sample were analyzed and averaged. Data acquisition and
processing were carried out using CasaXPS (Casa Software Ltd.).
After subtraction of Shirley background, the peaks were fitted
using the Gaussian Lorentzian GL(30) peak shape. The binding
energy (BE) scale was corrected for charging using an electron
BE of 285.0 eV for the C-Cgj;pn, component in the C 1s spectra.

Thermogravimetric analysis (TGA) was carried out using
a TG 209 F1 Libra system (Netzsch). The samples were heated
from room temperature to 650 °C (TiO, to 750 °C) at a heating
rate of 5 °C min~" under a synthetic air atmosphere (80% N,
20% O,). The change in mass during heating was used to
determine the metal oxide content of the sample. For samples
containing vanadia, the V**/V®* oxidation process and the
associated increase in mass occurring during the transition
from VO, to V,05 were considered.

2.3 Electrochemical benchmarking

The electrochemical performance was evaluated in a three-
electrode setup (half-cell), which has been described in detail
elsewhere,*” and in a two-electrode setup (full-cell). In half-cells,
ALD-coated carbon onion electrodes with masses varying
between 1.0 and 1.5 mg were employed as a working electrode,
whereas an about five times oversized PTFE-bound activated
carbon (type YP80-F, Kuraray) was used as a counter electrode.
The potential was measured against an activated carbon
reference electrode (type YP50-F, Kuraray). In full-cell
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measurements, OLC/VTiO®? electrodes with masses between
1.0 and 1.5 mg were used as the anode and PTFE-bound acti-
vated carbon (type YP80-F, 5 mass% PTFE) as the cathode with
amass ratio of 1 : 3.5 to achieve charge-balance. In addition, the
potential evolution at the cathode and anode was monitored
with a separate, PTFE-bound activated carbon reference elec-
trode (type YP50-F). Carbon-coated, 12 mm diameter aluminum
foils (Zflo 2653, Exopack Technologies) and glass fiber mats
(GF/D, Whatman) were employed as current collectors and
separators, respectively. Prior to electrolyte filling in an argon
filled glovebox (MBraun Labmaster 130, O, and H,O < 1 ppm),
the cells were dried in a vacuum oven at 120 °C overnight. 1 M
LiClO, (battery grade, Sigma Aldrich) in a 50 : 50 mixture of
ethylene carbonate and dimethyl carbonate (EC/DMC; battery
grade, BASF) was used as the electrolyte.

Electrochemical testing procedures were carried out using
a potentiostat/galvanostat (VSP300, Bio-Logic). For half-cells,
cyclic voltammetry (CV) was performed in a potential window
from +1.0 V to —2.0 V vs. carbon, at a scanning rate of 1 mV s~ .
Galvanostatic charge/discharge with potential limitation
(GCPL) was carried out by cycling between +1.0 Vand —2.0 V vs.
carbon with specific currents ranging from 0.05 to 20 A g™/,
normalized to the total composite electrode mass. The specific
capacity Cyp, was calculated by integration of the discharge
current I over the discharge time ¢ accounting for the lithiation
step from +1.0 V to —2.0 V vs. carbon, normalized to the full
composite electrode mass, m:

(1)

For investigation of the cycling stability, galvanostatic
discharge was carried out at 1 A g~ " in the potential window
from +1.0 V to —2.0 V and —1.8 V vs. carbon. In full-cells, CV
experiments ranged from 0 V up to 3.5 V cell voltage at a scan-
ning rate of 1 mV s~ '. GCPL procedures were performed by
cycling to 3.2 V cell voltage at different rates between 0.05 A g™
and 2.5 A g~", normalized to the total mass of both electrodes.
The specific energy Eg, was calculated by integration of the
voltage profile:

lﬁ U(r)dr

E, =
P m

(2)
where I is the applied current, U(?) is the time-dependent cell
voltage and m is the total mass of the anode and cathode. The
specific power Py, was calculated by dividing E;, by the charge/
discharge time. The energy efficiency was derived from the ratio
of specific discharge and charge energy.

3. Results and discussion
3.1 Structure and composition

The morphology of the annealed hybrid materials was studied
by TEM. The synthesized OLCs are spherical, non-porous
nanoparticles with diameters of 5-7 nm, present as

This journal is © The Royal Society of Chemistry 2017
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agglomerates in the size-range of several 100 nm. Their pore
volume consists of interparticle voids in the agglomerate
network,*® which is where the metal oxide coating is mostly
located, as shown in Fig. 1A-E, and schematically illustrated in
Fig. 1F. After deposition of 100 ALD cycles onto the OLCs, most
of the pore volume throughout the agglomerates is homoge-
neously occupied by the metal oxide, with little remaining pore
space still visible in TEM images. These observations are
confirmed by gas sorption analysis, showing a decline in the
specific surface area from 352 m* g~ " to 50 m* g~ ' (SSAggr) and
in the total pore volume from 0.93 cm?® ¢~ * to 0.12 cm?® g~ * for
the OLC/VO, hybrids (ESI, Fig. S1t). The deposited single and
bimetal oxides are mostly present in nanocrystalline form, with
visible crystal sizes ranging between 5 and 20 nm.

The chemical composition of the hybrid material, especially
regarding the metal oxide content, was analyzed by means of
thermogravimetric analysis (TGA) and energy dispersive X-ray
spectroscopy (EDX); the quantitative results are given in Table 1
and Fig. 2. Application of 100 ALD cycles resulted in a metal
oxide content between 66 and 72 mass%, as measured by TGA,
being in line with semi-quantitative EDX analysis, where
61-66% were observed.

To characterize the crystalline structure of the deposited metal
oxides in the hybrid materials, X-ray diffraction (XRD) was carried
out (Fig. 3A). In the sample OLC/VO,, vanadia is present in the
monoclinic VO,(M) structure in space group C2/m (JCPDS
65-7960), most concisely represented by the (001) and (200)
reflections occurring at 14.4° 26 and 15.3° 26, respectively. In
OLC/TiO,, tetragonal anatase TiO, (JCPDS 78-2486) is formed,
as clearly indicated by the presence of the (101) reflection

B OLC/TiO,

Fig. 1
distribution in the mesopore volume of OLC agglomerates.

This journal is © The Royal Society of Chemistry 2017
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at 25.2° 2. The three multilayer systems, OLC/VTiO®?, OLC/VTiO"?,
and OLC/VTiO*?, all exhibit diffraction patterns that strongly
resemble the monoclinic C2/m crystal lattice, similar to that of
VO,(M) vanadia, while no additional peaks are found that might
indicate the presence of an anatase-type crystalline phase, as
observed for OLC/TiO,. This leads to the conclusion that in
multilayer samples, the titania species is present in another
configuration. The diffraction peaks detected for multilayer
samples are found to be shifted towards lower diffraction
angles, 26, with respect to peaks arising from the pure VO,(M)
phase, as exemplified for the (110) reflection in Fig. 3B. Hence,
the crystal structures of the newly formed multilayer phases are
isomorphs of the monoclinic vanadia system. This could be
explained by (1) the formation of a solid solution of vanadia and
titania, V;_,Ti,O,, or (2) by the occurrence of crystal lattice
strain in VO,(M), induced by epitaxially grown TiO,(B)-inter-
layers that also are isomorph to VO,(M) (JCPDS 74-1940, orange
line in Fig. 3B).”® The observation of one sharp peak suggests
the formation of a homogenous solid solution, since for two
separate, epitaxially grown phases, two peaks in close proximity
or a broad diffraction signal would be expected. The calculated
lattice parameters of the multilayer phases are shown in Table
2. The atomically controlled insertion of two titania layers
between arrays of six, four, or two vanadia layers via ALD led to
an enlargement of the VO,(M) unit cell in all three crystallo-
graphic directions, leading to an expansion of the cell volume
from 273 A% to 279 A% 280 A® and 281 A® for the samples
OLC/VTiO®?, OLC/VTiO*?, and OLC/VTiO*?, respectively. The
expansion can be explained by the larger ionic radius of

(A—E) Transmission electron micrographs of all fabricated hybrid electrodes; (F) schematic illustration of the homogenous metal oxide

J. Mater. Chem. A, 2017, 5, 2792-2801 | 2795
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Table 1 Chemical composition of the samples by EDX and metal oxide content based on EDX and TGA
Elemental composition (EDX) Metal oxide content
C, mass% V, mass% Ti, mass% 0, mass% EDX (mass%) TGA (mass%)
OLC/VTiO®*? 35+4 25 +3 18 +3 2245 65 + 11 69
OLC/VTiO*? 34+5 234+ 2 19 £+ 2 24+3 66 £ 7 67
OLC/VTiO*? 38+5 17 £2 20 £2 25+ 4 62 + 8 72
OLC/VO, 39+3 43 +7 — 18+ 5 61 & 12 67
OLC/TiO, 34t4 — 37+4 29 £2 66 £ 6 66
100 += forming in a multilayer system. Survey spectra are given in
Fig. S2A;7 high resolution measurements of V 2p and Ti 2p are
- given in Fig. S2Bf and 3D, respectively. The high resolution
S 80 . . .
< spectra of V 2p and Ti 2p in the multilayer sample show
g a reduced intensity, which is explained by the reduced content
£ 60- of the respective materials. While the signals of V 2p are
% 69% located around roughly the same binding energy (517.7 +
= 67% 0.2 eV) for OLC/VO, and OLC/VTiO®?, a significant shift of the
§ - - OLC/VTiOZ Ti 2p peaks is observed when being present in the multilayer
— I QLCIY T'OH 67% system. The binding energy of titanium is reduced by
204 OLCN(J)H” a magnitude of 1.2 eV (Ti 2ps/, shifts from 459.6 eV in anatase
o OLC/TiO, (ref. 55) to 458.4 eV in OLC/VTiO®?), which matches
0 \ : ’ . . . J . the value of previously reported titania doped vanadia pha-
100 200 300 400 500 600 700 ses.”® This is in agreement with the XRD and Raman results,

Temperature (°C)

Fig.2 Thermogravimetric analysis of all hybrid electrode samples. The
measurements were carried out in synthetic air with a flow rate of 20
mlmin~t up to a temperature of 650 °C at a heating rate of 5°C min~1.

titanium (r = 0.60 A) for Ti** in 6-fold coordination as opposed
to r = 0.58 A for V4" *

Raman spectroscopy was performed to further analyze the
metal oxide structure (Fig. 3C). The findings of the XRD exper-
iments for OLC/VO, and OLC/TiO, were confirmed: the
observed Raman signals are characteristic of monoclinic vana-
dia and tetragonal titania.*>** The Raman spectra of the
multilayer samples are in stark contrast to the respective pure
phases. A distinct peak at 195 cm™ ', which decreases in inten-
sity for increasing Ti-content, can be related to VO,(M).
Furthermore, the broad shoulder centered at 910 cm ™" that also
decreases with increasing Ti-content has been described for
mixtures of vanadia with both alumina and titania.*>** The
signal is a result of polyvanadate chains bonded to the foreign
metal.® The broad feature around 250 em™"' that becomes
sharper for increasing Ti-content has also been described in the
literature. It was attributed to a disordered rutile structure® and
second-order signals of octahedrally coordinated Ti in SrTiO;
compounds.® Thus, the emergence of the fundamentally
changed Raman spectra for the multilayer systems is a further
strong indicator of the formation of a solid solution with
modified bond structures.

X-ray photoelectron spectroscopy (XPS) was performed on
OLC/VO,, OLC/TiO,, and OLC/VTiO%? samples to evaluate the
change in vanadium and titanium binding energy when
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suggesting the formation of a solid solution of vanadia and
titania, with a change in the binding structure of titanium in
the hybrid samples.

3.2 Electrochemical performance

The electrochemical properties of the hybrid electrodes were
evaluated using cyclic voltammetry (CV) at a scanning rate of
1 mV s~ ! (Fig. 4A and B). The OLCs used as substrates typically
exhibit capacitive charge storage via double-layer formation, as
has been well established in the literature.**>® This behavior is
reflected by a very small, rectangular shaped background in the
CVs, best visible for sample OLC/TiO, in the range between 0 V
and +1.0 V vs. carbon. The main charge storage mechanism of
the hybrid electrodes, however, is lithium intercalation into the
redox-active metal oxide layers, which is synergistically
promoted by the conducting network provided by OLCs. In the
cathodic scan of sample OLC/VO,, a first lithiation peak occurs
at —0.3 V vs. carbon, followed by a second, more pronounced
peak at —0.5 V vs. carbon (corresponding to 2.9 V and 2.7 V vs.
Li/Li", respectively), indicating a two-step lithiation of the
material, in accordance with the literature,* with a total inter-
calation of about 0.8-1.1 Li per VO,.* The anodic scan also
exhibits two peaks, completing the delithiation around —0.1 V
vs. carbon. In contrast, OLC/TiO, exhibits only one pair of
redox-peaks, with the lithiation process starting at —1.2 V and
ending at —1.6 V vs. carbon (ie., +2.0 V to +1.6 V vs. Li/Li"),
which corresponds to the insertion of 0.4-0.5 Li per TiO,, as
reported in the literature.®*®* The delithiation during the anodic
scan is completed at —0.6 V vs. carbon. The larger voltage gap
between the reactions, compared to OLC/VO,, indicates slower
lithium intercalation kinetics in the OLC/TiO, system.

This journal is © The Royal Society of Chemistry 2017
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and anatase, and (D) high resolution X-ray photoelectron spectra of the Ti 2p signal for hybrid samples OLC/TiO, and OLC/VTiO®%?2,

Table 2 Structural parameters of metal oxide crystalline phases
calculated from XRD data, using EVA Diffrac Suite software

a(d) b@A) c@A) 60) Volume (A%)  Type
VTiO®? 1212 3.72 645 106.6 279.2 Monoclinic
VTiO** 1213 3.72  6.46 105.9 280.8 Monoclinic
VTiO*? 1214 3.73  6.48 106.6 281.1 Monoclinic
VO, 12.06 3.69 6.42 107.0 273.0 Monoclinic
TiO, 3.79 379 9.51 90.0 136.7 Tetragonal

The CV curves of the multilayer hybrid electrodes (Fig. 4B)
exhibit a greater number of redox peaks, as compared to
the single phase systems. In the cathodic scan of sample
OLC/VTiO®?, lithiation can already be detected starting at
—0.2 V vs. carbon, going through at least three steps up to
—1.2 V vs. carbon. At —1.3 V vs. carbon, a further, separated
peak emerges, indicating a fourth step of lithium intercalation.
The anodic scan shows little shift for all corresponding peaks,
indicating fast lithium diffusion kinetics in OLC/VTiO®?. With
an increased titania content in the samples OLC/VTiO** and
OLC/VTiO*?, two significant observations are made in
comparison to OLC/VTiO®?: (1) the area of the first set of peaks
decreases, while the single, separated peak at a more negative
potential increases in size and (2) the voltage shift between
related cathodic and anodic peaks increases. This leads to the
conclusions that (1) the cathodic peaks between —0.2 V and
—1.2 Vs. carbon can be associated with a multistep reaction of
Li with the vanadia species in the solid solution, while the peak

This journal is © The Royal Society of Chemistry 2017

at the more negative potential originates from the reaction
between Li and the titania species. Also, (2) the intercalation
kinetics drop with increasing titania content in the solid solu-
tion, in accordance with the observations made in pristine
OLC/TiO,.

The capacity and power handling of the hybrid electrodes
were evaluated using galvanostatic cycling with potential limi-
tation (GCPL), shown in Fig. 4C. In the battery community, it is
customary to normalize performance metrics to the mass of the
redox-active material in the electrode. However, since both
metal oxide and OLCs contribute to the electrochemical
performance of the presented hybrid electrodes, it is appro-
priate to normalize to the entire electrode mass.®” For better
comparability with literature values, the data for the best per-
forming sample (OLC/VTiO®?) will also be reported with respect
to the metal oxide content.

The OLC/VO, electrode exhibited a maximum specific
discharge capacity of 198 mA h g~', with a high capacity
retention of 51 mA h g~' at an ultrahigh discharge rate of
20 A g’1 or 101C, while the OLC/TiO, electrode performed
considerably worse with a maximum of 166 mA h g* and
a retention of 20 mA h g~ " at 20 A g~ ' or 120C. The multilayer
hybrid electrodes exhibited a strongly improved maximum
specific capacity of above 330 mA h g, with OLC/VTiO®?
reaching the highest value of 382 mA h g~' (554 mA h g " per
metal oxide), thereby outperforming state-of-the-art metal oxide
hybrid systems (ESI, Table S1t). This is a consequence of
enhanced lithium intercalation capacity that can be related to
the larger unit cell volume of VTiO, compared to VO,(M) and
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(A) Cyclic voltammograms of single phase and (B) multilayer hybrid electrodes recorded at a scan rate of 1 mV's

Cycle number

~1 (C) Discharge capacity

of all hybrid electrodes, derived from galvanostatic discharge from +1.0 V to —2.0 V vs. carbon at rates between 0.05 A g~* and 20 A g~*. (D)
Voltage-capacity profiles for sample OLC/VTiO®? at rates between 0.05 A g~*and 20 A g~* (corresponding to 0.13C to 52C) and (E) coulombic
efficiency of all multilayer hybrid samples, derived from galvanostatic cycling at different rates. (F) Cycling stability test from galvanostatic cycling

between +1.0 V and —2.0 V (—~1.8 V) vs. carbonat 1 Ag~%.

tetragonal TiO,. In addition, the number of possible lithiation
reactions is increased due to the presence of both vanadia and
titania species. The lithiation follows this reaction path, with x
defining the composition of the multilayer system and y the
number of lithium ions intercalated:
VxTilfxOZ + yL1+ + y67 « LinyTiI,XOQ (3)
When evaluating the power handling ability of the multilayer
hybrid electrodes, the trend of decreased kinetic properties with
higher titania contents seen in the CVs is confirmed. The
samples OLC/VTiO*?* and OLC/VTiO*? dramatically decline in
performance at high rates above 2.5 A g ' (about 10C), while
OLC/VTiO®? exhibits an extraordinary power handling, with
a capacity retention of 82 mA h g~ at 20 A g~ or 52C (equiv-
alent to 120 mA h g~ ' normalized to the metal oxide mass), even
reaching power values of novel hybrid supercapacitor materials
(60 mAhg *at17 Ag ' or 100C).%

2798 | J Mater. Chem. A, 2017, 5, 2792-2801

The electrochemical performance of OLC/VTiO®? is further
outlined by voltage-capacity profiles at various cycling rates
(Fig. 4D). Two plateaus can be observed in the cathodic scan,
corresponding to lithiation reactions with the vanadia and
titania species of the material. When increasing the rate, the
second plateau associated with lithiation of titania becomes
smaller, thereby confirming that titania is the kinetically
limiting part. The charge efficiency of all samples is determined
to be well above 80% at very low rates of 0.05 A g~ ', and reaches
100% at medium-high rates above 0.25 A g ' (Fig. 4E). The
charge efficiency below 100% at low rates is explained by the
charge contribution of irreversible side reactions, which
commonly occur with high surface area materials offering
a high reaction interface between the electrode and electrolyte.
The high degrees of lithiation reached at low specific currents
are also in part not fully reversible at the same discharging rate,
leading to irreversibly intercalated Li, further contributing to
a charge efficiency below 100%.

This journal is © The Royal Society of Chemistry 2017
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The longevity of the hybrid electrodes was evaluated using
GCPL at a rate of 1 A g~ (Fig. 4F). For discharging to —2.0 V vs.
carbon, after 200 cycles, a decline in discharge capacity was
detected to 65% and 50% of the initial value for OLC/VO, and
OLC/VTiO®?, respectively. This is characteristic of vanadia-
containing electrodes that struggle with vanadium dissolution
at low voltages.*>** Decreasing the voltage window was found as
a facile way to resolve this critical issue: by only discharging
to a voltage of —1.8 V vs. carbon (ie., 1.4 V vs. Li/Li’), the
OLC/VTiO®? hybrid system showed a remarkably stable
performance over 3000 cycles. After an initial drop to 83% after
200 cycles, stable cycling with minor capacity fading was
observed. Although the maximum specific capacity was slightly
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Fig. 5 Electrochemical benchmarking of hybrid supercapacitor full
cells composed of OLC/VTiO®? (anode) and activated carbon
(cathode). (A) Cyclic voltammograms to different maximum cell volt-
ages between 3.0 V and 3.5 V. (B) Voltage profile of a galvanostatic
cycle to 3.2 V at a rate of 0.05 A g~. The blue curves show the
potential evolution at the cathode and anode, monitored against
a carbon reference. (C) Ragone-plot displaying specific energy and
power, derived from galvanostatic cycling to 3.2 V at different rates.
Inset: energy efficiency and coulombic efficiency at different cycling
rates.
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reduced to 315 mA h ¢! (457 mA h g ' per metal oxide),
reducing the maximum voltage it is proposed as an effective
strategy to significantly enhance the longevity of VO,-containing
electrodes.

In order to demonstrate a device level application of the
hybrid electrodes, charge-balanced full-cells composed of
OLC/VTiO®? (anode) and activated carbon (cathode) were
investigated. The CVs of the full-cells show electrolyte stability
up to at least 3.2 V cell voltage (Fig. 5A). The CV shape clearly
demonstrates two smeared out peaks between about 0 V and
1.8 V, and 2.3 V to 3.2 V, respectively, which correspond to the
two regimes of lithium intercalation observed in the half-cell
setup. This is confirmed by the two plateau-like regions in the
voltage-profile (Fig. 5B). During galvanostatic cycling, the anode
potential was monitored by a carbon reference and kept well
above —1.8 Vvs. carbon to stay within the stable potential range
determined in half-cell experiments (blue line, Fig. 5B). The
specific energy and power of full-cells are commonly displayed
in a Ragone plot (Fig. 5C). The specific energy reaches
a maximum value of 110 W h kg™ for charging (76 W h kg™" for
discharging) with a maximum specific power of 6 kW kg " for
charging (2.2 kW kg for discharging). This outstanding device
level performance is among the highest reported in the litera-
ture for hybrid supercapacitor full-cells and underlines the
potential of the herein presented vanadia/titania multilayer
system.

4. Conclusions

Vanadia-titania/carbon onion hybrid electrodes were synthe-
sized by atomic layer deposition with different stacking orders
of the respective metal oxides. By employing this novel
approach and repetitively stacking atomically controlled vana-
dia and titania layers with high conformity, a solid solution with
an expanded vanadia unit cell was fabricated, leading to
a highly improved specific capacity of 382 mA h g~* (554 mA
h g~" normalized to metal oxide mass) in comparison to 198 mA
h g for pristine VO,. In synergy with the highly conductive
network of carbon onions, an impressive capacity retention of
82mAhg " (120 mA h g ! per metal oxide) when discharging at
a rate of 20 A g~ " or 52C was attained. By benchmarking for
cycling stability, discharging to a reduced potential of —1.8 Vvs.
carbon was found as a solution to obtain longevity over
3000 cycles. Device level performance of up to 110 W h kg ™' in
asymmetrical full-cells underlines the future potential of the
presented vanadia/titania multilayer system.
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Table S1: Comparison of specific capacities for recently reported vanadium oxide hybrid systems.

Specific capacity | Specific capacity )
. ] Discharge
Electrode material per electrode per metal oxide Reference
(mAh-g) (mAh-g) rate
OLC/VTi0®%? 382 554 0.05 A-g! | This work
V,05/CDC (core-shell) 310 420 0.05A-g? 2
CNT/V,0s (+TiO; protective layer) 256 400 0.1Ag? 3
Graphene/VO, 206 421 0.14 A-g' 4
VO,/Sb:Sn0, 154 350 0.1Ag? 3
CNT/VO,:Ti (Ti-doped) - 157 2mvV-st 6
OLC/VOx 120 200 0.05 A-g? !
AC/VOy 122 240 0.05 A-g? !
References:
1. S. Fleischmann, N. Jackel, M. Zeiger, B. Kriiner, I. Grobelsek, P. Formanek, S. Choudhury, D.
Weingarth and V. Presser, Chem. Mater., 2016, 28, 2802-2813.
2. M. Zeiger, T. Ariyanto, B. Kriiner, N. J. Peter, S. Fleischmann, B. J. M. Etzold and V. Presser, J.
Mater. Chem. A, 2016, 4, 18899-18909.
3. M. Xie, X. Sun, H. Sun, T. Porcelli, S. M. George, Y. Zhou and J. Lian, J. Mater. Chem. A, 2016, 4,
537-544,
4, D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang and Z. X. Shen, Nano
Lett., 2014, 15, 565-573.
5. S. Park, C. W. Lee, J.-C. Kim, H. J. Song, H.-W. Shim, S. Lee and D.-W. Kim, ACS Energy Lett.,
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ABSTRACT: Merging of supercapacitors and batteries promises the creation
of electrochemical energy storage devices that combine high specific energy,
power, and cycling stability. For that purpose, lithium-ion capacitors (LICs)
that store energy by lithiation reactions at the negative electrode and double-
layer formation at the positive electrode are currently investigated. In this
study, we explore the suitability of molybdenum oxide as a negative electrode
material in LICs for the first time. Molybdenum oxide—carbon nanotube
hybrid materials were synthesized via atomic layer deposition, and different
crystal structures and morphologies were obtained by post-deposition
annealing. These model materials are first structurally characterized and
electrochemically evaluated in half-cells. Benchmarking in LIC full-cells
revealed the influences of crystal structure, half-cell capacity, and rate handling
on the actual device level performance metrics. The energy efficiency, specific
energy, and power are mainly influenced by the overpotential and kinetics of

_ Energy “

Energy efficiency v

Energy v
! Power

Energy efficiency ¢

) Energy 3¢
) Power g¢

the lithiation reaction during charging. Optimized LIC cells show a maximum specific energy of about 70 W-h-kg™" and a high
specific power of 4 kW-kg™" at 34 W-h-kg™". The longevity of the LIC cells is drastically increased without significantly reducing
the energy by preventing a deep cell discharge, hindering the negative electrode from crossing its anodic potential limit.

KEYWORDS: lithium-ion capacitor, hybrid materials, electrochemical energy storage, asymmetric supercapacitor, molybdenum oxide

1. INTRODUCTION

In the face of global warming and climate change, the
mitigation of CO, emissions is considered to be a key
challenge for the next decades." Therefore, a transition from
fossil to renewable energy sources in the electricity and mobility
sectors has to be realized, requiring the availability of efficient
fast-responding electrochemical energy storage devices.””
Electrical double-layer capacitors (EDLCs) employ high-surface
area electrodes that store energy by formation of the electrical
double-layer via adsorption of ions at the charged interface to
the electroly‘ce.4 Most commonly, carbons with high internal
porosity are used as electrodes, such as activated carbons
(ACs)™® or carbide-derived carbons,”” offering a high surface
area (2000—3000 m*g™') for ion electrosorption. Carbon
nanomaterials such as carbon nanotubes (CNTs)’ and carbon
onions'”'" with a large outer surface area find use in high-
power applications, as they enable even faster double-layer
formation by offering shorter diffusion paths to the electrolyte
ions.'” Though they provide a high specific power (>10 kW-
kg™') and long lifetimes (>100 000 cycles), the main drawback
of EDLCs is their low specific energy (<20 W-h'kg™).*"
Consequently, most commercial mobile applications rely on
lithium-ion batteries (LIBs) instead of EDLCs, as they employ

-4 ACS Publications  © 2018 American Chemical Society

faradaic electrode materials that enable lithium intercalation
reactions, exhibiting a higher energy storage capacity (>100 W-
h'kg™)."> Commonly found faradaic materials are metal oxides
such as MoOz,14 VZOS,]5 Mn02,16 Nb205,17 or LTO,"® which
are combined with conductive carbons to form a composite
electrode because of their oftentimes poor electrical con-
ductivity. Yet, intercalation reactions are kinetically limited by
solid-state diffusion and may cause significant volumetric
changes to the electrode materials during operation,'” thereby
limiting the specific power (<1 kW-kg™') and cyclability
(<1000 cycles).”

A synergistic combination of both technologies, EDLC and
battery, shows promise to improve the performance metrics of
the resulting materials.”' High-surface area carbons that have
been nanoscopically decorated with faradaic materials form
hybrid materials with a large electrode/electrolyte interface and
good electrical conductivity.”> Such hybrid materials that are
closely linked on a nanoscopic level show superior electro-
chemical properties compared to composite materials that are
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created by mere mechanical mixing of the two components.”**

Possible synthesis routes for the decoration of carbon
substrates with faradaic materials include atomic layer
deposition (ALD),” hydrothermal synthesis,”® wet-chemical
synthesis,”” melt infiltration,”® or self-assembly reactions.”” A
requirement for the carbon substrate material is (ideally full)
surface accessibility for noncarbon species, generally favoring
nanocarbons with external surface area over porous ACs, where
pore blocking can occur;>® however, especially, tailored
mesoporous carbons with high internal surface areas also
showed a high suitability as substrates.””*> ALD is a vapor
deposition technique that occurs in binary, self-limited reaction
cycles. During each reaction cycle, one atomic layer of the
desired material is deposited.”® This allows for designing highly
conformal coatings with enhanced control over the mass
loading on the carbon electrodes and enables the layer-by-layer
deposition of different components.”* Consequently, ALD is a
powerful tool for the synthesis of model hybrid materials with
well-defined properties.

Merging of supercapacitors and batteries is also an intriguing
concept on a cell design level: by the use of an anode material
that enables lithium intercalation (metal oxide) and an EDLC
cathode material (nanoporous carbon), a lithium-ion capacitor
(LIC) is obtained that exhibits higher energies than conven-
tional EDLCs while still showing attractive power handling and
longevity.”>*® This cell setup was first introduced in 2001 by
Amatucci et al. and has also been called a hybrid or asymmetric
supercapacitor.”” To compensate for the higher specific
capacity of the anode, a cathode with oversized mass can be
chosen.”® The slow kinetics of ion intercalation in the metal
oxide anode as compared to electrosorption at the carbon
cathode is a key issue of this cell concept, creating a need for
metal oxide/carbon hybrid materials that present good electron
and ion mobility.”” A possible candidate is molybdenum oxide,
a layered transition-metal oxide that has been widely studied as
an anode material for LIBs, as it exhibits a high theoretical
specific capacity, depending on the crystal structure and cutoff
voltage.”"~** Charge storage is accomplished by two different
types of faradaic reactions: (1) lithium intercalation in a
potential range between 3 and 1 V versus Li/Li* and (2) a
conversion reaction below 1 V versus Li/Li*.*® The
intercalation reaction involves up to one electron transfer
according to

MoO, + Li* + ¢ < LiMoO, (1)

The conversion reaction below 1 V yields a transfer of up to
six electrons depending on the oxidation state of molybdenum
L1 44
oxide

MoO, + 4Li* + 4e~ < Mo + 2Li,0 (2)

MoO; + 6Li* + 6e” < Mo + 3Li,O 3)

Conversion-type reactions typically exhibit poor kinetics and
reversibility, making them unfavorable for high-power applica-
tions.”’ Recently, the pseudocapacitive charge storage proper-
ties of molybdenum oxides have been investigated by Dunn and
co-workers: they concluded that (1) nanosizing MoO, and
hybridizing with reduced graphene oxide™ and (2) the
introduction of oxygen vacancies into the orthorhombic
structure of MoO;** greatly enhance the kinetics of the lithium
intercalation reactions. On the basis of those first findings,
molybdenum oxide-based hybrid materials appear attractive for
the use as anodes in LICs. Though MoO;/carbon fiber hybrid

materials were used in an asymmetric supercapacitor setup,
these devices employed aqueous or gel electrolytes in a small
potential window, therefore capitalizing on surface redox
reactions rather than lithium intercalation reactions.*®*’
However, there is an apparent lack of studies on the suitability
of kinetically attractive molybdenum oxide/carbon hybrid
materials as LIC anode materials. Further, a comparison of
intercalation kinetics of different molybdenum oxidation states
and their impact on the performance in LICs need to be
explored.

Herein, we investigate molybdenum oxide—CNT hybrid
electrodes synthesized by ALD and heat-treated in different
atmospheres to obtain various crystal structures. These model
materials are electrochemically benchmarked both in half-cells
and as anodes in a LIC full-cell. Our study provides valuable
insights into the relations between crystallographic structure of
molybdenum oxide, its morphology, and the resulting LIC
performances.

2. EXPERIMENTAL SECTION

2.1. Preparation of CNT/Molybdenum Oxide Hybrid Electro-
des. CNT paper electrodes (ie, binder-free) were prepared by
dispersion of multiwalled CNT powder (Nanocyl NC7000) by
sonication in ethanol on a magnetic stirrer for 30 min. Then, the
obtained solution was vacuum-filtered through a Durapore membrane
filter (Merck Millipore). Finally, the obtained CNT paper electrode
was dried for 3 h at 120 °C to remove any residual solvents, yielding
freestanding, binder-free electrodes (diameter: SO mm and thickness:
50 + 10 ym).

The obtained CNT paper was transferred to an OpAL (open-load
ALD, Oxford Instruments) system. The molybdenum oxide coating
was synthesized by subsequent cycles of molybdenum hexacarbonyl
(Mo(CO),, Pegasus Chemicals) as metal precursor and ozone as
reactant gas. Mo(CO), was preheated to 60 °C in a bubbler and
delivered to the reaction chamber by argon carrier gas. One ALD cycle
consisted of a dosing period of Mo(CO), for 15 s, 10 s of purging with
argon gas, 45 s of ozone dosage, and a final 15 s pumping step. The
temperature of the reactor during deposition was maintained at 165
°C. The CNT paper electrodes were placed in the reactor in a vertical
alignment, so as to allow effective precursor penetration from both
sides, enabling coating over the entire thickness of the CNT electrode.

To achieve the desired crystalline structure after ALD, the MoO,—
CNT samples were further thermally annealed. MoO;—CNT was
obtained by annealing in a synthetic air atmosphere at 360 °C for 1 h,
whereas MoO,—CNT was produced by annealing in an argon
atmosphere at 500 °C for 1 h. All annealing steps were carried out with
heating and cooling rates of 10 °C-min™".

2.2. Structural Characterization. Scanning electron microscopy
(SEM) was carried out using a JEOL JSM-7500F system with an
acceleration voltage of 3 kV. Energy-dispersive X-ray spectroscopy was
carried out with an X-Max-150 detector from Oxford Instruments
using a voltage of 10 kV.

Raman spectroscopy was performed with a Renishaw inVia Raman
Microscope with a Nd/YAG laser (532 nm wavelength), a 2400 lines-
mm™' grating, and a 50X objective (numeric aperture: 0.9). The
resulting laser spot covered about 1 ym in diameter and exhibited a
power of 0.05 mW. All spectra were recorded for 30 s with 10
accumulations. Peak deconvolution was carried out using two Gaussian
and three Lorentzian peaks to fit the amorphous and ordered carbon
structures.

The elemental surface chemical composition and chemical binding
properties of the samples were determined by X-ray photoelectron
spectroscopy (XPS), using an AXIS Ultra spectrometer from Kratos.
Monochromatic Al Ka (150 W), implementation of charge
neutralization, and a pass energy of the analyzer of 80 eV were used
for determining the elemental composition. A highly resolved Mo 3d
peak was measured with a pass energy of 10 eV (225 W).

DOI: 10.1021/acsami.8b03233
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X-ray diffraction experiments were carried out with a D8 Discover
XRD from Bruker AXS (corundum standard calibrated). A copper X-
ray source was employed (Cu Ka, 40 kV, 40 mA), with a G&bel
mirror, a 0.5 mm point focus, and a VANTEC-500 detector. The
detector simultaneously covered a range of about 20° 260 per
measurement step, and the samples were measured in three steps
with the detector positioned at 20, 40, and 60° 26 for 17 min each.

Thermogravimetric analysis was performed with a TG 209 F1 Libra
system from Netzsch. The samples were measured in alumina crucibles
at a heating rate of S K:min™" to a temperature of 650 °C in a synthetic
air atmosphere (flow rate: 20 sccm).

2.3. Electrochemical Characterization. Electrochemical meas-
urements were performed in a custom-built cell with a polyether ether
ketone body and spring-loaded titanium pistons, as further described
in ref 48. For half-cell characterization, 10 mm discs of MoO,—CNT
electrodes with a mass loading of 1.3 + 0.3 mg/cm?® were used as
working electrodes and a metallic lithium chip served as the reference
and counter electrodes. The electrodes were separated by a glass fiber
separator (GF/D, Whatman), and 12 mm copper foil and aluminum
foil served as current collectors on the negative and positive sides,
respectively. In the LIC setup, MoO,—CNT served as a negative
electrode, AC (type YP-80F, Kuraray, S mass % polytetrafluoro-
ethylene (PTFE) bound, 100 ym thickness) was the positive electrode,
and a piece of lithium metal was used as a spectator reference
electrode. Charge balance was achieved by oversizing the AC
electrode, using electrode mass ratios of 1:2.5. All electrodes were
dried in a vacaum oven at 120 °C and 20 mbar prior to use. Cell
assembly was carried out in an argon-filled glovebox (MBraun
Labmaster 130, O, and H,O < 1 ppm), and the cells were vacuum-
backfilled with 1 M LiClO, in a mixture of ethylene carbonate and
dimethyl carbonate electrolyte (EC/DMC, vol 1:1) from BASF
(battery grade).

Electrochemical testing was performed with a VSP300 potentiostat/
galvanostat from Bio-Logic. In half-cells, cyclic voltammograms were
recorded at a scanning rate of 1 mV-s™" and galvanostatic cycling was
conducted with specific currents between 0.05 and 20 A-g™' in a
potential range between 1 and 3 V versus Li/Li*. All performance
metrics were normalized to the full hybrid electrode mass m (i.e., metal
oxide and CNT mass) unless declared otherwise. The specific capacity
C,p is calculated by integration of the current I over time t — , during
the delithiation step according to

J1a
_ “h
Co=—, )

The Coulombic efficiency is derived by dividing C, by the specific
capacity of the lithiation step. In the LIC setup, cyclic voltammograms
are recorded with 1 mV-s™' and galvanostatic cycling with specific
currents between 0.1 and 10 A-g" in a cell voltage range from 0 to 3.2
V while simultaneously monitoring the potential development with a
lithium spectator reference electrode. The specific discharge energy E,,
is calculated by numeric integration of the voltage U(t) over discharge
time t — £, according to

I /t: U(t) dt
Fo =3 ()

The specific discharge power was calculated by dividing E,, by the
discharge time t — t,, and the energy efficiency is calculated by dividing
by the specific energy during the charge step. LIC metrics are reported
with respect to the combined mass M of both electrodes, excluding the
PTFE-binder mass of the AC electrode.

3. RESULTS AND DISCUSSION

3.1. Structural Characterization. Molybdenum oxide
decoration of CNTs was obtained by ALD directly on
freestanding, binder-free CNT paper. After the deposition
process, two different annealing procedures are carried out to
obtain different crystal structures of molybdenum oxide (Figure

1A). After the ALD process, molybdenum oxide is homoge-
nously deposited on the entangled CNT substrate network,

Figure 1. Schematic illustration of the synthesis process (A) and SEM
images of the as-deposited MoO,—CNT (B), MoO,—CNT after
annealing at 500 °C in an argon atmosphere (C), and MoO;—CNT
after annealing at 360 °C in a synthetic air atmosphere (D).

showing average tube diameters of 15—30 nm according to the
scanning electron micrograph of the as-deposited MoO,—CNT
in Figure 1B, with the CNTs being completely covered. After
annealing of the hybrid electrodes in argon at 500 °C for 1 h,
flake-like crystallites are observed within the CNT network that
are up to 150 nm in lateral size and up to about 50 nm in
thickness (Figure 1C). These crystallites appear to be formed
during annealing by coarsening of molybdenum oxide that
covered the CNTs after ALD, as evident by the reduction of
tube radius before and after annealing. Coarsening is also
observed when annealing the hybrid electrodes in air at 360 °C
for 1 h, where flakes smaller than 50 nm in diameter and below
20 nm in thickness are formed (Figure 1D). This coarsening
results from thermodynamically driven crystallization enabled
by elevated temperatures, which explains the formation of
larger crystallites at higher temperatures.*’

A more thorough investigation of the coating morphology
was carried out by transmission electron microscopy (TEM).
The as-deposited MoO,—CNT hybrid electrodes show a very
uniform coating of molybdenum oxide on the CNTs with a
thickness of around 1.5-2 nm (Figure 2A,B), confirming an
ALD process with homogenous layer growth. Diffusion of the
as-deposited molybdenum oxide, as it was already observed in
SEM, can also be confirmed by TEM measurements.
Crystallites are formed by the material that homogenously
covered the CNTs before, which fully consumes the thin films,
as diffusion is enabled by annealing in argon (Figure 2C,D) and
air atmospheres (Figure 2E,F). These particles remain
intimately entangled within the CNT substrates (Figure 2D,F).

Raman spectra of all hybrid samples are shown in Figure 3A,
with all data being normalized to the carbon D-peak. The
spectra can be divided into two regions: At low Raman
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Figure 2. Transmission electron micrographs of the as-deposited MoO,—CNT (A,B), MoO,—CNT after annealing at 500 °C in an argon
atmosphere (C,D), and MoO;—CNT after annealing at 360 °C in a synthetic air atmosphere (E,F).
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Figure 3. Raman spectra of all hybrid samples, with the inset magnifying 100—1000 cm™" section of MoO;—CNT (A). X-ray diffractograms of all
samples including ideal markers for ideal peak positions of MoO, and MoO; according to PDF 32-0671 and PDF 05-0508, respectively (B). High-
resolution XPS measurement of the Mo 3d peak of the as-deposited MoO,—CNT sample with Gaussian—Lorentzian fits (C) and thermogravimetric

measurements of all hybrid samples (D).

frequencies at 100—1000 cm™', characteristic signals of
molybdenum oxide are found, whereas the D- and G-modes
of carbon are located at higher frequencies of 1350 and 1605
cm™!, respectively. Sample MoO,—CNT does not exhibit
characteristic molybdenum oxide signals in the region below
1000 cm™', which can be explained by the extremely small
domain sizes®® below 2 nm, as seen in Figure 2B. Therefore, a
determination of the oxidation state of the as-deposited
molybdenum oxide is not possible via Raman spectroscopy.
After thermal annealing, several distinct signals are detected in
the range below 1000 cm™". For the sample annealed in argon,
typical signals of MoO, are detected, with the largest peaks at

18678

202 and 740 cm™.>' When analyzing the structure of
incompletely oxidized samples, low laser powers are to be
used to avoid oxidation of MoO, to MoO; during Raman
measurement, which may lead to incorrect assignment of peak
positions of the MoO, phase.’”> The sample annealed in
synthetic air shows the main characteristic MoOj; signal at 820
em™! (Figure 3A),> confirming a successful transformation of
the samples MoO,—CNT and MoO;—CNT into the desired
phases. An analysis of the D- and G-modes yields information
about the multiwalled CNT structure in the hybrid samples.
The shape and position of the D-mode at around 1352 cm™ is
the same for pristine multiwalled CNT and all three hybrid
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samples, whereas the G-mode shows distinct differences. The
D-mode originates from double-resonant Raman scattering,
which is influenced by structural disorder, such as defects or
heteroatoms in the graphitic structure.”* Because all samples
show similar D-modes, there are no differences expected
concerning defect density. The G-mode is a first-order Raman
signal and corresponds to in-plane stretching of the C—C
bonds. In contrast to pure graphite, die G-band of single-walled
CNTs is typically split into several features.”> This peak
splitting is observed to a small extent for the annealed hybrid
samples because of the reduction of the amorphous carbon
phase during annealing, reducing the background signal (A-
mode) and sharpening the distinct G-bands. Deconvolution of
the carbon signals is exemplified for MoO;—CNT in
Supporting Information Figure S1A, and the decreasing amount
of the amorphous carbon content after annealing is laid out in
Figure S1B.

X-ray diffraction was carried out to identify the molybdenum
oxide crystal structure (Figure 3B). The as-deposited MoO,—
CNT hybrid samples showed only a broad signal at around 26°
26, which is caused by amorphous carbon of the CNT
substrate. No crystalline peaks indicative of molybdenum
oxides are detected in this sample, confirming the findings from
Raman spectroscopy of very small domain sizes. For the
annealed samples, the expected molybdenum oxide phases are
confirmed, according to Powder Diffraction File (PDF) #32—
0671 and #05—0508 for MoO, and MoO;, respectively. The
crystal structure of MoO, corresponds to the monoclinic P2,/n
space group, whereas MoOj crystallizes as @-MoO; in the
orthorhombic Pbnm symmetry. All peaks present in the
diffractograms can be assigned to a single crystal phase,
suggesting the absence of intermediate phases or multiphase
fields after the transformation process during annealing.

The oxidation state of molybdenum after the ALD process
can be assessed by XPS to determine the binding energy of
molybdenum in the MoO,—~CNT hybrid sample. The highly
resolved measured spectrum of the Mo 3d doublet is given in
Figure 3C. Peak fitting with a Gaussian—Lorentzian model
revealed a predominant valence state of Mo®, with small
fractions of Mo*",”" indicating the presence of an amorphous
molybdenum trioxide structure directly after ALD. The
formation of predominantly hexavalent Mo is in line with
other reports of atomic layer-deposited molybdenum oxide
from the same precursors.’

Thermogravimetric analysis was used to quantify the ratio of
molybdenum oxide to carbon in the hybrid electrodes. The
samples were heated to 650 °C in synthetic air, leading to a
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complete burn-off of the carbon (Figure 3D). To determine the
mass of burnt carbon, all processes leading to a mass change
during the experiment have to be considered: (1) Up to a
temperature of 120 °C, water adsorbed on the sample and
crucible surface evaporates,57 leading to a mass loss of up to 5%.
(2) A mass gain starting around 300 °C is correlated with the
oxidation of all non-hexavalent Mo species to Mo®". This mass
gain is small for MoO,—CNT, more pronounced for MoO,—
CNT, and nonexistent for MoO;—CNT as it only contains
Mo®. (3) Finally, carbon burn-off is causing a mass loss
between temperatures of around 420—550 °C. To back-
calculate to the initial carbon content of the dry hybrid samples,
the mass gained by oxidation must be subtracted from the final
mass in the crucible, leading to carbon contents of 31, 30, and
27 mass % for samples MoO,—CNT, MoO,—CNT, and
MoO;—CNT, respectively. The slightly lower carbon content
of MoO;—CNT samples can be explained by a partial carbon
burn-off during the annealing procedure in a synthetic air
atmosphere at 360 °C.

3.2. Electrochemical Characterization. 3.2.1. Half-Cell
Performance. Molybdenum oxide—CNT hybrid electrodes are
electrochemically characterized in a half-cell setup against a
lithium metal counter/reference electrode. Cyclic voltammo-
grams recorded at a scan rate of 1 mV-s™' are shown in Figure
4A to provide a qualitative overview of their lithium
intercalation behavior. The as-deposited MoO,—CNT hybrid
electrodes show no redox peaks in the potential range between
2.8 and 1.1 V versus Li/Li* but a rectangular current signal
corresponding to a pseudocapacitive lithium intercalation
mechanism, that is, an intercalation reaction that exhibits a
capacitor-like voltage profile. This effect is often observed in
nanoscopic layers or particles of faradaic material, where
intercalation is effectively no longer limited by solid-state
diffusion since all reactions take place at the surface or near-
surface region.3'2'58 MoO,—CNT shows two strong lithiation
peaks at around 1.5 and 1.2 V versus Li/Li", corresponding toa
two-step lithiation process, in accordance with literature.”” The
potential shifts between oxidation and reduction peaks indicate
a diffusion-limited intercalation process, which can be
correlated with increased diffusion paths due to coarsening of
MoO, particles during annealing. MoO;—CNT exhibits a two-
step lithiation process with peaks at 2.65 and 2.2 V versus Li/
Li*, which aligns with previous reports in the literature.”*” The
delithiation process occurs in one step with a large peak located
at 2.65 V versus Li/Li".

Galvanostatic cycling was carried out to obtain quantitative
information on the capacity and rate behavior of the hybrid
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Figure 5. Ragone chart with specific energies and powers of LICs with hybrid material as the negative electrode and AC as the positive electrode (A)
and voltage profile of LIC cells containing MoO,—CNT (B), MoO,—CNT (C), and MoO;—CNT (D) as negative electrodes at a cycle rate of 0.1 A-
g™}, including the potential development of the positive and negative electrodes measured against a lithium spectator electrode (blue lines).

electrodes (Figure 4B). It is noted that all values discussed are
normalized to the full mass of the hybrid electrodes. The
maximum specific capacity of MoO,—CNT is around 145 mA-
h-g™! at a rate of 0.05 A-g™'; however, a capacity decay to
around 130 mA-h-g”' is observed during the first operation
cycles, which further decreased to around 110 mA-h-g™" after
50 cycles. The MoO,—CNT electrodes exhibit a slightly higher
maximum capacity of around 150 mA-h-g”'; however, a far
superior stability is observed with the capacity remaining at a
constant value after over 60 cycles. This maximum specific
capacity matches the maximum theoretic capacity of 210 mA-h-
g~ of MoO, for one intercalated Li* per monoclinic MoO,,*
considering a CNT content of 30 mass % in the hybrid sample.
MoO;—CNT electrodes exhibited the highest initial delithia-
tion capacity of 200 mA-h-g™', but a strong decay over the first
five cycles to 170 mA-h-g™" is observed and the performance
stabilizes around 115 mA-h-g~" after 60 cycles. Capacity fading
of hybrid electrodes containing large fractions of hexavalent Mo
species has been described in previous publications and is
caused by irreversible phase transitions during the first lithiation
cycles.® This behavior was less severe for amorphous
MoO,—CNT compared to MoO;—CNT, possibly because of
the small domain sizes below 2 nm, but came at the cost of a
reduced initial specific capacity. This reduced specific capacity
of MoO,—CNT is caused by the disordered molybdenum oxide
phase, where a lower number of lithium ions can be reversibly
stored. The rate handling behaviors of MoO,—CNT and
MoO;—CNT electrodes are comparable, with a retention of
about 40 mA-h-g! at a high rate of 10 A-g™". In contrast, the
MoO,—CNT hybrid samples show a superior rate handling,
with almost a constant capacity up to a rate of 2.5 A-g”". Only
at ultrahigh rates of 10 and 20 A-g™', the capacity drops rather
significantly to around 75 and 30 mA-h-g”", respectively.

Rate handling is typically determined by two factors: (1) the
electrical conductivity of the hybrid electrode and (2) the
diffusion path length for lithium ions to their intercalation sites.
In the presented case, it is obvious that diffusion had negligible
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influence on the rate performance because the largest particles
(MoO,) showed the best rate handling, whereas nanoscopic
MoO,, layers exhibited the poorest rate behavior. The reason
for the improved rate handling is the metallic conductivity of
MoO,, which is superior to insulating MoO;.°"* In the case of
atomic layer-deposited molybdenum oxide on CNTs, a post-
deposition annealing process is favorable for the performance
metrics for lithium intercalation in half-cells concerning
longevity and rate behavior. Few-nanometer-thick coatings of
amorphous MoO,, do not provide favorable kinetics compared
to larger crystalline particles obtained by annealing.

3.22. LIC Full-Cell Performance. Full LIC cells were
assembled by employing molybdenum oxide—CNT hybrid
electrodes as a negative electrode and AC as a positive
electrode. This concept employs two different charge storage
mechanisms: lithium-ion intercalation at the negative electrode
and physical ion electrosorption at the positive electrode.
Because of the lower specific capacity of the positive electrode
(60 mA-h-g™! between 3 and 4.5 V versus Li/Li*),** the mass of
the positive electrode is increased by a factor of 2.5. In our LIC
cells, a lithium spectator electrode monitors the potential
development at both electrodes during operation. The specific
energy and power of the LIC cells are shown in a Ragone chart
(Figure SA) and were determined by galvanostatic cycling at
different rates and integrating the voltage profiles over
discharge time. The highest specific energy is exhibited by
the MoO,—CNT-containing LIC cell with about 70 W-h-kg™
at 83 W-kg ™, whereas the MoO;—CNT-containing cell showed
64 Whkg™ at 64 Wkg™'. The maximum energy of the
MoO,—CNT cell is 46 W-h-kg™" at 24 W-kg™!, being far below
the performance of both other cells. Higher cycling rates show
similar energy values for both MoO,—CNT and MoO;—CNT
cells; however, MoO,—CNT cells exhibit a higher power at
high rates. A specific energy of 34 W-h-kg™' is measured at a
power of 2.4 kWkg™' for MoO;—CNT and at 4 kW-kg™" for
MoO,—CNT. For comparison, the MoO,—CNT cell is far
below these metrics with 20 W-h-kg™" at 1.3 kW-kg™". The
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energy efficiencies during cycling at various rates are shown in
the inset of Figure SA. MoO,—CNT cells show the lowest
energy efficiencies with 36% at the lowest rate and values
around 50% for higher cycling rates. The MoO;—CNT cells
exhibit energy efficiencies between 45 and 60%, and the
MoO,—CNT cells show the highest values between roughly
70% at the lowest rate and 77% at elevated rates.

To analyze the differing performance metrics of the LIC cells,
the potential development at both electrodes is separately
monitored by a lithium spectator electrode during cycling. One
typical cycle of LIC cells containing MoO,—CNT, MoO,—
CNT, and MoO;—CNT negative electrodes, respectively, is
shown in Figure SB—D. The energy consumed during charging
and released during discharging is represented by the area
under the cell voltage curve during the respective half-cycle.
The cell voltage is equal to the potential difference between
both electrodes, represented by the area between the blue
curves. The potential development of the AC positive electrode
is linear in all cases, as expected for the capacitive charge
storage mechanism. However, the potential of the molybdenum
oxide—CNT hybrid electrodes evolves differently with plateaus
representing lithiation/delithiation reactions occurring at differ-
ent potentials. MoO,—CNT shows a discharge plateau region
above 3 V versus Li/Li*, MoO,—CNT around 1.7 V versus Li/
Li*, and MoO;—CNT around 2.3 V versus Li/Li".

The lower the plateau potentials versus Li/Li", the higher the
cell voltage during the delithiation reaction, what leads to a
larger area below the voltage curve (the green area in Figure
SB—D), explaining the different maximum specific energies of
the LIC cells. Even though the maximum specific capacity of
MoO;—CNT was superior to that of MoO,—CNT in the half-
cell configuration, the specific energy of the MoO,—CNT LIC
cell is higher because of the lower delithiation potential versus
Li/Li*.

The energy efficiency of LICs is an important factor in cases
where the cost of charging is a major point of concern, such as
in electric vehicles. An energy efficiency far below 100% is not
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uncommon, and it is caused by overpotentials during charging,
based on lithiation reactions typically occurring at a higher cell
voltage as the corresponding delithiation reactions.”* This
explains the differing efficiencies of the examined LIC cells.
MoO,—CNT hybrid electrodes exhibiting a small overpotential
of around 0.1 V during lithiation (Figure SC) showed attractive
energy efficiencies, whereas the slow kinetics of MoO,—CNT
make this material unsuitable for practical application.

Finally, the longevity of the LIC cells is tested by operation
over 1000 charge/discharge cycles at a specific current of 1 A-
g~' (Figure 6A). A rapid decay of specific energy is observed for
all LICs, especially for the MoO,—CNT cell, which deems
them not practical for application under these operational
settings. There are two reasons for the instable behavior,
depending on the negative electrode materials. (1) MoO,—
CNT and MoO;—CNT show vastly different specific capacities
depending on the cycling rate (ie., they exhibit limited rate
handling). When the cell is charge-balanced for low cycling
currents, operation at high currents shifts the potentials of both
electrodes and the negative electrode (that has a much lower
specific capacity at high currents) operates in a largely increased
potential window. Consequently, these cells need to be charge-
balanced for only one distinct cycling current, leading to a
decreased positive electrode mass for higher cycling currents.
(2) MoO,—CNT, which shows an almost constant specific
capacity over a wide current range, degrades most rapidly
because of the instability of the material above a potential of 3
V versus Li/Li*. As can be seen from the voltage profile during
operation at 1 A/g in Figure 6B, the MoO,—CNT electrode
reaches a potential of about 3.6 V versus Li/Li" when the LIC is
fully discharged to a cell voltage of 0 V. This issue can be
resolved by preventing a deep discharge of the LIC and
adjusting the operation voltage to 0.8—3.2 V cell voltage. The
specific energy of the cell remains almost unchanged, as
geometrically emphasized in Figure 6B, where the specific
energy is only reduced by 1.8 W-h-kg™" when integrating the
discharge curve to 0.8 V instead of 0 V. Testing a LIC cell with
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Table 1. Literature Overview of LICs or Asymmetric Supercapacitor Performance Metrics Using Metal Oxide—Carbon Hybrid

Materials as Electrodes”

negative electrode  positive electrode electrolyte specific energy (W-hkg™')  specific power (kW-kg™) energy efficiency (%) refs
graphene/MoO;  graphene/MnO, 1 M Na,SO, aqueous 43(34.4) 0.28(0.224) not reported 65
Nb,O;/C fiber AC 1 M LiClO, in EC/DMC 86 0.02 not reported 67
V,0,/CDC CDC 1 M LiClO,4 in ACN 51(45.9) 0.17(0.153) 60 66

AC MnO, 1 M Na,SO, aqueous S1 0.10 not reported 68
MoO;—CNT AC 1 M LiClO, in EC/DMC 66 0.10 47 this work
MoO,—CNT AC 1 M LiClO, in EC/DMC 67 0.18 75 this work
MoO,—CNT AC 1 M LiClO, in EC/DMC 44 0.05 45 this work

“Abbreviations: activated carbon (AC), carbide-derived carbon (CDC), acetonitrile (ACN), ethylene carbonate (EC), dimethyl carbonate (DMC).

The values in brackets are normalized to full electrode mass.

a MoO,—CNT electrode for longevity in the adjusted voltage
range, stable cycling behavior can be observed with an energy
retention of about 75% after 1000 cycles (Figure 6C). The
corresponding voltage profile reveals a potential limitation to
about 3 V versus Li/Li" for the negative electrode under these
cycling conditions (Figure 6D), making them stable for long-
term operation.

Our report is the first study on molybdenum oxide-based
materials as negative electrodes in the LIC setup. Therefore, a
comparison of performance metrics with literature values is
limited to other metal oxide—carbon hybrid materials used as
negative electrodes in LICs (Table 1). However, a comparison
with MoOQOj;/graphene in an asymmetric aqueous super-
capacitor” shows that the specific energy of LICs capitalizing
on intercalation reactions is superior. With respect to LICs
using optimized hybrid electrode architectures of carbon with
V,0,% and Nb,05,"” our MoO,—CNT model material already
shows either a higher specific energy and power or a much
higher specific power at a slightly reduced energy, respectively.
On a broader note, literature comparison reveals that the
energy efficiency of other LICs or asymmetric systems is rarely
reported. However, when estimating the energy efficiency from
the voltage profiles provided in the literature, values far below
50% can often be found, deeming the systems as impractical.”*
In this context, it is worth noting that the energy efficiency of
our MoO,—CNT LIC cell of 70—77% for a wide current range
is standing out from most works on LICs. This is traced back to
the small overpotential of the lithiation reaction in the MoO,—
CNT negative electrode material, which we identify as a crucial
factor for the transfer of LIC systems to application.

On the basis of this first study using model materials, we
believe that further tuning of the electrode architecture could
elevate the performance of MoO,-based hybrid materials as
negative electrodes in LICs. For example, reducing MoO,
particle coarsening during the annealing procedure could
provide even shorter diffusion paths for lithium ions and
further improve power and energy efficiency of the LIC device.
This could be achieved by trapping MoO, domains in carbon
mesopores, as we recentlzr demonstrated for vanadium
pentoxide hybrid materials.”* Increasing or decreasing the
molybdenum oxide content in the hybrid materials can also
elevate the maximum energy or improve the rate handling of
the resulting LIC devices, respectively.

4. CONCLUSIONS

Molybdenum oxide—CNT hybrid materials were synthesized
by ALD, and different crystal structures were obtained by post-
deposition annealing. The crystal phases were identified by
material characterization as amorphous, mostly hexavalent
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molybdenum oxide, monoclinic MoO,, and orthorhombic a-
MoO; for samples MoO,—CNT, MoO,—CNT, and MoO;—
CNT, respectively. Electrochemical characterization in half-cells
showed the highest initial capacity for MoO;—CNT, yet rate
handling and cycling stability of MoO,—CNT were superior to
those of the other hybrid samples. LICs were assembled by
using the hybrid electrodes as negative electrodes and AC as
positive electrodes. LICs containing MoO,—CNT negative
electrodes exhibited the highest specific energy and power with
70 W-h'kg™" at 83 W-kg™' and 34 Wh'kg™' at 4 kWkg™. A
spectator electrode was employed to monitor the potential
development of each electrode during operation. It was
concluded that the overpotential and kinetics of the lithiation
reaction were the most important factors influencing the device
level performance. Preventing deep discharge of the LIC cell
was revealed as a strategy to ensure stable cyclability. The study
provides, for the first time, a guideline for the use of
molybdenum oxide as a negative LIC electrode. The
importance of finely adjusting the electrode structure and
operation settings to obtain attractive performance metrics is
underlined.
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of all samples (B).
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Asymmetric hybrid supercapacitors (AHSCs) combine high specific energy and power by merging two electrodes
with capacitive and Faradaic charge storage mechanisms. In this study, we introduce AHSC cells that use
lithium titanate and activated carbon electrodes in an alkali-ion containing ionic liquid electrolyte. With this cell
concept, it is possible to operate the activated carbon electrode in a higher potential window. Consequently,
higher cell voltages and a reduced carbon electrode mass can be used, resulting in significantly increased energy
compared to aqueous or organic electrolytes. We demonstrate the feasibility of this cell concept for both lithium-

and sodium-ion intercalation, underlining the general validity of our approach. Our prototype cells already
reach high specific energies of 100 W h/kg, while maintaining a specific power of up to 2 kW/kg and cycling
stability of over 1500 cycles. Owing to the IL electrolyte, stable cycling of an AHSC at 80 °C is demonstrated for

the first time.

1. Introduction

Electrical double-layer capacitors (EDLCs) are electrochemical
energy storage devices that store charge by electrosorption of ions at
high surface area carbon electrodes [1]. Despite their high specific
power and longevity, the widespread use of EDLCs is limited by the low
specific energy, owing to the purely physical charge storage mechan-
ism. Many efforts to increase the specific energy of supercapacitors
have focused on novel materials and innovative cell design by introdu-
cing Faradaic charge transfer to the capacitive system [2]. These
approaches include the decoration of high surface area carbons with
thin layers of Faradaic material [3—5], the use of redox-active electro-
lytes [6—8], composite electrodes combining these two charge storage
mechanisms [9-11], or the utilization of an asymmetric hybrid super-
capacitor cell design [12,13].

Asymmetric hybrid supercapacitors (AHSCs) employ one electrode
storing charge by Faradaic reactions and another by capacitive double-
layer formation. The aim is to synergistically combine the merits of
battery and supercapacitor technologies, to produce cells that show
higher specific energy than supercapacitors and higher specific power
and longevity than batteries [ 14]. The most common types use a Li-ion

intercalating negative electrode material and an activated carbon
positive electrode [14]. More recent studies also investigated sodium
intercalating negative electrode materials, creating so-called sodium-
ion capacitors [15-17]. Most commonly, the negative electrode of
AHSCs shows a relatively constant operation potential at which
intercalation occurs, whereas the positive electrode shows a linear,
capacitor-like potential development. Consequently, the maximum cell
voltage is determined by the difference between the intercalation
potential of the negative electrode and the anodic stability limit of
the electrolyte at the positive electrode.

Using organic electrolytes like Li-ion containing acetonitrile or
carbonate mixtures, the anodic limit at the positive electrode is mostly
found at around 4V vs. Li*/Li [18-20]. The most frequently chosen
negative electrode material for AHSCs is graphite due to its low Li-ion
intercalation potential of around 0.2V vs. Li*/Li [18]. This low
intercalation potential is beyond the stability boundary of most
electrolytes and requires the formation of the so-called solid electrolyte
interphase (SEI) for stable cell operation [21]. Since SEI formation
consumes Li-ions from the electrolyte, a prelithiation of the graphite
electrode is required in a conventional AHSC cell due to the absence of
a Li-containing positive electrode [18,22]. Further, the SEI layer limits
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Fig. 1. Electrochemical and structural characterization of lithium half-cells. (A) Schematic representation of electrode potentials in an AHSC cell setup and the resulting maximum cell
voltages depending on the electrolyte. Charge/discharge profiles of (B) activated carbon in 1 M Li-TFSI, (C) LTO in 0.5 M Li-TFSI, and (D) LTO in 1 M Li-TFSI electrolyte at different
rates. (E) Charge/discharge profiles from the 51st to the 200th cycle of LTO in 1 M Li-TFSI at 0.1 A/g including specific capacity and Coulombic efficiency of every cycle in the inset. (F)
X-ray diffractograms of pristine LTO electrode and ex situ measurement of fully lithiated LTO electrode in 1 M Li-TFSI electrolyte at —2.0 V vs. carbon. LisTisO12/Li-TisO1 signals are
indicated by a star (PDF 49-0207), graphite- and Al-peaks originate from the current collector.

the power performance of the cell and can lead to dendrite formation at
low operating temperatures or high charging rates [23]. The use of a
negative electrode with a higher intercalation potential, like spinel
lithium titanate (LTO, LisTisO1»), can effectively circumvent the
necessity of SEI formation. Also, LTO is an attractive anode material
for AHSCs because of its high rate capability, negligible volume change
during intercalation and an intercalation potential of 1.55V vs. Li/Li*
[24-26]. However, these advantages come at the cost of a drastic
reduction of AHSC cell voltage to about 2.5V in organic electrolytes
(Fig. 1A), thereby exhibiting much smaller specific energies as compar-
able AHSCs using graphite as negative electrodes [18,27].
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A well-known strategy to increase the specific energy of EDLCs is
the use of ionic liquids (IL) as an electrolyte, as they offer larger stable
potential windows compared to organic electrolytes [1,14].
Furthermore, their non-flammability, low volatility, and broad liquid
temperature range greatly enhance the safety of the respective devices
[28,29], and allow for stable cycling at elevated temperatures up to
100 °C [28,30]. ILs have also been employed as battery electrolytes to
capitalize on their distinct temperature and safety features. Therefore,
they employ either an alkali metal electrode as ion-source [31] or a
dissolved alkali salt [32—34].

In this study, we employ such an IL electrolyte with dissolved
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alkali-ions for an AHSC with a negative intercalation electrode for the
first time. By synergistically combining the distinct virtues of ILs, a
significant advance to state-of-the-art AHSC technology is achieved: (1)
The anodic stability at the positive electrode is expanded, thereby
increasing the maximum accessible cell voltage and, in turn, the
specific energy of the AHSC (Fig. 1A). (2) Higher operation tempera-
tures are enabled, which is important to applications in the mobility
sector where elevated temperatures are encountered. (3) The cell safety
is improved because of the non-flammability and low vapor pressure of
the ionic liquid. We explore this strategy for AHSCs, using a positive
activated carbon electrode and a negative lithium titanate electrode.
We demonstrate 4V AHSC devices with high electrochemical cycling
stability using both lithium- or sodium-containing ILs. These cells also
function at an elevated temperature of 80 °C, which is the first report of
the stable high-temperature operation of any AHSC device employing
intercalation reactions. Our proof-of-concept study employs solely
commercially available materials, underlining the possibility of
straightforward application and large innovation potential of this cell
concept by use of improved electrode materials or electrolyte mixtures.

2. Materials and methods
2.1. Electrode and electrolyte preparation

Activated carbon (type YP-80F, Kuraray) was admixed with 5 mass
% polytetrafluoroethylene (60 mass% aqueous solution, Sigma Aldrich)
and ethanol in a pestle and mortar until a dough-like paste is obtained.
The mass was formed in a hot-rolling machine to 70 + 10 pm thick
electrodes and dried in a vacuum oven overnight at 120 °C and 20
mbar. The material loading was 2.5 + 0.5 mg/cm?. Additional informa-
tion on the properties of the AC electrodes of type YP-80F is provided
in Fig. S1.

For the preparation of LTO electrodes, lithium titanate (spinel

LiyTi5010, < 200 nm, Sigma Aldrich), carbon black (C-NERGY C65,
Imerys Graphite & Carbon), and polyvinylidene fluoride (Solvay) were
dissolved in dimethyl sulfoxide (Merck) with a mass ratio of 8:1:1 (dry
mass) in a DAC400 FVZ speedmixer. Subsequently, the electrode slurry
was doctor-bladed on a carbon-coated aluminum foil current collector
(Ranafoil, Toyo Aluminium). The electrode sheets were dried for two
days at ambient conditions in a fume hood, followed by drying in a
vacuum oven at 120 °C and 20 mbar for 12 h. Dried electrodes typically
possessed a thickness of 25 + 5 um with a material loading of 3 + 1 mg/
cm?.
All electrolytes used are based on the ionic liquid 1-methyl-1-
propylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PMPyrr-TFSI,
Iolitec, H>O < 10 ppm) which was dried with molecular sieves. For
lithium-containing IL mixtures, lithium bis(trifluoromethylsulfonyl)
imide (Li-TFSI, 99.9% purity, Iolitec) was used and for sodium-
containing ILs, sodium bis(trifluoromethylsulfonyl)imide (Na-TFSI,
99.9% purity, Iolitec) was used. All reagents were transferred into an
argon-filled glovebox (MBraun, O,/H,0 < 1 ppm) through a connected
vacuum furnace, where they were dried at 120 °C and 20 mbar for 24 h.
Properties of the electrolyte as given by the supplier are listed in Table
S1.

2.2. Materials characterization

X-ray diffraction was carried out with a D8 Discover (Bruker AXS)
with a copper X-ray source, a Gobel mirror, a 0.5 mm point focus, and a
2-dimensional VANTEC500 detector that was placed at 20°, 40°, and
60° 26 for 17 min at each measurement step.

2.3. Electrochemical characterization

All electrochemical measurements were conducted in custom-build
three-electrode cells with a polyether ether ketone body and titanium
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pistons, more information on these cells is given in Ref. [35]. In half-
cell measurements, 12 mm discs of AC or LTO were used as working
electrodes and an at least 15-times mass-oversized activated carbon
(type YP-80F, Kuraray, 5 mass% PTFE-bound) was used as a counter
electrode. In full-cells, we used 12 mm discs of activated carbon and 10
mm discs of LTO. To achieve the exact mass ratio needed, small pieces
of the 12 mm activated carbon electrodes were removed. As a quasi-
reference electrode, activated carbon (type YP-50F, Kuraray, 5 mass%
PTFE-bound) was used, which is highly reliable in ionic liquid
electrolytes [36]. It was beneficial to use the same quasi-reference for
all cells to provide easier comparability between lithium- and sodium-
containing cells. The potential difference between the used YP-50F
quasi-reference and metallic lithium is determined to 3.09V. As
current collector, we used 12 mm discs of carbon-coated aluminum
foil (type EQ-CC-Al-18u-260, MTI Corporation) for all activated carbon
electrodes and the separator was a 13 mm glass-fiber mat (GF/D,
Whatman). After cell assembly, they were dried in a vacuum oven at
120 °C overnight and transferred to an argon filled glovebox (MBraun,
0,/H50 < 1 ppm), where they were filled with electrolyte.

Electrochemical measurements were carried out with a potentiostat/
galvanostat (VMP-300, Bio-Logic) in a climate chamber at 25°C or at
80 °C. Galvanostatic charge/discharge experiments were carried out at
varying specific currents between 10 mA/g and 2.5 A/g, with 10 s resting
after each half-cycle. The values are normalized to the active electrode
mass, i.e., neglecting the PTFE binder in AC electrodes and neglecting
carbon black and PVDF binder in LTO electrodes. AC half-cells with Li-
TFSI electrolyte were first cycled at 0.1 A/g from 0V to 1.2V, 1.4V, 1.6V,
1.8V, and 2.0V vs. carbon, each step for 5 times, before being cycled
between 0V and 2.0V vs. carbon at varying rates between 0.1 A/g and 2.5
A/g, 5 times for each rate. LTO half-cells with Li-TFSI electrolyte were
cycled from OV to 2.0V vs. carbon at rates of 25 mA/g to 2.5 A/g, each
step for 5 times, before being cycled for 200 times in the same range at
0.1 A/g. LTO half-cells with Na-TFSI electrolyte were cycled from 0V to
—-2.4V vs. carbon at rates of 10mA/g to 1A/g, each step for 5 times,
before being cycled for 200 times in the same range at 0.1 A/g.

The specific capacity Cs, in all half-cells was calculated according to
Eq. (1):

/Ior Idt

=T )

with current I, duration of the delithiation/desodiation/desorption step
t-tg, and m the active electrode mass as defined above.

Li-AHSC cells were assembled with an AC:Li4TisO1, active mass ratio
of 1.5:1. Galvanostatic cycling was carried out by charge/discharge at
different rates between 10 mA/g to 1A/g between 1V and 4V. Each
charging/discharging step was repeated 5 times, with 10s resting after
each half-cycle. Na-AHSC cells employed an active mass ratio
AC:LiyTisO15 of 1.2:1 and were cycled at the same rates as Li-AHSCs.
Cycling stability was tested by galvanostatic cycling at 0.1 A/g for Na-
AHSC cells and at 0.2 A/g for Li-AHSC cells, since they initially exhibited
about the same specific energy at these rates. All normalizations are
calculated with respect to the sum of active masses of both electrodes, i.e.,
of activated carbon and LisTisO;> masses, excluding PTFE, PVDF and
carbon black in the LTO electrode. The specific energy E, of the cells was
calculated by numeric integration according to Eq. (2):

t

B I o U(t)dt
M )
where I is the current, U(t) the voltage profile during the discharge step, t-
tp the discharge time and M the sum of active masses of both electrodes.
The specific power was calculated by dividing Eg, by the discharge time,
the energy efficiency by dividing Eg, by the energy spent in the charging
step, and the Coulombic efficiency by dividing the charge delivered in the
discharge step by the charge spent in the charging step.
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Fig. 2. Electrochemical and structural characterization of sodium half-cells. Charge/discharge profiles of LTO in 0.8 M Na-TFSI in PMPyrr-TFSI electrolyte (A) for the first five cycles at
10 mA/g, (B) at different rates and (C) from the 51th to 200th cycle at 0.1 A/g, including specific capacity and Coulombic efficiency of every cycle in the inset. (D) X-ray diffractograms of
pristine LTO electrode and ex situ measurement of the fully sodiated LTO electrode in 0.8 M Na-TFSI electrolyte at —2.4 V vs. carbon. Li4TisO2/Li;Ti5sO;» signals are indicated by a star
(PDF 49-0207), the NagLiTisO12 phase developed as a shoulder towards lower 20 is highlighted; graphite- and Al-signals labeled accordingly originate from the current collector.

3. Results and discussion
3.1. Lithium half-cells

Lithium-containing electrolytes were prepared by dissolving
lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI) in 1-methyl-1-pro-
pylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PMPyrr-TFSI) to
obtain 0.5M and 1M solutions. The anodic stability limits of the
lithium-containing electrolytes with activated carbon electrodes (AC)
were evaluated in a half-cell setup. The 1 M IL mixture still showed
90% Coulombic efficiency at 2.0V vs. carbon (equal to 5.09V vs. Li*/
Li), which enables stable cycling for EDLCs [37,38]. The potential
profiles of AC in 1 M Li-TFSI electrolyte show a linear, capacitor-like
behavior between 0 V and 2.0 V vs. carbon, with a capacity of around 80
mAh/g at 0.1 A/g (Fig. 1B). Further details of AC performance can be
found in Supplemental Information (Fig. S2 and Fig. S3).

LTO electrodes were employed and the lithium intercalation
behavior was evaluated as a function of the Li-TFSI concentration. In
0.5M Li-TFSI electrolyte, a maximum specific capacity of 138 mAh/g
is measured at a rate of 25 mA/g and 81 mAh/g at 0.1 A/g (Fig. 1C). In
1M Li-TFSI electrolyte, a similar maximum capacity of 143 mAh/g is
exhibited, while the rate handling with 108 mAh/g at 0.1 A/g is far
superior compared to 0.5 M Li-TFSI electrolyte (Fig. 1D, Fig. S4A). The
hysteresis between lithiation and delithiation reactions is extremely
narrow and remains below 100 mV at a rate of 25 mA/g. A narrow
hysteresis is important to achieve high energy efficiency on an AHSC
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device level [39,40]. Both electrolyte mixtures show a maximum
capacity that is similar to comparable literature [41] and close to the
theoretical capacity of LTO (175 mAh/g for fully lithiated Li,Ti5O;2)
[42] with a high Coulombic efficiency of 99.0% at 25 mA/g, suggesting
high compatibility of the IL electrolytes with LTO. The superior rate
handling of 1 M Li-TFSI electrolyte implies that the Li-ion conductivity
in the 1M mixture is higher compared to 0.5M. Higher Li-TFSI
concentration increases the viscosity of the electrolyte mixture, leading
to lower overall ion mobility. However, Li-ion mobility has a much
greater impact on the rate performance of the LTO electrode. Further
optimization work for the electrolyte formulation to achieve a perfect
balance between general conductivity and Li-ion mobility, possibly
with other ILs or mixtures thereof, should be conducted in the future.
The cycling stability of LTO electrodes in 1 M Li-TFSI electrolyte was
tested by galvanostatic cycling at 0.1 A/g (Fig. 1E). The shape of the
voltage profiles remains unchanged, and the specific capacity only
shows a minor fading from initially 108 mAh/g to 106 mAh/g after
200 cycles. The Coulombic efficiency remains at 99.8%, underlining
high stability of the system in 1 M Li-TFSI electrolyte.

To study the intercalation mechanism of lithium ions from the IL
electrolyte, XRD measurements were conducted to compare a fully
charged with a pristine LTO electrode (Fig. 1F). A comparison of both
diffractograms reveals signals at identical positions, where spinel
Li4Ti501, can be identified according to PDF 49—0207. LTO is known
as a so-called zero-strain material, and the transformation from
LisTis04» to Li;TisO1» during lithiation occurs with only 0.2% volume
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change [42]. Our XRD data with unchanged LTO peak positions and
the straight voltage profile suggest that the lithiation mechanism does
not change in Li-ion containing IL as compared to the conventional
organic electrolytes. Undesired co-intercalation of IL cations into the
LTO crystal structure is therefore unlikely.

3.2. Sodium half-cells

An emerging alternative to lithium-ion technology is the use of
sodium-ion intercalating materials [43]. This motivated us to expand
our AHSC cell concept to sodium-containing IL by replacing Li-TFSI
with sodium bis(trifluoromethylsulfonyl)imide (Na-TFSI). We use a
0.8 M solution of Na-TFSI in PMPyrr-TFSI, which we determined to be
the maximum soluble Na-TFSI concentration in the IL at ambient
conditions. LTO has been employed as anode material in sodium-ion
batteries with organic carbonate electrolytes and showed a sodiation
potential of around 0.9V vs. Na*/Na [44-46]. This relatively high
sodiation potential might circumvent SEI formation compared to other
typical sodium-ion anode materials like hard carbon [47]. So far,
sodium-ion intercalation in LTO from an IL electrolyte has not been
reported. Using a 0.8 M Na-TFSI electrolyte, we observed an initial
intercalation potential of around —2.0 V vs. carbon at a rate of 10 mA/g
with a maximum specific capacity of 100 mAh/g, showing a relatively
flat plateau and a first cycle Coulombic efficiency of 61.2% (Fig. 2A, Fig.
S4B).

Sodium-ion intercalation in LisTisO;5 from organic electrolytes is
expected to follow a three-phase mechanism with the formation of a
lithium-rich phase Li;TisO1, and a sodium-rich phase NagLiTi5O1o
during sodiation [44]. Low efficiency in the first cycle is known from
organic electrolytes and was linked to structural rearrangements of the
LTO crystal structure [46,48]. Over the next cycles, the onset of
sodiation slightly shifts to a more positive potential of —-1.85V vs.
carbon and the specific capacity increases, indicating that initial
conditioning facilitates further sodiation reactions (Fig. 2A) [46]. The
increased sodiation potential of the second cycle and subsequent cycles
indicates the absence of SEI formation since the charge transfer
resistance of the SEI would have shifted the sodiation towards more
negative potentials. Rate handling tests at increased currents showed a
capacity of 53 mAh/g at 0.1 A/g with a Coulombic efficiency of 98.5%
(Fig. 2B). LTO showed stable cycling performance in the sodium-
containing IL, exhibiting a slightly increased capacity of 54 mAh/g
after 200 cycles at 0.1 A/g with a Coulombic efficiency over 98%
(Fig. 2C).

We used XRD to examine the intercalation mechanism of sodium
from IL electrolyte into LTO (Fig. 2D). The diffractogram of sodiated
LTO confirms the formation of the sodium-rich NagLiTisO1, phase by
broad reflections located at slightly lower 20 than the LisTi5Oqo/
Li;Ti501, signals. These shoulders are visible below the (111), (311),
and (400) reflections at around 18.4°, 35.6°, and 43.2° 26, respectively.
At the same time, the main reflections of the Li;TisO15/Li,TisO15 phase
are observed, confirming the presence of at least two separate phases in
the sodiated state. This behavior aligns with sodium-ion intercalation
in LTO in organic electrolytes [44,45] and shows that sodiation occurs
according to the same mechanism for IL electrolyte.

3.3. AHSC full-cells

AHSC full-cells were assembled with LTO as a negative electrode
and activated carbon as a positive electrode. For AHSCs employing
lithium intercalation (Li-AHSC), we chose 1 M Li-TFSI in PMPyrr-TFSI
electrolyte, sodium-AHSCs (Na-AHSC) used 0.8 M Na-TFSI in PMPyrr-
TFSI electrolyte. The voltage profile of a Li-AHSC cell cycled between
1.0V and 4.0V at 50 mA/g is shown in Fig. 3A. The cell exhibits very
small overpotential of the lithiation reaction and efficient utilization of
the charge distributed to the two electrodes, resulting in the high
energy efficiency of 74%. This performance demonstrates that the
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promising electrochemical properties measured in half-cells can suc-
cessfully be transferred to a Li-AHSC full cell employing IL electrolyte
(further characterization in Supplemental Information, Fig. S6).

In Fig. 3B, the voltage profile of a Na-AHSC cell cycled between 1.0
V and 4.0V cell voltage range at 25 mA/g is provided, also showing a
symmetric profile with high energy efficiency of 75%. In case of the Na-
AHSC cell, special consideration has to be paid to the structural
rearrangements in LTO during the first cycles (Fig. S6B). The irrever-
sible charge consumed during this process at the negative electrode
must be balanced at the positive activated carbon electrode. Therefore,
in the following cycles, the maximum accessible potential window of 2
V vs. carbon is not fully used.

We tested the galvanostatic cycling stability of Li-AHSCs between
1.0V and 4.0V cell voltage at a rate of 0.2 A/g (Fig. 3C). During the
first cycles, a slight drop from about 36 Wh/kg to 32.5Wh/kg is
observed, before a continuing recovery over the next about 800 cycles
back to 36 Wh/kg is exhibited. The fluctuations during the first cycles
are associated with common side-reactions, which originate from
impurities of electrode materials or IL electrolyte, leading to shifting
operation potentials of the electrodes relative to each other. The Li-
AHSC cell provides performance stability over 1,500 cycles, with only
minor fading to 32.9 Wh/kg (91% retention). Cycling stability of the
Na-AHSC cell (Fig. 3C) showed a significant increase in specific energy
from about 35 W h/kg to 44 W h/kg during the first 50 cycles. Similar
to half-cells, we expect the initial rearrangements inside the LTO
particles during the three-phase intercalation reaction being the main
cause for the increased capacity [46]. During subsequent cycles, the
specific energy of Na-AHSC cells slowly decreases to about 24 W h/kg
after 1,500 cycles, corresponding to a retention of 69% of the initial
energy. The lower stability compared to Li-AHSCs can be related to the
increased mechanical stresses during sodiation and desodiation, owing
to the high ionic radius of sodium ions (1.06 A) [49]. Considering the
use of commercially available LTO particles as an electrode material,
the observed stability of our novel cell concept is very promising. By
use of further optimized electrode materials, for example, by use of
nanohybrid electrode materials [4,50], we expect a further improved
stability.

The performance metrics of the AHSC cells are shown in a Ragone
plot comparing specific energy and specific power (Fig. 3D), with the
corresponding energy efficiency and Coulombic efficiency given in
Fig. 3E. The specific energy of the Li-AHSC cell ranges from 98 Wh/
kg to 10 Wh/kg at specific powers between 23 W/kg and 1.93 kW/kg.
The Na-AHSC cell shows comparable results with a specific energy
between 90 W h/kg and 5.4 Wh/kg at a specific power of 26 W/kg and
1.78 kW/kg. The corresponding energy efficiencies reach 78% with the
most efficient operation of both devices at a current between 50 mA/g
and 0.25 A/g, where Coulombic efficiencies are nearly 100%, demon-
strating high reversibility. Comparison with the state-of-the-art litera-
ture on AHSCs using AC as a positive electrode and a titanate-based
negative electrode with organic electrolytes, it is confirmed that our cell
concept significantly increases the energy of devices using both
lithium- or sodium-intercalation (Fig. 3D, Table 1) [17,19,51,52]. We
also provide a comparison using our Li-AHSC cell with 1 M LiClO, in
acetonitrile electrolyte (Fig. 3D, Fig. S7, Table 1). The specific energy
can be increased by more than a factor of three by use of IL electrolytes
compared to the same electrodes in an organic electrolyte. However,
the rather large viscosity of IL electrolytes at room temperature limits
the resulting power performance. A cell employing acetonitrile at room
temperature can deliver higher power.

3.4. High-temperature operation

IL electrolytes offer high safety because of their non-flammability
and enable operation at elevated temperatures [53]. We demonstrate
that these features can be transferred to our IL AHSC cell concept.
Therefore, Li-AHSC cells are evaluated at a temperature of 80 °C. The
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Fig. 3. Electrochemical characterization of AHSC full-cells. Voltage profiles of (A) Li-AHSC cell cycled at 50 mA/g and (B) Na-AHSC cell cycled at 25 mA/g, including potential
development at negative LTO electrode and positive AC electrode monitored via quasi-reference spectator electrode. (C) Cycling stability of Li-AHSC cell cycled at 0.2 A/g, and Na-AHSC
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efficiency and Coulombic efficiency of Li-AHSC and Na-AHSC cells.

power of the cells is highly increased because of the enhanced mobility
of ions in the electrolyte. The voltage profile of a Li-AHSC cell cycled at
2.5A/g is shown in Fig. 4A. With a limitation of the maximum cell
voltage to 3.2V, the positive electrode showed stable, linear potential
development between 0V and 1.2V vs. carbon. At the same time, the
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negative LTO electrode showed relatively constant lithiation plateaus
around —1.4V vs. carbon. The latter value is 50 mV above the onset of
lithiation at 25 °C, indicating a reduced barrier for intercalation at
80 °C (in agreement with Nernst equation). At this rate and tempera-
ture, the specific energy reached 37.5 W h/kg at a high specific power of
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Table 1
Comparison of AHSC cell performance with IL electrolytes and organic electrolytes, including comparable literature employing titanate-based anodes for lithium- or sodium-
intercalation.
Negative electrode Positive electrode Electrolyte Specific energy (Wh Specific power (kW Maximum cell voltage References
kg™) kg™ (42}
LiyTis0q2 AC 1M Li-TFSIin PMPyrr-TFSI 98 1.9 4.0 This work
LisTis012 AC 0.8 M Na-TFSIin PMPyrr- 90 1.8 4.0 This work
TFSI
LisTis01» AC 1M LiClO4in ACN 30 14.8 2.5 This work
LisTis012 AC 1M LiPF¢in EC/DMC 62 3.4 2.8 [19]
LiyTisOq2 AC 1.5M NaClO4in PC/DMC 33 0.78 3.0 [17]
LisTis01» AC 1M NaClO4in EC/PC 64 1.36 3.8 [51]
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Fig. 4. High temperature operation. (A) Voltage profile of 50th cycle of a Li-AHSC cell cycled between 3.2V and 1V cell voltage at 2.5 A/g at a temperature of 80 °C. (B) Corresponding

specific energy and Coulombic efficiency over 3000 cycles under these conditions.

4.5 kW/kg, corresponding to a discharge time of 30 s, with an energy
efficiency of 77.4% and Coulombic efficiency of 98.2% (Fig. 4A).
Stability testing was carried out at the same rate and in the same
voltage window for over 3000 cycles, with a retention of 80% of the
initial value (Fig. 4B, Fig. S8A). When cycling at a lower rate of 0.1 A/g,
the cell voltage is reduced to 2.8V, resulting in a specific energy of 71
Wh/kg at a power of 190 W/kg (Fig. S8B-C). To the best of our
knowledge, no comparable hybrid supercapacitor cell that combines a
Faradaic intercalation electrode with a capacitive electrode was shown
to exhibit stable behavior at such a high temperature. The performance
stability further underlines the promising performance of the Li-AHSC
cell at elevated temperatures. By further improvement of the electrolyte
formulation, for example, by creation of eutectic mixtures of ionic
liquids [54,55] or mixing with organic solvent [56], even low tempera-
ture operation could be enabled for this AHSC cell concept in the
future.

4. Conclusions

In conclusion, we prepared ionic liquid electrolytes with dissolved
lithium- and sodium-salt, respectively, and applied them for the first
time in an asymmetric hybrid supercapacitor cell employing ion
intercalation at the negative electrode (LTO) and double-layer forma-
tion at the positive electrode (AC). After evaluation of half-cell
performance, a successful transfer to full-cells was achieved and both
the lithium- and the sodium-ion AHSC cells were operated at 4V up to
1500 cycles with only minor capacity fading. The maximum specific
energy of Li-AHSC cells was about 100 W h/kg, while the maximum
specific power was about 2kW/kg. Na-AHSC cells showed similar
values with slightly reduced specific energy. Finally, Li-AHSC cells were
shown for the first time to exhibit stable behavior at a high temperature
of 80 °C for more than 3000 cycles at a high rate, exhibiting up to 38
Wh/kg at high power of 4.5 kW/kg.
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We believe that the presented approach is particularly promising as
it combines all virtues of ILs synergistically in one cell concept. ILs
expand the stability window for the positive electrode, giving access to
larger cell voltages, as we showed by enabling 4 V for LTO-based AHSC
devices. The demonstrated possibility of high-temperature operation in
combination with the non-flammability of the device is important for
many applications including the mobility sector, where mass, volume,
and cost of cooling systems and impact-safe housing could be reduced.
The viability of this novel cell concept was demonstrated for different
alkali ion systems by using only commercially available materials.
Thus, there is great potential for further improvement, for example, by
use of more advanced electrode materials that can increase energy,
power, and longevity, or the exploration of further ILs or their mixtures
with organic solvents or further additives.
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1. Supplemental material characterization
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Fig. S1: (A) Raman spectrum and (B) nitrogen sorption isotherm and (C) scanning electron micrograph of AC electrodes.

Replotted from Ref. [1].

Table S1: Properties of PMPyrr-TFSI as given by the supplier.

lonic liquid Viscosity Conductivity

PMPyrr-TFSI 58.7 cP at 25 °C 4.924 mS/cm at 30 °C




2. Supplemental electrochemical data

2.1 Half-cell data: Activated carbon

To choose a suitable ionic liquid for our study, we evaluated the stability limits of various ionic liquids
by so-called R-value testing,[2] [3] which calculates the number of parasitic reactions; an R-value above
0.1 is defined as a non-stable behavior. The results for PMPyrr-TFSI are depicted in Fig. S2, where an

anodic stability limit of about +2 V vs. carbon is determined.
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Fig. S2: (A) Cathodic stability test at 1 mV/s, (B) anodic stability test at 1 mV/s, and (C) calculated R-values for PMPyrr-TFSI

electrolyte.
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2.2 Half-cell data: Lithium titanate electrodes
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2.3 AHSC full-cells
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2.4 High temperature operation

For measurements of Li-AHSC cells at 80 °C, we limited the maximum cell voltage to 3.2 V for stable
cycling over 3,000 cycles at 2.5 A/g. The first three cycles are shown in Fig. S8A. The AC electrode mass
of this cell was increased by a factor of 1.76 compared to LTO. When cycling at 80 °C with lower rates
between 0.05 A/g and 0.5 A/g (Fig. S8B-C), the AC mass was increased by a factor of 2.3 compared to
LTO to balance the higher capacity of LTO at lower rates. Also, the maximum cell voltage was decreased
to 2.8V (for 0.05 A/g and 0.1 A/g) or to 3.0V (for 0.25 A/g and 0.5 A/g) to stay within the stable

potential range of +1.2 V vs. carbon for the AC electrode at this temperature.
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Fig. S8: Voltage profiles of (A) first 3 galvanostatic cycles at 2.5 A/g for the stability test and (B) a profile at 0.1 A/g for Li-AHSC
cell at 80 °C including potential development at negative and positive electrodes monitored via activated carbon quasi-
reference electrode. (C) Rate-handling plot of Li-AHSC cell at 80 °C at rates between 0.05 A/g and 0.5 A/g, including values of

the Coulombic efficiency.

Supplemental References

[1] S. Fleischmann, N. Jackel, M. Zeiger, B. Kriner, I. Grobelsek, P. Formanek, S. Choudhury, D.
Weingarth, V. Presser, Enhanced electrochemical energy storage by nanoscopic decoration of
endohedral and exohedral carbon with vanadium oxide via atomic layer deposition, Chem.
Mater. 28 (2016) 2802-2813.

[2] D. Weingarth, H. Noh, A. Foelske-Schmitz, A. Wokaun, R. Kotz, A reliable determination
method of stability limits for electrochemical double layer capacitors, Electrochim. Acta 103
(2013) 119-124.

[3] K. Xu, S. P. Ding, T. R. Jow, Toward reliable values of electrochemical stability limits for
electrolytes, J. Electrochem. Soc. 146 (1999) 4172-4178.



5 Conclusions and outlook 145

5 Conclusions and outlook

My PhD work has investigated and developed an optimized concept for the design of hybrid
materials and hybrid supercapacitor cell architectures. As the main tool for materials
synthesis, atomic layer deposition was employed. It allowed synthesizing materials with well-
defined properties to investigate fundamental structural and electrochemical aspects of
carbon/metal oxide hybrid materials. Specifically, ALD synthesis allowed to investigate (1) the
influence of carbon substrate porosity, (2) targeted manipulation of the metal oxide crystal
structure by doping with various amounts of foreign atoms, and (3) post-deposition annealing
to adjust the metal oxide oxidation states. As a more economical and easier scalable method,
| further explored the hydrothermal synthesis of carbon onion/vanadium oxide hybrid
materials, and the properties were compared to conventionally fabricated composite
electrode materials. All synthesized hybrid materials were used as Faradaic electrodes in
hybrid supercapacitor cells, and valuable insights were gained concerning the material
requirements that result in high energy, power, efficiency, and longevity of the devices. With
the gathered knowledge, a fundamentally new hybrid supercapacitor cell concept was
developed that relied on a novel ionic liquid electrolyte formulation.

We found that desired properties for a carbon substrate used for hybrid material synthesis
should be prioritized in this order:1> 110

1. Choosing reactant-accessible pore sizes, according to the chosen synthesis method, to
avoid any pore blocking and increased diffusion paths at high metal oxide mass
loadings. For ALD, the limiting pore size is around 2 nm, pores above 2-3 nm are
accessible for coating.

2. Maximizing the specific surface area, enabling thin coatings, small diffusion paths, and
large electrode-electrolyte interfaces to promote pseudocapacitive charge storage
characteristics.

3. Preferring open, internal pores that confine the metal oxide coating, prevent particle
coarsening during thermal annealing, and mitigate disintegration during prolonged
cycling.

4. Preferring carbons with high structural ordering for enhanced electrical conductivity.

Following these design guidelines, it was possible to especially tailor a mesoporous carbon
substrate with internal pores. Depositing various amounts of vanadium oxide via ALD, it was

shown that the lithium intercalation properties were superior compared to other substrates
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in terms of maximum capacity and rate handling. The mesoporous carbon/vanadium oxide
hybrid materials also enabled highly stable, pseudocapacitive intercalation of larger sodium
atoms at high rates, which was traced back to the homogeneously distributed vanadium oxide
domains locally confined in the mesopores. These materials were among the most stable
sodium intercalation hosts reported so far in literature.'%? Future work should include the use
of mesoporous carbon substrates for other Faradaic materials that experience large volume
expansion during cycling (such as materials exhibiting alloying or conversion chemistries), as
the mesopore confinement shows promise to prevent disintegration of the material.

During hybridization, carbon is already present during the formation of the Faradaic metal
oxide component. In classic battery research, the Faradaic material is synthesized separately,
and a conducting carbon is mechanically mixed afterward to obtain a composite electrode.
Hydrothermal synthesis is a way for large-scale and economical production of Faradaic
material. The impact of hybridization was analyzed by comparing the hydrothermal synthesis
of vanadium oxide with either carbon onions present during synthesis or by adding them
afterward. The hybrid approach yielded a highly intergrown network of carbon onions and
vanadium oxide, whereas post-synthesis addition of carbon onions led to clustering of the
separate components. The study systematically demonstrated that hybridization offers an
enhanced rate handling for lithium intercalation compared to the composite approach. Also,
the intercalation behavior can be tuned from pseudocapacitive to battery-like potential
profiles depending on the amount of carbon onion substrate added during the synthesis, since
the nucleation behavior of vanadium oxide is affected. In situ electrochemical dilatometry
revealed that different macroscopic expansion behavior of vanadium oxide relates to the
charge storage mechanisms: pseudocapacitive = small expansion, battery-like = large
expansion.’? This study demonstrated the simplicity of scale-up for the hybrid material
approach, making it of potential interest for large-scale applications.

While the choice of the carbon substrate primarily affected the power and cycling stability of
the material, the maximum charge storage capacity is mainly determined by the ion
intercalation capacity of the Faradaic material. Capitalizing on the cyclic character of ALD,
alternating stacks of vanadium oxide and titanium oxide were deposited on carbon onions. By
closely packing atomic layers of vanadium oxide and titanium oxide in alternating sequences,
a post-deposition annealing step incorporated up to 50 % Ti into the monoclinic VO, lattice.

The replacement of vanadium by slightly larger titanium atoms led to an expansion of the VO,
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unit cell, which resulted in an almost doubled lithium intercalation capacity compared to pure
VO3 or TiO; coatings.3® In this first study on the electrochemical intercalation properties of
mixed metal oxides synthesized by ALD, the large potential of this synthesis technique for
mixed metal oxides in EES applications was revealed. It introduces the possibility to obtain
mixed metal oxides at much higher precision and with increased contents of foreign atoms
compared to other synthesis paths. That way, crystallographic changes can be selectively
introduced, and charge storage properties can be improved. In the future, this approach is of
particular promise for the use of larger and/or multivalent intercalation ions "beyond lithium",
such as sodium, potassium, or magnesium, as it allows to adjust the lattice parameters to "fit"
the desired ion. Future studies need to include simulations to predict optimized compositions
and mixtures of different Faradaic materials.

Thermal annealing after the ALD process allows tuning of the metal oxide crystal structure.
Carbon nanotube/molybdenum oxide hybrids were fabricated by ALD and annealed in both
synthetic air or argon to obtain orthorhombic MoO3 or monoclinic MoO;, respectively. Used
as anodes in hybrid supercapacitor cells, the hybrid materials caused vastly different
electrochemical properties of the cell. It was demonstrated that especially the high rate
handling capability and small overpotential between lithiation and delithiation reaction of the
carbon nanotube/Mo0O; hybrid material was the determining factor to enable the most
favorable full-cell performance. Though MoOs provided the higher initial capacity, its slower
kinetics prohibited a high energy efficiency of the hybrid supercapacitor cell.}??> The study
demonstrated the importance of fast charge storage kinetics of the Faradaic material on the
resulting cell performance, especially concerning energy efficiency values, being the
determining factor for an economically viable transfer to the application. Crystal growth
during post-deposition annealing led to relatively large MoO; particles (up to 100 nm) within
the entangled carbon nanotube network of the hybrid material. Future studies should include
the use of more optimized carbon substrates that may prevent particle coarsening, as smaller
domain sizes could lead to improved power performances of the MoOz/carbon hybrid
material in the hybrid supercapacitor setup.

Finally, lithium- and sodium-containing ionic liquid electrolytes were used in hybrid
supercapacitors with an LTO anode and an activated carbon cathode. With this study, we
made use of all virtues of ionic liquids to have a transformative impact on state-of-the-art

hybrid supercapacitor technology:*? (1) For the first time, a hybrid supercapacitor cell with an
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LTO anode showed stable operation at 4V without the need of any prelithiation and
circumventing the formation of the solid electrolyte interphase. This was due to the expansion
of the electrochemical stability window at the activated carbon cathode compared to
conventional organic electrolytes. (2) The approach is universally adaptable as it was
demonstrated for lithium- and sodium-intercalating hybrid supercapacitor setups, using only
commercially available electrode materials. Using more advanced electrodes, such as hybrid
materials presented earlier in this thesis, further performance improvement is expected for
this cell setup. (3) High-temperature operation of hybrid supercapacitors up to 80 °C was
enabled for the first time, and the cell safety was significantly enhanced because of use of a
non-flammable electrolyte, which is particularly important for applications in the mobility
sector. This new and innovative cell design holds high potential for further improvement, as
the study only included non-optimized, commercially available materials as a proof-of-
concept. Further work needs to include the use of hybrid materials as the anode material,
which will further enhance the power of the hybrid supercapacitor cell. Also, the composition
of the ionic liquid electrolyte needs to be improved either by variation of the ionic liquid itself,
mixtures of different ionic liquids, or mixtures of ionic liquids with different solvents such as

carbonates or water.



References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Adoption of the Paris Agreement, FCCC/CP/2015/L9/Rev.1 (UNFCCC, 2015).

G. A. Meehl, W. M. Washington, W. D. Collins, J. M. Arblaster, A. Hu, L. E. Buja, W. G.
Strand and H. Teng, How much more global warming and sea level rise?, Science, 2005,
307, 1769-1772.

L. Hughes, Biological consequences of global warming: is the signal already apparent?,
Trends in ecology & evolution, 2000, 15, 56-61.

D. R. Easterling, G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl and L. O. Mearns,
Climate extremes: observations, modeling, and impacts, science, 2000, 289, 2068-
2074.

I. P. 0. C. Change, Climate Change 2013: The Physical Science Basis. Contribution of
Working Group | to the Fifth Assessment Report on the Intergovernmental Panel on
Climate Change, Cambridge Univ. Press, 2013.

M. Meinshausen, N. Meinshausen, W. Hare, S. C. Raper, K. Frieler, R. Knutti, D. J. Frame
and M. R. Allen, Greenhouse-gas emission targets for limiting global warming to 2 °C,
Nature, 2009, 458, 1158.

S. |. Seneviratne, M. G. Donat, A. J. Pitman, R. Knutti and R. L. Wilby, Allowable CO,
emissions based on regional and impact-related climate targets, Nature, 2016, 529,
477.

J. Huang, H. Yu, A. Dai, Y. Wei and L. Kang, Drylands face potential threat under 2 °C
global warming target, Nature Climate Change, 2017, 7, 417.

H. S. Baker, R. J. Millar, D. J. Karoly, U. Beyerle, B. P. Guillod, D. Mitchell, H. Shiogama,
S. Sparrow, T. Woollings and M. R. Allen, Higher CO; concentrations increase extreme
event risk in a 1.5 °C world, Nature Climate Change, 2018, 1.

Z. Yang, ). Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu,
Electrochemical Energy Storage for Green Grid, Chem. Rev., 2011, 111, 3577-3613.

B. Dunn, H. Kamath and J.-M. Tarascon, Electrical energy storage for the grid: a battery
of choices, Science, 2011, 334, 928-935.

F. Béguin, V. Presser, A. Balducci and E. Frackowiak, Carbons and electrolytes for
advanced supercapacitors, Adv. Mater., 2014, 26, 2219-2251.

H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding, Progress in electrical energy
storage system: A critical review, Progress in Natural Science, 2009, 19, 291-312.

M. R. Lukatskaya, B. Dunn and Y. Gogotsi, Multidimensional materials and device
architectures for future hybrid energy storage, Nat. Commun., 2016, 7, 12647.

S. Fleischmann, A. Tolosa and V. Presser, Design of carbon/metal oxide hybrids for
electrochemical energy storage, Chem. - Eur. J., 2018, DOI: 10.1002/chem.201800772.
P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 2008,
7, 845-854.

H. v. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Stréme in
kérperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche (Schluss.),
Annalen der Physik, 1853, 165, 353-377.

D. Qu and H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power
Sources, 1998, 74, 99-107.

H. Shi, Activated carbons and double layer capacitance, Electrochim. Acta, 1996, 41,
1633-1639.



20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

B. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti and M. M. Titirici, Engineering carbon
materials from the hydrothermal carbonization process of biomass, Adv. Mater., 2010,
22, 813-828.

D. Montané, V. Fierro, J.-F. Maréché, L. Aranda and A. Celzard, Activation of biomass-
derived charcoal with supercritical water, Microporous Mesoporous Mater., 2009, 119,
53-59.

N. Jackel, D. Weingarth, M. Zeiger, M. Aslan, |. Grobelsek and V. Presser, Comparison
of carbon onions and carbon blacks as conductive additives for carbon supercapacitors
in organic electrolytes, J. Power Sources, 2014, 272, 1122-1133.

K. S. Sing, Reporting physisorption data for gas/solid systems with special reference to
the determination of surface area and porosity (Recommendations 1984), Pure Appl.
Chem., 1985, 57, 603-619.

N. Jackel, D. Weingarth, A. Schreiber, B. Kriiner, M. Zeiger, A. Tolosa, M. Aslan and V.
Presser, Performance Evaluation of Conductive Additives for Activated Carbon
Supercapacitors in Organic Electrolyte, Electrochim. Acta, 2016, 191, 284—-298.

R. Saliger, U. Fischer, C. Herta and J. Fricke, High surface area carbon aerogels for
supercapacitors, J. Non-Cryst. Solids, 1998, 225, 81-85.

O. Barbieri, M. Hahn, A. Herzog and R. Kbtz, Capacitance limits of high surface area
activated carbons for double layer capacitors, Carbon, 2005, 43, 1303-1310.

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon and P.-L. Taberna, Anomalous
increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 2006, 313,
1760-1763.

J. Chmiola, C. Largeot, P. L. Taberna, P. Simon and Y. Gogotsi, Desolvation of lons in
Subnanometer Pores and Its Effect on Capacitance and Double-Layer Theory, Angew.
Chem., 2008, 120, 3440-3443.

T. A. Centeno, O. Sereda and F. Stoeckli, Capacitance in Carbon Pores of 0.7 to 15 nm:
A Regular Pattern, PCCP, 2011, 13, 12403-12406.

N. Jackel, M. Rodner, A. Schreiber, J. Jeongwook, M. Zeiger, M. Aslan, D. Weingarth
and V. Presser, Anomalous or Regular Capacitance? The Influence of Pore Size
Dispersity on Double-Layer Formation, J. Power Sources, 2016, 326, 660-671.

N. Jackel, P. Simon, Y. Gogotsi and V. Presser, The increase in capacitance by
subnanometer pores in carbon, ACS Energy Lett., 2016, 1, 1262-1265.

J. Huang, B. G. Sumpter and V. Meunier, Theoretical model for nanoporous carbon
supercapacitors, Angew. Chem. Int. Ed., 2008, 47, 520-524.

J. Huang, B. G. Sumpter and V. Meunier, A universal model for nanoporous carbon
supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes,
Chem. - Eur. J., 2008, 14, 6614-6626.

J. Huang, B. G. Sumpter, V. Meunier, G. Yushin, C. Portet and Y. Gogotsi, Curvature
Effects in Carbon Nanomaterials: Exohedral versus Endohedral Supercapacitors, J.
Mater. Res., 2010, 25, 1525-1531.

M. D. Stoller, C. W. Magnuson, Y. Zhu, S. Murali, J. W. Suk, R. Piner and R. S. Ruoff,
Interfacial capacitance of single layer graphene, Energy Environ. Sci., 2011, 4, 4685-
4689.

L. L. Zhang, R. Zhou and X. Zhao, Graphene-based materials as supercapacitor
electrodes, J. Mater. Chem., 2010, 20, 5983-5992.

J. K. McDonough, A. I. Frolov, V. Presser, J. Niu, C. H. Miller, T. Ubieto, M. V. Fedorov
and Y. Gogotsi, Influence of the structure of carbon onions on their electrochemical
performance in supercapacitor electrodes, Carbon, 2012, 50, 3298-3309.



38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54,

55.

56.

D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna and P.
Simon, Ultrahigh-Power Micrometre-Sized Supercapacitors Based on Onion-Like
Carbon, Nat. Nanotechnol., 2010, 5, 651-654.

M. Zeiger, N. Jackel, V. N. Mochalin and V. Presser, Review: Carbon Onions for
Electrochemical Energy Storage, ). Mater. Chem. A, 2016, 4, 3172-3196.

E. Frackowiak, K. Jurewicz, S. Delpeux and F. Beguin, Nanotubular Materials for
Supercapacitors, J. Power Sources, 2001, 97, 822-825.

E. Frackowiak, K. Metenier, V. Bertagna and F. Beguin, Supercapacitor electrodes from
multiwalled carbon nanotubes, Appl. Phys. Lett., 2000, 77, 2421-2423.

M. Zeiger, N. Jackel, D. Weingarth and V. Presser, Vacuum or Flowing Argon: What is
the Best Synthesis Atmosphere for Nanodiamond-Derived Carbon Onions for
Supercapacitor Electrodes?, Carbon, 2015, 94, 507-517.

S. Fleischmann, M. Widmaier, A. Schreiber, H. Shim, F. M. Stiemke, T. J. Schubert and
V. Presser, High voltage asymmetric hybrid supercapacitors using lithium-and sodium-
containing ionic liquids, Energy Storage Materials, 2019, 16, 391-399.

A. Burke, Ultracapacitors: why, how, and where is the technology, ). Power Sources,
2000, 91, 37-50.

L. Demarconnay, E. Raymundo-Pifiero and F. Béguin, A symmetric carbon/carbon
supercapacitor operating at 1.6 V by using a neutral aqueous solution, Electrochem.
Commun., 2010, 12, 1275-1278.

M. Bichat, E. Raymundo-Pifiero and F. Béguin, High voltage supercapacitor built with
seaweed carbons in neutral aqueous electrolyte, Carbon, 2010, 48, 4351-4361.

K. Fic, G. Lota, M. Meller and E. Frackowiak, Novel insight into neutral medium as
electrolyte for high-voltage supercapacitors, Energy Environ. Sci., 2012, 5, 5842-5850.
Q. Gao, L. Demarconnay, E. Raymundo-Pifiero and F. Béguin, Exploring the large
voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte,
Energy Environ. Sci., 2012, 5, 9611-9617.

M. Ue, Chemical capacitors and quaternary ammonium salts, Electrochemistry, 2007,
75, 565-572.

M. Arulepp, L. Permann, J. Leis, A. Perkson, K. Rumma, A. Janes and E. Lust, Influence
of the solvent properties on the characteristics of a double layer capacitor, J. Power
Sources, 2004, 133, 320-328.

M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, lonic-liquid materials
for the electrochemical challenges of the future, Nat. Mater., 2009, 8, 621-629.

A. Balducci, W. A. Henderson, M. Mastragostino, S. Passerini, P. Simon and F. Soavi,
Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor
with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid as
electrolyte, Electrochim. Acta, 2005, 50, 2233-2237.

V. L. Martins and R. M. Torresi, lonic liquids in electrochemical energy storage, Current
Opinion in Electrochemistry, 2018.

A. Balducci, R. Dugas, P.-L. Taberna, P. Simon, D. Plee, M. Mastragostino and S.
Passerini, High temperature carbon—carbon supercapacitor using ionic liquid as
electrolyte, J. Power Sources, 2007, 165, 922-927.

D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J.
H. Davis, M. Watanabe, P. Simon and C. A. Angell, Energy applications of ionic liquids,
Energy Environ. Sci., 2014, 7, 232-250.

N. Jackel, S. Patrick Emge, B. Kriiner, B. Roling and V. Presser, Quantitative information
about electrosorption of ionic liquids in carbon nanopores from electrochemical



57.

58.

59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

dilatometry and quartz crystal microbalance measurements, J. Phys. Chem. C, 2017,
121, 19120-19128.

K. L. Van Aken, M. Beidaghi and Y. Gogotsi, Formulation of lonic-Liquid Electrolyte To
Expand the Voltage Window of Supercapacitors, Angew. Chem. Int. Ed., 2015, 54,
4806-4809.

R. Lin, P.-L. Taberna, S. Fantini, V. Presser, C. R. Pérez, F. Malbosc, N. L. Rupesinghe, K.
B. Teo, Y. Gogotsi and P. Simon, Capacitive energy storage from -50 to 100 °C using an
ionic liquid electrolyte, The Journal of Physical Chemistry Letters, 2011, 2, 2396-2401.
M. Armand and J.-M. Tarascon, Building better batteries, Nature, 2008, 451, 652.

A. Volta, On the electricity excited by the mere contact of conducting substances of
different kinds. In a letter from Mr. Alexander Volta, FRS Professor of Natural
Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPRS,
Philosophical transactions of the Royal Society of London, 1800, 403-431.

M. S. Whittingham, Electrical energy storage and intercalation chemistry, Science,
1976, 192, 1126-1127.

K. Mizushima, P. Jones, P. Wiseman and J. B. Goodenough, LixCoO; (0<x<1): A new
cathode material for batteries of high energy density, Mater. Res. Bull., 1980, 15, 783-
789.

G.-A. Nazri and G. Pistoia, Lithium batteries: science and technology, Springer Science
& Business Media, 2008.

B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, ). Power
Sources, 2010, 195, 2419-2430.

J.-M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium
batteries, Nature, 2001, 414, 359-367.

Y. Qi and S. J. Harris, In situ observation of strains during lithiation of a graphite
electrode, ). Electrochem. Soc., 2010, 157, A741-A747.

J. B. Goodenough and K.-S. Park, The Li-ion rechargeable battery: a perspective, ). Am.
Chem. Soc., 2013, 135, 1167-1176.

P. Verma, P. Maire and P. Novak, A review of the features and analyses of the solid
electrolyte interphase in Li-ion batteries, Electrochim. Acta, 2010, 55, 6332-6341.

J. Besenhard, M. Winter, J. Yang and W. Biberacher, Filming mechanism of lithium-
carbon anodes in organic and inorganic electrolytes, J. Power Sources, 1995, 54, 228-
231.

K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem.
Rev., 2004, 104, 4303-4418.

T. Ohzuku, A. Ueda and N. Yamamoto, Zero-strain insertion material of Li[Li1/3Tis/3]O4
for rechargeable lithium cells, ). Electrochem. Soc., 1995, 142, 1431-1435.

E. Zhao, C. Qin, H.-R. Jung, G. Berdichevsky, A. Nese, S. Marder and G. Yushin, Lithium
Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors, ACS Nano,
2016, 10, 3977-3984.

N. Nitta, F. Wu, J. T. Lee and G. Yushin, Li-ion battery materials: present and future,
Mater. Today, 2015, 18, 252-264.

J. N. Reimers and J. Dahn, Electrochemical and in situ X-ray diffraction studies of lithium
intercalation in LixCoO3, J. Electrochem. Soc., 1992, 139, 2091-2097.

C. K. Chan, H. Peng, G. Liu, K. Mcllwrath, X. F. Zhang, R. A. Huggins and Y. Cui, in
Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review
Articles from Nature Publishing Group, World Scientific, 2011, pp. 187-191.

X.Jiand L. F. Nazar, Advances in Li=S batteries, ). Mater. Chem., 2010, 20, 9821-9826.

v



77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Li-O; and Li-S
batteries with high energy storage, Nat. Mater., 2012, 11, 19.

N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J.
Cho and P. G. Bruce, Challenges facing lithium batteries and electrical double-layer
capacitors, Angew. Chem. Int. Ed., 2012, 51, 9994-10024.

A. Eftekhari, Energy efficiency: A critically important but neglected factor in battery
research, Sustainable Energy Fuels, 2017, 1, 2053-2060.

B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and
technological applications, Springer Science & Business Media, 2013.

S. Ardizzone, G. Fregonara and S. Trasatti, “Inner” and “outer” active surface of RuO;
electrodes, Electrochim. Acta, 1990, 35, 263-267.

J. Zheng, P. Cygan and T. Jow, Hydrous ruthenium oxide as an electrode material for
electrochemical capacitors, J. Electrochem. Soc., 1995, 142, 2699-2703.

H. Y. Lee and J. B. Goodenough, Supercapacitor behavior with KCl electrolyte, J. Solid
State Chem., 1999, 144, 220-223.

M. Toupin, T. Brousse and D. Bélanger, Charge storage mechanism of MnO; electrode
used in aqueous electrochemical capacitor, Chem. Mater., 2004, 16, 3184-3190.

J.-G. Wang, F. Kang and B. Wei, Engineering of MnO;-based nanocomposites for high-
performance supercapacitors, Prog. Mater Sci., 2015, 74, 51-124.

B. Conway, V. Birss and J. Wojtowicz, The role and utilization of pseudocapacitance for
energy storage by supercapacitors, ). Power Sources, 1997, 66, 1-14.

J. W. Kim, V. Augustyn and B. Dunn, The effect of crystallinity on the rapid
pseudocapacitive response of Nb,Os, Adv. Energy Mat., 2012, 2, 141-148.

A. Tolosa, B. Kriiner, S. Fleischmann, N. Jackel, M. Zeiger, M. Aslan, |. Grobelsek and V.
Presser, Niobium carbide nanofibers as a versatile precursor for high power
supercapacitor and high energy battery electrodes, ). Mater. Chem. A, 2016, 4, 16003-
16016.

V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruna,
P. Simon and B. Dunn, High-rate electrochemical energy storage through Li*
intercalation pseudocapacitance, Nat. Mater., 2013, 12, 518-522.

T. Brezesinski, J. Wang, S. H. Tolbert and B. Dunn, Ordered mesoporous [alpha]-MoO3
with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat. Mater.,
2010, 9, 146-151.

V. Augustyn, P. Simon and B. Dunn, Pseudocapacitive Oxide Materials for High-Rate
Electrochemical Energy Storage, Energy Environ. Sci., 2014, 7, 1597-1614.

P. Srimuk, F. Kaasik, B. Kriiner, A. Tolosa, S. Fleischmann, N. Jackel, M. C. Tekeli, M.
Aslan, M. E. Suss and V. Presser, MXene as a novel intercalation-type pseudocapacitive
cathode and anode for capacitive deionization, J. Mater. Chem. A, 2016, 4, 18265-
18271.

P. Srimuk, J. Lee, S. Fleischmann, S. Choudhury, N. Jackel, M. Zeiger, C. Kim, M. Aslan
and V. Presser, Faradaic deionization of brackish and sea water via pseudocapacitive
cation and anion intercalation into few-layered molybdenum disulfide, J. Mater. Chem.
A, 2017, 5, 15640-15649.

N. Shpigel, M. D. Levi, S. Sigalov, T. S. Mathis, Y. Gogotsi and D. Aurbach, Direct
assessment of nano-confined water in 2D Ti3C, (MXene) electrode interspaces by a
surface acoustic technique, J. Am. Chem. Soc., 2018.

P.Simon, Y. Gogotsi and B. Dunn, Where Do Batteries End and Supercapacitors Begin?,
Science Magazine, 2014, 343, 1210-1211.

\Y



96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

T. Brousse, D. Bélanger and J. W. Long, To be or not to be pseudocapacitive?, J.
Electrochem. Soc., 2015, 162, A5185-A5189.

Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi and H. N. Alshareef, All Pseudocapacitive
MXene-RuO,; Asymmetric Supercapacitors, Adv. Energy Mat., 2018, 8, 1703043.

M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou and |. Honma,
Nanosize effect on high-rate Li-ion intercalation in LiCoO; electrode, J. Am. Chem. Soc.,
2007, 129, 7444-7452.

S. Boukhalfa, K. Evanoff and G. Yushin, Atomic layer deposition of vanadium oxide on
carbon nanotubes for high-power supercapacitor electrodes, Energy Environ. Sci.,
2012, 5, 6872-6879.

H.-S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins and B. Dunn, Oxygen
vacancies enhance pseudocapacitive charge storage properties of MoOs.x, Nat. Mater.,
2016, 16, 454-460.

H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt and S.-E.
Lindquist, Li* ion insertion in TiO; (anatase). 2. Voltammetry on nanoporous films, J.
Phys. Chem. B, 1997, 101, 7717-7722.

S. Fleischmann, D. Leistenschneider, V. Lemkova, B. Kriiner, M. Zeiger, L. Borchardt and
V. Presser, Tailored mesoporous carbon/vanadium pentoxide hybrid electrodes for high
power pseudocapacitive lithium and sodium intercalation, Chem. Mater., 2017, 29,
8653-8662.

D. M. Anjos, J. K. McDonough, E. Perre, G. M. Brown, S. H. Overbury, Y. Gogotsi and V.
Presser, Pseudocapacitance and Performance Stability of Quinone-Coated Carbon
Onions, Nano Energy, 2013, 2, 702-712.

T. C. Liu, W. Pell, B. Conway and S. Roberson, Behavior of molybdenum nitrides as
materials for electrochemical capacitors comparison with ruthenium oxide, ).
Electrochem. Soc., 1998, 145, 1882-1888.

J. Wang, J. Polleux, J. Lim and B. Dunn, Pseudocapacitive Contributions to
Electrochemical Energy Storage in TiO, (Anatase) Nanoparticles, ). Phys. Chem. C,
2007, 111, 14925-14931.

M. Opitz, J. Yue, J. Wallauer, B. Smarsly and B. Roling, Mechanisms of charge storage
in nanoparticulate TiO> and LisTisO12 anodes: new insights from scan rate-dependent
cyclic voltammetry, Electrochim. Acta, 2015, 168, 125-132.

D. Dubal, O. Ayyad, V. Ruiz and P. Gdmez-Romero, Hybrid energy storage: the merging
of battery and supercapacitor chemistries, Chem. Soc. Rev., 2015, 44, 1777-1790.

J. J. Vilatela and D. Eder, Nanocarbon composites and hybrids in sustainability: a
review, ChemSusChem, 2012, 5, 456-478.

M. Kerlau, M. Marcinek, V. Srinivasan and R. M. Kostecki, Studies of local degradation
phenomena in composite cathodes for lithium-ion batteries, Electrochim. Acta, 2007,
52, 5422-5429.

S. Fleischmann, N. Jackel, M. Zeiger, B. Kriiner, I. Grobelsek, P. Formanek, S.
Choudhury, D. Weingarth and V. Presser, Enhanced electrochemical energy storage by
nanoscopic decoration of endohedral and exohedral carbon with vanadium oxide via
atomic layer deposition, Chem. Mater., 2016, 28, 2802-2813.

G. G. Amatucci, F. Badway, A. Du Pasquier and T. Zheng, An asymmetric hybrid
nonaqueous energy storage cell, J. Electrochem. Soc., 2001, 148, A930-A939.

V. Khomenko, E. Raymundo-Pifiero and F. Béguin, High-energy density graphite/AC
capacitor in organic electrolyte, ). Power Sources, 2008, 177, 643-651.

\



113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

T. Aida, K. Yamada and M. Morita, An advanced hybrid electrochemical capacitor that
uses a wide potential range at the positive electrode, Electrochem. Solid-State Lett.,
2006, 9, A534-A536.

V. Khomenko, E. Raymundo-Pinero and F. Béguin, Optimisation of an asymmetric
manganese oxide/activated carbon capacitor working at 2 V in aqueous medium, ).
Power Sources, 2006, 153, 183-190.

J.Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, Advanced
asymmetric supercapacitors based on Ni(OH);/graphene and porous graphene
electrodes with high energy density, Adv. Funct. Mater., 2012, 22, 2632-2641.

S. Sivakkumar and A. Pandolfo, Evaluation of lithium-ion capacitors assembled with
pre-lithiated graphite anode and activated carbon cathode, Electrochim. Acta, 2012,
65, 280-287.

P. Jezowski, O. Crosnier, E. Deunf, P. Poizot, F. Béguin and T. Brousse, Safe and
recyclable lithium-ion capacitors using sacrificial organic lithium salt, Nat. Mater.,
2017, 17, 167.

K. Xu, S. P. Ding and T. R. Jow, Toward reliable values of electrochemical stability limits
for electrolytes, ). Electrochem. Soc., 1999, 146, 4172-4178.

D. Weingarth, H. Noh, A. Foelske-Schmitz, A. Wokaun and R. Kotz, A reliable
determination method of stability limits for electrochemical double layer capacitors,
Electrochim. Acta, 2013, 103, 119-124.

W. G. Pell and B. E. Conway, Peculiarities and requirements of asymmetric capacitor
devices based on combination of capacitor and battery-type electrodes, ). Power
Sources, 2004, 136, 334-345.

E. Lim, C. Jo and J. Lee, A Mini Review of Designed Mesoporous Materials for Energy-
Storage Applications: From Electric Double-Layer Capacitors to Hybrid Supercapacitors,
Nanoscale, 2016, 8, 7827-7833.

S. Fleischmann, M. Zeiger, A. Quade, A. Kruth and V. Presser, Atomic layer deposited
molybdenum oxide/carbon nanotube hybrid electrodes: Influence of crystal structure
on lithium-ion capacitor performance, ACS Appl. Mater. Interfaces, 2018, 10, 18675-
18684.

R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the
trimethylaluminum/water process, J. Appl. Phys., 2005, 97, 9.

M. Groner, J. Elam, F. Fabreguette and S. M. George, Electrical characterization of thin
Al>0s films grown by atomic layer deposition on silicon and various metal substrates,
Thin Solid Films, 2002, 413, 186-197.

Y. J. Lee, Low-impurity, highly conformal atomic layer deposition of titanium nitride
using NHs—Ar—H> plasma treatment for capacitor electrodes, Mater. Lett., 2005, 59,
615-617.

J. Musschoot, Q. Xie, D. Deduytsche, S. Van den Berghe, R. L. Van Meirhaeghe and C.
Detavernier, Atomic layer deposition of titanium nitride from TDMAT precursor,
Microelectron. Eng., 2009, 86, 72-77.

B. S. Lim, A. Rahtu and R. G. Gordon, Atomic layer deposition of transition metals, Nat.
Mater., 2003, 2, 749.

H. Kim, Atomic layer deposition of metal and nitride thin films: Current research efforts
and applications for semiconductor device processing, Journal of Vacuum Science &
Technology B: Microelectronics and Nanometer Structures Processing, Measurement,
and Phenomena, 2003, 21, 2231-2261.

Vil



129.

130.

131.
132.
133.
134.
135.

136.

137.

138.

139.
140.

141.

142.

143.

144.

145.

146.

147.

M. Mattinen, T. Hatanpds, T. Sarnet, K. Mizohata, K. Meinander, P. J. King, L.
Khriachtchev, J. Rdisdanen, M. Ritala and M. Leskeld, Atomic Layer Deposition of
Crystalline MoS; Thin Films: New Molybdenum Precursor for Low-Temperature Film
Growth, Advanced Materials Interfaces, 2017, 4, 1700123.

S. Shin, Z. Jin, D. H. Kwon, R. Bose and Y.-S. Min, High turnover frequency of hydrogen
evolution reaction on amorphous MoS; thin film directly grown by atomic layer
deposition, Langmuir, 2015, 31, 1196-1202.

H. G. Kim and H.-B.-R. Lee, Atomic Layer Deposition on 2D Materials, Chem. Mater.,
2017, 29, 3809-3826.

T. Suntola.

S. M. George, Atomic Layer Deposition: An Overview, Chem. Rev., 2009, 110, 111-131.
R. W. Johnson, A. Hultqvist and S. F. Bent, A brief review of atomic layer deposition:
from fundamentals to applications, Mater. Today, 2014, 17, 236-246.

D. B. Farmer and R. G. Gordon, ALD of high-k dielectrics on suspended functionalized
SWNTs, Electrochem. Solid-State Lett., 2005, 8, G89-G91.

K. Kim, R. W. Johnson, J. T. Tanskanen, N. Liu, M.-G. Kim, C. Pang, C. Ahn, S. F. Bent and
Z. Bao, Selective metal deposition at graphene line defects by atomic layer deposition,
Nat. Commun., 2014, 5.

D. B. Farmer and R. G. Gordon, Atomic layer deposition on suspended single-walled
carbon nanotubes via gas-phase noncovalent functionalization, Nano Lett., 2006, 6,
699-703.

S. Fleischmann, A. Tolosa, M. Zeiger, B. Kriner, N. J. Peter, |. Grobelsek, A. Quade, A.
Kruth and V. Presser, Vanadia—Titania Multilayer Nanodecoration of Carbon Onions via
Atomic Layer Deposition for High Performance Electrochemical Energy Storage, ).
Mater. Chem. A, 2017, 5, 2792-2801.

T. Suntola, Handbook of Crystal Growth 3, Thin films and Epitaxy, Part B: Growth, 1994.
J. Aarik, A. Aidla, T. Uustare, M. Ritala and M. Leskela, Titanium isopropoxide as a
precursor for atomic layer deposition: characterization of titanium dioxide growth
process, Appl. Surf. Sci., 2000, 161, 385-395.

J. W. Elam, N. P. Dasgupta and F. B. Prinz, ALD for clean energy conversion, utilization,
and storage, MRS Bull., 2011, 36, 899-906.

D. M. Mattox, Handbook of physical vapor deposition (PVD) processing, William
Andrew, 2010.

K. Choy, Chemical vapour deposition of coatings, Prog. Mater Sci., 2003, 48, 57-170.
X. Wang and G. Yushin, Chemical vapor deposition and atomic layer deposition for
advanced lithium ion batteries and supercapacitors, Energy Environ. Sci., 2015, 8,
1889-1904.

J. R. Bakke, K. L. Pickrahn, T. P. Brennan and S. F. Bent, Nanoengineering and interfacial
engineering of photovoltaics by atomic layer deposition, Nanoscale, 2011, 3, 3482-
3508.

J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J.
Jacobsson, A. R. S. Kandada and S. M. Zakeeruddin, Highly efficient planar perovskite
solar cells through band alignment engineering, Energy Environ. Sci., 2015, 8, 2928-
2934,

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A.
Abate, J. Rappich and L. Korte, Monolithic perovskite/silicon-heterojunction tandem
solar cells processed at low temperature, Energy Environ. Sci., 2016, 9, 81-88.

Vil



148.

149.

150.

151.

152.

J. H. Shim, C.-C. Chao, H. Huang and F. B. Prinz, Atomic layer deposition of yttria-
stabilized zirconia for solid oxide fuel cells, Chem. Mater., 2007, 19, 3850-3854.
Y.S.Jung, A.S. Cavanagh, L. A. Riley, S. H. Kang, A. C. Dillon, M. D. Groner, S. M. George
and S. H. Lee, Ultrathin direct atomic layer deposition on composite electrodes for
highly durable and safe Li-ion batteries, Adv. Mater., 2010, 22, 2172-2176.

A. C.Kozen, C.-F. Lin, A. J. Pearse, M. A. Schroeder, X. Han, L. Hu, S.-B. Lee, G. W. Rubloff
and M. Noked, Next-generation lithium metal anode engineering via atomic layer
deposition, ACS Nano, 2015, 9, 5884-5892.

M. Yu, A. Wang, F. Tian, H. Song, Y. Wang, C. Li, J.-D. Hong and G. Shi, Dual-protection
of a graphene-sulfur composite by a compact graphene skin and an atomic layer
deposited oxide coating for a lithium-sulfur battery, Nanoscale, 2015, 7, 5292-5298.

S. Fleischmann, M. Zeiger, N. Jackel, B. Kriiner, V. Lemkova, M. Widmaier and V.
Presser, Tuning pseudocapacitive and battery-like lithium intercalation in vanadium
dioxide/carbon onion hybrids for asymmetric supercapacitor anodes, ). Mater. Chem.
A, 2017, 5, 13039-13051.



	PhD Thesis Fleischmann - without papers - V4.0
	acs.chemmater.6b00738
	cm6b00738_si_001
	PhD Thesis Fleischmann - without papers - V4.0
	acs.chemmater.7b02533
	cm7b02533_si_001
	PhD Thesis Fleischmann - without papers - V4.0
	c7ta02564e
	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02564e
	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02564e
	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02564e
	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02564e
	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02564e
	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02564e

	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02564e
	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02564e
	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02564e

	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02564e
	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02564e


	c7ta02564e1
	PhD Thesis Fleischmann - without papers - V4.0
	Fleischmann_et_al-2018-Chemistry_-_A_European_Journal-3
	PhD Thesis Fleischmann - without papers - V4.0
	c6ta09890h
	Vanadiatnqh_x2013titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ta09890h
	Vanadiatnqh_x2013titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ta09890h
	Vanadiatnqh_x2013titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ta09890h
	Vanadiatnqh_x2013titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ta09890h
	Vanadiatnqh_x2013titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ta09890h
	Vanadiatnqh_x2013titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ta09890h

	Vanadiatnqh_x2013titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ta09890h
	Vanadiatnqh_x2013titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ta09890h
	Vanadiatnqh_x2013titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ta09890h

	Vanadiatnqh_x2013titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ta09890h
	Vanadiatnqh_x2013titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ta09890h


	c6ta09890h1
	PhD Thesis Fleischmann - without papers - V4.0
	acsami.8b03233-2
	am8b03233_si_001
	PhD Thesis Fleischmann - without papers - V4.0
	1-s2.0-S2405829718307062-main
	High voltage asymmetric hybrid supercapacitors using lithium- and sodium-containing ionic liquids
	Introduction
	Materials and methods
	Electrode and electrolyte preparation
	Materials characterization
	Electrochemical characterization

	Results and discussion
	Lithium half-cells
	Sodium half-cells
	AHSC full-cells
	High-temperature operation

	Conclusions
	Acknowledgments
	mk:H1_13
	mk:H1_14
	Supporting information
	References


	1-s2.0-S2405829718307062-mmc1
	PhD Thesis Fleischmann - without papers - V4.0
	PhD Thesis Fleischmann - without papers - V4.0



