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Abstract

The present thesis is concerned with two different problems from multivariable
operator theory on Hilbert spaces; the model theory for commuting contractive
operator tuples, and perturbations of (analytic) Toeplitz operators.

The first part develops a generalization of the model theory of Agler, Miiller-
Vasilescu, Pott, Arveson, Ambrozie-Englis-Miiller, Arazy-Englis and Olofsson
for a class of reproducing kernel Hilbert spaces on the open unit ball in C%.
Here, we examine two classes of commuting tuples which coincide for the
case of weighted Bergman spaces with m-hypercontractions and for suitable
Nevanlinna-Pick spaces with a class of commuting tuples recently studied by
Clouatre-Hartz. As an application, we obtain a Beurling-type theorem, where
we characterize the invariant subspaces of the shift operator which arise as the
image of suitable partially isometric multipliers. As a second consequence, we
extend the work of Arveson and Bhattacharjee et al. on the uniqueness of
minimal coextensions.

In the second part we study Toeplitz operators associated with regular A-
isometries, a notion introduced by Eschmeier as a generalization of spheri-
cal isometries. In this setting, we use results of Didas-Eschmeier-Everard to
characterize finite-rank and Schatten-class perturbations of (analytic) Toeplitz
operators.






Zusammenfassung

In der vorliegenden Arbeit beschéftigen wir uns mit zwei Teilgebieten der mehr-
dimensionalen Operatorentheorie auf Hilbertrdumen; zum einen mit der Mo-
delltheorie fiir kontraktive Operatortupel, zum anderen mit Stérungen von
(analytischen) Toeplitzoperatoren.

Der erste Teil stellt eine Verallgemeinerung der Modellsétze von Agler, Miil-
ler-Vasilescu, Pott, Arveson, Ambrozie-Englis-Miiller, Arazy-Englis und Olofs-
son fiir eine Klasse von funktionalen Hilbertrdumen auf der offenen Einheits-
kugel in C? dar. Hierbei untersuchen wir zwei Klassen von kommutieren-
den Tupeln, welche im Fall von gewichteten Bergmanraumen mit den m-
Hyperkontraktionen und im Fall einer geeigneten Teilklasse von vollstandigen
Nevanlinna-Pick-Rdumen mit den von Clouatre-Hartz untersuchten Tupeln
zusammenfallen. Als Folgerung erhalten wir einen Satz vom Beurlingtyp, der
die invarianten Teilraume des Shifts, die Bild einer geeigneten partiellen Isome-
trie sind, charakterisiert. Ebenfalls konnen wir Resultate von Arveson und
Bhattacharjee et al. iiber die Eindeutigkeit von minimalen Koerweiterungen
auf unsere allgemeinere Situation iibertragen.

Im Anschluss wenden wir uns einer von Eschmeier eingefithrten Verallge-
meinerung der Klasse der sphéarischen Isometrien, sogenannten A-Isometrien,
zu. Wir benutzen Resultate von Didas-Eschmeier-Everard, um Storungen mit
endlichem Rang und Schattenklasse-Stérungen von (analytischen) Toeplitz-
operatoren zu charakterisieren.
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Introduction

In this thesis, we study classes of commuting tuples of bounded linear operators
on Hilbert spaces. The first part is concerned with the model and dilation
theory of a generalization of contractions, called K-contractions, connected
to reproducing kernel Hilbert spaces Hyx on the open unit ball in C?. In
the second part we obtain characterizations of Schatten-class perturbations of
(analytic) Toeplitz operators in the setting of so-called regular A-isometries.

Part |I: K-contractions

Hilbert space contractions 7' can be characterized by the positivity condition
id—=TT* > 0. The left-hand side of this inequality is formally obtained by
replacing the variables z and w in the reciprocal

1

—  —1-w
K(z,w) =

of the reproducing kernel K of the Hardy space H?(ID) on the unit disc D by
the operator T" and its adjoint T*. By the Sz.-Nagy dilation theory (cf. [62]),
every contraction is unitarily equivalent to a restriction of an operator of the
form ((M, ® idp) & U)* to an invariant subspace, where M, € B(H?*(D)) is
the multiplication operator with symbol z, the identity map, on the Hardy
space, D is a Hilbert space, and U is a unitary operator. Hence, to understand
contractions, it is sufficient to understand restrictions of operators of the latter
kind.

Besides the Hardy space, there exist many other reproducing kernel Hilbert
spaces of analytic functions, for example, the (weighted) Bergman spaces or
Nevanlinna-Pick spaces (in one and higher dimensions). Therefore, it is natural
to ask for a characterization of restrictions of ((M, ® idp) & U)*, where M,
is now the multiplication operator on a reproducing kernel Hilbert space of
analytic functions. For the standard weighted Bergman spaces H,,(By) on the
unit ball B; C C? given by the reproducing kernels

1

KOG 0) =

(m € N),
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such restrictions have been characterized by Agler [2], Miiller and Vasilescu
[55], and Arveson [9] as those commuting contractive tuples T € B(H)™ which
satisfy the positivity condition

oy (T T) = S (-1 (m) /T > 0.

=0 J

Pott [59], Ambrozie, Englis and Miiller [5], and Arazy and Englis [6] studied
reproducing kernels, where the underlying subset of C? can be quite general.
This generality goes along with a restriction on the reciprocal of the kernel
(often assumed to be a polynomial or a rational function in z and w). Further-
more, Clouatre and Hartz [I8] characterized the aforementioned restrictions
for a certain class of Nevanlinna-Pick spaces; again in terms of the reciprocal
of the reproducing kernel. The main goal of this part is to unify the approaches
for the (weighted) Bergman spaces and Nevanlinna-Pick spaces. We focus on
reproducing kernel Hilbert spaces Hx C O(By) of analytic functions on the
open unit ball By C C¢ such that the reproducing kernel K : B; x By — C is
of the form
K(z,w) =k({(z,w)) (z,w e By)

for some zero-free analytic function k: D — C, z — >~ ja,2" with ag = 1,
a, > 0 for all n € N, and sup,,cy @n/an+1 < 0o. The last condition ensures
that the tuple M, = (M,,,...,M,,) on Hg is a well-defined bounded linear
operator. Many classical spaces on By, including the Drury-Arveson space,
the Hardy space, the Dirichlet space, and weighted Bergman spaces, are of
this kind. In particular, the Drury-Arveson space corresponds to the constant
sequence a, = 1. To obtain a class of commuting tuples which can be rea-
lized as restrictions of ((M, ® idp) @ U)*, we use two different approaches:
a geometrical-algebraic one and an analytic one. A basic problem in both
approaches is to make sense of the operator 1/K(7T,T™). Since by hypothesis
1/k has an expansion of the form 1/k(z) = >, ¢,2" (2 € D) for some suitable
sequence (¢, )nen of real numbers, a natural idea is to define

1 * - n(:
?(T, T") = ZOCnUT(ldH),
where the series is asked to converge in the strong operator topology and

d
or: B(H) = B(H), X = Y TXT}.

i=1
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For the commuting tuple M, € B(H )%, this condition is satisfied, for instance,
if almost all of the coefficients ¢, (n € N) have the same sign (see [17]), which
will be assumed further on. We call a commuting tuple T" a K-contraction if
1/K (T, T*) exists and defines a positive operator. Furthermore, as an analogue
of the class Cy in the case of classical contractions, we introduce for a K-
contraction T the notion of K-pureness, which means by definition that the
SOT-limit 3(T) of the sequence (Xn(7T))nen defined by

Sw(T) = idy — ﬁ%ana; (%(T, T*))

is zero. With these preparations, we can state our model theorem (see also

[6]).

1 Theorem (Theorem [2.15). Let T € B(H)? be a commuting tuple. The
following statements are equivalent:

(i) T is K-pure,
(i1) there exist a Hilbert space D and an isometry I[1: H — Hxg @D such that

N7 = (M, ®idp) Tl (i =1,...,d).

If a K-contraction T is strong, i.e., 3(T) defines a positive operator and
satisfies o7 (3(T")) = X(T'), one can show that there are a Hilbert space £ and
a spherical unitary W € B(L£)? such that there exists an isometry

\I/T%—>(HK®DT)@£

which intertwines the tuples 7% = (717, ..., 7)) on H and ((M, ® idp,) & W)*
on (Hg ® Dr) @ L componentwise. Here, Dy = (1/K (T, T*))'/? is the defect
operator and Dy = DrH is the defect space of T'.

2 Theorem (Theorem [2.30). Let T € B(H)? be a commuting tuple. The
following statements are equivalent:

(i) T is a strong K-contraction,

(ii) there exist Hilbert spaces D, K, a spherical unitary U € B(K)?, and an
isometry I1: H — (Hx @ D) & K such that

07T} = (M., ®idp) @ U))'TL (i =1,....d).
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If in addition Hg is reqular, i.e., lim,_,o a,/a,1 = 1, then the above are also
equivalent to

ii1) there exists a unital, completely contractive linear map
1) th st tal letely contractive li
©: span {idHK7MZi7MZiM:i D i= 1,...,d} — B(H)

with
p(M.,) =T, and @(MZZM,:,) =TT

forallv=1,...,d.

Condition (iii) shows that M, plays the role of a universal tuple for the class
defined in (i).

For m-hypercontractions, or the Nevanlinna-Pick case, the above theorem
reduces to the mentioned results of Miiller-Vasilescu, and Clouatre-Hartz, re-
spectively.

The analytic approach was inspired by Agler [I], Vasilescu [63], Arveson [9],
Olofsson [56], and Clouatre and Hartz [I8]. The idea is to study the family
rT (0 < r < 1) instead of the single tuple T'. The advantage of this approach
is that one can easily make sense of the operators 1/K (rT,rT*) via Taylor’s
analytic functional calculus. We call a commuting tuple 7" with spectrum in the
closed unit ball By a radial K -hypercontraction if all operators 1/K (rT,rT*)
(0 < r < 1) are positive. Olofsson stated in [56] a condition which guarantees
the existence of the limit lim, ,; 1/K(rT,rT) in the strong operator topology
for a radial K-hypercontraction. This condition, which will be assumed to
hold further on, is fulfilled in the cases mentioned before. If we suppose that
Hp is regular, then Theorem [2| holds if we replace strong K-contractions with
radial K-hypercontractions (cf. Theorem [3.21]).

Let v be a positive real number. We call a commuting tuple 1" a v-hyper-
contraction if T is a KM-contraction and a K®)-contraction, where

v
(1= {z,w))”

This is a natural generalization of m-hypercontractions, where m is a positive
natural number. Our main result about v-hypercontractions shows that they
coincide with strong K )-contractions and with radial K *)-hypercontractions.
Furthermore, for a v-hypercontraction T € B(H)¢, the operator X(T') is the
limit in the strong operator topology of the sequence (o (idy))nen-

In 1949, Beurling [14] gave the following characterization of invariant sub-
spaces of the shift operator M, on the Hardy space H*(D).

KW (z,w) = (z,w € By).
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3 Theorem (Beurling). For § C H*(D), the following are equivalent:
(i) S is a closed invariant subspace for M, € B(H?*(D)),

(ii) there exists a bounded analytic multiplier 0 on H*(D) such that the in-
duced multiplication operator My is an isometry with image S.

A similar result for the multiplication tuple M, = (M,,,..., M, ) on the
Drury-Arveson space was given by McCullough and Trent [54] (see also [61]).
As an application of our model theorem for pure K-contractions and multiplier
characterizations due to Barbian [12], we obtain the following result.

4 Theorem (Theorem [4.6). Let £ be a Hilbert space, H(E) C OBy, &) a
reproducing kernel Hilbert space, and suppose that M, € B(H(&))? is K-pure.
For § C H(E), the following statements are equivalent:

(i) S is a closed invariant subspace for M, and M,|s is K-pure,

(i1) there exist a Hilbert space D and a bounded analytic multiplier 6 between
Hy (D) and H(E) such that My is a partial isometry with image S.

As a second application, we prove a uniqueness result for minimal isometric
coextensions of strong K-contractions T' € B(H )¢ for suitable reproducing ker-
nels K. Thus, we extend corresponding uniqueness results proved by Arveson
[9] and Bhattacharjee et al [I5] to our more general setting.

5 Theorem (Corollary . Suppose that Hy is reqular and that Pc be-
longs to the closed linear span of {Mg‘M;B pa,f e Nd}. Let T € B(H)? be a
strong K -contraction. Furthermore, let D and K be Hilbert spaces, U € B(K)?
a spherical unitary, and let 11: H — (Hx @ D)DK be an isometry which inter-
twines T with (M, ® idp) ® U)* componentwise. Then there exist isometries
Vs € B(Dr,D) and V,, € B(L,K) such that the diagram

1 Il Hi(D) & K

quJ /
(idg, ®@Vs) @V,

Hg(Dr)a® L

commutes.

In particular, the last result holds if K = K for a positive real number v.
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Part |l: Perturbations of Toeplitz operators

Another way to look at the Hardy space is to identify H?(D) with the sub-
space H?(m) of L?(m) consisting of all functions which have vanishing nega-
tive Fourier coefficients, where m is the canonical probability measure on T.
The Toeplitz operator with symbol f € L*°(m) is defined as the compression
Tt = Py2(m)yMy|a2(m) of the multiplication operator My € B(L?*(m)) to the
closed subspace H%(m) C L?*(m). Via the above identification, the operator M,
on H?(D) corresponds to the Toeplitz operator T, on H?*(m). Furthermore,
we call a Toeplitz operator analytic if the corresponding symbol belongs to
H>(m) = H?*(m) N L*(m). Brown and Halmos obtained in [16] the following
characterization of Toeplitz operators and analytic Toeplitz operators.

6 Theorem (Brown, Halmos). Let X € B(H?*(m)).
(i) The operator X is a Toeplitz operator if and only if T*XT, = X.

(ii) The operator X is an analytic Toeplitz operator if and only if XT, =
T.X.

As a corollary, one obtains the following result which can be seen as the
starting point for our study of perturbations of Toeplitz operators. Here, we
call a function u € H*(m) inner if |u| = 1 m-almost everywhere.

7 Corollary. Let X € B(H?*(m)).

(i) The operator X is a Toeplitz operator if and only if T XT, — X =0 for
all inner functions uw € H*(m).

(ii) The operator X is an analytic Toeplitz operator if and only if [X,T,] =
XT, —T,X =0 for allu € H>®(m).

If 7 C B(H?*(m)) is an ideal, then each operator X = Ty + J (f € L>®(m),
J € J) satisfies the condition T X'T,,— X € J for all inner functions u. Hence,
the question naturally arises for which ideals 7 conversely the latter condition
implies that X = Ty + J with f € L>°(m) and J € J (cf. [32, Exercise 7.38]).
The ideals of finite-rank operators (cf. [42] by Gu) and compact operators (cf.
[64] by Xia) enjoy this property. For the ideal of Schatten-class operators, we
obtain the following analogue.

8 Theorem (Corollary [8.13). For p € [1,00), an operator X on H?*(m) can
be written as X = Ty + S, where f € L>(m) and S belongs to the Schatten-
p-class, if and only if T;; X'T,, — X lies in the Schatten-p-class for every inner
function wu.
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In [25], Davidson showed that, for an operator X € B(H?*(m)), XT, — T, X
is compact for all w € H*>(m) if and only if X is a compact perturbation of a
Toeplitz operator Ty with symbol f € H*(m)+C(T). By a result of Hartman
[47], the set H*(m) 4+ C(T) coincides with {f € L>(m) ; H; is compact},
where Hy = (idp2(m) —Pr2(m)) M¢|i2(m) is the Hankel operator with symbol f €
L*>(m). A generalization of this result to the Hardy space on the unit sphere
was obtained by Ding and Sun [31] in 1997. The modified question where the
ideal of compact operators is replaced with the ideal of finite-rank operators
was studied by Guo and Wang in [45]. Their result characterizes the operators
X on the Hardy space on the unit sphere or the distinguished boundary of the
unit polydisc which satisfy the property that XT, —T,X is of finite rank for all
u € H*®(0) as the finite-rank perturbations X = Ty + F' for some f € L*>(0)
such that H has finite rank and F'is a finite-rank operator. Here, o denotes the
canonical probability measure on the unit sphere or the distinguished boundary
of the unit polydisc, respectively, and H>* (o) = L>*(0) N H*(c), where H?(o)
is the corresponding Hardy space.

We prove generalizations of Theorem [§and the results of Davidson, and Guo
and Wang in the setting of regular A-isometries, which were first introduced by
Eschmeier in [35]. The idea of the general notion of an A-isometry originates
from the well-known characterization of spherical isometries by Athavale [10]
as those tuples which are subnormal such that the Taylor spectrum of the
minimal normal extension lies in the unit sphere. We will now introduce some
basic facts about regular A-isometries.

Let T € B(H)? be a subnormal commuting tuple on a Hilbert space H,
and let U € B(#)* be a minimal normal extension of T on some Hilbert
space H > H. Then the scalar spectral measure p of U is a finite positive
Borel measure on ¢, (7") = o(U) which is, up to mutual absolute continuity,
independent of the choice of U. We call p a scalar spectral measure of T.
Let K C C? be a compact set and let A be a closed subalgebra of C(K)
which contains the polynomials. Furthermore, we denote by 04 the Shilov
boundary of A. We call T" an A-isometry if the normal spectrum o,(T) is a
subset of the Shilov boundary d4 and A is contained in the restriction algebra
Rr = {f e L) ; Uy(f)H C H}. Here, the map Uy: L®(u) — B(H)
denotes the associated L*>°-functional calculus of U. In that case, the measure
i can be viewed as a measure on J4 by trivial extension. An A-isometry
T € B(H)? is called regular if the triple (A|g,, D4, 1) is regular in the sense
of Aleksandrov (cf. [4]) which means by definition that, for every continuous
function ¢ € C(94) with ¢ > 0, there exists a sequence of functions (g )ren in
A such that || < ¢ on dy4 for all k € N and limg_,o |¢x| = ¢ holds p-almost
everywhere on 4. If D C C? is a strictly pseudoconvex domain or a bounded
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symmetric domain, one can show that for the domain algebra
A=AD)={feC(D); flp is analytic}

the triple (Als,,0a, pt) is regular for all finite positive regular Borel measures
poon 0 (see [4, 26 27]). For each such measure p, the abstract Hardy space
multiplication tuple

T.=(T.,....T.) € BH; ()" with  Hj(p) = Alp, "0 € L ()

is a regular A-isometry. If we choose p to be the canonical probability measure
o on Ju(py, then we obtain the usual Hardy spaces.

We are now able to define Toeplitz operators associated with a regular A-
isometry. To this end, let T € B(H)% be a regular A-isometry, U € B(H)? a
minimal normal extension of T, and p a scalar spectral measure of T'. For f €
L>(p), we call the operator Ty = PyVy(f)|n the concrete Toeplitz operator
with symbol f. It f € HY(u) = A™ C L>®(u), then T} is called analytic.
Since A is regular, Aleksandrov’s results on the existence of abstract inner
functions (cf. [4]) guarentee that the set

I,={0e HY (1) ; 10| =1 p-a.e. on 0a}

of all y-inner functions generates L>°(u) as a von Neumann algebra (see [28|
Corollary 2.5]). In the spirit of Brown and Halmos, we call an operator X €
B(#H) an abstract Toeplitz operator if

TiXTy— X =0

holds for all # € I,. The joint work of Eschmeier and Everard [37] shows
that under the condition that the von Neumann algebra W*(U) is maximal
abelian the sets of abstract and concrete Toeplitz operators coincide. This is,
for instance, true in the case T = T, € B(H?(n))? with U = M, € B(L*(u))%.
Since in the results of Davidson, and Guo and Wang Hankel operators appear,
we define the Hankel operator with symbol f € L>(u) by

Hy = (idy; —Pu) Vo (f)lu € B, HOH).
The generalization of the result by Guo and Wang reads as follows.

9 Theorem (Theorem [7.14; Theorem 8 in [30]). Let T € B(H)? be a regular
A-isometry with empty point spectrum, minimal normal extension U € B (7—2)‘1
and scalar spectral measure p € M (Da). Suppose that W*(U) is a mazimal
abelian von Neumann algebra. For X € B(H), the following statements are

equivalent:
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(1) XTy — Ty X is of finite rank for all f € HY (1),

1) X =Tr + F for some finite rank operator F' € B(H) and f € L*=(u
f
such that Hy € B(H,H ©H) has finite rank.

In our setting, the result of Davidson takes the following form.

10 Theorem (Theorem [7.18 Corollary 4 in [30]). Let T € B(H)? be a regu-
lar A-isometry with minimal normal extension U € B(’/:[)d and scalar spectral
measure ;1 € M (Da). Suppose that W*(U) is a mazimal abelian von Neu-
mann algebra. For p € [1,00) and X € B(H), the following statements are

equivalent:
(i) XTy — Ty X is in the Schatten-p-class for all f € HY (1),

(i) X =Ts+S for some Schatten-p-class operator S € B(H) and f € L>®(u)
such that Hy € B(H,H © H) lies in the Schatten-p-class.

To generalize Theorem [§ we focus on the case when A = A(D) for some
bounded domain D C C?% Note that map

rm: HZ(D) = L=(m), [ f7,

where f* denotes the non-tangential boundary value of f € H*>(D), is iso-
metric, 7,«-continuous and satisfies 7,,(f|p) = f|r for all f € A(D). We call
a scalar spectral measure p of a regular A(D)-isometry T € B(H)? a faithful
Henkin measure if there exists an isometric 7,+-continuous algebra homomor-
phism

ru: H(D) = L>®(p), f—=r(f)=f"
with r,(f|p) = flo,,, for all f € A(D).

11 Theorem (Theorem [8.12} Theorem 2 in [30]). Let T € B(H)? be a regular
A-isometry with respect to A = A(D), where D C C¢ is a bounded domain
such that the associated scalar spectral measure p € M; (9a(py) is a faithful
Henkin probability measure. Suppose that W*(U) is a mazimal abelian von
Neumann algebra. For p € [1,00) and X € B(H), the following statements
are equivalent:

(1) Ty XTy — X is in the Schatten-p-class for all 6 € 1,,,

(1) X = Ty + S for some Schatten-p-class operator S € B(H) and f €
L>(p).
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1. Preliminaries

In this chapter we recall some fundamental facts about subnormal operators
and reproducing kernel Hilbert spaces which will be needed in the sequel. All
Hilbert spaces are supposed to be complex. In the whole thesis, d will always
denote a positive integer.

1.1. Subnormal operators

Fix two Hilbert spaces # and 7. We call a tuple T € B(H)? of bounded linear
operators commuting if
Ty =151,

for all i,7 = 1,...,d. Furthermore, we use the notation 7% = (T7,...,T;) €
B(H)%.

We start with a well-known fact about the C*-algebra and the von Neumann-
algebra generated by a commuting tuple of normal operators.

1.1 Lemma. Let N € B(H)? be a commuting tuple of normal operators. Then
foralli,j=1,...,d, and hence, C*(N) and W*(N) are abelian.

The statement follows from the Putnam-Fuglede theorem (cf. |19, Theorem
IX.6.7]).

1.2 Definition. Let T' € B(#H) be a tuple of commuting operators, and let
M C H be a closed subspace.

(i) We call M an invariant subspace of T it TM C M for alli=1,... d.
We write Lat(7") for the set of all closed invariant subspaces of T

(ii) We call M a reducing subspace of T if M is an invariant subspace of T
and 7. We write Red(7") for the set of all closed reducing subspaces of
T.

13



1. Preliminaries

Since commuting tuples of normal operators admits a very rich spectral
theory, we are interested in commuting tuples which possess commuting normal
extensions or dilations. The following definiton can be found in [51), Definition

2 & 3.
1.3 Definition. Let 7' € B(#)? and S € B(#)* be commuting tuples.

(i) We call S an extension of T if # C H and S;h = T)h foralli =1,...,d
and h € H.

(ii) We call S a normal extension of T'if S is an extension of 7" which consists
of normal operators. If such an extension exists, we call T subnormal.

(iii) If S is a normal extension of T', we call .S minimal if the only reducing
subspace for S that contains H is the space H.

(iv) We call S a ([minimal] normal) coextension of T if S* is a (|minimall
normal) extension of 7. If a normal coextension exists, we call T' cosub-
normal.

Let T € B(H)? and S € B(H)? be commuting tuples. If there exists an
isometry 1: H — H, by an abuse of language, we call S an extension of T if

Siph = YT;h

for all i = 1,...,d and h € H. In other words, we identify H with ¢)(H) and
T with S’Im(q/,) S B(Im(¢>)d

Let H; and Hs be two Hilbert spaces. We say that commuting tuples T €
B(H,)¢ and S € B(H3)? are similar (unitarily equivalent) if there exists an
invertible (a unitary) operator U: H; — Ho such that

UT; = S;U

foralli=1,...,d.
The following result guarantees the existence and uniqueness of minimal
normal extensions.

1.4 Proposition. Let T € B(H)? be a subnormal commuting tuple with nor-
mal extension N € B(H)?. Then N is a minimal normal extension of T if
and only if

H=\/{N"“h; aeN andheH}.

Furthermore, minimal normal extensions are unique up to unitary equivalence
modulo a unitary operator which acts as the identity operator on H.

14



1.2. Reproducing kernel Hilbert spaces

Proof. By Lemma the closed linear span on the right is reducing for N.
Obviously, it is the smallest reducing subspace for N that contains H.
The second part follows from [51, Theorem 2]. O

In the following, we will denote by o(T') the Taylor spectrum of a commuting
tuple T € B(H)?. For further reading, we recommend [38].

1.5 Lemma. Similar commuting tuples T € B(H,)? and S € B(H2)? on
Hilbert spaces Hi and Hs, respectively, possess the same Taylor spectrum.

A proof of this lemma can be found in [38, Lemma 2.2.3].
Let T be a commuting tuple and N be a minimal normal extension of 7T'.

We call
on(T) = o(N)

the normal spectrum of T, which is well-defined by the last two results.
The following lemma is a reformulation of a well-known result by Athavale
(cf. [10, Proposition 2] and [0, Corollary 1 on p. 217]).

1.6 Lemma (Athavale). Let V. € B(H)¢ be a commuting tuple. Then V
satisfies S0 ViVi* = idy if and only if V is cosubnormal with o,(V*) C Sq,
where Sy denotes the unit sphere in CY.

1.2. Reproducing kernel Hilbert spaces

Since reproducing kernel Hilbert spaces play an important role throughout this
thesis, we provide some basic results. Here, we use [48| [11], [12] as guidelines.
For further reading, we recommend [7] and the books [58] 3].

Let X be a non-empty set and let £ be Hilbert space.

1.7 Definition. We call a Hilbert space H C £X a reproducing kernel Hilbert
space if the point evaluations

e H—=E, [ f(x)
are continuous for all z € X.

The following proposition follows from the Riesz representation theorem and
justifies the terminology introduced above.

1.8 Proposition. Let H C £X be a reproducing kernel Hilbert space. Then
there exists a unique function K: X x X — B(E), called the reproducing
kernel for H, which satisfies

15



1. Preliminaries

(i) K(,y)peH forallye X andn €&,

(1) (f, K(,y)n)y = (f(y), )¢ forall f €eH, ye X, andn € E.

1.9 Proposition. Let H C £X be a reproducing kernel Hilbert space with
reproducing kernel K. Then

(i) K(z,y) = 6.6, for all z,y € X,

(ii) the set
{K( ym;yeXneE}cH

is total, i.e., the closed linear span of {K(-,y)n; y€ X,n € E} is H.
Proof. (i) This is an easy calculation.

(ii) For f € {K(-,y)n; y € X,n € £}, we have

0= (f, K(-,y)n) = (f(v),m)

for all y € X and n € &, and hence, f(y) = 0 for all y € X. But this
means f = 0, and thus, {K(-,y)n; y € X,n € E}" = {0}. The result
follows. O

It is well known that the reproducing kernel of a scalar-valued reproducing
kernel Hilbert space can be calculated using an arbitrary orthonormal basis.

1.10 Lemma. Let H C C¥ be a reproducing kernel Hilbert space with repro-
ducing kernel K and orthonormal basis (e;)icr. Then

K(y) =7- Y e®)es
iel
for all y € X, where 7. denotes the norm topology.

Since the reproducing kernel Hilbert spaces in the next chapters will often
be defined on open subsets of C", the following example, which can be found
in [12, Example 1.1.3 (b)], will be useful.

1.11 Example. Let D C C¢ be open and let H C EP be a reproducing
kernel Hilbert space with reproducing kernel K. The following statements are
equivalent:

(i) H c O(D,€),

(ii) the map D — B(H,€&), z +— 0, is analytic,

16



1.2. Reproducing kernel Hilbert spaces

(iii) the kernel K is sesquianalytic, i.e., analytic in the first component and
antianalytic in the second component.

In this case, if £ is separable, then H is also separable.

1.12 Definition. A function K: X x X — B(€) is called positive definite if,
for all xq,...,2, € X,
(K (i, 7)) =1 € B(E")

is a positive operator.
We often use the trivial identification C = B(C) given by the isomorphism
B(C) = C, A~ A(1).

The connection between reproducing kernel Hilbert spaces and positive de-
finite functions is due to Moore (cf. [12, Theorem 1.1.5]).

1.13 Theorem (Moore). (i) The reproducing kernel of a reproducing kernel
Hilbert space is a positive definite function.

(i1) Every positive definite function is the reproducing kernel of a unique
reproducing kernel Hilbert space.

If K: X xX — B(€) is a positive definite function, we write Hg (E) for the
unique reproducing kernel Hilbert space from Moore’s theorem. In the case
& = C, we use the abbreviation Hg.

For a scalar-valued positive definite function K: X x X — C and a Hilbert
space £, the map

Ke = K -idg
is positive definite again. In this case, we use the abbreviation Hx, = Hg, ()
and say that Hg, is an inflation (of Hx along £) and K¢ is elementary (with
respect to K ). The following proposition gives us another perspective of such

reproducing kernel Hilbert spaces. A proof of this statement can be found in
[12, Proposition 1.2.2].

1.14 Proposition. Let K: X x X — C be a scalar-valued positive definite
function. Then there exists a unique Hilbert space isomorphism U: Hx @ € —

U(fen)=f-mn
forall f € Hx andn € E.

1.15 Definition. Let K: X x X — B(€) be a positive definite function.

17



1. Preliminaries

(i) We call Hg (E) irreducible if K(z,y) # 0 for all x,y € X and K(-,x) and
K(-,y) are linearly independent if = # y.

(i) We say that K is normalized at o € X if K(x,x¢) = idg for all z € X.

(iii) The space Hx(€) is called non-degenerate if, for every x € X, the point
evaluation ¢, is onto.

(iv) We say Hg (&) has no common zeros if, for every x € X,
Im(d,) = {f(x) ; f € Hg(E)} #{0}.

It is clear that irreducibility implies the absence of common zeros.

1.16 Lemma. Let K: X x X — B(E) be a positive definite function. The
following assertions are equivalent:

(i) Hk(E) has no common zeros,
(1)) K(xz,x) #0 for allz € X.

Proof. First suppose that (ii) holds and let € X. Then there exists n € &
such that K (z,z)n # 0. Hence,

5I(K(>35)77) = K(WU)"? 7é 0,

i.e., Im(d,) # {0}.
Now suppose that (i) holds. We observe that

[(F@),m* = [ ECaml® < VAP NEC2)nl” = 11 (K (2, 2)n,0)

forall f € Hx(E) and n € €. Thus, if there exists x € X such that K (z,z) = 0,
then f(x) = 0forall f € Hx(E), i.e., Im(d,) = {0}. But this is a contradiction
and hence, K(z,z) # 0 for all z € X. O

1.17 Proposition. Let K: X x X — B(E) be a positive definite function.
The following assertions are equivalent:

(i) Hk(E) is non-degenerate,
(ii) for all x € X, the point evaluation d, has a right inverse,

(iii) for all x € X, the operator K(xz,x) € B(E) is invertible.

18



1.3. Multipliers

If Hi (&) contains the constant functions, then Hy (E) is non-degenerate. Fur-
thermore, if Hx () is an inflation, the above are also equivalent to

(iv) Hg(E) has no common zeros.

A proof of this proposition can be found in [I2] Proposition 1.3.2].
We conclude this section with a sufficient criterium for irreducibility.

1.18 Proposition. Let K: X x X — B(E) be a non-vanishing positive definite
function which is normalized at some point xo € X. If Hi(E) is a separating
set for X, then Hi(E) is irreducible.

Proof. Let x,y € X with x # y and let a, 5 € C such that
aK(-,x)+ BK(-,y) =0.
Since K is normalized at zy, we obtain f = —a and hence,
a(K(-,x) = K(,y)) = 0.
Let f € Hi(E) be a separating function for 2 and y. Then
0= (f,a(K(-,x) = K(y))m) =a{f(x) = f(y),n)

for all n € £. Thus
a=0=7,

ie., K(-,z) and K(-,y) are linearly independent. O

1.3. Multipliers

Let X be a non-empty set, let £, &, E be Hilbert spaces and H C X, H, C
EX,Hy C EF reproducing kernel Hilbert spaces. The corresponding reprodu-
cing kernels are denoted by K, K, and Kj.

1.19 Definition. (i) We call a function ¢: X — B(&;, &) a multiplier be-
tween H; and H, if, for f € H;,

o fr X =&, v pa)f(z)

belongs to Hs. The set of all multipliers between H; and H, is denoted
by M(H1,Hsz). We use the abbreviation M(H) = M(H, H).
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1. Preliminaries

(ii) For ¢ € M(H4,H2), the operator
M¢2H1—>H2, fl—)QOf

is called the multiplication operator with symbol ¢. The set of all mul-
tiplication operators between H; and Hs is denoted by M (Hy, Hs). We
use the abbreviation M(H) = M(H,H).

By the closed graph theorem, it is easy to see that M(H;,Hz) is a linear
subspace of B(H1, Hs).
If H; is non-degenerate, then the map

M(Hl,Hg) — M(Hl,Hg), QY — MQO
is injective and hence, the map
It 30y © M(Ha, Ha) = [0,00), @ = [[ M|
is a well-defined norm on M(Hy, Hs), the multiplier norm.

1.20 Lemma. For every p € M(H1,Hs), we have

M (- y)n = Ki(, y)e(y)™n
forally e X andn € &,.
Proof. We have

forall f e Hy, ye X, and n € &,. n

The following result, which gives a sufficient condition for multipliers to be
bounded, is a special case of [12, Corollary 1.7.7].

1.21 Proposition. Let H C CX be a scalar-valued reproducing kernel Hilbert
space and let Hy C EX, Ho C E5 be inflations of H. If H is non-degenerate,
then

1elloe < 11l perer 340)
for all p € M(H1,Ha).
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1.4. Unitarily invariant spaces and regularity

1.22 Proposition (Barbian). Let H; C &%, Ha C & be reproducing kernel
Hilbert spaces. For x € X and i = 1,2, we denote by 0, ,: H; — &; the point
evaluation at x on H;. Furthermore, we suppose that H, is non-degenerate.
Then, for T € B(H1,Hz), the following statements are equivalent:

(1) Tker(dy,) C ker(da4) for allx € X,
(i) T*Im(d;,) C Im(65 ) for all x € X,
(1ii) T € M(Hq,Hs).

A proof can be found in [I3, Theorem 2.1] or [12, Proposition 1.7.9]. The
following class of multipliers will be important in Chapter [4

1.23 Definition. We call a multiplier inner if the corresponding multiplica-
tion operator is a partial isometry.

1.4. Unitarily invariant spaces and regularity

We will now examine special classes of reproducing kernels on the open unit
ball B; more closely.

1.24 Definition. Let H be a scalar-valued reproducing kernel Hilbert space
on B, with reproducing kernel K. We call H a unitarily invariant space on By
if K satisfies

KUz Uw) = K(z,w)

for all z,w € B; and every unitary linear map U: C? — C9.

The reproducing kernel of a unitarily invariant space H C O(By) has a quite
particular form, as the the following propositon shows (cf. [49, Lemma 2.2]).

1.25 Proposition. Let K: By x By — C be a function. The following state-
ments are equivalent:

(i) K is analytic in the first component, normalized at 0, and is the repro-
ducing kernel of a unitarily invariant space on By,

(i1) there exists an analytic function

k:D — C, m—)ianz",

n=0
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1. Preliminaries

where ag = 1 and a, > 0 for alln € N, such that
K(z,w) = k({(z,w)) = Y an (z,w)"
n=0

for all z,w € By.

1.26 Convention. From now on, let Hx be a unitarily invariant space on By
whose reproducing kernel is of the form K(z,w) = k({(z,w)) (z,w € By) for
some analytic function k: D — C, 2z — Ziio a, 2" with ag = 1, a,, > 0 for all
n € N.

By [44], Proposition 4.1] and Example we obtain the following result.

1.27 Proposition. The family (\/Vaz®)aend, where v, = a‘a|% for a € N¢,
18 an orthonormal basis for Hi . In particular, we have

Clz] = Hx € O(By).
Let i € {1,...,d}. We define
(M, f)(2) = z:f(2)
for all f € Hx and z € B,. By [44, Corollary 4.4], the map
M, : Hx — Hg
is a well-defined bounded operator on H if and only if sup,,cy an/an+1 < oo.

1.28 Convention. From now on, we make the additional assumption that

sup < 00.

neN Qp41

We call the commuting tuple M, = (M,,,...,M,,) € B(Hg)? the K-shift
on HK.
By

H, = Zfaza; fa € Cfor |of =n p C C[z]

lal=n

we denote the set of all homogeneous polynomials of degree n € N.
For convenience, we set a,, = 0 for all negative integers n and ~, = 0 for all
a € Z* with o; < 0 for some i € {1,...,d}.
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1.4. Unitarily invariant spaces and regularity

1.29 Lemma. We have

(i) M2Pz* = 2222070 for all a, f € N,

(i1) Zle M., M} = TSOT- D o 22 Py, , where Tsor denotes the strong ope-

n=0 a,

rator topology on B(Hp).

Proof. (i) Let o, B8 € N For 6 € N%, we have
(M2, 2%) = (2%, MP2°)
— <Za7zé+5>

%, if o =0+,
0, ifa#p+9

B <—7‘j/;ﬁz°‘_6, z5> , ifa=p8+0,
0, it a # B +0.
(ii) Since
a o] —1)!
Yoa—e; lal=1"(a—¢,;)! . a|a|71&
Yo CL\OA% a|o¢| |O[|

for all « > e; and ¢ = 1,...,d, we conclude with (i) that

d d
e Uy
ZMziM;ZO‘ = Jazei ja _ dn-l o
i=1 i—1 e Un
for all n € N and a € N? with |a| = n. O

We conclude this chapter by looking at the case when M, is essentially
normal. For this purpose, we first recall the definition and some fundamental
results.

1.30 Definition. Let T € B(H)? be a commuting tuple. We say that T is
essentially normal if T; is essentially normal for all © = 1,...,d.

1.31 Remark. A commuting tuple 7' € B(H)? is essentially normal if and only
if

I/, ~T1}

is compact for each ¢,7 = 1,...,d. This is a consequence of the C*-algebra
version of Lemma [T.1]
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1. Preliminaries
1.32 Lemma. The K-shift M, on Hg is essentially normal if and only if

. a an—1
lim E——— =0.

This result was obtained in [44, Corollary 4.4]. By [44, Theorem 4.5], we can
calculate the spectrum and essential spectrum of essentially normal K-shifts.

1.33 Lemma. Suppose that the K-shift M, on Hy is essentially normal. For

a 1/2 a 1/2
5= (lim inf — ) and t= (lim sup — ) ,
n—=00  Qp41 n—oo Anp41

we have
o(M,)={z€C%; |2| <t} and (M) ={z€C’; s<|z| <t},
where oo(M.) denotes the essential Taylor spectrum of M,.

1.34 Remark. Let (z,)nen be a sequence in R with z,, > 0 for all n € N. Then

lim inf < liminf ¥z, <limsup {/z, < limsup x’n-i—l.

n—oo Iy n—oo n—o00 n—o0 L,

Tni1

In the setting of the last lemma, if the radius of convergence of k is 1, we

have

Qn, an

s? = lim inf <1 <limsup =2

n—=00  (n41 n—oo  (Ap4l

ie.,

Sq C 0e(M,) C a(M,).
If M, € B(Hg)? is essentially normal, we have that
K(Hg) C C*(M,)
by [44], Proposition 2.1] and [8, Corollary 2 of Theorem 1.4.2].
1.35 Definition. We call Hg regular if

. anp
lim =1.
n—oo an+1

Note that our notion of regularity is stronger than the one in [44].

1.36 Remark. If Hy is regular, then, by Lemmas and M, € B(Hg)*
i,

is essentially normal with o(M,) = B, and 0.(M,) = Sy and, by Remark
the radius of convergence of k is necessarily 1.
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The following result is a particular case of [44, Theorem 4.6].

1.37 Theorem (Guo, Hu, Xu). If Hy is reqular, then there is an exact se-
quence of C*-algebras

0 K(Hg) < C*(M,) 5 O(Sq) —

where 7 s a unital x-homomorphism uniquely determined by w(M,,) = zs,
fori=1,...,d. In particular, the operator idg, — Z?Zl M., M, is compact.

1.5. The setting and examples

The irreducibility of our unitarily invariant space Hg can easily be character-
ized in terms of the function k.

1.38 Lemma. For Hy as before, the following are equivalent:
(i) the function k: D — C has no zeros in D,
(i) Hg is irreducible.

Proof. Since k has no zeros if and only if the reproducing kernel K is non-
vanishing, the result follows by the fact that

Clz] C H
holds and Proposition [I.18] O

1.39 Convention. For the rest of Part [[] of this thesis, we always suppose
that, in addition to Conventions [I.26] and [1.28] the function k: D — C has no

Z€eros.

1.40 Remark. Since 1 € H, the space Hy is non-degenerate.
By Lemma [1.10] and Proposition [1.27, we have that

w) = Z Va2 OW

a€Nd

for all z,w € B;. One can show that

:{fzzfazaeomd, AP = Z”f‘*“ }

a€eNd acNd
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Since k has no zeros in the unit disc, the function

1 1
) _—
? —>C,zwk<z)

is again analytic and hence admits a Taylor expansion
L) =3 e (zeD)
—(2) = Cn2 z
k n=0

with a suitable sequence (¢;,)nen in R. Note that ¢y = 1.
In the following, we will use the convention

— =0.
oo

1.41 Remark. (i) By standard results on Abel-summability, we always have
}’I_IEZO%T = Zoan € (1, 00].

(ii) If Y7, ¢, is convergent, then
- 1
Ch = =5 — € [0, 1)
Indeed, by Abel’s limit theorem, we have

00 o)
i " 1 1

E Cp = 11IM E CpT = 11Im %) = 50 .

n

= r—1 p— r—1 ano anT Z

n=0 an

1.5.1. Complete Nevanlinna-Pick spaces

The following definition is a combination of the Definitions 5.12 & 5.13 and
Exercise 5.14 in [3].

1.42 Definition. Let K : X x X — C be a scalar-valued positive definite func-
tion. We call Hg a complete Nevanlinna-Pick space if, whenever x4, ...,z, €
X and Wy,..., W, € B(*(N)) such that

((de2(e) =WiW) K (, gcj))”j:1 € B(*(N)")

,L"
is positive, then there exists a multiplier ¢ in the closed norm unit ball of

M(Hg (¢*(N))) such that
p(z;) =W,

foralli=1,... n.

26



1.5. The setting and examples

The following generalization of [3, Theorem 7.33] by Hartz (cf. [49, Lemma
2.3]) gives us a criterion for our space to be a complete Nevanlinna-Pick space
by the means of the Taylor coefficients of the reciprocal of the reproducing
kernel.

1.43 Proposition. Let Hg be a reproducing kernel Hilbert space that satisfies
Convention[1.39. Then the following assertions are equivalent:

(i) Hg is a complete Nevanlinna-Pick space,
(ii) we have ¢, <0 for alln > 1.

1.44 Example. Let ¢ < 0. The reproducing kernel Hilbert space H, with
reproducing kernel

Ko:ByxBy = C, (z,w) = Y (n+1)7 (z,w)"
n=0

is an irreducible complete Nevanlinna-Pick space by [3, Corollary 7.41]. The
space H corresponds to the Hardy space (d = 1) or the Drury-Arveson space
(d > 2), and the space H_; coincides with the Dirichlet space. Furthermore,
H, is regular.

If our space Hg is a complete Nevanlinna-Pick space, then the following re-
sult by Greene, Richter and Sundberg [41], Proposition 4.5] provides a sufficient
condition for Hy to be regular.

1.45 Lemma. Let Hg be a reproducing kernel Hilbert space that satisfies Con-
Uentz'on and is a complete Nevanlinna-Pick space. Suppose that )" c, =
0 and either Y " nc, > —00 or (a,)nen s eventually nonincreasing. Then
Hy is reqular.

Further results on Nevannlinna-Pick spaces can be found in [3].

1.56.2. Weighted Bergman spaces

Other important examples are generalized weighted Bergman spaces. These
spaces are the irreducible unitarily invariant spaces on B; with reproducing

kernels
1

K=KY:B;xBy—C, (z,w) = ——,
(1= (zw))
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where v is a positive real number. In this case, we have

and

for all n € N. Since

agf) n—+1
o T nts !
an+1 n—+v

as n — oo, we see that Hy) is regular. Furthermore, if we define
ng=min{n € N; (n—1) —v > 0},

then, for all n > ngy, we have

07(1”) <0
if ng is even and

>0
if ng is odd.

If v > d, then
HK(V) = O(Bd) N LQ(Bd, dU,,),
where )
v 2\v—d—1
dv, (2) = m(l = [2]%) dA(z) (2 € By

is a probability measure on B, which is absolutely continuous with respect to
the Lebesgue measure A on B,. These spaces are studied in [65].
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2. A geometric model

Let H be a Hilbert space and 7' € B(#) a bounded linear operator. Then T
is a contraction if and only if idy, —=TT™* > 0. Let

1
1—zw

KHQ(]D))I DXD%C, (Z,’U)) —>

be the reproducing kernel of the Hardy space on the unit disc H*(D). If we
replace z with 7" and w with T, we see that the inequality above can be
written as

1
KHQ (D)

(T, T) > 0.

Hence, contractions are related to the Hardy space on the unit disc. Further-
more, the theory by Sz.-Nagy and Foias [62] shows that every contraction is
unitarily equivalent to a restriction of an operator of the form ((M,®idp)®U)*
to an invariant subspace, where M, is the shift operator on H?*(D), D is a
Hilbert space, and U is a unitary operator. The problem of characterizing
operators which satisfy an inequality obtained in a similar way from other re-
producing kernel Hilbert spaces has received considerable attention over the
last couple of decades. One of the main problems is to give sense to the ex-
pression 1/K(T,T*) for an arbitrary reproducing kernel K. In this chapter,
the upcoming definition of the aforementioned term is inspired by the work of
Arazy and Engli§ [0], and Clouatre and Hartz [I§].

Let H be a Hilbert space, T € B(H)? a commuting tuple, and let Hyx C
O(B,) be a reproducing kernel Hilbert space whose kernel K : By x By — C is
of the form K(z,w) = k((z,w)) (z,w € B,) with a zero-free analytic function
kE:D— C, z — Zzozoanz" such that ag = 1, a, > 0 for all n € N, and
SUDpen An/Ant1 < OO.

For N € N| let

(%)N (z,w) = Z cn (z,w)" = Z c|a||3—l!zawa (z,w € By)

n=0 |a‘§N
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2. A geometric model

be the Nth partial sum of 1/K. We define
) @ an (idy) = > ¢ [of! e
K N nYrT H |ex] al
lo|<N

for all N € N, where

d
or: B(H) = B(H), X = Y T,XT".

i=1

With these preparations, we set

—00

1 1

?(T, T ) = T80T- hm (§)N (T, T*)
if the latter exists. Note that in case where 1/K is a polynomial in z and 0,
the limit always exists.

2.1 Definition. We call a commuting tuple 7' € B(H)? a K-contraction if
1/K(T,T*) exists and defines a positive operator.

Note that, for n € N* and the kernel K™ defined as in Section [1.5.2] _ the

identity
1 * . | [e% *Qv
w1 =300 () X G

j=0 lal=5

holds.
For m € N*, we call a commuting tuple 7' € B(H)? an m-hypercontraction
if T is a K™-contraction for n = 1,...,m (cf. [55]).

2.2 Remark. Let T € B(H)? be a commuting tuple.
(i) If d = 1, the K(W-contractions are precisely the contractions.

(ii) Let m € N*. By [55, Lemma 2|, T" is an m-hypercontraction if and only
if T is a KM_contraction as well as a K™ _contraction.

In the one-dimensional case, a contraction T' € B(H) is said to be of class
Cy if
TSOT- lim (T*)N =0.
N—o00

We extend this notion to the case of K-contractions following ideas of [5, [6].
First we recall a well-known convergence result for sequences of selfadjoint
operators.
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2.3 Lemma. Let (Ay)nen be a decreasing sequence of selfadjoint bounded
linear operators on H. The following are equivalent:

(i) (An)nen is norm-bounded,

(11) Tsor-limy_ oo AN ezists.
Furthermore, the following statements are equivalent:
(i1i)) Ay >0 for all N € N,

(iv) Tsor-limy_ o Ay > 0.

Proof. (i) = (ii): By assumption, there exists a non-negative real number
C such that
AN < C

for all N € N. Define By = Ay — Ay for all N € N. The sequence (By)yen
fulfills
0 < By < Bys1 < 2C - idy

for all N € N. Hence, there exists a selfadjoint operator B € B(H) such that
TSOT- A}lgloo By = B.

Therefore, we obtain
TSOT- lim AN = AO — B.
N—o0

(i) = (i): This follows immediately from the Banach-Steinhaus theorem.
(iii) <= (iv): This is clear. O

The following definition originates from [5] and [6].
Let T € B(H)¢ be a K-contraction and define

N
: n 1 * : a 1 * *Q
S (T) = idy — n§:0: a0} (—F_, (T.T )) = idy, ‘ §I<N: 7aT (—F, (T.T >> T

for all N € N. We suppress the superscript K if the reproducing kernel is clear
from the context. Since we have

1
(1) = Byall) = ayaro™ (0.1)) 20
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2. A geometric model

for all N € N, (¥n5(T"))nen is a decreasing sequence of selfadjoint bounded
linear operators. Furthermore, we write

EK(T) = T80T- lim EK7N<T)
N—o0
if the latter exists. Again, if the reproducing kernel is clear from the context,
we suppress the superscript K.

2.4 Corollary. Let T € B(H)? be a K-contraction. The following are equiva-
lent:

(i) (En(T))nen is norm-bounded,

(i1) 3(T) exists.
Furthermore, the following statements are equivalent:
(iii) Xn(T) >0 for all N € N,

(iv) (T) > 0.
2.5 Remark. If T € B(H)? is a KM-contraction, then

N
Sk n(T) =idy — Y of (idy —or(idy))

n=0
= ldH - (ldH —OCZJYJ'_l(idH)) = UTJY—H(id'H)
for all N € N, and hence,

Sxo(T) = 1sor- lim o7 (idy,) > 0.

The following proposition is the cornerstone for our model theory which is a
generalization of the one-dimensional case mentioned at the beginning of this
chapter.

2.6 Proposition. Let T € B(H)¢ be a K-contraction such that X(T) emists.
The map

Yr: M — He ®Dr, h= > 7a(2* @ DrT*h),

aeNd
where Dy = (1/K(T,T*))"* and Dy = Dy, is a well-defined bounded linear
operator. Furthermore, we have
[rhl* = |[B]* = (S(T)h, h)
for all h € H and
UrTy* = (M, ® idp,. )"
forallt=1,...,d.
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Proof. Let h € H. With

(0% [e% ]' * * QX
> Iz @ DrTn)* = ) 7a <T (T )T, h>

lo|<N lo| <N

- éan <aT” (%(T, T*)) h,h>
— ) - <(idﬁ—ioanaﬁ (2o T*)>> n h>
_ Al — (S (T)h )

B (ST,

as N — oo and the paragraph after Remark it follows that the map
is a well-defined bounded linear operator with

[brhl* = ||AlI® = (S(T)h, k) < (L+[|S(D)]) 1]
for all h € H. In view of

S = 0 (e Dy

aeNd
- Z Ya—e; (2%77 @ DrT*h)
a>e;
= 3 (P et
a>e; Ta
= (M., ®idp,)" Y 7a(z* @ DrT**h)

aeNd

= (M., ® idp,)*Yrh
foralli=1,...,d and h € H, the remaining assertion follows. O

2.7 Definition. Let T € B(H)? be a K-contraction. If X(T') = 0, we call T'
K -pure.

2.8 Remark. In the setting of Proposition [2.6] if 7 is K-pure, then t¢r is
an isometry. Conversely, if ¥r is a well-defined isometry, then the proof of
Proposition [2.6| shows that

E(T) = T80T lim ZN(T) = 0.
N—o00
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2. A geometric model

We are now interested in sufficient conditions for M, to be a K-contraction.
The following proposition, which originates from [5, Proposition 13|, reduces
our problem to the bare existence of 1/K (M., M}).

2.9 Proposition. Suppose that 1/K(M,, M*) exists and let £ be a Hilbert
space. Then we have

1
E<MZ ®ide, (M, ® ide)*) = Pc ® idg > 0.

Proof. By Lemma we have

< <%)N (M, @ ide, (M, ® ide)* ) (K(-,w) ®n), K(-,2) ® C>

= (Z cn (2, w>n> K(z,w)(n,¢)

n=0

forall N e N, z,w € By and n,( € £, and hence,

(e © e, O 8306 ) (K () 1), K 2) 9 ) = (1.0

for all z,w € By and n,( € £. Furthermore, we see that

(Pe @ide)(K (- w) @n), K(-,2) @ () = (1, K(-,2)) (n, ) = (n,¢)

for all z,w € By and n,¢ € €. Since {K(-,w)®@n; weBy,ne &} C Hx ®E
is total by Proposition the result follows. O

Let (dn)nen € ¢°(N). We write [d,],, € B(Hg) for the diagonal operator
with respect to the orthogonal decomposition Hx = &,,cnH,:

([, : Hk = Hi, Y far> > dfo.
n=0 n=0

Since

M., [dnl, f = du(zifn) = [dna], M-, f
n=0

fori=1,...,dand f =) "7 f, € Hg, it follows from Lemma that

J : J—1 n—1 j—2 n—2 Un—1 n—j
oy, (idmy ) = oy = ol n-2 — =
an |, an—1 Qan |, an |,
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for j € N. Hence

for N € N.

Using these observations, we give an alternative proof of a result due to
Chen (cf. [I7, Proposition 2.1 & Lemma 2.2]).

2.10 Proposition (Chen). Suppose that there exists a natural number p € N
such that

cn >0 foralln>p or ¢, <0 foralln>p

holds. Then 1/K (M., M?) exists and Y~ ¢, converges absolutely.

Proof. Let us suppose that there is an index p > 1 such that ¢; (j > p) have the
same sign. Then, by standard results on Abel—summablhty, the series Z
converges absolutely, and, by Remark - ii) ] oG =1/>"7 i—0aj € [O 1)
For N > p, we obtain

N N, N,
o (i In—j =y
E cjoyy, (idmy ) g ¢j = sup g ¢j
T . ap, n>p a n>p
j=p j=p n j=p
Using the fact that
n
E Cilp—j = 0
Jj=0
for n > 1, and the estimates
Ap—j _ Op—j An—j+1  On-1 < o
Qp, Ap—j41 Ap—j+2 G,
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2. A geometric model

for 0 < j <n, where s = sup,,cy @n/an+1, we find that

N a
Y el =L <
j=p On

for n, N > p. But then

N p—1
sup chaﬁ/lz(idHK) < (Z |Cj|> max(s, 1)? < oo,
NeN || 2 —
J=p 7=0
and hence, by Lemma [2.3] 1/K (M., M}) exists. O

2.11 Property. There exists a natural number p € N such that
cpn>0foralln>p or ¢,<0foralln>p

holds.

Note that the examples in Section satisfy Property (cf. the corres-

ponding subsections).

2.12 Proposition. Suppose that 1/K(M,, M}) exists and let £ be a Hilbert
space. Then M, ®ide € B(Hyg ® €)% is K -pure.

Proof. Let N € N, w € B; and n € £. By Lemma and Proposition [2.9
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we have

EN(M ®1d5 )@T})

i Z%M“J%MWW ®ids | (K(-w) ©1)

[ %
(

idpe — > YaMIPM | K(w) | @7

|a| <N

= K(,U]) - Z ’YOzMzOCP(CwaK('vw) ®77

la|<N

= | K(hw) = > vaMiw™ | @1

lo|<N

= (idHK _ZPHn> ® ids) (K (-, w) @n).

n=0

Since {K(-,w)®@n; weBy,ne } C Hr ® E is a total subset by Proposi-
tion and Xy (M, ® idg) is a bounded operator, we conclude that

N
Sn(M, ®idg) = (idHK -> PHn> ® ide .

n=0

From this equality we see that (X (M, ®idg))yen is a decreasing sequence of
positive operators which is 7gor-convergent to 0. O

2.13 Lemma. Let T € B(H)* and S € B(H)? be commuting tuples on
Hilbert spaces H and H, respectively, and suppose that there exists an isome-
try IL: H — H such that TITF = SHI for alli = 1,...,d. If S is a (K-pure)
K -contraction, then T is a (K-pure) K-contraction.

Proof. Let S € B(H)® be a (K-pure) K-contraction. We have

for all & € N and hence,
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2. A geometric model

for all N € N. By taking limits, we find that
1 (T, 7T*) =11I" ! (S, 511
KV T K

and hence that
SN(T) =1I"SN(S)1T

for all N € N. It follows that T"is a K-contraction and that 7" is K-pure if S
is K-pure. O

2.14 Remark. If we suppose that Property holds, then Hy admits a strong
1/K-calculus in the sense of [6, Definition 1.1].

The next result can also be deduced from [6, Theorem 1.3 or Corollary 3.2|.

2.15 Theorem. Suppose that 1/K (M., M}) exists, and let T € B(H)? be a
commuting tuple. The following statements are equivalent:

(i) T is K-pure,
(i) there exist a Hilbert space D and an isometry 11: H — Hx Q@D such that
7" = (M,, ® idp)*1I
foralli=1,...,d.

Proof. (i) = (ii): This follows from Remark 2.8
(i) = (i): This follows from Proposition [2.12| and Lemma [2.13] O

For K = K™ (v > 0), the last result follows also from [33, Corollary on p.
59].

Besides K-pure commuting tuples, the following class of K-contractions will
turn out to be useful.

2.16 Definition. We call a K-contraction T' € B(H)? strong if X(T) exists,
is a positive operator, and satisfies the identity

B(T) = or(R(T)) = 3 TR(T)T

2.17 Remark. In the above definition, the positivity condition corresponds to
[6, (5.7)], and the identity to the last calculation on p. 857 in [6].

Every K-pure commuting tuple is a strong K-contraction. Hence, by Propo-
sition the K-shift M, € B(Hg)? is a strong K-contraction if we suppose
that 1/K (M., M}) exists.
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2.18 Definition. Let T € B(H)? be a commuting tuple. We call T
(i) a row contraction if
d
or(idy) = ZTZT,* < idy,
i=1
ie., T is a KM-contraction,
(i) a spherical coisometry if or(idy) = idy,

(iii) a spherical unitary if T is a spherical coisometry and a tuple of normal
operators.

By definition, it is clear that if V € B(#H)? is a strong K-contraction satis-
fying 1/K(V,V*) = 0, then V is a spherical coisometry. For a converse, the
property » ¢, = 0 will be sufficient, as the following proposition shows.

2.19 Proposition. Suppose that > "> ¢, converges, and let V € B(H)? be a
spherical coisometry. Then:

(i) V is a strong K-contraction.
(i) If Y0 o =0, then V satisfies 1/K(V,V*) = 0.
(iii) If Y0 o cn > 0, then V is K-pure.

Proof. Suppose that 3°° ¢, converges. By Remark [1.41} it follows that
Yo oCn €10,1). Since

for all h € H and all N € N, we see that

%(V, V) = (Z cn) idy .

n=0

By Remark [1.41} we have that

%(V, V) = (i Cn) idy = (Z“};a) idy > 0.

n=0 n=0 """
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2. A geometric model

Furthermore, we observe that

Su(V) =i =Y ajol (%(v, v*)) . (1 - %) idyy

for all N € N.
If 377y a; = oo, then Xy (V) =idy for all N € N and
ov(2(V)) = ov(idy) = idy = X(V).
If 3777 a; < oo, then (V) =0 and V is K-pure. O
2.20 Lemma. Let Sy € B(H,)? and Sy € B(H3)? be (K -pure/strong) K -con-

tractions on Hilbert spaces Hy and Ho, respectively. Then Sy @ Sy € B(H1 &
Ho)¢ is a (K -pure/strong) K -contraction.

Proof. The result follows from the observations that
L (5@ %, (S ® $)7) = (81, 8) @ — (S5, 52)
K 1 2 1 2 — K 1,1 K 2912
and that

05,0, (NN (51 @ S2)) = 05, (Xn(S1)) @ 05, (Xn(52))
for all NV € N hold. OJ

2.21 Lemma. Let T € B(H)* and S € B(H)® be commuting tuples on
Hilbert spaces H and H, respectively, and suppose that there exists an isometry
II: H — H such that IIT; = S foralli = 1,...,d. If S is a (K-pure/strong)
K -contraction, then T is a (K-pure/strong) K -contraction.

Proof. The result follows from Lemma (see also its proof) and the iden-
tities

or(Un(T)) =M og(Xn(S))IT

for all N € N. O
2.22 Proposition. Suppose 1/K (M., M) exists and thaty - ¢, converges.
Let T € B(H)? be a commuting tuple. If there exist Hilbert spaces D, K, a
spherical coisometry U € B(K)?, and an isometry 1l: H — (Hx @ D) & K

such that
7T = (M., ® idp) & U;)*11

forallt=1,...,d, then T is a strong K -contraction.

40



Proof. By Propositions and [2.19, we have that M, € B(Hg)? and U €
B(K)? are strong K-contractions. The result follows now from Lemmas m
and 2.21] O

Our goal is to show that the statements in the last proposition are actually
equivalent. Furthermore, we can achieve U to be a spherical unitary.
The next result is an adaption of [55, Lemma 10| and [6] Theorem 5.1].

2.23 Lemma. Let T € B(H)? be a strong K -contraction. Then there exist a
Hilbert space L with S(T)Y*H C L, and a spherical unitary W € B(L)? such
that

S(T)Y2Th = Wrs(T)Y2h

forall h € H and v = 1,...,d. Furthermore, L and W can be chosen such
that

L=\/{WeS(T)"?h; a e N* and h € H}
holds.

Proof. We can decompose
H = ker (S(T)"?) & Im (X(T)/2)

and we set Lo = Im (3(T)/?).
For h € H,

SIS ATz A = {or(S(T)h by = (S(T)h. by = [|S(T)Ph]|

Hence, there are bounded linear operators V;: Lo — Lo with
VES(T)YV2h = S(D)Y*Trh (heH,i=1,...,4d).

The tuple V = (V4,...,Vy) € B(Ly)? is commuting and satisfies
d 2 2
2 V(@) hlg, = =) ],

for all h € H. Since X(T)Y?H C Ly is dense, we conclude that

Lo— L3 h (VR

7
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2. A geometric model

is an isometry. But then V' € B(L()? is a spherical coisometry. By Lemmal|l.6)
there exist a larger Hilbert space £ D Ly and a tuple W € B(L£)? which is a
spherical unitary such that W* is the minimal normal extension of V* i.e.,

L£=\/{WS(T)/*h; a € N" and h € H} D L.
The calculation
WrS(T)?h = VS (T)Y2h = S(T) VT h
foralli=1,...,d and h € H ends the proof. O

In the setting of Lemma [2.23] if T" is K-pure, one can choose £ = {0}.

2.24 Remark. Let T € B(H)? be a strong K-contraction. Using the notations
from Proposition [2.6] and Lemma [2.23] we define

Ur = (Yr ®X(T)?) 0j: H — (Hx @ Dr) ® L,

where

JoH—=HDOH, h—= hdh.

Then ¥ is an isometry with
U Ty = (M., ® idp,) & W;) U7
for i = 1,...,d. Furthermore, one can achieve that
L=\/{W"S(T)"*h; a € N" and h € H}.

If we combine Remark and Proposition [2.22] we obtain our model the-
orem for strong K-contractions.

2.25 Theorem. Suppose that 1/K(M,, M) exists and that Y " c, con-
verges. Let T € B(H)? be a commuting tuple. The following statements are
equivalent:

(i) T is a strong K-contraction,

(ii) there exist Hilbert spaces D, K, a spherical unitary U € B(K)%, and an
isometry I1: H — (Hxg ® D) ® K such that

T} = (M., ®idp) ® U)'TI

forallv=1,...,d.
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In particular, by Proposition [2.10] the above result holds if we suppose that
Property holds.

2.26 Remark. Suppose that the setting of Theorem holds. If >~ e, > 0,
then Propositions [2.12] and [2.19] show that the classes of K-pure commuting
tuples and strong K-contractions coincide.

By specializing Theorem 6.3 from [6] to the case of the unit ball, one obtains:

2.27 Theorem. Let v > 0 and let T € B(H)? be a commuting tuple such that
1/KW(T, T*) exists, L) (T) > 0, and there exists ¢ > 0 such that

or(Egw (1)) < ¢ Bgo (T).

Then there exist a Hilbert space K, a commuting tuple U € B(K)? with
1/KW(U,U*) =0, and an isometry 11: H — (Hgw) @ H) ® K such that

7T = (M, ® idy) & U;)*11
foralli=1,... d.

2.28 Remark. Let K = K® with v > 0. One can show that

> 1
W= =0
LSS

n=0 Qn

in this case. Hence, by Proposition [2.19} every spherical coisometry V € B(H)?

satisfies the condition .
Thus, the case o7 (X k) = X in Theorem is contained in Remark

(and Theorem [2.25]).

To strengthen Theorem [2.25] we elaborate the cases when M, is essentially
normal or Hy is even regular.

2.29 Lemma. Suppose that M, € B(Hg)? is essentially normal and let T €
B(H)? be a commuting tuple. If there exists a unital, completely contractive
linear map

©: span {idHK,Mzi,MZiM; ci=1,... ,d} — B(H)

with
o(M,,) =T, and (M, M})="TT’
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for all i = 1,...,d, then there exist Hilbert spaces D,IC, a tuple of normal
operators U € B(K)?, and an isometry I1: H — (Hx ® D) ® K such that

T = (M, ® idp) & U;)"11

forallv=1,...,d.
If Hg is reqular, U can be chosen to be a spherical unitary.

Proof. By Arveson’s extension theorem (cf. [57, Theorem 7.5]), we find a
unital, completely positive map ®: B(Hg) — B(#) such that ® extends ¢.
By Stinespring’s dilation theorem (cf. [57, Theorem 4.1]), there exist a Hilbert

space H D H, and a C*-homomorphism 7: B(Hg) — B(H) such that
O(X) = Pyum(X)|x

for all X € B(Hg). By [I8, Lemma 3.3], there exist a decomposition H =
H1 @ Ha of H into reducing subspaces for 7, an index set I, and a unitary
operator V € B(H,, Hx ® (*(I)) such that

Va(X)lg, = (X @idpm)V
for all X € C*(M,) and
(K (Hk))ly, = {0}
We set D = (2(I), K = Ha, and IT = (V @id)|y. Define the commuting tuple
U= (m(M.,)lk, ... m(M,)lx) € B(K)*

and observe that U is a tuple of normal operators since M, is essentially normal.
Finally, we obtain

V @idc)m(M.,)*h
(M,, ®idp) & U;)" (V & idg)h
= ((M,, ® idp) & U;)" I1h

T h = (V@ idg) Pym(M,,)*h
= (
= (

forall i = 1,...,d and h € H, since H is invariant for 7(M,,)* for all i =
1,...,d (cf. [18, Lemma 3.2|).
Suppose now that Hg is regular. With Theorem [1.37| we see that

d d
ide— Y UU; == (idHK - ZM%M;) k=0,

i=1 =1

i.e., U is a spherical coisometry, and hence, U is a spherical unitary. O
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With these preparations, we are now able to state our main result about
strong K'-contractions.

2.30 Theorem. Suppose that k has radius of convergence 1, that the opera-
tor 1/K(M,, M?) exists, that M, € B(Hg)? is essentially normal, and that
> o2 oy cn converges. Let T € B(H)* be a commuting tuple. Consider the fol-
lowing statements:

(i) T is a strong K-contraction,

(ii) there exist Hilbert spaces D, K, a spherical unitary U € B(K)?, and an
isometry 11: H — (Hx @ D) & K such that

N7 = (M, ® idp) @ U;)"TI
foralli=1,...,d,
(iii) there exists a unital, completely contractive linear map
©: span {idHK,Mzi, MM ;i=1,... ,d} — B(H)
with
p(M.,) =T, and SD(M%M;) =117
foralli=1,....d.
The implications (i) <= (ii) = (i) hold.

If in addition Hy is reqular, then all statements are equivalent.
Proof. (i) <= (ii): This is Theorem [2.25]

(ii) = (iii): By Lemma|[L.1] the C*-algebra C*(M.)/K(Hyk) = C*(M, +
K (Hg)) is abelian. Since o.(M,) coincides with the joint spectrum of the tuple
M, + K(Hf) in the abelian Banach algebra C* (M, + K (Hg)), Gelfand theory
yields an isomorphism of C*-algebras ¢y : C*(M,+K(Hg)) — C(0.(M,)) with
©1(M., + K(Hk)) = Ziloom,) for i = 1,...,d. Since o(U) C Sq and C*(U)
is abelian, there exists a C*-algebra homomorphism ¢o: C(S;) — C*(U) with
a(zils,) = U; for i = 1,...,d. Denoting by ¢: C(0.(M.)) — C(Sq), f— fls,
the restriction map and ¢: C*(M,) — C*(M,)/K(Hg) the quotient map, the

function
Ty =pa0t0p0q: C*(M,) — C*(U)

is a C*-algebra homomorphism with
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2. A geometric model

foralli=1,...,d and m,(K(Hg)) = {0}. Hence, setting
ms: C*(M,) — B(Hxk ® D), X — X ®1idp,
the map
m: C*"(M,) - B(Hk @ D)@ K), X — 7s(X) & mu(X)
is a unital C*-algebra homomorphism. Finally, the map
¢: span {idp,, M., M, M7 ; i=1,...,d} - B(H), X — II'n(X)II
is completely positive, unital, and satisfies

@(M.,) = I x(M.)II = IT* (M., ® idp) ® U;)II = TIT*II = T;

i

and

P(M M) = T (M, M) = T (M, ) (M) " 11 = TITIT = T

foralli=1,...,d.
(ili) = (ii): This follows from Lemma [2.29]
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3. An analytic model

In this chapter, we use another approach to define the operator 1/K(T,T™).
The idea originates from [I] and was also used in, e.g., [63] and [56]. In the
first section we elaborate this approach in general and obtain similar results
to the preceding chapter. The second section is concerned with the case when
our commuting tuple is a row contraction. This will enable us take a closer
look at m-hypercontractions. As before, let H be a Hilbert space, T' € B(H)?
a commuting tuple, and let Hx C O(By) be a reproducing kernel Hilbert space
whose kernel K: B; x B; — C is of the form K(z,w) = k((z,w)) (z,w € By)
with a zero-free analytic function k: D — C, z — >, a,2" such that ag = 1,
an, > 0 for all n € N, and sup,,cy an/an1 < 00.

3.1. Radial K-hypercontractions |

For S € B(H), we define
Ls: B(H) - B(H), X — SX and Rs: B(H) — B(H), X — XS
and, for a commuting tuple T' € B(H)?, we set
Ly = (Ly,...,Lr,) € B(B(H))* and Ry = (Rq,...,Ry,) € B(B(H))

as well as

My = (Ly, Ry-) € B(B(H))*.

For a commuting tuple 7" € B(H)? with Taylor spectrum o(T), we have
o(Mr) =o(T) x o(T*) (Theorem 3.1 in [34]).

Let T € B(H)? be a commuting tuple with ¢(T) C By. Then o(My) C
B, x By. For g € O(D), the function

d
G:U—=C, (z,w)—g <Zziwi>

i=1

is analytic on a suitable open neighborhood U of By x By. Using Taylor’s
analytic functional calculus, we define

G[T] = G(My) € B(B(H)) and G(T,T*) = G[T](ids) € B(H).
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3. An analytic model

If g(z) = > 7 gn2™ is the Taylor expansion of g at z = 0, then

Zgn <Z ziwi> = Z gM%zo‘wo‘

=1 aeNd

where the series converges locally uniformly on an open neighborhood of B, x
B,. By using the continuity of Taylor’s analytic functional calculus, one obtains
that

GIT] = 7)- > gu0% € B(B(H)) and G(T,T*) = 7.- > _ ga07(ids) € B(H).

For 0 <r <1 and h € O(D), we use the notation

hy: D1(0) = C, z + h(rz).
By applying the above remarks to the function g = 1/k, € O(D), one obtains

1
i —(T,T%) = 74 Zr cnor(idy)

n=0

for 0 <r < 1.

3.1 Definition. We call a commuting tuple 7' € B(H)? with o(T) C B, a
radial K -hypercontraction if

! (T, 7*) >0

K, -

T

forall 0 <r < 1.
3.2 Example. Let V € B(H)? be a spherical coisometry. Then
G 1
< (V,V*)h h> > car™ (h, h) ) =1 (hh) 20
KT n=0 ( )
forall 0 <r <1and h € H,ie., V is a radial K-hypercontraction.

Let r,s € (0,1]. Since k is non-vanishing on D, the function k,/ks is well-
defined and its Taylor series

k(2)
5 = Z%(T s)z

n=0
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3.1. Radial K-hypercontractions I

converges for all |z| < min (%, %) In particular, we see that
a, = a,(1,0) and ¢, =a,(0,1)

for all n € N.

As before, the K-shift M, will play an important role in a model theory
for radial K-hypercontractions. To obtain a condition for M, to be a radial
K-hypercontraction, we will need the following lemma.

3.3 Lemma. For 0 <r <1 and a € N, we have
!
a|a‘ (1,7) qur
B<La

Proof. For z € C? with |z| small enough, the power series expansions

- ot
(30n) - 3l
i=1 aeNd o

d
1 !
Ly :waﬂza
k, \ 4 a!
=1 aeNd
d
k af!
k'_,,, Zzi = Z a‘a|(1,r)?z
=1 aEeNd

hold. The Cauchy product formula yields that
d
k 5 |‘ la—B'\ .
£ (%) Z (o fintizh)
" \i=1 a€Nd \p<a

for z as above. Thus, the assertion follows from comparising the coefficients
of the above power series expansions. O

If M, € B(Hg)? is essentially normal, and

a
lim sup <1

n—oo Ap+1

)

then o(M.) C By holds (cf. Lemma [1.33). In particular, this is the case if Hx
is regular (cf. Remark [1.306)).

3.4 Lemma. Let M, € B(Hg)? be the K-shift, [ = > cna faz® € Hg, and
0 <7 < 1. Suppose that o(M,) C By. The following statements hold:
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3. An analytic model

(i) 1/ Ky (Mo, M) [ = 5 eia fa 200 2o

(ii) (1)Ko (Me, M2)F, f) = 3 e Lol 22l00)

Ao
(idi) [|1/ K, (M., MZ)| = sup,ey \anéir)l

Proof. Let 0 <r <land f =) _yifa2® € Hg.
(i) Observe that

* | * «
K(Mz,Mf Zfaz "5 MBMB

aeNt  n=0 |B6]=n
=T ayen ¥ e
- «Q n
!
aeNd  n=0 |Bl=n,8<a B e

_ Z £, qurw”m ’Vi;aﬁ s

a€eNd BLa

=2 (f‘“ZcW"B, Yar ) o

a€eNd e BLa
1 |a!
=% (foawn )
aeNd Vo
Z f a|a|(1,7‘) @
a€eNd e

where we have used Lemmas [1.29 and 3.3l
(ii) With (i) we obtain

1 * ‘foz| ala‘ ]‘ 7”
<K(MZ,M ff> > ™

aeNd e

(iii) Again with (i) we conclude that 1/K,(M,, M}) is a diagonal operator
with respect to the decomposition

Hg = OH,.
n=0

Since the norm of a diagonal operator is the supremum of the diagonal,
the result follows. O
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3.1. Radial K-hypercontractions I

3.5 Corollary. Suppose that o(M,) C By. The K-shift M, is a radial K -hy-
percontraction if and only if

a,(1,r7) >0
forallneNand 0 <r < 1.
Proof. The assertion follows directly from Lemma (ii). ]
3.6 Property. Let

an,(1,7) >0

foralneNand 0 <r < 1.

3.7 Remark. Property [3.6] holds if and only if we have
an(s,r) =0
forallne Nand O <r<s<1.

Proof. If 0 <r < s <1, then

ko(z)  k(sz) > ™ non
() E((s2) > an (1)

n=0

11
r’s

for all |z| < min (%,1) and hence,

r
n\o — Un ]-7_> "
an(s,r) =a ( )
for all n € N. O

Olofsson stated in [56], Proposition 5.1] the following sufficient condition for
k to satisfy Property [3.6]

3.8 Proposition. If the function log(k) has non-negative Taylor coefficients,
then Property[3.4 holds.

In particular, if K is the reproducing kernel of a space mentioned in Sec-
tions[1.5.1] and [1.5.3, then Property[3.64 holds.

3.9 Remark. The following example, which was also mentioned in [56], Section

5], shows that Property does not imply Property [2.11]

Consider
142

_Z‘

E:D—=C, z—

ol



3. An analytic model

Since

log(k(2)) = log (1 * Z) _yo e,

1—=2 n

n=1

for all z € D, Proposition [3.8 implies that Property [3.6] hold. But

1 - n . n
%—1+2;(—1) z

for all z € D, i.e., Property does not hold.

3.10 Lemma. Let T € B(H)? be a commuting tuple such that o(T) C By and
r,s € (0,1). Then

1 . - W1 .
K(T,T ) = T|-||-;%an(S,T)UT (Z(T’T ))
1 * - n 1 *
= (T )+T||.—;an(s,r)aT =TT,
Proof. Let r,s € (0,1). The identity
I k(z) 1

o) Ee ke FED

together with the multiplicativity of Taylor’s analytic functional calculus yields
that

0T = (1) i) = (T 1) i) = 2T T)
=TI Z an(s, 1)o7 (KLS(T, T*))
holds. O

3.11 Lemma. Suppose that Property holds. Let T € B(H)¢ be a com-
muting tuple such that o(T) C By and such that there exists s € (0,1) with
1/K (T, T*) > 0. Then
1 1
—(T,T*
L)

T

> —(1,7T") >0
> (1) >

forall0 <r < s.
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3.1. Radial K-hypercontractions I

Proof. In view of Remark [3.7] this follows from Lemma [3.10] O

3.12 Corollary. Suppose that Property holds. Then a commuting tuple
T € B(H)? is a radial K -hypercontraction if and only if there exists a sequence
(rn)nen @n (0,1) with limit 1 such that 1/ K, (T,T*) >0 for alln € N.

3.13 Proposition. Suppose that Property holds. Let T € B(H)? be a
commuting tuple with o(T) C By. If T is a radial K-hypercontraction then

1 . N R

exists and defines a positive operator.

Proof. This follows from Corollary [3.12) and Lemma 2.3 O
3.1/ Remark. Since

k

— =1

ko

converges locally uniformly as » — 1, we see that

1 =0
lima,(1,r) = { T
r—1 0’ n>1
holds.
3.15 Proposition. Suppose that o(M,) C By and that Property holds.
Then .
— (M., M) = Fc.
ol .)=1rc

Proof. By Corollary and Proposition the limit 1/ Kaq(M,, M) exists.
Furthermore, by Lemma [3.4] we have

1 *
e (M, M?)p =p(0) = Pcp
rad

for every polynomial p, since, by Remark lim, 1 a,(1,7) =0foralln > 1
and ap(1,7) =1 for 0 < r < 1. Hence,

1
7 MzaM* = P,
Krad( Z) €

since the polynomials are dense in Hg. O
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3. An analytic model

3.16 Corollary. Suppose that 1/K(M,, M}) exists, o(M,) C By, and that
Property 3.6 hold. Then

1 1
(M., M) = — (M., M?*) = Pc > 0.
7 D=7 ;) =TIt

In Theorem we have seen that the existence of a certain completely
contractive map is connected with the property of strong K-contractiveness.
In our new approach, with have an analogue.

3.17 Proposition. Let T € B(H)? be a radial K-hypercontraction. Then
there exists a unital, completely contractive linear map

Q: span{idHK,Mzi,MziMz*i D i= 1,...,d} — B(H)

with

o(M.) =T, and @(M.M:) =TT}
foralli=1,...,d.
Proof. Let 0 <r < 1. Then

1 * C n (: C mn_n/(: 1 *
2 TrT™) = T Y eaopp(ids) = 7= Y car™ o (i) = (LT =20

n=0 n=0

Since
X(rT) = idy — f:a o i(7“T ) ) =id —K[rT]i[rT](id )=20
r = 1dy 7‘||.||—n:0 nOpr K ) = Uy K H) — Y

the tuple rT € B(H)? is a K-pure commuting tuple. By Proposition [2.6] the
map

Yrr: H = Hi @ Do, b Y ar®(2 @ DrT™h)

a€Nd

is an isometry which intertwines the tuple r7* € B(H)? and (M, ® idp,,.)* €
B(Hg ® DTT)d componentwise. It follows that the map

prt B(Hy) = B(H), X = (X ®idp,, )ty
is unital and completely positive with

SOT(MSM;ﬂ) — plel+lBlpa*p
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3.1. Radial K-hypercontractions I

for all o, B € N?. Since the subset
{¢ € B(B(Hg), B(H)) ; % is unital, completely positive, and ||¢],, <1}

of B(B(Hg),B(H)) is compact in the bounded weak topology Tpw (cf. [57,
Theorem 7.4]), there is a net (7;);e; in (0,1) with lim;e;r; = 1 such that the
limit

¢ = mon-lim o, € B(B(Hy). B(H))
exists. Since norm-bounded 7pw-convergent nets in B(B(Hg), B(H)) are

pointwise convergent in the weak operator topology mwor (cf. [57, Proposition
7.3|), it follows that ¢: B(H) — B(H) is unital and completely positive with

P(MIM?) = Tow-lim oy, (MIM?) =TT
1€

for all o, 3 € N9, O

The proofs of the next two lemmas are similar to the proofs of Lemmas
and [2.21] where we use the facts that o(S;$S2) = 0(S1)Uc(S2) for commuting
tuples S and Ss, and that o(7*|,/) lies in the polynomial convex hull of o(7™)
for a commuting tuple 7" and a coinvariant subspace M.

3.18 Lemma. Let S; € B(H1)? and Sy € B(H3)? be two radial K -hypercon-
tractions on Hilbert spaces Hi and Hso, respectively. Then Sy & Sy € B(H1 &
Ho)? is a radial K-hypercontraction.

3.19 Lemma. Let T € B(H)* and S € B(H)? be commuting tuples on
Hilbert spaces H and H, respectively, and suppose that there exists an isom-
etry II: H — H such that Ty = S for alle = 1,...,d. If S is a radial
K -hypercontraction, then T s a radial K-hypercontraction.

3.20 Remark. If we suppose that Hy is regular and that Property holds,
then Hy admits a strong 1/K-calculus in the sense of 6, Definition 1.1].

The following theorem is our model theorem for radial K-hypercontractions.

3.21 Theorem. Suppose that Property|[3.6 holds and that Hy is reqular. Let
T € B(H)? be a commuting tuple. The following statements are equivalent:

(i) T is a radial K-hypercontraction,

(ii) there exist Hilbert spaces D, K, a spherical unitary U € B(K)?, and an
isometry I1: H — (Hx @ D) & K such that

N7} = (M, ® idp) & U;)"11
foralli=1,...,d,
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3. An analytic model

(iii) there exists a unital, completely contractive linear map
¢: span {idp,, M., M, M ; i=1,...,d} = B(H)

with
P(M.) =T, and (M. M) =TT}

foralli=1,...,d.

If in addition we suppose that 1/K(M,, M?) exists and that >~ ¢, con-
verges, then the above are also equivalent to

(iv) T is a strong K-contraction.

Proof. (i) = (iii): Proposition [3.17

(iii) = (ii): Lemma
(i) == (i): This follows from the vector-valued version of Corollary

Example and Lemmas and [3.19]
The rest follows from Theorem [2.30 O]

As a consequence of the last result, we obtain a version of [I8, Theorem 5.6].

3.22 Theorem (Clouatre, Hartz). Let Hx be a regular complete Nevanlinna-
Pick space and let T € B(H)? be a commuting tuple. The following statements
are equivalent:

(i) T is a K-contraction,
(i) T is a strong K -contraction,
(1ii) T is a radial K-hypercontraction,

(iv) there exist Hilbert spaces D,K, a spherical unitary U € B(K)?, and an
isometry I1: H — (Hx ® D) & K such that

77 = (M., ®idp) & Uyl
forallt=1,...,d,
(v) there exists a unital, completely contractive linear map
¢: span {idp,, M., M, M ; i=1,...,d} — B(H)

with
G(M.) =T, and $(M. M) =TT

forallt=1,...,d.
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3.1. Radial K-hypercontractions I

Proof. Recall Proposition [3.8|

(ii) <= (i) <= (iv) <= (v): Theorem [3.21]

(i) = (i): This is clear.

(i) = (iii): By [18, Lemma 5.3], we have that o(T) C B,. Furthermore,
we obtain that

1 * - n_n/(: = n(: 1 *
K(T, T*) = 1soT- nz% cprol(idy) > TSOT-; cnor(idy) = E(T, T°) >0
for all 0 < r < 1, i.e., T is a radial K-hypercontraction. O

Another important case is when Hyg is a weighted Bergman space (in the

sense of Section [1.5.2)).

3.23 Theorem. Let v > 0 and let T € B(H)? be a commuting tuple. The
following statements are equivalent:

(i) T is a radial K -hypercontraction,
(ii) T is a strong K®)-contraction,

(iii) there exist Hilbert spaces D, K, a spherical unitary U € B(K)¢, and an
isometry 11: H — (Hygw) ® D) & K such that

77 = (M., ® idp) & U;)*11
foralli=1,....,d,
(iv) there exists a unital, completely contractive linear map
¢: span {idpg,, M., M, M ; i=1,...,d} — B(H)

with
SO(MZZ) =T, and QO(MZZM:Z) = TZT:

foralli=1,...,d.
If 0 < v <1, then the above are also equivalent to
(v) T is a K-contraction.

Proof. The result follows from Theorems and O]
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3. An analytic model

3.2. Radial K-hypercontractions Il

For this section, we use [56] as a guideline. Our goal is to strengthen Theo-
rem [3.23|in the case v > 1.
We start by characterizing when the K-shift M, is a row contraction.

3.24 Proposition. The sequence (a,)nen of Taylor coefficients of k is increa-
sing if and only if M, € B(Hg)? is a row contraction.

Proof. By Lemma [1.29] (ii), we have the identity

) . - Uy
ids, —onr (iduy) = Pe + mso1- ) <1 = 1> P,

n=1
which implies the assertion. O

If T B(H)" is a row contraction, then o(T*) C By (cf. [55, Remark 7 on
p. 988]) and hence, o(T) C By. B
Therefore, if (a,)nen is increasing, then o(M,) C By.

3.25 Lemma. Suppose that (a,)nen 1S increasing and that Pmperty holds.
For every row contraction T € B(H)® which is a radial K -hypercontraction,
we have

= (TT)+ TSOT-;(% — 1)} (Kad(T’ T )) < = (0T,
Proof. Let 0 <r < 1. Since
1 1
W(z) =1—-rz=(1- rz)kr(z)k—T(z) (z e D),
we obtain with Taylor’s analytic functional calculus that
(7] = (id VK T] - [7]
= (i —ror) K, |T|—
KD B(H) ~TOT K
: N |
= (ldB('H) —’I“O'T) z% anT UT?[T]
:iara Za "o "Hl[T]
n TK n

T‘

1
+Z —anlraTK[T]
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3.2. Radial K-hypercontractions I1

Hence,

1
T, T")h, h
<K£1( >

1 . = 1 .
< KTT +; —anlroT(K(T,T)>>h,h>

for all h € H. The lemma of Fatou implies that

<%(T, T*)h, h> > <%md(T, T*)h, h>
o (1 () )

for all h € H. O]

For a commuting tuple 7' € B(H)¢, we define
Too = TsoT- lim O'éwv(ldy.[) S B(H),
N—o0

if the latter exist. The existence is guaranteed if T" is a row contraction.

3.26 Lemma. Let T € B(H)? be a row contraction. Then

= n 1 % .
TSOT‘ZOUT (W(T,T )> + Too = 1dy .
Proof. This follows from a combination of Remark 2.5 and Proposition[2.6, [
3.27 Definition. Let T € B(H)? be a radial K-hypercontraction. We define

ra ]' *
S (T) = idy — ZanaT ( % (T ))

n=0

for all N € N, and
E?( (1 ) TsOT ]\PHI E;( N(7 )
—»00 ’

if the latter exists. If K is clear from the context, we suppress the index K.
We call T radial K -pure if $24(T) = 0.

To make the proof of Lemma below clearer, we state the following
remark.
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3. An analytic model

3.28 Remark. Suppose that (a,)nen is increasing and let (b;);en be a sequence
of positive numbers such that the series 3 7% bj and > (an—an-1) D272 butj
converge. Then, since ag = 1, we have

N 0o
E (an — an-1) bn+j
n=1 7=0
N 00 N-1 oo
= E Qn, E bn—i—j - E Qn, E bn+1+]
n—= ]:0 n=0 ]:O

1
N-—1
n=1

Qn (Z bn—l—j - Z bn+1+j> +an Z bN-l—j — Qo Z bj+1
J=0 J=0 Jj=0 j=0
N-1 00 00
=) anby+an Y b= > b
1 j=N j=1

N-1

=Y anbytan Y bi— > b
0 j=N =0

n=

for all N € N. From this we see that >~ a,b, is convergent and

OSaNibj < iajbj —0
j=N j=N

as N — oo. Hence,

Z(an —ay_1) Z bysj + Z bj = Z apby,.
n=1 =0 j=0 n=0

3.29 Lemma. Suppose that (a,)nen s increasing and that Property holds.
For every row contraction T € B(H)® which is a radial K -hypercontraction,
we have

o0 1 . .
7—SOT'g &naj?“ (Krad(T’ T )) + Too S ldy.[ .
In other words, the assertion
Zrad(T) > Too > ()

holds.
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3.2. Radial K-hypercontractions I1

Proof. Let h € H and set b; = (0} (1/Kaa(T,T*)) h,h) for j € N. With

Lemma [3.25] we conclude that

b+z _anl n+]§<0-%“(K(1)(TT))hah>

for all j € N, and hence, using Lemma, [3.26, we find that

7=0
oo
2 E g E n — Qn— 1 n+]
7=0 =1
oo 00

Then, Remark [3.28) yields that

1AI2 = (Th, h) > Zanb — <ZanJT (;Gad(:r T*)> h, h>

n=0

Since h € H was arbitrary and the partial sums of the series on the right form
an increasing sequence of selfadjoint operators, it follows that

oo

1
TSOT- Zand% (grad(T, T*)) + Ty <idy. O

n=0
The next proposition is an analogue of Proposition [2.6]

3.30 Proposition. Suppose that (a,)nen is increasing and that Property
holds. Furthermore, let T € B(H)? be a row contraction which is a radial
K-hypercontraction. The map

rad e VN HK®Drad b Z ’)/a(za®D¥LdT*ah),

a€Nd

where DY = (1/Ka(T, T*))? and D24 = DY | is a well-defined contrac-
tion with

[59R||* = |h)? = (Z2UT)h, b < ||B]|* = (Toh, h)

for all h € H, and
VRIT = (M, ® idpgaa)” 7
foralli=1,...,d.
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3. An analytic model
Proof. By definition and Lemma [3.29] we have

Jonl = 3 2 (T (TR
a€eNd
oo e *
= nz;an <aT <Kad(T,T )) h, h>
= [|h[* = (=T, T")h, h)
< |[B]I* = (Toch, h) .

for h € H. The claimed intertwining relation for ¢54 follows exactly as in the
proof of Proposition [2.6 ]

Our next aim is to deduce a condition which implies the equality
YT = T
For this purpose, we have to elaborate some technical results.

3.31 Property. The family of Taylor coefficients of k./k (0 < r < 1) is
uniformly bounded, i.e.,

sup |ap(r,1)| < oo.
neN
0<r<1

3.32 Remark. The following are equivalent:

(i) Property holds,
(i) there exists a real number C' > 0 such that
la,(r,1)] < C
forallm e Nand 0 <r <1,

(iii) there exists a real number C' > 0 such that |a,(r,s)| < C for all n € N
and 0 < r <s<1.

To verify this equivalence, it suffices to observe that

gan(r, s)z" = kk:éi:z)) = i an, (g, 1> stz

n=0

for |z| small enough and 0 <7 <s < 1.
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3.2. Radial K-hypercontractions I1

3.33 Lemma. Suppose that (a,)nen is increasing and that Properties
and hold. Let T € B(H)? be a row contraction and a radial K-hyper-

contraction, and let 0 < r < 1. Then we have

1 . > (1 .
KD (T, 77) + TSOT‘;%OZ Loy (W(TvT ))
1 ) = . _ (1
:Erad(T7T ) + TSOT‘;(T an — 1" a, 1)l ?rad(T, T)).

Proof. Let 0 <r < s < 1. For z € D, we have

=(1—2)k(2) )

0o oo 1
= (Z a2z — Z a,n'f’nszrl) ks(z)
n=0 n=0
=1+ i(anr" — ") 2" !
n=1 ]{Z5<Z) ’

and hence,
Lir 3 1oL 7]
X 2 ApT" — AT o K
oo . 1
= ZO CLn(T7 S)UT K(l) [T]

n 1
LA Zlan(r, 57 e T

Let h € H. By Lemma [3.26] and Remark [3.32] the dominated convergence
theorem yields that

5t (ot () ) = St (o () .0

n=1

as s — 1. Since

1 1
(ot (@) 1| < 0t o | 0.7 |
1
< ™ | = (T T) I1R]f*
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3. An analytic model

for all k,1 € N and sy < s, we see that

i(anr" — ™) <a;; (KL(T, T*)> h, h>

n=1 s

. 1
< ; (anr™ + ap_1r™") <a§3 (Z(T, T*)) h, h>‘
11D anr”
n=0

I &(r)

—

1
L2 —=(T,T"
- HKS( ’ )

1
2||—(T,T
— HKSO< Y )

for all sy < s. Hence, by the dominated convergence theorem, it follows that

o0

. n n— n 1 *
ll_Ig (@™ — ap_1r" 1) <0‘T <Z(T,T )) h, h>

n=1
= n n—1 n 1 *
:Z(anr —ap ") (o | = (T, T") ) h,h ).
— K raq
Invoking Proposition [3.13] ends the proof. O

3.34 Lemma. Suppose that (a,)nen is increasing and that Properties
and hold. Furthermore, let T € B(H)? be a row contraction and a radial
K -hypercontraction. Then

K(l) (TjT ) = ?rad(T,T ) -+ TSOT—Z(an — an_l)aT (?rad(T’T )) .

n=1

Proof. Let h € H. By Lemma [3.29] and the dominated convergence theorem,
we have

1
: n n—1 n *
lmi (r"a, —r" a,_1) <O’T <—rad(T,T )) h, h>

n=1

N ay —ay ) <a;z (%rad(:r, T*)) h, h> .

n=1
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3.2. Radial K-hypercontractions I1

By Lemma [3.26 and the dominated convergence theorem, we obtain
o ' .
lim Zl an(r,1) <aT (W(T, T )) h, h>
:ia 1,1 {on (=, 7)) B,
n\+» T K(l) ) )

n=1

=0.
The result follows from Lemma [3.33] O

3.35 Proposition. Suppose that (a,)nen 1S increasing and that Pmperties
and hold. If T € B(H)? is a row contraction and a radial K -hypercon-
traction, then X*4(T) = T, and

IR]I* = ||| + (Toch, )
for all h € H.

Proof. If we replace Lemma [3.25] by Lemma [3.34]in the proof of Lemma [3.29]
then the same proof yields that

Tsor- Y Un0Y <§rad(T,T )> + T = idy,

n=0

le.,

ra 2
1RII* = (|65 R||” + (Toch, )
holds for each h € H. Furthermore, we have that

yrd(T) = T O

3.36 Definition. We say that a row contraction T € B(H)? belongs to the
class Cy if T, = 0.

3.37 Corollary. Suppose that (a,)nen 1S increasing and that Property
holds. Furthermore, let T € B(H)® be a row contraction and a radial K-
hypercontraction. Consider the following statements:

(i) T belongs to the class Cy,
(ii) T is radial K-pure,

(iii) V5 is an isometry.
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3. An analytic model

The implications (i) < (ii) <= (iii) hold. If in addition Property|3.31| holds,

all statements are equivalent.

Proof. The first part follows from Lemma [3.29| and Proposition [3.30, The
latter is an application of Proposition |3.35| O

For the rest of this section, we are interested in the connection between
strong K-contractions and radial K-hypercontractions under suitable addi-
tional conditions.

3.38 Lemma. Let T' € B(H)? be a row contraction. Then

. 1 . 1
ot i oF (ﬁ” >> GRS

T

forall0 <r < 1.

Proof. Since
chrnogpvﬂ(idq{)hﬂ < lecn| ™ |1

for all k&, N € N and ) >, c,r" is absolutely convergent, we have that
1 o
lim o (?(T, T*)) h = lim chrnagpwn(id%)h

N—oo r N—oo
n=0

= ey lim o} (idy)h
— N—oo

L. :
) Aim o (idy)h

for all h € H. ]
The set
AT(D) = {f => [ €OM); I fllar =Dl < OO} :
n=0 n=0

equipped with the usual addition and multiplication of analytic functions is
an abelian Banach algebra.

3.39 Property. Let 1/k € A*(D), i.e., suppose that >~ ¢, is absolutely
convergent.
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3.2. Radial K-hypercontractions I1

3.40 Proposition. Suppose that Pmperty holds and let T € B(H)? be a
row contraction. Then

?r d(T,T ) = ?(T,T ) = TH.”-ZCnOT(ldH).
& n=0

Proof. Since T € B(H)%is a row contraction, we have by Russo-Dye’s theorem
(cf. |57, Corollary 2.9])

loz]l = llor(ids)]| < 1.

Since Y7, ¢, is absolutely convergent, we obtain, by the dominated con-
vergence theorem,

T T") Z cnop(idy) Z hm cprol(idy)

o0

1
=lim Y c,rot(idy) = —= (1,77),
r—1 p— K rad

where the series are norm convergent and all limits are formed with respect to
the operator norm. O

3.41 Corollary. Suppose that Property holds. Let T € B(H)? be a
row contraction. Then T is a K-contraction if and only if T is a radial K-
hypercontraction. In this case, we have

1 1

= d(T, ") = =(I.T7) = Thp- Y enop(idyy) > 0.
ra n=0

3.42 Property. Suppose that Property holds and that the functions k, /k
(0 < r < 1) form a norm-bounded family in the Banach algebra A (D).

3.43 Remark. Since
an(r,s) = a, (Z, 1) s"
s

holds for all 0 < r < s < 1 and n € N, Property implies that

sup (lnTS < 00.
Z\ )l

O<r<s<1

The following result by Olofsson [56, Proposition 5.4] gives us a class of
reproducing kernel Hilbert spaces satisfying Property [3.42]
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3. An analytic model

3.44 Proposition. If K is a finite product of reproducing kernels of irre-
ducible unitarily invariant complete Nevanlinna-Pick spaces, then K fulfills

Properties and[3.43

In particular, if K is the reproducing kernel of a space mentioned in Sec-
tions[1.5.1] and[1.5.9, then K fulfills Properties and[3.43

Since convergence in the weak* topology 7, on ¢*(N) = ¢ coincide with
norm boundedness and pointwise convergence, we obtain the following result.

3.45 Lemma. Suppose that Property[3.49 holds. Then

TW'%LH} (@n(8:1))pen = (@n(s,1)),en 0 ({(N) = ¢

forall0 < s <1 and

T -1im (an(5,1)),en = (1,0,...) in £1(N) = .

3.46 Lemma. Suppose that Properties and hold. Let T € B(H)? be
a row contraction and a K-contraction. Then, for all 0 < r < 1, we have

o0

E(T7T ) Z TSOT‘nz%an(lvr)gT (?(T7T )) + WTOO

Proof. Let 0 <r <s<t<1andh e H. Since

Taylor’s analytic functional calculus gives us

ian(s,t) <a§ﬂ (KLT(T, T*)) h, h> = nio%an(s,r) <a;2 <; (T, T*)) h, h> .

t
By the proof of Proposition [3.40, we know that

LTy - (1.1

= 0.
K, K

lim
t—1

Hence, the dominated convergence theorem implies that

lim (s, 7)on (Kit(:r, T*)) _ ian(w)a; <%(T, T*)> |

n=0
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3.2. Radial K-hypercontractions I1

in the operator norm. Set

1 :
Ly = leg{; (o7 (idw)h, h)

which exists since 71" is a row contraction. Since

lim Y a,(s,t) = Pm ks) = k(s) 001 =0

Zn:O an

and (<a{,€ (KL(T, T*)) h, h> — Lr,h>  Eco by Lemma|3.38| we conclude that

N
= (({on () ) - L) (ans, 1>>neN>coﬂ(N)
:nfgan(s, 3 <<o—g (KLT(T, T*)) h, h> _ Lr,h>
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3. An analytic model

Again by Lemma [3.45] we see that

mzoan(s, 1) (<aT (Z(T,T )> h, h> - L,n,h) = <E(T,T )h,h> — Lyp.

By Remark [3.7] and the lemma of Fatou, we have that

iy e o (BT 1) 2 5 o (Ber ) )

Thus, the result follows. O

3.47 Theorem. Suppose that Properties and hold. Let T € B(H)? be

a row contraction and a K -contraction. Then T is a radial K-hypercontraction.
Proof. This follows from Lemma [3.46] ]

3.48 Lemma. Suppose that (a,)nen is increasing and that Properties
and hold. Let T € B(H)¢ be a row contraction and a radial K -hyper-
contraction such that 1/K(T,T*) exists. Then T is a strong K-contraction
and X(T) = 34T = Ty

Proof. By Abel’s theorem, it follows that

1 * - n(s : - n/ _n/(:
<E(T,T )h, h> = ;cn (o2 (idy )R, h) = m;cnr (o2 (idy )R, h)
for all h € H. Hence,
1TT*— li 1TT*— li 1TT*—1 T.7*) >0
?( ) )—TWOT‘TEK( ) )—TSOT‘TEK( ) )—?rad( 1) >

since 1/K,aa(T, T*) exists and defines a positive operator by Proposition [3.13]
By Proposition [3.35], we have that

N(T) = YT = T
Thus, the result follows. m

3.49 Theorem. Suppose that (a,)nen 1S increasing and that Properties
and hold. Let T € B(H)? be a commuting tuple. The following statements
are equivalent:

(i) T is a row contraction and a radial K-hypercontraction,
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3.2. Radial K-hypercontractions I1

(i) T is a row contraction and a K -contraction,
(i1i) T is a strong K-contraction,

(iv) there exist Hilbert spaces D,K, a spherical unitary U € B(K)?, and an
isometry I1: H — (Hx @ D) ® K such that

N7} = (M, ® idp) & U;)"11
foralli=1,... d.

In this case, we have

yred(T) = S(T) = T
and
= 1
TSOT'Z anag“ <§(T, T*)> + Too = ldH .
n=0
If in addition Hg is reqular, then the above are also equivalent to
(v) there exists a unital, completely contractive linear map
©: span {idHK,MZi, MM ;i=1,... ,d} — B(H)
with
o(M.,) =T, and ‘P(Mzz'M;i) =TT;
foralli=1,...,d.

Proof. (i) = (ii): This is clear.
(i) = (i): This follows from Theorem [3.47]
(i) = (iii): This follows from Lemma [3.4§ and Corollary [3.41]
(iii) <= (iv): This is clear by Theorem and Proposition [3.15]
(iii) & (iv) = (ii): This is clear.
The extra follows from Theorem [2.301 O

3.50 Definition. Let v > 1 be a real number. We call a commuting tuple
T € B(H)? an v-hypercontraction if

1 * . ni(:
W(T’T )= THA”-ZC%“)O'T(ldH) >0

n=0

forall 1 < pu<w.
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3. An analytic model

The next result shows that the definition above coincides with the notion of
m-hypercontractions if v = m € N* (cf. Remark [2.2)).

3.51 Theorem. Let v > 1 and let T € B(H)? be a commuting tuple. The
following assertions are equivalent:

(i) T is a row contraction and a radial K" -hypercontraction,
(ii) T is an v-hypercontraction,
(i4i) T is row contraction and a K™ -contraction,

(iv) T is a strong K“)-contraction,

(v) there exist Hilbert spaces D, K, a spherical unitary U € B(K)¢, and an
isometry I1: H — (Hgw) @ D) & K such that

T = (M., ®idp) & U;)* 11
forallt=1,...,d,
(vi) there exists a unital, completely contractive linear map
©: span {idHK, M., MM, ;i=1,... ,d} — B(H)

with
e(M.,) =T, and (M, M) =TT}
forallv=1,...,d.
In this case, we have
yrd(T) = (T) = The

and

TSOT- Z G%V)Ugw (W(T’ T*)) + Too = ldH .
n=0

Proof. Recall Proposition [3.44] By Theorem [3.49 we only have to show that
(i) = (ii). To this end, let 1 < u < v and 0 < r < 1. By Taylor’s analytic
functional calculus, the identity
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3.2. Radial K-hypercontractions I1

yields that

Let h € H. We obtain

1 > 1
— * = V—H) n *
<K§#) (T, T%)h, h> = alrr <0—T <K(”) (T,T )> hh> > 0.

r

Thus, T is a radial K®-hypercontraction for all 1 < p < v. But then
Lemma implies that T is a strong K *-contraction for all 1 < < v. O
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4. A Beurling-type theorem

In [T4], Beurling studied the invariant subspaces of the shift operator on the
Hardy space on the unit disc:

4.1 Theorem (Beurling). Suppose that d = 1 and let M, € B(Hgq)) be the
shift operator on Hpqy. For a subspace S C Hyq), the following statements
are equivalent:

(i) S € Lat(M,),
(ii) there exists a bounded analytic function 6: D — C such that
My: Hrey = Hgwy, f=0-f
is an isometry with Im(Mp) = S.

Further progress for vector-valued Hardy spcaes was made by Lax in [53]
and Halmos in [46]. McCullough and Trent obtained in [54] a similar result in
the case of the Drury-Arveson space:

4.2 Theorem (McCullough, Trent). Suppose that € is a Hilbert space and
let M, € B(Hpw (E))? be the shift operator on Hyga) (E). For a subspace
S C Hxw(€), the following statements are equivalent:

(i) S € Lat(M,),

(i1) there exist a Hilbert space D and a bounded analytic function 0: By —
B(D, &) such that

My: HK(l)(D) — HK(l)(g), f—0-f
is a partial isometry with Im(My) = S.

In the following, we want to obtain a Beurling-type theorem in our general
setting developed in Chapter 2l Therefore, let Hix C O(Bg) be a reproducing
kernel Hilbert space whose kernel K: B; x B; — C is of the form K(z,w) =
E((z,w)) (z,w € By) with a zero-free analytic function k: D — C, z —
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4. A Beurling-type theorem

Yoo ganz™ such that ag = 1, a,, > 0 for all n € N, and sup,,cy an/an41 < 00.
Furthermore, we suppose that 1/K(M,, M) exists.

Before we start looking at the K-shift, we state a preliminary result for
general K-pure commuting tuples. Our approach is inspired by [52, Section
3.2].

4.3 Proposition. Let H be a Hilbert space, T € B(H)? be K -pure and S C H.
The following statements are equivalent:

(i) § € Lat(T) and T|s is K-pure,

(i) there exist a Hilbert space D, and a partial isometry m: Hx @ D — H
with
Tim = (M, ®idp)

foralli=1,...,d and Im(7) = S.

Proof. Suppose that (i) holds. Since T'|s is K-pure, by Theorem there
exist a Hilbert space D and an isometry II: & — Hx ® D such that

(Ts); = (M; ®idp)*TI

for all « = 1,...,d. Hence, II* is surjective. Denoting the inclusion map by
t: S — H, we set
m=oll".

Then, 7: Hx ® D — H is a partial isometry with Im(7) = S and
Tim=Tuoll" = u(II(T|s);)" = «(T|s):II" = JII*(M,, ® idp) = w(M,, ® idp)

foralli=1,...,d.

Now we suppose that (ii) holds. Obviously, S = Im(x) € Lat(7T"). The map
k= 7*s: S — Hyxg ® D is an isometry, since S = Im(w) = (ker(7*))*. As
the adjoint of the operator Hx ® D = S, the map & intertwines (T|s)* and
(M. ® idp)* componentwise. By Theorem [2.15] the tuple T'|s is K-pure. [

We are now interested in a stronger version of the last result in the case
when T is the K-shift M,. To this end, sufficient conditions for the existence
of multipliers will be elaborated.

4.4 Lemma. Let D,E be Hilbert spaces and H(D) C D and H(E) C £ be
reproducing kernel Hilbert spaces over a set 0 C C¢ such that

(i) ME® ¢ B(H(D))* and M) € B(H(£)),
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(ii) the point evaluation 6% : H(D) — D is surjective for each \ € Q,

(iii) ker(6D) = S0 (2 — \)H (D) for all X € Q.
Then, for each operator m € B(H (D), H(E)) such that
ﬂMf(D) — ]\421?’(5)7T

for alli = 1,...,d, there exists a multiplier 6 € M(H(D),H(E)) such that
= Mg.
If in addition Q is open, D C H(D), and H(E) C O(,E), then 0 is analytic.

Proof. Let f € ker(6%) and let 7 € B(H(D), H(E)) such that
7r]\421_1(9) — ]\45(5)7r
for all i = 1,...,d. By (iii), there exists a sequence (fy)nen in S0, (2 —

\i)H (D) with TH.”H(D)—limit f and hence, for all i = 1,...,d and n € N, there
exist f,; € H(D) such that

d

=1

Thus,

oS (mf) = lim 65 (nfy)

n—oo

d
dz:l
= lim o5 <Z(zi - Az‘)ﬁfn,z‘))

i=1
=0.
Then, by Proposition [1.22} there exists a map 6: Q@ — B(D, £) such that
nf =0f

for all f € H(D).
If in addition © is open, D C H(D), and H(E) C O(Q,E), then

0(-)(z) = (02)(-) = (m2)()

is analytic for all z € D. Hence, # is analytic. O
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4. A Beurling-type theorem

4.5 Proposition. Let D, € be Hilbert spaces and let H(D) C D% and H(E) C
EBa be reproducing kernel Hilbert spaces such that

(i) H(D) =D|z] and H(E) C OBy, E),
(i) MI® e B(H(D))? and MI'® € B(H(E)).
Then, for each operator m € B(H(D), H(E)) with
T MUE®) Z ()

for alli = 1,...,d, there exists an analytic multiplier 6 € M(H (D), H(E))
such that m = My. Furthermore, if we suppose that H(D) is non-degenerate,
then 6 is also bounded.

Proof. Let A € By and f € ker(67). Then there exists a sequence (Pp)nen
in D[z] with 7, (m—limit f. By the closed graph theorem, we see that the
inclusion map D — H (D) is continuous and hence

in H(D) as n — oo. Furthermore, we have

Pn € Z(z — \)Dlz] © Z(z — \)H(D)

for all n € N and thus,

fe Z(z — N)H(D).

Since D C D[z] C H(D), the conditions (ii) and (iii) in Lemmal[4.4 are satisfied
and the result follows.
The remaining assertion follows from Proposition [I.21] O

With these preparations, we are now able to proof a Beurling-type theorem
in our general setting.

4.6 Theorem. Let € be a Hilbert space, H(E) C O(By, E) a reproducing kernel
Hilbert space, and let M, € B(H(E))¢ be K-pure. For S C H(E), the following
statements are equivalent:

(i) S € Lat (M,) and M,|s is K-pure,
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(i1) there exist a Hilbert space D and a bounded analytic inner multiplier

0 € M(Hk(D),H(E)) such that Im(My) = S.

Proof. By Propositions and and Remark |1.40, the implication (i)
= (ii) follows from Proposition The other direction is clear by Propo-

sition .31 0

For the rest of this chapter, we want to focus on the case of weighted
Bergman spaces. For this purpose, we first state the following easy obser-
vations.

4.7 Remark. Let H be a Hilbert space, T € B(H)? be a commuting tuple and
S € Lat(T).

(i) If T"is Cl, then T'|s is also C..

(ii) If T is a K (M-contraction, then T|s is a K M-contraction.
(iii) If 7" is K W-pure, then T|s is KM-pure.
Proof. (i) For x € S C H and N € N, we have

!
|a|=N

= Z Ja! (T*%x, T x)

! v v
>y — (PsT"", PsT™"x)
la|l=N

LS p—
= > H<T|‘S 75"z, x)

|lal=N

= <O’7A~[|S (idg)x,x> )
(ii) This follows from the calculation above with N = 1.

(iii) By Remark the result follows from a combination of (i) and (ii). O

A special case of the following result has been proven by Klauk in [52]
Korollar 3.2.3].

4.8 Theorem. Let v > 1, £ be a Hilbert space, and & C Hyw (E) be a
subspace. For M, € B(Hygw (E))? and 1 < pu < v, the following statements
are equivalent:
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4. A Beurling-type theorem

(i) S € Lat (M,) and M,|s is a K" -contraction,
(i1)) S € Lat (M,) and M,|s is a p-hypercontraction,

(iii) there exist a Hilbert space D and a bounded analytic inner multiplier

0 € M(Hygw (D), Hgw)(E)) such that Im(My) = S.

Proof. (i) = (ii): By Proposition M, € B(Hyw (€))? is a KM-
contraction, and hence, Remark implies that M.|s is also a K-contrac-
tion. The result follows now from Theorem [B.51]

(i) == (i): This is clear.

(ii) <= (iii): We only have to show that the statement (ii) implies condi-
tion (i) of Theorem 4.6, By Lemma , we see that K (#)-pureness coincides
with the membership in Cy. Hence if we suppose that (ii) holds, by Proposi-

tion and Remark M,|s is K®_pure. O

The second condition of (i) in the last theorem is not always fulfilled for
v > 1, as the following example (cf. [12, Example 3.3.3 (¢)] and [52, Bemerkung
3.2.4]) shows.
Let € be a Hilbert space and v > 1. Consider for M, € B (Hyw (E))” the
space
S = {f € HK(V)(S) ; f(O) = 0} € Lat (Mz) .

For 1 < u <wvandn € & with ||n|| = 1, an easy calculation shows that

(
1 s T,
<K(“) (MZ|S,MZ\5)772%,77,Z%> — (C(()M) —l—cg”)((—

Hence, at least for > (v 4 1)/2, M.,|s is a not a K ")-contraction.

For v = pu > d and £ = C, the only closed invariant subspaces fulfilling this
additional property are the trivial ones, as the following proposition shows.
The case v = d + 1 has first been proven by Guo in [43] Proposition 4.1], and
the case v > d + 1 with v € N originates from [52, Satz 3.2.5].

4.9 Proposition. Let v > d, M, € B(Hyw )¢, and S € Lat(M,). Then M,|s
is a KW -contraction if and only if S is a trivial closed invariant subspace, i.e.,

8:{0} OTSZHK(U).

Proof. The if-part is clear.
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For the only if-part, suppose that {0} # S € Lat(M,) such that M.,|s is a
K®)_contraction. By [12, Example 3.3.3], the space

d
T=8e) M.S#{0}

consists of eigenvectors of 1/K® (M, |s, M.|) to the eigenvalue 1. An easy
calculation shows that

KO, w) ||

K@ (- w|

<K1<,,) (M.]s, M.|3)K (-,w>,K<"><-,w>> - j Ps

for all w € By. For g € T with ||g|| = 1, we have
lg(w)* = (9@ 9K (-, w), K¥ (-, w))
1
< —(MZ|3,MAE)K(V)(-,IU),K(V)(-,IU)
K®)
’ 2

for all w € B,, where

K(”)(-,w)

Ps—Fr——
K w)

9®g: Hywy — Higw), [ (f,9)9,

and hence,
1=l = [ @ dntw) < [ [ ot 1 g0 <1
=1\9,9) = g\w v (w) < ST 7 1 v, (w) < 1.
B, [ K@), w)|
Thus,
KW H
— | =1
IIK(”) w)|
for v,-almost all w € By which implies that
KY( w)esS

for v,-almost all w € B,. If we can show that

(VK (w) s weBANY) =0}

for all v,-null sets N, the proof is complete.
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4. A Beurling-type theorem

To this end, let N be we a v,-null set and observe that

(\/ {KY(w); we Iaad\N}>L CA{KY(w); we IB%d\N}l.

Let f € {K® (- w); weBy\ N} Then
0= (f,K(-,w)) = f(w)

for all w € B;\ N. Since N has no inner points and f is continuous, we obtain
that f =0, i.e.,

(KW (,w); weB\ N} = {0}
Hence, S = HK(V). ]

4.10 Remark. If v = d, then, by [12, Proposition 5.1.3], the multipliers € in
Theorem (iii) such that {0} # Im(Mpy) # Hyw)(E) coincide with the non-
constant inner functions (for a definition of inner functions, see Section [6.1).
By Remark (iii), it is clear that, for v = 1 and a Hilbert space &,
M, € B(Hyu (€))? restricted to a closed invariant subspace is always a K (1)-
contraction. The next two results will help us to obtain a stronger corollary of
Theorem in the case v = 1, where the assumptions are slightly weaker.

4.11 Lemma. Let H be a Hilbert space and T € B(H)? be a row contraction.

Then we have .

> ONT

=1

<Al

for all X € C°.

Proof. Let A € C% Since T € B(H)? is a row contraction if and only if
d
or: HE = H, (z)L, — ZTixi
i=1

is a contraction, we have with

A = diag(A\yidy, . .., A\gidy) € B(HY)

that .
Y ATas|| = ller(Az)]| < Azl < Al ] < A ||
i=1
for all x = (x;)L, € H% O
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4.12 Lemma. Let € be a Hilbert space and let H(E) C E9 be a reproducing
kernel Hilbert space over a set Q C C% with reproducing kernel K such that

(i) M, € B(H(E))? is a row contraction and

(ii) the set {K(-,\)x ; A€ QN By, z € E} is total.
Then M, € B(H(E))? is KW -pure.
Proof. Let A € QN By and = € £. Then, by Lemma [1.20]

!

op (dpe) K (5 Nz = Y C T MEMIK (M)
lajJ=N
'—Oé
=y lalty MOK (-, Nz
o!

lo]=N

d N
i=1
—0

as N — oo by Lemma Since (o} (idpg(e))) ven is a monotone decreasing
sequence of positive operators and hence bounded (cf. Lemma, we obtain
that X(M,) = 0 by condition (ii) and Remark [2.5] O

With these preparations, we obtain [61, Theorem 4.4].

4.13 Theorem (Sarkar). Let € be a Hilbert space and let H(E) C O(Bg, &) be a
reproducing kernel Hilbert space of analytic functions such that M, € B(H(E))?

is a row contraction as well as S C H(E). Then the following statements are
equivalent:

(i) S € Lat (M),

(ii) there exist a Hilbert space D and a bounded analytic inner multiplier
0 € M(Hkga)(D),H(E)) such that Im(M,) = S.
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5. Minimal coextensions

In Remark we have seen that a strong K-contraction T € B(H)? on a
Hilbert space H has a canonical coextension of the type (M,®idp,)®W, where
Dr is the defect space and W € B(L)? is a spherical unitary on a Hilbert space
L. In this chapter, we want to answer the question under which conditions this
coextension is in some sense unique (cf. Theorem and Corollary [5.17).
Here, the presentation is influenced by the works of Arveson [9] and Bhat-
tacharjee et al [I5]. This chapter is split in two section: the first one will be
concerned with the so-called Toeplitz algebra, i.e., the C* algebra generated
by M., and the second one will contain the study of (minimal) coextensions
and factorizations thereof. As in the preceding chapters, let Hx C O(B,)
be a reproducing kernel Hilbert space whose kernel K: B; x B; — C is of
the form K(z,w) = k((z,w)) (z,w € B,;) with a zero-free analytic function
k:D — C, z — > 2, a,2" such that ap = 1, a,, > 0 for all n € N, and
SUDpen On/Ant1 < OO.

5.1. The Toeplitz algebra

The main goal of this section is to obtain an explicit representation of the C*
algebra generated by the K-shift. For this purpose, we have to suppose that
the following holds.

5.1 Assumption. Let M, € B(Hg)? be essentially normal and
Pee\/{MM?; a8 e N}

5.2 Example. Let v > 1. Then, by Remark and Section M, €
B (Hyw))" is essentially normal, and, by Theorem and Proposition m,

we have that

1
P(C:W<MZ;M:) E\/{MzaMz*Bﬂ O[,ﬁENd}.

For u,v € H, we use the notation

uv:H—>H, h— (h,v)u

85



5. Minimal coextensions

and observe that, since
lu @ vf| < lull ||v]]

for all u,v € H, the map
O:HxH— B(H), (u,v) »u®wv
1s continuous.

5.3 Lemma. Let A € B(H) be a rank-one operator. Then there exists h € ‘H
such that
A=h® A%h.

Proof. Since the image of A is one-dimensional, there exist h € H with ||h]| =1
such that, for all g € H, there exists A\, € C with

Ag = M\h.
Then
Ag =X h =) Ih||* h = (Agh,h) h = (Ag,h) h = (g, A"h) h = (h ® A*h)(g)
for all g € H. n
5.4 Lemma. The inclusion
K(Hy) c \[{M2M? ; o, B € N}
holds.

Proof. Define M =/ {MZO‘MZ”,‘B ;b e Nd}. It is enough to show that all
rank one operators on Hg belong to M.
To this end, let A € B(Hg) be a rank-one operator. By Lemma there

exist f =73 cna fa?2™ 0= pena Ya2* € Hy such that
A=f®aqg.

We set
A= > faGsMIPcM:" € B(H)

|, Bl<n

for all n € N. Since Pz € M, we see that A, € M for all n € N. For o, 8 € N¢
and z,w € B,, we have

(MXPeMPK (-, w))(2) = (MO P’ K (-, w))(2) = (@’ M21)(2) = w°2*
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5.1. The Toeplitz algebra

and hence,
<AnK(>w)>K(7Z)> = (A K Z fozz gﬁw
|o,|B]<n
= D fa | | D gew?
lo|<n |8]<n
() ) (3 st
|8]<n |o|<n
<K Sw), Y Wﬁ> > faza,K(',z>>
|B]<n a|<n
Zfaz ® Zgﬁz ',W),K(',Z>>
la|<n 1BI<n
for all n € N. Since {K(-,w) ; w € By} C Hg is a total subset by Proposi-

tion we conclude that

= Z faz®® Z ggzﬁ

la<n 18|<n

for all n € N. Since the map ® from the beginning of this section is continuous,
we conclude that

= Zfa2a®29/326—> Zfaza(gzgﬁzﬁzf@ngl

la|<n |B8|<n aeNd BeNd
n ||| @s n — o0. O

5.5 Theorem. The identity
— \/ {MIMP; a, € N}
holds.

Proof. The inclusion
C*(M.) o\ {MeM:? 5 o, e N}

is clear.
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5. Minimal coextensions

Since \/ {M;‘MZ*B ca, b€ Nd} is a *-closed subspace, it is enough to show
that \/ {M?M BB € Nd} is closed under multiplication. To this end, we
observe that, by Lemma there exists a compact operator K such that

MEMPMIM = MM+ K e \[ {MeM:? 5 o, B € N}

for all a, 3,7,0 € N4, since M, € B(Hy)? is essentially normal and K (Hy) C
VA{MM:? ; o, B € N} by Lemma O

5.2. Factorizations of minimal coextensions

Let H, D, K be Hilbert spaces, T € B(H)? be a commuting tuple, and let
U € B(K)? be a spherical unitary. In the following, we use the notation
MP = M, ® idp € B(Hg @ D).

5.6 Definition. We call a pair (MP @ U,1I), where [1: H — (Hx @ D) ® K
is an isometry, a coextension of T if

7y = (MP e U)*l

fori=1,...,d.
We shall write the isometry IT in the form IT = (TI,,I1,): H — (Hx®@D)®K.

Let T be a strong K-contraction, and Il = ¥ from Remark Then
(MPr @ W, 1) is a coextension of T" with

II, =47y and II, = %(T)Y2
Furthermore, the identities
L=\/{Wlh; aeN'and heH} and Dr=Pp,II,

hold.

5.7 Remark. Suppose that the K-shift M, € B(Hy)? is essentially normal.
The following statements are equivalent.

(i) Pce V{MeM:P; o, B € N},
(i) Pc € C*(M.) and C*(M,) = \/ {M2M: ; o, B € N},

Proof. This follows from Section [5.1] O
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5.2. Factorizations of minimal coextensions

Since Theorem [2.30] will play a crucial role in our factorization theorem, we
make the following assumption.

5.8 Assumption. From now on, we suppose that the K-shift M, € B(Hy)?
is essentially normal, that Y ° ¢, converges, and that

1 ) o
(Mo, M2) = Pr € \ {pmem:?; a8 e N}

Let T € B(H) be a strong K-contraction. By Theorem and its proof,
there are a coextension (MP & U,II) of T and a unital C*-homomorphism
m,: C*(M.) = B(K) with m,(M,,) = U; fori =1,...,d and 7|k (m,) = 0. By
setting

ms: C*(M,) — B(Hg(D)), X — X ® idp,

we complete 7, to a unital C*-homomorphism
T = (15, m,): C*(M,) — B(Hk(D) & K).
Define
He, =\ {m (X)L ; X € C*(M.),h € H} € Red(MP) C Hy(D),
Me, = \/ {m(XOILh s X € C*(M.),h € H} € Red(U) C K,
M =\/{m(X)Ih; X € C*(M.),h € H} € Red(M? @ U) C Hr, ® Har,.

Since C*(M.) = \/ {MIM:?; ,f € N} and MP™1I, = ILT** for all
a € N?, we obtain that

Mo, =\ {MPILh; 0 € N*and h € H} .

The following lemma is an adaption of [52, Lemma 4.1.6].

5.9 Lemma. If M C Hg(D) is a reducing subspace for MP, then
M=\/{z*(MND); aecN}=\/{"PpM ; a eN"}.

Proof. Since M is reducing for MP, M is invariant under Pp. Hence, MND =
PpM and the second equality holds.

The inclusion M D \/ {z*(M ND) ; a € N} is clear.

To establish M C \/ {za(M ND); ac Nd}, we conclude with Lemma m
that

* 1
PpM? O = —fs
]
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5. Minimal coextensions

for all 8 € N* and f = Y i fa2® € Hg(D). Let f = > na faz™ € M.
Since MP* f € M for all 3 € N, we obtain that f5 € M ND for all 8 € N¢
and hence,

fe\/{=*MnD); aecN'}, O

By Lemma [5.9] we have that
He, =\ {2"PoHn, ; @ € N}
~\/ {ZQPDMZDBHJL - a,feNYand h e %} .

Since

m(M® Pe MA)ITh = (MP* PoMPTLh) & 0
for all o, 3 € N% and h € H, we find that
He., ®{0} C H,.
Since
0 (7 (X)IL,h) = 7(X)Th — (7(X)1sh) &0 € Hy
for X € C*(M,) and h € H, it follows that
He =Hr, ©Hr,.

Furthermore, the smallest reducing subspace for MP & U € B(Hg(D) ® K)?
containing IIH is H..

5.10 Definition. We call the coextension (MP @ U,II) of T minimal if the
only reducing subspace for MP & U which contains [T is Hx (D) & K.

5.11 Proposition. With the notations from above, the following assertions
are equivalent:

(i) 11 is minimal,
(ii) H, = Hx(D) & K,
(i1i) Hr, = Hx(D) and H,, = K.

5.12 Proposition. Let (MPT & W, Vy) with Up: H — (Hg(Dr)) © L be a
coextension of T as in Remark[2.24 such that

L=\/{WS(T)"*h; a eN" h e H}.

Then (MPT @ W, Ur) is minimal.
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Proof. Since
£=\/{W°I,h; aeN and h e H} =H,

we only have to show that H,, = Hx(Dr).
To this end, we observe that

Drh = Pp,1I;h € Hy, N Dy
for all h € H and hence,
DT == DTH - Hﬂs N DT,

ie.,

7-[71'5 = HK<H7r3 ﬂDT) — HK(DT) D

Let B be a unital C*-algebra and ¢: B — B(H) be completely positive.
Furthermore, for i = 1,2, let (m;,II;, £;) be a minimal Stinespring represen-
tation for ¢. Then, by [57, Proposition 4.2|, there exists a unitary operator
V: L, — L5 such that VII; =11, and Vr; = mV.

5.13 Definition. Let B be a unital C*-algebra with unit 1z and let A C B
be a (not necessarily closed) subalgebra. We call a completely positive map

p: B— B(H)
an A-morphism if
(i) ¢(1s) = idy,
(i) @(AX) = p(A)p(X) for all A € Aand B € B.

Let (MP & U,1I) be a coextension of T and 7: C*(M,) — B(Hg (D) ® K)
a unital C*-homomorphism as constructed in the section following Assump-
tion Define A = {p(M.) ; p € C[z]} C B(Hk). Then the map

p: C*(M,) — B(H), X — II"n(X)II

is an A-morphism and the triple (7, II, Hx (D) @ K) is a Stinespring represen-
tation for the completely positive map .

5.14 Remark. With the notations from above, the following assertions are
equivalent:

(i) II is minimal,

91



5. Minimal coextensions

(ii) H, = Hxk(D)® K,

(i) Hn, = Hx(D) and H,, = K,

(iv) (m,II, Hx (D) & K) is the minimal Stinespring representation of (.
A proof of the following lemma can be found in |9, Lemma 8.6].

5.15 Lemma. Let B be a unital C*-algebra and A a subalgebra of B such
that B =\ AA*. Fori = 1,2, let H; be a Hilbert space, p;: B — B(H;) an
A-morphism, and V : Hy — Ha a unitary operator such that

Vi(a) = pa(a)V

for all a € A. Furthermore, for i = 1,2, let (m;,11;, L;) be the minimal
Stingspm’ng representation of w;. Then there exists a unique unitary opera-
tor V: L, — Lo such that

(i) V() = mo(z)V for allz € B,
(i) VI, = 1L,V

If A C C*(M.,) is the unital subalgebra consisting of all polynomials in
M., ..., M,,, then B=C*(M,) =\ AA* by hypothesis.
We are now able to prove an analogue of [I5, Theorem 3.1] in our setting.

5.16 Theorem. Fori = 1,2, let (MP: @ U, 11;) with I1;: H — Hg(D;) ®K; be
a minimal coextension of T'. Then there exist unitary operators Vs € B(Dq,Ds)
and V, € B(K1,K3) such that the diagram

1T
H 2 Hg(Ds) @ Ky
HIJ /
(idy, ®Vs) ® Vi,
Hy (D) ® Ky

commutes.

Proof. Fori=1,2,let m;: C*(M,) - B(Hg(D;) ® K;) be a unital C*-algebra
homomorphism as constructed in the section following Assumption [5.8, and
denote by ¢;: C*(M,) — B(H), X — IIm;(X)II; the induced A-morphism,
where A C C*(M,) is the unital subalgebra consisting of all polynomials in
(M,,,...,M,,). Since

p1(p(M.)) = p(T) = p2(p(M.))
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5.2. Factorizations of minimal coextensions

for every polynomial p € C[z], i.e., 1 = w2 on A, by Lemma (with
Hi = Hy = H and V = idy), there exists a unitary operator V: Hy(D;) &
K1 — Hg(Dsy) & Ky such that

Vr(X) = m(X)V

for all X € C*(M,) and
VI =11

We first show that V(Hg(Dy) ® {0}) € Hg(D;) @ {0} and V({0} @ K;) C
{0} ® KCs.

Since m; and 7o are minimal, we have that
Hi(D) = \/ {MfaPDM?ﬂHish - oa,feNtand h e ’H}
and
m(MOPeMP)ILh = (MP® Pp, MP°T1,,h) @ 0
for i = 1,2 and all o, 3 € N? and h € H. Hence,

v ((MZDlaPDlM?BHISh) o o) = Vi (M®PeMP)IL A
= 7y (M P MP)TIh
= (MP2" Pp, MP> T, h) & 0 € Hy(Dy) & {0}

for all ov, f € N* and h € H, i.e., V(Hg (D) @ {0}) C Hx(D,) @ {0}. Further-

more, we see that

V(0@ 1, (X)), h) = V (m(X)Ih — 7 (X)ITh & 0)
= 7T2<X)H2h - 7r23(X>H23h @0
=06 WQU(X)ngh

for all X € C*(M.) and h € H. Thus, V({0} @ K;) C {0} ® K. Therefore,
we write V = f/s &) f/u

Since V, and V* both intertwine MP' with MP2, Proposition implies
that there exist bounded analytic multipliers § € M(Hg(D;), Hx(Ds)) and
Y € M(Hg(D,), Hg(Dy)) such that V, = My and V = M,. Since V; is

unitary, we obtain that

M9¢ = MgMd, = idHK(Dg) and ng = M¢M9 = idHK(D1) .
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5. Minimal coextensions

Hence, for every z € B,, we have 6(z) = ¢(2)~!. By Lemma we have
that

for all z,w € B, and n € Dy. Thus, 0(2)0(w)* = 1 for all z,w € B, which
implies that, for all z € By, the operator 6(z) is a unitary operator, and we
have that 6(z) = f(w) for all z,w € B,. Finally, there exists a unitary operator
Vs € B(D1, D) such that 6(z) = V; for all z € B,. If we set V,, = V.., we obtain

I, = ((idg, ®V5) @ V,)IL,. O

5.17 Corollary. Let (MP @ U, ) be a coextension of T and recall the notation
from Remark |2.24. Then there exist isometries Vy € B(Dr,D) and V, €
B(L,K) such that the diagram

H 1 Hig(D)a K

”, J /
(idy, @Vs) @V,

Hg(Dr)® L

commutes.

Proof. Since H, is the smallest reducing subspace for MP @ U containing ITH,
we see that

I: H— Hy = Hg(He, N D) D Hr,, b T(h)

defines a minimal coextension of 7. By Proposition and Theorem [5.16
there exist unitary operators V; € B(Dy,H., N D) and V, € B(L,Hy,,) such
that 3 )

II = ((idg, ®Vs) & V,)Ur.

Denoting by tp: Hr, "D — D and tx: H,, — K the inclusion maps, the
operators

V.S:LDOVS and Vu:L;COf/u

are the required isometries. O
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One should note that the following Corollary (see [I5, Corollary 3.3] for the
Drury-Arveson space case) does not need the assumption that Y >° ¢, exists.

5.18 Corollary. Let T € B(H)? be a K-pure commuting tuple and (MP 1)
be a coextension of T. Then there exists an isometry V- € B(Dr, D) such that
the diagram

commutes.
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Part I1I.

Perturbations of Toeplitz
operators
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6. Preliminaries

A Result of J. Xia from [64], answering a question of R. Douglas [32], shows
that a given operator X € B(H?*(D)) on the Hardy space of the unit disc D
is a compact perturbation of a Toeplitz operator if and only if T, X7y — X is
compact for every inner function . Whether the corresponding result holds
true in higher dimensions on the unit ball B; C C? is still an open question.
In this part we show that the corresponding characterization of Schatten-p-
class perturbations of Toeplitz operators on H?*(B,) holds true also in the
multidimensional case. We work in a much more general setting which applies
at the same time to Toeplitz operators on all smooth strictly pseudoconvex
domains and all bounded symmetric domains D C C?. The results of this part
have been published in a joint paper [30] with M. Didas and J. Eschmeier.

Throughout Part [, all Hilbert spaces are supposed to be complex and
separable, and d is again a positive integer.

6.1. Schatten-classes

Let H be a Hilbert space. We first recall the definition of the Schatten-classes.

6.1 Definition. For p € [1,00) and a Hilbert space K, we denote by
S,(H,K) = {X € BOLK) 3 | X]|, = tr(IX]")"/7 < oo}

the Schatten-p-class. Furthermore, we write So(H, K) and Sy (#H, K) for the set
of finite-rank and compact operators from H to K equipped with the operator

norm, respectively. If £ = H, then we shorten the notation to S,(H) =
Sy(H,H) for p € {0} U1, 00].

For 1 < p < g < oo and a Hilbert space K, we have the chain of inclusions
So(H,K) C S,(H,K) C S;(H,K) C Soo(H,K).

The following lemma and corollary are technical results which will be helpful
in the upcoming proposition.
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6.2 Lemma. Let (a,)neny € (*(N). Then there exist (by)nen € co and (¢, )nen €
H(N) with

an = b,cy,
for all n € N.

If in addition a, > 0 for all n € N, then we can choose ¢, > 0 and b, > 0
for alln € N.

Proof. Let (an)nen € ¢*(N).
Define N; = 0 and

y . = 1
Nm_mln{lEN; 1> N,,_; and Z|an| <ﬁ}
j=t

for m > 2. Then (N,,)m>1 is a strictly increasing sequence in N.
Let n € N. Then there exists exactly one k,, € N* with

Nkn <n< Nkn+l-

The sequence (k,)nen is increasing and unbounded.
Define

b, = k‘in and ¢, = k,a,
for all n € N. Then (b,)nen € ¢o. The estimates
0o Nmy1-1 00 Npmy1—1
Zlcml—z Do lal=32 > |an|<Z Zlan|<z
m=1 n=Nm m=1 n=Npm m=1  n=Np,

show that (¢, )nen € ¢*(N).
The second statement follows immediately from the construction above. [

6.3 Corollary. Let 1 < p < oo and (an)neny € P(N). Then there exist
(b )nen € co and (cn)nen € P(N) with

an = byc,
for alln € N.

Proof. Let 1 < p < oo and (a,)pen € P(N). Then (|a,|")neny € ¢1(N) and,
by Lemma [6.2] there exist non-negative sequences (by)nen € ¢o and (G, )nen €
(H(N) with

|an|p - Bnén
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for all n € N. Let (7,)nen be a sequence in T such that
an = |an| T
for all n € N. Define
b, = I;i/p and ¢, = Tné,}/p
for all n € N. We obtain (b,,)nen € co, (Cn)nen € P(N), and
n = |an| T = DYP7,EYP = b,

for all n € N. O]
6.4 Proposition. Let (X)ren be a sequence in B(H) with

TSOT—kli_{glo X, =0.
Then, for p € {0} U1, 00| and S € S,(H), we have

7, - im XS =0 = 7. - lim SXG.

Proof. Let (X)ren be a sequence in B(H) with

TSOT- klggo X, =0.

We start with the case p = 0. Since every finite-rank operator is a linear
combination of rank-one operators, we only have to show the claim for rank-one
operators. To this end, let S € B(#) be a rank-one operator. By Lemma [5.3]
there exist u,v € H such that S = v ® v. Hence,

[ XeSh| = [[ Xk (hy o) wl| < [[A] lol} [ Xpul =0

as k — oo. Since S* is also a rank-one operator and ||SX}|| = || XxS*|| holds,
the second equality holds.

Now let p = oo and let S € B(H) be compact. Then there exists a sequence
(Sn)nen of finite-rank operators with 7. -limit S. Let ¢ > 0. By the uniform
boundedness principle, sup,cy || Xk is finite, and hence, there exists a natural
number N € N such that

3

IS — Sn|| < .
SUPgeN “Xk” +1
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Since the assertion holds for finite-rank operators, we have
[ XkS| < N Xkll 15— Snll + [[XeSn || < &+ | XpSnl — €

as k — oo. This proofs the first equation. The second one follows as before.
Finally, let p € [1,00) and let S € S,(#). By the polar decomposition, there
exists a partial isometry U € B(H) such that

S = SU,

where S = /55 € S,(H). Since S € S,(H) C So(H) is normal, we can find
an orthonormal basis (e,)nen of H and a sequence (a,)nen € P(N) with

Se,, = ané,

for all n € N. By Corollary , there exist sequences (b,)nen € ¢ and
(¢n)nen € ¢P(N) such that
ap = bncn

for all n € N. Let K, 5" € B(H) be the diagonal operators defined by
Ke, = bye, and Se, =c,e,
for all n € N. Then K € So(H), 5’ € S,(H), and
S=KS"
Since the assertion holds for compact operators, we obtain that

1X.81l, = || Xi.5U

< Hm” = |X, K|, < [IXe K| ]|, — 0
P P

as k — oo. Similar as before, we have that S* € S,(H) and that [|[SX}[, =
| X5S™||,, holds. This ends the proof. O

For later references, we state the following lemma.

6.5 Lemma. Let (Xy)ken and (Yi)ren be sequences in B(H) such that
TSOT_kh—{Eo Xk =X and TSOT—kli_)IEO Yk =Y.

Then
TSOT- lim XkYk = XY.
k—o0

Proof. The result follows from a standard application of the uniform bounded-
ness principle. O
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6.2. A-isometries and Toeplitz operators

In this section, we introduce the notion of so-called A-isometries which are a
generalization of spherical isometries in the spirit of Athavale (cf. Lemma.
We use [39], Section 1.1] as a guideline.

6.6 Definition. A complex Banach algebra A is called a dual algebra if there
exists a complex Banach space X such that A is isometrically isomorphic to
X’ and the maps

A— A z—axr and A— A, 2+ za

are T,~-continuous for all a € A.

6.7 Definition. Let A4 and B be dual algebras. We call p: A — B a dual
algebra homomorphism if p is a Banach algebra homomorphism that is 7,,:-
continuous. The map p is called a dual algebra isomorphism if it is an isometric
Banach algebra isomorphism that is a 7,,+~-homeomorphism.

6.8 Definition. Let A and B be von Neumann algebras. We call p: A — B
a von Neumann algebra homomorphism if p is a *-preserving dual algebra
homomorphism. The map p is called a von Neumann algebra isomorphism if
it is a *-preserving dual algebra isomorphism.

Let H be a Hilbert space. Fix a subnormal tuple T € B(#H)? and let
U € B(#)" be a minimal normal extension of T (cf. Proposition . By E(+)
we denote the projection-valued spectral measure of U. The von Neumann
algebra W*(U) C B(#) is abelian, and thus has a separating vector z € H,
ie., Sz # 0 for all non-zero S € W*(U). Furthermore, analogously to [20]
Proposition V.17.14|, we can achieve that z € H. The scalar spectral measure

p=(E()z2)

lies in M (0,(T)), the set of all finite positive regular Borel measures on
on(T), and is mutually absolutely continuous with respect to E(-). If we
normalize z, then p is a probability measure, denoted by pu € M (0,(T)).
Using Proposition one can show that, up to mutual absolute continuity,
the measure p does not depend on the choice of U.

The following proposition is a consequence of the spectral theorem for normal
tuples (cf. [3, Appendix DJ).

6.9 Proposition. There exists a von Neumann algebra isomorphism

~

Uy L2() — W*(U) € B(H)
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such that
kIJU(7Tk) = Uy

forallk=1,...,d, where
Tk - Cd—>C, (Zl,...,Zd) — 2k
denotes the projection map on the k-th component fork=1,...,d.

We call
Rr={f€L>(u); Yy(f)H CH} C L=(n)

the restriction algebra of T. By [39, Proposition 1.1.2|, this algebra is inde-
pendent of the choices of U and pu.

6.10 Proposition. The restriction algebra is T,+-closed.

Proof. Let (f;)icr be a net in Ry with 7«-limit f € L*°(u). Since ¥y is
Tw-continuous and H C H is 7,+-closed, we obtain

\I/U(f)h = Tw*-heﬂ[l \I[U(fz)h eH

forall h € H. O

The last proposition shows that

YT - RT — B(H), f — \IJU(f)’H

is a well-defined dual algebra homomorphism. Moreover, this map is isometric
(cf. |21, Proposition 1.1}).
Let
ABg) = {f € C(Ba) ; fls, € O(Ba)} C C(Ba)

be the ball algebra. Then the Shilov boundary dam,) of A(Bg) coincides with
the topological boundary 0B, of the open unit ball B;, the unit sphere S;.
Since A(Bg)|s, is contained in the restriction algebra of any spherical isometry,
by Lemma [1.6] the spherical isometries are exactly the A(B,)-isometries in the
sense of the next definition, which was first introduced by Eschmeier in [35].

6.11 Definition (Eschmeier). Let K C C? be a compact set and let A C
C(K) be a closed subalgebra. We call T" an A-isometry if o,(T) C 0a,
(C[Zl, ey Zd”[{ C A, and A|8A C RT-
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Here as in the following we shall regard the underlying scalar spectral mea-
sure of T' via trivial extension as a Borel measure on dy4.
Let T be an A-isometry as in Definition Define

HE(u) = Ao, ™ C L™(p)

Since yp: HY () — B(H) is an isometric 7,+-continuous algebra homomor-
phism, its range

T(T) = yr(HE (1)) € B(H)
is a 7,+-closed subalgebra. The induced map

yr: HY (1) = TT), f e Culf)ln

is a dual algebra isomorphism.
A special role will be played by the set

I, ={fe HX (1) ; |f| =1 p-almost everywhere} C L*(pu),

whose elements will be called p-inner functions. There is a one-to-one corres-
pondence between [, and the set

Ir={J¢€ TNT) 5 Jis isometric} .
More precisely, one can show [28, Lemma 1.1]:

6.12 Proposition. Let T € B(H)? be an A-isometry and p € M*(da) be a
scalar spectral measure of T'. Then

Ir = ”YT(I;L)'

In [4], Aleksandrov gave sufficient conditions under which there is a rich
supply of p-inner functions.

6.13 Definition (Aleksandrov). Let K C C? be a compact set, A C C(K)
be a closed subalgebra and let v € M (K) be a finite positive Borel measure.
We call the triple (A, K, v) regular (in the sense of Aleksandrov) if for every
¢ € C(K) with ¢ > 0, there exists a sequence of functions (¢)ren in A such
that |pr| < ¢ on K and limy_,. || = ¢ holds v-almost everywhere on K.

For the upcoming examples, we introduce some notations. Let D C C? be
a bounded domain. We denote by

e O(D) C CP the set of all scalar-valued analytic functions on D,
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e H®(D) C O(D) the subspace of all bounded analytic functions on D,
e A(D)={feC(D); flp€O(D)} the domain algebra of D.

6.14 Examples. (i) The triple (A(Bg)|s,,Sq4, o), where o is the normalized
surface measure on Sy, is regular.

(ii) The triple (A(D?)|ra, T¢, ®4m), where m is the canonical probability
measure on the unit circle T and ®ym denotes the product measure
of m with itself d times, is regular.

(iii) More generally, if D is a strictly pseudoconvex domain with smooth
boundary or a bounded symmetric and circled domain, then the triple
(A(D)o,py» Oa(p), V), where v is a finite positive regular Borel measure
on dy(py, is regular. This follows from Proposition 2.5 and Section 5 in
[27].

The measures in the first two examples also enjoy the next property.

6.15 Definition. Let K be a compact Hausdorff space. We call v € M (K)
continuous if

A, ={ze K; v({z}) >0} =0.

The next theorem guarantees the existence of sufficiently many inner func-
tions.

6.16 Theorem (Aleksandrov). Let (A, K,v) be a regular triple and v €
MT(K) be continuous. Then the T,«-sequential closure of the set I, contains
all L (v)-equivalence classes of functions f € A with || f]| < 1.

This result follows from [4, Corollary 29].
A proof of the following proposition can be found in |28, Proposition 2.4 &
Corollary 2.5]|.

6.17 Proposition. Let (A, K,v) be a reqular triple. Then we have
HY(v) =span»*(l,) and L>®(v)=W*(l,)=span>* ({77-0; n,0 € 1,}).

6.18 Definition. Let T € B(H)? be an A-isometry. We call T regular if
(Als,,0a, ) is regular in the sense of Aleksandrov for some, or equivalently
every, scalar spectral measure u € M™*(04) associated with 7.

Since the measure in Theorem has to be continuous, it is helpful to
characterize those A-isometries which have a continuous spectral measure.
Proposition 4.1.2 in [39] provides such a characterization in the case of regular
A-isometries.
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6.19 Proposition. Let T' € B(H)? be a reqular A-isometry. Then

o,(T) = {z eC'; (ker(z — To) # {0}} = A,

=1

6.20 Corollary. Let T € B(H)? be a reqular A-isometry. Then o,(T) = 0 if
and only if u is continuous.

Let T € B(H)? be an A-isometry with minimal normal extension U € B(H)?
and scalar spectral measure pu € M; (94). We set

Ty = Wy(L).

If we combine Theorem[6.16] Proposition[6.17} and Corollary [6.20, we obtain
the following result.

6.21 Proposition. Let T € B(H)? be a reqular A-isometry with minimal
normal extension U € B(H)? and scalar spectral measure j € M*(94). Then
the following statements hold:

(i) 7;(C)(T) = gpan'* (I7) and W*(U) = span'=* ({J;J2 ; Ji, o € Iy }).
(ii) If 0,(T) = O, then there exists a T,~-zero sequence (O)ren in I, and
hence, (Ji)ken = (Y7 (0k))ren 1S a Ty« -zero sequence in Ir.

We are now going to define the operators which play the main role in this
part of the thesis. Part (iii) of the next definition is in the spirit of the Brown-
Halmos condition [I6] (see also [29]).

Recall from Lemma [1.1| that the inclusion W*(U) C (U)’ holds.

6.22 Definition. Let 7' € B(H)? be an A-isometry with minimal normal
extension U € B(H)? and scalar spectral measure p € MT(94).

(i) We call X € B(H) a generalized concrete Toeplitz operator if there exists
Y € (U)" such that

X =Ty = PyYl|y € B(H).

The set of all generalized concrete Toeplitz operators will be denoted by

T8)(T).

(ii) We call X € B(H) a concrete Toeplitz operator if there exists f € L>(u)
such that
X =T; =Ty € B(H).

The set of all concrete Toeplitz operators will be denoted by 7 (T).
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(iii) We call X € B(H) an abstract Toeplitz operator if
JXJT—-X=0

holds for all J € Ir, and denote by T (T') the set of all abstract Toeplitz
operators.

(iv) For p € {0} U [1, o0], we set

TENT)={X € B(H) ; J*XJ - X € S,(H) for all J € I1}.

In the setting of Definition the chain of inclusions
TOT) c TC=(T) C TE(T) C TPN(T)

holds.
Recall that a von Neumann algebra A is maximal abelian if A= A'.

6.23 Proposition. Let T € B(H)? be a regular A-isometry with minimal

normal extension U € B(’i:[)d. The following statements hold:

(i) TE(T) = T(T),

(ii) If W*(U) is a mazimal abelian von Neumann algebra, then T(T) =
TEe)(T) = T@(T).

A proof of the last result can be found in [29, Proposition 3.2|.
From now on, let T' € B (H)¢ be an A-isometry with minimal normal exten-
sion U € B(H)? and scalar spectral measure p € M; (9a).

6.24 Lemma. Let (fi)ren be a bounded sequence in L™ (p) and let f € L™ ()
be such that

Tl g~ A fi = /-

Then

(i) Tsor-limy_ o Yy (fi) = Yu(f) and tsor-limge Y (fe)* = Yo (f),

(ZZ) TSOT—hmk_mo Tfk = Tf and TSOT—hmk_wO T}kk =

T

Proof. Let (fr)ren and f be as in the hypothesis of the lemma. Since (fx)ken
is a bounded sequence in L>(u), the sequence (fi — f)ren is also bounded in
L>(p). Therefore, we can suppose that f = 0.
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(i) We have

1Wu(g)z]” = ; 9" d{E()z, )

for all g € L*>(p) and = € H. Let (fy,)ien be a subsequence of (fi)ken.
Then there exists a subsequence (fx, )men of (fk,)ien such that

fklm — 0

as m — oo p-almost everywhere on 94 and hence (E(-)x, z)-almost every-
where for every z € H. By the dominant convergence theorem, we can
conclude that

|0 (fr, )z =0 (zeH)
as m — Q.

Hence, we obtain that
TSOT- lim \I’U(fk) = 0.
k—o0
Since W (fx) is normal for all k& € N, we conclude that

TSOT- klglolo Uy(fe) =0.

(i) Since T}, is the compression of Wy (f) on H for all k& € N, the result
follows from (i). O

Since we are concerned with the weak™ topology and the weak operator
topology on B(H) in the sequel, the following remark will be helpful.

6.25 Remark. By |22, Proposition 20.1|, the closed norm unit ball of B(H),

Ef(H)(O), equipped with the relative topology of the weak™ topology of B(H)
is a compact metrizable space. Furthermore, the topologies 7.+ and Twor
coincide on every norm-bounded subset of B(H).

For the rest of this section we take a closer look at the behavior of limits of
Toeplitz operators. The upcoming lemmas are technical results which will be
needed in the proof of Proposition [6.30}

6.26 Lemma. Let (fi)ren be a sequence in Efoo(u)(O), the closed norm unit
ball of L>°(w). Then the following statements are equivalent:

(1) Tw+-limg_ oo fr =1 in L=(p),

(Z’L) limk_mo faA fk: d,u = 1,
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(104) T2, - iMk—o0 fr = 1,

(iv) Tsor-limg_e Yy (fi) = idy,

(v) Twor-limg_e Vi (fi) = idy,

(Vi) Tue-limy oo Uy (i) = idy in B(H).
In this situation, we have

TSOT_klggo Ty, =idy and TSOT-I}LIEO 1%, = idy

by Lemma [6.2])
Proof. (i) = (ii): We have

fkduz/a 1—fkdu=/a (1= fi) -1 du—0

04

as k — oo, since 1 € L' ().
(i) = (iii): We have

11— fk”imt) = (1= fis 1= fi) 12y
= (L, 1)1,y — 2Re <<fk, 1>L2(u)) + (fios fi) p2

=1—2Re</aAfkdu)+[3A!fk|2 dp
§2Re(1—/8Afkdu)

— 0
as k — oo.
ili) = (iv): This follows immediately from Lemma [6.24]
iv) = (v): Clear.

:E\_/

(
(
A

B (0) The result follows now from Remark [6.25

= (vi): Since Uy is isometric, the sequence (Vy(fx))ken lies in

(vi) = (i): This follows immediately from the fact that Uy is a 7,+-ho-

meomorphism.

6.27 Lemma. Let p € {0} U [1,00] and let (fi)ren be a sequence in I, such

that
Ty~ Hm fi, =1 in L™ (p).
k—o00

Then:

110



6.2. A-isometries and Toeplitz operators

(i) For all X € B(H), we have

TSOT_kh—{Eo T]thTfk = X.

(it) For all S € S,(H), we have

7‘||.H - lim T;kSTfk = S

P k—oo

(iii) For all X € B(H) and v € HY (p) with T XT, — X € S,(H), it follows
that
lim || T (T, X Ty, — X) T — (T7 XTy, = X)||, = 0.

k—o0

Proof. Let (fi)ren be a sequence in I, such that

Tw+- im fr = 11in L(p).

k—o00

(i) Let X € B(H). By Lemmas [6.5| and [6.26 we have

TSOT- kh—>I£lo T;kXTfk = X.

(i) Let S € S,(H). By Lemma and Proposition [6.4] and the fact that
HY (1) C Ry, the result follows from the observation that

77,5y, = S|, = [|77,(STy = Ty, 9)||,
< [1(T5, — i), + 1 (Ty, — idw)S]],
= (|73, — i), + (T, — id)Sl,

—0

as k — oo.
(iii) Let X € B(H) and u € HY (p) such that T, XT, — X € S,(H). We have

T} (T4 XTy, — X) T, — (T3, X Ty, — X)
=T;T; XTy T, — TiXT, — T} XTy, + X
=T} T;XT, Ty, — T; XTy, — T:XT, + X
=T (T;XT, — X) Ty, — (T XT, — X)

for all £ € N. The result follows from part (ii). O
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6.28 Lemma. Let (wy)ren be a sequence in L™ (u) with

Tw- 1im wg, = 0.
k—o0

Then

Tw* ~ hm ka = 0
k—o0

Proof. Since Wy : L®(p) — W*(U) and B(H) — B(H), X — Py X|y are

Tw+-continuous, the map

L¥(p) = B(H), f—T;
is also 7,,«-continuous. Hence, the result follows. O
6.29 Lemma. Let (vg)ren be a sequence in L™ () with

Ty~ im v, = v € L>(p).
k—o0

Then, for all K € So(H), we have
TWQT—khm T;kKTUk = T:KTU
—00

Proof. Let f,g € H and K € Sy (H). Define wy = v, — v for all £ € N. Since
K € 8. (H), we obtain with Lemma [6.2§

KTy, f)—0

as k — oo. Furthermore, since every weakly convergent sequence is norm-
bounded, the sequence (||}, g||)ken is bounded by Lemma [6.28] We conclude

that
[(T; KT, — TKT,)f. g)]
= (T} _JKTy—o+T; KT, +T;KT,,)f,9)]|
= [(K(Tu f), T 9) + (KT, f, Tg) + (T f. K*T09)|
<NE(Tu, NN T gl + (KT f, T 9)| + Ty f K Tg)|
—0

as k — oo. O

Part (ii) of the following proposition is the starting point for characterizing
perturbations of Toeplitz operators.
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6.30 Proposition. If (vg)ken s a sequence in HY (p) with

T+~ lim v, = a € C in L™(p)

k—o00

and X € B(H) is an operator such that

X = TWOT-]}LIELO T:kXTUk S B(%)
exists, then:
(i) Foru e HY(u) such that T)XT, — X € Soo(H), it follows that
T:XT, — X = |of (T'XT, — X).
(ii) If X € T@>)(T) and o € C\ T, then
1

. |2(X —X) e TO(T).

Proof. Let (vg)ken and X € B(H) be as in the hypothesis of the proposition.
(i) Let u € HY () such that T XT, — X € S(H). Then, by Lemma [6.29]

T:XT, — X = Twor- lim T,T; XT, T, - T; XT,
—00

= rwor- lim T (T XT, — X)T,,
k—oo F
= |a|* (T'XT, — X).

(ii) Let X € T@>)(T), a € C\ T, and set

1 ~ 1 ~
Z=X - ——5(X - X)= ——(X ~ |af X).
- al - al

Then, by part (i), we have

TZT, — 7 = ((T;XTu - X) — o> (T3 XT, — X)) ~0

L~ |af”
for all u € I,,. Hence, Z € T®(T). O

6.31 Remark. In the setting of the last proposition, there is always a subse-

quence (v, )jen of (Vx)ren such that the limit mwor-lim; T;k‘XTvkj € B(H)
J

exists. This follows from Remark [6.25]
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In the classical setting, a necessary and sufficient condition for an operator to
commute with all analytic Toeplitz operators is to be an analytic Toeplitz ope-
rator. A characterization of the commutant of the set of all analytic Toeplitz
operators modulo the compact operators was first obtained by Davidson in
1977 [25] on the Hardy space H?*(m). He proved that this set consists of all
compact perturbations of Toeplitz operators Ty with symbol f € H*(m) +
C(T). By a classical result of Hartman [47], this symbol class consists precisely
of all functions f € L*°(m) for which the Hankel operator H; with symbol f
is compact.

In 2006, Guo and Wang [45] characterized the commutant of all analytic
Toeplitz operators modulo the finite-rank operators on H?(¢) and H?(®qm).

The topic of the last section is to obtain a similar result for Schatten-class
perturbations of analytic Toeplitz operators. The results therein have been
published in [30].

For this chapter, let H and # be Hilbert spaces.

7.1. Abstract analytic Toeplitz operators

Let '€ B(H)? be a regular A-isometry with minimal normal extension U €
B(H)? and scalar spectral measure 1 € M (04).

Recall that 7o (T') is the set of all concrete analytic Toeplitz operators.
7.1 Definition. We denote by
TNT)={X € B(H) ; [X,J]=0forall J e I} C T®T)

the set of all abstract analytic Toeplitz operators, where [X,Y] denotes the
commutator of operators X,Y € B(H).

7.2 Remark. We have

TNT) < (TLND)) = TT) € T(T).
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Proof. Since
T(T) = span™" (Ir)

holds by Proposition and, for B € B(H), the maps
B(H) — B(H), A— AB and B(H)— B(H), A~ BA
are T,+-continuous, we have
TT) € (T(T)).
The other inclusions are clear. O

The upcoming definition of Hankel operators is the natural generalization
of the classical notion.

7.3 Definition. Let Y € (U)" and f € L>°(n). We call
Hy = (idy, —Py)Y |5 € B(H,HOH)
the Hankel operator with symbol Y, and
Hy = Hy, () € B(H,HCH)
the Hankel operator with symbol f.
For Y € (U) and g € L*(u), we have
Ty, (g) — TyTy = HiHy.

The following proposition is a slight extension of [39, Proposition 1.3.2] with
exactly the same proof.

7.4 Proposition. For all Y € (U)', f € L>(u) and g,h € Ry, the relation
Pu(Yu(@fh)Y )l = TaPu(Yu(f)Y) |5 Th

holds. In particular, we have

Topn = Ty Th and Ty ry = TyTy Th.

g

For every § € I,, the operator Wy (f) € B(#) is unitary and leaves
invariant.
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7.5 Lemma. For each § € 1,, the Hankel operator Hy € B(H,HEH) is a
partial isometry with

ker(Hy) = Uy (0)H and Im(Hy) = (HoH) o (Vy(0)(H o H)).
Proof. Let 6 € I,. We have
HgWy(0)H = Py Vo (0) Uy (0)H = {0}
and
U0 (H o Uy (O)H) = (Ty@H) oH=HoH.

Therefore, we obtain H; = Wy (f) on H © Yy (0)H. Hence, Hy is a partial
isometry with ker(Hz) = Uy (0)H. Furthermore, the identity

Hg(H & Yy (0)H) = Yy () (H o Yy (0)H)

= (\IIU@)H) oH
(Ty(O)H S H) o (Ty@)(HoMH))
= (Het) e (Vy@)(HeH)

shows that o
Im(Hp) = (7—[67{) (Yy(O)(HOH)). O

7.6 Corollary. For each 8 € 1, the operator
Py = HzH; € B(HSH)
is the orthogonal projection from H O H onto the space
Ho = (HOH) e (Uy0)(HeH)).

The next lemma shows that we can characterize the orthogonal complement
of H in ‘H using the operators Hy with 6 € I,,.

7.7 Lemma. With the notations from above, we have
7:167-[:\/(7:[9 ;0el,).
Proof. We have
(HoH) o (\/(7-29 0 I#)> — ) Y@ (HeH)

0el,

= (WO & vy (@)H)

0€l,

= ((H e Ty (O)H)

0ecl,

=He \/ Vu(O)H.

oel,,
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Since U € B(H)? is the minimal normal extension tuple of T' € B(#)%, it is

enough to show that \/GGIH Uy (0)H is a reducing subspace for U. Since I, is

closed under multiplication and since I, C Rr, it follows that \/,. L Uy (0)H
is invariant under the von Neumann algebra

W ( Wy (1)) = VoW (L)) = Yo (L™ (1) = WH(U).
In particular, the space Vo, Uy (0)H is reducing for U. O

7.8 Remark. Let 0,0, € I,. We write 6, < 0, if there exists ¢ € I, such that
0y = 6,0. This defines a partial order on I, and (I,, <) is directed upwards.
Furthermore, if 6; < 0y and 0, = 6,0 as above, then

Uy (0:)(H & H) = Yy (01)(Pu(B)(H e H)) C Yu(b)(H o H),
and hence, Py, < F,.

7.9 Lemma. We have
TSOT_gleIﬁ Pp=idyy, -

Proof. Define
M={Fyh; ¢ €l andhe HOMH}.

Since

PyPyh = Pyh

for all ' € I,, h € HOH and 6 € I, with 0 > ¢', the net (Fy)ses, converges
pointwise to the identity operator on M. Since ||F| < 1 for all § € I, it
converges pointwise to the identity operator on span’l'l (M) = H © H. O

We conclude this section by characterizing abstract analytic Toeplitz opera-
tors via Hankel operators.

7.10 Proposition. Let T € B(H)? be a regular A-isometry with minimal
normal extension U € B(H)? and scalar spectral measure 1 € M; (9a). Then
we have

TE(T) = {Ty ; Y € (U) with Hy = 0}.

If in addition W*(U) is a mazimal abelian von Neumann algebra, then

TNT) ={Ty ; f e L=(n) with Hy; =0} = {Ty ; f€Rr}.
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Proof. Let X € E(a)(T) C T®(T). By Proposition (i), there exists
Y € (U)" such that
X =Ty.

With
O - [Ty, Tg] - HgHy

for all # € I, and Lemma we conclude that

Hy = 780T- lim PgHy = 780T- lim HgHgHy =0.
oel, oel,

The other inclusion follows from the fact that
[Ty,Tu] — H;Hy — 0

holds for all Y € (U)" with Hy =0 and u € 1,,.

The rest follows from Proposition [6.23] (ii). O
7.11 Corollary. Let D =B, or D =D¢ A = A(D) and u = o the canonical
probability measure on dapy as well as H = H?*(0) = A(D)|8!|(‘Zj<°). Then we

have

TT) = TN(T).
In this case, we use the abbreviation To(T,) = Ta(T.) = Ta(T).

Proof. The tuple T, € B(H?(c))? is a regular A(D)-isometry and o is a scalar
spectral measure of its minimal normal extension M, € B(L*(c))¢. Since
W*(M,) is maximal abelian, it follows from Proposition that

TENT) ={Ty; f€Rr}.
Since
Ry, ={f € L¥(0) ; fH*(0) C H*(0)} = L®(0) N H*(0) = H*(0),

the assertion follows. O

7.2. Finite-rank perturbations of analytic
Toeplitz operators

Let T'e B (H)? be a regular A-isometry with minimal normal extension U &
B(H)? and scalar spectral measure p € M (94).

119



7. Analytic Toeplitz operators

For p € {0} U[1, o0], we set
TENT)={X € B(H); [X,Y] € S)(H) forall Y € T)(T)}.

In this section, we want to achieve a result similar to Proposition [7.10] for
70 (T'). We start with a general statement about limits of finite-rank ope-
rators. A proof of this result can be found in |28, Lemma 3.4].

7.12 Lemma. (i) Let (Fy)ren be a sequence in B(H) satisfying rank(Fj,) <
M for all k € N and some fizted M € N. If (Fy)ren has a Twor-limit
F € B(H), then rank(F) < M.

(i) Let A C B(H) be a closed subspace and X € B(H) such that rank([X, A])
is finite for all A € A. Then there ezists a natural number M € N such
that

rank([X, A]) < M

for all A € A.

An inspection of the proof of Lemma 3.4 in [28] shows that part (i) of
Lemma remains true with sequences (Fj)ren replaced by nets (F});e;.

7.13 Proposition. If o,(T) =0, then
T(T) + So(H) € TO(T) € TT) + So(H)
holds.
Proof. The inclusion
TT) + So(H) € TO(T)

is clear.

For the second inclusion, let X € 72" (T'). By Proposition (i), there
exists a T,«-zero sequence (uy)reny in I,, and hence, (T}, )ken IS @ Ty»-zero
sequence in Ir. By passing to a subsequence, we can suppose that

X = TWOT- lim T; XTUk
k—o0 k

exists. With Lemma (i) applied to A = 7 (T") we obtain a constant
M > 0 such that

rank(7, XT, — X) = rank(T; [ X, T,]) < rank([X,T,]) < M
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for all w € I,,. We conclude that

S=X—-X=1wor- lim (X — T} XT,,)
has at most rank M by using Lemma (i). The result follows now from
Proposition [6.30] (ii). O

The proof of the next theorem is a slight modification of the proof of [28]
Theorem 3.5], which was inspired by the proof of [45, Theorem 3.1].

7.14 Theorem. Let T € B(H) be a regular A-isometry with op,(T) = 0, mi-

nimal normal extension U & B(’;’:[)d and scalar spectral measure 1 € M, (04).
For X € B(H), the following statements are equivalent:

(i) X € D),

(ii) X =Ty + F for some F' € Sy(H) and a symbol Y € (U)" with Hy €
So(H).

If in addition W*(U) is a mazimal abelian von Neumann algebra, then the
above are also equivalent to

(iii) X = Ty+F for some F € So(H) and f € L*(p) with Hy € So(H, HOH).

Proof. (i) = (ii): Let X € 7;(a’0)(T). By Propositions and [7.13] there
exists Y € (U)" and F € Sy(H) such that

X=Ty + F.

Since [Ty, 2] = [X, 2] — [F, 7] € So(H) for all Z € TLT) and A = (T
is closed, Lemma [7.12] (ii) yields a natural number M > 0 such that

rank([Ty,T,]) < M
for all u € I,,. Thus, using Lemma [7.9] we obtain
Hy = 7sor- eher}l PpHy = Tsor- (}ler}l Hy(H;Hy) = Tsor- ehef}'i Hy[Ty, Ty],
and hence, Lemma (i) implies that Hy is a finite-rank operator.

(i) = (i): Since
[Ty, T,] = H;Hy

holds for all Y € (U)" and g € HY (1), this implication follows immediately.
The rest follows from Proposition [6.23] (ii). O
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In the case D = B4 or D = D?, we get [45, Theorem 3.1] back.
7.15 Corollary (Guo, Wang). Let D = By or D = D¢, A = A(D) and

p = o the canonical probability measure on dapy as well as H = H?*(0) =

A(D) Q:!;?("). An operator X € B(H?(a)) belongs to T80 (T.) if and only if

X =T+ F for some F € So(H*(0)) and
(i) if n =1, f is the sum of a function in H>®(D) and a rational function,
(ii) if n > 2, f € H>®(D).

Proof. The result follows from Theorem [7.14] Corollary and Proposi-
tion as well as Proposition 2.2 with the parapgraph before it in [45]. O

7.3. Schatten-class perturbations of analytic
Toeplitz operators
As before, let T' € B(H)? be a regular A-isometry with minimal normal ex-

tension U € B(H)? and scalar spectral measure i € M (94).
The following proposition can be deduced from [50, Proposition 2.11].

7.16 Proposition (Hiai). The map
I, : (B(H), 7wor) — [0,00], S = |S]],
18 lower semi-continuous.

For the proof of the upcoming proposition, we recall some basic facts about
the Toeplitz projection established in [37]. Since L'(u) is separable and hence,
I, is a separable metrizable space in the relative weak™ topology, there exists
a sequence (0 )ren in 1, such that

W ({0 ; k€ N}) =W*(I,) = L>(n).
Fix such a sequence (0y)ren and set

1 .
Ori: BH) = BH), X > To o Xy

i O
for all k£ € N. A completely positive, unital projection
®r: B(H) —» B(H), X — Tw*-ljr? Pr, (X),
1€

where (®py,(X))ier is a T,+«-convergent subnet of (®7(X))ken for all X €
B(H), is called a Toeplitz projection. Furthermore, we have Im(®7) = 7®(T).
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7.3. Schatten-class perturbations of analytic Toeplitz operators

7.17 Proposition. For 1 < p < oo, the inclusion

TP(T) € TO(T) + Sy(H)

holds.

Proof. Let 1 < p < 0o and X € To™"(T). The map
Cx: HY (1) = Sp(M), g = [X, T,

is well-defined and linear. The continuity will be shown using the closed graph
theorem. Let (gx)ren be a sequence in H(p) with 7, . -limit g such that

(Cx (gr))ren converges in 7 to some S € Sp(H). With

1Cx(9) = Cx(gi)ll < 2| X[ [ Ty—gell < 211X llg = grll poo(y = O
as k — oo we obtain that

1Cx(g) = ST < 1Cx(9) = Cx(g)ll + 1 Cx (gr) = S|
< [[Cx(g) = Cx(gu)ll +[|Cx (gr) = Sl
— 0

as k — oo. Hence S = Cx(g).
Since ®7,(X) — X lies in the convex hull of {T;Cx(0) ; 0 € 1,}, denoted
by Conv({T;Cx(0) ; 6 € 1,}), for all k > 1, we obtain that

Op(X) — X € Conv™ ({T;Cx(0) ; 0 € 1,}),
i.e., there exists a net (S;);cr in Conv({TyCx(0) ; 0 € I,}) such that
(I)T(X) —X = Tw*-liienll Sl = TWOT- 1Z1€1’II1 Sz

Furthermore, we have

15ill, < [ICx|l
for all 7 € I and thus

[P (X) = X[, =

TWOT- 111611]1 Sif| < hIZIleiInf 1Sill, < ICx|l,
p

where we have used Proposition We conclude that

X = 0p(X) 4+ (X — &p(X)) € TO(T) + S,(H). O
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7. Analytic Toeplitz operators

The upcoming result is our main result about Schatten-class perturbations
of analytic Toeplitz operators.

7.18 Theorem. Let T € B(H)* be a regular A-isometry with minimal normal
extension U € B(H)? and scalar spectral measure . € M; (04). Furthermore,
let p € [1,00) and X € B(H). The following statements are equivalent:

(i) X € ToP(T),

(i) X =Ty + 5 for some S € Sp(H) and a symbol Y € (U)" with Hy €
Sy (H,LHOH).

If in addition W*(U) is a mazimal abelian von Neumann algebra, then the
above are also equivalent to

(iii) X = Ti+S for some S € Sy(H) and f € L>®(u) with H; € S,(H, HOH).

Proof. (i) = (ii): Let X € T.*"/(T). By Propositions and [7.17] there
exist Y € (U)" and S € S,(H) such that

X=T1y+85.
With Lemma we conclude that

Hy = 1sor- Ghefﬁ PyHy = Tsor- eherﬁ Hy(HyHy) = Tsor- ehef}i Hy[Ty, Tp).

Furthermore, we have [Ty, Z] € S,(H) for all Z € TX(T). With the notations
from the proof of Proposition [7.17], we obtain that

[Hy [l =

Twor- lim Hy[Ty, Ty]
H p

< fimi :

< 11£1é1151f||H9[TY7T0]Hp

< T :

< h?é}ff | 5zl [T, T9]”p

< [Cn |l

where we have used Proposition [7.16]
(i) == (i): This implication follows from the fact that

[Ty, Ty] = HyHy

holds for all Y € (U) and g € HY(1).
The rest follows from Proposition [6.23] (ii). O
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7.3. Schatten-class perturbations of analytic Toeplitz operators

7.19 Corollary. Let d > 2. If either
D=Byand1 <p<2d or D =D and 1 < p < o0,

then the identity
TEP(T,) = TolT2) + Sp(H (0))

holds, where o 1is the canonical probability measure on the Shilov boundary

dapy of the function algebra A(D) and H*(o) = A(D)\Q:!;?“’).

Proof. The inclusion
TEP(T,) O To(T2) + Sy (H2(0))

is clear.

For the other inclusion, let X € T, (T.). By Theorem m, there exist
S € S,(H*(0)) and f € L>™(u) with Hy € S,(H*(0), L*(0) © H?*(0)) such that
X =Ty + S. In the ball-case, [40, Theorem 1.5] yields that H; = 0. In the
polydisc-case, [23, Corollary 5] yields again Hy = 0. In both cases we obtain
fe H>®(o). O
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8. Toeplitz operators

The Hardy space H*(D) on the unit disc can be identified with the closed
subspace H%(m) of L?(m) consisting of all functions which have vanishing
negative Fourier coefficients. By the Brown-Halmos condition [16, Theorem 6],
an operator X € B(H?(m)) is a Toeplitz operator, i.e., there exists f € L>(m)
such that X = T%, if and only if

T;XTy— X =0

for all inner functions 6 on . In [32, Exercise 7.38|, Douglas asked if compact
perturbations of Toeplitz operators are the only operators such that T,y XTp—X
is compact for every inner function 6. More than 30 years later in [64], Xia
validated this conjecture.

The goal of this chapter is to give an analogue of this result for the ideal of
Schatten-class operators in a more general setting.

Suppose for this chapter that H is Hilbert space, D C C? is a bounded
domain, and that 7' € B(H)? is a regular A(D)-isometry with minimal normal
extension U € B(ﬁ)d and scalar spectral measure € M (0a(p)).

To obtain our main result, Theorem [8.12], we have to restrict ourselves to a
special class of domain algebras A(D), which will be introduced in the upcom-
ing section.

The results of this chapter are included in [30)].

8.1. Henkin measures

We start this section with some basic properties of the algebra of bounded
analytic functions on D. For bounded domains D C C, the following two
results can be found in |24, Lemmas 14.1.5 and 14.1.6]. In the multivariable
case they can be proved in exactly the same way.

8.1 Proposition. The following statements hold:

(i) the space H*(D) C L*>°(D) = LY(D)’ is Ty -closed,
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8. Toeplitz operators

(ii) the space LY(D)/+H® (D) is separable and
H>(D) = (L'(D)/*H*(D))",

(iii) the closed norm unit ball of H*(D), F?w(D)(O), equipped with the re-

lative topology of the weak™ topology of H*(D) is a compact metrizable
space.

8.2 Proposition. Let (0y)ren be a sequence in H*(D) and 0 € H>®(D). Then
the following conditions are equivalent:

(1) Tw+-limy_ oo Op = 0 in L>=(D),
(it) supgen |0kl groo(py < 00 and Te-limyo0 O = 0,
(i1i) suppen |0kl oo (py < 00 and Tr-limy o0 O = 6.

Here, 1, denotes the topology of pointwise convergence on H>®(D) and 7. de-
notes the topology of compact convergence on H*®(D).

On the unit disc it is well known that the map
rm: HX(D) — L*(m), f— f*,

where f* denotes the non-tangential limit of f € H*°(ID) and m is the canonical
probability measure on the unit circle T, is isometric, 7,+-continuous and sa-
tisfies 7, (f|p) = [f|7] for all f € A(D). The next definition is a generalization
of this fact.

8.3 Definition. We call p a (faithful) Henkin measure if there exists a con-
tractive (isometric) 7,+-continuous algebra homomorphism

ru: H*(D) = L= (), = ru(f) = f7

with 7,(f|p) = [flo,p ] for all f € A(D).

8.4 Remark. Let X,Y be Banach spaces and let r: X’ — Y’ be an isometric,
Tw+-continuous linear map. Since r is the adjoint of a continuous map r,: Y —
X, the image r(X’) C Y’ is 7y«-closed. Since the relative topology of the
weak* topology of Y’ on r(X') is the weak* topology of r(X’) = (Y/4r(X")),
it follows that

r: X' —r(X)

is a dual algebra isomorphism.
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8.1. Henkin measures

8.5 Proposition. If we suppose that p € M; (9apy) is a faithful Henkin
measure, then we have

B oy, () C T(r,)

0.4

Proof. Since
A<D) yaA(D)

and Im(r,) is 7,+-closed by Remark [8.4] we obtain that

C Im(r,)

H.ZCED)|8A<D> (1) = A(D)\ajm C Im(r,). ]
The next lemma will enable us to switch between different kinds of limits.

(D)

8.6 Lemma. Let (0x)ren be a sequence in Ef (0). Then the following

statements are equivalent:
(1) there exists w € D such that limy_, Op(w) =1,
(1) Tw-limg_oo O = 1 in H®(D).

Furthermore, if p € M (Oapy) is a faithful Henkin measure, then the above
conditions are also equivalent to

(117) Tyr-limg o0 0 = 1 in L®(p).

Proof. Let (0)ren be a sequence in Eflm(D)(O).
(i) = (ii): Let (y,)ien be a subsequence of (0 )ren. By Montel’s theorem,
there exists a 7,,-convergent subsequence (i, )men of (0, )ien. Let 6 € H>(D)

be its 7,«-limit. Then [|6|| ;o) < 1, and, by Proposition [8.2 we have

O(w) = lim O, (w)=1.

By the maximum modulus principle, we obtain # = 1. Hence, every subse-
quence of (0y)ren has a 7,+-convergent subsequence with limit # = 1. But
then
T+~ lim 0 = 1 in H*(D).
k—o00
(i) = (i): This follows immediately from Proposition [8.2]
(iii) <= (ii): Since
rp: H*(D) — Im(r,)

is a 7,+-homeomorphism by Remark [8.4] the result follows. O
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8. Toeplitz operators

8.2. Products of inner functions

Let D C C? be a bounded domain and let A = A(D). Let T € B(H)? be
a regular A(D)-isometry such that its scalar spectral measure p is a faithful
Henkin measure.

Since infinite products of inner functions are essential in the construction of
our central proposition (Proposition , we state some properties of such
products in this section. We start with an observation about finite products.

8.7 Remark. Let N € N, xq,...,zx € [—1,00), and v, ...,yny € C. If we set
aN = HiALO(l + i), py = Hz‘]\io(l + i) as well as py = HiALO(l + [il), then

N
oy — 1] <py—1 and gy <exp (sz> )

=0

8.8 Lemma. Letw € D and let (ny)nen be a sequence in O(D) with |[nyi1| <
Inn| for all N € N and such that the limit imy_, ny(w) exists in C\ {0}.
Then:

(i) Every subsequence of (nn)nen has a T.-convergent subsequence.
(ii) If n and 7 are T.-limits of two subsequences of (Nn)nen, then n =1).

(iii) The sequence (Ny)nen S Te-convergent to some function n € O(D) with

n(w) # 0.

Proof. (i) Let (nn,)ren be a subsequence of (ny)neny and let K C D be
compact. Then

7 (2)] < [0 (2)] < [lmoll

for all k € N and z € K. By Montel’s theorem, the sequence (1n, )ken
has a 7.-convergent subsequence.

(i) Let (nn,)ren and (nNk)keN be subsequences of (ny)yen With 7.-limits 7
and 7, respectively. By assumption, we have

(w) = i(w) = Jim x(w) #0
—00
and, since |[ny41| < |nn| for all N € N,
()| = lim [ ()] = (<)

for all z € D. Hence,

3
[l
—_
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8.2. Products of inner functions

on the complement of the zero set Z(n) of 7 in D. By Riemann’s ex-
tension theorem and the open mapping principle (cf. [36]), it follows

that
n_
- =T
Ui
on D\ Z(7) for some 7 € T. But since n(w) = fj(w) # 0, we obtain that
n=1.
(iii) The assertion in (iii) follows immediately from the preceding parts and
the condition that limy_,o nn(w) exists in C \ {0}. O
Denote by

Ip={0e H*(D); " € 1,}
the set of inner functions on D with respect to p.

8.9 Proposition. Let (6;)jen be a sequence in E?M(D)

point w € D, 0;(w) #0 for all j € N and

(0) such that, for some

D 1= 0;(w)| < oo.
j=0

Then:

(i) The sequence (Ny)nen = (H;VZO 9]-) is Tyr-convergent in H®(D) to
NeN
some function n € Ei{ (D)(O) with n(w) # 0.
(i) For each N € N, the infinite product
- HH>=(D)
PN = H 0; € B, (0)
Jj=N+1

converges uniformly on all compact subsets of D and

Ty~ lim pyy =1 in L>(u).

N—oo

(i1i) We have
: * *
T2y ™ P TN =17

(iv) If (6;)jen is a sequence in Ip, thenn € Ip.
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8. Toeplitz operators

Proof.

(iii)

132

(i) It is clear that limy . ny(w) € C\ {0} exists (cf. [60, Theorem
15.4]). Furthermore, we have
vl = v Ona] < vl <o <ol = [6o] <1
for all N € N. With Lemma and Proposition it follows that

1N ) Nen converges in 7, to some function n € BImw 0) with n(w) # 0.
1

Part (i) applied to the sequences (;);>n+1 yields that the products

= —H> (D
ov=TI ;B0

j=N+1

converge uniformly on all compact subsets, or equivalently, with respect
to the weak* topology of H>*(D) (cf. Proposition [8.2). By Remark [8.7],

we have

k
IT 1+ 6w —1)-1

lon(w) — 1| = lim
k—o0

J=N+1
k
< _ _
< lim ( [T a+16;(w)—1)) 1)
j=N+1
k
< Iggoexp< > 16;(w) - 1y> -1
j=N+1
— 0
as N — oo, i.e.,
i pv(w) =1
Hence,
To- lim piy = 1 in L(p)
N—o0
by Lemma [3.6]
Since

n"=NnPN
for all N € N, we obtain that

17y = nll 2 = v (L = o)l 22
< vl pooguy 11 = il 20
<11 = PNl 2
— 0



8.3. Schatten-class perturbations of Toeplitz operat

as N — oo by the previous parts and Lemma [6.20]

(iv) Suppose that 6; € Ip for all j € N. Since ny = H;V:O 0; € 1,

ors

for

each N and since by (iii) the sequence (7§ )nyen has a subsequence that

converges pointwise p-almost everywhere to n*, it follows that n*
Tw+- My 00y € 1,. Thus n € Ip.

8.3. Schatten-class perturbations of Toeplitz
operators

]

Let T € B(H)? be a regular A-isometry with respect to A = A(D), where
D c C%is a bounded domain such that the associated scalar spectral measure

p € M (dapy) is a faithful Henkin probability measure on D.
The following proposition is an adaption of [64, Lemma 5]|.

8.10 Proposition. Let p € [1,00] and X € T@P)(T). Then, for all ¢ > 0,

there exists 0 = 0(¢) > 0 such that

|T5. X Ty — X, < &

for all 0 € Ip with ‘faA(D) 1—6* du’ <.

oo

Proof. We first notice that if (6x)ren is a sequence in Ffl @) (0) such that

lim 07 du =1,
k—00 aA(D)

then, by Lemma [6.26, we obtain that

Te- lim 0y =1 in L>(u).

k—o0

By Lemma [8.6] there exists w € D such that
lim O (w) = 1.

k—o0

We use this observation to prove the claim of the proposition by contradic-

tion.
Assume that there is an € > 0 such that there exist w € D and, for
k € N, a function 0, € Ip with

> €.

p

|
1-0u(w) < 5 and HT;ZXTQZ—X

all
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8. Toeplitz operators

We construct a strictly increasing sequence (k(j));>1 of natural numbers
and a sequence (F});>; of orthogonal projections with finite rank which are
pairwise orthogonal and satisfy the inequalities

£
| Fj1WjFjall, = 5
[[(idgg —Fj ) Will,, < 277,
[W;(idy —Fj)l, < 277

for all j > 1, where

J
W = T;; <T;Z(j+1)XTel:(j+1) - X> TU;*‘ and  7); = 1_[19k(m)

for all j > 1.
Set k(1) =1 and F; = 0.
Suppose k(1) < ... < k(j) and Fy,...,F; with the desired properties are
already defined. We set
J
Gj=> Fn
m=1

Then, by Lemmas and we obtain
TSOT- lim TO**XTQ* — X =0 and TSOT- lim T;*X*Tg* - X" = 0,
k—oo kK k koo Uk k
and hence, by Lemma [6.5
TSOT- lim VVjJC =0 and TSOT- lim ij =0
k—o0 k—o0 ’

with
Wik = Ty, (T3 XTy; — X) Ty € S,(H)

for all £ > 0. Since G; has finite rank and hence lies in S,(#), it follows from
Proposition [6.4] that

dim (116G Wyl + WGl ) = Jim ([5G, + IWiaGill, ) = 0.
By Lemma [6.27] (iii), we have
0< |75 XTy; — XHp — Wyl

< ||T5 XTo: — X =W

p

— |7 (7. XT3 = X) T — (T3 XT; - X)

*
J

p
—0
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8.3. Schatten-class perturbations of Toeplitz operators
as k — 0o. Thus, we can choose k(j + 1) > k(j) such that

5
Wil 2 2e,

r@mmsm(wa—a
- 1
IW;Gjll, < min (2_”_1, €

Since by Proposition
1P P — Wi < (I(P — idg) Wi+ 1W;(Pe — ida)[, — 0

as k — oo for each sequence (Py)ren of orthogonal projections on H with

Tsor- limy_e0 P = idy, there exists a finite-rank orthogonal projection G > G
with

9

IGW;Gl, = 5=,
I(ids ~GWll, < 27977,
Wi G|, < 2797

Furthermore, we set

iy =G —G;j.
Then Fj 4, is orthogonal to Fi, ..., Fj and

[ Fj1WEall, = [[(G — G)W;(G = Gy,
> [|GWG|, — |GW;G|, — |GW; G|, — |G WGy,
> |GW;Gl|, — 1°

_9 1
=11
1
= —¢.

2

We also have
[(dy —Fy )Wy, = [[(idy =G + G;)Wj ][,
< [[Gidy =G)Wj][, + |G W5,
<2797t 42797t
=97
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8. Toeplitz operators

as well as ' .
W (idgy —Fj )], = IW;(idw =G + Gj)|l,,
< [[W;(idy =G|l + [[W;G4,
<27t g gmitt
=277,
Thus, Fjy; fullfills the desired properties.
For j > 1, define

Sj=W; = FjuW;Fj1 € Sp(H).

Then
1551, = IW; = Fipa W Fja|],

< [[(ids = Fj) Wil + | Fjea W (ida —Fja) ||,
<279 427
— 9—Jj+l

for all j > 1, and hence,
S=1,- D 85 € Sy(H)
j=1

is well defined. As an orthogonal direct sum of a bounded sequence of opera-
tors, the series

B = 7501~ Y _ FjaW;Fj41 € B(H)
j=1

exists. The operator B does not lie in S,(H).
To see this, assume B € S,(H) and observe that

1
22 S IBaWFpall, = 1FraBFll, < |1FaBl,

for all 7 > 1. Since
TSOT- hm Fj+1 == 0,
Jj—o0

we obtain by Proposition [6.4] the contradiction
1
5€ < [1Ej1Bl, = 0

as j — oo. Hence, B ¢ S,(H).
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8.3. Schatten-class perturbations of Toeplitz operators

With

o0

> 1=ty <D 27 =1,
j=1

j=1

it follows from Proposition 8.9| that the sequence (1} )nen converges in 7., »

to .
j=1
and with Lemma [6.24] we obtain that
TSOT- nh_)n;o Tn; = Tn* and Tsor- nh_}IIOlo T;;‘z = T;*.

By construction, we have
n
S+B:TSOT— lim E VV]
n—oo

=1

n
= T¢ —llm T** T** XT* _X T*
SOT n—>ooz ’7j< Oren " OkGr )T;

Jj=1

n
= Tgor- lim g T X1y —T7.XT,-
ST o M1 T npte
J=1

= rsor- lim (T, XT, , = T XTy; )
=Ty XT) — T%XT,];
— (T3 XTy = X) = (T3 XTy; - X))
Thus, we obtain the contradiction that
Sp(H) Z B = (T,. XT)- —X)—(T%XTUT —X)—-5eS,(H). O
In our setting, the measure y has an additional nice property.

8.11 Lemma. The measure p is continuous.

Proof. Assume that there exists z € Ja(p) such that p({z}) > 0. Since the
map 7,: H>*(D) — L*(u) is injective and since by Propositions and

L=(p) = WH(I,) = W*(ru(Ip)),
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8. Toeplitz operators

there exists a non-constant function 6 € Ip. But then

T+~ lim 6% = 0,
k—o0

and therefore,

. N
Tw* kh_)rrolo ru(6%) = 0.

Since |r,(6)(z)| = 1, we conclude that
n{=1) = nl{=)) Iru(0)(2)]"
= |ru(0")(2)n({2})]

. k
= ‘<X{z}7 Tu<0 )>(L1(u),L°°(N)>
—0

as k — oo. Hence p({z}) = 0, which is a contradiction. O
We are now able to state our main theorem.

8.12 Theorem. Let 1 < p < oo and X € B(H). The following statements
are equivalent:

(i) X € T(T),
(ii)) X =Ty + S for some S € S,(H) and a symbol Y € (U)'.

If in addition W*(U) is a maximal abelian von Neumann algebra, then the
above are also equivalent to

(iii) X =Ty + S for some S € Sp(H) and f € L™®(u).

Proof. (i) = (ii): Let X € T®P(T). By Proposition there exists
1 > § > 0 such that
15X Ty — X, <1

for all 8 € Ip with ’faA(D) 1—06* du‘ < 4. Set « =1 —0/2. Since the triple

(A(D)o,p) Oa(p), 1) is regular in the sense of Aleksandrov and 1 is continuous,
by Proposition , there exists a sequence (o) ke in Ip with 7+~ limg o0 af =
ain L>(u) (cf. [4, Corollary 29]). By passing to a subsequence, we can achieve

that f 1 —af du| <6 for all £ € N and that at the same time the limit
9a(D) k

X = twor- lim T;*XTQ* S B(H)
k—oo Tk k
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8.3. Schatten-class perturbations of Toeplitz operators

exists. By Proposition [7.16], we conclude that

<1
p

=

= HTWOT— lim X —T;*XTQ*
P k—o00 k k

<liminf | X - T, X7,y

P k—o0

Hence, X — X € S,(H) and the result follows with Proposition @ (ii).
(i) == (i): This is clear.
The rest follows from Proposition [6.23] (ii). O

It follows from the results in Section 5 of [27] that the canonical proba-
bility measure o on the Shilov boundary of the domain algebra A(D) over
a smooth strictly pseudoconvex or bounded symmetric and circled domain
D c C%is a faithful Henkin measure. Since o is a scalar spectral measure of
the minimal normal extension M, € B(L?*(c))¢ of the regular A(D)-isometry
T, € B(H?*(0))% and since W*(M,) C B(L?(0)) is a maximal abelian von Neu-
mann algebra, Theorem [8.12] applies to this setting and yields the following
corollary.

8.13 Corollary. Let D C C? be a smooth strictly pseudoconver domain or a
bounded symmetric and circled domain, and let 1 < p < oo. Then a given
operator X € B(H?*(0)) is of the form

X =T+ 5,
where Ty € B(H*(0)) is a Toeplitz operator with symbol f € L*(o) and
S € S,(H*(0)), if and only if Ty-XTyp- — X € S,(H?*(0)) for every inner

function 6 on D.
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