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Abstract

The main subject of this thesis is the study of the unirationality of moduli spaces

of smooth curves admitting several pencils. Using liaison techniques, we prove that

the Hurwitz scheme Hg,d , parameterizing d-sheeted simply branched covers of the

projective line by smooth curves of genus g, up to isomorphism, is unirational for

(g,d) = (10,8) and (13,7). We turn the liaison construction to the multiprojective space

P1×P1×P1, which results in the unirationality of an irreducible component of the locus

of smooth curves of genus g, carrying three pencils of degree d, for certain values of g

and d.

In the second part we study the existing possible numbers of pencils of degree 6 on

a smooth hexagonal curve of genus 11. Inside the moduli space of genus 11 curves, we

describe a unirational irreducible component of the locus of smooth curves possessing

k mutually independent linear systems g1
6’s of type I, for the values k = 5, . . . ,10.

Zusamenfassung

Das Hauptthema dieser Arbeit ist das Studim der Unirationalität von Modulräumen

von glatten Kurven, welche mehrere Büschel besitzen. Mit Hilfe von sogenannten

Liaison-Techniken beweisen wir zunächst, dass das Hurwitz-Schema Hg,d – der Pa-

rameterraum von d-blättrigen einfach-verzweigten Überlagerungen der projektiven Ger-

aden von glatten Kurven vom Geschlecht g – unirational ist für (g,d) = (10,8) und

(13,7). Wir wenden die Liaison-Konstruktion außerdem auf den multiprojektiven Raum

P1×P1×P1 an. Für bestimmte Werte von g und d resultiert dies in der Unirational-

iät einer irreduziblen Komponente des Orten von glatten Kurven vom Geschlecht g,

welche drei Büschel vom Grad d besitzen.

Im zweiten Teil der Arbeit wird die mögliche Anzahl von Büscheln vom Grad 6

auf glatten hexagonalen Kurven vom Geschlecht 11 untersucht. Im Modulraum von

Geschecht 11 Kurven beschreiben wir eine unirationale irreduzible Komponente des

Ortes von glatten Kurven mit k unabhängigen Linearsystemen g1
6 vom Typ I für die

Werte k = 5, . . . ,10.
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Chapter 1

Introduction and overview of the

results

“The �rst test is beauty: the mathematician’s pattern,

like painter’s or poet’s must be beautiful. There is no

permanent place in the world for ugly mathematics. ”

«G.H. Hardy»

The main focus of this thesis is to study the birational geometry of the moduli spaces

of curves, in particular, the unirationality of moduli spaces of curves possessing several

pencils. Recall that an algebraic variety X is called unirational, if there exists a rational

dominant map Pn 99K X from a projective space Pn to X . It is a pleasant property, which

allows an explicit parametrization of a moduli space in terms of rational maps. This

gives the main reason for the historical motivation to study the unirationality of moduli

spaces of curves equipped with additional data such as line bundles and marked point.

As the most classical and important moduli space, we consider the Hurwitz schemes

Hg,d := {C d:1 // P1 simply branched cover |C smooth of genus g}/∼

parametrizing d-sheeted simply branched covers of the projective line by smooth curves

of genus g, up to isomorphism. The natural forgetful map π : Hg,d −→Mg relates the

geometry of the Hurwitz spaces to that of the moduli spaces Mg of curves of genus

g. It was through Hurwitz spaces that Riemann [Rie57] computed the dimension of

Mg, and Severi [Sev68], building on works of Clebsch and Lüroth [Cle73], and Hurwitz

[Hur91], showed that Mg is irreducible. This way the Hurwitz space plays important

role in configuration of the geometry of the moduli space of curves Mg.

By classical results of Petri [Pet23], Segre [Seg28], and Arbarello and Cornalba [AC81],
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CHAPTER 1. INTRODUCTION AND OVERVIEW OF THE RESULTS

it has been known for a long time that Hg,d is unirational in the range 2 ≤ d ≤ 5 and

g≥ 2. For g≤ 9 and d ≥ g, the unirationality has been proved by Mukai [Muk95]. The

most recent contributions, concerning the birational geometry of the Hurwitz spaces

has been given by [Ver05, Gei12, Gei13, Sch13, ST16, DS17]. Hurwitz spaces and their

Kodaira dimension are also considered in the very recent paper [Far18].

In the second chapter of this thesis, following the paper [KT17], we will settle the

unirationality of Hurwitz schemes for two cases as follow.

Theorem 1.0.1. The Hurwitz space H10,8 is unirational.

The key point of the proof is that for a general element (C,L) of W 1
10,8, the Serre

dual bundle ωC ⊗ L−1 gives a g2
10. Using this linear system and a general pencil g1

6

existing on C, we obtain a model of C in P1×P2, which can be linked in two steps to

the union of a rational curve and five lines. We show that this process can be reversed

and yields a unirational parametrization of the Serre dual space W 2
10,10. This proves

the unirationality of both W 1
10,8 and H10,8. We continue this chapter that by proving

the following theorem.

Theorem 1.0.2. The Hurwitz space H13,7 is unirational.

This result is obtained by the observation that a general 7-gonal curve of genus 13

can be embedded in P6 as a curve of degree 17, which is linked to a curve D of genus

10 and degree 15. To exhibit a unirational parametrization of such D’s, we prove the

unirationality of the moduli space M10,n, of genus 10 curves with up to five marked

points. We use a general curve together with 3 marked points to produce a degree 15

curve of genus 10 in P6.

In the third chapter of this thesis, we study the locus Mg,d(3) of smooth curves

of genus g, possessing three mutually independent pencils of degree d. We use the

birational model of such a curve induced from the three mutually independent pencils,

and turn the liaison construction to the multiprojective space P1×P1×P1, to link this

curve to a rational curve. By reversing the construction, we are able to produce a

rational family of curves in Mg,d(3). This leads to the following main result of this

chapter.

Theorem 1.0.3. For 5 ≤ d ≤ 9, and all g as in the table 4.1, the moduli space Mg,d(3)

of genus g curves possessing three mutually independent pencils of degree d has a unirational

irreducible component of expected dimension.

2



We remark that in many given unirationality proofs, to show that the rational con-

structed family yields a dominant map to the moduli space, we only need to carry out

the construction for a single test example over a finite field, which satisfies all the needed

properties. We make use of the computer algebra system Macualay2 [GS] to construct

the curve with desired properties. Semicontinuity then provides that all assumptions

we made actually holds for an open dense subset of the corresponding moduli space in

characteristic zero.

In the last chapter of this thesis, motivated by some questions of Michael Kemeny

regarding the existence of curves of genus 11 carrying exactly a certain number of

pencils of degree 6, we study 6−gonal curves of genus 11.

Let M11,6(k)⊂M11 be the locus of smooth 6−gonal curves of genus 11, equipped with

exactly k mutually independent linear systems g1
6’s of type I. We first investigate the

possible values for k, where M11,6(k) is non-empty. In [Sch02], Schreyer gave a list of

conjectural Betti tables for canonical curves of genus 11. Related to our question, and

interesting for us, is the plausible Betti table

1 . . . . . . . . .

. 36 160 315 288 5k . . . .

. . . . 5k 288 315 160 36 .

. . . . . . . . . 1

where k is expected to have the values k = 1,2, . . . ,10,12,20. It is known by Hirschowitz–

Ramanan [HR98] and [Voi05], that the Green´s conjecture [Gr84] holds for a general

curve of genus 11. On the other hand, it is not clear that for a smooth canonical curve

of genus 11 with Betti table as above, the number k can be always interpreted as the

multiple number of pencils g1
6’s on the curve, however our experiments respect this ex-

pectation. Nonetheless, for k = 1,2, . . . ,10,12, we can provide families of curves whose

generic element carries exactly k mutually independent pencils of type I, and the Betti

number β5,6 = β4,6 = 5k as expected. Therefore, in this range the locus M11,6(k) is

non-empty.

Once knowing that M11,6(k) is non-empty for a certain value k, we go further by

answering the first natural question concerning the geometry of this locus, in particular

its unirationality.

For k = 1, the corresponding locus is the famous Brill-Noether divisor M11,6 of

6−gonal curves [HM82], which is irreducible, and known to be unirational [Gei12].

3
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The moduli space M11,6(2) is irreducible [Ty07], and unirational such that a general

element of M11,6(2) can be obtained from a model of bidegree (6,6) in P1×P1 with

δ = 14 ordinary double points. Also, by the previous theorem it follows that M11,6(3)

has a unirational irreducible component of expected dimension. A general curves lying

on this component can be constructed via liaison in two steps, from a rational curve in

multiprojective space P1×P1×P1.

For k ≥ 4, we mainly use the model of plane curves of degree 8 and 9 with only

ordinary multiple points as singularities. Then, the pencil of lines, conics or cubics

through the certain number of singular points cut out the desired number of pencils

g1
6’s on the canonical model of these plane curves. As the main results of this chapter,

we prove the following theorems.

Theorem 1.0.4. For 5 ≤ k ≤ 9, the moduli space M11,6(k) has a unirational irreducible

component of expected dimension. A general element of this component arises from a degree 9

plane curve with 4 ordinary triple and 5 ordinary double points which contains k− 5 points

among the ninth �xed point of the pencil of cubics passing through the 4 triple and 4 chosen

double points. Moreover, at a general point of this component,M11,6 is a simple normal crossing

divisor.

Theorem 1.0.5. The moduli space M11,6(10) has a unirational irreducible component of

excess dimension 26, where the curves arise from degree 8 plane models with 10 ordinary double

points. More precisely, the locus M 2
11,8 of curves possessing a linear system g2

8 is a unirational

irreducible component of M11,6(10) of expected dimension 26.

The key technique of the proof is to study the space of first order equisingular

deformations of the plane curves with prescribed singularities, as well as that of the

first order embedded deformations of their canonical model. In fact, let M denote the

5k×5k submatrix in the deformed minimal resolution corresponding to the general first

order deformation family of a canonical curve C with the previous Betti table. We use

the condition M = 0 to determine the subspace of the deformations with extra syzygies

of rank 5k, and to prove that this space coincide with the tangent space TCM11,6(k).

It turns out that for 5 ≤ k ≤ 9, and respectively k linearly independent linear forms

l1, . . . , lk in the free deformation parameters corresponding to a basis of TCM11, we

have detM = l5
1 · . . . · l5

k . This implies that M11,6(k) has an irreducible component of

exactly codimension k inside the moduli space M11. Furthermore, considering K11 to

be the locus of the curves C ∈M11 with extra syzygies, that is β5,6 6= 0, it is known by

Hirschowitz and Ramanan [HR98] that K11 is a divisor, called the Koszul divisor, such

4



that K11 = 5M11,6. Thus, M11,6 at the point C is locally analytically union of k smooth

transversal branches.

We will then compute the kernel of the Kodaira-Spencer map, and from that the rank

of the induced di�erential maps, to show that the rational families of plane curves dom-

inate this component.

Imposing some further conditions on the model of plane curves, or the choice of

singular points, provides a model of genus 11 curves for the two missing cases k = 4,12.

A plane curve of degree 9 with 3 triple and 8 ordinary double points, where exactly

one of the double points is the ninth fixed point of the pencil of cubics through the

8 singular points by omitting two other double points, gives the model for k = 4. By

dimension count reasons, the rational family of curves obtained from this model, does

not cover any component of the locus M11,6(4). For 10 general points P1, . . . ,P10 in the

projective plane, let V1 ⊂ |L| be a pencil inside the linear system of quartics passing

through the points, and let q1, . . . ,q6 be the further fixed points of this pencil. A degree

8 plane curve Γ with 10 ordinary double points P1, . . . ,P10 passing through q1, . . . ,q6 is

a model a genus 11 curve with 12 pencils of degree 6. In fact, considering the rational

map associated to |L|, the image of Γ under this map is cut out by a unique rank 4

quadric Q on the determinantal image surface of P2. It turns out that the six points

q1, . . . ,q6 do not lie on a conic, and rather they span a projective plane P2 ⊂ Q. As Q

is the cone over P1×P1, thus the projections to each projective line naturally give two

extra pencils of degree 6.

Having described an irreducible unirational component of the loci M11,6(k) for

k = 5, . . . ,10, the first natural question is to ask about the irreducibility of these loci. If

the answer is negative, then one can ask how the other irreducible components arise.

Our attempt to utilize the model of plane curves of higher degree with singular

points of higher multiplicity, indicates that the models of higher degree are usually a

Cremona transformation of our original degree 9 plane model with respect to three

singular points. Therefore, considering models of di�erent degrees and singularities,

we have not found new elements in these loci. On the other hand, the study of syzygy

schemes of curves lying on these loci leads to the following theorem which states the

existence of further irreducible components.

Theorem 1.0.6. For 5 ≤ k ≤ 8 and g = 11, the locus M11,6(k) has at least two irreducible

components both of expected dimension 3g− 3− k, along which M11,6 is generically a simple

5
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normal crossing divisor.

This way, the natural remaining question is that whether the moduli spaces M11,6(9)

and M11,6(10) are irreducible.

Hanieh Keneshlou

Summer 2018
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Chapter 2

Preliminaries

In this chapter, we introduce some notions and background facts on some important

or main objects of this thesis. Most of the facts stated here can be found in standard

textbooks. Fo sections 2.1 and 2.2, we mainly refer to [ACGH85] and [ACG10]. The

last section follows [Sch86] and [vB07].

2.1 Brill-Noether theory

We resume some central facts of Brill-Noether theory, concerning the linear series on

algebraic curves. Throughout this section, d,r are non-negative integers.

LetC be a smooth curve of genus g, and Picd(C) be the Picard variety parametrizing

the isomorphism classes of degree d line bundles over C (or equivalently, the divisors

of degree d modulo linear equivalence).

De�nition 2.1.1. A pair (L,V ) consisting of a line bundle L ∈ Picd(C) and an (r+1)-

dimensional vector space V ⊂ H0(C,L) of global sections of L is called a linear series

of degree d and dimension r. A linear series is called base point free if the sections in

V have no common zeros. Moreover, it is called complete when V = H0(C,L).

In standard notations, a linear series of dimension r and degree d is usually referred

to as a gr
d . In particular, a g1

d is called a pencil.

The set of complete linear series of degree d and dimension at least r is parametrized

by the so-called Brill-Noether locus W r
d (C)⊂ Picd(C). Indeed,

Supp(W r
d (C)) = {L ∈ Picd(C) : h0(C,L)≥ r+1}.

9



CHAPTER 2. PRELIMINARIES

A determinantal description of W r
d (C) equips this with a natural scheme structure. In

fact, let L be a Poincáre line bundle of degree d on C, that is a line bundle on C×
Picd(C) which restricts to L on C×{L} for each L ∈ Picd(C). We further choose an

e�ective divisor E on C of degree

m := deg(E)≥ 2g−d−1.

For the second projection map

ν : C×Picd(C)−→ Picd(C),

and the product divisor Γ = E×Picd(C), the direct image sequence of

0−→L −→L (Γ)−→ L (Γ)

L
−→ 0

is

0−→ ν∗L −→ ν∗L (Γ)
γ−→ ν∗(

L (Γ)

L
)−→ R1

ν∗L −→ 0.

The Brill-Noether locus W r
d (C) can be realized as degeneracy locus of the map γ , where

the middle terms are locally free sheaves of ranks d +m− g+ 1 and m, respectively.

Therefore, setting X := Picd(C) we have the natural scheme structure

W r
d (C) = Xm+d−g−r(γ).

From this definition, the ”expected dimension” of W r
d (C) is the Brill-Noether number

ρ(g,d,r) := g− (r+1)(g−d + r),

and therefore dimW r
d (C)≥ ρ.

Important results regarding the non-emptiness and the dimension of the Brill-Noether

loci were proven by Kempf, Kleiman-Laksov, Gri�ths and Harris. More precisely, as

we mentioned above, if W r
d (C) is non-empty, then it has dimension at least equal to

ρ(g,d,r). The first natural question is whether the condition ρ(g,d,r) > 0 su�ces to

conclude that W r
d (C) is non-empty. This was answered by the following existence theo-

rem, independently proved by Kempf and Kleiman–Laksov.

Theorem 2.1.2 (Existence Theorem). Let C be a smooth curve of genus g, and d,r be

non-negative integers such that d ≥ 1. If

ρ(g,d,r) := g− (r+1)(g−d + r)> 0,

thenW r
d (C) is non-empty. Moreover, if r > d−g, every component of W r

d (C) has dimension at

least equal to ρ(g,d,r).

10



2.1. BRILL-NOETHER THEORY

Proof. See [Kem71], [KL72], [KL74].

Fulton and Lazarsfeld proved the following Lefschetz (or Bertini) type of result.

Theorem 2.1.3 (Connectedness Theorem). Let C be a smooth curve of genus g, and d,r

be non-negative integers such that d ≥ 1. If

ρ(g,d,r) := g− (r+1)(g−d + r)> 1,

then W r
d (C) is connected.

Proof. See [FL81].

Describing the Zariski tangent space at a point of W r
d (C) as the set of isomorphism

classes of first order deformations of the corresponding line bundle determines the

smooth locus of the Brill-Noether variety as follow.

Proposition 2.1.4. (i) Let L be a point in W r
d (C) \W r+1

d (C) . Then the tangent space to

W r
d (C) at L is

TL(W r
d (C)) = (Im µ0)

⊥,

where

µ0 : H0(C,L)⊗H0(C,KC⊗L−1)−→ H0(C,KC),

is the Petri map. Thus W r
d (C) is smooth of dimension ρ at L if and only if µ0 is injective.

(ii) If L ∈W r+1
d (C), then

TL(W r
d (C)) = TL(Picd(C)).

In particular, ifW r
d (C) has the expected dimension ρ , and r > d−g, then L is a singular point

of W r
d (C).

Proof. See [ACGH85], Chapter IV, Proposition 4.2.

It was conjectured by Brill and Noether that a generic curve C in the moduli space

Mg of curves of genus g, is (so-called now) Brill-Noether general. In fact, the variety

W r
d (C) is empty, whenever ρ(g,d,r) < 0, and in case ρ(g,d,r) > 0, it is non-empty of

pure dimension ρ(g,d,r). This was first proved by Gri�ths and Harris in the following

dimension theorem.

Theorem 2.1.5 (Dimension Theorem). Let C be a general curve of genus g, and d,r be

non-negative integers such that d ≥ 1. If

ρ(g,d,r) := g− (r+1)(g−d + r)< 0,

thenW r
d (C) is empty. If ρ(g,d,r)> 0, thenW r

d (C) is reduced and of pure dimension ρ(g,d,r).

Proof. See [GH80].
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2.2 Hurwitz schemes

In this section, we introduce the Hurwitz scheme, and recall some fundamental prop-

erties of it due to Lüroth, Clebsch, and Hurwitz.

De�nition 2.2.1. Let C be a smooth curve of genus g. A ramified d-sheeted covering

of the projective line P1

f : C −→ P1

(or equivalently the corresponding pencil g1
d) is called simply branched (resp. simple),

if for every ramification point p ∈C, we have the ramification index

ep = Length(ΩC/P1)p +1 = 2,

and no two ramification points of f lie over the same point of P1.

For a simply branched covering f , let

R f := ∑
p∈C

(ep−1).p ∈ Div(C)

denote the ramification divisor of f , and

Λ f = f∗(R f ) ∈ Div(P1)

denote the branch divisor. By the Riemann-Hurwitz formula

ω := 2d +2g−2

is the degree of branch locus of f . Let Pω = Symω(P1) \∆ be the open subset of the

ω -th symmetric product of P1 consisting of unordered ω -tuples of distinct points in P1,

where ∆ is the closed subscheme of points with at least two identical summands.

For any A = (a1, . . . ,aω) ∈ Pω , let Hg,d(A) denote the set

Hg,d(A) := { f : C d:1 // P1 simply branched covering with Λ f = A}/∼,

where two simply branched covering f ∼ f ′ are said to be equivalent, if there exists an

isomorphism α : C −→C′, such that the following diagram is commutative:

C α //

f   

C′

f ′~~

P1

For such A, choose a base point y ∈ P1 \A, and let σ1, . . . ,σω be a system of generators

for π1(P1 \A,y) pictured as follow.

12
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y

σ1

•a1

σ2

•a2

. . .
σω

•a3

The monodromy representation is defined by

φ( f ) : π1(P1 \A,y)−→ (Permutation group of f−1(y))

σ 7→ (p 7→ pσ )

where pσ is the endpoint of the unique path lifting of σ to C \R f . This will induce a

well-defined map

φ : Hg,d(A)−→ Hom(π1(P1 \A,y),Sd)
ext

[ f ] 7→ [φ( f )]

where Sd is the symmetric group of d letters. The right hand side is the group of

homomorphisms π1(P1 \A,y)−→ Sd up to conjugation with elements in Sd .

Theorem 2.2.2 (Riemann’s existence theorem). The map φ above is injective. Moreover,

its image consists of those classes which are induced by irreducible representations ξ , such that

ξ (σi) = ti, i = 1, . . . ,ω

is a transposition and ∏ ti = 1.

In conclusion, via φ , Hg,d(A) can be identified with the set Cg,d of conjugacy classes

of ω -tuples [t1, . . . , tω ] of transpositions ti, which generates a transitive subgroup of Sd ,

and satisfy ∏ ti = 1. We define the Hurwitz space as a set to be

Hg,d :=
⊔

A∈Pω

Hg,d(A).

Given an element [ f ] ∈Hg,d(A), we say that [t1, . . . , tω ] is the symbol of [ f ] with respect

to basis σ1, . . . ,σω . There is a natural map

Λ : Hg,d −→ Pω

[ f ] 7→ Λ f .

Since each fibre of Λ can be identified with the finite set Cg,d , the Hurwitz space Hg,d

can be equipped with a unique complex structure, which makes it into a ω -dimensional

complex manifold, and Λ is a topological covering.

13



CHAPTER 2. PRELIMINARIES

Theorem 2.2.3 (Lüroth,Clebsch, Hurwitz). Hg,d is connected.

Proof. Consider the topological covering

Λ : Hg,d −→ Pω .

The idea of the prove is to show that that for any point A = (a1, . . . ,aω) ∈ Pω , the

fundamental group π1(Pω ,A) acts transitively on the corresponding fibre Hg,d(A). To

this end, consider the loops

Γi : [0,1]−→ Pω , i = 1, . . . ,ω,

with endpoints at A of the form

Γi(t) = (a1, . . . ,ai−1,γi(t),γ ′i (t),ai+2 . . . ,aω),

where

γi,γ
′
i : [0,1]−→ P1 \{a1, . . . ,ai−1,ai+2 . . . ,aω}

are paths with γi(0) = γ ′i (1) = ai,γi(1) = γ ′i (0) = ai+1.

To show that π1(Pω ,A) acts transitively on Hg,d(A), it su�ces to show that the subgroup

Γ generated by paths Γi acts transitively on Hg,d(A). Γi acts on elements of Cg,d as

following:

Γi.[t1, . . . , tω ] = [t1, . . . , ti−1, titi+1ti, ti, ti+2, . . . , tω ].

A combinatorial argument then shows that the orbit of any element of Cg,d under the

action of Γ contains the element

[(1 2), . . . ,(1 2)︸ ︷︷ ︸
2g+2-times

,(2 3),(2 3),(3 4),(3 4), . . . ,(d−1 d),(d−1 d)].

Therefore, there is only one orbit, and the action is transitive.

Let W r
g,d denote the so-called Universal Brill-Noether scheme, given set-theoretically by

W r
g,d := {(C,L) : C ∈Mg, L ∈W r

d (C)}.

There is a natural dominant morphism α : Hg,d −→ W 1
g,d , which is a PGL(2)−bundle

over a dense open subset of W 1
g,d . Therefore, from the above theorem, the following is

concluded:

Corollary 2.2.4. The universal Brill-Noether scheme W 1
g,d is an irreducible quasi-projective

variety of dimension ω−3 = 2g+2d−5.

14
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2.3 Syzygies of canonical curves, and special linear se-

ries

In this section, we introduce some important notions, and review some facts about

the relation between the minimal free resolution of the canonical rings and the Brill-

Noether theory of canonical curves.

Let C be a smooth non-hyperelliptic curve of genus g≥ 2, and ωC be its canonical

line bundle. The associated canonical map

φ|KC| : C −→ Pg−1 = P(H0(C,ωC)
∗),

determined by the canonical linear series |KC| is an embedding. We usually identify C

with its image in Pg−1, and we refer to it as a canonical curve. Let

IC ⊂ S :=K[x0, . . . ,xg−1],

be the homogeneous ideal of C in the homogeneous coordinate ring S of Pg−1. By a

famous theorem of Hilbert (see [Eis05], Theorem 1.1), the homogeneous coordinate

ring SC := S/IC of C, a finitely generated graded S−module, admits a minimal free

resolution of finite length. More precisely, there is a chain complex (unique up to iso-

morphisms of chain complexes inducing identity on SC (see [Eis05], Theorem 1.6)) of

graded S−modules

F : 0←− SC←− F0
ϕ1←− F1

ϕ2←− ·· · ϕm←− Fm←− 0

with free modules Fi =⊕ jS(− j)βi, j , such that the image of the boundary map ϕi is con-

tained in the submodule mFi−1, where m= 〈x0, . . . ,xg−1〉 ⊂ S is the irrelevant maximal

ideal of S. In particular, the numbers βi, j are independent of the choice of minimal free

resolution.

De�nition 2.3.1 (Betti numbers). With the above notations, the numbers βi, j are called

the graded Betti numbers of SC, or rather of the curve C.

By definition, βi, j gives the number of the generators of the graded module Fi in

degree j. More precisely, if we tensor the above complex with the S−module K, since F

is minimal, all maps in F⊗S K are zero, and so TorS
i (SC,K) = Fi⊗S K. Thus, we obtain

βi, j = dimKTorS
i (SC,K) j.

We usually collect all the Betti numbers of the minimal free resolution F in a so-

called Betti table, and we use the Macaulay2 notation to write them down as follows
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0 1 · · · m−1 m

0 β0,0 β1,1 · · · βm−1,m−1 βm,m

1 β0,1 β1,2 · · · βm−1,m βm,m+1
...

...
... · · · ...

...

s β0,s β1,s · · · βm−1,m−1+s βs,m+s

where the i-th column corresponds to generators of the graded module Fi in the free

resolution. For better readability we usually write ” .” when βi, j = 0. We note that the

entry in the j−row and the i−th column is βi,i+ j rather than βi, j.

Further properties of the canonical ring reveal a better configuration of the Betti

table of a canonical curve. Due to the classical theorem of Max Noether [Noe80], the

coordinate ring of a canonical curve is projectively normal, that is the maps

H0(Pg−1,OPg−1(n))−→ H0(C,ω⊗n
C )

are surjective for every n. Therefore,

SC ∼=
⊕
n≥0

H0(C,ω⊗n
C ),

and SC is a Cohen-Macaulay S-module. This already shows that the length of the mini-

mal free resolution of C is equal to g−2, thanks to the Auslander-Buchsbaum formula

([Eis05], Theorem A2.15). By classical works of Petri [Pet23], the homogeneous ideal

of a smooth canonical curve is generated by quadrics, unless it is a trigonal, or a plane

quintic. In the exceptional cases, β1,3 = g− 3. Thus, for all i ≥ 1 and j ≥ 3, we have

βi,i = β1, j+1 = 0. In particular, a canonical curve admits only linear and quadratic

syzygies

Fi = S(−i−1)βi,i+1⊕S(−i−2)βi,i+2,

except for the last syzygy module Fg−2 = S(−g−1).

Summarizing all above, from the nice symmetric property, obeyed by the Betti num-

bers, the Betti tables of canonical curves have the following shape.

Proposition 2.3.2. Let C be a non-hyperelliptic canonical curve of genus g≥ 3. Then

ωC ∼= E xtg−2(OC,OPg−1(−g))∼= OC(1)

The minimal free resolution of SC is up a shift, self dual, with the symmetric property

βi, j = βg−2−i,g+1− j

and has the following Betti table
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0 1 2 · · · g−4 g−3 g−2

0 1 . . · · · . . .

1 . β1,2 β2,3 · · · βg−4,g−3 βg−3,g−2 .

2 . βg−3,g−2 βg−4,g−3 · · · β2,3 β1,2 .

3 . . . · · · . . 1

where β1,2 =
(g−2

2

)
.

Proof. See [Eis05], Proposition 9.6.

A projective Cohen-Macaulay variety X ⊂ Pr is called Gorenstein if there exist an

integer n ∈ Z such that

ExtcodimX(SX ,S)∼= SX(n)

In this sense, a canonical curve is Gorenstein, and has the self dual minimal free reso-

lution.

De�nition 2.3.3. The linear colength l(C) of C is the smallest integer i such that

βg−2−i,g−1−i = βi,i+2 6= 0.

De�nition 2.3.4. The Cli�ord index of a line bundle L on C is defined as

Cliff(L ) := deg(L )−2(h0(L )−1)

The Cli�ord index Cliff(C) of C, is the minimum Cli�ord index of all line bundles L

on C satisfying hi(L )≥ 2 for i = 0,1.

We note that by Serre duality, we have Cliff(L ) = Cliff(ωC⊗L −1). By Cli�ord’s

theorem ([ACGH85], chapter III) the dimension of the complete linear series associated

to a special line bundle, that is a line bundle with h1(L ) > 0, cannot be very big

compared to its degree. More precisely, for any special line bundle Cliff(L ) ≥ 0 with

equality for trivial divisors as the zero divisor, or the canonical divisor. Therefore, the

Cli�ord index is the smallest non-negative integer c such that C has a complete linear

series gn
2n+c for some positive integer n.

In [Gr84] Green conjectured that the Cli�ord index of a canonical curve C is related to

some vanishing properties of the Betti numbers, namely to the linear colength of C.

Conjecture 2.3.5 (Green’s conjecture). Let C be a canonical curve over a �eld of charac-

teristic 0. Then l(C) = Cliff(C).
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The inequality l(C) ≤ Cliff(C) has been proved by Green and Lazarsfeld over any

field ([Gr84], Appendix). Although it is known that the obvious extension of the Green’s

conjecture to positive characteristic fails in charecteristic 2 for curves of genus 7 [Sch86]

and 9 [Muk95], in a very recent work [BS18], Bopp and Schreyer have posed a refined

version of Green’s conjecture, which holds conjecturally in positive characteristic.

Although Green’s conjecture is still open in complete context, it is settled for many

curves defined over field of characteristic 0. For general curves in [Voi02] and [Voi05],

general d−gonal curves with 2 < d < dg−1
2 e in [Apr05], curves of odd genus with l(C) =

(g−1)/2 in [HR98] and [Voi05], smooth curves lying on any K3 surface in [AF11], and

curves with linear colength l(C)≤ 2 in [Noe80], [Pet23] and [Sch91].

De�nition 2.3.6. Let C be a smooth curve. The gonality gon(C) of C is the smallest

integer d, for which there exist a d : 1 morphism to P1. A curve of gonality d is usually

referred to as a d−gonal curve.

It turns out that in general the Cli�ord index of a curve can be computed by complete

linear series of dimension one.

Theorem 2.3.7 ([CM91]). We have Cliff(C)+2≤ gon(C)≤ Cliff(C)+3.

The equality gon(C) = Cliff(C)+3 holds if and only if C is isomorphic to a smooth

plane curve, or some other "rare" cases (see [ELMS89]). Therefore, except for those

exceptional cases, if Green’s conjecture holds, then the gonality is gon(C) = l(C)+ 2,

and can be read o� directly from the shape of the Betti table.

2.4 Rational normal scrolls and scrollar syzygies

In the last section of this chapter, we resume the definition and some important facts

on rational normal scrolls. Almost everything we recall here is treated in the original

papers of Schreyer [Sch86] and Bothmer [vB07].

De�nition 2.4.1. Let e1, . . . ,ed ≥ 0 be non-negative integers, E =OP1(e1)⊕·· ·⊕OP1(ed)

be a locally free sheaf of rank d on projective line P1, and

π : P(E )−→ P1

be the corresponding Pd−1-bundle. For f := e1 + . . .+ e2 ≥ 2 the image of P(E ) under

the map

j : P(E )−→ X ⊂ Pr = P(H0(P(E ),OP(E )(1))
∗),

associated to the tautological bundle, is called a rational normal scroll of type S(e1, . . . ,ed),

where r = f +d−1.
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It is known by Harris [Har81], that X is a non-degenerate, irreducible variety of

minimal degree

degX = f = r−d +1 = codimX +1.

If all ei > 0, then X is smooth, and j : P(E ) −→ X is an isomorphism, otherwise X is

singular, and j is a resolution of singularities of X . The singularities of X are rational,

that is

j∗OP(E ) = OX , Ri j∗OP(E ) = 0 ∀i > 0,

and therefore one can usually replace X by P(E ) for cohomological computation.

In [Har81] it is first shown that the Picard group Pic(P(E )) is generated by hyper-

plane class H = [ j∗OPr(1)] and the class of the ruling R = [π∗OP1(1)], such that the

intersection products are given by

Hd = f , Hd−1.R = 1, R2 = 0.

Furthermore, following [Sch86], there exist basic sections ϕi ∈H0(P(E ),OP(E )(H−eiR)),

and s, t ∈ H0(P(E ),OP(E )(R)) such that every section of ψ ∈ H0(P(E ),OP(E )(aH +bR))

can be identified with a homogeneous polynomial

ψ = ∑
α

pα(s, t)ϕ
α1
1 . . .ϕαd

d

of degree a = α1+ . . .+αd in ϕi’s, and coe�cients homogeneous polynomials pα are of

degree

deg pα = α1e1 + . . .+αded +b.

This gives in fact a description of the coordinate ring of P(E ),

RP(E ) =
⊕

a,b∈Z
H0(P(E ),OP(E )(aH +bR)),

as the bigraded Cox ring K[s, t,ϕ1, . . . ,ϕd] with deg(s) = deg(t) = (0,1) and deg(ϕi) =

(1,−ei).

Rational normal scrolls can also be defined as determinantal varieties. The resolu-

tion of a scroll is an Eagon-Northcott complex.

Theorem 2.4.2. Let X be a scroll of type S(e1, . . . ,ed), and

Φ =

(
x10 x11 · · · x1e1−1 · · ·xd0 · · · xded−1

x11 x12 · · · x1e1 · · ·xd1 · · · xded

)
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be the 2× f matrix given by multiplication map

H0(P(E ),OP(E )(R))⊗H0(P(E ),OP(E )(H−R))−→ H0(P(E ),OP(E )(H))

where

xi j = t jsei− j
ϕi with i = 1, . . . ,d, and j = 0, . . . ,ei

form a basis of H0(P(E ),OP(E )(H)) ∼= H0(Pr,OPr(1)). Then the vanishing ideal IX of X is

generated by the 2× 2 minors of Φ. The minimal free resolution of X is the Eagon-Northcott

complex, with the Betti table

0 1 2 · · · f −1

0 1 . . · · · .

1 .
( f

2

)
2
( f

3

)
· · · ( f −1)

( f
f

)
Proof. See [Sch86], section 1.6.

Now we turn to the construction of scrolls from pencil on varieties. In fact, for

a linearly normal embedded smooth variety V ⊂ Pr = P(H0(V,OV (H)) equipped with

a pencil (Dλ )λ∈P1 of divisors on V , we can construct a rational normal scroll X such

that V ⊂ X , and furthermore the pencil is cut out by the class of the ruling R on X .

Suppose D is a divisor on V such that h0(V,OV (D)) ≥ 2 and h0(V,OV (H −D)) = f .

Let G ⊂ H0(V,OV (D)) be the 2-dimensional subvector space that defines the pencil of

divisors (Dλ )λ∈P1 . Then from the multiplication map

G⊗H0(V,OV (H−D))−→ H0(V,OV (H)),

we obtain a 2× f matrix with linear entries whose minors vanish on V . By [EH87],

it turns out that the variety defined by these minors is a scroll of dimension r− f + 1

and degree f such that the pencil (Dλ )λ∈P1 is cut out by the class of the ruling R on X .

Geometrically, X can be realized as union of the linear spans of the divisors Dλ , that is

X =
⋃

λ∈P1

Dλ

where Dλ :=
⋂

Dλ⊂H
H ⊂ Pr. Conversely, if X is a scroll of degree f containing V , the

ruling R on X cuts out a pencil of divisors (Dλ )λ∈P1 ⊂ |D| with h0(V,OV (H−D)) = f .

Another way in which rational normal scrolls show up, is syzygy schemes associated

to the scrollar syzygies.
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Let C⊂ Pg−1 be a smooth and irreducible canonical curve with homogeneous ideal

IC ⊂ S and

L• : 0←− S←− S(−2)β1,2 ←− S(−3)β2,3 ←− ·· ·

be the linear strand of a minimal free resolution of SC = S/IC. For a p−th linear syzygy

s ∈ Lp, let Vs be the smallest vector space such that there is a commutative diagram

Lp−1 Lpoo

Vs⊗S(−p)
?�

OO

S(−p−1).oo
?�

OO

The rank of the syzygy s is defined to be rk(s) := dimVs.

This diagram can be extended to a map from the Koszul complex to the linear strand of

C. Namely, since the dual complex Hom(L•,S) is a free complex, and the dual Koszul

complex is exact, the maps of the dual diagram extend to a morphism of complexes,

that we dualize again to obtain

S L1oo · · ·oo Lp−1oo Lpoo

∧pV ⊗S(−1)

ϕ2

OO

∧p−1V ⊗S(−2)oo

OO

· · ·oo V ⊗S(−p)oo

OO

S(−p−1)oo

OO

By degree reason, there are no non-trivial homotopies, and therefore all the vertical

maps except for ϕ2 are unique. The syzygy scheme Syz(s) of the syzygy s ∈ Lp is the

subscheme defined by the ideal of quadric forms

Is := Im(
p−1∧

V ⊗S(−2)−→ S).

The p−th syzygy scheme Syzp(C) of C is defined by the intersection
⋂

s∈Lp
Syz(s).

A p−th linear syzygy of a canonical curve has rank ≥ p+ 1, and syzygies of minimal

possible rank p+ 1 are called scrollar syzygies. The following theorem due to Bothmer

explains the scrollar terminology.

Theorem 2.4.3 ( [vB07], Corollary 5.2). The syzygy scheme Syz(s) of a scrollar syzygy s∈ Lp

is a scroll of degree p+1 and codimension p that contains the curve C.

In particular, let C be a d−gonal canonical curve lying on the rational normal scroll

X , swept out by a pencil g1
d . The Eagon-Northcott type minimal resolution E of X with

length g− d injects into the linear stand of a minimal resolution of the curve. Thus,

any (g− d)−th linear syzygies of X can be realized as a (g− d)−th linear syzygies of

C. Furthermore, the space

Yg−d ⊂ P(TorS
g−d(SX ,S)g−d+1)∼= Pg−d−1
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of scrollar syzygies is a rational normal curve of degree g−d−1 (see [SSW13] Propo-

sition 4.4). In this case, the corresponding syzygy schemes are the scroll X such that⋂
s∈Eg−d

Syz(s) = X .

De�nition 2.4.4. For a d−gonal canonical curve equipped with several pencils g1, . . . ,gt

of degree d, we can naturally define the syzygy scheme induced by the pencils g1, . . . ,gt

to be

Syz(g1, . . . ,gt) :=
⋂

s∈(Ei)g−d

Syz(s) =
t⋂

i=1

Xi,

where Xi is the rational normal scroll swept out by the pencil gi.
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Chapter 3

The unirationality of the Hurwitz

schemes H10,8 and H13,7

In this chapter, we show that the Hurwitz scheme Hg,d parametrizing d-sheeted simply

branched covers of the projective line by smooth curves of genus g, up to isomorphism,

is unirational for (g,d)= (10,8) and (13,7). The unirationality is settled by using liaison

constructions in P1×P2 and P6 respectively, and an explicit computation over a finite

field. We mainly follow [KT17], a joint work of the author with Fabio Tanturri.

3.1 Introduction

The study of the birational geometry of the moduli spaces of curves together with

additional data such as marked points or line bundles is a central subject in modern

algebraic geometry. For instance, understanding the geometry of the Hurwitz schemes

Hg,d := {C d:1 // P1 simply branched cover |C smooth of genus g}/∼

parametrizing d-sheeted simply branched covers of the projective line by smooth curves

of genus g, up to isomorphism, has an important role in shedding light on the geometry

of the moduli spaces of curves Mg. It was through Hurwitz spaces that Riemann [Rie57]

computed the dimension of Mg, and Severi [Sev68], building on works of Clebsch and

Lüroth [Cle73], and Hurwitz [Hur91], showed that Mg is irreducible.

Recently, the birational geometry of Hurwitz schemes has gained increasing inter-

est, especially concerning their unirationality. By classical results of Petri [Pet23], Segre

[Seg28], and Arbarello and Cornalba [AC81], it has been known for a long time that

Hg,d is unirational in the range 2 ≤ d ≤ 5 and g ≥ 2. For g ≤ 9 and d ≥ g, the unira-

tionality has been proved by Mukai [Muk95]. The most recent contributions have been
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given by [Ver05, Gei12, Gei13, Sch13, ST16, DS17]. For a more complete picture on

the unirationality of Hurwitz spaces, the related speculations and open questions, we

refer to [ST16]. Hurwitz spaces and their Kodaira dimension are also considered in the

very recent paper [Far18].

The main contribution of this chapter is the proof of the unirationality of the Hur-

witz schemes H10,8 and H13,7 (Theorem 3.3.2 and Theorem 3.4.2). In [ST16, §1] it is

speculated that Hg,d is unirational for pairs (g,d) lying in a certain range: we remark

that our two cases lie in that range, and respect perfectly this speculation.

The key ingredient for both results is the construction of dominant rational families

of curves constructed via liaison in P1 × P2 and P6 respectively. The proof of the

unirationality of H10,8 is based on the observation that a general 8-gonal curve of genus

10 admits a model in P1×P2 of bidegree (6,10), which can be linked in two steps to

the union of a rational curve and five lines. We show that this process can be reversed

and yields a unirational parametrization of H10,8.

For H13,7, we use the fact that a general 7-gonal curve of genus 13 can be embedded

in P6 as a curve of degree 17, which is linked to a curve D of genus 10 and degree 15.

We show that this process can also be reversed; to exhibit a unirational parametrization

of such D’s, we prove the unirationality of M10,n for n ≤ 5 (Theorem 3.4.1), a result

of independent interest, and we use a general curve together with 3 marked points to

produce a degree 15 curve in P6. A similar approach yields the unirationality of H12,8,

already proven in [ST16]. This result is outlined at the end of Section 3.4.

The reversibility of the above constructions corresponds to open conditions on suit-

able moduli spaces or Hilbert schemes. To show that the constructed families of covers

of P1 are dominant on the Hurwitz schemes it is then su�cient to exhibit single explicit

examples of the constructions over a finite field. A computer aided verification with

the computer algebra software Macaulay2 [GS] is implemented in the package [KT17a],

whose documentation illustrates the basic commands needed to check the truthfulness

of our claims. A ready-to-read compiled execution of our code is also provided.

A priori, it might be possible to mimic these ideas for other pairs (g,d) for which

no unirationality result is currently known. However, a case-by-case analysis suggests

that, in order to apply the liaison techniques as above, one needs to construct particular

curves, which are at the same time far from being general and not easy to realize.

We recall that there is a natural dominant morphism α : Hg,d −→ W 1
g,d , which is

a PGL(2)−bundle over a dense open subset of W 1
g,d . Therefore, both spaces are irre-

ducible, and the unirationality of Hg,d is equivalent to that of W 1
g,d . This allows us to

turn our proof to the unirationality of universal Brill-Noether spaces W 1
g,d .
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The chapter is structured as follows. We start by introducing some notation and

some background on liaison theory. In sections 3.3 and 3.4, we continue by proving

the unirationality of H10,8 and H13,7 respectively.

3.2 Liaison

In this section, we introduce some notation and background facts on liaison theory,

which will be needed later on.

De�nition 3.2.1. Let C and C′ be two curves in a smooth projective variety X of

dimension r with no common components, contained in r− 1 mutually independent

hypersurfaces Yi ⊂ X meeting each other transversally. Let Y = ∩Yi be the complete

intersection curve. C and C′ are said to be geometrically linked via Y if C∪C′ = Y

scheme-theoretically.

If we assume that the curves are locally complete intersections and that they meet

only in ordinary double points, then ωY |C = ωC(C∩C′) and the arithmetic genera of

the curves are related by

2(pa(C)− pa(C′)) = deg(ωC)−deg(ωC′) = ωX(Y1 + · · ·+Yr−1).(C−C′). (3.1)

The relation above and the obvious relation degC+degC′= degY can be used to deduce

the genus and degree of C′ from the genus and degree of C.

Let X = P1×P2 and C be a curve of arithmetic genus pa(C) and bidegree (d1,d2).

With the above hypotheses, let Y1,Y2 be two hypersurfaces of bidegree (a1,b1) and

(a2,b2). Then the genus and the bidegree of C′ are

(d′1,d
′
2) = (b1b2−d1,a1b2 +a2b1−d2),

pa(C′) = pa(C)− 1
2 ((a1 +a2−2)(d1−d′1)+(b1 +b2−3)(d2−d′2)) .

(3.2)

For curves embedded in a projective space Pr, the invariants pa(C′) and d′ of the

curve C′ can be computed via

d′ = ∏di−d,

pa(C′) = pa(C)− 1
2 (∑di− (r+1))(d−d′),

(3.3)

where the di’s are the degrees of the r−1 hypersurfaces Yi cutting out Y .

3.3 Unirationality of H10,8

In this section we prove the unirationality of H10,8. To simplify the notation, the mul-

tiprojective space P1×P2 will be denoted by P.
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3.3.1 The double liaison construction

Let (C,L) be a general element of W 1
10,8. As ρ(10,8,2)< 0≤ ρ(10,8,1), h0(L) = 2 and

by Riemann–Roch |KC−L| is a 2-dimensional linear series of degree 10. For a general

6-gonal pencil |D1| of divisors on C, let

φ : C
|D1|×|KC−L|−−−−−−−→ P

be the associated map. We assume that φ is an embedding. In fact this is the case if the

plane model of C inside P2 has only ordinary double points and no other singularities,

and the points in the preimage of each node under |KC−L| are not identified under

the map to P1. This way we can identify C with its image under φ , a curve of bidegree

(6,10) in P.
Moreover, assume C satisfies the maximal rank condition in bidegrees (a,3) for all

a ≥ 1, that is the maps H0(OP(a,3)) −→ H0(OC(a,3)) are of maximal rank. Let a3

be the minimum degree such that C lies on a hypersurface of bidegree (a3,3). Then

by Riemann–Roch the maximal rank condition gives a3 = 3 and C is expected to be

contained in only one hypersurface of bidegree (3,3). Let Y be a complete intersection

curve containing C defined by two forms of bidegrees (3,3) and (4,3), and let C′ be the

curve linked to C via Y . By formula (3.2), C′ is expected to be a curve of genus 4 and

bidegree d′ = (3,11).

Thinking of C′ as a family of three points in P2 parametrized by the projective

line P1, we expect a finite number l′ of distinguished fibers where the three points are

collinear. In fact, this is the case when the six planar points of C lie on a (possibly

reducible) conic. We claim that l′ = 5.

To compute l′, we need to understand the geometry of C′. Let D′2 be the divisor

of degree 11 such that the projection of C′ to P2 is defined by a linear subspace of

H0(O(D′2)), and let |D′1| be the 3-gonal pencil of divisors defining the map C′ −→ P1.

Since deg(KC′ −D′2) < 0, by Riemann–Roch we have h0(O(D′2)) = 11+ 1− 4 = 8. We

consider the map induced by the complete linear system

ψ2 : C′
|D′2|−−→ P7; (3.4)

as shown in [Sch86], the 3-dimensional rational normal scroll S of degree 5 swept out

by |D′1| contains the image of ψ2. Hence, the image of the map

ψ : C′ −→ P1×P7

is contained in the graph of the natural projection map from S to P1, that is

ψ(C′)⊆ P1×S =
⋃

Dλ∈|D′1|
([λ ]×Dλ ),
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where Dλ is the linear span of ψ2(Dλ ) in P7.

As ψ(C′) is a family of three points in P7 parametrized by P1,C′⊂P1×P2 is obtained

by projection of ψ(C′) from a linear subspace P1×V ⊂ P1×P7 of codimension 3. Fix a

λ ∈ P1; by Riemann–Roch, dim |D′2−D′1|= 4 and hence ψ2(Dλ ) spans a 2-dimensional

projective space inside P7. It is clear that the three points corresponding to λ are

distinct and collinear if and only if V ∩Dλ is a point, and the three points coincide if

and only if V ∩Dλ is a projective line. The latter case does not occur in general, as

the plane model of C′ has only double points. The former case occurs in l′ = degS = 5

points if S and V intersects transversally. This is an open condition which holds in

general.

Now, suppose that for all b≥ 1 the maps

H0(OP(b,2))−→ H0(OC′(b,2))

are of maximal rank, and set

b2 := min{b : h0(IC′(b,2)) 6= 0}.

Under the maximal rank assumption, b2 = 5 and h0(IC′(5,2)) = 2. Let Y ′ be a complete

intersection of two hypersurfaces of bidegree (5,2) containing C′ and let C′′ be the

curves linked to C′ via Y ′.

Interpreting again C′ and C′′ as families of points parametrized by P1, we observe

that a general fibre of C′′ consists of a single point. In the 5 distinguished fibres of C′,

the two conics of the complete intersection Y ′ turn out to be reducible with the line

spanned by the three points of C′ as a common factor. Thus, the curve C′′ is the union

of a rational curve R of bidegree (1,4) and 5 lines.

3.3.2 A unirational parametrization

The double liaison construction described in the previous section can be reversed and

implemented in a computer algebra system. We note that all the assumptions on C and

C′ correspond to open conditions in suitable moduli spaces or Hilbert schemes, so that

it is su�cient to check them on a single example. We can work over a finite field as

explained in Remark 3.3.1 here below.

Remark 3.3.1. Here, we will often need to exhibit an explicit example satisfying some

open conditions. A priori we could perform our computations directly on Q, but this

can increase dramatically the required time of execution. Instead, we can view our

choice of the initial parameters in a finite field Fp as the reduction modulo p of some
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choices of parameters in Z. Then, the so-obtained example Ep can be seen as the re-

duction modulo p of a family of examples defined over a neighbourhood SpecZ[1
b ] of

(p) ∈ SpecZ for a suitable b ∈ Z with p - b. If our example Ep satisfies some open con-

ditions, then by semicontinuity the generic fibre E satisfies the same open conditions,

and so does the general element of the family over Q or C.

Our construction depends on a suitable number of free parameters corresponding

to the choices we made. Picking 5 lines in P1× P2 requires 5 · 3 = 15 parameters.

Choosing 2 forms of bidegree (2,1) to define the rational curve R corresponds to the

choice of dimGr(2,9) = 14 parameters. By Riemann–Roch we expect h0(IC′′(5,2)) =

7, so we need dimGr(2,7) = 10 parameters to define the complete intersection Y ′.

Similarly, as h0(IC′(3,3)) = 1 and h0(IC′(4,3)) = 8, we require dimGr(1,8)− 2 = 5

further parameters for the complete intersection Y . This amounts to 15+14+10+5 =

44 parameters in total.

Theorem 3.3.2. The Hurwitz space H10,8 is unirational.

Proof. Let A44 be our parameter space. With the code provided by the function verify-

AssertionsOfThePaper(1) in [KT17a] and following construction of Section 3.3.1

backwards, we are able to produce an example of a curve C ⊂ P and to check that

all the assumptions we made are satisfied, that is:

• for a general choice of a curveC′′, a union of a rational curve of bidegree (1,4) and

5 lines and for a general choice of two hypersurfaces of bidegree (5,2) containing

C′′, the residual curve C′ is a smooth curve of genus 4 and bidegree (3,11) which

intersects C′′ only in ordinary double points;

• C′ satisfies the maximal rank condition in bidegrees (b,2) for all b ≥ 1 and its

planar model has only ordinary double points as singularities;

• for a general choice of two hypersurfaces of bidegree (3,3),(4,3) containing C′,

the residual curve C is a smooth curve of genus 10 and bidegree (6,10) that

intersects C′ only in ordinary double points;

• C satisfies the maximal rank condition in bidegrees (a,3) for all a ≥ 1 and its

planar model is non-degenerate.

This means that our construction produces a rational family of elements in W 2
10,10, the

Serre dual space to W 1
10,8. As all the above conditions are open and W 1

10,8 is irreducible,

this family is dominant which proves the unirationality of both W 1
10,8 and H10,8.
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3.4 Unirationality of H13,7

In this section we will prove the unirationality of the Hurwitz space H13,7. As a pre-

liminary result of independent interest, let us prove the following.

Theorem 3.4.1. The moduli space M10,n of curves of genus 10 with n marked points is

unirational for 1≤ n≤ 5.

Proof. This result is achieved by linkage in P := P1×P2. We start with a reducible

curve C of arithmetic genus −3. This curve is a union of 3 general lines and the graph

of a rational plane curve of degree 4. On the one hand, the space of such curves is

clearly unirational; on the other hand, C will in general be contained in at least two

independent hypersurfaces of bidegree (4,2). The linkage with respect to 2 general

such hypersurfaces produces a curve C′ of expected bidegree (3,9) and genus 4, which

will in general be contained in exactly 7 independent hypersurfaces of bidegree (3,3).

For the choice of 5 general points {P1, . . . ,P5} in P, let IP be their ideal. In general,

the space of bihomogeneous polynomials (3,3) contained in IC′∩ IP will be generated by

two independent polynomials f1, f2, defining two hypersurfaces X1,X2. The complete

intersection of these hypersurfaces link C′ to a curve C′′ passing through each Pi. The

curve C′′ turns out to be a curve of genus 10 and bidegree (6,9). The projection onto

P1 yields an element of H10,6.

In [Gei12], Geiß proved that this construction yields a rational dominant family in

H10,6. Moreover, the Brill–Noether number ρ(6,1,10) = 10− (1+1)(10−6+1) = 0 is

non-negative, which implies that this rational family dominates M10 as well. Therefore,

as the choice of {P1, . . . ,P5} is unirational, we get a rational dominant family of curves

of genus 10 together with (up to) five marked points.

Theorem 3.4.2. The Hurwitz space H13,7 is unirational.

Proof. Let (D,L)∈W 1
13,7 be a general element. By Riemann–Roch, ωD⊗L−1 is a general

g6
13,17 and therefore the linear system |KD−L| embeds D in P6 as a curve of genus 13

and degree 17. Conversely, if D is a general curve of genus 13 and degree 17 in P6, by

Riemann–Roch the line bundle ωD⊗OD(−1) is a general g1
7. Hence, in order to prove

the unirationality of H13,7, it will be su�cient to exhibit a rational family of projective

curves of genus 13 and degree 17 in P6 which dominates W 6
13,17.

Let C be a general curve of genus 13 and degree 17 in P6. Since OC(2) is non-

special, C is contained in at least
(6+2

2

)
− (17 ·2+1−13) = 6 independent quadric hy-

persurfaces. Consider five general such hypersurfaces Xi and suppose that the residual

curve C′ is smooth and that C and C′ intersect transversally; these are open condi-

tions on the choice of (C,OC(1)) ∈ W 6
13,17. By (3.3), C′ has genus g′ = 10 and degree
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d′ = 15. By Riemann–Roch, the Serre residual divisor ωC′⊗OC′(−1) has degree 3 and

one-dimensional space of global sections. Hence, it corresponds to the class of three

points on C′. Conversely, by geometric Riemann–Roch three general points on C′ form

a divisor P with h0(P) = 1, such that the linear series |KC−P| embedsC′ in P6 as a curve

of degree 15. Hence, the unirationality of W 6
10,15 can be deduced from the unirationality

of M10,3, proved in Theorem 3.4.1 above.

By means of the implemented code verifyAssertionsOfThePaper(2) in [KT17a],

we can show with an explicit example that

• for a general curve C′ of genus 10 and degree 15 in P6 and for a general choice

of five quadric hypersurfaces containing it, the residual curve C is smooth and

intersects C′ only in ordinary double points;

• C is not contained in any hyperplane.

This way we get a rational family of curves C of genus 13 and degree 17 in P6. Since

all the assumptions we made correspond to open conditions on W 6
13,17 and are satisfied

by our explicit examples, such a family dominates W 6
13,17.

Remark 3.4.3. The same argument of Theorem 3.4.2 holds for a general element in

H12,8, so that the above proof yields an alternative proof of the unirationality of H12,8

proved in [ST16]. In this case, the Serre dual model is a curve of genus 12 and degree

14 in P4. The liaison is taken with respect to 3 general cubic hypersurfaces and yields

a curve of genus 10 and degree 13, which can be constructed from a curve of genus 10

with 5 marked points. The strategy is the same as above. An implementation of this

unirational parametrization of H12,8 via linkage can be found in the package [KT17a].

The package [KT17a] including the implementation of the unirational parametri-

zations exhibited in this chapter, together with all the necessary and supporting docu-

mentation, is available online.
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Chapter 4

Brill-Noether locus of curves with

three pencils

In this chapter, we mainly deal with the Brill-Noether locus Mg,d(3) of genus g curves,

possessing three mutually independent pencils of degree d. The main outcome of

this chapter is the theorem 4.5.1, in which we prove that Mg,d(3) has a unirational

irreducible component of expected dimension, for 5≤ d ≤ 9 and g as in the table 4.1.

4.1 Introduction

Let C be a smooth curve of genus g carrying three pencils g1
d . We further assume that

the map to P1×P1 defined by any of the two pencils is a birational morphism. In

[Aco79], Accola proved the genus of C cannot exceed the bound

[6s2 +(6s+q−2)(q−1)]/2,

where d = 2s+q for some integers s,q satisfying 0≤ q≤ 1.

The extra assumption on the pencils already provides a birational model of C in the

ambient space P1×P1×P1. For curves with genera as in the table 4.1 we use this model

to link it often to a rational curve via a complete intersection of two hypersurfaces

of certain degrees. We will show for an open subset of Mg,d(3), this construction is

reversible and yields a rational family of curves in Mg,d(3). To indicate that these so-

constructed rational families of curves dominate an irreducible component of Mg,d(3),

it is then su�cient to exhibit a single example of the constructions over a finite field.

We remark that the range of genera in table 4.1 respects Accola’s upper bound.

A computer aided verification with the computer algebra software Macaulay2 [GS]

is implemented in the package [K17], which provides examples and basic commands

needed to check the main statement of this chapter.
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4.2 Accola’s genus bound

We briefly recall the upper bound provided by Accola for the genus of curves possessing

several pencils.

De�nition 4.2.1. LetC be a smooth curve. Two base point free pencils of degree d onC,

say g1 and g2, are called independent if there is no non-trivial morphism f : C−→C′ of

some degree a≥ 2 and two linear system on C′, denoted by g′1,g
′
2 such that f ∗(g′i) = gi

for i = 1,2. Otherwise, they are called dependent. If g1, . . . ,gm are m di�erent base

point free pencils of degree d on C, then they are called mutually independent if for

each 1≤ i < j ≤ m the linear systems gi and g j are independent.

Remark 4.2.2. For a g1
d on a curveC and a point x∈C, let Ex ∈ g1

d denote a divisor con-

taining the point x. Then, it is clear that two pencils g1,g2 of degree d are independent

if and only if for a general point x ∈C, (Ex,Fx) = x, where (Ex,Fx) denotes the greatest

common divisor of the two divisors Ex ∈ g1 and Fx ∈ g2. Hence, two linear systems g1

and g2 are independent if and only if the corresponding map gives a birational model

of C in P1×P1.

As a generalization of Castelnouvo’s inequality for the genus of curves having a

simple linear series (see [Cas93]), the following theorem of Accola provides an upper

bound for the genus of a curve possessing a certain number of linear series.

Theorem 4.2.3 (Accola’s genus bound). Let C be a smooth curve of genus g possessing m

mutually independent linear series g1
d . Write d = s(m−1)+q for some integers s,q satisfying

−m+3≤ q≤ 1. Then

g≤ [s2(m2−m)+(2ms+q−2)(q−1)]/2.

Proof. See [Aco79], Theorem 4.3.

4.3 Construction via liaison

In this section we describe the liaison construction for curves with genera and degrees

as in the table 4.1, which mostly leads to a rational curve. To simplify our notations,

we denote the multiprojective space P1×P1×P1 by P.

Let C be an element of Mg,d(3), where C is a smooth curve of genus g equipped

with three mutually independent and base point free pencils of degree d, say g1,g2,g3.

By Accola’s theorem 4.2.3, we require the genus of C to be bounded by

g≤ [6s2 +(6s+q−2)(q−1)]/2,
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where for some integers s,q, satisfying 0≤ q≤ 1, we have d = 2s+q. Let

ϕ : C
g1×g2×g3−−−−−−→ P

be the corresponding map. As the three pencils are assumed to be mutually indepen-

dent, the map ϕ gives a birational model of C in P. We further assume that ϕ is an

embedding. This way we can identify C with its image in P. Suppose for a suitable

choice of the degrees (ai,bi,ci), i = 1,2, the maps

H0(P,OP(ai,bi,ci))−→ H0(C,OC(ai,bi,ci))

are of maximal rank and h1 OC(ai,bi,ci) = 0. Let X = V ( f1, f2) be the complete inter-

section defined by two general hypersufaces fi ∈H0 IC(ai,bi,ci) and let C′ be the curve

linked to C via X . Under the assumption that the curves are locally complete intersec-

tion and they meet only in ordinary double points, by 3.1 if follows that the genus and

the degree of C′ are given by

(d′1,d
′
2,d
′
3) = (b1c2 + c1b2−d,a1c2 +a2c1−d,a1b2 +a2b1−d),

ρ(C)−ρ(C′) = 1
2

(
(a1 +a2−2)(d−d′1)+(b1 +b2−2)(d−d′2)+(c1 + c2−2)(d−d′3)

)
.

(4.1)

4.4 Computational construction

Starting from a curve with genus and degree as in table 4.1 that admits three mutually

independent pencils of degree d and following the above construction, we are able to

link it (in probably several steps) to a rational curve. We can show that this construc-

tion is reversible and it provides a unirational family of curves, which parametrizes an

irreducible component of Mg,d(3).

To explain the explicit construction, we go through the construction for the case g = 17

with three mutually independent pencils of degree 7 as a test example.

Example 4.4.1. Let C be a general element of the Brill-locus M17,7(3). In fact, C is a

smooth curve of genus 17 that has a model of degree (7,7,7) in P. Let

S =K[x0,x1,y0,y1,z0,z1]

be the Cox ring of the multiprojective space P. As h1 OC(2,2,2) = 0, by Riemann–Roch

theorem we deduce h0 OC(2,2,2) = 6 · 7+ 1− 17 = 26. Therefore, it follows from the

maximal rank condition in degree (2,2,2) that C lies on only one hypersurface of de-

gree (2,2,2). Similarly, C is contained in a 3-dimensional family of hypersurfaces of
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degree (3,2,2). Let X be the complete intersection of the two linearly independent

hypersurfaces of degrees (2,2,2) and (3,2,2). By the formulas (4.1), C is linked via X

to a rational curve R of degree (1,3,3).

To be able to reverse the construction, we require that a general rational curve R sat-

isfies the maximal rank condition and that R is contained in independent hypersur-

faces of degrees (2,2,2) and (3,2,2). As h1 OR(2,2,2) = 0, from Riemann–Roch we get

h0 OR(2,2,2) = 2+6 ·2+1= 15 and under the maximal rank condition R is contained in

12 independent hypersurfaces of degree (2,2,2). Similarly, R lies on a 20-dimensional

family of hypersurfaces of degree (3,2,2). Therefore, we can reverse the above process.

Now, we turn to the actual construction of the curve. We will briefly explain the

methods of each steps and we mainly make use of the functions in our Macualay2 pack-

age [K17].

Step 1. First we define the vanishing ideal of the rational curve R. One can easily

define the rational curve R as the image curve of a map P1 −→ P defined by general

forms of the given degrees. To speed up our computations, and as an alternative way,

we define the ideal of rational curve simply by saturation of the ideal generated by

two form of degrees (3,1,0) and (3,0,1). Then, we choose general forms of degrees

(2,2,2),(3,2,2) in the ideal of the rational curve to define the complete intersection X .
Next, we compute the vanishing ideal of the linked curve C given by the quotient ideal.

For all cases in table 4.1, we have unified the construction in the implemented function

curveViaLiaison. In particular, in this special case we compute the ideal of the curve

C by

i1: loadPackage"UnirationalBNSchemes"

i2: p=101; -- charachterstic of the finite field

13: IC=time(curveViaLiaison(p,{1,3,3},{{0,0,0},{0,0,0}},{{2,2,2},{3,2,2}}))_1;

-- used 35.4307 seconds

ZZ

o3: Ideal of ---[x , x , y , y , z , z ]

101 0 1 0 1 0 1

i4: g=genusP1P1P1(IC)

o4: 17

Step 2. We check that C is smooth and irreducible. To do so, we use the birational

space models of C given by compactification of di�erent a�ne charts P\V (xiy jzk), 0≤
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i, j,k ≤ 1 in P3. More precisely, considering the map

P\V (x1y1z1) −→ P3

((x0 : x1),(y0 : y1),(z0 : z1)) 7→ (x1y1z1 : x0y0z1 : x0y1z0 : x1y0z0)

for the a�ne chart P\V (x1y1z1) (similarly for the other charts), we show that the image

curve is smooth outside the hyperplane V (r0), where R3 =K[r0, . . . ,r3] is the coordinate

ring of P3. Having C to be smooth, we go further to show h0(OC) = 1, which then

implies thatC is connected and hence irreducible. In [K17], this method is implemented

in the function isSmoothAndIrreducible, which tests smoothness and irreducibility in

parallel.

i5: time isSmoothAndIrreducible(IC)

-- used 336.51 seconds

o5: true

Step 4. Finally, we check thatC satisfies the maximal rank condition in degrees (2,2,2)

and (3,2,2).

i6: d={7,7,7}

i7: maxRankCondition(IC,g,d,{2,2,2})

o7: true

i8: maxRankCondition(IC,g,d,{3,2,2})

o8: true

Therefore, starting from a general rational curve and following the construction back-

ward, we can produce a rational family of genus 17 curves carrying three pencils of

degree 7. The general element of this family satisfies all the assumption we made

above.

It remains to show that this construction depends on the correct number of parame-

ters for all choices we made. In fact, for the coe�cients of the homogeneous forms

defining the rational curve, and the complete intersection. As the vector spaces of ho-

mogeneous polynomials of S in degrees (3,0,1) and (3,1,0) are 8-dimensional, we need

2 · dimGr(1,8) = 14 parameters to define the ideal of the rational curve. Also, as un-

der the maximal rank assumption, we have h0 IR(2,2,2) = 12 and h0 IR(3,2,2) = 20,

we need dimGr(1,12)+dimGr(1,20−2) = 28 more parameters to define the complete

intersection X . This amount to N = 42 parameters in total.

As the curve C lies on exactly two independent hypersurfaces of degrees (2,2,2) and

(3,2,2), it can be linked to a rational curve R in a unique way. Therefore, identifying
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all the rational curves isomorphic to R arised from the automorphisms of P, we achieve
the expected dimension of the moduli space M17,7(3), given by

3 ·17−3+3 ·ρ(17,7,1) = 33

4.5 Proof of the dominance

The liaison construction described above can be modified for all the cases in table 4.1.

We note that all the assumptions we made on C and C′, correspond to open conditions

in suitable moduli spaces, so that it is su�cient to test them in a single example. In

view of 3.3.1, we can even work over a finite field.

Theorem 4.5.1. For 5 ≤ d ≤ 9 and all g as in the table 4.1, the moduli space Mg,d(3)

of genus g curves possessing three mutually independent pencils of degree d has a unirational

irreducible component of expected dimension.

Proof. Let AN be the parameter space for the construction above and

ψ : AN 99K Mg,d(3)

be the induced map. Modifying the steps of example 4.4.1 for each case in 4.1, we

can produce an example of a smooth irreducible curve of genus g with three pencils

of degree d which satisfy the maximal rank condition in desired degrees and the two

linked curves intersect in only ordinary double points.

Thus, by semicontinuity the locus of such curves is a non-empty open subset of Mg,d(3),

and therefore the constructed rational family of curves dominates an irreducible com-

ponent H ⊂Mg,d(3) containing the single example. Hence, H is unirational of expected

dimension.
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g (a1,a2,a3),(b1,b2,b3) g′ d′ (a′1,a
′
2,a
′
3),(b

′
1,b
′
2,b
′
3) g′′ d′′

3g1
5

5 (2,2,2),(3,2,2) 2 (3,5,5) (2,2,2),(2,2,2) 0 (5,3,3)

6 (2,2,2),(2,2,2) 0 (3,3,3)

7 (2,2,2),(2,3,3) 9 (7,5,5) (3,2,2),(2,2,2) 0 (1,5,5)

8 (2,2,2),(2,3,3) 10 (7,5,5) (2,2,2),(2,2,2) 0 (1,3,3)

9 (2,2,1),(2,2,2) 0 (1,1,3)

3g1
6

9 (2,2,3),(3,3,2) 12 (7,7,6) (4,2,2),(4,2,2) 0 (1,9,10)

10 (2,2,3),(3,3,2) 13 (7,7,6) (3,2,2),(4,2,2) 0 (1,7,8)

11 (2,2,3),(2,3,2) 6 (7,4,4) (2,2,2),(2,2,2) 0 (1,4,4)

12 (2,2,3),(2,3,2) 7 (7,4,4) (1,2,2),(2,2,2) 0 (1,2,2)

13 (2,2,3),(2,3,2) 8 (7,4,4) (1,2,2),(1,2,2) 0 (1,0,0)

3g1
7

15 (3,2,2),(4,2,2) 0 (1,7,7)

16 (3,2,2),(3,2,2) 0 (1,5,5)

17 (2,2,2),(3,2,2) 0 (1,3,3)

18 (2,2,2),(2,2,2) 0 (1,1,1)

3g1
8

21 (3,3,2),(2,3,3) 12 (7,5,7) (3,2,2),(3,2,2) 0 (1,7,5)

22 (3,3,2),(2,3,3) 13 (7,5,7) (2,2,2),(3,2,2) 0 (1,5,3)

23 (3,3,2),(2,3,3) 14 (7,5,7) (2,2,2),(2,2,2) 0 (1,3,1)

3g1
9

27 (3,3,2),(2,3,3) 8 (6,4,6) (2,2,2),(2,2,2) 0 (2,4,2)

28 (3,3,2),(4,2,4) 26 (7,11,9) (4,2,2),(4,2,2) 0 (1,5,7)

29 (3,2,2),(2,3,2) 0 (1,1,4)

Table 4.1: Numerical data for all cases of theorem 4.5.1.

Remark 4.5.2. We remark that for d ≥ 10, one might be able to link a curve of genus

g with 3g1
d ’s to one of the above constructed curves. This then provides the same

unirationality statement for d≥ 10, and complete the above table for curves with pencils

of higher degree.
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Chapter 5

Unirational components of moduli

spaces of genus 11 curves with several

pencils of degree 6

In this chapter, we show that the moduli space M11,6(k) of 6−gonal curves of genus 11,

equipped with k mutually independent and type I pencils of degree 6, has a unirational

irreducible component for 5≤ k≤ 9. The unirational families arise from degree 9 plane

curves with 4 ordinary triple and 5 ordinary double points that dominate an irreducible

component of expected dimension. We will further show that the family of degree 8

plane curves with 10 ordinary double points covers an irreducible component of excess

dimension in M11,6(10).

5.1 Introduction

Let C be a smooth irreducible d−gonal curve of genus g defined over an algebraically

closed field K. Recall that by definition of gonality, there exists a g1
d but no g1

d−1 on C.

It is well-known that d ≤ [g+3
2 ] with equality for general curves. In a series of papers

([Cop97],[Cop98],[Cop99], [Cop00], [Cop05]) Coppens studied the number of pencils

of degree d on C, for various d and g. For low gonalities up to d = 5, the problem is

intensively studied for almost all possible genera. For 6−gonal curves, Coppens has
settled the problem only for genera g≥ 15.

In this chapter, we focus on 6−gonal curves of genus g = 11. The motivation for our

choice of genus 11 was the question asked by Michael Kemeny, whether any smooth

curve of genus 11 carrying at least 6 pencils g1
6’s, comes from a degree 8 plane curve

with 10 ordinary double points, where the pencils are cut out by the pencil of lines
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through each of the singular points. More precisely, there exists no smooth curve of

genus 11 possessing exactly 6,7,8 or 9 pencils of degree 6. We will show the answer to

this question is negative.

Let M11,6(k) ⊂M11 be the moduli space of smooth 6−gonal curves of genus 11,

equipped with exactly k mutually independent g1
6’s of type I. In section 5.2, we first

investigate the possible number of g1
6’s on a 6−gonal curve of genus 11, and therefore

the possible values of k for which M11,6(k) is non-empty. In [Sch02], Schreyer gave a

list of conjectural Betti tables for canonical curves of genus 11. Related to our question,

and interesting for us, is the plausible Betti table of the following form

1 . . . . . . . . .

. 36 160 315 288 5k . . . .

. . . . 5k 288 315 160 36 .

. . . . . . . . . 1

where k is expected to have the values k = 1,2, . . . ,10,12,20. Although, in view of

Green’s conjecture 2.3.5, it is not clear that for a smooth canonical curve of genus 11

with Betti table as above, the number k can always be interpreted as the multiple num-

ber of pencils of degree 6 existing on the curve. Nonetheless, for k = 1,2, . . . ,10,12

we can provide families of curves, whose generic element carries exactly k mutually

independent pencils of type I. The critical Betti number in this case is β5,6 = β4,6 = 5k

as expected. Therefore, in this range the locus M11,6(k) is non-empty.

The first natural question is then to ask about the geometry of the locus M11,6(k)

inside the moduli of curves M11, in particular about its unirationality.

For k = 1, the corresponding locus is the famous Brill-Noether divisor M11,6 of

6−gonal curves [HM82], which is irreducible and furthermore known to be unirational

[Gei12]. The moduli space M11,6(2) is irreducible [Ty07], and unirational such that a

general element of M11,6(2) can be obtained from a model of bidegree (6,6) in P1×P1

with δ = 14 ordinary double points. For k = 3, by theorem 4.5.1 M11,6(3) has a uni-

rational irreducible component of expected dimension. A general curves lying in this

component can be constructed via liaison in two steps from a rational curve in multi-

projective space P1×P1×P1.

Here we construct rational families of curves with additional pencils from plane

curves of suitable degrees with only ordinary multiple points, as singularities. As the

first significant result, we will prove that for 5≤ k ≤ 9 the moduli space M11,6(k) has a
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unirational irreducible component of expected dimension. A general curve lying on this

component arises from a degree 9 plane model with 4 ordinary triple and 5 ordinary

double points which contains k−5 points among the ninth fixed point of the pencil of

cubics passing through the 4 triple and 4 chosen double points (Theorem 5.5.1).

The key technique of the proof is to study the space of first order equisingular

deformations of plane curves with prescribed singularities, as well as that of the first

order embedded deformations of their canonical model. In fact, denoting by M the

5k× 5k submatrix in the deformed minimal resolution corresponding to the general

first order deformation family of a canonical curve C with Betti table as above, we use

the condition M = 0 to determine the subspace of the deformations with extra syzygies

of rank 5k. It turns out that for 5≤ k≤ 9, and respectively k linearly independent linear

forms l1, . . . , lk in the free deformation parameters corresponding to a basis of TCM11,

we have detM = l5
1 · . . . · l5

k . This implies that M11,6(k) has an irreducible component

of exactly codimension k inside the moduli space M11. Furthermore, let K11 to be

the locus of the curves C ∈M11 with extra syzygies, that is β5,6 6= 0. It is known by

Hirschowitz and Ramanan [HR98] that K11 is a divisor, called the Koszul divisor, such

that K11 = 5M11,6. Thus, M11,6 at the point C is locally analytically the union of k

smooth transversal branches.

We will then compute the kernel of the Kodaira-Spencer map and from that the rank

of the induced di�erential maps, in order to show that the rational families of plane

curves dominate this component.

By following the similar approach, we obtain our second main result. We show that

the family of degree 8 plane curves with 10 ordinary double points covers an irreducible

component of excess dimension in M11,6(10) (Theorem 5.5.2).

This chapter is structured as follow. In section 5.3 we recall some basics of defor-

mation theory for smooth and singular plane curves. In section 5.4 we deal with the

computation of the tangent spaces to our parameter spaces and we continue by proving

the main theorems on unirationality in section 5.5 and 5.6.

Our results and conjectures rely on the computations and experiments, performed

by the computer algebra system Macualay2 [GS] and using the supporting functions in

the packages [KS18a] and [KS18b].

5.2 Planar model description

In this section, we describe families of plane curves of genus 11 carrying k = 4, . . . ,10,12

pencils of degree 6. Throughout this chapter, several pencils on a curve are supposed to
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be mutually independent (see Definition 4.2.1) of type I. We make the second restriction

more precise by the following definition.

De�nition 5.2.1. A base point free pencil g1
d on a smooth curve C is called of type I if

dim |2g1
d|= 2.

This is an important notion in counting the number of linear series on a smooth

curve C. Let g be a base point free g1
d . The pencil g is said to be the limit of two

di�erent linear systems g1
d in a family of curves if there exists a 1-parameter family of

curves π : C −→ ∆ with ∆ = {z ∈ C : |z| < 1}, and two families G1 and G2 of linear

systems g1
d on this family such that (G1)0 = (G2)0 = g on C = π−1(0), and (G1)t 6= (G2)t

on Ct for t 6= 0. In this case we count g with a certain multiplicity. In [Cop83], Coppens

proved that a linear series is not of type I if and only if it is a limit of two di�erent

pencils in a family of curves. Therefore, type I pencils are exactly those that we should

count with multiplicity 1.

Remark 5.2.2. Considering a g1
d as a point x of the Brill-Noether scheme W 1

d (C) ⊂
Picd(C), then the g1

d is of type I if and only if x is a reduced point of W 1
d (C).

Remark 5.2.3. There is an easy way to construct d−gonal curves having more than

one pencil g1
d , when d is not a prime number. In fact, starting with a curve C′ of some

smaller gonality d′, and taking a finite covering π : C −→C′ of some degree a≥ 2 such

that d = ad′, then it can be shown that C is curve of gonality d that has more than one

pencil g1
d (see [Ce83]). In this case the pencils are not mutually independent. For the

rest of this chapter, we exclude such cases.

We first deal with the construction of plane model for smooth curves of genus 11

with k = 5, . . . ,9 pencils of degree 6. Clearly, smooth curves of genus 11 with 10 pencils

g1
6’s can be constructed from a plane model of degree 8 with 10 ordinary double points in

general position. The code provided by the function random6gonalGenus11Curve10pencil

in [KS18a], uses this plane model to produce a random canonical curve of genus 11

with exactly 10g1
6’s. We remark that, although we further provide a method to produce

curves with k = 4,12 pencils g1
6’s, by dimension reasons the rational family obtained

from these models may not cover any component of the corresponding locus.

model of curves with 5≤ k ≤ 9 pencils.

Let P1, . . . ,P4,Q1, . . . ,Q5 be 9 general points in the projective plane P2 and let Γ⊂ P2

be a plane curve of degree 9 with 4 ordinary triple points P1, . . . ,P4, and 5 ordinary
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double points Q1, . . . ,Q5. We note that, since an ordinary triple (resp. double) point in

general position imposes 6 (resp. 3) linear conditions, such a plane curve with these

singular points exists as (
9+2

2

)
−6 ·4−3 ·5 > 0.

Blowing up these singular points

σ : P̃2 = P2(. . . ,Pi, . . . ,Q j, . . .)−→ P2,

let C ⊂ P̃2 be the strict transformation of Γ on the blown up surface of P2. Hence,

C ∼ 9H−
4

∑
i=1

3EPi−
5

∑
j=1

2EQ j ,

where H is the pullback of the class of a line in P2, and EPi and EQ j denote the excep-

tional divisors of the blow up at the points Pi and Q j, respectively. By the genus-degree

formula, C is a smooth curve of genus 11 =
(9−1

2

)
− 4.3− 5. Moreover, C admits 5

mutually independent g1
6’s of type I. Indeed, for i = 1, . . . ,4 the linear series |H−EPi|,

identified with the pencil of lines through the triple point Pi induces a base point free

pencil Gi of degree 6 on C. As by adjunction, the canonical system |KC| is cut out by
the complete linear series

|C+KP̃2|= |6H−
4

∑
i=1

2EPi−
5

∑
j=1

EQ j |,

the linear series |KC−2Gi| is cut out by

|4H−
4

∑
i=1

2EPi−
5

∑
j=1

EQ j +2EPi|.

Therefore, we have dim |KC−2Gi|= 0 and by Riemann–Roch dim |2Gi|= 2. Thus, the

induced pencils from linear system of lines through each of the triple points are of type

I. Furthermore, the linear series |2H−∑
4
i=1 EPi| identified with the the pencil of conics

through the four triple points induces an extra pencil G5 of degree 6 on C. Similarly

by adjunction, the corresponding linear system |KC− 2G5| can be identified with the

linear system of quadrics containing the double points. We obtain dim |KC−2G5|= 0,

which then Riemann–Roch implies that dim |2G5|= 2. Hence, this gives another pencil

of type I. In this way we obtain smooth curves of genus 11 having 5 pencils of degree 6.

In order to get the model of curves with further pencils of degree 6, we impose

certain one dimensional conditions on the plane curve of degree 9 such that each

condition gives exactly one extra g1
6.
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For j = 1, . . . ,5, let R j be the ninth fix point of the pencil of cubics through the 8

residual singular points by omitting Q j. The condition that R j lies on the plane curves

imposes exactly one condition on linear series of degree 9 plane curves with 4 ordinary

triple points at Pi’s and 5 ordinary double points at Q j’s. On the other hand, the linear

Figure 4.1: Two cubics through 8 ponits by omit-

ting one of the double points

Figure 4.2: Plane curve of degree 9 with six pen-

cils passing through the ninth fixed point
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series

|3H−
4

∑
i=1

EPi−
5

∑
j=1

EQ j +EQ j |

induces a pencil G′j of degree 7 with a fix point at R j. Therefore, by forcing the degree 9

plane curves to pass additionally through each R j, we obtain one further pencil of type

I, given by G′j−R j. This way, by choosing 0 ≤ m ≤ 4 points among R1, . . . ,R5, we get

families of smooth curves of genus 11 possessing up to 9 linear series of degree 6. The

function random6gonalGenus11Curvekpencil in [KS18a] is an implementation of the

above construction which produces a random canonical curve of genus 11 possessing

5≤ k ≤ 9 pencils of degree 6.

Remark 5.2.4. Although we expect that plane curves of degree 9 with singular points

as above, passing through all the five fixed points R1, . . . ,R5, lead to the model of curves

of genus 11 with 10 pencils of degree 6, our experimental computations indiactes that

such a curve is in general reducible. It is a union of a sextic and the unique cubic

through the five double points and R1, . . . ,R5, which has further singular points than

expected. Thus, our pattern fails to cover the case k = 10.

Our families of plane curves depend on expected number of parameters as desired.

In fact, let

V 4,5,m
9 := {(Γ;P1, . . . ,P4,Q1, . . . ,Q5)} ⊂ PN× (P2)9

denote the variety, where N =
(9+2

2

)
− 1 and Γ ⊂ P2 is a plane curve of degree 9 with

prescribed singular points passing through 0≤m≤ 4 points among R1, . . . ,R5 as above.

As an ordinary triple (resp. double) point in general position imposes 6 (resp. 3) linear

conditions, we expect naively that each irreducible component of V 4,5,m
9 has dimension

9(9+3)
2

+2 ·9−3 ·5−6 ·4−m = 33−m.

Identifying the plane curves under automorphisms of P2 reduces this dimension by

8 = dimPGL(2). From Brill-Noether theory this fits to the expected dimension of the

locus M11,6(k) ⊂M11, of curves possessing k = m+ 5 pencils. In fact, denoting by ρ

the Brill-Noether number, we have

dimM11,6(k)≥ 3 ·11−3+(m+5)ρ(11,6,1) = 25−m.

models of curves with k = 4 pencils.

Let P1,P2,P3,Q1, . . . ,Q7 be 10 general points in the projective plane and R be the

ninth fix point of a pencil of cubics through 8 points, obtained by omitting two of Qi’s.
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Then, the normalization of a general degree 9 plane curve with ordinary triple points

at P1,P2,P3 and ordinary double points at Q1, . . . ,Q7,R is a smooth curve of genus 11

that carries exactly k = 4 pencils of degree 6. In fact, the three pencils are induced from

the pencil of lines through each of the triple points and the pencil of cubics through the

8 points gives the extra g1
6. In [KS18a], this construction is implemented in the function

random6gonalGenus11Curve4pencil.

Remark 5.2.5. The number of parameters for the choice of 10 points in the plane as

above plus the dimension of the linear system of plane curves of degree 9 with ordinary

triple points at P1,P2,P3 and ordinary double points at Q1, . . . ,Q7,R amounts to 32

parameters. Therefore, modulo the isomorphisms of the projective plane, we obtain a

family of smooth curves of genus 11 with exactly k = 4 pencils and smaller dimension

than 26, which is the expected dimension of M11,6(4). Thus, the rational family of

curves obtained from this model cannot cover any component of M11,6(4).

models of curves with k = 12 pencils

Let P1, . . . ,P10 be 10 general points in the projective plane and V1 ⊂ |L| = |4H −
∑

10
i=1 EPi| be a pencil inside the linear system of quartics passing through these points.

Let q1, . . . ,q6 be the further fixed points of this pencil. Then, normalization of a degree 8

plane curve Γ with 10 ordinary double points P1, . . . ,P10 and passing through q1, . . . ,q6,

carries exactly 12 pencils of degree 6. On the one hand, considering Q1, . . . ,Q6 to be

the 6 moving points of a divisor in V1, our experiments show that Q1, . . . ,Q6 are the

extra fixed points of an another pencil V2 inside |L|. Moreover, let P2 99K P4 be the

rational map associated to |L|. The image of Γ under this map is a curve C of degree

12, which is cut out by a unique rank 4 quadric hypersuface Q on the determinantal

image surface of P2. As the divisors of the linear series |L| are cut out by the linear

system of hyperplanes on C, and the 6 fixed points impose exactly 3 linearly indepen-

dent conditions on this linear series, they span a projective plane P2 ⊂ Q and they

do not lie on a conic. As Q is isomorphic to the cone over P1×P1, the projections

to each projective line naturally give two extra pencils of degree 6. In [KS18a], the

function random6gonalGenus11Curve12pencil uses this method to produce a random

canonical curve of genus 11 carrying exactly 12 pencils g1
6’s.

5.3 Families of curves and their deformation

To study the local geometry of parameter spaces introduced in the previous section,

and also the locus of the smooth curves with several pencils, we study the space of the
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first order deformation of curves. This leads to the computation of the tangent space at

the corresponding points in the moduli space. We recall some basics on deformation

theory for smooth and singular plane curves and quickly sketch the typical stages of an

application of deformation theory. Most of the statements can be found in the standard

textbook [Ser06], and [Art79].

De�nition 5.3.1. Suppose C ⊂ Pn is a smooth embedded curve. An embedded first

order deformation of C is an embedded flat family of curves

C ⊂ Pn
A

π

��

Spec(A)

with C ×Spec(A) Spec(K) =C, where A =K[ε]/(ε2) denotes the ring of dual numbers.

Let NC/Pn = H omOC(I /I 2,OC) denote the normal bundle of C in Pn. The space

of global sections of NC/Pn parametrizes the set of first order embedded deformations

of C in Pn. This is exactly the tangent space to the Hilbert scheme HC/Pn of C inside

Pn (see [Ser06], Theorem 3.2.12).

Theorem 5.3.2. LetC⊂ Pn be a smooth embedded curve. The set of �rst order embedded defor-

mations of C ⊂ Pn is canonically in one-to-one correspondence with elements in H0(C,NC/Pn).

Proof. For our computational purpose later on, we will sketch a proof of this theorem

in computational context.

Let I ⊂OPn be the ideal sheaf ofC and C ⊂Pn
A be an embedded first order deformation

of C given by the ideal sheaf Iε ⊂ OPn
A
. We note that these data are obtained by

gluing together their restriction to an a�ne open cover. On an a�ne open subset

U = Spec(P)⊂ Pn let C∩U = Spec(B), where B = P/I for an ideal I = ( f1, . . . , fm)⊂ P.

Consider the exact sequence of P−modules

Pl r−→ Pm ( f1,..., fm)−−−−−→ I −→ 0,

where r =(ri j)m×l is the matrix whose columns generate all the relations among f1, . . . , fm.

Applying the functor HomP(−,B), we obtain the exact sequence

0−→ HomP(I,B)−→ HomP(Pm,B) r∨−→ HomP(Pl,B)

which identifies HomP(I,B)∼= HomB(I/I2,B) with ker(r∨).

Let h = (h1, . . . ,hm) be an element of ker(r∨), which interpreted as an element of
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HomP(Pm,B) is given by scalar product

h(p1, . . . , pm) =
m

∑
i=1

hi pi.

Hence, for each column vector r j = (r1 j, . . . ,rm j), we have ∑
m
i=1 hiri j ∈ I. This means

that for a vector s j = (s1 j, . . . ,sm j) ∈ Pm, we have

m

∑
i=1

hiri j =−
m

∑
i=1

fisi j,

or equivalently,

( f + εh)(r j + εs j)
t = 0

in P⊗K A. Therefore, there exists a matrix s = (si j)m×l such that

hr =− f s, (5.1)

and it extends every relation among f1, . . . , fm to a relation among f1+εh1, . . . , fm+εhm.

Now, by Artin’s criterion for flatness (see [Art79], Proposition 3.1) it follows that Iε =

( f ′1, . . . , f ′m) with f ′i = fi + εhi is a perturbation of the generators of I, which defines a

first order embedded deformation of Spec(B) in Spec(P). Conversely, for a first order

deformation of Spec(B) in Spec(P) defined by f1 + εh1, . . . , fm + εhm, h = (h1, . . . ,hm)

satisfies the condition 5.1 and hence induces a homomorphism

h̄ : Pm/ Im(r) = I −→ B,

which is an element of

HomP(I,B)∼= HomB(I/I2,B)∼= HomOSpec(B)
(I /I 2,OSpec(B)).

It turns out that at the global level, this gives a canonical correspondence between first

order embedded deformations of C in Pn and elements in H0(C,NC/Pn).

Remark 5.3.3. We notice that, up to this point, all the notions and facts on deformation

of curves can be simply modified and applied equally well to any smooth variety.

5.3.1 Equisingular in�nitesimal deformation of plane curves

In this subsection, we only concentrate on the specific case of families of plane curves

with assigned singularities. We will briefly study the space parametrizing the first order

deformation of singular plane curves. In fact, an important refinement of the embedded

deformation of a smooth curve is the consideration of families of curves with prescribed
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singularities inside a projective space. These are of families whose members have the

same type of singularities in some specified sense. This leads to the notion of equisin-

gularity.

Let Γ⊂ P2 be a singular plane curve, and

0−→I /I 2 −→ΩP2|Γ −→ΩΓ −→ 0

be the conormal sequence. By dualization, we obtain

0−→ TΓ −→ TP2|Γ −→NΓ/P2

where the two middle sheaves are locally free, whereas the first one is not and it jumps

at the singular locus of Γ. The first cotangent sheaf is defined as

T 1
Γ := Coker[TP2|Γ −→NΓ/P2].

More precisely, when Γ is reduced, we have that

T 1
Γ = E xt1

OΓ
(ΩΓ,OΓ),

which is a coherent sheaf supported on the singular locus of Γ (see [Ser06], Proposition

1.1.9). The equisingular normal sheaf of Γ in P2 is defined to be

N ′ := ker[NΓ/P2 −→ T 1
Γ ].

This describes deformations preserving the singularities of Γ. In fact, H0(Γ,N ′
Γ/P2)

parametrizes the first order deformations of Γ in P2. The following short exact sequence

computes the space of global sections of N ′
Γ/P2 explicitly. The corresponding code is

implemented in the function equisingularDefOfPlaneCurve of [KS18a], which for a

given plane curve Γ returns H0(Γ,N ′
Γ/P2).

Proposition 5.3.4. Let Γ be a plane curve of degree d. There exists a short exact sequence

0−→ OP2 −→I∆(d)−→N ′
Γ/P2 −→ 0,

where I∆ is the ideal sheaf locally generated by the partial derivatives of a local equation of Γ

and the �rst injective map is de�ned by multiplication by an equation of Γ.

Proof. See [Ser06], page 255.
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5.4 The tangent space computation

In this section, we compute the tangent space to the parameter space V 4,5,m
9 as well as

that to the locus M11,6(k)⊂M11. We further prove the existence of a component with

expected dimension on both spaces.

Proposition 5.4.1. Form= 0, . . . ,4, the parameter space V 4,5,m
9 has an irreducible component

of expected dimension.

Proof. Let (Γ;P1, . . . ,P4,Q1, . . . ,Q5) ∈ V 4,5,m
9 be a point corresponding to a plane curve

Γ : ( f = 0) ⊂ P2 with prescribed singular points and passing through R1, . . . ,Rm. As-

sume x,y,z are the coordinates of the projective plane. Considering Γ as a point in the

parameter space P(
9+2

2 )−1 of degree 9 plane curves, without loss of generality we can

assume it lies in the a�ne chart, which does not contain the point (1 : 0 : 0). Moreover,

to simplify our notations, we can assume all the distinguished points of Γ are in the

open a�ne subset of P2 defined by z = 1. Thus, Γ is locally defined by f = ∑u,v auvxuyv

such that a9,0 = 1, (xi,yi) for 1≤ i≤ 9 are the a�ne coordinates of the singular points

and (x′l,y
′
l) is the a�ne coordinate of Rl .

Therefore, in a neighbourhood of Γ, the space V 4,5,m
9 is the set of pairs (h̄;S1, . . . ,S9)

with h̄ = ∑u,v buvxuyv, b9,0 = 1 and Si = (Xi,Yi) for 1 ≤ i ≤ 9, satisfying the following

equations:

Ri,s,t(. . . ,buv, . . . ,X j,Yj, . . .) :=
∂ h̄

∂ tx∂
s−t y

(Xi,Yi) = 0,

for 1≤ i≤ 4, s = 0,1,2, t ∈ {0, . . . ,s},

R′i,s,t(. . . ,buv, . . . ,X j,Y j, . . .) :=
∂ h̄

∂ tx∂
s−t y

(Xi,Yi) = 0,

for 5≤ i≤ 9, s = 0,1, t ∈ {0, . . . ,s} and

Fl := (∑
u,v

buvxuyv)(X ′l ,Y
′
l ) = 0, ∀ 1≤ l ≤ m,

where (X ′l ,Y
′
l ) are the coordinates of m points among the fixed points. Then, the tangent

space at Γ is the set of points (ḡ;T1, . . . ,T9) with ḡ = ∑u,v cuvxuyv, c9,0 = 1,cuv = auv+buv

for u 6= 9 and Ti = (xi +Xi,yi +Yi) for 1≤ i≤ 9, satisfying the following equations with

indeterminate in . . . ,buv, . . . ,X j,Yj, . . .:

∑
u,v≥0
u+v≤9

u 6=9

buv
∂Ri,s,t

∂buv
(. . . ,auv, . . . ,xi,yi, . . .)

+
9

∑
α=0

[Xα

∂Ri,s,t

∂Xα

(. . . ,auv, . . . ,xi,yi, . . .)+Yα

∂Ri,s,t

∂Yα

(. . . ,auv, . . . ,xi,yi, . . .)] = 0
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for all 1 ≤ i ≤ 4, s = 0,1,2, t ∈ {0, . . . ,s}, the same relation with R′i,s,t , for all 5 ≤ i ≤
9, s = 0,1, t ∈ {0, . . . ,s} and

∑
u,v≥0

u+v≤9
u6=9

buv
∂ h̄

∂buv
(x′l,y

′
l) = 0, ∀ 1≤ l ≤ m.

In [KS18a], the code provided by the implemented function verifyAssertions(1)

uses this method to compute the tangent space as the space of solutions to the above

equations. Our computation of an explicit example (see also 5.6, step 2) for a randomly

chosen point on V 4,5,m
9 shows that this space is of dimension 33−m. Therefore, the

irreducible component of V 4,5,m
9 containing that point is of expected dimension.

Remark 5.4.2. Let (Γ;P1, . . . ,P4,Q1, . . . ,Q5) ∈ V 4,5,0
9 be a point and let ∆ denote the

singular locus of the corresponding plane curve with prescribed number of double and

triple points. Via the first projection map

p1 : V 4,5,0
9 −→ V 4,5

9 ⊂ PN ,

the variety V 4,5,0
9 maps one-to-one to the Severi variety V 4,5

9 , parametrizing the degree 9

plane curves with 4 ordinary triple points and 5 ordinary double points. More precisely,

V 4,5
9 can be realized as a locally closed subscheme of P(

9+2
2 )−1 representing the functor

V4,5
9 , which takes any K−scheme S to the set

V4,5
9 (S) =

{
flat families C ⊂ P2×S of plane curves of degree 9 whose

geometric fibres are curves with 4 triple and 5 double points

}
.

This way, we can naturally denote V 4,5,0
9 by V 4,5

9 and identify the tangent space to

V 4,5,0
9 at Γ with the space of the first order deformation of Γ ∈ V 4,5

9 . Thus, from the

Proposition 5.3.4 we obtain

TΓV 4,5
9
∼= H0(P2,I∆(9))/〈 f 〉,

where 〈 f 〉 is the one-dimensional vector space generated by the defining equation of

Γ. Moreover, for m > 0 the computed tangent space to V 4,5,m
9 at a random point as in

Proposition 5.4.1, can be regarded as a subspace of such a vector space.

Now we turn to the computation of the tangent space to the locus M11,6(k).

Let C ⊂ P10 be a smooth canonically embedded curve of genus g = 11 and

0←− S/IC←− S
f←− S(−2)36 ϕ1←− S(−3)160 ϕ2←− S(−4)315 ϕ3←−

S(−5)288

⊕
S(−6)5k

ϕ4←−
S(−6)5k

⊕
S(−7)288
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be the part of a minimal free resolution of C of length 5, where S =K[x0, . . . ,x10] is the

coordinate ring of P10, and f = ( f1, . . . , f36) is the minimal set of generators of the ideal

IC ⊂ S. Consider the pullback to C of the Euler sequence

0−→ OC −→ OC(1)⊕g −→ TP10|C −→ 0. (5.2)

From the long exact sequence of cohomologies, the dual vector space H1(C,TP10|C)∨

can be identified with the kernel of the Petri map

µ0 : H0(C,L)⊗H0(C,ωC⊗L−1)−→ H0(C,ωC)

where L = OC(1). Therefore, we get

H1(C,TP10|C) = 0

and from that, the induced long exact sequence of the normal exact sequence

0−→ TC −→ TP10|C −→NC/P10 −→ 0,

reduces to the following short exact sequence

0−→ H0(C,TP10|C)−→ H0(C,NC/P10)
κ−→ H1(C,TC)−→ 0, (5.3)

where κ is the so-called Kodaira-Spencer map. More precisely, here we realize H1(C,TC)

as the tangent space to the moduli space M11 at the point corresponding to C, and κ

as the induced map between the tangent spaces from the natural map HC/P10 −→M11.

We observe that by Serre duality

H1(C,TC)∼= H0(C,ω⊗2
C )∨.

Since we assume that the curve is canonically embedded, the sheaf ω
⊗2
C is just the

twisted sheaf OC(2). Hence, the cohomology group above will be given by the quotient

S2/(IC)2 and thus h1(C,TC) = 30. On the other hand, from the long exact sequence of

cohomologies associated to the Euler sequence (5.2), we deduce h0(C,TP10|C) = g2−1=

120 and therefore

h0(C,NC/P10) = 150.

As IC is minimally generated by 36 generators, we can identify a basis of H1(C,TC)

with columns of a matrix T of size 36×30 with entries in S2/(IC)2, introducing 30 free

deformation parameters b0, . . . ,b29 (see 5.6, step 3). Let f̄ = f + f (1) be the general first

order family perturbing f defined by the general element of H1(C,TC) and let

S̄
f̄←− S̄(−2)36
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be the corresponding morphism, where

S̄ =K[b0, . . . ,b29]/(b0, . . . ,b29)
2⊗K S.

To find a lift ϕ̄1 = ϕ1 +ϕ
(1)
1 of ϕ1, we apply the necessary condition f̄ ◦ ϕ̄1 ≡ 0 mod

(b0, . . . ,b29)
2, and we solve for an unknown ϕ

(1)
1 the equation:

0≡ f̄ ◦ ϕ̄1 = ( f + f (1))(ϕ1 +ϕ
(1)
1 ) = f ◦ϕ1 +( f ◦ϕ

(1)
1 + f (1) ◦ϕ1) mod (b0, . . . ,b29)

2.

This leads to f ◦ ϕ
(1)
1 = − f (1) ◦ ϕ1, such that solving it for ϕ

(1)
1 by matrix quotient

gives the required perturbation of the first syzygy matrix ϕ1. Continuing through

the remaining resolution maps, we can lift the entire resolution to first order in the

same way. In [KS18b], an implementation of this algorithm is provided by the func-

tion liftDeformationToFreeResolution, which lifts a resolution to the first order

deformed resolution.

Theorem 5.4.3. Let 0 ≤ m ≤ 4, and set k := m+ 5. The locus M11,6(k) ⊂M11 has an

irreducible component Hk of expected dimension 30− k. Moreover, at a general point P ∈ Hk,

M11,6 is locally analytically a union of k smooth transversal branches. In other words, M11,6

is a normal crossing divisor around the point P.

Proof. Consider the natural commutative diagram

V 4,5,m
9

ψ
//

φ

��

HC/P10

��

M11,6(k)
� � //M11

where φ takes the plane curve to its canonical model forgetting the embedding. Let

Hk ⊂M11,6(k) be the irreducible component containing the image points of curves ly-

ing in an irreducible component H ⊂ V 4,5,m
9 with expected dimension (see Proposition

5.4.1). We show that Hk is of expected dimension.

For the image curve C ∈ Hk of a plane curve Γ and the general first order deformation

family of C, let M denote the 5k×5k submatrix of ϕ4 in the deformed free resolution

with linear entries in free deformation parameters b0, . . . ,b29. The condition M = 0

determines the space of the first order deformations with extra syzygies of rank 5k.

By means of the implemented function verfiyAssertion(2) in [KS18a], we can com-

pute an explicit single example (see 5.6, step 4) which shows that for exactly k linearly

independent linear forms

l1, . . . , lk ∈K[b0, . . . ,b29],
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we have

det M = l5
1 · . . . · l5

k .

This already proves that the tangent space TCM11,6(k) is defined by the zero locus of

these linear forms, and is of codimension exactly k inside TCM11. Hence, Hk is an irre-

ducible component of expected dimension 25−m. On the other hand, by Hirschowitz–

Ramanan [HR98] the Koszul divisor of curves with extra syzygies satisfies K11 = 5M11,6

and the single polynomial det M defines the tangent space to the Koszul divisor at C.

Therefore, we obtain that M11,6 at the point C is locally analytically union of k smooth

branches.

Remark 5.4.4. With the notation as above, under a change of basis, we can turn the

matrix M to a block (or even a diagonal) matrix

M′ =


B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . Bk


such that for i = 1, . . . ,k the non-zero block is Bi = AiLi, where Ai is an invertible 5×5

matrix with constant entries and Li is the diagonal matrix with diagonal entries equal

to li. In fact, for i = 1, . . . ,k, let Xi be the scroll swept out by the pencil gi of degree 6 on

C. Let Mi = (MVi)
t be the 5×5k matrix, where Vi is the constant matrix defining the last

map ϕi = S(−6)5 −→ S(−6)5k in the injective morphism of chain complexes from the

resolution of Xi to the linear strand of a minimal resolution of C. Set Wi := kerMi and

for j ∈ {1, . . . ,k}, let W j be the intersection of the modules Wi’s by omitting Wj. Clearly,

we have that rankWi = 5(k− 1), and a basis of Wi can be identified by columns of a

constant matrix of size 5k×5(k−1). Moreover, we have rankW j = 5 such that a basis

of the module W 1⊕ . . .⊕W k determines a 5k×5k invertible constant matrix. Using this

invertible matrix for changing the basis of the space S(−6)5k turns the matrix M to a

block matrix as above. To speed up our computations, we will use this presentation of

M later on to compute its determinant (see 5.6, step 4).

5.5 Unirational irreducible components

In this section, we prove that the so-constructed rational families of plane curves dom-

inate an irreducible component in the locus M11,6(k) for k = 5, . . . ,10. To this end, we

count the number of moduli for these families, by computing the rank of the di�erential

map between the tangent spaces.
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Theorem 5.5.1. For 5 ≤ k ≤ 9, the moduli space M11,6(k) has a unirational irreducible

component of expected dimension. A general curve lying on this component arises from a degree

9 plane model with 4 ordinary triple and 5 ordinary double points which contains k−5 points

among the ninth �xed point of the pencil of cubics passing through the 4 triple and 4 chosen

double points.

Proof. With notations as in Theorem 5.4.3 let φ|H : H −→Hk be the natural map between

the irreducible components of expected dimensions. To compute the dimension of

φ(H), one has to compute the rank of the di�erential map

dφΓ : TΓH −→ TCHk,

at a smooth point C ∈ φ(H). We recall that for m > 0 the tangent space to V 4,5,m
9 at a

point Γ is a subspace of TΓV 4,5
9 . Therefore, it su�ces to show that dim(ker dφΓ) = 8 for

the case k = 5. Considering the following commutative diagram of tangent maps

0

��

H0(C,TP10 |C)

��

TΓH
dψΓ
//

dφΓ

��

H0(C,NC/P10)

��

TCHk
� � // H1(C,TC)

��

0

our explicit computation of a single example (see 5.6, step 5 and VerfiyAssertion(3)

in [KS18a]) shows that the image of the map dψΓ has exactly 8−dimensional inter-

section with the image of H0(C,TP10|C) inside H0(C,NC/P10), which corresponds to the

automorphisms of the projective plane. Therefore, the rational family of plane curves

lying on the irreducible component H dominates an irreducible component of M11,6(k)

with expected dimension.

Theorem 5.5.2. The moduli space M11,6(10) has a unirational irreducible component of

excess dimension 26, where the curves arise from degree 8 plane models with 10 ordinary double

points. More precisely, the locus M 2
11,8 of curves possessing a linear system g2

8 is a unirational

irreducible component of M11,6(10) of expected dimension 26.

Proof. Let V 10
8 be the Severi variety of degree 8 plane curves with 10 ordinary double

points. By classical results [Har86], it is known that V 10
8 is smooth at each point and of
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pure dimension 34. Let Γ be a plane curve of degree 8 with 10 ordinary double points,

and let C ∈M 2
11,8 ⊂M11,6(10) be its normalization. With the same argument as in the

proof of 5.4.3 and 5.5.1, the theorem follows from the computation of an example which

shows that for linear forms l1, . . . , l10 we have dimTCM11(10) = dimV (l1, . . . , l10) = 26

and furthermore the induced di�erential map is of full rank 26. The verification of this

statement is implemented in the function verifyAssertion(4) in [KS18a].

Corollary 5.5.3. Let Γ be a general plane curve of degree 8 with 10 ordinary double points,

and let C ∈M11 be its normalization. Consider a deformation of C which preserves at least

four pencils g1
6’s of the 10 existing pencils. Then, the deformation of C preserves the g2

8. In other

words, a deformation of C which keeps at least four pencils g1
6’s lies still on the locus M 2

11,8.

Proof. By the above theorem, around a general point C ∈M 2
11,8, the Brill–Noether di-

visor M11,6 is locally a union of 10 branches defined by l1 · . . . · l10 = 0. On the other

hand, codimTCM 2
11,8 = codimV (l1, . . . , l10) = 4, such that any four of the linear forms

are independent defining M 2
11,8 locally around C. Therefore, a deformation of C which

keeps at least four of g1
6’s lies still on the locus M 2

11,8.

5.6 A standard test example

This section is devoted to the computations and the proof of the claims which we made

in section 5.4 and 5.5. Having already made clear the reasons why the results obtained

here are relevant, in what follows we describe how we are able to construct an explicit

example, and do the relavent computations for it. The computer algebra package which

the code refers to is Macaulay2 [GS] We will make use of the implemented functions in

the packages [KS18a] and [KS18b].

We note that most of the construction steps invoke only Gröbner basis and linear alge-

bra computations, therefore it su�ces to run our computations over a finite field. To

speed up this process, and reduce the required memory, we focus on the case k = 5. We

carry the computations over a ground field of small characteristic p = 1009. Although

it is not di�cult to modify these codes as it stands, and obtain the similar results for

the case k = 6, . . . ,10, we will slightly explain how to modify some steps for the case

k > 5.

Step 1. We first fix the coordinate ring of the projective plane P2. We pick 9 points

in P2, say P1, . . . ,P4,Q1, . . . ,Q5 and we choose a random plane curve of degree 9 with

triple points at P1, . . . ,P4 and ordinary double points at Q1, . . . ,Q5.
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i1: loadPackage"FirstOrderDeformations";

i2: loadPackage"UnirationalComponentOf6GonalGenus11Curves";

i3: p=1009;

i4: L=random6gonalGenus11Curvekpencil(p,5);

-- used 2.54078 seconds

i5: Gama=L_3;--plane curve

i6: Ican=L_4;--canonical model

i7: genus Ican, degree Ican

o7: (11, 20)

i8: F=res(Ican, FastNonminimal => true);

i9: betti(F, Minimize=>true)

0 1 2 3 4 5 6 7 8 9

o9 = total: 1 36 160 315 313 313 315 160 36 1

0: 1 . . . . . . . . .

1: . 36 160 315 288 25 . . . .

2: . . . . 25 288 315 160 36 .

3: . . . . . . . . . 1

Step 2. Let ∆ be the singular locus of the plane curve Γ. Considering Γ as a point in

V 4,5
9 , we use the Proposition 5.4.2 to identify the tangent space at Γ with the space of

the equisingular deformation of it.

i10: H=equisingularDefOfPlaneCurve(Gama);

ZZ 1 ZZ 33

o10 : Matrix (---[x , x , x ]) <--- (---[x , x , x ])

101 0 1 2 101 0 1 2

This proves the existence of a component H ⊂ V 4,5
9 with expected dimension (see

Proposition 5.4.1).

For k > 5, one can use explicit coordinates of the nine singular points, and the chosen

k−5 points among the fix points to define the equations cutting out the tangent space,

as in the 5.4.1. In [KS18a], the implemented function verifyAssertion(0) computes

these equations of the tangent space explicitly. We note that, although we reduced to

the a�ne coordinate, one can modify those equation to the projective coordinate. In

both ways we end up with the same dimension of the tangent space defined by those

equations.
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Step 3. Having computed the canonical model C ⊂ P10 of the plane curve, we use

the flatness condition 5.1 to compute the 36× 30 matrix T , whose columns give a

basis of H1(C,TC) resulting in 30 vectors with entries in S2/(IC)2. In fact, since the

Kodaira-Spencer map is surjective, here we realize this basis as quotient of a basis of

H0(C,NC/P10), modulo the space of the first order deformations trivially induced by

automorphisms of the ambient projective space, that is H0(C,TP10|C).

i11: time Fres=res(Ican, LengthLimit=>5,DegreeLimit=>2);

-- used 10781.6 seconds

i12: T=firstOrderDeformation Fres;

36 30

o12: Matrix R <--- R

We note that the computation of this basis depends on the choice of the free resolution,

or more precisely on the first syzygy matrix.

Step 4. Now we are able to define the general family of the first order deformation

of C in free deformation parameters b0, . . . ,b29, and the corresponding deformed mini-

mal free resolution. Identifying the tangent space TCM11,6(5)⊂ TCM11 with the space

parametrizing the first order deformations ofC with fibres having extra syzygies of rank

25, we need to compute 25×25 submatrix M of the syzygy matrix ϕ4 in the deformed

resolution 5.4.3. For this purpose, one may simply make use of the implemented func-

tion liftDeformationToFreeResolution in [KS18b], however in our case of g = 11,

the computations require a lot of memory, such that the running this computation for

the 30 basis vectors in one Macaulay2 session is out of reach. To tackle this problem,

one can save the data of the matrix T and the first five syzygy matrices in a free resolu-

tion of the canonical curve and split this computation by running the same procedure

for the basis vectors in di�erent Macaulay2 sessions. For a single basis vector we obtain

the lifting by running the commands:

i13: Df0=liftDeformationToFreeResolution(Fres,T_{0});

--used 35404.607 seconds

i14: m0=submatrix(Df0.dd_5,{288..312},{0..24})

The matrix m0 depends on the choice of minimal free resolution and the matrix T .

We have collected the output matrices m0, . . . ,m29 by running the procedure in several

Macaulay2 sessions such that M = ∑
29
i=0 mi (up to a change of indices of the bi’s). Now,

let Te = Zp[b0, . . . ,b29] be the ring of deformation parameters. We use the condition

M = 0 to define the tangent space to M11,6(5) at the point corresponding to C:
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i15: Te=ZZ/p[b_0..b_29];

i16: tngSpaceToM1165=ideal flatten entries M;

i17: dim tngSpaceToM1165

o17: 25

This proves the existence of an irreducible component H5 ⊂M11,6(5) of expected di-

mension 25. To compute detM, we compute the presentation of M as a block matrix.

Each non-zero block is a linear multiple of an invertible constant matrix.

i18: S4=scrollsPencilOfLinesTriple(Gama, Ican);

--scrolls swept out by pencils induced by lines through each triple point

i19: S5=scrollsPencilOfConics4Triple (Gama,Ican);

--scroll swept out by the pencil induced by conics through 4 triple points

i20: FiveScrolls=append(S4,S5);--list of 5 scrolls

--the linear strand of a resolution of canonical curve

i21: time MB=turnMatrixToBlocks(FiveScrolls,M,Ican);

-- used 124.981 seconds

Now, computing the determinant of the each constant matrices, we obtain

i22: detproducts=product apply(MB,j->det j_0)

o22: 48

Furthermore, the linear forms l1, . . . , l5 are linearly independent:

i31: linearforms=linearforms=apply(MB,j-> j_1);

i32: dim ideal linearforms

o32: 25

This way, we have naturally

detM = 48l5
1 · . . . · l5

5 ,

which proves that M11,6 is locally the union of 5 smooth branches around the point C

(see 5.4.3).

Step 5. Now we show that the induced map on the tangent space has an 8−dimensional

kernel corresponding to the automorphisms of the projective plane (see 5.5.1 for a

diagram). To do so, we first compute the image of the vector space H0(C,TP10|C) inside
H0(C,NC/P10), a 36×120 matrix whose columns are the embedded deformations of C

induced by automorphisms of the projective space.
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i33: time auts=deformationByAutomorphisms(Ican);

--used 4.183 seconds

Now, we turn to the computation of the image of the map dψΓ : TΓH −→H0(C,NC/P10).

In fact, let f be the defining equation of Γ. For each basis element h ∈ TΓH of the

tangent space, dψΓ(h) is the family of deformation of C arised from the normalization

of the equisingular deformation of Γ given by f + εh.

i34: time equiDef=equisingularDefCurveTriples(G,Ican,H);

-- used 2275.06 seconds

We compute the intersection of this image with the kernel of the Kodaira-Spencer map

computed above:

i35: time syz(equiDef|auts,DegreeLimit=>2)

--used 5.36 seconds

153 8

o35: Matrix R <--- R

Therefore, the map of tangent spaces has exactly an 8−dimensional kernel (see 5.5.1).

5.7 Further components

Having already described an irreducible unirational component of the moduli space

M11,6(k) for k = 5, . . . ,10, the first natural question is to ask about the irreducibility

of these loci. If the answer is negative, then the question is how the other irreducible

components arise.

Although one may mimic our pattern to find model of plane curves of higher degree

with singular points of higher multiplicity, considering the degree 9 plane curves with

4 ordinary triple and 5 ordinary double points as our original model, our simple com-

putations show that the models of higher degree are usually a Cremona transformation

of this model with respect to three singular points. Therefore, considering models of

di�erent degrees and singularities, we have not found new elements in these loci. On

the other hand, the study of syzygy schemes of curves lying on these loci leads to the

following theorem which states the existence of further irreducible components.

Theorem 5.7.1. For 5 ≤ k ≤ 8, the locus M11,6(k) has at least two irreducible components

both of expected dimension, along which M11,6 is generically a simple normal crossing divisor.
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Proof. The proof relies on the syzygy schemes and our computation of tangent cone at

a point C in Hk.

Consider η : W 1
11,6 −→M11,6 ⊂M11 and let C be a point in our unirational compo-

nent Hk ⊂M11,6(k) for 6≤ k ≤ 9. Then, by the Theorem 5.4.3, the tangent cone of the

Brill-Noether divisor M11,6 is defined by a product l1 · . . . · lk of k linearly independent

linear forms, and W 1
11,6 −→M11,6 is locally around C the normalization of M11,6. Let

f1, . . . , fk be power series which define the k branches of M11,6 in an analytic or étale

neighbourhood U of C ∈M11. Then

fi = li + higher order terms

and the zero locus V ( fi)⊂U has the following interpretation:

V ( fi)∼= {(C′,L′) : (C′,L′) ∈ Ui},

where η−1(U) =
⋃k

i=1Ui is the disjoint union of smooth 3g−4 dimensional manifolds

with (C,Li) ∈Ui such that Li denotes line bundle corresponding to the the i−th pencil

g1
6 on C in some enumeration of the pencils L1, . . . ,Lk that we fix.

The submanifold Bi = { fi = 0} then consists of deformations of C induced by defor-

mation of pair (C,Li), and for any family ∆ ⊂ Bi the Kuranishi family restricted to ∆

extends to a deformation of the pair (C,Li)

C ⊂ C (C,Li) ⊂ (C ,Li)

↓ ↓ ↓ ↓
0 ∈ ∆ 0 ∈ ∆

Let I ⊂ {1, . . . ,k} be any subset of cardinality `≥ 5 and C′ ∈U be a point such that

C′ ∈
⋂
i∈I

V ( fi)\
⋃
j/∈I

V ( f j).

Then, by Theorem 5.4.3

C′ ∈M11,6(`)\M11,6(`+1)

since the li with i ∈ I are linearly independent, M11,6(`) is of codimension ` and M11,6

is a normal crossing divisor around C′.

Now, we examine that whether or notC′ lies in our component H`. For this purpose,

we deform the Li for i ∈ I in a one-dimensional family of curves

∆ = {C′′} ⊂
⋂
i∈I

V ( fi)

throughC andC′, which intersects
⋃

j/∈I V ( f j) only in the pointC. The syzygy schemes of

the C′′ ∈ ∆ forms an algebraic family defined by the intersection of the deformed scrolls
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X ′′i swept out by the deformed line bundle L′′i . Thus by semicontinuity, the dimension

of the syzygy scheme of C′′ near C ∈ ∆ is smaller or equal than the dimension of the

syzygy scheme
⋂

Xi, and in case of equality we should have deg(
⋂

X ′′i )≤ deg(
⋂

Xi). If we

take special syzygy scheme of C′′ corresponding to the syzygies of
⋂

j∈J X ′′j then likewise

we have the semicontinuity compare to
⋂

j∈J X j. Therefore, for C′′ to lie on Hl we need

a subset J ⊂ I of cardinality 5 such that the syzygy scheme is a surface of degree 15

(see table 5.4). By the Remark 5.7.2, this occurs only if we have a = 5 and b = 0. Thus,

taking I to be a subset of {2, . . . ,5}∪ {6, . . . ,k} we obtain a point C′′ ∈M11,6(`) \H`.

This proves that for 5≤ `≤ 8 the moduli space M11,6(`) has at least two components,

one of which H` and the other a component containing C′′.

Remark 5.7.2. For the model of plane curve of degree 9 with nine pencils described in

5.2, we have computed the dimension, degree and the Betti table of the syzyzgy schemes

associated to di�erent number 2≤ l ≤ 9 of pencils g1
6’s. We recall that for a number of

pencils indexed by a subset I ⊂ {1, . . . ,9}, the associated syzygy scheme is the intersec-

tion
⋂

i∈I Xi of the scrolls swept out by each of the pencils. Let 1≤ a≤ 5 be the number

of chosen pencils which are induced by projection from the triple points or the pencil of

conics. Likewise, let 1≤ b≤ 4 be the number of chosen pencils arised from the pencil of

cubics through the certain number of points. In the following tables, and for a specific

genus 11 curve possessing nine pencils of degree 6, we have listed the numerical data of

the plausible syzygy schemes arised form di�erent number l = a+b≥ 2 of the existing

pencils g1
6’s. In [KS18a], one can compute an example of such a curve over a finite field of

characteristic p, by running the function random6gonalGenus11Curvekpencil(p,9).

In particular, the function verifyAsserion(5) provides the explicit equation of our

specific curve and the collection of the nine scrolls. In the columns "dim" and "deg"

we have marked the possible dimension and the degree of the corresponding syzygy

schemes for this specific curve. Based on our experiments, it turns out that the values

only depend on the numbers a and b of the chosen pencils.
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dim deg genus Betti table

a = 0 b = 2 2 18
1 . . . . . . . .

. 27 96 127 48 10 . . .

. . 1 48 220 288 189 64 9

a = 1 b = 1 2 18
1 . . . . . . . .

. 27 96 127 48 10 . . .

. . 1 48 220 288 189 64 9

a = 2 b = 0 2 18
1 . . . . . . . .

. 27 96 127 48 10 . . .

. . 1 48 220 288 189 64 9

Table 5.1: Numerical data of possible syzygy schemes with a+b = 2.

dim deg genus Betti table

a = 0 b = 3 1 21 12

1 . . . . . . . . .

. 35 151 279 207 15 . . . .

. . . 3 141 414 399 196 45 1

. . . . . . . . . 1

a = 1 b = 2 1 20 11

1 . . . . . . . . .

. 36 160 315 288 45 . . . .

. . . . 45 288 315 160 36 .

. . . . . . . . . 1

a = 2 b = 1 1 21 12

1 . . . . . . . . .

. 35 151 279 210 30 . . . .

. . . . 6 156 414 399 45 1

. . . . . . . . . 1

a = 3 b = 0 2 16
1 . . . . . . . .

. 29 112 182 113 15 . . .

. . . 1 85 176 133 48 7

Table 5.2: Numerical data of possible syzygy schemes with a+b = 3.
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dim deg genus Betti table

a = 0 b = 4 1 20 11

1 . . . . . . . . .

. 36 160 315 288 45 . . . .

. . . . 45 288 315 160 36 .

. . . . . . . . . 1

a = 1 b = 3 1 20 11

1 . . . . . . . . .

. 36 160 315 288 45 . . . .

. . . . 45 288 315 160 36 .

. . . . . . . . . 1

a = 2 b = 2 1 20 11

1 . . . . . . . . .

. 36 160 315 288 45 . . . .

. . . . 45 288 315 160 36 .

. . . . . . . . . 1

a = 3 b = 1 1 21 12

1 . . . . . . . . .

. 35 151 279 210 30 . . . .

. . . . 6 156 414 399 45 1

. . . . . . . . . 1

a = 4 b = 0 2 15
1 . . . . . . . .

. 30 120 210 169 25 . . .

. . . 1 25 120 105 40 6

Table 5.3: Numerical data of possible syzygy schemes with a+b = 4.
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dim deg genus Betti table

a = 1 b = 4 1 20 11

1 . . . . . . . . .

. 36 160 315 288 45 . . . .

. . . . 45 288 315 160 36 .

. . . . . . . . . 1

a = 2 b = 3 1 20 11

1 . . . . . . . . .

. 36 160 315 288 45 . . . .

. . . . 45 288 315 160 36 .

. . . . . . . . . 1

a = 3 b = 2 1 20 11

1 . . . . . . . . .

. 36 160 315 288 45 . . . .

. . . . 45 288 315 160 36 .

. . . . . . . . . 1

a = 4 b = 1 1 21 12

1 . . . . . . . . .

. 35 151 279 210 30 . . . .

. . . . 6 156 414 399 45 1

. . . . . . . . . 1

a = 5 b = 0 2 15
1 . . . . . . . .

. 30 120 210 169 25 . . .

. . . 1 25 120 105 40 6

Table 5.4: Numerical data of possible syzygy schemes with a+b = 5.
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dim deg genus Betti table

a = 2 b = 4 1 20 11

1 . . . . . . . . .

. 36 160 315 288 45 . . . .

. . . . 45 288 315 160 36 .

. . . . . . . . . 1

a = 3 b = 3 1 20 11

1 . . . . . . . . .

. 36 160 315 288 45 . . . .

. . . . 45 288 315 160 36 .

. . . . . . . . . 1

a = 4 b = 2 1 20 11

1 . . . . . . . . .

. 36 160 315 288 45 . . . .

. . . . 45 288 315 160 36 .

. . . . . . . . . 1

a = 5 b = 1 1 21 12

1 . . . . . . . . .

. 35 151 279 210 30 . . . .

. . . . 6 156 414 399 45 1

. . . . . . . . . 1

Table 5.5: Numerical data of possible syzygy schemes with a+b = 6.

dim deg genus Betti table

a b 1 20 11

1 . . . . . . . . .

. 36 160 315 288 45 . . . .

. . . . 45 288 315 160 36 .

. . . . . . . . . 1

Table 5.6: Numerical data of possible syzygy schemes with a+b≥ 7.

66



The End

I do the very best I know how, the very best I can; and I mean to keep on doing so until

the end...

«A. Lincoln»
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