
Mining Sandboxes

A dissertation submitted towards the degree
Doctor of Engineering (Dr.-Ing)

of the Faculty of Mathematics and Computer Science
of Saarland University

by

Konrad Jamrozik

Saarbrücken, 2018

Day of Colloquium 22 / 10 / 2018
Dean of the Faculty Univ.-Prof. Dr. Sebastian Hack
Chair of the Committee Prof. Dr. Wolfgang Paul
Reporters
First reviewer Prof. Dr. Andreas Zeller
Second reviewer Prof. Dr. Christian Rossow
Academic Assistant Dr. Rahul Gopinath

ii

Abstract

Modern software is ubiquitous, yet insecure. It has the potential to expose
billions of humans to serious harm, up to and including losing fortunes and
taking lives. Existing approaches for securing programs are either exceedingly
hard and costly to apply, significantly decrease usability, or just don’t work well
enough against a determined attacker.

In this thesis we propose a new solution that significantly increases applica-
tion security yet it is cheap, easy to deploy, and has minimal usability impact.
We combine in a novel way the best of what existing techniques of test gen-
eration, dynamic program analysis and runtime enforcement have to offer: We
introduce the concept of sandbox mining.

First, in a phase called mining, we use automatic test generation to discover
application behavior. Second, we apply a sandbox to limit any behavior dur-
ing normal usage to the one discovered during mining. Users of an application
running in a mined sandbox are thus protected from the application suddenly
changing its behavior, as compared to the one observed during automatic test
generation. As a consequence, backdoors, advanced persistent threats and other
kinds of attacks based on the passage of time become exceedingly hard to con-
duct covertly. They are either discovered in the secure mining phase, where
they can do no damage, or are blocked altogether.

Mining is cheap because we leverage fully automated test generation to pro-
vide baseline behavior. Usability is not degraded: the sandbox runtime enforce-
ment impact is negligible; the mined behavior is comprehensive and presented
in a human readable format, thus any unexpected behavior changes are rare and
easy to reason about. Our BOXMATE prototype for Android applications shows
the approach is technically feasible, has an easy setup process, and is widely
applicable to existing apps. Experiments conducted with BOXMATE show less
than one hour is required to mine Android applications sandboxes, requiring
few to no confirmations for frequently used functionality.

Zusammenfassung

Moderne Software ist allgegenwärtig und zeitgleich unsicher. Dies stellt ein
Risiko dar, welches Milliarden Menschen verwundbar gegenüber Schadsoftware
macht und dessen Folgen sich bis hin zu Vermögensverlust und Lebensgefahr
ausweiten können. Gegenwärtige Ansätze zur Gewährleistung der Sicherheit
in Computerprogrammen gestalten sich entweder höchst kompliziert und auf-
wendig, beeinflussen massiv die Benutzbarkeit oder aber stellen sich als nicht
effektiv genug gegen resolute Angreifer heraus.

In dieser Arbeit präsentieren wir einen neuen Lösungsansatz, welcher die
Sicherheit einer Applikation drastisch erhöht, zeitgleich sowohl kostengünstig
als auch einfach einzusetzen ist und ferner nur minimalen Einfluss auf die
Benutzbarkeit des Programmes nimmt. In einem neuartigen Verfahren kom-
binieren wir die Vorteile von etablierten Methoden der Testgenerierung, dy-
namischer Programmanalyse und kontrolliert restriktiver Laufzeitumgebung und
stellen das Konzept des Sandbox Mining vor.

Im ersten Schritt verwenden wir automatische Testgenerierung in der Min-
ing Phase, um das Verhalten der Applikation zu erkunden und zu beobachten.
In einer weiteren Phase verwenden wir eine sogenannte Sandbox, um jegliches
bisher nicht beobachtete Verhalten der Applikation während des normalen Be-
triebes zu unterbinden. Bei Nutzung einer Applikation in solch einer Sand-
box sind Nutzer somit geschützt vor plötzlicher Änderung des Verhaltens der
Applikation im Vergleich zu dem bereits beobachteten Verhalten während der
Testgenerierung. Folglich sind Hintertüren, komplexe, persistente Bedrohungen
sowie andere Angriffe, welche auf der Verzögerung ihrer Durchführung beruhen
außerordentlich schwer umzusetzen, ohne dass diese dabei entdeckt werden.
Diese Bedrohungen werden entweder während der abgesicherten Mining Phase,
in welcher sie keinen Schaden anrichten können, entdeckt oder werden während
der Ausführung in der Sandbox verhindert.

Der Mining-Prozess ist günstig in seiner Umsetzung, da das normale Verhal-

ten des Programmes vollkommen automatisch erlernt wird. Zur gleichen Zeit
bleibt die Benutzbarkeit des Programmes unbeeinflusst und der Mehraufwand
der Laufzeitabsicherung durch die Sandbox vernachlässigbar gering. Ferner ist
das erlernte Verhalten verständlich und in einem von Menschen lesbaren Format
aufbereitet; daher sind jegliche unvorhergesehenen Änderungen im Verhalten
des Programmes selten und einfach zu erklären. Unser BOXMATE Prototyp für
Android Applikationen zeigt, dass das Verfahren technisch realisierbar ist, einen
einfachen Einrichtungsprozess bietet und weitflächig anwendbar auf bestehende
Applikation ist. Bei der Durchführung von Versuchen mit BOXMATE hat sich
gezeigt, dass es weniger als eine Stunde bedarf um Sandboxes für Android Ap-
plikation zu generieren und es derweil nur wenige oder gar keine Konfirmation
der Regeln für die häufig genutzten Funktionen erfordert.

iii

Acknowledgments

Working towards a PhD degree is a journey which cannot be undertaken alone.
Let me thank my loving family for their unyielding support: My dad, my brother
and my mom. I also want to express my deepest gratitude to the following:

Sascha Just, for translating the abstract to German.
Curd Becker, the most patient administrator under the sun.
Reviewers and the examination board, for taking the time to review my

work.
Philipp von Styp-Rekowsky, who was the perfect collaborator and whose

work and help was crucial for my research.
Marcel Böhme and Alessandra Gorla, for providing excellent close-range

support when the inevitable hard times came, which helped me persist. Marcel
was one of the best discussion partners when it comes to research, and actually,
life in general.

Gajusz Chmiel and Dagmara Saganowska, my old friends who always pro-
vided long-distance support and advice when I needed it.

Adam Grycner, for being a world-class listener.
Savina Takeva, for her unmatched empathy and life wisdom I took to heart.
Rafaella Antonyan, for her unconstrained spirit and good-heartedness.
Marta Podgórska, for teaching me how to make pancakes, eat spaghetti

properly and open toothpaste. Most importantly, for her patience when it
comes to planning trips.

Mateusz Malinowski, who did his PhD at the same time as me. I believe
Mateusz understood my internal monologue the most. We spent countless hours
together, punching each other in the face (on boxing classes, don’t worry), drink-
ing tomato juice and cocoa (to the horror of waitresses) and talking about every
topic imaginable, maybe except hamsters (we have to fix that).

All other friends. I will be forever grateful for our time spent together.

Finally, and most importantly, I want to thank my advisor, Andreas Zeller.
Given a choice, I would not replace Andreas with any other mentor. Andreas had
many virtues as a research guide, including excellent research ideas, unwavering
conviction in them and the ability to convey it, which kept me motivated and
passionate for so many years. Most importantly to me, I felt Andreas was
adamant about fairness and treating his pupils well. I felt he cared for my
success, which ultimately allowed me to complete this thesis.

v

Contents

1 Introduction 1
1.1 Publications and thesis structure 2
1.2 About glossary . 3

2 Background 4
2.1 Secure and malicious software . 4
2.2 Problem statement and challenges 5
2.3 Manual methods of securing software 5

2.3.1 User-controlled policies 6
2.4 Runtime enforcement . 7

2.4.1 Sandboxing . 8
2.5 Automated behavior discovery 9

2.5.1 Static analysis . 9
Limitations . 10

2.5.2 Dynamic analysis . 12
Input generation . 12
Limitations and comparison with static analysis 13
Existing approaches . 15

2.5.3 Modelling behavior for anomaly detection 18
2.6 Insights leading to a new approach 19

3 Sandbox mining concept 21
3.1 Introduction . 21

3.1.1 A concrete example . 22
3.1.2 Concept generality . 23

3.2 Principles . 24
3.2.1 Test complement exclusion 25

vi

CONTENTS

3.2.2 Disclose or die . 25
3.3 Chain of trust . 26

3.3.1 End-user . 26
3.3.2 Checksums and certificates 27
3.3.3 Certification levels of trust 28
3.3.4 Auditor . 29
3.3.5 Developer . 30

3.4 Synergies . 31
3.4.1 Dynamic analysis . 31
3.4.2 Static analysis . 32
3.4.3 Runtime enforcement . 32
3.4.4 Anomaly detection . 33

3.5 Mined behavior specificity trade-off 33
3.6 Marketplaces . 35
3.7 Challenges and research questions 37

4 Input generation implementation: DroidMate 41
4.1 Technical choices justification . 41
4.2 Comparison with existing tools 43

4.2.1 Comparison table . 46
4.3 DroidMate overview . 48
4.4 Key features . 49
4.5 Architecture . 50
4.6 Execution phases . 50
4.7 Exploration component . 52

4.7.1 Exploration strategy . 53
4.8 GUI automation component . 56
4.9 Monitoring component . 57
4.10 Modules . 59

4.10.1 Core module . 61
4.11 Resources . 64

4.11.1 Monitored API methods list 65
4.12 Limitations . 65

5 Sandboxing implementation: BoxMate 67
5.1 Android permission model . 67

5.1.1 Android permission model is ineffective 69
5.2 API call policy . 71

5.2.1 Distinguishing API calls 71

vii

CONTENTS

Triggering view association 72
API calls equivalence . 72

5.2.2 A Snapchat case study . 73
5.3 Event-bound API calls policy . 75

5.3.1 Distinguishing events . 76
5.4 Sandboxes . 77

5.4.1 AppGuard . 77
5.4.2 Boxify . 78

6 Sandbox quality study 81
6.1 Experimental setup . 82

6.1.1 Evaluation plan . 84
6.2 Resource access saturation . 86
6.3 Policy violations . 87
6.4 Version differences evaluation . 89
6.5 Threats and Limitations . 90

7 Robustness study 96
7.1 Experimental setup . 97

7.1.1 App exploration robustness analysis 98
7.2 Evaluation set . 98
7.3 Robustness results . 99

7.3.1 Robust explorations . 99
7.3.2 Explorations requiring login 100
7.3.3 Stuck explorations . 101
7.3.4 Explorations terminating early 102
7.3.5 No exploration . 103

7.4 Results summary . 103
7.5 Threats to validity . 104

8 Conclusion 107
8.1 Future work . 108

Glossary 112

Bibliography 119

Appendices 130

A Using and extending DroidMate 131

viii

CONTENTS

B Monitored Android API methods list 132

C Exploration summaries 134

D Snapchat comparison summaries 178

ix

Chapter 1

Introduction

In XXI century software is interwoven into civilization infrastructure. Software
transfers your money between bank accounts, controls your house lights and
temperature, manages power plants, sends texts messages from your phone, au-
tomates assembly plants and even self-drives cars. This is extremely convenient,
but is it safe? Can you be sure your smartphone is not sending your private
data to criminals? That your smarthouse is not secretly telling burglars you are
away on vacation? That your banking application hasn’t been infiltrated? That
the keys you pressed to enter your passwords haven’t been logged and sent off
to the Internet?

You can’t. But there is hope.
Researchers and other security experts spent decades working on methods

that will make software convenient and easy to use, yet secure. While in prin-
ciple we can build secure software, the costs and expertise required to build
truly impenetrable programs is prohibitive. Secure software is a notoriously
hard problem even for entities having vast resources at their disposal. Consider
a series of high-profile data breaches from big companies, like LinkedIn [77],
Adobe [78] or Tumblr [79], in each of which millions of users credentials have
been stolen. Even in products with world-wide adoption there is a never ending
stream of security holes [80], including the well-known Heartbleed bug [81], to
name just a one high profile case.

This thesis introduces a new technique, mining sandboxes, that promises an
approach to securing software that is both cheap and effective. We combine
state-of-the art of existing program analysis and sandboxing techniques in a
novel way that enables very effective, automated, highly understandable way

1

1.1. PUBLICATIONS AND THESIS STRUCTURE

of preventing the applications you use from harming you, while not impacting
usefulness of them in any noticeable way.

1.1 Publications and thesis structure
The remainder of this thesis describes in detail the patented [37] technique
contributed by it, mining sandboxes. The idea was first published by Jamrozik,
von Styp-Rekowsky and Zeller at ICSE 2016 [38] with additional implementation
details given by Jamrozik and Zeller at MOBILESoft 2016 [39]. The structure
of this thesis is as follows:

Chapter 2 provides background for this thesis contributions. First, we state
the problem we aim to solve and possible challenges that need to be ad-
dressed while doing so. Next, we discuss existing solutions and their strong
and weak points. Finally, we gain insights from the existing state-of-the-
art approaches, leading to the invention of the sandbox mining concept.

Chapter 3 introduces the sandbox mining concept for securing software. We
introduce the concept itself, as well as important principles and properties
arising from it. We show how, in principle, sandbox mining is superior
to existing approaches. Finally, we describe possible and predicted offsets
that have to be made when implementing sandbox mining as a technique,
thus giving rise to research questions guiding the rest of the work done for
this thesis.

Chapter 4 describes the algorithmic and technical details of our input gener-
ation implementation, which is a core component of sandbox mining. We
describe the input generator we implemented, DROIDMATE. We discuss
DROIDMATE features as compared with other input generators, justifying
our choice to create it in the first place. We discuss in detail DROIDMATE
design and architecture, including execution phases, components (like ex-
ploration algorithm, GUI automation, and Android framework API calls
monitoring), modules and resources. Lastly, we list DROIDMATE limita-
tions.

Chapter 5 treats about BOXMATE, our extension of DROIDMATE that enables
us to infer sandbox rules and enforce these rules on Android applications.
This is another critical component of sandbox mining. First, we intro-
duce the Android permission system and point out its flaws. Next, we

2

1.2. ABOUT GLOSSARY

discuss the two policies for enforcing behavior we implemented, API call
enforcement policy and event-bound API call enforcement policy. We pro-
vide a SNAPCHAT Android application case study showing an example of
API call enforcement policy definition. Finally, we discuss two possible
implementations of a sandbox.

Chapter 6 discusses the experiments we conducted to answer the first three
questions posed in Chapter 3. We discuss the experimental setup and the
obtained results, answering the research questions.

Chapter 7 is a second study we conducted to answer the final, fourth research
question. It has similar structure to the previous section.

Chapter 8 summarizes our work, concludes and describes possible future di-
rections of research opened up by concepts introduced in this thesis.

1.2 About glossary
While reading this dissertation please note there is a Glossary. It clarifies po-
tentially confusing terms, abbreviations and how they relate to each other.

3

Chapter 2

Background

2.1 Secure and malicious software
We say software is secure when it is impossible for it to behave in a malicious
way, even when influenced by an adversarial hacker. A program can be malicious
by design, or because it has security vulnerabilities which can be exploited to
make it malicious, or just because it has defects that result in malicious behavior.

It might seem trivial to determine if software is malicious, but is it? Let’s
say your banking application transferred some money from your account. If this
is a malicious action depends entirely on the fact if you initiated the transfer,
or if it was made without your knowledge. If you ordered the transfer because
you were buying a power-up in a game, all is fine. But if the transfer occurred
suddenly in the background, without your knowledge, to a bank account you
don’t know, this action is malicious.

The example above illustrates that for software to be considered malicious, it
has to drain some of your valuable resources and do so in an unexpected way. By
valuable resource we mean anything that you might wish to spend consciously
for some gain, but otherwise should not be spent, as it is valuable to you. Some
examples include money, privacy, reputation, attention or health. Examples of
spending these resources in an intended way include paying for some service,
sharing personal information for identity verification or undergoing medical X-
ray. Malicious scenarios include an application sending messages to premium
numbers without your knowledge, application covertly logging and sending your
bank account passwords to hackers, or self-driving cars hacked to speed up

4

2.2. PROBLEM STATEMENT AND CHALLENGES

instead of slowing down when brakes are pressed.

2.2 Problem statement and challenges
Sandbox mining, the technique contributed by this thesis, solves the problem
of increasing software security in a way that is useful in practice and widely
applicable.

To make software more secure one needs to be able to know how it behaves,
determine which of the behavior is malicious and ensure malicious behavior is
blocked. Usefulness in practice means the application of the solution cannot
cripple or otherwise limit the secured software in unacceptable ways. Thus, the
usability and functionality of the secured software cannot suffer significantly.
Consequently, the solution has to be very automated and it needs to ensure
that intended behavior is allowed. Wide applicability means it has to work on
existing software, without too expensive and complicated setup process.

Following sections give an overview of existing solutions for securing software
and how they fare against our requirements. We limit the overview to methods
working on existing software, as this is one of our prerequisites. Thus, any
methods that base their security on the fact the software is constructed in a
specific way or adapted to some security framework are not discussed. They
would require writing new or rewriting significant portions of the programs
in question. Because our proof-of-concept prototype of the mining sandboxes
technique is implemented on Android (see Chapter 4 and Chapter 5), we pay
additional attention to related work pertaining to Android.

2.3 Manual methods of securing software
The most obvious way to ensure a program is safe to use is to conduct a security
audit and fix any problems found. Audits however don’t scale, as they require
human expertise and thus are expensive. From the point of view of an end-user
another way of ensuring security is to use only certified software. This however
is just delegation of the problem: Now the certifying authority needs to check
the software is secure. In addition, the user has to trust the authority and
the certificate, which just adds a level of indirection that can contain potential
security vulnerabilities. Another manual method is to write by hand a formal
specification and check (possibly automatically) that the software indeed adheres
to it. Unfortunately, like with security audits, writing specifications is very time

5

2.3. MANUAL METHODS OF SECURING SOFTWARE

consuming task requiring expertise.
All of the above given methods aim at guaranteeing the software itself is

going to be safe, and before it is actually run. There is an alternate way:
Provide a set of behavior rules, also called a behavior ruleset, which the secured
program behavior is forced to obey. Mechanisms for enforcing such rules are
described in Section 2.4. First, however, let’s discuss one way of enforcing a
behavior ruleset, called user-controlled policies.

2.3.1 User-controlled policies
One kind of enforceable policies are user-controlled policies. That is, the policy
rules are provided automatically or manually, by experts. It is left to discretion
of the end-user if the rules should be enforced. Prime example of this is User
Account Control dialog [82] in Windows family of operating systems. Every
time a user is going to do some potentially malicious operation, like install a
program, enable executable macros in a spreadsheet, or give a program adminis-
trator rights, she is presented with a dialog box asking for confirmation. Mobile
operating systems like Android also have the same concept. For example, on
Android, since version 6, the first time given Android app wants to call some
phone number, user is presented with a dialog box asking to give the appli-
cation permanent access to all permissions from the PHONE permission group,
including the CALL_PHONE permission [83].

User-controlled policies invariably are either too broad or too specific. Con-
sider an example of an application asking the user if it can make phone calls.
When allowed, the application will be able to make any phone calls, to any
numbers, at any time, even when the user is completely unaware of it. As an-
other example, if the user allows application to read her contacts, it will be also
granted the right to write and delete the contacts [83]. These cases pose a huge
security risk: If the applications in question were actually malicious, they could
deplete the users account by making phone calls or delete all of her contacts
without her permission.

The problem here is the policy is too broad. If, on the other hand, the
policy would be too specific, it might end up infuriating the user. Imagine an
application asking user to confirm every single phone call she wants to make, or
every photo she wants to take. The application would be considered unusable.
There are more problems plaguing user-controlled policies. Often the question
asked by the dialog box doesn’t make sense to the reader. In addition, usually it
is an all or nothing proposition: Allow the program to do everything, including
deleting all your data (if it is not malicious, it won’t do it, but how can you

6

2.4. RUNTIME ENFORCEMENT

know?), or you cannot use the program at all.
The permissions required by the application (which end-user will have to

confirm when using the app) have often to be determined by developers, as it
is the case with Android platform [84]. If the developer makes a mistake by
not predicting that given permission might be required by the application, it
will crash. If, on the other hand, the developer gives an application too much
permissions, it might inadvertently become malicious. A study by Felt et al. [24]
has shown that over 33% of investigated Android applications are overprivileged
due to their developers being unsure which permissions are actually required.

2.4 Runtime enforcement
Many malicious behavior prevention mechanisms can be categorized as run-
time enforcement schemes. They enforce during runtime (i.e. during actual
program usage by end-users) a set of rules, to ensure no malicious behavior
occurs. Specifics of the mechanism and nature of the rules enforced depend on
the platform. We will now discuss most important scenarios.

A user might wish to protect herself with anti-virus software that checks all
downloaded data against malware signatures. The malware signature databases
are maintained and continuously updated at significant effort by companies with
plenty of resources. The crippling flaw of this solution is that it doesn’t work
very well against new malware. Such malware is unknown at the moment of
appearance, thus no anti-virus software has patterns for detecting its signature.
Moreover, more advanced malware can evade detection by employing many
evasion techniques [96], including advanced methods like metamorphic code [92].

Network communication can be monitored by firewalls [93], intrusion detec-
tion systems [95] and deep packet inspection [94]. Firewalls use sets of static rules
to determine which network traffic is allowed based on the protocol ("http",
"ftp", etc.), host, port and other properties. While this filters out a lot of un-
wanted traffic, determined attacker can still find a way to send a network packet
allowed by the static rules, e.g. by gaining access to one of the allowed hosts.
One way to combat this is to complement firewalls with intrusion detection
systems (henceforth IDSes), introduced by Denning [21] in 1987.

IDSes work on the principle of anomaly detection, which is simple: Anything
not within the bounds of “normal” behavior is an anomaly and so is potentially
malicious. The most important distinction from the techniques discussed so far
is that the “normal” behavior doesn’t have to be described by manually provided
set of rules, but can be inferred automatically in form of models. Details of this

7

2.4. RUNTIME ENFORCEMENT

process are described in Subsection 2.5.3.
Sometimes there are no traffic anomalies because the malicious payloads

are well hidden within the usual incoming messages. In principle deep packet
inspection could find such payloads, but it suffers from similar problems as
malware detectors. In addition, there are major concerns about deep packet
inspection being used to violate privacy and reduce Internet openness.

Operating systems usually encase every applications running on them in a
sandbox. Such encased application has high degree of isolation from its environ-
ment and other applications. It can still interact with the rest of the system,
but many of such interactions are monitored and governed by a set of rules.
Sandboxing is described in more detail in Subsection 2.4.1.

2.4.1 Sandboxing
Nontrivial programs communicate with the surrounding environment: The file
system, the network, processes of other programs (using pipes, shared memory,
etc.) or other OS subsystems. Often the communication is happening through
unified operating system API, as it is the case with Android [97]. Allowing any
program to access anything and anytime could wreak havoc. Imagine a program
erasing contents of your entire file system due to an erroneous implementation.
To prevent such or any other malicious behavior from happening, the operating
systems have mechanisms for enforcing the principle of least privilege [55], intro-
duced by Saltzer and and Schroeder in 1975. This principle simply states that
given program should be granted the absolute minimum necessary privileges for
it to fulfill its purpose, and nothing more. In context of operating systems and
applications running on them, this principle can be realized by sandboxing the
application, i.e. by ensuring all of its communications with other subsystems
and processes are monitored and if necessary, blocked.

On Android, applications can communicate with external world only through
the Android framework API Android [97]. The sandboxing is realized by check-
ing any calls made to this API against a set of permissions. These permissions
form a basis of user-controlled policies as described in previous Subsection 2.3.1
and thus they suffer from the same problems. Ultimately, this means that even
though the principle of least privilege is implemented in Android, the protection
it offers is not nearly enough to ensure that the Android users are secure while
also maintaining functionality of the sandboxed programs.

8

2.5. AUTOMATED BEHAVIOR DISCOVERY

2.5 Automated behavior discovery
Determining program behavior manually is hard, as programs are complex.
Thus, an automated approach is in order. At least partially automated ways
to discover program behavior are collectively referred to as program analysis
methods. Any program analysis method falls into at least one of the two cat-
egories: static analysis and dynamic analysis. Static analysis [51] allows us to
reason about a program without actually executing it. Static analysis extracts
information from program code (binary code, byte code or source code) and
any other available artifacts, like GUI layout files, localized strings, etc. Dy-
namic analysis [22], on the other hand, actually executes the analyzed program
to observe its behavior. Dynamic analysis is often used to model behavior of
single programs, or to model behavior of entire systems to detect anomalies, as
described in Subsection 2.5.3.

2.5.1 Static analysis
The distinguishing advantage of static analysis is the fact the analyzed pro-
gram doesn’t have to be executed, which makes such analysis easily applicable
as compared with dynamic analysis approaches. This results in various static
analysis methods being widespread in practice.

SPIN is a model checker [36] for embedded systems. Microsoft’s SLAM [11]
checks if C programs use APIs correctly. These are just two tools representing
a widely used class of tools statically checking if software obeys given software
model. Another kind of static analysis tracks the flow of sensitive data within
the programs. They can detect situations like programs reading private contacts
and sending them to unknown (presumably malicious) servers. Prime examples
of such tools for Android are CHEX [45] and FLOWDROID [6].

Important static analysis technique is symbolic execution introduced in 1975
in the SELECT system by Boyer et al. [16]. By building symbolic expressions over
constraints expressed in the source code, symbolic execution enables reasoning
about which parts of program would be executed given specific inputs. This
enables static analysis to gain confidence about how program would behave
when executed, without actually running it. Nowadays powerful tools leveraging
both static and dynamic analysis exist, as described in Subsection 2.5.2.

9

2.5. AUTOMATED BEHAVIOR DISCOVERY

Limitations

Even with its widespread use and advantages, all static analysis techniques suffer
from many limitations, as listed below. In security context, malware writers use
these limitations with impunity to exacerbate the problem of understanding
program behavior statically.

Program complexity Software systems can be composed of dozens of soft-
ware libraries, frameworks and components, making the code line count run
well into millions. Even modern static analysis tools running on powerful ma-
chines cannot reason about such programs in reasonable amount of time. To
circumvent this problem, static analysis is either applied to single components,
or provides abstractions over units of analyzed systems. In the first case, we run
into the limitation of unknown environment. In the second case, because we
cannot abstract over the components precisely, the problem of overapproxi-
mation arises.

Unknown environment When the analysis is limited in scope to given soft-
ware unit, everything beyond it is treated as opaque environment. Consider
analysis of a program which communicates with a database, file system, net-
work or other programs. Because these are systems and resources external to
the analyzed programs, we cannot statically determine their exact behavior.
The best we can do is to approximate it, which unfortunately results in over-
approximation.

Overapproximation Static analysis is inherently imprecise, because of un-
available runtime values and fundamental limitation of undecidability.
That is, we have to assume more can happen that will ever actually happen,
otherwise we risk not considering a malicious behavior. In security context this
means static analysis often raises alarm of potential vulnerability while there is
no actual threat. This, in turn, burdens human experts who have to investigate
such false alarms manually, wasting time.

Unavailable runtime values Given unknown environment, for example
an external database being used by the analyzed program, we cannot know what
data exactly it contains. We thus need to assume all possible data, overap-
proximating. We encounter the same problem if the analyzed program reads
contents of the file system, or reads data arriving through network.

10

2.5. AUTOMATED BEHAVIOR DISCOVERY

In some cases, like e.g. reading a configuration file from the file system, we
could try to extend our analysis to read the file contents. However, this assumes
we have access to the file system in which the analyzed program would run and
that the file won’t change during runtime. Otherwise we would be entering into
the realm of dynamic analysis. In other cases, like data transferred through
network, we have no options, as the data will be available only at runtime.

Runtime values can be even entire programs. Consider an application that
upon start downloads from a server another program, installs it and runs it. It
might be the case that any malicious activity is done only by the downloaded
program, which is inaccessible to static analysis. Unfortunately, we cannot mark
such scenarios as being obviously malicious, as downloading entire programs
or program modifications is a valid use case for plugins, feature updates and
security patches.

Undecidability As a consequence of the halting problem we know that static
analysis is undecidable. Consider a program that reads a string representing
another program and runs it. We do not know the value of the string, so it
can be arbitrary program. Thus, due to the halting problem, we cannot know
if it will halt or not. The undecidability of static analysis has a far reaching
consequence: Not only current tools have to overapproximate behavior; in all
generality they will always have to do so.

Information erasure in object code A significant drawback of static anal-
ysis applied in adversarial security setting is the fact the source code is unavail-
able. It is the easiest to analyze the original source code, but if we suspect the
code is malicious, chances are we don’t have access to the source code in the
first place. This leaves us with bytecode (as with e.g. .NET, Java Virtual Ma-
chine or Android) if we are lucky, or just machine code. Such representations of
the source code underwent multiple transformations by the compiler and other
tools, including optimizations, obfuscation and encryption, making it much
harder to reason about, sometimes even impossible. Any false alarms resulting
from overapproximation by static analysis on such low-level code would be ex-
ceedingly hard to check manually due to the loss of human-readable high-level
structure of the original source code.

Obfuscation If program complexity wasn’t enough of a problem, the analyzed
program code (source code or object code) is often additionally obfuscated.
Obfuscation scrambles the available symbols, adds bogus control flow state-

11

2.5. AUTOMATED BEHAVIOR DISCOVERY

ments and so on, ultimately making programs even orders of magnitude more
complex, and thus harder to analyze. Unfortunately, obfuscation cannot be just
immediately deemed malicious, as it is also used to protect intellectual property.
Android tool chain, for example, has a built-in obfuscator, ProGuard [99].

Encryption Similarly to obfuscation, code encryption is a technique used
to protect intellectual property. This fact is exploited by attackers. If the
analyzed code is encrypted, any analysis is impossible as it is just scrambled
data. The encrypted code has to be decrypted before it is executed, but then
reasoning about it would require actually running it, which is beyond the scope
of pure static analysis.

2.5.2 Dynamic analysis
Dynamic analysis [23], as opposed to static analysis, does not analyze static
artifacts, but instead analyzes data obtained from executing the program. To
conduct dynamic analysis one needs to first generate inputs (manually or auto-
matically) and feed them to the program, resulting in a set of executions. One
has to observe the program during the executions to gather relevant data to be
further analyzed, e.g. by observing calls to OS API methods.

Input generation

Critical challenge for dynamic analysis that is not present in static analysis
is the problem of input generation. To observe data obtained from a running
program, one has to execute it. To execute a program, one has to provide inputs
for it. To cover majority of all possible behaviors of given program, one has to
execute it many times, each time with inputs differing enough as to make the
program behave in a different way. Thus we arrive at the problem of providing
a large set of heterogeneous inputs for a program. The inputs may need to be
varied and arbitrarily complex: Configuration files, images, sequences of GUI
clicks, command line commands, voice commands, entire programs (e.g. used
as inputs to compilers), natural language files (e.g. for translator software),
highly structured formats like XML files adhering to given schema, and so on.
The inputs can be inputted from many locations, like file system, database,
network or GUI I/O events, like mouse clicks or swipes. Furthermore, to elicit
some specific behaviors, the inputs might need to be provided in appropriate
sequence. All of these considerations make input generation a hard problem.

12

2.5. AUTOMATED BEHAVIOR DISCOVERY

Input generation methods can be split into two classes: system-level, with
the examples of such input types given above, and unit-level, which do not treat
the program as a black-box, but inject inputs directly into its internals, e.g. by
constructing objects (in programming languages supporting such constructs)
and making specific sequence of method calls with generated arguments. Major
disadvantage of unit-level input generation is that it requires knowledge of the
code (source or object), thus it suffers from the same flaws as static analysis
in that regard. If the code is complex, obfuscated or encrypted, it is hard to
impossible to generate meaningful unit-level inputs. Furthermore, unit-level in-
put generation has more application in regression testing than for discovering
high-level program behavior. Thus, in further discussion, we always as-
sume system-level inputs, unless noted otherwise. Overview of existing
methods for input generation is given in Section 2.5.2.

Limitations and comparison with static analysis

Dynamic analysis solves or significantly mitigates a lot of static analysis prob-
lems listed in Subsection 2.5.1. However, it suffers from its own problems, on
top of the challenge of input generation. Let us now describe dynamic analysis
strengths and flaws, and compare them with static analysis.

Program complexity Often, the more complex the program, the harder it
is to generate inputs for its execution. Fortunately, most of the time relatively
simple inputs can cover majority of the primary use cases of given program.
More complex programs are also more likely to suffer from execution perfor-
mance issues, i.e. run longer, thus elongating the entire process of applying
dynamic analysis.

Known environment During dynamic analysis the environment is known,
in stark contrast to static analysis. As an example, recall that static analysis
cannot make any assumptions about the file system in which the program will
be run. For dynamic analysis the file system (or its mocked implementation) has
to be present for the program to work. This enables dynamic analysis to work
with concrete values where static analysis could only assume that anything can
happen. Static analysis suffered from overapproximation, but dynamic analysis
suffers from underapproximation.

Underapproximation Like static, dynamic analysis is also inherently impre-
cise, but for a different reason. While static analysis is often forced to assume

13

2.5. AUTOMATED BEHAVIOR DISCOVERY

that given variable can have any value, dynamic analysis can only observe small
subset of all possible values of that variable. Namely, the values observed from
the executions obtained using the generated inputs. This leads to underap-
proximation: Dynamic analysis will overlook many possible values and thus,
will not conduct executions leading to undiscovered behaviors. This means the
program behavior observed during dynamic analysis will never be complete, ex-
cept for the most trivial of programs. Adversarial hackers can use this to their
advantage by employing evasion techniques, including time bombs.

Execution performance Huge programs might be very slow to execute.
Some of dynamic analysis techniques avoid this problem by summarizing some
parts of the executed program. Namely, instead of running them to obtain
the values, they just treat these parts as known environment and return
concrete values. The values might have been obtained in the first place by re-
membering them after one-time slow execution of the summarized parts. While
this mitigates the performance problem, of course it leads to increased risks of
underapproximation, as we operate under the assumption the summarized
values do not change, which might not be true.

Available runtime values Because the environment is known, the run-
time values are available, be it files in a file system, data in external database,
network packets or anything else. However, we are of course limited to observing
only the values that are currently available, either as test fixtures or real-world
data. All values processed by a program can be considered its input, and thus
providing appropriate values is an input generation problem.

Incompleteness Dynamic analysis doesn’t suffer from undecidability, but it
is incomplete. In practice, the observed executions will allow us to reason only
about a subset of all possible behaviors of analyzed application, thus we are
always at risk of missing important and/or malicious behaviors.

Source code not required For dynamic analysis it doesn’t matter which
kind of code is available. As long as the program is executable, dynamic analysis
has no benefits from the presence of the original source code or object code.

Obfuscation While obfuscation can significantly hinder performance of static
analysis, it has negligible effect on dynamic analysis, if any. If the data observed

14

2.5. AUTOMATED BEHAVIOR DISCOVERY

during executions contains obfuscated code symbols, the data will be harder to
reason about manually. Fortunately, this problem occurs rarely.

Encryption Encryption can completely defeat static analysis, yet it has no
influence on dynamic analysis. Dynamic analysis just executes code, so as long
as the encrypted code gets decrypted at runtime or is otherwise executable,
there is no downside, except for a possible performance hit of decrypting code.

Evasion Underapproximation, and in all generality incompleteness of
dynamic analysis, has far reaching consequences in security context. A skill-
fully crafted malware might ensure that all behaviors observed during dynamic
analysis are benign, while the malicious actions are triggered only in actual
usage by the end-user, where they can do harmful actions, being previously
undetected. One broad category of evasion techniques are time bombs.

Time bombs Malicious programs might purposefully delay malicious actions
to prevent detection. Consider a program that activates itself only on a specific
day and time, 3 months from now. No amount of dynamic analysis will be able
to detect that, unless the program is analyzed at the exactly right time. Of
course, one could try to use manual or static analysis to find the time bomb,
but then one has to deal with all of the disadvantages of these techniques.

Existing approaches

The defining feature of the existing dynamic analysis tools is how they generate
inputs, as this determines the tool’s capability to discover behavior, a core
trait determining dynamic analysis power. Because the generated inputs enable
program executions which then can be codified as tests, input generation is often
called test generation. In this thesis we use the terms input generation and test
generation interchangeably.

Purely random testing The simplest way is to generate inputs in a purely
random fashion. This falls under the broad category of random testing [33].
Tools working like that are often called monkeys and are usually bundled with
software development kits of popular developer platforms. One example is the
Monkey tool [100] in Android SDK, which randomizes screen coordinates for
each click, touch or gesture on an application GUI, being completely oblivious
to anything except the screen size.

15

2.5. AUTOMATED BEHAVIOR DISCOVERY

Adaptive random testing More advanced random input generation tools
leverage data observed from already conducted executions to guide the process
of input generation. Feedback-directed Random Test Generation introduced by
Pacheco et al. [52] is a unit-level input generation technique that uses the execu-
tion result to determine if the provided input was redundant, illegal or otherwise
dispensable. It leverages this information to construct further, useful inputs.

The same principle but on a system-level is applied by the Dynodroid tool
by MacHiry et al. [46]. Dynodroid randomly generates a set of UI events (like
clicks, drags or text inputs) and system events (like PACKAGE_ADDED or TIME-
ZONE_CHANGED). Unlike Monkey, Dynodroid obtains feedback from its actions
in form of the currently displayed GUI layout, so it is aware which GUI elements
can receive which kinds of events (buttons can be clicked, text input fields can
have text entered, etc.) and how many times these elements have been already
interacted with. It uses this information as a feedback guiding its random ac-
tions to the GUI elements which haven’t been exercised yet. This results in a
biased random strategy that prioritizes randomizing inputs that discover yet
unseen behavior.

Grammar-based fuzz testing It is a kind of random testing that ensures
the randomly generated inputs adhere to a given grammar. This is necessary
when generating highly structured inputs. Consider a task of testing a compiler.
Compiler takes as input a string representing an entire program. If the program
will not be syntactically correct, the compiler execution won’t go beyond syn-
tax check, thus the observed behaviors will be severely limited. To pass the
syntax check, the generated inputs, while random, should be syntactically valid
programs.

A prime example of a tool employing such technique developed by Holler et
al. is LANGFUZZ [35]. It takes as input a context-free grammar of given lan-
guage as well as code fragments of that language. Next, it recombines the code
fragments creating new random fragments, but adhering to the grammar. LANG-
FUZZ has proven to be successful in finding security vulnerabilities in JavaScript
interpreter. It found 105 serious vulnerabilities within three months of opera-
tion, worth in total 50.000$ in bug bounties [35].

Search-based testing A plethora of search algorithms like hill climbing or
genetic algorithms can be used to generate inputs. Many search-based tools
exists, as described in a survey done by Anand et al. [4]. Prominent example is
EVOSUITE, a tool by Fraser and Arcuri [27]. EVOSUITE is a unit-level search-

16

2.5. AUTOMATED BEHAVIOR DISCOVERY

based test generator for Java programs. It uses a genetic algorithm to evolve a
population of Java test suites. EXSYST by Gross et al. [32] adapts EVOSUITE
genetic algorithm to work on GUI actions sequences instead of unit test suites.
A more recent example in the Android domain is the pareto-optimal multi-
objective search-based system-level approach of SAPIENZ by Mao et al. [48].

Systematic input generation Böhme and Soumya have proven that gener-
ating inputs randomly is surprisingly efficient at covering enough behavior for
all but the most safety-critical software [15]. However, sometimes we require to
discover behaviors that are triggered by very specific, complex input configura-
tions. Random input generation is too unlikely to discover them. Instead, we
can leverage systematic input generation also known as systematic test genera-
tion. Instead of randomizing, systematic test generation methodically explores
the possible inputs space, often with the aid of a model and information ex-
tracted from the program by means of static analysis. Examples of systematic
input generation approaches follow.

Model-based testing The inputs can be generated in a way that checks if
the program adheres to a given model. A3E tool by Azim and Neamtiu [8]
uses static analysis on Android app’s bytecode to build the app’s GUI screen
transition model. The generated inputs are sequences of clicks on the GUI.
The tool aims to generate minimal sequences required to cover as many GUI
screens as possible, as defined by the extracted GUI model. Major drawback
of this approach is that the model is extracted statically, so the process suffers
from majority of the flaws of static analysis. To mitigate this, one can extract
model completely dynamically, as it is done by SwiftHand by Choi et al. [18].
SwiftHand extracts GUI model purely dynamically, by observing the current GUI
state, and uses machine learning to fix any model inconsistencies on the fly.

CRAWLJAX by Mesbah et al. [49] and WEBMATE by Dallmeier et al. [20]
are model-based tools for exploring behavior of Web applications. Web domain
poses additional challenge of server-side of explored app being usually unavail-
able. In addition, the client-side is spread across many languages and formats
like HTML, DOM, CSS and JavaScript.

We listed some GUI-model-based input generation tools. Yet the field is
much richer, boasting various approaches to build models, including axiomatic
approaches, finite state machine-based models and labeled transition systems [4].

17

2.5. AUTOMATED BEHAVIOR DISCOVERY

Dynamic symbolic execution Symbolic execution is a static analysis tech-
nique that determines which inputs will lead to execution of given part of pro-
gram code. Symbolic execution suffers from all the usual problems of static
analysis, with the unavailability of environment and thus concrete runtime val-
ues being especially pronounced. An extension of symbolic execution, dynamic
symbolic execution (or DSE for short), first introduced by Godefroid et al. [29],
actually runs the program, observing and using concrete values obtained from
the program’s environment.

A prime example of a DSE tool is SAGE by Godefroid et al. [30]. SAGE
determines which constraints inputs have to obey to execute instructions in
binary code. It then systematically negates the constraints, forcing different
control flow, thus thoroughly exploring given program’s behavior. SAGE has
been applied to huge programs like Excel and has saved Microsoft millions of
dollars in found bugs [30]. PEX is another tool from Microsoft by Tillman and
Halleux [58] which uses the principles of DSE. PEX, however, works on unit level,
automatically generating test suites covering code of given object class.

2.5.3 Modelling behavior for anomaly detection
We can observe programs and entire systems to reason about their behavior.
Such observations are usually codified, again, in models. If we operate under
the assumption our observations happened on benign behavior, we can use them
for the basis of anomaly detection. Indeed, the first intrusion detection system
introduced by Denning [21] detected intrusions by “abnormal patterns of sys-
tem usage”. This IDS automatically learned a statistical model from the logs
of observed network traffic. Next, future network traffic was compared against
this model and significant enough statistical deviations were considered to be
potentially malicious. This statistical model was first case of detecting anoma-
lies by comparison with an inferred model. To avoid the unacceptable cost of
manually determining allowed behavior, later on a plethora of machine learning
approaches had been applied to monitoring network traffic. Survey by Garcia-
Teodoro et al. [28] discusses methods like Bayesian Networks, Markov Models,
Neural Networks, Fuzzy Logic, and Genetic Algorithms.

Checking at runtime if any deviations from given model are present also has
been applied within the scope of a single process. Forrest et al. [26] introduced
in 1996 modelling of combinations of system calls to UNIX process. Any yet un-
seen combination was considered an anomaly. Later anomaly detection methods
operating within a single machine (or host) target all kinds of platforms, includ-
ing Web [40], Android [14] or Windows [42]. Such approaches monitor not only

18

2.6. INSIGHTS LEADING TO A NEW APPROACH

system calls, but also file system and registry accesses, among others.
All of the discussed modelling techniques are a kind of dynamic analysis,

so they suffer from the same problem: Incompleteness. If a new behavior is
seen, is it good or bad? Detect too many anomalies, and the model is unusable,
as each anomaly needs to be manually assessed. Let one malicious behavior
slip without raising an alarm and you are in trouble. On top of that, because
most of the advanced models are derived with machine learning methods which
produce complex models, they are opaque to humans. Even if there is an effort
made to present the inferred models in a human-readable way, they are still very
cumbersome to analyze. Consider a set of thousands of sequences of low-level
calls to a low-level operating system API methods. It is exceedingly hard to
discern the actual meaning of such calls, and thus, hard to determine if it is
a potentially malicious anomaly. As a consequence, it is practically impossible
for humans to tailor the model to minimize the amount of spurious anomalies,
while still detecting all the true (i.e. malicious) violations.

To make matters worse, in practice the models for detecting anomalies are
learned from actual executions, as copious amount of data is required to derive
models of sufficient quality. This causes a chicken and egg problem: To detect
anomalies, and thus protect users, one has to train a model. To train a model,
one has to observe actual user behavior using the system to be protected in the
first place. While the model is trained, the system is vulnerable, because no
model of it exists yet. Not only the users are vulnerable, but also because some
of the observed behavior might be actually malicious, the learned model might
be tainted, categorizing such behavior as benign.

All the listed flaws result in severely limited practicality of anomaly detection
systems based on machine learning. As Sommer [57] summarizes:

“Despite extensive academic research one finds a striking gap in
terms of actual deployments of such systems: Compared with other
intrusion detection approaches, machine learning is rarely employed
in operational ‘real world’ settings.”

2.6 Insights leading to a new approach
In this chapter we discussed how state-of-the-art methods for securing software
fare against our requirements of increasing software security in useful, widely
applicable way. Manual methods are too expensive to be widely applicable,
thus we have to use automation. To prevent malicious behavior from happening

19

2.6. INSIGHTS LEADING TO A NEW APPROACH

we have to be able to automatically reason about and enforce program behav-
ior. We cannot do it statically, because it is too easy to prevent static analysis
from reasoning about given program (Section 2.5.1). We could discover pro-
gram behavior dynamically (Subsection 2.5.2), but then we need a good way
to generate inputs, and ultimately we will never cover entire behavior due to
dynamic analysis incompleteness (see the limitations in Subsection 2.5.2).

First key insight we have is that incompleteness of discovered behavior is not
the primary problem, as we fundamentally want to prevent malicious behavior.
We are more concerned with allowing malicious behavior than with blocking be-
nign one. We thus can just consider the undiscovered behavior to be potentially
malicious and take appropriate action, up to and including outright blocking it.
Yet we do not want to block too much benign behavior, otherwise the secured
application will become unusable and thus our solution won’t be useful. We ar-
rive here at a second key insight, that we already have good enough algorithms
for automatic input generation (see Section 2.5.2) to discover enough behavior
to not degrade applications usefulness in a significant way, while blocking ma-
licious behavior. With these insights, we are ready to introduce the sandbox
mining concept in Chapter 3.

20

Chapter 3

Sandbox mining concept

3.1 Introduction
Sandbox mining is a core idea for securing software contributed by this thesis,
first described in [38] and patented by [37]. Sandbox mining, as illustrated
on Figure 3.1, secures programs by automatically finding sandbox rules and
encasing the programs in a sandbox obeying these rules. In essence, it is a
combination of dynamic analysis, to automatically find the rules, and runtime
enforcement, to ensure the rules are obeyed in production. The phase in which
dynamic analysis is applied is called mining, as the sandbox rules are mined
(found, discovered, extracted) during it. More precisely, the phases work as
follows:

Mining During the mining phase, inputs are automatically generated using a
test or input generator1 and applied on the program being secured while it
is monitored for resource accesses it makes, like OS API calls. This process
is called exploration and results in exploration log. From this log, mined
behavior (specification) of the program being secured is obtained, which is
a set of observations about the resource accesses made.

Sandboxing Sandboxing phase is applied during actual application usage: The
mined behavior is codified in a behavior enforcement policy enforced by a
sandbox. If the application behaves in a way that is not allowed by the

1Test and input generators are the same for our purposes and can be used interchangeably.
For more, see Glossary.

21

3.1. INTRODUCTION

✅ ✅ ✅ ⛔️ ✅ ⛔️ ⛔️

1. Mining
Test Generator App APIs used

2. Sandboxing
User App APIs permitted

✔ ✔ ✔ ✔

Monitor

Sandbox

Figure 3.1: Sandbox mining concept: In the first phase inputs gener-
ated with a test generator are used to execute the application being
mined, which allows us to observe its overt behavior. In the second
phase this mined behavior is codified in a policy enforced by a sand-
box in which the program is encased during actual application usage.
This prevents unexpected and/or covert behavior. The figure shows
a case in which the application didn’t try to use API methods for ac-
cessing notes, camera and passwords during mining, and thus won’t
be able to do so without user’s knowledge during normal usage.

policy, the behavior will be flagged, as it will be considered to be unexpected
and/or covert behavior that violates the sandbox. Flagging will result
either in an immediate block, or will require manual confirmation by the
end-user, depending on the violation severity.

3.1.1 A concrete example
Consider a concrete instantiation of sandbox mining concept. We mine An-
droid SNAPCHAT application (app, for short) for behavior pertaining to An-
droid framework API calls (API calls, for short) and GUI events that trigger

22

3.1. INTRODUCTION

them. SNAPCHAT behavior can be automatically explored by systematically
clicking on its GUI with a test generator. The API calls can be contextualized to
GUI events that triggered their call, like button clicks. When the test genera-
tor clicks the “login” button, we can observe that SNAPCHAT calls the following
Android framework API method:

android.hardware.Camera.open(int)

This happens because after login SNAPCHAT immediately opens up feed from
camera, so the user can start taking snaps. Based on that monitored data
we could have mined following behavior: Camera is opened after the “login”
button has been pressed. Naturally, after the test generator presses other buttons
leading to the same screen with camera feed, we will mine other behaviors,
relating presses of different buttons to open the camera. Such mined behaviors
can then be codified in a behavior enforcement policy enforced by a sandbox.
In the context of this thesis, we also call behavior enforcement policy a behavior
policy, enforcement policy, mined policy, sandbox policy, security policy or even
just policy. In essence, the policy is composed of behavior rules that have to
be obeyed by the app. Such rules can then be reviewed by the user, before she
starts using the app.

The SNAPCHAT in question could actually be a malicious variant pretending
to be a genuine SNAPCHAT. Such app could, at any time, covertly take pictures
with our phone and send them to hacker before we realize what is happening.
But with the sandbox policy enforcing mined behaviors it won’t be possible,
as the camera usage will be limited to the cases in which the users clicks a
button after which she fully expects for the camera to be activated, preventing
its misuse.

3.1.2 Concept generality
Sandbox mining is a general concept, in which the program being secured, the
generated inputs, the monitored resource accesses and the behavior enforcement
policies can be defined, scoped and implemented in various ways.

The program being secured can be a desktop application, an entire web
server, a mobile application or a “thing” in the Internet of things, like a centrifuge
for separating nuclear material [41] or a self-driving car [76]. The interaction of
the program with various resources can be monitored, including file system I/O,
network communication, OS framework API calls, GUI gestures, factory robot
arm sensors and actuators I/O, and remote commands to drones, to name a

23

3.2. PRINCIPLES

few. The inputs can be generated using any system interface to the secured
program: Through GUI, API or any other available means.

The enforced behavior policy is based on mined behavior, and thus it has
to pertain to the monitored resource accesses. How policy violations in the
sandboxing phase should be handled? In one scenario, accesses to critical OS
APIs can be completely forbidden unless observed during mining, like ability to
format entire file system. When brakes are pressed, software of a self-driving
car might be allowed to brake, but not speed up. In more benign and unclear
scenarios, the mined policy might say that instead of outright blocking a behav-
ior, the user might be asked for confirmation. In such case the user would be
presented with a human-readable description of the risks, in context relevant to
her.

While the concept is general, in security domain we want to carefully choose
the scope and ensure the implementation is resistant to tampering. Because
overall system security is as weak as its weakest link, the mined rules should
cover the secured program interfaces thoroughly. It does no good to block
only a selected subset of OS API: All security-relevant API calls have to be
protected, and no alternative way of calling them should be left uncovered by
the sandbox. Similarly, the inputs should be generated on a system-level, not
unit level. Otherwise it will be next to impossible to comprehensively cover
common, necessary behavior of the program being secured. Further discussion
of constraints, limitations and offsets of sandbox mining is given in next sections
in this chapter.

For proof-of-concept implementation and evaluation of sandbox mining we
have chosen Android platform. It is popular, its sources are available, it has
modern implementation and enables easy access to thousands of real-world apps.
We explore Android apps by automatically clicking on their GUI. We monitor
how the apps interact with the Android framework API after given GUI ac-
tions happened. We codify these interactions in sandbox policies. The GUI
input generation is done with our test generator, DROIDMATE. It is described
in Chapter 4. The policy inference from mined behavior is implemented via
BOXMATE, as discussed in Chapter 5.

3.2 Principles
The sandbox mining concept gives rise to two powerful principles: The test
complement exclusion principle and the disclose or die dilemma.

24

3.2. PRINCIPLES

3.2.1 Test complement exclusion
During sandbox mining phase the mined program behavior is recorded. This
is done by running the program with automatically generated inputs, possibly
codified in tests. This leads to observable executions of the mined program.
From monitoring these executions we obtain an exploration log, which contains
mined program behavior. The mined behavior is then codified in a policy which
is then enforced at runtime by a sandbox. As a consequence, anything which is
not permitted by the policy ultimately derived from executing the tests, or, in
other words, the test complement, is excluded from happening without flagging.
By flagging an excluded behavior we ensure we can check the behavior is expected
just before it happens and if not, exclude it from happening. We call this trait
of sandbox mining idea the test complement exclusion principle.

This principle stands in stark contrast to existing automated security ap-
proaches, as described in Chapter 2. All of the existing automated approaches
are black-listing malicious behavior, while our principle is white-listing mined
behavior. Sandbox mining thus prevents unexpected behavior change. If an ap-
plication would want to behave differently during production than in mining
phase, the new behavior would not have been white-listed during testing and
would be flagged for review for the user to determine if the behavior is expected
or if instead it should be blocked.

3.2.2 Disclose or die
The benefits of test complement exclusion are far-reaching. While with tra-
ditional approaches attacker just needs to avoid being black-listed, in case of
sandbox mining attacker has to ensure the desired malicious behavior gets white-
listed; otherwise it won’t ever execute covertly. This is a considerable obstacle
for mounting an attack, because the core tenet of malware is that its behavior
is hidden from the user. But if the attack is to be white-listed, it has to happen
already during the mining phase, where it will immediately become visible for
automatic or manual assessment, before it can do any actual harm.

Ultimately, the malware writer is put into a dilemma we call the disclose
or die principle: Either the malware will disclose during mining its intended
malicious behavior, where it can be inspected and can do no harm, or it will
undergo additional highly contextualized scrutiny at runtime, as anything not
seen during mining would be a behavior change, which is reviewed and likely
prevented, as highlighted by the test complement exclusion principle.

25

3.3. CHAIN OF TRUST

3.3 Chain of trust
Sandbox mining is heavily inspired by the existing approaches, as listed in Chap-
ter 2. Comparison to them is in order, especially that there are many natural
synergies. While sandbox mining can stand on its own, the intermediate artifact
it generates, the mined behavior specification, can amplify known methods to
great effect and possibly enable entirely new security schemes.

To compare our technique to the variety of existing methods, let us setup a
concrete scenario serving as a basis of further discussion. Consider a program
developer that submits her app to the app store. In the app store the app
undergoes an audit by the auditor to adhere to the store’s strict rules, hopefully
ensuring the app is secure. If it passes the audit it becomes certified and available
to the end-user. While running on the end-user phone, the app is encased in a
mandatory sandbox with minimal security rules, but additional safeguards can
be put in place.

Every good actor in such setup has stakes in ensuring the app is secure. If
the developer doesn’t ensure it, the app will violate one of the store rules and
will be rejected by the auditor. If the auditor certifies malicious software, the
app store may incur costs due to user harm. Users do not want to be harmed
by improperly certified malware due to reasons listed in Section 2.1.

Unfortunately, today the task of none of these actors is easy. It is hard
to construct secure software, prove it is secure, and protect against malicious
software, as explained in Chapter 2. How sandbox mining can help here? The
three aforementioned actors form a chain of trust. The more actors we can trust
in the chain of trust and the more supporting security methods we can employ,
the more beneficial sandbox mining will be.

3.3.1 End-user
Let’s start with the simplest scenario: The end-user puts very limited trust in
anybody, except for her sandbox mining solution and OS security rules enforce-
ment implementation, the only security methods she is willing to leverage due
to their easy setup and convenience of use. Even in such restricted scenario
sandbox mining can prove valuable. Given a potentially malicious, untrusted
app, the user can mine the app for behavior enforcement policy. The user can
then review the policy for any suspicious behaviors and exclude it. Furthermore,
if the user excluded too much, she will have a chance to loosen up the policy
during runtime when the behavior is flagged for review.

26

3.3. CHAIN OF TRUST

As a direct consequence of the test complement exclusion principle, behav-
ior changes won’t go unnoticed, thus any vulnerability exploitations, malware
infections, targeted attacks or plain software bugs won’t suddenly wreak havoc
upon unsuspecting user. A special case of unexpected behavior change is func-
tionality hidden by design, like backdoors, advanced persistent threats, time
bombs or other latent malware. All of these cases will have to withstand human
scrutiny before activating, as pointed out by the disclose or die dilemma.

3.3.2 Checksums and certificates
The end-user-only setup can be advantageous against existing methods oper-
ating under similar assumptions: Checksums, certificates and user-controlled
policies.

Checksums are a “yes/no” proposition: If the user trusts her checksum in-
tegrity check and the 3rd party providing the checksum she checks against,
she doesn’t need sandbox mining. However, this is a very strong assumption,
in practice akin to agreeing to terms of use without reading them, only to be
surprised after the fact that the user’s private data has been shared with the
3rd party. Certificates are very similar to checksums in the sense of being a
“trusted/untrusted” determination. They aim to provide more trusted vetting
of the app provider, but in our current setup of limited trust there is not much
difference. User-controller policies are step-up over a binary choice: The op-
erating system can ask the user which specific permissions to give to the app.
However, such policies are not custom-tailored to apps and usually end up being
too broad, as discussed in Subsection 2.3.1.

The advantage of sandbox mining over the aforementioned methods is that
it provides a detailed behavior specification of an application, tailored specifically
to it. It is no longer a binary choice - now the user can see what exact behaviors
the app wants to be able to do. The specification is mined from specific appli-
cation and black-lists (flags) unseen behaviors, providing significantly stricter
security than broad-stroke facilities of generic user-controlled policies. Even if
the specification will turn out to be too strict, the user can relax it when an
expected behavior is flagged. This would not be possible e.g. with the usual
user/admin split in operating systems: If given operation is not possible as an
user, either it is blocked altogether or the app has to gain administrative rights,
throwing security out of the window.

All of the sandbox mining benefits are possible on existing software without
significant setup effort. Once the end-user does the one-time sandbox mining

27

3.3. CHAIN OF TRUST

infrastructure configuration, mining, reviewing and applying behavior enforce-
ment policies is straightforward.

When the user is asked to endorse a flagged rule violation, she will have
appropriate context. As an example, if the secured application will suddenly try
to send a text message to a premium number, the user will know she didn’t try to
send any message, and thus will consider the request highly suspicious. Still, the
main challenge of this limited-trust scenario is the difficulty of comprehending
the mined behavior specification by the end-user. The specification might prove
too hard to reason about, leading her to making it too loose and erroneously
allowing malicious behaviors. Similarly, any flagged, actually malicious behavior
might end up being allowed by the user, without her being able to appropriately
determine its harmful nature. We elaborate on these and relevant challenges
in Section 3.5.

3.3.3 Certification levels of trust
Let us now assume the end-user trusts in certificates at least to some degree.
Now the burden of securing the application can be shared between the end-user
and the auditor providing the certificate. Auditor can mine the app and publish
it to the app store together with the app behavior enforcement policy, for the
end-user to sandbox during normal use. End-user can then review at runtime
any flagged policy violations.

This setup mitigates the issue of end-user having to be proficient with reading
the mined specification. The user can behave differently depending on the level
of trust given to the certified behavior enforcement policy.

If the trust is complete, the user doesn’t question the policy, just applies it.
In addition, any flagged behavior is handled completely automatically and the
user has no say in it. Depending on the certified enforcement policy provided
by the auditor, flagged behavior might be either outright blocked or allowed,
but with telemetry information sent to the auditor.

If the behavior is blocked and if it makes the app less usable without any
perceived risk, the user might request for the policy provider to relax the policy.
The flagged behavior can be automatically allowed if it is suspicious, but unlikely
to cause significant harm, and likely to make the app significantly less usable.
In other words, when the auditor was unable to make clear-cut decision if to
allow it due to involved trade-offs, and decided to gather additional information
from production usage. This of course exposes user to some risk, similar to the
“catch-22” problem described in Subsection 2.5.3. This time, however, we hope
to be able to limit such risks to a small number of corner cases.

28

3.3. CHAIN OF TRUST

If the end-user puts less trust in the certified policy she might take more
responsibility over handling the flagged behaviors: Allowing situations that seem
harmless to her, and blocking otherwise. Note that because now we assume we
operate within the context of a vetted policy provided by expert auditor, it is
much more likely any flagged behavior will be easier to reason about and increase
the chance user will make correct decision. In any case, the more precise and
readable the underlying behavior specification the higher the security and lower
app usability loss, as discussed in Section 3.5.

Assuming even less trust brings us into the territory of the user reviewing
the policy itself, not only the flagged behavior. However, again, she is better
off than if she would have to mine the policy herself. The user can review the
certified policy as-is. However, she can also do differential analysis between the
certified policy provided by the auditor and by a sandbox mined by herself,
focusing on any reported behavior differences.

Note that application updates often require more permissions, as the pro-
grams gain more features. With sandbox mining this doesn’t mean starting
entire security audit from scratch - the end-user can compare behavior enforce-
ment policies of new and old version of the same app - be it certified policies
or mined by herself. Such differential analysis will make it blatant what new
behaviors the application will start to exhibit after the update.

As we see from the above discussion it is not clear-cut who is responsible for
what and many responsibility schemes are possible. By shifting more responsi-
bility to the auditor, we avoid the issue of end-user being unable to accurately
handle the flagged behaviors, but require from the auditor to decide how to
handle any policy violations ahead of time, without the precise runtime context
available to the end-user, as discussed in Subsection 3.3.4. So far we focused on
discussing the user side of the story, but let’s not forget our goal with sandbox
mining is to minimize manual effort, including the manual effort of the auditor
providing the certified policy.

3.3.4 Auditor
For auditor the biggest advantage of sandbox mining is being able to audit a
mined app behavior specification instead of the app’s source code. Reviewing
just the mined behavior specification is enough, as postulated by the test com-
plement exclusion principle: Any behavior not present in the specification will
be flagged in production.

One can argue we end up in the same situation as end-user: given an appli-
cation, the auditor has to determine its harmlessness. However, we can make

29

3.3. CHAIN OF TRUST

a set of important assumptions about the auditor that we couldn’t make about
the user. The auditor is an expert in assessing and adjusting the mined speci-
fications; she can incentivize application developers to make her work easier as
discussed in Subsection 3.3.5; has the expertise to leverage any other security
methods as explained in Section 3.4; she has access to database of other appli-
cations and their mined behavior specifications as elaborated on in Section 3.6;
and her task is to conduct the audits, while for the end-user this was just an
additional effort detracting from the experience.

If the auditor would want to use only sandbox mining, her procedure would
be similar to that of end-user described in Subsection 3.3.1 with the impor-
tant difference of reacting to flagged behavior. The auditor has an additional
responsibility of determining how to automatically handle behaviors violating
the policy on behalf of the end-user. In simplest scenario all of them could be
blocked, but that might decrease application usability. Allowing them silently
doesn’t make sense: If they are to be allowed silently, they should have been
included in the policy in the first place, thus their absence denotes the policy
deficiency. In such cases appropriate telemetry should be gathered to reclassify
such alerts in the future. The remaining gray area are those flagged behaviors
that are left for the user to decide because they are too hard to decide on by
auditor ahead of time. Given such scenario, the auditor should ensure that
when the rule is violated, the user is provided with as much as possible rele-
vant, readable information, to help her make the right decision: Block harmful
behavior, while avoiding blocking expected behavior, thus avoiding decreasing
app usability.

In the chain of trust schema it is only reasonable we cannot trust the de-
veloper of the application or the developer is unknown altogether. However, it
is possible to make auditor life easier by appropriate developer incentives, as
described in Subsection 3.3.5.

3.3.5 Developer
A white-hat developer can benefit from our technique. Recall that the developed
app needs to pass the security audit done by auditor to be admitted to the app
store. The admittance process to existing app stores like Apple App Store or
Google Play Store leave a lot to be desired. Apple App Store has stringent
set of rules and apps often get rejected without adequate explanation and after
long delays. Apple prefers to err on the side of user security and employs
human auditors, delaying the process. Google Play Store, on the other hand,
has automated and secret methods to analyze apps, which leads to occasional

30

3.4. SYNERGIES

unexpected rejections, but mostly many malicious apps passing through.
Sandbox mining would enable app store to audit based on the mined speci-

fications instead of the raw app artifacts. This enables app store to incentivize
developers to provide their own mined specifications alongside the apps them-
selves. Developers can submit apps for review together with the mined behavior,
annotated with their remarks explaining which parts of the mined behavior are
required for which feature. This way the developer can ensure all the required
behavior will be allowed and will make the auditor’s job easier by providing
additional context.

Developers that consistently submit automatically mined well-documented
high-quality behavior specifications for their new apps and app updates can
significantly cut down on the time auditor needs to spend reviewing their apps.
As a result, such developers could gain reputation with the app store and have
their reviews expedited, to incentivize them to provide high quality specs.

Of course a malicious developer could try to game the system by first gaining
trust of the auditor. The developer could leverage the trust to justify approving
a behavior that is actually malicious. This, however, would require significant
effort from the malware writer. Furthermore, the auditor should always do her
due diligence by re-mining the application sandbox on her own machine and
comparing it with the one provided by the developer. We do not expect for the
sandboxes to be the same due to the issues described in Section 3.5, but still,
by doing differential analysis of the mined behaviors any potentially malicious
discrepancies have a higher chance to stand out. Such discrepancies could then
be reported back to the developer for explanation and adjustment.

3.4 Synergies
While sandbox mining can stand on its own, as discussed in the above-given
sections, the technique has potential for powerful synergies with existing auto-
mated approaches to securing software.

3.4.1 Dynamic analysis
First off, mining of application behavior requires input generator, which is also
a prerequisite to dynamic analysis. Thus, any work done on generating bet-
ter inputs will benefit both dynamic analysis techniques and sandbox mining.
While input generation for dynamic analysis has many downsides as described

31

3.4. SYNERGIES

in Chapter 2, leveraging it for sandbox mining can significantly mitigate many
of them.

In pure input generation, as used for dynamic analysis, its incompleteness is
a major issue preventing us from having meaningful descriptions of programs.
However, for sandbox mining this is not necessarily a bad thing - by exclud-
ing most behaviors, we also exclude malicious actions, as codified by the test
complement exclusion principle. Of course, the challenge of ensuring desired
behavior is not excluded, i.e. the challenge of underapproximation, remains.
For that we employ our chain of trust setup given in Section 3.3. First, the
developer can mine the sandbox and review it for any omissions. Next, the
auditor can review the mined behavior harmlessness. Finally, if something was
still missed, the end-user may either add any flagged behaviors by herself, or
request addition to the auditor or developer.

Another issue of standard dynamic analysis are time bombs and other eva-
sion techniques. However, with the disclose or die principle afforded by the
chain of trust, the hybrid of input generation and sandbox mining has potential
to avoid these issues while significantly neutralizing the usability concern, as
described in previous paragraphs.

3.4.2 Static analysis
It is known that leveraging static analysis techniques for input generation can
be beneficial, as e.g. it is the case with dynamic symbolic execution described
in Section 2.5.2. However, static analysis faces many issues as discussed in Chap-
ter 2, including program complexity, obfuscation, encryption, information era-
sure in object code, overapproximation and even undecidability. However, be-
cause in the context of sandbox mining we would use static analysis only to
fine-tune mined behaviors, any countermeasures to static analysis employed by
malware writers will have less impact. We discuss possible challenges in detail
in Section 3.5.

3.4.3 Runtime enforcement
Sandbox mining is partially a runtime enforcement technique, as the second
phase uses a sandbox enforcing the mined behavior policy. Other runtime en-
forcement techniques include anti-virus programs, firewalls and network mon-
itoring. Firewalls require policies, which sandbox mining provides. Anti-virus
programs require malware signatures, crippling their effectiveness against novel
malware. Sandbox mining is not hindered by new malware and doesn’t require

32

3.5. MINED BEHAVIOR SPECIFICITY TRADE-OFF

any signatures. However, signatures could be used to improve the mined polices,
as discussed in Section 3.6.

Sandbox mining also doesn’t have to do precise, potentially privacy-breaching
network packet inspection, as it can be used in isolation the end-user machine,
not a possibly eavesdropping middle man. However, gathering telemetry on
gray area corner cases as discussed in Subsection 3.3.4 could help refine the
sandboxes, at cost of ensuring that end-user privacy is not breached.

3.4.4 Anomaly detection
Anomaly detection systems have to be trained in production to build a model
of allowed behavior, putting users at risk while the model is not yet available,
violating their privacy and potentially degrading user experience due to per-
formance overhead. These problems are significantly mitigated by the chain
of trust, as introduced in Section 3.3. That is, a hybrid of automatic mining
of behavior policies coupled with additional manual scrutiny of the ambiguous
cases ensures the attack surface on the user is minimal, instead of leaving the
users unprotected until the model is available.

3.5 Mined behavior specificity trade-off
The single most important characteristic of sandbox mining, what makes it or
breaks it, is the quality of the mined behavior specification and derived en-
forcement policy. Ideally we would like to have a specification that is very
comprehensive, including all the required behaviors. At the same time, the
specification should be very precise, i.e. it should ensure than no strictly nec-
essary behaviors are allowed, analogously to the principle of least privilege [55].
On top of that, the specification should be easy to read so humans can easily
review it, extend, compare or modify. Finally, all of that has to be achievable on
existing infrastructure, with acceptable (that is, negligible) performance impact
and require reasonable effort to implement.

This thesis tries to answer how close we are to that ideal by posing research
questions in Section 3.7. For discussion in this section, let us assume we can
obtain comprehensive specifications with reasonable effort. This will allow us to
elaborate on the main trade-off of mined specifications: Precision vs readability.

The existing user-controlled policies, as described in Subsection 2.3.1, can
be considered a very crude form of behavior specifications. For example, the
specification can say “this application requires administrative privileges” or “this

33

3.5. MINED BEHAVIOR SPECIFICITY TRADE-OFF

application requires access to your camera”. Such statements are easy enough to
understand we expect a significant amount of end-users to be able to effectively
work with them. For example, consider a behavior enforcement policy of a note-
taking application that doesn’t include access to microphone. Any attempt to
enable microphone recording would be flagged and result in a request being
made to the user to allow the app access to the microphone. We can expect
some users will correctly decline it, unless, of course, the application has voice
note-taking function that the user wanted to use.

Unfortunately, such coarse-grained behaviors leave huge attack surface for
the attacker. More advanced applications might require access to specific sen-
sitive resources only for one component and for very specific parameters. For
example, a game may require access to send premium SMS message to specific
number only when the end-user clicks a button to buy a power-up. However, if
all you can do is to allow sending all SMS messages to all numbers or block it
completely, you do not allow the user any choice that keeps her safe and at the
same enables her to buy the power-ups.

What you need is more specific behavior description. For example, you
could contextualize given resource access to GUI buttons. This way the user
could allow to send premium SMS messages only if the “confirm transaction”
button is clicked. Such level of precision indeed seems to strike good balance
between specificity, reducing attack surface, and readability. We describe such
specifications in a systematic way in Section 5.3.

There are many more levels of behavior scope fine-graininess, based in a large
degree on the domain we operate in, with examples given in Subsection 3.1.2.
One could even image restricting access to specific OS Kernel calls from specific
high-level methods, but such specifications would be unreadable.

It would be excellent to be able to flag a behavior with information like “Once
you click confirm transaction after clicking buy power-up the application will
send SMS message to number 123-456-7890, certified to belong to the application
power-up center. This will cost you 7 USD. Approve?”. However, automatically
gathering information and presenting it in human-readable form is challenging.
If we monitor application API we might observe a method call like Sms.Send().
The method call sends an SMS message to a specific number according to the
state mutations done on Sms object by previous method calls. Automatically
extracting the SMS information to present it to the user in human-readable form
might thus require help of static analysis, as discussed in Subsection 3.4.2. Such
analysis, in turn, can be prevented by usual static analysis countermeasures.

Reliably identifying given button is also nontrivial. The confirm transaction
button mentioned in previous paragraph might not be unique: Multiple buttons

34

3.6. MARKETPLACES

might have the same label, or it might even just say confirm. Often we do not
have access to the button GUID and thus have to rely on surrounding GUI screen
structure to disambiguate between different buttons. The GUI screen structure
might contain dynamic elements, like list of recent messages, making it hard to
determine if we are on the same or different screen, and thus if we are dealing
with the same or different buttons.

Because in the given example we are relying on fairly low-level of abstraction
of API method calls and their inputs, the mining process can be sensitive to
the environment in which it runs. As a result, the same app might behave
differently on different computers due to different file system structure, random
seeds, network availability, performance characteristics, time of day, etc. Even
two consecutive executions of mining phase in the same environment might lead
to different results, and we need to be able to abstract over the noisy differences.

All these challenges might lead us to make simplifications, e.g. treating all
buttons with confirm label to be the same. This, however, opens an attack
opportunity to the attacker. For example, once the user confirms she wants to
share her high score via SMS with her friend, the behavior policy might assume
she confirms sending any SMS, including sending premium messages to malicious
number.

In extreme case one could even imagine application with heavily obfuscated
code, defeating static analysis, that also obfuscates its entire interaction with
environment: All files written to disk have nonsensical names in nonsensical
directories, all network messages content is scrambled and/or encrypted, etc.
Any mined behaviors in such cases will be utterly unreadable and could not be
easily reverse-engineered due to the obfuscation. On the plus side, all of this
should raise red flags to the auditor, thus underlying importance of disclose or
die principle: This time however no attack was disclosed, but a clear intent to
hide one.

Overall, fine-tuning the mined behavior specificity against its readability is
an important trade-off right at the center of sandbox mining that might be used
to defeat the method. However, let us emphasize this is a significant improve-
ment over the state-of-the-art of binary checksums, certificates, user/admin per-
missions, user-based policies and other methods previously discussed.

3.6 Marketplaces
Preceding sections discussed in detail how sandbox mining fits in the landscape
of existing security tools. The rest of this thesis focuses on proving principal

35

3.6. MARKETPLACES

feasibility of the idea. In this section we focus on exploring what wide adoption
of sandbox mining may bring.

In the chain of trust we proposed we introduced three actors: The devel-
oper, the auditor and the end-user. However, it helps to think about them in
terms of roles, representing global groups of people. The existing app stores
are already benefiting from the economies of scale, where patterns common
among thousands of apps can be compared to detect any anomalies, like e.g.
shown with the CHABADA work [31]. One can easily imagine the same can
be applied to the mined program behavior specifications. Comparing any new
mined behavior against the database of known thousands of specifications and
their fragments can expedite the assessment of the new behavior by highlight-
ing anomalies. Possibly the mined behavior is composed of a sum of known OS
access patterns, commonly used by other, approved application behaviors and
well-understood. For example, applications might want to keep their transient
cache in <user_home>/<app_name>/cache directory. This cross-app com-
parison for good and bad behaviors fulfills similar role to signatures of known
viruses for anti-virus programs.

In case of behaviors that are hard to classify ahead of time by auditor,
additional telemetry from end-user usage and policy violations can be gathered
to review the problematic behaviors in context of real-world usage and make a
concrete decision to block, allow or perhaps split into two or more sub-rules with
different handling. All of this can feed to global knowledge base on application
behavior specifications.

Cross-app mined behavior specification comparisons are feasible only if ma-
jority of applications are published together with their mined specifications. So
far this was infeasible to assume due to enormous manual effort of precisely
specifying what an application can do. However, with sandbox mining provid-
ing the baseline spec that then has to be post-processed by the developer and/or
auditor, this is brought in the realm of possibility.

As the idea of applications always having their specifications available catches
on, programs without them can be penalized or outright rejected from admis-
sion to app stores. This might lead us to assume the specification is always
available, and its lack is a major red flag. Ubiquitously available specifications
could then be shared with end-users via dedicated behavior enforcement policy
marketplaces. Such marketplaces would be similar to certification authorities,
but the users would not have to blindly trust in the certificate value, but actually
review the behavior enforcement policy. If the end-user doesn’t trust one cer-
tificate authority and doesn’t have the expertise to review the policy, she could
hire an independent auditor to review the policy for her. It is possible one

36

3.7. CHALLENGES AND RESEARCH QUESTIONS

app could have multiple enforcement policies with varying level of strictness,
allowing more privacy and security-conscious users to use the more stringent
policies.

The assumption that any application has to come with semi-automatically
mined specification could open-up global thinking to sharing applications with
additional metadata. Currently most program are provided as-is, possibly with
a checksum, a certificate, or, in the rare case the application is open-source, a
link to the repository with source code plus possibly a unit test suite and build
instructions. However, once we will expect from all the applications to always
publish a specification, why not also expect to provide the set of generated
inputs used to generate these specifications and behavior enforcement policies?

Sharing generated inputs globally can multiply the efficiency of sandbox
mining. Instead of everyone having to rely on input generator to provide the
inputs from scratch, one could reuse existing, certified inputs that efficiently
test an application in various scenarios. If we are providing the inputs, we could
also provide the environment details, to allow as precise replication of mined
policy as possible, similarly to the idea of reproducible builds.

As more advanced techniques are developed, more specialized application
metadata can be conceived and we might build up infrastructure for sharing the
programs with arbitrary number of specialized, derived artifacts.

Overall, sandbox mining, if adopted, has a potential to make everybody
considerably more secure by shifting our expectations from applications we use
from being black-boxes to have their specifications always included and possibly
more, while not incurring any significant additional costs.

3.7 Challenges and research questions
As introduced in Section 3.5, sandbox mining feasibility hinges on the quality
and applicability of the mined behavior specifications. We can say that for the
sandbox mining to work, four important assumptions have to hold. Truthfulness
of each of these assumptions might challenge the viability of the method, and
thus each of the assumptions warrants a research question that needs to be
answered. In the context of chain of trust introduced in Section 3.3, unless
noted otherwise, we will be posing the research questions in the simplest scenario
in which the end-user has to conduct entire sandbox mining process herself,
without the help of any other methods or audited/certified behavior enforcement
policies, as detailed in Subsection 3.3.1.

First, the employed test generator has to be powerful enough to cover all

37

3.7. CHALLENGES AND RESEARCH QUESTIONS

allowed
during sandboxing

prohibited
during sandboxing⛔️

benign
behavior

malicious
behavior

True Negative

False Negative True Positive

False Positive

(benign behavior
 seen or allowed)

(malicious behavior
 seen or allowed)

(benign behavior
 raising a false alarm)

(malicious behavior
 detected and prevented)

✅

Figure 3.2: Confusion matrix. Program behavior is either benign or
malicious; if it is not seen during mining phase, it is prohibited during
sandboxing. The three risks are false positives (benign behavior not
seen during mining and thus requiring confirmation during sandbox-
ing), false negatives allowed (malicious behavior allowed because of
too coarse sandbox rules), and false negatives seen (malicious behav-
ior seen during mining, but not recognized as such, and thus allowed).

the common, benign behavior exhibited by the application being secured. If this
would not be the case, the behavior policy would not cover some commonly used
benign behaviors. As a consequence, they would be outright blocked or would
at least require user intervention. This would make the program potentially
unusable, thus failing our requirement of the approach being useful in practice,
as outlined in Section 2.2. In other words, we would end up with too many
false positives, as explained on Figure 3.2. To confirm we have good enough test
generators, we pose our first question:

Q1 Can input generators sufficiently cover behavior?

Second, the mined behavior has to be fine-grained enough, otherwise the
attack surface will remain too big. Recall that manually provided behavior
policies have to be coarse-grained, otherwise it would be too impractical to

38

3.7. CHALLENGES AND RESEARCH QUESTIONS

define them. As a simple example, consider Android permission groups [83].
To reiterate arguments made in Section 3.5: As soon as the user allows given
application to read SMS messages, she allows the app to also send any number
of SMS messages, to any address, at any time, also covertly in the background.
Attacker could easily exploit it to steal information or deplete account of the
user by dialing premium numbers. Mining sandboxes promise is to provide more
fine-grained behavior distinction, thus reducing the attack surface, resulting in
smaller number of false negatives allowed, as visualized in Figure 3.2. We can
check the quality of mined behaviors by answering the following question:

Q2 Can we reduce the attack surface by providing a behavior enforcement policy
more fine-grained than Android permission system?

Third, as we obtain fine-grained behavior, we run into the risk of it being in-
comprehensible to the user. Recall that if a sandbox-violating behavior occurs,
it might be blocked or presented to the end-user for endorsement. If the suspi-
cious behavior description is unclear to the user, she might end misclassifying
it: She might forbid benign behavior, decreasing app usability and resulting in
a false positive, or she might allow malicious behavior, putting herself in harm’s
way and resulting in a false negative.

There is also another risk here: As the behavior gets mined for the first
time, it might actually allow malicious behavior. It might happen because the
malware writer, being forced into the disclose or die dilemma, might try to hide
her intentions in plain sight by having them added to the allowed behaviors.

Q3 Can the more fine-grained mined behavior help users and experts correctly
classify behavior as benign or malicious?

Finally, in Section 2.2 we also stated our solution has to be widely applicable
on existing software. In our context this means the tools we use should be able to
fully automatically mine sandboxes from a variety of most popular, most used
Android apps. This might be challenging, as such apps are usually complex
and full automation of sandbox mining implies ability to automatically handle
many corner cases, like the app being secured crashing at unexpected times. To
determine if we possess good enough tools, we will answer our final question:

Q4 Can modern input generators be successfully and fully automatically used
to mine sandboxes from a variety of existing, widely used applications?

If we answer the four stated questions positively, we will prove sandbox
mining meets the assumptions required to make the approach work. We will also

39

3.7. CHALLENGES AND RESEARCH QUESTIONS

prove sandbox mining fulfills all the criteria described in Section 2.2. Indeed,
our implementation and its evaluation, as described in next chapters, is easy
to setup and works with existing Android apps, thus ensuring the approach is
useful in practice and widely applicable.

40

Chapter 4

Input generation
implementation: DroidMate

To answers research questions posed in Section 3.7 we need a concrete imple-
mentation of the sandbox mining concept. Three components are required: An
automated input generator, a sandbox policy inference engine and a sandbox
that will enforce the inferred policy at runtime.

DROIDMATE, described in this section, is our implementation of the au-
tomated input generator for Android 4.4 (API 19) and 6 (API 23). It is a GUI
interaction input generator employing biased random exploration strategy aware
of the GUI structure. The exploration strategy is the algorithm deciding which
inputs to generate. The remaining two components are implemented by our
sandboxing solution, BOXMATE, described in Chapter 5. While conceptually
separate, both of these tools share common codebase.

4.1 Technical choices justification
Why Android? We have chosen our implementation to be on Android for
several reasons. Android is the most popular mobile OS in the world with thou-
sands of widely used apps, giving us plenty of opportunity to evaluate sandbox
mining viability, answer our research questions and conduct future research. All
these applications are easily obtainable from Google Play Store [104]. Further-
more, vast majority of them have nontrivial GUI, meaning the input generator
we write can be a GUI interaction input generator. Android is also an open-

41

4.1. TECHNICAL CHOICES JUSTIFICATION

source software, making building any tools based on it significantly easier. This
has also resulted in it being a very fertile ground for various research tools and
projects, as discussed in Section 4.2. We can reuse knowledge codified in their
implementation and published research results for our own goals.

Why GUI input generator? Using GUI as the exercised system-level inter-
face to the program being secured has two important benefits. First, relatively
short sequences of GUI interactions can trigger large swaths of realistic program
behaviors. Second, any sandbox policies formed pertaining to GUI have big
chance to be intuitive to human users, in case a decision has to be made to
endorse a behavior not seen during mining.

Why biased random exploration strategy aware of GUI structure?
Such strategy provides, at only modest implementation effort, significant im-
provement in efficiency at discovering diverse behaviors of application being
secured, as compared to a completely random strategy. As a result, compre-
hensive behaviors are mined much faster. The GUI structure awareness allows
us to focus only on GUI elements which may result in interesting behavior when
interacted with. For example, we will click only on elements that have their
clickable XML attribute set to true. The fact exploration is biased ensures dis-
covering new behavior takes precedence over repeatedly covering the behavior
already known.

Why not reuse existing test generator? There are already many Android
GUI-based test generators in existence. However, no existing GUI test generator
fulfills all of our requirements, which are:

Built-in support for monitoring Most importantly, we require from our in-
put generator to have a built-in support for a detailed, low-overhead mon-
itoring of Android framework API method calls, which is required to con-
struct BOXMATE-enforced policies, as described in Chapter 5. None of the
existing tools have that capability.

Efficient The used GUI test generator should explore the GUI quickly, so min-
ing sandbox rules doesn’t take too much time overall. This entails the
generator has to explore the GUI at least semi-systematically, not purely
randomly.

Robust The tool should be robust, being able to work even with the most
complex apps on the market. This way we can conduct experiments with

42

4.2. COMPARISON WITH EXISTING TOOLS

many representative, relevant samples, reducing threats to external valid-
ity. In addition, the generator should be able to provide inputs for many
apps in one continuous session, even while unattended. If some of the
apps crash it should recover and continue. This way it can be setup once
for overnight runs on many applications to gather experiment data for the
next day, week or even month.

Sources not needed As the tool is expected to work on any downloaded ap-
plication, we cannot assume we have access to the source code. Thus,
the input generator has to work on the raw application file (its .apk file),
without access to any sources.

Relevant We want for the generator to work on newest Android OS. Every
year new major Android OS version is released, sometimes with significant
changes to the permission model, having major impact on the mined rules.
Not having a test generator up-to-date with current Android version puts
any results obtained at risk of rapidly becoming obsolete. In the time
frame this research was conducted the newest version of Android was 6
(API 23).

Easy to setup We want for the test generator to be easily deployable, to show
end-users can use it relatively easily. In particular, the tool has to work
without any modifications to the Android OS, without the need to install
any 3rd party frameworks and even without rooting the device.

Easy to develop and extend Finally, we want for our tool to serve as a de-
velopment platform for further research and extensions. To this end, we
made it extensible, with thorough automated test suite, documented, au-
tomatically integrated and open-source [102].

Section 4.2 surveys existing Android GUI test generators and explains which
of the above given criteria they do not fulfill.

4.2 Comparison with existing tools
In this section we survey state-of-the-art of existing GUI test generators for
Android. We highlight some of the tools, comparing them in detail to our
requirements as described in previous Section 4.1.

We list the tools chronologically by their publication date to highlight how
the field evolved over time. Note that none of the tools has a built-in support

43

4.2. COMPARISON WITH EXISTING TOOLS

for monitoring Android framework API method calls to the level of detail and
extensive coverage of API surface as provided by DROIDMATE, while maintain-
ing the app stability. This is a critical requirement for us. As all the tools
listed here are undocumented and mostly unmaintained research prototypes,
extending any of them to add such capability would require prohibitive effort.
Moreover, sources of some of the tools are not publicly available.

Android Monkey [100] is a GUI stress-testing tool which comes built into
the Android SDK, which was first released in October 2009 [98]. Its main dis-
advantage is it doesn’t explore the GUI systematically. It is aware only of the
screen size and inputs the GUI events at random coordinates, checking if the
application didn’t crash.

SwiftHand by Choi et al. [18, 106], published May 2011, is an early input
generator that uses machine learning to learn a model of the app during testing,
uses the learned model to generate user inputs that visit unexplored states of
the app, and uses the execution of the app on the generated inputs to refine the
model. Unfortunately, the most recent Android version it supports is only 4.1.

ACTEve by Anand et al. [5, 108], published November 2012, uses dynamic
symbolic execution (DSE) to find sequences of GUI tap events which maximize
the coverage of the app’s bytecode. ACTEve alleviates the path explosion prob-
lem of DSE by identifying subsumption between different event sequences and
pruning the redundant sequences. Unfortunately, ACTEve requires instrumen-
tation of the Android SDK, supports only GUI taps and has been evaluated only
on a small set of 5 apps, hinting the proof-of-concept implementation would
require significant work to meet our robustness goal. Given the tool hasn’t been
updated for over 4 years, most likely it would require additional significant effort
to adapt to current Android version.

Dynodroid by MacHiry et al. [46, 107], published August 2013, explores the
GUI semi-systematically. Not only it recognizes the GUI structure and is aware
which elements are actually clickable, it also biases its random clicking strategy
to prioritize interacting with new elements. This way it explores new behaviors
faster. DROIDMATE exploration strategy, as described in Subsection 4.7.1, is
based on Dynodroid. In addition to GUI events, Dynodroid can generate system
events, like incoming SMS message. Another interesting feature is that the input
generation can be interleaved with manually provided inputs: User can at any
point stop the generation, guide the exploration by doing manual actions, and
resume automatic generation.

Dynodroid has two major flaws that disqualify its usage for our purposes:
First, it requires modification of the underlying OS. This is very cumbersome
and time consuming task requiring a lot of expertise, thus it breaks our require-

44

4.2. COMPARISON WITH EXISTING TOOLS

ment of being easy to setup. Secondly, Dynodroid works only on the severely
outdated Android 2.3.5 and is no longer maintained, thus making any results
obtained with it obsolete, not fulfilling another of our needs.

A3E by Azim and Neamtiu [8, 105], published October 2013, uses static,
taint-style, dataflow analysis on the app bytecode to construct a high-level con-
trol flow graph that captures legal transitions among activities (app screens).
One exploration strategy employed by A3E is clicking on the GUI systemati-
cally, focusing on covering the static graph, to quickly and systematically cover
as much screens as possible. Second strategy focuses on prioritizing launching
screens present in the static graph which would be hard or even impossible to
test by plain user interaction with the app’s GUI, because they are, for example,
triggered by other applications or background services. This is done by con-
structing and sending appropriate system event (so called intent). We decided
against using A3E as it is untested on Android ≥ 5 and has no support for
monitoring Android framework API method calls.

PUMA by Hao et al. [34, 74], published June 2014, is a flexible framework
for implementing various state-based test strategies. Even though PUMA was
evaluated on 3,600 apps, hinting at good scalability, it supports only 9,644 out
of 18,962 checked apps (51%), due to limitations of bytecode conversion and
unsupported app categories like games. This violates our requirement of being
able to support more complex apps, for which usually the bytecode conversion
fails. In addition, PUMA is geared towards operators of app marketplaces, not
end-users.

ANDLANDIS by Bierma et al. [13], published October 2014, is a scalable
dynamic analysis system capable of processing over 3000 Android applications
per hour. ANDLANDIS feeds simulated data to sensors (GPS, camera, motion,
touch, screen, etc.) and intercepts outgoing traffic (Internet, SMS, phone, etc.)
for forensic analysis. There are not many details given on the exploration strat-
egy, except that it attempts to visit as many features of the application as
possible by prioritizing GUI elements which were not yet interacted with. While
ANDLANDIS scalability actually goes far beyond our requirements, it does so at
a cost of complex setup: The tool is designed to work on a parallelizable dis-
tributed machine cluster, while we aim to provide a solution that can be easily
setup by an end-user on his personal computer and device.

SAPIENZ by Mao et al. [48], published July 2016, is a modern test generator
that uses multi-objective search-based exploration strategy. SAPIENZ combines
random fuzzing, systematic and search-based exploration, exploiting seeding
and multi-level instrumentation. The first reason we didn’t use SAPIENZ is that
it was developed too late for the time frame in which research for this thesis

45

4.2. COMPARISON WITH EXISTING TOOLS

was conducted. Even if that would not be the case, SAPIENZ still suffers from
many of the same problems as the other tools: No support for API method calls
monitoring and lack of support for Android 6.

CuriousDroid by Carter et al. [17], published May 2017, is similar in many
regards to DROIDMATE. It analyzes GUI structure like DROIDMATE and priori-
tizes randomly exploring yet unknown behaviors. There are differences in the
employed algorithms, e.g. CuriousDroid uses heuristics to click widgets on given
GUI screen in specific order, e.g. clicking “OK” button last. CuriousDroid mod-
ifies the bytecode of the AUE, but using different instrumentation framework. It
requires for the device to be rooted, while DROIDMATE doesn’t. CuriousDroid
sources are only partially available [110], it is unclear how resilient it is against
app and device crashes, and like SAPIENZ, was published long after the research
for this thesis was conducted.

DroidBot by Li et al. [43, 111], published May 2017, is another generator
similar to DROIDMATE. Unlike DROIDMATE it requires no app instrumentation,
but doesn’t provide such advanced Android framework API method calls moni-
toring as DROIDMATE.

There are many other automated Android GUI input generators, like An-
droidRipper (subsequently MobiGUITAR [3]) by Amalfitano et al. [2], App-
sPlayground by Rastogi et al. [53], BRAHMASTRA by Bhoraskar et al. [12],
CrashScope by Moran et al. [50], EvoDroid by Mahmood et al. [47], JPF-
ANDROID by van der Merwe et al. [59], MonkeyLab by Linares-Vásquez et
al. [44], ORBIT by Yang et al. [61], Thor by Adamsen et al. [1] or IntelliDroid
by Wong and Lie [60, 109].

A 2015 survey by Choudhary et al. [19, 71] and the related work section
of the SAPIENZ paper [48] provide good overview and comparison of these in-
put generators. The most prevalent problems with these tools, in addition to
lack of means of monitoring API method calls, are that they: Support only a
small set of apps; work only with simple apps; require OS modification, making
setup complex; or do not support Android 6 or higher, making results obtained
with them outdated, as Android 6 introduced significant changes to its API and
permission model [62]. See Subsection 4.2.1 for more systematic comparison.

4.2.1 Comparison table
The Table 4.1 summarizes key differences between DROIDMATE and the tools
mentioned in Section 4.2. Strategy denotes the kind of exploration the generator
is doing on supported inputs. The inputs can be GUI, like taps or text input, or
(Sys)tem, like Android intents or OS events. The monitor column emphasizes

46

4.2. COMPARISON WITH EXISTING TOOLS

Tool Strategy Inputs Monitor Apps Src OS Instr. Open
A3E Depth-first Model-based GUI No Complex No 2.3.4 None Yes
A3E Targeted Systematic GUI No Complex No 2.3.4 None Yes
ACTEve Systematic GUI No Simple Yes 2.3 SDK No
ANDLANDIS Guided random GUI No Simple No 4.2 Emu None No
AndroidRipper Model-based GUI No Simple Yes 4.X Apps No
Android Monkey Random GUI, Sys No Complex No Any None Yes
AppsPlayground Guided random GUI, Sys No Complex No ? Emu SDK No
BRAHMASTRA Model-based GUI No Simple No ? Emu Apps No
CrashScope Systematic GUI, Sys No Simple No ? No No
CuriousDroid Guided random GUI No Complex No ? Apps No
DroidBot Guided random GUI, Sys No Complex No Any No Yes
DROIDMATE Guided random GUI Yes Complex No 4.4.2; 6.X Apps CI
Dynodroid Guided random GUI, Sys No Complex No 2.3.5 SDK Yes
EvoDroid Systematic GUI No Simple Yes ? Emu None No
IntelliDroid Systematic Sys No Simple No 4.3 None Yes
JPF-ANDROID Systematic GUI No Simple Yes ? None Yes
MobiGUITAR Model-based GUI No Simple Yes 4.X Apps Yes
MonkeyLab Model-based GUI No Simple No ? No No
ORBIT Model-based GUI No Simple Yes ? No No
PUMA Model-based GUI, Sys No Simple No 4.1 Apps Yes
SAPIENZ Search-based GUI, Sys No Complex No 4.X Apps Yes
SwiftHand Model-based GUI No Simple No 4.1 Apps Yes
TrimDroid Systematic GUI No Simple No ? No No

Table 4.1: Comparison of DROIDMATE with existing input generators.
See Subsection 4.2.1 for legend.

that no other tool can monitor the Android API surface to the extent and with
level of detail as required by DROIDMATE, while retaining the app stability due
to low intrusiveness of the instrumentation used by DROIDMATE. Based on the
published evaluation set and employed instrumentation framework, we classified
any given generator as being able to handle either only simple apps or complex
apps. Simple apps are usually manually hand-picked apps for proof-of-concept
evaluation. However some tools might be able to handle only simple apps even
if the evaluation study was conducted on thousands of apps. This is caused by
these tools using instrumentation frameworks that are highly unstable, causing
many apps to break. This is the case with e.g. PUMA. Complex apps means we
found no reason to think given generator won’t be able to handle apps on the
market that have the most complex bytecode structure. A generator requires

47

4.3. DROIDMATE OVERVIEW

an app source (“Src”) and supports given Android OS. It might work only on
emulators. If we were unable to determine, based on the publication or source
code (if available), the Android version supported, we denote this with question
mark. Some tools might require instrumentation either of the explored apps,
or the Android framework itself (SDK). Finally, a tool is easy to extend by
practitioners if it is open-sourced. We denote DROIDMATE as CI to signify it is
not only open-source, but also has cross-OS Continuous Integration builds and
other artifacts available making DROIDMATE considerably easier to run, adopt
and extend by other practitioners.

4.3 DroidMate overview
DROIDMATE [103] is an automatic GUI input generator for Android apps. DROID-
MATE fully automatically explores behavior of an Android app by interacting
with its GUI. DROIDMATE repeatedly reads the device state, makes a decision
and interacts with the GUI, until some termination criterion is satisfied. While
this happens, DROIDMATE monitors (records) which Android framework API
method calls have been made by the subject app and by which GUI interaction
they have been triggered. This process is called an exploration of the application
under exploration (AUE). DROIDMATE is fully automatic: After it has been set
up and started, the exploration itself does not require human presence.

DROIDMATE can be run from command line or through its Java API. As
input, it reads a directory containing Android apps (in form of .apk files). It
outputs a serialized Java object representing all the data obtained from the
explorations, that is, it outputs an exploration log. It also outputs .txt files
and charts having various human-readable information extracted from the ex-
ploration log, including its textual summary called exploration summary.

DROIDMATE can click and long-click the AUE’s GUI, (re)start the AUE, and
it can terminate the exploration. Any of this is called an exploration action.
Details are given in Subsection 4.7.1. DROIDMATE’s exploration strategy decides
which exploration action to execute based on (a) the XML window hierarchy of
the currently visible device GUI, which it wraps into an object representation
called GUI snapshot, and (b) the set of Android framework API methods that
have been called after last exploration action, i.e. a set of API method calls.

DROIDMATE is implemented in JVM languages: Java, Groovy and Kotlin.
Most of the code is executed on the host machine, i.e. the developer or user
machine. Small parts of DROIDMATE are executed on the Android device, as ex-
plained in detail in Section 4.8 and Section 4.9. DROIDMATE is built with Gradle

48

4.4. KEY FEATURES

and works on all major operating systems: Windows, macOS and Linux. This
thesis describes DROIDMATE as of May 2017, located in GitHub repository [103].
It is composed of over 37,000 nonempty lines of code. This includes comments,
sample DROIDMATE API usages, almost 2,000 lines of Gradle build scripts and
over 9,000 lines of an automated regression tests. We exclude generated code in
the count. Primary development of DROIDMATE was done on Windows 7 and
10. DROIDMATE has continuous integration build done on Linux [103] and has
seen multiple successful deployments on macOS.

4.4 Key features
DROIDMATE supports Android 4.4.2 and 6. It is designed to be run overnight on
multiple apps without human presence, saving exploration summaries obtained
from explorations of all the applications. Thus, DROIDMATE is highly robust,
handling many exceptional scenarios caused by the AUE or even by entire An-
droid device crashing. Depending on the concrete type of failure, DROIDMATE
will retry last failing operation, restart the AUE, abort exploring the AUE and
continue with next one, or even restart the device. When all options are ex-
hausted, DROIDMATE will gracefully terminate the exploration and save any
results and crash logs obtained thus far.

DROIDMATE doesn’t require Android device to be rooted to work, makes
no modification to the underlying OS and makes only minimal modification
to the explored apps, called inlining, as explained in progressively more detail
in Section 4.6, Section 4.9 and Section 4.11. This way even the most complex
apps retain their original stability and can be explored by DROIDMATE, as long
as they don’t do integrity checks, which is very rare.

DROIDMATE provides facilities to determine tested device GUI structure, to
act on its GUI elements and to read the details of the Android framework API
methods called by the AUE, including their signatures, parameter names and
values, and stack traces. All this information becomes immediately available
during the exploration, and thus can be used to adapt it on the fly.

Furthermore, by design, the exploration strategy, including its termination
criterion, is replaceable without recompiling DROIDMATE itself. Changing the
methods being monitored requires trivial .txt file modification and recompila-
tion. Recompilation, after minimal initial setup, is a one step process, detailed
in the tool documentation [103]. To sum up: DROIDMATE is designed to be
usable by other researchers and to work reliably even on the most complex of
apps.

49

4.5. ARCHITECTURE

4.5 Architecture
Following sections describe the architecture of DROIDMATE, split into following
elements: execution phases, components, modules and resources.

Execution phases give a holistic view of how DROIDMATE operates. Starting
from reading all its inputs, through overview of the operations DROIDMATE does
in sequence, ending at producing all the outputs.

Components are core conceptual entities, spread across many modules and
using many resources. We distinguish three components: exploration component
(Section 4.7), GUI automation component (Section 4.8) and monitoring compo-
nent (Section 4.9). Exploration component is the one running the show. The
remaining two components exist to support it and can be considered its subcom-
ponents. The host machine part of the exploration component is represented by
the Exploration class in the command module, and all the supporting classes
that are being used from within the Exploration class. The remainder of the
exploration component is present on the device, in form of device parts of the
remaining two components.

Both monitoring and GUI automation components are spread across many
modules, with majority of their functionality being located on the Android
device, not on the host machine, as opposed to the exploration component. The
details are given in Section 4.10.

Modules are compilation units. Each module maps to one file system direc-
tory. In Section 4.10 we give overview of each module and their relationships.

Resources are files required at DROIDMATE runtime. The most prominent
resources are .apk files of the apps to explore, the same .apk files after inlining,
list of monitored API methods and the monitor .apk. In Section 4.11 we discuss
resources in detail.

Below we discuss components using the problem domain language, which
might not always map directly to the object-oriented classes of the underlying
implementation, yet the inconsistencies are minimal, if any.

4.6 Execution phases
Execution of DROIDMATE is organized into four phases. The inlining phase is
stand-alone. Initialization, processing apks, and wrap-up are three subsequent
phases of a proper DROIDMATE run. DROIDMATE reads all its inputs close to
the beginning of the initialization phase and does most of the interesting work
in the apks processing phase. It produces exploration log for each application

50

4.6. EXECUTION PHASES

immediately after it is done exploring it. Diagnostic logs are output during all
the phases. Finally, close to the end of wrap-up phase, it outputs an aggregated
human-readable logs for manual analysis, including exploration summaries and
charts.

Description of execution phases follows:

Inline To enable monitoring of the Android framework API method calls made
by the AUE during exploration, the AUE .apk file has to be modified by
process called inlining before it is given as input to DROIDMATE explo-
ration. Conceptually, inlining takes as input a directory containing a set of
.apk files to inline and outputs the inlined .apk files to appropriate output
directory. Inlining is a part of the monitoring component and is described
in detail in Section 4.9 and Section 4.11.

From the implementation standpoint, inlining is done during a stand-alone
DROIDMATE run with appropriate command line flag making it inline the
.apk files instead of conducting proper exploration. The command line
arguments also have to give the path to a directory that contains the input
apks and to a directory that will contain the inlined apks. Some of the
DROIDMATE functionality for the initialize and wrap-up phases, described
below, is also executed during the inlining phase, like e.g. initializing the
diagnostic logging and reading the .apk files from the file system.

Initialize Initialization is the first phase of proper DROIDMATE execution. Dur-
ing this phase DROIDMATE reads all its inputs, starting with parsing com-
mand line arguments. DROIDMATE accepts 48 different command line
arguments. Conceptually, most of them can be split into two categories:
(a) paths to directories with various inputs and outputs (like .apk files and
generated logs) and (b) knobs to fine-tune the exploration (Section 4.7),
like how often to reset it or which random seed to use.

After parsing the arguments into Configuration class, DROIDMATE
constructs an instance of the ExploreCommand class and executes it.
The command first reads the set of input apks from directory whose path
was parsed into Configuration. Next, it sets up the Android device
on which the AUEs will be explored. The setup phase initializes the moni-
toring component (Section 4.9) and the GUI automation component (Sec-
tion 4.8). When this is done, DROIDMATE is ready to start processing the
apps contained in the input .apk files.

Process apks The input apks are now processed sequentially. For each .apk

51

4.7. EXPLORATION COMPONENT

file, the app contained within it is installed on the device via ADB (An-
droid Debug Bridge), which is an executable that is a part of the Android
SDK distribution. Next, the app is explored in an exploration loop from
the exploration component, to be finally uninstalled and have its explo-
ration data serialized to the hard disk in form of an exploration log. The
exploration loop is the heart of DROIDMATE and is described in detail
in Section 4.7.

If exploration of any given app fails, DROIDMATE will make an attempt
to restart it. If it doesn’t help, DROIDMATE saves any results obtained
thus far and proceeds with exploring the next apps in queue. If no explo-
ration of any app can continue (because e.g. the Android device has been
disconnected) DROIDMATE detects that and gracefully terminates.

Wrap-up After processing of all the apks finishes, the device is cleaned up from
the parts of the monitoring component and the GUI automation compo-
nent. Next, the exploration logs are used to produce detailed human-
readable reports composed of textual exploration summaries, charts and
textual tabular data from which the charts were generated. The reports
detail how many unique API calls have been seen, how many GUI interac-
tions happened during each app exploration and so on. After the report
is generated, DROIDMATE proceeds to produce final diagnostic logs: Any
exceptions that have been gathered during exploration are logged plus the
diagnostic summary log of DROIDMATE run is output.

4.7 Exploration component
Exploration is the heart of DROIDMATE. After the AUE has been successfully
installed on the device, DROIDMATE executes reset exploration action which
launches main activity of the AUE. The main activity is the component of AUE
that gets launched when the user presses the app icon in the apps list. Its
identifier can be obtained from the .apk file with the AAPT (Android Asset
Packaging Tool) tool from Android SDK. DROIDMATE then operates in a loop,
as seen on Figure 4.1, whose centerpiece is the exploration strategy, as described
in detail in Subsection 4.7.1.

The exploration strategy is called for the first time with a result of conducting
a reset exploration action. It takes as input exploration action run result which
contains two elements that pertain to the device state after last exploration
action was conducted:

52

4.7. EXPLORATION COMPONENT

Figure 4.1: The exploration loop

• Information on the displayed GUI XML window hierarchy, wrapped in a
GUI snapshot object. The window hierarchy is composed of Android’s
View objects [70].

• Logs obtained from monitored calls to Android framework API methods.

Given this information, exploration strategy decides which next exploration
action to conduct. Exploration action can be any of: click, long-click, reset,
terminate. The actions are then executed on the device, handling and recovering
from a plethora of possible failures, up to and including intermittent loss of
connection to the device. Exploration continues until some termination criterion
is met, like time limit or limit on the count of exploration actions conducted.

The data output from the exploration is persisted as serialized Java objects,
called exploration logs. DROIDMATE can produce various textual reports and
charts from the serialized data. The data is very detailed and sufficient to
replay the exploration, either manually or automatically.

4.7.1 Exploration strategy
Algorithm 1 represents exploration strategy of DROIDMATE. Exploration strat-
egy operates on a high abstraction level, taking as input a GUI state and return-
ing an exploration action. The GUI state contains an abstract representation of
the GUI, hiding all the implementation details irrelevant for deciding what to
explore next. It is extracted from GUI snapshot, which in turn is a wrapper

53

4.7. EXPLORATION COMPONENT

Algorithm 1 Exploration strategy.
Require: GUI State S
Ensure: Exploration action A

1: procedure decide(S)
2: if Terminate(S) then
3: A← terminate exploration
4: else
5: if Reset(S) then
6: A← reset exploration
7: else
8: A←ExploreForward(S)
9: end if

10: end if
11: UpdateInternalState(S,A)
12: return A;
13: end procedure
14:
15: procedure exploreForward(S)
16: C ← view context of S
17: V S ← views in C with minimal number of interactions so far
18: V ← pick at random from V S
19: A← choose interaction action with V
20: UpdateKnownViewContexts(C)
21: UpdateInteractionsCount(V ,C)
22: return A
23: end procedure

over XML window hierarchy dump obtained from the device via UIAUTOMA-
TOR, a GUI automation framework from Android SDK [101]. The exploration
action in turn is an abstract representation of a possibly multi-step operation on
the Android device like click, long-click, reset or terminate. DROIDMATE then
translates this abstract representation into actual operations on the device, exe-
cutes them, reads the resulting GUI state and API calls logs, and returns control
to the exploration strategy.

The exploration strategy takes as input API calls made, in addition to the
GUI state. They are both wrapped together in exploration action run result, as
mentioned earlier. In current implementation, though, we do not leverage the

54

4.7. EXPLORATION COMPONENT

API calls information to decide which exploration action to conduct next. Thus,
we omit it in Algorithm 1 and in further discussion.

Exploration actions are composed of many operations including reading de-
vice state, possibly multiple times, and manipulating the device, possibly mak-
ing multiple attempts at it. The click and long-click exploration actions, in
addition to multiple state reading operations (to obtain XML window hierarchy
and saved API call logs), conduct simple device manipulations: They just exe-
cute one GUI action, directly mapped to the UIAUTOMATOR API, as described in
Section 4.8. Reset exploration action is more complex and can execute multiple
press home GUI actions, turn Wi-Fi on action as well as use ADB to execute
clear app package and launch main activity operations. Its goal is to bring
the device to a “clean slate” state and relaunch the AUE. Terminate exploration
action just clears the installed AUE by clearing its package via ADB.

The exploration strategy implemented in DROIDMATE is inspired by Dyn-
odroid [46]. The key idea is to interact with views [70] (i.e. GUI elements, also
called widgets) randomly, but give precedence to views that have been so far in-
teracted with the least amount of times. If multiple views have been interacted
with minimal amount of times, we pick one randomly. A view interaction is ei-
ther a click or a long-click (2 seconds). Interaction can happen only with views
that are enabled as well as clickable, long-clickable, or checkable, as given by the
attributes of XML window hierarchy obtained via UIAUTOMATOR (Section 4.8).

Each view is considered unique in its given context (also known as widget
context)—that is, within the set of views that can be interacted with and appear
on the same screen.

Thus, if a view appears in different contexts (i.e., surrounded by different
GUI elements), it will be explored again in each of them. Contexts are different
if they differ by at least one view. A view can differ by its fully qualified class
name, its resource ID (if any), its content description (if any) and the rectangle
describing its location on the screen. It can also differ by its label, unless the
view’s class has <Switch> or <Toggle> in its name.

Views can be black-listed if they lead to uninteresting situations. This in-
cludes the AUE crashing, launching a different app (like Google Play Store or
Settings) or in any other way getting out of scope. A black-listed widget will
not be interacted with again. All such situations result in DROIDMATE resetting
the exploration. In addition, the strategy can be configured to reset the AUE
exploration every given number of interactions. This makes it avoid getting
stuck exploring a small subset of the app’s GUI.

If, after launch, there are no views that can be interacted with, the explo-
ration strategy resets the exploration. If, after reset, there are still no views, the

55

4.8. GUI AUTOMATION COMPONENT

exploration of current app terminates. The exploration also terminates when
the termination criterion is met, i.e. when the configured time limit or actions
limit is reached.

4.8 GUI automation component
DROIDMATE GUI automation component is responsible for interacting with the
Android device GUI, allowing execution of all the exploration actions as listed
in Subsection 4.7.1. It also allows inspection of properties of GUI elements
of currently displayed screen on the device, enabling the executed exploration
actions to yield current GUI snapshot. The operations conducted with this
component are done via two means: ADB and UIAUTOMATOR [101], the official
Android GUI automation framework.

UIAUTOMATOR is implemented on top of JUnit, adding API that enables
manipulation of the device GUI, providing methods to issue commands like e.g.
“click on a visible button with label send SMS”. We call such commands GUI
actions. GUI actions are constituents of exploration actions. In addition, UIAU-
TOMATOR API allows for retrieving XML window hierarchy, which serves as a
basis of GUI snapshot.

To use UIAUTOMATOR, developer is expected to write a UIAUTOMATOR JU-
nit test having a predefined sequence of steps to be conducted on the GUI when
the test is executed. The tests are written on the developer machine. Next, they
are packed as .jar file in case of Android 4.4.2 and as .apk file in Android ≥ 6
and higher. In both cases they are pushed/installed on the Android machine
using ADB. Next, appropriate ADB command is issued to make the tests start
executing.

Unfortunately, the standard scenario of using UIAUTOMATOR is not what is
required by DROIDMATE. The input generator cannot just execute a sequence
of GUI actions and be done with it. Instead, the generator has to read GUI
snapshot after each exploration action. This GUI snapshot, possibly together
with monitored API call logs, is used by exploration strategy to determine which
next exploration action to execute. The sequence of commands to be executed
is not known up-front. To accommodate for that, DROIDMATE requires for the
UIAUTOMATOR test to be able to await commands from the host machine, i.e.
the machine on which most of DROIDMATE code runs (the remaining code runs
on the connected Android device). The test also has to send back the XML
window hierarchy dumps when requested by the host machine.

We implemented the capability of awaiting commands by introducing the no-

56

4.9. MONITORING COMPONENT

tion of UIAUTOMATOR-daemon. The UIAUTOMATOR-daemon is a UIAUTOMA-
TOR test that has TCP server running, listening to commands from the host
machine. It is capable of receiving commands via TCP from the host like click
and long-click on specific screen coordinates, turn Wi-Fi on, press home and
similar. It can also send back via TCP the XML window hierarchy dump, which
will be wrapped in the host machine into a GUI snapshot.

All the received commands are executed by making calls to the UIAUTOMA-
TOR API. One exception is the Wi-Fi manipulation, which in case of Android 6
is executed through appropriate Android system service instead of UIAUTOMA-
TOR API calls. In case of Android 4.4.2 the daemon just simulates the actions
user would do on the GUI to manually turn on the Wi-Fi.

During the initialization phase of DROIDMATE (Section 4.6) first the .jar/.apk
with the daemon is pushed to the device via ADB, then started. The host
machine also forwards appropriate TCP ports using ADB. Next, the TCP server
of the daemon signals it is ready by outputting appropriate message to logcat,
Android’s logging mechanism. As soon as host reads the message (also via ADB),
it establishes TCP connection with the server and is ready to send commands and
receive output like XML window hierarchy dumps. The TCP server is terminated
during wrap-up phase of DROIDMATE after it received appropriate command
from host.

Not all exploration action steps can be executed via UIAUTOMATOR-daemon.
All the remaining steps, like launch main activity or reset all app data are done
with ADB, without any assistance from UIAUTOMATOR. AAPT tool is used to
extract AUE metadata to obtain the name of main activity to be launched.

4.9 Monitoring component
DROIDMATE monitoring component is responsible for logging the set of called
Android framework API methods after each exploration action was conducted
on the device and returning these logs to the exploration strategy. The logs
contain the full method signature, parameter names and values, stack trace
and thread ID. The monitoring component works by intercepting API method
calls on Android device and redirecting them to code that logs all the data
about given call before the call is actually executed (based on AppGuard [10],
as explained below). The logs are then retrieved by the host machine using
a TCP client/server pair. The monitoring component is composed of following
parts:

Inlined AUE A rebuilt and resigned with debug key AUE which has its byte-

57

4.9. MONITORING COMPONENT

code modified. The bytecode has its Application class modified in a
way making the AUE load Monitor class from an .apk present on the
device on AUE startup (usually first launch of its main activity).

Monitor A resource whose centerpiece is a Monitor class, loaded by the in-
lined AUE on startup. Monitor contains definitions of which Android
framework API methods have to be redirected to enable logging their calls,
plus it contains TCP server for sending these logs back to the host machine.
The monitor has to be pushed to the device in an .apk file, so it can be
found and loaded on the inlined AUE startup. As the monitor is indepen-
dent of the inlined .apk, it can be easily rebuilt with new set of methods
to monitor: They are defined in a .txt file easy to edit by a human, de-
scribed in more detail in Section 4.11. The monitor is rebuilt on each full
DROIDMATE build, as discussed in detail in the same section.

TCP server The TCP server runs from the Monitor class, one instance for
each process spawned by the AUE. The TCP servers are being asked by a
TCP client located on a host machine at appropriate times while executing
exploration actions to retrieve the API calls logged thus far.

TCP client Located on the host machine. Sending and receiving endpoint of
commands and data directed to/from TCP servers located on the device.
Used to gather API call logs.

During inlining phase (Section 4.6) DROIDMATE ensures the input .apk is
inlined and thus, ready to load Monitor on the AUE startup. Next, in ini-
tialization phase, DROIDMATE pushes to the device an .apk file with Monitor
class Dalvik bytecode, so it will be found and loaded by the AUE. As soon as
the AUE .apk is installed and the app launched via ADB during the processing
apks phase of DROIDMATE, the inlined bytecode finds and loads the monitor,
reads its method redirection declarations and starts logging calls to the redi-
rected methods, recording the logs in internal field. The Monitor class also
launches TCP server, listening for any commands from the host machine, most
importantly listening for requests to send the so far logged API calls data. Each
of the processes spawned by the AUE has its own instance of Monitor class
and thus server, all of which are queried by the host machine. During wrap-up
phase DROIDMATE uninstalls the .apk, also stopping all the TCP servers.

The inlining of apks is done with inliner, a component of inline reference
monitor system extracted from AppGuard [10]. The capability of redirecting
(intercepting) Android framework API method calls is implemented in different

58

4.10. MODULES

command

apk-inliner

reporter

core

lib-kotlin

lib-common

uiautomator-daemon-lib

buildSrc

Figure 4.2: Compile-time dependencies of DROIDMATE modules.
buildSrc is compiled first and most other modules depend on it.

ways depending on the Android OS version. On Android 4.4.2 it is done with
another component of AppGuard, the instrumentation component [10]. On An-
droid 6 and newer the same system cannot be used because Android runtime
has changed to ART. Instead, we use ArtHook [72] framework. The differences
are encapsulated in the Monitor class and .apk that contains it. There are two
versions of the .apk file, each incorporating API and library with the required
redirection/instrumentation framework. DROIDMATE uses appropriate one dur-
ing its run, as configured by a command line argument. The process of building
these two monitor apks is described in more detail in Section 4.11.

4.10 Modules
The modules of DROIDMATE and their compile-time dependencies are given
in Figure 4.2. Each DROIDMATE module is in fact a Gradle project, that is, it
is built with a build.gradle build script residing in the module’s root direc-

59

4.10. MODULES

tory. Entire DROIDMATE is built with Gradle, as explained in the DROIDMATE
documentation [103].

The command module is the entry point of DROIDMATE, i.e. it contains
the main method. The main method sets up logging, parses command line
arguments into configuration and runs one of the available commands, handling
any exceptions thrown. The commands are inline, explore or report. Inline
command corresponds to the Inline execution phase described in Section 4.6;
explore command runs all the remaining three phases; and the report command
runs only a subset of the wrap-up phase that produces a DROIDMATE run report.

The core module contains bulk of DROIDMATE logic, including the build
logic in its build.gradle script. The module internal structure is elaborated
on in Subsection 4.10.1.

The apk-inliner module exposes the ApkInliner class which takes as an
input a normal .apk file and outputs its inlined version, as required by the moni-
toring component described in Section 4.9. The module exposes a programmatic
API, but it can be also called as a stand-alone program.

The reporter is used to generate a DROIDMATE run report containing all the
human-readable text files and charts produced from the exploration log.

The uiautomator-daemon-lib provides serializable classes sent via TCP be-
tween the the host machine and the UIAUTOMATOR-daemon, located on the
device.

The lib-common module is an infrastructure module. That is, it contains
many classes that are used ubiquitously in DROIDMATE. Thus, it serves similar
purpose to the infrastructure layer of the core module, as explained in Subsec-
tion 4.10.1. Yet lib-common is even lower level, i.e. the core module infrastruc-
tural layer depends on it. In addition, lib-common exists to be used by all other
modules, not only core or modules dependent on core.

The lib-kotlin module serves the same purpose as lib-common module, but it
is implemented in the Kotlin programming language. It has to be separate from
lib-common to avoid potential problems caused by mixing multiple languages
in the same module.

The buildSrc is even lower level module than lib-common. BuildSrc is special
in the sense it gets prebuilt with Gradle before any other module gets built. This
is because it contains values that have to be shared between modules and Gradle
build scripts (build.gradle files) that build these modules.

60

4.10. MODULES

Tools Exploration model

Exploration-Device
Bridge

Device
Model

Infrastructure

Figure 4.3: Compile-time dependencies of DROIDMATE’s core module
conceptual layers. Each layer represents a set of JVM classes organized
into packages. There is a dependency between layers if any of the
classes in given layer depends on any of the classes in the other layer.

4.10.1 Core module
Conceptually, core is split into five layers: tools, exploration model, exploration-
device bridge, device model and infrastructure. The dependencies between the
layers are given in Figure 4.3.

The infrastructure layer provides utility classes for all other layers in the
core module and in some cases for the command and reporter modules.

The tools layer provides high-level abstractions enabling working with An-
droid devices. This includes a class to obtain object representation of .apk files,
a class to setup and tear-down properly setup Android device, a tool to do
the same with an .apk file on that device, and a factory creating instances of
AndroidDevice class.

The exploration model layer contains the domain model of the exploration,
modeling concepts like exploration action, exploration strategy or exploration
output.

The exploration-device bridge layer bridges access to the device model by
adding additional capabilities increasing robustness and abstracting away the
details of reading logs from the device. The main abstraction is provides is
RobustDevice class, decorating AndroidDevice class, making it resistant
and able to recover from AUE crashes and device crashes, among others.

61

4.10. MODULES

The device model layer models the device. The most important class is
AndroidDevice, which is a façade used by the host machine to communicate
with the device. Other relevant classes are: UiautomatorWindowDump, rep-
resenting the Android device GUI state, and AndroidDeviceAction, a class
implementing the exploration action from exploration model layer in the domain
of Android.

62

4.10.
M

O
D

U
LE

S

Inlined apks

lib-common.jar

monitor-hook.jar

MonitorJavaTemplate.java

monitor_api19.apk
monitor_api23.apk

uiautomator-daemon.jar

uiautomator2-daemon.apk
uiautomator2-daemon-test.apk

uiautomator2-daemon

core

lib-common

uiautomator-daemon

uiauomator-daemon-lib

monitor-generator

monitor-hook

monitor-template

uiautomator2-daemon-proxy

apk_fixtures_src

buildSrc

apk-inliner

appguard-inliner.jar
appguard-loader.dex

monitored_apis.txt

monitor-apk-scaffolding

instrumentation.jar
arthook.jar

logback.groovy

Input apks

Figure 4.4: Resource dependencies of DROIDMATE modules. Solid arrows denote compile-
time dependencies. Dashed arrows denote resource dependencies. Green rectangles denote
DROIDMATE modules. Rectangles with clipped corners denote resources. apk_fixtures_src
is a set of .apk fixtures for testing built by a separate Gradle project. Input apks have to be
provided, they do not come with DROIDMATE source. buildSrc is compiled first and most
other modules depend on it.

63

4.11. RESOURCES

4.11 Resources
Key part to understanding inner workings of DROIDMATE is what resources
it uses and how they are obtained. DROIDMATE requires resources to run in
addition to inputs.

The names of the resources used by DROIDMATE and how they are processed
during build by supporting modules are given in Figure 4.4. The diagram men-
tions several modules not discussed previously in Section 4.10. These modules
exist solely to produce relevant resources and are explained below, while dis-
cussing the resources produced.

Logback is a logging framework leveraged by DROIDMATE. logback.groovy
is its configuration file, setting up routing of output logs to various files.

DROIDMATE consumes as input directory with inlined apks, which are raw
input apks inlined (injected) with bytecode of the apk-inliner. A stand-alone
project, apk_fixtures_src, contains a set of inlined apk fixtures used for
DROIDMATE end-to-end regression testing.

appguard-inliner.jar and appguard-loader.dex are parts of the
AppGuard [10] inliner component, extracted from it and adapted to work with
DROIDMATE. During inlining, the inliner bytecode payload is intertwined into
the AUE .apk file to enable monitoring of the API calls. The inliner bytecode pay-
load living in the .apk file loads and calls at runtime the DROIDMATE Monitor
bytecode.

To enable IDE-supported development, the device-deployed Monitor class
is constructed from a template file, MonitorJavaTemplate.java. The class
depends at runtime on types from lib-common.jar. The Monitor has a
compiled-in list of Android API methods to monitor generated from easily ed-
itable file, monitored_apis.txt. The monitoring logic is extensible: one
can extend it by editing the monitor-hook module. The underlying library to
natively interface with Android OS to record the monitored method calls in-
cluding arguments, return values etc., is instrumentation.jar in case of
Android 4.4.2 (API 19) and arthook.jar in case of Android API 23.

Everything is wired together by the monitor-generator module and inserted
into the monitor-apk-scaffolding project. Depending on which framework was
used, either monitor_api19.apk or monitor_api23.apk is output. While
the entire process is complex due to various extensibility points and development
convenience, the output .jar is built in one automated step.

Separately from the inlined .apk, and monitor_*.apk, an UIAUTOMATOR-
daemon is deployed to the device to read the XML window hierarchy of the GUI
during exploration and to execute GUI actions. The daemon does both of these

64

4.12. LIMITATIONS

by calling into UIAUTOMATOR framework. Depending on the Android version,
two different variants of the daemon are deployed, resulting in different .jar
files. The daemon shares some types with the core module via the uiautomator-
daemon-lib module.

4.11.1 Monitored API methods list
The complete list of monitored API methods used in experiments described
in Chapter 6 is given in Appendix B. This list pertains to Android 4.4.2 (API
19). The API list is based on the list used internally by AppGuard. However,
we had to spend significant manual effort into sanitizing it, removing redundant
methods (i.e. methods just delegating to other monitored methods) and adding
missing methods, as the list was outdated and incomplete. We analyzed the
Android API documentation to find out missing methods from the groups of
relevant monitored APIs, which have been added since the AppGuard list we
used was obtained. The set of modifications for Android API 19 and 23 had to
be different. There are some methods that are present in Android 4.4.2 but not
6, and vice versa. The monitored_apis.txt file has annotations understood
by the monitor-generator to ensure right set of methods is monitored for the
right Android OS version.

4.12 Limitations
DROIDMATE has several limitations:

• To enable monitoring of API method calls, the AUE has to have its bytecode
modified and it needs to be resigned with a debug key. As the built-
in Google apps like Maps or Contacts cannot be modified, DROIDMATE
cannot obtain API call logs from them. Furthermore, If the app does
remote integrity check on startup, it will fail, most likely just stopping
upon startup.

• As exploration strategy depends on the XML window hierarchy of the
explored app, it will not work on games and other apps using native de-
velopment kit to render screen contents, like maps. Such apps have no
meaningful XML representation of their screen.

• ArtHook is compatible only with ARM-based architectures, meaning if
one wants to use DROIDMATE on Android 6 and be able to monitor calls

65

4.12. LIMITATIONS

to API methods, one is forced to either use real ARM-based Android device
or unacceptably slow ARM-based emulator. The fast emulators are Intel-
based and thus incompatible with ArtHook.

• Due to limitations of the the monitoring component used for Android
4.4.2, DROIDMATE cannot monitor system calls made from native code [10]
when running on this Android version. ArtHook, used with Android 6,
can monitor such calls.

• The instrumentation framework used for monitoring API calls on Android
4.4.2 cannot monitor some non-native methods, most notably methods of
SmsManager. Fortunately, this limitation is not present in ArtHook.

• Any application that requires login credentials needs to have additional,
manually provided code that will guide DROIDMATE to login with creden-
tials which were previously manually provided. Otherwise DROIDMATE
will be limited to exploring only the functionality available without log-
ging.

• DROIDMATE at this point has only partially implemented support for in-
putting text into text fields. We do not use it in this thesis.

• DROIDMATE can click or long-click, but doesn’t support other gestures,
like swiping.

• DROIDMATE cannot send any system events, e.g. SMS received or Boot
completed.

66

Chapter 5

Sandboxing implementation:
BoxMate

Chapter 4 described our realization of an automated input generator, DROID-
MATE, which is one of the three components required to answer research ques-
tions posed in Section 3.7. This chapter discusses the remaining two compo-
nents: A sandbox policy inference engine and a sandbox. All these three compo-
nents together form full implementation of the sandbox mining concept which
we call BOXMATE.

Our realization of the sandbox policy inference engine leverages DROID-
MATE’s ability to monitor Android framework API method calls. We propose
two kinds of behavior policies: The API call enforcement policy and event-bound
API call enforcement policy. They are described in Section 5.2 and Section 5.3
respectively. We made two proof of concept implementations of the sandbox
component of BOXMATE: One based on AppGuard and one on Boxify, both
discussed in Section 5.4.

5.1 Android permission model
BOXMATE introduces its own sandbox limiting Android apps behavior. How-
ever, one should ask what is the protection guaranteed by Android itself in the
absence of BOXMATE and why it isn’t enough. Indeed, Android apps are al-
ready sandboxed by the operation system. According to the official Android
documentation on system permissions [75]:

67

5.1. ANDROID PERMISSION MODEL

“Android is a privilege-separated operating system, in which each
application runs with a distinct system identity (Linux user ID and
group ID). Parts of the system are also separated into distinct iden-
tities. Linux thereby isolates applications from each other and from
the system.

Additional finer-grained security features are provided through
a “permission” mechanism that enforces restrictions on the specific
operations that a particular process can perform, and per-URI per-
missions for granting ad hoc access to specific pieces of data.”

In addition, the security architecture section [85] of the same document
states:

“A central design point of the Android security architecture is
that no application, by default, has permission to perform any oper-
ations that would adversely impact other applications, the operating
system, or the user. This includes reading or writing the user’s pri-
vate data (such as contacts or emails), reading or writing another
application’s files, performing network access, keeping the device
awake, and so on.

Because each Android application operates in a process sandbox,
applications must explicitly share resources and data. They do this
by declaring the permissions they need for additional capabilities
not provided by the basic sandbox. Applications statically declare
the permissions they require, and the Android system prompts the
user for consent.”

Comprehensive description of Android applications security is given in [86].
Practically speaking, Android app developer will have to declare permissions

required by the app in its app manifest XML file [65] and the end-user will have
to allow these permission when using the app. The permissions, in turn, guard
Android framework API method calls. If an application tries to call an API
method without having appropriate permission to access it, most of the time a
SecurityException is raised [84]. Unfortunately, it is not completely clear
which API methods require which permissions. Finding exact mapping between
the permissions and API methods has been a subject of extensive studies [24, 7].

All normal permissions, as listed in [87], are always granted automatically
by the OS when requested in the app manifest [88]. Granting these permissions
poses little risk to the user’s privacy or the operation of other apps. For example,
permission to set the time zone is a normal permission.

68

5.1. ANDROID PERMISSION MODEL

Dangerous permissions, as listed in [83], on the other hand, require user
confirmation. These permissions are assigned to permission groups. Up until
Android 5 (API 22), the user was presented with a list of permission groups to
endorse at install time. For example, if the app manifest declared it requires
READ_CONTACTS permission, the user was informed she has to grant access to
CONTACTS, i.e. she was presented with the name of an entire permission group
[83].

Since Android 6 (API 23), the permissions are no longer granted at install
time, but at runtime. According to documentation describing Android 6 [83]:

“If an app requests a dangerous permission listed in its manifest,
and the app does not currently have any permissions in the permis-
sion group, the system shows a dialog box to the user describing the
permission group that the app wants access to. The dialog box does
not describe the specific permission within that group. For example,
if an app requests the READ_CONTACTS permission, the system dia-
log box just says the app needs access to the device’s contacts. If the
user grants approval, the system gives the app just the permission
it requested.

If an app requests a dangerous permission listed in its mani-
fest, and the app already has another dangerous permission in the
same permission group, the system immediately grants the permis-
sion without any interaction with the user. For example, if an app
had previously requested and been granted the READ_CONTACTS
permission, and it then requests WRITE_CONTACTS, the system im-
mediately grants that permission.”

5.1.1 Android permission model is ineffective
The permission system is designed to be understandable to the user and help
prevent attacks, such as social engineering attacks trying to convince device
users to install malware [89]. In practice, however, it doesn’t work well. In a
survey of 308 Android users, Felt et al. [25] found that only 17% paid attention
to permissions during installation (as seen on Android 5 or lower), and only 3%
of all respondents could correctly answer three questions regarding permissions.
While the new permission model doesn’t ask for permissions at install time, one
can observe that many Android apps reduce the new permission model to the
old one: As soon as the user launches an app, a set of dialog boxes appears, one

69

5.1. ANDROID PERMISSION MODEL

per each permission group, asking the user to endorse all permission groups. As
a consequence, the permission model, even in its new incarnation, is ineffective.

One could argue users ignore the permissions because they are too generic
and are all or nothing propositions. Consider an application that requires regis-
tration. After you register, you receive SMS message to confirm you gave valid
phone number during registration. The application reads the message auto-
matically, to streamline the registration process. In addition, you can let the
app send SMS messages to paid numbers to unlock additional features. In such
scenario it would be natural for the user to allow the app to receive the au-
thentication SMS message, but forbid sending any paid messages in the future.
Unfortunately, the user is given the all or nothing proposition: Either block ac-
cess to SMS, making it impossible to even login into the application, or allow the
app to send, receive and read SMS messages, as dictated by the SMS permission
group [83]. All these actions can happen at any time, from/to any number and
also in the background, without user knowledge. Other permission groups suffer
from the same problem. Because of the genericness of the permission groups,
users possibly have learned that rejecting them will cripple the app to the point
of being useless.

Let us now assume the user is well versed in the permission system and
understands that rejecting given permission group doesn’t have to cripple some
apps, just disable some secondary features. Even so, because many permissions
are grouped together, and the permissions themselves are quite coarse-grained,
just allowing one critical permission group would allow the application to wreak
havoc if it is a malware pretending to be a benign app. Consider a case in which
you installed a project management application into which you want to import
contact data of a small group of people involved in the project. Turns out the
CONTACTS permission group forces you to allow the app to read, write and delete
all contacts. If the application is indeed malware, it can easily steal all your
contacts (INTERNET is a normal permission and thus allowed automatically [90])
or even delete them! In other words, the permissions are too coarse-grained
resulting in too large attack surface.

Given the shortcomings of the Android permission model, for our BOXMATE
implementation of the sandbox mining concept we propose new API-call based
security policies that aim at being more fine-grained and more meaningful, thus
hopefully getting proper user attention and significantly reducing attack surface.
The policies are described in Section 5.2 and Section 5.3.

70

5.2. API CALL POLICY

5.2 API call policy
As discussed in Section 5.1, built-in Android permission model is ineffective
and thus unfit for the sandbox mining concept. Instead of limiting ourselves
to groups of coarse-grained permissions, we propose our first behavior enforce-
ment policy: The API call enforcement policy. Sandbox using this policy oper-
ates not on a level of permission groups, but on a level of Android framework
API method signatures. If during the mining phase AUE will make a call to
getLastKnownLocation(String provider) but will never make a call to
getGpsStatus(GpsStatus status) then the first API call will be allowed
at runtime during normal usage but the second one will be blocked or will require
user confirmation, as per sandbox mining concept. If we would use Android per-
mission model, we would have to allow the app to access the LOCATION permis-
sion group, giving unrestricted access to all methods of LocationManager [91],
including the two just mentioned. Not only would it be ineffective, it would
prevent us from getting valuable, detailed information about the AUE behavior
based on the permissions it requests.

5.2.1 Distinguishing API calls
As explained in Chapter 4, we designed our input generator DROIDMATE to
enable monitoring Android framework API method calls by leveraging parts
of AppGuard. Because it is unknown which methods exactly require which
permissions, we had to determine the set of methods to monitor. As AppGuard
itself is a tool designed to give security and privacy-conscious end-users control
over which sensitive API calls are allowed, we reused the sensitive API methods
list used internally by AppGuard. After sanitizing the list and filling in the gaps
we ended up with 97 sensitive API methods. We discuss how we did it in detail
in Subsection 4.11.1. The full list of the used monitored API methods is given
in Appendix B. It pertains to Android 4.4.2 (API 19), as this was the most
recent version of Android at the time we conducted the experiments described
in Chapter 6.

For each call of a monitored API method, DROIDMATE records:

1. The fully qualified name of the API method called, including class and
method name and parameter and return types;

2. The thread ID and the entire thread call stack trace of the API call (starting
at Thread.run() or Dalvik’s native main());

71

5.2. API CALL POLICY

3. All arguments (actual runtime values of parameters), including security-
relevant ones, like e.g. ContentResolver resource URIs;

4. Properties of the triggering view, if any. The properties are displayed text,
associated resource ID, screen bounds, etc.

Most Android resources are uniquely identified by their specific set of An-
droid framework API methods. Parameter values of these method calls can
be ignored in most cases as they determine irrelevant details. For example,
a call to LocationManager.requestLocationUpdates(listener) de-
termines which listener to inform when a location has changed. Yet we are
interested only if appropriate call to LocationManager was made at all, nit
the listener.

However, one set of Android API methods heavily depends on the param-
eter values to identify the correct resource accessed. These methods pertain
to ContentResolvers—that is, Android equivalents of databases. Knowing only
that ContentResolver.query() was called is not enough, as the query may
relate to all kinds of sensitive resources. For ContentResolver calls, DROID-
MATE therefore also monitors the URI identifying the exact database, e.g.
content://com.android.contacts/data/phones.
Sometimes, URIs end with the numeric identifier of particular instance of the
resource being accessed: We consider all API calls differing only by this identifier
as equivalent.

Triggering view association

The triggering view is the GUI element which has been clicked or long-clicked
when conducting given exploration action on the AUE. Of course, in case of
exploration actions that reset or terminate, no such view is present. The API
calls made are associated with the view based on time: When the click or long-
click happens, DROIDMATE waits until GUI finishes updating and then reads
through TCP from the device all the API calls that have been recorded by the
monitor. In case there is no view present, the API calls are associated to the
reset or terminate exploration action in the same way.

API calls equivalence

We can now say that if during exploration two Android framework API calls take
place, we consider them distinct API method calls if and only if the called API
methods signatures differ. The only exception are calls to ContentResolver

72

5.2. API CALL POLICY

0 600 3,600 7,200 10,800

0
1
2
3
4
5
6
7
8
9

10
11
12

seconds elapsed

di
st

in
ct

A
P

I
m

et
ho

ds
ca

lle
d

Figure 5.1: DROIDMATE API call saturation of SNAPCHAT explo-
ration. After 10 minutes (600 seconds), DROIDMATE has made 11
distinct calls to API methods used by SNAPCHAT.

methods, in which the calls are considered distinct not only if the signature
differs, but also if the value of the URI parameter differs.

5.2.2 A Snapchat case study
As an example of how DROIDMATE explores application behavior, let us con-
sider the SNAPCHAT application. Figure 5.1 lists the number of unique API calls
discovered during testing. As we discover more calls, we say that API call satu-
ration occurs. This means we are getting closer to making all possible distinct
API method calls we can potentially make with given exploration strategy, which
is determined by the input generator. The actual distinct API method calls (in
order of discovery) are listed in Figure 5.2, including the identifiers of the GUI
elements that triggered them:

APIs 1-4 After a click on the login_button on the start view, SNAPCHAT
opens a socket (API 1) which allows establishing a connection to a HTTP
server. It also opens the camera (API 2), queries the current location
(API 3) and accesses account info via a URL connection (API 4).

API 5 Taking a picture (camera_take_snap_button) starts monitoring the
current location.

73

5.2. API CALL POLICY

APIs 6-7 Recording a video sets the video and audio sources for recording,
initializing the media recorder.

API 8 Later, DROIDMATE finds the SNAPCHAT “My friends” button (the unla-
beled element), which requires accesses to the image library.

API 9 SNAPCHAT allows for finding friends based on their phone number, re-
quiring access to contacts.

API 10 Saving a picture stores it to a database.

API 11 Previewing a snap deletes it after the preview is done.

[Button com.snapchat.android:id/login_button]
1 java.net.Socket: void <init>
2 android.hardware.Camera.open()
3 android.location.LocationManager.getLastKnownLocation()
4 java.net.URLConnection openConnection()

[Button com.snapchat.android:id/camera_take_snap_button]
5 android.location.LocationManager.isProviderEnabled()

[Button com.snapchat.android:id/camera_take_snap_button
(long-click)]

6 android.media.MediaRecorder.setAudioSource()
7 android.media.MediaRecorder.setVideoSource()

[unlabeled GUI element]
8 android.content.ContentResolver.query()

uri = content://media/external/images/media
[Button com.snapchat.android:id/contacts_permission_button]

9 android.content.ContentResolver.query()
uri = content://com.android.contacts/data/phones

[ImageButton com.snapchat.android:id/picture_save_pic]
10 android.content.ContentResolver.insert()

uri = content://media/external/images/media
[RelativeLayout com.snapchat.android:id/
snap_preview_relative_layout]
11 android.content.ContentResolver.delete()

uri = content://media/external/images/media/<number>

Figure 5.2: The 11 SNAPCHAT calls to sensitive API methods dis-
covered by DROIDMATE, and the events (in []) that first triggered
them.

The mined method calls provide a behavior description seen during the min-
ing phase of sandbox mining, later codified as behavior enforcement policy. No
other distinct API calls will be allowed by a sandbox in production than the
calls observed in the mining phase. Other distinct calls will require explicit,
contextualized consent of the user. Ideally, the 11 distinct API method calls

74

5.3. EVENT-BOUND API CALLS POLICY

mined with DROIDMATE should encompass all common, expected behavior, and
only it. This way it will be rare for a new, yet unseen distinct API method call,
to happen. Thus, the user burden on making the decision to allow given call or
not will be manageable. At the same time, the user will be presented with very
specific information about the new fine-grained behaviors, avoiding both flaws
of Android permission model, i.e. genericness and the “all or nothing” dilemma.

5.3 Event-bound API calls policy
By default, BOXMATE simply checks whether the app as a whole uses the same
distinct API methods as recorded and distinguished during exploration; we call
this API call enforcement policy. This policy allows for quick saturation dur-
ing mining, and thus few false alarms during enforcement (sandboxing phase);
however, it may be too coarse to prevent some attacks. For instance, once we
have seen that SNAPCHAT can read contact phone numbers, any function within
SNAPCHAT, including background tasks, would be allowed to do that. However,
as we have seen in Figure 5.2, SNAPCHAT accesses phone numbers only to allow
the user to find other SNAPCHAT users among her friends. How about restricting
contact access to this functionality only?

To this end, BOXMATE implements a more fine-grained enforcement pol-
icy. During sandboxing, event-bound API call enforcement policy also verifies
whether the API call was triggered by the same event as during mining:

1. In the mining phase, during exploration, BOXMATE records (event, API
call) pairs, where event is the identifier of the event-triggering GUI ele-
ment if present, or special identifier reset or terminate, depending on the
exploration action. The API call in turn is a call to a sensitive API method
associated with the event. The association works for all events as for trig-
gering views, as explained in Section 5.2.1. We call such pairs event-bound
API calls.

2. During sandboxing, upon each call to a monitored API method, API call’,
triggered by an event’, BOXMATE checks whether (event’, API call’) pair
was already found during mining; if not, the call is flagged. A flagged call is
either outright blocked or presented to the end-user, with contextualized,
human-readable information. The user has then to endorse or forbid the
call and all calls of such type in the future.

Since our “events” are primarily interactions with named GUI elements, and
as our API calls all refer to user-owned resources, the BOXMATE event-bound

75

5.3. EVENT-BOUND API CALLS POLICY

enforcement policy realizes the principle of User-Driven Access Control [54, 56],
namely, by tying access to user-owned resources to user actions in the context
of an application.

5.3.1 Distinguishing events
BOXMATE applies the following rules to identify events. All views (GUI elements)
in Android [70] have three features:

• A resource identifier r that associates views and programmatic actions
(<login_button>);

• A text label l possibly displayed on the screen (“Login”);

• A content description d that can be read out loud to the user as an acces-
sibility feature (“Login”).

While most of these features are defined in an XML layout file, all of them can
also be defined or changed at runtime; hence the need for a dynamic analysis.

BOXMATE stores an event e as a tuple e = (id, action):

id by default is the resource identifier r; if r is empty, id = d instead; and if
d is empty as well, id = l instead. We prefer identifiers to labels since
the latter may change during operation—for instance when changing the
app’s language.

action is the user interaction that triggers the event; for widgets (i.e. interac-
tive views like buttons), this is either a click or a long-click.

With these rules, two widgets are different even if they sport the same text
(“ok”), as long as they have different resource identifiers.

The following rules apply for special events:

• If all of r, l, and d are empty, e has the special value unlabeled. All
unlabeled events are treated as one, as there is no easy way of determining
which two unlabeled events are the same or different.

• If the thread ID is not equal to 1 (the GUI thread), e has the special value
background. Again, all background events are treated as one.

• If the app is reset (restarted) or exploration is terminated, e has the special
value reset. This captures events occurring during exploration start and
end, among others.

76

5.4. SANDBOXES

5.4 Sandboxes
The last element of BOXMATE, after an input generator and behavior enforce-
ment policy inference engine, is the sandbox. The sandbox has to be resistant
to tampering, otherwise a hacker could circumvent it, completely defeating the
guarantees provided by sandbox mining. The sandbox also has to be perfor-
mant at analyzing each API call or (event, API call) pair, otherwise it will make
the app being secured unusable. While in this thesis we focus on input genera-
tion and the policy inference, we also implemented a minimal proof-of-concept
of a sandbox by reusing fragments of two technologies: AppGuard and Boxify.
Both of them are described in the following section, including their flaws and
advantages.

An example of an early prototype of the sandbox showing a sandbox policy
violation to the user is shown on Figure 5.3. The dialog box look and feel is
the same and independent of the sandbox implementation used: AppGuard or
Boxify.

5.4.1 AppGuard
AppGuard by Backes et al. [10] is a framework for securing untrusted Android
applications which builds upon the concept of inline reference monitoring (IRM).
The key idea of IRM is to rewrite an untrusted application such that the reference
monitor that enforces the security policy is embedded directly into the untrusted
app’s code. To this end, AppGuard takes an untrusted app and user-defined
security policies as input and produces a secured self-monitoring app which can
run on unmodified Android devices, even without root access.

Technically, AppGuard diverts control flow towards the security monitor by
modifying references to the monitored, security-relevant methods in the Dalvik
Virtual Machine’s internal bytecode representation. More precisely, by modify-
ing key data structures, such as virtual method tables, in the VM’s memory at
runtime, AppGuard can efficiently intercept calls to sensitive API method calls
from Java code.

AppGuard has several limitations:

• To enable method interception, the app under monitoring needs to have
minimal change to its bytecode made, making sure it loads the monitor
and starts monitoring the declared methods on startup. While the changes
to the app bytecode are minimal, this technique still modifies the app

77

5.4. SANDBOXES

signature and requires resigning with non-genuine developer key, and thus
will not work on apps doing developer signature integrity checks.

• AppGuard can monitor Java methods invoked from native code, but it
cannot monitor system calls made from native code.

• As the AppGuard monitor initialization code is baked directly into the
apps’ bytecode, a malicious app might try to detect AppGuard modifica-
tion and tamper with the monitor through reflection. While AppGuard
provides means to thwart such attacks by restricting access to the reflec-
tion facilities of Java, a sufficiently determined attacker will still be able
to disable the monitor.

• In some cases AppGuard monitoring performance overhead rises up to
21%. In practice, however, this is rare and any runtime impact is not
noticeable by the user.

We used parts of AppGuard in DROIDMATE to monitor calls to sensitive
Android framework API methods. Fortunately, the same element can be used
for sandboxing: Instead of just logging a call to an API method, we can also
compare it with defined enforcement policy and if violation appears, show a
pop-up dialog box asking user for decision, remember it, and block or let the
call happen. Thus, while AppGuard suffers from some limitations, extending
BOXMATE to provide an experimental proof-of-concept AppGuard-based sand-
box was a relatively easy task. In the prototype we did not implement the more
sophisticated AppGuard features, such as its automata-based security policies,
its protection against forceful extraction of stored secrets, or its interactive in-
terface. These features could easily be added by integrating full AppGuard into
BOXMATE.

5.4.2 Boxify
Due to the flaws of AppGuard listed in previous section we also experimented
with another sandbox implementation based on Boxify, also by Backes et al. [9].
Boxify is a novel approach for Android application sandboxing, which provides
tamper-protected reference monitoring for stock Android without the need for
root privileges. Boxify uses app virtualization and process-based privilege sep-
aration to encapsulate untrusted applications in a restricted execution environ-
ment within the context of another, trusted sandbox application. To establish
a restricted execution environment, Boxify leverages Android’s isolated process

78

5.4. SANDBOXES

feature, which allows apps to completely de-privilege selected components. By
loading untrusted apps into de-privileged, isolated processes, Boxify avoids mod-
ifying apps and provides strong security guarantees, unlike AppGuard. Sensitive
I/O operations are relayed through a separate, privileged broker process which
monitors and enforces policies.

Boxify checks whether the API call is allowed by the mined sandbox rules; if
not, it can either have the call return a mock object containing fake data, or flag
the call, asking the user for permission, as seen on Figure 5.3. Only calls to the
monitored sensitive methods incur any overhead, which is 1–12% per call [9],
resulting in practically no runtime performance overhead overall.

The main drawback of Boxify is that a sandbox implementation based on
it is significantly more involved and depends on internal Android APIs. Such
APIs are very likely to change with each Android version, thus increasing the
maintenance effort of keeping Boxify-based sandbox up-to-date with the newest
Android OS.

79

5.4. SANDBOXES

Figure 5.3: The BOXMATE sandbox in action. Calling a sensitive API
method not seen during mining requires confirmation by the user. To
facilitate readability, API names are automatically mapped to the re-
spective Android permissions, which are then shown in user-readable
form.

80

Chapter 6

Sandbox quality study

In this chapter we use BOXMATE, discussed in Chapter 5, to answer the first
three out of four research questions posed in Section 3.7. The questions are:

Q1 Can input generators sufficiently cover behavior?

Q2 Can we reduce the attack surface by providing a behavior enforcement policy
more fine-grained than Android permission system?

Q3 Can the more fine-grained mined behavior help users and experts correctly
classify behavior as benign or malicious?

We will answer the fourth question in a study described in Chapter 7.
To answer Q1, we will mine real world Android applications for their behav-

iors and codify them in two behavior enforcement policies, one more fine-grained
than the other. We will then evaluate how often sandboxes enforcing these two
policies flag yet unseen behaviors when applied to real world usage scenarios of
the same Android apps. In other words, the scenarios will be our ground truth.
We will also analyze how long it took for a behavior saturation to occur during
the mining. If the policies can be mined in reasonable time, i.e. saturation is
quick, and sandbox violations turn out to be rare, it will mean the behavior was
sufficiently covered by the exploration done with input generator used in the
mining phase. Thus, the answer to Q1 will be affirmative.

To answer Q2, we will assess if the two policies inferred from the mined
behavior are more restrictive than the Android permission system, thus reducing
attack surface.

81

6.1. EXPERIMENTAL SETUP

Name Version Category Rank Identifier
Adobe Reader 11.1.3 Productivity 1 com.adobe.reader
AntiVirus Security – FREE 3.6 Communication 5 com.antivirus
Barcode & QR Scanner barcoo 3.6 Shopping 6 de.barcoo.android
CleanMaster – Free Optimizer 5.1.0 Tool 1 com.cleanmaster.security
Currency converter 1.02 Finance 9 com.frank_weber.forex2
eBay 2.5.0.31 Shopping 1 com.ebay.mobile
ES Task Manager (Task Killer) 1.4.2 Business 10 com.estrongs.android.taskmanager
Expense Manager 2.2.3 Finance 24 at.markushi.expensemanager
File Manager (Explorer) 1.16.7 Business 1 com.rhmsoft.fm
Firefox Browser for Android 28.0.1 Communication 7 org.mozilla.firefox
Job Search 2.3 Business 6 com.indeed.android.jobsearch
PicsArt – Photo Studio 4.1.1 Photography 1 com.picsart.studio
Snapchat 4.1.07 Social 4 com.snapchat.android

Table 6.1: Evaluation subjects. The Rank column denotes the rank of given app
in given category at the time of download, i.e. 25 March, 2014.

Open https://play.google.com/store/apps/details?id=〈Identifier〉 for details.

To answer Q3, we will compare old and new version of the same Android
application. We will compare the differences of policies inferred from behaviors
mined from both versions and assess if they help the user determine if the
new version is a legitimate update to an application or does it instead hide
unexpected, possibly malicious, functionality.

6.1 Experimental setup
To answer the questions according to the plan outlined in previous section, we
need multiple elements:

Android platform We will run all of this chapter experiments on Android
platform version 4.4.2. We use older of the two versions supported by
DROIDMATE (as explained in Section 4.4), as this was the most recent
Android version at the time we were conducting experiments described in
this chapter.

Apps evaluation set We will infer sandbox policies from behaviors mined
from a set of 13 very popular Android applications downloaded from Ger-
man Google Play Store, like SNAPCHAT or Adobe Reader. The metadata
of the used apps is given in Table 6.1.

82

https://play.google.com/store/apps/details?id=com.adobe.reader
https://play.google.com/store/apps/details?id=com.antivirus
https://play.google.com/store/apps/details?id=de.barcoo.android
https://play.google.com/store/apps/details?id=com.cleanmaster.security
https://play.google.com/store/apps/details?id=com.frank_weber.forex2
https://play.google.com/store/apps/details?id=com.ebay.mobile
https://play.google.com/store/apps/details?id=com.estrongs.android.taskmanager
https://play.google.com/store/apps/details?id=at.markushi.expensemanager
https://play.google.com/store/apps/details?id=com.rhmsoft.fm
https://play.google.com/store/apps/details?id=org.mozilla.firefox
https://play.google.com/store/apps/details?id=com.indeed.android.jobsearch
https://play.google.com/store/apps/details?id=com.picsart.studio
https://play.google.com/store/apps/details?id=com.snapchat.android
https://play.google.com/store/apps/

6.1. EXPERIMENTAL SETUP

Two versions of same app To answer Q3, we will mine and compare two
versions of SNAPCHAT: 4.1.07 and 5.0.34.6.

Input generator To generate inputs for exploration conducted in the min-
ing phase, we will use DROIDMATE (Chapter 4), the input generator of
BOXMATE.

Explorations In the mining phase, we will explore the apps from evaluation set
to obtain exploration logs. The exploration logs will be used to produce
saturation charts, exploration summaries, and to extract mined behaviors,
which in turn will be used to infer behavior enforcement policies. Satura-
tion charts and the inferred policies are described further down below.

Explorations time limit As we do not have means to determine if we ob-
served entire possible behavior of given app, we cannot determine if we
covered some percent of all possible behaviors. Instead, we will limit the
time of explorations. For all the apps from the evaluation set except
SNAPCHAT, we will run the explorations for 2 hours, hoping to observe
behavior saturation, hinting we may be close to discovering all possible
behaviors. As SNAPCHAT is our running example for which we want to
obtain more thorough results, we will instead explore both of its versions
for 3.5 hours.

Explorations reset frequency We set our explorations to reset every 30 in-
teractions, to avoid getting stuck in a subset of the AUE GUI.

Behavior enforcement policies We will infer from the mined behaviors (ex-
tracted from the exploration logs) two behavior enforcement policies for
the sandbox: The API call enforcement policy and event-bound API call
enforcement policy. Analysis of the policies will let us know if they indeed
reduce attack surface as compared to Android permission system, thus
answering Q2.

Behavior saturation charts To determine if we have reached the exploration
behavior discovery limit, we will plot behavior saturation charts from the
exploration summaries, just like the chart in Figure 5.1. We will have two
chart for each app: One per each policy used. One chart will plot the count
of distinct Android framework API method calls discovered over time. The
second chart will plot count of distinct (event, API call) pairs instead of
just API method calls. If no new behaviors will be discovered close to
the exploration time limit, i.e. the chart will be “flat”, we will conclude

83

6.1. EXPERIMENTAL SETUP

we reached saturation, i.e. behavior discovery limit. The limit might be
actual limit of all possible behaviors, or input generator power limit, which
may be lower, in case there are behaviors given input generator will never
be able to discover.

Real world use cases (ground truth) We will compare the mined enforce-
ment policies with real world behaviors of Android apps, determining how
often the sandbox flags resource accesses, thus answering Q1. We rep-
resent the real world app behaviors by a set of 18 manually written use
cases. The use cases are automated, UIAUTOMATOR-based tests, inter-
acting with the apps’ GUIs. The sequences of operations on the GUIs are
representative of conducting real world common use cases, as derived from
app descriptions. For example, for Adobe Reader, the most common use
case is opening and viewing a .pdf document. We designed the use cases
to cover as many secondary functionalities as possible and reasonable for
given scenario. The use cases and functionalities they exercise are given
in Table 6.2. Textual descriptions of the exact GUI operations can be
found within Appendix C.

On average, implementing a single use case and having it replay reliably
took us 2–3 hours of work. This perhaps surprisingly high implementation
effort was due to implementation flaws of UIAUTOMATOR which required
workarounds and due to general difficulty of hand-scripting user interac-
tions. This observation additionally motivates the use of automated input
generators such as DROIDMATE.

6.1.1 Evaluation plan
Our evaluation plan is as follows:

1. Conduct explorations with appropriate time limits, using GUI inputs from
DROIDMATE, on the applications from the evaluation set. As a result,
obtain exploration log for each app.

2. Derive two policies from mined behaviors extracted from the exploration
logs: API call enforcement policy and event-bound API call enforcement
policy.

1Despite our best efforts, neither we nor DROIDMATE could get barcoo 3.6 to use the
camera and scan something on our devices.

84

6.1. EXPERIMENTAL SETUP

App Use Case Functions
Adobe Reader View Document What’s New, Help, Open first document
AntiVirus Scan Activate, Scan now, View scan results
barcoo Search for product Search “pillow” in search box, View results1
CleanMaster Scan Scan system, Resolve all, Report
Currency Cvtr Convert currency Enter “159”, Swap currencies
eBay Find by search Accept terms, Sign in, Search “pillow”, View first search result
ES Task Mgr Kill task Kill first listed task
Expense Mgr Add and edit expense Add an expense of $15.80 for “Pills” in Category “Health”

Delete expense Open history, Delete first entry
View and set budget Set a total budget of $7.00 in the “other” category

File Manager View and create dir View directories, create new directory “temp_utc”
Firefox Open URL Go to “google.com”
Job Search Search for job Search a job for “sales” in “New York, NY”, Select first result
PicsArt Apply effect Apply “twilight” effect on recent photo, Save on SD card
Snapchat Take snap Log in, Take snap, Add caption, Set retention, Send snap to self, View it

Take video Log in, Take video, Pick color, Draw Line, Save to gallery, Add to story
Find friend Log in, Add friend from contacts, Allow Access
Edit friend Log in, Search friend “abc”, Block “abc”, Unblock “abc”, Delete “abc”

Table 6.2: Use cases.

3. Using data from exploration logs, plot saturation charts of the recorded
behaviors, taking into account the data which is required by the policies.
Analyze the charts to see how quickly mined behaviors have saturated
during the explorations.

4. Run the hand-written tests representing real world use cases and moni-
tor the API accesses and GUI elements used, giving us exploration sum-
maries representing the use cases. This is analogous to running normal
explorations, but inputs instead of being generated with DROIDMATE are
predefined, as they come from the hand-written tests.

5. Determine, based on the exploration summaries obtained from real world
use cases, how often the mined policies would be violated (i.e. flagged by
a sandbox) by the observed behaviors. Thus, answer Q1 and Q2.

6. Determine how clear for a human are the differences between the old
and new version of SNAPCHAT, thus answering Q3. Obtain the list of
differences by comparing mined behaviors from both versions.

85

6.2. RESOURCE ACCESS SATURATION

6.2 Resource access saturation
We conducted explorations of the evaluation set, inferred the policies and plotted
saturation charts, i.e. we executed steps 1, 2 and 3 of our evaluation plan (Sub-
section 6.1.1). The API call saturation charts for 2 hour explorations of twelve
apps are seen on Figure 6.1. Figure 5.1 shows the 3.5 hour exploration of
SNAPCHAT.

We see that ten charts “flatten” before one hour mark and the remaining two
before two hours. For SNAPCHAT, we reach saturation in less than 10 minutes.
Recall that sandbox mining has to happen once when the application is first
installed and once every time a major update appears that requires access to
new resources, to confirm the update didn’t introduce any malicious behavior.
As sandbox mining needs to be executed rarely, the obtained times are well
within reasonable expectations.

The saturation of API calls is enough for the API call enforcement policy, but
for the event-bound API call enforcement policy we have to pair the API calls
with events that triggered them, as described in Section 5.3. Fortunately, the
same exploration provides all necessary data. Saturation of event-bound API
calls ((event, API call) pairs) of the 2 hour explorations of the twelve apps from
evaluation set are visible on Figure 6.3. The 3.5 hour SNAPCHAT exploration
saturation chart is given on Figure 6.2. In contrast to Figure 5.1, we see that it
takes more than an hour of exploration of SNAPCHAT until the chart flattens at
over 90% of all event-bound API calls ever explored. A similar late saturation
can also be seen when mining event-bound API calls for the other twelve apps,
as summarized in Figure 6.3.

In some cases the event-bound API call saturation didn’t flatten in the allo-
cated time. Namely, for Barcode & QR Scanner barcoo, CleanMaster, Currency
converter, eBay and ES Task Manager. To understand the reason for that, we
investigated the exploration summaries, available in full in Appendix C. In the
case of Currency converter we are lead to believe we have actually seen all the
possible pairs, as there are only two distinct API calls, Socket.<init> and
URL.openConnection(), both bound to events <reset> and background.
In all the remaining cases the lack of saturation was caused by spurious con-
nection between API calls and events. The same API methods were called over
and over, each time being bound to the GUI element which was acted upon last
time. The API calls are most likely not related to the GUI elements at all. This is
inaccuracy of our method of associating API calls by time to the last exploration
action. More accurate association would likely solve this problem and flatten
the charts.

86

6.3. POLICY VIOLATIONS

Overall, while the times to reach event-bound API call saturation are signif-
icantly longer, they should be still within tolerance limit of security-conscious
user willing to use such fine-grained policy. We conclude that:

Explorations with automatically generated inputs can quickly cover resource
usage. However, more fine-grained analysis of the usage takes longer to mine.

We now know that we can get close to the limit of behaviors covered with
automatically generated inputs in a reasonable amount of time. To fully answer
Q1 we still need to determine if the covered behaviors are enough to represent
common use cases and thus, avoid violating sandbox too often. This is discussed
in next section.

6.3 Policy violations
To understand how often API call enforcement policy obtained with BOXMATE
would flag real behaviors, we conducted steps 4 and 5 of our evaluation plan, i.e.
checked the inferred policy against behaviors representing real world use cases.
The count of violations observed is summarized in Table 6.3. Each violation
results in a sandbox flagging the behavior, showing pop-up to the user asking
her to endorse or block it.

In the case of “Search for Product” use case of QR Scanner barcoo app, an
unlabeled not explored button requests the current location, violating sandbox
enforcing the more fine-grained policy. CleanMaster requires user attention
three times: Two for changes to configuration when a scan is started or a report
is sent, and one when a handle to PowerManager$WakeLock is acquired after
the scan is finished. Again, that happens only while using the more fine-grained
policy. The eBay “Find by Search” use case requires login credentials, while
we explicitly didn’t gave them to DROIDMATE, forcing it to explore only the
functionality available without logging into the app. The use case, in turn,
explores GUI parts available only after logging, causing the need for confirmation.
The PicsArt “Apply effect” use case accesses an existing photo from an SD card,
which was not found during testing. In the SNAPCHAT “Take video” use case, a
“status” button accesses the external media the video is saved in.

Overall, for the API call enforcement policy we end up with only 2 confir-
mations while executing 18 use cases. Not only the enforcement policy greatly
reduces attack surface, the user attention is actually needed less times than with
Android permission model, where the user would have to confirm access to more
than 2 permission groups. The event-bound API call enforcement policy requires

87

6.3. POLICY VIOLATIONS

App Use Case Flags per: app event
Adobe Reader View Document - -
AntiVirus Scan - -
barcoo Search for product - 1
CleanMaster Scan - 3
Currency Cvtr Convert currency - -
eBay Find by search 1 1
ES Task Mgr Kill task - -
Expense Mgr Add and edit expense - -

Delete expense - -
View and set budget - -

File Manager View and create dir - -
Firefox Open URL - -
Job Search Search for job - -
PicsArt Apply effect 1 2
Snapchat Take snap - 1

Take video - -
Find friend - -
Edit friend - -

Total flags (out of 18 use cases) 2 8

Table 6.3: Use case actions flagged by sandbox with API call policy
(“app” column) and event-bound API call policy (“event”).

user input 8 times, but reduces attack surface even further and provides richer
contextual information for the user to make the decision.

We deem the amount of sandbox violations negligible for the API call en-
forcement policy and very tolerable for the event-bound API call enforcement
policy. This result, together with reasonable behavior saturation times during
exploration, lets us answer questions Q1 and Q2 in an affirmative way:

Q1A: Input generators can cover behavior sufficiently fast to encompass
primary use cases. The mined sandbox policies will impact application

usability only in a minimal way.

Q2A: The mined sandbox policies greatly reduce attack surface.

88

6.4. VERSION DIFFERENCES EVALUATION

6.4 Version differences evaluation
The pop-ups asking user to confirm BOXMATE policies have by design more
relevant information than Android permission system, helping the user cor-
rectly recognize and block unwanted behaviors. A natural scenario in which
we can evaluate Q3 is the case of an significant application update requesting
more permissions. We conducted the final, sixth step of the evaluation plan
(Subsection 6.1.1), by comparing API call enforcement policy of two signifi-
cantly different versions of SNAPCHAT. In our primary evaluation, we explored
SNAPCHAT version 4.1.07 for 2 hours. For this experiment we additionally ex-
plored SNAPCHAT version 5.0.34.6 for 2 hours. We then compared the inferred
policies and highlighted the differences. Full exploration summaries are given
in Appendix D. Saturation charts for both versions are given in Figure 6.4.
Looking at the charts, we can see that SNAPCHAT 5 calls just 2 more API meth-
ods. However, the API methods called by the versions actually differ more.
Overall, we found SNAPCHAT 5 makes seven API method calls not present in
exploration of SNAPCHAT 4. That is, SNAPCHAT 5:

1. Uses Android 4.x AudioRecord interface, while the old version used the
Android 1.x MediaRecorder interface instead.

2. Requires read and write access to image thumbnails through methods of
ContentResolver interface like query(), openFileDescriptor()
and insert() (3 distinct calls), while reading the SNAPCHAT privacy
policy.

3. Accesses the user’s line1 phone number (after clicking on a button la-
beled mobile_number).

4. Uses the Android 4.x PowerManager interface, forcing the device screen
to stay on while the message is sent
(send_to_bottom_panel_send_button button).

While we did the comparison for the API call enforcement policy, we can
leverage the information obtained from the event-bound API call enforcement
policy to put the differences in the context of related GUI events. The most
sensitive data, the user’s phone number, is only accessed after the user has
clicked on the appropriate button, acknowledging access. Just as we compared
the respective sandboxes to determine what has changed in SNAPCHAT, any
person could also have determined other changes between old and new versions
of possibly less trustworthy programs.

89

6.5. THREATS AND LIMITATIONS

A user wishing to preserve privacy settings could also run the untrusted
SNAPCHAT 5 version within the trusted sandbox mined from SNAPCHAT 4, with
any new API method calls being detected by the SNAPCHAT 4 sandbox. Then,
she would have to confirm access once in each of the four situations:

1. When recording audio (for the AudioRecord interface),

2. When reading the SNAPCHAT privacy policy,

3. When setting phone number (for the line1 phone number), and

4. When sending a message (for the PowerManager interface).

Each case would inform the user that there is a new feature—and thus enable
her to detect, assess, and prevent potentially malicious behavior changes.2 Our
answer to Q3 is thus positive:

Q3A: Mined policies can help
in assessing and comparing app behavior.

6.5 Threats and Limitations
Although our results demonstrate the principal feasibility of sandbox mining, we
would not generalize our findings into external validity. Our sample of programs
is small, is all on Android, and all GUI-based. For other programs and platforms,
we may have to devise significantly different input generators, possibly requiring
models of the program input structure as well as the sensitive resources to be
monitored and protected. These input generators may be less successful in
exploring program behavior, leading to more false alarms.

The set of use cases we have compiled for assessing the risk of unnecessary
sandbox violations (Table 6.2) does not and cannot cover the entire range of
functionality of the analyzed apps. While we assume that the listed use cases
represent the most important functionality, other usage scenarios may yield
different results.

Finally, keep in mind that in the absence of a specification, a mined policy
can never express whether behavior is benign or malicious; and thus, our ap-
proach cannot eliminate the risks of both false alarms (sandbox violations on

2Note that whether the user sees these alarms as “false” entirely depends on the trust the
user puts in the new SNAPCHAT version.

90

6.5. THREATS AND LIMITATIONS

benign behavior) and missed attacks (malicious behaviors seen during mining
and thus allowed). However, by detecting and preventing and bringing to the
user attention unexpected changes, our approach is set to reduce both these
risks, even in absence of specifications. On top of that, existing specifications
for benign or malicious behavior could be merged with the automatically mined
policies.

91

6.5. THREATS AND LIMITATIONS

0 1,800 3,600 7,200

0

0.5

1

Adobe Reader

0 1,800 3,600 7,200

0

20

40

60

AntiVirus

0 1,800 3,600 7,200

0

5

10

barcoo

0 1,800 3,600 7,200

0

5

10

15

CleanMaster

0 1,800 3,600 7,200

0

1

2

Currency Cvtr

0 1,800 3,600 7,200

0

5

10

eBay

0 1,800 3,600 7,200

0

2

4

ES Task Manager

0 1,800 3,600 7,200

0

Expense Mgr

0 1,800 3,600 7,200

0

5

10

File Manager

0 1,800 3,600 7,200

0

10

20

Firefox

0 1,800 3,600 7,200

0

0.5

1

Job Search

0 1,800 3,600 7,200

0

5

10

15

PicsArt

Figure 6.1: API call saturation of the apps in Table 6.1. As in Fig-
ure 5.1, the y axis is distinct API methods called; the x axis is seconds
elapsed.

92

6.5. THREATS AND LIMITATIONS

0 600 3,600 7,200 10,800

0

10

20

30
33

seconds elapsed

di
st

in
ct

(e
ve

nt
,

A
P
I
ca

ll)
pa

ir
s

se
en

Figure 6.2: Event-bound API call saturation of SNAPCHAT explo-
ration. After 60 minutes (3,600 seconds), DROIDMATE has discovered
30 unique (event, API call) pairs used by SNAPCHAT.

93

6.5. THREATS AND LIMITATIONS

0 1,800 3,600 7,200

0

0.5

1

Adobe Reader

0 1,800 3,600 7,200

0

20

40

60

AntiVirus

0 1,800 3,600 7,200

0

20

40

barcoo

0 1,800 3,600 7,200

0

20

40

60

CleanMaster

0 1,800 3,600 7,200

0

2

4

Currency Cvtr

0 1,800 3,600 7,200

0

10

20

30

eBay

0 1,800 3,600 7,200

0

10

20

ES Task Manager

0 1,800 3,600 7,200

0

Expense Mgr

0 1,800 3,600 7,200

0

5

10

15

File Manager

0 1,800 3,600 7,200

0

10

20

30

Firefox

0 1,800 3,600 7,200

0

0.5

1

Job Search

0 1,800 3,600 7,200

0

20

40

60

80

PicsArt

Figure 6.3: Event-bound API call saturation for the apps in Table 6.1.
As in Figure 6.2, the y axis is distinct (event, API call) pairs seen;
the x axis is seconds elapsed.

94

6.5. THREATS AND LIMITATIONS

0 600 3,600 7,200 10,800

0

5

11

13

seconds elapsed

di
st

in
ct

A
P

I
m

et
ho

ds
ca

lle
d

SNAPCHAT 4.1.07 API count
SNAPCHAT 5.0.34.6 API count

Figure 6.4: DROIDMATE API call saturation of compared the
SNAPCHAT versions. The upper thin red line is the newer
SNAPCHAT 5 version.

95

Chapter 7

Robustness study

In this section we describe our robustness study which we conducted to answer
the final question posed in Section 3.7:

Q4 Can modern input generators be successfully and fully automatically used
to mine sandboxes from a variety of existing, widely used applications?

Our sandbox quality study in Chapter 6 aimed to evaluate quality of the
mined policies. It was conducted on manually preselected Android applications
that were popular and didn’t have any features that crippled exploration, like
lack of GUI elements that can be explored, or integrity checks that prevented
exploration from starting altogether. While the study has shown that indeed
high quality behavior can be mined from some of the popular (and thus widely
used) existing Android apps, it doesn’t really tell us how good the mining works
in general. In other words, it doesn’t tell us if our test generator DROIDMATE
is robust enough to handle majority of most popular applications. We conduct
the following study to determine exactly that. Instead of manually preselecting
applications, we run DROIDMATE on the top most popular applications from
Google Play Store and report how well the exploration works: if it can be
started at all, and if so, does it appear to explore meaningful behavior, or if it
is crippled for any reason.

The evaluation plan for this study is simple: run DROIDMATE for a short
period of time, i.e for 3 minutes, on the top 1 apps evaluation set, which is
introduced in Section 7.2. Manually analyze the obtained exploration logs to
determine exploration quality. Classify the explorations into categories, like: ex-
ploration doesn’t start at all, exploration starts but is crippled, or exploration

96

7.1. EXPERIMENTAL SETUP

works within the known exploration limitations of DROIDMATE as listed in Sec-
tion 4.12. Diagnose and report the problems, reporting symptoms, root cause
and possible future solutions.

7.1 Experimental setup
Analogously to equivalent section of previous chapter, Section 6.1, now we will
describe what we require for our experimental setup to answer Q4.

Android platform We will run all of the robustness experiments on Android
platform version 6, the newer of the two versions supported by DROID-
MATE, as explained in Section 4.4.

Apps evaluation set Well-chosen app evaluation set is the most important
element of this study. We decided to conduct explorations on the top 1
apps, that is, we picked the single most popular application for each of the
26 non-game categories in the Google Play Store. Details on the selection
process and the apps chosen are given in Section 7.2.

Input generator As in previous chapter, to generate inputs for exploration
conducted in the mining phase, we will use DROIDMATE (Chapter 4),
the input generator of BOXMATE. This time, however, we will leverage
ArtHook for runtime API call monitoring, as we are running on Android
6.

Explorations Like in previous study, we will need to obtain exploration logs
from explorations. We will manually analyze the logs to categorize the
apps by their robustness, as described in App exploration robustness anal-
ysis below.

Explorations time limit As we are only interested in determining if explo-
ration is not crippled from the start, we do not explore for long. We will
run each of the apps for 3 minutes. This will be enough for app robustness
analysis, as explained below.

Explorations reset frequency We set our explorations to reset every 15 in-
teractions. This is twice as often as in previous experiment, as described
in Section 6.1. We do this to ensure we get varied behavior even with the
short exploration time.

97

7.2. EVALUATION SET

7.1.1 App exploration robustness analysis
We need to manually analyze exploration logs from each of the evaluated apps
to determine given app robustness. We will report the DROIDMATE exploration
robustness category of the app, symptoms of it, root cause of the symptoms and
possible DROIDMATE upgrade or other fix, if any. To produce the report, we will
manually look at:

• exploration summaries;

• saturation charts;

• charts showing the ratio of views that have been interacted with vs the views
that can be interacted with, where a view interaction is defined in Subsec-
tion 4.7.1;

• the sequence of observed widget contexts, as defined in Subsection 4.7.1,
with additional information on which widgets DROIDMATE decided to in-
teract with and which of the views became black-listed;

• what the app displays as it is being explored;

• Android logcat output, to see if any Android platform runtime exceptions
were thrown.

We will explore the apps for only 3 minutes each, but this will already should
result in rich enough data to tell us if e.g. DROIDMATE became stuck and cannot
explore much. Stuck exploration would manifest itself in immediately flattening
charts that show the counts of views that can and were interacted with. It would
also result in repeated encounters of the same widget contexts, with decisions
to always interact with the same views.

7.2 Evaluation set
For this study to be valid, the apps for the evaluation set have to be chosen in
an uniform way, not hand-picked. Furthermore, they have to be representative
of complex, popular, real-world apps. This way the analyzed apps will serve as
a good proxy of general DROIDMATE robustness. If it will work on the most
popular, complex apps, it will likely work on majority of all apps.

To fulfill these goals, we introduce the top 1 apps evaluation set, with the
concrete app data listed in Table 7.1. Each of the 26 apps is a representative of

98

7.3. ROBUSTNESS RESULTS

the Google Play Store category to which it belongs. We consider the 26 cate-
gories which are not games, because due to DROIDMATE limitations, as described
in Section 4.12, it cannot explore native GUIs well, which are predominant in
games.

The app chosen for given category was the most popular app in that category,
of Top Free kind (the only other kind, not considered, is Top New Free) on
German Google Play Store in the time period from 22nd January 2014 to 26th
May 2015. If there were multiple versions of the same app, the newest one was
chosen, as determined by the versionCode property of the details.json
metadata file crawled from the Google Play Store app data. Table 7.1 lists the
date at which the app was at top of its category. If there were multiple such
dates in the considered time period, one was picked at random. Also, in the
time span, multiple apps from the same category might have been in the top 1
spot. If this was the case, we have chosen one from those apps at random.

7.3 Robustness results
The results of the experiments conducted on the evaluation set described in this
section are given in Table 7.2. The third column, Robustness, describes explo-
ration robustness category we assigned to given app based on our manual app
robustness analysis of the experiment runs. The Fix difficulty column gives an
estimate how difficult it would be to improve DROIDMATE to make exploration
of given app robust, if at all possible.

Following subsections discuss the results in detail, explaining the robustness
classes we identified and describing all the robustness problems we encountered,
including symptoms, root causes and specific DROIDMATE improvements that
would have to be applied to make the explorations robust. In next section we
summarize the results.

7.3.1 Robust explorations
DROIDMATE is capable of automatically installing, starting and exploring apps
classified as OK without any problems. In all such apps the exploration logs
have shown that DROIDMATE was steadily calling new APIs, discovering new
views to be interacted with and was steadily interacting for the first time with
new widgets. However, of course the explorations were still subject to DROID-
MATE limitations as described in Section 4.12. To give some examples of what
DROIDMATE couldn’t do:

99

7.3. ROBUSTNESS RESULTS

MyTrails: clicking and swiping on a map;

DB Navigator: providing textual input for from/to destinations;

Earth: clicking and swiping on map; curiously, DROIDMATE was able to nav-
igate the planet anyway by clicking on thumbnails of suggested places;

wetter.com: providing textual input for searched city name.

In spite of these limitations, there was lots of functionality that could be
successfully explored.

7.3.2 Explorations requiring login
Explorations categorized as requiring login are just that: most of their func-
tionality is blocked because they expect for the user to provide user name and
password to an existing, registered account, and confirm by pressing appropri-
ate button. While we list inability to login as one of DROIDMATE limitations
in Section 4.12, we believe this limitation is serious enough that we cannot just
claim explorations are robust in spite of requiring login. Yet, it is worthwhile
to mention than eBay has significant amount of functionality explorable even
without login, as it allows to browse through the auctions catalog.

We consider a fix for requiring login difficult. To achieve complete automa-
tion, the input generator would have to be able to fully automatically recognize
that application requires login to registered account, find a way to register,
register (likely confirming via email and defeating anti-bot measures like re-
CAPTCHA), and properly login with the registration information. One could
settle for a partially manual approach. For example, register the account man-
ually and provide the input generator with some hints how to login, or even
make it capable of replaying manually recorded login sequence on each explo-
ration reset. This solution however makes it impossible to apply explorations
on massive scale for e.g. extracting data from many apps for analysis: One
needs to manually register for every explored app, after all. However, for the
envisioned goal of mining sandboxes of increasing app security, this might be
acceptable manual effort. End-users mining sandboxes would have to register
two accounts: one for their personal usage as they already do, and one for the
sandbox mining, so it won’t tamper with actual user data.

100

7.3. ROBUSTNESS RESULTS

7.3.3 Stuck explorations
If analysis of logs determined that DROIDMATE is unable to discover and interact
with new views, or, in other words, the amount of widgets that can be interacted
with will saturate in the allocated 3 minutes, we concluded the exploration
is stuck. We confirmed the behavior by additional manual inspection of how
app behaved during the short exploration. We encountered two cases of stuck
explorations: on the Talking Angela and Daily News apps.

In the case of Talking Angela, the symptoms are following: on startup, the
app shows up a pop-up box stating “Get free gold coins for every push notifica-
tion” with an “OK” button that DROIDMATE never clicks. Instead, DROIDMATE
clicks repeatedly on 3 views that it detects based on the XML representation
of the GUI returned from UIAUTOMATOR. However, these widgets cannot be
seen, as they are hidden in the background that is blackened to display the
pop-up. The underlying cause of the problem is that the pop-up box “OK” but-
ton is not marked as clickable, even though it is a TextView with resource id
push_button and within current view bounds. Instead, its container with an
id of topSoftViewPlaceholder, is marked as clickable, and indeed DROID-
MATE tries to click on it (it is one of the 3 views on which it is stuck). However,
the container bounds are equivalent to entire screen. Thus, DROIDMATE tries
to click in the very center of entire screen, which is out of bounds of the “OK”
button.

The solution to this problem would be for DROIDMATE to recognize that
some views are clickable even if they themselves are not marked as such, only
their containers. Easier, but less robust solution, would be to recognize pop-up
boxes and/or buttons, by trying to match by ids (like *button* where * is
any sequence of characters) or using some other heuristic. In any case, it is not
a trivial problem, but doable with reasonable amount of effort. Implementing
pattern matching for most common GUI conventions should cover majority of
cases, and there are no significant technical obstacles to it. Given that the
problem could be solved reasonably well with nontrivial but not prohibitive
amount of effort, we deem the fix difficulty as medium.

The situation with Daily News app is much simpler: on startup, it imme-
diately displays a pop-up with message “Network error, pull to refresh”. DROID-
MATE tries to repeatedly close it, yet it always reappears. We concluded this
situation is caused by the app being defective. It behaved the same way when
run completely manually, without any inlining applied to it. Its behavior might
be caused by the fact it is not the newest version, and app developers might have
adapted the server-side API to work with newer versions, breaking compatibility

101

7.3. ROBUSTNESS RESULTS

with the one we used. This cannot be fixed from DROIDMATE side. The correct
course of action here would be to download newer version of the app and see if
it works, but this was beyond the scope of our experimental setup.

7.3.4 Explorations terminating early
Five application explorations terminated early: Google Now Launcher, Polaris
Office, Runtastic, Facebook version 16 and Facebook version 28.

Google Now Launcher immediately displays a pop-up stating the launcher
has to be set to default in Android settings to be used. There are two buttons:
“Cancel” and “Settings”. Both when clicked lead to a screen that is out of
app scope, thus triggering app reset and becoming black-listed, as described
in Subsection 4.7.1. As a result, on third reset, after black-listing both views
that could be interacted with, DROIDMATE concludes there is nothing more it
can do and terminates the exploration.

DROIDMATE improvement to handle such case would be rather nontrivial: it
would have to recognize it has to take appropriate action in the Android Settings
app, which it currently treats just as any other out-of-scope app. Implementing
this would require giving Android Settings special treatment, understanding
what can be set there, and what setting the explored app required to be changed.
In this case, the default launcher app setting would have to be adjusted. Overall,
we consider such extension of DROIDMATE difficult to realize, especially if it
would have to work with various settings adjustment requests, not only setting
default launcher app.

The case of Polaris Office app is simple: the app is defective. It crashes
immediately after launch. Android’s ActivityManager reports on logcat that
app process has died. We reproduced the behavior when running the app man-
ually, without any DROIDMATE involvement. The only course of action around
this problem would be to try out newer version of the app.

Runtastic case is also simple: the XML window hierarchy of the screen
visible after startup has no views that can be interacted with, just one large
button with “SWIPE” label. Inability to swipe is a known DROIDMATE limi-
tation as listed in Section 4.12, but because in this case it completely cripples
the exploration, we classify it as “Terminates early” not “OK”. Adding support
for swiping to DROIDMATE would be highly nontrivial. Technically speaking,
implementing the swiping functionality is a matter of making appropriate call to
UIAUTOMATOR API. But swipes may happen in different directions, at various
speeds, length and even via curved paths, not by straight lines. DROIDMATE
would have understand which swipe is required in any given case, and that

102

7.4. RESULTS SUMMARY

would be the main difficulty in implementing this feature. Thus, we deem it
difficult to implement this in a way that works robustly for majority of apps.

For Facebook, its version 16 has the same problem as version 28. DROID-
MATE is too impatient: it thinks Facebook has finished loading, while it hasn’t.
This results in an empty screen with no views that can be explored. Normally
DROIDMATE is able to detect such cases, as usually applications have some sort
of progress bar, which periodically changes, making DROIDMATE recognize the
application is still working and not ready for an interaction. However, in the
case of facebook, nothing happens for over a minute. The simplest solution
would be to make DROIDMATE always wait for a minute after reset, but that
would lead to needless waste of time when exploring other apps. More intelligent
solution would be to progressively extend wait times after reset. For example,
first wait 10 seconds, then after first reset, 1 minute, then, after second reset, 5
minutes. Only if after waiting 5 minutes there still is nothing to be explored, fi-
nally abandon the exploration. Implementing this would be simple given current
implementation, and thus we consider the fix to be easy.

7.3.5 No exploration
DROIDMATE is not even able to launch Threema QR Code Plugin. DROID-
MATE launches applications either by directly calling their main activity via
ADB, or by clicking on the app icon in the apps menu. This application doesn’t
have main activity nor does it add any icon to the apps menu upon install. We
concluded the application is actually a plugin for another app. To make it work,
DROIDMATE would have to be able to recognize the base application, i.e. the
one to which the installed plugin pertains. Next, it would have to explore that
base app, focusing on exploring the plugin functionality. This would be far be-
yond the current DROIDMATE implementation capabilities, and so we consider
such fix to be difficult.

7.4 Results summary
13 out of 26, that is, exactly half of all the tested applications can have sig-
nificant amount of their functionality explored fully automatically. We marked
as difficult to fix 8 of the apps, i.e. 30.7%. They would require significant
additional work to make their explorations robust. The remaining 5 apps, i.e.
19.2%, are either easy or medium to make robust, or it cannot be determined
due to an app fault. These results denote DROIDMATE robustness is far from

103

7.5. THREATS TO VALIDITY

perfect. However, the evaluated subjects are very complex and literally most
popular apps in existence. In spite of that, even a research prototype grade input
generator is able to automatically explore half of them, and with a reasonable
amount of additional effort, could handle up to almost 70%. In principle, the
exploration of remaining 30% is also possible, albeit not without additional sig-
nificant implementation effort possibly leveraging nontrivial algorithms. Given
these results, we consider fair to claim that an industrial-strength input gener-
ator would be able to explore thoroughly vast majority of applications. Thus,
we conclude that the answer to our Q4 is positive:

Q4A: Modern, industrial-strength input generators should be able to
successfully and fully automatically mine sandboxes from a variety of

existing, widely used applications.

7.5 Threats to validity
Similarly to the threats of our previous study, as described in Section 6.5, this
study also focuses only on Android, GUI-based apps, that are not games. Even
in the domain under our consideration, we have chosen only one application
per each Google Play Store category. To mitigate this threat, we have chosen,
for each category, the most popular app from a large time span. We hope such
apps are fairly complex and can be considered an upper-bound of given category
exploration difficulty.

We conducted only 3 minute long explorations. Ideally, we should explore
until a saturation of observed APIs and interacted widgets is achieved, or it is
concluded it cannot happen due to imprecise representation of GUI model by
DROIDMATE. However, even in this short time span DROIDMATE was able to
usually conduct more than 50 interactions, providing a good sample of app’s
behavior. To additionally mitigate this issue, we manually analyzed results
from each of the apps and looked at the results from many different angles, as
explained in Subsection 7.1.1.

104

7.5. THREATS TO VALIDITY

Name Version Category YMD Identifier
WikiExplorer 1.5.5 Books & Reference 2014 7 9 animaonline.android.wikiexplorer
Polaris Office 6.0.9 Business 2015 2 25 com.infraware.office.link
Shqip TV 2 Comics 2014 2 2 arlind.Shqip
Messenger 12.0.0.21.14 Communication 2014 9 17 com.facebook.orca
Duolingo 2.7.2 Education 2014 8 21 com.duolingo
Talking Angela 2.2 Entertainment 2014 2 24 com.outfit7.talkingangelafree
PayPal 5.11.3 Finance 2015 3 10 com.paypal.android.p2pmobile
Runtastic 5.2.1 Health & Fitness 2014 9 3 com.runtastic.android
Threema QR Code Plugin 1.1 Libraries & Demo 2014 9 11 ch.threema.qrscannerplugin
eBay Kleinanzeigen 5.0.3 Lifestyle 2014 8 19 com.ebay.kleinanzeigen
PicsArt 4.6.12 Live Wallpaper 2014 10 15 com.picsart.studio
VLC 0.9.9 Media & Video 2014 9 6 org.videolan.vlc.betav7neon
Lady Pill Reminder 2.1.2 Medical 2014 8 16 com.baviux.pillreminder
Spotify 1.4.0.631 Music & Audio 2014 9 4 com.spotify.music
Daily News 1.13 News & Magazines 2014 7 3 com.ng.dailynews
Zedge 4.10.2 Personalization 2015 5 9 net.zedge.android
A Better Camera 3.24 Photography 2014 8 2 com.almalence.opencam
Adobe Reader 11.5.0.1 Productivity 2014 8 30 com.adobe.reader
eBay 2.8.2.1 Shopping 2014 11 20 com.ebay.mobile
Facebook 28.0.0.20.16 Social 2015 3 6 com.facebook.katana
MyTrails 1.4.5 Sports 2014 3 14 com.frogsparks.mytrails
Google Now Launcher 1.1.0.1167994 Tools 2014 10 25 com.google.android.launcher
DB Navigator 15.04.p06.00 Transportation 2015 4 17 de.hafas.android.db
Earth 7.1.3.1255 Travel & Local 2014 8 2 com.google.earth
wetter.com 2.3.1 Weather 2015 5 22 com.wetter.androidclient
Facebook 16.0.0.20.15 Widgets 2014 8 30 com.facebook.katana

Table 7.1: Robustness study evaluation subjects, sorted alphabetically by
Category. The YMD column denotes the year, month and day of the date at

which given app was the top 1 free app in given category at the German Google
Play Store.

Open https://play.google.com/store/apps/details?id=〈Identifier〉 for details.

105

https://play.google.com/store/apps/details?id=animaonline.android.wikiexplorer
https://play.google.com/store/apps/details?id=com.infraware.office.link
https://play.google.com/store/apps/details?id=arlind.Shqip
https://play.google.com/store/apps/details?id=com.facebook.orca
https://play.google.com/store/apps/details?id=com.duolingo
https://play.google.com/store/apps/details?id=com.outfit7.talkingangelafree
https://play.google.com/store/apps/details?id=com.paypal.android.p2pmobile
https://play.google.com/store/apps/details?id=com.runtastic.android
https://play.google.com/store/apps/details?id=ch.threema.qrscannerplugin
https://play.google.com/store/apps/details?id=com.ebay.kleinanzeigen
https://play.google.com/store/apps/details?id=com.picsart.studio
https://play.google.com/store/apps/details?id=org.videolan.vlc.betav7neon
https://play.google.com/store/apps/details?id=com.baviux.pillreminder
https://play.google.com/store/apps/details?id=com.spotify.music
https://play.google.com/store/apps/details?id=com.ng.dailynews
https://play.google.com/store/apps/details?id=net.zedge.android
https://play.google.com/store/apps/details?id=com.almalence.opencam
https://play.google.com/store/apps/details?id=com.adobe.reader
https://play.google.com/store/apps/details?id=com.ebay.mobile
https://play.google.com/store/apps/details?id=com.facebook.katana
https://play.google.com/store/apps/details?id=com.frogsparks.mytrails
https://play.google.com/store/apps/details?id=com.google.android.launcher
https://play.google.com/store/apps/details?id=de.hafas.android.db
https://play.google.com/store/apps/details?id=com.google.earth
https://play.google.com/store/apps/details?id=com.wetter.androidclient
https://play.google.com/store/apps/details?id=com.facebook.katana
https://play.google.com/store/apps/

7.5. THREATS TO VALIDITY

Name Play category Robustness Fix difficulty
WikiExplorer Books & Reference OK N/A
Shqip TV Comics OK N/A
eBay Kleinanzeigen Lifestyle OK N/A
PicsArt Live Wallpaper OK N/A
VLC Media & Video OK N/A
Lady Pill Reminder Medical OK N/A
Zedge Personalization OK N/A
A Better Camera Photography OK N/A
Adobe Reader Productivity OK N/A
MyTrails Sports OK N/A
DB Navigator Transportation OK N/A
Earth Travel & Local OK N/A
wetter.com Weather OK N/A
PayPal Finance Login required Difficult
eBay Shopping Login required Difficult
Messenger Communication Login required Difficult
Duolingo Education Login required Difficult
Spotify Music & Audio Login required Difficult
Talking Angela Entertainment Gets stuck Medium
Daily News News & Magazines Gets stuck N/A
Google Now Launcher Tools Terminates early Difficult
Polaris Office Business Terminates early N/A
Runtastic Health & Fitness Terminates early Difficult
Facebook v28 Social Terminates early Easy
Facebook v16 Widgets Terminates early Easy
Threema QR Code Plugin Libraries & Demo Cannot launch Difficult

Table 7.2: Robustness study results, sorted by exploration robustness,
decreasing, then sorted alphabetically by Google Play category. 13 (50%) apps
can be explored without problems; 5 (19%) require login; 2 (8%) get stuck; 5
(19%) terminate early and 1 (4%) cannot be launched. 2 (8%) problematic

explorations are app’s fault, not input generator; 2 (8%) are easy to fix; 1 (4%)
is medium and 8 (30%) are difficult to fix.

106

Chapter 8

Conclusion

Sandbox mining, a method first introduced in this thesis, is conceptually sim-
ple, yet surprisingly powerful synthesis of system-level automatic test generation
and sandboxing, especially when coupled with existing techniques, as explained
in Section 3.4. Sandbox mining solves the problem stated in Section 2.2: It
significantly improves security of existing programs while not degrading their
usability, at little cost. Sandbox mining strength stems from the fact it is a
white-listing approach to security, as opposed to traditional black-listing meth-
ods. We no longer try to find all possible vulnerabilities, risking possibly missing
the most important ones. As Dijkstra stated:

“Program testing can best show the presence of errors but never their
absence.”

In our context “errors” are malicious behaviors. Instead, we mine an explicit,
human-readable behavior description of an application and confine any possible
malicious behavior to policy codifying the mined behavior, forcing any malicious
actions to “hide in plain sight”.

The consequences of sandbox mining are far reaching. One can easily envi-
sion a future in which all programs are accompanied with their automatically
mined, explicit, human-readable and enforceable behaviors. While such profiles
would not be as comprehensible as manually written specifications or documen-
tation, they still provide huge advantage over existing descriptions of program
behaviors, which are mostly just nonexistent.

Overall, we believe the sandbox mining concept introduced in this thesis
holds a promise of a future with much more understandable and secure pro-

107

8.1. FUTURE WORK

grams.

8.1 Future work
While sandbox mining has big potential, this thesis is just the beginning. We
introduced the concept, described its properties and did small, preliminary eval-
uation to show proof-of-concept implementation is indeed feasible on existing
software and maintains in practice the theoretical claims of the method. We
painted possible beneficial future in Section 3.6.

If we aim at making sandbox mining truly worldwide standard, we have to
recognize that as sandbox mining has to work with existing software, it has to
leverage test generators and sandboxes implemented for given platforms. Desk-
top, mobile, web, cloud, Internet of things. These are just broad categories,
for which implementation details of sandbox mining components will vary sig-
nificantly and pose very different technical challenges. Within given platform
category there is still more variation. In mobile we have Android and iOS.
In desktop we have Windows, macOS and Linux. For web we have multiple
browsers, multiple front-end frameworks, back-end server frameworks and many
cloud provider APIs. For IoT, situation is even more complicated, as ubiquitous
standards have yet to emerge and the category encompasses humongous variety
of devices, from a toaster to a self-driving car.

Assuming we have powerful enough test generators and secure enough sand-
boxes for given platform, now we will have to build infrastructure for comparing,
sharing, updating and certifying sandboxes, serving the foundation of behavior
specification and enforcement policy marketplaces envisioned in Section 3.6.

The immediate work however is in continuing the research into the concept
on Android platform. The focus here is on further evaluation of the concept
feasibility and its various extensions. Immediate aspect of sandbox mining that
call for further research are:

Behavior saturation upper bound approximation At this point we don’t
have any means to determine all the possible behaviors given application
can make. Knowing this would give us more confidence in the degree of
behavior saturation observed during mining and give us insights how the
test generators could be improved to speed up the saturation and make it
more complete. One could use static analysis of resource files and bytecode
to find out all the GUI elements given app has, as well as all the Android
framework API method calls it potentially can make.

108

8.1. FUTURE WORK

Robustness Our test generator DROIDMATE is essentially a two component
distributed system, composed of the host machine and the Android device
on which explorations are conducted. Every command issued to the device
can potentially fail, and experience shows most of the commands indeed
fail, if only rarely. At fault is either the Android device communication
done with Android Debug Bridge, the UIAUTOMATOR framework or the
explored app itself. To maintain the ability to conduct long explorations
without human presence, test generators have to be capable of recovering
from all possible failures. The problem is confounded by the fact the
exploration strategy employed by the test generator often maintains model
of the app GUI and current exploration state in the model. Various app
behaviors, including crashes, have to be handled while retaining model
state integrity.
Our test generator is already highly robust. It gracefully handles failures
of all commands that have proven to be unstable so far, often retrying
multiple times and attempting other recoveries before gracefully giving
up and progressing to exploration of next app in the queue. Applying
DROIDMATE to more diverse Android apps would undoubtedly uncover
more not yet handled corner cases, e.g. yet unseen Android OS dialog
boxes or new ways, in the context of GUI model state, that apps can crash.
Increasing robustness would mean supporting graceful recovery from all
these situations.

Android GUI model fidelity The GUI model of the currently employed ex-
ploration strategy only approximates the Android GUI model. For a faith-
ful, high-fidelity representation of the Android GUI, the exploration strat-
egy would have to accurately model both the Android activities lifecy-
cle [63] as well as Android tasks and the back stack [67]. Doing this would
significantly increase robustness, by decreasing errors caused by imprecise
modelling.

Scalability DROIDMATE has now limited support for running explorations on
multiple devices which requires some nontrivial manual setup. To conduct
explorations on thousands of apps, we will have to automate the process of
managing the explorations on multiple devices and aggregating the results.

Compatibility Ideally, we would like to show sandbox mining can work on
all or almost all Android applications, no matter how complex. Android
app bytecode needs to be modified to work with current implementation,
and the app has to be resigned with different certificate. While this works

109

8.1. FUTURE WORK

most of the time, some of the programs do remote certificate or bytecode
integrity checks, quitting if the checks fail. By applying the monitoring
approach adopted in Boxify we could solve this problem, as no app mod-
ifications would necessary any longer.

Replayability DROIDMATE currently logs the trace of its actions which can be
used to reconstruct the exploration in detail. Ideally, however, DROID-
MATE should generate UIAUTOMATOR-based tests which can be rerun
stand-alone, without DROIDMATE.

Deterministic environment Even if we will have explorations codified as
stand-alone tests, we still cannot control the environment, e.g. the re-
sponses returned from remote hosts or initial database contents. A chal-
lenge here is to also record all the environment contents made during
original explorations and replay them in the same deterministic sequence.

Data fixtures Presence of appropriate data fixture is a major obstacle for
explorations trying to cover more complex behaviors. Accessing some
functionalities might require having appropriate database entries, files on
file system, etc. Ability to automatically generate such fixtures is future
work.

Initial configuration Special case of providing data fixtures is initial configu-
ration of the apps, like e.g. login credentials. Many apps require account
registration and subsequent login to it. Making test generator capable
of automatically registering and logging is challenging. We could assume
registration was done manually and once per app provide the login cre-
dentials as initial configuration, e.g. in a configuration file read by the test
generator at exploration start. This however is still challenging, because
test generator would need to know where to input these credentials.

Human-in-the-loop One solution to the problem of initial configuration de-
scribed above is augmenting the mining process with manually provided
interactions. The exploration could recognize that for given GUI screen or,
more generally, app state, a manually prerecorded interaction sequence is
available, and replay it. This way not only login problem would be solved,
but also other, more challenging app states and GUI screens could be
reached.

Exploration strategies Especially fertile ground for future work are explo-
ration strategies. Current biased random approach works reasonably well

110

8.1. FUTURE WORK

already. However, much more powerful strategies could be employed,
leveraging methods like dynamic symbolic execution, genetic algorithms,
finite state automatons, other metaheuristics or model-based approaches,
to name a few.

Input modalities Right now our test generator interacts with apps GUI via
UIAUTOMATOR as well as commands sent by ADB, like e.g. sending a mes-
sage to start an app. However, other input modalities could be employed,
like system-level broadcasts, data incoming from sensors, networking data,
etc.

Enforcement policies In this work we focused on behavior enforcement poli-
cies that take into account API call signatures, possibly in context of GUI
events. Yet, the policies could be much more fine-grained and advanced.
Consider policies that distinguish between specific API call parameter val-
ues, current state of environment like contents of files on file system, se-
quence of API calls, currently running processes on the device or actions
already conducted by the user.

Computed resources It is not always clear if given resource was already seen
or not. Consider generated files with varying serial numbers embedded
in their names. For example, photo app can add ID to file name of each
photo taken. Most likely all files from given generated sequence should be
treated as one, yet this might lead to increased attack surface, as attacker
could pretend to just add next file in the sequence. This problem calls for
further investigation.

Benchmarks Core benefit of sandbox mining is that usability of the sandboxed
app doesn’t suffer too much. To prove this, many actual user interactions
with apps should be recorded and codified in repeatable deterministic
tests, to serve as a ground truth used to determine how much given be-
havior enforcement policy degrades apps usability.

111

Glossary

When reading glossary entries please note that bold text denotes names of
other terms present in the glossary. Only the first occurrences of such names in
given entry description are emboldened.

AAPT An abbreviation of “Android Asset Packaging Tool”, a tool from An-
droid SDK used for various actions for building and inspecting .apk files.

ADB An abbreviation of “Application Debug Bridge”, a tool from Android SDK
used for various developer activities done from command line over an USB
cable connected to an Android device.

API A shorthand for “Android framework API” [64].

API call A shorthand for “A call to API method”, that is, “A call to a method
being part of the Android framework API”. During exploration, event-
bound API calls are being monitored, which includes monitoring of
API calls. In this thesis there is a notion of distinct API calls.

API method A shorthand for “A method being part of API”, that is, “A
method being part of the Android framework API”.

API call saturation A type of behavior saturation where the resource
accesses considered are distinct API calls.

See also event-bound API call saturation.

.apk An .apk file is an Android package file, i.e. a file containing an Android
application. ADB can be used on an .apk file to install the contained
Android app on an Android device.

Application being secured Same as program being secured.

112

GLOSSARY

AUE Abbreviation of “Application under exploration”. AUE is an application
on which the process of exploration is being conducted.

Behavior enforcement policy A set of rules pertaining to a program behav-
ior enforced by a sandbox. During sandboxing the sandbox checks if a
program behavior at runtime is allowed according to the policy. If it is
not, a sandbox violation occurs and the behavior is flagged. A behav-
ior enforcement policy is derived from mined behavior, the result of the
mining phase of sandbox mining. Two behavior enforcement policies
are proposed in this thesis: API call enforcement policy and event-bound
API call enforcement policy. They are described in Chapter 5.

Behavior policy A shorthand for a behavior enforcement policy.

Behavior saturation As an exploration progresses, the count of distinct re-
source accesses observed is getting closer to maximum possible with
given exploration strategy. The closer the count to the maximum, the
bigger the behavior saturation. Two specific kinds of behavior saturation
are considered in this thesis: API call saturation and event-bound
API call saturation.

Distinct API call Two API calls are distinct if they are not in the same equiv-
alence class as defined by relation described in Section 5.2.1.

Distinct event-bound API call Similar to distinct API call, but the equiv-
alence relation is defined not only on API calls, but event-bound API
calls. The relation is described in Subsection 5.3.1.

DSE An abbreviation of “Dynamic symbolic execution”.

Enforcement policy A shorthand for a behavior enforcement policy.

Event-bound API call An API call paired with an event that triggered it,
as described in Section 5.3. Event-bound API call can be viewed, and is
equivalent to, an (event, API call) pair. Event-bound API calls are mon-
itored during exploration. In this thesis there is a notion of distinct
event-bound API calls.

Event-bound API call saturation A type of behavior saturation where
the resource accesses considered are distinct event-bound API calls.

113

GLOSSARY

Exploration The process of applying inputs generated with an input gen-
erator on a program being secured, with the goal of monitoring
resource accesses it makes during execution. Exploration is the first
step of mining phase of sandbox mining. During exploration the in-
put generator generates inputs according to exploration strategy. As a
result of exploration an exploration log is obtained, which is processed
further in the mining phase.

Exploration action A kind of input provided by an input generator that is
an output of exploration strategy decision of what to do next as part
of the process of exploration. In the implementation described in Chap-
ter 4, an exploration action can be any of click, long-click, press home,
press back, reset, terminate. In DROIDMATE implementation exploration
actions are multi-step operations, executed with the help of UIAUTOMA-
TOR framework and ADB. Some of the steps of the exploration actions
are actions on the GUI, like click. Such actions are conducted via the
UIAUTOMATOR framework and are called GUI actions.

Exploration log All the data obtained from an exploration in a form of
a serialized Java object written out to the file system. Exploration logs
are used by DROIDMATE to generate various human-readable data, like
the textual exploration summaries and behavior saturation charts.
When we mention in this thesis we had manually analyzed exploration
logs, we, of course, first convert them to a human-readable format. Usually
we leverage the standard DROIDMATE output, like exploration summaries,
but at times we used custom-tailored one-off views of the data.

Exploration strategy The algorithm deciding which inputs should be gen-
erated with an input generator during an exploration. Exploration
strategy might use information obtained from observing the explored pro-
gram GUI and resource accesses it makes to determine which inputs
should be generated next. Exploration strategies can be purely random,
systematic, or other, as explained in Chapter 2. For this thesis a biased
random exploration strategy was implemented, as described in Subsec-
tion 4.7.1.

Exploration summary Textual summary of an exploration log.

Explore To conduct exploration.

114

GLOSSARY

Flagging A sandbox flags a behavior if it violates a behavior enforcement
policy during sandboxing phase. In the prototype implementation de-
scribed in Chapter 5, as a result of flagging, the flagged behavior is either
completely blocked or a pop-up box is displayed to the end-user with rel-
evant, contextualized human-readable information, asking her to endorse
or forbid the behavior. The user decision is remembered and applied au-
tomatically to future occurrences of equivalent behaviors. If the behavior
is blocked, a predefined value is returned, like e.g. null.

GUI An abbreviation of “Graphical User Interface”. Depending on the sentence
context, GUI of a program may denote either all possible screens of given
program, or just the currently visible screen of the program. A read-only
representation of the currently visible screen is called a GUI snapshot.

GUI element A basic building block of a program GUI. In the context of this
thesis this means basic building block of a GUI of an Android app, which
is a view, also called widget.

GUI snapshot The read-only representation of the currently visible screen of
a given program GUI. In the context of this thesis, GUI snapshot most
often denotes the screen of an application running on an Android device,
composed of views, represented by XML window hierarchy.

Host machine The part of DROIDMATE that runs on the developer/user ma-
chine, as opposed to the DROIDMATE code running on the device. The
code running on the device is either the UIAUTOMATOR-daemon or the
inlined monitor within the AUE.

IDS An abbreviation of “Intrusion detection system”.

Inlining The process of rewriting the bytecode of the .apk file of Android app
to add monitor to it. The monitor enables monitoring of the API calls
made by the app during an exploration.

Input generator Input generator is a tool that can automatically generate in-
puts for a given program and execute the program with those inputs. An
input generator is capable of conducting exploration if it can (a) moni-
tor resource accesses and (b) determine which inputs to generate based
on the program and/or system environment status obtained after applying
previously generated inputs. In such case, the inputs generated and the
order in which they are fed to the program is determined by exploration

115

GLOSSARY

strategy. For example, an input generator can explore by analyzing the
GUI of a Java program, finding clickable elements and clicking them. In
this thesis, the name input generator is used interchangeably with test
generator.

Mined behavior A set of resource accesses that are extracted from explo-
ration log, which in turn is obtained from exploration. In this thesis
the mined behavior consists of event-bound API calls. Behavior en-
forcement policies are derived from the mined behavior.

Mined policy In the context of this thesis mined policy is a behavior en-
forcement policy. Mined policy is a shortcut for saying “a behavior
enforcement policy inferred from mined behavior, extracted from ex-
ploration summary, obtained from exploration, done in the mining
phase of sandbox mining”.

Mining, mining phase The first phase of the sandbox mining concept. In
this phase first an exploration of AUE is conducted, resulting in an ex-
ploration log. Next, mined behavior is extracted from the exploration
log. The mined behavior serves as a basis of behavior enforcement
policy used in the sandboxing phase of sandbox mining.

Monitor, monitoring Monitor is a software component that enables monitor-
ing of resource accesses made during exploration. Monitoring is the
process of intercepting resource accesses made during exploration, with
the goal of persisting them in an exploration log. One can also say
monitoring is the process of recording resource accesses.

Policy In the context of this thesis policy is a behavior enforcement policy.

Program being secured A program to which the concrete implementation of
the sandbox mining concept is being applied. In practice this means
that program being secured is also an AUE.

Resource A part of system environment which given program may access at
runtime, resulting in a resource access. Examples of resources include:
OS API methods, network connections, files on a file system, handles to
processes, databases, environment variables. In the implementation done
as part of this thesis, the resource accesses considered are event-bound
API calls.

116

GLOSSARY

Resource access Resource access happens when a program interacts with a
resource. The specific way of interaction depends on the type of resource.
OS API methods are accessed by calling them. Files on a file system
are accessed by opening them, reading their contents, deleting them, etc.
Network connections are accessed by sending or receiving data from a
remote computer or similar.

As an example, if a program calls method File.open("foo.txt")
from an OS API, two resource accesses have been made. One to the re-
source file foo.txt, as it has been opened, and one to the resource method
File.open(), as the method has been called.

Resource accesses are monitored during exploration. In this thesis the
monitored resource accesses are event-bound API calls.

Sandbox mining, sandbox mining concept The idea introduced by this
thesis, composed of two stages: mining and sandboxing. For details,
see Chapter 3.

Sandbox policy, sandbox enforcement policy In the context of this thesis
sandbox (enforcement) policy is a behavior enforcement policy.

Sandbox violation Happens when sandbox has to flag a behavior because it
is not allowed by currently enforced behavior enforcement policy.

Sandboxing, sandboxing phase Second phase of the sandbox mining con-
cept. Sandboxing happens when running in production the program be-
ing secured. The program is run in a sandbox that enforces a behavior
enforcement policy that was derived from mined behavior obtained
from the mining phase of sandbox mining.

Saturation In the context of this thesis saturation means behavior satura-
tion.

Security policy In the context of this thesis security policy is a behavior
enforcement policy.

Test generator Another name for input generator. To be precise, the inputs
generated with input generator can be either executed directly on the
subject program, or can be codified in automated tests which are then
executed, applying the inputs to the subject program. The test generator
has the ability to codify the inputs in tests, while input generator not

117

GLOSSARY

necessarily. For this thesis this distinction is irrelevant and so the names
test generator and input generator are used interchangeably.

View In context of a GUI of Android app, a view is a the basic building block of
the GUI and is represented by the View class [70]. The XML representation
of views, including their attributes, can be read from XML window hi-
erarchy. In this thesis we use the terms view, widget and GUI element
interchangeably, even though strictly speaking widgets are an interactive
subtype of views [70].

Widget A subtype of view that is interactive [70]. A simple example of a
widget type is the Button class [66]. In this thesis the term widget is
used interchangeably with the term GUI element and the term view.

XML window hierarchy The XML window hierarchy [69] is a representation
of Android GUI snapshot, composed of views. The window hierarchy
can be obtained by making a call to appropriate method exposed by the
API of UIAUTOMATOR [68].

118

Bibliography

[1] Adamsen, C. Q., Mezzetti, G., and Møller, A. Systematic execu-
tion of Android test suites in adverse conditions. In Proceedings of the
2015 International Symposium on Software Testing and Analysis (2015),
ISSTA 2015, ACM, pp. 83–93.

[2] Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine,
S., and Memon, A. M. Using GUI ripping for automated testing of
Android applications. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (2012), ASE 2012, ACM,
pp. 258–261.

[3] Amalfitano, D., Fasolino, A. R., Tramontana, P., Ta, B. D.,
and Memon, A. M. MobiGUITAR: Automated model-based testing of
mobile apps. IEEE Software 32, 5 (Sept 2015), 53–59.

[4] Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B.,
Grieskamp, W., Harman, M., Harrold, M. J., McMinn, P.,
Bertolino, A., Li, J. J., and Zhu, H. An orchestrated survey of
methodologies for automated software test case generation. Journal of
Systems and Software 86, 8 (2013), 1978 – 2001.

[5] Anand, S., Naik, M., Harrold, M. J., and Yang, H. Automated
concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineer-
ing (2012), FSE ’12, ACM, pp. 59:1–59:11.

[6] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Le Traon, Y., Octeau, D., and McDaniel, P. Flow-
Droid: Precise context, flow, field, object-sensitive and lifecycle-aware

119

BIBLIOGRAPHY

taint analysis for Android apps. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(2014), PLDI ’14, ACM, pp. 259–269.

[7] Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D. PScout: Analyz-
ing the Android permission specification. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (2012), CCS ’12,
ACM, pp. 217–228.

[8] Azim, T., and Neamtiu, I. Targeted and depth-first exploration for sys-
tematic testing of Android apps. In Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Programming Sys-
tems Languages & Applications (2013), OOPSLA ’13, ACM, pp. 641–660.

[9] Backes, M., Bugiel, S., Hammer, C., Schranz, O., and von Styp-
Rekowsky, P. Boxify: Full-fledged app sandboxing for stock Android.
In 24th USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015. (2015), pp. 691–706.

[10] Backes, M., Gerling, S., Hammer, C., Maffei, M., and von Styp-
Rekowsky, P. AppGuard–fine-grained policy enforcement for untrusted
Android applications. In Data Privacy Management and Autonomous
Spontaneous Security, J. Garcia-Alfaro, G. Lioudakis, N. Cuppens-
Boulahia, S. Foley, and W. M. Fitzgerald, Eds., Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2014, pp. 213–231.

[11] Ball, T., and Rajamani, S. K. The SLAM project: Debugging system
software via static analysis. In Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (2002),
POPL ’02, ACM, pp. 1–3.

[12] Bhoraskar, R., Han, S., Jeon, J., Azim, T., Chen, S., Jung, J.,
Nath, S., Wang, R., and Wetherall, D. Brahmastra: Driving apps
to test the security of third-party components. In Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014.
(2014), pp. 1021–1036.

[13] Bierma, M., Gustafson, E., Erickson, J., Fritz, D., and Choe,
Y. R. Andlantis: Large-scale Android dynamic analysis. CoRR
abs/1410.7751 (2014).

120

BIBLIOGRAPHY

[14] Bläsing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S., and Al-
bayrak, S. An Android application sandbox system for suspicious soft-
ware detection. In Malicious and Unwanted Software (MALWARE), 2010
5th International Conference on (Oct 2010), pp. 55–62.

[15] Böhme, M., and Soumya, P. On the efficiency of automated test-
ing. In Proceedings of the 22Nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (2014), FSE 2014, ACM,
pp. 632–642.

[16] Boyer, R. S., Elspas, B., and Levitt, K. N. Select—a formal
system for testing and debugging programs by symbolic execution. In
Proceedings of the International Conference on Reliable Software (1975),
ACM, pp. 234–245.

[17] Carter, P., Mulliner, C., Lindorfer, M., Robertson, W., and
Kirda, E. CuriousDroid: automated user interface interaction for an-
droid application analysis sandboxes. In International Conference on Fi-
nancial Cryptography and Data Security (2016), Springer, pp. 231–249.

[18] Choi, W., Necula, G., and Sen, K. Guided GUI testing of Android
apps with minimal restart and approximate learning. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications (2013), OOPSLA ’13,
ACM, pp. 623–640.

[19] Choudhary, S. R., Gorla, A., and Orso, A. Automated test input
generation for Android: Are we there yet? CoRR abs/1503.07217 (2015).

[20] Dallmeier, V., Burger, M., Orth, T., and Zeller, A. WebMate:
Generating test cases for web 2.0. In Software Quality. Increasing Value
in Software and Systems Development (Jan. 2013), Springer, pp. 55–69.

[21] Denning, D. E. An intrusion-detection model. IEEE Trans. Softw. Eng.
13, 2 (Feb. 1987), 222–232.

[22] Ernst, M. D. Static and dynamic analysis: Synergy and duality. In
WODA 2003: ICSE Workshop on Dynamic Analysis (2003), pp. 24–27.

[23] Ernst, M. D. Static and dynamic analysis: synergy and duality. In Proc.
PASTE ’04 (2004), ACM, pp. 35–35.

121

BIBLIOGRAPHY

[24] Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D. An-
droid permissions demystified. In Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security (2011), CCS ’11, ACM,
pp. 627–638.

[25] Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., and Wag-
ner, D. Android permissions: User attention, comprehension, and be-
havior. In Proceedings of the Eighth Symposium on Usable Privacy and
Security (2012), SOUPS ’12, ACM, pp. 3:1–3:14.

[26] Forrest, S., Hofmeyr, S. A., Somayaji, A., and Longstaff, T. A.
A sense of self for Unix processes. In Proceedings of the 1996 IEEE Sym-
posium on Security and Privacy (1996), SP ’96, IEEE Computer Society,
pp. 120–.

[27] Fraser, G., and Arcuri, A. Evolutionary generation of whole test
suites. In International Conference On Quality Software (QSIC) (2011),
IEEE Computer Society, pp. 31–40.

[28] Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G.,
and Vázquez, E. Anomaly-based network intrusion detection: Tech-
niques, systems and challenges. Computers & Security 28, 1 (2009), 18–28.

[29] Godefroid, P., Klarlund, N., and Sen, K. Dart: Directed auto-
mated random testing. In Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (2005),
PLDI ’05, ACM, pp. 213–223.

[30] Godefroid, P., Levin, M. Y., and Molnar, D. Automated whitebox
fuzz testing. In Proceedings of Network and Distributed Systems Security
(NDSS 2008) (July 2008), pp. 151–166.

[31] Gorla, A., Tavecchia, I., Gross, F., and Zeller, A. Checking
app behavior against app descriptions. In Proceedings of the 36th Inter-
national Conference on Software Engineering (2014), ICSE 2014, ACM,
pp. 1025–1035.

[32] Gross, F., Fraser, G., and Zeller, A. Exsyst: Search-based gui
testing (tool paper). In 34th International Conference on Software Engi-
neering (2012), IEEE, pp. 1423–1426.

122

BIBLIOGRAPHY

[33] Hamlet, R. Random testing. In Encyclopedia of Software Engineering
(1994), Wiley, pp. 970–978.

[34] Hao, S., Liu, B., Nath, S., Halfond, W. G., and Govindan, R.
PUMA: Programmable UI-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th Annual International Conference
on Mobile Systems, Applications, and Services (2014), MobiSys ’14, ACM,
pp. 204–217.

[35] Holler, C., Herzig, K., and Zeller, A. Fuzzing with code fragments.
In Proceedings of the 21st USENIX Conference on Security Symposium
(2012), Security’12, USENIX Association, pp. 38–38.

[36] Holzmann, G. J. The model checker SPIN. IEEE Trans. Softw. Eng.
23, 5 (May 1997), 279–295.

[37] Patent application EP3259697 - MINING SANDBOXES. https:
//register.epo.org/application?number=EP16709293, Re-
trieved March 2018.

[38] Jamrozik, K., von Styp-Rekowsky, P., and Zeller, A. Mining
sandboxes. In Proceedings of the 38th International Conference on Soft-
ware Engineering (2016), ICSE ’16, ACM, pp. 37–48.

[39] Jamrozik, K., and Zeller, A. DroidMate: A robust and extensible
test generator for Android. In Proceedings of the International Conference
on Mobile Software Engineering and Systems (2016), MOBILESoft ’16,
ACM, pp. 293–294.

[40] Kruegel, C., Vigna, G., and Robertson, W. A multi-model ap-
proach to the detection of web-based attacks. Computer Networks 48, 5
(2005), 717–738.

[41] Langner, R. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security
& Privacy 9, 3 (2011), 49–51.

[42] Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M.,
and Kirda, E. AccessMiner: Using system-centric models for malware
protection. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (2010), CCS ’10, ACM, pp. 399–412.

123

https://register.epo.org/application?number=EP16709293
https://register.epo.org/application?number=EP16709293

BIBLIOGRAPHY

[43] Li, Y., Yang, Z., Guo, Y., and Chen, X. DroidBot: a lightweight
UI-Guided test input generator for Android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C)
(May 2017), pp. 23–26.

[44] Linares-Vásquez, M., White, M., Bernal-Cárdenas, C., Moran,
K., and Poshyvanyk, D. Mining Android app usages for generating ac-
tionable GUI-based execution scenarios. In Proceedings of the 12th Work-
ing Conference on Mining Software Repositories (2015), MSR ’15, IEEE
Press, pp. 111–122.

[45] Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G. CHEX: Statically vet-
ting Android apps for component hijacking vulnerabilities. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security
(2012), CCS ’12, ACM, pp. 229–240.

[46] Machiry, A., Tahiliani, R., and Naik, M. Dynodroid: An in-
put generation system for Android apps. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering (2013), ES-
EC/FSE 2013, ACM, pp. 224–234.

[47] Mahmood, R., Mirzaei, N., and Malek, S. EvoDroid: Segmented
evolutionary testing of Android apps. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering (2014), FSE 2014, ACM, pp. 599–609.

[48] Mao, K., Harman, M., and Jia, Y. Sapienz: Multi-objective auto-
mated testing for Android applications. In Proc. of ISSTA’16 (2016),
pp. 94–105.

[49] Mesbah, A., van Deursen, A., and Lenselink, S. Crawling Ajax-
based web applications through dynamic analysis of user interface state
changes. ACM Transactions on the Web (TWEB) 6, 1 (2012), 3:1–3:30.

[50] Moran, K., Linares-Vásquez, M., Bernal-Cárdenas, C., Ven-
dome, C., and Poshyvanyk, D. Automatically discovering, reporting
and reproducing Android application crashes. In 2016 IEEE Interna-
tional Conference on Software Testing, Verification and Validation (ICST)
(April 2016), pp. 33–44.

[51] Nielson, F., Nielson, H. R., and Hankin, C. Principles of Program
Analysis. Springer-Verlag New York, Inc., 1999.

124

BIBLIOGRAPHY

[52] Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T. Feedback-
directed random test generation. In Proceedings of the 29th International
Conference on Software Engineering (2007), ICSE ’07, IEEE Computer
Society, pp. 75–84.

[53] Rastogi, V., Chen, Y., and Enck, W. AppsPlayground: Automatic
security analysis of smartphone applications. In Proceedings of the Third
ACM Conference on Data and Application Security and Privacy (2013),
CODASPY ’13, ACM, pp. 209–220.

[54] Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H. J.,
and Cowan, C. User-driven access control: Rethinking permission grant-
ing in modern operating systems. In Proceedings of the 2012 IEEE Sym-
posium on Security and Privacy (2012), SP ’12, IEEE Computer Society,
pp. 224–238.

[55] Saltzer, J., and Schroeder, M. The protection of information in
computer systems. Proceedings of the IEEE 63, 9 (Sept 1975), 1278–1308.

[56] Shirley, J., and Evans, D. The user is not the enemy: Fighting mal-
ware by tracking user intentions. In Proceedings of the 2008 Workshop on
New Security Paradigms (2008), NSPW ’08, ACM, pp. 33–45.

[57] Sommer, R., and Paxson, V. Outside the closed world: On using
machine learning for network intrusion detection. In Proceedings of the
2010 IEEE Symposium on Security and Privacy (2010), SP ’10, IEEE
Computer Society, pp. 305–316.

[58] Tillmann, N., and de Halleux, N. J. Pex — white box test generation
for .NET. In Proc. TAP (2008), pp. 134–153.

[59] van der Merwe, H., van der Merwe, B., and Visser, W. Verifying
Android applications using Java PathFinder. SIGSOFT Softw. Eng. Notes
37, 6 (Nov. 2012), 1–5.

[60] Wong, M. Y., and Lie, D. IntelliDroid: A Targeted Input Generator
for the Dynamic Analysis of Android Malware. In NDSS (2016).

[61] Yang, W., Prasad, M. R., and Xie, T. A grey-box approach for
automated GUI-model generation of mobile applications. In Proceedings
of the 16th International Conference on Fundamental Approaches to Soft-
ware Engineering (2013), FASE’13, Springer-Verlag, pp. 250–265.

125

BIBLIOGRAPHY

[62] Android 6 permission model. https://developer.android.com/
training/articles/user-data-permissions.html#version_
specific_details_permissions_in_m. Retrieved May 2017.

[63] Android lifecycle. https://developer.android.com/guide/
components/activities/activity-lifecycle.html. Retrieved
May 2017.

[64] Android API reference. https://developer.android.com/
reference/packages.html. Retrieved May 2017.

[65] Android AppManifest. https://developer.android.com/guide/
topics/manifest/manifest-intro.html. Retrieved May 2017.

[66] Android Button class. https://developer.android.com/
reference/android/widget/Button.html. Retrieved May
2017.

[67] Android tasks and back stack. https://developer.android.com/
guide/components/tasks-and-back-stack.html. Retrieved
May 2017.

[68] Android UI Automator API dumpWindowHierarchy method. https://
developer.android.com/reference/android/support/test/
uiautomator/UiDevice.html#dumpWindowHierarchy(java.
io.File). Retrieved May 2017.

[69] Android UI overview. https://developer.android.com/guide/
topics/ui/overview.html#Layout. Retrieved May 2017.

[70] Android View class. https://developer.android.com/
reference/android/view/View.html. Retrieved May 2017.

[71] AndroTest website. http://bear.cc.gatech.edu/~shauvik/
androtest/. Retrieved May 2017.

[72] ArtHook source. https://github.com/mar-v-in/ArtHook. Re-
trieved May 2017.

[73] Java method declaration spec. https://docs.oracle.com/javase/
specs/jls/se7/html/jls-8.html#jls-8.4. Retrieved May 2017.

126

https://developer.android.com/training/articles/user-data-permissions.html#version_specific_details_permissions_in_m
https://developer.android.com/training/articles/user-data-permissions.html#version_specific_details_permissions_in_m
https://developer.android.com/training/articles/user-data-permissions.html#version_specific_details_permissions_in_m
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/guide/components/tasks-and-back-stack.html
https://developer.android.com/guide/components/tasks-and-back-stack.html
https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html#dumpWindowHierarchy(java.io.File)
https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html#dumpWindowHierarchy(java.io.File)
https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html#dumpWindowHierarchy(java.io.File)
https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html#dumpWindowHierarchy(java.io.File)
https://developer.android.com/guide/topics/ui/overview.html#Layout
https://developer.android.com/guide/topics/ui/overview.html#Layout
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
http://bear.cc.gatech.edu/~shauvik/androtest/
http://bear.cc.gatech.edu/~shauvik/androtest/
https://github.com/mar-v-in/ArtHook
https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4
https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4

BIBLIOGRAPHY

[74] PUMA source. https://github.com/USC-NSL/PUMA. Retrieved
May 2017.

[75] Android system permissions: mirror of previous documentation.
https://stuff.mit.edu/afs/sipb/project/android/docs/
guide/topics/security/permissions.html. Retrieved May
2017.

[76] Hackers remotely kill a Jeep on the highway—with me in it.
https://www.wired.com/2015/07/hackers-remotely-kill-
jeep-highway/. Retrieved May 2017.

[77] Linkedin hack. https://en.wikipedia.org/wiki/2012_
LinkedIn_hack. Retrieved May 2017.

[78] Adobe hack. https://krebsonsecurity.com/2013/10/adobe-
breach-impacted-at-least-38-million-users. Retrieved May
2017.

[79] Tumblr hack. https://www.theguardian.com/technology/
2016/may/31/tumblr-emails-for-sale-darknet-65-
million-hack-passwords. Retrieved May 2017.

[80] CVEs (Common Vulnerabilities and Exposures) list. https://www.
cvedetails.com/. Retrieved May 2017.

[81] Heartbleed. http://heartbleed.com/. Retrieved May 2017.

[82] Windows user account control. https://en.wikipedia.org/wiki/
User_Account_Control. Retrieved May 2017.

[83] Android permission groups. https://developer.android.com/
guide/topics/permissions/requesting.html#perm-groups.
Retrieved May 2017.

[84] Using Android permissions. https://developer.android.com/
guide/topics/permissions/requesting.html#permissions.
Retrieved May 2017.

[85] Android security architecture: mirror of previous documenta-
tion. https://stuff.mit.edu/afs/sipb/project/android/
docs/guide/topics/security/permissions.html#arch. Re-
trieved May 2017.

127

https://github.com/USC-NSL/PUMA
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/security/permissions.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/security/permissions.html
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://en.wikipedia.org/wiki/2012_LinkedIn_hack
https://en.wikipedia.org/wiki/2012_LinkedIn_hack
https://krebsonsecurity.com/2013/10/adobe-breach-impacted-at-least-38-million-users
https://krebsonsecurity.com/2013/10/adobe-breach-impacted-at-least-38-million-users
https://www.theguardian.com/technology/2016/may/31/tumblr-emails-for-sale-darknet-65-million-hack-passwords
https://www.theguardian.com/technology/2016/may/31/tumblr-emails-for-sale-darknet-65-million-hack-passwords
https://www.theguardian.com/technology/2016/may/31/tumblr-emails-for-sale-darknet-65-million-hack-passwords
https://www.cvedetails.com/
https://www.cvedetails.com/
http://heartbleed.com/
https://en.wikipedia.org/wiki/User_Account_Control
https://en.wikipedia.org/wiki/User_Account_Control
https://developer.android.com/guide/topics/permissions/requesting.html#perm-groups
https://developer.android.com/guide/topics/permissions/requesting.html#perm-groups
https://developer.android.com/guide/topics/permissions/requesting.html#permissions
https://developer.android.com/guide/topics/permissions/requesting.html#permissions
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/security/permissions.html#arch
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/security/permissions.html#arch

BIBLIOGRAPHY

[86] Android application security. https://source.android.com/
security/overview/app-security. Retrieved May 2017.

[87] Android, normal permissions. https://developer.android.com/
guide/topics/permissions/normal-permissions.html. Re-
trieved May 2017.

[88] Android normal vs dangerous permissions. https://developer.
android.com/guide/topics/permissions/requesting.html#
normal-dangerous. Retrieved May 2017.

[89] Android security. https://source.android.com/security/. Re-
trieved May 2017.

[90] Inernet permission. https://developer.android.com/
reference/android/Manifest.permission.html#INTERNET.
Retrieved May 2017.

[91] Android LocationManager. https://developer.android.com/
reference/android/location/LocationManager.html. Re-
trieved May 2017.

[92] Metamorphic code. https://en.wikipedia.org/wiki/
Metamorphic_code. Retrieved May 2017.

[93] Firewall. https://en.wikipedia.org/wiki/Firewall_
(computing). Retrieved May 2017.

[94] Deep packet inspection. https://en.wikipedia.org/wiki/Deep_
packet_inspection. Retrieved May 2017.

[95] Intrusion detection system. https://en.wikipedia.org/wiki/
Intrusion_detection_system. Retrieved May 2017.

[96] Evasive malware report. http://labs.lastline.com/evasive-
malware-gone-mainstream. Retrieved May 2017.

[97] Android framework. https://developer.android.com/guide/
platform/index.html#api-framework. Retrieved May 2017.

[98] Android SDK initial release date. https://en.wikipedia.org/
wiki/Android_software_development#SDK. Retrieved May 2017.

128

https://source.android.com/security/overview/app-security
https://source.android.com/security/overview/app-security
https://developer.android.com/guide/topics/permissions/normal-permissions.html
https://developer.android.com/guide/topics/permissions/normal-permissions.html
https://developer.android.com/guide/topics/permissions/requesting.html#normal-dangerous
https://developer.android.com/guide/topics/permissions/requesting.html#normal-dangerous
https://developer.android.com/guide/topics/permissions/requesting.html#normal-dangerous
https://source.android.com/security/
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/location/LocationManager.html
https://developer.android.com/reference/android/location/LocationManager.html
https://en.wikipedia.org/wiki/Metamorphic_code
https://en.wikipedia.org/wiki/Metamorphic_code
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/Deep_packet_inspection
https://en.wikipedia.org/wiki/Deep_packet_inspection
https://en.wikipedia.org/wiki/Intrusion_detection_system
https://en.wikipedia.org/wiki/Intrusion_detection_system
http://labs.lastline.com/evasive-malware-gone-mainstream
http://labs.lastline.com/evasive-malware-gone-mainstream
https://developer.android.com/guide/platform/index.html#api-framework
https://developer.android.com/guide/platform/index.html#api-framework
https://en.wikipedia.org/wiki/Android_software_development#SDK
https://en.wikipedia.org/wiki/Android_software_development#SDK

BIBLIOGRAPHY

[99] Android ProGuard. https://developer.android.com/studio/
build/shrink-code.html. Retrieved May 2017.

[100] Android Monkey: UI/Application Exerciser. https://developer.
android.com/studio/test/monkey.html. Retrieved May 2017.

[101] UI Automator: Testing UI for multiple apps. https://developer.
android.com/training/testing/ui-testing/uiautomator-
testing.html. Retrieved May 2017.

[102] DroidMate webpage (redirects to BoxMate webpage). http://www.
droidmate.org. Retrieved May 2017.

[103] GitHub repository of DroidMate. https://github.com/konrad-
jamrozik/droidmate. Retrieved May 2017.

[104] Google Play Store. https://play.google.com/. Retrieved May
2017.

[105] A3E website. http://spruce.cs.ucr.edu/a3e/. Retrieved May
2017.

[106] SwiftHand source. https://github.com/wtchoi/SwiftHand/. Re-
trieved May 2017.

[107] Dynodroid source. https://github.com/Machiry/ddator. Re-
trieved May 2017.

[108] Acteve source. https://github.com/saswatanand/acteve/. Re-
trieved May 2017.

[109] IntelliDroid source. https://github.com/miwong/IntelliDroid.
Retrieved March 2018.

[110] CuriousDroid source. https://github.com/pdcarter/
curiousdroid/tree/master/edu/neu/ccs/curiousdroid.
Retrieved March 2018.

[111] DroidBot source. https://github.com/honeynet/droidbot. Re-
trieved March 2018.

129

https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
http://www.droidmate.org
http://www.droidmate.org
https://github.com/konrad-jamrozik/droidmate
https://github.com/konrad-jamrozik/droidmate
https://play.google.com/
http://spruce.cs.ucr.edu/a3e/
https://github.com/wtchoi/SwiftHand/
https://github.com/Machiry/ddator
https://github.com/saswatanand/acteve/
https://github.com/miwong/IntelliDroid
https://github.com/pdcarter/curiousdroid/tree/master/edu/neu/ccs/curiousdroid
https://github.com/pdcarter/curiousdroid/tree/master/edu/neu/ccs/curiousdroid
https://github.com/honeynet/droidbot

Appendices

130

Appendix A

Using and extending
DroidMate

DROIDMATE is free software [103], licensed under GPL-3.0. It boasts continuous
integration server [103] and extensive documentation [103], explaining how to
build it, run, test, deploy, develop, extend and troubleshoot. It includes pro-
grammatic API usage examples and comprehensive suite of tests run during the
build, as well as additional Android device integration tests users can run to
validate their DROIDMATE installation. Please refer to the documentation [103]
to see how to use and extend DROIDMATE.

131

Appendix B

Monitored Android API
methods list

This appendix contains the list of sensitive Android 4.4.2 (API 19) method
signatures of Android framework API which have been monitored in the experi-
ments described in Chapter 6. There are 97 methods in total. The format used
is a fully qualified method signature formatted according to [73]. In case of long
method signatures, first the common prefix is listed, followed by a colon.
android.app.ActivityManager.getRecentTasks(int, int)
android.app.ActivityManager.getRunningTasks(int)
android.bluetooth.BluetoothHeadset.startVoiceRecognition(android.bluetooth.BluetoothDevice)
android.bluetooth.BluetoothHeadset.stopVoiceRecognition(android.bluetooth.BluetoothDevice)

android.content.ContentProviderClient:
.bulkInsert(android.net.Uri, android.content.ContentValues[])
.delete(android.net.Uri, java.lang.String, java.lang.String[])
.insert(android.net.Uri, android.content.ContentValues)
.openFile(android.net.Uri, java.lang.String)
.query(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[], java.lang.String)
.update(android.net.Uri, android.content.ContentValues, java.lang.String, java.lang.String[])

android.content.ContentResolver:
.bulkInsert(android.net.Uri, android.content.ContentValues[])
.delete(android.net.Uri, java.lang.String, java.lang.String[])
.insert(android.net.Uri, android.content.ContentValues)
.openInputStream(android.net.Uri)
.registerContentObserver(android.net.Uri, boolean, android.database.ContentObserver)
.update(android.net.Uri, android.content.ContentValues, java.lang.String, java.lang.String[])

android.hardware.Camera.open()
android.hardware.Camera.open(int)

android.location.LocationManager:
.addProximityAlert(double, double, float, long, android.app.PendingIntent)
.addTestProvider(java.lang.String, boolean, boolean, boolean, boolean, boolean, boolean, boolean, int, int)
.clearTestProviderEnabled(java.lang.String)
.clearTestProviderLocation(java.lang.String)
.clearTestProviderStatus(java.lang.String)
.getBestProvider(android.location.Criteria, boolean)
.getLastKnownLocation(java.lang.String)

132

APPENDIX B. MONITORED ANDROID API METHODS LIST

.getProvider(java.lang.String)

.getProviders(android.location.Criteria, boolean)

.getProviders(boolean)

.isProviderEnabled(java.lang.String)

.removeTestProvider(java.lang.String)

.requestLocationUpdates(long, float, android.location.Criteria, android.app.PendingIntent)

.requestLocationUpdates(long, float, android.location.Criteria, android.location.LocationListener, android.os.Looper)

.requestLocationUpdates(java.lang.String, long, float, android.app.PendingIntent)

.requestLocationUpdates(java.lang.String, long, float, android.location.LocationListener)

.requestLocationUpdates(java.lang.String, long, float, android.location.LocationListener, android.os.Looper)

.requestSingleUpdate(android.location.Criteria, android.app.PendingIntent)

.requestSingleUpdate(android.location.Criteria, android.location.LocationListener, android.os.Looper)

.requestSingleUpdate(java.lang.String, android.app.PendingIntent)

.requestSingleUpdate(java.lang.String, android.location.LocationListener, android.os.Looper)

.sendExtraCommand(java.lang.String, java.lang.String, android.os.Bundle)

.setTestProviderEnabled(java.lang.String, boolean)

.setTestProviderLocation(java.lang.String, android.location.Location)

.setTestProviderStatus(java.lang.String, int, android.os.Bundle, long)

android.media.AudioManager.isBluetoothA2dpOn()
android.media.AudioManager.isWiredHeadsetOn()
android.media.AudioManager.setBluetoothScoOn(boolean)
android.media.AudioManager.setMicrophoneMute(boolean)
android.media.AudioManager.setMode(int)
android.media.AudioManager.setParameter(java.lang.String, java.lang.String)
android.media.AudioManager.setParameters(java.lang.String)
android.media.AudioManager.setSpeakerphoneOn(boolean)
android.media.AudioManager.startBluetoothSco()
android.media.AudioManager.stopBluetoothSco()
android.media.AudioRecord.<init>(int, int, int, int, int)
android.media.MediaPlayer.setWakeMode(android.content.Context, int)
android.media.MediaRecorder.setAudioSource(int)
android.media.MediaRecorder.setVideoSource(int)
android.net.ConnectivityManager.requestRouteToHost(int, int)
android.net.ConnectivityManager.setNetworkPreference(int)
android.net.ConnectivityManager.startUsingNetworkFeature(int, java.lang.String)
android.net.ConnectivityManager.stopUsingNetworkFeature(int, java.lang.String)
android.net.wifi.WifiManager$MulticastLock.acquire()
android.net.wifi.WifiManager$MulticastLock.release()
android.net.wifi.WifiManager$WifiLock.acquire()
android.net.wifi.WifiManager$WifiLock.release()
android.net.wifi.WifiManager.addNetwork(android.net.wifi.WifiConfiguration)
android.net.wifi.WifiManager.disableNetwork(int)
android.net.wifi.WifiManager.disconnect()
android.net.wifi.WifiManager.enableNetwork(int, boolean)
android.net.wifi.WifiManager.pingSupplicant()
android.net.wifi.WifiManager.reassociate()
android.net.wifi.WifiManager.reconnect()
android.net.wifi.WifiManager.removeNetwork(int)
android.net.wifi.WifiManager.saveConfiguration()
android.net.wifi.WifiManager.setWifiEnabled(boolean)
android.net.wifi.WifiManager.startScan()
android.os.PowerManager$WakeLock.acquire()
android.os.PowerManager$WakeLock.acquire(long)
android.os.PowerManager$WakeLock.release(int)
android.speech.SpeechRecognizer.cancel()
android.speech.SpeechRecognizer.startListening(android.content.Intent)
android.speech.SpeechRecognizer.stopListening()
android.telephony.TelephonyManager.getCellLocation()
android.telephony.TelephonyManager.getDeviceId()
android.telephony.TelephonyManager.getDeviceSoftwareVersion()
android.telephony.TelephonyManager.getLine1Number()
android.telephony.TelephonyManager.getNeighboringCellInfo()
android.telephony.TelephonyManager.getSimSerialNumber()
android.telephony.TelephonyManager.getSubscriberId()
android.telephony.TelephonyManager.getVoiceMailAlphaTag()
android.telephony.TelephonyManager.getVoiceMailNumber()
android.telephony.TelephonyManager.listen(android.telephony.PhoneStateListener, int)
java.net.Socket.<init>(java.lang.String, int, java.net.InetAddress, int)
java.net.Socket.<init>(java.lang.String, int, boolean)
java.net.Socket.<init>(java.net.InetAddress, int, java.net.InetAddress, int)
java.net.Socket.<init>(java.net.InetAddress, int, boolean)
java.net.URL.openConnection()

133

Appendix C

Exploration summaries

This appendix contains DROIDMATE exploration summaries of the 2 hour ex-
plorations of twelve apps from Chapter 6 evaluation set, plus 3.5 hour long
exploration of SNAPCHAT 4.1.07. While reading the summaries, take note that:

• Each summary is organized by app and exploration identifiers, with the
identifiers surrounded by line separators of ===.

• For each app, we first list the resource accesses observed while replaying
the automated tests representing real world use cases. Such entries have
“use-case” in their titles, for example,
use-case:viewDocument:com.adobe.reader.

First we give hand-written description of the use case. Next, after a line
separator of ---, we list observed API calls, then, after another --- line
separator, we list observed (event, API call) pairs.

• The listing of resource accesses made during execution of use cases shows
in the column “DroidMate” at which time the same API call or (event, API
call) pair was observed during exploration made with inputs automatically
generated with DROIDMATE. If it wasn’t seen by DROIDMATE, it says
“None!”.

• Each API call is listed as “TId” (Thread Identifier), signature, and possible
argument information, such as an URI, if relevant for distinguishing API
calls.

134

APPENDIX C. EXPLORATION SUMMARIES

• After the use cases comes the === line separator and the DROIDMATE
exploration summary of the same app is listed. Again, first API calls, then
(event, API call) pairs.

135

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
==
use-case:addAndEditExpense:at.markushi.expensemanager
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the plus sign in the upper right corner to record a new expense.
// 3. Set the first digit of the expense, ’1’.
// 4. Set the second digit of the expense, ’5’.
// 5. Press the decimal sign while setting expense value.
// 6. Set the third digit of the expense, ’8’. The expense value is now 15.80.
// 7. Confirm the expense value.
// 8. Save the new expense.
// 9. Unroll the expense category in the overview, to display the expense itself.
// 10. Click the expense in the overview.
// 11. Set expense category to ’Health’.
// 12. Click ’edit note’.
// 13. Set the note text to ’Pills’.
// 14. Save the modified expense.
// 15. Terminate the exploration.

Total run time: 0m 34s
Total actions count: 15 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 0

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature

--
Unique [API call, event] pairs count observed in the run: 0

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature

==
use-case:deleteExpenseFromHistory:at.markushi.expensemanager
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Open overview menu.
// 3. Click the ’history’ tab.
// 4. Click the only entry.
// 5. Delete the entry.

136

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
// 6. Terminate the exploration.

Total run time: 10m 7s
Total actions count: 6 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 0

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature

--
Unique [API call, event] pairs count observed in the run: 0

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature

==
use-case:viewAndSetBudget:at.markushi.expensemanager
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Open the overview menu.
// 3. Click the ’budget’ tab.
// 4. Click the ’Other’ category.
// 5. Click the ’7’ digit.
// 6. Click the ’OK’ button to confirm the budget for the ’Other’ category.
// 7. Terminate the exploration.

Total run time: 0m 15s
Total actions count: 7 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 0

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature

--
Unique [API call, event] pairs count observed in the run: 0

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

137

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature

==
DroidMate-run:at.markushi.expensemanager
==

Total run time: 120m 19s
Total actions count: 2558 (including the final action terminating exploration)
Total resets count: 107 (including the initial action)

--
Unique API calls count observed in the run: 0

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate API signature

--
Unique [API call, event] pairs count observed in the run: 0

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature

==
use-case:viewDocument:com.adobe.reader
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’What’s New’ button.
// 3. Click the ’Help’ button to open side menu.
// 4. Click the ’Documents’ tab in the side menu.
// 5. Click the first (topmost) document to open it.
// 6. Terminate the exploration.

Total run time: 0m 17s
Total actions count: 6 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 0

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature

138

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
--
Unique [API call, event] pairs count observed in the run: 0

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature

==
DroidMate-run:com.adobe.reader
==

Total run time: 120m 19s
Total actions count: 2576 (including the final action terminating exploration)
Total resets count: 96 (including the initial action)

--
Unique API calls count observed in the run: 1

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate API signature
8m 57s 191 TId: 702 java.net.Socket: void <init>

--
Unique [API call, event] pairs count observed in the run: 1

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
8m 57s 191 background TId: 702 java.net.Socket: void <init>

==
use-case:scan:com.antivirus
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’Activate’ button.
// 3. Click the ’Scan Now’ button.
// 4. Wait until the ’View Scan Results’ button appears and click it.
// 5. Terminate the exploration.

Total run time: 12m 42s
Total actions count: 5 (including the final action terminating exploration)

--

139

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
Unique API calls count observed in the run: 13

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 4s 1 | 0m 4s 1 TId: 1 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

ContentObserver) uri: content://sms/
0m 4s 1 | 0m 4s 1 TId: 1 android.telephony.TelephonyManager: java.lang.String getLine1Number()
0m 4s 1 | 0m 4s 1 TId: 1 android.telephony.TelephonyManager: java.lang.String getSimSerialNumber()
0m 4s 1 | 0m 4s 1 TId: 1 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

ContentObserver) uri: content://settings/system
0m 4s 1 | 0m 4s 1 TId: 1159 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

ContentObserver) uri: content://call_log/calls
0m 13s 3 | 0m 14s 3 TId: 1159 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

ContentObserver) uri: content://com.android.chrome.browser/history
0m 13s 3 | 0m 14s 3 TId: 1159 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

ContentObserver) uri: content://com.android.chrome.browser/bookmarks
0m 13s 3 | 0m 14s 3 TId: 1159 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

ContentObserver) uri: content://browser/searches
0m 13s 3 | 0m 14s 3 TId: 1159 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

ContentObserver) uri: content://browser/bookmarks
0m 13s 3 | 0m 14s 3 TId: 1159 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

ContentObserver) uri: content://com.android.browser/history
0m 13s 3 | 0m 14s 3 TId: 1156 android.telephony.TelephonyManager: java.lang.String getDeviceId()
0m 14s 3 | 0m 15s 3 TId: 1159 java.net.URL: java.net.URLConnection openConnection()
0m 13s 3 | 0m 15s 3 TId: 1159 java.net.Socket: void <init>

--
Unique [API call, event] pairs count observed in the run: 16

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
0m 4s 1 | 0m 4s 1 <reset> TId: 1 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://sms/
0m 4s 1 | 0m 4s 1 <reset> TId: 1 android.telephony.TelephonyManager: java.lang.String

getLine1Number()
0m 4s 1 | 0m 4s 1 <reset> TId: 1 android.telephony.TelephonyManager: java.lang.String

getSimSerialNumber()
0m 4s 1 | 0m 4s 1 <reset> TId: 1 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://settings/system
0m 4s 1 | 0m 4s 1 <reset> TId: 1159 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://call_log/calls
0m 13s 3 | 0m 14s 3 background TId: 1159 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://com.android.chrome.browser/history
0m 13s 3 | 0m 14s 3 background TId: 1159 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://com.android.chrome.browser/bookmarks
0m 13s 3 | 0m 14s 3 background TId: 1159 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://browser/searches
0m 13s 3 | 0m 14s 3 background TId: 1159 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://browser/bookmarks

140

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
0m 13s 3 | 0m 14s 3 background TId: 1159 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://com.android.browser/history
0m 13s 3 | 0m 14s 3 background TId: 1156 android.telephony.TelephonyManager: java.lang.String

getSimSerialNumber()
0m 13s 3 | 0m 14s 3 background TId: 1156 android.telephony.TelephonyManager: java.lang.String

getDeviceId()
0m 13s 3 | 0m 14s 3 background TId: 1159 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://sms/
0m 14s 3 | 0m 15s 3 background TId: 1159 android.telephony.TelephonyManager: java.lang.String

getLine1Number()
0m 14s 3 | 0m 15s 3 background TId: 1159 java.net.URL: java.net.URLConnection openConnection

()
0m 13s 3 | 0m 15s 3 background TId: 1159 java.net.Socket: void <init>

==
DroidMate-run:com.antivirus
==

Total run time: 120m 30s
Total actions count: 1606 (including the final action terminating exploration)
Total resets count: 114 (including the initial action)

--
Unique API calls count observed in the run: 54

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate API signature
0m 4s 1 TId: 1 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://sms/
0m 4s 1 TId: 1 android.telephony.TelephonyManager: java.lang.String getLine1Number()
0m 4s 1 TId: 1 android.telephony.TelephonyManager: java.lang.String getSimSerialNumber()
0m 4s 1 TId: 1 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://settings/system
0m 4s 1 TId: 941 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://call_log/calls
0m 13s 3 TId: 941 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://com.android.chrome.browser/history
0m 13s 3 TId: 941 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://com.android.chrome.browser/bookmarks
0m 13s 3 TId: 941 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://browser/searches
0m 13s 3 TId: 941 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://browser/bookmarks
0m 13s 3 TId: 941 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://com.android.browser/history
0m 13s 3 TId: 938 android.telephony.TelephonyManager: java.lang.String getDeviceId()
0m 14s 4 TId: 941 java.net.URL: java.net.URLConnection openConnection()
0m 15s 4 TId: 941 java.net.Socket: void <init>

17m 49s 211 TId: 1022 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.
String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android.chrome.browser/bookmarks

28m 37s 342 TId: 1092 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.android.
browser/bookmarks

28m 43s 343 TId: 1093 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.android.

141

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
browser/history

28m 43s 343 TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://sms
28m 44s 343 TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://logs/historys
28m 44s 343 TId: 1094 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://logs/historys
28m 44s 343 TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://sms/inbox
28m 45s 343 TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://sms/sent
28m 45s 343 TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://mms/inbox
28m 45s 343 TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://mms
28m 45s 343 TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://mms-sms
28m 45s 343 TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://mms/address
28m 45s 343 TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://mms/part
28m 45s 343 TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://mms/sent
28m 45s 343 TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://mms/outbox
28m 45s 343 TId: 1095 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://call_log/calls
28m 45s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.android.

contacts/contacts
28m 45s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.android.

contacts/data
28m 45s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.android.

contacts/raw_contact_entities
28m 45s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.android.

contacts/emails
28m 45s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.android.

contacts/postals
28m 45s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.android.

contacts/groups
28m 45s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.android.

contacts/groups_summary
28m 45s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/people
28m 45s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/phones
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/photos
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/calls
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/settings
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/

deleted_people
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/people/

with_email_or_im_filter
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/groups
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/

deleted_groups
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/

groupmembership
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/

groupmembershipraw
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/

contact_methods
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/

contact_methods/email
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/presence
28m 46s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/

organizations
28m 49s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://contacts/

extensions
28m 49s 343 TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.android.

142

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
contacts/raw_contacts

--
Unique [API call, event] pairs count observed in the run: 64

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
0m 4s 1 <reset> TId: 1 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://sms/
0m 4s 1 <reset> TId: 1 android.telephony.TelephonyManager: java.lang.String getLine1Number()
0m 4s 1 <reset> TId: 1 android.telephony.TelephonyManager: java.lang.String

getSimSerialNumber()
0m 4s 1 <reset> TId: 1 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://settings/system
0m 4s 1 <reset> TId: 941 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://call_log/calls
0m 13s 3 background TId: 941 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://com.android.chrome.browser/history
0m 13s 3 background TId: 941 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://com.android.chrome.browser/bookmarks
0m 13s 3 background TId: 941 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://browser/searches
0m 13s 3 background TId: 941 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://browser/bookmarks
0m 13s 3 background TId: 941 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://com.android.browser/history
0m 13s 3 background TId: 938 android.telephony.TelephonyManager: java.lang.String

getSimSerialNumber()
0m 13s 3 background TId: 938 android.telephony.TelephonyManager: java.lang.String getDeviceId()
0m 13s 3 background TId: 941 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://sms/
0m 14s 3 background TId: 941 android.telephony.TelephonyManager: java.lang.String getLine1Number()
0m 14s 4 background TId: 941 java.net.URL: java.net.URLConnection openConnection()
0m 15s 4 background TId: 941 java.net.Socket: void <init>
0m 48s 7 <reset> TId: 938 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://com.android.chrome.browser/history
0m 48s 7 <reset> TId: 938 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://com.android.chrome.browser/bookmarks
0m 48s 7 <reset> TId: 938 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://browser/searches
0m 48s 7 <reset> TId: 938 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://browser/bookmarks
0m 48s 7 <reset> TId: 938 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://com.android.browser/history
10m 17s 120 <reset> TId: 990 java.net.Socket: void <init>
11m 28s 137 unlabeled TId: 1 android.telephony.TelephonyManager: java.lang.String getLine1Number()
17m 49s 211 background TId: 1022 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android.
chrome.browser/bookmarks

28m 37s 342 background TId: 1092 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.android.browser/bookmarks

28m 43s 343 <reset> TId: 1093 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.android.browser/history

143

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
28m 43s 343 <reset> TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang

.String,java.lang.String[]) uri: content://sms
28m 44s 343 <reset> TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang

.String,java.lang.String[]) uri: content://logs/historys
28m 44s 343 <reset> TId: 1094 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://logs/
historys

28m 44s 343 <reset> TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://sms/inbox

28m 45s 343 <reset> TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://sms/sent

28m 45s 343 <reset> TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://mms/inbox

28m 45s 343 <reset> TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://mms

28m 45s 343 <reset> TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://mms-sms

28m 45s 343 <reset> TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://mms/address

28m 45s 343 <reset> TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://mms/part

28m 45s 343 <reset> TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://mms/sent

28m 45s 343 <reset> TId: 1094 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://mms/outbox

28m 45s 343 <reset> TId: 1095 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://call_log/calls

28m 45s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.android.contacts/contacts

28m 45s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.android.contacts/data

28m 45s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.android.contacts/raw_contact_entities

28m 45s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.android.contacts/emails

28m 45s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.android.contacts/postals

28m 45s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.android.contacts/groups

28m 45s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.android.contacts/groups_summary

28m 45s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/people

28m 45s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/phones

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/photos

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/calls

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/settings

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/deleted_people

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang

144

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
.String,java.lang.String[]) uri: content://contacts/people/with_email_or_im_filter

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/groups

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/deleted_groups

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/groupmembership

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/groupmembershipraw

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/contact_methods

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/contact_methods/email

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/presence

28m 46s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/organizations

28m 49s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://contacts/extensions

28m 49s 343 <reset> TId: 1096 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.android.contacts/raw_contacts

==
use-case:scanReport:com.cleanmaster.security
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’Scan’ button.
// 3. Wait until the ’Resolve All’ button appears and click it.
// 4. Wait until the ’Report’ button appears to report ’AntiVirus’ app and click it.
// 5. Wait until the ’OK’ button appears to confirm ’AntiVirus’ report success and click it.
// 6. Click the ’Finish’ button.
// 7. Terminate the exploration.

Total run time: 1m 11s
Total actions count: 7 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 9

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 6s 1 | 0m 5s 1 TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues) uri:

content://ks.cm.antivirus.config.security
0m 6s 1 | 0m 5s 1 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android.launcher2.settings/favorites
0m 7s 1 | 0m 6s 1 TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.PhoneStateListener,int)
0m 7s 1 | 0m 6s 1 TId: 2122 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

ContentObserver) uri: content://browser/bookmarks
0m 8s 1 | 0m 6s 1 TId: 2123 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

145

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
ContentObserver) uri: content://com.android.chrome.browser/bookmarks

0m 11s 1 | 0m 13s 2 TId: 2121 java.net.URL: java.net.URLConnection openConnection()
0m 9s 1 | 0m 13s 2 TId: 2121 java.net.Socket: void <init>
0m 52s 18 | 0m 15s 3 TId: 1 android.os.PowerManager$WakeLock: void acquire()
0m 56s 18 | 0m 19s 3 TId: 2137 android.os.PowerManager$WakeLock: void release(int)

--
Unique [API call, event] pairs count observed in the run: 14

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
0m 6s 1 | 0m 5s 1 <reset> TId: 1 android.content.ContentResolver: android.net.Uri

insert(android.net.Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
0m 6s 1 | 0m 5s 1 <reset> TId: 1 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://com.android.launcher2.settings/favorites

0m 7s 1 | 0m 6s 1 <reset> TId: 1 android.telephony.TelephonyManager: void listen(
android.telephony.PhoneStateListener,int)

0m 7s 1 | 0m 6s 1 <reset> TId: 2122 android.content.ContentResolver: void
registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://browser/bookmarks

0m 8s 1 | 0m 6s 1 <reset> TId: 2123 android.content.ContentResolver: void
registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://com.android.chrome.browser/bookmarks

0m 17s 2 | 0m 13s 2 background TId: 2121 java.net.URL: java.net.URLConnection openConnection
()

0m 17s 2 | 0m 13s 2 background TId: 2121 java.net.Socket: void <init>
None! | 0m 14s 2 click:[res:id/layout_main] TId: 1 android.content.ContentResolver: android.net.Uri

insert(android.net.Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
0m 22s 4 | 0m 14s 2 background TId: 2133 android.content.ContentResolver: android.net.Uri

insert(android.net.Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
None! | 0m 15s 3 click:[res:id/oprator_finish] TId: 1 android.os.PowerManager$WakeLock: void acquire()

56m 17s 773 | 0m 15s 3 click:[res:id/oprator_finish] TId: 1 android.content.ContentResolver: android.net.Uri
insert(android.net.Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

0m 56s 18 | 0m 19s 3 background TId: 2137 android.os.PowerManager$WakeLock: void release(int)
None! | 0m 22s 4 click:[res:id/dialog_btn_report] TId: 1 android.content.ContentResolver: android.net.Uri

insert(android.net.Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
1m 54s 24 | 0m 50s 6 click:[res:id/finish] TId: 1 android.content.ContentResolver: android.net.Uri

insert(android.net.Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

==
DroidMate-run:com.cleanmaster.security
==

Total run time: 120m 24s
Total actions count: 1683 (including the final action terminating exploration)
Total resets count: 99 (including the initial action)

--
Unique API calls count observed in the run: 13

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

146

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
DroidMate API signature
0m 6s 1 TId: 1344 android.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues) uri: content://ks.cm.

antivirus.config.security
0m 6s 1 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android.launcher2.settings/favorites
0m 7s 1 TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.PhoneStateListener,int)
0m 7s 1 TId: 1354 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://browser/bookmarks
0m 8s 1 TId: 1354 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://com.android.chrome.browser/bookmarks
0m 17s 2 TId: 1352 java.net.URL: java.net.URLConnection openConnection()
0m 17s 2 TId: 1352 java.net.Socket: void <init>
0m 23s 5 TId: 1367 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://ks.cm.antivirus.firewall.security/call_block_logs
0m 28s 7 TId: 1369 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://ks.cm.antivirus.firewall.security/user_rules
0m 35s 10 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android.contacts/data/phones
0m 52s 18 TId: 1 android.os.PowerManager$WakeLock: void acquire()
0m 56s 18 TId: 1384 android.os.PowerManager$WakeLock: void release(int)

73m 14s 1007 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.
String[],java.lang.String,android.os.CancellationSignal) uri: content://call_log/calls

--
Unique [API call, event] pairs count observed in the run: 54

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
0m 6s 1 <reset> TId: 1344 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
0m 6s 1 <reset> TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android
.launcher2.settings/favorites

0m 7s 1 <reset> TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.
PhoneStateListener,int)

0m 7s 1 <reset> TId: 1354 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://browser/bookmarks

0m 8s 1 <reset> TId: 1354 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.android.chrome.browser/bookmarks

0m 17s 2 background TId: 1352 java.net.URL: java.net.URLConnection openConnection()
0m 17s 2 background TId: 1352 java.net.Socket: void <init>
0m 22s 4 background TId: 1356 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
0m 23s 5 background TId: 1367 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://ks.cm.
antivirus.firewall.security/call_block_logs

0m 23s 5 click:[res:id/menu_item_call_block] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

0m 28s 7 background TId: 1369 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://ks.cm.
antivirus.firewall.security/user_rules

0m 35s 10 click:[res:id/edit_import_contact] TId: 1 android.content.ContentResolver: android.database.Cursor query(

147

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android
.contacts/data/phones

0m 46s 16 click:[res:id/custom_title_layout_left] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

0m 51s 18 click:[res:id/btn_scan] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

0m 52s 18 click:[res:id/btn_scan] TId: 1 android.os.PowerManager$WakeLock: void acquire()
0m 56s 18 background TId: 1384 android.os.PowerManager$WakeLock: void release(int)
1m 1s 20 click:[res:id/btnRepair] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
1m 54s 24 click:[res:id/finish] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
2m 10s 29 click:[res:id/tv_banner] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
3m 39s 58 click:[res:id/browser_huoyan_report] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
4m 44s 68 click:[res:id/layout_private_bg] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
4m 52s 71 click:[res:id/details_bottom_right] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
5m 1s 75 click:[res:id/details_app_operate] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
7m 44s 115 click:[res:id/menu_item_rateus] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
9m 5s 130 click:[res:id/dialog_btn_continue] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
9m 31s 133 click:[res:id/menu_item_virus_db_update] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
9m 43s 134 click:[res:id/dialog_btn_ok] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
10m 10s 143 click:[res:id/details_bottom_left] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
11m 20s 155 click:[res:id/sdscan_back] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
11m 20s 155 click:[res:id/sdscan_back] TId: 1 android.os.PowerManager$WakeLock: void release(int)
15m 1s 220 click:[res:id/dialog_btn_open] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
15m 3s 221 click:[res:id/setting_protect_intime_btn] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
15m 8s 223 unlabeled TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
15m 10s 224 click:[res:id/setting_auto_update_btn] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
15m 12s 225 click:[res:id/setting_open_inspire_layout] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
15m 15s 226 click:[res:id/setting_auto_update_layout] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
16m 53s 232 click:[res:id/dialog_timing_week] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
17m 4s 237 click:[res:id/setting_protect_intime_layout] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
17m 8s 239 click:[res:id/setting_safe_scan_btn] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
17m 11s 240 click:[res:id/setting_safe_scan_layout] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security
26m 2s 361 click:[res:id/dialog_timing_day] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.

148

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

26m 19s 369 click:[res:id/dialog_timing_off] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

26m 35s 373 click:[res:id/protect_operator_group] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

27m 17s 384 click:[res:id/layout_state] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

49m 56s 684 click:[res:id/intl_about_feedback] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

54m 16s 736 click:[res:id/setting_open_inspire_btn] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

55m 42s 762 click:[res:id/main_title_btn_back] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

56m 17s 773 click:[res:id/oprator_finish] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

62m 17s 870 click:[res:id/dialog_timing_month] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

73m 14s 1007 click:[res:id/edit_import_calllog] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://call_log/
calls

78m 11s 1088 click:[res:id/mLanguageList] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://ks.cm.antivirus.config.security

80m 31s 1126 <reset> TId: 2622 java.net.Socket: void <init>
82m 53s 1165 click:[res:id/main_title_btn_back] TId: 1 android.os.PowerManager$WakeLock: void release(int)

111m 42s 1551 background TId: 3034 android.os.PowerManager$WakeLock: void acquire()

==
use-case:findBySearch:com.ebay.mobile
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’Agree’ button to agree to terms of use.
// 3. Click the ’Sign in’ button.
// 4. Enter ’debugg7@gmail.com’ as user name for sign-in.
// 5. Enter ’qwerfdsa1’ as password for sign-in.
// 6. Click the ’Sign-in’ button to finally sign-in.
// 7. Enter ’pillow’ in the search field to search for a pillow on eBay.
// 8. Confirm search.
// 9. Click on the first search result to view the item.
// 10. Terminate the exploration.

Total run time: 0m 52s
Total actions count: 10 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 13

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 6s 1 | 0m 8s 1 TId: 1 android.location.LocationManager: void requestLocationUpdates(java.lang.String,long,float,android.location.

149

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
LocationListener)

0m 8s 1 | 0m 8s 1 TId: 2315 java.net.Socket: void <init>
0m 9s 1 | 0m 9s 1 TId: 2326 java.net.URL: java.net.URLConnection openConnection()
0m 10s 1 | 0m 10s 2 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value
0m 10s 1 | 0m 10s 2 TId: 1 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://

com.ebay.mobile.providers.itemcacheprovider/name_value
0m 10s 1 | 0m 10s 2 TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues) uri:

content://com.ebay.mobile.providers.itemcacheprovider/name_value
None! | 0m 29s 7 TId: 2350 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.

lang.String[]) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value
None! | 0m 30s 7 TId: 1 android.os.PowerManager$WakeLock: void acquire()
None! | 0m 30s 7 TId: 2315 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.ebay.mobile.providers.itemcacheprovider/
saved_search

None! | 0m 30s 7 TId: 2351 android.os.PowerManager$WakeLock: void release(int)
None! | 0m 30s 7 TId: 2348 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.ebay.mobile.providers.itemcacheprovider/
local_notifications

None! | 0m 30s 7 TId: 2363 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://
com.ebay.mobile.providers.itemcacheprovider/local_notifications

None! | 0m 32s 7 TId: 2350 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://
com.ebay.mobile.providers.itemcacheprovider/saved_search

--
Unique [API call, event] pairs count observed in the run: 21

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
0m 6s 1 | 0m 8s 1 <reset> TId: 1 android.location.LocationManager: void

requestLocationUpdates(java.lang.String,long,float,android.location.LocationListener)
0m 8s 1 | 0m 8s 1 <reset> TId: 2315 java.net.Socket: void <init>
0m 9s 1 | 0m 9s 1 <reset> TId: 2326 java.net.URL: java.net.URLConnection openConnection

()
None! | 0m 10s 2 click:[res:id/accept_btn] TId: 1 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri:
content://com.ebay.mobile.providers.itemcacheprovider/name_value

0m 31s 4 | 0m 10s 2 background TId: 2326 java.net.URL: java.net.URLConnection openConnection
()
None! | 0m 10s 2 click:[res:id/accept_btn] TId: 1 android.content.ContentResolver: int delete(android.

net.Uri,java.lang.String,java.lang.String[]) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value
None! | 0m 10s 2 click:[res:id/accept_btn] TId: 1 android.content.ContentResolver: android.net.Uri

insert(android.net.Uri,android.content.ContentValues) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value
0m 30s 4 | 0m 12s 3 background TId: 2333 java.net.Socket: void <init>

None! | 0m 29s 7 enterText:[res:id/home_search_bar] TId: 1 android.content.ContentResolver: android.database.
Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri:
content://com.ebay.mobile.providers.itemcacheprovider/name_value

None! | 0m 29s 7 enterText:[res:id/home_search_bar] TId: 1 android.content.ContentResolver: int delete(android.
net.Uri,java.lang.String,java.lang.String[]) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value

None! | 0m 29s 7 background TId: 2350 android.content.ContentResolver: int update(android.
net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri: content://com.ebay.mobile.providers.itemcacheprovider/
name_value

150

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
None! | 0m 30s 7 enterText:[res:id/home_search_bar] TId: 1 android.content.ContentResolver: android.net.Uri

insert(android.net.Uri,android.content.ContentValues) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value
None! | 0m 30s 7 enterText:[res:id/home_search_bar] TId: 1 android.os.PowerManager$WakeLock: void acquire()
None! | 0m 30s 7 background TId: 2315 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri:
content://com.ebay.mobile.providers.itemcacheprovider/saved_search

4m 15s 75 | 0m 30s 7 background TId: 2350 android.content.ContentResolver: android.net.Uri
insert(android.net.Uri,android.content.ContentValues) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value
None! | 0m 30s 7 background TId: 2351 android.os.PowerManager$WakeLock: void release(int)
None! | 0m 30s 7 background TId: 2348 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri:
content://com.ebay.mobile.providers.itemcacheprovider/local_notifications

None! | 0m 30s 7 background TId: 2363 android.content.ContentResolver: int delete(android.
net.Uri,java.lang.String,java.lang.String[]) uri: content://com.ebay.mobile.providers.itemcacheprovider/local_notifications

4m 15s 75 | 0m 31s 7 background TId: 2365 android.content.ContentResolver: android.database.
Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://com.ebay.mobile.providers.itemcacheprovider/name_value
None! | 0m 32s 7 background TId: 2350 android.content.ContentResolver: int delete(android.

net.Uri,java.lang.String,java.lang.String[]) uri: content://com.ebay.mobile.providers.itemcacheprovider/saved_search
4m 15s 75 | 0m 33s 7 background TId: 2367 android.content.ContentResolver: int delete(android.

net.Uri,java.lang.String,java.lang.String[]) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value

==
DroidMate-run:com.ebay.mobile
==

Total run time: 120m 22s
Total actions count: 2011 (including the final action terminating exploration)
Total resets count: 95 (including the initial action)

--
Unique API calls count observed in the run: 9

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate API signature
0m 6s 1 TId: 1 android.location.LocationManager: void requestLocationUpdates(java.lang.String,long,float,android.location.LocationListener)
0m 8s 1 TId: 3217 java.net.Socket: void <init>
0m 9s 1 TId: 3228 java.net.URL: java.net.URLConnection openConnection()
0m 10s 1 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value
0m 10s 1 TId: 1 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.ebay.mobile.

providers.itemcacheprovider/name_value
0m 10s 1 TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues) uri: content://com.ebay.

mobile.providers.itemcacheprovider/name_value
1m 38s 26 TId: 1 android.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)
1m 38s 26 TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang.String)

19m 55s 335 TId: 1 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.ebay.mobile.
ebaysearch/suggestions

--
Unique [API call, event] pairs count observed in the run: 27

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:

151

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
0m 6s 1 <reset> TId: 1 android.location.LocationManager: void requestLocationUpdates(java.

lang.String,long,float,android.location.LocationListener)
0m 8s 1 <reset> TId: 3217 java.net.Socket: void <init>
0m 9s 1 <reset> TId: 3228 java.net.URL: java.net.URLConnection openConnection()
0m 10s 1 <reset> TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.ebay.
mobile.providers.itemcacheprovider/name_value

0m 10s 1 <reset> TId: 1 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value

0m 10s 1 <reset> TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value

0m 31s 4 background TId: 3244 java.net.URL: java.net.URLConnection openConnection()
1m 38s 26 <reset> TId: 1 android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
1m 38s 26 <reset> TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang

.String)
2m 24s 35 background TId: 3225 java.net.Socket: void <init>
4m 15s 75 unlabeled TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.ebay.
mobile.providers.itemcacheprovider/name_value

4m 15s 75 unlabeled TId: 1 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value

4m 15s 75 unlabeled TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value

5m 50s 109 click:[res:android:id/checkbox] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.ebay.
mobile.providers.itemcacheprovider/name_value

5m 51s 109 click:[res:android:id/checkbox] TId: 1 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value

5m 51s 109 click:[res:android:id/checkbox] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value

17m 17s 290 click:[res:id/list] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.ebay.
mobile.providers.itemcacheprovider/name_value

17m 17s 290 click:[res:id/list] TId: 1 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value

17m 17s 290 click:[res:id/list] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://com.ebay.mobile.providers.itemcacheprovider/name_value

19m 55s 335 click:[res:android:id/button1] TId: 1 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.ebay.mobile.ebaysearch/suggestions

61m 34s 1037 click:[res:id/saveSearch] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.ebay.
mobile.providers.itemcacheprovider/name_value

62m 2s 1048 click:[res:id/register_button] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

62m 2s 1048 click:[res:id/register_button] TId: 1 android.location.LocationManager: void requestLocationUpdates(java.
lang.String,long,float,android.location.LocationListener)

62m 2s 1048 click:[res:id/register_button] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang
.String)

98m 17s 1652 click:[res:id/menu_search] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

98m 17s 1652 click:[res:id/menu_search] TId: 1 android.location.LocationManager: void requestLocationUpdates(java.

152

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
lang.String,long,float,android.location.LocationListener)

98m 17s 1652 click:[res:id/menu_search] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang
.String)

==
use-case:killTask:com.estrongs.android.taskmanager
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’OK’ button to close the ’what’s new in current version’ pop-up
// 3. Click the tab with ’Kill All’ label to access the menu for selecting tasks to kill.
// 4. Click the ’X’ circle button at the first task on the list to kill the task.
// 5. Terminate the exploration.

Total run time: 0m 11s
Total actions count: 5 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 2

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 3s 1 | 0m 3s 2 TId: 2440 java.net.URL: java.net.URLConnection openConnection()
0m 9s 2 | 0m 3s 2 TId: 2440 java.net.Socket: void <init>

--
Unique [API call, event] pairs count observed in the run: 2

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
5m 53s 99 | 0m 3s 2 background TId: 2440 java.net.URL: java.net.URLConnection openConnection

()
0m 9s 2 | 0m 3s 2 background TId: 2440 java.net.Socket: void <init>

==
DroidMate-run:com.estrongs.android.taskmanager
==

Total run time: 120m 17s
Total actions count: 2052 (including the final action terminating exploration)
Total resets count: 130 (including the initial action)

--
Unique API calls count observed in the run: 5

153

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate API signature
0m 3s 1 TId: 3656 java.net.URL: java.net.URLConnection openConnection()
0m 9s 2 TId: 3656 java.net.Socket: void <init>
1m 10s 13 TId: 3652 android.net.wifi.WifiManager: boolean setWifiEnabled(boolean)
3m 42s 54 TId: 1 android.telephony.TelephonyManager: java.lang.String getDeviceId()
3m 42s 54 TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.PhoneStateListener,int)

--
Unique [API call, event] pairs count observed in the run: 21

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
0m 3s 1 <reset> TId: 3656 java.net.URL: java.net.URLConnection openConnection()
0m 9s 2 background TId: 3656 java.net.Socket: void <init>
1m 10s 13 background TId: 3652 android.net.wifi.WifiManager: boolean setWifiEnabled(boolean)
3m 42s 54 click:[res:id/content_power_optim] TId: 1 android.telephony.TelephonyManager: java.lang.String getDeviceId()
3m 42s 54 click:[res:id/content_power_optim] TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)
4m 24s 71 click:[res:android:id/button1] TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)
4m 37s 72 <reset> TId: 1 android.telephony.TelephonyManager: java.lang.String getDeviceId()
4m 37s 72 <reset> TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)
5m 11s 85 unlabeled TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)
5m 53s 99 background TId: 3731 java.net.URL: java.net.URLConnection openConnection()
7m 46s 134 click:[res:id/btn_startup_optim] TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)
8m 0s 135 click:[res:id/content_startup] TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)
8m 23s 140 click:[res:id/item_button] TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)
21m 2s 357 unlabeled TId: 1 android.telephony.TelephonyManager: java.lang.String getDeviceId()
68m 3s 1160 <reset> TId: 4181 android.net.wifi.WifiManager: boolean setWifiEnabled(boolean)
77m 38s 1313 click:[res:android:id/select_dialog_listview] TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)
80m 2s 1354 click:[res:id/menu_list_item] TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)
81m 59s 1385 click:[res:android:id/text1] TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)
84m 21s 1425 click:[res:id/kill] TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)
94m 40s 1620 click:[res:id/choose_time_view] TId: 1 android.telephony.TelephonyManager: java.lang.String getDeviceId()
94m 40s 1620 click:[res:id/choose_time_view] TId: 1 android.telephony.TelephonyManager: void listen(android.telephony.

PhoneStateListener,int)

==
use-case:convertCurrency:com.frank_weber.forex2
==

154

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’Let’s start’ button to close the ’welcome’ pop-up.
// 3. Click the ’1’ digit.
// 4. Click the ’5’ digit.
// 5. Click the ’9’ digit.
// 6. Click the ’swap currencies’ button. The user now reads the converted currency.
// 7. Terminate the exploration.

Total run time: 0m 13s
Total actions count: 7 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 2

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 1s 1 | 0m 1s 1 TId: 2473 java.net.URL: java.net.URLConnection openConnection()
0m 1s 1 | 0m 1s 1 TId: 2473 java.net.Socket: void <init>

--
Unique [API call, event] pairs count observed in the run: 2

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
0m 1s 1 | 0m 1s 1 <reset> TId: 2473 java.net.URL: java.net.URLConnection openConnection

()
0m 1s 1 | 0m 1s 1 <reset> TId: 2473 java.net.Socket: void <init>

==
DroidMate-run:com.frank_weber.forex2
==

Total run time: 120m 19s
Total actions count: 2354 (including the final action terminating exploration)
Total resets count: 113 (including the initial action)

--
Unique API calls count observed in the run: 2

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate API signature
0m 1s 1 TId: 176 java.net.URL: java.net.URLConnection openConnection()
0m 1s 1 TId: 176 java.net.Socket: void <init>

155

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
--
Unique [API call, event] pairs count observed in the run: 4

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
0m 1s 1 <reset> TId: 176 java.net.URL: java.net.URLConnection openConnection()
0m 1s 1 <reset> TId: 176 java.net.Socket: void <init>

19m 49s 381 background TId: 260 java.net.Socket: void <init>
100m 47s 1983 background TId: 514 java.net.URL: java.net.URLConnection openConnection()

==
use-case:searchForJob:com.indeed.android.jobsearch
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click ’Use without account’ to proceed without an account.
// 3. Click the ’what’ (job title) search field.
// 4. Click the ’s’ letter on the on-screen keyboard to make a suggestion pop-up appear with job titles starting with ’s’.
// 5. Click the ’sales’ job title in the suggestion box.
// 6. Click the ’where’ (city) search field.
// 7. Click the ’n’ letter on the on-screen keyboard to make a suggestion pop-up appear with cities starting with ’n’.
// 8. Click the ’New York, NY’ entry in the suggestion box.
// 9. Click the ’Find Jobs’ button.
// 10. Click the first found job on the list.
// 11. Terminate the exploration.

Total run time: 0m 30s
Total actions count: 11 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 1

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 3s 1 | 0m 2s 1 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.facebook.katana.provider.AttributionIdProvider

--
Unique [API call, event] pairs count observed in the run: 1

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature

156

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
0m 3s 1 | 0m 2s 1 <reset> TId: 1 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://com.facebook.katana.provider.AttributionIdProvider

==
DroidMate-run:com.indeed.android.jobsearch
==

Total run time: 120m 20s
Total actions count: 2392 (including the final action terminating exploration)
Total resets count: 80 (including the initial action)

--
Unique API calls count observed in the run: 1

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate API signature
0m 3s 1 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://com.facebook.katana.provider.AttributionIdProvider

--
Unique [API call, event] pairs count observed in the run: 1

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
0m 3s 1 <reset> TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.
facebook.katana.provider.AttributionIdProvider

==
use-case:addEffect:com.picsart.studio
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’Close’ button to close the ’Stretch tool’ popup.
// 3. Click the ’Effect’ button to add an effect to a photo.
// 4. Click the ’Gallery’ button to open a gallery with existing photos.
// 5. Click the first photo in the ’Recent’ list of photos.
// 6. Click the ’twilight’ effect button.
// 7. Click the ’Apply’ button to apply the ’twilight’ effect.
// 8. Click the ’Save’ button to save the modified photo.
// 9. Click the ’Save to SD Card’ button.
// 10. Click the ’OK’ button to confirm the save of the modified photo to SD card.
// 11. Terminate the exploration.

Total run time: 1m 3s
Total actions count: 11 (including the final action terminating exploration)

157

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
--
Unique API calls count observed in the run: 10

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 9s 1 | 0m 11s 1 TId: 1 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

ContentObserver) uri: content://com.picsart.studio.provider/user.update
0m 10s 1 | 0m 11s 1 TId: 1 android.location.LocationManager: java.lang.String getBestProvider(android.location.Criteria,boolean)
0m 10s 1 | 0m 11s 1 TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang.String)
0m 10s 1 | 0m 11s 1 TId: 2714 java.net.URL: java.net.URLConnection openConnection()
0m 10s 1 | 0m 11s 1 TId: 2713 java.net.Socket: void <init>
0m 10s 1 | 0m 12s 1 TId: 1 android.location.LocationManager: void requestLocationUpdates(java.lang.String,long,float,android.location.

LocationListener)
0m 11s 1 | 0m 12s 1 TId: 2714 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.picsart.studio.provider/notifications
0m 11s 1 | 0m 13s 1 TId: 2713 android.content.ContentResolver: int bulkInsert(android.net.Uri,android.content.ContentValues[]) uri: content://

com.picsart.studio.provider/notifications
None! | 0m 29s 6 TId: 2710 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android.providers.media.documents/document/
image%3A3836

None! | 0m 29s 6 TId: 2710 android.content.ContentResolver: java.io.InputStream openInputStream(android.net.Uri) uri: content://com.android.
providers.media.documents/document/image%3A3836

--
Unique [API call, event] pairs count observed in the run: 17

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
0m 9s 1 | 0m 11s 1 <reset> TId: 1 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update
0m 10s 1 | 0m 11s 1 <reset> TId: 1 android.location.LocationManager: java.lang.String

getBestProvider(android.location.Criteria,boolean)
0m 10s 1 | 0m 11s 1 <reset> TId: 1 android.location.LocationManager: boolean

isProviderEnabled(java.lang.String)
0m 10s 1 | 0m 11s 1 <reset> TId: 2714 java.net.URL: java.net.URLConnection openConnection

()
0m 10s 1 | 0m 11s 1 <reset> TId: 2713 java.net.Socket: void <init>
0m 10s 1 | 0m 12s 1 <reset> TId: 1 android.location.LocationManager: void

requestLocationUpdates(java.lang.String,long,float,android.location.LocationListener)
0m 11s 1 | 0m 12s 1 <reset> TId: 2714 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://com.picsart.studio.provider/notifications

0m 11s 1 | 0m 13s 1 <reset> TId: 2713 android.content.ContentResolver: int bulkInsert(
android.net.Uri,android.content.ContentValues[]) uri: content://com.picsart.studio.provider/notifications

18m 59s 295 | 0m 16s 3 click:[res:id/start_fx_id] TId: 1 android.location.LocationManager: java.lang.String
getBestProvider(android.location.Criteria,boolean)

0m 15s 3 | 0m 16s 3 background TId: 2693 java.net.URL: java.net.URLConnection openConnection
()

158

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
0m 15s 3 | 0m 16s 3 background TId: 2693 java.net.Socket: void <init>
0m 15s 3 | 0m 17s 3 background TId: 2694 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://com.picsart.studio.provider/notifications
None! | 0m 23s 4 click:[res:id/galleryButtonId] TId: 1 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update
None! | 0m 23s 4 background TId: 2694 android.content.ContentResolver: int bulkInsert(

android.net.Uri,android.content.ContentValues[]) uri: content://com.picsart.studio.provider/notifications
None! | 0m 29s 6 background TId: 2710 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri:
content://com.android.providers.media.documents/document/image%3A3836

None! | 0m 29s 6 background TId: 2710 android.content.ContentResolver: java.io.InputStream
openInputStream(android.net.Uri) uri: content://com.android.providers.media.documents/document/image%3A3836

0m 23s 6 | 0m 29s 6 unlabeled TId: 1 android.location.LocationManager: java.lang.String
getBestProvider(android.location.Criteria,boolean)

==
DroidMate-run:com.picsart.studio
==

Total run time: 120m 25s
Total actions count: 1910 (including the final action terminating exploration)
Total resets count: 107 (including the initial action)

--
Unique API calls count observed in the run: 13

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate API signature
0m 9s 1 TId: 1 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://com.picsart.studio.provider/user.update
0m 10s 1 TId: 1 android.location.LocationManager: java.lang.String getBestProvider(android.location.Criteria,boolean)
0m 10s 1 TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang.String)
0m 10s 1 TId: 214 java.net.URL: java.net.URLConnection openConnection()
0m 10s 1 TId: 215 java.net.Socket: void <init>
0m 10s 1 TId: 1 android.location.LocationManager: void requestLocationUpdates(java.lang.String,long,float,android.location.LocationListener)
0m 11s 1 TId: 194 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://com.picsart.studio.provider/notifications
0m 11s 1 TId: 214 android.content.ContentResolver: int bulkInsert(android.net.Uri,android.content.ContentValues[]) uri: content://com.picsart.studio

.provider/notifications
2m 15s 30 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://com.facebook.katana.provider.AttributionIdProvider
2m 54s 39 TId: 222 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri

: content://com.picsart.studio.provider/notifications
3m 3s 43 TId: 244 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://com.picsart.studio

.provider/notifications
8m 36s 125 TId: 1 android.hardware.Camera: android.hardware.Camera open()
8m 36s 125 TId: 1 android.hardware.Camera: android.hardware.Camera open(int)

--
Unique [API call, event] pairs count observed in the run: 69

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:

159

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
0m 9s 1 <reset> TId: 1 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update
0m 10s 1 <reset> TId: 1 android.location.LocationManager: java.lang.String getBestProvider(

android.location.Criteria,boolean)
0m 10s 1 <reset> TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang

.String)
0m 10s 1 <reset> TId: 214 java.net.URL: java.net.URLConnection openConnection()
0m 10s 1 <reset> TId: 215 java.net.Socket: void <init>
0m 10s 1 <reset> TId: 1 android.location.LocationManager: void requestLocationUpdates(java.

lang.String,long,float,android.location.LocationListener)
0m 11s 1 <reset> TId: 194 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.picsart
.studio.provider/notifications

0m 11s 1 <reset> TId: 214 android.content.ContentResolver: int bulkInsert(android.net.Uri,
android.content.ContentValues[]) uri: content://com.picsart.studio.provider/notifications

0m 15s 3 click:[res:id/whats_new_closeButton] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

0m 15s 3 background TId: 214 java.net.URL: java.net.URLConnection openConnection()
0m 15s 3 background TId: 214 java.net.Socket: void <init>
0m 15s 3 background TId: 194 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.picsart
.studio.provider/notifications

0m 46s 8 click:[res:id/start_camera_id] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

0m 57s 11 click:[res:id/save_photo_btn] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

1m 51s 19 click:[res:id/start_shop_id] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

1m 56s 21 click:[res:id/shop_login_button] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

1m 56s 21 click:[res:id/shop_login_button] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang
.String)

1m 56s 21 click:[res:id/shop_login_button] TId: 1 android.location.LocationManager: void requestLocationUpdates(java.
lang.String,long,float,android.location.LocationListener)

2m 8s 27 click:[res:id/profile_signup_btn] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

2m 8s 27 click:[res:id/profile_signup_btn] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang
.String)

2m 8s 27 click:[res:id/profile_signup_btn] TId: 1 android.location.LocationManager: void requestLocationUpdates(java.
lang.String,long,float,android.location.LocationListener)

2m 15s 30 unlabeled TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.
facebook.katana.provider.AttributionIdProvider

2m 25s 33 unlabeled TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

2m 54s 39 background TId: 222 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://com.picsart.studio.provider/notifications

3m 3s 43 background TId: 244 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://com.picsart.studio.provider/notifications

3m 5s 44 click:[dsc:Notifications, Navigate up] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

3m 9s 46 click:[res:id/start_edit_id] TId: 1 android.content.ContentResolver: void registerContentObserver(android

160

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

3m 14s 48 click:[res:id/picsInGalleryLayoutId] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

3m 14s 48 click:[res:id/picsInGalleryLayoutId] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang
.String)

3m 14s 48 click:[res:id/picsInGalleryLayoutId] TId: 1 android.location.LocationManager: void requestLocationUpdates(java.
lang.String,long,float,android.location.LocationListener)

3m 50s 54 click:[res:id/start_poplar_photo_id] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

3m 52s 55 click:[dsc:PicsArt, Navigate up] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

5m 0s 74 l-click:[dsc:More] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

7m 6s 106 click:[res:id/shop_item_buy_btn] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

7m 6s 106 click:[res:id/shop_item_buy_btn] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang
.String)

7m 6s 106 click:[res:id/shop_item_buy_btn] TId: 1 android.location.LocationManager: void requestLocationUpdates(java.
lang.String,long,float,android.location.LocationListener)

8m 36s 125 unlabeled TId: 1 android.hardware.Camera: android.hardware.Camera open()
8m 36s 125 unlabeled TId: 1 android.hardware.Camera: android.hardware.Camera open(int)
8m 48s 130 unlabeled TId: 1 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update
9m 21s 136 click:[dsc:Shop, Navigate home] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(

android.location.Criteria,boolean)
11m 0s 166 click:[dsc:Shop, Navigate up] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(

android.location.Criteria,boolean)
12m 10s 184 click:[res:id/custom_effects] TId: 1 android.hardware.Camera: android.hardware.Camera open()
12m 10s 184 click:[res:id/custom_effects] TId: 1 android.hardware.Camera: android.hardware.Camera open(int)
13m 20s 203 click:[res:id/start_collage_id] TId: 1 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update
14m 5s 215 click:[res:id/shop_item_buy_install_button] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(

android.location.Criteria,boolean)
14m 5s 215 click:[res:id/shop_item_buy_install_button] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang

.String)
14m 5s 215 click:[res:id/shop_item_buy_install_button] TId: 1 android.location.LocationManager: void requestLocationUpdates(java.

lang.String,long,float,android.location.LocationListener)
14m 8s 216 click:[res:id/si_ui_socialin_sign_fb] TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.facebook
.katana.provider.AttributionIdProvider

16m 10s 252 click:[res:id/delete_photo_btn] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

16m 46s 262 click:[dsc:More] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

16m 49s 263 click:[dsc:Refresh] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

18m 59s 295 click:[res:id/start_fx_id] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

23m 41s 367 click:[dsc:Search] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

23m 53s 370 click:[res:id/picasa_item_image_layout] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

23m 57s 371 click:[res:id/menu_item_close] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

26m 27s 413 click:[res:id/whats_new_videoIcon] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

161

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
29m 27s 459 click:[dsc:Refresh] TId: 1 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update
31m 7s 489 unlabeled TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang

.String)
31m 7s 489 unlabeled TId: 1 android.location.LocationManager: void requestLocationUpdates(java.

lang.String,long,float,android.location.LocationListener)
33m 45s 532 l-click:[dsc:Notifications] TId: 1 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update
46m 40s 747 click:[res:android:id/text1] TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.facebook
.katana.provider.AttributionIdProvider

56m 7s 877 click:[res:id/info_dialog_right_button_id] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

60m 18s 943 click:[dsc:Navigate up] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

61m 12s 961 click:[txt:PicsArt] TId: 1 android.location.LocationManager: java.lang.String getBestProvider(
android.location.Criteria,boolean)

61m 12s 961 click:[txt:PicsArt] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang
.String)

61m 12s 961 click:[txt:PicsArt] TId: 1 android.location.LocationManager: void requestLocationUpdates(java.
lang.String,long,float,android.location.LocationListener)

66m 58s 1048 click:[res:id/start_draw_id] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

67m 37s 1057 click:[res:id/whats_new_closeButton] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

110m 40s 1757 click:[dsc:Notifications] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://com.picsart.studio.provider/user.update

==
use-case:viewAndCreateDir:com.rhmsoft.fm
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the first directory on the list of dirs to view its contents.
// 3. Click the ’Create’ button to setup directory creation action.
// 4. Click the the ’Folder’ button to request creation of directory, not file.
// 5. Enter the name of the new dir: ’temp_utc’.
// 6. Click the ’OK’ button to confirm the creation of the ’temp_utc’ dir.
// 7. Terminate the exploration.

Total run time: 0m 22s
Total actions count: 7 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 0

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature

--

162

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
Unique [API call, event] pairs count observed in the run: 0

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature

==
DroidMate-run:com.rhmsoft.fm
==

Total run time: 120m 38s
Total actions count: 1876 (including the final action terminating exploration)
Total resets count: 150 (including the initial action)

--
Unique API calls count observed in the run: 11

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate API signature
4m 0s 28 TId: 2513 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://media/external/images/media
4m 0s 28 TId: 2513 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://media/external/images/thumbnails
15m 8s 198 TId: 2597 android.net.wifi.WifiManager$WifiLock: void acquire()
15m 8s 198 TId: 2597 android.os.PowerManager$WakeLock: void acquire()
15m 9s 198 TId: 2598 java.net.Socket: void <init>
15m 14s 200 TId: 2597 android.net.wifi.WifiManager$WifiLock: void release()
15m 14s 200 TId: 2597 android.os.PowerManager$WakeLock: void release(int)
21m 31s 313 TId: 2600 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://media/external/

file
21m 31s 313 TId: 2600 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://media/external/

images/media
21m 31s 313 TId: 2600 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://media/external/

audio/media
21m 31s 313 TId: 2600 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://media/external/

video/media

--
Unique [API call, event] pairs count observed in the run: 13

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
4m 0s 28 background TId: 2513 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://media/
external/images/media

4m 0s 28 background TId: 2513 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://media/

163

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
external/images/thumbnails

4m 3s 29 unlabeled TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://media/
external/images/media

15m 8s 198 background TId: 2597 android.net.wifi.WifiManager$WifiLock: void acquire()
15m 8s 198 background TId: 2597 android.os.PowerManager$WakeLock: void acquire()
15m 9s 198 background TId: 2598 java.net.Socket: void <init>
15m 14s 200 background TId: 2597 android.net.wifi.WifiManager$WifiLock: void release()
15m 14s 200 background TId: 2597 android.os.PowerManager$WakeLock: void release(int)
21m 31s 313 background TId: 2600 android.content.ContentResolver: int delete(android.net.Uri,java.lang

.String,java.lang.String[]) uri: content://media/external/file
21m 31s 313 background TId: 2600 android.content.ContentResolver: int delete(android.net.Uri,java.lang

.String,java.lang.String[]) uri: content://media/external/images/media
21m 31s 313 background TId: 2600 android.content.ContentResolver: int delete(android.net.Uri,java.lang

.String,java.lang.String[]) uri: content://media/external/audio/media
21m 31s 313 background TId: 2600 android.content.ContentResolver: int delete(android.net.Uri,java.lang

.String,java.lang.String[]) uri: content://media/external/video/media
31m 30s 467 <reset> TId: 2649 java.net.Socket: void <init>

==
use-case:edit_friend:com.snapchat.android
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’LOG IN’ button on the landing page (first screen).
// 3. Enter the user name.
// 4. Enter the password.
// 5. Click the ’LOG IN’ button to actually log into the app.
// 6. Open the ’my friends’ list by clicking the ’menu’ button in the lower right corner.
// 7. Click the search button in upper right to search for friends.
// 8. Search for ’abc’ by entering text into the auto-selected text field that appeared in upper left.
// 9. Click on the displayed ’abc’ name.
// 10. Click on the cogwheel next to the friend name to display a menu allowing to add him.
// 11. Click the ’Add friend’ button in the settings popup.
// 12. Click on the displayed ’abc’ name.
// 13. Click on the cogwheel next to the friend name to display a menu allowing to block him.
// 14. Click the ’Block’ button in the settings popup.
// 15. Click on the cogwheel next to the friend name to display a menu allowing to unblock him.
// 16. Click the ’Unblock’ button in the settings popup.
// 17. Click on the cogwheel next to the friend name to display a menu allowing to delete him.
// 18. Click the ’Delete’ button in the settings popup.
// 19. Terminate the exploration.

Total run time: 1m 8s
Total actions count: 19 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 3

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

164

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
DroidMate | Use case API signature
0m 5s 1 | 0m 21s 5 TId: 1176 java.net.Socket: void <init>
0m 25s 5 | 0m 23s 5 TId: 1179 android.hardware.Camera: android.hardware.Camera open(int)
0m 27s 5 | 0m 24s 5 TId: 1185 java.net.URL: java.net.URLConnection openConnection()

--
Unique [API call, event] pairs count observed in the run: 3

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
0m 23s 5 | 0m 21s 5 background TId: 1176 java.net.Socket: void <init>
0m 25s 5 | 0m 23s 5 background TId: 1179 android.hardware.Camera: android.hardware.Camera

open(int)
0m 27s 5 | 0m 24s 5 background TId: 1185 java.net.URL: java.net.URLConnection openConnection

()

==
use-case:find_friends:com.snapchat.android
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’LOG IN’ button on the landing page (first screen).
// 3. Enter the user name.
// 4. Enter the password.
// 5. Click the ’LOG IN’ button to actually log into the app.
// 6. Open the ’my friends’ list by clicking the ’menu’ button in the lower right corner.
// 7. Click the ’add friend’ button in the upper right corner.
// 8. Show the ’contacts list’ tab by clicking on the ’contacts notebook’ tab icon, in the upper right part of the screen.
// 9. Press the ’back’ button.
// 10. Click the ’add friend’ button in the upper right corner.
// 11. Allow access to contacts list by clicking the ’Allow Access’ button.
// 12. Terminate the exploration.

Total run time: 0m 58s
Total actions count: 12 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 4

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 5s 1 | 0m 22s 5 TId: 1173 java.net.Socket: void <init>
0m 25s 5 | 0m 25s 5 TId: 1176 android.hardware.Camera: android.hardware.Camera open(int)
0m 27s 5 | 0m 27s 5 TId: 1178 java.net.URL: java.net.URLConnection openConnection()
5m 20s 111 | 0m 56s 11 TId: 1179 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android.contacts/data/phones

165

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
--
Unique [API call, event] pairs count observed in the run: 4

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
0m 23s 5 | 0m 22s 5 background TId: 1173 java.net.Socket: void <init>
0m 25s 5 | 0m 25s 5 background TId: 1176 android.hardware.Camera: android.hardware.Camera

open(int)
0m 27s 5 | 0m 27s 5 background TId: 1178 java.net.URL: java.net.URLConnection openConnection

()
5m 20s 111 | 0m 56s 11 background TId: 1179 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://com.android.contacts/data/phones

==
use-case:take_snap:com.snapchat.android
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’LOG IN’ button on the landing page (first screen).
// 3. Enter the user name.
// 4. Enter the password.
// 5. Click the ’LOG IN’ button to actually log into the app.
// 6. Click the ’take snap’ button in the lower middle to make a picture with a camera.
// 7. Click the screen (displaying the taken snap) to make the caption edit field appear.
// 8. Add a caption to the taken snap.
// 9. Press the ’back’ button.
// 10. Click the stopwatch in the lower left corner to set time.
// 11. Set snap retention time of 4 seconds (instead of default 3) by clicking in lower part of the time spinner menu, being displayed at the bottom.
// 12. Press the ’back’ button.
// 13. Click the right arrow in the bottom right to show a list of snap recipients.
// 14. Check-mark myself as the sole snap recipient.
// 15. Send the snap by clicking the right arrow in the lower right of the screen.
// 16. View the snap that just arrived (because I sent it to myself) by clicking on its status in its entry in the snap feed list.
// 17. Terminate the exploration.

Total run time: 1m 23s
Total actions count: 17 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 4

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 5s 1 | 0m 21s 5 TId: 1169 java.net.Socket: void <init>

166

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
0m 25s 5 | 0m 24s 5 TId: 1172 android.hardware.Camera: android.hardware.Camera open(int)
0m 27s 5 | 0m 26s 5 TId: 1171 java.net.URL: java.net.URLConnection openConnection()
4m 54s 100 | 1m 21s 16 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://media/external/images/media

--
Unique [API call, event] pairs count observed in the run: 4

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
0m 23s 5 | 0m 21s 5 background TId: 1169 java.net.Socket: void <init>
0m 25s 5 | 0m 24s 5 background TId: 1172 android.hardware.Camera: android.hardware.Camera

open(int)
0m 27s 5 | 0m 26s 5 background TId: 1171 java.net.URL: java.net.URLConnection openConnection

()
None! | 1m 21s 16 l-click:[res:id/status] TId: 1 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri:
content://media/external/images/media

==
use-case:take_video_snap:com.snapchat.android
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’LOG IN’ button on the landing page (first screen).
// 3. Enter the user name.
// 4. Enter the password.
// 5. Click the ’LOG IN’ button to actually log into the app.
// 6. Click and hold the ’take snap’ button in the lower middle to make a video with a camera.
// 7. Click the ’pencil’ button in the upper right corner to start drawing on the device.
// 8. Pick a color by clicking in the center of the color palette that just appeared in the upper right corner.
// 9. Draw a line across the screen (displaying the taken video snap).
// 10. Save the video to gallery by clicking the ’save’ button in lower left.
// 11. Click the ’add to story’ button in lower left.
// 12. Click ’add’ in the pop-up box to confirm I want to add the snap to my story.
// 13. Terminate the exploration.

Total run time: 1m 2s
Total actions count: 13 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 5

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 5s 1 | 0m 21s 5 TId: 1181 java.net.Socket: void <init>

167

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
0m 25s 5 | 0m 23s 5 TId: 1184 android.hardware.Camera: android.hardware.Camera open(int)
0m 27s 5 | 0m 24s 5 TId: 1190 java.net.URL: java.net.URLConnection openConnection()
4m 42s 97 | 0m 27s 6 TId: 1 android.media.MediaRecorder: void setAudioSource(int)
4m 42s 97 | 0m 27s 6 TId: 1 android.media.MediaRecorder: void setVideoSource(int)

--
Unique [API call, event] pairs count observed in the run: 5

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
0m 23s 5 | 0m 21s 5 background TId: 1181 java.net.Socket: void <init>
0m 25s 5 | 0m 23s 5 background TId: 1184 android.hardware.Camera: android.hardware.Camera

open(int)
0m 27s 5 | 0m 24s 5 background TId: 1190 java.net.URL: java.net.URLConnection openConnection

()
4m 42s 97 | 0m 27s 6 l-click:[res:id/camera_take_snap_button] TId: 1 android.media.MediaRecorder: void setAudioSource(int

)
4m 42s 97 | 0m 27s 6 l-click:[res:id/camera_take_snap_button] TId: 1 android.media.MediaRecorder: void setVideoSource(int

)

==
DroidMate-run:com.snapchat.android
==

Total run time: 210m 22s
Total actions count: 4358 (including the final action terminating exploration)
Total resets count: 149 (including the initial action)

--
Unique API calls count observed in the run: 11

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate API signature
0m 23s 5 TId: 4608 java.net.Socket: void <init>
0m 25s 5 TId: 4611 android.hardware.Camera: android.hardware.Camera open(int)
0m 25s 5 TId: 1 android.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)
0m 27s 5 TId: 4617 java.net.URL: java.net.URLConnection openConnection()
0m 36s 9 TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang.String)
4m 42s 97 TId: 1 android.media.MediaRecorder: void setAudioSource(int)
4m 42s 97 TId: 1 android.media.MediaRecorder: void setVideoSource(int)
4m 54s 100 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://media/external/images/media
5m 20s 111 TId: 4623 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android.contacts/data/phones
9m 14s 190 TId: 4641 android.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues) uri: content://media/

external/images/media
9m 16s 191 TId: 4641 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://media/external/

images/media/<number>

168

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
--
Unique [API call, event] pairs count observed in the run: 33

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
0m 23s 5 background TId: 4608 java.net.Socket: void <init>
0m 25s 5 background TId: 4611 android.hardware.Camera: android.hardware.Camera open(int)
0m 25s 5 click:[res:id/login_button] TId: 1 android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
0m 27s 5 background TId: 4617 java.net.URL: java.net.URLConnection openConnection()
0m 36s 9 click:[res:id/camera_take_snap_button] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang

.String)
0m 36s 9 click:[res:id/camera_take_snap_button] TId: 1 android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
1m 47s 35 <reset> TId: 4609 android.hardware.Camera: android.hardware.Camera open(int)
1m 47s 35 <reset> TId: 1 android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
1m 47s 35 <reset> TId: 4610 java.net.Socket: void <init>
4m 42s 97 l-click:[res:id/camera_take_snap_button] TId: 1 android.media.MediaRecorder: void setAudioSource(int)
4m 42s 97 l-click:[res:id/camera_take_snap_button] TId: 1 android.media.MediaRecorder: void setVideoSource(int)
4m 54s 100 unlabeled TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://media/
external/images/media

5m 20s 111 background TId: 4623 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android
.contacts/data/phones

6m 7s 125 <reset> TId: 4621 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android
.contacts/data/phones

7m 51s 162 click:[res:id/drawing_btn] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

8m 4s 168 l-click:[res:id/camera_take_snap_button] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang
.String)

8m 4s 168 l-click:[res:id/camera_take_snap_button] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

8m 7s 169 click:[res:id/snap_preview_relative_layout] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

8m 12s 171 click:[res:id/unmuted_button] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

8m 17s 173 click:[res:id/toggle_caption_btn] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

9m 12s 189 click:[res:android:id/button2] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

9m 14s 190 background TId: 4641 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://media/external/images/media

9m 16s 191 background TId: 4641 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://media/external/images/media/<number>

13m 33s 281 click:[res:id/picture_send_pic] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

15m 30s 326 click:[res:android:id/button1] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang
.String)

18m 37s 394 click:[res:id/picture_x] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

169

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
23m 27s 488 click:[res:id/picture_save_pic] TId: 1 android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
23m 37s 492 click:[res:id/picture_caption] TId: 1 android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
27m 44s 586 click:[res:id/settings_smart_filters] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang

.String)
33m 5s 699 click:[res:id/time_picker_button] TId: 1 android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
62m 33s 1327 click:[res:id/settings_smart_filters_checkbox] TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.lang

.String)
65m 58s 1393 <reset> TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://media/
external/images/media

127m 31s 2667 click:[res:id/story_button] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

==
use-case:searchForProduct:de.barcoo.android
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the ’side menu’ button to open it.
// 3. Click the ’suchen’ (’search’) button in the side menu.
// 4. Enter ’pillow’ in the search box.
// 5. Press the ’Done’ button on the displayed native keyboard to confirm the search.
// 6. Click the first item in the search result list.
// 7. Terminate the exploration.

Total run time: 0m 26s
Total actions count: 7 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 10

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 4s 1 | 0m 5s 1 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.provider.Setting/setting
0m 5s 1 | 0m 5s 1 TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues) uri:

content://de.barcoo.provider.Setting/setting
0m 5s 1 | 0m 5s 1 TId: 3014 android.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)
0m 4s 1 | 0m 5s 1 TId: 3016 java.net.URL: java.net.URLConnection openConnection()
0m 5s 1 | 0m 6s 1 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.facebook.katana.provider.AttributionIdProvider
0m 4s 1 | 0m 6s 1 TId: 3016 java.net.Socket: void <init>
0m 17s 4 | 0m 19s 6 TId: 1 android.location.LocationManager: void requestSingleUpdate(android.location.Criteria,android.app.PendingIntent)
0m 48s 14 | 0m 23s 6 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.provider.RememberedProduct/product
0m 48s 14 | 0m 23s 6 TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues) uri:

content://de.barcoo.provider.RememberedProduct/product

170

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
0m 50s 14 | 0m 24s 6 TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.

lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

--
Unique [API call, event] pairs count observed in the run: 14

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
0m 4s 1 | 0m 5s 1 <reset> TId: 1 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://de.barcoo.provider.Setting/setting

0m 5s 1 | 0m 5s 1 <reset> TId: 1 android.content.ContentResolver: android.net.Uri
insert(android.net.Uri,android.content.ContentValues) uri: content://de.barcoo.provider.Setting/setting

0m 5s 1 | 0m 5s 1 <reset> TId: 3014 android.location.LocationManager: android.location.
Location getLastKnownLocation(java.lang.String)

0m 4s 1 | 0m 5s 1 <reset> TId: 3016 java.net.URL: java.net.URLConnection openConnection
()

0m 5s 1 | 0m 6s 1 <reset> TId: 1 android.content.ContentResolver: android.database.
Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://com.facebook.katana.provider.AttributionIdProvider

0m 4s 1 | 0m 6s 1 <reset> TId: 3016 java.net.Socket: void <init>
0m 12s 2 | 0m 8s 2 background TId: 3014 android.location.LocationManager: android.location.

Location getLastKnownLocation(java.lang.String)
0m 14s 3 | 0m 8s 2 background TId: 3023 java.net.URL: java.net.URLConnection openConnection

()
0m 16s 4 | 0m 9s 2 background TId: 3016 java.net.Socket: void <init>
0m 37s 11 | 0m 19s 6 unlabeled TId: 1 android.location.LocationManager: android.location.

Location getLastKnownLocation(java.lang.String)
None! | 0m 19s 6 unlabeled TId: 1 android.location.LocationManager: void

requestSingleUpdate(android.location.Criteria,android.app.PendingIntent)
0m 48s 14 | 0m 23s 6 unlabeled TId: 1 android.content.ContentResolver: android.database.

Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://de.barcoo.provider.RememberedProduct/product

0m 48s 14 | 0m 23s 6 unlabeled TId: 1 android.content.ContentResolver: android.net.Uri
insert(android.net.Uri,android.content.ContentValues) uri: content://de.barcoo.provider.RememberedProduct/product

0m 50s 14 | 0m 24s 6 unlabeled TId: 1 android.content.ContentResolver: int update(android.
net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

==
DroidMate-run:de.barcoo.android
==

Total run time: 120m 31s
Total actions count: 1605 (including the final action terminating exploration)
Total resets count: 138 (including the initial action)

--
Unique API calls count observed in the run: 10

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

171

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
DroidMate API signature
0m 4s 1 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.provider.Setting/setting
0m 5s 1 TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues) uri: content://de.barcoo.

provider.Setting/setting
0m 5s 1 TId: 2992 android.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)
0m 5s 1 TId: 2994 java.net.URL: java.net.URLConnection openConnection()
0m 5s 1 TId: 2994 java.net.Socket: void <init>
0m 5s 1 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://com.facebook.katana.provider.AttributionIdProvider
0m 17s 4 TId: 1 android.location.LocationManager: void requestSingleUpdate(android.location.Criteria,android.app.PendingIntent)
0m 48s 14 TId: 1 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.provider.RememberedProduct/product
0m 48s 14 TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues) uri: content://de.barcoo.

provider.RememberedProduct/product
0m 50s 14 TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri

: content://de.barcoo.provider.RememberedProduct/product

--
Unique [API call, event] pairs count observed in the run: 38

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
0m 4s 1 <reset> TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.
provider.Setting/setting

0m 5s 1 <reset> TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://de.barcoo.provider.Setting/setting

0m 5s 1 <reset> TId: 2992 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

0m 5s 1 <reset> TId: 2994 java.net.URL: java.net.URLConnection openConnection()
0m 5s 1 <reset> TId: 2994 java.net.Socket: void <init>
0m 5s 1 <reset> TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.
facebook.katana.provider.AttributionIdProvider

0m 12s 2 background TId: 2992 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

0m 14s 3 background TId: 3002 java.net.URL: java.net.URLConnection openConnection()
0m 16s 4 background TId: 2994 java.net.Socket: void <init>
0m 17s 4 click:[res:id/smallImageItemTemplate] TId: 1 android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
0m 17s 4 click:[res:id/smallImageItemTemplate] TId: 1 android.location.LocationManager: void requestSingleUpdate(android.

location.Criteria,android.app.PendingIntent)
0m 26s 7 click:[res:id/menuItemTemplate] TId: 1 android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
0m 48s 14 unlabeled TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.
provider.RememberedProduct/product

0m 48s 14 unlabeled TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://de.barcoo.provider.RememberedProduct/product

0m 50s 14 unlabeled TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

172

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
1m 21s 17 click:[res:id/fullWidthImageItemTemplate] TId: 1 android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
1m 58s 24 click:[res:id/contentPlaceholder] TId: 1 android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
6m 3s 82 click:[res:id/menuItemTemplate] TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.
provider.RememberedProduct/product

21m 42s 303 click:[res:id/lin_widget44] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.
provider.RememberedProduct/product

21m 42s 303 click:[res:id/lin_widget44] TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

21m 42s 303 click:[res:id/lin_widget44] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

27m 26s 370 click:[dsc:close drawer] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.
provider.RememberedProduct/product

27m 26s 370 click:[dsc:close drawer] TId: 1 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://de.barcoo.provider.RememberedProduct/product

27m 29s 371 click:[res:id/menuItemTemplate] TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

39m 58s 536 click:[dsc:close drawer] TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

43m 20s 578 click:[res:android:id/default_activity_button] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.
provider.RememberedProduct/product

43m 20s 578 click:[res:android:id/default_activity_button] TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

46m 30s 611 click:[dsc:Navigate up] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.
provider.RememberedProduct/product

46m 30s 611 click:[dsc:Navigate up] TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

60m 20s 799 click:[res:android:id/expand_activities_button] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.
provider.RememberedProduct/product

60m 20s 799 click:[res:android:id/expand_activities_button] TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

64m 39s 854 click:[res:id/title] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.
provider.RememberedProduct/product

64m 39s 854 click:[res:id/title] TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

77m 13s 1024 l-click:[res:android:id/default_activity_button] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.
provider.RememberedProduct/product

77m 13s 1024 l-click:[res:android:id/default_activity_button] TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

111m 49s 1500 click:[res:id/history_gridview] TId: 1 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://de.barcoo.
provider.RememberedProduct/product

111m 49s 1500 click:[res:id/history_gridview] TId: 1 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://de.barcoo.provider.RememberedProduct/product

111m 49s 1500 click:[res:id/history_gridview] TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

173

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
==
use-case:openUrl:org.mozilla.firefox
==

// Manually-written description of the actions of the use case:
//
// 1. Reset the app by calling Package Manager through adb (Android Debug Bridge).
// 2. Click the address bar.
// 3. Enter ’www.google.com’ in the address bar.
// 4. Click the right arrow (’Go’) button to go to google.com.
// 5. Terminate the exploration.

Total run time: 0m 25s
Total actions count: 5 (including the final action terminating exploration)

--
Unique API calls count observed in the run: 10

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API in DroidMate run for the first time, if any> <index of action that triggered the call, if any> | <time of logging the

unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate | Use case API signature
0m 3s 1 | 0m 3s 1 TId: 1 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.

ContentObserver) uri: content://org.mozilla.firefox.db.browser/bookmarks
0m 3s 1 | 0m 4s 1 TId: 3076 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.browser/bookmarks
0m 4s 1 | 0m 5s 2 TId: 3076 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.browser/combined
0m 4s 1 | 0m 5s 2 TId: 3079 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.browser/thumbnails
0m 4s 1 | 0m 6s 2 TId: 3065 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.browser/history
0m 4s 1 | 0m 6s 2 TId: 3065 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.

String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.browser/favicons
0m 6s 1 | 0m 11s 3 TId: 3068 java.net.Socket: void <init>
4m 11s 78 | 0m 18s 4 TId: 3065 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.

lang.String[]) uri: content://org.mozilla.firefox.db.browser/history
4m 15s 79 | 0m 21s 4 TId: 3065 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.

lang.String[]) uri: content://org.mozilla.firefox.db.browser/favicons
4m 16s 79 | 0m 21s 4 TId: 3065 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.

lang.String[]) uri: content://org.mozilla.firefox.db.browser/thumbnails

--
Unique [API call, event] pairs count observed in the run: 11

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] in DroidMate run for the first time, if any> <index of action that triggered the

call, if any> | <time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call>
<the event data> <the API call data>

DroidMate | Use case Event API signature
0m 3s 1 | 0m 3s 1 <reset> TId: 1 android.content.ContentResolver: void

registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri: content://org.mozilla.firefox.db.browser/bookmarks
0m 3s 1 | 0m 4s 1 <reset> TId: 3076 android.content.ContentResolver: android.database.

174

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://org.mozilla.firefox.db.browser/bookmarks

0m 16s 4 | 0m 5s 2 background TId: 3076 android.content.ContentResolver: android.database.
Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://org.mozilla.firefox.db.browser/combined

0m 16s 4 | 0m 5s 2 background TId: 3079 android.content.ContentResolver: android.database.
Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://org.mozilla.firefox.db.browser/thumbnails

2m 3s 40 | 0m 6s 2 background TId: 3065 android.content.ContentResolver: android.database.
Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://org.mozilla.firefox.db.browser/history

2m 3s 40 | 0m 6s 2 background TId: 3065 android.content.ContentResolver: android.database.
Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://org.mozilla.firefox.db.browser/favicons

0m 16s 4 | 0m 7s 3 background TId: 3065 android.content.ContentResolver: android.database.
Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content
://org.mozilla.firefox.db.browser/bookmarks

0m 13s 3 | 0m 11s 3 background TId: 3068 java.net.Socket: void <init>
4m 11s 78 | 0m 18s 4 background TId: 3065 android.content.ContentResolver: int update(android.

net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/history
4m 15s 79 | 0m 21s 4 background TId: 3065 android.content.ContentResolver: int update(android.

net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/favicons
4m 16s 79 | 0m 21s 4 background TId: 3065 android.content.ContentResolver: int update(android.

net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/thumbnails

==
DroidMate-run:org.mozilla.firefox
==

Total run time: 120m 21s
Total actions count: 2126 (including the final action terminating exploration)
Total resets count: 74 (including the initial action)

--
Unique API calls count observed in the run: 17

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call data>

DroidMate API signature
0m 3s 1 TId: 1 android.content.ContentResolver: void registerContentObserver(android.net.Uri,boolean,android.database.ContentObserver) uri:

content://org.mozilla.firefox.db.browser/bookmarks
0m 3s 1 TId: 973 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.browser/bookmarks
0m 4s 1 TId: 973 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.browser/combined
0m 4s 1 TId: 976 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.browser/thumbnails
0m 4s 1 TId: 962 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.browser/history
0m 4s 1 TId: 962 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.browser/favicons
0m 6s 1 TId: 978 java.net.Socket: void <init>
0m 9s 2 TId: 982 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String[],java.lang.

String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.browser/combined

175

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
0m 16s 4 TId: 962 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri

: content://org.mozilla.firefox.db.browser/bookmarks
2m 57s 60 TId: 971 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://org.mozilla.

firefox.db.browser/history/old
3m 45s 74 TId: 999 java.net.URL: java.net.URLConnection openConnection()
4m 11s 78 TId: 998 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri

: content://org.mozilla.firefox.db.browser/history
4m 15s 79 TId: 998 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri

: content://org.mozilla.firefox.db.browser/favicons
4m 16s 79 TId: 998 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri

: content://org.mozilla.firefox.db.browser/thumbnails
17m 2s 313 TId: 1067 android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.

String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.tabs/tabs
22m 16s 404 TId: 1091 android.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri: content://org.mozilla.

firefox.db.browser/bookmarks
69m 35s 1242 TId: 1271 android.content.ContentResolver: int update(android.net.Uri,android.content.ContentValues,java.lang.String,java.lang.String[]) uri

: content://org.mozilla.firefox.db.browser/bookmarks/parents

--
Unique [API call, event] pairs count observed in the run: 26

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action that triggered the call> <the event data> <the

API call data>

DroidMate Event API signature
0m 3s 1 <reset> TId: 1 android.content.ContentResolver: void registerContentObserver(android

.net.Uri,boolean,android.database.ContentObserver) uri: content://org.mozilla.firefox.db.browser/bookmarks
0m 3s 1 <reset> TId: 973 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla
.firefox.db.browser/bookmarks

0m 4s 1 <reset> TId: 973 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla
.firefox.db.browser/combined

0m 4s 1 <reset> TId: 976 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla
.firefox.db.browser/thumbnails

0m 4s 1 <reset> TId: 962 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla
.firefox.db.browser/history

0m 4s 1 <reset> TId: 962 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla
.firefox.db.browser/favicons

0m 6s 1 <reset> TId: 978 java.net.Socket: void <init>
0m 9s 2 background TId: 982 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.firefox.db.
browser/combined

0m 13s 3 background TId: 965 java.net.Socket: void <init>
0m 16s 4 background TId: 962 android.content.ContentResolver: int update(android.net.Uri,android.

content.ContentValues,java.lang.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/bookmarks
0m 16s 4 background TId: 962 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla
.firefox.db.browser/bookmarks

0m 16s 4 background TId: 983 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla
.firefox.db.browser/combined

176

A
P

P
E

N
D

IX
C

.
E

X
P

LO
R

A
T

IO
N

SU
M

M
A

R
IE

S
0m 16s 4 background TId: 984 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla
.firefox.db.browser/thumbnails

2m 3s 40 background TId: 971 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla
.firefox.db.browser/history

2m 3s 40 background TId: 971 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla
.firefox.db.browser/favicons

2m 57s 60 <reset> TId: 971 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/history/old

3m 45s 74 background TId: 999 java.net.URL: java.net.URLConnection openConnection()
4m 11s 78 background TId: 998 android.content.ContentResolver: int update(android.net.Uri,android.

content.ContentValues,java.lang.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/history
4m 15s 79 background TId: 998 android.content.ContentResolver: int update(android.net.Uri,android.

content.ContentValues,java.lang.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/favicons
4m 16s 79 background TId: 998 android.content.ContentResolver: int update(android.net.Uri,android.

content.ContentValues,java.lang.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/thumbnails
17m 2s 313 background TId: 1067 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://org.mozilla.
firefox.db.tabs/tabs

17m 59s 330 background TId: 1073 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/history/old

22m 16s 404 background TId: 1091 android.content.ContentResolver: int delete(android.net.Uri,java.lang
.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/bookmarks

23m 9s 421 <reset> TId: 1091 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/thumbnails

69m 11s 1234 click:[res:id/restart] TId: 1 android.content.ContentResolver: void registerContentObserver(android
.net.Uri,boolean,android.database.ContentObserver) uri: content://org.mozilla.firefox.db.browser/bookmarks

69m 35s 1242 background TId: 1271 android.content.ContentResolver: int update(android.net.Uri,android.
content.ContentValues,java.lang.String,java.lang.String[]) uri: content://org.mozilla.firefox.db.browser/bookmarks/parents

177

Appendix D

Snapchat comparison
summaries

This appendix contains the DROIDMATE exploration summaries and comparison
of the two SNAPCHAT versions: 4.1.07 and 5.0.34.6.

• First comes version SNAPCHAT 5.0.34.6, followed by SNAPCHAT 4.1.07.

• The summary format is analogous to the exploration summaries listed
in Appendix C, but with following changes:

– There are no use cases, only automated DROIDMATE explorations.

– Instead of “Use case” and “DroidMate” columns, we now have “Other”
and “This” columns. “Other” denotes the time the API call or (event,
API call) pair was observed in the other version of SNAPCHAT (or
“None” if it wasn’t observed at all).

178

A
P

P
E

N
D

IX
D

.
SN

A
P

C
H

A
T

C
O

M
PA

R
ISO

N
SU

M
M

A
R

IE
S

==
DroidMate-run:com.snapchat.android-5.0.34.6
==

Total run time: 210m 22s
Total actions count: 4214 (including the final action terminating exploration)
Total resets count: 147 (including the initial action)

--
Unique API calls count observed in the run: 13

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call

data>

Other | This API signature
0m 5s 1 | 0m 7s 1 TId: 326 java.net.Socket: void <init>
0m 25s 5 | 0m 7s 1 TId: 328 android.hardware.Camera: android.hardware.Camera open(int)
0m 27s 5 | 0m 26s 5 TId: 340 java.net.URL: java.net.URLConnection openConnection()

None! | 0m 37s 7 TId: 374 android.media.AudioRecord: void <init>
9m 14s 190 | 1m 1s 17 TId: 360 android.content.ContentResolver: android.net.Uri insert(android.net.

Uri,android.content.ContentValues) uri: content://media/external/images/media
None! | 1m 2s 17 TId: 360 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.
os.CancellationSignal) uri: content://media/external/images/thumbnails

None! | 1m 2s 17 TId: 360 android.content.ContentResolver: android.os.ParcelFileDescriptor
openFileDescriptor(android.net.Uri,java.lang.String,android.os.CancellationSignal) uri: content
://media/external/images/thumbnails/<number>

None! | 1m 2s 17 TId: 360 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://media/external/images/thumbnails

0m 36s 9 | 2m 44s 51 TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.
lang.String)
None! | 3m 7s 61 TId: 1 android.telephony.TelephonyManager: java.lang.String getLine1Number

()
5m 20s 111 | 6m 9s 124 TId: 384 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.
CancellationSignal) uri: content://com.android.contacts/data/phones
None! | 53m 7s 1094 TId: 1 android.os.PowerManager$WakeLock: void acquire(long)
None! | 53m 7s 1094 TId: 515 android.os.PowerManager$WakeLock: void release(int)

--
Unique [API call, event] pairs count observed in the run: 43

179

A
P

P
E

N
D

IX
D

.
SN

A
P

C
H

A
T

C
O

M
PA

R
ISO

N
SU

M
M

A
R

IE
S

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action

that triggered the call> <the event data> <the API call data>

Other | This Event API signature
0m 5s 1 | 0m 7s 1 <reset> TId: 326 java.

net.Socket: void <init>
1m 47s 35 | 0m 7s 1 <reset> TId: 328 android

.hardware.Camera: android.hardware.Camera open(int)
0m 23s 5 | 0m 25s 5 background TId: 351 java.

net.Socket: void <init>
0m 27s 5 | 0m 26s 5 background TId: 340 java.

net.URL: java.net.URLConnection openConnection()
None! | 0m 37s 7 background TId: 374 android

.media.AudioRecord: void <init>
0m 25s 5 | 0m 39s 8 background TId: 328 android

.hardware.Camera: android.hardware.Camera open(int)
9m 14s 190 | 1m 1s 17 background TId: 360 android

.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues) uri:
content://media/external/images/media
None! | 1m 2s 17 background TId: 360 android

.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.
lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://
media/external/images/thumbnails

None! | 1m 2s 17 background TId: 360 android
.content.ContentResolver: android.os.ParcelFileDescriptor openFileDescriptor(android.net.Uri,java
.lang.String,android.os.CancellationSignal) uri: content://media/external/images/thumbnails/<
number>

None! | 1m 2s 17 background TId: 360 android
.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues)
uri: content://media/external/images/thumbnails

None! | 2m 44s 51 click:[res:id/settings_manage_additional_services] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

None! | 3m 7s 61 click:[res:id/mobile_number] TId: 1 android
.telephony.TelephonyManager: java.lang.String getLine1Number()

5m 20s 111 | 6m 9s 124 background TId: 384 android
.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.
String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android.
contacts/data/phones

15m 30s 326 | 26m 31s 549 click:[res:android:id/button1] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

180

A
P

P
E

N
D

IX
D

.
SN

A
P

C
H

A
T

C
O

M
PA

R
ISO

N
SU

M
M

A
R

IE
S

0m 36s 9 | 26m 52s 551 click:[res:id/camera_take_snap_button] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 27m 8s 558 click:[res:id/camera_my_friends_button] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 28m 34s 587 click:[res:id/checkbox] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 32m 11s 663 click:[res:id/add_friends_back_button_area] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 32m 58s 678 click:[res:id/video_settings_button] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 38m 37s 792 click:[res:id/camera_activity_layout] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 39m 6s 804 unlabeled TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 40m 7s 823 click:[res:id/my_friends_list] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 45m 51s 941 click:[res:id/snap_preview_relative_layout] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 48m 51s 1005 click:[res:id/settings_filters_checkbox] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 49m 30s 1014 click:[res:id/my_friends_list_item] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 53m 7s 1094 click:[res:id/send_to_bottom_panel_send_button] TId: 1 android

.os.PowerManager$WakeLock: void acquire(long)
None! | 53m 7s 1094 background TId: 515 android

.os.PowerManager$WakeLock: void release(int)
None! | 59m 36s 1225 click:[res:id/picture_x] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 67m 21s 1379 click:[res:id/camera_feed_button] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 68m 42s 1398 click:[res:id/story_button] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 80m 6s 1624 click:[res:id/camera_switch_camera] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 91m 1s 1852 click:[res:id/settings_filters] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 118m 9s 2403 click:[res:id/tabsLayout] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 125m 52s 2557 click:[res:id/myfriends_action_bar_search_button] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 131m 44s 2672 click:[res:id/my_friends_back_button_area] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)

181

A
P

P
E

N
D

IX
D

.
SN

A
P

C
H

A
T

C
O

M
PA

R
ISO

N
SU

M
M

A
R

IE
S

None! | 133m 13s 2705 click:[res:id/picture_save_pic] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

None! | 139m 44s 2831 click:[res:android:id/text1] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

None! | 141m 6s 2859 click:[res:id/myfriends_action_bar_friend_button] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

None! | 144m 13s 2921 click:[res:id/drawing_btn] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

None! | 171m 59s 3464 click:[res:id/send_to_list] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

None! | 187m 10s 3755 click:[res:id/feed_back_button_area] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

None! | 190m 1s 3815 click:[res:id/feed_logo] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

None! | 194m 8s 3897 <reset> TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

==
DroidMate-run:com.snapchat.android-4.1.07
==

Total run time: 210m 22s
Total actions count: 4358 (including the final action terminating exploration)
Total resets count: 149 (including the initial action)

--
Unique API calls count observed in the run: 11

Below follows a list of first calls to unique APIs. It is to be read as follows:
<time of logging the unique API for the first time> <index of action that triggered the call> <the API call

data>

Other | This API signature
0m 7s 1 | 0m 23s 5 TId: 4608 java.net.Socket: void <init>
0m 7s 1 | 0m 25s 5 TId: 4611 android.hardware.Camera: android.hardware.Camera open(int)

None! | 0m 25s 5 TId: 1 android.location.LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)

0m 26s 5 | 0m 27s 5 TId: 4617 java.net.URL: java.net.URLConnection openConnection()
2m 44s 51 | 0m 36s 9 TId: 1 android.location.LocationManager: boolean isProviderEnabled(java.

lang.String)
None! | 4m 42s 97 TId: 1 android.media.MediaRecorder: void setAudioSource(int)

182

A
P

P
E

N
D

IX
D

.
SN

A
P

C
H

A
T

C
O

M
PA

R
ISO

N
SU

M
M

A
R

IE
S

None! | 4m 42s 97 TId: 1 android.media.MediaRecorder: void setVideoSource(int)
0m 7s 1 | 4m 54s 100 TId: 1 android.content.ContentResolver: android.database.Cursor query(

android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.
CancellationSignal) uri: content://media/external/images/media

6m 9s 124 | 5m 20s 111 TId: 4623 android.content.ContentResolver: android.database.Cursor query(
android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String,android.os.
CancellationSignal) uri: content://com.android.contacts/data/phones

1m 1s 17 | 9m 14s 190 TId: 4641 android.content.ContentResolver: android.net.Uri insert(android.net.
Uri,android.content.ContentValues) uri: content://media/external/images/media
None! | 9m 16s 191 TId: 4641 android.content.ContentResolver: int delete(android.net.Uri,java.

lang.String,java.lang.String[]) uri: content://media/external/images/media/<number>

--
Unique [API call, event] pairs count observed in the run: 33

Below follows a list of first calls to unique [API call, event] pairs. It is to be read as follows:
<time of logging the unique API call from the unique [API call, event] for the first time> <index of action

that triggered the call> <the event data> <the API call data>

Other | This Event API signature
0m 25s 5 | 0m 23s 5 background TId: 4608 java.

net.Socket: void <init>
0m 39s 8 | 0m 25s 5 background TId: 4611 android

.hardware.Camera: android.hardware.Camera open(int)
None! | 0m 25s 5 click:[res:id/login_button] TId: 1 android

.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)
0m 26s 5 | 0m 27s 5 background TId: 4617 java.

net.URL: java.net.URLConnection openConnection()
26m 52s 551 | 0m 36s 9 click:[res:id/camera_take_snap_button] TId: 1 android

.location.LocationManager: boolean isProviderEnabled(java.lang.String)
None! | 0m 36s 9 click:[res:id/camera_take_snap_button] TId: 1 android

.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)
0m 7s 1 | 1m 47s 35 <reset> TId: 4609 android

.hardware.Camera: android.hardware.Camera open(int)
None! | 1m 47s 35 <reset> TId: 1 android

.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)
0m 7s 1 | 1m 47s 35 <reset> TId: 4610 java.

net.Socket: void <init>
None! | 4m 42s 97 l-click:[res:id/camera_take_snap_button] TId: 1 android

.media.MediaRecorder: void setAudioSource(int)
None! | 4m 42s 97 l-click:[res:id/camera_take_snap_button] TId: 1 android

.media.MediaRecorder: void setVideoSource(int)

183

A
P

P
E

N
D

IX
D

.
SN

A
P

C
H

A
T

C
O

M
PA

R
ISO

N
SU

M
M

A
R

IE
S

None! | 4m 54s 100 unlabeled TId: 1 android
.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.
lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://
media/external/images/media

6m 9s 124 | 5m 20s 111 background TId: 4623 android
.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.
String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com.android.
contacts/data/phones
None! | 6m 7s 125 <reset> TId: 4621 android

.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.
lang.String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://com
.android.contacts/data/phones

None! | 7m 51s 162 click:[res:id/drawing_btn] TId: 1 android
.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

None! | 8m 4s 168 l-click:[res:id/camera_take_snap_button] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

None! | 8m 4s 168 l-click:[res:id/camera_take_snap_button] TId: 1 android
.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

None! | 8m 7s 169 click:[res:id/snap_preview_relative_layout] TId: 1 android
.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

None! | 8m 12s 171 click:[res:id/unmuted_button] TId: 1 android
.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

None! | 8m 17s 173 click:[res:id/toggle_caption_btn] TId: 1 android
.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

None! | 9m 12s 189 click:[res:android:id/button2] TId: 1 android
.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

1m 1s 17 | 9m 14s 190 background TId: 4641 android
.content.ContentResolver: android.net.Uri insert(android.net.Uri,android.content.ContentValues) uri:
content://media/external/images/media
None! | 9m 16s 191 background TId: 4641 android

.content.ContentResolver: int delete(android.net.Uri,java.lang.String,java.lang.String[]) uri:
content://media/external/images/media/<number>

None! | 13m 33s 281 click:[res:id/picture_send_pic] TId: 1 android
.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

26m 31s 549 | 15m 30s 326 click:[res:android:id/button1] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

None! | 18m 37s 394 click:[res:id/picture_x] TId: 1 android
.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

None! | 23m 27s 488 click:[res:id/picture_save_pic] TId: 1 android
.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

None! | 23m 37s 492 click:[res:id/picture_caption] TId: 1 android
.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

184

A
P

P
E

N
D

IX
D

.
SN

A
P

C
H

A
T

C
O

M
PA

R
ISO

N
SU

M
M

A
R

IE
S

None! | 27m 44s 586 click:[res:id/settings_smart_filters] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

None! | 33m 5s 699 click:[res:id/time_picker_button] TId: 1 android
.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

None! | 62m 33s 1327 click:[res:id/settings_smart_filters_checkbox] TId: 1 android
.location.LocationManager: boolean isProviderEnabled(java.lang.String)

0m 7s 1 | 65m 58s 1393 <reset> TId: 1 android
.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.
String,java.lang.String[],java.lang.String,android.os.CancellationSignal) uri: content://media/external
/images/media
None! | 127m 31s 2667 click:[res:id/story_button] TId: 1 android

.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)

185

	Contents
	Introduction
	Publications and thesis structure
	About glossary

	Background
	Secure and malicious software
	Problem statement and challenges
	Manual methods of securing software
	User-controlled policies

	Runtime enforcement
	Sandboxing

	Automated behavior discovery
	Static analysis
	Limitations

	Dynamic analysis
	Input generation
	Limitations and comparison with static analysis
	Existing approaches

	Modelling behavior for anomaly detection

	Insights leading to a new approach

	Sandbox mining concept
	Introduction
	A concrete example
	Concept generality

	Principles
	Test complement exclusion
	Disclose or die

	Chain of trust
	End-user
	Checksums and certificates
	Certification levels of trust
	Auditor
	Developer

	Synergies
	Dynamic analysis
	Static analysis
	Runtime enforcement
	Anomaly detection

	Mined behavior specificity trade-off
	Marketplaces
	Challenges and research questions

	Input generation implementation: DroidMate
	Technical choices justification
	Comparison with existing tools
	Comparison table

	DroidMate overview
	Key features
	Architecture
	Execution phases
	Exploration component
	Exploration strategy

	GUI automation component
	Monitoring component
	Modules
	Core module

	Resources
	Monitored API methods list

	Limitations

	Sandboxing implementation: BoxMate
	Android permission model
	Android permission model is ineffective

	API call policy
	Distinguishing API calls
	Triggering view association
	API calls equivalence

	A Snapchat case study

	Event-bound API calls policy
	Distinguishing events

	Sandboxes
	AppGuard
	Boxify

	Sandbox quality study
	Experimental setup
	Evaluation plan

	Resource access saturation
	Policy violations
	Version differences evaluation
	Threats and Limitations

	Robustness study
	Experimental setup
	App exploration robustness analysis

	Evaluation set
	Robustness results
	Robust explorations
	Explorations requiring login
	Stuck explorations
	Explorations terminating early
	No exploration

	Results summary
	Threats to validity

	Conclusion
	Future work

	Glossary
	Bibliography
	Appendices
	Using and extending DroidMate
	Monitored Android API methods list
	Exploration summaries
	Snapchat comparison summaries

